
GAP - Reference Manual

Release 4.14.0-beta1, 2024-11-14

The GAP Group

The GAP Group Email: support@gap-system.org
Homepage: https://www.gap-system.org

mailto://support@gap-system.org
https://www.gap-system.org

GAP - Reference Manual 2

Copyright
Copyright © (1987-2024) for the core part of the GAP system by the GAP Group.

Most parts of this distribution, including the core part of the GAP system are
distributed under the terms of the GNU General Public License Version 2, see
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html or the LICENSE file in the root
directory of the GAP installation.

More detailed information about copyright and licenses of parts of this distribution can be found in Section
1.4 of this manual.

GAP has been developed over a long time and has many authors and contributors. More detailed
information can be found in Section 1.2 of this manual.

https://www.gnu.org/licenses/old-licenses/gpl-2.0.html

Contents

1 Preface 23
1.1 The GAP System . 23
1.2 Authors and Maintainers . 25
1.3 Acknowledgements . 26
1.4 Copyright and License . 26
1.5 Further Information about GAP . 27

2 The Help System 28
2.1 Invoking the Help . 28
2.2 Browsing through the Sections . 28
2.3 Changing the Help Viewer . 29
2.4 The Pager Command . 31

3 Running GAP 33
3.1 Command Line Options . 33
3.2 The gap.ini and gaprc files . 37
3.3 Saving and Loading a Workspace . 44
3.4 Testing for the System Architecture . 45
3.5 Global Values that Control the GAP Session . 45
3.6 Coloring the Prompt and Input . 45

4 The Programming Language 48
4.1 Language Overview . 48
4.2 Lexical Structure . 49
4.3 Symbols . 49
4.4 Whitespaces . 50
4.5 Keywords . 51
4.6 Identifiers . 51
4.7 Expressions . 52
4.8 Variables . 53
4.9 More About Global Variables . 55
4.10 Namespaces for GAP packages . 58
4.11 Function . 59
4.12 Function Calls . 63
4.13 Comparisons . 64
4.14 Arithmetic Operators . 65

3

GAP - Reference Manual 4

4.15 Statements . 66
4.16 Syntax Trees . 74

5 Functions 75
5.1 Information about a function . 75
5.2 Calling a function with a list argument that is interpreted as several arguments . . . 78
5.3 Wrapping a function, so the values produced are cached 79
5.4 Functions that do nothing . 80
5.5 Function Types . 82
5.6 Naming Conventions . 82
5.7 Code annotations (pragmas) . 83

6 Main Loop and Break Loop 85
6.1 Main Loop . 85
6.2 Special Rules for Input Lines . 87
6.3 View and Print . 87
6.4 Break Loops . 91
6.5 Variable Access in a Break Loop . 96
6.6 Error and ErrorCount . 97
6.7 Leaving GAP . 98
6.8 Line Editing . 99
6.9 Editing using the readline library . 102
6.10 Editing Files . 105
6.11 Editor Support . 105
6.12 Changing the Screen Size . 106
6.13 Teaching Mode . 106

7 Debugging and Profiling Facilities 108
7.1 Recovery from NoMethodFound-Errors . 108
7.2 Inspecting Applicable Methods . 110
7.3 Tracing Methods . 110
7.4 Info Functions . 113
7.5 Assertions . 116
7.6 Timing . 117
7.7 Tracking Memory Usage . 119
7.8 Profiling . 119
7.9 Information about the version used . 127
7.10 Test Files . 127
7.11 Debugging Recursion . 132
7.12 Global Memory Information . 135

8 Options Stack 137
8.1 Functions Dealing with the Options Stack . 137
8.2 Options Stack – an Example . 139

GAP - Reference Manual 5

9 Files and Filenames 140
9.1 Portability . 140
9.2 GAP Root Directories . 140
9.3 Directories . 141
9.4 File Names . 143
9.5 Special Filenames . 144
9.6 File Access . 144
9.7 File Operations . 146

10 Streams 150
10.1 Categories for Streams and the StreamsFamily . 150
10.2 Operations applicable to All Streams . 152
10.3 Operations for Input Streams . 152
10.4 Operations for Output Streams . 155
10.5 File Streams . 158
10.6 User Streams . 159
10.7 String Streams . 160
10.8 Input-Output Streams . 160
10.9 Dummy Streams . 162
10.10 Handling of Streams in the Background . 162
10.11 Comma separated files . 163
10.12 Opening files in the Operating System . 164

11 Processes 165
11.1 Process and Exec . 165

12 Objects and Elements 168
12.1 Objects . 168
12.2 Elements as equivalence classes . 168
12.3 Sets . 169
12.4 Domains . 169
12.5 Identical Objects . 169
12.6 Mutability and Copyability . 171
12.7 Duplication of Objects . 173
12.8 Other Operations Applicable to any Object . 174

13 Types of Objects 176
13.1 Families . 176
13.2 Filters . 179
13.3 Categories . 181
13.4 Representation . 184
13.5 Attributes . 186
13.6 Setter and Tester for Attributes . 188
13.7 Properties . 191
13.8 Other Filters . 193
13.9 Types . 195

GAP - Reference Manual 6

14 Integers 196
14.1 Integers: Global Variables . 196
14.2 Elementary Operations for Integers . 197
14.3 Quotients and Remainders . 200
14.4 Prime Integers and Factorization . 203
14.5 Residue Class Rings . 208
14.6 Check Digits . 210
14.7 Random Sources . 211
14.8 Bitfields . 215

15 Number Theory 217
15.1 InfoNumtheor (Info Class) . 217
15.2 Prime Residues . 217
15.3 Primitive Roots and Discrete Logarithms . 219
15.4 Roots Modulo Integers . 221
15.5 Multiplicative Arithmetic Functions . 223
15.6 Continued Fractions . 225
15.7 Miscellaneous . 226

16 Combinatorics 227
16.1 Combinatorial Numbers . 227
16.2 Combinations, Arrangements and Tuples . 230
16.3 Fibonacci and Lucas Sequences . 240
16.4 Permanent of a Matrix . 241

17 Rational Numbers 242
17.1 Rationals: Global Variables . 242
17.2 Elementary Operations for Rationals . 243

18 Cyclotomic Numbers 245
18.1 Operations for Cyclotomics . 245
18.2 Infinity and negative Infinity . 250
18.3 Comparisons of Cyclotomics . 251
18.4 ATLAS Irrationalities . 251
18.5 Galois Conjugacy of Cyclotomics . 254
18.6 Internally Represented Cyclotomics . 257

19 Floats 259
19.1 A sample run . 259
19.2 Methods . 260
19.3 High-precision-specific methods . 265
19.4 Complex arithmetic . 266
19.5 Interval-specific methods . 266

GAP - Reference Manual 7

20 Booleans 268
20.1 IsBool (Filter) . 268
20.2 Fail (Variable) . 268
20.3 Comparisons of Booleans . 269
20.4 Operations for Booleans . 269

21 Lists 272
21.1 List Categories . 272
21.2 Basic Operations for Lists . 274
21.3 List Elements . 275
21.4 List Assignment . 276
21.5 IsBound and Unbind for Lists . 280
21.6 Identical Lists . 281
21.7 Duplication of Lists . 283
21.8 Membership Test for Lists . 284
21.9 Enlarging Internally Represented Lists . 284
21.10 Comparisons of Lists . 285
21.11 Arithmetic for Lists . 286
21.12 Filters Controlling the Arithmetic Behaviour of Lists 287
21.13 Additive Arithmetic for Lists . 289
21.14 Multiplicative Arithmetic for Lists . 290
21.15 Mutability Status and List Arithmetic . 293
21.16 Finding Positions in Lists . 294
21.17 Properties and Attributes for Lists . 300
21.18 Sorting Lists . 302
21.19 Sorted Lists and Sets . 304
21.20 Operations for Lists . 307
21.21 Advanced List Manipulations . 318
21.22 Ranges . 320
21.23 Enumerators . 322
21.24 Plain Lists . 323

22 Boolean Lists 324
22.1 IsBlist (Filter) . 324
22.2 Boolean Lists Representing Subsets . 325
22.3 Set Operations via Boolean Lists . 326
22.4 Function that Modify Boolean Lists . 327
22.5 More about Boolean Lists . 329

23 Row Vectors 331
23.1 IsRowVector (Filter) . 331
23.2 Operators for Row Vectors . 332
23.3 Row Vectors over Finite Fields . 333
23.4 Coefficient List Arithmetic . 335
23.5 Shifting and Trimming Coefficient Lists . 337
23.6 Functions for Coding Theory . 337
23.7 Vectors as coefficients of polynomials . 339

GAP - Reference Manual 8

24 Matrices 341
24.1 InfoMatrix (Info Class) . 341
24.2 Categories of Matrices . 341
24.3 Operators for Matrices . 343
24.4 Properties and Attributes of Matrices . 345
24.5 Matrix Constructions . 348
24.6 Random Matrices . 351
24.7 Matrices Representing Linear Equations and the Gaussian Algorithm 352
24.8 Eigenvectors and eigenvalues . 354
24.9 Elementary Divisors . 355
24.10 Echelonized Matrices . 357
24.11 Matrices as Basis of a Row Space . 358
24.12 Triangular Matrices . 360
24.13 Matrices as Linear Mappings . 361
24.14 Matrices over Finite Fields . 363
24.15 Inverse and Nullspace of an Integer Matrix Modulo an Ideal 366
24.16 Special Multiplication Algorithms for Matrices over GF(2) 367
24.17 Block Matrices . 368
24.18 Linear Programming . 369

25 Integral matrices and lattices 370
25.1 Linear equations over the integers and Integral Matrices 370
25.2 Normal Forms over the Integers . 372
25.3 Determinant of an integer matrix . 375
25.4 Decompositions . 375
25.5 Lattice Reduction . 377
25.6 Orthogonal Embeddings . 379

26 Vector and Matrix Objects 381
26.1 Concepts and Rules for Vector and Matrix Objects 381
26.2 Categories of Vector and Matrix Objects . 382
26.3 Defining Attributes of Vector and Matrix Objects 385
26.4 Constructing Vector and Matrix Objects . 386
26.5 Operations for Base Domains of Vector and Matrix Objects 389
26.6 Operations for Vector and Matrix Objects . 389
26.7 List Like Operations for Vector Objects . 390
26.8 Arithmetical Operations for Vector Objects . 391
26.9 Operations for Vector Objects . 393
26.10 Arithmetical Operations for Matrix Objects . 394
26.11 Operations for Matrix Objects . 395
26.12 Operations for Row List Matrix Objects . 397
26.13 Basic operations for row/column reductions . 400
26.14 Implementing New Vector and Matrix Objects Types 401
26.15 Available Representations of Vector Objects . 402
26.16 Available Representations of Matrix Objects . 403

GAP - Reference Manual 9

27 Strings and Characters 405
27.1 IsChar and IsString . 405
27.2 Special Characters . 407
27.3 Triple Quoted Strings . 409
27.4 Internally Represented Strings . 409
27.5 Recognizing Characters . 411
27.6 Comparisons of Strings . 411
27.7 Operations to Produce or Manipulate Strings . 412
27.8 Character Conversion . 420
27.9 Operations to Evaluate Strings . 421
27.10 Calendar Arithmetic . 424
27.11 Obtaining LaTeX Representations of Objects . 426

28 Dictionaries and General Hash Tables 427
28.1 Using Dictionaries . 427
28.2 Dictionaries . 429
28.3 Dictionaries via Binary Lists . 429
28.4 General Hash Tables . 430
28.5 Hash keys . 431
28.6 Dense hash tables . 431
28.7 Sparse hash tables . 431

29 Records 433
29.1 IsRecord and RecNames . 433
29.2 Accessing Record Elements . 434
29.3 Record Assignment . 435
29.4 Identical Records . 436
29.5 Comparisons of Records . 437
29.6 IsBound and Unbind for Records . 438
29.7 Record Access Operations . 439

30 Collections 441
30.1 IsCollection (Filter) . 441
30.2 Collection Families . 441
30.3 Lists and Collections . 443
30.4 Attributes and Properties for Collections . 449
30.5 Operations for Collections . 451
30.6 Membership Test for Collections . 453
30.7 Random Elements . 453
30.8 Iterators . 455

31 Domains and their Elements 459
31.1 Operational Structure of Domains . 459
31.2 Equality and Comparison of Domains . 460
31.3 Constructing Domains . 461
31.4 Changing the Structure . 462
31.5 Changing the Representation . 462

GAP - Reference Manual 10

31.6 Domain Categories . 463
31.7 Parents . 464
31.8 Constructing Subdomains . 464
31.9 Operations for Domains . 465
31.10 Attributes and Properties of Elements . 466
31.11 Comparison Operations for Elements . 470
31.12 Arithmetic Operations for Elements . 471
31.13 Relations Between Domains . 472
31.14 Useful Categories of Elements . 475
31.15 Useful Categories for all Elements of a Family . 479

32 Mappings 481
32.1 Direct Products and their Elements . 481
32.2 Creating Mappings . 483
32.3 Properties and Attributes of (General) Mappings 486
32.4 Images under Mappings . 487
32.5 Preimages under Mappings . 489
32.6 Arithmetic Operations for General Mappings . 491
32.7 Mappings which are Compatible with Algebraic Structures 492
32.8 Magma Homomorphisms . 492
32.9 Mappings that Respect Multiplication . 493
32.10 Mappings that Respect Addition . 494
32.11 Linear Mappings . 495
32.12 Ring Homomorphisms . 496
32.13 General Mappings . 497
32.14 Technical Matters Concerning General Mappings 497

33 Relations 500
33.1 General Binary Relations . 500
33.2 Properties and Attributes of Binary Relations . 501
33.3 Binary Relations on Points . 503
33.4 Closure Operations and Other Constructors . 504
33.5 Equivalence Relations . 505
33.6 Attributes of and Operations on Equivalence Relations 507
33.7 Equivalence Classes . 507

34 Orderings 509
34.1 IsOrdering (Filter) . 509
34.2 Building new orderings . 509
34.3 Properties and basic functionality . 510
34.4 Orderings on families of associative words . 511

35 Magmas 516
35.1 Magma Categories . 516
35.2 Magma Generation . 517
35.3 Magmas Defined by Multiplication Tables . 520
35.4 Attributes and Properties for Magmas . 522

GAP - Reference Manual 11

36 Words 526
36.1 Categories of Words and Nonassociative Words 526
36.2 Comparison of Words . 528
36.3 Operations for Words . 529
36.4 Free Magmas . 530
36.5 External Representation for Nonassociative Words 532

37 Associative Words 534
37.1 Categories of Associative Words . 534
37.2 Free Groups, Monoids and Semigroups . 535
37.3 Comparison of Associative Words . 537
37.4 Operations for Associative Words . 538
37.5 Operations for Associative Words by their Syllables 541
37.6 Representations for Associative Words . 541
37.7 The External Representation for Associative Words 543
37.8 Straight Line Programs . 544
37.9 Straight Line Program Elements . 550

38 Rewriting Systems 552
38.1 Operations on rewriting systems . 552
38.2 Operations on elements of the algebra . 554
38.3 Properties of rewriting systems . 555
38.4 Rewriting in Groups and Monoids . 555
38.5 Developing rewriting systems . 556

39 Groups 558
39.1 Group Elements . 558
39.2 Creating Groups . 559
39.3 Subgroups . 561
39.4 Closures of (Sub)groups . 564
39.5 Expressing Group Elements as Words in Generators 565
39.6 Structure Descriptions . 567
39.7 Cosets . 569
39.8 Transversals . 571
39.9 Double Cosets . 572
39.10 Conjugacy Classes . 574
39.11 Normal Structure . 577
39.12 Specific and Parametrized Subgroups . 579
39.13 Sylow Subgroups and Hall Subgroups . 582
39.14 Subgroups characterized by prime powers . 584
39.15 Group Properties . 585
39.16 Numerical Group Attributes . 592
39.17 Subgroup Series . 593
39.18 Factor Groups . 598
39.19 Sets of Subgroups . 600
39.20 Subgroup Lattice . 603
39.21 Specific Methods for Subgroup Lattice Computations 608

GAP - Reference Manual 12

39.22 Special Generating Sets . 611
39.23 1-Cohomology . 613
39.24 Schur Covers and Multipliers . 616
39.25 2-Cohomology . 619
39.26 Tests for the Availability of Methods . 621
39.27 Specific functions for Normalizer calculation . 622

40 Group Homomorphisms 624
40.1 Creating Group Homomorphisms . 624
40.2 Operations for Group Homomorphisms . 627
40.3 Efficiency of Homomorphisms . 628
40.4 Homomorphism for very large groups . 629
40.5 Nice Monomorphisms . 630
40.6 Group Automorphisms . 631
40.7 Groups of Automorphisms . 633
40.8 Calculating with Group Automorphisms . 635
40.9 Searching for Homomorphisms . 636
40.10 Representations for Group Homomorphisms . 639

41 Group Actions 642
41.1 About Group Actions . 642
41.2 Basic Actions . 643
41.3 Action on canonical representatives . 648
41.4 Orbits . 648
41.5 Stabilizers . 651
41.6 Elements with Prescribed Images . 652
41.7 The Permutation Image of an Action . 653
41.8 Action of a group on itself . 654
41.9 Permutations Induced by Elements and Cycles . 656
41.10 Tests for Actions . 658
41.11 Block Systems . 660
41.12 External Sets . 662

42 Permutations 667
42.1 IsPerm (Filter) . 667
42.2 Comparison of Permutations . 669
42.3 Moved Points of Permutations . 669
42.4 Sign and Cycle Structure . 671
42.5 Creating Permutations . 671

43 Permutation Groups 674
43.1 IsPermGroup (Filter) . 674
43.2 The Natural Action . 674
43.3 Computing a Permutation Representation . 675
43.4 Symmetric and Alternating Groups . 676
43.5 Primitive Groups . 677
43.6 Stabilizer Chains . 679

GAP - Reference Manual 13

43.7 Randomized Methods for Permutation Groups . 679
43.8 Construction of Stabilizer Chains . 682
43.9 Stabilizer Chain Records . 684
43.10 Operations for Stabilizer Chains . 685
43.11 Low Level Routines to Modify and Create Stabilizer Chains 688
43.12 Backtrack . 690
43.13 Working with large degree permutation groups . 691

44 Matrix Groups 693
44.1 IsMatrixGroup (Filter) . 693
44.2 Attributes and Properties for Matrix Groups . 694
44.3 Actions of Matrix Groups . 695
44.4 GL and SL . 695
44.5 Invariant Forms . 697
44.6 Matrix Groups in Characteristic 0 . 698
44.7 Acting OnRight and OnLeft . 701

45 Polycyclic Groups 702
45.1 Polycyclic Generating Systems . 702
45.2 Computing a Pcgs . 703
45.3 Defining a Pcgs Yourself . 704
45.4 Elementary Operations for a Pcgs . 704
45.5 Elementary Operations for a Pcgs and an Element 705
45.6 Exponents of Special Products . 707
45.7 Subgroups of Polycyclic Groups – Induced Pcgs 708
45.8 Subgroups of Polycyclic Groups – Canonical Pcgs 710
45.9 Factor Groups of Polycyclic Groups – Modulo Pcgs 711
45.10 Factor Groups of Polycyclic Groups in their Own Representation 713
45.11 Pcgs and Normal Series . 714
45.12 Sum and Intersection of Pcgs . 718
45.13 Special Pcgs . 719
45.14 Action on Subfactors Defined by a Pcgs . 721
45.15 Orbit Stabilizer Methods for Polycyclic Groups 723
45.16 Operations which have Special Methods for Groups with Pcgs 723
45.17 Conjugacy Classes in Solvable Groups . 723

46 Pc Groups 725
46.1 The Family Pcgs . 726
46.2 Elements of Pc Groups . 727
46.3 Pc Groups versus Fp Groups . 727
46.4 Constructing Pc Groups . 728
46.5 Computing Pc Groups . 731
46.6 Saving a Pc Group . 732
46.7 Operations for Pc Groups . 732
46.8 2-Cohomology and Extensions . 733
46.9 Coding a Pc Presentation . 737
46.10 Random Isomorphism Testing . 738

GAP - Reference Manual 14

47 Finitely Presented Groups 739
47.1 IsSubgroupFpGroup and IsFpGroup . 740
47.2 Creating Finitely Presented Groups . 741
47.3 Comparison of Elements of Finitely Presented Groups 742
47.4 Preimages in the Free Group . 743
47.5 Operations for Finitely Presented Groups . 745
47.6 Coset Tables and Coset Enumeration . 745
47.7 Standardization of coset tables . 749
47.8 Coset tables for subgroups in the whole group . 751
47.9 Augmented Coset Tables and Rewriting . 751
47.10 Low Index Subgroups . 752
47.11 Converting Groups to Finitely Presented Groups 753
47.12 New Presentations and Presentations for Subgroups 756
47.13 Preimages under Homomorphisms from an FpGroup 757
47.14 Quotient Methods . 758
47.15 Abelian Invariants for Subgroups . 761
47.16 Testing Finiteness of Finitely Presented Groups 763

48 Presentations and Tietze Transformations 765
48.1 Creating Presentations . 765
48.2 Subgroup Presentations . 768
48.3 Relators in a Presentation . 772
48.4 Printing Presentations . 773
48.5 Changing Presentations . 775
48.6 Tietze Transformations . 776
48.7 Elementary Tietze Transformations . 779
48.8 Tietze Transformations that introduce new Generators 781
48.9 Tracing generator images through Tietze transformations 784
48.10 The Decoding Tree Procedure . 786
48.11 Tietze Options . 789

49 Group Products 792
49.1 Direct Products . 792
49.2 Semidirect Products . 793
49.3 Subdirect Products . 795
49.4 Wreath Products . 795
49.5 Free Products . 798
49.6 Embeddings and Projections for Group Products 798

50 Group Libraries 800
50.1 Basic Groups . 801
50.2 Classical Groups . 806
50.3 Conjugacy Classes in Classical Groups . 814
50.4 Constructors for Basic Groups . 815
50.5 Selection Functions . 816
50.6 Finite Perfect Groups . 817
50.7 Irreducible Maximal Finite Integral Matrix Groups 822

GAP - Reference Manual 15

51 Semigroups and Monoids 832
51.1 Semigroups . 832
51.2 Monoids . 836
51.3 Inverse semigroups and monoids . 839
51.4 Properties of Semigroups . 842
51.5 Ideals of semigroups . 843
51.6 Congruences on semigroups . 844
51.7 Quotients . 844
51.8 Green’s Relations . 845
51.9 Rees Matrix Semigroups . 848

52 Finitely Presented Semigroups and Monoids 857
52.1 IsSubsemigroupFpSemigroup (Filter) . 859
52.2 Creating Finitely Presented Semigroups and Monoids 860
52.3 Comparison of Elements of Finitely Presented Semigroups 861
52.4 Preimages in the Free Semigroup or Monoid . 861
52.5 Rewriting Systems and the Knuth-Bendix Procedure 863
52.6 Todd-Coxeter Procedure . 865

53 Transformations 866
53.1 The family and categories of transformations . 867
53.2 Creating transformations . 868
53.3 Changing the representation of a transformation 871
53.4 Operators for transformations . 873
53.5 Attributes for transformations . 876
53.6 Displaying transformations . 885
53.7 Semigroups of transformations . 886

54 Partial permutations 890
54.1 The family and categories of partial permutations 892
54.2 Creating partial permutations . 892
54.3 Attributes for partial permutations . 896
54.4 Changing the representation of a partial permutation 904
54.5 Operators and operations for partial permutations 905
54.6 Displaying partial permutations . 910
54.7 Semigroups and inverse semigroups of partial permutations 911

55 Additive Magmas 916
55.1 (Near-)Additive Magma Categories . 916
55.2 (Near-)Additive Magma Generation . 918
55.3 Attributes and Properties for (Near-)Additive Magmas 920
55.4 Operations for (Near-)Additive Magmas . 921

56 Rings 922
56.1 Generating Rings . 922
56.2 Ideals of Rings . 925
56.3 Rings With One . 928

GAP - Reference Manual 16

56.4 Properties of Rings . 930
56.5 Units and Factorizations . 931
56.6 Euclidean Rings . 934
56.7 Gcd and Lcm . 935
56.8 Homomorphisms of Rings . 938
56.9 Small Rings . 939

57 Modules 942
57.1 Generating modules . 942
57.2 Submodules . 944
57.3 Free Modules . 945

58 Fields and Division Rings 948
58.1 Generating Fields . 948
58.2 Subfields of Fields . 950
58.3 Galois Action . 952

59 Finite Fields 956
59.1 Finite Field Elements . 956
59.2 Operations for Finite Field Elements . 958
59.3 Creating Finite Fields . 961
59.4 Frobenius Automorphisms . 962
59.5 Conway Polynomials . 963
59.6 Printing, Viewing and Displaying Finite Field Elements 964

60 Abelian Number Fields 967
60.1 Construction of Abelian Number Fields . 967
60.2 Operations for Abelian Number Fields . 969
60.3 Integral Bases of Abelian Number Fields . 970
60.4 Galois Groups of Abelian Number Fields . 972
60.5 Gaussians . 974

61 Vector Spaces 975
61.1 IsLeftVectorSpace (Filter) . 975
61.2 Constructing Vector Spaces . 975
61.3 Operations and Attributes for Vector Spaces . 977
61.4 Domains of Subspaces of Vector Spaces . 977
61.5 Bases of Vector Spaces . 978
61.6 Operations for Vector Space Bases . 980
61.7 Operations for Special Kinds of Bases . 982
61.8 Mutable Bases . 983
61.9 Row and Matrix Spaces . 986
61.10 Vector Space Homomorphisms . 989
61.11 Vector Spaces Handled By Nice Bases . 992
61.12 How to Implement New Kinds of Vector Spaces 994
61.13 Tensor Products and Exterior and Symmetric Powers 995

GAP - Reference Manual 17

62 Algebras 998
62.1 InfoAlgebra (Info Class) . 998
62.2 Constructing Algebras by Generators . 998
62.3 Constructing Algebras as Free Algebras . 999
62.4 Constructing Algebras by Structure Constants . 1000
62.5 Some Special Algebras . 1004
62.6 Subalgebras . 1006
62.7 Ideals of Algebras . 1007
62.8 Categories and Properties of Algebras . 1008
62.9 Attributes and Operations for Algebras . 1010
62.10 Homomorphisms of Algebras . 1018
62.11 Representations of Algebras . 1023

63 Finitely Presented Algebras 1033

64 Lie Algebras 1034
64.1 Lie Objects . 1034
64.2 Constructing Lie algebras . 1036
64.3 Distinguished Subalgebras . 1039
64.4 Series of Ideals . 1041
64.5 Properties of a Lie Algebra . 1042
64.6 Semisimple Lie Algebras and Root Systems . 1043
64.7 Semisimple Lie Algebras and Weyl Groups of Root Systems 1046
64.8 Restricted Lie algebras . 1049
64.9 The Adjoint Representation . 1051
64.10 Universal Enveloping Algebras . 1053
64.11 Finitely Presented Lie Algebras . 1054
64.12 Modules over Lie Algebras and Their Cohomology 1055
64.13 Modules over Semisimple Lie Algebras . 1058
64.14 Admissible Lattices in UEA . 1059
64.15 Tensor Products and Exterior and Symmetric Powers of Algebra Modules 1062

65 Magma Rings 1064
65.1 Free Magma Rings . 1065
65.2 Elements of Free Magma Rings . 1066
65.3 Natural Embeddings related to Magma Rings . 1067
65.4 Magma Rings modulo Relations . 1068
65.5 Magma Rings modulo the Span of a Zero Element 1069
65.6 Technical Details about the Implementation of Magma Rings 1070

66 Polynomials and Rational Functions 1071
66.1 Indeterminates . 1071
66.2 Operations for Rational Functions . 1074
66.3 Comparison of Rational Functions . 1075
66.4 Properties and Attributes of Rational Functions . 1076
66.5 Univariate Polynomials . 1079
66.6 Polynomials as Univariate Polynomials in one Indeterminate 1081

GAP - Reference Manual 18

66.7 Multivariate Polynomials . 1083
66.8 Minimal Polynomials . 1084
66.9 Cyclotomic Polynomials . 1084
66.10 Polynomial Factorization . 1084
66.11 Polynomials over the Rationals . 1085
66.12 Factorization of Polynomials over the Rationals 1086
66.13 Laurent Polynomials . 1087
66.14 Univariate Rational Functions . 1088
66.15 Polynomial Rings and Function Fields . 1088
66.16 Univariate Polynomial Rings . 1091
66.17 Monomial Orderings . 1092
66.18 Groebner Bases . 1096
66.19 Rational Function Families . 1098
66.20 The Representations of Rational Functions . 1099
66.21 The Defining Attributes of Rational Functions . 1099
66.22 Creation of Rational Functions . 1101
66.23 Arithmetic for External Representations of Polynomials 1102
66.24 Cancellation Tests for Rational Functions . 1103

67 Algebraic extensions of fields 1104
67.1 Creation of Algebraic Extensions . 1104
67.2 Elements in Algebraic Extensions . 1105
67.3 Finding Subfields . 1106

68 p-adic Numbers (preliminary) 1107
68.1 Pure p-adic Numbers . 1107
68.2 Extensions of the p-adic Numbers . 1108

69 The MeatAxe 1111
69.1 MeatAxe Modules . 1111
69.2 Module Constructions . 1112
69.3 Selecting a Different MeatAxe . 1112
69.4 Accessing a Module . 1113
69.5 Irreducibility Tests . 1113
69.6 Decomposition of modules . 1114
69.7 Finding Submodules . 1114
69.8 Induced Actions . 1116
69.9 Module Homomorphisms . 1117
69.10 Module Homomorphisms for irreducible modules 1118
69.11 MeatAxe Functionality for Invariant Forms . 1119
69.12 The Smash MeatAxe . 1120
69.13 Smash MeatAxe Flags . 1122

70 Tables of Marks 1124
70.1 More about Tables of Marks . 1124
70.2 Table of Marks Objects in GAP . 1125
70.3 Constructing Tables of Marks . 1126

GAP - Reference Manual 19

70.4 Printing Tables of Marks . 1127
70.5 Sorting Tables of Marks . 1129
70.6 Technical Details about Tables of Marks . 1130
70.7 Attributes of Tables of Marks . 1131
70.8 Properties of Tables of Marks . 1136
70.9 Other Operations for Tables of Marks . 1136
70.10 Accessing Subgroups via Tables of Marks . 1141
70.11 The Interface between Tables of Marks and Character Tables 1143
70.12 Generic Construction of Tables of Marks . 1145
70.13 The Library of Tables of Marks . 1146

71 Character Tables 1147
71.1 Some Remarks about Character Theory in GAP 1147
71.2 History of Character Theory Stuff in GAP . 1149
71.3 Creating Character Tables . 1150
71.4 Character Table Categories . 1153
71.5 Conventions for Character Tables . 1154
71.6 The Interface between Character Tables and Groups 1155
71.7 Operators for Character Tables . 1158
71.8 Attributes and Properties for Groups and Character Tables 1158
71.9 Attributes and Properties only for Character Tables 1162
71.10 Normal Subgroups Represented by Lists of Class Positions 1167
71.11 Operations Concerning Blocks . 1170
71.12 Other Operations for Character Tables . 1174
71.13 Printing Character Tables . 1178
71.14 Computing the Irreducible Characters of a Group 1183
71.15 Representations Given by Modules . 1185
71.16 The Dixon-Schneider Algorithm . 1186
71.17 Advanced Methods for Dixon-Schneider Calculations 1187
71.18 Components of a Dixon Record . 1189
71.19 An Example of Advanced Dixon-Schneider Calculations 1189
71.20 Constructing Character Tables from Others . 1191
71.21 Sorted Character Tables . 1197
71.22 Automorphisms and Equivalence of Character Tables 1200
71.23 Storing Normal Subgroup Information . 1202

72 Class Functions 1205
72.1 Why Class Functions? . 1205
72.2 Basic Operations for Class Functions . 1208
72.3 Comparison of Class Functions . 1209
72.4 Arithmetic Operations for Class Functions . 1209
72.5 Printing Class Functions . 1213
72.6 Creating Class Functions from Values Lists . 1214
72.7 Creating Class Functions using Groups . 1215
72.8 Operations for Class Functions . 1216
72.9 Restricted and Induced Class Functions . 1223
72.10 Reducing Virtual Characters . 1225

GAP - Reference Manual 20

72.11 Symmetrizations of Class Functions . 1232
72.12 Molien Series . 1236
72.13 Possible Permutation Characters . 1238
72.14 Computing Possible Permutation Characters . 1241
72.15 Operations for Brauer Characters . 1246
72.16 Domains Generated by Class Functions . 1247

73 Maps Concerning Character Tables 1248
73.1 Power Maps . 1248
73.2 Orbits on Sets of Possible Power Maps . 1252
73.3 Class Fusions between Character Tables . 1253
73.4 Orbits on Sets of Possible Class Fusions . 1259
73.5 Parametrized Maps . 1259
73.6 Subroutines for the Construction of Power Maps 1268
73.7 Subroutines for the Construction of Class Fusions 1272

74 Unknowns 1275
74.1 More about Unknowns . 1275

75 Monomiality Questions 1278
75.1 InfoMonomial (Info Class) . 1279
75.2 Character Degrees and Derived Length . 1279
75.3 Primitivity of Characters . 1280
75.4 Testing Monomiality . 1282
75.5 Minimal Nonmonomial Groups . 1286

76 Using and Developing GAP Packages 1287
76.1 Installing a GAP Package . 1287
76.2 Loading a GAP Package . 1288
76.3 Functions for GAP Packages . 1291
76.4 Guidelines for Writing a GAP Package . 1301
76.5 Structure of a GAP Package . 1302
76.6 Writing Documentation and Tools Needed . 1305
76.7 An Example of a GAP Package . 1306
76.8 File Structure . 1307
76.9 Creating the PackageInfo.g File . 1308
76.10 Functions and Variables and Choices of Their Names 1308
76.11 Package Dependencies (Requesting one GAP Package from within Another) 1311
76.12 Extensions Provided by a Package . 1312
76.13 Declaration and Implementation Part of a Package 1313
76.14 Autoreadable Variables . 1314
76.15 Standalone Programs in a GAP Package . 1314
76.16 Having an InfoClass . 1317
76.17 The Banner . 1317
76.18 Version Numbers . 1317
76.19 Testing a GAP package . 1318
76.20 Access to the GAP Development Version . 1321

GAP - Reference Manual 21

76.21 Version control and continuous integration for GAP packages 1321
76.22 Selecting a license for a GAP Package . 1322
76.23 Releasing a GAP Package . 1322
76.24 The homepage of a Package . 1323
76.25 Some things to keep in mind . 1323
76.26 Package release checklists . 1324

77 Replaced and Removed Command Names 1326
77.1 Group Actions – Name Changes . 1326
77.2 Package Interface – Obsolete Functions and Name Changes 1327
77.3 Normal Forms of Integer Matrices – Name Changes 1327
77.4 Miscellaneous Name Changes or Removed Names 1327
77.5 The former .gaprc file . 1329
77.6 Semigroup properties . 1329

78 Method Selection 1330
78.1 Operations and Methods . 1330
78.2 Constructors . 1332
78.3 Method Installation . 1335
78.4 Applicable Methods and Method Selection . 1337
78.5 Partial Methods . 1338
78.6 Redispatching . 1338
78.7 Immediate Methods . 1339
78.8 Logical Implications . 1340
78.9 Operations and Mathematical Terms . 1341

79 Creating New Objects 1342
79.1 Creating Objects . 1342
79.2 Component Objects . 1343
79.3 Positional Objects . 1344
79.4 Implementing New List Objects . 1346
79.5 Example – Constructing Enumerators . 1347
79.6 Example – Constructing Iterators . 1349
79.7 Arithmetic Issues in the Implementation of New Kinds of Lists 1350
79.8 External Representation . 1351
79.9 Mutability and Copying . 1352
79.10 Global Variables in the Library . 1354
79.11 Declaration and Implementation Part . 1357

80 Examples of Extending the System 1359
80.1 Addition of a Method . 1359
80.2 Extending the Range of Definition of an Existing Operation 1361
80.3 Enforcing Property Tests . 1361
80.4 Adding a new Operation . 1362
80.5 Adding a new Attribute . 1362
80.6 Adding a new Representation . 1363
80.7 Components versus Attributes . 1365

GAP - Reference Manual 22

80.8 Adding new Concepts . 1365
80.9 Creating Own Arithmetic Objects . 1368

81 An Example – Residue Class Rings 1371
81.1 A First Attempt to Implement Elements of Residue Class Rings 1371
81.2 Why Proceed in a Different Way? . 1372
81.3 A Second Attempt to Implement Elements of Residue Class Rings 1373
81.4 Compatibility of Residue Class Rings with Prime Fields 1384
81.5 Further Improvements in Implementing Residue Class Rings 1390

82 An Example – Designing Arithmetic Operations 1392
82.1 New Arithmetic Operations vs. New Objects . 1392
82.2 Designing new Multiplicative Objects . 1393

83 Library Files 1400
83.1 File Types . 1400
83.2 Finding Implementations in the Library . 1400
83.3 Undocumented Variables . 1401

84 Interface to the GAP Help System 1403
84.1 Installing and Removing a Help Book . 1403
84.2 The manual.six File . 1404
84.3 The Help Book Handler . 1404
84.4 Introducing new Viewer for the Online Help . 1406

85 Function-Operation-Attribute Triples 1407
85.1 Key Dependent Operations . 1407
85.2 In Parent Attributes . 1409
85.3 Operation Functions . 1409

86 Weak Pointers 1413
86.1 Weak Pointer Objects . 1413
86.2 Low Level Access Functions for Weak Pointer Objects 1414
86.3 Accessing Weak Pointer Objects as Lists . 1415
86.4 Copying Weak Pointer Objects . 1415

87 More about Stabilizer Chains 1417
87.1 Generalized Conjugation Technique . 1417
87.2 The General Backtrack Algorithm with Ordered Partitions 1418
87.3 Stabilizer Chains for Automorphisms Acting on Enumerators 1424

References 1437

Index 1438

Chapter 1

Preface

Welcome to GAP. This is one of the manuals documenting the core part of GAP, the others being the
GAP Tutorial and HPC-GAP Reference Manual.

There is also a document CHANGES.md on the changes from earlier versions in the root directory.
This preface serves not only to introduce “The GAP Reference Manual”, but also as an introduction
to the whole system.

GAP stands for Groups, Algorithms and Programming. The name was chosen to reflect the origi-
nal aim of the system, which is introduced in this reference manual. Since that choice, the system has
become somewhat broader, and you will also find information about algorithms and programming for
other algebraic structures, such as semigroups and algebras.

This manual, the GAP Reference Manual contains the official definitions of GAP functions. It
should contain all the information needed to use GAP, and is not intended to be read cover-to-cover.

To get started a new user may first look at parts of the GAP Tutorial.
A lot of the functionality of the system and a number of contributed extensions are provided as

“GAP packages” which are developed independently of the core part of GAP and can be loaded into
a GAP session. Each package comes with a its own manual which is also available through the GAP
help system.

This manual is divided into chapters, sections and subsections. Chapter 2 describes the help sys-
tem, which provides access to all the manuals from a running GAP session. Chapter 3 gives technical
advice for running GAP. Chapter 4 introduces the GAP language, and the next chapters deal with the
environment provided by GAP for the user. These are followed by the main bulk of chapters which
are devoted to the various mathematical structures that GAP can handle.

Subsequent sections of this preface explain the structure of the system and provide copyright and
licensing information.

1.1 The GAP System

GAP is a free, open and extensible software package for computation in discrete abstract algebra. The
terms “free” and “open” describe the conditions under which the system is distributed -- in brief, it is
free of charge (except possibly for the immediate costs of delivering it to you), you are free to pass it
on within certain limits, and all of the workings of the system are open for you to examine and change.
Details of these conditions can be found in Section (Reference: Copyright and License).

The system is “extensible” in that you can write your own programs in the GAP language, and
use them in just the same way as the programs which form part of the system (the “library”). Indeed,

23

GAP - Reference Manual 24

we actively support the contribution, refereeing and distribution of extensions to the system, in the
form of “GAP packages”. Further details of this can be found in Chapter (Reference: Using and
Developing GAP Packages), and on our website.

Development of GAP began at Lehrstuhl D für Mathematik, RWTH-Aachen, under the leader-
ship of Joachim Neubüser in 1985. Version 2.4 was released in 1988 and version 3.1 in 1992. In
1997 coordination of GAP development, now very much an international effort, was transferred to
St Andrews. A complete internal redesign and almost complete rewrite of the system was completed
over the following years and version 4.1 was released in July 1999. A sign of the further internation-
alization of the project was the GAP 4.4 release in 2004, which has been coordinated from Colorado
State University, Fort Collins.

More information on the motivation and development of GAP to date,
can be found on our website in a section entitled “Some History of GAP”:
https://www.gap-system.org/Doc/History/history.html.

For those readers who have used an earlier version of GAP, an overview of the changes from
GAP 4.4 and a brief summary of changes from earlier versions is given in CHANGES.md file in the
main directory.

The system that you are getting now consists of a “core system” and a number of packages. The
core system consists of four main parts.

1. A kernel, written in C, which provides the user with

• automatic dynamic storage management, which the user needn’t bother about when pro-
gramming;

• a set of time-critical basic functions, e.g. “arithmetic”, operations for integers, finite fields,
permutations and words, as well as natural operations for lists and records;

• an interpreter for the GAP language, an untyped imperative programming language with
functions as first class objects and some extra built-in data types such as permutations and
finite field elements. The language supports a form of object-oriented programming, sim-
ilar to that supported by languages like C++ and Java but with some important differences.

• a small set of system functions allowing the GAP programmer to handle files and execute
external programs in a uniform way, regardless of the particular operating system in use.

• a set of programming tools for testing, debugging, and timing algorithms.

• a “read-eval-view” style user interface.

2. A much larger library of GAP functions that implement algebraic and other algorithms. Since
this is written entirely in the GAP language, the GAP language is both the main implementation
language and the user language of the system. Therefore a user can, as easily as the original
programmers, investigate and vary algorithms of the library and add new ones to it, first for their
own use and eventually for the benefit of all GAP users.

3. A library of group theoretical data which contains various libraries of groups, including the
library of small groups (containing all groups of order at most 2000, except those of order 1024)
and others. Large libraries of ordinary and Brauer character tables and Tables of Marks are
included as packages.

4. The documentation. This is available as on-line help, as printable files in PDF format and as
HTML for viewing with a Web browser.

https://www.gap-system.org/Doc/History/history.html

GAP - Reference Manual 25

Also included with the core system are some test files and a few small utilities which we hope you
will find useful.

GAP packages are self-contained extensions to the core system. A package contains GAP
code and its own documentation and may also contain data files or external programs to which the
GAP code provides an interface. These packages may be loaded into GAP using the LoadPackage

(Reference: LoadPackage) command, and both the package and its documentation are then available
just as if they were parts of the core system. Some packages may be loaded automatically, when GAP
is started, if they are present. Some packages, because they depend on external programs, may only
be available on the operating systems where those programs are available (usually UNIX). You should
note that, while the packages included with this release are the most recent versions ready for release
at this time, new packages and new versions may be released at any time and can be easily installed in
your copy of GAP.

With GAP there are two packages (the library of ordinary and Brauer character tables, and the
library of tables of marks) which contain functionality developed from parts of the GAP core system.
These have been moved into packages for ease of maintenance and to allow new versions to be released
independently of new releases of the core system. The library of small groups should also be regarded
as a package, although it does not currently use the standard package mechanism. Other packages
contain functionality which has never been part of the core system, and may extend it substantially,
implementing specific algorithms to enhance its capabilities, providing data libraries, interfaces to
other computer algebra systems and data sources such as the electronic version of the Atlas of Finite
Group Representations; therefore, installation and usage of packages is recommended.

Further details about GAP packages can be found in chapter (Reference:
Using and Developing GAP Packages), and on the GAP website here:
https://www.gap-system.org/Packages/packages.html.

1.2 Authors and Maintainers

GAP is the work of very many people, many of whom still maintain parts of the system. A
complete list of authors, and an approximation to the current list of maintainers can be found
on the GAP website at https://www.gap-system.org/Contacts/People/authors.html and
https://www.gap-system.org/Contacts/People/modules.html. All GAP packages have their
own authors and maintainers. It should however be noted that some packages provide interfaces be-
tween GAP and an external program, a copy of which is included for convenience, and that, in these
cases, we do not claim that the package authors or maintainers wrote, or maintain, this external pro-
gram. Similarly, the system and some packages include large data libraries that may have been com-
puted by many people. We try to make clear in each case what credit is attributable to whom.

We have, for some time, operated a refereeing system for contributed packages, both to ensure the
quality of the software we distribute, and to provide recognition for the authors. We now consider this
to be a refereeing system for modules, and we would note, in particular that, although it does not use
the standard package interface, the library of small groups has been refereed and accepted on exactly
the same basis as the accepted packages.

We also include with this distribution a number of packages which have not (yet) gone through
our refereeing process. Some may be accepted in the future, in other cases the authors have chosen
not to submit them. More information can be found on our website (see Section 1.5).

https://www.gap-system.org/Packages/packages.html
https://www.gap-system.org/Contacts/People/authors.html
https://www.gap-system.org/Contacts/People/modules.html

GAP - Reference Manual 26

1.3 Acknowledgements

Very many people have worked on, and contributed to, GAP over the years since its inception. On our
website you will find the prefaces to the previous releases, each of which acknowledges people who
have made special contributions to that release. Even so, it is appropriate to mention here Joachim
Neubüser whose vision of a free, open and extensible system for computational algebra inspired GAP
in the first place, and Martin Schönert, who was the technical architect of GAP 3 and GAP 4.

1.4 Copyright and License

Copyright © (1987-2024) by the GAP Group,
incorporating the Copyright © 1999, 2000 by School of Mathematical and Computational Sci-

ences, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland
being the Copyright © 1992 by Lehrstuhl D für Mathematik, RWTH, 52056 Aachen, Germany,

transferred to St Andrews on July 21st, 1997.
except for files in the distribution, which have an explicit different copyright statement. In par-

ticular, the copyright of packages distributed with GAP is usually with the package authors or their
institutions.

GAP is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version. For details, see the file LICENSE in the root directory of the GAP
distribution or see https://www.gnu.org/licenses/gpl.html.

If you obtain GAP please send us a short notice to that effect, e.g., an e-mail message to the
address support@gap-system.org. This helps us to keep track of the number of GAP users.

If you publish a mathematical result that was partly obtained using GAP, please cite GAP, just
as you would cite another paper that you used (see below for a sample citation). Also we would
appreciate if you could inform us about such a paper, which we will add to the GAP bibliography.

Specifically, please refer to

[GAP] The GAP Group, GAP - Groups, Algorithms, and Programming,

Version 4.14.0-beta1; 2024 (https://www.gap-system.org)

You are permitted to modify and redistribute GAP, but you are not allowed to restrict further
redistribution. That is to say proprietary modifications will not be allowed. We want all versions of
GAP to remain free.

If you modify any part of GAP and redistribute it, you must supply a README document. This
should specify what modifications you made in which files. We do not want to take credit or be
blamed for your modifications.

Of course we are interested in all of your modifications. In particular we would like to see
bug-fixes, improvements and new functions. So again we would appreciate it if you would inform
us about all modifications you make.

In addition to the general copyright for GAP set forth above, the following terms apply to the
versions of GAP for Windows.

GAP for Windows is packaged with several packages from Cygwin (https://cygwin.com).
Files from Cygwin are provided under their respective licenses, which are included in the installation.
The GAP for Windows executables that we distribute are themselves released under the terms of the

https://www.gnu.org/licenses/gpl.html
mailto://support@gap-system.org
https://www.gap-system.org/Doc/Bib/bib.html
https://cygwin.com

GAP - Reference Manual 27

GNU General Public License (GNU GPL); either version 2 of the License, or (at your option) any
later version.

Please contact support@gap-system.org if you need further information.

1.5 Further Information about GAP

Information about GAP is best obtained from the GAP website https://www.gap-system.org.
There you will find, amongst other things:

• directions to the sites from which you can download the current GAP distribution, all accepted
and deposited GAP packages, and a selection of other contributions.

• the GAP manual and an archive of the gap-forum mailing list, formatted for reading with a
Web browser, and indexed for searching.

• information about GAP developers, and about the email addresses available for comment, dis-
cussion and support.

We would particularly ask you to note the following things:

• The GAP Forum – an email discussion forum for comments, discussions or questions about
GAP. You must subscribe to the list before you can post to it, see the website for details. In
particular we will announce new releases in this mailing list.

• The email address support@gap-system.org to which you are asked to send any questions or
bug reports which do not seem likely to be of interest to the whole GAP Forum. Please give
a (short, if possible) self-contained excerpt of a GAP session containing both input and output
that illustrates your problem (including comments of why you think it is a bug) and state the
type of the machine, operating system, (compiler used, if UNIX/Linux) and the version of GAP
you are using (the first line after the GAP 4 banner starting GAP, Version 4...).

• We also ask you to send a brief message to support@gap-system.org when you install GAP.

• The correct form of citation of GAP, which we ask you use whenever you publish scientific
results obtained using GAP.

It finally remains for us to wish you all pleasure and success in using GAP, and to invite your
constructive comment and criticism.

The GAP Group,
2024-11-14

mailto://support@gap-system.org
https://www.gap-system.org
mailto://support@gap-system.org
mailto://support@gap-system.org

Chapter 2

The Help System

This chapter describes the GAP help system. The help system lets you read the documentation inter-
actively.

2.1 Invoking the Help

The basic command to read GAP’s documentation from within a GAP session is as follows.
?[book:][?]topic

For an explanation and some examples see (Tutorial: Help).
Note that the first question mark must appear in the first position after the gap> prompt. The

search strings book and topic are normalized in a certain way (see the end of this section for details)
before the search starts. This makes the search case insensitive and there can be arbitrary white space
after the first question mark.

When there are several manual sections that match the query a numbered list of topics is displayed.
These matches can be accessed with ?number .

There are some further specially handled commands which start with a question mark. They are
explained in Section 2.2.

By default GAP shows the help sections as text in the terminal (window), page by page if the
shown text does not fit on the screen. But there are several other choices to read (other formats of) the
documents: via a viewer for pdf files or via a web browser. This is explained below in Section 2.3.

Details of the string normalization process
Here is a precise description how the search strings book and topic are normalized before a

search starts: backslashes and double or single quotes are removed, parentheses and braces are sub-
stituted by blanks, non-ASCII characters are considered as ISO-latin1 characters and the accented
letters are substituted by their non-accented counterpart. Finally white space is normalized.

2.2 Browsing through the Sections

Help books for GAP are organized in chapters, sections, and subsections. There are a few special
commands starting with a question mark (in the first position after the gap> prompt) which allow
browsing a book section or chapter wise.

?>

?<

28

GAP - Reference Manual 29

The two help commands ?< and ?> allow one to browse through a whole help book. ?< displays
the section or subsection preceding the previously shown (sub)section, and ?> takes you to the section
or subsection following the previously shown one.

?>>

?<<

?<< takes you back to the beginning of the current chapter. If you are already at the start of a
chapter ?<< takes you to the beginning of the previous chapter. ?>> takes you to the beginning of the
next chapter.

?-

?+

GAP remembers the last few sections that you have read. ?- takes you to the one that you have
read before the current one, and displays it again. Further applications of ?- take you further back in
this history. ?+ reverses this process, i.e., it takes you back to the section that you have read after the
current one. It is important to note that ?- and ?+ do not alter the history like the other help commands.

?books

This command shows a list of the books which are currently known to the help system. For each
book there is a short name which is used with the book part of the basic help query and there is a long
name which hopefully tells you what this book is about.

A short name which ends in (not loaded) refers to a GAP package whose documentation is
loaded but which needs a call of LoadPackage (76.2.1) before you can use the described functions.

?[book:]sections

?[book:][chapters]

These commands show tables of contents for all available, respectively the matching books. For
some books these commands show the same, namely the whole table of contents.

?

?&

These commands redisplay the last shown help section. In the form ?& the next preferred help
viewer is used for the display (provided one has chosen several viewers), see SetHelpViewer (2.3.1)
below.

2.3 Changing the Help Viewer

Books of the GAP help system or package manuals can be available in several formats. Currently the
following formats occur (not all of them may be available for all books):

text This is used for display in the terminal window in which GAP is running. Complicated mathe-
matical expressions may not be easy to read in this format.

pdf Adobe’s pdf format. Can be used for printing and onscreen reading on most current systems
(with freely available software). Some manual books contain hyperlinks in this format.

HTML
The format of web pages. Can be used with any web browser. There may be hyperlink informa-
tion available which allows a convenient browsing through the book via cross-references. This
format has the problem that complicated formulae may be not be easy to read since there is no
syntax for formulae in HTML. (Some older manual books use special symbol fonts for formulae

GAP - Reference Manual 30

and need a particular configuration of the web browser for correct display. Some manuals may
use technology for quite sophisticated formula display.)

Depending on your operating system and available additional software you can use several of these
formats with GAP’s help system. This is configured with the following command.

2.3.1 SetHelpViewer

▷ SetHelpViewer(viewer1, viewer2, ...) (function)

This command takes an arbitrary number of arguments which must be strings describing a viewer.
The recognized viewers are explained below. A call with no arguments shows the current setting.

The first given arguments are those with higher priority. So, if a help section is available in the
format needed by viewer1 , this viewer is used. If not, availability of the format for viewer2 is
checked and so on. Recall that the command ?& displays the last seen section again but with the next
possible viewer in your list, see 2.2.

The viewer "screen" (see below) is always silently appended since we assume that each help
book is available in text format.

If you want to change the default setting you can use a call of SetUserPreference(

"HelpViewers", [...]); (the list in the second argument containing the viewers you want)
in your gap.ini file (see 3.2).

"screen"

This is the default setting. The help is shown in text format using the Pager (2.4.1) command.
Hint: Text versions of manuals are formatted assuming that your terminal displays at least 80
characters per line, if this is not the case some sections may look very bad. We suggest to
use a terminal in UTF-8 encoding with a fixed width font (this is the default on most modern
Linux/Windows/Mac systems anyway). Terminals in ISO-8859-X encoding will also work
reasonably well (so far, since we do not yet use many special characters which such terminals
could not display).

"firefox", "chrome", "mozilla", "netscape", "konqueror"
If a book is available in HTML format this is shown using the corresponding web browser.
How well this works, for example by using a running instance of this browser, depends on
your particular start script of this browser. (Note, that for some old books the browser must be
configured to use symbol fonts.)

"browser"

(for MS Windows) If a book is available in HTML format, it will be opened using the Windows
default application (typically, a web browser).

"links2", "w3m", "lynx"
If a book is available in HTML format this is shown using the text based "links2" (in graphics
mode), w3m or lynx web browser, respectively, inside the terminal running GAP. (Formulae in
some older books which use symbol fonts may be unreadable.)

"mac default browser", "browser", "safari", "firefox"
(for macOS) If a book is available in HTML format this is shown in a web browser. The options

GAP - Reference Manual 31

"safari" and "firefox" use the corresponding browsers. The other two options use the
program default browser (which can be set in Safari’s preferences, in the "General" tab).

"xpdf"

(on X window systems) If a book is available in pdf format it is shown with the onscreen viewer
program xpdf (which must be installed on your system). This is a nice program, once it is
running it is reused by GAP for the next displays of help sections.

"acroread"

If a book is available in pdf format it is shown with the onscreen viewer program acroread

(which must be available on your system). This program does not allow remote commands or
startup with a given page. Therefore the page numbers you have to visit are just printed on the
screen. When you are looking at several sections of the same book, this viewer assumes that
the acroread window still exists. When you go to another book a new acroread window is
launched.

"pdf viewer", "skim", "preview", "adobe reader"

(for macOS) If a book is available in pdf format this is shown in a pdf viewer. The options
"skim", "preview" and "adobe reader" use the corresponding viewers. The other two op-
tions use the pdf viewer which you have chosen to open pdf files from the Finder. Note that
only "Skim" seems to be capable to open a pdf file on a given page. For the other help viewers,
the page numbers where the information can be found will just be printed on the screen. None
of the help viewers seems to be capable of opening a pdf at a given named destination (i. e.,
jump to precisely the place where the information can be found). The pdf viewer "Skim" is
open source software, it can be downloaded from https://skim-app.sourceforge.io/.

"less" or "more"
This is the same as "screen" but additionally the user preferences "Pager" and
"PagerOptions" are set, see the section 2.4 for more details.

Please, send ideas for further viewer commands to support@gap-system.org.

2.4 The Pager Command

GAP contains a builtin pager which shows a text string which does not fit on the screen page by page.
Its functionality is very rudimentary and self-explaining. This is because (at least under UNIX) there
are powerful external standard programs which do this job.

2.4.1 Pager

▷ Pager(lines) (function)

This function can be used to display a text on screen using a pager, i.e., the text is shown page by
page.

There is a default builtin pager in GAP which has very limited capabilities but should work on any
system.

At least on a UNIX system one should use an external pager program like less or more. GAP
assumes that this program has command line options +nr and +/str which start the display of the text
with line number nr or at the line with the first occurrence of the string str.

mailto://support@gap-system.org

GAP - Reference Manual 32

Which pager is used can be controlled by setting the user preference "Pager". The default value
is "builtin" which means that the internal pager is used.

On UNIX systems you probably want to set the user preference "Pager" to the value "less" or
"more", you can do this for example in your gap.ini file (see 3.2). In that case you can also tell
GAP a list of standard options for the external pager, via the user preference "PagerOptions".

Example
SetUserPreference("Pager", "less");

SetUserPreference("PagerOptions", ["-f","-r","-a","-i","-M","-j2"]);

The argument lines can have one of the following forms:

1. a string (i.e., lines are separated by newline characters)

2. a list of strings (without newline characters) which are interpreted as lines of the text to be
shown

3. a record with component lines as in 1. or 2. and optional further components

In case 3. currently the following additional components are used:

formatted

can be false or true. If set to true the builtin pager tries to show the text exactly as it is given
(avoiding GAP’s automatic line breaking),

start

must be a positive integer or a string. An integer is interpreted as the number of the first line
shown by the pager, a string is interpreted as a search string such that the first line containing
this string is the first line shown by the pager (in both cases, one may see the beginning of the
text via back scrolling),

exitAtEnd

can be false or true. If set to true (the default), the builtin pager is terminated as soon as the
end of the list is shown; otherwise entering the Q key is necessary in order to return from the
pager.

The Pager command is used by GAP’s help system for displaying help sections in text format.
But, of course, it may be used for other purposes as well.

Example
gap> s6 := SymmetricGroup(6);;

gap> words := ["This", "is", "a", "very", "stupid", "example"];;

gap> l := List(s6, p-> Permuted(words, p));;

gap> Pager(List(l, a-> JoinStringsWithSeparator(a," ")));;

Chapter 3

Running GAP

This chapter contains information about the command line options for GAP (see 3.1), about some
files in user specific GAP root directory (see 3.2) and about saving and loading a GAP workspace
(see 3.3).

3.1 Command Line Options

When you start GAP from a command line or from a script you may specify a number of options on
the command-line to change the default behaviour of GAP. All these options start with a hyphen -,
followed by a single letter. Options must not be grouped, e.g., gap -gq is invalid, use gap -g -q

instead. Some options require an argument, this must follow the option and must be separated by
whitespace, e.g., gap -m 256m, it is not correct to say gap -m256m instead. Certain boolean options
(-b, -q, -e, -r, -A, -D, -M, -T, -X, -Y) toggle the current value so that gap -b -b is equivalent to
gap and to gap -b -q -b -q etc.

GAP for UNIX will distinguish between upper and lower case options.
As described in the GAP installation instructions (see the INSTALL.md file in the GAP root direc-

tory), usually you will not execute GAP directly. Instead you will call a (shell) script, with the name
gap, which in turn executes GAP. This script sets some options which are necessary to make GAP
work on your system. This means that the default settings mentioned below may not be what you
experience when you execute GAP on your system.

During a GAP session, one can find the current values of command line options in the record
GAPInfo.CommandLineOptions (see GAPInfo (3.5.1)), whose component names are the command
line options (without the leading -).

-A By default, some needed and suggested GAP packages (see 76) are loaded, if present, into the
GAP session when it starts. This option disables (actually toggles) the loading of suggested
packages, which can be useful for debugging or testing. The needed packages (and their needed
packages, and so on) are loaded in any case.

-b tells GAP to suppress the banner. That means that GAP immediately prints the prompt. This is
useful when, after a while, you get tired of the banner. This option can be repeated to enable the
banner; each -b toggles the state of banner display.

-c gapcode

tells GAP to execute the given GAP code as if it was entered into a temporary file which then is

33

GAP - Reference Manual 34

processed together with the other files given to GAP (see the explanation at the end of this list
for further details on how filenames are processed).

-D The -D option tells GAP to print short messages when it is reading files or loading modules.
This option may be repeated to toggle this behavior on and off. The message,

Example
#I READ_GAP_ROOT: loading 'lib/kernel.g' as GAP file

tells you that GAP has started to read the library file lib/kernel.g.
Example

#I READ_GAP_ROOT: loading 'lib/kernel.g' statically

tells you that GAP has used the compiled version of the library file lib/kernel.g. This com-
piled module was statically linked to the GAP kernel at the time the kernel was created.

Example
#I READ_GAP_ROOT: loading 'lib/kernel.g' dynamically

tells you that GAP has loaded the compiled version of the library file lib/kernel.g. This
compiled module was dynamically loaded to the GAP kernel at runtime from a corresponding
.so file.

Obviously, this is a debugging option and most users will not need it.

-E If your GAP installation uses the readline library for command line editing (see 6.9), this
may be disabled by using -E option. This option may be repeated to toggle this behavior
on and off. If your GAP installation does not use the readline library (you can check by
IsBound(GAPInfo.UseReadline); if this is the case), this option will have no effect at all.

-e tells GAP not to quit when receiving a CTRL-D on an empty input line (see 6.4.1). This option
should not be used when the input is a file or pipe. This option may be repeated to toggle this
behavior on and off.

-f tells GAP to enable the line editing and history (see 6.8).

In general line editing will be enabled if the input is connected to a terminal. There are rare
circumstances, for example when using a remote session with a corrupted telnet implementation,
when this detection fails. Try using -f in this case to enable line editing. This option does not
toggle; you must use -n to disable line editing.

-g tells GAP to print a message every time a full garbage collection is performed. (This is available
only if the GASMAN garbage collector is used, see 7.12.1.)

Example
#G FULL 44580/2479kb live 57304/4392kb dead 734/4096kb free

For example, this tells you that there are 44580 live objects that survived a full garbage col-
lection, that 57304 unused objects were reclaimed by it, and that 734 kilobytes from a total
allocated memory of 4096 kilobytes are available afterwards.

GAP - Reference Manual 35

-g -g

If you give the option -g twice, GAP prints a information message every time a partial or full
garbage collection is performed. (This is available only if the GASMAN garbage collector is used,
see 7.12.1.) The message,

Example
#G PART 9405/961kb+live 7525/1324kb+dead 2541/4096kb free

for example, tells you that 9405 objects survived the partial garbage collection and 7525 objects
were reclaimed, and that 2541 kilobytes from a total allocated memory of 4096 kilobytes are
available afterwards.

-h tells GAP to print a summary of all available options (-h is mnemonic for “help”). GAP exits
after printing the summary, all other options are ignored.

-K memory

is like the -o option. But while the latter actually allocates more memory if the system allows
it and then prints a warning inside a break loop the -K options tells GAP not even to try to
allocate more memory. Instead GAP just exits with an appropriate message. The default is that
this feature is switched off. You have to set it explicitly when you want to enable it.

-L filename

The option -L tells GAP to load a saved workspace. See section 3.3. (This is available only if
the GASMAN garbage collector is used, see 7.12.1.)

-l path_list

can be used to set or modify GAP’s list of root directories (see 9.2). The default if no -l option
is given is the current directory ./. This option can be used several times. Depending on the
-r option a further user specific path is prepended to the list of root directories (the path in
GAPInfo.UserGapRoot).

path_list should be a list of directories separated by semicolons. No whitespace is permit-
ted before or after a semicolon. If path_list does not start or end with a semicolon, then
path_list replaces the existing list of root directories. If path_list starts with a semicolon,
then path_list is appended to the existing list of root directories. If path_list ends with
a semicolon and does not start with one, then the new list of root directories is the concate-
nation of path_list and the existing list of root directories. After GAP has completed its
startup procedure and displays the prompt, the list of root directories can be seen in the variable
GAPInfo.RootPaths, see GAPInfo (3.5.1).

Usually this option is used inside a startup script to specify where GAP is installed on the
system. The -l option can also be used by individual users to tell GAP about privately installed
modifications of the library, additional GAP packages and so on. Section 9.2 explains how
several root paths can be used to do this.

GAP will attempt to read the file root_dir/lib/init.g during startup where root_dir is
one of the directories in its list of root directories. If GAP cannot find its init.g file it will
print the following warning.

Example
gap: hmm, I cannot find 'lib/init.g' maybe use option '-l <gaproot>'?

GAP - Reference Manual 36

It is not possible to use GAP without the library files, so you must not ignore this warning. You
should leave GAP and start it again, specifying the correct root path using the -l option.

-M tells GAP not to check for, nor to use, compiled versions of library files. This option may be
repeated to toggle this behavior on and off.

-m memory

tells GAP to allocate memory bytes at startup time. If the last character of memory is k or K it is
taken as kilobytes, if the last character is m or M memory is taken as megabytes and if it is g or G
it is taken as gigabytes.

This amount of memory should be large enough so that computations do not require too many
garbage collections. On the other hand, if GAP allocates more memory than is physically
available, it will spend most of the time paging.

-n tells GAP to disable the line editing and history (see 6.8).

You may want to do this if the command line editing is incompatible with another program that
is used to run GAP. For example if GAP is run from inside a GNU Emacs shell window, -n
should be used since otherwise every input line will be echoed twice, once by Emacs and once
by GAP. This option does not toggle; you must use -f to enable line editing.

-O disables loading obsolete variables (see Chapter 77). This option is used mainly for testing
purposes, for example in order to make sure that a GAP package or one’s own GAP code does
not rely on the obsolete variables.

-o memory

tells GAP to allocate at most memory bytes without asking. The option argument memory is
specified as with the -m option.

If more than this amount is required during the GAP session, GAP prints an error message and
enters a break loop. In that case you can enter return; which implicitly doubles the amount
given with this option.

-q tells GAP to be quiet. This means that GAP displays neither the banner nor the prompt gap>.
This is useful if you want to run GAP as a filter with input and output redirection and want to
avoid the banner and the prompts appearing in the output file. This option may be repeated to
disable quiet mode; each -q toggles quiet mode.

-R The option -R tells GAP not to load a saved workspace previously specified via the -L option.
This option does not toggle.

-r The option -r tells GAP to ignore any user specific configuration files. In particular, the user
specific root directory GAPInfo.UserGapRoot is not added to the GAP root directories and so
gap.ini and gaprc files that may be contained in that directory are not read, see 3.2. Multiple
-r options toggle this behaviour.

-s memory

With this option GAP does not use sbrk to get memory from the operating system. Instead it
uses mmap, malloc or some other command for the amount given with this option to allocate
space for the GASMAN memory manager. Usually GAP does not really use all of this memory,
the options -m, -o, -K still work as documented. This feature assumes that the operating system

GAP - Reference Manual 37

only assigns physical memory to the GAP process when it is accessed, so that specifying a large
amount of memory with -s should not cause any performance problem. The advantage of using
this option is that GAP can work together with kernel modules which allocate a lot of memory
with malloc.

The option argument memory is specified as with the -m option.

-T suppresses the usual break loop behaviour of GAP. With this option GAP behaves as if the user
quit immediately from every break loop, and also suppresses displaying any error backtrace.
This is intended for automated testing of GAP. This option may be repeated to toggle this
behavior on and off.

-x length

With this option you can tell GAP how long lines are. GAP uses this value to decide when to
split long lines. After starting GAP you may use SizeScreen (6.12.1) to alter the line length.

The default value is 80, unless another value can be obtained from the Operating System, which
is the right value if you have a standard terminal application. If you have a larger monitor, or
use a smaller font, or redirect the output to a printer, you may want to increase this value.

-y length

With this option you can tell GAP how many lines your screen has. GAP uses this value to
decide after how many lines of on-line help it should wait. After starting GAP you may use
SizeScreen (6.12.1) to alter the number of lines.

The default value is 24, unless another value can be obtained from the Operating System, which
is the right value if you have a standard terminal application. If you have a larger monitor, or
use a smaller font, or redirect the output to a printer, you may want to increase this value.

filename ...
Further arguments are taken as filenames of files that are read by GAP during startup, after the
system and private init files are read, but before the first prompt is printed. Filenames ending
with .tst are processed by Test (7.10.2), all other files by Read (9.7.1). These files and also
commands specified via the -c option are processed in the order in which they appear on the
command line. If a file cannot be opened or if executing the code in it raises an error, then the
usual error handling for Read (9.7.1) respectively Test (7.10.2) kicks in. If this enters a break
loop, then exiting that break loop also exits GAP.

Additional options, such as -C, -P and-p are used internally by the gac script (see 76.3.11) and/or
on specific operating systems.

3.2 The gap.ini and gaprc files

When you start GAP, it looks for files with the names gap.ini and gaprc in its root directories (see
9.2), and reads the first gap.ini and the first gaprc file it finds. These files are used for certain
initializations, as follows.

The file gap.ini is read early in the startup process. Therefore, the parameters set in this file
can influence the startup process, such as which packages are automatically loaded (see LoadPackage
(76.2.1)) and whether library files containing obsolete variables are read (see Chapter 77). On the
other hand, only calls to a restricted set of GAP functions are allowed in a gap.ini file. Usually,

GAP - Reference Manual 38

it should only contain calls of SetUserPreference (3.2.3). This file can be generated (or updated
when new releases introduce further user preferences) with the command WriteGapIniFile (3.2.3).
This file is read whenever GAP is started, with or without a workspace.

The file gaprc is read after the startup process, before the first input file given on the command
line (see 3.1). So the contents of this file cannot influence the startup process, but all GAP library
functions can be called in this file. When GAP is started with a workspace then the file is read only if
no gaprc file had been read before the workspace was created. (With this setup, it is on the one hand
possible that administrators provide a GAP workspace for several users such that the user’s gaprc

file is read when GAP is started with the workspace, and on the other hand one can start GAP, read
one’s gaprc file, save a workspace, and then start from this workspace without reading one’s gaprc
file again.)

Note that by default, the user specific GAP root directory GAPInfo.UserGapRoot is the first GAP
root directory. So you can put your gap.ini and gaprc files into this directory.

This mechanism substitutes the much less flexible reading of a users .gaprc file in versions of
GAP up to 4.4. For compatibility this .gaprc file is still read if the directory GAPInfo.UserGapRoot

does not exist, see 77.5 how to migrate your old setup.

3.2.1 The gap.ini file

The file gap.ini is read after the declaration part of the GAP library is read, before the declaration
parts of the packages needed and suggested by GAP are read, and before the implementation parts of
GAP and of the packages are read.

The file gap.ini is expected to consist of calls to the function SetUserPreference (3.2.3), see
Section SetUserPreference (3.2.3).

Since the file gap.ini is read before the implementation part of GAP is read, not all GAP
functions may be called in the file. Assignments of numbers, lists, and records are admissible as
well as calls to basic functions such as Concatenation (21.20.1) and JoinStringsWithSeparator

(27.7.20).
Note that the file gap.ini is read also when GAP is started with a workspace.

3.2.2 The gaprc file

If a file gaprc is found it is read after GAP’s init.g, but before any of the files mentioned on the
command line are read. You can use this file for your private customizations. (Many users may be
happy with using just user preferences in the gap.ini file (see above) for private customization.) For
example, if you have a file containing functions or data that you always need, you could read this from
gaprc. Or if you find some of the names in the library too long, you could define abbreviations for
those names in gaprc. The following sample gaprc file does both.

Example
Read("/usr/you/dat/mygroups.grp");

Ac := Action;

AcHom := ActionHomomorphism;

RepAc := RepresentativeAction;

Note that only one gaprc file is read when GAP is started. When a workspace is created in a GAP
session after a gaprc file has been read then no more gaprc file will be read when GAP is started
with this workspace.

GAP - Reference Manual 39

Also note that the file must be called gaprc. If you use a Windows text editor, in particular if
your default is not to show file suffixes, you might accidentally create a file gaprc.txt or gaprc.doc
which GAP will not recognize.

3.2.3 Configuring User preferences

▷ SetUserPreference([package,]name, value) (function)

▷ UserPreference([package,]name) (function)

▷ ShowUserPreferences(package1, package2, ...) (function)

▷ WriteGapIniFile([dir][,] [ignorecurrent]) (function)

Some aspects of the behaviour of GAP can be customized by the user via user preferences. Ex-
amples include the way help sections are displayed or the use of colors in the terminal.

User preferences are specified via a pair of strings, the first is the (case insensitive) name of a
package (or "GAP" for the core GAP library) and the second is some arbitrary case sensitive string.

User preferences can be set to some value with SetUserPreference. The current value of a
user preference can be found with UserPreference. In both cases, if no package name is given the
default "GAP" is used. If a user preference is not known or not set then UserPreference returns
fail.

The stored values of user preferences are always immutable, see Section 12.6.
The function ShowUserPreferences with no argument shows in a pager an overview of all

known user preferences together with some explanation and the current value. If one or more strings
package1 , ... are given then only the user preferences for these packages are shown. The Browse
package provides the function BrowseUserPreferences (Browse: BrowseUserPreferences) which
gives an overview of the known user preferenes and also admits editing the values of the preferences.

The easiest way to make use of user preferences is probably to use the function
WriteGapIniFile, usually without argument. This function creates a file gap.ini in your user
specific GAP root directory (GAPInfo.UserGapRoot). If such a file already exists the function will
make a backup of it first. This newly created file contains descriptions of all known user preferences
and also calls of SetUserPreference for those user preferences which currently do not have their
default value. You can then edit that file to customize (further) the user preferences for future GAP
sessions.

Should a later version of GAP or some packages introduce new user preferences then you can
call WriteGapIniFile again since it will set the previously known user preferences to their current
values.

Optionally, a different directory for the resulting gap.ini file can be specified as argument dir to
WriteGapIniFile. Another optional argument is the boolean value true, if this is given, the settings
of all user preferences in the current session are ignored.

Note that your gap.ini file is read by GAP very early during its startup process. A conse-
quence is that the value argument in a call of SetUserPreference must be some very basic GAP
object, usually a boolean, a number, a string or a list of those. A few user preferences support
more complicated settings. For example, the user preference "UseColorPrompt" admits a record
as its value whose components are available only after the GAPDoc package has been loaded,
see ColorPrompt (3.6.1). If you want to specify such a complicated value, then move the correspond-
ing call of SetUserPreference from your gap.ini file into your gaprc file (also in the directory
GAPInfo.UserGapRoot). This file is read much later.

GAP - Reference Manual 40

Example
gap> SetUserPreference("Pager", "less");

gap> SetUserPreference("PagerOptions",

> ["-f", "-r", "-a", "-i", "-M", "-j2"]);

gap> UserPreference("Pager");

"less"

The first two lines of this example will cause GAP to use the programm less as a pager. This is
highly recommended if less is available on your system. The last line displays the current setting.

3.2.4 DeclareUserPreference

▷ DeclareUserPreference(record) (function)

This function can be used (also in packages) to introduce new user preferences. It declares a user
preference, determines a default value and contains documentation of the user preference. After dec-
laration a user preference will be shown with ShowUserPreferences (3.2.3) and WriteGapIniFile

(3.2.3).
When this declaration is evaluated it is checked, if this user preference is already set in the current

session. If not the value of the user preference is set to its default. (Do not use fail as default value
since this indicated that a user preference is not set.)

The argument record of DeclareUserPreference must be a record with the following compo-
nents.

name

a string or a list of strings, the latter meaning several preferences which belong together,

description

a list of strings describing the preference(s), one string for each paragraph; if several preferences
are declared together then the description refers to all of them,

default

the default value that is used, or a function without arguments that computes this default value;
if several preferences are declared together then the value of this component must be the list of
default values for the individual preferences.

The following components of record are optional.

check

a function that takes a value as its argument and returns either true or false, depending on
whether the given value is admissible for this preference; if several preferences are declared
together then the number of arguments of the function must equal the length of the name list,

values

the list of admissible values, or a function without arguments that returns this list,

multi

true or false, depending on whether one may choose several values from the given list or just
one; needed (and useful only) if the values component is present,

GAP - Reference Manual 41

package

the name of the GAP package to which the preference is assigned; if the declaration happens
inside a file that belongs to this package then the value of this component is computed, using
GAPInfo.PackageCurrent; otherwise, the default value for package is "GAP",

omitFromGapIniFile

if the value is true then this user preference is ignored by WriteGapIniFile (3.2.3).
Example

gap> UserPreference("MyFavouritePrime");

fail

gap> DeclareUserPreference(rec(

> name:= "MyFavouritePrime",

> description:= ["is not used, serves as an example"],

> default:= 2,

> omitFromGapIniFile:= true));

gap> UserPreference("MyFavouritePrime");

2

gap> SetUserPreference("MyFavouritePrime", 17);

gap> UserPreference("MyFavouritePrime");

17

3.2.5 User Preferences Defined by GAP

Here is the list of those user preferences that are currently declared via DeclareUserPreference

(3.2.4) for GAP itself. The preferences that are declared for GAP packages belong to the documenta-
tion of these packages.

Autocompleter

Set how names are filtered during tab-autocomplete, this can be: "default": case-sensitive
matching. "case-insensitive": case-insensitive matching, or a record with two components
named filter and completer, which are both functions which take two arguments. filter
takes a list of names and a partial identifier and returns all the members of names which are a
valid extension of the partial identifier. completer takes a list of names and a partial identifier
and returns the partial identifier as extended as possible (it may also change the identifier, for
example to correct the case, or spelling mistakes), or returns fail to leave the existing partial
identifier.

This preference is ignored if GAP was not compiled with readline support.

Default: "default".

Editor, EditorOptions
Determines the editor and options (used by GAP’s Edit (6.10.1) command). Under macOS, the
value "open" for Editor will work. For further options, see the GAP help for Edit (6.10.1).
If you want to use the editor defined in your (shell) environment then leave the Editor and
EditorOptions preferences empty.

The defaults are computed at runtime.

ExcludeFromAutoload

These packages are not loaded at GAP startup. This doesn’t work for packages which are
needed by the GAP library, or which are already loaded in a workspace.

GAP - Reference Manual 42

Default: "".

HelpViewers, XpdfOptions, XdviOptions
Here you can choose your preferred help viewers. See the help for SetHelpViewer (2.3.1) for
further options.

Try HelpViewers:= ["screen", "firefox", "xpdf"];.

(For "screen" we also suggest to set the Pager entry to "less".)

Defaults: [["screen"], "", ""].

HistoryBackwardSearchSkipIdenticalEntries

When a command is executed multiple times, it is also stored in history multiple times. Setting
this option to true skips identical entries when searching backwards in history.

Admissible values: true, false.

Default: false.

HistoryMaxLines, SaveAndRestoreHistory
HistoryMaxLines is the maximal amount of input lines held in GAP’s command line history.

If SaveAndRestoreHistory is true then GAP saves its command line history before termi-
nating a GAP session, and prepends the stored history when GAP is started. If this is en-
abled it is suggested to set HistoryMaxLines to some finite value. It is also possible to set
HistoryMaxLines to infinity (18.2.1) to keep arbitrarily many lines.

These preferences are ignored if GAP was not compiled with readline support.

Defaults: [10000, true].

InfoPackageLoadingLevel

Info messages concerning package loading up to this level are printed. The level can be changed
in a running session using SetInfoLevel (7.4.3).

Admissible values: 1, 2, 3, 4.

Default: 1.

MaxBitsIntView

Maximal bit length of integers to View unabbreviated. Default is about 30 lines of a 80 character
wide terminal. Set this to 0 to avoid abbreviated ints.

Default: 8000.

PartialPermDisplayLimit, NotationForPartialPerms
options for the display of partial perms

Defaults: [100, "component"].

TransformationDisplayLimit, NotationForTransformations
options for the display of transformations

Defaults: [100, "input"].

GAP - Reference Manual 43

PackagesToIgnore

These packages are not regarded as available. This doesn’t work for packages which are needed
by the GAP library, or which are already loaded in a workspace.

Default: "".

PackagesToLoad

A list of names of packages which should be loaded during startup. For backwards compatibil-
ity, the default lists most of packages that were autoloaded in GAP 4.4 (add or remove packages
as you like).

Default: ["autpgrp", "alnuth", "crisp", "ctbllib", "factint", "fga",

"irredsol", "laguna", "polenta", "polycyclic", "resclasses", "sophus",

"tomlib"].

Pager, PagerOptions
For displaying help pages on screen and other things GAP has a rudimentary builtin pager.
We recommend using a more sophisticated external program. For example, when you have the
program less on your computer we recommend:

Pager := "less";

PagerOptions := ["-f", "-r", "-a", "-i", "-M", "-j2"];

If you want to use more, we suggest to use the -f option. If you want to use the pager defined
in your environment then leave the Pager and PagerOptions preferences empty.

The defaults are computed at runtime.

ReadObsolete

May be useful to say false here to check if you are using commands which may vanish in a
future version of GAP

Admissible values: true, false.

Default: true.

ReproducibleBehaviour

This preference disables code in GAP which changes behaviour based on time spent, and there-
fore can produce different results depending on how much time is taken by other programs
running on the same computer. This option may lead to slower or lower-quality results. Note
that many algorithms in GAP use the global random number generator, which is NOT affected
by this option. This only tries to ensure the same version of GAP, with the same package ver-
sions loaded, on the same machine, running the same code, in a fresh GAP session, will produce
the same results.

Admissible values: true, false.

Default: false.

ShortBanners

If this option is set to true, package banners printed during loading will only show the name,
version and description of a package.

Admissible values: true, false.

Default: false.

GAP - Reference Manual 44

UseColorPrompt

In a color capable terminal (almost any terminal application) you can run GAP such that the
prompts, the input and output are distinguished by colors. Options are true, false or some
record as explained in the help section for ColorPrompt (3.6.1).

Default: true.

UseColorsInTerminal

Almost all current terminal emulations support color display, setting this to true implies a
default display of most manuals with color markup. It may influence the display of other things
in the future.

Admissible values: true, false.

Default: true.

ViewLength

A bound for the number of lines printed when Viewing some large objects.

Default: 3.

3.3 Saving and Loading a Workspace

GAP workspace files are binary files that contain the data of a GAP session. Currently saving and
loading workspace files are supported only when the GASMAN garbage collector is used, see Section
7.12.1.

