
i

Manual for wxGraphLayout 1.0: a graph layout library for wxWindows

Julian Smart
Artificial Intelligence Applications Institute

University of Edinburgh
EH1 1HN

November 1993

i

Contents

1. Introduction ...1

2. wxGraphLayout Class Reference ..2
2.1. wxGraphLayout: wxObject ...2

ii

Copyright notice

Copyright (c) 1993 Artificial Intelligence Applications Institute, The University of Edinburgh.

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose is hereby granted without fee, provided that the above copyright notice, author statement
and this permission notice appear in all copies of this software and related documentation.

THE SOFTWARE IS PROVIDED "AS-IS'' AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL THE ARTIFICIAL INTELLIGENCE APPLICATIONS INSTITUTE OR THE
UNIVERSITY OF EDINBURGH BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

'Graphplace', the basis for this class library, is copyright Dr. Jos T.J. van Eijndhoven of Eindhoven
University of Technology. The code has been used in wxGraphLayout with his permission.

1

1. Introduction

This manual describes a graph layout class library for wxWindows. It is an encapsulation of the
main code from Jos van Eijndhoven's graphplace tool which he has distributed to the net.

Below is the example graph generated by the program test.cc.

Figure 1: Example graph

Sorry, the documentation for wxGraphLayout is sparse at present, but see the class reference
and the test program. Here is the message from Jos introducing his original graphplace tool:

We are using in our group a locally developed graph placement and drawing program, which was
noticed as being very nice by several visitors. The program was made as general applicable tool,
and indeed quickly gained use in several very different applications. Therefore we decided to
make it available to all of you...

In general it will try to find a placement with 'short' edges, and in a 'breath-first-search' (sorted on
level) order. The program works for any graph (also cyclic or not fully connected). The placement
algorithm is a very fast linear-time heuristic, which often gives surprisingly nice results.

If you are interested, you can fetch the program from 'ftp.es.ele.tue.nl' as
'pub/down/graphplace.tar.Z'.

2

2. wxGraphLayout Class Reference

The member functions are given in alphabetical order except for the constructors and destructors
which appear first.

2.1. wxGraphLayout: wxObject

This abstract class is used for drawing a graph. You don't have to derive a new class, but if you
do provide SetNodeX (page 6) and SetNodeY (page 6) members, these will automatically be
called to position your nodes. If you do not derive a new class and override these members, you
need to call GetNodeX (page 4) and GetNodeY (page 4) for each node after the call to DoLayout
(page 3).

Nodes are identified by long integer identifiers. The application should call AddNode (page 2) and
AddArc (page 2) to register the nodes and arcs with wxGraphLayout, before calling DoLayout to
do the graph layout. Depending on how the derived class has been defined, either
wxGraphLayout::Draw must be called (for example by the OnDraw member of a wxCanvas) or
the application-defined drawing code should be called as normal.

For example, if you have an image drawing system already defined, you may want
wxGraphLayout to position existing node images in that system. So you just need a way for
wxGraphLayout to set the node image positions according to the layout algorithm, and the rest
will be done by your own image drawing system.

wxGraphLayout::wxGraphLayout

void wxGraphLayout(wxDC *dc = NULL)

Constructor. dc is an optional device context for the class to draw the graph into.

wxGraphLayout::ActivateNode

void ActivateNode(long id, Bool active)

Call this to turn off nodes in the graph (not implemented yet). See also NodeActive.

wxGraphLayout::AddArc

void AddArc(long id, long fromId, long toId,char *name = NULL)

Call this to add an arc to the graph, with optional name to display.

wxGraphLayout::AddNode

void AddNode(long id, char *name = NULL)

Call this to add a node to the graph, with optional name to display.