One can produce a workspace file with SaveWorkspace (3.3.1), and load it into a new GAP
session using the -L command line option, see Section 3.1.

One purpose of workspace files is of course the possibility to save a “snapshot” image of the
current GAP workspace in a file.

The recommended way to start GAP is to load an existing workspace file, because this reduces the
startup time of GAP drastically. So if you have installed GAP yourself then you should think about
creating a workspace file immediately after you have started GAP, and then using this workspace file
later on, whenever you start GAP. If your GAP installation is shared between several users, the system
administrator should think about providing such a workspace file.

3.3.1 SaveWorkspace

▷ SaveWorkspace(filename) (function)

will save a “snapshot” image of the current GAP workspace in the file filename . This image then
can be loaded by another copy of GAP which then will behave as at the point when SaveWorkspace

was called.
Example

gap> a:=1;

gap> SaveWorkspace("savefile");

true

gap> quit;

SaveWorkspace can only be used at the main gap> prompt. It cannot be included in the body of
a loop or function, or called from a break loop.

GAP - Reference Manual 45

3.4 Testing for the System Architecture

3.4.1 ARCH_IS_UNIX

▷ ARCH_IS_UNIX() (function)

tests whether GAP is running on a UNIX system (including macOS).

3.4.2 ARCH_IS_MAC_OS_X

▷ ARCH_IS_MAC_OS_X() (function)

tests whether GAP is running on macOS. Note that on macOS, also ARCH_IS_UNIX (3.4.1) will
be true.

3.4.3 ARCH_IS_WINDOWS

▷ ARCH_IS_WINDOWS() (function)

tests whether GAP is running on a Windows system without standard POSIX tools available (such
as a shell).

3.4.4 ARCH_IS_WSL

▷ ARCH_IS_WSL() (function)

tests whether GAP is running on a Windows system inside the ’Windows Subsystem for Linux’.
Note that in this case ARCH_IS_UNIX (3.4.1) will be true, and in most situations WSL can be treated
identically to Linux.

3.5 Global Values that Control the GAP Session

3.5.1 GAPInfo

▷ GAPInfo (global variable)

Several global values control the GAP session, such as the command line, the architecture, or
the information about available and loaded packages. Many of these values are accessible as compo-
nents of the global record GAPInfo. Typically, these components are set and read in low level GAP
functions, so changing the values of existing components of GAPInfo “by hand” is not recommended.

Important components are documented via index entries, try the input ??GAPInfo for getting an
overview of these components.

3.6 Coloring the Prompt and Input

GAP provides hooks for functions which are called when the prompt is to be printed and when an
input line is finished.

An example of using this feature is the following function.

GAP - Reference Manual 46

3.6.1 ColorPrompt

▷ ColorPrompt(bool[, optrec]) (function)

ColorPrompt changes GAP’s user interface: After calling ColorPrompt(true);, the prompts
and the user input are displayed in colors different from the color that is used for the output. This is
also the default for a GAP session. Switch off these colorings with ColorPrompt(false);.

Note that colors will only work if your terminal emulation in which you run GAP understands
the so called ANSI color escape sequences –almost all terminal emulations on current UNIX/Linux
(xterm, rxvt, konsole, ...) systems do so.

The colors shown depend on the terminal configuration and cannot be forced from an application.
If your terminal follows the ANSI conventions you see the standard prompt in bold blue and the break
loop prompt in bold red, as well as your input in red.

If you prefer to switch off colors for prompts and input at the start of your GAP sessions, put a call
of SetUserPreference("UseColorPrompt", false); in your gap.ini file. If you want a more
complicated setting as explained below then put your SetUserPreference("UseColorPrompt",
rec(...)); call into your gaprc file.

The optional second argument optrec allows one to further customize the behaviour. It must be
a record from which the following components are recognized:

MarkupStdPrompt

a string or no argument function returning a string containing the escape sequence used for the
main prompt gap> .

MarkupContPrompt

a string or no argument function returning a string containing the escape sequence used for the
continuation prompt > .

MarkupBrkPrompt

a string or no argument function returning a string containing the escape sequence used for the
break prompt brk...> .

MarkupInput

a string or no argument function returning a string containing the escape sequence used for user
input.

TextPrompt

a no argument function returning the string with the text of the prompt, but without any escape
sequences. The current standard prompt is returned by CPROMPT(). But note that changing the
standard prompts makes the automatic removal of prompts from input lines impossible (see 6.2).

PrePrompt

a function called before printing a prompt.

Here is an example.

LoadPackage("GAPDoc");

timeSHOWMIN := 100;

ColorPrompt(true, rec(

usually cyan bold, see ?TextAttr

GAP - Reference Manual 47

MarkupStdPrompt := Concatenation(TextAttr.bold, TextAttr.6),

MarkupContPrompt := Concatenation(TextAttr.bold, TextAttr.6),

PrePrompt := function()

show the 'time' automatically if at least timeSHOWMIN

if CPROMPT() = "gap> " and time >= timeSHOWMIN then

Print("Time of last command: ", time, " ms\n");

fi;

end));

Chapter 4

The Programming Language

This chapter describes the GAP programming language. It should allow you, in principle, to predict
the result of each and every input. In order to know what we are talking about, we first have to look
more closely at the process of interpretation and the various representations of data involved.

4.1 Language Overview

First we have the input to GAP, given as a string of characters. How those characters enter GAP
is operating system dependent, e.g., they might be entered at a terminal, pasted with a mouse into a
window, or read from a file. The mechanism does not matter. This representation of expressions by
characters is called the external representation of the expression. Every expression has at least one
external representation that can be entered to get exactly this expression.

The input, i.e., the external representation, is transformed in a process called reading to an internal
representation. At this point the input is analyzed and inputs that are not legal external representations,
according to the rules given below, are rejected as errors. Those rules are usually called the syntax of
a programming language.

The internal representation created by reading is called either an expression or a statement. Later
we will distinguish between those two terms. However for now we will use them interchangeably. The
exact form of the internal representation does not matter. It could be a string of characters equal to the
external representation, in which case the reading would only need to check for errors. It could be a
series of machine instructions for the processor on which GAP is running, in which case the reading
would more appropriately be called compilation. It is in fact a tree-like structure.

After the input has been read it is again transformed in a process called evaluation or execution.
Later we will distinguish between those two terms too, but for the moment we will use them inter-
changeably. The name hints at the nature of this process, it replaces an expression with the value
of the expression. This works recursively, i.e., to evaluate an expression first the subexpressions are
evaluated and then the value of the expression is computed from those values according to rules given
below. Those rules are usually called the semantics of a programming language.

The result of the evaluation is, not surprisingly, called a value. Again the form in which such a
value is represented internally does not matter. It is in fact a tree-like structure again.

The last process is called printing. It takes the value produced by the evaluation and creates an
external representation, i.e., a string of characters again. What you do with this external representation
is up to you. You can look at it, paste it with the mouse into another window, or write it to a file.

48

GAP - Reference Manual 49

Lets look at an example to make this more clear. Suppose you type in the following string of 8
characters

1 + 2 * 3;

GAP takes this external representation and creates a tree-like internal representation, which we
can picture as follows

+

/ \

1 *

/ \

2 3

This expression is then evaluated. To do this GAP first evaluates the right subexpression 2*3.
Again, to do this GAP first evaluates its subexpressions 2 and 3. However they are so simple that they
are their own value, we say that they are self-evaluating. After this has been done, the rule for * tells
us that the value is the product of the values of the two subexpressions, which in this case is clearly 6.
Combining this with the value of the left operand of the +, which is self-evaluating, too, gives us the
value of the whole expression 7. This is then printed, i.e., converted into the external representation
consisting of the single character 7.

In this fashion we can predict the result of every input when we know the syntactic rules that
govern the process of reading and the semantic rules that tell us for every expression how its value is
computed in terms of the values of the subexpressions. The syntactic rules are given in sections 4.2,
4.3, 4.4, 4.5, and 4.6, the semantic rules are given in sections 4.7, 4.8, 4.12, 4.13, 4.14, 4.15, 4.15.1,
4.15.2, 4.15.3, 4.15.4, 4.15.5, 4.15.6, 4.11, and the chapters describing the individual data types.

4.2 Lexical Structure

Most input of GAP consists of sequences of the following characters.
Digits, uppercase and lowercase letters, SPACE, TAB, NEWLINE, RETURN and the special char-

acters

" ' () * + , - #

. / : ; < = > ~

[\] ^ _ { } !

It is possible to use other characters in identifiers by escaping them with backslashes, but we do
not recommend the use of this feature. Inside strings (see section 4.3 and chapter 27) and comments
(see 4.4) the full character set supported by the computer is allowed.

4.3 Symbols

The process of reading, i.e., of assembling the input into expressions, has a subprocess, called scan-
ning, that assembles the characters into symbols. A symbol is a sequence of characters that form a

GAP - Reference Manual 50

lexical unit. The set of symbols consists of keywords, identifiers, strings, integers, and operator and
delimiter symbols.

A keyword is a reserved word (see 4.5). An identifier is a sequence of letters, digits and underscores
(or other characters escaped by backslashes) that contains at least one non-digit and is not a keyword
(see 4.6). An integer is a sequence of digits (see 14), possibly prepended by - and + sign characters.
A string is a sequence of arbitrary characters enclosed in double quotes (see 27).

Operator and delimiter symbols are

+ - * / ^ ~ !.

= <> < <= > >= ![

:= . .. -> , ; [

] { } () :

Note also that during the process of scanning all whitespace is removed (see 4.4).

4.4 Whitespaces

The characters SPACE, TAB, NEWLINE, and RETURN are called whitespace characters. Whitespace is
used as necessary to separate lexical symbols, such as integers, identifiers, or keywords. For example
Thorondor is a single identifier, while Th or ondor is the keyword or between the two identifiers
Th and ondor. Whitespace may occur between any two symbols, but not within a symbol. Two or
more adjacent whitespace characters are equivalent to a single whitespace. Apart from the role as
separator of symbols, whitespace characters are otherwise insignificant. Whitespace characters may
also occur inside a string, where they are significant. Whitespace characters should also be used freely
for improved readability.

A comment starts with the character #, which is sometimes called sharp or hatch, and continues to
the end of the line on which the comment character appears. The whole comment, including # and the
NEWLINE character is treated as a single whitespace. Inside a string, the comment character # loses
its role and is just an ordinary character.

For example, the following statement

if i<0 then a:=-i;else a:=i;fi;

is equivalent to

if i < 0 then # if i is negative

a := -i; # take its additive inverse

else # otherwise

a := i; # take itself

fi;

(which by the way shows that it is possible to write superfluous comments). However the first
statement is not equivalent to

ifi<0thena:=-i;elsea:=i;fi;

since the keyword if must be separated from the identifier i by a whitespace, and similarly then

and a, and else and a must be separated.

GAP - Reference Manual 51

4.5 Keywords

Keywords are reserved words that are used to denote special operations or are part of statements. They
must not be used as identifiers. The list of keywords is contained in the GAPInfo.Keywords compo-
nent of the GAPInfo record (see 3.5.1). We will show how to print it in a nice table, demonstrating at
the same time some list manipulation techniques:

Example
gap> keys:=SortedList(GAPInfo.Keywords);; l:=Length(keys);;

gap> arr:= List([0 .. Int(l/4)-1], i-> keys{ 4*i + [1 .. 4] });;

gap> if l mod 4 <> 0 then Add(arr, keys{[4*Int(l/4) + 1 .. l]}); fi;

gap> Length(keys); PrintArray(arr);

35

[[Assert, Info, IsBound, QUIT],

[TryNextMethod, Unbind, and, atomic],

[break, continue, do, elif],

[else, end, false, fi],

[for, function, if, in],

[local, mod, not, od],

[or, quit, readonly, readwrite],

[rec, repeat, return, then],

[true, until, while]]

Note that (almost) all keywords are written in lowercase and that they are case sensitive. For
example else is a keyword; Else, eLsE, ELSE and so forth are ordinary identifiers. Keywords must
not contain whitespace, for example el if is not the same as elif.

Note: Several tokens from the list of keywords above may appear to be normal identifiers repre-
senting functions or literals of various kinds but are actually implemented as keywords for technical
reasons. The only consequence of this is that those identifiers cannot be re-assigned, and do not ac-
tually have function objects bound to them, which could be assigned to other variables or passed to
functions. These keywords are true, false, Assert (7.5.3), IsBound (4.8.1), Unbind (4.8.2), Info
(7.4.6) and TryNextMethod (78.5.1).

Keywords atomic, readonly, readwrite are not used at the moment. They are reserved for the
future version of GAP to prevent their accidental use as identifiers.

4.6 Identifiers

An identifier is used to refer to a variable (see 4.8). An identifier usually consists of letters, digits, un-
derscores _, and “at”-characters @, and must contain at least one non-digit. An identifier is terminated
by the first character not in this class. Note that the “at”-character @ is used to implement namespaces,
see Section 4.10 for details.

Examples of valid identifiers are

a foo aLongIdentifier

hello Hello HELLO

x100 100x _100

some_people_prefer_underscores_to_separate_words

WePreferMixedCaseToSeparateWords

abc@def

GAP - Reference Manual 52

Note that case is significant, so the three identifiers in the second line are distinguished.
The backslash \ can be used to include other characters in identifiers; a backslash followed by a

character is equivalent to the character, except that this escape sequence is considered to be an ordinary
letter. For example

G\(2\,5\)

is an identifier, not a call to a function G.
An identifier that starts with a backslash is never a keyword, so for example * and \mod are

identifiers.
The length of identifiers is not limited, however only the first 1023 characters are significant. The

escape sequence \NEWLINE is ignored, making it possible to split long identifiers over multiple lines.

4.6.1 IsValidIdentifier

▷ IsValidIdentifier(str) (function)

returns true if the string str would form a valid identifier consisting of letters, digits and under-
scores; otherwise it returns false. It does not check whether str contains characters escaped by a
backslash \.

Note that the “at”-character is used to implement namespaces for global variables in packages.
See 4.10 for details.

4.6.2 Conventions about Identifiers

(The following rule is stated also in Section (Tutorial: Variables versus Objects).)
The name of almost every global variable in the GAP library and in GAP packages starts with

a capital letter. (See Section 6.1 for the few exceptions.) For user variables, we recommend only
choosing names that start with a lower case letter, in order to avoid name clashes.

For example, valid GAP input which assigns some user variables whose names start with capital
letters may run into errors with a newer version of GAP or in a GAP session with more or newer
packages, because it may happen that these variables are predefined global variables in this situation.

4.7 Expressions

An expression is a construct that evaluates to a value. Syntactic constructs that are executed to produce
a side effect and return no value are called statements (see 4.15). Expressions appear as right hand
sides of assignments (see 4.15.1), as actual arguments in function calls (see 4.12), and in statements.

Note that an expression is not the same as a value. For example 1 + 11 is an expression, whose
value is the integer 12. The external representation of this integer is the character sequence 12, i.e.,
this sequence is output if the integer is printed. This sequence is another expression whose value is the
integer 12. The process of finding the value of an expression is done by the interpreter and is called
the evaluation of the expression.

The simplest cases of expressions are the following:

• variables (see Section 4.8),

• function literals (see Section 4.11),

GAP - Reference Manual 53

• function calls (see Section 4.12),

• integer literals (see Chapter 14),

• floating point literals (see Chapter 19),

• permutation literals (see Chapter 42),

• string literals (see Chapter 27),

• character literals (see Chapter 27),

• list literals (see Chapter 21), and

• record literals (see Chapter 29).

Expressions, for example the simple expressions mentioned above, can be combined with the operators
to form more complex expressions. Of course those expressions can then be combined further with
the operators to form even more complex expressions. The operators fall into three classes. The
comparisons are =, <>, <, <=, >, >=, and in (see 4.13 and 30.6). The arithmetic operators are +, -, *,
/, mod, and ^ (see 4.14). The logical operators are not, and, and or (see 20.4).

The following example shows a very simple expression with value 4 and a more complex expres-
sion.

Example
gap> 2 * 2;

4

gap> 2 * 2 + 9 = Fibonacci(7) and Fibonacci(13) in Primes;

true

The following table lists all operators by precedence, from highest to lowest, and also indicates
whether the operator is left associative (aka left-to-right) or right associative (aka right-to-left) or
neither.

operator associativity
arithmetic (see 4.14)
^ none
unary +, unary - right-to-left
*, /, mod left-to-right
binary +, binary - left-to-right

comparison (see 4.13)
=, <>, <, <=, >, >=, and in none

logical (see 20.4)
not right-to-left
and left-to-right
or left-to-right

4.8 Variables

A variable is a location in a GAP program that points to a value. We say the variable is bound to this
value. If a variable is evaluated it evaluates to this value.

GAP - Reference Manual 54

Initially an ordinary variable is not bound to any value. The variable can be bound to a value by
assigning this value to the variable (see 4.15.1). Because of this we sometimes say that a variable
that is not bound to any value has no assigned value. Assignment is in fact the only way by which a
variable, which is not an argument of a function, can be bound to a value. After a variable has been
bound to a value an assignment can also be used to bind the variable to another value.

A special class of variables is the class of arguments of functions. They behave similarly to other
variables, except they are bound to the value of the actual arguments upon a function call (see 4.12).

Each variable has a name that is also called its identifier. This is because in a given scope an
identifier identifies a unique variable (see 4.6). A scope is a lexical part of a program text. There
is the global scope that encloses the entire program text, and there are local scopes that range from
the function keyword, denoting the beginning of a function definition, to the corresponding end

keyword. A local scope introduces new variables, whose identifiers are given in the formal argument
list and the local declaration of the function (see 4.11). Usage of an identifier in a program text
refers to the variable in the innermost scope that has this identifier as its name. Because this mapping
from identifiers to variables is done when the program is read, not when it is executed, GAP is said to
have lexical scoping. The following example shows how one identifier refers to different variables at
different points in the program text.

g := 0; # global variable g

x := function (a, b, c)

local y;

g := c; # c refers to argument c of function x

y := function (y)

local d, e, f;

d := y; # y refers to argument y of function y

e := b; # b refers to argument b of function x

f := g; # g refers to global variable g

return d + e + f;

end;

return y(a); # y refers to local y of function x

end;

It is important to note that the concept of a variable in GAP is quite different from the concept of
a variable in most compiled programming languages.

In those languages a variable denotes a block of memory. The value of the variable is stored in this
block. So in those languages two variables can have the same value, but they can never have identical
values, because they denote different blocks of memory. Note that some languages have the concept of
a reference argument. It seems as if such an argument and the variable used in the actual function call
have the same value, since changing the argument’s value also changes the value of the variable used
in the actual function call. But this is not so; the reference argument is actually a pointer to the variable
used in the actual function call, and it is the compiler that inserts enough magic to make the pointer
invisible. In order for this to work the compiler needs enough information to compute the amount of
memory needed for each variable in a program, which is readily available in the declarations.

In GAP on the other hand each variable just points to a value, and different variables can share the
same value.

GAP - Reference Manual 55

4.8.1 IsBound (for a global variable)

▷ IsBound(ident) (function)

IsBound returns true if the variable ident points to a value, and false otherwise.
For records and lists IsBound can be used to check whether components or entries, respectively,

are bound (see Chapters 29 and 21).

4.8.2 Unbind (unbind a variable)

▷ Unbind(ident) (function)

deletes the identifier ident . If there is no other variable pointing to the same value as ident was,
this value will be removed by the next garbage collection. Therefore Unbind can be used to get rid of
unwanted large objects.

For records and lists Unbind can be used to delete components or entries, respectively (see Chap-
ters 29 and 21).

4.9 More About Global Variables

The vast majority of variables in GAP are defined at the outer level (the global scope). They are used
to access functions and other objects created either in the GAP library or packages or in the user’s
code.

Note that for packages there is a mechanism to implement package local namespaces on top of
this global namespace. See Section 4.10 for details.

Certain special facilities are provided for manipulating global variables which are not available for
other types of variable (such as local variables or function arguments).

First, such variables may be marked read-only using MakeReadOnlyGlobal (4.9.2). In which
case attempts to change them will fail. Most of the global variables defined in the GAP library are
so marked. read-only variables can be made read-write again by calling MakeReadWriteGlobal

(4.9.3). GAP also features constant variables, which are created by calling MakeConstantGlobal

(4.9.4). Constant variables can never be changed. In some cases, GAP can optimise code which
uses constant variables, as their value never changes. In this version GAP these optimisations can be
observed by printing the function back out, but this behaviour may change in future.

Example
gap> globali := 1 + 2;;

gap> globalb := true;;

gap> MakeConstantGlobal("globali");

gap> MakeConstantGlobal("globalb");

gap> f := function()

> if globalb then

> return globali + 1;

> else

> return globali + 2;

> fi;

> end;;

gap> Print(f);

function ()

GAP - Reference Manual 56

return 3 + 1;

end

Second, a group of functions are supplied for accessing and altering the values assigned to global
variables. Use of these functions differs from the use of assignment, Unbind (4.8.2) and IsBound

(4.8.1) statements, in two ways. First, these functions always affect global variables, even if local
variables of the same names exist. Second, the variable names are passed as strings, rather than being
written directly into the statements.

Note that the functions NamesGVars (4.9.9), NamesSystemGVars (4.9.10), and NamesUserGVars

(4.9.11), deal with the global namespace.

4.9.1 IsReadOnlyGlobal

▷ IsReadOnlyGlobal(name) (function)

returns true if the global variable named by the string name is read-only and false otherwise
(the default).

4.9.2 MakeReadOnlyGlobal

▷ MakeReadOnlyGlobal(name) (function)

marks the global variable named by the string name as read-only.
A warning is given if name has no value bound to it or if it is already read-only.

4.9.3 MakeReadWriteGlobal

▷ MakeReadWriteGlobal(name) (function)

marks the global variable named by the string name as read-write.
A warning is given if name is already read-write.

Example
gap> xx := 17;

17

gap> IsReadOnlyGlobal("xx");

false

gap> xx := 15;

15

gap> MakeReadOnlyGlobal("xx");

gap> xx := 16;

Variable: 'xx' is read only

not in any function

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can 'return;' after making it writable to continue

brk> quit;

gap> IsReadOnlyGlobal("xx");

true

gap> MakeReadWriteGlobal("xx");

GAP - Reference Manual 57

gap> xx := 16;

16

gap> IsReadOnlyGlobal("xx");

false

4.9.4 MakeConstantGlobal

▷ MakeConstantGlobal(name) (function)

MakeConstantGlobal (name) marks the global variable named by the string name as constant. A
constant variable can never be reassigned or made read-write again.

A warning is given if name is already constant.

4.9.5 ValueGlobal

▷ ValueGlobal(name) (function)

returns the value currently bound to the global variable named by the string name . An error is
raised if no value is currently bound.

4.9.6 IsBoundGlobal

▷ IsBoundGlobal(name) (function)

returns true if a value currently bound to the global variable named by the string name and false

otherwise.

4.9.7 UnbindGlobal

▷ UnbindGlobal(name) (function)

removes any value currently bound to the global variable named by the string name . Nothing is
returned.

A warning is given if name was not bound. The global variable named by name must be writable,
otherwise an error is raised.

4.9.8 BindGlobal

▷ BindGlobal(name, val) (function)

▷ BindConstant(name, val) (function)

BindGlobal and BindConstant set the global variable named by the string name to the value
val , provided that variable is writable. BindGlobal makes the resulting variable read-only, while
BindConstant makes it constant. If name already had a value, a warning message is printed.

This is intended to be the normal way to create and set “official” global variables (such as opera-
tions, filters and constants).

Caution should be exercised in using these functions, especially UnbindGlobal (4.9.7) as unex-
pected changes in global variables can be very confusing for the user.

GAP - Reference Manual 58

Example
gap> xx := 16;

16

gap> IsReadOnlyGlobal("xx");

false

gap> ValueGlobal("xx");

16

gap> IsBoundGlobal("xx");

true

gap> BindGlobal("xx",17);

#W BIND_GLOBAL: variable `xx' already has a value

gap> xx;

17

gap> IsReadOnlyGlobal("xx");

true

gap> MakeReadWriteGlobal("xx");

gap> Unbind(xx);

4.9.9 NamesGVars

▷ NamesGVars() (function)

This function returns an immutable (see 12.6) sorted (see 21.19) list of all the global variable
names known to the system. This includes names of variables which were bound but have now been
unbound and some other names which have never been bound but have become known to the system
by various routes.

4.9.10 NamesSystemGVars

▷ NamesSystemGVars() (function)

This function returns an immutable sorted list of all the global variable names created by the GAP
library when GAP was started.

4.9.11 NamesUserGVars

▷ NamesUserGVars() (function)

This function returns an immutable sorted list of the global variable names created since the library
was read, to which a value is currently bound.

4.10 Namespaces for GAP packages

As mentioned in Section 4.9 above all global variables share a common namespace. This can relatively
easily lead to name clashes, in particular when many GAP packages are loaded at the same time. To
give package code a way to have a package local namespace without breaking backward compatibility
of the GAP language, the following simple rule has been devised:

GAP - Reference Manual 59

If in package code a global variable that ends with an “at”-character @ is accessed in any way,
the name of the package is appended before accessing it. Here, “package code” refers to everything
which is read with ReadPackage (76.3.1). As the name of the package the entry PackageName in its
PackageInfo.g file is taken. As for all identifiers, this name is case sensitive.

For example, if the following is done in the code of a package with name xYz:
Example

gap> a@ := 12;

Then actually the global variable a@xYz is assigned. Further accesses to a@ within the package code
will all be redirected to a@xYz. This includes all the functions described in Section 4.9 and indeed all
the functions described Section 79.10 like for example DeclareCategory (13.3.5). Note that from
code in the same package it is still possible to access the same global variable via a@xYz explicitly.

All other code outside the package as well as interactive user input that wants to refer to that
variable a@xYz must do so explicitly by using a@xYz.

Since in earlier releases of GAP the “at”-character @ was not a legal character (without using
backslashes), this small extension of the language does not break any old code.

4.11 Function

function([arg-ident {, arg-ident}])

[local loc-ident {, loc-ident} ;]

statements

end

A function literal can be assigned to a variable or to a list element or a record component. Later
this function can be called as described in 4.12.

The following is an example of a function definition. It is a function to compute values of the
Fibonacci sequence (see Fibonacci (16.3.1)).

Example
gap> fib := function (n)

> local f1, f2, f3, i;

> f1 := 1; f2 := 1;

> for i in [3..n] do

> f3 := f1 + f2;

> f1 := f2;

> f2 := f3;

> od;

> return f2;

> end;;

gap> List([1..10], fib);

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Because for each of the formal arguments arg-ident and for each of the formal locals
loc-ident a new variable is allocated when the function is called (see 4.12), it is possible that a
function calls itself. This is usually called recursion. The following is a recursive function that com-
putes values of the Fibonacci sequence.

GAP - Reference Manual 60

Example
gap> fib := function (n)

> if n < 3 then

> return 1;

> else

> return fib(n-1) + fib(n-2);

> fi;

> end;;

gap> List([1..10], fib);

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Note that the recursive version needs 2 * fib(n)-1 steps to compute fib(n), while the iterative
version of fib needs only n-2 steps. Both are not optimal however, the library function Fibonacci

(16.3.1) only needs about Log(n) steps.
As noted in Section 4.12, the case where a function’s last argument is followed by ... is special.

It provides a way of defining a function with a variable number of arguments. The values of the actual
arguments are computed and the first ones are assigned to the new variables corresponding to the
formal arguments before the last argument, if any. The values of all the remaining actual arguments are
stored in a list and this list is assigned to the new variable corresponding to the final formal argument.
There are two typical scenarios for wanting such a possibility: having optional arguments and having
any number of arguments.

The following example shows one way that the function Position (21.16.1) might be encoded
and demonstrates the “optional argument” scenario.

Example
gap> position := function (list, obj, arg...)

> local pos;

> if 0 = Length(arg) then

> pos := 0;

> else

> pos := arg[1];

> fi;

> repeat

> pos := pos + 1;

> if pos > Length(list) then

> return fail;

> fi;

> until list[pos] = obj;

> return pos;

> end;

function(list, obj, arg...) ... end

gap> position([1, 4, 2], 4);

2

gap> position([1, 4, 2], 3);

fail

gap> position([1, 4, 2], 4, 2);

fail

The following example demonstrates the “any number of arguments” scenario.
Example

gap> sum := function (l...)

> local total, x;

GAP - Reference Manual 61

> total := 0;

> for x in l do

> total := total + x;

> od;

> return total;

> end;

function(l...) ... end

gap> sum(1, 2, 3);

6

gap> sum(1, 2, 3, 4);

10

gap> sum();

0

The user should compare the above with the GAP function Sum (21.20.26) which, for example,
may take a list argument and optionally an initial element (which zero should the sum of an empty list
return?).

GAP will also special case a function with a single argument with the name arg as function with
a variable length list of arguments, as if the user had written arg....

Note that if a function f is defined as above then NumberArgumentsFunction(f) returns minus
the number of formal arguments (including the final argument) (see NumberArgumentsFunction

(5.1.2)).
Using the ... notation on a function f with only a single named argument tells GAP that when

it encounters f that it should form a list out of the arguments of f . What if one wishes to do the
“opposite”: tell GAP that a list should be “unwrapped” and passed as several arguments to a function.
The function CallFuncList (5.2.1) is provided for this purpose.

Also see Chapter 5.
{ arg-list } -> expr

This is a shorthand for
function (arg-list) return expr; end.

arg-list is a (possibly empty) argument list. Any arguments list which would be valid for a
normal GAP function is also valid here (including variadic arguments).

The following gives a couple of examples of a typical use of such a function
Example

gap> Sum(List([1..100], {x} -> x^2));

338350

gap> list := [3, 5, 2, 1, 3];;

gap> Sort(list, {x,y} -> x > y);

gap> list;

[5, 3, 3, 2, 1]

gap> f := {x,y...} -> y;;

gap> f(1,2,3,4);

[2, 3, 4]

gap> f := {} -> 2;

function() ... end

gap> Print(f);

function ()

return 2;

end

GAP - Reference Manual 62

gap> f();

2

The { and } may be omitted for functions with one argument:
Example

gap> Sum(List([1..100], {x} -> x^2));

338350

gap> Sum(List([1..100], x -> x^2));

338350

When the definition of a function fun1 is evaluated inside another function fun2 , GAP binds all
the identifiers inside the function fun1 that are identifiers of an argument or a local of fun2 to the
corresponding variable. This set of bindings is called the environment of the function fun1 . When
fun1 is called, its body is executed in this environment. The following implementation of a simple
stack uses this. Values can be pushed onto the stack and then later be popped off again. The interesting
thing here is that the functions push and pop in the record returned by Stack access the local variable
stack of Stack. When Stack is called, a new variable for the identifier stack is created. When
the function definitions of push and pop are then evaluated (as part of the return statement) each
reference to stack is bound to this new variable. Note also that the two stacks A and B do not interfere,
because each call of Stack creates a new variable for stack.

Example
gap> Stack := function()

> local stack;

> stack := [];

> return rec(

> push := function(value)

> Add(stack, value);

> end,

> pop := function()

> return Remove(stack) ;

> end

>);

> end;;

gap> A := Stack();;

gap> B := Stack();;

gap> A.push(1); A.push(2); A.push(3);

gap> B.push(4); B.push(5); B.push(6);

gap> A.pop(); A.pop(); A.pop();

3

2

1

gap> B.pop(); B.pop(); B.pop();

6

5

4

This feature should be used rarely, since its implementation in GAP is not very efficient.

GAP - Reference Manual 63

4.12 Function Calls

4.12.1 Function Call With Arguments

function-var([arg-expr[, arg-expr, ...]])

The function call has the effect of calling the function function-var . The precise semantics are
as follows.

First GAP evaluates the function-var . Usually function-var is a variable, and GAP does
nothing more than taking the value of this variable. It is allowed though that function-var

is a more complex expression, such as a reference to an element of a list (see Chapter 21)
list-var[int-expr], or to a component of a record (see Chapter 29) record-var.ident . In
any case GAP tests whether the value is a function. If it is not, GAP signals an error.

Next GAP checks that the number of actual arguments arg-exprs agrees with the number of
formal arguments as given in the function definition. If they do not agree GAP signals an error. An
exception is the case when the function has a variable length argument list, which is denoted by adding
... after the final argument. In this case there must be at least as many actual arguments as there are
formal arguments before the final argument and can be any larger number (see 4.11 for examples).

Now GAP allocates for each formal argument and for each formal local (that is, the identifiers in
the local declaration) a new variable. Remember that a variable is a location in a GAP program that
points to a value. Thus for each formal argument and for each formal local such a location is allocated.

Next the arguments arg-exprs are evaluated from left to right, and the values are assigned to the
newly created variables corresponding to the formal arguments. Of course the first value is assigned
to the new variable corresponding to the first formal argument, the second value is assigned to the
new variable corresponding to the second formal argument, and so on. An exception again occurs if
the last formal argument has the name arg. In this case the values of all the actual arguments not
assigned to the other formal parameters are stored in a list and this list is assigned to the new variable
corresponding to the formal argument arg.

The new variables corresponding to the formal locals are initially not bound to any value. So
trying to evaluate those variables before something has been assigned to them will signal an error.

Now the body of the function, which is a statement, is executed. If the identifier of one of the
formal arguments or formal locals appears in the body of the function it refers to the new variable that
was allocated for this formal argument or formal local, and evaluates to the value of this variable.

If during the execution of the body of the function a return statement with an expression (see
4.15.9) is executed, execution of the body is terminated and the value of the function call is the value
of the expression of the return. If during the execution of the body a return statement without an
expression is executed, execution of the body is terminated and the function call does not produce
a value, in which case we call this call a procedure call (see 4.15.2). If the execution of the body
completes without execution of a return statement, the function call again produces no value, and
again we talk about a procedure call.

Example
gap> Fibonacci(11);

89

The above example shows a call to the function Fibonacci (16.3.1) with actual argument 11, the
following one shows a call to the operation RightCosets (39.7.2) where the second actual argument
is another function call.

Example
gap> RightCosets(G, Intersection(U, V));;

GAP - Reference Manual 64

4.12.2 Function Call With Options

function-var(arg-expr[, arg-expr, ...][: [option-expr [,option-expr,

....]]])

As well as passing arguments to a function, providing the mathematical input to its calculation,
it is sometimes useful to supply “hints” suggesting to GAP how the desired result may be computed
more quickly, or specifying a level of tolerance for random errors in a Monte Carlo algorithm.

Such hints may be supplied to a function-call and to all subsidiary functions called from that call
using the options mechanism. Options are separated from the actual arguments by a colon : and have
much the same syntax as the components of a record expression. The one exception to this is that a
component name may appear without a value, in which case the value true is silently inserted.

Options are evaluated from left to right, but only after all arguments have been evaluated.
The following example shows a call to Size (30.4.6) passing the options hard (with the value

true) and tcselection (with the string "external" as value).
Example

gap> Size(fpgrp : hard, tcselection := "external");

Options supplied with function calls in this way are passed down using the global options stack
described in chapter 8, so that the call above is exactly equivalent to

Example
gap> PushOptions(rec(hard := true, tcselection := "external"));

gap> Size(fpgrp);

gap> PopOptions();

Note that any option may be passed with any function, whether or not it has any actual meaning
for that function, or any function called by it. The system provides no safeguard against misspelled
option names.

4.13 Comparisons

left-expr = right-expr

left-expr <> right-expr

The operator = tests for equality of its two operands and evaluates to true if they are equal and
to false otherwise. Likewise <> tests for inequality of its two operands. For each type of objects
the definition of equality is given in the respective chapter. Objects in different families (see 13.1) are
never equal, i.e., = evaluates in this case to false, and <> evaluates to true.

left-expr < right-expr

left-expr > right-expr

left-expr <= right-expr

left-expr >= right-expr

< denotes less than, <= less than or equal, > greater than, and >= greater than or equal of its two
operands. For each kind of objects the definition of the ordering is given in the respective chapter.

Note that < implements a total ordering of objects (which can be used for example to sort a list
of elements). Therefore in general < will not be compatible with any inclusion relation (which can be
tested using IsSubset (30.5.1)). (For example, it is possible to compare permutation groups with <

in a total ordering of all permutation groups, but this ordering is not compatible with the relation of
being a subgroup.)

GAP - Reference Manual 65

Only for the following kinds of objects, an ordering via < of objects in different families (see 13.1)
is supported. Rationals (see IsRat (17.2.1)) are smallest, next are cyclotomics (see IsCyclotomic

(18.1.3)), followed by finite field elements (see IsFFE (59.1.1)); finite field elements in different
characteristics are compared via their characteristics, next are permutations (see IsPerm (42.1.1)),
followed by the boolean values true, false, and fail (see IsBool (20.1.1)), characters (such as
{}a{’}’, see IsChar (27.1.1)), and lists (see IsList (21.1.1)) are largest; note that two lists can be
compared with < if and only if their elements are again objects that can be compared with <.

For other objects, GAP does not provide an ordering via <. The reason for this is that a total
ordering of all GAP objects would be hard to maintain when new kinds of objects are introduced, and
such a total ordering is hardly used in its full generality.

However, for objects in the filters listed above, the ordering via < has turned out to be useful. For
example, one can form sorted lists containing integers and nested lists of integers, and then search in
them using PositionSorted (see 21.16).

Of course it would in principle be possible to define an ordering via < also for certain other objects,
by installing appropriate methods for the operation \<. But this may lead to problems at least as soon
as one loads GAP code in which the same is done, under the assumption that one is completely free to
define an ordering via < for other objects than the ones for which the “official” GAP provides already
an ordering via <.

Comparison operators, including the operator in (see 21.8), are not associative, Hence it is not
allowed to write a = b <> c = d , you must use (a = b) <> (c = d) instead. The comparison
operators have higher precedence than the logical operators (see 20.4), but lower precedence than the
arithmetic operators (see 4.14). Thus, for instance, a * b = c and d is interpreted as ((a * b)

= c) and d).
The following example shows a comparison where the left operand is an expression.

Example
gap> 2 * 2 + 9 = Fibonacci(7);

true

For the underlying operations of the operators introduced above, see 31.11.

4.14 Arithmetic Operators

+ right-expr

- right-expr

left-expr + right-expr

left-expr - right-expr

left-expr * right-expr

left-expr / right-expr

left-expr mod right-expr

left-expr ^ right-expr

The arithmetic operators are +, -, *, /, mod, and ^. The meanings (semantics) of those operators
generally depend on the types of the operands involved, and they are defined in the various chapters
describing the types. However basically the meanings are as follows.

a + b denotes the addition of additive elements a and b .
a - b denotes the addition of a and the additive inverse of b .
a * b denotes the multiplication of multiplicative elements a and b .

GAP - Reference Manual 66

a / b denotes the multiplication of a with the multiplicative inverse of b .
a mod b , for integer or rational left operand a and for non-zero integer right operand b , is defined

as follows. If a and b are both integers, a mod b is the integer r in the integer range 0 .. |b|

- 1 satisfying a = r + bq , for some integer q (where the operations occurring have their usual
meaning over the integers, of course).

If a is a rational number and b is a non-zero integer, and a = m / n where m and n are coprime
integers with n positive, then a mod b is the integer r in the integer range 0 .. |b| - 1 such that
m is congruent to rn modulo b , and r is called the “modular remainder” of a modulo b . Also, 1 /

n mod b is called the “modular inverse” of n modulo b . (A pair of integers is said to be coprime (or
relatively prime) if their greatest common divisor is 1.)

With the above definition, 4 / 6 mod 32 equals 2 / 3 mod 32 and hence exists (and is equal to
22), despite the fact that 6 has no inverse modulo 32.

Note: For rational a , a mod b could have been defined to be the non-negative rational c less
than |b| such that a - c is a multiple of b . However this definition is seldom useful and not the one
chosen for GAP.

+ and - can also be used as unary operations. The unary + is ignored. The unary - returns the
additive inverse of its operand; over the integers it is equivalent to multiplication by -1.

^ denotes powering of a multiplicative element if the right operand is an integer, and is also used
to denote the action of a group element on a point of a set if the right operand is a group element. In
the special case that both operands are group elements, ^ denotes conjugation, that is, g^h = h−1gh.

The precedence of those operators is as follows. The powering operator ^ has the highest prece-
dence, followed by the unary operators + and -, which are followed by the multiplicative operators
*, /, and mod, and the additive binary operators + and - have the lowest precedence. That means
that the expression -2 ^ -2 * 3 + 1 is interpreted as (-(2 ^ (-2)) * 3) + 1. If in doubt use
parentheses to clarify your intention.

The associativity of the arithmetic operators is as follows. ^ is not associative, i.e., it is invalid to
write 2^3^4, use parentheses to clarify whether you mean (2^3)^4 or 2^(3^4). The unary operators
+ and - are right associative, because they are written to the left of their operands. *, /, mod, +, and
- are all left associative, i.e., 1-2-3 is interpreted as (1-2)-3 not as 1-(2-3). Again, if in doubt use
parentheses to clarify your intentions.

The arithmetic operators have higher precedence than the comparison operators (see 4.13 and 30.6)
and the logical operators (see 20.4). Thus, for example, a * b = c and d is interpreted, ((a * b)

= c) and d .
Example

gap> 2 * 2 + 9; # a very simple arithmetic expression

13

For other arithmetic operations, and for the underlying operations of the operators introduced
above, see 31.12.

4.15 Statements

GAP programs consist of a sequence of so-called statements. The following types of statements exist:

• Assignments (see Section 4.15.1),

• Procedure calls (see Section 4.15.2),

GAP - Reference Manual 67

• if statements (see Section 4.15.3),

• while loops (see Section 4.15.4),

• repeat loops (see Section 4.15.5),

• for loops (see Section 4.15.6),

• break statements (see Section 4.15.7),

• continue statements (see Section 4.15.8), and

• return statements (see Section 4.15.9).

They can be entered interactively or be part of a function definition. Every statement must be termi-
nated by a semicolon.

Statements, unlike expressions, have no value. They are executed only to produce an effect. For
example an assignment has the effect of assigning a value to a variable, a for loop has the effect of
executing a statement sequence for all elements in a list and so on. We will talk about evaluation of
expressions but about execution of statements to emphasize this difference.

Using expressions as statements is treated as syntax error.
Example

gap> i := 7;;

gap> if i <> 0 then k = 16/i; fi;

Syntax error: := expected

if i <> 0 then k = 16/i; fi;

^

gap>

As you can see from the example this warning does in particular address those users who are used
to languages where = instead of := denotes assignment.

Empty statements are permitted and have no effect.
A sequence of one or more statements is a statement sequence, and may occur everywhere instead

of a single statement. Each construct is terminated by a keyword. The simplest statement sequence
is a single semicolon, which can be used as an empty statement sequence. In fact an empty statement
sequence as in for i in [1 .. 2] do od is also permitted and is silently translated into the
sequence containing just a semicolon.

4.15.1 Assignments

var := expr;

The assignment has the effect of assigning the value of the expressions expr to the variable var .
The variable var may be an ordinary variable (see 4.8), a list element selection

list-var[int-expr] (see 21.4) or a record component selection record-var.ident (see 29.3).
Since a list element or a record component may itself be a list or a record the left hand side of an
assignment may be arbitrarily complex.

Note that variables do not have a type. Thus any value may be assigned to any variable. For
example a variable with an integer value may be assigned a permutation or a list or anything else.

GAP - Reference Manual 68

Example
gap> data:= rec(numbers:= [1, 2, 3]);

rec(numbers := [1, 2, 3])

gap> data.string:= "string";; data;

rec(numbers := [1, 2, 3], string := "string")

gap> data.numbers[2]:= 4;; data;

rec(numbers := [1, 4, 3], string := "string")

If the expression expr is a function call then this function must return a value. If the function
does not return a value an error is signalled and you enter a break loop (see 6.4). As usual you can
leave the break loop with quit;. If you enter return return-expr; the value of the expression
return-expr is assigned to the variable, and execution continues after the assignment.

Example
gap> f1:= function(x) Print("value: ", x, "\n"); end;;

gap> f2:= function(x) return f1(x); end;;

gap> f2(4);

value: 4

Function Calls: <func> must return a value at

return f1(x);

called from

<function>(<arguments>) called from read-eval-loop

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can supply one by 'return <value>;' to continue

brk> return "hello";

"hello"

In the above example, the function f2 calls f1 with argument 4, and since f1 does not return a
value (but only prints a line “value: ...”), the return statement of f2 cannot be executed. The
error message says that it is possible to return an appropriate value, and the returned string "hello"

is used by f2 instead of the missing return value of f1.

4.15.2 Procedure Calls

procedure-var([arg-expr [,arg-expr, ...]]);

The procedure call has the effect of calling the procedure procedure-var . A procedure call is
done exactly like a function call (see 4.12). The distinction between functions and procedures is only
for the sake of the discussion, GAP does not distinguish between them. So we state the following
conventions.

A function does return a value but does not produce a side effect. As a convention the name
of a function is a noun, denoting what the function returns, e.g., "Length", "Concatenation" and
"Order".

A procedure is a function that does not return a value but produces some effect. Procedures are
called only for this effect. As a convention the name of a procedure is a verb, denoting what the
procedure does, e.g., "Print", "Append" and "Sort".

Example
gap> Read("myfile.g"); # a call to the procedure Read

gap> l := [1, 2];;

gap> Append(l, [3,4,5]); # a call to the procedure Append

GAP - Reference Manual 69

There are a few exceptions of GAP functions that do both return a value and produce some effect.
An example is Sortex (21.18.3) which sorts a list and returns the corresponding permutation of the
entries.

4.15.3 If

if bool-expr1 then statements1 { elif bool-expr2 then statements2 }[else

statements3] fi;

The if statement allows one to execute statements depending on the value of some boolean ex-
pression. The execution is done as follows.

First the expression bool-expr1 following the if is evaluated. If it evaluates to true the state-
ment sequence statements1 after the first then is executed, and the execution of the if statement is
complete.

Otherwise the expressions bool-expr2 following the elif are evaluated in turn. There may
be any number of elif parts, possibly none at all. As soon as an expression evaluates to true the
corresponding statement sequence statements2 is executed and execution of the if statement is
complete.

If the if expression and all, if any, elif expressions evaluate to false and there is an else

part, which is optional, its statement sequence statements3 is executed and the execution of the if

statement is complete. If there is no else part the if statement is complete without executing any
statement sequence.

Since the if statement is terminated by the fi keyword there is no question where an else part
belongs, i.e., GAP has no “dangling else”. In

if expr1 then if expr2 then stats1 else stats2 fi; fi;

the else part belongs to the second if statement, whereas in

if expr1 then if expr2 then stats1 fi; else stats2 fi;

the else part belongs to the first if statement.
Since an if statement is not an expression it is not possible to write

abs := if x > 0 then x; else -x; fi;

which would, even if legal syntax, be meaningless, since the if statement does not produce a value
that could be assigned to abs.

If one of the expressions bool-expr1 , bool-expr2 is evaluated and its value is neither true nor
false an error is signalled and a break loop (see 6.4) is entered. As usual you can leave the break loop
with quit;. If you enter return true;, execution of the if statement continues as if the expression
whose evaluation failed had evaluated to true. Likewise, if you enter return false;, execution of
the if statement continues as if the expression whose evaluation failed had evaluated to false.

Example
gap> i := 10;;

gap> if 0 < i then

> s := 1;

> elif i < 0 then

GAP - Reference Manual 70

> s := -1;

> else

> s := 0;

> fi;

gap> s; # the sign of i

1

4.15.4 While

while bool-expr do statements od;

The while loop executes the statement sequence statements while the condition bool-expr

evaluates to true.
First bool-expr is evaluated. If it evaluates to false execution of the while loop terminates

and the statement immediately following the while loop is executed next. Otherwise if it evaluates to
true the statements are executed and the whole process begins again.

The difference between the while loop and the repeat until loop (see 4.15.5) is that the
statements in the repeat until loop are executed at least once, while the statements in the
while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see 6.4)
is entered. As usual you can leave the break loop with quit;. If you enter return false;, execution
continues with the next statement immediately following the while loop. If you enter return true;,
execution continues at statements , after which the next evaluation of bool-expr may cause another
error.

The following example shows a while loop that sums up the squares 12,22, . . . until the sum
exceeds 200.

Example
gap> i := 0;; s := 0;;

gap> while s <= 200 do

> i := i + 1; s := s + i^2;

> od;

gap> s;

204

A while loop may be left prematurely using break, see 4.15.7.

4.15.5 Repeat

repeat statements until bool-expr;

The repeat loop executes the statement sequence statements until the condition bool-expr

evaluates to true.
First statements are executed. Then bool-expr is evaluated. If it evaluates to true the repeat

loop terminates and the statement immediately following the repeat loop is executed next. Otherwise
if it evaluates to false the whole process begins again with the execution of the statements .

The difference between the while loop (see 4.15.4) and the repeat until loop is that the
statements in the repeat until loop are executed at least once, while the statements in the
while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see
6.4) is entered. As usual you can leave the break loop with quit;. If you enter return true;,

GAP - Reference Manual 71

execution continues with the next statement immediately following the repeat loop. If you enter
return false;, execution continues at statements , after which the next evaluation of bool-expr
may cause another error.

The repeat loop in the following example has the same purpose as the while loop in the preced-
ing example, namely to sum up the squares 12,22, . . . until the sum exceeds 200.

Example
gap> i := 0;; s := 0;;

gap> repeat

> i := i + 1; s := s + i^2;

> until s > 200;

gap> s;

204

A repeat loop may be left prematurely using break, see 4.15.7.

4.15.6 For

for simple-var in list-expr do statements od;

The for loop executes the statement sequence statements for every element of the list
list-expr .

The statement sequence statements is first executed with simple-var bound to the first element
of the list list-expr , then with simple-var bound to the second element of list-expr and so on.
simple-var must be a simple variable, it must not be a list element selection list-var[int-expr]

or a record component selection record-var.ident .
The execution of the for loop over a list is exactly equivalent to the following while loop.

loop_list := list;

loop_index := 1;

while loop_index <= Length(loop_list) do

variable := loop_list[loop_index];

statements

loop_index := loop_index + 1;

od;

with the exception that “loop_list” and “loop_index” are different variables for each for loop, i.e.,
these variables of different for loops do not interfere with each other.

The list list-expr is very often a range (see 21.22).
for variable in [from..to] do statements od;

corresponds to the more common
for variable from from to to do statements od;

in other programming languages.
Example

gap> s := 0;;

gap> for i in [1..100] do

> s := s + i;

> od;

gap> s;

5050

GAP - Reference Manual 72

Note in the following example how the modification of the list in the loop body causes the loop
body also to be executed for the new values.

Example
gap> l := [1, 2, 3, 4, 5, 6];;

gap> for i in l do

> Print(i, " ");

> if i mod 2 = 0 then Add(l, 3 * i / 2); fi;

> od; Print("\n");

1 2 3 4 5 6 3 6 9 9

gap> l;

[1, 2, 3, 4, 5, 6, 3, 6, 9, 9]

Note in the following example that the modification of the variable that holds the list has no
influence on the loop.

Example
gap> l := [1, 2, 3, 4, 5, 6];;

gap> for i in l do

> Print(i, " ");

> l := [];

> od; Print("\n");

1 2 3 4 5 6

gap> l;

[]

for variable in iterator do statements od;

It is also possible to have a for-loop run over an iterator (see 30.8). In this case the for-loop is
equivalent to

while not IsDoneIterator(iterator) do

variable := NextIterator(iterator)

statements

od;

for variable in object do statements od;

Finally, if an object object which is not a list or an iterator appears in a for-loop, then GAP will
attempt to evaluate the function call Iterator(object). If this is successful then the loop is taken
to run over the iterator returned.

Example
gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));

Group([(1,2,3,4,5), (1,2)(3,4)(5,6)])

gap> count := 0;; sumord := 0;;

gap> for x in g do

> count := count + 1; sumord := sumord + Order(x); od;

gap> count;

120

gap> sumord;

471

GAP - Reference Manual 73

The effect of
for variable in domain do

should thus normally be the same as
for variable in AsList(domain) do

but may use much less storage, as the iterator may be more compact than a list of all the elements.
See 30.8 for details about iterators.
A for loop may be left prematurely using break, see 4.15.7. This combines especially well with

a loop over an iterator, as a way of searching through a domain for an element with some useful
property.

4.15.7 Break

break;

The statement break; causes an immediate exit from the innermost loop enclosing it.
Example

gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));

Group([(1,2,3,4,5), (1,2)(3,4)(5,6)])

gap> for x in g do

> if Order(x) = 3 then

> break;

> fi; od;

gap> x;

(1,5,2)(3,4,6)

It is an error to use this statement other than inside a loop.
Example

gap> break;

Syntax error: 'break' statement not enclosed in a loop

4.15.8 Continue

continue;

The statement continue; causes the rest of the current iteration of the innermost loop enclosing
it to be skipped.

Example
gap> g := Group((1,2,3),(1,2));

Group([(1,2,3), (1,2)])

gap> for x in g do

> if Order(x) = 3 then

> continue;

> fi; Print(x,"\n"); od;

()

(2,3)

(1,3)

(1,2)

It is an error to use this statement other than inside a loop.
Example

gap> continue;

Syntax error: 'continue' statement not enclosed in a loop

GAP - Reference Manual 74

4.15.9 Return (With or without Value)

return;

In this form return terminates the call of the innermost function that is currently executing, and
control returns to the calling function. An error is signalled if no function is currently executing. No
value is returned by the function.

return expr;

In this form return terminates the call of the innermost function that is currently executing, and
returns the value of the expression expr . Control returns to the calling function. An error is signalled
if no function is currently executing.

Both statements can also be used in break loops (see 6.4). return; has the effect that the com-
putation continues where it was interrupted by an error or the user hitting CTRL-C. return expr;

can be used to continue execution after an error. What happens with the value expr depends on the
particular error.

For examples of return statements, see the functions fib and Stack in Section 4.11.

4.16 Syntax Trees

This section describes the tools available to handle GAP syntax trees.

4.16.1 SyntaxTree

▷ SyntaxTree(f) (function)

Takes a GAP function f and returns its syntax tree.

Chapter 5

Functions

The section 4.11 describes how to define a function. In this chapter we describe functions that give in-
formation about functions, and various utility functions used either when defining functions or calling
functions.

5.1 Information about a function

5.1.1 NameFunction

▷ NameFunction(func) (attribute)

returns the name of a function. For operations, this is the name used in their declaration. For
functions, this is the variable name they were first assigned to. (For some internal functions, this
might be a name different from the name that is documented.) If no such name exists, the string
"unknown" is returned.

Example
gap> NameFunction(SylowSubgroup);

"SylowSubgroup"

gap> Blubberflutsch:=x->x;;

gap> HasNameFunction(Blubberflutsch);

true

gap> NameFunction(Blubberflutsch);

"Blubberflutsch"

gap> a:=Blubberflutsch;;

gap> NameFunction(a);

"Blubberflutsch"

gap> SetNameFunction(a, "f");

gap> NameFunction(a);

"f"

gap> HasNameFunction(x->x);

false

gap> NameFunction(x->x);

"unknown"

75

GAP - Reference Manual 76

5.1.2 NumberArgumentsFunction

▷ NumberArgumentsFunction(func) (operation)

returns the number of arguments the function func accepts. -1 is returned for all operations. For
functions that use ... or arg to take a variable number of arguments, the number returned is -1 times
the total number of parameters. For attributes, 1 is returned.

Example
gap> NumberArgumentsFunction(function(a,b,c,d,e,f,g,h,i,j,k)return 1;end);

11

gap> NumberArgumentsFunction(Size);

1

gap> NumberArgumentsFunction(IsCollsCollsElms);

3

gap> NumberArgumentsFunction(Sum);

-1

gap> NumberArgumentsFunction(function(a, x...) return 1; end);

-2

5.1.3 NamesLocalVariablesFunction

▷ NamesLocalVariablesFunction(func) (operation)

returns a mutable list of strings; the first entries are the names of the arguments of the function
func , in the same order as they were entered in the definition of func , and the remaining ones are the
local variables as given in the local statement in func . (The number of arguments can be computed
with NumberArgumentsFunction (5.1.2).)

Example
gap> NamesLocalVariablesFunction(function(a, b) local c; return 1; end);

["a", "b", "c"]

gap> NamesLocalVariablesFunction(function(arg) local a; return 1; end);

["arg", "a"]

gap> NamesLocalVariablesFunction(Size);

fail

5.1.4 FilenameFunc

▷ FilenameFunc(func) (function)

For a function func , FilenameFunc returns either fail or the absolute path of the file from which
func has been read. The return value fail occurs if func is a compiled function or an operation. For
functions that have been entered interactively, the string "*stdin*" is returned, see Section 9.5.

Example
gap> FilenameFunc(LEN_LIST); # a kernel function

fail

gap> FilenameFunc(Size); # an operation

fail

gap> FilenameFunc(x -> x^2); # an interactively entered function

"*stdin*"

GAP - Reference Manual 77

gap> meth:= ApplicableMethod(Size, [Group(())]);;

gap> FilenameFunc(meth);

"... some path .../grpperm.gi"

5.1.5 StartlineFunc

▷ StartlineFunc(func) (function)

▷ EndlineFunc(func) (function)

Let func be a function. If FilenameFunc (5.1.4) returns fail for func then also
StartlineFunc returns fail. If FilenameFunc (5.1.4) returns a filename for func then
StartlineFunc returns the line number in this file where the definition of func starts.

EndlineFunc behaves similarly and returns the line number in this file where the definition of
func ends.

Example
gap> meth:= ApplicableMethod(Size, [Group(())]);;

gap> FilenameFunc(meth);

"... some path ... /lib/grpperm.gi"

gap> StartlineFunc(meth);

487

gap> EndlineFunc(meth);

487

5.1.6 LocationFunc

▷ LocationFunc(func) (function)

Let func be a function. Returns a string describing the location of func , or fail if the in-
formation cannot be found. This uses the information provided by FilenameFunc (5.1.4) and
StartlineFunc (5.1.5)

Example
gap> LocationFunc(Intersection);

"... some path ... gap/lib/coll.gi:2467"

String is an attribute, so no information is stored

gap> LocationFunc(String);

fail

5.1.7 PageSource

▷ PageSource(func[, nr]) (function)

This shows the file containing the source code of the function or method func in a pager (see
Pager (2.4.1)). The display starts at a line shortly before the code of func .

For operations func the function shows the source code of the declaration of func . Operations
can have several declarations, use the optional second argument to specify which one should be shown
(in the order the declarations were read); the default is to show the first.

For kernel functions the function tries to show the C source code.
If GAP cannot find a file containing the source code this will be indicated.

GAP - Reference Manual 78

Usage examples:
met := ApplicableMethod(\^, [(1,2),2743527]); PageSource(met);

PageSource(Combinations);

PageSource(SORT_LIST);

PageSource(Size, 2);

ct := CharacterTable(Group((1,2,3)));

met := ApplicableMethod(Size,[ct]); PageSource(met);

5.2 Calling a function with a list argument that is interpreted as several
arguments

5.2.1 CallFuncList

▷ CallFuncList(func, args) (operation)

▷ CallFuncListWrap(func, args) (operation)

returns the result, when calling function func with the arguments given in the list args , i.e. args
is “unwrapped” so that args appears as several arguments to func .

Example
gap> CallFuncList(\+, [6, 7]);

13

gap> #is equivalent to:

gap> \+(6, 7);

13

A more useful application of CallFuncList is for a function g that is called in the body of a
function f with (a sublist of) the arguments of f, where f has been defined with a single formal
argument arg (see 4.11), as in the following code fragment.

Example
f := function (arg)

CallFuncList(g, arg);

...

end;

In the body of f the several arguments passed to f become a list arg. If g were called instead via
g(arg) then g would see a single list argument, so that g would, in general, have to “unwrap” the
passed list. The following (not particularly useful) example demonstrates both described possibilities
for the call to g.

Example
gap> PrintNumberFromDigits := function (arg)

> CallFuncList(Print, arg);

> Print("\n");

> end;

function(arg...) ... end

gap> PrintNumberFromDigits(1, 9, 7, 3, 2);

19732

gap> PrintDigits := function (arg)

> Print(arg);

GAP - Reference Manual 79

> Print("\n");

> end;

function(arg...) ... end

gap> PrintDigits(1, 9, 7, 3, 2);

[1, 9, 7, 3, 2]

CallFuncListWrap differs only in that the result is a list. This returned list is empty if the called
function returned no value, else it contains the returned value as its single member. This allows
wrapping functions which may, or may not return a value.

Example
gap> CallFuncListWrap(x -> x, [1]);

[1]

gap> CallFuncListWrap(function(x) end, [1]);

[]

5.3 Wrapping a function, so the values produced are cached

5.3.1 MemoizePosIntFunction

▷ MemoizePosIntFunction(function[, options]) (function)

MemoizePosIntFunction returns a function which behaves the same as function , except it
caches the results for any inputs that are positive integers. Thus if the new function is called mul-
tiple times with the same input, then any call after the first will return the cached value, instead of
recomputing it. By default, the cache can be flushed by calling FlushCaches (79.10.4).

The returned function will by default only accept positive integers.
This function does not promise to never call function more than once for any input -- values

may be removed if the cache gets too large, or if FlushCaches (79.10.4) is called, or if multiple
threads try to calculate the same value simultaneously.

The optional second argument is a record which provides a number of configuration options. The
following options are supported.

defaults (default an empty list)
Used to initialise the cache, both initially and after each flush. If defaults[i] is bound, then
this is used as default value for the input i.

flush (default true)
If this is true, the cache is emptied whenever FlushCaches (79.10.4) is called; if false, then
the cache cannot be flushed.

errorHandler (defaults to Error (6.6.1))
A function to be called when an input which is not a positive integer is passed to the cache. The
function can either raise an error, or else return a value which is then returned by the cache.
Note that such a value does not get cached itself.

Example
gap> f := MemoizePosIntFunction(

> function(i) Print("Check: ",i,"\n"); return i*i; end,

> rec(defaults := [,,50], errorHandler := x -> "Bad"));;

GAP - Reference Manual 80

gap> f(2);

Check: 2

4

gap> f(2);

4

gap> f(3);

50

gap> f(-3);

"Bad"

gap> FlushCaches();

gap> f(2);

Check: 2

4

gap> f(3);

50

5.4 Functions that do nothing

The following functions return fixed results (or just their own argument). They can be useful in places
when the syntax requires a function, but actually no functionality is required. So ReturnTrue (5.4.1)
is often used as family predicate in InstallMethod (78.3.1).

5.4.1 ReturnTrue

▷ ReturnTrue(...) (function)

This function takes any number of arguments, and always returns true.
Example

gap> f:=ReturnTrue;

function(arg...) ... end

gap> f();

true

gap> f(42);

true

5.4.2 ReturnFalse

▷ ReturnFalse(...) (function)

This function takes any number of arguments, and always returns false.
Example

gap> f:=ReturnFalse;

function(arg...) ... end

gap> f();

false

gap> f("any_string");

false

GAP - Reference Manual 81

5.4.3 ReturnFail

▷ ReturnFail(...) (function)

This function takes any number of arguments, and always returns fail.
Example

gap> oops:=ReturnFail;

function(arg...) ... end

gap> oops();

fail

gap> oops(-42);

fail

5.4.4 ReturnNothing

▷ ReturnNothing(...) (function)

This function takes any number of arguments, and always returns nothing.
Example

gap> n:=ReturnNothing;

function(object...) ... end

gap> n();

gap> n(-42);

5.4.5 ReturnFirst

▷ ReturnFirst(...) (function)

This function takes one or more arguments, and always returns the first argument. IdFunc (5.4.6)
behaves similarly, but only accepts a single argument.

Example
gap> f:=ReturnFirst;

function(first, rest...) ... end

gap> f(1);

1

gap> f(2,3,4);

2

gap> f();

Error, Function: number of arguments must be at least 1 (not 0)

5.4.6 IdFunc

▷ IdFunc(obj) (function)

returns obj . ReturnFirst (5.4.5) is similar, but accepts one or more arguments, returning only
the first.

GAP - Reference Manual 82

Example
gap> id:=IdFunc;

function(object) ... end

gap> id(42);

42

gap> f:=id(SymmetricGroup(3));

Sym([1 .. 3])

gap> s:=One(AutomorphismGroup(SymmetricGroup(3)));

IdentityMapping(Sym([1 .. 3]))

gap> f=s;

false

5.5 Function Types

Functions are GAP objects and thus have categories and a family.

5.5.1 IsFunction

▷ IsFunction(obj) (Category)

is the category of functions.
Example

gap> IsFunction(x->x^2);

true

gap> IsFunction(Factorial);

true

gap> f:=One(AutomorphismGroup(SymmetricGroup(3)));

IdentityMapping(Sym([1 .. 3]))

gap> IsFunction(f);

false

5.5.2 FunctionsFamily

▷ FunctionsFamily (family)

is the family of all functions.

5.6 Naming Conventions

The way functions are named in GAP might help to memorize or even guess names of library func-
tions.

If a variable name consists of several words then the first letter of each word is capitalized.
If the first part of the name of a function is a verb then the function may modify its argument(s) but

does not return anything, for example Append (21.4.5) appends the list given as second argument to the
list given as first argument. Otherwise the function returns an object without changing the arguments,
for example Concatenation (21.20.1) returns the concatenation of the lists given as arguments.

GAP - Reference Manual 83

If the name of a function contains the word “Of” then the return value is thought of as informa-
tion deduced from the arguments. Usually such functions are attributes (see 13.5). Examples are
GeneratorsOfGroup (39.2.4), which returns a list of generators for the group entered as argument,
or DiagonalOfMat (24.12.1).

For the setter and tester functions of an attribute Attr the names SetAttr resp. HasAttr are
available (see 13.5).

If the name of a function contains the word “By” then the return value is thought of as
built in a certain way from the parts given as arguments. For example, creating a group
as a factor group of a given group by a normal subgroup can be done by taking the image
of NaturalHomomorphismByNormalSubgroup (39.18.1). Other examples of “By” functions are
GroupHomomorphismByImages (40.1.1) and LaurentPolynomialByCoefficients (66.13.1).

Often such functions construct an algebraic structure given by its generators (for exam-
ple, RingByGenerators (56.1.4)). In some cases, “By” may be replaced by “With” (like e.g.
GroupWithGenerators (39.2.3)) or even both versions of the name may be used. The difference
between StructByGenerators and StructWithGenerators is that the latter guarantees that the
GeneratorsOfStruct value of the result is equal to the given set of generators (see 31.3).

If the name of a function has the form “AsSomething” then the return value is an object (usually
a collection which has the same family of elements), which may, for example:

• know more about its own structure (and so support more operations) than its input (e.g. if the
elements of the collection form a group, then this group can be constructed using AsGroup

(39.2.5));

• discard its additional structure (e.g. AsList (30.3.8) applied to a group will return a list of its
elements);

• contain all elements of the original object without duplicates (like e.g. AsSet (30.3.10) does if
its argument is a list of elements from the same family);

• remain unchanged (like e.g. AsSemigroup (51.1.6) does if its argument is a group).

If Something and the argument of AsSomething are domains, some further rules apply as explained
in Tutorial: Changing the Structure.

If the name of a function fun1 ends with “NC” then there is another function fun2 with the same
name except that the NC is missing. NC stands for “no check”. When fun2 is called then it checks
whether its arguments are valid, and if so then it calls fun1. The functions SubgroupNC (39.3.1) and
Subgroup (39.3.1) are a typical example.

The idea is that the possibly time consuming check of the arguments can be omitted if one is sure
that they are unnecessary. For example, if an algorithm produces generators of the derived subgroup
of a group then it is guaranteed that they lie in the original group; Subgroup (39.3.1) would check
this, and SubgroupNC (39.3.1) omits the check.

Needless to say, all these rules are not followed slavishly, for example there is one operation Zero

(31.10.3) instead of two operations ZeroOfElement and ZeroOfAdditiveGroup.

5.7 Code annotations (pragmas)

GAP supports the use of code annotations (pragmas) in functions, i.e., adding comments to func-
tions that are stored in the function object itself, unlike regular comments. Pragmas are single-line
comments, starting with #%:

GAP - Reference Manual 84

Example
gap> function()

> #% This is a pragma

> # This is not a pragma

> return;

> end;;

gap> Display(last);

function ()

#% This is a pragma

return;

end

Pragmas can be used to mark parts of functions that should later be manipulated using 4.16.
Please note that heavy use of pragmas in functions slows down the execution of your function in

the same way as adding empty ; statements to your code.
Example

gap> a := function()

> local i;

> for i in [1 .. 1000000] do

> i := i + 1;

> od;

> end;

function() ... end

gap> a();

gap> time;

14

gap> b := function()

> local i;

> for i in [1 .. 1000000] do

> i := i + 1;

> #% pragma

> #% pragma

> #% pragma

> #% pragma

> #% pragma

> od;

> end;

function() ... end

gap> b();

gap> time;

25

Chapter 6

Main Loop and Break Loop

This chapter is a first of a series of chapters that describe the interactive environment in which you use
GAP.

6.1 Main Loop

The normal interaction with GAP happens in the so-called read-eval-print loop. This means that
you type an input, GAP first reads it, evaluates it, and then shows the result. Note that the term print
may be confusing since there is a GAP function called Print (6.3.4) (see 6.3) which is in fact not
used in the read-eval-print loop, but traditions are hard to break. In the following, whenever we want
to express that GAP places some characters on the standard output, we will say that GAP shows
something.

The exact sequence in the read-eval-print loop is as follows.
To signal that it is ready to accept your input, GAP shows the prompt gap>. When you see this,

you know that GAP is waiting for your input.
Note that every statement must be terminated by a semicolon. You must also enter RETURN (i.e.,

strike the RETURN key) before GAP starts to read and evaluate your input. (The RETURN key may
actually be marked with the word ENTER and a returning arrow on your terminal.) Because GAP
does not do anything until you enter RETURN, you can edit your input to fix typos and only when
everything is correct enter RETURN and have GAP take a look at it (see 6.8). It is also possible to
enter several statements as input on a single line. Of course each statement must be terminated by a
semicolon.

It is absolutely acceptable to enter a single statement on several lines. When you have entered
the beginning of a statement, but the statement is not yet complete, and you enter RETURN, GAP
will show the partial prompt >. When you see this, you know that GAP is waiting for the rest of the
statement. This happens also when you forget the semicolon ; that terminates every GAP statement.
Note that when RETURN has been entered and the current statement is not yet complete, GAP will
already evaluate those parts of the input that are complete, for example function calls that appear as
arguments in another function call which needs several input lines. So it may happen that one has to
wait some time for the partial prompt.

When you enter RETURN, GAP first checks your input to see if it is syntactically correct (see
Chapter 4 for the definition of syntactically correct). If it is not, GAP prints an error message of the
following form

85

GAP - Reference Manual 86

Example
gap> 1 * ;

Syntax error: Expression expected

1 * ;

^

The first line tells you what is wrong about the input, in this case the * operator takes two ex-
pressions as operands, so obviously the right one is missing. If the input came from a file (see Read

(9.7.1)), this line will also contain the filename and the line number. The second line is a copy of the
input. And the third line contains a caret pointing to the place in the previous line where GAP realized
that something is wrong. This need not be the exact place where the error is, but it is usually quite
close.

Sometimes, you will also see a partial prompt after you have entered an input that is syntactically
incorrect. This is because GAP is so confused by your input, that it thinks that there is still something
to follow. In this case you should enter ;RETURN repeatedly, ignoring further error messages, until
you see the full prompt again. When you see the full prompt, you know that GAP forgave you and is
now ready to accept your next –hopefully correct– input.

If your input is syntactically correct, GAP evaluates or executes it, i.e., performs the required
computations (see Chapter 4 for the definition of the evaluation).

If you do not see a prompt, you know that GAP is still working on your last input. Of course, you
can type ahead, i.e., already start entering new input, but it will not be accepted by GAP until GAP
has completed the ongoing computation.

When GAP is ready it will usually show the result of the computation, i.e., the value computed.
Note that not all statements produce a value, for example, if you enter a for loop, nothing will be
printed, because the for loop does not produce a value that could be shown.

Also sometimes you do not want to see the result. For example if you have computed a value and
now want to assign the result to a variable, you probably do not want to see the value again. You can
terminate statements by two semicolons to suppress showing the result.

If you have entered several statements on a single line GAP will first read, evaluate, and show the
first one, then read, evaluate, and show the second one, and so on. This means that the second statement
will not even be checked for syntactical correctness until GAP has completed the first computation.

After the result has been shown GAP will display another prompt, and wait for your next input.
And the whole process starts all over again. Note that if you have entered several statements on a
single line, a new prompt will only be printed after GAP has read, evaluated, and shown the last
statement.

In each statement that you enter, the result of the previous statement that produced a value is
available in the variable last. The next to previous result is available in last2 and the result produced
before that is available in last3.

Example
gap> 1;2;3;

1

2

3

gap> last3 + last2 * last;

7

Also in each statement the time spent by the last statement, whether it produced a value or
not, is available in the variable time (7.6.4). This is an integer that holds the number of mil-

GAP - Reference Manual 87

liseconds. Similarly the amount of memory allocated during that statement (in bytes) is stored
in the variable memory_allocated (7.7.2). The variables last, last2, last3, time (7.6.4) and
memory_allocated (7.7.2) are all write-protected.

6.2 Special Rules for Input Lines

The input for some GAP objects may not fit on one line, in particular big integers, long strings or
long identifiers. In these cases you can still type or paste them in long single lines. For nicer display
you can also specify the input on several lines. This is achieved by ending a line by a backslash or
by a backslash and a carriage return character, then continue the input on the beginning of the next
line. When reading this GAP will ignore such continuation backslashes, carriage return characters
and newline characters. GAP also prints long strings and integers this way.

Example
gap> n := 1234\

> 567890;

1234567890

gap> "This is a very long string that does not fit on a line \

> and is therefore continued on the next line.";

"This is a very long string that does not fit on a line and is therefo\

re continued on the next line."

gap> bla\

> bla := 5;; blabla;

5

There is a special rule about GAP prompts in input lines: In line editing mode (usual user input
and GAP started without -n) in lines starting with whitespace following gap> , > or brk> this
beginning part is removed. This rule is very convenient because it allows to cut and paste input from
other GAP sessions or manual examples easily into your current session.

6.3 View and Print

GAP has three different operations to display or print objects: Display (6.3.6), ViewObj (6.3.5) and
PrintObj (6.3.5), and these three have different purposes as follows. The first, Display (6.3.6),
should print the object to the standard output in a human-readable relatively complete and verbose
form. The second, ViewObj (6.3.5), should print the object to the standard output in a short and concise
form, it is used in the main read-eval-print loop to display the resulting object of a computation. The
third, PrintObj (6.3.5), should print the object to the standard output in a complete form which is
GAP-readable if at all possible, such that reading the output into GAP produces an object which is
equal to the original one.

All three operations have corresponding operations which do not print anything to standard out-
put but return the output as a string. These are DisplayString (27.7.1), ViewString (27.7.3) and
PrintString (27.7.5) (corresponding to PrintObj (6.3.5)). Additionally, there is String (27.7.6)
which is very similar to PrintString (27.7.5) but does not insert control characters for line breaks.

For implementation convenience it is allowed that some of these operations have methods which
delegate to some other of these operations. However, the rules for this are that a method may only
delegate to another operation which appears further down in the following table:

GAP - Reference Manual 88

Display (6.3.6)
ViewObj (6.3.5)
PrintObj (6.3.5)

DisplayString (27.7.1)
ViewString (27.7.3)
PrintString (27.7.5)

String (27.7.6)

This is to avoid circular delegations.
Note in particular that none of the methods of the string producing operations may delegate to the

corresponding printing operations. Note also that the above mentioned purposes of the different oper-
ations suggest that delegations between different operations will be sub-optimal in most scenarios.

6.3.1 Default delegations in the library

The library contains the following low ranked default methods:

• A method for DisplayString (27.7.1) which returns the constant value of the global variable
DEFAULTDISPLAYSTRING (27.7.2).

• A method for ViewString (27.7.3) which returns the constant value of the global variable
DEFAULTVIEWSTRING (27.7.4).

• A method for Display (6.3.6) which first calls DisplayString (27.7.1) and prints the result, if
it is a different object than DEFAULTDISPLAYSTRING (27.7.2). Otherwise the method delegates
to PrintObj (6.3.5).

• A method for ViewObj (6.3.5) which first calls ViewString (27.7.3) and prints the result, if
it is a different object than DEFAULTVIEWSTRING (27.7.4). Otherwise the method delegates to
PrintObj (6.3.5).

• A method for PrintObj (6.3.5) which prints the result of PrintString (27.7.5).

• A method for PrintString (27.7.5) which returns the result of String (27.7.6)

6.3.2 Recommendations for the implementation

This subsection describes what methods for printing and viewing one should implement for new GAP
objects.

One should at the very least install a String (27.7.6) method to allow printing. Using the standard
delegations this enables a limited form of viewing, displaying and printing.

If, for larger objects, nicer line breaks are needed, one should install a separate PrintString

(27.7.5) method which puts in positions for good line breaks using the control characters \< (ASCII
1) and \> (ASCII 2).

If, for even larger objects, output performance and memory usage matters, one should install a
separate PrintObj (6.3.5) method.

One should usually install a ViewString (27.7.3) method, unless the above String (27.7.6)
method is good enough for ViewObj (6.3.5) purposes. Performance and memory should never matter
here, so it is usually unnecessary to install a separate ViewObj (6.3.5) method.

GAP - Reference Manual 89

If the type of object calls for it one should install a DisplayString (27.7.1) method. This is the
case if a human readable verbose form is required.

If the performance and memory usage for Display (6.3.6) matters, one should install a separate
Display (6.3.6) method.

Note that if only a String (27.7.6) method is installed, then ViewObj (6.3.5) works and
ViewString (27.7.3) returns DEFAULTVIEWSTRING (27.7.4). Likewise, Display (6.3.6) works and
DisplayString (27.7.1) returns DEFAULTDISPLAYSTRING (27.7.2). If you want to avoid this then
install methods for these operations as well.

6.3.3 View

▷ View(obj1, obj2...) (function)

View shows the objects obj1 , obj2 ... etc. in a short form on the standard output by calling the
ViewObj (6.3.5) operation on each of them. View is called in the read-eval-print loop, thus the output
looks exactly like the representation of the objects shown by the main loop. Note that no space or
newline is printed between the objects.

6.3.4 Print

▷ Print(obj1, obj2, ...) (function)

Also Print shows the objects obj1 , obj2 ... etc. on the standard output. The difference compared
to View (6.3.3) is in general that the shown form is not required to be short, and that in many cases the
form shown by Print is GAP readable.

Example
gap> z:= Z(2);

Z(2)^0

gap> v:= [z, z, z, z, z, z, z];

[Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0]

gap> ConvertToVectorRep(v);; v;

<a GF2 vector of length 7>

gap> Print(v, "\n");

[Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0]

Another difference is that Print shows strings without the enclosing quotes, so Print can be used
to produce formatted text on the standard output (see also chapter 27). Some characters preceded by a
backslash, such as \n, are processed specially (see chapter 27.2). PrintTo (9.7.3) can be used to print
to a file.

Example
gap> for i in [1..5] do

> Print(i, " ", i^2, " ", i^3, "\n");

> od;

1 1 1

2 4 8

3 9 27

4 16 64

5 25 125

gap> g:= SmallGroup(12,5);

GAP - Reference Manual 90

<pc group of size 12 with 3 generators>

gap> Print(g, "\n");

Group([f1, f2, f3])

gap> View(g); Print("\n");

<pc group of size 12 with 3 generators>

6.3.5 ViewObj

▷ ViewObj(obj) (operation)

▷ PrintObj(obj) (operation)

The functions View (6.3.3) and Print (6.3.4) actually call the operations ViewObj and PrintObj,
respectively, for each argument. By installing special methods for these operations, it is possible to
achieve special printing behavior for certain objects (see chapter 78). The only exceptions are strings
(see Chapter 27), for which the default PrintObj and ViewObj methods as well as the function View

(6.3.3) print also the enclosing doublequotes, whereas Print (6.3.4) strips the doublequotes.
The default method for ViewObj is to call PrintObj. So it is sufficient to have a PrintObj method

for an object in order to View (6.3.3) it. If one wants to supply a “short form” for View (6.3.3), one
can install additionally a method for ViewObj.

6.3.6 Display

▷ Display(obj) (operation)

Displays the object obj in a nice, formatted way which is easy to read (but might be difficult for
machines to understand). The actual format used for this depends on the type of obj . Each method
should print a newline character as last character.

Example
gap> Display([[1, 2, 3], [4, 5, 6]] * Z(5));

2 4 1

3 . 2

One can assign a string to an object that Print (6.3.4) will use instead of the default used by
Print (6.3.4), via SetName (12.8.1). Also, Name (12.8.2) returns the string previously assigned to the
object for printing, via SetName (12.8.1). The following is an example in the context of domains.

Example
gap> g:= Group((1,2,3,4));

Group([(1,2,3,4)])

gap> SetName(g, "C4"); g;

C4

gap> Name(g);

"C4"

When setting up examples, in particular if for beginning users, it sometimes can be convenient
to hide the structure behind a printing name. For many objects, such as groups, this can be done
using SetName (12.8.1). If the objects however is represented internally, for example permutations
representing group elements, this function is not applicable. Instead the function SetNameObject

(6.3.7) can be used to interface with the display routines on a lower level.

GAP - Reference Manual 91

6.3.7 SetNameObject

▷ SetNameObject(o, s) (function)

SetNameObject sets the string s as display name for object o in an interactive session. When
applying View (6.3.3) to object o , for example in the system’s main loop, GAP will print the string s .
Calling SetNameObject for the same object o with s set to fail (20.2.1) deletes the special viewing
setup. Since use of this features potentially slows down the whole print process, this function should
be used sparingly.

Example
gap> SetNameObject(3,"three");

gap> Filtered([1..10],IsPrimeInt);

[2, three, 5, 7]

gap> SetNameObject(3,fail);

gap> Filtered([1..10],IsPrimeInt);

[2, 3, 5, 7]

6.4 Break Loops

When an error has occurred or when you interrupt GAP (usually by hitting CTRL-C) GAP enters a
break loop, that is in most respects like the main read eval print loop (see 6.1). That is, you can enter
statements, GAP reads them, evaluates them, and shows the result if any. However those evaluations
happen within the context in which the error occurred. So you can look at the arguments and local
variables of the functions that were active when the error happened and even change them. The prompt
is changed from gap> to brk> to indicate that you are in a break loop.

Example
gap> 1/0;

Rational operations: <divisor> must not be zero

not in any function

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can replace <divisor> via 'return <divisor>;' to continue

If errors occur within a break loop GAP enters another break loop at a deeper level. This is
indicated by a number appended to brk:

Example
brk> 1/0;

Rational operations: <divisor> must not be zero

not in any function

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can replace <divisor> via 'return <divisor>;' to continue

brk_02>

There are two ways to leave a break loop, see 6.4.1 and 6.4.2.

GAP - Reference Manual 92

6.4.1 quit from a break loop

The first way to leave a break loop is to quit the break loop. To do this you enter quit; or type the eof
(end of f ile) character, which is usually CTRL-D except when using the -e option (see Section 3.1).
Note that GAP code between quit; and the end of the input line is ignored.

Example
brk_02> quit;

brk>

In this case control returns to the break loop one level above or to the main loop, respectively. So
iterated break loops must be left iteratively. Note also that if you type quit; from a gap> prompt,
GAP will exit (see 6.7).

Note: If you leave a break loop with quit without completing a command it is possible (though
not very likely) that data structures will be corrupted or incomplete data have been stored in objects.
Therefore no guarantee can be given that calculations afterwards will return correct results! If you
have been using options quitting a break loop generally leaves the options stack with options you no
longer want. The function ResetOptionsStack (8.1.3) removes all options on the options stack, and
this is the sole intended purpose of this function.

6.4.2 return from a break loop

The other way to leave a break loop is to return from a break loop. To do this you type return; or
return obj;. If the break loop was entered because you interrupted GAP, then you can continue
by typing return;. If the break loop was entered due to an error, you may have to modify the value
of a variable before typing return; (see the example for IsDenseList (21.1.2)) or you may have to
return an object obj (by typing: return obj;) to continue the computation; in any case, the message
printed on entering the break loop will tell you which of these alternatives is possible. For example, if
the break loop was entered because a variable had no assigned value, the value to be returned is often
a value that this variable should have to continue the computation.

Example
brk> return 9; # we had tried to enter the divisor 9 but typed 0 ...

1/9

gap>

6.4.3 OnBreak

▷ OnBreak() (function)

By default, when a break loop is entered, GAP prints a trace of the innermost 5 commands cur-
rently being executed. This behaviour can be configured by changing the value of the global variable
OnBreak. When a break loop is entered, the value of OnBreak is checked. If it is a function, then it is
called with no arguments. By default, the value of OnBreak is Where (6.4.5).

Example
gap> OnBreak := function() Print("Hello\n"); end;

function() ... end

GAP - Reference Manual 93

Example
gap> Error("!\n");

Error, !

Hello

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can 'return;' to continue

brk> quit;

In cases where a break loop is entered during a function that was called with options (see Chap-
ter 8), a quit; will also cause the options stack to be reset and an Info-ed warning stating this is
emitted at InfoWarning (7.4.8) level 1 (see Chapter 7.4).

Note that for break loops entered by a call to Error (6.6.1), the lines after “Entering break

read-eval-print loop ...” and before the brk> prompt can also be customised, namely by re-
defining OnBreakMessage (6.4.4).

Also, note that one can achieve the effect of changing OnBreak locally. As mentioned above,
the default value of OnBreak is Where (6.4.5). Thus, a call to Error (6.6.1) generally gives a trace
back up to five levels of calling functions. Conceivably, we might like to have a function like Error

(6.6.1) that does not trace back without globally changing OnBreak. Such a function we might call
ErrorNoTraceBack and here is how we might define it. (Note ErrorNoTraceBack is not a GAP
function.)

Example
gap> ErrorNoTraceBack := function(arg) # arg is special variable that GAP

> # knows to treat as list of arg's

> local SavedOnBreak, ENTBOnBreak;

> SavedOnBreak := OnBreak; # save current value of OnBreak

>

> ENTBOnBreak := function() # our `local' OnBreak

> local s;

> for s in arg do

> Print(s);

> od;

> OnBreak := SavedOnBreak; # restore OnBreak afterwards

> end;

>

> OnBreak := ENTBOnBreak;

> Error();

> end;

function(arg...) ... end

Here is a somewhat trivial demonstration of the use of ErrorNoTraceBack.
Example

gap> ErrorNoTraceBack("Gidday!", " How's", " it", " going?\n");

Error, Gidday! How's it going?

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can 'return;' to continue

brk> quit;

Now we call Error (6.6.1) with the same arguments to show the difference.

GAP - Reference Manual 94

Example
gap> Error("Gidday!", " How's", " it", " going?\n");

Error, Gidday! How's it going?

Hello

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can 'return;' to continue

brk> quit;

Observe that the value of OnBreak before the ErrorNoTraceBack call was restored. However,
we had changed OnBreak from its default value; to restore OnBreak to its default value, we should do
the following.

Example
gap> OnBreak := Where;;

6.4.4 OnBreakMessage

▷ OnBreakMessage() (function)

When a break loop is entered by a call to Error (6.6.1) the message after the “Entering break

read-eval-print loop ...” line is produced by the function OnBreakMessage, which just like
OnBreak (6.4.3) is a user-configurable global variable that is a function with no arguments.

Example
gap> OnBreakMessage(); # By default, OnBreakMessage prints the following

you can 'quit;' to quit to outer loop, or

you can 'return;' to continue

Perhaps you are familiar with what’s possible in a break loop, and so don’t need to be reminded.
In this case, you might wish to do the following (the first line just makes it easy to restore the default
value later).

Example
gap> NormalOnBreakMessage := OnBreakMessage;; # save the default value

gap> OnBreakMessage := function() end; # do-nothing function

function() ... end

gap> OnBreakMessage();

gap> OnBreakMessage := NormalOnBreakMessage;; # reset

With OnBreak (6.4.3) still set away from its default value, calling Error (6.6.1) as we did above,
now produces:

Example
gap> Error("!\n");

Error, !

Hello

Entering break read-eval-print loop ...

brk> quit; # to get back to outer loop

GAP - Reference Manual 95

However, suppose you are writing a function which detects an error condition and
OnBreakMessage needs to be changed only locally, i.e., the instructions on how to recover from
the break loop need to be specific to that function. The same idea used to define ErrorNoTraceBack
(see OnBreak (6.4.3)) can be adapted to achieve this. The function CosetTableFromGensAndRels

(47.6.5) is an example in the GAP code where the idea is actually used.

6.4.5 Where

▷ Where(nr) (function)

▷ WhereWithVars(nr) (function)

shows the last nr commands on the execution stack during whose execution the error occurred. If
not given, nr defaults to 5. (Assume, for the following example, that after the last example OnBreak

(6.4.3) has been set back to its default value.). WhereWithVars acts the same as Where while also
showing the arguments and local variables of each function.

Example
gap> StabChain(SymmetricGroup(100)); # After this we typed ^C

user interrupt at

bpt := S.orbit[1];

called from

SiftedPermutation(S, (g * rep) ^ -1) called from

StabChainStrong(S.stabilizer, [sch], options); called from

StabChainStrong(S.stabilizer, [sch], options); called from

StabChainStrong(S, GeneratorsOfGroup(G), options); called from

StabChainOp(G, rec(

)) called from

...

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can 'return;' to continue

brk> Where(2);

called from

SiftedPermutation(S, (g * rep) ^ -1) called from

StabChainStrong(S.stabilizer, [sch], options); called from

...

Note that the variables displayed even in the first line of the Where list (after the called from

line) may be already one environment level higher and DownEnv (6.5.1) may be necessary to access
them.

At the moment this backtrace does not work from within compiled code (this includes the method
selection which by default is compiled into the kernel). If this creates problems for debugging, call
GAP with the -M option (see 3.1) to avoid loading compiled code.

(Function calls to Info (7.4.6) and methods installed for binary operations are handled in a special
way. In rare circumstances it is possible therefore that they do not show up in a Where log but the log
refers to the last proper function call that happened before.)

The command line option -T to GAP disables the break loop. This is mainly intended for testing
purposes and for special applications. If this option is given then errors simply cause GAP to return
to the main loop.

GAP - Reference Manual 96

6.5 Variable Access in a Break Loop

In a break loop access to variables of the current break level and higher levels is possible, but if the
same variable name is used for different objects or if a function calls itself recursively, of course only
the variable at the lowest level can be accessed.

6.5.1 DownEnv and UpEnv

▷ DownEnv(nr) (function)

▷ UpEnv(nr) (function)

DownEnv moves down nr steps in the environment and allows one to inspect variables on this
level; if nr is negative it steps up in the environment again; nr defaults to 1 if not given. UpEnv

acts similarly to DownEnv but in the reverse direction (the mnemonic rule to remember the difference
between DownEnv and UpEnv is the order in which commands on the execution stack are displayed by
Where (6.4.5)).

Example
gap> OnBreak := function() Where(0); end;; # eliminate back-tracing on

gap> # entry to break loop

gap> test:= function(n)

> if n > 3 then Error("!\n"); fi; test(n+1); end;;

gap> test(1);

Error, !

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can 'return;' to continue

brk> Where();

called from

test(n + 1); called from

test(n + 1); called from

test(n + 1); called from

<function>(<arguments>) called from read-eval-loop

brk> n;

4

brk> DownEnv();

brk> n;

3

brk> Where();

called from

test(n + 1); called from

test(n + 1); called from

<function>(<arguments>) called from read-eval-loop

brk> DownEnv(2);

brk> n;

1

brk> Where();

called from

<function>(<arguments>) called from read-eval-loop

brk> DownEnv(-2);

brk> n;

3

GAP - Reference Manual 97

brk> quit;

gap> OnBreak := Where;; # restore OnBreak to its default value

Note that the change of the environment caused by DownEnv only affects variable access in the
break loop. If you use return to continue a calculation GAP automatically jumps to the right envi-
ronment level again.

Note also that search for variables looks first in the chain of outer functions which enclosed the
definition of a currently executing function, before it looks at the chain of calling functions which led
to the current invocation of the function.

Example
gap> foo := function()

> local x; x := 1;

> return function() local y; y := x*x; Error("!!\n"); end;

> end;

function() ... end

gap> bar := foo();

function() ... end

gap> fun := function() local x; x := 3; bar(); end;

function() ... end

gap> fun();

Error, !!

called from

bar(); called from

<function>(<arguments>) called from read-eval-loop

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can 'return;' to continue

brk> x;

1

brk> DownEnv(1);

brk> x;

3

Here the x of foo which contained the definition of bar is found before that of fun which caused
its execution. Using DownEnv we can access the x from fun.

6.6 Error and ErrorCount

6.6.1 Error

▷ Error(messages, ...) (function)

Error signals an error from within a function. First the messages messages are printed, this
is done exactly as if Print (6.3.4) (see 6.3) were called with these arguments. Then a break loop
(see 6.4) is entered, unless the standard error output is not connected to a terminal. You can leave
this break loop with return; to continue execution with the statement following the call to Error.
ErrorNoReturn (6.6.2) operates identically to Error, except it does not allow using return; to
continue execution.

GAP - Reference Manual 98

6.6.2 ErrorNoReturn

▷ ErrorNoReturn(messages, ...) (function)

ErrorNoReturn signals an error from within a function. First the messages messages are printed,
this is done exactly as if Print (6.3.4) (see 6.3) were called with these arguments. Then a break loop
(see 6.4) is entered, unless the standard error output is not connected to a terminal. This break loop
can only be exited with quit;. The function differs from Error (6.6.1) by not allowing execution to
continue.

6.6.3 ErrorCount

▷ ErrorCount() (function)

ErrorCount returns a count of the number of errors (including user interruptions) which have
occurred in the GAP session so far. The count is incremented by each error, even if GAP was started
with the -T option to disable the break loop.

6.7 Leaving GAP

The normal way to terminate a GAP session is to enter either quit; (note the semicolon) or an
end-of-file character (usually CTRL-D) at the gap> prompt in the main read eval print loop.

6.7.1 QUIT

▷ QUIT (global variable)

An emergency way to leave GAP is to enter QUIT at any gap> or brk> or brk_nn> prompt.

6.7.2 GapExitCode

▷ GapExitCode([ret]) (function)

GapExitCode sets the exit value which is returned to the operating system (or parent process)
when GAP exits. This may be an integer in the range [-128..127] (other values are reduced modulo
256), or a boolean. true corresponds to the return value 0, which by convention is treated as "success".
false corresponds to the return value 1, which by convention is treated as "failure". The exit value is
not changed if no argument is given.

The previous exit code is returned.

6.7.3 QuitGap

▷ QuitGap([ret]) (function)

QuitGap acts similarly to the keyword QUIT, except QUIT cannot be called from a function. It exits
GAP cleanly, calling any function installed using InstallAtExit (6.7.5). The optional argument ret
will be passed to GapExitCode (6.7.2).

GAP - Reference Manual 99

6.7.4 ForceQuitGap

▷ ForceQuitGap([ret]) (function)

ForceQuitGap is similar to QuitGap (6.7.3), except it ignores any functions installed with
InstallAtExit (6.7.5), or any other functions normally run at GAP exit, such as flushing any par-
tially outputted lines to both the screen and files, and exits GAP immediately. The optional argument
ret will be passed to GapExitCode (6.7.2).

6.7.5 InstallAtExit

▷ InstallAtExit(func) (function)

▷ QUITTING (global variable)

Before actually terminating, GAP will call (with no arguments) all of the functions that have been
installed using InstallAtExit. These typically perform tasks such as cleaning up temporary files
created during the session, and closing open files. If an error occurs during the execution of one of
these functions, that function is simply abandoned, no break loop is entered.

Example
gap> InstallAtExit(function() Print("bye\n"); end);

gap> quit;

bye

During execution of these functions, the global variable QUITTING will be set to true if GAP is
exiting because the user typed QUIT and false otherwise. Since QUIT is considered as an emergency
measure, different action may be appropriate.

6.7.6 SaveOnExitFile

▷ SaveOnExitFile (global variable)

If, when GAP is exiting due to a quit or end-of-file (i.e. not due to a QUIT) the variable
SaveOnExitFile is bound to a string value, then the system will try to save the GAP workspace
to that file, see SaveWorkspace (3.3.1).

6.8 Line Editing

In most installations GAP will be compiled to use the Gnu readline library (see the line Libs used:

on GAP startup). In that case skip to the next section 6.9. (The line editing commands described in
the rest of this section were available in previous versions of GAP, they will work almost the same in
the standard configuration of the Gnu readline library.)

GAP allows one you to edit the current input line with a number of editing commands. Those com-
mands are accessible either as control keys or as escape keys. You enter a control key by pressing the
CTRL key, and, while still holding the CTRL key down, hitting another key key. You enter an escape
key by hitting ESC and then hitting another key key. Below we denote control keys by CTRL-key and
escape keys by ESC-key. The case of key does not matter, i.e., CTRL-A and CTRL-A are equivalent.

GAP - Reference Manual 100

Normally, line editing will be enabled if the input is connected to a terminal. Line editing can be
enabled or disabled using the command line options -f and -n respectively (see 3.1), however this is
a machine dependent feature of GAP.

Typing CTRL-KEY or ESC-KEY for characters not mentioned below always inserts CTRL-key

resp. ESC-key at the current cursor position.
The first few commands allow you to move the cursor on the current line.

CTRL-A
move the cursor to the beginning of the line.

ESC-B
move the cursor to the beginning of the previous word.

CTRL-B
move the cursor backward one character.

CTRL-F
move the cursor forward one character.

ESC-F
move the cursor to the end of the next word.

CTRL-E
move the cursor to the end of the line.

The next commands delete or kill text. The last killed text can be reinserted, possibly at a different
position, with the “yank” command CTRL-Y.

CTRL-H or del
delete the character left of the cursor.

CTRL-D
delete the character under the cursor.

CTRL-K
kill up to the end of the line.

ESC-D
kill forward to the end of the next word.

ESC-DEL
kill backward to the beginning of the last word.

CTRL-X
kill entire input line, and discard all pending input.

CTRL-Y
insert (yank) a just killed text.

The next commands allow you to change the input.

GAP - Reference Manual 101

CTRL-T
exchange (twiddle) current and previous character.

ESC-U
uppercase next word.

ESC-L
lowercase next word.

ESC-C
capitalize next word.

The TAB character, which is in fact the control key CTRL-I, looks at the characters before the
cursor, interprets them as the beginning of an identifier and tries to complete this identifier. If there is
more than one possible completion, it completes to the longest common prefix of all those completions.
If the characters to the left of the cursor are already the longest common prefix of all completions
hitting TAB a second time will display all possible completions.

TAB complete the identifier before the cursor.

The next commands allow you to fetch previous lines, e.g., to correct typos, etc.

CTRL-L
insert last input line before current character.

CTRL-P
redisplay the last input line, another CTRL-P will redisplay the line before that, etc. If the cursor
is not in the first column only the lines starting with the string to the left of the cursor are taken.

CTRL-N
Like CTRL-P but goes the other way round through the history.

ESC-<
goes to the beginning of the history.

ESC->
goes to the end of the history.

CTRL-O
accepts this line and perform a CTRL-N.

Finally there are a few miscellaneous commands.

CTRL-V
enter next character literally, i.e., enter it even if it is one of the control keys.

CTRL-U
execute the next line editing command 4 times.

ESC-num
execute the next line editing command num times.

GAP - Reference Manual 102

ESC-CTRL-L
redisplay input line.

The four arrow keys (cursor keys) can be used instead of CTRL-B, CTRL-F, CTRL-P, and
CTRL-N, respectively.

6.9 Editing using the readline library

The descriptions in this section are valid only if your GAP installation uses the readline library for
command line editing. You can check by IsBound(GAPInfo.UseReadline); if this is the case.

You can use all the features of readline, as for example explained in
https://tiswww.case.edu/php/chet/readline/rluserman.html. Therefore the com-
mand line editing in GAP is similar to the bash shell and many other programs. On a Unix/Linux
system you may also have a manpage, try man readline.

Compared to the command line editing which was used in GAP up to version 4.4 (or compared to
not using the readline library) using readline has several advantages:

• Most keys still do the same as explained in 6.8 (in the default configuration).

• There are many additional commands, e.g. undoing (CTRL-_, keyboard macros (CTRL-X(,
CTRL-X) and CTRL-XE), file name completion (hit ESC two or four times), showing matching
parentheses, vi-style key bindings, deleting and yanking text, ...

• Lines which are longer than a physical terminal row can be edited more conveniently.

• Arbitrary unicode characters can be typed into string literals.

• The key bindings can be configured, either via your ~/.inputrc file or by GAP commands,
see 6.9.1.

• The command line history can be saved to and read from a file, see 6.9.2.

• Adventurous users can even implement completely new command line editing functions on
GAP level, see 6.9.4.

6.9.1 Readline customization

You can use your readline init file (by default ~/.inputrc on Unix/Linux) to customize key bindings.
If you want settings be used only within GAP you can write them between lines containing $if GAP

and $endif. For a detailed documentation of the available settings and functions see here.
From readline init file

$if GAP

set blink-matching-paren on

"\C-x\C-o": dump-functions

"\ep": kill-region

$endif

Alternatively, from within GAP the command ReadlineInitLine(line); can be used, where line
is a string containing a line as in the init file.

https://tiswww.case.edu/php/chet/readline/rluserman.html
 https://tiswww.case.edu/php/chet/readline/rluserman.html

GAP - Reference Manual 103

Caveat: GAP overwrites the following keys (after reading the ~/.inputrc file): \C-g, \C-i,
\C-n, \C-o, \C-p, \C-r, \C-\, \e<, \e>, Up, Down, TAB, Space, PageUp, PageDown. So, do not
redefine these in your ~/.inputrc.

Note that after pressing CTRL-V the next special character is input verbatim. This is very
useful to bind keys or key sequences. For example, binding the function key F3 to the com-
mand kill-whole-line by using the sequence CTRL-V F3 looks on many terminals like this:
ReadlineInitLine("\"^[OR\":kill-whole-line");. (You can get the line back later with
CTRL-Y.)

The CTRL-G key can be used to type any unicode character by its code point. The number of the
character can either be given as a count, or if the count is one the input characters before the cursor
are taken (as decimal number or as hex number which starts with 0x. For example, the double stroke
character Z can be input by any of the three key sequences ESC 8484 CTRL-G, 8484 CTRL-G or
0X2124 CTRL-G.

Some terminals bind the CTRL-S and CTRL-Q keys to stop and restart terminal output. Further-
more, sometimes CTRL-\ quits a program. To disable this behaviour (and maybe use these keys for
command line editing) you can use Exec("stty stop undef; stty start undef; stty quit

undef"); in your GAP session or your gaprc file (see 3.2).

6.9.2 The command line history

GAP can save your input lines for later reuse. The keys CTRL-P (or UP), CTRL-N (or DOWN), ESC<
and ESC> work as documented in 6.8, that is they scroll backward and forward in the history or go
to its beginning or end. Also, CTRL-O works as documented, it is useful for repeating a sequence of
previous lines. (But CTRL-L clears the screen as in other programs.)

The command line history can be used across several instances of GAP via the following two
commands.

6.9.3 SaveCommandLineHistory

▷ SaveCommandLineHistory([fname][,] [app]) (function)

Returns: fail or number of saved lines
▷ ReadCommandLineHistory([fname][,] [app]) (function)

Returns: fail or number of added lines
The first command saves the lines in the command line history to the file given by the string

fname . The default for fname is history in the user’s GAP root path GAPInfo.UserGapRoot or
"~/.gap_hist" if this directory does not exist. If the optional argument app is true then the lines
are appended to that file otherwise the file is overwritten.

The second command is the converse, it reads the lines from file fname . If the optional argument
app is true the lines are appended to the history, else it prepends them.

By default, the command line history stores up to 1000 input lines. command line history. This
number may be restricted or enlarged via via SetUserPreference("HistoryMaxLines", num);

which may be set to a non negative number num to store up to num input lines or to infinity to
store arbitrarily many lines. An automatic storing and restoring of the command line history can be
configured via SetUserPreference("SaveAndRestoreHistory", true);.

Note that these functions are only available if your GAP is configured to use the readline library.

GAP - Reference Manual 104

6.9.4 Writing your own command line editing functions

It is possible to write new command line editing functions in GAP as follows.
The functions have one argument l which is a list with five entries of the form [count, key,

line, cursorpos, markpos] where count and key are the last pressed key and its count (these
are not so useful here because users probably do not want to overwrite the binding of a single key),
then line is a string containing the line typed so far, cursorpos is the current position of the cursor
(point), and markpos the current position of the mark.

The result of such a function must be a list which can have various forms:

[str]

with a string str. In this case the text str is inserted at the cursor position.

[kill, begin, end]

where kill is true or false and begin and end are positions on the input line. This removes
the text from the lower position to before the higher position. If kill is true the text is killed,
i.e. put in the kill ring for later yanking.

[begin, end, str]

where begin and end are positions on the input line and str is a string. Then the text from
position begin to before end is substituted by str.

[1, lstr]

where lstr is a list of strings. Then these strings are displayed like a list of possible comple-
tions. The input line is not changed.

[2, chars]

where chars is a string. The characters from chars are used as the next characters from the
input. (At most 512 characters are possible.)

[100]

This rings the bell as configured in the terminal.

In the first three cases the result list can contain a position as a further entry, this becomes the new
cursor position. Or it can contain two positions as further entries, these become the new cursor position
and the new position of the mark.

Such a function can be installed as a macro for readline via InstallReadlineMacro(name,

fun); where name is a string used as name of the macro and fun is a function as above. This macro
can be called by a key sequence which is returned by InvocationReadlineMacro(name);.

As an example we define a function which puts double quotes around the word under or before
the cursor position. The space character, the characters in "(,)", and the beginning and end of the
line are considered as word boundaries. The function is then installed as a macro and bound to the key
sequence ESC Q.

Example
gap> EditAddQuotes := function(l)

> local str, pos, i, j, new;

> str := l[3];

> pos := l[4];

> i := pos;

> while i > 1 and (not str[i-1] in ",(") do

GAP - Reference Manual 105

> i := i-1;

> od;

> j := pos;

> while IsBound(str[j]) and not str[j] in ",) " do

> j := j+1;

> od;

> new := "\"";

> Append(new, str{[i..j-1]});

> Append(new, "\"");

> return [i, j, new];

> end;;

gap> InstallReadlineMacro("addquotes", EditAddQuotes);

gap> invl := InvocationReadlineMacro("addquotes");;

gap> ReadlineInitLine(Concatenation("\"\\eQ\":\"",invl,"\""));;

6.10 Editing Files

In most cases, it is preferable to create longer input (in particular GAP programs) separately in an
editor, and to read in the result via Read (9.7.1). Note that Read (9.7.1) by default reads from the
directory in which GAP was started (respectively under Windows the directory containing the GAP
binary), so you might have to give an absolute path to the file.

If you cannot create several windows, the Edit (6.10.1) command may be used to leave GAP,
start an editor, and read in the edited file automatically.

6.10.1 Edit

▷ Edit(filename) (function)

Edit starts an editor with the file whose filename is given by the string filename , and reads the
file back into GAP when you exit the editor again.

GAP will call your preferred editor if you call SetUserPreference("Editor", path); where
path is the path to your editor, e.g., /usr/bin/vim. On Windows you can use edit.com.

Under macOS, you should use SetUserPreference("Editor", "open");, this will open the
file in the default editor. If you call SetUserPreference("EditorOptions", ["-t"]);, the file
will open in TextEdit, and SetUserPreference("EditorOptions", ["-a", "<appl>"]); will
open the file using the application <appl>.

This can for example be done in your gap.ini file, see Section 3.2.1.

6.11 Editor Support

In the etc subdirectory of the GAP installation we provide some setup files for the editor vim.
vim is a powerful editor that understands the basic vi commands but provides much more func-

tionality. You can find more information about it (and download it) from https://www.vim.org.
To get support for GAP syntax in vim, create in your home directory a directory .vim with subdi-

rectories .vim/syntax and .vim/indent (If you are not using Unix, refer to the vim documentation
on where to place syntax files). Then copy the file etc/vim/gap.vim to .vim/syntax/gap.vim and
the file etc/vim/gap_indent.vim to .vim/indent/gap.vim.

https://www.vim.org

GAP - Reference Manual 106

Then edit the .vimrc file in your home directory. Add lines as in the following example:
Example

if has("syntax")

syntax on " Default to no syntax highlighting

endif

" For GAP files

augroup gap

" Remove all gap autocommands

au!

autocmd BufRead,BufNewFile *.g,*.gi,*.gd set filetype=gap comments=s:##\ \ ,m:##\ \ ,e:##\ \ b:#

" I'm using the external program `par' for formatting comment lines starting

" with `## '. Include these lines only when you have par installed.

autocmd BufRead,BufNewFile *.g,*.gi,*.gd set formatprg="par w76p4s0j"

autocmd BufWritePost,FileWritePost *.g,*.gi,*.gd set formatprg="par w76p0s0j"

augroup END

See the headers of the two mentioned files for additional comments and adjust details according
to your personal taste. Send comments and suggestions to support@gap-system.org.

Users of emacs/xemacs may wish to take a look at the major-mode for editing GAP files by Ivan
Andrus.

6.12 Changing the Screen Size

6.12.1 SizeScreen

▷ SizeScreen([sz]) (function)

Called with no arguments, SizeScreen returns the size of the screen as a list with two entries.
The first is the length of each line, the second is the number of lines.

Called with one argument that is a list sz , SizeScreen sets the size of the screen; The first entry
of sz , if bound, is the length of each line, and the second entry of sz , if bound, is the number of lines.
The values for unbound entries of sz are left unaffected. The function returns the new values.

Note that those parameters can also be set with the command line options -x for the line length
and -y for the number of lines (see Section 3.1).

To check/change whether line breaking occurs for files and streams see PrintFormattingStatus
(10.4.8) and SetPrintFormattingStatus (10.4.8).

The line length must be between 20 and 4096 characters (inclusive) and the number of lines must
be at least 10. Values outside this range will be adjusted to the nearest endpoint of the range.

6.13 Teaching Mode

When using GAP in the context of (undergraduate) teaching it is often desirable to simplify some of
the system output and functionality defaults (potentially at the cost of making the printing of objects
more expensive). This can be achieved by turning on a teaching mode:

mailto://support@gap-system.org
https://melpa.org/#/gap-mode

GAP - Reference Manual 107

6.13.1 TeachingMode

▷ TeachingMode([switch]) (function)

When called with a boolean argument switch , this function will turn teaching mode respectively
on or off.

Example
gap> a:=Z(11)^3;

Z(11)^3

gap> TeachingMode(true);

#I Teaching mode is turned ON

gap> a;

ZmodnZObj(8,11)

gap> TeachingMode(false);

#I Teaching mode is turned OFF

gap> a;

Z(11)^3

At the moment, teaching mode changes the following things

Prime Field Elements
Elements of fields of prime order are printed as ZmodnZObj (14.5.3) instead as power of a
primitive root.

Quadratic Irrationalities
Elements of a quadratic extension of the rationals are printed using the square root ER (18.4.2)
instead of using roots of unity.

Creation of some small groups
The group creator functions CyclicGroup (50.1.2), AbelianGroup (50.1.3),
ElementaryAbelianGroup (50.1.4), and DihedralGroup (50.1.6) create by default (if
no other representation is specified) not a pc group, but a finitely presented group, which makes
the generators easier to interpret.

Chapter 7

Debugging and Profiling Facilities

This chapter describes some functions that are useful mainly for debugging and profiling purposes.
Probably the most important debugging tool in GAP is the break loop (see Section 6.4) which

can be entered by putting an Error (6.6.1) statement into your code or by hitting Control-C. In the
break loop one can inspect variables, stack traces and issue commands as usual in an interactive GAP
session. See also the DownEnv (6.5.1), UpEnv (6.5.1), Where (6.4.5) and WhereWithVars (6.4.5)
functions.

Sections 7.2 and 7.3 show how to get information about the methods chosen by the method selec-
tion mechanism (see chapter 78).

The final sections describe functions for collecting statistics about computations (see Runtime

(7.6.2), 7.8).

7.1 Recovery from NoMethodFound-Errors

When the method selection fails because there is no applicable method, an error as in the following
example occurs and a break loop is entered:

Example
gap> IsNormal(2,2);

Error, no method found! For debugging hints type ?Recovery from NoMethodFound

Error, no 1st choice method found for `IsNormal' on 2 arguments at GAPROOT/lib/methsel2.g:250 called from

<function "HANDLE_METHOD_NOT_FOUND">(<arguments>)

called from read-eval loop at *stdin*:1

type 'quit;' to quit to outer loop

brk>

This only says, that the method selection tried to find a method for IsNormal on two arguments
and failed. In this situation it is crucial to find out, why this happened. Therefore there are a few
functions which can display further information. Note that you can leave the break loop by the quit

command (see 6.4.1) and that the information about the incident is no longer accessible afterwards.

7.1.1 ShowArguments

▷ ShowArguments() (function)

108

GAP - Reference Manual 109

This function is only available within a break loop caused by a “No Method Found”-error. It prints
as a list the arguments of the operation call for which no method was found.

7.1.2 ShowArgument

▷ ShowArgument(nr) (function)

This function is only available within a break loop caused by a “No Method Found”-error. It
prints the nr-th arguments of the operation call for which no method was found. ShowArgument

needs exactly one argument which is an integer between 0 and the number of arguments the operation
was called with.

7.1.3 ShowDetails

▷ ShowDetails() (function)

This function is only available within a break loop caused by a “No Method Found”-error. It
prints the details of this error: The operation, the number of arguments, a flag which indicates whether
the operation is being traced, a flag which indicates whether the operation is a constructor method,
and the number of methods that refused to apply by calling TryNextMethod (78.5.1). The last num-
ber is called Choice and is printed as an ordinal. So if exactly k methods were found but called
TryNextMethod (78.5.1) and there were no more methods it says Choice: kth.

7.1.4 ShowMethods

▷ ShowMethods([verbosity]) (function)

This function is only available within a break loop caused by a “No Method Found”-error. It
prints an overview about the installed methods for those arguments the operation was called with
(using 7.2. The verbosity can be controlled by the optional integer parameter verbosity . The default
is 2, which lists all applicable methods. With verbosity 1 ShowMethods only shows the number of
installed methods and the methods matching, which can only be those that were already called but
refused to work by calling TryNextMethod (78.5.1). With verbosity 3 not only all installed methods
but also the reasons why they do not match are displayed.

7.1.5 ShowOtherMethods

▷ ShowOtherMethods([verbosity]) (function)

This function is only available within a break loop caused by a “No Method Found”-error. It
prints an overview about the installed methods for a different number of arguments than the number
of arguments the operation was called with (using 7.2. The verbosity can be controlled by the optional
integer parameter verbosity . The default is 1 which lists only the number of applicable methods.
With verbosity 2 ShowOtherMethods lists all installed methods and with verbosity 3 also the reasons,
why they are not applicable. Calling ShowOtherMethods with verbosity 3 in this function will nor-
mally not make any sense, because the different numbers of arguments are simulated by supplying the
corresponding number of ones, for which normally no reasonable methods will be installed.

GAP - Reference Manual 110

7.2 Inspecting Applicable Methods

7.2.1 ApplicableMethod

▷ ApplicableMethod(opr, args[, printlevel[, nr]]) (function)

▷ ApplicableMethodTypes(opr, args[, printlevel[, nr]]) (function)

Called with two arguments, ApplicableMethod returns the method of highest rank that is appli-
cable for the operation opr with the arguments in the list args . The default printlevel is 0. If no
method is applicable then fail is returned.

If a positive integer is given as the fourth argument nr then ApplicableMethod returns the nr-th
applicable method for the operation opr with the arguments in the list args , where the methods are
ordered according to descending rank. If less than nr methods are applicable then fail is returned.

If the fourth argument nr is the string "all" then ApplicableMethod returns a list of all appli-
cable methods for opr with arguments args , ordered according to descending rank.

Depending on the integer value printlevel , additional information is printed. Admissible values
and their meaning are as follows.

0 no information,

1 information about the applicable method,

2 also information about the not applicable methods of higher rank,

3 also for each not applicable method the first reason why it is not applicable,

4 also for each not applicable method all reasons why it is not applicable.

6 also the function body of the selected method(s)

When a method returned by ApplicableMethod is called then it returns either the desired result
or the string "TRY_NEXT_METHOD", which corresponds to a call to TryNextMethod (78.5.1) in the
method and means that the method selection would call the next applicable method.

Note: The GAP kernel provides special treatment for the infix operations \+, \-, *, \/, \^, \mod
and \in. For some kernel objects (notably cyclotomic numbers, finite field elements and row vectors
thereof) it calls kernel methods circumventing the method selection mechanism. Therefore for these
operations ApplicableMethod may return a method which is not the kernel method actually used.

The function ApplicableMethodTypes takes the types or filters of the arguments as argument (if
only filters are given of course family predicates cannot be tested).

7.3 Tracing Methods

7.3.1 TraceMethods (for operations)

▷ TraceMethods(opr1, opr2, ...) (function)

▷ TraceMethods(oprs) (function)

After the call of TraceMethods, whenever a method of one of the operations opr1 , opr2 , ... is
called, the information string used in the installation of the method is printed. The second form has
the same effect for each operation from the list oprs of operations.

GAP - Reference Manual 111

7.3.2 TraceAllMethods

▷ TraceAllMethods() (function)

Invokes TraceMethods for all operations.

7.3.3 UntraceMethods (for operations)

▷ UntraceMethods(opr1, opr2, ...) (function)

▷ UntraceMethods(oprs) (function)

turns the tracing off for all operations opr1 , opr2 , ... or in the second form, for all operations in
the list oprs .

Example
gap> TraceMethods([Size]);

gap> g:= Group((1,2,3), (1,2));;

gap> Size(g);

#I Size: for a permutation group at /gap5/lib/grpperm.gi:487

#I Setter(Size): system setter

#I Size: system getter

#I Size: system getter

6

gap> UntraceMethods([Size]);

7.3.4 UntraceAllMethods

▷ UntraceAllMethods() (function)

Equivalent to calling UntraceMethods for all operations.

7.3.5 TraceImmediateMethods

▷ TraceImmediateMethods([flag]) (function)

▷ UntraceImmediateMethods() (function)

TraceImmediateMethods enables tracing for all immediate methods if flag is either true, or
not present. UntraceImmediateMethods, or TraceImmediateMethods with flag equal false
turns tracing off. (There is no facility to trace specific immediate methods.)

Example
gap> TraceImmediateMethods();

gap> g:= Group((1,2,3), (1,2));;

#I RunImmediateMethods

#I immediate: Size

#I immediate: IsCyclic

#I immediate: IsCommutative

#I immediate: IsTrivial

gap> Size(g);

#I immediate: IsPerfectGroup

#I immediate: IsNonTrivial

#I immediate: Size

GAP - Reference Manual 112

#I immediate: IsFreeAbelian

#I immediate: IsTorsionFree

#I immediate: IsNonTrivial

#I immediate: IsPerfectGroup

#I immediate: GeneralizedPcgs

#I immediate: IsEmpty

6

gap> UntraceImmediateMethods();

gap> UntraceMethods([Size]);

This example gives an explanation for the two calls of the “system getter” for Size (30.4.6).
Namely, there are immediate methods that access the known size of the group. Note that the group
g was known to be finitely generated already before the size was computed, the calls of the imme-
diate method for IsFinitelyGeneratedGroup (39.15.18) after the call of Size (30.4.6) have other
arguments than g.

7.3.6 TraceInternalMethods

▷ TraceInternalMethods() (function)

▷ UntraceInternalMethods() (function)

▷ GetTraceInternalMethodsCounts() (function)

▷ ClearTraceInternalMethodsCounts() (function)

TraceInternalMethods enables tracing for all internal methods. Internal methods are methods
which implement many fundamental operations in GAP. In this version of GAP, the internal methods
which can be traced are:

Zero, ZeroMut
Mutable and Immutable Zero (31.10.3)

AInv, AInvMut
Mutable and Immutable AdditiveInverse (31.10.9)

One, OneMut
Mutable and Immutable One (31.10.2)

Inv, InvMut
Mutable and Immutable Inverse (31.10.8)

Sum The operator \+ (31.12.1)

Diff The operator - operator

Prod
The operator * (31.12.1)

Quo The operator \/ (31.12.1)

LQuo
The left-quotient operator

GAP - Reference Manual 113

Pow The operator \^ (31.12.1)

Comm
The operator Comm (31.12.3)

Mod The operator \mod (31.12.1)

UntraceInternalMethods turns tracing off. As these methods can be called hundreds of thou-
sands of times in simple GAP code, there isn’t a statement printed each time one is called. Instead,
the method GetTraceInternalMethodsCounts returns how many times each operation has been
applied to each type of variable (the type of a variable can be found with the TNAM_OBJ method).
The return value for two argument operators is a record of records r, where r.op stores information
about operator op. For one argument operators r.op.i stores how many times op was called with an
argument of type i, while for two argument operators r.op.i.j stores how many times op was called
with arguments of type i and j.

Example
gap> TraceInternalMethods();

true

gap> 2+3+4+5+6;;

gap> 2.0+2.0;;

gap> 3^(1,2,3);;

gap> GetTraceInternalMethodsCounts();

rec(Pow := rec(integer := rec(("permutation (small)") := 1)),

Sum := rec(integer := rec(integer := 4),

macfloat := rec(macfloat := 1)))

'macfloat' is a floating point number

gap> UntraceInternalMethods();

7.4 Info Functions

The Info (7.4.6) mechanism permits operations to display intermediate results or information about
the progress of the algorithms. Information is always given according to one or more info classes.
Each of the info classes defined in the GAP library usually covers a certain range of algorithms, so for
example InfoLattice covers all the cyclic extension algorithms for the computation of a subgroup
lattice.

Note that not all info classes defined in the GAP library are currently documented. Many GAP
packages define additional info classes, which are typically documented in the corresponding package
documentation. The function ShowUsedInfoClasses (7.4.5) will show all info classes which GAP
considers while executing code.

The amount of information to be displayed by each info class can be separately specified by the
user. This is done by selecting a non-negative integer level for the info class: no information will be
displayed at level 0, and the higher the level, the more information that will be displayed. At creation,
an info class has level 0. By default, all built-in GAP info classes have level 0, except for the following
info classes, which have level 1:

• InfoWarning (7.4.8),

• InfoPackageLoading (76.2.5),

• InfoDebug,

GAP - Reference Manual 114

• InfoPerformance,

• InfoTempDirectories,

• InfoPrimeInt, and

• InfoSLP.

7.4.1 NewInfoClass

▷ NewInfoClass(name) (operation)

creates a new info class with name name .

7.4.2 DeclareInfoClass

▷ DeclareInfoClass(name) (function)

creates a new info class with name name and binds it to the global variable name . The variable
must previously be writable, and is made read-only by this function.

7.4.3 SetInfoLevel

▷ SetInfoLevel(infoclass, level) (operation)

Sets the info level for infoclass to the non-negative integer level .

7.4.4 InfoLevel

▷ InfoLevel(infoclass) (operation)

returns the info level of infoclass .

7.4.5 ShowUsedInfoClasses

▷ ShowUsedInfoClasses(infoclass) (function)

Called with argument true, this makes GAP print the info class and level of any executed Info

(7.4.6) statement. Calling with the argument false stops this printing. Each level of each info class
is only printed once. The history of printed info classes and levels is reset whenever true is passed.

Example
gap> ShowUsedInfoClasses(true);

gap> Intersection(Group((1,3,2,4,5,6)), Group((1,2,3,4,5,6)));

#I Would print info with SetInfoLevel(InfoBckt,1)

#I Would print info with SetInfoLevel(InfoBckt,3)

#I Would print info with SetInfoLevel(InfoBckt,5)

Group(())

gap> Intersection(Group((1,3,2,4,5,6)), Group((1,2,3,4,5,6)));

Group(())

gap> ShowUsedInfoClasses(false);

GAP - Reference Manual 115

7.4.6 Info

▷ Info(infoclass, level, info[, moreinfo, ...]) (function)

If the info level of infoclass is at least level , then the remaining arguments, info , and possibly
moreinfo and so on, are evaluated. (Technically, Info is a keyword and not a function.)

By default, the results of these evaluations are viewed, preceded by the string "#I " and followed
by a newline.

If the info level of infoclass is strictly less than level , then the third and subsequent arguments
are not evaluated. (The latter can save substantial time when displaying difficult results.)

The behaviour can be customized with SetInfoHandler (7.4.7).
Example

gap> InfoExample:=NewInfoClass("InfoExample");;

gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");

gap> SetInfoLevel(InfoExample,1);

gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");

#I one

gap> SetInfoLevel(InfoExample,2);

gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");

#I one

#I two

gap> InfoLevel(InfoExample);

2

gap> Info(InfoExample,3,Length(Combinations([1..9999])));

Note that the last Info call is executed without problems, since the actual level 2 of InfoExample
causes Info to ignore the last argument, which prevents Length(Combinations([1..9999])) from
being evaluated; note that an evaluation would be impossible due to memory restrictions.

A set of info classes (called an info selector) may be passed to a single Info statement. As a
shorthand, info classes and selectors may be combined with + rather than Union (30.5.3). In this case,
the message is triggered if the level of any of the classes is high enough.

Example
gap> InfoExample:=NewInfoClass("InfoExample");;

gap> SetInfoLevel(InfoExample,0);

gap> Info(InfoExample + InfoWarning, 1, "hello");

#I hello

gap> Info(InfoExample + InfoWarning, 2, "hello");

gap> SetInfoLevel(InfoExample,2);

gap> Info(InfoExample + InfoWarning, 2, "hello");

#I hello

gap> InfoLevel(InfoWarning);

1

7.4.7 Customizing Info (7.4.6) statements

▷ SetInfoHandler(infoclass, handler) (function)

▷ SetInfoOutput(infoclass, out) (function)

▷ UnbindInfoOutput(infoclass) (function)

▷ InfoOutput(infoclass) (function)

GAP - Reference Manual 116

▷ SetDefaultInfoOutput(out) (function)

Returns: nothing
This allows one to customize what happens in an Info(infoclass, level, ...) statement.
In the first function, handler must be a function with three arguments infoclass , level , list .

Here list is the list containing the third argument and any subsequent optional arguments of the Info
(7.4.6) call.

The default handler is the function DefaultInfoHandler. It prints "#I ", then the third and
further arguments of the info statement, and finally a "\n".

If the first argument of an Info (7.4.6) statement is a sum of Info classes, the handler of the first
summand is used.

The file or stream to which Info (7.4.6) statements for individual Info (7.4.6) classes print
can be overridden with SetInfoOutput, retrieved with InfoOutput and reset to the default with
UnbindInfoOutput. The initial default for all Info (7.4.6) classes is the string "*Print*" which
means the current output file. The default can be changed with SetDefaultInfoOutput. The ar-
gument out can be a filename or an open stream, the special names "*Print*", "*errout* and
"*stdout* are also recognized.

For example, SetDefaultInfoOutput("*errout*"); would send Info (7.4.6) output to stan-
dard error, which can be interesting if GAPs output is redirected.

7.4.8 InfoWarning

▷ InfoWarning (info class)

is an info class to which general warnings are sent at level 1, which is its default level. More
specialised warnings are shown via calls of Info (7.4.6) at InfoWarning level 2, e.g. information
about the autoloading of GAP packages and the initial line matched when displaying an on-line help
topic.

7.5 Assertions

Assertions are used to find errors in algorithms. They test whether intermediate results conform to
required conditions and issue an error if not.

7.5.1 SetAssertionLevel

▷ SetAssertionLevel(lev) (function)

assigns the global assertion level to lev . By default it is zero.

7.5.2 AssertionLevel

▷ AssertionLevel() (function)

returns the current assertion level.

GAP - Reference Manual 117

7.5.3 Assert

▷ Assert(lev, cond[, message]) (function)

With two arguments, if the global assertion level is at least lev , condition cond is tested and if it
does not return true an error is raised. Thus Assert(lev, cond) is equivalent to the code

Example
if AssertionLevel() >= lev and not <cond> then

Error("Assertion failure");

fi;

With the message argument form of the Assert statement, if the global assertion level is at least
lev , condition cond is tested and if it does not return true then message is evaluated and printed.

Assertions are used at various places in the library. Thus turning assertions on can slow code
execution significantly.

7.6 Timing

7.6.1 Runtimes

▷ Runtimes() (function)

Runtimes returns a record with components bound to integers or fail. Each integer is the cpu
time (processor time) in milliseconds spent by GAP in a certain status:

user_time

cpu time spent with GAP functions (without child processes).

system_time

cpu time spent in system calls, e.g., file access (fail if not available).

user_time_children

cpu time spent in child processes (fail if not available).

system_time_children

cpu time spent in system calls by child processes (fail if not available).

Note that this function is not fully supported on all systems. Only the user_time component is
(and may on some systems include the system time).

The following example demonstrates tasks which contribute to the different time components:
Example

gap> Runtimes(); # after startup

rec(user_time := 3980, system_time := 60, user_time_children := 0,

system_time_children := 0)

gap> Exec("cat /usr/bin/*||wc"); # child process with a lot of file access

893799 7551659 200928302

gap> Runtimes();

rec(user_time := 3990, system_time := 60, user_time_children := 1590,

system_time_children := 600)

gap> a:=0;;for i in [1..100000000] do a:=a+1; od; # GAP user time

GAP - Reference Manual 118

gap> Runtimes();

rec(user_time := 12980, system_time := 70, user_time_children := 1590,

system_time_children := 600)

gap> ?blabla # first call of help, a lot of file access

Help: no matching entry found

gap> Runtimes();

rec(user_time := 13500, system_time := 440, user_time_children := 1590,

system_time_children := 600)

7.6.2 Runtime

▷ Runtime() (function)

Runtime returns the time spent by GAP in milliseconds as an integer. It is the same as the value
of the user_time component given by Runtimes (7.6.1), as explained above.

See StringTime (27.10.9) for a translation from milliseconds into hour/minute format.

7.6.3 NanosecondsSinceEpoch

▷ NanosecondsSinceEpoch() (function)

▷ NanosecondsSinceEpochInfo() (function)

NanosecondsSinceEpoch returns the time in nanoseconds that has passed since some fixed, but
unspecified time in the past. This function is appropriate for doing wallclock time measurements. The
actual resolution depends on the system that GAP is run on. Information about the used timers can
be obtained by calling NanosecondsSinceEpochInfo, which returns a record containing members
Method, Monotonic, Reliable and Resolution.

Method is a string describing the method used to obtain timer values. This will usually contain the
name of the syscall used.

Monotonic is a boolean. If it is true, then the values returned by NanosecondsSinceEpoch are
guaranteed to be strictly monotonically increasing between two calls, if it is false then there is no
such guarantee.

Resolution is an integer reflecting the resolution of the timer used in nanoseconds.
Reliable is a boolean. If it is true then the value Resolution is deemed reliable in the sense

that it was obtained by querying the operating system, otherwise Resolution should be treated as an
estimate.

7.6.4 time

▷ time (global variable)

In the read-eval-print loop, time stores the number of milliseconds the last command took (see
also memory_allocated (7.7.2) for the number of bytes of memory it allocated).

7.6.5 Sleep

▷ Sleep(time) (function)

▷ MicroSleep(time) (function)

GAP - Reference Manual 119

These functions make GAP stop execution for a given period of time. The time to stop is given to
Sleep in seconds and MicroSleep in microseconds.

7.7 Tracking Memory Usage

7.7.1 TotalMemoryAllocated

▷ TotalMemoryAllocated() (function)

TotalMemoryAllocated returns the total amount of memory in bytes allocated by the GAP mem-
ory manager since GAP started.

7.7.2 memory_allocated

▷ memory_allocated (global variable)

In the read-eval-print loop, memory_allocated (7.7.2) stores the number of bytes of memory
allocated by the last completed statement (see also time (7.6.4) for the number of milliseconds it
took).

7.8 Profiling

Profiling of code can be used to determine in which parts of a program how much time has been
spent and how much memory has been allocated during runtime. GAP has two different methods of
profiling. GAP can either profile by function, or line-by-line. Line by line profiling is currently only
used for code coverage, while function profiling tracks memory and time usage.

7.8.1 Function Profiling

This section describes how to profiling at the function level. The idea is that

• first one switches on profiling for those GAP functions the performance of which one wants to
check,

• then one runs some GAP computations,

• then one looks at the profile information collected during these computations,

• then one runs more computations (perhaps clearing all profile information before, see
ClearProfile (7.8.10)),

• and finally one switches off profiling.

For switching on and off profiling, GAP supports entering a list of functions (see
ProfileFunctions (7.8.5), UnprofileFunctions (7.8.6)) or a list of operations whose methods
shall be (un)profiled (ProfileMethods (7.8.7), UnprofileMethods (7.8.8)), and DisplayProfile

(7.8.9) can be used to show profile information about functions in a given list.

GAP - Reference Manual 120

Besides these functions, ProfileGlobalFunctions (7.8.2), ProfileOperations (7.8.3), and
ProfileOperationsAndMethods (7.8.4) can be used for switching on or off profiling for all global
functions, operations, and operations together with all their methods, respectively, and for showing
profile information about these functions.

Note that GAP will perform more slowly when profiling than when not.

7.8.2 ProfileGlobalFunctions

▷ ProfileGlobalFunctions([bool]) (function)

Called with argument true, ProfileGlobalFunctions starts profiling of all functions that have
been declared via DeclareGlobalFunction (79.10.5). Old profile information for all these functions
is cleared. A function call with the argument false stops profiling of all these functions. Recorded
information is still kept, so you can display it even after turning the profiling off.

When ProfileGlobalFunctions is called without argument, profile information for all global
functions is displayed, see DisplayProfile (7.8.9).

7.8.3 ProfileOperations

▷ ProfileOperations([bool]) (function)

Called with argument true, ProfileOperations starts profiling of all operations. Old profile
information for all operations is cleared. A function call with the argument false stops profiling of
all operations. Recorded information is still kept, so you can display it even after turning the profiling
off.

When ProfileOperations is called without argument, profile information for all operations is
displayed (see DisplayProfile (7.8.9)).

7.8.4 ProfileOperationsAndMethods

▷ ProfileOperationsAndMethods([bool]) (function)

Called with argument true, ProfileOperationsAndMethods starts profiling of all operations
and their methods. Old profile information for these functions is cleared. A function call with the
argument false stops profiling of all operations and their methods. Recorded information is still
kept, so you can display it even after turning the profiling off.

When ProfileOperationsAndMethods is called without argument, profile information for all
operations and their methods is displayed, see DisplayProfile (7.8.9).

7.8.5 ProfileFunctions

▷ ProfileFunctions(funcs) (function)

starts profiling for all function in the list funcs . You can use ProfileGlobalFunctions (7.8.2)
to turn profiling on for all globally declared functions simultaneously.

GAP - Reference Manual 121

7.8.6 UnprofileFunctions

▷ UnprofileFunctions(funcs) (function)

stops profiling for all function in the list funcs . Recorded information is still kept, so you can
display it even after turning the profiling off.

7.8.7 ProfileMethods

▷ ProfileMethods(ops) (function)

starts profiling of the methods for all operations in the list ops .

7.8.8 UnprofileMethods

▷ UnprofileMethods(ops) (function)

stops profiling of the methods for all operations in the list ops . Recorded information is still kept,
so you can display it even after turning the profiling off.

7.8.9 DisplayProfile

▷ DisplayProfile([functions][,] [mincount, mintime]) (function)

▷ GAPInfo.ProfileThreshold (global variable)

Called without arguments, DisplayProfile displays the profile information for profiled opera-
tions, methods and functions. If an argument functions is given, only profile information for the
functions in the list functions is shown. If two integer values mincount , mintime are given as ar-
guments then the output is restricted to those functions that were called at least mincount times or for
which the total time spent (see below) was at least mintime milliseconds. The defaults for mincount
and mintime are the entries of the list stored in the global variable GAPInfo.ProfileThreshold.

The default value of GAPInfo.ProfileThreshold is [10000, 30].
Profile information is displayed in a list of lines for all functions (including operations and meth-

ods) which are profiled. For each function, “count” gives the number of times the function has been
called. “self/ms” gives the time (in milliseconds) spent in the function itself, “chld/ms” the time (in
milliseconds) spent in profiled functions called from within this function, “stor/kb” the amount of
storage (in kilobytes) allocated by the function itself, “chld/kb” the amount of storage (in kilobytes)
allocated by profiled functions called from within this function, and “package” the name of the GAP
package to which the function belongs; the entry “GAP” in this column means that the function be-
longs to the GAP library, the entry “(oprt.)” means that the function is an operation (which may
belong to several packages), and an empty entry means that FilenameFunc (5.1.4) cannot determine
in which file the function is defined.

The list is sorted according to the total time spent in the functions, that is the sum of the values in
the columns “self/ms” and “chld/ms”.

At the end of the list, two lines are printed that show the total time used and the total memory
allocated by the profiled functions not shown in the list (label OTHER) and by all profiled functions
(label TOTAL), respectively.

GAP - Reference Manual 122

An interactive variant of DisplayProfile is the function BrowseProfile (Browse: Browse-
Profile) that is provided by the GAP package Browse.

7.8.10 ClearProfile

▷ ClearProfile() (function)

clears all stored profile information.

7.8.11 An Example of Function Profiling

Let us suppose we want to get information about the computation of the conjugacy classes of a certain
permutation group. For that, first we create the group, then we start profiling for all global functions
and for all operations and their methods, then we compute the conjugacy classes, and then we stop
profiling.

Example
gap> g:= PrimitiveGroup(24, 1);;

gap> ProfileGlobalFunctions(true);

gap> ProfileOperationsAndMethods(true);

gap> ConjugacyClasses(g);;

gap> ProfileGlobalFunctions(false);

gap> ProfileOperationsAndMethods(false);

Now the profile information is available. We can list the information for all profiled functions with
DisplayProfile (7.8.9).

Example
gap> DisplayProfile();

count self/ms chld/ms stor/kb chld/kb package function

17647 0 0 275 0 GAP BasePoint

10230 0 0 226 0 (oprt.) ShallowCopy

10139 0 0 0 0 PositionSortedOp: for*

10001 0 0 688 0 UniteSet: for two int*

10001 8 0 28 688 (oprt.) UniteSet

14751 12 0 0 0 =: for two families: *

10830 8 4 182 276 GAP Concatenation

2700 20 12 313 55 GAP AddRefinement

2444 28 4 3924 317 GAP ConjugateStabChain

4368 0 32 7 714 (oprt.) Size

2174 32 4 1030 116 GAP List

585 4 32 45 742 GAP RRefine

1532 32 8 194 56 GAP AddGeneratorsExtendSc*

1221 8 32 349 420 GAP Partition

185309 28 12 0 0 (oprt.) Length

336 4 40 95 817 GAP ExtendSeriesPermGroup

4 28 20 488 454 (oprt.) Sortex

2798 0 52 54 944 GAP StabChainForcePoint

560 4 48 83 628 GAP StabChainSwap

432 16 40 259 461 GAP SubmagmaWithInversesNC

185553 48 8 915 94 (oprt.) Add

26 0 64 0 2023 (oprt.) CentralizerOp

GAP - Reference Manual 123

26 0 64 0 2023 GAP CentralizerOp: perm g*

26 0 64 0 2023 GAP Centralizer: try to e*

152 4 64 0 2024 (oprt.) Centralizer

1605 0 68 0 2032 (oprt.) StabilizerOfExternalS*

26 0 68 0 2024 GAP Meth(StabilizerOfExte*

382 0 96 69 1922 GAP TryPcgsPermGroup

5130 4 96 309 3165 GAP ForAll

7980 24 116 330 6434 GAP ChangeStabChain

12076 12 136 351 6478 GAP ProcessFixpoint

192 0 148 4 3029 GAP StabChainMutable: cal*

2208 4 148 3 3083 (oprt.) StabChainMutable

217 0 160 0 3177 (oprt.) StabChainOp

217 12 148 60 3117 GAP StabChainOp: group an*

216 36 464 334 12546 GAP PartitionBacktrack

1479 12 668 566 18474 GAP RepOpElmTuplesPermGro*

1453 12 684 56 18460 GAP in: perm class rep

126 0 728 13 19233 GAP ConjugacyClassesTry

1 0 736 0 19671 GAP ConjugacyClassesByRan*

2 0 736 2 19678 (oprt.) ConjugacyClasses

1 0 736 0 19675 GAP ConjugacyClasses: per*

13400 1164 0 0 0 (oprt.) Position

484 12052 OTHER

2048 23319 TOTAL

We can restrict the list to global functions with ProfileGlobalFunctions (7.8.2).
Example

gap> ProfileGlobalFunctions();

count self/ms chld/ms stor/kb chld/kb package function

17647 0 0 275 0 GAP BasePoint

10830 8 4 182 276 GAP Concatenation

2700 20 12 313 55 GAP AddRefinement

2444 28 4 3924 317 GAP ConjugateStabChain

2174 32 4 1030 116 GAP List

585 4 32 45 742 GAP RRefine

1532 32 8 194 56 GAP AddGeneratorsExtendSc*

1221 8 32 349 420 GAP Partition

336 4 40 95 817 GAP ExtendSeriesPermGroup

2798 0 52 54 944 GAP StabChainForcePoint

560 4 48 83 628 GAP StabChainSwap

432 16 40 259 461 GAP SubmagmaWithInversesNC

382 0 96 69 1922 GAP TryPcgsPermGroup

5130 4 96 309 3165 GAP ForAll

7980 24 116 330 6434 GAP ChangeStabChain

12076 12 136 351 6478 GAP ProcessFixpoint

216 36 464 334 12546 GAP PartitionBacktrack

1479 12 668 566 18474 GAP RepOpElmTuplesPermGro*

126 0 728 13 19233 GAP ConjugacyClassesTry

1 0 736 0 19671 GAP ConjugacyClassesByRan*

1804 14536 OTHER

2048 23319 TOTAL

We can restrict the list to operations with ProfileOperations (7.8.3).

GAP - Reference Manual 124

Example
gap> ProfileOperations();

count self/ms chld/ms stor/kb chld/kb package function

10230 0 0 226 0 (oprt.) ShallowCopy

10001 8 0 28 688 (oprt.) UniteSet

4368 0 32 7 714 (oprt.) Size

185309 28 12 0 0 (oprt.) Length

4 28 20 488 454 (oprt.) Sortex

185553 48 8 915 94 (oprt.) Add

26 0 64 0 2023 (oprt.) CentralizerOp

152 4 64 0 2024 (oprt.) Centralizer

1605 0 68 0 2032 (oprt.) StabilizerOfExternalS*

2208 4 148 3 3083 (oprt.) StabChainMutable

217 0 160 0 3177 (oprt.) StabChainOp

2 0 736 2 19678 (oprt.) ConjugacyClasses

13400 1164 0 0 0 (oprt.) Position

764 21646 OTHER

2048 23319 TOTAL

We can restrict the list to operations and their methods with ProfileOperationsAndMethods

(7.8.4).
Example

gap> ProfileOperationsAndMethods();

count self/ms chld/ms stor/kb chld/kb package function

10230 0 0 226 0 (oprt.) ShallowCopy

10139 0 0 0 0 PositionSortedOp: for*

10001 0 0 688 0 UniteSet: for two int*

10001 8 0 28 688 (oprt.) UniteSet

14751 12 0 0 0 =: for two families: *

4368 0 32 7 714 (oprt.) Size

185309 28 12 0 0 (oprt.) Length

4 28 20 488 454 (oprt.) Sortex

185553 48 8 915 94 (oprt.) Add

26 0 64 0 2023 (oprt.) CentralizerOp

26 0 64 0 2023 GAP CentralizerOp: perm g*

26 0 64 0 2023 GAP Centralizer: try to e*

152 4 64 0 2024 (oprt.) Centralizer

1605 0 68 0 2032 (oprt.) StabilizerOfExternalS*

26 0 68 0 2024 GAP Meth(StabilizerOfExte*

192 0 148 4 3029 GAP StabChainMutable: cal*

2208 4 148 3 3083 (oprt.) StabChainMutable

217 0 160 0 3177 (oprt.) StabChainOp

217 12 148 60 3117 GAP StabChainOp: group an*

1453 12 684 56 18460 GAP in: perm class rep

2 0 736 2 19678 (oprt.) ConjugacyClasses

1 0 736 0 19675 GAP ConjugacyClasses: per*

13400 1164 0 0 0 (oprt.) Position

728 20834 OTHER

2048 23319 TOTAL

Finally, we can restrict the list to explicitly given functions with DisplayProfile (7.8.9), by
entering the list of functions as an argument.

GAP - Reference Manual 125

Example
gap> DisplayProfile([StabChainOp, Centralizer]);

count self/ms chld/ms stor/kb chld/kb package function

152 4 64 0 2024 (oprt.) Centralizer

217 0 160 0 3177 (oprt.) StabChainOp

2044 23319 OTHER

2048 23319 TOTAL

7.8.12 Line By Line Profiling

Line By Line profiling tracks which lines have been executed in a piece of GAP code. Built into
GAP are the methods necessary to generate profiles, the resulting profiles can be displayed with the
’profiling’ package.

7.8.13 Line by Line profiling example

There are two kinds of profiles GAP can build:

• Coverage : This records which lines of code are executed

• Timing : This records how much time is spend executing each line of code

A timing profile provides more information, but will take longer to generate and parse. A timing
profile is generated using the functions ProfileLineByLine (7.8.14) and UnprofileLineByLine

(7.8.16), as follows:
Example

gap> ProfileLineByLine("output.gz");

gap> Size(AlternatingGroup(10)); ; # Execute some GAP code you want to profile

gap> UnprofileLineByLine();

For code coverage, use instead the functions CoverageLineByLine (7.8.15) and
UncoverageLineByLine (7.8.17). The profiler will only record lines which are read and ex-
ecuted while the profiler is running. If you want to perform code coverage or profile GAP’s
library, then you can use the GAP command line option ’--cover filename.gz’, which executes
CoverageLineByLine (7.8.15) before GAP starts. Similarly the option ’--prof filename.gz’ exe-
cutes ProfileLineByLine (7.8.14) before GAP starts. The profiler is designed for high performance,
because of this, there are some limitations which users should be aware of:

• By default the profiler records the wall-clock time which has passed, rather than the CPU time
taken (because it is lower overhead), so any time taken writing commands will be charged to the
last GAP statement which was executed. Therefore it is better to write a function which starts
profiling, executes your code, and then stops profiling.

• If you end the filename with ".gz", the resulting file will automatically be compressed. This is
highly recommended!

• The profiler can only track GAP code which occurs in a function -- this is most obvious when
looking at code coverage examples, which will appear to miss lines of code in files not in a
function.

GAP - Reference Manual 126

• If the current GAP is forked, using the IO_fork function in the IO package, a new profile output
file will be created for the new child process, with the process ID of the child attached to the
end of the filename.

Profiles are transformed into a human-readable form with ’profiling’ package, for example with the
’OutputAnnotatedCodeCoverageFiles’ function.

7.8.14 ProfileLineByLine

▷ ProfileLineByLine(filename[, options]) (function)

ProfileLineByLine begins GAP recording profiling data to the file filename . This file will
get *very* large very quickly. This file is compressed using gzip to reduce its size. options is an
optional dictionary, which sets various configuration options. These are

coverage
Boolean (defaults to false). If this is enabled, only information about which lines are read and
executed is stored. Enabling this is the same as calling CoverageLineByLine (7.8.15). Using
this ignores all other options.

wallTime
Boolean (defaults to true). Sets if time should be measured using wall-clock time (true) or CPU
time (false). (measuring CPU-time has a higher overhead).

recordMem
Boolean (defaults to false). Instead of recording the CPU time taken by statements, record the
total size of all new objects created by each line.

resolution
Integer (defaults to 0). By default profiling will record a trace of all executed code. When
resolution non-zero, GAP instead samples which piece of code is being executed every
resolution nanoseconds. Increasing this improves performance and produces smaller traces,
at the cost of accuracy. GAP will still accurately record which statements are executed at least
once.

7.8.15 CoverageLineByLine

▷ CoverageLineByLine(filename) (function)

CoverageLineByLine begins GAP recording code coverage to the file filename . This is equiv-
alent to calling ProfileLineByLine (7.8.14) with coverage=true.

7.8.16 UnprofileLineByLine

▷ UnprofileLineByLine() (function)

Stops profiling which was previously started with ProfileLineByLine (7.8.14) or
CoverageLineByLine (7.8.15).

GAP - Reference Manual 127

7.8.17 UncoverageLineByLine

▷ UncoverageLineByLine() (function)

Stops profiling which was previously started with ProfileLineByLine (7.8.14) or
CoverageLineByLine (7.8.15).

7.8.18 IsLineByLineProfileActive

▷ IsLineByLineProfileActive() (function)

IsLineByLineProfileActive returns if line-by-line profiling is currently activated.

7.8.19 DisplayCacheStats

▷ DisplayCacheStats() (function)

displays statistics about the different caches used by the method selection.

7.8.20 ClearCacheStats

▷ ClearCacheStats() (function)

clears all statistics about the different caches used by the method selection.

7.9 Information about the version used

The global variable GAPInfo.Version (see GAPInfo (3.5.1)) contains the version number of the
version of GAP. Its value can be checked other version number using CompareVersionNumbers

(76.3.9).
To produce sample citations for the used version of GAP or for a package available in this GAP

installation, use Cite (76.3.19).
If you wish to report a problem to GAP Support or GAP Forum, it may be useful to not only report

the version used, but also to include the GAP banner displays the information about the architecture
for which the GAP binary is built, used libraries and loaded packages.

7.10 Test Files

Test files are used to check that GAP produces correct results in certain computations. A selection of
test files for the library can be found in the tst directory of the GAP distribution.

7.10.1 Starting and stopping test

▷ START_TEST(name) (function)

▷ STOP_TEST(name) (function)

GAP - Reference Manual 128

START_TEST (7.10.1) and STOP_TEST (7.10.1) may be optionally used in files that are read via
Test (7.10.2). If used, START_TEST (7.10.1) reinitialize the caches and the global random number
generator, in order to be independent of the reading order of several test files. Furthermore, the asser-
tion level (see Assert (7.5.3)) is set to 2 (if it was lower before) by START_TEST (7.10.1) and set back
to the previous value in the subsequent STOP_TEST (7.10.1) call.

To use these options, a test file should be started with a line
Example

gap> START_TEST("arbitrary identifier string");

(Note that the gap> prompt is part of the line!)
and should be finished with a line

Example
gap> STOP_TEST("same identifier string as for START_TEST");

If you want to run a quick test of your GAP installation (though this is not required), you can read
in a test script that exercises some GAP’s capabilities.

Example
gap> Read(Filename(DirectoriesLibrary("tst"), "testinstall.g"));

Example
test file time(msec)

testing:/gap4r5/tst/zlattice.tst

zlattice.tst 0

testing:/gap4r5/tst/gaussian.tst

gaussian.tst 10

[further lines deleted]

If you want to run a more advanced check (this is not required and make take up to an hour), you can
read teststandard.g which is an extended test script performing all tests from the tst directory.

Example
gap> Read(Filename(DirectoriesLibrary("tst"), "teststandard.g"));

7.10.2 Test

▷ Test(fname[, optrec]) (function)

Returns: true or false.
The argument fname must be the name of a file or an open input stream. The content of this file

or stream should contain GAP input and output. The function Test runs the input lines, compares
the actual output with the output stored in fname and reports differences. With an optional record
as argument optrec details of this process can be adjusted. Note that the rewriteToFile option is
especially useful for generating test files.

More precisely, the content of fname must have the following format.
Lines starting with "gap> " are considered as GAP input, they can be followed by lines starting with
"> " if the input is continued over several lines.
To allow for comments in fname the following lines are ignored by default: lines at the beginning of
fname that start with "#" or are empty, and one empty line together with one or more lines starting

GAP - Reference Manual 129

with "#".
All other lines are considered as GAP output from the preceding GAP input.

Lines which begin "#@" define special configuration options for tests. The #@local and #@exec

options can only be used before any GAP input, and the other commands can only be used between
individual tests (just before a line starting gap>, or at end of the file). Currently defined options are:

#@local identifierlist
Run all the tests in the input as if it is in a function with local variable list identifierlist,
which is a comma-separated list of identifiers. Multiple #@local lines may be used. These lines
should not end with a comma or semicolon. If this option is used then an error will occur unless
all the variables used are included in the local list.

As an example, the Utils package has a test file tst/iterator.tst which starts with the lines:
Example

#@local c3c3, cart, G, h, it1, it2, iter, iter0, iter4, iterL

#@local L, n, pairs0, pairs4, pairsL, s3, s4

#@exec gapcode
Execute the code gapcode before any test in the input is run. This allows defining global
variables when using #@local.

#@if EXPR ... [#@else] ... #@fi
A #@if allows to conditionally skip parts of the test input depending on the value of a boolean
expression. The exact behavior is done as follows:

If the GAP expression EXPR evaluates to true, then the lines after the #@if are used until either
a #@else or #@fi is reached. If a #@else is present then the code after the #@else is used if and
only if EXPR evaluated to false. Finally, once #fi is reached, evaluation continues normally.

Note that EXPR is evaluated after all #@exec lines have been executed but before any tests are
run. Thus, it cannot depend on test results or packages loaded in tests, but it can depend on
packages loaded via #@exec.

As an example, the GAP test suite contains the test file tst/testinstall/pperm.tst which
contains the lines:

Example
#@if GAPInfo.BytesPerVariable = 8

gap> HASH_FUNC_FOR_PPERM(f, 10 ^ 6) in [260581, 402746];

true

#@else

gap> HASH_FUNC_FOR_PPERM(f, 10 ^ 6);

953600

#@fi

By default the actual GAP output is compared exactly with the stored output, and if these are different
some information about the differences is printed.

If any differences are found then Test returns false, otherwise true.
If the optional argument optrec is given it must be a record. The following components of

optrec are recognized and can change the default behaviour of Test:

ignoreComments

If set to false then no lines in fname are ignored as explained above (default is true).

GAP - Reference Manual 130

width

The screen width used for the new output (default is 80).

compareFunction

This must be a function that gets two strings as input, the newly generated and the stored output
of some GAP input. The function must return true or false, indicating if the strings should
be considered equivalent or not. By default \= (31.11.1) is used.
Two strings are recognized as abbreviations in this component: "uptowhitespace" checks if
the two strings become equal after removing all white space. And "uptonl" compares the
string up to trailing newline characters.

transformFunction

This must be a function that gets one string as input, either the newly generated or the stored
output of some GAP input. The function must return a new string which will be used to compare
the actual and the expected output. By default IdFunc (5.4.6) is used.
Two strings are recognized as abbreviations in this component: "removewhitespace" removes
all white space. And "removenl" removes all trailing newline characters.

reportDiff

A function that gets six arguments and reports a difference in the output: the GAP input, the
expected GAP output, the newly generated output, the name of tested file, the line number of
the input, the time to run the input. (The default is demonstrated in the example below.)

rewriteToFile

If this is bound to a string it is considered as a file name and that file is written with the same
input and comment lines as fname but the output substituted by the newly generated version;
if it is bound to true, then this is treated as if it was bound to fname (default is false). This
is especially useful for generating test files because it ensures that the test files are formatted
exactly as Test expects them to be.

writeTimings

If this is bound to a string it is considered as a file name, that file is written and contains timing
information for each input in fname .

compareTimings

If this is bound to a string it is considered as name of a file to which timing information was
stored via writeTimings in a previous call. The new timings are compared to the stored ones.
By default only commands which take more than a threshold of 100 milliseconds are consid-
ered, and only differences of more than 20% are considered significant. These defaults can be
overwritten by assigning a list [timingfile, threshold, percentage] to this component.
(The default of compareTimings is false.)

reportTimeDiff

This component can be used to overwrite the default function to display timing differences. It
must be a function with 5 arguments: GAP input, name of test file, line number, stored time,
new time.

ignoreSTOP_TEST

By default set to true, in that case the output of GAP input starting with "STOP_TEST" is not
checked.

GAP - Reference Manual 131

showProgress

If this is true then GAP prints position information and the input line before it is processed;
if set to "some", then GAP shows the current line number of the test being processed; if set to
false, no progress updates are displayed (default is "some" if GAP’s output goes to a terminal,
otherwise false).

subsWindowsLineBreaks

If this is true then GAP substitutes DOS/Windows style line breaks "\r\n" by UNIX style line
breaks "\n" after reading the test file. (default is true).

returnNumFailures

If this is true then GAP returns the number of input lines of the test file which had differences
in their output, instead of returning true or false.

Example
gap> tnam := Filename(DirectoriesLibrary(), "../doc/ref/demo.tst");;

gap> mask := function(str) return Concatenation("| ",

> JoinStringsWithSeparator(SplitString(str, "\n", ""), "\n| "),

> "\n"); end;;

gap> Print(mask(StringFile(tnam)));

| # this is a demo file for the 'Test' function

| #

| gap> g := Group((1,2), (1,2,3));

| Group([(1,2), (1,2,3)])

|

| # another comment following an empty line

| # the following fails:

| gap> a := 13+29;

| 41

gap> ss := InputTextString(StringFile(tnam));;

gap> Test(ss);

########> Diff in test stream, line 8:

Input is:

a := 13+29;

Expected output:

41

But found:

42

########

false

gap> RewindStream(ss);

true

gap> dtmp := DirectoryTemporary();;

gap> ftmp := Filename(dtmp,"demo.tst");;

gap> Test(ss, rec(reportDiff := Ignore, rewriteToFile := ftmp));

false

gap> Test(ftmp);

true

gap> Print(mask(StringFile(ftmp)));

| # this is a demo file for the 'Test' function

| #

| gap> g := Group((1,2), (1,2,3));

| Group([(1,2), (1,2,3)])

GAP - Reference Manual 132

|

| # another comment following an empty line

| # the following fails:

| gap> a := 13+29;

| 42

7.10.3 TestDirectory

▷ TestDirectory(inlist[, optrec]) (function)

Returns: true or false.
The argument inlist must be either a single filename or directory name, or a list of filenames and

directories. The function TestDirectory will create a list of files to be tested by taking any files in
inlist , and recursively searching any directories in inlist for files ending in .tst. Each of these
files is then run through Test (7.10.2), and the results printed, and true returned if all tests passed.

If the optional argument optrec is given it must be a record. Note that the rewriteToFile option
is especially useful for generating test files. The following components of optrec are recognized and
can change the default behaviour of TestDirectory:

testOptions

A record which will be passed on as the second argument of Test (7.10.2) if present.

earlyStop

If true, stop as soon as any Test (7.10.2) fails (defaults to false).

showProgress

Print information about how tests are progressing (defaults to "some" if GAP’s output goes to a
terminal, otherwise false).

suppressStatusMessage

suppress displaying status messages #I Errors detected while testing and #I No

errors detected while testing after the test (defaults to false).

rewriteToFile

If true, then rewrite each test file to disc, with the output substituted by the results of running
the test (defaults to false). This is especially useful for generating test files because it ensures
that the test files are formatted exactly as Test (7.10.2) expects them to be.

exclude

A list of file and directory names which will be excluded from testing (defaults to []).

exitGAP

Rather than returning true or false, exit GAP with the return value of GAP set to success or
fail, depending on if all tests passed (defaults to false).

See also TestPackage (76.3.5) for the information on running standard tests for GAP packages.

7.11 Debugging Recursion

The GAP interpreter monitors the level of nesting of GAP functions during execution. By default,
whenever this nesting reaches a multiple of 5000, GAP enters a break loop (6.4) allowing you to
terminate the calculation, or enter RETURN; to continue it.

GAP - Reference Manual 133

Example
gap> dive:= function(depth) if depth>1 then dive(depth-1); fi; return; end;

function(depth) ... end

gap> dive(100);

gap> OnBreak:= function() Where(1); end; # shorter traceback

function() ... end

gap> dive(6000);

recursion depth trap (5000)

at

dive(depth - 1);

called from

dive(depth - 1); called from

...

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you may 'return;' to continue

brk> return;

gap> dive(11000);

recursion depth trap (5000)

at

dive(depth - 1);

called from

dive(depth - 1); called from

...

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you may 'return;' to continue

brk> return;

recursion depth trap (10000)

at

dive(depth - 1);

called from

dive(depth - 1); called from

...

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you may 'return;' to continue

brk> return;

gap>

This behaviour can be controlled using the following procedures.

7.11.1 SetRecursionTrapInterval

▷ SetRecursionTrapInterval(interval) (function)

▷ GetRecursionDepth() (function)

GetRecursionDepth returns the nesting level of the GAP interpreter. This is reset to 0 every time
the break loop is entered. SetRecursionTrapInterval sets the depth of the stack at which GAP
will enter the Break loop. interval must be a non-negative small integer (between 0 and 228). An
interval of 0 suppresses the monitoring of recursion altogether. In this case excessive recursion may

GAP - Reference Manual 134

cause GAP to crash.
Example

gap> GetRecursionDepth();

0

gap> dive := function(depth)

> if depth>1 then

> dive(depth-1);

> else

> Print("Depth ", GetRecursionDepth());

> fi;

> end;;

gap> SetRecursionTrapInterval(1000);

gap> dive(100);

Depth 100

gap> dive(2500);

recursion depth trap (1000)

at

dive(depth - 1);

called from

dive(depth - 1); called from

...

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you may 'return;' to continue

brk> return;

recursion depth trap (2000)

at

dive(depth - 1);

called from

dive(depth - 1); called from

...

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you may 'return;' to continue

brk> GetRecursionDepth();

0

brk> return;

gap> SetRecursionTrapInterval(-1);

Error, SetRecursionTrapInterval: <interval> must be a small integer greater than 5 (n\

ot the integer -1)

not in any function

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can replace <interval> via 'return <interval>;' to continue

brk> return 0;

gap> dive(20000);

Depth 20000

gap> dive(2000000);

Segmentation fault

GAP - Reference Manual 135

7.12 Global Memory Information

7.12.1 Garbage Collection

The GAP environment provides automatic memory management, so that the programmer does not
need to concern themselves with allocating space for objects, or recovering space when objects are no
longer needed. The memory manager that shall be used by GAP is specified at compile time. One
of the choices is called GASMAN (GAP Storage MANager). (The name of the currently used garbage
collector is stored in the variable GAPInfo.KernelInfo.GC.)

If GAP uses GASMAN then messages reporting garbage collections performed by GASMAN can be
switched on by the -g command line option (see section 3.1). There are also some facilities to access
information from GASMAN from GAP programs, see below.

7.12.2 CollectGarbage

▷ CollectGarbage(full) (function)

Returns: nothing.
This function forces a garbage collection. If full is true then it triggers a full garbage collection,

otherwise a partial one.
GAP invokes its garbage collector automatically, thus there is normally no need to call

CollectGarbage.
The function CollectGarbage was introduced in GAP 4.12. In older GAP versions, one can use

GASMAN("collect") (if full is true) or GASMAN("partial") (if full is not true) instead.
Example

gap> CollectGarbage(false);

gap> CollectGarbage(true);

7.12.3 GasmanStatistics

▷ GasmanStatistics() (function)

This function is meaningful only if GASMAN is the garbage collector used by GAP, see Section
7.12.1.

GasmanStatistics returns a record containing some information from the garbage collection
mechanism. The record may contain up to four components: full, partial, npartial, and nfull.

The full component will be present if a full garbage collection has taken place since GAP started.
It contains information about the most recent full garbage collection. It is a record, with eight compo-
nents: livebags contains the number of bags which survived the garbage collection; livekb contains
the total number of kilobytes occupied by those bags; deadbags contains the total number of bags
which were reclaimed by that garbage collection and all the partial garbage collections preceding it,
since the previous full garbage collection; deadkb contains the total number of kilobytes occupied by
those bags; freekb reports the total number of kilobytes available in the GAP workspace for new
objects; totalkb reports the actual size of the workspace; time reports the CPU time in milliseconds
spent on the last garbage collection and cumulative the total CPU time in milliseconds spent on that
type of garbage collection since GAP started.

These figures should be viewed with some caution. They are stored internally in fixed length
integer formats, and deadkb and deadbags are liable to overflow if there are many partial collections

GAP - Reference Manual 136

before a full collection. Also, note that livekb and freekb will not usually add up to totalkb. The
difference is essentially the space overhead of the memory management system.

The partial component will be present if there has been a partial garbage collection since the
last full one. It is also a record with the same six components as full. In this case deadbags and
deadkb refer only to the number and total size of the garbage bags reclaimed in this partial garbage
collection and livebagsand livekb only to the numbers and total size of the young bags that were
considered for garbage collection, and survived.

The npartial and nfull components will contain the number of full and partial garbage collec-
tions performed since GAP started.

7.12.4 GasmanMessageStatus

▷ GasmanMessageStatus() (function)

▷ SetGasmanMessageStatus(stat) (function)

This function is meaningful only if GASMAN is the garbage collector used by GAP, see Section
7.12.1.

GasmanMessageStatus returns one of the strings "none", "full", or "all", depending on
whether the garbage collector is currently set to print messages on no collections, full collections
only, or all collections, respectively.

Calling SetGasmanMessageStatus with the argument stat , which should be one of the three
strings mentioned above, sets the garbage collector messaging level.

7.12.5 GasmanLimits

▷ GasmanLimits() (function)

This function is meaningful only if GASMAN is the garbage collector used by GAP, see Section
7.12.1.