CHAPTER 2

3

wxGraphLayout::Clear

void Clear(void)

Clears the graph so another graph may be defined and laid out.

wxGraphLayout::DoLayout

void DoLayout(void)

Calculates the layout for the graph.

wxGraphLayout::Draw

void Draw(void)

Call this to let wxGraphLayout draw the graph itself, once the layout has been calculated with
DoLayout. The device context must have been set in the constructor or using SetDC.

wxGraphLayout::DrawArc

void DrawArc(long from, long to)

Defined by wxGraphLayout to draw an arc between two nodes.

wxGraphLayout::DrawArcs

void DrawArcs(void)

Defined by wxGraphLayout to draw the arcs between nodes.

wxGraphLayout::DrawNode

void DrawNode(long id)

Defined by wxGraphLayout to draw a node.

wxGraphLayout::DrawNodes

void DrawNodes(void)

Defined by wxGraphLayout to draw the nodes.

wxGraphLayout::GetDC

long GetDC(void)

CHAPTER 2

4

Gets the (optional) device context associated with the graph.

wxGraphLayout::GetNextNode

long GetNextNode(long id)

Must be defined to return the next node after id, so that wxGraphLayout can iterate through all
relevant nodes. The ordering is not important. The function should return -1 if there are no more
nodes.

wxGraphLayout::GetNodeSize

void GetNodeSize(long id, float *x, float *y)

Can be defined to indicate a node's size, or left to wxGraphLayout to use the name as an
indication of size.

wxGraphLayout::GetNodeX

float GetNodeX(long id)

Must be defined to return the current X position of the node. Note that coordinates are assumed
to be at the top-left of the node so some conversion may be necessary for your application.

wxGraphLayout::GetNodeY

float GetNodeY(long id)

Must be defined to return the current Y position of the node. Note that coordinates are assumed
to be at the top-left of the node so some conversion may be necessary for your application.

wxGraphLayout::GetLeftMargin

float GetLeftMargin(void)

Gets the left margin set with SetMargins.

wxGraphLayout::GetRotation

int GetRotation(void)

Get the rotation factor.

wxGraphLayout::GetTopMargin

float GetTopMargin(void)

CHAPTER 2

5

Gets the top margin set with SetMargins.

wxGraphLayout::GetXSpacing

float GetXSpacing(void)

Gets the horizontal spacing between nodes.

wxGraphLayout::GetYSpacing

float GetYSpacing(void)

Gets the vertical spacing between nodes.

wxGraphLayout::Initialize

void Initialize(void)

Initializes wxGraphLayout. Call from application or overridden Initializeor constructor.

wxGraphLayout::CalcLayout

void CalcLayout(long node_id, int level)

Private function for laying out a branch.

wxGraphLayout::NodeActive

Bool NodeActive(long id)

Define this so wxGraphLayout can know which nodes are to be drawn (not all nodes may be
connected in the graph). See also ActivateNode.

wxGraphLayout::SetBoundingBox

void SetBoundingBox(float x1, float y1, float x2, float y2)

Sets the size of the bounding box to which the graph will be scaled. Pass the top left corner and
bottom right corner.

wxGraphLayout::SetDC

void SetDC(wxDC *dc)

Use this to set the graph's device context, if leaving the drawing up to wxGraphLayout.

CHAPTER 2

6

wxGraphLayout::SetNodeName

void SetNodeName(long id, char * name)

May optionally be defined to set a node's name.

wxGraphLayout::SetNodeX

void SetNodeX(long id, float x)

Must be defined to set the current X position of the node. Note that coordinates are assumed to
be at the top-left of the node so some conversion may be necessary for your application.

wxGraphLayout::SetNodeY

void SetNodeY(long id, float y)

Must be defined to set the current Y position of the node. Note that coordinates are assumed to
be at the top-left of the node so some conversion may be necessary for your application.

wxGraphLayout::SetRotation

void SetRotation(int rot)

Set the rotation factor (multipled by 90 degrees by wxGraphLayout).

wxGraphLayout::SetSpacing

void SetSpacing(float x, float y)

Sets the horizontal and vertical spacing between nodes in the graph.

wxGraphLayout::SetMargins

void SetMargins(float x, float y)

Sets the left and top margins of the whole graph.