GasmanLimits returns a record with three components: min is the minimum workspace size as
set by the -m command line option in kilobytes. The workspace size will never be reduced below this
by the garbage collector. max is the maximum workspace size, as set by the -o command line option,
also in kilobytes. If the workspace would need to grow past this point, GAP will enter a break loop to
warn the user. A value of 0 indicates no limit. kill is the absolute maximum, set by the -K command
line option. The workspace will never be allowed to grow past this limit.

Chapter 8

Options Stack

GAP supports a global options system. This is intended as a way for the user to provide guidance to
various algorithms that might be used in a computation. Such guidance should not change mathemati-
cally the specification of the computation to be performed, although it may change the algorithm used.
A typical example is the selection of a strategy for the Todd-Coxeter coset enumeration procedure.
An example of something not suited to the options mechanism is the imposition of exponent laws in
the p-Quotient algorithm.

The basis of this system is a global stack of records. All the entries of each record are thought of
as options settings, and the effective setting of an option is given by the topmost record in which the
relevant field is bound.

The reason for the choice of a stack is the intended pattern of use:
PushOptions(rec(stuff));

DoSomething(args);

PopOptions();

This can be abbreviated, to DoSomething(args : stuff); with a small additional abbre-
viation of stuff permitted. See 4.12.2 for details. The full form can be used where the same options
are to run across several calls, or where the DoSomething procedure is actually an infix operator, or
other function with special syntax.

An alternative to this system is the use of additional optional arguments in procedure calls. This is
not felt to be sufficient because many procedure calls might cause, for example, a coset enumeration
and each would need to make provision for the possibility of extra arguments. In this system the
options are pushed when the user-level procedure is called, and remain in effect (unless altered) for
all procedures called by it.

Note that in some places in the system optional records containing options which are valid only
for the immediate function or method call are in fact used.

8.1 Functions Dealing with the Options Stack

8.1.1 PushOptions

▷ PushOptions(options_record) (function)

This function pushes a record of options onto the global option stack. Note that PushOptions(
rec(opt:= fail)) has the effect of resetting the option opt , since an option that has never been

137

GAP - Reference Manual 138

set has the value fail returned by ValueOption (8.1.5).
Note that there is no check for misspelt or undefined options.

8.1.2 PopOptions

▷ PopOptions() (function)

This function removes the top-most options record from the options stack if there is one.

8.1.3 ResetOptionsStack

▷ ResetOptionsStack() (function)

unbinds (i.e. removes) all the options records from the options stack.
Note: ResetOptionsStack should not be used within a function. Its intended use is to clean

up the options stack in the event that the user has quit from a break loop, so leaving a stack of
no-longer-needed options (see 6.4.1).

8.1.4 OnQuit

▷ OnQuit() (function)

called when a user selects to quit; a break loop entered via execution of Error (6.6.1). As GAP
starts up, OnQuit is defined to do nothing, in case an error is encountered during GAP start-up. Later
in the loading process we redefine OnQuit to do a variant of ResetOptionsStack (8.1.3) to ensure
the options stack is empty after a user quits an Error (6.6.1)-induced break loop. (OnQuit differs
from ResetOptionsStack (8.1.3) in that it warns when it does something rather than the other way
round.) Currently, OnQuit is not advertised, since exception handling may make it obsolete.

8.1.5 ValueOption

▷ ValueOption(opt) (function)

This function is a method for accessing the options stack without changing it; opt should be the
name of an option, i.e. a string. A function which makes decisions that might be affected by options
should examine the result of ValueOption. If opt is currently not set then fail is returned.

8.1.6 DisplayOptionsStack

▷ DisplayOptionsStack() (function)

This function prints a human-readable display of the complete options stack.

8.1.7 InfoOptions

▷ InfoOptions (info class)

GAP - Reference Manual 139

This info class can be used to enable messages about options being changed (level 1) or accessed
(level 2).

8.2 Options Stack – an Example

The example below shows simple manipulation of the Options Stack, first using PushOptions (8.1.1)
and PopOptions (8.1.2) and then using the special function calling syntax.

Example
gap> foo := function()

> Print("myopt1 = ", ValueOption("myopt1"),

> " myopt2 = ",ValueOption("myopt2"),"\n");

> end;

function() ... end

gap> foo();

myopt1 = fail myopt2 = fail

gap> PushOptions(rec(myopt1 := 17));

gap> foo();

myopt1 = 17 myopt2 = fail

gap> DisplayOptionsStack();

[rec(

myopt1 := 17)]

gap> PopOptions();

gap> foo();

myopt1 = fail myopt2 = fail

gap> foo(: myopt1, myopt2 := [Z(3),"aardvark"]);

myopt1 = true myopt2 = [Z(3), "aardvark"]

gap> DisplayOptionsStack();

[]

gap>

Chapter 9

Files and Filenames

Files are identified by filenames, which are represented in GAP as strings. Filenames can be created
directly by the user or a program, but of course this is operating system dependent.

Filenames for some files can be constructed in a system independent way using the following
functions. This is done by first getting a directory object for the directory the file shall reside in, and
then constructing the filename. However, it is sometimes necessary to construct filenames of files in
subdirectories relative to a given directory object. In this case the directory separator is always / even
under DOS or MacOS.

Section 9.3 describes how to construct directory objects for the common GAP and system direc-
tories. Using the command Filename (9.4.1) it is possible to construct a filename pointing to a file in
these directories. There are also functions to test for accessibility of files, see 9.6.

9.1 Portability

For portability filenames and directory names should be restricted to at most 8 alphanumerical charac-
ters optionally followed by a dot . and between 1 and 3 alphanumerical characters. Upper case letters
should be avoided because some operating systems do not make any distinction between case, so that
NaMe, Name and name all refer to the same file whereas some operating systems are case sensitive. To
avoid problems only lower case characters should be used.

Another function which is system-dependent is LastSystemError (9.1.1).

9.1.1 LastSystemError

▷ LastSystemError() (function)

LastSystemError returns a record describing the last system error that has occurred. This record
contains at least the component message which is a string. This message is, however, highly operating
system dependent and should only be used as an informational message for the user.

9.2 GAP Root Directories

When GAP is started it determines a list of directories which we call the GAP root directories. In a
running GAP session this list can be found in GAPInfo.RootPaths.

140

GAP - Reference Manual 141

The core part of GAP knows which files to read relative to its root directories. For exam-
ple when GAP wants to read its library file lib/group.gd, it appends this path to each path in
GAPInfo.RootPaths until it finds the path of an existing file. The first file found this way is read.

Furthermore, GAP looks for available packages by examining the subdirectories pkg/ in each of
the directories in GAPInfo.RootPaths.

The root directories are specified via one or several of the -l paths command line options, see
3.1. Furthermore, by default GAP automatically prepends a user specific GAP root directory to the
list; this can be avoided by calling GAP with the -r option. The name of this user specific directory
depends on your operating system, it can be found in GAPInfo.UserGapRoot. This directory can be
used to tell GAP about personal preferences, to always load some additional code, to install additional
packages, or to overwrite some GAP files. See 3.2 for more information how to do this.

9.3 Directories

9.3.1 IsDirectory

▷ IsDirectory(obj) (Category)

IsDirectory is a category of directories.

9.3.2 Directory

▷ Directory(string) (operation)

returns a directory object for the string string . Directory understands "." for “current direc-
tory”, that is, the directory in which GAP was started. It also understands absolute paths.

If the variable GAPInfo.UserHome is defined (this may depend on the operating system) then
Directory understands a string with a leading ~ (tilde) character for a path relative to the user’s
home directory (but a string beginning with "~other_user" is not interpreted as a path relative to
other_user’s home directory, as in a UNIX shell).

Paths are otherwise taken relative to the current directory.

9.3.3 DirectoryTemporary

▷ DirectoryTemporary() (function)

returns a directory object in the category IsDirectory (9.3.1) for a new temporary directory. This
is guaranteed to be newly created and empty immediately after the call to DirectoryTemporary.
GAP will make a reasonable effort to remove this directory upon termination of the GAP job that
created the directory.

If DirectoryTemporary is unable to create a new directory, fail is returned. In this case
LastSystemError (9.1.1) can be used to get information about the error.

A warning message is given if more than 1000 temporary directories are created in any GAP
session.

GAP - Reference Manual 142

9.3.4 DirectoryCurrent

▷ DirectoryCurrent() (function)

returns the directory object for the current directory.

9.3.5 ChangeDirectoryCurrent

▷ ChangeDirectoryCurrent(path) (function)

Changes the current directory. Returns true on success and fail on failure.

9.3.6 DirectoriesLibrary

▷ DirectoriesLibrary([name]) (function)

DirectoriesLibrary returns the directory objects for the GAP library name as a list. name must
be one of "lib" (the default), "doc", "tst", and so on.

The string "" is also legal and with this argument DirectoriesLibrary returns the list of GAP
root directories. The return value of this call differs from GAPInfo.RootPaths in that the former is a
list of directory objects and the latter a list of strings.

The directory name must exist in at least one of the root directories, otherwise fail is returned.
As the files in the GAP root directories (see 9.2) can be distributed into different directories in the

filespace a list of directories is returned. In order to find an existing file in a GAP root directory you
should pass that list to Filename (9.4.1) as the first argument. In order to create a filename for a new
file inside a GAP root directory you should pass the first entry of that list. However, creating files
inside the GAP root directory is not recommended, you should use DirectoryTemporary (9.3.3)
instead.

9.3.7 DirectoriesSystemPrograms

▷ DirectoriesSystemPrograms() (function)

DirectoriesSystemPrograms returns the directory objects for the list of directories where the
system programs reside, as a list. Under UNIX this would usually represent $PATH.

9.3.8 DirectoryContents

▷ DirectoryContents(dir) (function)

This function returns a list of filenames/directory names that reside in the directory dir . The
argument dir can either be given as a string indicating the name of the directory or as a directory
object (see IsDirectory (9.3.1)). If an error occurs (the specified directory does not exist or has
no read permissions), fail is returned. In this case LastSystemError (9.1.1) can be used to get
information about the error.

The ordering of the list entries can depend on the operating system.
An interactive way to show the contents of a directory is provided by the function

BrowseDirectory (Browse: BrowseDirectory) from the GAP package Browse.

GAP - Reference Manual 143

9.3.9 DirectoryDesktop

▷ DirectoryDesktop() (function)

returns a directory object for the user’s desktop directory as defined on many modern operating
systems. The function is intended to provide a cross-platform interface to a directory that is easily
accessible by the user.

Under Unix systems (including macOS) this will be the Desktop directory in the user’s home
directory if it exists, and the user’s home directory otherwise. Under Windows it will be the user’s
Desktop folder (or the appropriate name under different languages).

9.3.10 DirectoryHome

▷ DirectoryHome() (function)

returns a directory object for the user’s home directory, defined as a directory in which the user
will typically have full read and write access. The function is intended to provide a cross-platform
interface to a directory that is easily accessible by the user.

Under Unix systems (including macOS) this will be the usual user home directory. Under Win-
dows it will be the user’s My Documents folder (or the appropriate name under different languages).

9.4 File Names

9.4.1 Filename

▷ Filename(dir, name) (operation)

▷ Filename(list-of-dirs, name) (operation)

If the first argument is a directory object dir , Filename returns the (system dependent) filename
as a string for the file with name name in the directory dir . Filename returns the filename regardless
of whether the directory contains a file with name name or not.

If the first argument is a list list-of-dirs (possibly of length 1) of directory objects, then
Filename searches the directories in order, and returns the filename for the file name in the first
directory which contains a file name or fail if no directory contains a file name .

For example, in order to locate the system program date use PathSystemProgram (9.4.2).
Example

gap> date := PathSystemProgram("date");

"/bin/date"

In order to locate the library file files.gd use DirectoriesLibrary (9.3.6) together with the
second form of Filename.

Example
gap> path := DirectoriesLibrary();;

gap> Filename(path, "files.gd");

"./lib/files.gd"

In order to construct filenames for new files in a temporary directory use DirectoryTemporary

(9.3.3) together with the first form of Filename.

GAP - Reference Manual 144

Example
gap> tmpdir := DirectoryTemporary();;

gap> Filename([tmpdir], "file.new");

fail

gap> Filename(tmpdir, "file.new");

"/var/tmp/tmp.0.021738.0001/file.new"

9.4.2 PathSystemProgram

▷ PathSystemProgram(name) (function)

PathSystemProgram returns either the path of the first executable file name in one of the direc-
tories returned by DirectoriesSystemPrograms (9.3.7), or fail if no such file exists.

9.5 Special Filenames

The special filename "*stdin*" denotes the standard input, i.e., the stream through which the user
enters commands to GAP. The exact behaviour of reading from "*stdin*" is operating system de-
pendent, but usually the following happens. If GAP was started with no input redirection, statements
are read from the terminal stream until the user enters the end of file character, which is usually
CTRL-D. Note that terminal streams are special, in that they may yield ordinary input after an end of
file. Thus when control returns to the main read-eval-print loop the user can continue with GAP. If
GAP was started with an input redirection, statements are read from the current position in the input
file up to the end of the file. When control returns to the main read eval view loop the input stream
will still return end of file, and GAP will terminate.

The special filename "*errin*" denotes the stream connected to the UNIX stderr output. This
stream is usually connected to the terminal, even if the standard input was redirected, unless the
standard error stream was also redirected, in which case opening of "*errin*" fails.

The special filename "*stdout*" can be used to print to the standard output.
The special filename "*errout*" can be used to print to the standard error output file, which is

usually connected to the terminal, even if the standard output was redirected.

9.6 File Access

When the following functions return false one can use LastSystemError (9.1.1) to find out the
reason (as provided by the operating system), see the examples.

9.6.1 IsExistingFile

▷ IsExistingFile(filename) (function)

IsExistingFile returns true if a file with the filename filename exists and can be seen by the
GAP process. Otherwise false is returned.

Example
gap> IsExistingFile("/bin/date"); # file `/bin/date' exists

true

gap> IsExistingFile("/bin/date.new"); # non existing `/bin/date.new'

GAP - Reference Manual 145

false

gap> IsExistingFile("/bin/date/new"); # `/bin/date' is not a directory

false

gap> LastSystemError().message;

"Not a directory"

9.6.2 IsReadableFile

▷ IsReadableFile(filename) (function)

IsReadableFile returns true if a file with the filename filename exists and the GAP process
has read permissions for the file, or false if this is not the case.

Example
gap> IsReadableFile("/bin/date"); # file `/bin/date' is readable

true

gap> IsReadableFile("/bin/date.new"); # non-existing `/bin/date.new'

false

gap> LastSystemError().message;

"No such file or directory"

9.6.3 IsWritableFile

▷ IsWritableFile(filename) (function)

IsWritableFile returns true if a file with the filename filename exists and the GAP process
has write permissions for the file, or false if this is not the case.

Example
gap> IsWritableFile("/bin/date"); # file `/bin/date' is not writable

false

9.6.4 IsExecutableFile

▷ IsExecutableFile(filename) (function)

IsExecutableFile returns true if a file with the filename filename exists and the GAP process
has execute permissions for the file, or false if this is not the case. Note that execute permissions do
not imply that it is possible to execute the file, e.g., it may only be executable on a different machine.

Example
gap> IsExecutableFile("/bin/date"); # ... but executable

true

9.6.5 IsDirectoryPath

▷ IsDirectoryPath(filename) (function)

IsDirectoryPath returns true if the file with the filename filename exists and is a direc-
tory, and false otherwise. Note that this function does not check if the GAP process actually

GAP - Reference Manual 146

has write or execute permissions for the directory. You can use IsWritableFile (9.6.3), resp.
IsExecutableFile (9.6.4) to check such permissions.

9.7 File Operations

9.7.1 Read

▷ Read(filename) (operation)

reads the input from the file with the filename filename , which must be given as a string.
Read first opens the file filename . If the file does not exist, or if GAP cannot open it, e.g.,

because of access restrictions, an error is signalled.
Then the contents of the file are read and evaluated, but the results are not printed. The reading

and evaluations happens exactly as described for the main loop (see 6.1).
If a statement in the file causes an error a break loop is entered (see 6.4). The input for this

break loop is not taken from the file, but from the input connected to the stderr output of GAP. If
stderr is not connected to a terminal, no break loop is entered. If this break loop is left with quit

(or CTRL-D), GAP exits from the Read command, and from all enclosing Read commands, so that
control is normally returned to an interactive prompt. The QUIT statement (see 6.7) can also be used
in the break loop to exit GAP immediately.

Note that a statement must not begin in one file and end in another. I.e., eof (end-of-f ile) is not
treated as whitespace, but as a special symbol that must not appear inside any statement.

Note that one file may very well contain a read statement causing another file to be read, before
input is again taken from the first file. There is an upper limit of 15 on the number of files that may be
open simultaneously.

9.7.2 ReadAsFunction

▷ ReadAsFunction(filename) (operation)

reads the file with filename filename as a function and returns this function.
Example
Suppose that the file /tmp/example.g contains the following

Example
local a;

a := 10;

return a*10;

Reading the file as a function will not affect a global variable a.
Example

gap> a := 1;

1

gap> ReadAsFunction("/tmp/example.g")();

100

gap> a;

1

GAP - Reference Manual 147

9.7.3 PrintTo and AppendTo

▷ PrintTo(filename[, obj1, ...]) (function)

▷ AppendTo(filename[, obj1, ...]) (function)

PrintTo works like Print (6.3.4), except that the arguments obj1 , . . . (if present) are printed to
the file with the name filename instead of the standard output. This file must of course be writable
by GAP. Otherwise an error is signalled. Note that PrintTo will overwrite the previous contents of
this file if it already existed; in particular, PrintTo with just the filename argument empties that file.

AppendTo works like PrintTo, except that the output does not overwrite the previous contents of
the file, but is appended to the file.

There is an upper limit of 15 on the number of output files that may be open simultaneously.
Note that one should be careful not to write to a logfile (see LogTo (9.7.4)) with PrintTo or

AppendTo.

9.7.4 LogTo

▷ LogTo(filename) (operation)

▷ LogTo() (operation)

Calling LogTo with a string filename causes the subsequent interaction to be logged to the file
with the name filename , i.e., everything you see on your terminal will also appear in this file. (LogTo
(10.4.5) may also be used to log to a stream.) This file must of course be writable by GAP, otherwise
an error is signalled. Note that LogTo will overwrite the previous contents of this file if it already
existed.

Called without arguments, LogTo stops logging to a file or stream.

9.7.5 InputLogTo

▷ InputLogTo(filename) (operation)

▷ InputLogTo() (operation)

Calling InputLogTo with a string filename causes the subsequent input to be logged to the
file with the name filename , i.e., everything you type on your terminal will also appear in this file.
Note that InputLogTo and LogTo (9.7.4) cannot be used at the same time while InputLogTo and
OutputLogTo (9.7.6) can. Note that InputLogTo will overwrite the previous contents of this file if it
already existed.

Called without arguments, InputLogTo stops logging to a file or stream.

9.7.6 OutputLogTo

▷ OutputLogTo(filename) (operation)

▷ OutputLogTo() (operation)

Calling OutputLogTo with a string filename causes the subsequent output to be logged to the
file with the name filename , i.e., everything GAP prints on your terminal will also appear in this file.
Note that OutputLogTo and LogTo (9.7.4) cannot be used at the same time while InputLogTo (9.7.5)

GAP - Reference Manual 148

and OutputLogTo can. Note that OutputLogTo will overwrite the previous contents of this file if it
already existed.

Called without arguments, OutputLogTo stops logging to a file or stream.

9.7.7 CrcFile

▷ CrcFile(filename) (function)

This function computes a CRC (cyclic redundancy check) number for the content of the file
filename .

CrcFile computes a CRC (cyclic redundancy check) checksum value for the file with filename
filename and returns this value as an integer. The function returns fail if an error occurred, for
example, if filename does not exist. In this case the function LastSystemError (9.1.1) can be used
to get information about the error. See also CrcFile and HexSHA256 (27.9.7).

Example
gap> CrcFile("lib/morpheus.gi");

2705743645

9.7.8 RemoveFile

▷ RemoveFile(filename) (function)

will remove the file with filename filename and returns true in case of success. The function
returns fail if a system error occurred, for example, if your permissions do not allow the removal of
filename . In this case the function LastSystemError (9.1.1) can be used to get information about
the error.

9.7.9 UserHomeExpand

▷ UserHomeExpand(str) (function)

If the string str starts with a '~' character this function returns a new string with the leading '~'

substituted by the user’s home directory as stored in GAPInfo.UserHome. Otherwise str is returned
unchanged.

9.7.10 Reread

▷ Reread(filename) (function)

▷ REREADING (global variable)

In general, it is not possible to read the same GAP library file twice, or to read a compiled version
after reading a GAP version, because crucial global variables are made read-only (see 4.9) and filters
and methods are added to global tables.

A partial solution to this problem is provided by the function Reread (and related functions
RereadLib etc.). Reread(filename) sets the global variable REREADING to true, reads the file
named by filename and then resets REREADING. Various system functions behave differently when
REREADING is set to true. In particular, assignment to read-only global variables is permitted, calls

GAP - Reference Manual 149

to NewRepresentation (13.4.4) and NewInfoClass (7.4.1) with parameters identical to those of
an existing representation or info class will return the existing object, and methods installed with
InstallMethod (78.3.1) may sometimes displace existing methods.

This function may not entirely produce the intended results, especially if what has changed is the
super-representation of a representation or the requirements of a method. In these cases, it is necessary
to restart GAP to read the modified file.

An additional use of Reread is to load the compiled version of a file for which the GAP language
version had previously been read (or perhaps was included in a saved workspace). See 76.3.11 and
3.3 for more information.

It is not advisable to use Reread programmatically. For example, if a file that contains calls to
Reread is read with Reread then REREADING may be reset too early.

Chapter 10

Streams

Streams provide flexible access to GAP’s input and output processing. An input stream takes charac-
ters from some source and delivers them to GAP which reads them from the stream. When an input
stream has delivered all characters it is at end-of-stream. An output stream receives characters from
GAP which writes them to the stream, and delivers them to some destination.

A major use of streams is to provide efficient and flexible access to files. Files can be read and
written using Read (9.7.1) and AppendTo (9.7.3), however the former only allows a complete file to
be read as GAP input and the latter imposes a high time penalty if many small pieces of output are
written to a large file. Streams allow input files in other formats to be read and processed, and files to
be built up efficiently from small pieces of output. Streams may also be used for other purposes, for
example to read from and print to GAP strings, or to read input directly from the user.

Any stream is either a text stream, which translates the end-of-line character (\n) to or from the
system’s representation of end-of-line (e.g., new-line under UNIX and carriage-return-new-line
under DOS), or a binary stream, which does not translate the end-of-line character. The processing
of other unprintable characters by text streams is undefined. Binary streams pass them unchanged.

Whereas it is cheap to append to a stream, streams do consume system resources, and only a
limited number can be open at any time, therefore it is necessary to close a stream as soon as possible
using CloseStream (10.2.1). If creating a stream failed then LastSystemError (9.1.1) can be used
to get information about the failure.

10.1 Categories for Streams and the StreamsFamily

10.1.1 IsStream

▷ IsStream(obj) (Category)

Streams are GAP objects and all open streams, input, output, text and binary, lie in this category.

10.1.2 IsClosedStream

▷ IsClosedStream(obj) (Category)

When a stream is closed, its type changes to lie in IsClosedStream. This category is used to
install methods that trap accesses to closed streams.

150

GAP - Reference Manual 151

10.1.3 IsInputStream

▷ IsInputStream(obj) (Category)

All input streams lie in this category, and support input operations such as ReadByte (10.3.3) (see
10.3)

10.1.4 IsInputTextStream

▷ IsInputTextStream(obj) (Category)

All text input streams lie in this category. They translate new-line characters read.

10.1.5 IsInputTextNone

▷ IsInputTextNone(obj) (Category)

It is convenient to use a category to distinguish dummy streams (see 10.9) from others. Other
distinctions are usually made using representations

10.1.6 IsOutputStream

▷ IsOutputStream(obj) (Category)

All output streams lie in this category and support basic operations such as WriteByte (10.4.1)
(see Section 10.4).

10.1.7 IsOutputTextStream

▷ IsOutputTextStream(obj) (Category)

All text output streams lie in this category and translate new-line characters on output.

10.1.8 IsOutputTextNone

▷ IsOutputTextNone(obj) (Category)

It is convenient to use a category to distinguish dummy streams (see 10.9) from others. Other
distinctions are usually made using representations

10.1.9 StreamsFamily

▷ StreamsFamily (family)

All streams lie in the StreamsFamily.

GAP - Reference Manual 152

10.2 Operations applicable to All Streams

10.2.1 CloseStream

▷ CloseStream(stream) (operation)

In order to preserve system resources and to flush output streams every stream should be closed as
soon as it is no longer used using CloseStream.

It is an error to try to read characters from or write characters to a closed stream. Closing a stream
tells the GAP kernel and/or the operating system kernel that the file is no longer needed. This may
be necessary because the GAP kernel and/or the operating system may impose a limit on how many
streams may be open simultaneously.

10.2.2 FileDescriptorOfStream

▷ FileDescriptorOfStream(stream) (operation)

returns the UNIX file descriptor of the underlying file. This is mainly useful for the UNIXSelect

(10.2.3) function call. This is as of now only available on UNIX-like operating systems and only for
streams to local processes and local files.

10.2.3 UNIXSelect

▷ UNIXSelect(inlist, outlist, exclist, timeoutsec, timeoutusec) (function)

makes the UNIX C-library function select accessible from GAP for streams. The functionality
is as described in the man page (see UNIX file descriptors (integers) for streams. They can be obtained
via FileDescriptorOfStream (10.2.2) for streams to local processes and to local files. The argu-
ment timeoutsec is a timeout in seconds as in the struct timeval on the C level. The argument
timeoutusec is analogously in microseconds. The total timeout is the sum of both. If one of those
timeout arguments is not a small integer then no timeout is applicable (fail is allowed for the timeout
arguments).

The return value is the number of streams that are ready, this may be 0 if a timeout was specified.
All file descriptors in the three lists that are not yet ready are replaced by fail in this function. So the
lists are changed!

This function is only available if your operating system has select, which is detected during
compilation of GAP.

10.3 Operations for Input Streams

Two operations normally used to read files: Read (9.7.1) and ReadAsFunction (9.7.2) can also be
used to read GAP input from a stream. The input is immediately parsed and executed. When reading
from a stream str , the GAP kernel generates calls to ReadLine(str) to supply text to the parser.

Three further operations: ReadByte (10.3.3), ReadLine (10.3.4) and ReadAll (10.3.5), support
reading characters from an input stream without parsing them. This can be used to read data in any
format and process it in GAP.

GAP - Reference Manual 153

Additional operations for input streams support detection of end of stream, and (for those streams
for which it is appropriate) random access to the data.

10.3.1 Read (for streams)

▷ Read(input-text-stream) (operation)

reads the input-text-stream as input until end-of-stream occurs. See 9.7 for details.

10.3.2 ReadAsFunction (for streams)

▷ ReadAsFunction(input-text-stream) (operation)

reads the input-text-stream as function and returns this function. See 9.7 for details.
Example

gap> # a function with local `a' does not change the global one

gap> a := 1;;

gap> i := InputTextString("local a; a := 10; return a*10;");;

gap> ReadAsFunction(i)();

100

gap> a;

1

gap> # reading it via `Read' does

gap> i := InputTextString("a := 10;");;

gap> Read(i);

gap> a;

10

10.3.3 ReadByte

▷ ReadByte(input-stream) (operation)

ReadByte returns one character (returned as integer) from the input stream input-stream .
ReadByte returns fail if there is no character available, in particular if it is at the end of a file.

If input-stream is the input stream of a input/output process, ReadByte may also return fail

if no byte is currently available.
ReadByte is the basic operation for input streams. If a ReadByte method is installed for a

user-defined type of stream which does not block, then all the other input stream operations will
work (although possibly not at peak efficiency).

ReadByte will wait (block) until a byte is available. For instance if the stream is a connection to
another process, it will wait for the process to output a byte.

10.3.4 ReadLine

▷ ReadLine(input-stream) (operation)

ReadLine returns one line (returned as string with the newline) from the input stream
input-stream . ReadLine reads in the input until a newline is read or the end-of-stream is en-
countered.

GAP - Reference Manual 154

If input-stream is the input stream of a input/output process, ReadLine may also return fail or
return an incomplete line if the other process has not yet written any more. It will always wait (block)
for at least one byte to be available, but will then return as much input as is available, up to a limit of
one line.

A default method is supplied for ReadLine which simply calls ReadByte (10.3.3) repeatedly. This
is only safe for streams that cannot block. The kernel uses calls to ReadLine to supply input to the
parser when reading from a stream.

10.3.5 ReadAll

▷ ReadAll(input-stream[, limit]) (operation)

ReadAll returns all characters as string from the input stream stream-in . It waits (blocks) until
at least one character is available from the stream, or until there is evidence that no characters will
ever be available again. This last indicates that the stream is at end-of-stream. Otherwise, it reads
as much input as it can from the stream without blocking further and returns it to the user. If the
stream is already at end of file, so that no bytes are available, fail is returned. In the case of a file
stream connected to a normal file (not a pseudo-tty or named pipe or similar), all the bytes should be
immediately available and this function will read the remainder of the file.

With a second argument, at most limit bytes will be returned. Depending on the stream a
bounded number of additional bytes may have been read into an internal buffer.

A default method is supplied for ReadAll which simply calls ReadLine (10.3.4) repeatedly. This
is only really safe for streams which cannot block. Other streams should install a method for ReadAll.

Example
gap> i := InputTextString("1Hallo\nYou\n1");;

gap> ReadByte(i);

49

gap> CHAR_INT(last);

'1'

gap> ReadLine(i);

"Hallo\n"

gap> ReadLine(i);

"You\n"

gap> ReadLine(i);

"1"

gap> ReadLine(i);

fail

gap> ReadAll(i);

""

gap> RewindStream(i);;

gap> ReadAll(i);

"1Hallo\nYou\n1"

10.3.6 IsEndOfStream

▷ IsEndOfStream(input-stream) (operation)

IsEndOfStream returns true if the input stream is at end-of-stream, and false otherwise. Note
that IsEndOfStream might return false even if the next ReadByte (10.3.3) fails.

GAP - Reference Manual 155

10.3.7 PositionStream

▷ PositionStream(input-stream) (operation)

Some input streams, such as string streams and file streams attached to disk files, support a form
of random access by way of the operations PositionStream, SeekPositionStream (10.3.9) and
RewindStream (10.3.8). PositionStream returns a non-negative integer denoting the current posi-
tion in the stream (usually the number of characters before the next one to be read.

If this is not possible, for example for an input stream attached to standard input (normally the
keyboard), then fail is returned

10.3.8 RewindStream

▷ RewindStream(input-stream) (operation)

RewindStream attempts to return an input stream to its starting condition, so that all the same
characters can be read again. It returns true if the rewind succeeds and fail otherwise

A default method implements RewindStream using SeekPositionStream (10.3.9).

10.3.9 SeekPositionStream

▷ SeekPositionStream(input-stream, pos) (operation)

SeekPositionStream attempts to rewind or wind forward an input stream to the specified posi-
tion. This is not possible for all streams. It returns true if the seek is successful and fail otherwise.

10.4 Operations for Output Streams

10.4.1 WriteByte

▷ WriteByte(output-stream, byte) (operation)

writes the next character (given as integer) to the output stream output-stream . The function
returns true if the write succeeds and fail otherwise.

WriteByte is the basic operation for output streams. If a WriteByte method is installed for a
user-defined type of stream, then all the other output stream operations will work (although possibly
not at peak efficiency).

10.4.2 WriteLine

▷ WriteLine(output-stream, string) (operation)

appends string to output-stream . A final newline is written. The function returns true if the
write succeeds and fail otherwise.

A default method is installed which implements WriteLine by repeated calls to WriteByte

(10.4.1).

GAP - Reference Manual 156

10.4.3 WriteAll

▷ WriteAll(output-stream, string) (operation)

appends string to output-stream . No final newline is written. The function returns true if
the write succeeds and fail otherwise. It will block as long as necessary for the write operation to
complete (for example for a child process to clear its input buffer)

A default method is installed which implements WriteAll by repeated calls to WriteByte

(10.4.1).
When printing or appending to a stream (using PrintTo (9.7.3), or AppendTo (9.7.3) or when

logging to a stream), the kernel generates a call to WriteAll for each line output.
Example

gap> str := "";; a := OutputTextString(str,true);;

gap> WriteByte(a,INT_CHAR('H'));

true

gap> WriteLine(a,"allo");

true

gap> WriteAll(a,"You\n");

true

gap> CloseStream(a);

gap> Print(str);

Hallo

You

10.4.4 PrintTo and AppendTo (for streams)

▷ PrintTo(output-stream, arg1, ...) (function)

▷ AppendTo(output-stream, arg1, ...) (function)

These functions work like Print (6.3.4), except that the output is appended to the output stream
output-stream .

Example
gap> str := "";; a := OutputTextString(str,true);;

gap> AppendTo(a, (1,2,3), ":", Z(3));

gap> CloseStream(a);

gap> Print(str, "\n");

(1,2,3):Z(3)

10.4.5 LogTo (for streams)

▷ LogTo(stream) (operation)

causes the subsequent interaction to be logged to the output stream stream . It works in precisely
the same way as it does for files (see LogTo (9.7.4)).

10.4.6 InputLogTo (for streams)

▷ InputLogTo(stream) (operation)

GAP - Reference Manual 157

causes the subsequent input to be logged to the output stream stream . It works just like it does
for files (see InputLogTo (9.7.5)).

10.4.7 OutputLogTo (for streams)

▷ OutputLogTo(stream) (operation)

causes the subsequent output to be logged to the output stream stream . It works just like it does
for files (see OutputLogTo (9.7.6)).

10.4.8 SetPrintFormattingStatus

▷ SetPrintFormattingStatus(stream, newstatus) (operation)

▷ PrintFormattingStatus(stream) (operation)

When text is being sent to an output text stream via PrintTo (9.7.3), AppendTo (9.7.3), LogTo
(10.4.5), etc., it is by default formatted just as it would be were it being printed to the screen. Thus,
it is broken into lines of reasonable length at (where possible) sensible places, lines containing el-
ements of lists or records are indented, and so forth. This is appropriate if the output is eventually
to be viewed by a human, and harmless if it to passed as input to GAP, but may be unhelpful if
the output is to be passed as input to another program. It is possible to turn off this behaviour for
a stream using the SetPrintFormattingStatus operation, and to test whether it is on or off using
PrintFormattingStatus.

SetPrintFormattingStatus sets whether output sent to the output stream stream via PrintTo
(9.7.3), AppendTo (9.7.3), etc. will be formatted with line breaks and indentation. If the second
argument newstatus is true then output will be so formatted, and if false then it will not. If the
stream is not a text stream, only false is allowed.

PrintFormattingStatus returns true if output sent to the output text stream stream via
PrintTo (9.7.3), AppendTo (9.7.3), etc. will be formatted with line breaks and indentation, and false

otherwise. For non-text streams, it returns false. If as argument stream the string "*stdout*" is
given, these functions refer to the formatting status of the standard output (so usually the user’s termi-
nal screen).

Similarly, the string "*errout*" refers to the formatting status of the standard error output, which
influences how error messages are printed.

These functions do not influence the behaviour of the low level functions WriteByte (10.4.1),
WriteLine (10.4.2) or WriteAll (10.4.3) which always write without formatting.

Example
gap> s := "";; str := OutputTextString(s,false);;

gap> PrintTo(str,Primes{[1..30]});

gap> s;

"[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,\

\n 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113]"

gap> Print(s,"\n");

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,

67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113]

gap> SetPrintFormattingStatus(str, false);

gap> PrintTo(str,Primes{[1..30]});

gap> s;

GAP - Reference Manual 158

"[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,\

\n 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113][2, 3, 5, 7\

, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, \

79, 83, 89, 97, 101, 103, 107, 109, 113]"

gap> Print(s,"\n");

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,

67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113][2, 3, 5, 7, 1\

1, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,\

83, 89, 97, 101, 103, 107, 109, 113]

10.5 File Streams

File streams are streams associated with files. An input file stream reads the characters it delivers from
a file, an output file stream prints the characters it receives to a file. The following functions can be
used to create such streams. They return fail if an error occurred, in this case LastSystemError

(9.1.1) can be used to get information about the error.

10.5.1 InputTextFile

▷ InputTextFile(filename) (operation)

InputTextFile(filename) returns an input stream in the category IsInputTextStream

(10.1.4) that delivers the characters from the file filename . If filename ends in .gz and the file
is a valid gzipped file, then the file will be transparently uncompressed.

InputTextFile is designed for use with text files and automatically handles windows-style line
endings. This means it should not be used for binary data. The IO_File (IO: IO_File mode) function
from the IO package should be used to access binary data.

Note: At most 256 files may be open for reading or writing at the same time. Use CloseStream

(10.2.1) to close the input stream once you have finished reading from it.

10.5.2 OutputTextFile

▷ OutputTextFile(filename, append) (operation)

▷ OutputGzipFile(filename, append) (operation)

OutputTextFile(filename, append) returns an output stream in the category
IsOutputTextFile that writes received characters to the file filename . If append is false,
then the file is emptied first, otherwise received characters are added at the end of the file.
OutputGzipFile acts identically to OutputTextFile, except it compresses the output with gzip.

Note: At most 256 files may be open for reading or writing at the same time. Use CloseStream

(10.2.1) to close the output stream once you have finished writing to it.
Example

gap> # use a temporary directory

gap> name := Filename(DirectoryTemporary(), "test");;

gap> # create an output stream, append output, and close again

gap> output := OutputTextFile(name, true);;

gap> AppendTo(output, "Hallo\n", "You\n");

gap> CloseStream(output);

GAP - Reference Manual 159

gap> # create an input, print complete contents of file, and close

gap> input := InputTextFile(name);;

gap> Print(ReadAll(input));

Hallo

You

gap> CloseStream(input);

gap> # append a single line

gap> output := OutputTextFile(name, true);;

gap> AppendTo(output, "AppendLine\n");

gap> # close output stream to flush the output

gap> CloseStream(output);

gap> # create an input, print complete contents of file, and close

gap> input := InputTextFile(name);;

gap> Print(ReadAll(input));

Hallo

You

AppendLine

gap> CloseStream(input);

10.6 User Streams

The commands described in this section create streams which accept characters from, or deliver char-
acters to, the user, via the keyboard or the GAP session display.

10.6.1 InputTextUser

▷ InputTextUser() (function)

returns an input text stream which delivers characters typed by the user (or from the standard input
device if it has been redirected). In normal circumstances, characters are delivered one by one as they
are typed, without waiting until the end of a line. No prompts are printed.

10.6.2 OutputTextUser

▷ OutputTextUser() (function)

returns an output stream which delivers characters to the user’s display (or the standard output
device if it has been redirected). Each character is delivered immediately it is written, without waiting
for a full line of output. Text written in this way is not written to the session log (see LogTo (9.7.4)).

10.6.3 InputFromUser

▷ InputFromUser(arg) (function)

prints the arg as a prompt, then waits until a text is typed by the user (or from the standard input
device if it has been redirected). This text must be a single expression, followed by one enter. This is
evaluated (see EvalString (27.9.5)) and the result is returned.

GAP - Reference Manual 160

10.7 String Streams

String streams are streams associated with strings. An input string stream reads the characters it
delivers from a string, an output string stream appends the characters it receives to a string. The
following functions can be used to create such streams.

10.7.1 InputTextString

▷ InputTextString(string) (operation)

InputTextString(string) returns an input stream that delivers the characters from the string
string . The string is not changed when reading characters from it and changing the string after
the call to InputTextString has no influence on the input stream.

10.7.2 OutputTextString

▷ OutputTextString(list, append) (operation)

returns an output stream that puts all received characters into the list list . If append is false,
then the list is emptied first, otherwise received characters are added at the end of the list.

Example
gap> # read input from a string

gap> input := InputTextString("Hallo\nYou\n");;

gap> ReadLine(input);

"Hallo\n"

gap> ReadLine(input);

"You\n"

gap> # print to a string

gap> str := "";;

gap> out := OutputTextString(str, true);;

gap> PrintTo(out, 1, "\n", (1,2,3,4)(5,6), "\n");

gap> CloseStream(out);

gap> Print(str);

1

(1,2,3,4)(5,6)

10.8 Input-Output Streams

Input-output streams capture bidirectional communications between GAP and another process, either
locally or (@as yet unimplemented@) remotely.

Such streams support the basic operations of both input and output streams. They should provide
some buffering, allowing output data to be written to the stream, even when input data is waiting to
be read, but the amount of this buffering is operating system dependent, and the user should take care
not to get too far ahead in writing, or behind in reading, or deadlock may occur.

At present the only type of Input-Output streams that are implemented provide communication
with a local child process, using a pseudo-tty.

Like other streams, write operations are blocking, read operations will block to get the first char-
acter, but not thereafter.

GAP - Reference Manual 161

As far as possible, no translation is done on characters written to, or read from the stream, and no
control characters have special effects, but the details of particular pseudo-tty implementations may
effect this.

10.8.1 IsInputOutputStream

▷ IsInputOutputStream(obj) (Category)

IsInputOutputStream is the Category of Input-Output Streams; it returns true if the obj is an
input-output stream and false otherwise.

10.8.2 InputOutputLocalProcess

▷ InputOutputLocalProcess(dir, executable, args) (function)

starts up a child process, whose executable file is executable , with “command line” ar-
guments args in the directory dir . (Suitable choices for dir are DirectoryCurrent()

or DirectoryTemporary() (see Section 9.3); DirectoryTemporary() may be a good
choice when executable generates output files that it doesn’t itself remove afterwards.)
InputOutputLocalProcess returns an InputOutputStream object. Bytes written to this stream are
received by the child process as if typed at a terminal on standard input. Bytes written to standard
output by the child process can be read from the stream.

When the stream is closed, the signal SIGTERM is delivered to the child process, which is ex-
pected to exit.

Example
gap> d := DirectoryCurrent();

dir("./")

gap> f := PathSystemProgram("rev");

"/usr/bin/rev"

gap> s := InputOutputLocalProcess(d,f,[]);

< input/output stream to rev >

gap> WriteLine(s,"The cat sat on the mat");

true

gap> Print(ReadLine(s));

tam eht no tas tac ehT

gap> x := ListWithIdenticalEntries(10000,'x');;

gap> ConvertToStringRep(x);

gap> WriteLine(s,x);

true

gap> WriteByte(s,INT_CHAR('\n'));

true

gap> y := ReadAll(s);;

gap> Length(y);

10002

gap> CloseStream(s);

gap> s;

< closed input/output stream to rev >

GAP - Reference Manual 162

10.8.3 ReadAllLine

▷ ReadAllLine(iostream[, nofail][, IsAllLine]) (operation)

For an input/output stream iostream ReadAllLine reads until a newline character if any input
is found or returns fail if no input is found, i.e. if any input is found ReadAllLine is non-blocking.

If the argument nofail (which must be false or true) is provided and it is set to true then
ReadAllLine will wait, if necessary, for input and never return fail.

If the argument IsAllLine (which must be a function that takes a string argument and returns
either true or false) then it is used to determine what constitutes a whole line. The default behaviour
is equivalent to passing the function

Example
line -> 0 < Length(line) and line[Length(line)] = '\n'

for the IsAllLine argument. The purpose of the IsAllLine argument is to cater for the case
where the input being read is from an external process that writes a “prompt” for data that does not
terminate with a newline.

If the first argument is an input stream but not an input/output stream then ReadAllLine behaves
as if ReadLine (10.3.4) was called with just the first argument and any additional arguments are
ignored.

10.9 Dummy Streams

The following two commands create dummy streams which will consume all characters and never
deliver one.

10.9.1 InputTextNone

▷ InputTextNone() (function)

returns a dummy input text stream, which delivers no characters, i.e., it is always at end of stream.
Its main use is for calls to Process (11.1.1) when the started program does not read anything.

10.9.2 OutputTextNone

▷ OutputTextNone() (function)

returns a dummy output stream, which discards all received characters. Its main use is for calls to
Process (11.1.1) when the started program does not write anything.

10.10 Handling of Streams in the Background

This section describes a feature of the GAP kernel that can be used to handle pending streams some-
how “in the background”. This is only available on operating systems that have select.

Right before GAP reads a keypress from the keyboard it calls a little subroutine that can handle
streams that are ready to be read or ready to be written. This means that GAP can handle these streams

GAP - Reference Manual 163

during user input on the command line. Note that this does not work when GAP is in the middle of
some calculation.

This feature is used in the following way. One can install handler functions for reading
or writing streams via InstallCharReadHookFunc (10.10.1). Handlers can be removed via
UnInstallCharReadHookFunc (10.10.2)

Note that handler functions must not return anything and get one integer argument, which refers
to an index in one of the following arrays (according to whether the function was installed for input,
output or exceptions on the stream). Handler functions usually should not output anything on the
standard output because this ruins the command line during command line editing.

10.10.1 InstallCharReadHookFunc

▷ InstallCharReadHookFunc(stream, mode, func) (function)

installs the function func as a handler function for the stream stream . The argument mode
decides, for what operations on the stream this function is installed. mode must be a string, in which a
letter r means “read”, w means “write” and x means “exception”, according to the select function call
in the UNIX C-library (see man select and UNIXSelect (10.2.3)). More than one letter is allowed
in mode . As described above the function is called in a situation when GAP is reading a character
from the keyboard. Handler functions should not use much time to complete.

This functionality only works if the operating system has a select function.

10.10.2 UnInstallCharReadHookFunc

▷ UnInstallCharReadHookFunc(stream, func) (function)

uninstalls the function func as a handler function for the stream stream . All instances are dein-
stalled, regardless of the mode of operation (read, write, exception).

This functionality only works if the operating system has a select function.

10.11 Comma separated files

In some situations it can be desirable to process data given in the form of a spreadsheet (such as Excel).
GAP can do this using the CSV (comma separated values) format, which spreadsheet programs can
usually read in or write out.

The first line of the spreadsheet is used as labels of record components, each subsequent line then
corresponds to a record. Entries enclosed in double quotes are considered as strings and are permitted
to contain the separation character (usually a comma).

10.11.1 ReadCSV

▷ ReadCSV(filename[, nohead][, separator]) (function)

This function reads in a spreadsheet, saved in CSV format (comma separated values) and returns
its entries as a list of records. The entries of the first line of the spreadsheet are used to denote the
names of the record components. Blanks will be translated into underscore characters. If the parameter
nohead is given as true, instead the record components will be called fieldn. Each subsequent line

GAP - Reference Manual 164

will create one record. If given, separator is the character used to separate fields. Otherwise it
defaults to a comma.

10.11.2 PrintCSV

▷ PrintCSV(filename, list[, fields]) (function)

This function prints a list of records as a spreadsheet in CSV format (which can be read in for
example into Excel). The names of the record components will be printed as entries in the first line. If
the argument fields is given only the record fields listed in this list will be printed and they will be
printed in the same arrangement as given in this list. If the option noheader is set to true the line with
the record field names will not be printed.

10.12 Opening files in the Operating System

In some situations it can be desirable to open a file outside of GAP, for example HTML files, PDFs,
or pictures.

10.12.1 OpenExternal

▷ OpenExternal(filename) (function)

Open the file filename using the default application for this file in the operating system. This
can be used to open files like HTML and PDF files in the GUI.

Chapter 11

Processes

GAP can call other programs, such programs are called processes. There are two kinds of processes:
first there are processes that are started, run and return a result, while GAP is suspended until the
process terminates. Then there are processes that will run in parallel to GAP as subprocesses and
GAP can communicate and control the processes using streams (see InputOutputLocalProcess

(10.8.2)).

11.1 Process and Exec

11.1.1 Process

▷ Process(dir, prg, stream-in, stream-out, options) (operation)

Process runs a new process and returns when the process terminates. It returns the return value
of the process if the operating system supports such a concept.

The first argument dir is a directory object (see 9.3) which will be the current directory (in the
usual UNIX or MS-DOS sense) when the program is run. This will only matter if the program
accesses files (including running other programs) via relative path names. In particular, it has nothing
to do with finding the binary to run.

In general the directory will either be the current directory, which is returned by
DirectoryCurrent (9.3.4) –this was the behaviour of GAP 3– or a temporary directory returned
by DirectoryTemporary (9.3.3). If one expects that the process creates temporary or log files the
latter should be used because GAP will attempt to remove these directories together with all the files
in them when quitting.

If a program of a GAP package which does not only consist of GAP code needs to be launched
in a directory relative to certain data libraries, then the first entry of DirectoriesPackageLibrary
(76.3.7) should be used. The argument of DirectoriesPackageLibrary (76.3.7) should be the path
to the data library relative to the package directory.

If a program calls other programs and needs to be launched in a directory containing the executa-
bles for such a GAP package then the first entry of DirectoriesPackagePrograms (76.3.8) should
be used.

The latter two alternatives should only be used if absolutely necessary because otherwise one risks
accumulating log or core files in the package directory.

165

GAP - Reference Manual 166

Example
gap> ls := PathSystemProgram("ls");;

gap> stdin := InputTextUser();;

gap> stdout := OutputTextUser();;

gap> path := DirectoriesSystemPrograms();;

gap> Process(path[1], ls, stdin, stdout, ["-c"]);;

awk ls mkdir

gap> # current directory, here the root directory

gap> Process(DirectoryCurrent(), ls, stdin, stdout, ["-c"]);;

bin lib trans tst CVS grp prim thr two

src dev etc tbl doc pkg small tom

gap> # create a temporary directory

gap> tmpdir := DirectoryTemporary();;

gap> Process(tmpdir, ls, stdin, stdout, ["-c"]);;

gap> PrintTo(Filename(tmpdir, "emil"));

gap> Process(tmpdir, ls, stdin, stdout, ["-c"]);;

emil

prg is the filename of the program to launch, for portability it should be the result of Filename
(9.4.1) and should pass IsExecutableFile (9.6.4). Note that Process does no searching through a
list of directories, this is done by Filename (9.4.1).

stream-in is the input stream that delivers the characters to the process. For portability it should
either be InputTextNone (10.9.1) (if the process reads no characters), InputTextUser (10.6.1), the
result of a call to InputTextFile (10.5.1) from which no characters have been read, or the result of
a call to InputTextString (10.7.1).

Process is free to consume all the input even if the program itself does not require any input at
all.

stream-out is the output stream which receives the characters from the process. For portability
it should either be OutputTextNone (10.9.2) (if the process writes no characters), OutputTextUser
(10.6.2), the result of a call to OutputTextFile (10.5.2) to which no characters have been written, or
the result of a call to OutputTextString (10.7.2).

options is a list of strings which are passed to the process as command line argument. Note
that no substitutions are performed on the strings, i.e., they are passed immediately to the process and
are not processed by a command interpreter (shell). Further note that each string is passed as one
argument, even if it contains space characters. Note that input/output redirection commands are not
allowed as options .

In order to find a system program use PathSystemProgram (9.4.2).
Example

gap> date := PathSystemProgram("date");

"/bin/date"

The next example shows how to execute date with no argument and no input, and collect the
output into a string stream.

Example
gap> str := "";; a := OutputTextString(str,true);;

gap> Process(DirectoryCurrent(), date, InputTextNone(), a, []);

0

gap> CloseStream(a);

gap> Print(str);

Fri Jul 11 09:04:23 MET DST 1997

GAP - Reference Manual 167

11.1.2 Exec

▷ Exec(cmd, option1, ..., optionN) (function)

Exec runs a shell in the current directory to execute the command given by the string cmd with
options option1 , ..., optionN .

Example
gap> Exec("date");

Thu Jul 24 10:04:13 BST 1997

cmd is interpreted by the shell and therefore we can make use of the various features that a shell
offers as in following example.

Example
gap> Exec("echo \"GAP is great!\" > foo");

gap> Exec("cat foo");

GAP is great!

gap> Exec("rm foo");

Exec calls the more general operation Process (11.1.1). The function Edit (6.10.1) should be
used to call an editor from within GAP.

Chapter 12

Objects and Elements

An object is anything in GAP that can be assigned to a variable, so nearly everything in GAP is an
object.

Different objects can be regarded as equal with respect to the equivalence relation “=”, in this case
we say that the objects describe the same element.

12.1 Objects

Nearly all things one deals with in GAP are objects. For example, an integer is an object, as is a
list of integers, a matrix, a permutation, a function, a list of functions, a record, a group, a coset or a
conjugacy class in a group.

Examples of things that are not objects are comments which are only lexical constructs, while
loops which are only syntactical constructs, and expressions, such as 1 + 1; but note that the value of
an expression, in this case the integer 2, is an object.

Objects can be assigned to variables, and everything that can be assigned to a variable is an object.
Analogously, objects can be used as arguments of functions, and can be returned by functions.

12.1.1 IsObject

▷ IsObject(obj) (Category)

IsObject returns true if the object obj is an object. Obviously it can never return false.
It can be used as a filter in InstallMethod (78.3.1) when one of the arguments can be anything.

12.2 Elements as equivalence classes

The equality operation “=” defines an equivalence relation on all GAP objects. The equivalence classes
are called elements.

There are basically three reasons to regard different objects as equal. Firstly the same information
may be stored in different places. Secondly the same information may be stored in different ways;
for example, a polynomial can be stored sparsely or densely. Thirdly different information may be
equal modulo a mathematical equivalence relation. For example, in a finitely presented group with the
relation a2 = 1 the different objects a and a3 describe the same element.

168

GAP - Reference Manual 169

As an example of all three reasons, consider the possibility of storing an integer in several places
of the memory, of representing it as a fraction with denominator 1, or of representing it as a fraction
with any denominator, and numerator a suitable multiple of the denominator.

12.3 Sets

In GAP there is no category whose definition corresponds to the mathematical property of being a
set, however in the manual we will often refer to an object as a set in order to convey the fact that
mathematically, we are thinking of it as a set. In particular, two sets A and B are equal if and only if,
x ∈ A ⇐⇒ x ∈ B.

There are two types of object in GAP which exhibit this kind of behaviour with respect to equality,
namely domains (see Section 12.4) and lists whose elements are strictly sorted see IsSSortedList

(21.17.4). In general, set in this manual will mean an object of one of these types.
More precisely: two domains can be compared with “{=}”, the answer being true if and only if

the sets of elements are equal (regardless of any additional structure) and; a domain and a list can be
compared with “=”, the answer being true if and only if the list is equal to the strictly sorted list of
elements of the domain.

A discussion about sorted lists and sets can be found in Section 21.19.

12.4 Domains

An especially important class of objects in GAP are those whose underlying mathematical abstraction
is that of a structured set, for example a group, a conjugacy class, or a vector space. Such objects are
called domains. The equality relation between domains is always equality as sets, so that two domains
are equal if and only if they contain the same elements.

Domains play a central role in GAP. In a sense, the only reason that GAP supports objects such
as integers and permutations is the wish to form domains of them and compute the properties of those
domains.

Domains are described in Chapter 31.

12.5 Identical Objects

Two objects that are equal as objects (that is they actually refer to the same area of computer memory)
and not only w.r.t. the equality relation “=” are called identical. Identical objects do of course describe
the same element.

12.5.1 IsIdenticalObj

▷ IsIdenticalObj(obj1, obj2) (function)

IsIdenticalObj tests whether the objects obj1 and obj2 are identical (that is they are either
equal immediate objects or are both stored at the same location in memory.

If two copies of a simple constant object (see section 12.6) are created, it is not defined whether
GAP will actually store two equal but non-identical objects, or just a single object. For mutable
objects, however, it is important to know whether two values refer to identical or non-identical objects,

GAP - Reference Manual 170

and the documentation of operations that return mutable values should make clear whether the values
returned are new, or may be identical to values stored elsewhere.

Example
gap> IsIdenticalObj(10^6, 10^6);

true

gap> IsIdenticalObj(10^30, 10^30);

false

gap> IsIdenticalObj(true, true);

true

Generally, one may compute with objects but think of the results in terms of the underlying el-
ements because one is not interested in locations in memory, data formats or information beyond
underlying equivalence relations. But there are cases where it is important to distinguish the relations
identity and equality. This is best illustrated with an example. (The reader who is not familiar with
lists in GAP, in particular element access and assignment, is referred to Chapter 21.)

Example
gap> l1:= [1, 2, 3];; l2:= [1, 2, 3];;

gap> l1 = l2;

true

gap> IsIdenticalObj(l1, l2);

false

gap> l1[3]:= 4;; l1; l2;

[1, 2, 4]

[1, 2, 3]

gap> l1 = l2;

false

The two lists l1 and l2 are equal but not identical. Thus a change in l1 does not affect l2.
Example

gap> l1:= [1, 2, 3];; l2:= l1;;

gap> l1 = l2;

true

gap> IsIdenticalObj(l1, l2);

true

gap> l1[3]:= 4;; l1; l2;

[1, 2, 4]

[1, 2, 4]

gap> l1 = l2;

true

Here, l1 and l2 are identical objects, so changing l1 means a change to l2 as well.

12.5.2 IsNotIdenticalObj

▷ IsNotIdenticalObj(obj1, obj2) (function)

tests whether the objects obj1 and obj2 are not identical.

GAP - Reference Manual 171

12.6 Mutability and Copyability

An object in GAP is said to be immutable if its mathematical value (as defined by =) does not change
under any operation. More explicitly, suppose a is immutable and O is some operation on a, then if
a = b evaluates to true before executing O(a), a = b also evaluates to true afterwards. (Examples
for operations O that change mutable objects are Add (21.4.2) and Unbind (21.5.3) which are used
to change list objects, see Chapter 21.) An immutable object may change, for example to store new
information, or to adopt a more efficient representation, but this does not affect its behaviour under =.

There are two points here to note. Firstly, “operation” above refers to the functions and methods
which can legitimately be applied to the object, and not the !. operation whereby virtually any aspect
of any GAP level object may be changed. The second point which follows from this, is that when
implementing new types of objects, it is the programmer’s responsibility to ensure that the functions
and methods they write never change immutable objects mathematically.

In fact, most objects with which one deals in GAP are immutable. For instance, the permutation
(1,2) will never become a different permutation or a non-permutation (although a variable which
previously had (1,2) stored in it may subsequently have some other value).

For many purposes, however, mutable objects are useful. These objects may be changed to rep-
resent different mathematical objects during their life. For example, mutable lists can be changed by
assigning values to positions or by unbinding values at certain positions. Similarly, one can assign
values to components of a mutable record, or unbind them.

12.6.1 IsCopyable

▷ IsCopyable(obj) (Category)

If a mutable form of an object obj can be made in GAP, the object is called copyable. Examples
of copyable objects are of course lists and records. A new mutable version of the object can always be
obtained by the operation ShallowCopy (12.7.1).

Objects for which only an immutable form exists in GAP are called constants. Examples of
constants are integers, permutations, and domains. Called with a constant as argument, Immutable
(12.6.3) and ShallowCopy (12.7.1) return this argument.

12.6.2 IsMutable

▷ IsMutable(obj) (Category)

tests whether obj is mutable.
If an object is mutable then it is also copyable (see IsCopyable (12.6.1)), and a ShallowCopy

(12.7.1) method should be supplied for it. Note that IsMutable must not be implied by another filter,
since otherwise Immutable (12.6.3) would be able to create paradoxical objects in the sense that
IsMutable for such an object is false but the filter that implies IsMutable is true.

In many situations, however, one wants to ensure that objects are immutable. For example, take the
identity of a matrix group. Since this matrix may be referred to as the identity of the group in several
places, it would be fatal to modify its entries, or add or unbind rows. We can obtain an immutable
copy of an object with Immutable (12.6.3).

GAP - Reference Manual 172

12.6.3 Immutable

▷ Immutable(obj) (function)

returns an immutable structural copy (see StructuralCopy (12.7.2)) of obj in which the sub-
objects are immutable copies of the subobjects of obj . If obj is immutable then Immutable returns
obj itself.

GAP will complain with an error if one tries to change an immutable object.

12.6.4 MakeImmutable

▷ MakeImmutable(obj) (function)

One can turn the (mutable or immutable) object obj into an immutable one with MakeImmutable;
note that this also makes all subobjects of obj immutable, so one should call MakeImmutable only if
obj and its mutable subobjects are newly created. If one is not sure about this, Immutable (12.6.3)
should be used.

Note that it is not possible to turn an immutable object into a mutable one; only mutable copies
can be made (see 12.7).

Using Immutable (12.6.3), it is possible to store an immutable identity matrix or an immutable
list of generators, and to pass around references to this immutable object safely. Only when a mutable
copy is really needed does the actual object have to be duplicated. Compared to the situation without
immutable objects, much unnecessary copying is avoided this way. Another advantage of immutability
is that lists of immutable objects may remember whether they are sorted (see 21.19), which is not
possible for lists of mutable objects.

Since the operation Immutable (12.6.3) must work for any object in GAP, it follows that an
immutable form of every object must be possible, even if it is not sensible, and user-defined objects
must allow for the possibility of becoming immutable without notice.

12.6.5 Mutability of Iterators

An interesting example of mutable (and thus copyable) objects is provided by iterators, see 30.8. (Of
course an immutable form of an iterator is not very useful, but clearly Immutable (12.6.3) will yield
such an object.) Every call of NextIterator (30.8.5) changes a mutable iterator until it is exhausted,
and this is the only way to change an iterator. ShallowCopy (12.7.1) for an iterator iter is defined
so as to return a mutable iterator that has no mutable data in common with iter , and that behaves
equally to iter w.r.t. IsDoneIterator (30.8.4) and (if iter is mutable) NextIterator (30.8.5).
Note that this meaning of the “shallow copy” of an iterator that is returned by ShallowCopy (12.7.1)
is not as obvious as for lists and records, and must be explicitly defined.

12.6.6 Mutability of Results of Arithmetic Operations

Many operations return immutable results, among those in particular attributes (see 13.5). Exam-
ples of attributes are Size (30.4.6), Zero (31.10.3), AdditiveInverse (31.10.9), One (31.10.2), and
Inverse (31.10.8). Arithmetic operations, such as the binary infix operations +, -, *, /, ^, mod, the
unary -, and operations such as Comm (31.12.3) and LeftQuotient (31.12.2), return mutable results,
except if all arguments are immutable. So the product of two matrices or of a vector and a matrix
is immutable if and only if the two matrices or both the vector and the matrix are immutable (see

GAP - Reference Manual 173

also 21.11). There is one exception to this rule, which arises where the result is less deeply nested
than at least one of the argument, where mutable arguments may sometimes lead to an immutable
result. For instance, a mutable matrix with immutable rows, multiplied by an immutable vector gives
an immutable vector result. The exact rules are given in 21.11.

It should be noted that 0 * obj is equivalent to ZeroSameMutability(obj), -obj is equiva-
lent to AdditiveInverseSameMutability(obj), obj^0 is equivalent to OneSameMutability(

obj), and obj^-1 is equivalent to InverseSameMutability(obj). The suffix “SameMutability”
indicates that the result is mutable if and only if the argument is mutable.

The operations ZeroOp (31.10.3), AdditiveInverseOp (31.10.9), OneOp (31.10.2), and
InverseOp (31.10.8) return mutable results whenever a mutable version of the result exists, contrary
to the attributes Zero (31.10.3), AdditiveInverse (31.10.9), One (31.10.2), and Inverse (31.10.8).

If one introduces new arithmetic objects then one need not install methods for the attributes One
(31.10.2), Zero (31.10.3), etc. The methods for the associated operations OneOp (31.10.2) and ZeroOp

(31.10.3) will be called, and then the results made immutable.
All methods installed for the arithmetic operations must obey the rule about the mutability of the

result. This means that one may try to avoid the perhaps expensive creation of a new object if both
operands are immutable, and of course no problems of this kind arise at all in the (usual) case that the
objects in question do not admit a mutable form, i.e., that these objects are not copyable.

In a few, relatively low-level algorithms, one wishes to treat a matrix partly as a data structure,
and manipulate and change its entries. For this, the matrix needs to be mutable, and the rule that
attribute values are immutable is an obstacle. For these situations, a number of additional operations
are provided, for example TransposedMatMutable (24.5.7) constructs a mutable matrix (contrary to
the attribute TransposedMat (24.5.7)), while TriangulizeMat (24.7.3) modifies a mutable matrix
(in place) into upper triangular form.

Note that being immutable does not forbid an object to store knowledge. For example, if it is
found out that an immutable list is strictly sorted then the list may store this information. More
precisely, an immutable object may change in any way, provided that it continues to represent the
same mathematical object.

12.7 Duplication of Objects

12.7.1 ShallowCopy

▷ ShallowCopy(obj) (operation)

ShallowCopy returns a new mutable object equal to its argument, if this is possible. The subob-
jects of ShallowCopy(obj) are identical to the subobjects of obj .

If GAP does not support a mutable form of the immutable object obj (see 12.6) then
ShallowCopy returns obj itself.

Since ShallowCopy is an operation, the concrete meaning of “subobject” depends on the type of
obj . But for any copyable object obj , the definition should reflect the idea of “first level copying”.

The definition of ShallowCopy for lists (in particular for matrices) can be found in 21.7.

12.7.2 StructuralCopy

▷ StructuralCopy(obj) (function)

GAP - Reference Manual 174

In a few situations, one wants to make a structural copy scp of an object obj . This is defined as
follows. scp and obj are identical if obj is immutable. Otherwise, scp is a mutable copy of obj such
that each subobject of scp is a structural copy of the corresponding subobject of obj . Furthermore, if
two subobjects of obj are identical then also the corresponding subobjects of scp are identical.

Example
gap> obj:= [[0, 1]];;

gap> obj[2]:= obj[1];;

gap> obj[3]:= Immutable(obj[1]);;

gap> scp:= StructuralCopy(obj);;

gap> scp = obj; IsIdenticalObj(scp, obj);

true

false

gap> IsIdenticalObj(scp[1], obj[1]);

false

gap> IsIdenticalObj(scp[3], obj[3]);

true

gap> IsIdenticalObj(scp[1], scp[2]);

true

That both ShallowCopy (12.7.1) and StructuralCopy return the argument obj itself if it is not
copyable is consistent with this definition, since there is no way to change obj by modifying the result
of any of the two functions, because in fact there is no way to change this result at all.

12.8 Other Operations Applicable to any Object

There are a number of general operations which can be applied, in principle, to any object in GAP.
Some of these are documented elsewhere –see String (27.7.6), PrintObj (6.3.5) and Display

(6.3.6). Others are mainly somewhat technical.

12.8.1 SetName

▷ SetName(obj, name) (operation)

for a suitable object obj sets that object to have name name (a string).

12.8.2 Name

▷ Name(obj) (attribute)

returns the name, a string, previously assigned to obj via a call to SetName (12.8.1). The name of
an object is used only for viewing the object via this name.

There are no methods installed for computing names of objects, but the name may be set for
suitable objects, using SetName (12.8.1).

Example
gap> R := PolynomialRing(Integers,2);

Integers[x_1,x_2]

gap> SetName(R,"Z[x,y]");

gap> R;

Z[x,y]

GAP - Reference Manual 175

gap> Name(R);

"Z[x,y]"

12.8.3 InfoText

▷ InfoText(obj) (attribute)

is a mutable string with information about the object obj . There is no default method to create an
info text.

12.8.4 IsInternallyConsistent

▷ IsInternallyConsistent(obj) (operation)

For debugging purposes, it may be useful to check the consistency of an object obj that is com-
posed from other (composed) objects.

There is a default method of IsInternallyConsistent, with rank zero, that returns true.
So it is possible (and recommended) to check the consistency of subobjects of obj recursively by
IsInternallyConsistent.

(Note that IsInternallyConsistent is not an attribute.)

12.8.5 MemoryUsage

▷ MemoryUsage(obj) (function)

Returns the amount of memory in bytes used by the object obj and its subobjects. Note that in
general, objects can reference each other in very difficult ways such that determining the memory
usage is a recursive procedure. In particular, computing the memory usage of a complicated structure
itself uses some additional memory, which is however no longer used after completion of this oper-
ation. This procedure descends into lists and records, positional and component objects; however it
deliberately does not take into account the type and family objects. For functions, it only takes the
memory usage of the function body, not of the local context the function was created in, although the
function keeps a reference to that as well.

Chapter 13

Types of Objects

Every GAP object has a type. The type of an object is the information which is used to decide
whether an operation is admissible or possible with that object as an argument, and if so, how it is to
be performed (see Chapter 78).

For example, the types determine whether two objects can be multiplied and what function is
called to compute the product. Analogously, the type of an object determines whether and how the
size of the object can be computed. It is sometimes useful in discussing the type system, to identify
types with the set of objects that have this type. Partial types can then also be regarded as sets, such
that any type is the intersection of its parts.

The type of an object consists of two main parts, which describe different aspects of the object.
The family determines the relation of the object to other objects. For example, all permutations

form a family. Another family consists of all collections of permutations, this family contains the set
of permutation groups as a subset. A third family consists of all rational functions with coefficients in
a certain family.

The other part of a type is a collection of filters (actually stored as a bit-list indicating, from the
complete set of possible filters, which are included in this particular type). These filters are all treated
equally by the method selection, but, from the viewpoint of their creation and use, they can be divided
(with a small number of unimportant exceptions) into categories, representations, attribute testers and
properties. Each of these is described in more detail below.

This chapter does not describe how types and their constituent parts can be created. Information
about this topic can be found in Chapter 79.

Note: Detailed understanding of the type system is not required to use GAP. It can be helpful,
however, to understand how things work and why GAP behaves the way it does.

A discussion of the type system can be found in [BL98].

13.1 Families

The family of an object determines its relationship to other objects.
More precisely, the families form a partition of all GAP objects such that the following two con-

ditions hold: objects that are equal w.r.t. = lie in the same family; and the family of the result of an
operation depends only on the families of its operands.

The first condition means that a family can be regarded as a set of elements instead of a set of
objects. Note that this does not hold for categories and representations (see below), two objects that
are equal w.r.t. = need not lie in the same categories and representations. For example, a sparsely

176

GAP - Reference Manual 177

represented matrix can be equal to a densely represented matrix. Similarly, each domain is equal w.r.t.
= to the sorted list of its elements, but a domain is not a list, and a list is not a domain.

Families are probably the least obvious part of the GAP type system, so some remarks about the
role of families are necessary. When one uses GAP as it is, one will (better: should) not meet families
at all. The two situations where families come into play are the following.

First, since families are used to describe relations between arguments of operations in the method
selection mechanism (see Chapter 78, and also Chapter 13), one has to prescribe such a relation in
each method installation (see 78.3); usual relations are ReturnTrue (5.4.1) (which means that any
relation of the actual arguments is admissible), IsIdenticalObj (12.5.1) (which means that there
are two arguments that lie in the same family), and IsCollsElms (which means that there are two
arguments, the first being a collection of elements that lie in the same family as the second argument).

Second –and this is the more complicated situation– whenever one creates a new kind of objects,
one has to decide what its family shall be. If the new object shall be equal to existing objects, for
example if it is just represented in a different way, there is no choice: The new object must lie in the
same family as all objects that shall be equal to it. So only if the new object is different (w.r.t. the
equality “=”) from all other GAP objects, we are likely to create a new family for it. Note that
enlarging an existing family by such new objects may be problematic because of implications that
have been installed for all objects of the family in question. The choice of families depends on the
applications one has in mind. For example, if the new objects in question are not likely to be arguments
of operations for which family relations are relevant (for example binary arithmetic operations), one
could create one family for all such objects, and regard it as “the family of all those GAP objects that
would in fact not need a family”. On the other extreme, if one wants to create domains of the new
objects then one has to choose the family in such a way that all intended elements of a domain do
in fact lie in the same family. (Remember that a domain is a collection, see Chapter 12.4, and that a
collection consists of elements in the same family, see Chapter 30 and Section 13.1.)

Let us look at an example. Suppose that no permutations are available in GAP, and that we want
to implement permutations. Clearly we want to support permutation groups, but it is not a priori clear
how to distribute the new permutations into families. We can put all permutations into one family;
this is how in fact permutations are implemented in GAP. But it would also be possible to put all
permutations of a given degree into a family of their own; this would for example mean that for each
degree, there would be distinguished trivial permutations, and that the stabilizer of the point 5 in the
symmetric group on the points 1, 2, . . ., 5 is not regarded as equal to the symmetric group on 1,
2, 3, 4. Note that the latter approach would have the advantage that it is no problem to construct
permutations and permutation groups acting on arbitrary (finite) sets, for example by constructing first
the symmetric group on the set and then generating any desired permutation group as a subgroup of
this symmetric group.

So one aspect concerning a reasonable choice of families is to make the families large enough for
being able to form interesting domains of elements in the family. But on the other hand, it is useful to
choose the families small enough for admitting meaningful relations between objects. For example,
the elements of different free groups in GAP lie in different families; the multiplication of free group
elements is installed only for the case that the two operands lie in the same family, with the effect that
one cannot erroneously form the product of elements from different free groups. In this case, families
appear as a tool for providing useful restrictions.

As another example, note that an element and a collection containing this element never lie in
the same family, by the general implementation of collections; namely, the family of a collection of
elements in the family Fam is the collections family of Fam (see CollectionsFamily (30.2.1)). This

GAP - Reference Manual 178

means that for a collection, we need not (because we cannot) decide about its family.
A few functions in GAP return families, see CollectionsFamily (30.2.1) and ElementsFamily

(30.2.3).

13.1.1 FamilyObj

▷ FamilyObj(obj) (function)

returns the family of the object obj .
The family of the object obj is itself an object, its family is FamilyOfFamilies.
It should be emphasized that families may be created when they are needed. For example, the

family of elements of a finitely presented group is created only after the presentation has been con-
structed. Thus families are the dynamic part of the type system, that is, the part that is not fixed after
the initialisation of GAP.

Families can be parametrized. For example, the elements of each finitely presented group form
a family of their own. Here the family of elements and the finitely presented group coincide when
viewed as sets. Note that elements in different finitely presented groups lie in different families. This
distinction allows GAP to forbid multiplications of elements in different finitely presented groups.

As a special case, families can be parametrized by other families. An important example is the
family of collections that can be formed for each family. A collection consists of objects that lie in the
same family, it is either a nonempty dense list of objects from the same family or a domain.

Note that every domain is a collection, that is, it is not possible to construct domains whose
elements lie in different families. For example, a polynomial ring over the rationals cannot contain
the integer 0 because the family that contains the integers does not contain polynomials. So one has
to distinguish the integer zero from each zero polynomial.

Let us look at this example from a different viewpoint. A polynomial ring and its coefficients
ring lie in different families, hence the coefficients ring cannot be embedded “naturally” into the
polynomial ring in the sense that it is a subset. But it is possible to allow, e.g., the multiplication of an
integer and a polynomial over the integers. The relation between the arguments, namely that one is a
coefficient and the other a polynomial, can be detected from the relation of their families. Moreover,
this analysis is easier than in a situation where the rationals would lie in one family together with
all polynomials over the rationals, because then the relation of families would not distinguish the
multiplication of two polynomials, the multiplication of two coefficients, and the multiplication of a
coefficient with a polynomial. So the wish to describe relations between elements can be taken as a
motivation for the introduction of families.

13.1.2 NewFamily

▷ NewFamily(name[, req[, imp[, famfilter]]]) (function)

NewFamily returns a new family fam with name name . The argument req , if present, is a filter of
which fam shall be a subset. If one tries to create an object in fam that does not lie in the filter req , an
error message is printed. Also the argument imp , if present, is a filter of which fam shall be a subset.
Any object that is created in the family fam will lie automatically in the filter imp .

The filter famfilter , if given, specifies a filter that will hold for the family fam (not for objects
in fam).

GAP - Reference Manual 179

Families are always represented as component objects (see 79.2). This means that components
can be used to store and access useful information about the family.

13.2 Filters

A filter is a special unary GAP function that returns either true or false, depending on whether or
not the argument lies in the set defined by the filter. Filters are used to express different aspects of
information about a GAP object, which are described below (see 13.3, 13.4, 13.5, 13.6, 13.7, 13.8).

Presently any filter in GAP is implemented as a function which corresponds to a set of positions in
the bitlist which forms part of the type of each GAP object, and returns true if and only if the bitlist
of the type of the argument has the value true at all of these positions.

The intersection (or meet) of two filters filt1 , filt2 is again a filter, it can be formed as
filt1 and filt2

See 20.4 for more details.
For example, IsList and IsEmpty is a filter that returns true if its argument is an empty

list, and false otherwise. The filter IsGroup (39.2.7) is defined as the intersection of the category
IsMagmaWithInverses (35.1.4) and the property IsAssociative (35.4.7).

A filter that is not the meet of other filters is called a simple filter. For example, each attribute
tester (see 13.6) is a simple filter. Each simple filter corresponds to a position in the bitlist currently
used as part of the data structure representing a type.

Every filter has a rank, which is used to define a ranking of the methods installed for an operation,
see Section 78.3. The rank of a filter can be accessed with RankFilter (13.2.1).

13.2.1 RankFilter

▷ RankFilter(filt) (function)

For simple filters, an incremental rank is defined when the filter is created, see the sections
about the creation of filters: NewCategory (13.3.4), NewRepresentation (13.4.4), NewAttribute
(13.5.3), NewProperty (13.7.4), NewFilter (13.8.1). For an arbitrary filter, its rank is given by the
sum of the incremental ranks of the involved simple filters; in addition to the implied filters, these
are also the required filters of attributes (again see the sections about the creation of filters). In other
words, for the purpose of computing the rank and only for this purpose, attribute testers are treated as
if they would imply the requirements of their attributes.

13.2.2 NamesFilter

▷ NamesFilter(filt) (function)

NamesFilter returns a list of names of the implied simple filters of the filter filt , these are
all those simple filters imp such that every object in filt also lies in imp. For implications be-
tween filters, see ShowImpliedFilters (13.2.4) as well as sections 78.8, NewCategory (13.3.4),
NewRepresentation (13.4.4), NewAttribute (13.5.3), NewProperty (13.7.4).

GAP - Reference Manual 180

13.2.3 FilterByName

▷ FilterByName(name) (function)

finds the filter with name name in the global FILTERS list. This is useful to find filters that were
created but not bound to a global variable.

13.2.4 ShowImpliedFilters

▷ ShowImpliedFilters(filter) (function)

Displays information about the filters that may be implied by filter . They are given by their
names. ShowImpliedFilters first displays the names of all filters that are unconditionally implied
by filter . It then displays implications that require further filters to be present (indicating by + the
required further filters).

Example
gap> ShowImpliedFilters(IsNilpotentGroup);

Implies:

IsListOrCollection

IsCollection

IsDuplicateFree

IsExtLElement

CategoryCollections(IsExtLElement)

IsExtRElement

CategoryCollections(IsExtRElement)

CategoryCollections(IsMultiplicativeElement)

CategoryCollections(IsMultiplicativeElementWithOne)

CategoryCollections(IsMultiplicativeElementWithInverse)

IsGeneralizedDomain

IsMagma

IsMagmaWithOne

IsMagmaWithInversesIfNonzero

IsMagmaWithInverses

IsAssociative

HasMultiplicativeNeutralElement

IsGeneratorsOfSemigroup

IsSimpleSemigroup

IsRegularSemigroup

IsInverseSemigroup

IsCompletelyRegularSemigroup

IsGroupAsSemigroup

IsMonoidAsSemigroup

IsOrthodoxSemigroup

IsSupersolvableGroup

IsSolvableGroup

IsNilpotentByFinite

May imply with:

+IsFinitelyGeneratedGroup

IsPolycyclicGroup

GAP - Reference Manual 181

13.2.5 FiltersType

▷ FiltersType(type) (operation)

▷ FiltersObj(object) (operation)

returns a list of the filters in the type type , or in the type of the object object respectively.
Example

gap> FiltersObj(fail);

[<Category "IsBool">, <Representation "IsInternalRep">]

gap> FiltersType(TypeOfTypes);

[<Representation "IsPositionalObjectRep">, <Category "IsType">, <Representation "IsTypeDefaultRep">]

13.3 Categories

The categories of an object are filters (see 13.2) that determine what operations an object admits. For
example, all integers form a category, all rationals form a category, and all rational functions form
a category. An object which claims to lie in a certain category is accepting the requirement that it
should have methods for certain operations (and perhaps that their behaviour should satisfy certain
axioms). For example, an object lying in the category IsList (21.1.1) must have methods for Length
(21.17.5), IsBound\[\] (21.2.1) and the list element access operation \[\] (21.2.1).

An object can lie in several categories. For example, a row vector lies in the categories IsList
(21.1.1) and IsVector (31.14.14); each list lies in the category IsCopyable (12.6.1), and depending
on whether or not it is mutable, it may lie in the category IsMutable (12.6.2). Every domain lies in
the category IsDomain (31.9.1).

Of course some categories of a mutable object may change when the object is changed. For
example, after assigning values to positions of a mutable non-dense list, this list may become part of
the category IsDenseList (21.1.2).

However, if an object is immutable then the set of categories it lies in is fixed.
All categories in the library are created during initialization, in particular they are not created

dynamically at runtime.
The following list gives an overview of important categories of arithmetic objects. Indented cate-

gories are to be understood as subcategories of the non indented category listed above it.
Example

IsObject

IsExtLElement

IsExtRElement

IsMultiplicativeElement

IsMultiplicativeElementWithOne

IsMultiplicativeElementWithInverse

IsExtAElement

IsAdditiveElement

IsAdditiveElementWithZero

IsAdditiveElementWithInverse

Every object lies in the category IsObject (12.1.1).

GAP - Reference Manual 182

The categories IsExtLElement (31.14.8) and IsExtRElement (31.14.9) contain objects that can
be multiplied with other objects via * from the left and from the right, respectively. These categories
are required for the operands of the operation *.

The category IsMultiplicativeElement (31.14.10) contains objects that can
be multiplied from the left and from the right with objects from the same fam-
ily. IsMultiplicativeElementWithOne (31.14.11) contains objects obj for which
a multiplicatively neutral element can be obtained by taking the 0-th power obj^0.
IsMultiplicativeElementWithInverse (31.14.13) contains objects obj for which a multi-
plicative inverse can be obtained by forming obj^-1.

Likewise, the categories IsExtAElement (31.14.1), IsAdditiveElement (31.14.3),
IsAdditiveElementWithZero (31.14.5) and IsAdditiveElementWithInverse (31.14.7)
contain objects that can be added via + to other objects, objects that can be added to objects of the
same family, objects for which an additively neutral element can be obtained by multiplication with
zero, and objects for which an additive inverse can be obtained by multiplication with -1.

So a vector lies in IsExtLElement (31.14.8), IsExtRElement (31.14.9) and
IsAdditiveElementWithInverse (31.14.7). A ring element must additionally lie in
IsMultiplicativeElement (31.14.10).

As stated above it is not guaranteed by the categories of objects whether the result of an opera-
tion with these objects as arguments is defined. For example, the category IsMatrix (24.2.1) is a
subcategory of IsMultiplicativeElementWithInverse (31.14.13). Clearly not every matrix has a
multiplicative inverse. But the category IsMatrix (24.2.1) makes each matrix an admissible argument
of the operation Inverse (31.10.8), which may sometimes return fail. Likewise, two matrices can
be multiplied only if they are of appropriate shapes.

Analogous to the categories of arithmetic elements, there are categories of domains of these ele-
ments.

Example
IsObject

IsDomain

IsMagma

IsMagmaWithOne

IsMagmaWithInversesIfNonzero

IsMagmaWithInverses

IsAdditiveMagma

IsAdditiveMagmaWithZero

IsAdditiveMagmaWithInverses

IsExtLSet

IsExtRSet

Of course IsDomain (31.9.1) is a subcategory of IsObject (12.1.1). A domain that is closed under
multiplication * is called a magma and it lies in the category IsMagma (35.1.1). If a magma is closed
under taking the identity, it lies in IsMagmaWithOne (35.1.2), and if it is also closed under taking
inverses, it lies in IsMagmaWithInverses (35.1.4). The category IsMagmaWithInversesIfNonzero
(35.1.3) denotes closure under taking inverses only for nonzero elements, every division ring lies in
this category.

Note that every set of categories constitutes its own notion of generation, for example a group may
be generated as a magma with inverses by some elements, but to generate it as a magma with one it
may be necessary to take the union of these generators and their inverses.

GAP - Reference Manual 183

13.3.1 IsCategory

▷ IsCategory(object) (function)

returns true if object is a category (see 13.3), and false otherwise.
Note that GAP categories are not categories in the usual mathematical sense.

13.3.2 CategoriesOfObject

▷ CategoriesOfObject(object) (operation)

returns a list of the names of the categories in which object lies.
Example

gap> g:=Group((1,2),(1,2,3));;

gap> CategoriesOfObject(g);

["IsListOrCollection", "IsCollection", "IsExtLElement",

"CategoryCollections(IsExtLElement)", "IsExtRElement",

"CategoryCollections(IsExtRElement)",

"CategoryCollections(IsMultiplicativeElement)",

"CategoryCollections(IsMultiplicativeElementWithOne)",

"CategoryCollections(IsMultiplicativeElementWithInverse)",

"CategoryCollections(IsAssociativeElement)",

"CategoryCollections(IsFiniteOrderElement)", "IsGeneralizedDomain",

"CategoryCollections(IsPerm)", "IsMagma", "IsMagmaWithOne",

"IsMagmaWithInversesIfNonzero", "IsMagmaWithInverses"]

13.3.3 CategoryByName

▷ CategoryByName(name) (function)

returns the category with name name if it is found, or fail otherwise.

13.3.4 NewCategory

▷ NewCategory(name, super[, rank]) (function)

NewCategory returns a new category cat that has the name name and is contained in the filter
super , see 13.2. This means that every object in cat lies automatically also in super . We say also
that super is an implied filter of cat .

For example, if one wants to create a category of group elements then super should be
IsMultiplicativeElementWithInverse (31.14.13) or a subcategory of it. If no specific super-
category of cat is known, super may be IsObject (12.1.1).

The optional third argument rank denotes the incremental rank (see 13.2) of cat , the default
value is 1.

13.3.5 DeclareCategory

▷ DeclareCategory(name, super[, rank]) (function)

GAP - Reference Manual 184

does the same as NewCategory (13.3.4) and then binds the result to the global variable name . The
variable must previously be writable, and is made read-only by this function.

13.3.6 CategoryFamily

▷ CategoryFamily(cat) (function)

For a category cat , CategoryFamily returns the family category of cat . This is a category in
which all families lie that know from their creation that all their elements are in the category cat ,
see 13.1.

For example, a family of associative words is in the category CategoryFamily(IsAssocWord

), and one can distinguish such a family from others by this category. So it is possible to install
methods for operations that require one argument to be a family of associative words.

CategoryFamily is quite technical, and in fact of minor importance.
See also CategoryCollections (30.2.4).

13.4 Representation

The representation of an object is a set of filters (see 13.2) that determines how an object is actually
represented. For example, a matrix or a polynomial can be stored sparsely or densely; all dense poly-
nomials form a representation. An object which claims to lie in a certain representation is accepting
the requirement that certain fields in the data structure be present and have specified meanings.

13.4.1 Basic Representations of Objects

▷ IsInternalRep(obj) (Representation)

▷ IsDataObjectRep(obj) (Representation)

▷ IsPositionalObjectRep(obj) (Representation)

▷ IsComponentObjectRep(obj) (Representation)

GAP distinguishes four essentially different ways to represent objects. First there are the represen-
tations IsInternalRep for internal objects such as integers and permutations, and IsDataObjectRep
for other objects that are created and whose data are accessible only by kernel functions. The data
structures underlying such objects cannot be manipulated at the GAP level.

All other objects are either in the representation IsComponentObjectRep or in the representation
IsPositionalObjectRep, see 79.2 and 79.3.

An object can belong to several representations in the sense that it lies in several subrepresentations
of IsComponentObjectRep or of IsPositionalObjectRep. The representations to which an object
belongs should form a chain and either two representations are disjoint or one is contained in the
other. So the subrepresentations of IsComponentObjectRep and IsPositionalObjectRep each
form trees. In the language of Object Oriented Programming, we support only single inheritance for
representations.

These trees are typically rather shallow, since for one representation to be contained in another
implies that all the components of the data structure implied by the containing representation, are
present in, and have the same meaning in, the smaller representation (whose data structure presumably
contains some additional components).

GAP - Reference Manual 185

Objects may change their representation, for example a mutable list of characters can be converted
into a string.

All representations in the library are created during initialization, in particular they are not created
dynamically at runtime.

Examples of subrepresentations of IsPositionalObjectRep are IsModulusRep, which is used
for residue classes in the ring of integers, and IsDenseCoeffVectorRep, which is used for elements
of algebras that are defined by structure constants.

An important subrepresentation of IsComponentObjectRep is IsAttributeStoringRep

(13.5.5), which is used for many domains and some other objects. It provides automatic storing of
all attribute values (see Section 13.5).

13.4.2 IsRepresentation

▷ IsRepresentation(object) (function)

returns true if object is a representation (see 13.4), and false otherwise.

13.4.3 RepresentationsOfObject

▷ RepresentationsOfObject(object) (operation)

returns a list of the names of the representations object has.
Example

gap> g:=Group((1,2),(1,2,3));;

gap> RepresentationsOfObject(g);

["IsComponentObjectRep", "IsAttributeStoringRep"]

13.4.4 NewRepresentation

▷ NewRepresentation(name, super[, slots[, req]]) (function)

NewRepresentation returns a new representation rep that has the name name and is a subrepre-
sentation of the representation super . This means that every object in rep lies automatically also in
super . We say also that super is an implied filter of rep .

Each representation in GAP is a subrepresentation of exactly one of the four representa-
tions IsInternalRep (13.4.1), IsDataObjectRep (13.4.1), IsComponentObjectRep (13.4.1),
IsPositionalObjectRep (13.4.1). The data describing objects in the former two can be accessed
only via GAP kernel functions, the data describing objects in the latter two is accessible also in library
functions, see 79.2 and 79.3 for the details.

The optional third and fourth arguments slots and req are (and always were) unused and are
only provided for backwards compatibility. Note that slots was required (but still unused) before
GAP 4.12.

The incremental rank (see 13.2) of rep is 1.
Examples for the use of NewRepresentation can be found in 79.2, 79.3, and also in 81.3.

GAP - Reference Manual 186

13.4.5 DeclareRepresentation

▷ DeclareRepresentation(name, super[, slots[, req]]) (function)

does the same as NewRepresentation (13.4.4) and then binds the result to the global variable
name . The variable must previously be writable, and is made read-only by this function.

13.5 Attributes

The attributes of an object describe knowledge about it.
An attribute is a unary operation without side-effects.
An object may store values of its attributes once they have been computed, and claim that it knows

these values. Note that “store” and “know” have to be understood in the sense that it is very cheap to
get such a value when the attribute is called again.

The value returned by an attribute is in general immutable (see 12.6), except if the attribute had
been specially constructed as “mutable attribute”, see NewAttribute (13.5.3).

Note that functions installed as methods for attributes may return mutable objects, the attribute
returns the value of Immutable (12.6.3) for the result. Thus it is recommended that these methods
ensure their return values are immutable, e.g., by calling MakeImmutable (12.6.4) if this is possible,
in order to avoid that Immutable (12.6.3) creates an unnecessary copy of the object.

It depends on the representation of an object (see 13.4) which attribute values it stores. An im-
mutable object in the representation IsAttributeStoringRep (13.5.5) stores all attribute values
once they are computed.

Note that it is impossible to get rid of a stored attribute value because the system may have drawn
conclusions from the old attribute value, and just removing the value might leave the data structures
in an inconsistent state. If necessary, a new object can be constructed.

Each method that is installed for an attribute via InstallMethod (78.3.1) must require exactly one
argument, and this must lie in the filter filter that was entered as second argument of NewAttribute
(13.5.3) resp. NewProperty (13.7.4).

As for any operation, for attributes one can install a method taking an argument that does not lie
in filt via InstallOtherMethod (78.3.2), or a method for more than one argument. For example,
IsTransitive (41.10.1) is an attribute for a G-set that can also be called for the two arguments,
being a group G and its action domain. If attributes are called with more than one argument then the
return value is not stored in any of the arguments.

Properties are a special form of attributes that have the value true or false, see section 13.7.
Examples of attributes for multiplicative elements are Inverse (31.10.8), One (31.10.2), and

Order (31.10.10). Size (30.4.6) is an attribute for domains, Centre (35.4.5) is an attribute for mag-
mas, and DerivedSubgroup (39.12.3) is an attribute for groups.

13.5.1 IsAttribute

▷ IsAttribute(object) (function)

returns true if object is an attribute (see 13.5), and false otherwise.

GAP - Reference Manual 187

13.5.2 KnownAttributesOfObject

▷ KnownAttributesOfObject(object) (operation)

returns a list of the names of the attributes whose values are known for object .
Example

gap> g:=Group((1,2),(1,2,3));;Size(g);;

gap> KnownAttributesOfObject(g);

["Size", "OneImmutable", "NrMovedPoints", "MovedPoints",

"GeneratorsOfMagmaWithInverses", "MultiplicativeNeutralElement",

"HomePcgs", "Pcgs", "StabChainMutable", "StabChainOptions"]

13.5.3 NewAttribute

▷ NewAttribute(name, filter[, "mutable"][, rank]) (function)

NewAttribute returns a new attribute getter with name name that is applicable to objects with the
property filter .

Contrary to the situation with categories and representations, the tester of the new attribute does
not imply filter . This is exactly because of the possibility to install methods that do not require
filter .

For example, the attribute Size (30.4.6) was created with second argument a list or a collection,
but there is also a method for Size (30.4.6) that is applicable to a character table, which is neither a
list nor a collection.

For the optional third and fourth arguments, there are the following possibilities.

• The integer argument rank causes the attribute tester to have this incremental rank (see 13.2),

• If the argument mutable is the string "mutable" or the boolean true, then the values of the
attribute are mutable.

• If the argument mutable is the boolean false, then the values of the attribute are immutable.

When a value of such mutable attribute is set then this value itself is stored, not an immutable
copy of it, and it is the user’s responsibility to set an object that is mutable. This is useful for an
attribute whose value is some partial information that may be completed later. For example, there is an
attribute ComputedSylowSubgroups for the list holding those Sylow subgroups of a group that have
been computed already by the function SylowSubgroup (39.13.1), and this list is mutable because
one may want to enter groups into it as they are computed.

If no argument for rank is given, then the rank of the tester is 1.
Each method for the new attribute that does not require its argument to lie in filter must be

installed using InstallOtherMethod (78.3.2).

13.5.4 DeclareAttribute

▷ DeclareAttribute(name, filter[, "mutable"][, rank]) (function)

does the same as NewAttribute (13.5.3) and then binds the result to the global variable name . The
variable must previously be writable, and is made read-only by this function. It also binds read-only

GAP - Reference Manual 188

global variables with names Hasname and Setname for the tester and setter of the attribute (see Section
13.6).

13.5.5 IsAttributeStoringRep

▷ IsAttributeStoringRep(obj) (Representation)

Objects in this representation have default methods to get stored values of attributes and –if they
are immutable– to store attribute values automatically once they have been computed. (These methods
are called the “system getter” and the “system setter” of the attribute, respectively.)

As a consequence, for immutable objects in IsAttributeStoringRep, subsequent calls to an
attribute will return the same object.

Mutable objects in IsAttributeStoringRep are allowed, but attribute values are not stored
automatically in them. Such objects are useful because they may later be made immutable using
MakeImmutable (12.6.4), at which point they will start storing all attribute values.

Note that one can force an attribute value to be stored in a mutable object in
IsAttributeStoringRep, by explicitly calling the attribute setter. This feature should be used with
care. For example, think of a mutable matrix whose rank or trace gets stored, and the values later
become wrong when somebody changes the matrix entries.

Example
gap> g:= Group((1,2)(3,4), (1,3)(2,4));;

gap> IsAttributeStoringRep(g);

true

gap> HasSize(g); Size(g); HasSize(g);

false

4

true

gap> r:= 7/4;;

gap> IsAttributeStoringRep(r);

false

gap> Int(r); HasInt(r);

1

false

13.6 Setter and Tester for Attributes

For every attribute, the attribute setter and the attribute tester are defined.
To check whether an object belongs to an attribute attr , the tester of the attribute is used, see

Tester (13.6.1). To store a value for the attribute attr in an object, the setter of the attribute is used,
see Setter (13.6.2).

13.6.1 Tester

▷ Tester(attr) (function)

For an attribute attr , Tester(attr) is a filter (see 13.2) that returns true or false, depending
on whether or not the value of attr for the object is known. For example, Tester(Size)(obj

) is true if the size of the object obj is known.

GAP - Reference Manual 189

13.6.2 Setter

▷ Setter(attr) (function)

For an attribute attr , Setter(attr) is called automatically when the attribute value has been
computed for an immutable object which does not already have a value stored for attr . One can also
call the setter explicitly, for example, Setter(Size)(obj, val) sets val as size of the object
obj if the size was not yet known.

For each attribute attr that is declared with DeclareAttribute (13.5.4)
resp. DeclareProperty (13.7.5), tester and setter are automatically made accessible by the
names Hasattr and Setattr , respectively. For example, the tester for Size (30.4.6) is called
HasSize, and the setter is called SetSize.

Example
gap> g:=Group((1,2,3,4),(1,2));;Size(g);

24

gap> HasSize(g);

true

gap> SetSize(g,99);

gap> Size(g);

24

For two properties prop1 and prop2 , the intersection prop1 and prop2 (see 13.2) is again a
property for which a setter and a tester exist. Setting the value of this intersection to true for a GAP
object means to set the values of prop1 and prop2 to true for this object.

Example
gap> prop:= IsFinite and IsCommutative;

<Property "(IsFinite and IsCommutative)">

gap> g:= Group((1,2,3), (4,5));;

gap> Tester(prop)(g);

false

gap> Setter(prop)(g, true);

gap> Tester(prop)(g); prop(g);

true

true

It is not allowed to set the value of such an intersection to false for an object.
Example

gap> Setter(prop)(Rationals, false);

You cannot set an "and-filter" except to true

not in any function

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can type 'return true;' to set all components true

(but you might really want to reset just one component) to continue

brk>

13.6.3 AttributeValueNotSet

▷ AttributeValueNotSet(attr, obj) (function)

GAP - Reference Manual 190

If the value of the attribute attr is already stored for obj , AttributeValueNotSet simply
returns this value. Otherwise the value of attr(obj) is computed and returned without storing it
in obj . This can be useful when “large” attribute values (such as element lists) are needed only once
and shall not be stored in the object.

Example
gap> HasAsSSortedList(g);

false

gap> AttributeValueNotSet(AsSSortedList,g);

[(), (4,5), (1,2,3), (1,2,3)(4,5), (1,3,2), (1,3,2)(4,5)]

gap> HasAsSSortedList(g);

false

The normal behaviour of attributes (when called with just one argument) is that once a method has
been selected and executed, and has returned a value the setter of the attribute is called, to (possibly)
store the computed value. In special circumstances, this behaviour can be altered dynamically on
an attribute-by-attribute basis, using the functions DisableAttributeValueStoring (13.6.5) and
EnableAttributeValueStoring (13.6.6).

In general, the code in the library assumes, for efficiency, but not for correctness, that attribute
values will be stored (in suitable objects), so disabling storing may cause substantial computations to
be repeated.

13.6.4 InfoAttributes

▷ InfoAttributes (info class)

This info class (together with InfoWarning (7.4.8)) is used for messages about attributes. Mes-
sages are shown under the following circumstances:

• EnableAttributeValueStoring (13.6.6) is used (level 2).

• DisableAttributeValueStoring (13.6.5) is used (level 3).

• When trying to assign to non-mutable attribute which already is set to a different value (level
3).

• When the test filter for an attribute (i.e., HasFOO) is set, but no value is assigned (level 3).

13.6.5 DisableAttributeValueStoring

▷ DisableAttributeValueStoring(attr) (function)

disables the usual call of Setter(attr) when a method for attr returns a value. In conse-
quence the values will never be stored. Note that attr must be an attribute and not a property.

13.6.6 EnableAttributeValueStoring

▷ EnableAttributeValueStoring(attr) (function)

GAP - Reference Manual 191

enables the usual call of Setter(attr) when a method for attr returns a value.
In consequence the values may be stored. This will usually have no effect unless
DisableAttributeValueStoring (13.6.5) has previously been used for attr . Note that attr must
be an attribute and not a property.

Example
gap> g := Group((1,2,3,4,5),(1,2,3));

Group([(1,2,3,4,5), (1,2,3)])

gap> KnownAttributesOfObject(g);

["LargestMovedPoint", "GeneratorsOfMagmaWithInverses",

"MultiplicativeNeutralElement"]

gap> SetInfoLevel(InfoAttributes,3);

gap> DisableAttributeValueStoring(Size);

#I Disabling value storing for Size

gap> Size(g);

60

gap> KnownAttributesOfObject(g);

["OneImmutable", "LargestMovedPoint", "NrMovedPoints",

"MovedPoints", "GeneratorsOfMagmaWithInverses",

"MultiplicativeNeutralElement", "StabChainMutable",

"StabChainOptions"]

gap> Size(g);

60

gap> EnableAttributeValueStoring(Size);

#I Enabling value storing for Size

gap> Size(g);

60

gap> KnownAttributesOfObject(g);

["Size", "OneImmutable", "LargestMovedPoint", "NrMovedPoints",

"MovedPoints", "GeneratorsOfMagmaWithInverses",

"MultiplicativeNeutralElement", "StabChainMutable",

"StabChainOptions"]

13.7 Properties

The properties of an object are those of its attributes (see 13.5) whose values can only be true or
false.

The main difference between attributes and properties is that a property defines two sets of objects,
namely the usual set of all objects for which the value is known, and the set of all objects for which
the value is known to be true.

(Note that it makes no sense to consider a third set, namely the set of objects for which the value
of a property is true whether or not it is known, since there may be objects for which the containment
in this set cannot be decided.)

For a property prop , the containment of an object obj in the first set is checked again by applying
Tester(prop) to obj , and obj lies in the second set if and only if Tester(prop)(obj)

and prop(obj) is true.
If a property value is known for an immutable object then this value is also stored, as part of the

type of the object. To some extent, property values of mutable objects also can be stored, for example
a mutable list all of whose entries are immutable can store whether it is strictly sorted. When the
object is mutated (for example by list assignment) the type may need to be adjusted.

GAP - Reference Manual 192

Important properties for domains are IsAssociative (35.4.7), IsCommutative (35.4.9),
IsAnticommutative (56.4.6), IsLDistributive (56.4.3) and IsRDistributive (56.4.4), which
mean that the multiplication of elements in the domain satisfies (a ∗ b) ∗ c = a ∗ (b ∗ c), a ∗ b = b ∗ a,
a∗b =−(b∗a), a∗ (b+ c) = a∗b+a∗ c, and (a+b)∗ c = a∗ c+b∗ c, respectively, for all a, b, c in
the domain.

13.7.1 IsProperty

▷ IsProperty(object) (function)

returns true if object is a property (see 13.7), and false otherwise.

13.7.2 KnownPropertiesOfObject

▷ KnownPropertiesOfObject(object) (operation)

returns a list of the names of the properties whose values are known for object .

13.7.3 KnownTruePropertiesOfObject

▷ KnownTruePropertiesOfObject(object) (operation)

returns a list of the names of the properties known to be true for object .
Example

gap> g:=Group((1,2),(1,2,3));;

gap> KnownPropertiesOfObject(g);

["IsEmpty", "IsTrivial", "IsNonTrivial", "IsFinite",

"CanEasilyCompareElements", "CanEasilySortElements",

"IsDuplicateFree", "IsGeneratorsOfMagmaWithInverses",

"IsAssociative", "IsFinitelyGeneratedMagma",

"IsGeneratorsOfSemigroup", "IsSimpleSemigroup",

"IsRegularSemigroup", "IsInverseSemigroup",

"IsCompletelyRegularSemigroup", "IsCompletelySimpleSemigroup",

"IsGroupAsSemigroup", "IsMonoidAsSemigroup", "IsOrthodoxSemigroup",

"IsFinitelyGeneratedMonoid", "IsFinitelyGeneratedGroup",

"IsSubsetLocallyFiniteGroup", "KnowsHowToDecompose",

"IsInfiniteAbelianizationGroup", "IsNilpotentByFinite",

"IsTorsionFree", "IsFreeAbelian"]

gap> Size(g);

6

gap> KnownPropertiesOfObject(g);

["IsEmpty", "IsTrivial", "IsNonTrivial", "IsFinite",

"CanEasilyCompareElements", "CanEasilySortElements",

"IsDuplicateFree", "IsGeneratorsOfMagmaWithInverses",

"IsAssociative", "IsFinitelyGeneratedMagma",

"IsGeneratorsOfSemigroup", "IsSimpleSemigroup",

"IsRegularSemigroup", "IsInverseSemigroup",

"IsCompletelyRegularSemigroup", "IsCompletelySimpleSemigroup",

"IsGroupAsSemigroup", "IsMonoidAsSemigroup", "IsOrthodoxSemigroup",

"IsFinitelyGeneratedMonoid", "IsFinitelyGeneratedGroup",

"IsSubsetLocallyFiniteGroup", "KnowsHowToDecompose",

GAP - Reference Manual 193

"IsPerfectGroup", "IsSolvableGroup", "IsPolycyclicGroup",

"IsInfiniteAbelianizationGroup", "IsNilpotentByFinite",

"IsTorsionFree", "IsFreeAbelian"]

gap> KnownTruePropertiesOfObject(g);

["IsNonTrivial", "IsFinite", "CanEasilyCompareElements",

"CanEasilySortElements", "IsDuplicateFree",

"IsGeneratorsOfMagmaWithInverses", "IsAssociative",

"IsFinitelyGeneratedMagma", "IsGeneratorsOfSemigroup",

"IsSimpleSemigroup", "IsRegularSemigroup", "IsInverseSemigroup",

"IsCompletelyRegularSemigroup", "IsCompletelySimpleSemigroup",

"IsGroupAsSemigroup", "IsMonoidAsSemigroup", "IsOrthodoxSemigroup",

"IsFinitelyGeneratedMonoid", "IsFinitelyGeneratedGroup",

"IsSubsetLocallyFiniteGroup", "KnowsHowToDecompose",

"IsSolvableGroup", "IsPolycyclicGroup", "IsNilpotentByFinite"]

13.7.4 NewProperty

▷ NewProperty(name, filter[, rank]) (function)

NewProperty returns a new property prop with name name (see also 13.7). The filter filter
describes the involved filters of prop . As in the case of attributes, filter is not implied by prop .

The optional third argument rank denotes the incremental rank (see 13.2) of the property prop

itself, i.e. not of its tester; the default value is 1.

13.7.5 DeclareProperty

▷ DeclareProperty(name, filter[, rank]) (function)

does the same as NewProperty (13.7.4) and then binds the result to the global variable name . The
variable must previously be writable, and is made read-only by this function. It also binds read-only
global variables with names Hasname and Setname for the tester and setter of the property (see
Section 13.6).

13.8 Other Filters

There are situations where one wants to express a kind of knowledge that is based on some heuristic.
For example, the filters (see 13.2) CanEasilyTestMembership (39.26.1) and

CanEasilyComputePcgs (45.2.3) are defined in the GAP library. Note that such filters do not
correspond to a mathematical concept, contrary to properties (see 13.7). Also it need not be defined
what “easily” means for an arbitrary GAP object, and in this case one cannot compute the value for
an arbitrary GAP object. In order to access this kind of knowledge as a part of the type of an object,
GAP provides filters for which the value is false by default, and it is changed to true in certain
situations, either explicitly (for the given object) or via a logical implication (see 78.8) from other
filters.

For example, a true value of CanEasilyComputePcgs (45.2.3) for a group means that certain
methods are applicable that use a pcgs (see 45.1) for the group. There are logical implications to set
the filter value to true for permutation groups that are known to be solvable, and for groups that have
already a (sufficiently nice) pcgs stored. In the case one has a solvable matrix group and wants to

GAP - Reference Manual 194

enable methods that use a pcgs, one can set the CanEasilyComputePcgs (45.2.3) value to true for
this particular group.

A filter filt of the kind described here is different from the other filters introduced in the previous
sections. In particular, filt is not a category (see 13.3) or a property (see 13.7) because its value may
change for a given object, and filt is not a representation (see 13.4) because it has nothing to do with
the way an object is made up from some data. filt is similar to an attribute tester (see 13.6), the only
difference is that filt does not refer to an attribute value; note that filt is also used in the same way
as an attribute tester; namely, the true value may be required for certain methods to be applicable.

In order to change the value of filt for an object obj , one can use logical implications (see 78.8)
or SetFilterObj (13.8.3), ResetFilterObj (13.8.4).

13.8.1 NewFilter

▷ NewFilter(name[, implied][, rank]) (function)

NewFilter returns a simple filter with name name (see 13.8).
The optional argument implied , if given, must be a filter, meaning that for each object in the new

filter, also implied will be set. Note that resetting the new filter with ResetFilterObj (13.8.4) does
not reset implied . If the new filter is intended to be set or reset manually for existing objects then
the argument implied will cause trouble; if the filter is not intended to be set or reset manually then
perhaps calling NewCategory (13.3.4) is more appropriate than calling NewFilter.

The optional argument rank denotes the incremental rank (see 13.2) of the filter, the default value
is 1.

The default value of the new simple filter for each object is false.

13.8.2 DeclareFilter

▷ DeclareFilter(name[, implied][, rank]) (function)

does the same as NewFilter (13.8.1) and then binds the result to the global variable name . The
variable must previously be writable, and is made read-only by this function.

13.8.3 SetFilterObj

▷ SetFilterObj(obj, filter) (function)

SetFilterObj sets the value of filter (and of all filters implied by filter) for obj to true.
This may trigger immediate methods.

13.8.4 ResetFilterObj

▷ ResetFilterObj(obj, filter) (function)

ResetFilterObj sets the value of filter for obj to false. (Implied filters of filt are not
touched. This might create inconsistent situations if applied carelessly).

GAP - Reference Manual 195

13.9 Types

We stated above (see 13) that, for an object obj , its type is formed from its family and its filters. There
is also a third component, used in a few situations, namely defining data of the type.

13.9.1 TypeObj

▷ TypeObj(obj) (function)

returns the type of the object obj .
The type of an object is itself an object.
Two types are equal if and only if the two families are identical, the filters are equal, and, if present,

also the defining data of the types are equal.

13.9.2 DataType

▷ DataType(type) (function)

The last part of the type, defining data, has not been mentioned before and seems to be of minor
importance. It can be used, e.g., for cosets Ug of a group U , where the type of each coset may contain
the group U as defining data. As a consequence, two such cosets mod U and V can have the same type
only if U =V . The defining data of the type type can be accessed via DataType.

13.9.3 NewType

▷ NewType(family, filter[, data]) (function)

NewType returns the type given by the family family and the filter filter . The optional third
argument data is any object that denotes defining data of the desired type.

For examples where NewType is used, see 79.2, 79.3, and the example in Chapter 81.

Chapter 14

Integers

One of the most fundamental datatypes in every programming language is the integer type. GAP is
no exception.

GAP integers are entered as a sequence of decimal digits optionally preceded by a “+” sign for
positive integers or a “-” sign for negative integers. The size of integers in GAP is only limited by the
amount of available memory, so you can compute with integers having thousands of digits.

Example
gap> -1234;

-1234

gap> 123456789012345678901234567890123456789012345678901234567890;

123456789012345678901234567890123456789012345678901234567890

Note that in a few places, only certain small integer values can be used. A small integer (also re-
ferred to as immediate integer) is an integer n satisfying INTOBJ_MIN ≤ n ≤ INTOBJ_MAX, where
INTOBJ_MIN and INTOBJ_MAX equal either −228 and 228 −1 (on 32-bit systems) or −260 and 260 −1
(on 64-bit systems). For example, the elements of a range are restricted to small integers (see 21.22).

Many more functions that are mainly related to the prime residue group of integers modulo an
integer are described in chapter 15, and functions dealing with combinatorics can be found in chap-
ter 16.

14.1 Integers: Global Variables

14.1.1 Integers (global variable)

▷ Integers (global variable)

▷ PositiveIntegers (global variable)

▷ NonnegativeIntegers (global variable)

These global variables represent the ring of integers and the semirings of positive and nonnegative
integers, respectively.

Example
gap> Size(Integers); 2 in Integers;

infinity

true

196

GAP - Reference Manual 197

Integers is a subset of Rationals (17.1.1), which is a subset of Cyclotomics (18.1.2). See
Chapter 18 for arithmetic operations and comparison of integers.

14.1.2 IsIntegers

▷ IsIntegers(obj) (Category)

▷ IsPositiveIntegers(obj) (Category)

▷ IsNonnegativeIntegers(obj) (Category)

are the defining categories for the domains Integers (14.1.1), PositiveIntegers (14.1.1), and
NonnegativeIntegers (14.1.1).

Example
gap> IsIntegers(Integers); IsIntegers(Rationals); IsIntegers(7);

true

false

false

14.2 Elementary Operations for Integers

14.2.1 IsInt

▷ IsInt(obj) (Category)

Every rational integer lies in the category IsInt, which is a subcategory of IsRat (17.2.1).

14.2.2 IsPosInt

▷ IsPosInt(obj) (Category)

Every positive integer lies in the category IsPosInt.

14.2.3 Int

▷ Int(elm) (attribute)

Int returns an integer int whose meaning depends on the type of elm . For example:
If elm is a rational number (see Chapter 17) then int is the integer part of the quotient of numer-

ator and denominator of elm (see QuoInt (14.3.1)).
If elm is an element of a finite prime field (see Chapter 59) then int is the smallest nonnegative

integer such that elm = int * One(elm).
If elm is a string (see Chapter 27) consisting entirely of decimal digits '0', '1', . . ., '9', and

optionally a sign '-' (at the first position), then int is the integer described by this string. For all
other strings, fail is returned. See Int (27.9.1).

The operation String (27.7.6) can be used to compute a string for rational integers, in fact for all
cyclotomics.

Example
gap> Int(4/3); Int(-2/3);

1

GAP - Reference Manual 198

0

gap> int:= Int(Z(5)); int * One(Z(5));

2

Z(5)

gap> Int("12345"); Int("-27"); Int("-27/3");

12345

-27

fail

14.2.4 IsEvenInt

▷ IsEvenInt(n) (function)

tests if the integer n is divisible by 2.

14.2.5 IsOddInt

▷ IsOddInt(n) (function)

tests if the integer n is not divisible by 2.

14.2.6 AbsInt

▷ AbsInt(n) (function)

AbsInt returns the absolute value of the integer n , i.e., n if n is positive, -n if n is negative and
0 if n is 0.

AbsInt is a special case of the general operation EuclideanDegree (56.6.2).
See also AbsoluteValue (18.1.8).

Example
gap> AbsInt(33);

33

gap> AbsInt(-214378);

214378

gap> AbsInt(0);

0

14.2.7 SignInt

▷ SignInt(n) (function)

SignInt returns the sign of the integer n , i.e., 1 if n is positive, -1 if n is negative and 0 if n is 0.
Example

gap> SignInt(33);

1

gap> SignInt(-214378);

-1

gap> SignInt(0);

0

GAP - Reference Manual 199

14.2.8 LogInt

▷ LogInt(n, base) (function)

LogInt returns the integer part of the logarithm of the positive integer n with respect to the positive
integer base , i.e., the largest positive integer e such that base e ≤ n . The function LogInt will signal
an error if either n or base is not positive.

For base = 2 this is very efficient because the internal binary representation of the integer is used.
Example

gap> LogInt(1030, 2);

10

gap> 2^10;

1024

gap> LogInt(1, 10);

0

14.2.9 RootInt

▷ RootInt(n[, k]) (function)

RootInt returns the integer part of the k th root of the integer n . If the optional integer argument
k is not given it defaults to 2, i.e., RootInt returns the integer part of the square root in this case.

If n is positive, RootInt returns the largest positive integer r such that rk ≤ n . If n is negative
and k is odd RootInt returns -RootInt(-n, k). If n is negative and k is even RootInt will
cause an error. RootInt will also cause an error if k is 0 or negative.

Example
gap> RootInt(361);

19

gap> RootInt(2 * 10^12);

1414213

gap> RootInt(17000, 5);

7

gap> 7^5;

16807

14.2.10 SmallestRootInt

▷ SmallestRootInt(n) (function)

SmallestRootInt returns the smallest root of the integer n .
The smallest root of an integer n is the integer r of smallest absolute value for which a positive

integer k exists such that n = rk.
Example

gap> SmallestRootInt(2^30);

2

gap> SmallestRootInt(-(2^30));

-4

Note that (−2)30 =+(230).

GAP - Reference Manual 200

Example
gap> SmallestRootInt(279936);

6

gap> LogInt(279936, 6);

7

gap> SmallestRootInt(1001);

1001

14.2.11 IsSquareInt

▷ IsSquareInt(n) (function)

IsSquareInt tests whether the integer n is the square of an integer or not. This test is much faster
than the simpler RootInt(n)2 = n because it first tests whether n is a square residue modulo some
small integers.

14.2.12 ListOfDigits

▷ ListOfDigits(n) (function)

For a positive integer n this function returns a list l , consisting of the digits of n in decimal
representation.

Example
gap> ListOfDigits(3142);

[3, 1, 4, 2]

14.2.13 Random (for integers)

▷ Random(Integers) (method)

Random for integers returns pseudo random integers between −10 and 10 distributed according to
a binomial distribution. To generate uniformly distributed integers from a range, use the construction
Random([low .. high]) (see Random (30.7.1)).

14.3 Quotients and Remainders

14.3.1 QuoInt

▷ QuoInt(n, m) (function)

QuoInt returns the integer part of the quotient of its integer operands.
If n and m are positive, QuoInt returns the largest positive integer q such that q∗m ≤ n . If n or m

or both are negative the absolute value of the integer part of the quotient is the quotient of the absolute
values of n and m , and the sign of it is the product of the signs of n and m .

QuoInt is used in a method for the general operation EuclideanQuotient (56.6.3).
Example

gap> QuoInt(5,3); QuoInt(-5,3); QuoInt(5,-3); QuoInt(-5,-3);

1

GAP - Reference Manual 201

-1

-1

1

14.3.2 BestQuoInt

▷ BestQuoInt(n, m) (function)

BestQuoInt returns the best quotient q of the integers n and m . This is the quotient such that
n − q ∗ m has minimal absolute value. If there are two quotients whose remainders have the same
absolute value, then the quotient with the smaller absolute value is chosen.

Example
gap> BestQuoInt(5, 3); BestQuoInt(-5, 3);

2

-2

14.3.3 RemInt

▷ RemInt(n, m) (function)

RemInt returns the remainder of its two integer operands.
If m is not equal to zero, RemInt returns n - m * QuoInt(n, m). Note that the rules given

for QuoInt (14.3.1) imply that the return value of RemInt has the same sign as n and its absolute value
is strictly less than the absolute value of m . Note also that the return value equals n mod m when both
n and m are nonnegative. Dividing by 0 signals an error.

RemInt is used in a method for the general operation EuclideanRemainder (56.6.4).
Example

gap> RemInt(5,3); RemInt(-5,3); RemInt(5,-3); RemInt(-5,-3);

2

-2

2

-2

14.3.4 GcdInt

▷ GcdInt(m, n) (function)

GcdInt returns the greatest common divisor of its two integer operands m and n , i.e., the greatest
integer that divides both m and n . The greatest common divisor is never negative, even if the arguments
are. We define GcdInt(m, 0) = GcdInt(0, m) = AbsInt(m) and GcdInt(0, 0) =

0.
GcdInt is a method used by the general function Gcd (56.7.1).

Example
gap> GcdInt(123, 66);

3

GAP - Reference Manual 202

14.3.5 Gcdex

▷ Gcdex(m, n) (function)

returns a record g describing the extended greatest common divisor of m and n . The compo-
nent gcd is this gcd, the components coeff1 and coeff2 are integer cofactors such that g.gcd =

g.coeff1 * m + g.coeff2 * n , and the components coeff3 and coeff4 are integer cofactors
such that 0 = g.coeff3 * m + g.coeff4 * n .

If m and n both are nonzero, AbsInt(g.coeff1) is less than or equal to AbsInt(n) / (2 *

g.gcd), and AbsInt(g.coeff2) is less than or equal to AbsInt(m) / (2 * g.gcd).
If m or n or both are zero coeff3 is -n / g.gcd and coeff4 is m / g.gcd.
The coefficients always form a unimodular matrix, i.e., the determinant g.coeff1 * g.coeff4

- g.coeff3 * g.coeff2 is 1 or −1.
Example

gap> Gcdex(123, 66);

rec(coeff1 := 7, coeff2 := -13, coeff3 := -22, coeff4 := 41,

gcd := 3)

This means 3 = 7∗123−13∗66, 0 =−22∗123+41∗66.
Example

gap> Gcdex(0, -3);

rec(coeff1 := 0, coeff2 := -1, coeff3 := 1, coeff4 := 0, gcd := 3)

gap> Gcdex(0, 0);

rec(coeff1 := 1, coeff2 := 0, coeff3 := 0, coeff4 := 1, gcd := 0)

GcdRepresentation (56.7.3) provides similar functionality over arbitrary Euclidean rings.

14.3.6 LcmInt

▷ LcmInt(m, n) (function)

returns the least common multiple of the integers m and n .
LcmInt is a method used by the general operation Lcm (56.7.6).

Example
gap> LcmInt(123, 66);

2706

14.3.7 CoefficientsQadic

▷ CoefficientsQadic(i, q) (operation)

returns the q-adic representation of the integer i as a list l of coefficients satisfying the equality
i = ∑ j=0 q

j · l[j+1] for an integer q > 1.
Example

gap> l:=CoefficientsQadic(462,3);

[0, 1, 0, 2, 2, 1]

GAP - Reference Manual 203

14.3.8 CoefficientsMultiadic

▷ CoefficientsMultiadic(ints, int) (function)

returns the multiadic expansion of the integer int modulo the integers given in ints (in ascending
order). It returns a list of coefficients in the reverse order to that in ints .

14.3.9 ChineseRem

▷ ChineseRem(moduli, residues) (function)

ChineseRem returns the combination of the residues modulo the moduli , i.e., the unique integer
c from [0..Lcm(moduli)-1] such that c = residues[i] modulo moduli[i] for all i, if it exists.
If no such combination exists ChineseRem signals an error.

Such a combination does exist if and only if residues[i] = residues[k] mod Gcd(

moduli[i], moduli[k]) for every pair i, k. Note that this implies that such a combination exists
if the moduli are pairwise relatively prime. This is called the Chinese remainder theorem.

Example
gap> ChineseRem([2, 3, 5, 7], [1, 2, 3, 4]);

53

gap> ChineseRem([6, 10, 14], [1, 3, 5]);

103

Example
gap> ChineseRem([6, 10, 14], [1, 2, 3]);

Error, the residues must be equal modulo 2 called from

<function>(<arguments>) called from read-eval-loop

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can 'return;' to continue

brk> gap>

14.3.10 PowerModInt

▷ PowerModInt(r, e, m) (function)

returns re (mod m) for integers r , e and m .
Note that PowerModInt can reduce intermediate results and thus will generally be faster than

using r^e mod m , which would compute re first and reduces the result afterwards.
PowerModInt is a method for the general operation PowerMod (56.7.9).

14.4 Prime Integers and Factorization

14.4.1 Primes

▷ Primes (global variable)

Primes is a strictly sorted list of the 168 primes less than 1000.
This is used in IsPrimeInt (14.4.2) and FactorsInt (14.4.7) to cast out small primes quickly.

GAP - Reference Manual 204

Example
gap> Primes[1];

2

gap> Primes[100];

541

14.4.2 IsPrimeInt

▷ IsPrimeInt(n) (function)

▷ IsProbablyPrimeInt(n) (function)

IsPrimeInt returns false if it can prove that the integer n is composite and true otherwise.
By convention IsPrimeInt(0) = IsPrimeInt(1) = false and we define IsPrimeInt(-n) =

IsPrimeInt(n).
IsPrimeInt will return true for every prime n . IsPrimeInt will return false for all composite

n < 1018 and for all composite n that have a factor p < 1000. So for integers n < 1018, IsPrimeInt
is a proper primality test. It is conceivable that IsPrimeInt may return true for some composite n >
1018, but no such n is currently known. So for integers n > 1018, IsPrimeInt is a probable-primality
test. IsPrimeInt will issue a warning when its argument is probably prime but not a proven prime.
(The function IsProbablyPrimeInt will do a similar calculation but not issue a warning.) The
warning can be switched off by SetInfoLevel(InfoPrimeInt, 0);, the default level is 1 (also
see SetInfoLevel (7.4.3)).

If composites that fool IsPrimeInt do exist, they would be extremely rare, and finding one by
pure chance might be less likely than finding a bug in GAP. We would appreciate being informed
about any example of a composite number n for which IsPrimeInt returns true.

IsPrimeInt is a deterministic algorithm, i.e., the computations involve no random numbers, and
repeated calls will always return the same result. IsPrimeInt first does trial divisions by the primes
less than 1000. Then it tests that n is a strong pseudoprime w.r.t. the base 2. Finally it tests whether
n is a Lucas pseudoprime w.r.t. the smallest quadratic nonresidue of n . A better description can be
found in the comment in the library file primality.gi.

The time taken by IsPrimeInt is approximately proportional to the third power of the number of
digits of n . Testing numbers with several hundreds digits is quite feasible.

IsPrimeInt is a method for the general operation IsPrime (56.5.8).
Remark: In future versions of GAP we hope to change the definition of IsPrimeInt to return

true only for proven primes (currently, we lack a sufficiently good primality proving function). In
applications, use explicitly IsPrimeInt or IsProbablyPrimeInt with this change in mind.

Example
gap> IsPrimeInt(2^31 - 1);

true

gap> IsPrimeInt(10^42 + 1);

false

14.4.3 PrimalityProof

▷ PrimalityProof(n) (function)

GAP - Reference Manual 205

Construct a machine verifiable proof of the primality of (the probable prime) n , following the
ideas of [BLS75]. The proof consists of various Fermat and Lucas pseudoprimality tests, which taken
as a whole prove the primality. The proof is represented as a list of witnesses of two kinds. The first
kind, ["F", divisor, base], indicates a successful Fermat pseudoprimality test, where n is a
strong pseudoprime at base with order not divisible by (n − 1)/divisor. The second kind, ["L",

divisor, discriminant, P] indicates a successful Lucas pseudoprimality test, for a quadratic
form of given discriminant and middle term P with an extra check at (n +1)/divisor.

14.4.4 IsPrimePowerInt

▷ IsPrimePowerInt(n) (function)

IsPrimePowerInt returns true if the integer n is a prime power and false otherwise.
An integer n is a prime power if there exists a prime p and a positive integer i such that pi = n.

If n is negative the condition is that there must exist a negative prime p and an odd positive integer i
such that pi = n. The integers 1 and -1 are not prime powers.

Note that IsPrimePowerInt uses SmallestRootInt (14.2.10) and a probable-primality test (see
IsPrimeInt (14.4.2)).

Example
gap> IsPrimePowerInt(31^5);

true

gap> IsPrimePowerInt(2^31-1); # 2^31-1 is actually a prime

true

gap> IsPrimePowerInt(2^63-1);

false

gap> Filtered([-10..10], IsPrimePowerInt);

[-8, -7, -5, -3, -2, 2, 3, 4, 5, 7, 8, 9]

14.4.5 NextPrimeInt

▷ NextPrimeInt(n) (function)

NextPrimeInt returns the smallest prime which is strictly larger than the integer n .
Note that NextPrimeInt uses a probable-primality test (see IsPrimeInt (14.4.2)).

Example
gap> NextPrimeInt(541); NextPrimeInt(-1);

547

2

14.4.6 PrevPrimeInt

▷ PrevPrimeInt(n) (function)

PrevPrimeInt returns the largest prime which is strictly smaller than the integer n .
Note that PrevPrimeInt uses a probable-primality test (see IsPrimeInt (14.4.2)).

Example
gap> PrevPrimeInt(541); PrevPrimeInt(1);

523

-2

GAP - Reference Manual 206

14.4.7 FactorsInt

▷ FactorsInt(n) (function)

▷ FactorsInt(n: RhoTrials := trials) (function)

FactorsInt returns a list of factors of a given integer n such that Product(FactorsInt(n)

) = n . If |n| ≤ 1 the list [n] is returned. Otherwise the result contains probable primes, sorted by
absolute value. The entries will all be positive except for the first one in case of a negative n .

See PrimeDivisors (14.4.8) for a function that returns a set of (probable) primes dividing n .
Note that FactorsInt uses a probable-primality test (see IsPrimeInt (14.4.2)). Thus

FactorsInt might return a list which contains composite integers. In such a case you will get a
warning about the use of a probable prime. You can switch off these warnings by SetInfoLevel(

InfoPrimeInt, 0); (also see SetInfoLevel (7.4.3)).
The time taken by FactorsInt is approximately proportional to the square root of the second

largest prime factor of n , which is the last one that FactorsInt has to find, since the largest factor
is simply what remains when all others have been removed. Thus the time is roughly bounded by the
fourth root of n . FactorsInt is guaranteed to find all factors less than 106 and will find most factors
less than 1010. If n contains multiple factors larger than that FactorsInt may not be able to factor n
and will then signal an error.

FactorsInt is used in a method for the general operation Factors (56.5.9).
In the second form, FactorsInt calls FactorsRho with a limit of trials on the number of

trials it performs. The default is 8192. Note that Pollard’s Rho is the fastest method for finding prime
factors with roughly 5-10 decimal digits, but becomes more and more inferior to other factorization
techniques like e.g. the Elliptic Curves Method (ECM) the bigger the prime factors are. Therefore
instead of performing a huge number of Rho trials , it is usually more advisable to install the FactInt
package and then simply to use the operation Factors (56.5.9). The factorization of the 8-th Fermat
number by Pollard’s Rho below takes already a while.

Example
gap> FactorsInt(-Factorial(6));

[-2, 2, 2, 2, 3, 3, 5]

gap> Set(FactorsInt(Factorial(13)/11));

[2, 3, 5, 7, 13]

gap> FactorsInt(2^63 - 1);

[7, 7, 73, 127, 337, 92737, 649657]

gap> FactorsInt(10^42 + 1);

[29, 101, 281, 9901, 226549, 121499449, 4458192223320340849]

gap> FactorsInt(2^256+1:RhoTrials:=100000000);

[1238926361552897,

93461639715357977769163558199606896584051237541638188580280321]

14.4.8 PrimeDivisors

▷ PrimeDivisors(n) (attribute)

PrimeDivisors returns for a non-zero integer n a set of its positive (probable) primes divisors.
In rare cases the result could contain a composite number which passed certain primality tests, see
IsProbablyPrimeInt (14.4.2) and FactorsInt (14.4.7) for more details.

GAP - Reference Manual 207

Example
gap> PrimeDivisors(-12);

[2, 3]

gap> PrimeDivisors(1);

[]

14.4.9 PartialFactorization

▷ PartialFactorization(n[, effort]) (operation)

PartialFactorization returns a partial factorization of the integer n . No assertions are made
about the primality of the factors, except of those mentioned below.

The argument effort , if given, specifies how intensively the function should try to determine
factors of n . The default is effort = 5.

• If effort = 0, trial division by the primes below 100 is done. Returned factors below 104 are
guaranteed to be prime.

• If effort = 1, trial division by the primes below 1000 is done. Returned factors below 106 are
guaranteed to be prime.

• If effort = 2, additionally trial division by the numbers in the lists Primes2 and
ProbablePrimes2 is done, and perfect powers are detected. Returned factors below 106 are
guaranteed to be prime.

• If effort = 3, additionally FactorsRho (Pollard’s Rho) with RhoTrials = 256 is used.

• If effort = 4, as above, but RhoTrials = 2048.

• If effort = 5, as above, but RhoTrials = 8192. Returned factors below 1012 are guaranteed
to be prime, and all prime factors below 106 are guaranteed to be found.

• If effort = 6 and the package FactInt is loaded, in addition to the above quite a number of
special cases are handled.

• If effort = 7 and the package FactInt is loaded, the only thing which is not attempted to obtain
a full factorization into Baillie-Pomerance-Selfridge-Wagstaff pseudoprimes is the application
of the MPQS to a remaining composite with more than 50 decimal digits.

Increasing the value of the argument effort by one usually results in an increase of the runtime
requirements by a factor of (very roughly!) 3 to 10. (Also see CheapFactorsInt (EDIM: Cheap-
FactorsInt)).

Example
gap> List([0..5],i->PartialFactorization(97^35-1,i));

[[2, 2, 2, 2, 2, 3, 11, 31, 43,

2446338959059521520901826365168917110105972824229555319002965029],

[2, 2, 2, 2, 2, 3, 11, 31, 43, 967,

2529823122088440042297648774735177983563570655873376751812787],

[2, 2, 2, 2, 2, 3, 11, 31, 43, 967,

2529823122088440042297648774735177983563570655873376751812787],

[2, 2, 2, 2, 2, 3, 11, 31, 43, 967, 39761, 262321,

GAP - Reference Manual 208

242549173950325921859769421435653153445616962914227],

[2, 2, 2, 2, 2, 3, 11, 31, 43, 967, 39761, 262321, 687121,

352993394104278463123335513593170858474150787],

[2, 2, 2, 2, 2, 3, 11, 31, 43, 967, 39761, 262321, 687121,

20241187, 504769301, 34549173843451574629911361501]]

14.4.10 PrintFactorsInt

▷ PrintFactorsInt(n) (function)

prints the prime factorization of the integer n in human-readable form. See also StringPP

(27.7.9).
Example

gap> PrintFactorsInt(Factorial(7)); Print("\n");

2^4*3^2*5*7

14.4.11 PrimePowersInt

▷ PrimePowersInt(n) (function)

returns the prime factorization of the integer n as a list [p1,e1, . . . , pk,ek] with n = pe1
1 · pe2

2 · ... · pek
k .

For negative integers, the absolute value is taken. Zero is not allowed as input.
Example

gap> PrimePowersInt(Factorial(7));

[2, 4, 3, 2, 5, 1, 7, 1]

gap> PrimePowersInt(1);

[]

14.4.12 DivisorsInt

▷ DivisorsInt(n) (function)

DivisorsInt returns a list of all divisors of the integer n . The list is sorted, so that it starts with
1 and ends with n . We define that DivisorsInt(-n) = DivisorsInt(n).

Since the set of divisors of 0 is infinite calling DivisorsInt(0) causes an error.
DivisorsInt may call FactorsInt (14.4.7) to obtain the prime factors. Sigma (15.5.1) and Tau

(15.5.2) compute the sum and the number of positive divisors, respectively.
Example

gap> DivisorsInt(1); DivisorsInt(20); DivisorsInt(541);

[1]

[1, 2, 4, 5, 10, 20]

[1, 541]

14.5 Residue Class Rings

ZmodnZ (14.5.2) returns a residue class ring of Integers (14) modulo an ideal. These residue class
rings are rings, thus all operations for rings (see Chapter 56) apply. See also Chapters 59 and 15.

GAP - Reference Manual 209

14.5.1 \mod (for residue class rings)

▷ \mod(r/s, n) (operation)

If r , s and n are integers, r / s as a reduced fraction is p/q, where q and n are coprime, then
r / s mod n is defined to be the product of p and the inverse of q modulo n . See Section 4.14 for
more details and definitions.

With the above definition, 4 / 6 mod 32 equals 2 / 3 mod 32 and hence exists (and is equal to
22), despite the fact that 6 has no inverse modulo 32.

14.5.2 ZmodnZ

▷ ZmodnZ(n) (function)

▷ ZmodpZ(p) (function)

▷ ZmodpZNC(p) (function)

ZmodnZ returns a ring R isomorphic to the residue class ring of the integers modulo the ideal
generated by n . The element corresponding to the residue class of the integer i in this ring can be
obtained by i * One(R), and a representative of the residue class corresponding to the element
x ∈ R can be computed by Int(x).

ZmodnZ(n) is equal to Integers mod n .
ZmodpZ does the same if the argument p is a prime integer, additionally the result is a field.

ZmodpZNC omits the check whether p is a prime.
Each ring returned by these functions contains the whole family of its elements if n is not a prime,

and is embedded into the family of finite field elements of characteristic n if n is a prime.

14.5.3 ZmodnZObj (for a residue class family and integer)

▷ ZmodnZObj(Fam, r) (operation)

▷ ZmodnZObj(r, n) (operation)

If the first argument is a residue class family Fam then ZmodnZObj returns the element in Fam

whose coset is represented by the integer r .
If the two arguments are an integer r and a positive integer n then ZmodnZObj returns the element

in ZmodnZ(n) (see ZmodnZ (14.5.2)) whose coset is represented by the integer r .
Example

gap> r:= ZmodnZ(15);

(Integers mod 15)

gap> fam:=ElementsFamily(FamilyObj(r));;

gap> a:= ZmodnZObj(fam,9);

ZmodnZObj(9, 15)

gap> a+a;

ZmodnZObj(3, 15)

gap> Int(a+a);

3

GAP - Reference Manual 210

14.5.4 IsZmodnZObj

▷ IsZmodnZObj(obj) (Category)

▷ IsZmodnZObjNonprime(obj) (Category)

▷ IsZmodpZObj(obj) (Category)

▷ IsZmodpZObjSmall(obj) (Category)

▷ IsZmodpZObjLarge(obj) (Category)

The elements in the rings Z/nZ are in the category IsZmodnZObj. If n is a prime then the elements
are of course also in the category IsFFE (59.1.1), otherwise they are in IsZmodnZObjNonprime.
IsZmodpZObj is an abbreviation of IsZmodnZObj and IsFFE. This category is the disjoint union
of IsZmodpZObjSmall and IsZmodpZObjLarge, the former containing all elements with n at most
MAXSIZE_GF_INTERNAL.

The reasons to distinguish the prime case from the nonprime case are

• that objects in IsZmodnZObjNonprime have an external representation (namely the residue in
the range [0,1, . . . ,n−1]),

• that the comparison of elements can be defined as comparison of the residues, and

• that the elements lie in a family of type IsZmodnZObjNonprimeFamily (note that for prime n,
the family must be an IsFFEFamily).

The reasons to distinguish the small and the large case are that for small n the elements must
be compatible with the internal representation of finite field elements, whereas we are free to define
comparison as comparison of residues for large n.

Note that we cannot claim that every finite field element of degree 1 is in IsZmodnZObj, since
finite field elements in internal representation may not know that they lie in the prime field.

14.6 Check Digits

14.6.1 CheckDigitISBN

▷ CheckDigitISBN(n) (function)

▷ CheckDigitISBN13(n) (function)

▷ CheckDigitPostalMoneyOrder(n) (function)

▷ CheckDigitUPC(n) (function)

These functions can be used to compute, or check, check digits for some everyday items. In each
case what is submitted as input is either the number with check digit (in which case the function returns
true or false), or the number without check digit (in which case the function returns the missing
check digit). The number can be specified as integer, as string (for example in case of leading zeros) or
as a sequence of arguments, each representing a single digit. The check digits tested are the 10-digit
ISBN (International Standard Book Number) using CheckDigitISBN (since arithmetic is module
11, a digit 11 is represented by an X); the newer 13-digit ISBN-13 using CheckDigitISBN13; the
numbers of 11-digit US postal money orders using CheckDigitPostalMoneyOrder; and the 12-digit
UPC bar code found on groceries using CheckDigitUPC.

GAP - Reference Manual 211

Example
gap> CheckDigitISBN("052166103");

Check Digit is 'X'

'X'

gap> CheckDigitISBN("052166103X");

Checksum test satisfied

true

gap> CheckDigitISBN(0,5,2,1,6,6,1,0,3,1);

Checksum test failed

false

gap> CheckDigitISBN(0,5,2,1,6,6,1,0,3,'X'); # note single quotes!

Checksum test satisfied

true

gap> CheckDigitISBN13("9781420094527");

Checksum test satisfied

true

gap> CheckDigitUPC("07164183001");

Check Digit is 1

1

gap> CheckDigitPostalMoneyOrder(16786457155);

Checksum test satisfied

true

14.6.2 CheckDigitTestFunction

▷ CheckDigitTestFunction(l, m, f) (function)

This function creates check digit test functions such as CheckDigitISBN (14.6.1) for check digit
schemes that use the inner products with a fixed vector modulo a number. The scheme creates will
use strings of l digits (including the check digits), the check consists of taking the standard product
of the vector of digits with the fixed vector f modulo m ; the result needs to be 0. The function returns
a function that then can be used for testing or determining check digits.

Example
gap> isbntest:=CheckDigitTestFunction(10,11,[1,2,3,4,5,6,7,8,9,-1]);

function(arg...) ... end

gap> isbntest("038794680");

Check Digit is 2

2

14.7 Random Sources

GAP provides Random (30.7.1) methods for many collections of objects. On a lower level these
methods use random sources which provide random integers and random choices from lists.

See IsRandomSource (14.7.1) for the user interface for random sources, and Section 14.7.6 for
information about developing new kinds of random sources.

GAP - Reference Manual 212

14.7.1 IsRandomSource

▷ IsRandomSource(obj) (Category)

This is the category of random source objects. The user interface for these objects consists of the
following functions.

RandomSource (14.7.5) creates a new random source rs , say.
Random(rs, list) yields a random element of the list list , and Random(rs, low, high

) yields a random integer between low and high (inclusive), see Random (14.7.2).
If rs supports resetting (see State (14.7.3)) then State(rs) yields a copy state , say, of the

current state of rs such that Reset(rs, state) resets rs to the given state.
One idea behind providing several independent (pseudo) random sources is to make algorithms

which use some sort of random choices deterministic. They can use their own new random source
created with a fixed seed and so do exactly the same in different calls.

Random source objects lie in the family RandomSourcesFamily.

14.7.2 Random (for random source and list)

▷ Random(rs, list) (operation)

▷ Random(rs, coll) (operation)

▷ Random(rs, low, high) (operation)

This operation returns a random element from the dense, nonempty list list or the nonempty
collection coll , or an integer in the range from the given (possibly large) integers low to high ,
respectively.

The choice should only depend on the random source rs and have no effect on other random
sources.

It is not defined what happens if list or coll is empty, list is not dense, or low is larger than
high .

Example
gap> mysource := RandomSource(IsMersenneTwister, 42);;

gap> Random(mysource, 1, 10^60);

999331861769949319194941485000557997842686717712198687315183

14.7.3 State and Reset for Random Sources

▷ State(rs) (operation)

▷ Reset(rs[, seed]) (operation)

These are the basic operations for random sources (see IsRandomSource (14.7.1)).
State returns a data structure which admits recovering the state of the random source such that a

sequence of random calls using this random source can be reproduced. If a random source cannot be
reset (say, it uses truly random physical data) then State returns fail.

Reset(rs, seed) resets the random source rs to a state described by seed , if the random
source can be reset; otherwise it does nothing. Here seed can be an output of State and then rs

gets reset to that state. For historical reasons, random sources accept integer values as seed . We
recommend that new code should not rely on this; always use the output of a prior call to State as

GAP - Reference Manual 213

seed , or omit it. Without the seed argument a fixed default seed is used. Reset returns the state of
rs before the call.

Most methods for Random (30.7.1) in the GAP library that do not take a random source as argu-
ment use the GlobalMersenneTwister (14.7.4) as random source. It can be reset into a known state
as in the following example.

Example
gap> seed := Reset(GlobalMersenneTwister);;

gap> seed = State(GlobalMersenneTwister);

true

gap> List([1..10],i->Random(Integers));

[-3, 2, -1, -2, -1, -1, 1, -4, 1, 0]

gap> List([1..10],i->Random(Integers));

[-1, -1, -1, 1, -1, 1, -2, -1, -2, 0]

gap> Reset(GlobalMersenneTwister, seed);;

gap> List([1..10],i->Random(Integers));

[-3, 2, -1, -2, -1, -1, 1, -4, 1, 0]

14.7.4 Kinds of Random Sources

▷ IsMersenneTwister(rs) (Category)

▷ IsGAPRandomSource(rs) (Category)

▷ IsGlobalRandomSource(rs) (Category)

▷ GlobalMersenneTwister (global variable)

▷ GlobalRandomSource (global variable)

Currently, the GAP library provides three types of random sources, distinguished by the three
listed categories.

IsMersenneTwister are random sources which use a fast random generator of 32 bit numbers,
called the Mersenne twister. The pseudo random sequence has a period of 219937 −1 and the numbers
have a 623-dimensional equidistribution. For more details and the origin of the code used in the GAP
kernel, see: http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html.

Use the Mersenne twister if possible, in particular for generating many large random integers.
There is also a predefined global random source GlobalMersenneTwister which is used as the

default random source by those library methods for Random (30.7.1) that do not take a random source
as an argument.

IsGAPRandomSource uses the same number generator as IsGlobalRandomSource, but you can
create several of these random sources which generate their random numbers independently of all
other random sources.

IsGlobalRandomSource gives access to the classical global random generator which was used by
GAP in former releases. You do not need to construct new random sources of this kind which would
all use the same global data structure. Just use the existing random source GlobalRandomSource.
This uses the additive random number generator described in [Knu98] (Algorithm A in 3.2.2 with lag
30).

Other kinds of random sources are implemented by GAP packages.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

GAP - Reference Manual 214

14.7.5 RandomSource

▷ RandomSource(cat[, seed]) (operation)

This operation is used to create new random sources. The first argument cat is the category
describing the type of the random generator, for example one of the categories listed in Section 14.7.4.

An optional seed can be given to specify the initial state. For details, see Section 14.7.3.
Example

gap> rs1 := RandomSource(IsMersenneTwister);

<RandomSource in IsMersenneTwister>

gap> l1 := List([1..10000], i-> Random(rs1, [1..6]));;

gap> state1 := State(rs1);;

gap> rs2 := RandomSource(IsMersenneTwister);;

gap> l2 := List([1..10000], i-> Random(rs2, [1..6]));;

gap> l1 = l2;

true

gap> l3 := List([1..10000], i-> Random(rs1, [1..6]));;

gap> l1 = l3;

false

gap> rs3 := RandomSource(IsMersenneTwister, state1);;

gap> l4 := List([1..10000], i-> Random(rs3, [1..6]));;

gap> l3 = l4;

true

gap> n := Random(rs1, 1, 2^220);

1077726777923092117987668044202944212469136000816111066409337432400

14.7.6 Implementing new kinds of random sources

If one wants to implement a new kind of random sources then the first step is the declaration of a new
category C, say, that implies IsRandomSource (14.7.1), analogous to the categories listed in Section
14.7.4, as follows.

DeclareCategory("C", IsRandomSource);.
Then the following method installations are needed.
InstallMethod(Init, [C, IsObject], function(prers, seed) ... end);

Here prers is an empty component object (which has already the filter C), and seed is an integer
or a state value as returned by State (14.7.3) that describes the initial state of the random source. The
function should fill in the actual data and then return the (now initialized) object prers. The default
used for seed is the integer 1. A given state value need not be copied by the function.

InstallMethod(Random, [C, IsInt, IsInt], function(rs, low, high) ...

end);

Here rs is an already initialized random source object in the category C, and the function returns
an integer between low and high (inclusive). It is not defined what happens when low is larger than
high.

InstallMethod(State, [C], function(rs) ... end);

If rs supports resetting then the function must return an object that describes the current state of
rs. This object must be an independent copy, that is, calling Random (14.7.2) for rs must not change
the object that was returned by State (14.7.3); otherwise ReturnFail (5.4.3) should be installed.

InstallMethod(Reset, [C, IsObject], function(rs, seed) ... end);

GAP - Reference Manual 215

If rs supports resetting then the function must reinitialize rs to the integer or State (14.7.3)
value seed and must return the State (14.7.3) value of rs before these changes; if resetting is not
supported then ReturnNothing (5.4.4) should be installed. Reset need not copy a given state. Note
that the generic unary Reset (14.7.3) method uses the default seed 1.

Examples of implementations as described here are given by the random sources with defining
filter IsMersenneTwister (14.7.4) or IsRealRandomSource. (For the latter, see RandomSource

(IO: RandomSource) in the GAP package IO.)

14.8 Bitfields

Bitfields are a low-level feature intended to support efficient subdivision of immediate integers
into bitfields of various widths. This is typically useful in implementing space-efficient and/or
cache-efficient data structures. This feature should be used with care because (inter alia) it has differ-
ent limitations on 32-bit and 64-bit architectures.

14.8.1 MakeBitfields

▷ MakeBitfields(width....) (function)

This function sets up the machinery for a set of bitfields of the given widths. All bitfield values
are treated as unsigned. The total of the widths must not exceed 60 bits on 64-bit architecture or 28
bits on a 32-bit architecture. For performance reasons some checks that one might wish to do are
omitted. In particular, the builder and setter functions do not check if the value[s] passed to them
are negative or too large (unless GAP is specially compiled for debugging). Behaviour when such
arguments are passed is undefined. You can tell which type of architecture you are running on by
accessing GAPInfo.BytesPerVariable which is 8 on 64-bits and 4 on 32. The return value when n
widths are given is a record whose fields are

widths

a copy of the arguments, for convenience,

getters

a list of n functions of one argument each of which extracts one of the fields from an immediate
integer

setters

a list of n functions each taking two arguments: a packed value and a new value for one of
its fields and returning a new packed value. The ith function returned the new packed value in
which the ith field has been replaced by the new value. Note that this does NOT modify the
original packed value.

Two additional fields may be present if any of the field widths is one. Each is a list and only has entried
bound in the positions corresponding to the width 1 fields.

booleanGetters

if the ith position of this list is set, it contains a function which extracts the ith field (which will
have width one) and returns true if it contains 1 and false if it contains 0

GAP - Reference Manual 216

booleanSetters

if the ith position of this list is set, it contains a function of two arguments. The first argument
is a packed value, the second is true or false. It returns a new packed value in which the ith
field is set to 1 if the second argument was true and 0 if it was false. Behaviour for any other
value is undefined.

14.8.2 BuildBitfields

▷ BuildBitfields(widths, vals...) (function)

This function takes one or more argument. Its first argument is a list of field widths, as found in
the widths entry of a record returned by MakeBitfields. The remaining arguments are unsigned
integer values, equal in number to the entries of the list of field widths. It returns a small integer in
which those entries are packed into bitfields of the given widths. The first entry occupies the least
significant bits. DeclareGlobalFunction("BuildBitfields");

Example
gap> bf := MakeBitfields(1,2,3);

rec(booleanGetters := [function(data) ... end],

booleanSetters := [function(data, val) ... end],

getters := [function(data) ... end, function(data) ... end,

function(data) ... end],

setters := [function(data, val) ... end, function(data, val) ... end,

function(data, val) ... end], widths := [1, 2, 3])

gap> x := BuildBitfields(bf.widths,0,3,5);

46

gap> bf.getters[3](x);

5

gap> y := bf.setters[1](x,1);

47

gap> x;

46

gap> bf.booleanGetters[1](x);

false

gap> bf.booleanGetters[1](y);

true

Chapter 15

Number Theory

GAP provides a couple of elementary number theoretic functions. Most of these deal with the group
of integers coprime to m, called the prime residue group. The order of this group is φ(m) (see Phi

(15.2.2)), and λ (m) (see Lambda (15.2.3)) is its exponent. This group is cyclic if and only if m is 2,
4, an odd prime power pn, or twice an odd prime power 2pn. In this case the generators of the group,
i.e., elements of order φ(m), are called primitive roots (see PrimitiveRootMod (15.3.4)).

Note that neither the arguments nor the return values of the functions listed below are groups or
group elements in the sense of GAP. The arguments are simply integers.

15.1 InfoNumtheor (Info Class)

15.1.1 InfoNumtheor

▷ InfoNumtheor (info class)

InfoNumtheor is the info class (see 7.4) for the functions in the number theory chapter.

15.2 Prime Residues

15.2.1 PrimeResidues

▷ PrimeResidues(m) (function)

PrimeResidues returns the set of integers from the range [0 .. Abs(m)-1] that are co-
prime to the integer m .

Abs(m) must be less than 228, otherwise the set would probably be too large anyhow.
Example

gap> PrimeResidues(0); PrimeResidues(1); PrimeResidues(20);

[]

[0]

[1, 3, 7, 9, 11, 13, 17, 19]

217

GAP - Reference Manual 218

15.2.2 Phi

▷ Phi(m) (operation)

Phi returns the number φ(m) of positive integers less than the positive integer m that are coprime
to m .

Suppose that m = pe1
1 pe2

2 · · · pek
k . Then φ(m) is pe1−1

1 (p1 −1)pe2−1
2 (p2 −1) · · · pek−1

k (pk −1).
Example

gap> Phi(12);

4

gap> Phi(2^13-1); # this proves that 2^(13)-1 is a prime

8190

gap> Phi(2^15-1);

27000

15.2.3 Lambda

▷ Lambda(m) (operation)

Lambda returns the exponent λ (m) of the group of prime residues modulo the integer m .
λ (m) is the smallest positive integer l such that for every a relatively prime to m we have al ≡ 1

(mod m). Fermat’s theorem asserts aφ(m) ≡ 1 (mod m); thus λ (m) divides φ(m) (see Phi (15.2.2)).
Carmichael’s theorem states that λ can be computed as follows: λ (2) = 1, λ (4) = 2 and λ (2e) =

2e−2 if 3 ≤ e, λ (pe) = (p−1)pe−1 (i.e. φ(m)) if p is an odd prime and λ (m∗n) =Lcm(λ (m),λ (n)) if
m,n are coprime.

Composites for which λ (m) divides m−1 are called Carmichaels. If 6k+1, 12k+1 and 18k+1
are primes their product is such a number. There are only 1547 Carmichaels below 1010 but 455052511
primes.

Example
gap> Lambda(10);

4

gap> Lambda(30);

4

gap> Lambda(561); # 561 is the smallest Carmichael number

80

15.2.4 GeneratorsPrimeResidues

▷ GeneratorsPrimeResidues(n) (function)

Let n be a positive integer. GeneratorsPrimeResidues returns a description of generators of the
group of prime residues modulo n . The return value is a record with components

primes:
a list of the prime factors of n ,

exponents:
a list of the exponents of these primes in the factorization of n , and

GAP - Reference Manual 219

generators:
a list describing generators of the group of prime residues; for the prime factor 2, either a
primitive root or a list of two generators is stored, for each other prime factor of n , a primitive
root is stored.

Example
gap> GeneratorsPrimeResidues(1);

rec(exponents := [], generators := [], primes := [])

gap> GeneratorsPrimeResidues(4*3);

rec(exponents := [2, 1], generators := [7, 5],

primes := [2, 3])

gap> GeneratorsPrimeResidues(8*9*5);

rec(exponents := [3, 2, 1],

generators := [[271, 181], 281, 217], primes := [2, 3, 5])

15.3 Primitive Roots and Discrete Logarithms

15.3.1 OrderMod

▷ OrderMod(n, m[, bound]) (function)

OrderMod returns the multiplicative order of the integer n modulo the positive integer m . If n and
m are not coprime the order of n is not defined and OrderMod will return 0.

If n and m are relatively prime the multiplicative order of n modulo m is the smallest positive
integer i such that n i ≡ 1 (mod m). If the group of prime residues modulo m is cyclic then each
element of maximal order is called a primitive root modulo m (see IsPrimitiveRootMod (15.3.5)).

If no a priori known multiple bound of the desired order is given, OrderMod usually spends most
of its time factoring m for computing λ (m) (see Lambda (15.2.3)) as the default for bound , and then
factoring bound (see FactorsInt (14.4.7)).

If an incorrect bound is given then the result will be wrong.
Example

gap> OrderMod(2, 7);

3

gap> OrderMod(3, 7); # 3 is a primitive root modulo 7

6

gap> m:= (5^166-1) / 167;; # about 10^113

gap> OrderMod(5, m, 166); # needs minutes without third argument

166

15.3.2 LogMod

▷ LogMod(n, r, m) (function)

▷ LogModShanks(n, r, m) (function)

computes the discrete r-logarithm of the integer n modulo the integer m . It returns a number l
such that rl ≡ n (mod m) if such a number exists. Otherwise fail is returned.

LogModShanks uses the Baby Step - Giant Step Method of Shanks (see for example [Coh93,
section 5.4.1]) and in general requires more memory than a call to LogMod.

GAP - Reference Manual 220

Example
gap> l:= LogMod(2, 5, 7); 5^l mod 7 = 2;

4

true

gap> LogMod(1, 3, 3); LogMod(2, 3, 3);

0

fail

15.3.3 DLog

▷ DLog(base, x[, m]) (function)

Returns: an integer
The argument base must be a multiplicative element and x must lie in the cyclic group generated

by base . The third argument m must be the order of base or its factorization. If m is not given, it is
computed first. This function returns the discrete logarithm, that is an integer e such that base e = x .

If m is prime then Shanks’ algorithm is used (which needs O(
√
m) space and time). Otherwise let

m = rl and e = a+br with 0 ≤ a < r. Then a = DLog(base l,x l,r) and b = DLog(base r,x/base a, l).
This function is used for a method of LogFFE (59.2.2).

Example
gap> q:= 67^12;

8182718904632857144561

gap> z:= Z(q);;

gap> DLog(z, z+1);

2874413785388345993274

gap> DLog(z, z^2+1);

1667375214152688471247

gap> DLog(z, Z(67));

123980589464134199160

15.3.4 PrimitiveRootMod

▷ PrimitiveRootMod(m[, start]) (function)

PrimitiveRootMod returns the smallest primitive root modulo the positive integer m and
fail if no such primitive root exists. If the optional second integer argument start is given
PrimitiveRootMod returns the smallest primitive root that is strictly larger than start .

Example
gap> # largest primitive root for a prime less than 2000:

gap> PrimitiveRootMod(409);

21

gap> PrimitiveRootMod(541, 2);

10

gap> # 327 is the largest primitive root mod 337:

gap> PrimitiveRootMod(337, 327);

fail

gap> # there exists no primitive root modulo 30:

gap> PrimitiveRootMod(30);

fail

GAP - Reference Manual 221

15.3.5 IsPrimitiveRootMod

▷ IsPrimitiveRootMod(r, m) (function)

IsPrimitiveRootMod returns true if the integer r is a primitive root modulo the positive integer
m , and false otherwise. If r is less than 0 or larger than m it is replaced by its remainder.

Example
gap> IsPrimitiveRootMod(2, 541);

true

gap> IsPrimitiveRootMod(-539, 541); # same computation as above;

true

gap> IsPrimitiveRootMod(4, 541);

false

gap> ForAny([1..29], r -> IsPrimitiveRootMod(r, 30));

false

gap> # there is no a primitive root modulo 30

15.4 Roots Modulo Integers

15.4.1 Jacobi

▷ Jacobi(n, m) (function)

Jacobi returns the value of the Kronecker-Jacobi symbol J(n ,m) of the integer n modulo the
integer m . It is defined as follows:

If n and m are not coprime then J(n,m) = 0. Furthermore, J(n,1) = 1 and J(n,−1) =−1 if m < 0
and +1 otherwise. And for odd n it is J(n,2)= (−1)k with k = (n2−1)/8. For odd primes m which are
coprime to n the Kronecker-Jacobi symbol has the same value as the Legendre symbol (see Legendre
(15.4.2)).

For the general case suppose that m= p1 · p2 · · · pk is a product of −1 and of primes, not necessarily
distinct, and that n is coprime to m. Then J(n,m) = J(n, p1) · J(n, p2) · · ·J(n, pk).

Note that the Kronecker-Jacobi symbol coincides with the Jacobi symbol that is defined for odd
m in many number theory books. For odd primes m and n coprime to m it coincides with the Legendre
symbol.

Jacobi is very efficient, even for large values of n and m , it is about as fast as the Euclidean
algorithm (see Gcd (56.7.1)).

Example
gap> Jacobi(11, 35); # 9^2 = 11 mod 35

1

gap> # this is -1, thus there is no r such that r^2 = 6 mod 35

gap> Jacobi(6, 35);

-1

gap> # this is 1 even though there is no r with r^2 = 3 mod 35

gap> Jacobi(3, 35);

1

GAP - Reference Manual 222

15.4.2 Legendre

▷ Legendre(n, m) (function)

Legendre returns the value of the Legendre symbol of the integer n modulo the positive integer m .
The value of the Legendre symbol L(n/m) is 1 if n is a quadratic residue modulo m, i.e., if there

exists an integer r such that r2 ≡ n (mod m) and −1 otherwise.
If a root of n exists it can be found by RootMod (15.4.3).
While the value of the Legendre symbol usually is only defined for m a prime, we have extended

the definition to include composite moduli too. The Jacobi symbol (see Jacobi (15.4.1)) is another
generalization of the Legendre symbol for composite moduli that is much cheaper to compute, because
it does not need the factorization of m (see FactorsInt (14.4.7)).

A description of the Jacobi symbol, the Legendre symbol, and related topics can be found in
[Bak84].

Example
gap> Legendre(5, 11); # 4^2 = 5 mod 11

1

gap> # this is -1, thus there is no r such that r^2 = 6 mod 11

gap> Legendre(6, 11);

-1

gap> # this is -1, thus there is no r such that r^2 = 3 mod 35

gap> Legendre(3, 35);

-1

15.4.3 RootMod

▷ RootMod(n[, k], m) (function)

RootMod computes a k th root of the integer n modulo the positive integer m , i.e., a r such that
rk ≡ n (mod m). If no such root exists RootMod returns fail. If only the arguments n and m are
given, the default value for k is 2.

A square root of n exists only if Legendre(n,m) = 1 (see Legendre (15.4.2)). If m has r dif-
ferent prime factors then there are 2r different roots of n mod m . It is unspecified which one RootMod
returns. You can, however, use RootsMod (15.4.4) to compute the full set of roots.

RootMod is efficient even for large values of m , in fact the most time is usually spent factoring m

(see FactorsInt (14.4.7)).
Example

gap> # note 'RootMod' does not return 8 in this case but -8:

gap> RootMod(64, 1009);

1001

gap> RootMod(64, 3, 1009);

518

gap> RootMod(64, 5, 1009);

656

gap> List(RootMod(64, 1009) * RootsUnityMod(1009),

> x -> x mod 1009); # set of all square roots of 64 mod 1009

[1001, 8]

GAP - Reference Manual 223

15.4.4 RootsMod

▷ RootsMod(n[, k], m) (function)

RootsMod computes the set of k th roots of the integer n modulo the positive integer m , i.e., the
list of all r such that rk ≡ n (mod m). If only the arguments n and m are given, the default value for
k is 2.

Example
gap> RootsMod(1, 7*31); # the same as `RootsUnityMod(7*31)'

[1, 92, 125, 216]

gap> RootsMod(7, 7*31);

[21, 196]

gap> RootsMod(5, 7*31);

[]

gap> RootsMod(1, 5, 7*31);

[1, 8, 64, 78, 190]

15.4.5 RootsUnityMod

▷ RootsUnityMod([k,]m) (function)

RootsUnityMod returns the set of k-th roots of unity modulo the positive integer m , i.e., the list
of all solutions r of rk ≡ n (mod m). If only the argument m is given, the default value for k is 2.

In general there are k n such roots if the modulus m has n different prime factors p such that p ≡ 1
(mod k). If k 2 divides m then there are k n+1 such roots; and especially if k = 2 and 8 divides m there
are 2n+2 such roots.

In the current implementation k must be a prime.
Example

gap> RootsUnityMod(7*31); RootsUnityMod(3, 7*31);

[1, 92, 125, 216]

[1, 25, 32, 36, 67, 149, 156, 191, 211]

gap> RootsUnityMod(5, 7*31);

[1, 8, 64, 78, 190]

gap> List(RootMod(64, 1009) * RootsUnityMod(1009),

> x -> x mod 1009); # set of all square roots of 64 mod 1009

[1001, 8]

15.5 Multiplicative Arithmetic Functions

15.5.1 Sigma

▷ Sigma(n) (operation)

Sigma returns the sum of the positive divisors of the nonzero integer n .
Sigma is a multiplicative arithmetic function, i.e., if n and m are relatively prime we have that

σ(n ·m) = σ(n)σ(m).
Together with the formula σ(pk) = (pk+1 −1)/(p−1) this allows us to compute σ(n).
Integers n for which σ(n) = 2n are called perfect. Even perfect integers are exactly of the form

2n−1(2n −1) where 2n −1 is prime. Primes of the form 2n −1 are called Mersenne primes, and 42

GAP - Reference Manual 224

among the known Mersenne primes are obtained for n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107,
127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209,
44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377,
6972593, 13466917, 20996011, 24036583 and 25964951. Please find more up to date information
about Mersenne primes at https://www.mersenne.org. It is not known whether odd perfect inte-
gers exist, however [BC89] show that any such integer must have at least 300 decimal digits.

Sigma usually spends most of its time factoring n (see FactorsInt (14.4.7)).
Example

gap> Sigma(1);

1

gap> Sigma(1009); # 1009 is a prime

1010

gap> Sigma(8128) = 2*8128; # 8128 is a perfect number

true

15.5.2 Tau

▷ Tau(n) (operation)

Tau returns the number of the positive divisors of the nonzero integer n .
Tau is a multiplicative arithmetic function, i.e., if n and m are relative prime we have τ(n ·m) =

τ(n)τ(m). Together with the formula τ(pk) = k+1 this allows us to compute τ(n).
Tau usually spends most of its time factoring n (see FactorsInt (14.4.7)).

Example
gap> Tau(1);

1

gap> Tau(1013); # thus 1013 is a prime

2

gap> Tau(8128);

14

gap> # result is odd if and only if argument is a perfect square:

gap> Tau(36);

9

15.5.3 MoebiusMu

▷ MoebiusMu(n) (function)

MoebiusMu computes the value of Moebius inversion function for the nonzero integer n . This is 0
for integers which are not squarefree, i.e., which are divided by a square r2. Otherwise it is 1 if n has
a even number and −1 if n has an odd number of prime factors.

The importance of µ stems from the so called inversion formula. Suppose f is a multiplica-
tive arithmetic function defined on the positive integers and let g(n) = ∑d|n f (d). Then f (n) =
∑d|n µ(d)g(n/d). As a special case we have φ(n) = ∑d|n µ(d)n/d since n = ∑d|n φ(d) (see Phi

(15.2.2)).
MoebiusMu usually spends all of its time factoring n (see FactorsInt (14.4.7)).

Example
gap> MoebiusMu(60); MoebiusMu(61); MoebiusMu(62);

0

https://www.mersenne.org

GAP - Reference Manual 225

-1

1

15.6 Continued Fractions

15.6.1 ContinuedFractionExpansionOfRoot

▷ ContinuedFractionExpansionOfRoot(f, n) (function)

The first n terms of the continued fraction expansion of the only positive real root of the polyno-
mial f with integer coefficients. The leading coefficient of f must be positive and the value of f at 0
must be negative. If the degree of f is 2 and n = 0, the function computes one period of the continued
fraction expansion of the root in question. Anything may happen if f has three or more positive real
roots.

Example
gap> x := Indeterminate(Integers);;

gap> ContinuedFractionExpansionOfRoot(x^2-7,20);

[2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1]

gap> ContinuedFractionExpansionOfRoot(x^2-7,0);

[2, 1, 1, 1, 4]

gap> ContinuedFractionExpansionOfRoot(x^3-2,20);

[1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3]

gap> ContinuedFractionExpansionOfRoot(x^5-x-1,50);

[1, 5, 1, 42, 1, 3, 24, 2, 2, 1, 16, 1, 11, 1, 1, 2, 31, 1, 12, 5,

1, 7, 11, 1, 4, 1, 4, 2, 2, 3, 4, 2, 1, 1, 11, 1, 41, 12, 1, 8, 1,

1, 1, 1, 1, 9, 2, 1, 5, 4]

15.6.2 ContinuedFractionApproximationOfRoot

▷ ContinuedFractionApproximationOfRoot(f, n) (function)

The n th continued fraction approximation of the only positive real root of the polynomial f with
integer coefficients. The leading coefficient of f must be positive and the value of f at 0 must be
negative. Anything may happen if f has three or more positive real roots.

Example
gap> ContinuedFractionApproximationOfRoot(x^2-2,10);

3363/2378

gap> 3363^2-2*2378^2;

1

gap> z := ContinuedFractionApproximationOfRoot(x^5-x-1,20);

499898783527/428250732317

gap> z^5-z-1;

486192462527432755459620441970617283/

14404247382319842421697357558805709031116987826242631261357

GAP - Reference Manual 226

15.7 Miscellaneous

15.7.1 PValuation

▷ PValuation(n, p) (function)

For an integer n and a prime p this function returns the p-valuation of n , that is the exponent e
such that pe is the largest power of p that divides n . The valuation of zero is infinity.

Example
gap> PValuation(100,2);

2

gap> PValuation(100,3);

0

15.7.2 TwoSquares

▷ TwoSquares(n) (function)

TwoSquares returns a list of two integers x ≤ y such that the sum of the squares of x and y is equal
to the nonnegative integer n , i.e., n = x2 +y2. If no such representation exists TwoSquares will return
fail. TwoSquares will return a representation for which the gcd of x and y is as small as possible. It
is not specified which representation TwoSquares returns if there is more than one.

Let a be the product of all maximal powers of primes of the form 4k+3 dividing n . A represen-
tation of n as a sum of two squares exists if and only if a is a perfect square. Let b be the maximal
power of 2 dividing n or its half, whichever is a perfect square. Then the minimal possible gcd of x
and y is the square root c of a ·b. The number of different minimal representation with x ≤ y is 2l−1,
where l is the number of different prime factors of the form 4k+1 of n .

The algorithm first finds a square root r of −1 modulo n/(a ·b), which must exist, and applies the
Euclidean algorithm to r and n . The first residues in the sequence that are smaller than

√
n/(a ·b)

times c are a possible pair x and y.
Better descriptions of the algorithm and related topics can be found in [Wag90] and [Zag90].

Example
gap> TwoSquares(5);

[1, 2]

gap> TwoSquares(11); # there is no representation

fail

gap> TwoSquares(16);

[0, 4]

gap> # 3 is the minimal possible gcd because 9 divides 45:

gap> TwoSquares(45);

[3, 6]

gap> # it is not [5,10] because their gcd is not minimal:

gap> TwoSquares(125);

[2, 11]

gap> # [10,11] would be the other possible representation:

gap> TwoSquares(13*17);

[5, 14]

gap> TwoSquares(848654483879497562821); # argument is prime

[6305894639, 28440994650]

Chapter 16

Combinatorics

This chapter describes functions that deal with combinatorics. We mainly concentrate on two areas.
One is about selections, that is the ways one can select elements from a set. The other is about
partitions, that is the ways one can partition a set into the union of pairwise disjoint subsets.

16.1 Combinatorial Numbers

16.1.1 Factorial

▷ Factorial(n) (function)

returns the factorial n! of the positive integer n , which is defined as the product 1 ·2 ·3 · · ·n.
n! is the number of permutations of a set of n elements. 1/n! is the coefficient of xn in the formal

series exp(x), which is the generating function for factorial.
Example

gap> List([0..10], Factorial);

[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]

gap> Factorial(30);

265252859812191058636308480000000

PermutationsList (16.2.12) computes the set of all permutations of a list.

16.1.2 Binomial

▷ Binomial(n, k) (function)

returns the binomial coefficient
(n

k

)
of integers n and k . This is defined by the conditions

(n
k

)
= 0

for k < 0,
(0

k

)
= 0 for k ̸= 0,

(0
0

)
= 1 and the relation

(n
k

)
=
(n−1

k

)
+
(n−1

k−1

)
for all n and k.

There are many ways of describing this function. For example, if n ≥ 0 and 0 ≤ k ≤ n, then(n
k

)
= n!/(k!(n− k)!) and for n < 0 and k ≥ 0 we have

(n
k

)
= (−1)k

(−n+k−1
k

)
.

If n ≥ 0 then
(n

k

)
is the number of subsets with k elements of a set with n elements. Also,

(n
k

)
is the

coefficient of xk in the polynomial (x+1)n, which is the generating function for
(n
.

)
, hence the name.

Example
gap> # Knuth calls this the trademark of Binomial:

gap> List([0..4], k->Binomial(4, k));

227

GAP - Reference Manual 228

[1, 4, 6, 4, 1]

gap> List([0..6], n->List([0..6], k->Binomial(n, k)));;

gap> # the lower triangle is called Pascal's triangle:

gap> PrintArray(last);

[[1, 0, 0, 0, 0, 0, 0],

[1, 1, 0, 0, 0, 0, 0],

[1, 2, 1, 0, 0, 0, 0],

[1, 3, 3, 1, 0, 0, 0],

[1, 4, 6, 4, 1, 0, 0],

[1, 5, 10, 10, 5, 1, 0],

[1, 6, 15, 20, 15, 6, 1]]

gap> Binomial(50, 10);

10272278170

NrCombinations (16.2.3) is the generalization of Binomial for multisets. Combinations

(16.2.1) computes the set of all combinations of a multiset.

16.1.3 Bell

▷ Bell(n) (function)

returns the Bell number B(n). The Bell numbers are defined by B(0) = 1 and the recurrence
B(n+1) = ∑

n
k=0
(n

k

)
B(k).

B(n) is the number of ways to partition a set of n elements into pairwise disjoint nonempty subsets
(see PartitionsSet (16.2.16)). This implies of course that B(n) = ∑

n
k=0 S2(n,k) (see Stirling2

(16.1.6)). B(n)/n! is the coefficient of xn in the formal series exp(exp(x)−1), which is the generating
function for B(n).

Example
gap> List([0..6], n -> Bell(n));

[1, 1, 2, 5, 15, 52, 203]

gap> Bell(14);

190899322

16.1.4 Bernoulli

▷ Bernoulli(n) (function)

returns the n-th Bernoulli number Bn, which is defined by B0 = 1 and Bn =−∑
n−1
k=0

(n+1
k

)
Bk/(n+

1).
Bn/n! is the coefficient of xn in the power series of x/(exp(x)− 1). Except for B1 = −1/2 the

Bernoulli numbers for odd indices are zero.
Example

gap> Bernoulli(4);

-1/30

gap> Bernoulli(10);

5/66

gap> Bernoulli(12); # there is no simple pattern in Bernoulli numbers

-691/2730

gap> Bernoulli(50); # and they grow fairly fast

495057205241079648212477525/66

GAP - Reference Manual 229

16.1.5 Stirling1

▷ Stirling1(n, k) (function)

returns the Stirling number of the first kind S1(n,k) of the integers n and k . Stirling numbers
of the first kind are defined by S1(0,0) = 1, S1(n,0) = S1(0,k) = 0 if n,k ̸= 0 and the recurrence
S1(n,k) = (n−1)S1(n−1,k)+S1(n−1,k−1).

S1(n,k) is the number of permutations of n points with k cycles. Stirling numbers of the first
kind appear as coefficients in the series n!

(x
n

)
= ∑

n
k=0 S1(n,k)xk which is the generating function for

Stirling numbers of the first kind. Note the similarity to xn = ∑
n
k=0 S2(n,k)k!

(x
k

)
(see Stirling2

(16.1.6)). Also the definition of S1 implies S1(n,k) = S2(−k,−n) if n,k < 0. There are many formulae
relating Stirling numbers of the first kind to Stirling numbers of the second kind, Bell numbers, and
Binomial coefficients.

Example
gap> # Knuth calls this the trademark of S_1:

gap> List([0..4], k -> Stirling1(4, k));

[0, 6, 11, 6, 1]

gap> List([0..6], n->List([0..6], k->Stirling1(n, k)));;

gap> # note the similarity with Pascal's triangle for Binomial numbers

gap> PrintArray(last);

[[1, 0, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0],

[0, 1, 1, 0, 0, 0, 0],

[0, 2, 3, 1, 0, 0, 0],

[0, 6, 11, 6, 1, 0, 0],

[0, 24, 50, 35, 10, 1, 0],

[0, 120, 274, 225, 85, 15, 1]]

gap> Stirling1(50,10);

101623020926367490059043797119309944043405505380503665627365376

16.1.6 Stirling2

▷ Stirling2(n, k) (function)

returns the Stirling number of the second kind S2(n,k) of the integers n and k . Stirling numbers
of the second kind are defined by S2(0,0) = 1, S2(n,0) = S2(0,k) = 0 if n,k ̸= 0 and the recurrence
S2(n,k) = kS2(n−1,k)+S2(n−1,k−1).

S2(n,k) is the number of ways to partition a set of n elements into k pairwise disjoint nonempty
subsets (see PartitionsSet (16.2.16)). Stirling numbers of the second kind appear as coefficients
in the expansion of xn = ∑

n
k=0 S2(n,k)k!

(x
k

)
. Note the similarity to n!

(x
n

)
= ∑

n
k=0 S1(n,k)xk (see

Stirling1 (16.1.5)). Also the definition of S2 implies S2(n,k) = S1(−k,−n) if n,k < 0. There are
many formulae relating Stirling numbers of the second kind to Stirling numbers of the first kind, Bell
numbers, and Binomial coefficients.

Example
gap> # Knuth calls this the trademark of S_2:

gap> List([0..4], k->Stirling2(4, k));

[0, 1, 7, 6, 1]

gap> List([0..6], n->List([0..6], k->Stirling2(n, k)));;

gap> # note the similarity with Pascal's triangle for Binomial numbers

GAP - Reference Manual 230

gap> PrintArray(last);

[[1, 0, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0],

[0, 1, 1, 0, 0, 0, 0],

[0, 1, 3, 1, 0, 0, 0],

[0, 1, 7, 6, 1, 0, 0],

[0, 1, 15, 25, 10, 1, 0],

[0, 1, 31, 90, 65, 15, 1]]

gap> Stirling2(50, 10);

26154716515862881292012777396577993781727011

16.2 Combinations, Arrangements and Tuples

16.2.1 Combinations

▷ Combinations(mset[, k]) (function)

returns the set of all combinations of the multiset mset (a list of objects which may contain the
same object several times) with k elements; if k is not given it returns all combinations of mset .

A combination of mset is an unordered selection without repetitions and is represented by a sorted
sublist of mset . If mset is a proper set, there are

(|mset |
k

)
(see Binomial (16.1.2)) combinations with

k elements, and the set of all combinations is just the power set of mset , which contains all subsets
of mset and has cardinality 2|mset |.

To loop over combinations of a larger multiset use IteratorOfCombinations (16.2.2) which
produces combinations one by one and may save a lot of memory. Another memory efficient repre-
sentation of the list of all combinations is provided by EnumeratorOfCombinations (16.2.2).

16.2.2 Iterator and enumerator of combinations

▷ IteratorOfCombinations(mset[, k]) (function)

▷ EnumeratorOfCombinations(mset) (function)

IteratorOfCombinations returns an Iterator (30.8.1) for combinations (see Combinations

(16.2.1)) of the given multiset mset . If a non-negative integer k is given as second argument then
only the combinations with k entries are produced, otherwise all combinations.

EnumeratorOfCombinations returns an Enumerator (30.3.2) of the given multiset mset . Cur-
rently only a variant without second argument k is implemented.

The ordering of combinations from these functions can be different and also different from the list
returned by Combinations (16.2.1).

Example
gap> m:=[1..15];; Add(m, 15);

gap> NrCombinations(m);

49152

gap> i := 0;; for c in Combinations(m) do i := i+1; od;

gap> i;

49152

gap> cm := EnumeratorOfCombinations(m);;

gap> cm[1000];

GAP - Reference Manual 231

[1, 2, 3, 6, 7, 8, 9, 10]

gap> Position(cm, [1,13,15,15]);

36866

16.2.3 NrCombinations

▷ NrCombinations(mset[, k]) (function)

returns the number of Combinations(mset,k).
Example

gap> Combinations([1,2,2,3]);

[[], [1], [1, 2], [1, 2, 2], [1, 2, 2, 3], [1, 2, 3],

[1, 3], [2], [2, 2], [2, 2, 3], [2, 3], [3]]

gap> # number of different hands in a game of poker:

gap> NrCombinations([1..52], 5);

2598960

The function Arrangements (16.2.4) computes ordered selections without repetitions,
UnorderedTuples (16.2.6) computes unordered selections with repetitions, and Tuples (16.2.8)
computes ordered selections with repetitions.

16.2.4 Arrangements

▷ Arrangements(mset[, k]) (function)

returns the set of arrangements of the multiset mset that contain k elements. If k is not given it
returns all arrangements of mset .

An arrangement of mset is an ordered selection without repetitions and is represented by a list
that contains only elements from mset , but maybe in a different order. If mset is a proper set there
are |mset|!/(|mset|− k)! (see Factorial (16.1.1)) arrangements with k elements.

16.2.5 NrArrangements

▷ NrArrangements(mset[, k]) (function)

returns the number of Arrangements(mset,k).
As an example of arrangements of a multiset, think of the game Scrabble. Suppose you have the

six characters of the word "settle" and you have to make a four letter word. Then the possibilities
are given by

Example
gap> Arrangements(["s","e","t","t","l","e"], 4);

[["e", "e", "l", "s"], ["e", "e", "l", "t"], ["e", "e", "s", "l"],

["e", "e", "s", "t"], ["e", "e", "t", "l"], ["e", "e", "t", "s"],

... 93 more possibilities ...

["t", "t", "l", "s"], ["t", "t", "s", "e"], ["t", "t", "s", "l"]]

Can you find the five proper English words, where "lets" does not count? Note that the fact that
the list returned by Arrangements (16.2.4) is a proper set means in this example that the possibilities
are listed in the same order as they appear in the dictionary.

GAP - Reference Manual 232

Example
gap> NrArrangements(["s","e","t","t","l","e"]);

523

The function Combinations (16.2.1) computes unordered selections without repetitions,
UnorderedTuples (16.2.6) computes unordered selections with repetitions, and Tuples (16.2.8)
computes ordered selections with repetitions.

16.2.6 UnorderedTuples

▷ UnorderedTuples(set, k) (function)

returns the set of all unordered tuples of length k of the set set .
An unordered tuple of length k of set is an unordered selection with repetitions of set and

is represented by a sorted list of length k containing elements from set . There are
(|set|+k−1

k

)
(see

Binomial (16.1.2)) such unordered tuples.
Note that the fact that UnorderedTuples returns a set implies that the last index runs fastest.

That means the first tuple contains the smallest element from set k times, the second tuple contains
the smallest element of set at all positions except at the last positions, where it contains the second
smallest element from set and so on.

16.2.7 NrUnorderedTuples

▷ NrUnorderedTuples(set, k) (function)

returns the number of UnorderedTuples(set,k).
As an example for unordered tuples think of a poker-like game played with 5 dice. Then each

possible hand corresponds to an unordered five-tuple from the set {1,2, . . . ,6}.
Example

gap> NrUnorderedTuples([1..6], 5);

252

gap> UnorderedTuples([1..6], 5);

[[1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 1, 1, 3], [1, 1, 1, 1, 4],

[1, 1, 1, 1, 5], [1, 1, 1, 1, 6], [1, 1, 1, 2, 2], [1, 1, 1, 2, 3],

... 100 more tuples ...

[1, 3, 5, 5, 6], [1, 3, 5, 6, 6], [1, 3, 6, 6, 6], [1, 4, 4, 4, 4],

... 100 more tuples ...

[3, 3, 5, 5, 5], [3, 3, 5, 5, 6], [3, 3, 5, 6, 6], [3, 3, 6, 6, 6],

... 32 more tuples ...

[5, 5, 5, 6, 6], [5, 5, 6, 6, 6], [5, 6, 6, 6, 6], [6, 6, 6, 6, 6]]

The function Combinations (16.2.1) computes unordered selections without repetitions,
Arrangements (16.2.4) computes ordered selections without repetitions, and Tuples (16.2.8) com-
putes ordered selections with repetitions.

16.2.8 Tuples

▷ Tuples(set, k) (function)

GAP - Reference Manual 233

returns the set of all ordered tuples of length k of the set set .
An ordered tuple of length k of set is an ordered selection with repetition and is represented by

a list of length k containing elements of set . There are |set |k such ordered tuples.
Note that the fact that Tuples returns a set implies that the last index runs fastest. That means

the first tuple contains the smallest element from set k times, the second tuple contains the smallest
element of set at all positions except at the last positions, where it contains the second smallest
element from set and so on.

16.2.9 EnumeratorOfTuples

▷ EnumeratorOfTuples(set, k) (function)

This function is referred to as an example of enumerators that are defined by functions but are not
constructed from a domain. The result is equal to that of Tuples(set, k). However, the entries
are not stored physically in the list but are created/identified on demand.

16.2.10 IteratorOfTuples

▷ IteratorOfTuples(set, k) (function)

For a set set and a positive integer k , IteratorOfTuples returns an iterator (see 30.8) of the
set of all ordered tuples (see Tuples (16.2.8)) of length k of the set set . The tuples are returned in
lexicographic order.

16.2.11 NrTuples

▷ NrTuples(set, k) (function)

returns the number of Tuples(set,k).
Example

gap> Tuples([1,2,3], 2);

[[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3],

[3, 1], [3, 2], [3, 3]]

gap> NrTuples([1..10], 5);

100000

Tuples(set,k) can also be viewed as the k-fold cartesian product of set (see Cartesian

(21.20.15)).
The function Combinations (16.2.1) computes unordered selections without repetitions,

Arrangements (16.2.4) computes ordered selections without repetitions, and finally the function
UnorderedTuples (16.2.6) computes unordered selections with repetitions.

16.2.12 PermutationsList

▷ PermutationsList(mset) (function)

PermutationsList returns the set of permutations of the multiset mset .

GAP - Reference Manual 234

A permutation is represented by a list that contains exactly the same elements as mset , but pos-
sibly in different order. If mset is a proper set there are |mset |! (see Factorial (16.1.1)) such
permutations. Otherwise if the first elements appears k1 times, the second element appears k2 times
and so on, the number of permutations is |mset |!/(k1!k2! . . .), which is sometimes called multinomial
coefficient.

16.2.13 NrPermutationsList

▷ NrPermutationsList(mset) (function)

returns the number of PermutationsList(mset).
Example

gap> PermutationsList([1,2,3]);

[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2],

[3, 2, 1]]

gap> PermutationsList([1,1,2,2]);

[[1, 1, 2, 2], [1, 2, 1, 2], [1, 2, 2, 1], [2, 1, 1, 2],

[2, 1, 2, 1], [2, 2, 1, 1]]

gap> NrPermutationsList([1,2,2,3,3,3,4,4,4,4]);

12600

The function Arrangements (16.2.4) is the generalization of PermutationsList (16.2.12) that
allows you to specify the size of the permutations. Derangements (16.2.14) computes permutations
that have no fixed points.

16.2.14 Derangements

▷ Derangements(list) (function)

returns the set of all derangements of the list list .
A derangement is a fixpointfree permutation of list and is represented by a list that contains

exactly the same elements as list , but in such an order that the derangement has at no position the
same element as list . If the list list contains no element twice there are exactly |list |!(1/2!−
1/3!+1/4!−·· ·+(−1)n/n!) derangements.

Note that the ratio NrPermutationsList([1 .. n]) / NrDerangements([1 .. n

]), which is n!/(n!(1/2!− 1/3!+ 1/4!− ·· ·+(−1)n/n!)) is an approximation for the base of the
natural logarithm e = 2.7182818285 . . ., which is correct to about n digits.

16.2.15 NrDerangements

▷ NrDerangements(list) (function)

returns the number of Derangements(list).
As an example of derangements suppose that you have to send four different letters to four different

people. Then a derangement corresponds to a way to send those letters such that no letter reaches the
intended person.

Example
gap> Derangements([1,2,3,4]);

[[2, 1, 4, 3], [2, 3, 4, 1], [2, 4, 1, 3], [3, 1, 4, 2],

GAP - Reference Manual 235

[3, 4, 1, 2], [3, 4, 2, 1], [4, 1, 2, 3], [4, 3, 1, 2],

[4, 3, 2, 1]]

gap> NrDerangements([1..10]);

1334961

gap> Int(10^7*NrPermutationsList([1..10])/last);

27182816

gap> Derangements([1,1,2,2,3,3]);

[[2, 2, 3, 3, 1, 1], [2, 3, 1, 3, 1, 2], [2, 3, 1, 3, 2, 1],

[2, 3, 3, 1, 1, 2], [2, 3, 3, 1, 2, 1], [3, 2, 1, 3, 1, 2],

[3, 2, 1, 3, 2, 1], [3, 2, 3, 1, 1, 2], [3, 2, 3, 1, 2, 1],

[3, 3, 1, 1, 2, 2]]

gap> NrDerangements([1,2,2,3,3,3,4,4,4,4]);

338

The function PermutationsList (16.2.12) computes all permutations of a list.

16.2.16 PartitionsSet

▷ PartitionsSet(set[, k]) (function)

returns the set of all unordered partitions of the set set into k pairwise disjoint nonempty sets. If
k is not given it returns all unordered partitions of set for all k .

An unordered partition of set is a set of pairwise disjoint nonempty sets with union set and is
represented by a sorted list of such sets. There are B(|set|) (see Bell (16.1.3)) partitions of the set
set and S2(|set|,k) (see Stirling2 (16.1.6)) partitions with k elements.

16.2.17 NrPartitionsSet

▷ NrPartitionsSet(set[, k]) (function)

returns the number of PartitionsSet(set,k).
Example

gap> PartitionsSet([1,2,3]);

[[[1], [2], [3]], [[1], [2, 3]], [[1, 2], [3]],

[[1, 2, 3]], [[1, 3], [2]]]

gap> PartitionsSet([1,2,3,4], 2);

[[[1], [2, 3, 4]], [[1, 2], [3, 4]],

[[1, 2, 3], [4]], [[1, 2, 4], [3]],

[[1, 3], [2, 4]], [[1, 3, 4], [2]],

[[1, 4], [2, 3]]]

gap> NrPartitionsSet([1..6]);

203

gap> NrPartitionsSet([1..10], 3);

9330

Note that PartitionsSet (16.2.16) does currently not support multisets and that there is currently
no ordered counterpart.

GAP - Reference Manual 236

16.2.18 Partitions

▷ Partitions(n[, k]) (function)

returns the set of all (unordered) partitions of the positive integer n into sums with k summands.
If k is not given it returns all unordered partitions of n for all k .

An unordered partition is an unordered sum n = p1 + p2 + · · ·+ pk of positive integers and is
represented by the list p = [p1, p2, . . . , pk], in nonincreasing order, i.e., p1 ≥ p2 ≥ . . .≥ pk. We write
p ⊢ n. There are approximately exp(π

√
2/3n)/(4

√
3n) such partitions, use NrPartitions (16.2.21)

to compute the precise number.
If you want to loop over all partitions of some larger n use the more memory efficient

IteratorOfPartitions (16.2.19).
It is possible to associate with every partition of the integer n a conjugacy class of permutations in

the symmetric group on n points and vice versa. Therefore p(n) :=NrPartitions(n) is the number
of conjugacy classes of the symmetric group on n points.

Ramanujan found the identities p(5i+4) = 0 mod 5, p(7i+5) = 0 mod 7 and p(11i+6) = 0 mod
11 and many other fascinating things about the number of partitions.

16.2.19 IteratorOfPartitions

▷ IteratorOfPartitions(n) (function)

For a positive integer n , IteratorOfPartitions returns an iterator (see 30.8) of the set of parti-
tions of n (see Partitions (16.2.18)). The partitions of n are returned in lexicographic order.

16.2.20 IteratorOfPartitionsSet

▷ IteratorOfPartitionsSet(set[, k[, flag]]) (function)

IteratorOfPartitionsSet returns an iterator (see 30.8) for all unordered partitions of the set
set into pairwise disjoint nonempty sets (see PartitionsSet (16.2.16)). If k given and flag is
omitted or equal to false, then only partitions of size k are computed. If k is given and flag is equal
to true, then only partitions of size at most k are computed.

16.2.21 NrPartitions

▷ NrPartitions(n[, k]) (function)

returns the number of Partitions(set,k).
Example

gap> Partitions(7);

[[1, 1, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1], [2, 2, 1, 1, 1],

[2, 2, 2, 1], [3, 1, 1, 1, 1], [3, 2, 1, 1], [3, 2, 2],

[3, 3, 1], [4, 1, 1, 1], [4, 2, 1], [4, 3], [5, 1, 1],

[5, 2], [6, 1], [7]]

gap> Partitions(8, 3);

[[3, 3, 2], [4, 2, 2], [4, 3, 1], [5, 2, 1], [6, 1, 1]]

gap> NrPartitions(7);

15

GAP - Reference Manual 237

gap> NrPartitions(100);

190569292

The function OrderedPartitions (16.2.22) is the ordered counterpart of Partitions (16.2.18).

16.2.22 OrderedPartitions

▷ OrderedPartitions(n[, k]) (function)

returns the set of all ordered partitions of the positive integer n into sums with k summands. If k
is not given it returns all ordered partitions of set for all k .

An ordered partition is an ordered sum n= p1+ p2+ . . .+ pk of positive integers and is represented
by the list [p1, p2, . . . , pk]. There are totally 2n−1 ordered partitions and

(n−1
k−1

)
(see Binomial (16.1.2))

ordered partitions with k summands.
Do not call OrderedPartitions with an n much larger than 15, the list will simply become too

large.

16.2.23 NrOrderedPartitions

▷ NrOrderedPartitions(n[, k]) (function)

returns the number of OrderedPartitions(set,k).
Example

gap> OrderedPartitions(5);

[[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 2, 1], [1, 1, 3],

[1, 2, 1, 1], [1, 2, 2], [1, 3, 1], [1, 4], [2, 1, 1, 1],

[2, 1, 2], [2, 2, 1], [2, 3], [3, 1, 1], [3, 2],

[4, 1], [5]]

gap> OrderedPartitions(6, 3);

[[1, 1, 4], [1, 2, 3], [1, 3, 2], [1, 4, 1], [2, 1, 3],

[2, 2, 2], [2, 3, 1], [3, 1, 2], [3, 2, 1], [4, 1, 1]]

gap> NrOrderedPartitions(20);

524288

The function Partitions (16.2.18) is the unordered counterpart of OrderedPartitions

(16.2.22).

16.2.24 PartitionsGreatestLE

▷ PartitionsGreatestLE(n, m) (function)

returns the set of all (unordered) partitions of the integer n having parts less or equal to the integer
m .

16.2.25 PartitionsGreatestEQ

▷ PartitionsGreatestEQ(n, m) (function)

returns the set of all (unordered) partitions of the integer n having greatest part equal to the integer
m .

GAP - Reference Manual 238

16.2.26 RestrictedPartitions

▷ RestrictedPartitions(n, set[, k]) (function)

In the first form RestrictedPartitions returns the set of all restricted partitions of the positive
integer n into sums with k summands with the summands of the partition coming from the set set . If
k is not given all restricted partitions for all k are returned.

A restricted partition is like an ordinary partition (see Partitions (16.2.18)) an unordered sum
n = p1 + p2 + . . .+ pk of positive integers and is represented by the list p = [p1, p2, . . . , pk], in nonin-
creasing order. The difference is that here the pi must be elements from the set set , while for ordinary
partitions they may be elements from [1 .. n].

16.2.27 NrRestrictedPartitions

▷ NrRestrictedPartitions(n, set[, k]) (function)

returns the number of RestrictedPartitions(n,set,k).
Example

gap> RestrictedPartitions(8, [1,3,5,7]);

[[1, 1, 1, 1, 1, 1, 1, 1], [3, 1, 1, 1, 1, 1], [3, 3, 1, 1],

[5, 1, 1, 1], [5, 3], [7, 1]]

gap> NrRestrictedPartitions(50,[1,2,5,10,20,50]);

451

The last example tells us that there are 451 ways to return 50 pence change using 1, 2, 5, 10, 20
and 50 pence coins.

16.2.28 SignPartition

▷ SignPartition(pi) (function)

returns the sign of a permutation with cycle structure pi .
This function actually describes a homomorphism from the symmetric group Sn into the cyclic

group of order 2, whose kernel is exactly the alternating group An (see SignPerm (42.4.1)). Partitions
of sign 1 are called even partitions while partitions of sign −1 are called odd.

Example
gap> SignPartition([6,5,4,3,2,1]);

-1

16.2.29 AssociatedPartition

▷ AssociatedPartition(pi) (function)

AssociatedPartition returns the associated partition of the partition pi which is obtained by
transposing the corresponding Young diagram.

Example
gap> AssociatedPartition([4,2,1]);

[3, 2, 1, 1]

GAP - Reference Manual 239

gap> AssociatedPartition([6]);

[1, 1, 1, 1, 1, 1]

16.2.30 PowerPartition

▷ PowerPartition(pi, k) (function)

PowerPartition returns the partition corresponding to the k-th power of a permutation with
cycle structure pi .

Each part l of pi is replaced by d = gcd(l,k) parts l/d. So if pi is a partition of n then pik also
is a partition of n. PowerPartition describes the power map of symmetric groups.

Example
gap> PowerPartition([6,5,4,3,2,1], 3);

[5, 4, 2, 2, 2, 2, 1, 1, 1, 1]

16.2.31 PartitionTuples

▷ PartitionTuples(n, r) (function)

PartitionTuples returns the list of all r-tuples of partitions which together form a partition of
n .

r-tuples of partitions describe the classes and the characters of wreath products of groups with
r conjugacy classes with the symmetric group on n points, see CharacterTableWreathSymmetric
(71.20.6) and CharacterValueWreathSymmetric (71.20.7).

16.2.32 NrPartitionTuples

▷ NrPartitionTuples(n, r) (function)

returns the number of PartitionTuples(n, r).
Example

gap> PartitionTuples(3, 2);

[[[1, 1, 1], []], [[1, 1], [1]], [[1], [1, 1]],

[[], [1, 1, 1]], [[2, 1], []], [[1], [2]],

[[2], [1]], [[], [2, 1]], [[3], []],

[[], [3]]]

16.2.33 BetaSet

▷ BetaSet(alpha) (function)

For a list alpha that describes a partition of a nonnegative integer (see Partitions (16.2.18)),
BetaSet returns the list of integers obtained by reversing the order of alpha and then adding the
sequence [0, 1, 2, ...] of the same length, cf. [JK81, Section 2.7].

Example
gap> BetaSet([4, 2, 1]);

[1, 3, 6]

GAP - Reference Manual 240

gap> BetaSet([]);

[]

16.3 Fibonacci and Lucas Sequences

16.3.1 Fibonacci

▷ Fibonacci(n) (function)

returns the n th number of the Fibonacci sequence. The Fibonacci sequence Fn is defined by the
initial conditions F1 = F2 = 1 and the recurrence relation Fn+2 = Fn+1 +Fn. For negative n we define
Fn = (−1)n+1F−n, which is consistent with the recurrence relation.

Using generating functions one can prove that Fn = φ n − 1/φ n, where φ is (
√

5+ 1)/2, i.e., one
root of x2 − x− 1 = 0. Fibonacci numbers have the property gcd(Fm,Fn) = Fgcd(m,n). But a pair of
Fibonacci numbers requires more division steps in Euclid’s algorithm (see Gcd (56.7.1)) than any
other pair of integers of the same size. Fibonacci(k) is the special case Lucas(1,-1,k)[1] (see
Lucas (16.3.2)).

Example
gap> Fibonacci(10);

55

gap> Fibonacci(35);

9227465

gap> Fibonacci(-10);

-55

16.3.2 Lucas

▷ Lucas(P, Q, k) (function)

returns the k-th values of the Lucas sequence with parameters P and Q , which must be integers,
as a list of three integers. If k is a negative integer, then the values of the Lucas sequence may be
nonintegral rational numbers, with denominator roughly Q^k .

Let α,β be the two roots of x2 −Px+Q then we define Lucas(P, Q, k)[1] = Uk = (αk −
β k)/(α −β) and Lucas(P, Q, k)[2] = Vk = (αk +β k) and as a convenience Lucas(P, Q,

k)[3] = Qk.
The following recurrence relations are easily derived from the definition U0 = 0,U1 = 1,Uk =

PUk−1 −QUk−2 and V0 = 2,V1 = P,Vk = PVk−1 −QVk−2. Those relations are actually used to define
Lucas if α = β .

Also the more complex relations used in Lucas can be easily derived U2k =UkVk, U2k+1 = (PU2k+
V2k)/2 and V2k =V 2

k −2Qk, V2k+1 = ((P2 −4Q)U2k +PV2k)/2.
Fibonacci(k) (see Fibonacci (16.3.1)) is simply Lucas(1,-1,k)[1]. In an abuse of notation,

the sequence Lucas(1,-1,k)[2] is sometimes called the Lucas sequence.
Example

gap> List([0..10], i -> Lucas(1,-2,i)[1]); # 2^k - (-1)^k)/3

[0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341]

gap> List([0..10], i -> Lucas(1,-2,i)[2]); # 2^k + (-1)^k

[2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025]

GAP - Reference Manual 241

gap> List([0..10], i -> Lucas(1,-1,i)[1]); # Fibonacci sequence

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

gap> List([0..10], i -> Lucas(2,1,i)[1]); # the roots are equal

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

16.4 Permanent of a Matrix

16.4.1 Permanent

▷ Permanent(mat) (attribute)

returns the permanent of the matrix mat . The permanent is defined by ∑p∈Sym(n) ∏
n
i=1 mat[i][ip].

Note the similarity of the definition of the permanent to the definition of the determinant
(see DeterminantMat (24.4.4)). In fact the only difference is the missing sign of the permutation.
However the permanent is quite unlike the determinant, for example it is not multilinear or alternat-
ing. It has however important combinatorial properties.

Example
gap> Permanent([[0,1,1,1],

> [1,0,1,1],

> [1,1,0,1],

> [1,1,1,0]]); # inefficient way to compute NrDerangements([1..4])

9

gap> # 24 permutations fit the projective plane of order 2:

gap> Permanent([[1,1,0,1,0,0,0],

> [0,1,1,0,1,0,0],

> [0,0,1,1,0,1,0],

> [0,0,0,1,1,0,1],

> [1,0,0,0,1,1,0],

> [0,1,0,0,0,1,1],

> [1,0,1,0,0,0,1]]);

24

Chapter 17

Rational Numbers

The rationals form a very important field. On the one hand it is the quotient field of the integers (see
chapter 14). On the other hand it is the prime field of the fields of characteristic zero (see chapter 60).

The former comment suggests the representation actually used. A rational is represented as a
pair of integers, called numerator and denominator. Numerator and denominator are reduced, i.e.,
their greatest common divisor is 1. If the denominator is 1, the rational is in fact an integer and is
represented as such. The numerator holds the sign of the rational, thus the denominator is always
positive.

Because the underlying integer arithmetic can compute with arbitrary size integers, the rational
arithmetic is always exact, even for rationals whose numerators and denominators have thousands of
digits.

Example
gap> 2/3;

2/3

gap> 66/123; # numerator and denominator are made relatively prime

22/41

gap> 17/-13; # the numerator carries the sign;

-17/13

gap> 121/11; # rationals with denominator 1 (when canceled) are integers

11

17.1 Rationals: Global Variables

17.1.1 Rationals

▷ Rationals (global variable)

▷ IsRationals(obj) (filter)

Rationals is the field Q of rational integers, as a set of cyclotomic numbers, see Chapter 18 for
basic operations, Functions for the field Rationals can be found in the chapters 58 and 60.

IsRationals returns true for a prime field that consists of cyclotomic numbers –for example the
GAP object Rationals– and false for all other GAP objects.

Example
gap> Size(Rationals); 2/3 in Rationals;

infinity

242

GAP - Reference Manual 243

true

17.2 Elementary Operations for Rationals

17.2.1 IsRat

▷ IsRat(obj) (Category)

Every rational number lies in the category IsRat, which is a subcategory of IsCyc (18.1.3).
Example

gap> IsRat(2/3);

true

gap> IsRat(17/-13);

true

gap> IsRat(11);

true

gap> IsRat(IsRat); # `IsRat' is a function, not a rational

false

17.2.2 IsPosRat

▷ IsPosRat(obj) (Category)

Every positive rational number lies in the category IsPosRat.

17.2.3 IsNegRat

▷ IsNegRat(obj) (Category)

Every negative rational number lies in the category IsNegRat.

17.2.4 NumeratorRat

▷ NumeratorRat(rat) (function)

NumeratorRat returns the numerator of the rational rat . Because the numerator holds the sign
of the rational it may be any integer. Integers are rationals with denominator 1, thus NumeratorRat is
the identity function for integers.

Example
gap> NumeratorRat(2/3);

2

gap> # numerator and denominator are made relatively prime:

gap> NumeratorRat(66/123);

22

gap> NumeratorRat(17/-13); # numerator holds the sign of the rational

-17

gap> NumeratorRat(11); # integers are rationals with denominator 1

11

GAP - Reference Manual 244

17.2.5 DenominatorRat

▷ DenominatorRat(rat) (function)

DenominatorRat returns the denominator of the rational rat . Because the numerator holds the
sign of the rational the denominator is always a positive integer. Integers are rationals with the denom-
inator 1, thus DenominatorRat returns 1 for integers.

Example
gap> DenominatorRat(2/3);

3

gap> # numerator and denominator are made relatively prime:

gap> DenominatorRat(66/123);

41

gap> # the denominator holds the sign of the rational:

gap> DenominatorRat(17/-13);

13

gap> DenominatorRat(11); # integers are rationals with denominator 1

1

17.2.6 Rat

▷ Rat(elm) (attribute)

Rat returns a rational number rat whose meaning depends on the type of elm .
If elm is a string consisting of digits '0', '1', . . ., '9' and '-' (at the first position), '/' and the

decimal dot '.' then rat is the rational described by this string. If elm is a rational number, then Rat

returns elm . The operation String (27.7.6) can be used to compute a string for rational numbers, in
fact for all cyclotomics.

Example
gap> Rat("1/2"); Rat("35/14"); Rat("35/-27"); Rat("3.14159");

1/2

5/2

-35/27

314159/100000

17.2.7 Random (for rationals)

▷ Random(Rationals) (operation)

Random for rationals returns pseudo random rationals which are the quotient of two random inte-
gers. See the description of Random (14.2.13) for details. (Also see Random (30.7.1).)

Chapter 18

Cyclotomic Numbers

GAP admits computations in abelian extension fields of the rational number field Q, that is fields
with abelian Galois group over Q. These fields are subfields of cyclotomic fields Q(en) where
en = exp(2πi/n) is a primitive complex n-th root of unity. The elements of these fields are called
cyclotomics.

Information concerning operations for domains of cyclotomics, for example certain integral bases
of fields of cyclotomics, can be found in Chapter 60. For more general operations that take a field
extension as a –possibly optional– argument, e.g., Trace (58.3.5) or Coefficients (61.6.3), see
Chapter 58.

18.1 Operations for Cyclotomics

18.1.1 E

▷ E(n) (operation)

E returns the primitive n-th root of unity en = exp(2πi/n). Cyclotomics are usually entered as
sums of roots of unity, with rational coefficients, and irrational cyclotomics are displayed in such a
way. (For special cyclotomics, see 18.4.)

Example
gap> E(9); E(9)^3; E(6); E(12) / 3;

-E(9)^4-E(9)^7

E(3)

-E(3)^2

-1/3*E(12)^7

A particular basis is used to express cyclotomics, see 60.3; note that E(9) is not a basis element,
as the above example shows.

18.1.2 Cyclotomics

▷ Cyclotomics (global variable)

is the domain of all cyclotomics.

245

GAP - Reference Manual 246

Example
gap> E(9) in Cyclotomics; 37 in Cyclotomics; true in Cyclotomics;

true

true

false

As the cyclotomics are field elements, the usual arithmetic operators +, -, * and / (and ^ to take
powers by integers) are applicable. Note that ^ does not denote the conjugation of group elements, so
it is not possible to explicitly construct groups of cyclotomics. (However, it is possible to compute the
inverse and the multiplicative order of a nonzero cyclotomic.) Also, taking the k-th power of a root
of unity z defines a Galois automorphism if and only if k is coprime to the conductor (see Conductor
(18.1.7)) of z.

Example
gap> E(5) + E(3); (E(5) + E(5)^4) ^ 2; E(5) / E(3); E(5) * E(3);

-E(15)^2-2*E(15)^8-E(15)^11-E(15)^13-E(15)^14

-2*E(5)-E(5)^2-E(5)^3-2*E(5)^4

E(15)^13

E(15)^8

gap> Order(E(5)); Order(1+E(5));

5

infinity

18.1.3 IsCyclotomic

▷ IsCyclotomic(obj) (Category)

▷ IsCyc(obj) (Category)

Every object in the family CyclotomicsFamily lies in the category IsCyclotomic. This covers
integers, rationals, proper cyclotomics, the object infinity (18.2.1), and unknowns (see Chapter 74).
All these objects except infinity (18.2.1) and unknowns lie also in the category IsCyc, infinity
(18.2.1) lies in (and can be detected from) the category IsInfinity (18.2.1), and unknowns lie in
IsUnknown (74.1.3).

Example
gap> IsCyclotomic(0); IsCyclotomic(1/2*E(3)); IsCyclotomic(infinity);

true

true

true

gap> IsCyc(0); IsCyc(1/2*E(3)); IsCyc(infinity);

true

true

false

18.1.4 IsIntegralCyclotomic

▷ IsIntegralCyclotomic(obj) (property)

A cyclotomic is called integral or a cyclotomic integer if all coefficients of its minimal polynomial
over the rationals are integers. Since the underlying basis of the external representation of cyclotomics

GAP - Reference Manual 247

is an integral basis (see 60.3), the subring of cyclotomic integers in a cyclotomic field is formed by
those cyclotomics for which the external representation is a list of integers. For example, square roots
of integers are cyclotomic integers (see 18.4), any root of unity is a cyclotomic integer, character values
are always cyclotomic integers, but all rationals which are not integers are not cyclotomic integers.

Example
gap> r:= ER(5); # The square root of 5 ...

E(5)-E(5)^2-E(5)^3+E(5)^4

gap> IsIntegralCyclotomic(r); # ... is a cyclotomic integer.

true

gap> r2:= 1/2 * r; # This is not a cyclotomic integer, ...

1/2*E(5)-1/2*E(5)^2-1/2*E(5)^3+1/2*E(5)^4

gap> IsIntegralCyclotomic(r2);

false

gap> r3:= 1/2 * r - 1/2; # ... but this is one.

E(5)+E(5)^4

gap> IsIntegralCyclotomic(r3);

true

18.1.5 Int (for a cyclotomic)

▷ Int(cyc) (method)

The operation Int can be used to find a cyclotomic integer near to an arbitrary cyclotomic, by
applying Int (14.2.3) to the coefficients.

Example
gap> Int(E(5)+1/2*E(5)^2); Int(2/3*E(7)-3/2*E(4));

E(5)

-E(4)

18.1.6 String (for a cyclotomic)

▷ String(cyc) (method)

The operation String returns for a cyclotomic cyc a string corresponding to the way the cyclo-
tomic is printed by ViewObj (6.3.5) and PrintObj (6.3.5).

Example
gap> String(E(5)+1/2*E(5)^2); String(17/3);

"E(5)+1/2*E(5)^2"

"17/3"

18.1.7 Conductor (for a cyclotomic)

▷ Conductor(cyc) (attribute)

▷ Conductor(C) (attribute)

For an element cyc of a cyclotomic field, Conductor returns the smallest integer n such that cyc
is contained in the n-th cyclotomic field. For a collection C of cyclotomics (for example a dense list of
cyclotomics or a field of cyclotomics), Conductor returns the smallest integer n such that all elements
of C are contained in the n-th cyclotomic field.

GAP - Reference Manual 248

Example
gap> Conductor(0); Conductor(E(10)); Conductor(E(12));

1

5

12

18.1.8 AbsoluteValue

▷ AbsoluteValue(cyc) (attribute)

returns the absolute value of a cyclotomic number cyc . At the moment only methods for rational
numbers exist.

Example
gap> AbsoluteValue(-3);

3

18.1.9 RoundCyc

▷ RoundCyc(cyc) (operation)

is a cyclotomic integer z (see IsIntegralCyclotomic (18.1.4)) near to the cyclotomic cyc in the
following sense: Let c be the i-th coefficient in the external representation (see CoeffsCyc (18.1.10))
of cyc . Then the i-th coefficient in the external representation of z is Int(c + 1/2) or Int(c -

1/2), depending on whether c is nonnegative or negative, respectively.
Expressed in terms of the Zumbroich basis (see 60.3), rounding the coefficients of cyc w.r.t. this

basis to the nearest integer yields the coefficients of z.
Example

gap> RoundCyc(E(5)+1/2*E(5)^2); RoundCyc(2/3*E(7)+3/2*E(4));

E(5)+E(5)^2

-2*E(28)^3+E(28)^4-2*E(28)^11-2*E(28)^15-2*E(28)^19-2*E(28)^23

-2*E(28)^27

18.1.10 CoeffsCyc

▷ CoeffsCyc(cyc, N) (function)

Let cyc be a cyclotomic with conductor n (see Conductor (18.1.7)). If N is not a multiple of
n then CoeffsCyc returns fail because cyc cannot be expressed in terms of N-th roots of unity.
Otherwise CoeffsCyc returns a list of length N with entry at position j equal to the coefficient of
exp(2πi(j − 1)/N) if this root belongs to the N-th Zumbroich basis (see 60.3), and equal to zero
otherwise. So we have cyc = CoeffsCyc(cyc , N) * List([1..N], j -> E(N)^(j-1)).

Example
gap> cyc:= E(5)+E(5)^2;

E(5)+E(5)^2

gap> CoeffsCyc(cyc, 5); CoeffsCyc(cyc, 15); CoeffsCyc(cyc, 7);

[0, 1, 1, 0, 0]

[0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, -1, 0]

fail

GAP - Reference Manual 249

18.1.11 DenominatorCyc

▷ DenominatorCyc(cyc) (function)

For a cyclotomic number cyc (see IsCyclotomic (18.1.3)), this function returns the smallest
positive integer n such that n * cyc is a cyclotomic integer (see IsIntegralCyclotomic (18.1.4)).
For rational numbers cyc , the result is the same as that of DenominatorRat (17.2.5).

18.1.12 ExtRepOfObj (for a cyclotomic)

▷ ExtRepOfObj(cyc) (method)

The external representation of a cyclotomic cyc with conductor n (see Conductor (18.1.7) is the
list returned by CoeffsCyc (18.1.10), called with cyc and n.

Example
gap> ExtRepOfObj(E(5)); CoeffsCyc(E(5), 5);

[0, 1, 0, 0, 0]

[0, 1, 0, 0, 0]

gap> CoeffsCyc(E(5), 15);

[0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0]

18.1.13 DescriptionOfRootOfUnity

▷ DescriptionOfRootOfUnity(root) (function)

Given a cyclotomic root that is known to be a root of unity (this is not checked),
DescriptionOfRootOfUnity returns a list [n,e] of coprime positive integers such that root = E(n)e

holds.
Example

gap> E(9); DescriptionOfRootOfUnity(E(9));

-E(9)^4-E(9)^7

[9, 1]

gap> DescriptionOfRootOfUnity(-E(3));

[6, 5]

18.1.14 IsGaussInt

▷ IsGaussInt(x) (function)

IsGaussInt returns true if the object x is a Gaussian integer (see GaussianIntegers (60.5.1)),
and false otherwise. Gaussian integers are of the form a+b*E(4), where a and b are integers.

18.1.15 IsGaussRat

▷ IsGaussRat(x) (function)

IsGaussRat returns true if the object x is a Gaussian rational (see GaussianRationals

(60.1.3)), and false otherwise. Gaussian rationals are of the form a+ b*E(4), where a and b are
rationals.

GAP - Reference Manual 250

18.1.16 DefaultField (for cyclotomics)

▷ DefaultField(list) (function)

DefaultField for cyclotomics is defined to return the smallest cyclotomic field containing the
given elements.

Note that Field (58.1.3) returns the smallest field containing all given elements, which need not
be a cyclotomic field. In both cases, the fields represent vector spaces over the rationals (see 60.3).

Example
gap> Field(E(5)+E(5)^4); DefaultField(E(5)+E(5)^4);

NF(5,[1, 4])

CF(5)

18.2 Infinity and negative Infinity

18.2.1 IsInfinity

▷ IsInfinity(obj) (Category)

▷ IsNegInfinity(obj) (Category)

▷ infinity (global variable)

▷ -infinity (global variable)

infinity and -infinity are special GAP objects that lie in CyclotomicsFamily. They are
larger or smaller than all other objects in this family respectively. infinity is mainly used as return
value of operations such as Size (30.4.6) and Dimension (57.3.3) for infinite and infinite dimensional
domains, respectively.

Some arithmetic operations are provided for convenience when using infinity and -infinity

as top and bottom element respectively.
Example

gap> -infinity + 1;

-infinity

gap> infinity + infinity;

infinity

Often it is useful to distinguish infinity from “proper” cyclotomics. For that, infinity lies in the
category IsInfinity but not in IsCyc (18.1.3), and the other cyclotomics lie in the category IsCyc

(18.1.3) but not in IsInfinity.
Example

gap> s:= Size(Rationals);

infinity

gap> s = infinity; IsCyclotomic(s); IsCyc(s); IsInfinity(s);

true

true

false

true

gap> s in Rationals; s > 17;

false

true

gap> Set([s, 2, s, E(17), s, 19]);

[2, 19, E(17), infinity]

GAP - Reference Manual 251

18.3 Comparisons of Cyclotomics

To compare cyclotomics, the operators <, <=, =, >=, >, and <> can be used, the result will be true if
the first operand is smaller, smaller or equal, equal, larger or equal, larger, or unequal, respectively,
and false otherwise.

Cyclotomics are ordered as follows: The relation between rationals is the natural one, rationals are
smaller than irrational cyclotomics, and infinity (18.2.1) is the largest cyclotomic. For two irrational
cyclotomics with different conductors (see Conductor (18.1.7)), the one with smaller conductor is
regarded as smaller. Two irrational cyclotomics with same conductor are compared via their external
representation (see ExtRepOfObj (18.1.12)).

For comparisons of cyclotomics and other GAP objects, see Section 4.13.
Example

gap> E(5) < E(6); # the latter value has conductor 3

false

gap> E(3) < E(3)^2; # both have conductor 3, compare the ext. repr.

false

gap> 3 < E(3); E(5) < E(7);

true

true

18.4 ATLAS Irrationalities

18.4.1 EB, EC, . . ., EH

▷ EB(N) (function)

▷ EC(N) (function)

▷ ED(N) (function)

▷ EE(N) (function)

▷ EF(N) (function)

▷ EG(N) (function)

▷ EH(N) (function)

For a positive integer N , let z = E(N) = exp(2πi/N). The following so-called atomic irrational-
ities (see [CCN+85, Chapter 7, Section 10]) can be entered using functions. (Note that the values are
not necessary irrational.)

EB(N) = bN =
(

∑
N−1
j=1 z j2

)
/2 , N ≡ 1 (mod 2)

EC(N) = cN =
(

∑
N−1
j=1 z j3

)
/3 , N ≡ 1 (mod 3)

ED(N) = dN =
(

∑
N−1
j=1 z j4

)
/4 , N ≡ 1 (mod 4)

EE(N) = eN =
(

∑
N−1
j=1 z j5

)
/5 , N ≡ 1 (mod 5)

EF(N) = fN =
(

∑
N−1
j=1 z j6

)
/6 , N ≡ 1 (mod 6)

EG(N) = gN =
(

∑
N−1
j=1 z j7

)
/7 , N ≡ 1 (mod 7)

EH(N) = hN =
(

∑
N−1
j=1 z j8

)
/8 , N ≡ 1 (mod 8)

(Note that in EC(N), . . ., EH(N), N must be a prime.)

GAP - Reference Manual 252

Example
gap> EB(5); EB(9);

E(5)+E(5)^4

1

18.4.2 EI and ER

▷ EI(N) (function)

▷ ER(N) (function)

For a rational number N , ER returns the square root
√
N of N , and EI returns

√
−N . By the chosen

embedding of cyclotomic fields into the complex numbers, ER returns the positive square root if N is
positive, and if N is negative then ER(N) = EI(-N) holds. In any case, EI(N) = E(4) * ER(N).

ER is installed as method for the operation Sqrt (31.12.5), for rational argument.
From a theorem of Gauss we know that bN =

(−1+
√
N)/2 if N ≡ 1 (mod 4)

(−1+ i
√
N)/2 if N ≡−1 (mod 4)

So
√
N can be computed from bN , see EB (18.4.1).

Example
gap> ER(3); EI(3);

-E(12)^7+E(12)^11

E(3)-E(3)^2

18.4.3 EY, EX, . . ., ES

▷ EY(N[, d]) (function)

▷ EX(N[, d]) (function)

▷ EW(N[, d]) (function)

▷ EV(N[, d]) (function)

▷ EU(N[, d]) (function)

▷ ET(N[, d]) (function)

▷ ES(N[, d]) (function)

For the given integer N > 2, let N k denote the first integer with multiplicative order exactly k
modulo N , chosen in the order of preference

1,−1,2,−2,3,−3,4,−4,

We define (with z = exp(2πi/N))

EY(N) = yN = z+ zn (n = N 2)

EX(N) = xN = z+ zn + zn2
(n = N 3)

EW(N) = wN = z+ zn + zn2
+ zn3

(n = N 4)

EV(N) = vN = z+ zn + zn2
+ zn3

+ zn4
(n = N 5)

EU(N) = uN = z+ zn + zn2
+ . . .+ zn5

(n = N 6)

ET(N) = tN = z+ zn + zn2
+ . . .+ zn6

(n = N 7)

ES(N) = sN = z+ zn + zn2
+ . . .+ zn7

(n = N 8)

GAP - Reference Manual 253

For the two-argument versions of the functions, see Section NK (18.4.5).
Example

gap> EY(5);

E(5)+E(5)^4

gap> EW(16,3); EW(17,2);

0

E(17)+E(17)^4+E(17)^13+E(17)^16

18.4.4 EM, EL, . . ., EJ

▷ EM(N[, d]) (function)

▷ EL(N[, d]) (function)

▷ EK(N[, d]) (function)

▷ EJ(N[, d]) (function)

Let N be an integer, N > 2. We define (with z = exp(2πi/N))

EM(N) = mN = z− zn (n = N 2)

EL(N) = lN = z− zn + zn2 − zn3
(n = N 4)

EK(N) = kN = z− zn + . . .− zn5
(n = N 6)

EJ(N) = jN = z− zn + . . .− zn7
(n = N 8)

For the two-argument versions of the functions, see Section NK (18.4.5).

18.4.5 NK

▷ NK(N, k, d) (function)

Let N (d)

k be the (d + 1)-th integer with multiplicative order exactly k modulo N , chosen in the

order of preference defined in Section 18.4.3; NK returns N (d)

k ; if there is no integer with the required
multiplicative order, NK returns fail.

We write Nk = N
(0)
k ,N ′

k = N
(1)
k ,N ′′

k = N
(2)
k and so on.

The algebraic numbers

y′N = y(1)N ,y′′N = y(2)N , . . . ,x′N ,x
′′
N , . . . , j′N , j′′N , . . .

are obtained on replacing Nk in the definitions in the sections 18.4.3 and 18.4.4 by N ′
k ,N

′′
k , . . .; they

can be entered as

EY(N ,d) = y(d)

N
EX(N ,d) = x(d)

N
. . .

EJ(N ,d) = j(d)

N

GAP - Reference Manual 254

18.4.6 AtlasIrrationality

▷ AtlasIrrationality(irratname) (function)

Let irratname be a string that describes an irrational value as a linear combination in terms of the
atomic irrationalities introduced in the sections 18.4.1, 18.4.2, 18.4.3, 18.4.4. These irrational values
are defined in [CCN+85, Chapter 6, Section 10], and the following description is mainly copied from
there. If qN is such a value (e.g. y′′24) then linear combinations of algebraic conjugates of qN are
abbreviated as in the following examples:

2qN+3&5-4&7+&9 means 2qN +3q∗5
N −4q∗7

N +q∗9
N

4qN&3&5&7-3&4 means 4(qN +q∗3
N +q∗5

N +q∗7
N)−3q∗11

N
4qN*3&5+&7 means 4(q∗3

N +q∗5
N)+q∗7

N

To explain the “ampersand” syntax in general we remark that “&k” is interpreted as q∗k
N , where qN

is the most recently named atomic irrationality, and that the scope of any premultiplying coefficient is
broken by a + or − sign, but not by & or ∗k. The algebraic conjugations indicated by the ampersands
apply directly to the atomic irrationality qN , even when, as in the last example, qN first appears with
another conjugacy ∗k.

Example
gap> AtlasIrrationality("b7*3");

E(7)^3+E(7)^5+E(7)^6

gap> AtlasIrrationality("y'''24");

E(24)-E(24)^19

gap> AtlasIrrationality("-3y'''24*13&5");

3*E(8)-3*E(8)^3

gap> AtlasIrrationality("3y'''24*13-2&5");

-3*E(24)-2*E(24)^11+2*E(24)^17+3*E(24)^19

gap> AtlasIrrationality("3y'''24*13-&5");

-3*E(24)-E(24)^11+E(24)^17+3*E(24)^19

gap> AtlasIrrationality("3y'''24*13-4&5&7");

-7*E(24)-4*E(24)^11+4*E(24)^17+7*E(24)^19

gap> AtlasIrrationality("3y'''24&7");

6*E(24)-6*E(24)^19

18.5 Galois Conjugacy of Cyclotomics

18.5.1 GaloisCyc (for a cyclotomic)

▷ GaloisCyc(cyc, k) (operation)

▷ GaloisCyc(list, k) (operation)

For a cyclotomic cyc and an integer k , GaloisCyc returns the cyclotomic obtained by raising
the roots of unity in the Zumbroich basis representation of cyc to the k-th power. If k is coprime
to the integer n, GaloisCyc(., k) acts as a Galois automorphism of the n-th cyclotomic field
(see 60.4); to get the Galois automorphisms themselves, use GaloisGroup (58.3.1).

The complex conjugate of cyc is GaloisCyc(cyc, -1), which can also be computed using
ComplexConjugate (18.5.2).

For a list or matrix list of cyclotomics, GaloisCyc returns the list obtained by applying
GaloisCyc to the entries of list .

GAP - Reference Manual 255

18.5.2 ComplexConjugate

▷ ComplexConjugate(z) (attribute)

▷ RealPart(z) (attribute)

▷ ImaginaryPart(z) (attribute)

For a cyclotomic number z , ComplexConjugate returns GaloisCyc(z, -1), see GaloisCyc
(18.5.1). For a quaternion z = c1e+c2i+c3 j+c4k, ComplexConjugate returns c1e−c2i−c3 j−c4k,
see IsQuaternion (62.8.8).

When ComplexConjugate is called with a list then the result is the list of return values of
ComplexConjugate for the list entries in the corresponding positions.

When ComplexConjugate is defined for an object z then RealPart and ImaginaryPart re-
turn (z + ComplexConjugate(z)) / 2 and (z - ComplexConjugate(z)) / 2 i, respec-
tively, where i denotes the corresponding imaginary unit.

Example
gap> GaloisCyc(E(5) + E(5)^4, 2);

E(5)^2+E(5)^3

gap> GaloisCyc(E(5), -1); # the complex conjugate

E(5)^4

gap> GaloisCyc(E(5) + E(5)^4, -1); # this value is real

E(5)+E(5)^4

gap> GaloisCyc(E(15) + E(15)^4, 3);

E(5)+E(5)^4

gap> ComplexConjugate(E(7));

E(7)^6

18.5.3 StarCyc

▷ StarCyc(cyc) (function)

If the cyclotomic cyc is an irrational element of a quadratic extension of the rationals then
StarCyc returns the unique Galois conjugate of cyc that is different from cyc , otherwise fail is
returned. In the first case, the return value is often called cyc∗ (see 71.13).

Example
gap> StarCyc(EB(5)); StarCyc(E(5));

E(5)^2+E(5)^3

fail

18.5.4 Quadratic

▷ Quadratic(cyc) (function)

Let cyc be a cyclotomic integer that lies in a quadratic extension field of the rationals. Then we
have cyc= (a+b

√
n)/d, for integers a, b, n, d, such that d is either 1 or 2. In this case, Quadratic

returns a record with the components a, b, root, d, ATLAS, and display; the values of the first four
are a, b, n, and d, the ATLAS value is a (not necessarily shortest) representation of cyc in terms of
the Atlas irrationalities b|n|, i|n|, r|n|, and the display value is a string that expresses cyc in GAP
notation, corresponding to the value of the ATLAS component.

GAP - Reference Manual 256

If cyc is not a cyclotomic integer or does not lie in a quadratic extension field of the rationals then
fail is returned.

If the denominator d is 2 then necessarily n is congruent to 1 modulo 4, and rn, in are not possible;
we have cyc = x + y * EB(root) with y = b, x = (a + b) / 2.

If d = 1, we have the possibilities i|n| for n < −1, a + b ∗ i for n = −1, a + b ∗ rn for n > 0.
Furthermore if n is congruent to 1 modulo 4, also cyc = (a+b)+2∗b∗b|n| is possible; the shortest
string of these is taken as the value for the component ATLAS.

Example
gap> Quadratic(EB(5)); Quadratic(EB(27));

rec(ATLAS := "b5", a := -1, b := 1, d := 2,

display := "(-1+Sqrt(5))/2", root := 5)

rec(ATLAS := "1+3b3", a := -1, b := 3, d := 2,

display := "(-1+3*Sqrt(-3))/2", root := -3)

gap> Quadratic(0); Quadratic(E(5));

rec(ATLAS := "0", a := 0, b := 0, d := 1, display := "0", root := 1)

fail

18.5.5 GaloisMat

▷ GaloisMat(mat) (attribute)

Let mat be a matrix of cyclotomics. GaloisMat calculates the complete orbits under the operation
of the Galois group of the (irrational) entries of mat , and the permutations of rows corresponding to
the generators of the Galois group.

If some rows of mat are identical, only the first one is considered for the permutations, and a
warning will be printed.

GaloisMat returns a record with the components mat, galoisfams, and generators.

mat a list with initial segment being the rows of mat (not shallow copies of these rows); the list
consists of full orbits under the action of the Galois group of the entries of mat defined above.
The last rows in the list are those not contained in mat but must be added in order to complete
the orbits; so if the orbits were already complete, mat and mat have identical rows.

galoisfams

a list that has the same length as the mat component, its entries are either 1, 0, -1, or lists.

galoisfams[i] = 1

means that mat[i] consists of rationals, i.e., [mat[i]] forms an orbit;

galoisfams[i] = -1

means that mat[i] contains unknowns (see Chapter 74); in this case [mat[i]] is re-
garded as an orbit, too, even if mat[i] contains irrational entries;

galoisfams[i] = [l1, l2]
(a list) means that mat[i] is the first element of its orbit in mat, l1 is the list of positions
of rows that form the orbit, and l2 is the list of corresponding Galois automorphisms (as
exponents, not as functions); so we have mat[l1[j]][k] = GaloisCyc(mat[i][k], l2[j]);

galoisfams[i] = 0

means that mat[i] is an element of a nontrivial orbit but not the first element of it.

GAP - Reference Manual 257

generators

a list of permutations generating the permutation group corresponding to the action of the Galois
group on the rows of mat.

Example
gap> GaloisMat([[E(3), E(4)]]);

rec(galoisfams := [[[1, 2, 3, 4], [1, 7, 5, 11]], 0, 0, 0],

generators := [(1,2)(3,4), (1,3)(2,4)],

mat := [[E(3), E(4)], [E(3), -E(4)], [E(3)^2, E(4)],

[E(3)^2, -E(4)]])

gap> GaloisMat([[1, 1, 1], [1, E(3), E(3)^2]]);

rec(galoisfams := [1, [[2, 3], [1, 2]], 0],

generators := [(2,3)],

mat := [[1, 1, 1], [1, E(3), E(3)^2], [1, E(3)^2, E(3)]])

18.5.6 RationalizedMat

▷ RationalizedMat(mat) (attribute)

returns the list of rationalized rows of mat , which must be a matrix of cyclotomics. This is the
set of sums over orbits under the action of the Galois group of the entries of mat (see GaloisMat

(18.5.5)), so the operation may be viewed as a kind of trace on the rows.
Note that no two rows of mat should be equal.

Example
gap> mat:= [[1, 1, 1], [1, E(3), E(3)^2], [1, E(3)^2, E(3)]];;

gap> RationalizedMat(mat);

[[1, 1, 1], [2, -1, -1]]

18.6 Internally Represented Cyclotomics

The implementation of an internally represented cyclotomic is based on a list of length equal to its
conductor. This means that the internal representation of a cyclotomic does not refer to the smallest
number field but the smallest cyclotomic field containing it. The reason for this is the wish to reflect
the natural embedding of two cyclotomic fields into a larger one that contains both. With such embed-
dings, it is easy to construct the sum or the product of two arbitrary cyclotomics (in possibly different
fields) as an element of a cyclotomic field.

The disadvantage of this approach is that the arithmetical operations are quite expensive, so the use
of internally represented cyclotomics is not recommended for doing arithmetics over number fields,
such as calculations with matrices of cyclotomics. But internally represented cyclotomics are good
enough for dealing with irrationalities in character tables (see chapter 71).

For the representation of cyclotomics one has to recall that the n-th cyclotomic field Q(en) is
a vector space of dimension ϕ(n) over the rationals where ϕ denotes Euler’s phi-function (see Phi

(15.2.2)).
A special integral basis of cyclotomic fields is chosen that allows one to easily convert arbitrary

sums of roots of unity into the basis, as well as to convert a cyclotomic represented w.r.t. the basis into
the smallest possible cyclotomic field. This basis is accessible in GAP, see 60.3 for more information
and references.

GAP - Reference Manual 258

Note that the set of all n-th roots of unity is linearly dependent for n > 1, so multiplication is not
the multiplication of the group ring Q⟨en⟩; given a Q-basis of Q(en) the result of the multiplication
(computed as multiplication of polynomials in en, using (en)

n = 1) will be converted to the basis.
Example

gap> E(5) * E(5)^2; (E(5) + E(5)^4) * E(5)^2;

E(5)^3

E(5)+E(5)^3

gap> (E(5) + E(5)^4) * E(5);

-E(5)-E(5)^3-E(5)^4

An internally represented cyclotomic is always represented in the smallest cyclotomic field it
is contained in. The internal coefficients list coincides with the external representation returned by
ExtRepOfObj (18.1.12).

To avoid calculations becoming unintentionally very long, or consuming very large amounts of
memory, there is a limit on the conductor of internally represented cyclotomics, by default set to
one million. This can be raised (although not lowered) using SetCyclotomicsLimit (18.6.1) and
accessed using GetCyclotomicsLimit (18.6.1). The maximum value of the limit is 228 −1 on 32 bit
systems, and 232 −1 on 64 bit systems. So the maximal cyclotomic field implemented in GAP is not
really the field Qab.

It should be emphasized that one disadvantage of representing a cyclotomic in the smallest cy-
clotomic field (and not in the smallest field) is that arithmetic operations in a fixed small extension
field of the rational number field are comparatively expensive. For example, take a prime integer p
and suppose that we want to work with a matrix group over the field Q(

√
p). Then each matrix entry

could be described by two rational coefficients, whereas the representation in the smallest cyclotomic
field requires p− 1 rational coefficients for each entry. So it is worth thinking about using elements
in a field constructed with AlgebraicExtension (67.1.1) when natural embeddings of cyclotomic
fields are not needed.

18.6.1 SetCyclotomicsLimit

▷ SetCyclotomicsLimit(newlimit) (function)

▷ GetCyclotomicsLimit() (function)

GetCyclotomicsLimit returns the current limit on conductors of internally represented cyclo-
tomic numbers

SetCyclotomicsLimit can be called to increase the limit on conductors of internally represented
cyclotomic numbers. Note that computing in large cyclotomic fields using this representation can be
both slow and memory-consuming, and that other approaches may be better for some problems. See
18.6.

Chapter 19

Floats

Starting with version 4.5, GAP has built-in support for floating-point numbers in machine format,
and allows package to implement arbitrary-precision floating-point arithmetic in a uniform manner.
For now, one such package, Float exists, and is based on the arbitrary-precision routines in mpfr.

A word of caution: GAP deals primarily with algebraic objects, which can be represented exactly
in a computer. Numerical imprecision means that floating-point numbers do not form a ring in the
strict GAP sense, because addition is in general not associative ((1.0e-100+1.0)-1.0 is not the
same as 1.0e-100+(1.0-1.0), in the default precision setting).

Most algorithms in GAP which require ring elements will therefore not be applicable to float-
ing-point elements. In some cases, such a notion would not even make any sense (what is the greatest
common divisor of two floating-point numbers?)

19.1 A sample run

Floating-point numbers can be input into GAP in the standard floating-point notation:
Example

gap> 3.14;

3.14

gap> last^2/6;

1.64327

gap> h := 6.62606896e-34;

6.62607e-34

gap> pi := 4*Atan(1.0);

3.14159

gap> hbar := h/(2*pi);

1.05457e-34

Floating-point numbers can also be created using Float, from strings or rational numbers; and
can be converted back using String,Rat,Int.

GAP allows rational and floating-point numbers to be mixed in the elementary operations
+,-,*,/. However, floating-point numbers and rational numbers may not be compared. Conver-
sions are performed using the creator Float:

Example
gap> Float("3.1416");

3.1416

259

GAP - Reference Manual 260

gap> Float(355/113);

3.14159

gap> Rat(last);

355/113

gap> Rat(0.33333);

1/3

gap> Int(1.e10);

10000000000

gap> Int(1.e20);

100000000000000000000

gap> Int(1.e30);

1000000000000000019884624838656

19.2 Methods

Floating-point numbers may be directly input, as in any usual mathematical software or language;
with the exception that every floating-point number must contain a decimal digit. Therefore .1, .1e1,
-.999 etc. are all valid GAP inputs.

Floating-point numbers so entered in GAP are stored as strings. They are converted to float-
ing-point when they are first used. This means that, if the floating-point precision is increased, the
constants are reevaluated to fit the new format.

Floating-point numbers may be followed by an underscore, as in 1._. This means that they
are to be immediately converted to the current floating-point format. The underscore may be fol-
lowed by a single letter, which specifies which format/precision to use. By default, GAP has a sin-
gle floating-point handler, with fixed (53 bits) precision, and its format specifier is 'l' as in 1._l.
Higher-precision floating-point computations is available via external packages; float for example.

A record, FLOAT (19.2.5), contains all relevant constants for the current floating-point for-
mat; see its documentation for details. Typical fields are FLOAT.MANT_DIG=53, the constant
FLOAT.VIEW_DIG=6 specifying the number of digits to view, and FLOAT.PI for the constant π . The
constants have the same name as their C counterparts, except for the missing initial DBL_ or M_.

Floating-point numbers may be created using the single function Float (19.2.1), which
accepts as arguments rational, string, or floating-point numbers. Floating-point numbers
may also be created, in any floating-point representation, using NewFloat (19.2.1) as in
NewFloat(IsIEEE754FloatRep,355/113), by supplying the category filter of the desired new float-
ing-point number; or using MakeFloat (19.2.1) as in MakeFloat(1.0,355/113), by supplying a
sample floating-point number.

Floating-point numbers may also be converted to other GAP formats using the usual commands
Int (14.2.3), Rat (17.2.6), String (27.7.6).

Exact conversion to and from floating-point format may be done using external representations.
The "external representation" of a floating-point number x is a pair [m,e] of integers, such that
x=m*2^(-1+e-LogInt(AbsInt(m),2)). Conversion to and from external representation is per-
formed as usual using ExtRepOfObj (79.8.1) and ObjByExtRep (79.8.1):

Example
gap> ExtRepOfObj(3.14);

[7070651414971679, 2]

gap> ObjByExtRep(IEEE754FloatsFamily,last);

3.14

GAP - Reference Manual 261

Computations with floating-point numbers never raise any error. Division by zero is allowed, and
produces a signed infinity. Illegal operations, such as 0./0., produce NaN’s (not-a-number); this is
the only floating-point number x such that not EqFloat(x+0.0,x).

The IEEE754 standard requires NaN to be non-equal to itself. On the other hand, GAP requires
every object to be equal to itself. To respect the IEEE754 standard, the function EqFloat (19.2.6)
should be used instead of =.

The category a floating-point belongs to can be checked using the filters IsFinite (30.4.2),
IsPInfinity (19.2.13), IsNInfinity (19.2.13), IsXInfinity (19.2.13), IsNaN (19.2.13).

Comparisons between floating-point numbers and rationals are explicitly forbidden. The rationale
is that objects belonging to different families should in general not be comparable in GAP. Float-
ing-point numbers are also approximations of real numbers, and don’t follow the same rules; consider
for example, using the default GAP implementation of floating-point numbers,

Example
gap> 1.0/3.0 = Float(1/3);

true

gap> (1.0/3.0)^5 = Float((1/3)^5);

false

19.2.1 Float creators

▷ Float(obj) (function)

▷ NewFloat(filter, obj) (constructor)

▷ MakeFloat(sample, obj, obj) (operation)

Returns: A new floating-point number, based on obj

This function creates a new floating-point number.
If obj is a rational number, the created number is created with sufficient precision so that

the number can (usually) be converted back to the original number (see Rat (Reference: Rat)
and Rat (17.2.6)). For an integer, the precision, if unspecified, is chosen sufficient so that
Int(Float(obj))=obj always holds, but at least 64 bits.

obj may also be a string, which may be of the form "3.14e0" or ".314e1" or ".314@1" etc.
An option may be passed to specify, it bits, a desired precision. The format is

Float("3.14":PrecisionFloat:=1000) to create a 1000-bit approximation of 3.14.
In particular, if obj is already a floating-point number, then

Float(obj:PrecisionFloat:=prec) creates a copy of obj with a new precision. prec

19.2.2 Rat (for floats)

▷ Rat(f) (attribute)

Returns: A rational approximation to f

This command constructs a rational approximation to the floating-point number f . Of course, it
is not guaranteed to return the original rational number f was created from, though it returns the most
‘reasonable’ one given the precision of f .

Two options control the precision of the rational approximation: In the form
Rat(f:maxdenom:=md,maxpartial:=mp), the rational returned is such that the denominator
is at most md and the partials in its continued fraction expansion are at most mp . The default values
are maxpartial:=10000 and maxdenom:=2^(precision/2).

GAP - Reference Manual 262

19.2.3 Cyc (for floats)

▷ Cyc(f[, degree]) (operation)

Returns: A cyclotomic approximation to f

This command constructs a cyclotomic approximation to the floating-point number f . Of course,
it is not guaranteed to return the original rational number f was created from, though it returns the
most ‘reasonable’ one given the precision of f . An optional argument degree specifies the maximal
degree of the cyclotomic to be constructed.

The method used is LLL lattice reduction.

19.2.4 SetFloats

▷ SetFloats(rec[, bits][, install]) (function)

Installs a new interface to floating-point numbers in GAP, optionally with a desired precision
bits in binary digits. The last optional argument install is a boolean value; if false, it only installs
the eager handler and the precision for the floateans, without making them the default.

19.2.5 FLOAT (constants)

▷ FLOAT (global variable)

This record contains useful floating-point constants:

DECIMAL_DIG
Maximal number of useful digits;

DIG Number of significant digits;

VIEW_DIG
Number of digits to print in short view;

EPSILON
Smallest number such that 1 ̸= 1+ ε;

MANT_DIG
Number of bits in the mantissa;

MAX
Maximal representable number;

MAX_10_EXP
Maximal decimal exponent;

MAX_EXP
Maximal binary exponent;

MIN
Minimal positive representable number;

GAP - Reference Manual 263

MIN_10_EXP
Minimal decimal exponent;

MIN_EXP
Minimal exponent;

INFINITY
Positive infinity;

NINFINITY
Negative infinity;

NAN
Not-a-number,

as well as mathematical constants E, LOG2E, LOG10E, LN2, LN10, PI, PI_2, PI_4, 1_PI, 2_PI,
2_SQRTPI, SQRT2, SQRT1_2.

19.2.6 EqFloat

▷ EqFloat(x, y) (operation)

Returns: Whether the floateans x and y are equal
This function compares two floating-point numbers, and returns true if they are equal, and false

otherwise; with the exception that NaN is always considered to be different from itself.

19.2.7 PrecisionFloat

▷ PrecisionFloat(x) (attribute)

Returns: The precision of x
This function returns the precision, counted in number of binary digits, of the floating-point num-

ber x .

19.2.8 SignBit

▷ SignBit(x) (attribute)

▷ SignFloat(x) (attribute)

Returns: The sign of x .
The first function SignBit returns the sign bit of the floating-point number x : true if x is

negative (including -0.) and false otherwise.
The second function SignFloat returns the integer -1 if x<0 , 0 if x=0 and 1 if x>0 .

19.2.9 SinCos

▷ SinCos(x) (attribute)

Returns: The list [sin(x), cos(x)].
The function returns a list with sin and cos of x .

GAP - Reference Manual 264

19.2.10 Atan2

▷ Atan2(y, x) (operation)

Returns: The polar angle of (x, y) in the plane as float.
Returns the principal value of the argument (polar angle) of (x ,y) in the plane. The returned

value will always be in (−π,π] and is not defined on (0,0). This function is defined in accordance
with IEEE 1788-2015 and imported from IEEE 754.

19.2.11 Log1p

▷ Log1p(x) (attribute)

▷ Expm1(x) (attribute)

Returns: The natural logarithm of x +1 or exponential −1 of x respectively.
The first function Log1p returns the natural logarithm log(x +1).
The second function Expm1 returns the exponential function exp(x)−1
These two functions are inverse to each other.

19.2.12 Erf

▷ Erf(x) (operation)

Returns: The error function given by the Gaussian integral
Returns the error function imported from IEEE 754 given by the formula:

Er f (x) :=
2√
π

∫ x

0
exp(−t2)dt

19.2.13 Infinity testers

▷ IsPInfinity(x) (property)

▷ IsNInfinity(x) (property)

▷ IsXInfinity(x) (property)

▷ IsFinite(x) (property)

▷ IsNaN(x) (property)

Returns true if the floating-point number x is respectively +∞, −∞, ±∞, finite, or ‘not a number’,
such as the result of 0.0/0.0.

19.2.14 Standard mathematical operations

▷ Sin(f) (attribute)

▷ Cos(f) (attribute)

▷ Tan(f) (attribute)

▷ Sec(f) (attribute)

▷ Csc(f) (attribute)

▷ Cot(f) (attribute)

▷ Asin(f) (attribute)

▷ Acos(f) (attribute)

▷ Atan(f) (attribute)

GAP - Reference Manual 265

▷ Sinh(f) (attribute)

▷ Cosh(f) (attribute)

▷ Tanh(f) (attribute)

▷ Sech(f) (attribute)

▷ Csch(f) (attribute)

▷ Coth(f) (attribute)

▷ Asinh(f) (attribute)

▷ Acosh(f) (attribute)

▷ Atanh(f) (attribute)

▷ Log(f) (operation)

▷ Log2(f) (attribute)

▷ Log10(f) (attribute)

▷ Exp(f) (attribute)

▷ Exp2(f) (attribute)

▷ Exp10(f) (attribute)

▷ CubeRoot(f) (attribute)

▷ Square(f) (attribute)

▷ Hypothenuse(x, y) (operation)

▷ Ceil(f) (attribute)

▷ Floor(f) (attribute)

▷ Round(f) (attribute)

▷ Trunc(f) (attribute)

▷ FrExp(f) (attribute)

▷ LdExp(f, exp) (operation)

▷ AbsoluteValue(f) (attribute)

▷ Norm(f) (attribute)

▷ Frac(f) (attribute)

▷ Zeta(f) (attribute)

▷ Gamma(f) (attribute)

Standard math functions. Functions ending in an integer like Log2, Log10, Exp2 and Exp10

indicate the base used, in log and exp the natural base is used, i.e. e.

19.3 High-precision-specific methods

GAP provides a mechanism for packages to implement new floating-point numerical interfaces. The
following describes that mechanism, actual examples of packages are documented separately.

A package must create a record with fields (all optional)

creator
a function converting strings to floating-point;

eager
a character allowing immediate conversion to floating-point;

objbyextrep
a function creating a floating-point number out of a list [mantissa,exponent];

GAP - Reference Manual 266

filter
a filter for the new floating-point objects;

constants
a record containing numerical constants, such as MANT_DIG, MAX, MIN, NAN.

The package must install methods Int, Rat, String for its objects, and creators
NewFloat(filter,IsRat), NewFloat(IsString).

It must then install methods for all arithmetic and numerical operations: SUM, Exp, ...
The user chooses that implementation by calling SetFloats (19.2.4) with the record as argument,

and with an optional second argument requesting a precision in binary digits.

19.4 Complex arithmetic

Complex arithmetic may be implemented in packages, and is present in float. Complex numbers are
treated as usual numbers; they may be input with an extra "i" as in -0.5+0.866i. They may also be
created using NewFloat (19.2.1) with three arguments: the float filter, the real part, and the imaginary
part.

Methods should then be implemented for Norm, RealPart, ImaginaryPart,
ComplexConjugate, ...

19.4.1 Argument (for complex floats)

▷ Argument(z) (attribute)

Returns the argument of the complex number z , namely the value
Atan2(ImaginaryPart(z),RealPart(z)).

19.5 Interval-specific methods

Interval arithmetic may also be implemented in packages. Intervals are in fact efficient implementa-
tions of sets of real numbers. The only non-trivial issue is how they should be compared. The standard
EQ tests if the intervals are equal; however, it is usually more useful to know if intervals overlap, or
are disjoint, or are contained in each other.

Note the usual convention that intervals are compared as in [a,b] ≤ [c,d] if and only if a ≤ c and
b ≤ d.

19.5.1 Sup

▷ Sup(x) (attribute)

Returns the supremum of the interval x .

19.5.2 Inf

▷ Inf(x) (attribute)

Returns the infimum of the interval x .

GAP - Reference Manual 267

19.5.3 Mid

▷ Mid(x) (attribute)

Returns the midpoint of the interval x .

19.5.4 AbsoluteDiameter

▷ AbsoluteDiameter(x) (attribute)

▷ Diameter(x) (operation)

Returns the absolute diameter of the interval x , namely the difference Sup(x)-Inf(x).

19.5.5 RelativeDiameter

▷ RelativeDiameter(x) (attribute)

Returns the relative diameter of the interval x , namely
(Sup(x)-Inf(x))/AbsoluteValue(Min(x)).

19.5.6 IsDisjoint

▷ IsDisjoint(x1, x2) (operation)

Returns true if the two intervals x1 , x2 are disjoint.

19.5.7 IsSubset (for interval floats)

▷ IsSubset(x1, x2) (operation)

Returns true if the interval x1 contains x2 .

19.5.8 IncreaseInterval

▷ IncreaseInterval(x, delta) (operation)

Returns an interval with same midpoint as x but absolute diameter increased by delta .

19.5.9 BlowupInterval

▷ BlowupInterval(x, ratio) (operation)

Returns an interval with same midpoint as x but relative diameter increased by ratio .

19.5.10 BisectInterval

▷ BisectInterval(x) (operation)

Returns a list of two intervals whose union equals the interval x .

Chapter 20

Booleans

The two main boolean values are true and false. They stand for the logical values of the same
name. They appear as values of the conditions in if-statements and while-loops. Booleans are also
important as return values of filters (see 13.2) such as IsFinite (30.4.2) and IsBool (20.1.1). Note
that it is a convention that the name of a function that returns true or false according to the outcome,
starts with Is.

For technical reasons, also the value fail (see 20.2) is regarded as a boolean.

20.1 IsBool (Filter)

20.1.1 IsBool

▷ IsBool(obj) (Category)

tests whether obj is true, false or fail.
Example

gap> IsBool(true); IsBool(false); IsBool(17);

true

true

false

20.2 Fail (Variable)

20.2.1 fail

▷ fail (global variable)

The value fail is used to indicate situations when an operation could not be performed for the
given arguments, either because of shortcomings of the arguments or because of restrictions in the
implementation or computability. So for example Position (21.16.1) will return fail if the point
searched for is not in the list.

fail is simply an object that is different from every other object than itself.
For technical reasons, fail is a boolean value. But note that fail cannot be used to form boolean

expressions with and, or, and not (see 20.4 below), and fail cannot appear in boolean lists (see
Chapter 22).

268

GAP - Reference Manual 269

20.3 Comparisons of Booleans

20.3.1 Equality and inequality of Booleans

bool1 = bool2

bool1 <> bool2

The equality operator = evaluates to true if the two boolean values bool1 and bool2 are equal,
i.e., both are true or both are false or both fail, and false otherwise. The inequality operator <>
evaluates to true if the two boolean values bool1 , bool2 are different, and false otherwise. This
operation is also called the exclusive or, because its value is true if exactly one of bool1 or bool2
is true.

You can compare boolean values with objects of other types. Of course they are never equal.
Example

gap> true = false;

false

gap> false = (true = fail);

true

gap> true <> 17;

true

20.3.2 Ordering of Booleans

bool1 < bool2

The ordering of boolean values is defined by true < false < fail. For the comparison of
booleans with other GAP objects, see Section 4.13.

Example
gap> true < false; fail >= false;

true

true

20.4 Operations for Booleans

The following boolean operations are only applicable to true and false.

20.4.1 Logical disjunction

bool1 or bool2

The logical operator or evaluates to true if at least one of the two boolean operands bool1 and
bool2 is true, and to false otherwise.

or first evaluates bool1 . If the value is neither true nor false an error is signalled. If the value is
true, then or returns true without evaluating bool2 . If the value is false, then or evaluates bool2 .
Again, if the value is neither true nor false an error is signalled. Otherwise or returns the value of
bool2 . This short-circuited evaluation is important if the value of bool1 is true and evaluation of
bool2 would take much time or cause an error.

or is associative, i.e., it is allowed to write b1 or b2 or b3 , which is interpreted as (b1 or b2) or
b3 . or has the lowest precedence of the logical operators. All logical operators have lower precedence
than the comparison operators =, <, in, etc.

GAP - Reference Manual 270

Example
gap> true or false;

true

gap> false or false;

false

gap> i := -1;; l := [1,2,3];;

gap> if i <= 0 or l[i] = false then # this does not cause an error,

> Print("aha\n"); fi; # because `l[i]' is not evaluated

aha

20.4.2 Logical conjunction

bool1 and bool2

fil1 and fil2

The logical operator and evaluates to true if both boolean operands bool1 , bool2 are true, and
to false otherwise.

and first evaluates bool1 . If the value is neither true nor false an error is signalled. If the value
is false, then and returns false without evaluating bool2 . If the value is true, then and evaluates
bool2 . Again, if the value is neither true nor false an error is signalled. Otherwise and returns
the value of bool2 . This short-circuited evaluation is important if the value of bool1 is false and
evaluation of bool2 would take much time or cause an error.

and is associative, i.e., it is allowed to write b1 and b2 and b3 , which is interpreted as (b1 and

b2) and b3 . and has higher precedence than the logical or operator, but lower than the unary logical
not operator. All logical operators have lower precedence than the comparison operators =, <, in, etc.

Example
gap> true and false;

false

gap> true and true;

true

gap> false and 17; # does not cause error, because 17 is never looked at

false

and can also be applied to filters. It returns a filter that when applied to some argument x , tests
fil1(x) and fil2(x).

Example
gap> andfilt:= IsPosRat and IsInt;;

gap> andfilt(17); andfilt(1/2);

true

false

20.4.3 Logical negation

not bool

The logical operator not returns true if the boolean value bool is false, and true otherwise.
An error is signalled if bool does not evaluate to true or false.

not has higher precedence than the other logical operators, or and and. All logical operators have
lower precedence than the comparison operators =, <, in, etc.

GAP - Reference Manual 271

Example
gap> true and false;

false

gap> not true;

false

gap> not false;

true

Chapter 21

Lists

Lists are the most important way to treat objects together. A list arranges objects in a definite order.
So each list implies a partial mapping from the integers to the elements of the list. I.e., there is a first
element of a list, a second, a third, and so on. Lists can occur in mutable or immutable form, see 12.6
for the concept of mutability, and 21.7 for the case of lists.

This chapter deals mainly with the aspect of lists in GAP as data structures. Chapter 30 tells more
about the collection aspect of certain lists, and more about lists as arithmetic objects can be found in
the chapters 23 and 24.

Lists are used to implement ranges (see 21.22), sets (see 21.19), strings (see 27), row vectors and
matrices (see 23 and 24, but note that GAP supports also linear algebra for objects which are not lists,
see 26); boolean lists (see 22) are a further special kind of lists.

Several operations for lists, such as Intersection (30.5.2) and Random (30.7.1), will be described
in Chapter 30, in particular see 30.3.

21.1 List Categories

A list can be written by writing down the elements in order between square brackets [,], and separat-
ing them with commas ,. An empty list, i.e., a list with no elements, is written as [].

Example
gap> [1, 2, 3]; # a list with three elements

[1, 2, 3]

gap> [[], [1], [1, 2]]; # a list may contain other lists

[[], [1], [1, 2]]

Each list constructed this way is mutable (see 12.6).

21.1.1 IsList

▷ IsList(obj) (Category)

tests whether obj is a list.
Example

gap> IsList([1, 3, 5, 7]); IsList(1);

true

false

272

GAP - Reference Manual 273

21.1.2 IsDenseList

▷ IsDenseList(obj) (Category)

A list is dense if it has no holes, i.e., contains an element at every position up to the length. It is
absolutely legal to have lists with holes. They are created by leaving the entry between the commas
empty. Holes at the end of a list are ignored. Lists with holes are sometimes convenient when the list
represents a mapping from a finite, but not consecutive, subset of the positive integers.

Example
gap> IsDenseList([1, 2, 3]);

true

gap> l := [, 4, 9,, 25,, 49,,,, 121];; IsDenseList(l);

false

gap> l[3];

9

gap> l[4];

List Element: <list>[4] must have an assigned value

not in any function

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can 'return;' after assigning a value to continue

brk> l[4] := 16;; # assigning a value

brk> return; # to escape the break-loop

16

gap>

Observe that requesting the value of l[4], which was not assigned, caused the entry of a
break-loop (see Section 6.4). After assigning a value and typing return;, GAP is finally able
to comply with our request (by responding with 16).

21.1.3 IsHomogeneousList

▷ IsHomogeneousList(obj) (Category)

returns true if obj is a list and it is homogeneous, and false otherwise.
A homogeneous list is a dense list whose elements lie in the same family (see 13.1). The empty

list is homogeneous but not a collection (see 30), a nonempty homogeneous list is also a collection.
Example

gap> IsHomogeneousList([1, 2, 3]); IsHomogeneousList([]);

true

true

gap> IsHomogeneousList([1, false, ()]);

false

21.1.4 IsTable

▷ IsTable(obj) (Category)

A table is a nonempty list of homogeneous lists which lie in the same family. Typical examples of
tables are matrices (see 24).

GAP - Reference Manual 274

Example
gap> IsTable([[1, 2], [3, 4]]); # in fact a matrix

true

gap> IsTable([[1], [2, 3]]); # not rectangular but a table

true

gap> IsTable([[1, 2], [() , (1,2)]]); # not homogeneous

false

21.1.5 IsRectangularTable

▷ IsRectangularTable(list) (property)

A list lies in IsRectangularTable when it is nonempty and its elements are all homogeneous
lists of the same family and the same length.

21.1.6 IsConstantTimeAccessList

▷ IsConstantTimeAccessList(list) (Category)

This category indicates whether the access to each element of the list list will take roughly the
same time. This is implied for example by IsList and IsInternalRep, so all strings, Boolean
lists, ranges, and internally represented plain lists are in this category.

But also other enumerators (see 21.23) can lie in this category if they guarantee constant time
access to their elements.

21.2 Basic Operations for Lists

The basic operations for lists are element access (see 21.3), assignment of elements to a list (see 21.4),
fetching the length of a list (see Length (21.17.5)), the test for a hole at a given position, and unbinding
an element at a given position (see 21.5).

The term basic operation means that each other list operation can be formulated in terms of the
basic operations. (But note that often a more efficient method than this one is implemented.)

Any GAP object list in the category IsList (21.1.1) is regarded as a list, and if methods for the
basic list operations are installed for list then list can be used also for the other list operations.

For internally represented lists, kernel methods are provided for the basic list operations with
positive integer indices. For other lists or other indices, it is possible to install appropriate methods
for these operations. This permits the implementation of lists that do not need to store all list elements
(see also 21.23); for example, the elements might be described by an algorithm, such as the elements
list of a group. For this reduction of space requirements, however, a price in access time may have to
be paid (see ConstantTimeAccessList (21.17.6)).

21.2.1 \[\]

▷ \[\](list, ix) (operation)

▷ IsBound\[\](list, ix) (operation)

▷ \[\]\:\=(list, pos, ix) (operation)

GAP - Reference Manual 275

▷ Unbind\[\](list, ix) (operation)

These operations implement element access, test for element boundedness, list element assign-
ment, and removal of the element with index ix .

Note that the special characters [,], :, and = must be escaped with a backslash \ (see 4.3); so
\[\] (21.2.1) denotes the operation for element access in a list, whereas [] denotes an empty list.
(Maybe the variable names involving special characters look strange, but nevertheless they are quite
suggestive.)

\[\](list, ix) is equivalent to list[ix], which clearly will usually be preferred; the
former is useful mainly if one wants to access the operation itself, for example if one wants to install
a method for element access in a special kind of lists.

Similarly, IsBound\[\] (21.2.1) is used explicitly mainly in method installations. In other situa-
tions, one can simply call IsBound (21.5.1), which then delegates to IsBound\[\] (21.2.1) if the first
argument is a list, and to IsBound\. (29.7.3) if the first argument is a record.

Analogous statements hold for \[\]\:\= (21.2.1) and Unbind\[\] (21.2.1).

21.3 List Elements

list[ix]

The above construct evaluates to the element of the list list with index ix . For built-in list types
and collections, indexing is done with origin 1, i.e., the first element of the list is the element with
index 1.

Example
gap> l := [2, 3, 5, 7, 11, 13];; l[1]; l[2]; l[6];

2

3

13

If list is not a built-in list, or ix does not evaluate to a positive integer, method selection is invoked
to try and find a way of indexing list with index ix . If this fails, or the selected method finds that
list[ix] is unbound, an error is signalled.

list{ poss }

The above construct evaluates to a new list new whose first element is list[poss[1]], whose
second element is list[poss[2]], and so on. However, it does not need to be sorted and may contain
duplicate elements. If for any i, list[poss[i]] is unbound, an error is signalled.

Example
gap> l := [2, 3, 5, 7, 11, 13, 17, 19];;

gap> l{[4..6]}; l{[1,7,1,8]};

[7, 11, 13]

[2, 17, 2, 19]

The result is a new list, that is not identical to any other list. The elements of that list, however, are
identical to the corresponding elements of the left operand (see 21.6).

It is possible to nest such sublist extractions, as can be seen in the example below.
Example

gap> m := [[1,2,3], [4,5,6], [7,8,9], [10,11,12]];; m{[1,2,3]}{[3,2]};

[[3, 2], [6, 5], [9, 8]]

GAP - Reference Manual 276

gap> l := m{[1,2,3]};; l{[3,2]};

[[7, 8, 9], [4, 5, 6]]

Note the difference between the two examples. The latter extracts elements 1, 2, and 3 from m and
then extracts the elements 3 and 2 from this list. The former extracts elements 1, 2, and 3 from m and
then extracts the elements 3 and 2 from each of those element lists.

To be precise: With each selector [pos] or {poss} we associate a level that is defined as the
number of selectors of the form {poss} to its left in the same expression. For example

l[pos1]{poss2}{poss3}[pos4]{poss5}[pos6]

level 0 0 1 2 2 3

Then a selector list[pos] of level level is computed as ListElement(list,pos,level),
where ListElement is defined as follows. (Note that ListElement is not a GAP function.)

Example
ListElement := function (list, pos, level)

if level = 0 then

return list[pos];

else

return List(list, elm -> ListElement(elm,pos,level-1));

fi;

end;

and a selector list{poss} of level level is computed as ListElements(list,poss,level),
where ListElements is defined as follows. (Note that ListElements is not a GAP function.)

Example
ListElements := function (list, poss, level)

if level = 0 then

return list{poss};

else

return List(list, elm -> ListElements(elm,poss,level-1));

fi;

end;

21.3.1 \{\}

▷ \{\}(list, poss) (operation)

This operation implements sublist access. For any list, the default method is to loop over the
entries in the list poss , and to delegate to the element access operation. (For nested sublist extractions,
cf. 21.3. For the somewhat strange variable name, cf. 21.2.)

21.4 List Assignment

list[ix] := object;

The list element assignment assigns the object object , which can be of any type, to the list with
index ix , in the mutable (see 12.6) list list . That means that accessing the ix-th element of the list
list will return object after this assignment.

GAP - Reference Manual 277

Example
gap> l := [1, 2, 3];;

gap> l[1] := 3;; l; # assign a new object

[3, 2, 3]

gap> l[2] := [4, 5, 6];; l; # <object> may be of any type

[3, [4, 5, 6], 3]

gap> l[l[1]] := 10;; l; # <index> may be an expression

[3, [4, 5, 6], 10]

If the index ix is an integer larger than the length of the list list (see Length (21.17.5)), the list
is automatically enlarged to make room for the new element. Note that it is possible to generate lists
with holes that way.

Example
gap> l[4] := "another entry";; l; # <list> is enlarged

[3, [4, 5, 6], 10, "another entry"]

gap> l[10] := 1;; l; # now <list> has a hole

[3, [4, 5, 6], 10, "another entry",,,,,, 1]

The function Add (21.4.2) should be used if you want to add an element to the end of the list.
Note that assigning to a list changes the list, thus this list must be mutable (see 12.6). See 21.6 for

subtleties of changing lists.
If list does not evaluate to a list, pos does not evaluate to a positive integer, method selection is

invoked to try and find a way of indexing list with index pos . If this fails, or the selected method
finds that list[pos] is unbound, or if object is a call to a function which does not return a value
(for example Print) an error is signalled.

list{ poss } := objects;

The sublist assignment assigns the object objects[1], which can be of any type, to the list list
at the position poss[1], the object objects[2] to list[poss[2]], and so on. poss must be a
dense list of positive integers, it need, however, not be sorted and may contain duplicate elements.
objects must be a dense list and must have the same length as poss .

Example
gap> l := [2, 3, 5, 7, 11, 13, 17, 19];;

gap> l{[1..4]} := [10..13];; l;

[10, 11, 12, 13, 11, 13, 17, 19]

gap> l{[1,7,1,10]} := [1, 2, 3, 4];; l;

[3, 11, 12, 13, 11, 13, 2, 19,, 4]

The next example shows that it is possible to nest such sublist assignments.
Example

gap> m := [[1,2,3], [4,5,6], [7,8,9], [10,11,12]];;

gap> m{[1,2,3]}{[3,2]} := [[11,12], [13,14], [15,16]];; m;

[[1, 12, 11], [4, 14, 13], [7, 16, 15], [10, 11, 12]]

The exact behaviour is defined in the same way as for list extractions (see 21.3). Namely, with
each selector [pos] or {poss} we associate a level that is defined as the number of selectors of the
form {poss} to its left in the same expression. For example

GAP - Reference Manual 278

Example
l[pos1]{poss2}{poss3}[pos4]{poss5}[pos6]

level 0 0 1 1 1 2

Then a list assignment list[pos] := vals; of level level is computed as ListAssignment(
list, pos, vals, level), where ListAssignment is defined as follows. (Note that
ListAssignment is not a GAP function.)

Example
ListAssignment := function (list, pos, vals, level)

local i;

if level = 0 then

list[pos] := vals;

else

for i in [1..Length(list)] do

ListAssignment(list[i], pos, vals[i], level-1);

od;

fi;

end;

and a list assignment list{poss} := vals of level level is computed as ListAssignments(
list, poss, vals, level), where ListAssignments is defined as follows. (Note that
ListAssignments is not a GAP function.)

Example
ListAssignments := function (list, poss, vals, level)

local i;

if level = 0 then

list{poss} := vals;

else

for i in [1..Length(list)] do

ListAssignments(list[i], poss, vals[i], level-1);

od;

fi;

end;

21.4.1 \{\}\:\=

▷ \{\}\:\=(list, poss, val) (operation)

This operation implements sublist assignment. For any list, the default method is to loop over
the entries in the list poss , and to delegate to the element assignment operation. (For the somewhat
strange variable name, cf. 21.2.)

21.4.2 Add

▷ Add(list, obj[, pos]) (operation)

adds the element obj to the mutable list list . The two argument version adds obj at the end of
list , i.e., it is equivalent to the assignment list[Length(list) + 1] := obj , see 21.4.

GAP - Reference Manual 279

The three argument version adds obj in position pos , moving all later elements of the list (if any)
up by one position. Any holes at or after position pos are also moved up by one position, and new
holes are created before pos if they are needed.

Nothing is returned by Add, the function is only called for its side effect.

21.4.3 Remove

▷ Remove(list[, pos]) (operation)

removes an element from list . The one argument form removes the last element. The two argu-
ment form removes the element in position pos , moving all subsequent elements down one position.
Any holes after position pos are also moved down by one position.

The one argument form always returns the removed element. In this case list must be
non-empty.

The two argument form returns the old value of list [pos] if it was bound, and nothing if it was
not. Note that accessing or assigning the return value of this form of the Remove operation is only safe
when you know that there will be a value, otherwise it will cause an error.

Example
gap> l := [2, 3, 5];; Add(l, 7); l;

[2, 3, 5, 7]

gap> Add(l,4,2); l;

[2, 4, 3, 5, 7]

gap> Remove(l,2); l;

4

[2, 3, 5, 7]

gap> Remove(l); l;

7

[2, 3, 5]

gap> Remove(l,5); l;

[2, 3, 5]

21.4.4 CopyListEntries

▷ CopyListEntries(fromlst, fromind, fromstep, tolst, toind, tostep, n) (function)

This function copies n elements from fromlst , starting at position fromind and incrementing
the position by fromstep each time, into tolst starting at position toind and incrementing the
position by tostep each time. fromlst and tolst must be plain lists. fromstep and/or tostep
can be negative. Unbound positions of fromlst are simply copied to tolst .

CopyListEntries is used in methods for the operations Add (21.4.2) and Remove (21.4.3).

21.4.5 Append

▷ Append(list1, list2) (operation)

adds the elements of the list list2 to the end of the mutable list list1 , see 21.4. list2 may
contain holes, in which case the corresponding entries in list1 will be left unbound. Append returns
nothing, it is only called for its side effect.

GAP - Reference Manual 280

Note that Append changes its first argument, while Concatenation (21.20.1) creates a new list
and leaves its arguments unchanged.

Example
gap> l := [2, 3, 5];; Append(l, [7, 11, 13]); l;

[2, 3, 5, 7, 11, 13]

gap> Append(l, [17,, 23]); l;

[2, 3, 5, 7, 11, 13, 17,, 23]

21.5 IsBound and Unbind for Lists

21.5.1 IsBound (for a list index)

▷ IsBound(list[, n]) (operation)

IsBound returns true if the list list has an element at index n , and false otherwise. list must
evaluate to a list, or to an object for which a suitable method for IsBound\[\] has been installed,
otherwise an error is signalled.

Example
gap> l := [, 2, 3, , 5, , 7, , , , 11];;

gap> IsBound(l[7]);

true

gap> IsBound(l[4]);

false

gap> IsBound(l[101]);

false

21.5.2 GetWithDefault

▷ GetWithDefault(list, n, default) (operation)

GetWithDefault returns the n th element of the list list , if list has a value at index n , and
default otherwise.

While this method can be used on any list, it is particularly useful for Weak Pointer lists 86.1
where the value of the list can change.

To distinguish between the n th element being unbound, or default being in list , users can
create a new mutable object, such as a string. IsIdenticalObj (12.5.1) returns false for different
mutable strings, even if their contents are the same.

Example
gap> l := [1,2,,"a"];

[1, 2,, "a"]

gap> newobj := "a";

"a"

gap> GetWithDefault(l, 2, newobj);

2

gap> GetWithDefault(l, 3, newobj);

"a"

gap> GetWithDefault(l, 4, newobj);

"a"

gap> IsIdenticalObj(GetWithDefault(l, 3, newobj), newobj);

GAP - Reference Manual 281

true

gap> IsIdenticalObj(GetWithDefault(l, 4, newobj), newobj);

false

21.5.3 Unbind (unbind a list entry)

▷ Unbind(list[, n]) (operation)

Unbind deletes the element with index n in the mutable list list . That is, after execution of
Unbind, list no longer has an assigned value with index n . Thus Unbind can be used to produce
holes in a list. Note that it is not an error to unbind a nonexistent list element. list must evaluate to a
list, or to an object for which a suitable method for Unbind\[\] has been installed, otherwise an error
is signalled.

Example
gap> l := [, 2, 3, 5, , 7, , , , 11];;

gap> Unbind(l[3]); l;

[, 2,, 5,, 7,,,, 11]

gap> Unbind(l[4]); l;

[, 2,,,, 7,,,, 11]

Note that IsBound (21.5.1) and Unbind are special in that they do not evaluate their argument,
otherwise IsBound (21.5.1) would always signal an error when it is supposed to return false and
there would be no way to tell Unbind which component to remove.

21.6 Identical Lists

With the list assignment (see 21.4) it is possible to change a mutable list. This section describes the
semantic consequences of this fact. (See also 12.5.)

First we define what it means when we say that “an object is changed”. You may think that in the
following example the second assignment changes the integer.

Example
i := 3;

i := i + 1;

But in this example it is not the integer 3 which is changed, by adding one to it. Instead the
variable i is changed by assigning the value of i+1, which happens to be 4, to i. The same thing
happens in the example below.

Example
l := [1, 2];

l := [1, 2, 3];

The second assignment does not change the first list, instead it assigns a new list to the variable l.
On the other hand, in the following example the list is changed by the second assignment.

Example
l := [1, 2];

l[3] := 3;

GAP - Reference Manual 282

To understand the difference, think of a variable as a name for an object. The important point
is that a list can have several names at the same time. An assignment var:= list; means in this
interpretation that var is a name for the object list . At the end of the following example l2 still has
the value [1, 2] as this list has not been changed and nothing else has been assigned to it.

Example
l1 := [1, 2];

l2 := l1;

l1 := [1, 2, 3];

But after the following example the list for which l2 is a name has been changed and thus the
value of l2 is now [1, 2, 3].

Example
l1 := [1, 2];

l2 := l1;

l1[3] := 3;

We say that two lists are identical if changing one of them by a list assignment also changes the
other one. This is slightly incorrect, because if two lists are identical, there are actually only two
names for one list. However, the correct usage would be very awkward and would only add to the
confusion. Note that two identical lists must be equal, because there is only one list with two different
names. Thus identity is an equivalence relation that is a refinement of equality. Identity of objects can
be detected using IsIdenticalObj (12.5.1).

Let us now consider under which circumstances two lists are identical.
If you enter a list literal then the list denoted by this literal is a new list that is not identical to any

other list. Thus in the following example l1 and l2 are not identical, though they are equal of course.
Example

l1 := [1, 2];

l2 := [1, 2];

Also in the following example, no lists in the list l are identical.
Example

l := [];

for i in [1..10] do l[i] := [1, 2]; od;

If you assign a list to a variable no new list is created. Thus the list value of the variable on the
left hand side and the list on the right hand side of the assignment are identical. So in the following
example l1 and l2 are identical lists.

Example
l1 := [1, 2];

l2 := l1;

If you pass a list as an argument, the old list and the argument of the function are identical. Also
if you return a list from a function, the old list and the value of the function call are identical. So in
the following example l1 and l2 are identical lists:

Example
l1 := [1, 2];

f := function (l) return l; end;

l2 := f(l1);

GAP - Reference Manual 283

If you change a list it keeps its identity. Thus if two lists are identical and you change one of them,
you also change the other, and they are still identical afterwards. On the other hand, two lists that are
not identical will never become identical if you change one of them. So in the following example both
l1 and l2 are changed, and are still identical.

Example
l1 := [1, 2];

l2 := l1;

l1[1] := 2;

21.7 Duplication of Lists

Here we describe the meaning of ShallowCopy (12.7.1) and StructuralCopy (12.7.2) for lists. For
the general definition of these functions, see 12.7.

The subobjects (see ShallowCopy (12.7.1)) of a list are exactly its elements.
This means that for any list list , ShallowCopy (12.7.1) returns a mutable new list new that is

not identical to any other list (see 21.6), and whose elements are identical to the elements of list .
Analogously, for a mutable list list , StructuralCopy (12.7.2) returns a mutable new list scp

that is not identical to any other list, and whose elements are structural copies (defined recursively)
of the elements of list ; an element of scp is mutable (and then a new list) if and only if the corre-
sponding element of list is mutable.

In both cases, modifying the copy new resp. scp by assignments (see 21.4) does not modify the
original object list .

ShallowCopy (12.7.1) basically executes the following code for lists.
Example

new := [];

for i in [1 .. Length(list)] do

if IsBound(list[i]) then

new[i] := list[i];

fi;

od;

Example
gap> list1 := [[1, 2], [3, 4]];; list2 := ShallowCopy(list1);;

gap> IsIdenticalObj(list1, list2);

false

gap> IsIdenticalObj(list1[1], list2[1]);

true

gap> list2[1] := 0;; list1; list2;

[[1, 2], [3, 4]]

[0, [3, 4]]

StructuralCopy (12.7.2) basically executes the following code for lists.
Example

new := [];

for i in [1 .. Length(list)] do

if IsBound(list[i]) then

new[i] := StructuralCopy(list[i]);

fi;

od;

GAP - Reference Manual 284

Example
gap> list1 := [[1, 2], [3, 4]];; list2 := StructuralCopy(list1);;

gap> IsIdenticalObj(list1, list2);

false

gap> IsIdenticalObj(list1[1], list2[1]);

false

gap> list2[1][1] := 0;; list1; list2;

[[1, 2], [3, 4]]

[[0, 2], [3, 4]]

The above code is not entirely correct. If the object list contains a mutable object twice this
object is not copied twice, as would happen with the above definition, but only once. This means that
the copy new and the object list have exactly the same structure when viewed as a general graph.

Example
gap> sub := [1, 2];; list1 := [sub, sub];;

gap> list2 := StructuralCopy(list1);

[[1, 2], [1, 2]]

gap> list2[1][1] := 0;; list2;

[[0, 2], [0, 2]]

gap> list1;

[[1, 2], [1, 2]]

21.8 Membership Test for Lists

21.8.1 \in (element test for lists)

▷ \in(obj, list) (operation)

This function call or the infix variant obj in list tests whether there is a positive integer i such
that list [i] = obj holds.

If the list list knows that it is strictly sorted (see IsSSortedList (21.17.4)), the membership
test is much quicker, because a binary search can be used instead of the linear search used for arbitrary
lists, see \in (21.19.1).

Example
gap> 1 in [2, 2, 1, 3]; 1 in [4, -1, 0, 3];

true

false

gap> s := SSortedList([2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32]);;

gap> 17 in s; # uses binary search and only 4 comparisons

false

For finding the position of an element in a list, see 21.16.

21.9 Enlarging Internally Represented Lists

Section 21.4 told you (among other things) that it is possible to assign beyond the logical end of a
mutable list, automatically enlarging the list. This section tells you how this is done for internally
represented lists.

GAP - Reference Manual 285

It would be extremely wasteful to make all lists large enough so that there is room for all assign-
ments, because some lists may have more than 100000 elements, while most lists have less than 10
elements.

On the other hand suppose every assignment beyond the end of a list would be done by allocating
new space for the list and copying all entries to the new space. Then creating a list of 1000 elements
by assigning them in order, would take half a million copy operations and also create a lot of garbage
that the garbage collector would have to reclaim.

So the following strategy is used. If a list is created it is created with exactly the correct size. If a
list is enlarged, because of an assignment beyond the end of the list, it is enlarged by at least length/8
+ 4 entries. Therefore the next assignments beyond the end of the list do not need to enlarge the list.
For example creating a list of 1000 elements by assigning them in order, would now take only 32
enlargements.

The result of this is of course that the physical length of a list may be larger than the logical length,
which is usually called simply the length of the list. Aside from the implications for the performance
you need not be aware of the physical length. In fact all you can ever observe, for example by calling
Length (21.17.5), is the logical length.

Suppose that Length (21.17.5) would have to take the physical length and then test how many
entries at the end of a list are unassigned, to compute the logical length of the list. That would take
too much time. In order to make Length (21.17.5), and other functions that need to know the logical
length, more efficient, the length of a list is stored along with the list.

For fine tuning code dealing with plain lists we provide the following two functions.

21.9.1 EmptyPlist

▷ EmptyPlist(len) (function)

Returns: a plain list
▷ ShrinkAllocationPlist(l) (function)

Returns: nothing
The function EmptyPlist returns an empty plain list which has enough memory allocated for len

entries. This can be useful for creating and filling a plain list with a known number of entries.
The function ShrinkAllocationPlist gives back to GAP’s memory manager the physical

memory which is allocated for the plain list l but not needed by the current number of entries.
Note that there are similar functions EmptyString (27.4.5) and ShrinkAllocationString

(27.4.5) for strings instead of plain lists.
Example

gap> l:=[]; for i in [1..160] do Add(l, i^2); od;

[]

gap> m:=EmptyPlist(160); for i in [1..160] do Add(m, i^2); od;

[]

gap> # now l uses about 25% more memory than the equal list m

gap> ShrinkAllocationPlist(l);

gap> # now l and m use the same amount of memory

21.10 Comparisons of Lists

list1 = list2

list1 <> list2

GAP - Reference Manual 286

Two lists list1 and list2 are equal if and only if for every index i, either both entries list1 [i]
and list2 [i] are unbound, or both are bound and are equal, i.e., list1 [i] = list2 [i] is true.

Example
gap> [1, 2, 3] = [1, 2, 3];

true

gap> [, 2, 3] = [1, 2,];

false

gap> [1, 2, 3] = [3, 2, 1];

false

This definition will cause problems with lists which are their own entries. Comparing two such
lists for equality may lead to an infinite recursion in the kernel if the list comparison has to compare
the list entries which are in fact the lists themselves, and then GAP crashes.

list1 < list2

list1 <= list2

Lists are ordered lexicographically. Unbound entries are smaller than any bound entry. That
implies the following behaviour. Let i be the smallest positive integer i such that list1 and list2 at
position i differ, i.e., either exactly one of list1 [i], list2 [i] is bound or both entries are bound and
differ. Then list1 is less than list2 if either list1 [i] is unbound (and list2 [i] is not) or both are
bound and list1 [i] < list2 [i] is true.

Example
gap> [1, 2, 3, 4] < [1, 2, 4, 8]; # <list1>[3] < <list2>[3]

true

gap> [1, 2, 3] < [1, 2, 3, 5]; # <list1>[4] is unbound and thus < 5

true

gap> [1, , 3, 4] < [1, -1, 3]; # <list1>[2] is unbound and thus < -1

true

Note that for comparing two lists with < or <=, the (relevant) list elements must be comparable
with <, which is usually not the case for objects in different families, see 13.1. Also for the possibility
to compare lists with other objects, see 13.1.

21.11 Arithmetic for Lists

It is convenient to have arithmetic operations for lists, in particular because in GAP row vectors and
matrices are special kinds of lists. However, it is the wide variety of list objects because of which we
prescribe arithmetic operations not for all of them. (Keep in mind that “list” means just an object in
the category IsList (21.1.1).)

(Due to the intended generality and flexibility, the definitions given in the following sections
are quite technical. But for not too complicated cases such as matrices (see 24.3) and row vectors
(see 23.2) whose entries aren’t lists, the resulting behaviour should be intuitive.)

For example, we want to deal with matrices which can be added and multiplied in the usual way,
via the infix operators + and *; and we want also Lie matrices, with the same additive behaviour but
with the multiplication defined by the Lie bracket. Both kinds of matrices shall be lists, with the usual
access to their rows, with Length (21.17.5) returning the number of rows etc.

For the categories and attributes that control the arithmetic behaviour of lists, see 21.12.

GAP - Reference Manual 287

For the definition of return values of additive and multiplicative operations whose arguments are
lists in these filters, see 21.13 and 21.14, respectively. It should be emphasized that these sections
describe only what the return values are, and not how they are computed.

For the mutability status of the return values, see 21.15. (Note that this is not dealt with in the
sections about the result values.)

Further details about the special cases of row vectors and matrices can be found in 23.2 and in 24.3,
the compression status is dealt with in 23.3 and 24.14.

21.12 Filters Controlling the Arithmetic Behaviour of Lists

The arithmetic behaviour of lists is controlled by their types. The following categories and attributes
are used for that.

Note that we distinguish additive and multiplicative behaviour. For example, Lie matrices have
the usual additive behaviour but not the usual multiplicative behaviour.

21.12.1 IsGeneralizedRowVector

▷ IsGeneralizedRowVector(list) (Category)

For a list list , the value true for IsGeneralizedRowVector indicates that the additive arith-
metic behaviour of list is as defined in 21.13, and that the attribute NestingDepthA (21.12.4) will
return a nonzero value when called with list .

Example
gap> IsList("abc"); IsGeneralizedRowVector("abc");

true

false

gap> liemat:= LieObject([[1, 2], [3, 4]]);

LieObject([[1, 2], [3, 4]])

gap> IsGeneralizedRowVector(liemat);

true

21.12.2 IsMultiplicativeGeneralizedRowVector

▷ IsMultiplicativeGeneralizedRowVector(list) (Category)

For a list list , the value true for IsMultiplicativeGeneralizedRowVector indicates
that the multiplicative arithmetic behaviour of list is as defined in 21.14, and that the attribute
NestingDepthM (21.12.5) will return a nonzero value when called with list .

Example
gap> IsMultiplicativeGeneralizedRowVector(liemat);

false

gap> bas:= CanonicalBasis(FullRowSpace(Rationals, 3));

CanonicalBasis((Rationals^3))

gap> IsMultiplicativeGeneralizedRowVector(bas);

true

Note that the filters IsGeneralizedRowVector (21.12.1),
IsMultiplicativeGeneralizedRowVector do not enable default methods for addition or
multiplication (cf. IsListDefault (21.12.3)).

GAP - Reference Manual 288

21.12.3 IsListDefault

▷ IsListDefault(list) (Category)

For a list list , IsListDefault indicates that the default methods for arithmetic operations of
lists, such as pointwise addition and multiplication as inner product or matrix product, shall be appli-
cable to list .

IsListDefault implies IsGeneralizedRowVector (21.12.1) and
IsMultiplicativeGeneralizedRowVector (21.12.2).

All internally represented lists are in this category, and also all lists in the representations
IsGF2VectorRep, Is8BitVectorRep, IsGF2MatrixRep, and Is8BitMatrixRep (see 23.3 and
24.14). Note that the result of an arithmetic operation with lists in IsListDefault will in general be
an internally represented list, so most “wrapped list objects” will not lie in IsListDefault.

Example
gap> v:= [1, 2];; m:= [v, 2*v];;

gap> IsListDefault(v); IsListDefault(m);

true

true

gap> IsListDefault(bas); IsListDefault(liemat);

true

false

21.12.4 NestingDepthA

▷ NestingDepthA(obj) (attribute)

For a GAP object obj , NestingDepthA returns the additive nesting depth of obj . This is defined
recursively as the integer 0 if obj is not in IsGeneralizedRowVector (21.12.1), as the integer 1 if
obj is an empty list in IsGeneralizedRowVector (21.12.1), and as 1 plus the additive nesting depth
of the first bound entry in obj otherwise.

21.12.5 NestingDepthM

▷ NestingDepthM(obj) (attribute)

For a GAP object obj , NestingDepthM returns the multiplicative nesting depth of obj . This
is defined recursively as the integer 0 if obj is not in IsMultiplicativeGeneralizedRowVector

(21.12.2), as the integer 1 if obj is an empty list in IsMultiplicativeGeneralizedRowVector

(21.12.2), and as 1 plus the multiplicative nesting depth of the first bound entry in obj otherwise.
Example

gap> NestingDepthA(v); NestingDepthM(v);

1

1

gap> NestingDepthA(m); NestingDepthM(m);

2

2

gap> NestingDepthA(liemat); NestingDepthM(liemat);

2

0

GAP - Reference Manual 289

gap> l1:= [[1, 2], 3];; l2:= [1, [2, 3]];;

gap> NestingDepthA(l1); NestingDepthM(l1);

2

2

gap> NestingDepthA(l2); NestingDepthM(l2);

1

1

21.13 Additive Arithmetic for Lists

In this general context, we define the results of additive operations only in the following sit-
uations. For unary operations (zero and additive inverse), the unique argument must be in
IsGeneralizedRowVector (21.12.1); for binary operations (addition and subtraction), at least one
argument must be in IsGeneralizedRowVector (21.12.1), and the other either is not a list or also in
IsGeneralizedRowVector (21.12.1).

(For non-list GAP objects, defining the results of unary operations is not an issue here, and if
at least one argument is a list not in IsGeneralizedRowVector (21.12.1), it shall be left to this
argument whether the result in question is defined and what it is.)

21.13.1 Zero for lists

The zero (see Zero (31.10.3)) of a list x in IsGeneralizedRowVector (21.12.1) is defined as the list
whose entry at position i is the zero of x[i] if this entry is bound, and is unbound otherwise.

Example
gap> Zero([1, 2, 3]); Zero([[1, 2], 3]); Zero(liemat);

[0, 0, 0]

[[0, 0], 0]

LieObject([[0, 0], [0, 0]])

21.13.2 AdditiveInverse for lists

The additive inverse (see AdditiveInverse (31.10.9)) of a list x in IsGeneralizedRowVector

(21.12.1) is defined as the list whose entry at position i is the additive inverse of x[i] if this entry
is bound, and is unbound otherwise.

Example
gap> AdditiveInverse([1, 2, 3]); AdditiveInverse([[1, 2], 3]);

[-1, -2, -3]

[[-1, -2], -3]

21.13.3 Addition of lists

If x and y are in IsGeneralizedRowVector (21.12.1) and have the same additive nesting depth
(see NestingDepthA (21.12.4)), the sum x+y is defined pointwise, in the sense that the result is a list
whose entry at position i is x[i]+ y[i] if these entries are bound, is a shallow copy (see ShallowCopy

(12.7.1)) of x[i] or y[i] if the other argument is not bound at position i, and is unbound if both x and y
are unbound at position i.

GAP - Reference Manual 290

If x is in IsGeneralizedRowVector (21.12.1) and y is in IsGeneralizedRowVector (21.12.1)
and has lower additive nesting depth, or is neither a list nor a domain, the sum x+ y is defined as
a list whose entry at position i is x[i] + y if x is bound at position i, and is unbound if not. The
equivalent holds in the reversed case, where the order of the summands is kept, as addition is not
always commutative.

Example
gap> 1 + [1, 2, 3]; [1, 2, 3] + [0, 2, 4]; [1, 2] + [Z(2)];

[2, 3, 4]

[1, 4, 7]

[0*Z(2), 2]

gap> l1:= [1, , 3, 4];; l2:= [, 2, 3, 4, 5];;

gap> l3:= [[1, 2], , [5, 6]];; l4:= [, [3, 4], [5, 6]];;

gap> NestingDepthA(l1); NestingDepthA(l2);

1

1

gap> NestingDepthA(l3); NestingDepthA(l4);

2

2

gap> l1 + l2;

[1, 2, 6, 8, 5]

gap> l1 + l3;

[[2, 2, 3, 4],, [6, 6, 3, 4]]

gap> l2 + l4;

[, [3, 6, 3, 4, 5], [5, 8, 3, 4, 5]]

gap> l3 + l4;

[[1, 2], [3, 4], [10, 12]]

gap> l1 + [];

[1,, 3, 4]

21.13.4 Subtraction of lists

For two GAP objects x and y of which one is in IsGeneralizedRowVector (21.12.1) and the other
is also in IsGeneralizedRowVector (21.12.1) or is neither a list nor a domain, x− y is defined as
x+(−y).

Example
gap> l1 - l2;

[1, -2, 0, 0, -5]

gap> l1 - l3;

[[0, -2, 3, 4],, [-4, -6, 3, 4]]

gap> l2 - l4;

[, [-3, -2, 3, 4, 5], [-5, -4, 3, 4, 5]]

gap> l3 - l4;

[[1, 2], [-3, -4], [0, 0]]

gap> l1 - [];

[1,, 3, 4]

21.14 Multiplicative Arithmetic for Lists

In this general context, we define the results of multiplicative operations only in the fol-
lowing situations. For unary operations (one and inverse), the unique argument must be in

GAP - Reference Manual 291

IsMultiplicativeGeneralizedRowVector (21.12.2); for binary operations (multiplication and di-
vision), at least one argument must be in IsMultiplicativeGeneralizedRowVector (21.12.2), and
the other either not a list or also in IsMultiplicativeGeneralizedRowVector (21.12.2).

(For non-list GAP objects, defining the results of unary operations is not an issue here, and if at
least one argument is a list not in IsMultiplicativeGeneralizedRowVector (21.12.2), it shall be
left to this argument whether the result in question is defined and what it is.)

21.14.1 One for lists

The one (see One (31.10.2)) of a dense list x in IsMultiplicativeGeneralizedRowVector

(21.12.2) such that x has even multiplicative nesting depth and has the same length as each of its
rows is defined as the usual identity matrix on the outer two levels, that is, an identity matrix of the
same dimensions, with diagonal entries One(x[1][1]) and off-diagonal entries Zero(x[1][1]

).
Example

gap> One([[1, 2], [3, 4]]);

[[1, 0], [0, 1]]

gap> One([[[[1]], [[2]]], [[[3]], [[4]]]]);

[[[[1]], [[0]]], [[[0]], [[1]]]]

21.14.2 Inverse for lists

The inverse (see Inverse (31.10.8)) of an invertible square table x in
IsMultiplicativeGeneralizedRowVector (21.12.2) whose entries lie in a common field is
defined as the usual inverse y, i.e., a square matrix over the same field such that xy and yx is equal to
One(x).

Example
gap> Inverse([[1, 2], [3, 4]]);

[[-2, 1], [3/2, -1/2]]

21.14.3 Multiplication of lists

There are three possible computations that might be triggered by a multiplication involving a list in
IsMultiplicativeGeneralizedRowVector (21.12.2). Namely, x∗ y might be

(I) the inner product x[1]∗y[1]+x[2]∗y[2]+ · · ·+x[n]∗y[n], where summands are omitted for which
the entry in x or y is unbound (if this leaves no summand then the multiplication is an error), or

(L) the left scalar multiple, i.e., a list whose entry at position i is x ∗ y[i] if y is bound at position i,
and is unbound if not, or

(R) the right scalar multiple, i.e., a list whose entry at position i is x[i]∗ y if x is bound at position i,
and is unbound if not.

Our aim is to generalize the basic arithmetic of simple row vectors and matrices, so we first sum-
marize the situations that shall be covered.

scl vec mat
scl (L) (L)
vec (R) (I) (I)
mat (R) (R) (R)

GAP - Reference Manual 292

This means for example that the product of a scalar (scl) with a vector (vec) or a matrix (mat) is
computed according to (L). Note that this is asymmetric.

Now we can state the general multiplication rules.
If exactly one argument is in IsMultiplicativeGeneralizedRowVector (21.12.2) then we re-

gard the other argument (which is then neither a list nor a domain) as a scalar, and specify result (L)
or (R), depending on ordering.

In the remaining cases, both x and y are in IsMultiplicativeGeneralizedRowVector

(21.12.2), and we distinguish the possibilities by their multiplicative nesting depths. An argument
with odd multiplicative nesting depth is regarded as a vector, and an argument with even multiplica-
tive nesting depth is regarded as a scalar or a matrix.

So if both arguments have odd multiplicative nesting depth, we specify result (I).
If exactly one argument has odd nesting depth, the other is treated as a scalar if it has lower

multiplicative nesting depth, and as a matrix otherwise. In the former case, we specify result (L) or
(R), depending on ordering; in the latter case, we specify result (L) or (I), depending on ordering.

We are left with the case that each argument has even multiplicative nesting depth. If the two
depths are equal, we treat the computation as a matrix product, and specify result (R). Otherwise, we
treat the less deeply nested argument as a scalar and the other as a matrix, and specify result (L) or
(R), depending on ordering.

Example
gap> [(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)] * (1,4);

[(1,4), (1,4)(2,3), (1,2,4), (1,2,3,4), (1,3,2,4), (1,3,4)]

gap> [1, 2, , 4] * 2;

[2, 4,, 8]

gap> [1, 2, 3] * [1, 3, 5, 7];

22

gap> m:= [[1, 2], 3];; m * m;

[[7, 8], [[3, 6], 9]]

gap> m * m = [m[1] * m, m[2] * m];

true

gap> n:= [1, [2, 3]];; n * n;

14

gap> n * n = n[1] * n[1] + n[2] * n[2];

true

21.14.4 Division of lists

For two GAP objects x and y of which one is in IsMultiplicativeGeneralizedRowVector

(21.12.2) and the other is also in IsMultiplicativeGeneralizedRowVector (21.12.2) or is nei-
ther a list nor a domain, x/y is defined as x∗ y−1.

Example
gap> [1, 2, 3] / 2; [1, 2] / [[1, 2], [3, 4]];

[1/2, 1, 3/2]

[1, 0]

21.14.5 mod for lists

If x and y are in IsMultiplicativeGeneralizedRowVector (21.12.2) and have the same multi-
plicative nesting depth (see NestingDepthM (21.12.5)), x mod y is defined pointwise, in the sense

GAP - Reference Manual 293

that the result is a list whose entry at position i is x[i] mod y[i] if these entries are bound, is a
shallow copy (see ShallowCopy (12.7.1)) of x[i] or y[i] if the other argument is not bound at position
i, and is unbound if both x and y are unbound at position i.

If x is in IsMultiplicativeGeneralizedRowVector (21.12.2) and y is in
IsMultiplicativeGeneralizedRowVector (21.12.2) and has lower multiplicative nesting
depth or is neither a list nor a domain, x mod y is defined as a list whose entry at position i is x[i]
mod y if x is bound at position i, and is unbound if not. The equivalent holds in the reversed case,
where the order of the arguments is kept.

Example
gap> 4711 mod [2, 3,, 5, 7];

[1, 1,, 1, 0]

gap> [2, 3, 4, 5, 6] mod 3;

[2, 0, 1, 2, 0]

gap> [10, 12, 14, 16] mod [3, 5, 7];

[1, 2, 0, 16]

21.14.6 Left quotients of lists

For two GAP objects x and y of which one is in IsMultiplicativeGeneralizedRowVector

(21.12.2) and the other is also in IsMultiplicativeGeneralizedRowVector (21.12.2) or is nei-
ther a list nor a domain, LeftQuotient(x, y) is defined as x−1 ∗ y.

Example
gap> LeftQuotient([[1, 2], [3, 4]], [1, 2]);

[0, 1/2]

21.15 Mutability Status and List Arithmetic

Many results of arithmetic operations, when applied to lists, are again lists, and it is of interest whether
their entries are mutable or not (if applicable). Note that the mutability status of the result itself
is already defined by the general rule for any result of an arithmetic operation, not only for lists
(see 12.6).

However, we do not define exactly the mutability status for each element on each level of a nested
list returned by an arithmetic operation. (Of course it would be possible to define this recursively,
but since the methods used are in general not recursive, in particular for efficient multiplication of
compressed matrices, such a general definition would be a burden in these cases.) Instead we consider,
for a list x in IsGeneralizedRowVector (21.12.1), the sequence x = x1,x2, . . .xn where xi+1 is the
first bound entry in xi if exists (that is, if xi is a nonempty list), and n is the largest i such that xi

lies in IsGeneralizedRowVector (21.12.1). The immutability level of x is defined as infinity if x
is immutable, and otherwise the number of xi which are immutable. (So the immutability level of a
mutable empty list is 0.)

Thus a fully mutable matrix has immutability level 0, and a mutable matrix with immutable first
row has immutability level 1 (independent of the mutability of other rows).

The immutability level of the result of any of the binary operations discussed here is the minimum
of the immutability levels of the arguments, provided that objects of the required mutability status
exist in GAP.

GAP - Reference Manual 294

Moreover, the results have a “homogeneous” mutability status, that is, if the first bound entry at
nesting depth i is immutable (mutable) then all entries at nesting depth i are immutable (mutable,
provided that a mutable version of this entry exists in GAP).

Thus the sum of two mutable matrices whose first rows are mutable is a matrix all of whose rows
are mutable, and the product of two matrices whose first rows are immutable is a matrix all of whose
rows are immutable, independent of the mutability status of the other rows of the arguments.

For example, the sum of a matrix (mutable or immutable, i.e., of immutability level one of 0, 1, or
2) and a mutable row vector (i.e., immutability level 0) is a fully mutable matrix. The product of two
mutable row vectors of integers is an integer, and since GAP does not support mutable integers, the
result is immutable.

For unary arithmetic operations, there are three operations available, an attribute that returns an
immutable result (Zero (31.10.3), AdditiveInverse (31.10.9), One (31.10.2), Inverse (31.10.8)),
an operation that returns a result that is mutable (ZeroOp (31.10.3), AdditiveInverseOp (31.10.9),
OneOp (31.10.2), InverseOp (31.10.8)), and an operation whose result has the same immutability level
as the argument (ZeroSameMutability (31.10.3), AdditiveInverseSameMutability (31.10.9),
OneSameMutability (31.10.2), InverseSameMutability (31.10.8)). The last kind of operations is
equivalent to the corresponding infix operations 0 * list , - list , list^0, and list^-1. (This
holds not only for lists, see 12.6.)

Example
gap> IsMutable(l1); IsMutable(2 * Immutable([1, 2, 3]));

true

false

gap> IsMutable(l2); IsMutable(l3);

true

true

An example motivating the mutability rule is the use of syntactic constructs such as obj * list

and - list as an elegant and efficient way to create mutable lists needed for further manipulations
from mutable lists. In particular one can construct a mutable zero vector of length n by 0 * [1 ..

n]. The latter can be done also using ListWithIdenticalEntries (21.15.1).

21.15.1 ListWithIdenticalEntries

▷ ListWithIdenticalEntries(n, obj) (function)

is a list list of length n that has the object obj stored at each of the positions from 1 to n . Note
that all elements of lists are identical, see 21.6.

Example
gap> ListWithIdenticalEntries(10, 0);

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

21.16 Finding Positions in Lists

21.16.1 Position

▷ Position(list, obj[, from]) (operation)

GAP - Reference Manual 295

returns the position of the first occurrence obj in list , or fail if obj is not contained in list .
If a starting index from is given, it returns the position of the first occurrence starting the search after
position from .

Each call to the two argument version is translated into a call of the three argument version, with
third argument the integer zero 0. (Methods for the two argument version must be installed as methods
for the version with three arguments, the third being described by IsZeroCyc.)

Example
gap> Position([2, 2, 1, 3], 1);

3

gap> Position([2, 1, 1, 3], 1);

2

gap> Position([2, 1, 1, 3], 1, 2);

3

gap> Position([2, 1, 1, 3], 1, 3);

fail

21.16.2 Positions

▷ Positions(list, obj) (function)

returns the set of positions of all occurrences of obj in list .
Developers who wish to adapt this for custom list types need to install suitable methods for the

operation PositionsOp.
Example

gap> Positions([1,2,1,2,3,2,2],2);

[2, 4, 6, 7]

gap> Positions([1,2,1,2,3,2,2],4);

[]

21.16.3 PositionCanonical

▷ PositionCanonical(list, obj) (operation)

returns the position of the canonical associate of obj in list . The definition of this asso-
ciate depends on list . For internally represented lists it is defined as the element itself (and
PositionCanonical thus defaults to Position (21.16.1), but for example for certain enumerators
(see 21.23) other canonical associates can be defined.

For example RightTransversal (39.8.1) defines the canonical associate to be the element in the
transversal defining the same coset of a subgroup in a group.

Example
gap> g:=Group((1,2,3,4),(1,2));;u:=Subgroup(g,[(1,2)(3,4),(1,3)(2,4)]);;

gap> rt:=RightTransversal(g,u);;AsList(rt);

[(), (3,4), (2,3), (2,3,4), (2,4,3), (2,4)]

gap> Position(rt,(1,2));

fail

gap> PositionCanonical(rt,(1,2));

2

GAP - Reference Manual 296

21.16.4 PositionNthOccurrence

▷ PositionNthOccurrence(list, obj, n) (operation)

returns the position of the n-th occurrence of obj in list and returns fail if obj does not occur
n times.

Example
gap> PositionNthOccurrence([1,2,3,2,4,2,1],1,1);

1

gap> PositionNthOccurrence([1,2,3,2,4,2,1],1,2);

7

gap> PositionNthOccurrence([1,2,3,2,4,2,1],2,3);

6

gap> PositionNthOccurrence([1,2,3,2,4,2,1],2,4);

fail

21.16.5 PositionSorted

▷ PositionSorted(list, elm[, func]) (function)

Called with two arguments, PositionSorted returns the position of the element elm in the sorted
list list .

Called with three arguments, PositionSorted returns the position of the element elm in the list
list , which must be sorted with respect to func . func must be a function of two arguments that
returns true if the first argument is less than the second argument, and false otherwise.

PositionSorted returns pos such that list [pos−1]< elm ≤ list [pos] holds. That means, if
elm appears once in list , its position is returned. If elm appears several times in list , the position
of the first occurrence is returned. If elm is not an element of list , the index where elm must be
inserted to keep the list sorted is returned.

PositionSorted uses binary search, whereas Position (21.16.1) can in general use only linear
search, see the remark at the beginning of 21.19. For sorting lists, see 21.18, for testing whether a list
is sorted, see IsSortedList (21.17.3) and IsSSortedList (21.17.4).

Developers who wish to adapt this for custom list types need to install suitable methods for the
operation PositionSortedOp.

Example
gap> PositionSorted([1,4,5,5,6,7], 0);

1

gap> PositionSorted([1,4,5,5,6,7], 2);

2

gap> PositionSorted([1,4,5,5,6,7], 4);

2

gap> PositionSorted([1,4,5,5,6,7], 5);

3

gap> PositionSorted([1,4,5,5,6,7], 8);

7

GAP - Reference Manual 297

21.16.6 PositionSortedBy

▷ PositionSortedBy(list, val, func) (function)

This function returns the same value that would be returned by PositionSorted(List(list,

func), val), but computes it in a more efficient way.
To be more precise, func must be a function on one argument which returns values that can be

compared to val , and list must be a list for which func(list[i]) <= func(list[i+1]) holds
for all relevant i . This property is not verified, and if the input violates it, then the result is undefined.

PositionSortedBy returns pos such that func(list [pos − 1]) < val ≤ func(list [pos])
holds. That means, if there are elements elm in list for which func(elm) = val holds, then the
position of the first such element is returned. If no element of list satisfies this condition, then the
lowest index where an element elm satisfying func(elm) = val must be inserted to preserve the
property func(list[i]) <= func(list[i+1]) is returned.

PositionSortedBy uses binary search. Each func(list[i]) is computed at most once.
Developers who wish to adapt this for custom list types need to install suitable methods for the

operation PositionSortedByOp.
Example

gap> PositionSortedBy(["", "ab",], -1, Length);

1

gap> PositionSortedBy(["", "ab",], 0, Length);

1

gap> PositionSortedBy(["", "ab",], 1, Length);

2

gap> PositionSortedBy(["", "ab",], 2, Length);

2

gap> PositionSortedBy(["", "ab",], 3, Length);

3

21.16.7 PositionSet

▷ PositionSet(list, obj[, func]) (function)

PositionSet is a slight variation of PositionSorted (21.16.5). The only difference to
PositionSorted (21.16.5) is that PositionSet returns fail if obj is not in list .

Example
gap> PositionSet([1,4,5,5,6,7], 0);

fail

gap> PositionSet([1,4,5,5,6,7], 2);

fail

gap> PositionSet([1,4,5,5,6,7], 4);

2

gap> PositionSet([1,4,5,5,6,7], 5);

3

gap> PositionSet([1,4,5,5,6,7], 8);

fail

GAP - Reference Manual 298

21.16.8 PositionMaximum

▷ PositionMaximum(list[, func]) (function)

▷ PositionMinimum(list[, func]) (function)

returns the position of maximum (with PositionMaximum) or minimum (with
PositionMinimum) entry in the list list . If a second argument func is passed, then return
instead the position of the largest/smallest entry in List(list , func). If several entries of the
list are equal to the maximum/minimum, the first such position is returned.

Example
gap> PositionMaximum([2,4,-6,2,4]);

2

gap> PositionMaximum([2,4,-6,2,4], x -> -x);

3

gap> PositionMinimum([2,4,-6,2,4]);

3

gap> PositionMinimum([2,4,-6,2,4], x -> -x);

2

Maximum (21.20.12) and Minimum (21.20.13) allow you to find the maximum or minimum element
of a list directly.

21.16.9 PositionProperty

▷ PositionProperty(list, func[, from]) (operation)

returns the position of the first entry in the list list for which the property tester function func

returns true, or fail if no such entry exists. If a starting index from is given, it returns the position
of the first entry satisfying func , starting the search after position from .

Example
gap> PositionProperty([10^7..10^8], IsPrime);

20

gap> PositionProperty([10^5..10^6],

> n -> not IsPrime(n) and IsPrimePowerInt(n));

490

First (21.20.21) allows you to extract the first element of a list that satisfies a certain property.

21.16.10 PositionsProperty

▷ PositionsProperty(list, func) (operation)

returns the set of all those positions in the list list which are bound and for which the property
tester function func returns true.

Example
gap> l:= [-5 .. 5];;

gap> PositionsProperty(l, IsPosInt);

[7, 8, 9, 10, 11]

gap> PositionsProperty(l, IsPrimeInt);

[1, 3, 4, 8, 9, 11]

GAP - Reference Manual 299

PositionProperty (21.16.9) allows you to extract the position of the first element in a list that
satisfies a certain property.

21.16.11 PositionBound

▷ PositionBound(list) (operation)

returns the first bound position of the list list . For the empty list it returns fail.
Example

gap> PositionBound([1,2,3]);

1

gap> PositionBound([,1,2,3]);

2

21.16.12 PositionsBound

▷ PositionsBound(list) (function)

returns the set of all bound positions in the list list .
Example

gap> PositionsBound([1,2,3]);

[1 .. 3]

gap> PositionsBound([,1,,3]);

[2, 4]

gap> PositionsBound([]);

[]

21.16.13 PositionNot

▷ PositionNot(list, val[, from]) (operation)

For a list list and an object val , PositionNot returns the smallest nonnegative integer n such
that list [n] is either unbound or not equal to val . If a starting index from is given, it returns the first
position with this property starting the search after position from .

Example
gap> l:= [1, 1, 2, 3, 2];; PositionNot(l, 1);

3

gap> PositionNot(l, 1, 4); PositionNot(l, 2, 4);

5

6

21.16.14 PositionNonZero

▷ PositionNonZero(vec[, from]) (operation)

For a row vector vec , PositionNonZero returns the position of the first non-zero element of
vec , or Length(vec)+1 if all entries of vec are zero.

GAP - Reference Manual 300

If a starting index from is given, it returns the position of the first occurrence starting the search
after position from .

PositionNonZero implements a special case of PositionNot (21.16.13). Namely, the element
to be avoided is the zero element, and the list must be (at least) homogeneous because otherwise the
zero element cannot be specified implicitly.

Example
gap> PositionNonZero([1, 1, 2, 3, 2]);

1

gap> PositionNonZero([2, 3, 4, 5] * Z(2));

2

21.16.15 PositionSublist

▷ PositionSublist(list, sub[, from]) (operation)

returns the smallest index in the list list at which a sublist equal to sub starts. If sub does not
occur the operation returns fail. The version with given from starts searching after position from .

To determine whether sub matches list at a particular position, use IsMatchingSublist

(21.17.1) instead.

21.17 Properties and Attributes for Lists

A list that contains mutable objects (like lists or records) cannot store attribute values that depend on
the values of its entries, such as whether it is homogeneous, sorted, or strictly sorted, as changes in
any of its entries could change such property values, like the following example shows.

Example
gap> l:=[[1],[2]];

[[1], [2]]

gap> IsSSortedList(l);

true

gap> l[1][1]:=3;

3

gap> IsSSortedList(l);

false

For such lists these property values must be computed anew each time the property is asked for.
For example, if list is a list of mutable row vectors then the call of Position (21.16.1) with list

as first argument cannot take advantage of the fact that list is in fact sorted. One solution is to call
explicitly PositionSorted (21.16.5) in such a situation, another solution is to replace list by an
immutable copy using Immutable (12.6.3).

21.17.1 IsMatchingSublist

▷ IsMatchingSublist(list, sub[, at]) (operation)

returns true if sub matches a sublist of list from position 1 (or position at , in the case of three
arguments), or false, otherwise. If sub is empty true is returned. If list is empty but sub is
non-empty false is returned.

GAP - Reference Manual 301

If you actually want to know whether there is an at for which IsMatchingSublist(list,

sub, at) is true, use a construction like PositionSublist(list, sub) <> fail instead
(see PositionSublist (21.16.15)); it’s more efficient.

21.17.2 IsDuplicateFree

▷ IsDuplicateFree(obj) (property)

▷ IsDuplicateFreeList(obj) (filter)

IsDuplicateFree returns true if obj is both a list or collection, and it is duplicate free; other-
wise it returns false. IsDuplicateFreeList is a synonym for IsDuplicateFree and IsList.

A list is duplicate free if it is dense and does not contain equal entries in different positions. Every
domain (see 12.4) is duplicate free.

Note that GAP cannot compare arbitrary objects (by equality). This can cause that
IsDuplicateFree runs into an error, if obj is a list with some non-comparable entries.

21.17.3 IsSortedList

▷ IsSortedList(obj) (property)

returns true if obj is a list and it is sorted, and false otherwise.
A list list is sorted if it is dense (see IsDenseList (21.1.2)) and satisfies the relation list [i]≤

list [j] whenever i< j. Note that a sorted list is not necessarily duplicate free (see IsDuplicateFree
(21.17.2) and IsSSortedList (21.17.4)).

Many sorted lists are in fact homogeneous (see IsHomogeneousList (21.1.3)), but also
non-homogeneous lists may be sorted (see 31.11).

In sorted lists, membership test and computing of positions can be done by binary search,
see 21.19.

Note that GAP cannot compare (by less than) arbitrary objects. This can cause that IsSortedList
runs into an error, if obj is a list with some non-comparable entries.

21.17.4 IsSSortedList

▷ IsSSortedList(obj) (property)

▷ IsSet(obj) (property)

returns true if obj is a list and it is strictly sorted, and false otherwise. IsSSortedList is short
for “is strictly sorted list”; IsSet is just a synonym for IsSSortedList.

A list list is strictly sorted if it is sorted (see IsSortedList (21.17.3)) and satisfies the relation
list [i]< list [j] whenever i < j. In particular, such lists are duplicate free (see IsDuplicateFree
(21.17.2)).

(Currently there is little special treatment of lists that are sorted but not strictly sorted. In particular,
internally represented lists will not store that they are sorted but not strictly sorted.)

Note that GAP cannot compare (by less than) arbitrary objects. This can cause that
IsSSortedList runs into an error, if obj is a list with some non-comparable entries.

GAP - Reference Manual 302

21.17.5 Length

▷ Length(list) (attribute)

returns the length of the list list , which is defined to be the index of the last bound entry in
list .

21.17.6 ConstantTimeAccessList

▷ ConstantTimeAccessList(list) (attribute)

ConstantTimeAccessList returns an immutable list containing the same elements as the list
list (which may have holes) in the same order. If list is already a constant time access list,
ConstantTimeAccessList returns an immutable copy of list directly. Otherwise it puts all ele-
ments and holes of list into a new list and makes that list immutable.

21.18 Sorting Lists

GAP implements three different families of sorting algorithms. The default algorithm is pat-
tern-defeating quicksort, a variant of quicksort which performs better on partially sorted lists and
has good worst-case behaviour. The functions which begin Stable are stable (equal elements keep
the same relative order in the sorted list) and use merge sort. Finally, the functions which begin
Shell use the shell sort which was GAP’s default search algorithm before 4.9. Sortex (21.18.3) and
SortingPerm (21.18.4) are also stable.

21.18.1 Sort

▷ Sort(list[, func]) (operation)

▷ SortBy(list, func) (operation)

▷ StableSort(list[, func]) (operation)

▷ StableSortBy(list[, func]) (operation)

Sort sorts the list list in increasing order. In the one argument form Sort uses the operator <
to compare the elements. (If the list is not homogeneous it is the user’s responsibility to ensure that
< is defined for all element pairs, see 31.11) In the two argument form Sort uses the function func

to compare elements. func must be a function taking two arguments that returns true if the first is
regarded as strictly smaller than the second, and false otherwise.

StableSort behaves identically to Sort, except that StableSort will keep elements which com-
pare equal in the same relative order, while Sort may change their relative order.

Sort does not return anything, it just changes the argument list . Use ShallowCopy (12.7.1)
if you want to keep list . Use Reversed (21.20.7) if you want to get a new list that is sorted in
decreasing order.

SortBy sorts the list list into an order such that func(list[i]) <= func(list[i+1]) for all
relevant i . func must thus be a function on one argument which returns values that can be compared.
Each func(list[i]) is computed just once and stored, making this more efficient than using the
two-argument version of Sort in many cases.

GAP - Reference Manual 303

StableSortBy behaves the same as SortBy except that, like StableSort, it keeps pairs of values
which compare equal when func is applied to them in the same relative order.

Example
gap> list := [5, 4, 6, 1, 7, 5];; Sort(list); list;

[1, 4, 5, 5, 6, 7]

gap> SortBy(list, x -> x mod 3);

gap> list; # Sorted by mod 3

[6, 1, 4, 7, 5, 5]

gap> list := [[0,6], [1,2], [1,3], [1,5], [0,4], [3,4]];;

gap> Sort(list, function(v,w) return v*v < w*w; end);

gap> list; # sorted according to the Euclidean distance from [0,0]

[[1, 2], [1, 3], [0, 4], [3, 4], [1, 5], [0, 6]]

gap> SortBy(list, function(v) return v[1] + v[2]; end);

gap> list; # sorted according to Manhattan distance from [0,0]

[[1, 2], [1, 3], [0, 4], [1, 5], [0, 6], [3, 4]]

gap> list := [[0,6], [1,3], [3,4], [1,5], [1,2], [0,4],];;

gap> Sort(list, function(v,w) return v[1] < w[1]; end);

gap> # note the random order of the elements with equal first component:

gap> list;

[[0, 6], [0, 4], [1, 3], [1, 5], [1, 2], [3, 4]]

21.18.2 SortParallel

▷ SortParallel(list1, list2[, func]) (operation)

▷ StableSortParallel(list1, list2[, func]) (operation)

SortParallel sorts the list list1 in increasing order just as Sort (21.18.1) does. In parallel it
applies the same exchanges that are necessary to sort list1 to the list list2 , which must of course
have at least as many elements as list1 does.

StableSortParallel behaves identically to SortParallel, except it keeps elements in list1

which compare equal in the same relative order.
Example

gap> list1 := [5, 4, 6, 1, 7, 5];;

gap> list2 := [2, 3, 5, 7, 8, 9];;

gap> SortParallel(list1, list2);

gap> list1;

[1, 4, 5, 5, 6, 7]

gap> list2;

[7, 3, 2, 9, 5, 8]

Note that [7, 3, 2, 9, 5, 8] or [7, 3, 9, 2, 5, 8] are possible results.
StableSortParallel will always return [7, 3, 2, 9, 5, 8].

21.18.3 Sortex

▷ Sortex(list[, func]) (operation)

sorts the list list and returns a permutation that can be applied to list to obtain the sorted list.
The one argument form sorts via the operator <, the two argument form sorts w.r.t. the function func .

GAP - Reference Manual 304

The permutation returned by Sortex will keep elements which compare equal in the same relative
order. (If the list is not homogeneous it is the user’s responsibility to ensure that < is defined for all
element pairs, see 31.11)

Permuted (21.20.17) allows you to rearrange a list according to a given permutation.
Example

gap> list1 := [5, 4, 6, 1, 7, 5];;

gap> list2 := ShallowCopy(list1);;

gap> perm := Sortex(list1);

(1,3,5,6,4)

gap> list1;

[1, 4, 5, 5, 6, 7]

gap> Permuted(list2, perm);

[1, 4, 5, 5, 6, 7]

21.18.4 SortingPerm

▷ SortingPerm(list) (attribute)

SortingPerm returns the same as Sortex (21.18.3) but does not change the argument.
Example

gap> list1 := [5, 4, 6, 1, 7, 5];;

gap> list2 := ShallowCopy(list1);;

gap> perm := SortingPerm(list1);

(1,3,5,6,4)

gap> list1;

[5, 4, 6, 1, 7, 5]

gap> Permuted(list2, perm);

[1, 4, 5, 5, 6, 7]

21.19 Sorted Lists and Sets

Searching objects in a list works much quicker if the list is known to be sorted. Currently GAP exploits
the sortedness of a list automatically only if the list is strictly sorted, which is indicated by the property
IsSSortedList (21.17.4).

Remember that a list of mutable objects cannot store that it is strictly sorted but has to test it
anew whenever it is asked whether it is sorted, see the remark in 21.17. Therefore GAP cannot
take advantage of the sortedness of a list if this list has mutable entries. Moreover, if a sorted list
list with mutable elements is used as an argument of a function that expects this argument to be
sorted, for example UniteSet (21.19.6) or RemoveSet (21.19.5), then it is checked whether list is
in fact sorted; this check can have the effect actually to slow down the computations, compared to
computations with sorted lists of immutable elements or computations that do not involve functions
that do automatically check sortedness.

Strictly sorted lists are used to represent sets in GAP. More precisely, a strictly sorted list is called
a proper set in the following, in order to avoid confusion with domains (see 12.4) which also represent
sets.

In short proper sets are represented by sorted lists without holes and duplicates in GAP. Note that
we guarantee this representation, so you may make use of the fact that a set is represented by a sorted
list in your functions.

GAP - Reference Manual 305

In some contexts (for example see 16), we also want to talk about multisets. A multiset is like a
set, except that an element may appear several times in a multiset. Such multisets are represented by
sorted lists without holes that may have duplicates.

This section lists only those functions that are defined exclusively for proper sets. Set theo-
retic functions for general collections, such as Intersection (30.5.2) and Union (30.5.3), are de-
scribed in Chapter 30. In particular, for the construction of proper sets, see SSortedList (30.3.7) and
AsSSortedList (30.3.10). For finding positions in sorted lists, see PositionSorted (21.16.5).

There are nondestructive counterparts of the functions UniteSet (21.19.6), IntersectSet

(21.19.7), and SubtractSet (21.19.8) available for proper sets. These are UnionSet,
IntersectionSet, and Difference (30.5.4). The former two are methods for the more general op-
erations Union (30.5.3) and Intersection (30.5.2), the latter is itself an operation (see Difference
(30.5.4)).

The result of IntersectionSet and UnionSet is always a new list, that is not identical to any
other list. The elements of that list however are identical to the corresponding elements of the first
argument set . If set is not a proper set it is not specified to which of a number of equal elements in
set the element in the result is identical (see 21.6). The following functions, if not explicitly stated
differently, take two arguments, set and obj , where set must be a proper set, otherwise an error
is signalled; If the second argument obj is a list that is not a proper set then Set (30.3.7) is silently
applied to it first.

21.19.1 \in (for strictly sorted lists)

▷ \in(obj, list) (method)

For a list list that stores that it is strictly sorted, the test with \in (21.19.1) whether the object
obj is an entry of list uses binary search. This test can be entered also with the infix notation obj

in list .

21.19.2 IsEqualSet

▷ IsEqualSet(list1, list2) (operation)

tests whether list1 and list2 are equal when viewed as sets, that is if every element of list1
is an element of list2 and vice versa. Either argument of IsEqualSet may also be a list that is not
a proper set, in which case Set (30.3.7) is applied to it first.

If both lists are proper sets then they are of course equal if and only if they are also equal as lists.
Thus IsEqualSet(list1, list2) is equivalent to Set(list1) = Set(list2) (see Set

(30.3.7)), but the former is more efficient.
Example

gap> IsEqualSet([2,3,5,7,11], [11,7,5,3,2]);

true

gap> IsEqualSet([2,3,5,7,11], [2,3,5,7,11,13]);

false

21.19.3 IsSubsetSet

▷ IsSubsetSet(list1, list2) (operation)

GAP - Reference Manual 306

tests whether every element of list2 is contained in list1 . Either argument of IsSubsetSet
may also be a list that is not a proper set, in which case Set (30.3.7) is applied to it first.

21.19.4 AddSet

▷ AddSet(set, obj) (operation)

adds the element obj to the proper set set . If obj is already contained in set then set is
not changed. Otherwise obj is inserted at the correct position such that set is again a proper set
afterwards.

Note that obj must be in the same family as each element of set .
Example

gap> s := [2,3,7,11];;

gap> AddSet(s, 5); s;

[2, 3, 5, 7, 11]

gap> AddSet(s, 13); s;

[2, 3, 5, 7, 11, 13]

gap> AddSet(s, 3); s;

[2, 3, 5, 7, 11, 13]

21.19.5 RemoveSet

▷ RemoveSet(set, obj) (operation)

removes the element obj from the proper set set . If obj is not contained in set then set is
not changed. If obj is an element of set it is removed and all the following elements in the list are
moved one position forward.

Example
gap> s := [2, 3, 4, 5, 6, 7];;

gap> RemoveSet(s, 6); s;

[2, 3, 4, 5, 7]

gap> RemoveSet(s, 10); s;

[2, 3, 4, 5, 7]

21.19.6 UniteSet

▷ UniteSet(set, list) (operation)

unites the proper set set with list . This is equivalent to adding all elements of list to set

(see AddSet (21.19.4)).
Example

gap> set := [2, 3, 5, 7, 11];;

gap> UniteSet(set, [4, 8, 9]); set;

[2, 3, 4, 5, 7, 8, 9, 11]

gap> UniteSet(set, [16, 9, 25, 13, 16]); set;

[2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 25]

GAP - Reference Manual 307

21.19.7 IntersectSet

▷ IntersectSet(set, list) (operation)

intersects the proper set set with list . This is equivalent to removing from set all elements of
set that are not contained in list .

Example
gap> set := [2, 3, 4, 5, 7, 8, 9, 11, 13, 16];;

gap> IntersectSet(set, [3, 5, 7, 9, 11, 13, 15, 17]); set;

[3, 5, 7, 9, 11, 13]

gap> IntersectSet(set, [9, 4, 6, 8]); set;

[9]

21.19.8 SubtractSet

▷ SubtractSet(set, list) (operation)

subtracts list from the proper set set . This is equivalent to removing from set all elements of
list .

Example
gap> set := [2, 3, 4, 5, 6, 7, 8, 9, 10, 11];;

gap> SubtractSet(set, [6, 10]); set;

[2, 3, 4, 5, 7, 8, 9, 11]

gap> SubtractSet(set, [9, 4, 6, 8]); set;

[2, 3, 5, 7, 11]

21.20 Operations for Lists

Several of the following functions expect the first argument to be either a list or a collection (see 30),
with possibly slightly different meaning for lists and non-list collections.

21.20.1 Concatenation (for several lists)

▷ Concatenation(list1, list2, ...) (function)

▷ Concatenation(list) (function)

In the first form Concatenation returns the concatenation of the lists list1 , list2 , etc. The
concatenation is the list that begins with the elements of list1 , followed by the elements of list2 ,
and so on. Each list may also contain holes, in which case the concatenation also contains holes at the
corresponding positions.

In the second form list must be a dense list of lists list1 , list2 , etc., and Concatenation

returns the concatenation of those lists.
The result is a new mutable list, that is not identical to any other list. The elements of that list

however are identical to the corresponding elements of list1 , list2 , etc. (see 21.6).
Note that Concatenation creates a new list and leaves its arguments unchanged, while Append

(21.4.5) changes its first argument. For computing the union of proper sets, Union (30.5.3) can be
used, see also 21.19.

GAP - Reference Manual 308

Example
gap> Concatenation([1, 2, 3], [4, 5]);

[1, 2, 3, 4, 5]

gap> Concatenation([2,3,,5,,7], [11,,13,,,,17,,19]);

[2, 3,, 5,, 7, 11,, 13,,,, 17,, 19]

gap> Concatenation([[1,2,3], [2,3,4], [3,4,5]]);

[1, 2, 3, 2, 3, 4, 3, 4, 5]

21.20.2 Compacted

▷ Compacted(list) (operation)

returns a new mutable list that contains the elements of list in the same order but omitting the
holes.

Example
gap> l:=[,1,,,3,,,4,[5,,,6],7];; Compacted(l);

[1, 3, 4, [5,,, 6], 7]

21.20.3 Collected

▷ Collected(list) (operation)

returns a new list new that contains for each element elm of the list list a list of length two, the
first element of this is elm itself and the second element is the number of times elm appears in list .
The order of those pairs in new corresponds to the ordering of the elements elm, so that the result is
sorted.

For all pairs of elements in list the comparison via < must be defined.
Example

gap> Factors(Factorial(10));

[2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 5, 5, 7]

gap> Collected(last);

[[2, 8], [3, 4], [5, 2], [7, 1]]

gap> Collected(last);

[[[2, 8], 1], [[3, 4], 1], [[5, 2], 1], [[7, 1], 1]]

21.20.4 DuplicateFreeList

▷ DuplicateFreeList(list) (operation)

▷ Unique(list) (operation)

returns a new mutable list whose entries are the elements of the list list with duplicates re-
moved. DuplicateFreeList only uses the = comparison and will not sort the result. Therefore
DuplicateFreeList can be used even if the elements of list do not lie in the same family. Other-
wise, if list contains objects that can be compared with \< (31.11.1) then it is much more efficient
to use Set (30.3.7) instead of DuplicateFreeList.

Unique is a synonym for DuplicateFreeList.

GAP - Reference Manual 309

Example
gap> l:=[1,Z(3),1,"abc",Group((1,2,3),(1,2)),Z(3),Group((1,2),(2,3))];;

gap> DuplicateFreeList(l);

[1, Z(3), "abc", Group([(1,2,3), (1,2)])]

21.20.5 AsDuplicateFreeList

▷ AsDuplicateFreeList(list) (attribute)

returns the same result as DuplicateFreeList (21.20.4), except that the result is immutable.

21.20.6 Flat

▷ Flat(list) (operation)

returns the list of all elements that are contained in the list list or its sublists. That is, Flat first
makes a new empty list new . Then it loops over the elements elm of list . If elm is not a list it is
added to new , otherwise Flat appends Flat(elm) to new .

Example
gap> Flat([1, [2, 3], [[1, 2], 3]]);

[1, 2, 3, 1, 2, 3]

gap> Flat([]);

[]

To reconstruct a matrix from the list obtained by applying Flat to the matrix, the sublist operator
can be used, as follows.

Example
gap> l:=[9..14];;w:=2;; # w is the length of each row

gap> sub:=[1..w];;List([1..Length(l)/w],i->l{(i-1)*w+sub});

[[9, 10], [11, 12], [13, 14]]

21.20.7 Reversed

▷ Reversed(list) (function)

returns a new mutable list, containing the elements of the dense list list in reversed order.
The argument list is unchanged. The result list is a new list, that is not identical to any other

list. The elements of that list however are identical to the corresponding elements of the argument list
(see 21.6).

Reversed implements a special case of list assignment, which can also be formulated in terms of
the {} operator (see 21.4).

Developers who wish to adapt this for custom list types need to install suitable methods for the
operation ReversedOp.

Example
gap> Reversed([1, 4, 9, 5, 6, 7]);

[7, 6, 5, 9, 4, 1]

GAP - Reference Manual 310

21.20.8 Shuffle

▷ Shuffle(list) (operation)

The argument list must be a dense mutable list. This operation permutes the entries of list
randomly (in place), and returns list .

Example
gap> Reset(GlobalMersenneTwister, 12345);; # make manual tester happy

gap> l := [1..20];

[1 .. 20]

gap> m := Shuffle(ShallowCopy(l));

[8, 13, 1, 3, 20, 15, 4, 7, 5, 18, 6, 12, 16, 11, 2, 10, 19, 17, 9,

14]

gap> l;

[1 .. 20]

gap> Shuffle(l);;

gap> l;

[19, 5, 7, 20, 16, 1, 10, 15, 12, 11, 13, 2, 14, 3, 4, 17, 6, 8, 9,

18]

21.20.9 Apply

▷ Apply(list, func) (function)

Apply applies the function func to every element of the dense and mutable list list , and replaces
each element entry by the corresponding return value.

Apply changes its argument. The nondestructive counterpart of Apply is List (30.3.5).
Example

gap> l:= [1, 2, 3];; Apply(l, i -> i^2); l;

[1, 4, 9]

21.20.10 Perform

▷ Perform(list, func) (function)

Perform applies the function func to every element of the list list , discarding any return values.
It does not return a value.

Example
gap> l := [1, 2, 3];; Perform(l,

> function(x) if IsPrimeInt(x) then Print(x,"\n"); fi; end);

2

3

21.20.11 PermListList

▷ PermListList(list1, list2) (function)

returns a permutation p of [1 .. Length(list1)] such that list1 [i^p] = list2 [i]. It
returns fail if there is no such permutation.

GAP - Reference Manual 311

Example
gap> list1 := [5, 4, 6, 1, 7, 5];;

gap> list2 := [4, 1, 7, 5, 5, 6];;

gap> perm := PermListList(list1, list2);

(1,2,4)(3,5,6)

gap> Permuted(list2, perm);

[5, 4, 6, 1, 7, 5]

21.20.12 Maximum

▷ Maximum(obj1, obj2, ...) (function)

▷ Maximum(list) (function)

In the first form Maximum returns the maximum of its arguments, i.e., one argument obj for which
obj ≥ obj1 , obj ≥ obj2 etc.

In the second form Maximum takes a homogeneous list list and returns the maximum of the
elements in this list.

Example
gap> Maximum(-123, 700, 123, 0, -1000);

700

gap> Maximum([-123, 700, 123, 0, -1000]);

700

gap> # lists are compared elementwise:

gap> Maximum([1,2], [0,15], [1,5], [2,-11]);

[2, -11]

To get the index of the maximum element use PositionMaximum (21.16.8)

21.20.13 Minimum

▷ Minimum(obj1, obj2, ...) (function)

▷ Minimum(list) (function)

In the first form Minimum returns the minimum of its arguments, i.e., one argument obj for which
obj ≤ obj1 , obj ≤ obj2 etc.

In the second form Minimum takes a homogeneous list list and returns the minimum of the
elements in this list.

Note that for both Maximum (21.20.12) and Minimum the comparison of the objects obj1 , obj2
etc. must be defined; for that, usually they must lie in the same family (see 13.1).

Example
gap> Minimum(-123, 700, 123, 0, -1000);

-1000

gap> Minimum([-123, 700, 123, 0, -1000]);

-1000

gap> Minimum([1, 2], [0, 15], [1, 5], [2, -11]);

[0, 15]

To get the index of the minimum element use PositionMinimum (21.16.8)

GAP - Reference Manual 312

21.20.14 MaximumList and MinimumList

▷ MaximumList(list[, seed]) (operation)

▷ MinimumList(list[, seed]) (operation)

return the maximum resp. the minimum of the elements in the list list . They are the operations
called by Maximum (21.20.12) resp. Minimum (21.20.13). Methods can be installed for special kinds of
lists. For example, there are special methods to compute the maximum resp. the minimum of a range
(see 21.22).

If a second argument seed is supplied, then the result is the maximum resp. minimum of the union
of list and seed . In this manner, the operations may be applied to empty lists.

21.20.15 Cartesian

▷ Cartesian(list1, list2, ...) (function)

▷ Cartesian(list) (function)

In the first form Cartesian returns the cartesian product of the lists list1 , list2 , etc.
In the second form list must be a list of lists list1 , list2 , etc., and Cartesian returns the

cartesian product of those lists.
The cartesian product is a list cart of lists tup , such that the first element of tup is an element of

list1 , the second element of tup is an element of list2 , and so on. The total number of elements
in cart is the product of the lengths of the argument lists. In particular cart is empty if and only if
at least one of the argument lists is empty. Also cart contains duplicates if and only if no argument
list is empty and at least one contains duplicates.

The last index runs fastest. That means that the first element tup1 of cart contains the first
element from list1 , from list2 and so on. The second element tup2 of cart contains the first
element from list1 , the first from list2 , and so on, but the last element of tup2 is the second
element of the last argument list. This implies that cart is a proper set if and only if all argument lists
are proper sets (see 21.19).

The function Tuples (16.2.8) computes the k-fold cartesian product of a list.
Example

gap> Cartesian([1,2], [3,4], [5,6]);

[[1, 3, 5], [1, 3, 6], [1, 4, 5], [1, 4, 6], [2, 3, 5],

[2, 3, 6], [2, 4, 5], [2, 4, 6]]

gap> Cartesian([1,2,2], [1,1,2]);

[[1, 1], [1, 1], [1, 2], [2, 1], [2, 1], [2, 2],

[2, 1], [2, 1], [2, 2]]

21.20.16 IteratorOfCartesianProduct

▷ IteratorOfCartesianProduct(list1, list2, ...) (function)

▷ IteratorOfCartesianProduct(list) (function)

In the first form IteratorOfCartesianProduct returns an iterator (see 30.8) of all elements of
the cartesian product (see Cartesian (21.20.15)) of the lists list1 , list2 , etc.

In the second form list must be a list of lists list1 , list2 , etc., and
IteratorOfCartesianProduct returns an iterator of the cartesian product of those lists.

GAP - Reference Manual 313

Resulting tuples will be returned in the lexicographic order. Usage of iterators of cartesian prod-
ucts is recommended in the case when the resulting cartesian product is big enough, so its generating
and storage will require essential amount of runtime and memory. For smaller cartesian products it is
faster to generate the full set of tuples using Cartesian (21.20.15) and then loop over its elements
(with some minor overhead of needing more memory).

21.20.17 Permuted

▷ Permuted(list, perm) (operation)

returns a new list new that contains the elements of the list list permuted according to the per-
mutation perm . That is new[i^perm] = list[i] whenever list[i] is bound.

Sortex (21.18.3) allows you to compute a permutation that must be applied to a list in order to
get the sorted list.

Example
gap> Permuted([5, 4, 6, 1, 7, 5], (1,3,5,6,4));

[1, 4, 5, 5, 6, 7]

gap> Permuted([5, 4, 6,, 7, 5], (1,3,5,6,4));

[, 4, 5, 5, 6, 7]

21.20.18 List (for a list (and a function))

▷ List(list[, func]) (function)

This function returns a new mutable list new of the same length as the list list (which
may have holes). The entry new[i] is unbound if list[i] is unbound. Otherwise new[i] =

func(list[i]). If the argument func is omitted, its default is IdFunc (5.4.6), so this function
does the same as ShallowCopy (12.7.1) (see also 21.7).

Developers who wish to adapt this for custom list or collection types need to install suitable meth-
ods for the operation ListOp.

Example
gap> List([1,2,3], i -> i^2);

[1, 4, 9]

gap> List([1..10], IsPrime);

[false, true, true, false, true, false, true, false, false, false]

gap> List([,1,,3,4], x-> x > 2);

[, false,, true, true]

(See also List (30.3.5).)

21.20.19 Filtered

▷ Filtered(listorcoll, func) (function)

returns a new list that contains those elements of the list or collection listorcoll (see 30),
respectively, for which the unary function func returns true.

If the first argument is a list, the order of the elements in the result is the same as the order of the
corresponding elements of this list. If an element for which func returns true appears several times

GAP - Reference Manual 314

in the list it will also appear the same number of times in the result. The argument list may contain
holes, they are ignored by Filtered.

For each element of listorcoll , func must return either true or false, otherwise an error is
signalled.

The result is a new list that is not identical to any other list. The elements of that list however are
identical to the corresponding elements of the argument list (see 21.6).

List assignment using the operator \{\} (21.3.1) (see 21.4) can be used to extract elements of a
list according to indices given in another list.

Developers who wish to adapt this for custom list or collection types need to install suitable meth-
ods for the operation FilteredOp.

Example
gap> Filtered([1..20], IsPrime);

[2, 3, 5, 7, 11, 13, 17, 19]

gap> Filtered([1, 3, 4, -4, 4, 7, 10, 6], IsPrimePowerInt);

[3, 4, 4, 7]

gap> Filtered([1, 3, 4, -4, 4, 7, 10, 6],

> n -> IsPrimePowerInt(n) and n mod 2 <> 0);

[3, 7]

gap> Filtered(Group((1,2), (1,2,3)), x -> Order(x) = 2);

[(2,3), (1,2), (1,3)]

21.20.20 Number

▷ Number(listorcoll[, func]) (function)

Called with a list listorcoll , Number returns the number of bound entries in this list. For dense
lists Number, Length (21.17.5), and Size (30.4.6) return the same value; for lists with holes Number
returns the number of bound entries, Length (21.17.5) returns the largest index of a bound entry, and
Size (30.4.6) signals an error.

Called with two arguments, a list or collection listorcoll and a unary function func , Number
returns the number of elements of listorcoll for which func returns true. If an element for which
func returns true appears several times in listorcoll it will also be counted the same number of
times.

For each element of listorcoll , func must return either true or false, otherwise an error is
signalled.

Filtered (21.20.19) allows you to extract the elements of a list that have a certain property.
Developers who wish to adapt this for custom list or collection types need to install suitable meth-

ods for the operation NumberOp.
Example

gap> Number([2, 3, 5, 7]);

4

gap> Number([, 2, 3,, 5,, 7,,,, 11]);

5

gap> Number([1..20], IsPrime);

8

gap> Number([1, 3, 4, -4, 4, 7, 10, 6], IsPrimePowerInt);

4

gap> Number([1, 3, 4, -4, 4, 7, 10, 6],

> n -> IsPrimePowerInt(n) and n mod 2 <> 0);

GAP - Reference Manual 315

2

gap> Number(Group((1,2), (1,2,3)), x -> Order(x) = 2);

3

21.20.21 First

▷ First(list[, func]) (operation)

First returns the first element of the list list for which the unary function func returns true;
if func is not given, the first element is returned. list may contain holes. func must return either
true or false for each element of list , otherwise an error is signalled. If func returns false for
all elements of list then First returns fail.

PositionProperty (21.16.9) allows you to find the position of the first element in a list that
satisfies a certain property.

Before GAP 4.12, developers who wished to adapt this for custom list types needed to install
suitable methods for the operation FirstOp. This is still possible for backwards compatibility, but
FirstOp now is just a synonym for First.

Example
gap> First([10^7..10^8], IsPrime);

10000019

gap> First([10^5..10^6],

> n -> not IsPrime(n) and IsPrimePowerInt(n));

100489

gap> First([1 .. 20], x -> x < 0);

fail

gap> First([fail], x -> x = fail);

fail

21.20.22 Last

▷ Last(list[, func]) (function)

Last returns the last element of the list list for which the unary function func returns true;
if func is not given, the last element is returned. list may contain holes. func must return either
true or false for each element of list , otherwise an error is signalled. If func returns false for
all elements of list then Last returns fail.

Developers who wish to adapt this for custom list types need to install suitable methods for the
operation LastOp.

Example
gap> Last([10^7..10^8], IsPrime);

99999989

gap> Last([10^5..10^6],

> n -> not IsPrime(n) and IsPrimePowerInt(n));

994009

gap> Last([1 .. 20], x -> x < 0);

fail

gap> Last([fail], x -> x = fail);

fail

GAP - Reference Manual 316

21.20.23 ForAll

▷ ForAll(listorcoll, func) (function)

tests whether the unary function func returns true for all elements in the list or collection
listorcoll .

Developers who wish to adapt this for custom list or collection types need to install suitable meth-
ods for the operation ForAllOp.

Example
gap> ForAll([1..20], IsPrime);

false

gap> ForAll([2,3,4,5,8,9], IsPrimePowerInt);

true

gap> ForAll([2..14], n -> IsPrimePowerInt(n) or n mod 2 = 0);

true

gap> ForAll(Group((1,2), (1,2,3)), i -> SignPerm(i) = 1);

false

21.20.24 ForAny

▷ ForAny(listorcoll, func) (function)

tests whether the unary function func returns true for at least one element in the list or collection
listorcoll .

Developers who wish to adapt this for custom list or collection types need to install suitable meth-
ods for the operation ForAnyOp.

Example
gap> ForAny([1..20], IsPrime);

true

gap> ForAny([2,3,4,5,8,9], IsPrimePowerInt);

true

gap> ForAny([2..14],

> n -> IsPrimePowerInt(n) and n mod 5 = 0 and not IsPrime(n));

false

gap> ForAny(Integers, i -> i > 0

> and ForAll([0,2..4], j -> IsPrime(i+j)));

true

21.20.25 Product

▷ Product(listorcoll[, func][, init]) (function)

Called with one argument, a dense list or collection listorcoll , Product returns the product of
the elements of listorcoll (see 30).

Called with a dense list or collection listorcoll and a function func , which must be a function
taking one argument, Product applies the function func to the elements of listorcoll , and returns
the product of the results. In either case Product returns 1 if the first argument is empty.

The general rules for arithmetic operations apply (see 21.15), so the result is immutable if and
only if all summands are immutable.

GAP - Reference Manual 317

If listorcoll contains exactly one element then this element (or its image under func if appli-
cable) itself is returned, not a shallow copy of this element.

If an additional initial value init is given, Product returns the product of init and the elements
of the first argument resp. of their images under the function func . This is useful for example if the
first argument is empty and a different identity than 1 is desired, in which case init is returned.

Developers who wish to adapt this for custom list or collection types need to install suitable meth-
ods for the operation ProductOp.

Example
gap> Product([2, 3, 5, 7, 11, 13, 17, 19]);

9699690

gap> Product([1..10], x->x^2);

13168189440000

gap> Product([(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)]);

(1,4)(2,3)

gap> Product(GF(8));

0*Z(2)

21.20.26 Sum

▷ Sum(listorcoll[, func][, init]) (function)

Called with one argument, a dense list or collection listorcoll , Sum returns the sum of the
elements of listorcoll (see 30).

Called with a dense list or collection listorcoll and a function func , which must be a function
taking one argument, Sum applies the function func to the elements of listorcoll , and returns the
sum of the results. In either case Sum returns 0 if the first argument is empty.

The general rules for arithmetic operations apply (see 21.15), so the result is immutable if and
only if all summands are immutable.

If listorcoll contains exactly one element then this element (or its image under func if appli-
cable) itself is returned, not a shallow copy of this element.

If an additional initial value init is given, Sum returns the sum of init and the elements of the
first argument resp. of their images under the function func . This is useful for example if the first
argument is empty and a different zero than 0 is desired, in which case init is returned.

Developers who wish to adapt this for custom list or collection types need to install suitable meth-
ods for the operation SumOp.

Example
gap> Sum([2, 3, 5, 7, 11, 13, 17, 19]);

77

gap> Sum([1..10], x->x^2);

385

gap> Sum([[1,2], [3,4], [5,6]]);

[9, 12]

gap> Sum(GF(8));

0*Z(2)

21.20.27 Iterated

▷ Iterated(list, f) (operation)

GAP - Reference Manual 318

returns the result of the iterated application of the function f , which must take two arguments, to
the elements of the list list . More precisely, if list has length n then Iterated returns the result
of the following application, f(. . .f(f(list [1],list [2]),list [3]), . . . ,list [n]).

Example
gap> Iterated([126, 66, 105], Gcd);

3

21.20.28 ListN

▷ ListN(list1, list2, ..., listn, f) (function)

applies the n-argument function f to the lists. That is, ListN returns the list whose i-th entry is
f(list1 [i],list2 [i], . . . ,listn [i]).

Example
gap> ListN([1,2], [3,4], \+);

[4, 6]

21.21 Advanced List Manipulations

The following functions are generalizations of List (30.3.5), Set (30.3.7), Sum (21.20.26), and
Product (21.20.25).

21.21.1 ListX

▷ ListX(arg1, arg2, ..., argn, func) (function)

ListX returns a new list constructed from the arguments.
Each of the arguments arg1 , arg2 , . . . argn must be one of the following:

a list or collection
this introduces a new for-loop in the sequence of nested for-loops and if-statements;

a function returning a list or collection
this introduces a new for-loop in the sequence of nested for-loops and if-statements, where the
loop-range depends on the values of the outer loop-variables; or

a function returning true or false
this introduces a new if-statement in the sequence of nested for-loops and if-statements.

The last argument func must be a function, it is applied to the values of the loop-variables and
the results are collected.

Thus ListX(list, func) is the same as List(list, func), and ListX(list,

func, x -> x) is the same as Filtered(list, func).
As a more elaborate example, assume arg1 is a list or collection, arg2 is a function returning

true or false, arg3 is a function returning a list or collection, and arg4 is another function returning
true or false, then

result := ListX(arg1, arg2, arg3, arg4, func);

is equivalent to

GAP - Reference Manual 319

result := [];

for v1 in arg1 do

if arg2(v1) then

for v2 in arg3(v1) do

if arg4(v1, v2) then

Add(result, func(v1, v2));

fi;

od;

fi;

od;

The following example shows how ListX can be used to compute all pairs and all strictly sorted
pairs of elements in a list.

Example
gap> l:= [1, 2, 3, 4];;

gap> pair:= function(x, y) return [x, y]; end;;

gap> ListX(l, l, pair);

[[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2],

[2, 3], [2, 4], [3, 1], [3, 2], [3, 3], [3, 4],

[4, 1], [4, 2], [4, 3], [4, 4]]

In the following example, \< (31.11.1) is the comparison operation:
Example

gap> ListX(l, l, \<, pair);

[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]

21.21.2 SetX

▷ SetX(arg1, arg2, ..., func) (function)

The only difference between SetX and ListX (21.21.1) is that the result list of SetX is strictly
sorted.

21.21.3 SumX

▷ SumX(arg1, arg2, ..., func) (function)

SumX returns the sum of the elements in the list obtained by ListX (21.21.1) when this is called
with the same arguments.

21.21.4 ProductX

▷ ProductX(arg1, arg2, ..., func) (function)

ProductX returns the product of the elements in the list obtained by ListX (21.21.1) when this is
called with the same arguments.

GAP - Reference Manual 320

21.22 Ranges

A range is a dense list of integers in arithmetic progression (or degression). This is a list of integers
such that the difference between consecutive elements is a nonzero constant. Ranges can be abbrevi-
ated with the syntactic construct

[first, second .. last]

or, if the difference between consecutive elements is 1, as
[first .. last].
If first > last , [first .. last] is the empty list, which by definition is also a

range; also, if second > first > last or second < first < last , then [first, second

.. last] is the empty list. If first = last , [first, second .. last] is a singleton
list, which is a range, too. Note that last - first must be divisible by the increment second -

first , otherwise an error is signalled.
Currently, the integers first , second and last and the length of a range must be small integers

as defined in chapter 14.
Note also that a range is just a special case of a list. Thus you can access elements in a range (see

21.3), test for membership etc. You can even assign to such a range if it is mutable (see 21.4). Of
course, unless you assign last + second - first to the entry range[Length(range) + 1

], the resulting list will no longer be a range. Note that assigning to an entry of range will convert it
back into a plain list.

Example
gap> r := [10..20];

[10 .. 20]

gap> Length(r);

11

gap> r[3];

12

gap> 17 in r;

true

gap> # r still is a range but is now represented as a plain list

gap> r[1] := 10;; r;

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

gap> IsRange(r);

true

gap> # r is no longer a range

gap> r[12] := 25;;

gap> IsRange(r);

false

gap> r := [1,3..17];

[1, 3 .. 17]

gap> Length(r);

9

gap> r[4];

7

gap> r := [0,-1..-9];

[0, -1 .. -9]

gap> r[5];

-4

gap> r := [1, 4 .. 32];

Error, Range: <last>-<first> (31) must be divisible by <inc> (3)

GAP - Reference Manual 321

Most often ranges are used in connection with the for-loop see 4.15.6). Here the construct
for var in [first .. last] do statements od

replaces the
for var from first to last do statements od

which is more usual in other programming languages.
Example

gap> s := [];; for i in [10..20] do Add(s, i^2); od; s;

[100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400]

Note that a range with last >= first is at the same time also a proper set (see 21.19), because
it contains no holes or duplicates and is sorted, and also a row vector (see 23), because it contains no
holes and all elements are integers.

21.22.1 IsRange

▷ IsRange(obj) (Category)

tests if the object obj is a range, i.e. is a dense list of integers that is also a range (see 21.22 for a
definition of “range”).

Example
gap> IsRange([1,2,3]); IsRange([7,5,3,1]);

true

true

gap> IsRange([1 .. 3]);

true

gap> IsRange([1,2,4,5]); IsRange([1,,3,,5,,7]);

false

false

gap> IsRange([]); IsRange([1]);

true

true

21.22.2 IsRangeRep

▷ IsRangeRep(obj) (Representation)

Tests whether obj is represented as a range, that is by internally storing only the first value, the
in- or decrement, and the last value of the range.

To test whether a list is a range in the mathematical sense see IsRange (21.22.1).
Lists created by the syntactic construct [first, second .. last], see 21.22, are in

IsRangeRep.
Note that if you modify an IsRangeRep object by assigning to one of its entries, or by using Add

(21.4.2) or Append (21.4.5), then the range may be converted into a plain list, even though the resulting
list may still be a range, mathematically.

Example
gap> IsRangeRep([1 .. 3]);

true

gap> IsRangeRep([1, 2, 3]);

GAP - Reference Manual 322

false

gap> l := [1..3];;

gap> l[1] := 1;;

gap> l;

[1, 2, 3]

21.22.3 ConvertToRangeRep

▷ ConvertToRangeRep(list) (function)

For some lists the GAP kernel knows that they are in fact ranges. Those lists are represented
internally in a compact way, namely in IsRangeRep (21.22.2), instead of as plain lists. A list that is
represented as a plain list might still be a range but GAP may not know this.

If list is a range then ConvertToRangeRep changes the representation of list to IsRangeRep

(21.22.2). A call of ConvertToRangeRep for a list that is not a range is ignored.
Example

gap> r:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

gap> ConvertToRangeRep(r); r;

[1 .. 10]

gap> l:= [1, 2, 4, 5];; ConvertToRangeRep(l); l;

[1, 2, 4, 5]

21.23 Enumerators

An enumerator is an immutable list that need not store its elements explicitly but knows, from a set
of basic data, how to determine the i-th element and the position of a given object. A typical example
of this is a vector space over a finite field with q elements for which it is very easy to enumerate all
elements using q-adic expansions of integers.

Using this enumeration can be even quicker than a binary search in a sorted list of vectors, see
IsQuickPositionList (21.23.1).

On the one hand, element access to an enumerator may take more time than element access to
an internally represented list containing the same elements. On the other hand, an enumerator may
save a vast amount of memory. Take for example a permutation group of size a few millions. Even
for moderate degree it is unlikely that a list of all its elements will fit into memory whereas it is no
problem to construct an enumerator from a stabilizer chain (see 43.6).

There are situations where one only wants to loop over the elements of a domain, without using
the special facilities of an enumerator, namely the particular order of elements and the possibility to
find the position of elements. For such cases, GAP provides iterators (see 30.8).

The functions Enumerator (30.3.2) and EnumeratorSorted (30.3.3) return enumerators of do-
mains. Most of the special implementations of enumerators in the GAP library are based on the
general interface that is provided by EnumeratorByFunctions (30.3.4); one generic example is
EnumeratorByBasis (61.6.5), which can be used to get an enumerator of a finite dimensional free
module.

Also enumerators for non-domains can be implemented via EnumeratorByFunctions (30.3.4);
for a discussion, see 79.5.

GAP - Reference Manual 323

21.23.1 IsQuickPositionList

▷ IsQuickPositionList(list) (filter)

This filter indicates that a position test in list is quicker than about 5 or 6 element comparisons
for “smaller”. If this is the case it can be beneficial to use Position (21.16.1) in list and a bit list
than ordered lists to represent subsets of list .

21.24 Plain Lists

Plain lists are the default kind of lists in GAP, in the sense that GAP stores the list entries and does not
know how to do better (as opposed to ranges or strings, which are also lists). Often it is not necessary
to know how a given list is represented internally, the operations defined for lists apply to all lists.

Typical situations where the representation matters are when one wants to make sure that the given
list is not a plain list and thus will be handled more efficiently, for example when one installs a method
for a particular operation, where an argument is required to be a list in a particular representation.

21.24.1 PlainListCopy

▷ PlainListCopy(list) (function)

This function returns a list equal to its argument, in a plain list representation (see IsPlistRep

(21.24.2)). This is intended for use in certain rare situations, such as before objectifying, or calling
some kernel functions.

21.24.2 IsPlistRep

▷ IsPlistRep(obj) (Representation)

GAP lists created by entering comma separated values in square brackets are usually represented
internally as so-called plain lists. Other representations of lists are IsBlistRep (22.5.1), IsRangeRep
(21.22.2), IsStringRep (27.4.1), or the ones that are chosen for implementing enumerators, see Sec-
tion 21.23.

Example
gap> IsPlistRep([1, 2, 3]);

true

gap> IsPlistRep("abc");

false

gap> IsPlistRep([1 .. 5]);

false

gap> IsPlistRep(BlistList([1 .. 5], [1]));

false

gap> IsPlistRep(0);

false

Chapter 22

Boolean Lists

This chapter describes boolean lists. A boolean list is a list that has no holes and contains only the
boolean values true and false (see Chapter 20). In function names we call boolean lists blists for
brevity.

22.1 IsBlist (Filter)

22.1.1 IsBlist

▷ IsBlist(obj) (Category)

A boolean list (“blist”) is a list that has no holes and contains only true and false. Boolean lists
can be represented in an efficient compact form, see 22.5 for details.

Example
gap> IsBlist([true, true, false, false]);

true

gap> IsBlist([]);

true

gap> IsBlist([false,,true]); # has holes

false

gap> IsBlist([1,1,0,0]); # contains not only boolean values

false

gap> IsBlist(17); # is not even a list

false

Boolean lists are lists and all operations for lists are therefore applicable to boolean lists.
Boolean lists can be used in various ways, but maybe the most important application is their use

for the description of subsets of finite sets. Suppose set is a finite set, represented as a list. Then a
subset sub of set is represented by a boolean list blist of the same length as set such that blist[i] is
true if set[i] is in sub, and false otherwise.

324

GAP - Reference Manual 325

22.2 Boolean Lists Representing Subsets

22.2.1 BlistList

▷ BlistList(list, sub) (function)

returns a new boolean list that describes the list sub as a sublist of the dense list list . That is
BlistList returns a boolean list blist of the same length as list such that blist[i] is true if list [i]
is in sub and false otherwise.

list need not be a proper set (see 21.19), even though in this case BlistList is most efficient.
In particular list may contain duplicates. sub need not be a proper sublist of list , i.e., sub may
contain elements that are not in list . Those elements of course have no influence on the result of
BlistList.

Example
gap> BlistList([1..10], [2,3,5,7]);

[false, true, true, false, true, false, true, false, false, false]

gap> BlistList([1,2,3,4,5,2,8,6,4,10], [4,8,9,16]);

[false, false, false, true, false, false, true, false, true, false]

See also UniteBlistList (22.4.2).

22.2.2 ListBlist

▷ ListBlist(list, blist) (function)

returns the sublist sub of the list list , which must have no holes, represented by the boolean list
blist , which must have the same length as list .

sub contains the element list [i] if blist [i] is true and does not contain the element if blist [i]
is false. The order of the elements in sub is the same as the order of the corresponding elements in
list .

Example
gap> ListBlist([1..8],[false,true,true,true,true,false,true,true]);

[2, 3, 4, 5, 7, 8]

gap> ListBlist([1,2,3,4,5,2,8,6,4,10],

> [false,false,false,true,false,false,true,false,true,false]);

[4, 8, 4]

22.2.3 SizeBlist

▷ SizeBlist(blist) (function)

returns the number of entries of the boolean list blist that are true. This is the size of the subset
represented by the boolean list blist .

Example
gap> SizeBlist([false, true, false, true, false]);

2

GAP - Reference Manual 326

22.2.4 IsSubsetBlist

▷ IsSubsetBlist(blist1, blist2) (function)

returns true if the boolean list blist2 is a subset of the boolean list blist1 , which must have
equal length, and false otherwise. blist2 is a subset of blist1 if blist1 [i] = blist1 [i] or
blist2 [i] for all i.

Example
gap> blist1 := [true, true, false, false];;

gap> blist2 := [true, false, true, false];;

gap> IsSubsetBlist(blist1, blist2);

false

gap> blist2 := [true, false, false, false];;

gap> IsSubsetBlist(blist1, blist2);

true

22.3 Set Operations via Boolean Lists

22.3.1 UnionBlist

▷ UnionBlist(blist1, blist2[, ...]) (function)

▷ UnionBlist(list) (function)

In the first form UnionBlist returns the union of the boolean lists blist1 , blist2 , etc., which
must have equal length. The union is a new boolean list that contains at position i the value blist1 [i]
or blist2 [i] or

The second form takes the union of all blists (which as for the first form must have equal length)
in the list list .

22.3.2 IntersectionBlist

▷ IntersectionBlist(blist1, blist2[, ...]) (function)

▷ IntersectionBlist(list) (function)

In the first form IntersectionBlist returns the intersection of the boolean lists blist1 ,
blist2 , etc., which must have equal length. The intersection is a new blist that contains at posi-
tion i the value blist1 [i] and blist2 [i] and

In the second form list must be a list of boolean lists blist1 , blist2 , etc., which must have
equal length, and IntersectionBlist returns the intersection of those boolean lists.

22.3.3 DifferenceBlist

▷ DifferenceBlist(blist1, blist2) (function)

returns the asymmetric set difference of the two boolean lists blist1 and blist2 , which must
have equal length. The asymmetric set difference is a new boolean list that contains at position i the
value blist1 [i] and not blist2 [i].

GAP - Reference Manual 327

Example
gap> blist1 := [true, true, false, false];;

gap> blist2 := [true, false, true, false];;

gap> UnionBlist(blist1, blist2);

[true, true, true, false]

gap> IntersectionBlist(blist1, blist2);

[true, false, false, false]

gap> DifferenceBlist(blist1, blist2);

[false, true, false, false]

22.4 Function that Modify Boolean Lists

22.4.1 UniteBlist

▷ UniteBlist(blist1, blist2) (function)

UniteBlist unites the boolean list blist1 with the boolean list blist2 , which must have the
same length. This is equivalent to assigning blist1 [i] := blist1 [i] or blist2 [i] for all i.

UniteBlist returns nothing, it is only called to change blist1 .
Example

gap> blist1 := [true, true, false, false];;

gap> blist2 := [true, false, true, false];;

gap> UniteBlist(blist1, blist2);

gap> blist1;

[true, true, true, false]

The function UnionBlist (22.3.1) is the nondestructive counterpart to UniteBlist.

22.4.2 UniteBlistList

▷ UniteBlistList(list, blist, sub) (function)

works like UniteBlist(blist,BlistList(list,sub)). As no intermediate blist is created,
the performance is better than the separate function calls.

22.4.3 IntersectBlist

▷ IntersectBlist(blist1, blist2) (function)

intersects the boolean list blist1 with the boolean list blist2 , which must have the same length.
This is equivalent to assigning blist1 [i] := blist1 [i] and blist2 [i] for all i.

IntersectBlist returns nothing, it is only called to change blist1 .
Example

gap> blist1 := [true, true, false, false];;

gap> blist2 := [true, false, true, false];;

gap> IntersectBlist(blist1, blist2);

gap> blist1;

[true, false, false, false]

GAP - Reference Manual 328

The function IntersectionBlist (22.3.2) is the nondestructive counterpart to
IntersectBlist.

22.4.4 SubtractBlist

▷ SubtractBlist(blist1, blist2) (function)

subtracts the boolean list blist2 from the boolean list blist1 , which must have equal length.
This is equivalent to assigning blist1 [i] := blist1 [i] and not blist2 [i] for all i.

SubtractBlist returns nothing, it is only called to change blist1 .
Example

gap> blist1 := [true, true, false, false];;

gap> blist2 := [true, false, true, false];;

gap> SubtractBlist(blist1, blist2);

gap> blist1;

[false, true, false, false]

The function DifferenceBlist (22.3.3) is the nondestructive counterpart to SubtractBlist.

22.4.5 MeetBlist

▷ MeetBlist(blist1, blist2) (function)

Returns true if there is a position at which both blist1 and blist2 contain true, and false

otherwise. It is equivalent to, but faster than SizeBlist(IntersectionBlist(blist1, blist2))

<> 0. An error is thrown if the lists do not have the same length.
Example

gap> blist1 := [true, true, true, true];;

gap> blist2 := [true, false, true, false];;

gap> MeetBlist(blist1, blist2);

true

gap> FlipBlist(blist1);

gap> MeetBlist(blist1, blist2);

false

22.4.6 FlipBlist

▷ FlipBlist(blist) (function)

Changes every entry in blist that equals true to false and vice versa. If blist1 and blist2

are boolean lists with equal length and every value in blist2 is true, then FlipBlist(blist1

) is equivalent to SubtractBlist(blist2, blist1); blist1 := blist2; but FlipBlist is
faster, and simpler to type.

FlipBlist returns nothing, it is only called to change blist in-place.
Example

gap> blist1 := [true, true, true, true];;

gap> blist2 := [true, false, true, false];;

gap> SubtractBlist(blist1, blist2);

GAP - Reference Manual 329

gap> blist1;

[false, true, false, true]

gap> FlipBlist(blist2);

gap> blist2;

[false, true, false, true]

22.4.7 SetAllBlist

▷ SetAllBlist(blist) (function)

Changes every entry in blist to true. If blist1 and blist2 are boolean lists with equal length
and every value in blist2 is true, then SetAllBlist(blist1) is equivalent to UniteBlist(

blist1, blist2); but is faster, and simpler to type.
SetAllBlist returns nothing, it is only called to change blist in-place.

Example
gap> blist1 := [true, true, true, true];;

gap> blist2 := [true, false, true, false];;

gap> SetAllBlist(blist1);

gap> blist1;

[true, true, true, true]

gap> SetAllBlist(blist2);

gap> blist2;

[true, true, true, true]

22.4.8 ClearAllBlist

▷ ClearAllBlist(blist) (function)

Changes every entry in blist to false. If blist1 and blist2 are boolean lists with equal
length and every value in blist2 is false, then ClearAllBlist(blist1) is equivalent to
IntersectBlist(blist1, blist2); but is faster, and simpler to type.

ClearAllBlist returns nothing, it is only called to change blist in-place.
Example

gap> blist1 := [true, true, true, true];;

gap> blist2 := [true, false, true, false];;

gap> ClearAllBlist(blist1);

gap> blist1;

[false, false, false, false]

gap> ClearAllBlist(blist2);

gap> blist2;

[false, false, false, false]

22.5 More about Boolean Lists

We defined a boolean list as a list that has no holes and contains only true and false. There is a
special internal representation for boolean lists that needs only 1 bit for each entry. This bit is set if
the entry is true and reset if the entry is false. This representation is of course much more compact
than the ordinary representation of lists, which needs 32 or 64 bits per entry.

GAP - Reference Manual 330

Not every boolean list is represented in this compact representation. It would be too much work
to test every time a list is changed, whether this list has become a boolean list. This section tells you
under which circumstances a boolean list is represented in the compact representation, so you can
write your functions in such a way that you make best use of the compact representation.

If a dense list containing only true and false is read, it is stored in the compact representa-
tion. Furthermore, the results of BlistList (22.2.1), UnionBlist (22.3.1), IntersectionBlist
(22.3.2) and DifferenceBlist (22.3.3) are known to be boolean lists by construction, and thus are
represented in the compact representation upon creation.

If an argument of IsSubsetBlist (22.2.4), ListBlist (22.2.2), UnionBlist (22.3.1),
IntersectionBlist (22.3.2), DifferenceBlist (22.3.3), UniteBlist (22.4.1), IntersectBlist
(22.4.3) and SubtractBlist (22.4.4) is a list represented in the ordinary representation, it is tested to
see if it is in fact a boolean list. If it is not, an error is signalled. If it is, the representation of the list is
changed to the compact representation.

If you change a boolean list that is represented in the compact representation by assignment (see
21.4) or Add (21.4.2) in such a way that the list remains a boolean list it will remain represented in the
compact representation. Note that changing a list that is not represented in the compact representation,
whether it is a boolean list or not, in such a way that the resulting list becomes a boolean list, will never
change the representation of the list.

22.5.1 IsBlistRep

▷ IsBlistRep(obj) (Representation)

▷ ConvertToBlistRep(blist) (function)

Returns: true or false
The first function is a filter that returns true if the object obj is a boolean list in compact repre-

sentation and false otherwise, see 22.5.
The second function converts the object blist to a boolean list in compact representation and

returns true if this is possible. Otherwise blist is unchanged and false is returned.
Example

gap> l := [true, false, true];

[true, false, true]

gap> IsBlistRep(l);

true

gap> l := [true, false, 1];

[true, false, 1]

gap> l[3] := false;

false

gap> IsBlistRep(l);

false

gap> ConvertToBlistRep(l);

true

Chapter 23

Row Vectors

Just as in mathematics, a vector in GAP is any object which supports appropriate addition and scalar
multiplication operations (see Chapter 61). As in mathematics, an especially important class of vectors
are those represented by a list of coefficients with respect to some basis. These correspond roughly to
the GAP concept of row vectors.

23.1 IsRowVector (Filter)

23.1.1 IsRowVector

▷ IsRowVector(obj) (Category)

A row vector is a vector (see IsVector (31.14.14)) that is also a homogeneous list of odd additive
nesting depth (see 21.12). Typical examples are lists of integers and rationals, lists of finite field
elements of the same characteristic, and lists of polynomials from a common polynomial ring. Note
that matrices are not regarded as row vectors, because they have even additive nesting depth.

The additive operations of the vector must thus be compatible with that for lists, implying that the
list entries are the coefficients of the vector with respect to some basis.

Note that not all row vectors admit a multiplication via * (which is to be understood as a scalar
product); for example, class functions are row vectors but the product of two class functions is defined
in a different way. For the installation of a scalar product of row vectors, the entries of the vector must
be ring elements; note that the default method expects the row vectors to lie in IsRingElementList,
and this category may not be implied by IsRingElement (31.14.16) for all entries of the row vector
(see the comment in IsVector (31.14.14)).

Note that methods for special types of row vectors really must be installed with the requirement
IsRowVector, since IsVector (31.14.14) may lead to a rank of the method below that of the default
method for row vectors (see file lib/vecmat.gi).

Example
gap> IsRowVector([1,2,3]);

true

Because row vectors are just a special case of lists, all operations and functions for lists are appli-
cable to row vectors as well (see Chapter 21). This especially includes accessing elements of a row
vector (see 21.3), changing elements of a mutable row vector (see 21.4), and comparing row vectors
(see 21.10).

331

GAP - Reference Manual 332

Note that, unless your algorithms specifically require you to be able to change entries of your
vectors, it is generally better and faster to work with immutable row vectors. See Section 12.6 for
more details.

23.2 Operators for Row Vectors

The rules for arithmetic operations involving row vectors are in fact special cases of those for the arith-
metic of lists, as given in Section 21.11 and the following sections, here we reiterate that definition, in
the language of vectors.

Note that the additive behaviour sketched below is defined only for lists in the category
IsGeneralizedRowVector (21.12.1), and the multiplicative behaviour is defined only for lists in
the category IsMultiplicativeGeneralizedRowVector (21.12.2).

vec1 + vec2

returns the sum of the two row vectors vec1 and vec2 . Probably the most usual situation is that
vec1 and vec2 have the same length and are defined over a common field; in this case the sum is a
new row vector over the same field where each entry is the sum of the corresponding entries of the
vectors.

In more general situations, the sum of two row vectors need not be a row vector, for example
adding an integer vector vec1 and a vector vec2 over a finite field yields the list of pointwise sums,
which will be a mixture of finite field elements and integers if vec1 is longer than vec2 .

scalar + vec

vec + scalar

returns the sum of the scalar scalar and the row vector vec . Probably the most usual situation is
that the elements of vec lie in a common field with scalar ; in this case the sum is a new row vector
over the same field where each entry is the sum of the scalar and the corresponding entry of the vector.

More general situations are for example the sum of an integer scalar and a vector over a finite field,
or the sum of a finite field element and an integer vector.

Example
gap> [1, 2, 3] + [1/2, 1/3, 1/4];

[3/2, 7/3, 13/4]

gap> [1/2, 3/2, 1/2] + 1/2;

[1, 2, 1]

vec1 - vec2

scalar - vec

vec - scalar

Subtracting a vector or scalar is defined as adding its additive inverse, so the statements for the
addition hold likewise.

Example
gap> [1, 2, 3] - [1/2, 1/3, 1/4];

[1/2, 5/3, 11/4]

gap> [1/2, 3/2, 1/2] - 1/2;

[0, 1, 0]

scalar * vec

vec * scalar

GAP - Reference Manual 333

returns the product of the scalar scalar and the row vector vec . Probably the most usual situation
is that the elements of vec lie in a common field with scalar ; in this case the product is a new row
vector over the same field where each entry is the product of the scalar and the corresponding entry of
the vector.

More general situations are for example the product of an integer scalar and a vector over a finite
field, or the product of a finite field element and an integer vector.

Example
gap> [1/2, 3/2, 1/2] * 2;

[1, 3, 1]

vec1 * vec2

returns the standard scalar product of vec1 and vec2 , i.e., the sum of the products of the corre-
sponding entries of the vectors. Probably the most usual situation is that vec1 and vec2 have the
same length and are defined over a common field; in this case the sum is an element of this field.

More general situations are for example the inner product of an integer vector and a vector over a
finite field, or the inner product of two row vectors of different lengths.

Example
gap> [1, 2, 3] * [1/2, 1/3, 1/4];

23/12

For the mutability of results of arithmetic operations, see 12.6.
Further operations with vectors as operands are defined by the matrix operations, see 24.3.

23.2.1 NormedRowVector

▷ NormedRowVector(v) (attribute)

returns a scalar multiple w = c * v of the row vector v with the property that the first nonzero
entry of w is an identity element in the sense of IsOne (31.10.5).

Example
gap> NormedRowVector([5, 2, 3]);

[1, 2/5, 3/5]

23.3 Row Vectors over Finite Fields

GAP can use compact formats to store row vectors over fields of order at most 256, based on those
used by the Meat-Axe [Rin93]. This format also permits extremely efficient vector arithmetic. On the
other hand element access and assignment is significantly slower than for plain lists.

The function ConvertToVectorRep (23.3.1) is used to convert a list into a compressed vector,
or to rewrite a compressed vector over another field. Note that this function is much faster when it
is given a field (or field size) as an argument, rather than having to scan the vector and try to decide
the field. Supplying the field can also avoid errors and/or loss of performance, when one vector from
some collection happens to have all of its entries over a smaller field than the “natural” field of the
problem.

GAP - Reference Manual 334

23.3.1 ConvertToVectorRep

▷ ConvertToVectorRep(list[, field]) (function)

▷ ConvertToVectorRep(list[, fieldsize]) (function)

▷ ConvertToVectorRepNC(list[, field]) (function)

▷ ConvertToVectorRepNC(list[, fieldsize]) (function)

Called with one argument list , ConvertToVectorRep converts list to an internal row vector
representation if possible.

Called with a list list and a finite field field , ConvertToVectorRep converts list to an
internal row vector representation appropriate for a row vector over field .

Instead of a field also its size fieldsize may be given.
It is forbidden to call this function unless list is a plain list or a row vector, field is a field, and

all elements of list lie in field . Violation of this condition can lead to unpredictable behaviour or
a system crash. (Setting the assertion level to at least 2 might catch some violations before a crash,
see SetAssertionLevel (7.5.1).)

list may already be a compressed vector. In this case, if no field or fieldsize is given, then
nothing happens. If one is given then the vector is rewritten as a compressed vector over the given
field unless it has the filter IsLockedRepresentationVector, in which case it is not changed.

The return value is the size of the field over which the vector ends up written, if it is written in a
compressed representation.

In this example, we first create a row vector and then ask GAP to rewrite it, first over GF(2) and
then over GF(4).

Example
gap> v := [Z(2)^0,Z(2),Z(2),0*Z(2)];

[Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2)]

gap> RepresentationsOfObject(v);

["IsPlistRep", "IsInternalRep"]

gap> ConvertToVectorRep(v);

2

gap> v;

<a GF2 vector of length 4>

gap> ConvertToVectorRep(v,4);

4

gap> v;

[Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2)]

gap> RepresentationsOfObject(v);

["IsDataObjectRep", "Is8BitVectorRep"]

A vector in the special representation over GF(2) is always viewed as <a GF2 vector of

length ...>. Over fields of orders 3 to 256, a vector of length 10 or less is viewed as the list of
its coefficients, but a longer one is abbreviated.

Arithmetic operations (see 21.11 and the following sections) preserve the compression status of
row vectors in the sense that if all arguments are compressed row vectors written over the same field
and the result is a row vector then also the result is a compressed row vector written over this field.

GAP - Reference Manual 335

23.3.2 ImmutableVector

▷ ImmutableVector(field, vector[, change]) (operation)

Let vector be an object for which IsRowVector (23.1.1) or IsVectorObj (26.2.1) returns true.
In the former case, vector is a list, and ImmutableVector returns an immutable object for which
IsRowVector (23.1.1) returns true (in particular again a list), which is equal to vector , and which is
in the optimal (concerning space and runtime) representation for vectors defined over field , provided
that the entries of vector lie in field . In the latter case, if vector is not in IsRowVector (23.1.1),
ImmutableVector returns an immutable object that is equal to the result of ChangedBaseDomain
(26.6.3) when this is called with vector and field .

This means that vectors obtained by several calls of ImmutableVector for the same field are
compatible for fast arithmetic without need for field conversion.

If the input vector vector is in IsRowVector (23.1.1) then it might change its representation as
a side effect of this function. However, one cannot rely on this side effect. Also, if vector is already
immutable and the result of ImmutableVector has the same internal representation as vector , the
result is not necessarily identical to vector .

If change is true, then vector may be changed to become immutable; otherwise it is copied
first.

23.3.3 NumberFFVector

▷ NumberFFVector(vec, sz) (operation)

returns an integer that gives the position minus one of the finite field row vector vec in the sorted
list of all row vectors over the field with sz elements in the same dimension as vec . NumberFFVector
returns fail if the vector cannot be represented over the field with sz elements.

Example
gap> v:=[0,1,2,0]*Z(3);;

gap> NumberFFVector(v, 3);

21

gap> NumberFFVector(Zero(v),3);

0

gap> V:=EnumeratorSorted(GF(3)^4);

<enumerator of (GF(3)^4)>

gap> V[21+1] = v;

true

23.4 Coefficient List Arithmetic

The following operations all perform arithmetic on row vectors, given as homogeneous lists of the
same length, containing elements of a commutative ring.

There are two reasons for using AddRowVector (23.4.1) in preference to arithmetic operators.
Firstly, the three argument form has no single-step equivalent. Secondly AddRowVector (23.4.1)
changes its first argument in-place, rather than allocating a new vector to hold the result, and may
thus produce less garbage.

GAP - Reference Manual 336

23.4.1 AddVector

▷ AddVector(dst, src[, mul[, from, to]]) (operation)

▷ AddRowVector(dst, src[, mul[, from, to]]) (operation)

Adds the product of src and mul to dst , changing dst . If from and to are given then only the
index range [from .. to] is guaranteed to be affected. Other indices may be affected, if it is
more convenient to do so. Even when from and to are given, dst and src must be row vectors of
the same length.

If mul is not given either then this operation simply adds src to dst .

23.4.2 AddCoeffs

▷ AddCoeffs(list1[, poss1], list2[, poss2[, mul]]) (operation)

AddCoeffs adds the entries of list2{poss2}, multiplied by the scalar mul , to list1{poss1}.
Unbound entries in list1 are assumed to be zero. The position of the right-most non-zero element
is returned.

If the ranges poss1 and poss2 are not given, they are assumed to span the whole vectors. If the
scalar mul is omitted, one is used as a default.

Note that it is the responsibility of the caller to ensure that list2 has elements at position poss2

and that the result (in list1) will be a dense list.
The function is free to remove trailing (right-most) zeros.

Example
gap> l:=[1,2,3,4];;m:=[5,6,7];;AddCoeffs(l,m);

4

gap> l;

[6, 8, 10, 4]

23.4.3 MultVector

▷ MultVector(list1, mul) (operation)

▷ MultVectorLeft(list1, mul) (operation)

Returns: nothing
This operation calculates mul*list1 in-place.
Note that MultVector is just a synonym for MultVectorLeft.

23.4.4 CoeffsMod

▷ CoeffsMod(list1[, len1], modulus) (operation)

returns the coefficient list obtained by reducing the entries in list1 modulo modulus . After
reducing it shrinks the list to remove trailing zeroes. If the optional argument len1 is used, it reduces
only first len1 elements of the list.

Example
gap> l:=[1,2,3,4];;CoeffsMod(l,2);

[1, 0, 1]

GAP - Reference Manual 337

23.5 Shifting and Trimming Coefficient Lists

The following functions change coefficient lists by shifting or trimming.

23.5.1 LeftShiftRowVector

▷ LeftShiftRowVector(list, shift) (operation)

changes list by assigning list [i]:= list [i+ shift] and removing the last shift entries of
the result.

23.5.2 RightShiftRowVector

▷ RightShiftRowVector(list, shift, fill) (operation)

changes list by assigning list [i+shift]:= list [i] and filling each of the shift first entries
with fill .

23.5.3 ShrinkRowVector

▷ ShrinkRowVector(list) (operation)

removes trailing zeroes from the list list .
Example

gap> l:=[1,0,0];;ShrinkRowVector(l);l;

[1]

23.5.4 RemoveOuterCoeffs

▷ RemoveOuterCoeffs(list, coef) (operation)

removes coef at the beginning and at the end of list and returns the number of elements removed
at the beginning.

Example
gap> l:=[1,1,2,1,2,1,1,2,1];; RemoveOuterCoeffs(l,1);

2

gap> l;

[2, 1, 2, 1, 1, 2]

23.6 Functions for Coding Theory

The following functions perform operations on finite fields vectors considered as code words in a
linear code.

23.6.1 WeightVecFFE

▷ WeightVecFFE(vec) (operation)

returns the weight of the finite field vector vec , i.e. the number of nonzero entries.

GAP - Reference Manual 338

23.6.2 DistanceVecFFE

▷ DistanceVecFFE(vec1, vec2) (operation)

returns the distance between the two vectors vec1 and vec2 , which must have the same length
and whose elements must lie in a common field. The distance is the number of places where vec1 and
vec2 differ.

23.6.3 DistancesDistributionVecFFEsVecFFE

▷ DistancesDistributionVecFFEsVecFFE(vecs, vec) (operation)

returns the distances distribution of the vector vec to the vectors in the list vecs . All vectors must
have the same length, and all elements must lie in a common field. The distances distribution is a list d
of length Length(vec)+1, such that the value d[i] is the number of vectors in vecs that have distance
i+1 to vec .

23.6.4 DistancesDistributionMatFFEVecFFE

▷ DistancesDistributionMatFFEVecFFE(mat, F, vec) (operation)

returns the distances distribution of the vector vec to the vectors in the vector space generated by
the rows of the matrix mat over the finite field F . The length of the rows of mat and the length of
vec must be equal, and all entries must lie in F . The rows of mat must be linearly independent. The
distances distribution is a list d of length Length(vec)+1, such that the value d[i] is the number of
vectors in the vector space generated by the rows of mat that have distance i+1 to vec .

23.6.5 AClosestVectorCombinationsMatFFEVecFFE

▷ AClosestVectorCombinationsMatFFEVecFFE(mat, f, vec, cnt, stop) (operation)

▷ AClosestVectorCombinationsMatFFEVecFFECoords(mat, f, vec, cnt, stop) (operation)

These functions run through the f-linear combinations of the vectors in the rows of the ma-
trix mat that can be written as linear combinations of exactly cnt rows (that is without us-
ing zero as a coefficient). The length of the rows of mat and the length of vec must be
equal, and all elements must lie in the field f . The rows of mat must be linearly independent.
AClosestVectorCombinationsMatFFEVecFFE returns a vector from these that is closest to the vec-
tor vec . If it finds a vector of distance at most stop , which must be a nonnegative integer, then it
stops immediately and returns this vector.

AClosestVectorCombinationsMatFFEVecFFECoords returns a length 2 list containing the
same closest vector and also a vector v with exactly cnt non-zero entries, such that v times mat

is the closest vector.

23.6.6 CosetLeadersMatFFE

▷ CosetLeadersMatFFE(mat, f) (operation)

GAP - Reference Manual 339

returns a list of representatives of minimal weight for the cosets of a code. mat must be a check
matrix for the code, the code is defined over the finite field f . All rows of mat must have the same
length, and all elements must lie in the field f . The rows of mat must be linearly independent.

23.7 Vectors as coefficients of polynomials

A list of ring elements can be interpreted as a row vector or the list of coefficients of a polynomial.
There are a couple of functions that implement arithmetic operations based on these interpretations.
GAP contains proper support for polynomials (see 66), the operations described in this section are on
a lower level.

The following operations all perform arithmetic on univariate polynomials given by their coef-
ficient lists. These lists can have different lengths but must be dense homogeneous lists containing
elements of a commutative ring. Not all input lists may be empty.

In the following descriptions we will always assume that list1 is the coefficient list of the poly-
nomial pol1 and so forth. If length parameter leni is not given, it is set to the length of listi by
default.

23.7.1 ValuePol

▷ ValuePol(coeff, x) (operation)

Let coeff be the coefficients list of a univariate polynomial f , and x a ring element. Then
ValuePol returns the value f (x).

The coefficient of x i is assumed to be stored at position i+1 in the coefficients list.
Example

gap> ValuePol([1,2,3],4);

57

23.7.2 ProductCoeffs

▷ ProductCoeffs(list1[, len1], list2[, len2]) (operation)

Let p1 (and p2) be polynomials given by the first len1 (len2) entries of the coefficient list
list2 (list2). If len1 and len2 are omitted, they default to the lengths of list1 and list2 . This
operation returns the coefficient list of the product of p1 and p2.

Example
gap> l:=[1,2,3,4];;m:=[5,6,7];;ProductCoeffs(l,m);

[5, 16, 34, 52, 45, 28]

23.7.3 ReduceCoeffs

▷ ReduceCoeffs(list1[, len1], list2[, len2]) (operation)

Let p1 (and p2) be polynomials given by the first len1 (len2) entries of the coefficient list
list1 (list2). If len1 and len2 are omitted, they default to the lengths of list1 and list2 .
ReduceCoeffs changes list1 to the coefficient list of the remainder when dividing p1 by p2 . This

GAP - Reference Manual 340

operation changes list1 which therefore must be a mutable list. The operation returns the position
of the last non-zero entry of the result but is not guaranteed to remove trailing zeroes.

Example
gap> l:=[1,2,3,4];;m:=[5,6,7];;ReduceCoeffs(l,m);

2

gap> l;

[64/49, -24/49, 0, 0]

23.7.4 ReduceCoeffsMod

▷ ReduceCoeffsMod(list1[, len1], list2[, len2], modulus) (operation)

Let p1 (and p2) be polynomials given by the first len1 (len2) entries of the coefficient list
list1 (list2). If len1 and len2 are omitted, they default to the lengths of list1 and list2 .
ReduceCoeffsMod changes list1 to the coefficient list of the remainder when dividing p1 by p2

modulo modulus , which must be a positive integer. This operation changes list1 which therefore
must be a mutable list. The operation returns the position of the last non-zero entry of the result but
is not guaranteed to remove trailing zeroes.

Example
gap> l:=[1,2,3,4];;m:=[5,6,7];;ReduceCoeffsMod(l,m,3);

1

gap> l;

[1, 0, 0, 0]

23.7.5 PowerModCoeffs

▷ PowerModCoeffs(list1[, len1], exp, list2[, len2]) (operation)

Let p1 and p2 be polynomials whose coefficients are given by the first len1 resp. len2 entries of
the lists list1 and list2 , respectively. If len1 and len2 are omitted, they default to the lengths of
list1 and list2 . Let exp be a positive integer. PowerModCoeffs returns the coefficient list of the
remainder when dividing the exp-th power of p1 by p2. The coefficients are reduced already while
powers are computed, therefore avoiding an explosion in list length.

Example
gap> l:=[1,2,3,4];;m:=[5,6,7];;PowerModCoeffs(l,5,m);

[-839462813696/678223072849, -7807439437824/678223072849]

23.7.6 ShiftedCoeffs

▷ ShiftedCoeffs(list, shift) (operation)

produces a new coefficient list new obtained by the rule new[i+shift]:= list[i] and filling
initial holes by the appropriate zero.

Example
gap> l:=[1,2,3];;ShiftedCoeffs(l,2);ShiftedCoeffs(l,-2);

[0, 0, 1, 2, 3]

[3]

Chapter 24

Matrices

In GAP, Matrices can be represented by lists of row vectors, see 23. (For a more general way to rep-
resent vectors and matrices, see Chapter 26). The row vectors must all have the same length, and their
elements must lie in a common ring. However, since checking rectangularness can be expensive func-
tions and methods of operations for matrices often will not give an error message for non-rectangular
lists of lists –in such cases the result is undefined.

Because matrices are just a special case of lists, all operations and functions for lists are applicable
to matrices also (see chapter 21). This especially includes accessing elements of a matrix (see 21.3),
changing elements of a matrix (see 21.4), and comparing matrices (see 21.10).

Note that, since a matrix is a list of lists, the behaviour of ShallowCopy (12.7.1) for matrices
is just a special case of ShallowCopy (12.7.1) for lists (see 21.7); called with an immutable matrix
mat , ShallowCopy (12.7.1) returns a mutable matrix whose rows are identical to the rows of mat . In
particular the rows are still immutable. To get a matrix whose rows are mutable, one can use List(

mat, ShallowCopy).

24.1 InfoMatrix (Info Class)

24.1.1 InfoMatrix

▷ InfoMatrix (info class)

The info class for matrix operations is InfoMatrix.

24.2 Categories of Matrices

24.2.1 IsMatrix

▷ IsMatrix(obj) (Category)

By convention matrix is a list of lists of equal length whose entries lie in a common ring.
For technical reasons laid out at the top of Chapter 24, the filter IsMatrix is a synonym for a table

of ring elements, (see IsTable (21.1.4) and IsRingElement (31.14.16)). This means that IsMatrix
returns true for tables such as [[1,2],[3]]. If necessary, IsRectangularTable (21.1.5) can be
used to test whether an object is a list of homogeneous lists of equal lengths manually.

341

GAP - Reference Manual 342

Note that matrices may have different multiplications, besides the usual matrix product there
is for example the Lie product. So there are categories such as IsOrdinaryMatrix (24.2.2) and
IsLieMatrix (24.2.3) that describe the matrix multiplication. One can form the product of two ma-
trices only if they support the same multiplication.

Example
gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

gap> IsMatrix(mat);

true

gap> mat:=[[1,2],[3]];

[[1, 2], [3]]

gap> IsMatrix(mat);

true

gap> IsRectangularTable(mat);

false

Note that the empty list [] and more complex “empty” structures such as [[]] are not matrices, al-
though special methods allow them be used in place of matrices in some situations. See EmptyMatrix
(24.5.3) below.

Example
gap> [[0]]*[[]];

[[]]

gap> IsMatrix([[]]);

false

24.2.2 IsOrdinaryMatrix

▷ IsOrdinaryMatrix(obj) (Category)

An ordinary matrix is a matrix whose multiplication is the ordinary matrix multiplication.
Each matrix in internal representation is in the category IsOrdinaryMatrix, and arithmetic op-

erations with objects in IsOrdinaryMatrix produce again matrices in IsOrdinaryMatrix.
Note that we want that Lie matrices shall be matrices that behave in the same way as ordinary

matrices, except that they have a different multiplication. So we must distinguish the different matrix
multiplications, in order to be able to describe the applicability of multiplication, and also in order to
form a matrix of the appropriate type as the sum, difference etc. of two matrices which have the same
multiplication.

24.2.3 IsLieMatrix

▷ IsLieMatrix(mat) (Category)

A Lie matrix is a matrix whose multiplication is given by the Lie bracket. (Note that a matrix with
ordinary matrix multiplication is in the category IsOrdinaryMatrix (24.2.2).)

Each matrix created by LieObject (64.1.1) is in the category IsLieMatrix, and arithmetic oper-
ations with objects in IsLieMatrix produce again matrices in IsLieMatrix.

GAP - Reference Manual 343

24.3 Operators for Matrices

The rules for arithmetic operations involving matrices are in fact special cases of those for the arith-
metic of lists, given in Section 21.11 and the following sections, here we reiterate that definition, in
the language of vectors and matrices.

Note that the additive behaviour sketched below is defined only for lists in the category
IsGeneralizedRowVector (21.12.1), and the multiplicative behaviour is defined only for lists in
the category IsMultiplicativeGeneralizedRowVector (21.12.2) (see 21.12).

mat1 + mat2

returns the sum of the two matrices mat1 and mat2 , Probably the most usual situation is that mat1
and mat2 have the same dimensions and are defined over a common field; in this case the sum is a new
matrix over the same field where each entry is the sum of the corresponding entries of the matrices.

In more general situations, the sum of two matrices need not be a matrix, for example adding an
integer matrix mat1 and a matrix mat2 over a finite field yields the table of pointwise sums, which
will be a mixture of finite field elements and integers if mat1 has bigger dimensions than mat2 .

scalar + mat

mat + scalar

returns the sum of the scalar scalar and the matrix mat . Probably the most usual situation is that
the entries of mat lie in a common field with scalar ; in this case the sum is a new matrix over the
same field where each entry is the sum of the scalar and the corresponding entry of the matrix.

More general situations are for example the sum of an integer scalar and a matrix over a finite
field, or the sum of a finite field element and an integer matrix.

mat1 - mat2

scalar - mat

mat - scalar

Subtracting a matrix or scalar is defined as adding its additive inverse, so the statements for the
addition hold likewise.

scalar * mat

mat * scalar

returns the product of the scalar scalar and the matrix mat . Probably the most usual situation is
that the elements of mat lie in a common field with scalar ; in this case the product is a new matrix
over the same field where each entry is the product of the scalar and the corresponding entry of the
matrix.

More general situations are for example the product of an integer scalar and a matrix over a finite
field, or the product of a finite field element and an integer matrix.

vec * mat

returns the product of the row vector vec and the matrix mat . Probably the most usual situation
is that vec and mat have the same lengths and are defined over a common field, and that all rows of
mat have some common length m; in this case the product is a new row vector of length m over the
same field which is the sum of the scalar multiples of the rows of mat with the corresponding entries
of vec .

More general situations are for example the product of an integer vector and a matrix over a finite
field, or the product of a vector over a finite field and an integer matrix.

mat * vec

returns the product of the matrix mat and the row vector vec . (This is the standard product of a
matrix with a column vector.) Probably the most usual situation is that the length of vec and of all
rows of mat are equal, and that the elements of mat and vec lie in a common field; in this case the

GAP - Reference Manual 344

product is a new row vector of the same length as mat and over the same field which is the sum of the
scalar multiples of the columns of mat with the corresponding entries of vec .

More general situations are for example the product of an integer matrix and a vector over a finite
field, or the product of a matrix over a finite field and an integer vector.

mat1 * mat2

This form evaluates to the (Cauchy) product of the two matrices mat1 and mat2 . Probably the
most usual situation is that the number of columns of mat1 equals the number of rows of mat2 , and
that the elements of mat and vec lie in a common field; if mat1 is a matrix with m rows and n columns
and mat2 is a matrix with n rows and o columns, the result is a new matrix with m rows and o columns.
The element in row i at position j of the product is the sum of mat1 [i][l] ∗mat2 [l][j], with l running
from 1 to n.

Inverse(mat)

returns the inverse of the matrix mat , which must be an invertible square matrix. If mat is not
invertible then fail is returned.

mat1 / mat2

scalar / mat

mat / scalar

vec / mat

In general, left / right is defined as left * right^-1. Thus in the above forms the right
operand must always be invertible.

mat ^ int

mat1 ^ mat2

vec ^ mat

Powering a square matrix mat by an integer int yields the int-th power of mat ; if int is
negative then mat must be invertible, if int is 0 then the result is the identity matrix One(mat),
even if mat is not invertible.

Powering a square matrix mat1 by an invertible square matrix mat2 of the same dimensions yields
the conjugate of mat1 by mat2 , i.e., the matrix mat2^-1 * mat1 * mat2 .

Powering a row vector vec by a matrix mat is in every respect equivalent to vec * mat . This
operations reflects the fact that matrices act naturally on row vectors by multiplication from the right,
and that the powering operator is GAP’s standard for group actions.

Comm(mat1, mat2)

returns the commutator of the square invertible matrices mat1 and mat2 of the same dimensions
and over a common field, which is the matrix mat1^-1 * mat2^-1 * mat1 * mat2 .

The following cases are still special cases of the general list arithmetic defined in 21.11.
scalar + matlist

matlist + scalar

scalar - matlist

matlist - scalar

scalar * matlist

matlist * scalar

matlist / scalar

A scalar scalar may also be added, subtracted, multiplied with, or divided into a list matlist
of matrices. The result is a new list of matrices where each matrix is the result of performing the
operation with the corresponding matrix in matlist .

mat * matlist

GAP - Reference Manual 345

matlist * mat

A matrix mat may also be multiplied with a list matlist of matrices. The result is a new list of
matrices, where each entry is the product of mat and the corresponding entry in matlist .

matlist / mat

Dividing a list matlist of matrices by an invertible matrix mat evaluates to matlist * mat^-1.
vec * matlist

returns the product of the vector vec and the list of matrices mat . The lengths l of vec and
matlist must be equal. All matrices in matlist must have the same dimensions. The elements of
vec and the elements of the matrices in matlist must lie in a common ring. The product is the sum
over vec[i] * matlist[i] with i running from 1 to l .

For the mutability of results of arithmetic operations, see 12.6.

24.4 Properties and Attributes of Matrices

24.4.1 DimensionsMat

▷ DimensionsMat(mat) (attribute)

is a list of length 2, the first being the number of rows, the second being the number of columns of
the matrix mat . If mat is malformed, that is, it is not a IsRectangularTable (21.1.5), returns fail.

Example
gap> DimensionsMat([[1,2,3],[4,5,6]]);

[2, 3]

gap> DimensionsMat([[1,2,3],[4,5]]);

fail

24.4.2 DefaultFieldOfMatrix

▷ DefaultFieldOfMatrix(mat) (attribute)

For a matrix mat , DefaultFieldOfMatrix returns either a field (not necessarily the smallest one)
containing all entries of mat , or fail.

If mat is a matrix of finite field elements or a matrix of cyclotomics, DefaultFieldOfMatrix
returns the default field generated by the matrix entries (see 59.3 and 18.1).

Example
gap> DefaultFieldOfMatrix([[Z(4),Z(8)]]);

GF(2^6)

24.4.3 TraceMatrix

▷ TraceMatrix(mat) (attribute)

▷ TraceMat(mat) (attribute)

▷ Trace(mat) (attribute)

The trace of a square matrix is the sum of its diagonal entries.
Example

gap> TraceMatrix([[1,2,3],[4,5,6],[7,8,9]]);

15

GAP - Reference Manual 346

24.4.4 DeterminantMatrix

▷ DeterminantMatrix(mat) (attribute)

▷ DeterminantMat(mat) (attribute)

▷ Determinant(mat) (operation)

returns the determinant of the square matrix mat .
These methods assume implicitly that mat is defined over an integral domain whose quotient

field is implemented in GAP. For matrices defined over an arbitrary commutative ring with one
see DeterminantMatDivFree (24.4.6).

24.4.5 DeterminantMatrixDestructive

▷ DeterminantMatrixDestructive(mat) (operation)

▷ DeterminantMatDestructive(mat) (operation)

Does the same as DeterminantMatrix (24.4.4), with the difference that it may destroy its argu-
ment. The matrix mat must be mutable.

Example
gap> DeterminantMatrix([[1,2],[2,1]]);

-3

gap> mm:= [[1,2],[2,1]];;

gap> DeterminantMatrixDestructive(mm);

-3

gap> mm;

[[1, 2], [0, -3]]

24.4.6 DeterminantMatrixDivFree

▷ DeterminantMatrixDivFree(mat) (operation)

▷ DeterminantMatDivFree(mat) (operation)

return the determinant of a square matrix mat over an arbitrary commutative ring with one using
the division free method of Mahajan and Vinay [MV97].

24.4.7 IsEmptyMatrix (for a matrix object)

▷ IsEmptyMatrix(M) (property)

Returns: A boolean
Is true if the matrix object M either has zero columns or zero rows, and false otherwise. In other

words, a matrix object is empty if it has no entries.

24.4.8 IsMonomialMatrix

▷ IsMonomialMatrix(mat) (property)

A matrix is monomial if and only if it has exactly one nonzero entry in every row and every
column.

GAP - Reference Manual 347

Example
gap> IsMonomialMatrix([[0,1],[1,0]]);

true

24.4.9 IsDiagonalMatrix

▷ IsDiagonalMatrix(mat) (property)

▷ IsDiagonalMat(mat) (property)

return true if the matrix mat has only zero entries off the main diagonal, and false otherwise.
Example

gap> IsDiagonalMatrix([[1]]);

true

gap> IsDiagonalMatrix([[1, 0, 0], [0, 1, 0]]);

true

gap> IsDiagonalMatrix([[0, 1], [1, 0]]);

false

24.4.10 IsUpperTriangularMatrix

▷ IsUpperTriangularMatrix(mat) (property)

▷ IsUpperTriangularMat(mat) (property)

return true if the matrix mat has only zero entries below the main diagonal, and false otherwise.
Example

gap> IsUpperTriangularMatrix([[1]]);

true

gap> IsUpperTriangularMatrix([[1, 2, 3], [0, 5, 6]]);

true

gap> IsUpperTriangularMatrix([[0, 1], [1, 0]]);

false

24.4.11 IsLowerTriangularMatrix

▷ IsLowerTriangularMatrix(mat) (property)

▷ IsLowerTriangularMat(mat) (property)

return true if the matrix mat has only zero entries above the main diagonal, and false otherwise.
Example

gap> IsLowerTriangularMatrix([[1]]);

true

gap> IsLowerTriangularMatrix([[1, 0, 0], [2, 3, 0]]);

true

gap> IsLowerTriangularMatrix([[0, 1], [1, 0]]);

false

GAP - Reference Manual 348

24.5 Matrix Constructions

24.5.1 IdentityMat

▷ IdentityMat(m[, R]) (function)

returns a (mutable) m×m identity matrix over the ring given by R . Here, R can be either a ring, or
an element of a ring. By default, an integer matrix is created.

Example
gap> IdentityMat(3);

[[1, 0, 0], [0, 1, 0], [0, 0, 1]]

gap> IdentityMat(2,Integers mod 15);

[[ZmodnZObj(1, 15), ZmodnZObj(0, 15)],

[ZmodnZObj(0, 15), ZmodnZObj(1, 15)]]

gap> IdentityMat(2,Z(3));

[[Z(3)^0, 0*Z(3)], [0*Z(3), Z(3)^0]]

24.5.2 NullMat

▷ NullMat(m, n[, R]) (function)

returns a (mutable) m×n null matrix over the ring given by by R . Here, R can be either a ring, or
an element of a ring. By default, an integer matrix is created.

Example
gap> NullMat(3,2);

[[0, 0], [0, 0], [0, 0]]

gap> NullMat(2,2,Integers mod 15);

[[ZmodnZObj(0, 15), ZmodnZObj(0, 15)],

[ZmodnZObj(0, 15), ZmodnZObj(0, 15)]]

gap> NullMat(3,2,Z(3));

[[0*Z(3), 0*Z(3)], [0*Z(3), 0*Z(3)], [0*Z(3), 0*Z(3)]]

24.5.3 EmptyMatrix

▷ EmptyMatrix(char) (function)

is an empty (ordinary) matrix in characteristic char that can be added to or multiplied with empty
lists (representing zero-dimensional row vectors). It also acts (via the operation \^ (31.12.1)) on
empty lists.

Example
gap> EmptyMatrix(5);

EmptyMatrix(5)

gap> AsList(last);

[]

24.5.4 DiagonalMat

▷ DiagonalMat(vector) (function)

returns a diagonal matrix mat with the diagonal entries given by vector .

GAP - Reference Manual 349

Example
gap> DiagonalMat([1,2,3]);

[[1, 0, 0], [0, 2, 0], [0, 0, 3]]

24.5.5 DiagonalMatrix (with base domain)

▷ DiagonalMatrix([filt,]R, vector) (operation)

▷ DiagonalMatrix(vector[, M]) (operation)

Returns: a square matrix or matrix object with column number equal to the length of the dense list
vector , whose diagonal entries are given by the entries of vector , and whose off-diagonal entries
are zero.

If a semiring R is given then it will be the base domain (see BaseDomain (26.3.1)) of the returned
matrix. In this case, a filter filt can be specified that defines the internal representation of the result
(see ConstructingFilter (26.3.2)). The default value for filt is determined from R .

If a matrix object M is given then the returned matrix will have the same internal representation
and the same base domain as M .

If only vector is given then it is used to compute a default for R .
If the ConstructingFilter (26.3.2) value of the result implies IsCopyable (12.6.1) then the

result is fully mutable.
Example

gap> d1:= DiagonalMatrix(GF(9), [1, 2] * Z(3)^0);

[[Z(3)^0, 0*Z(3)], [0*Z(3), Z(3)]]

gap> Is8BitMatrixRep(d1);

true

gap> d2:= DiagonalMatrix(IsPlistMatrixRep, GF(9), [1, 2] * Z(3)^0);

<2x2-matrix over GF(3^2)>

gap> IsPlistMatrixRep(d2);

true

gap> DiagonalMatrix([1, 2]);

<2x2-matrix over Rationals>

gap> DiagonalMatrix([1, 2], Matrix(Integers, [[1]], 1));

<2x2-matrix over Integers>

gap> DiagonalMatrix([1, 2], [[1]]);

[[1, 0], [0, 2]]

24.5.6 PermutationMat

▷ PermutationMat(perm, dim[, F]) (function)

returns a matrix in dimension dim over the field given by F (i.e. the smallest field containing the
element F or F itself if it is a field) that represents the permutation perm acting by permuting the basis
vectors as it permutes points.

Example
gap> PermutationMat((1,2,3),4,1);

[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1]]

GAP - Reference Manual 350

24.5.7 TransposedMatImmutable

▷ TransposedMatImmutable(mat) (attribute)

▷ TransposedMat(mat) (attribute)

▷ TransposedMatMutable(mat) (operation)

▷ TransposedMatOp(mat) (operation)

These functions all return the transposed of the matrix object mat , i.e., a matrix object trans such
that trans[i,k] = mat [k, i] holds.

They differ only w.r.t. the mutability of the result.
TransposedMat is an attribute and hence returns an immutable result. TransposedMatMutable

is guaranteed to return a new mutable matrix.
TransposedMatImmutable is a synonym of TransposedMat, and TransposedMatOp is a syn-

onym of TransposedMatMutable, in analogy to operations such as Zero (31.10.3).

24.5.8 TransposedMatDestructive

▷ TransposedMatDestructive(mat) (operation)

If mat is a mutable matrix, then the transposed is computed by swapping the entries in mat . In
this way mat gets changed. In all other cases the transposed is computed by TransposedMat (24.5.7).

Example
gap> TransposedMat([[1,2,3],[4,5,6],[7,8,9]]);

[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

gap> mm:= [[1,2,3],[4,5,6],[7,8,9]];;

gap> TransposedMatDestructive(mm);

[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

gap> mm;

[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

24.5.9 KroneckerProduct

▷ KroneckerProduct(mat1, mat2) (operation)

The Kronecker product of two matrices is the matrix obtained when replacing each entry a of
mat1 by the product a*mat2 in one matrix.

Example
gap> KroneckerProduct([[1,2]],[[5,7],[9,2]]);

[[5, 7, 10, 14], [9, 2, 18, 4]]

24.5.10 ReflectionMat

▷ ReflectionMat(coeffs[, conj][, root]) (function)

Let coeffs be a row vector. ReflectionMat returns the matrix of the reflection in this vector.
More precisely, if coeffs is the coefficients list of a vector v w.r.t. a basis B (see Basis (61.5.2))

then the returned matrix describes the reflection in v w.r.t. B as a map on a row space, with action from
the right.

GAP - Reference Manual 351

The optional argument root is a root of unity that determines the order of the reflection. The
default is a reflection of order 2. For triflections one should choose a third root of unity etc. (see E

(18.1.1)).
conj is a function of one argument that conjugates a ring element. The default is

ComplexConjugate (18.5.2).
The matrix of the reflection in v is defined as

M = In +conj(vtr) · (root −1)/(v ·conj(vtr)) · v

where n is the length of the coefficient list.
So v is mapped to root ·v, with default −v, and any vector x with the property x·conj(vtr) = 0 is

fixed by the reflection.

24.5.11 PrintArray

▷ PrintArray(array) (function)

pretty-prints the array array .

24.6 Random Matrices

24.6.1 RandomMat

▷ RandomMat([rs,]m, n[, R]) (function)

RandomMat returns a new mutable random matrix with m rows and n columns with elements taken
from the ring R , which defaults to Integers (14). Optionally, a random source rs can be supplied.

Example
gap> RandomMat(2,3,GF(3));

[[Z(3), Z(3), 0*Z(3)], [Z(3), Z(3)^0, Z(3)]]

24.6.2 RandomInvertibleMat

▷ RandomInvertibleMat([rs,]m[, R]) (function)

RandomInvertibleMat returns a new mutable invertible random matrix with m rows and columns
with elements taken from the ring R , which defaults to Integers (14). Optionally, a random source
rs can be supplied.

Example
gap> m := RandomInvertibleMat(4);

[[-4, 1, 0, -1], [-1, -1, 1, -1], [1, -2, -1, -2],

[0, -1, 2, -2]]

gap> m^-1;

[[-1/8, -11/24, 1/24, 1/4], [1/4, -13/12, -1/12, 1/2],

[-1/8, 5/24, -7/24, 1/4], [-1/4, 3/4, -1/4, -1/2]]

GAP - Reference Manual 352

24.6.3 RandomUnimodularMat

▷ RandomUnimodularMat([rs,]m) (function)

returns a new random mutable m×m matrix with integer entries that is invertible over the integers.
Optionally, a random source rs can be supplied. If the option domain is given, random selection is
made from domain , otherwise from Integers

Example
gap> m := RandomUnimodularMat(3);

[[-5, 1, 0], [12, -2, -1], [-14, 3, 0]]

gap> m^-1;

[[-3, 0, 1], [-14, 0, 5], [-8, -1, 2]]

gap> RandomUnimodularMat(3:domain:=[-1000..1000]);

[[312330173, 15560030349, -125721926670],

[-307290, -15309014, 123693281],

[-684293792, -34090949551, 275448039848]]

24.7 Matrices Representing Linear Equations and the Gaussian Algo-
rithm

24.7.1 RankMatrix

▷ RankMatrix(mat) (attribute)

▷ RankMat(mat) (attribute)

If mat is a matrix object representing a matrix whose rows span a free module over the ring
generated by the matrix entries and their inverses then RankMatrix returns the dimension of this free
module. Otherwise fail is returned.

Note that RankMatrix may perform a Gaussian elimination. For large rational matrices this may
take very long, because the entries may become very large.

Example
gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;

gap> RankMatrix(mat);

2

24.7.2 TriangulizedMat

▷ TriangulizedMat(mat) (operation)

▷ RREF(mat) (operation)

Computes an upper triangular form of the matrix mat via the Gaussian Algorithm. It returns a
mutable matrix in upper triangular form. This is sometimes also called “Hermite normal form” or
“Reduced Row Echelon Form”. RREF is a synonym for TriangulizedMat.

24.7.3 TriangulizeMat

▷ TriangulizeMat(mat) (operation)

GAP - Reference Manual 353

Applies the Gaussian Algorithm to the mutable matrix mat and changes mat such that it is in
upper triangular normal form (sometimes called “Hermite normal form” or “Reduced Row Echelon
Form”).

Example
gap> m:=TransposedMatMutable(mat);

[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

gap> TriangulizeMat(m);m;

[[1, 0, -1], [0, 1, 2], [0, 0, 0]]

gap> m:=TransposedMatMutable(mat);

[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

gap> TriangulizedMat(m);m;

[[1, 0, -1], [0, 1, 2], [0, 0, 0]]

[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

24.7.4 NullspaceMat

▷ NullspaceMat(mat) (attribute)

▷ TriangulizedNullspaceMat(mat) (attribute)

returns a list of row vectors that form a basis of the vector space of solutions to the equation
vec*mat=0. The result is an immutable matrix. This basis is not guaranteed to be in any specific
form.

The variant TriangulizedNullspaceMat returns a basis of the nullspace in triangulized form as
is often needed for algorithms.

24.7.5 NullspaceMatDestructive

▷ NullspaceMatDestructive(mat) (operation)

▷ TriangulizedNullspaceMatDestructive(mat) (operation)

This function does the same as NullspaceMat (24.7.4). However, the latter function makes a
copy of mat to avoid having to change it. This function does not do that; it returns the nullspace and
may destroy mat ; this saves a lot of memory in case mat is big. The matrix mat must be mutable.

The variant TriangulizedNullspaceMatDestructive returns a basis of the nullspace in trian-
gulized form. It may destroy the matrix mat .

Example
gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;

gap> NullspaceMat(mat);

[[1, -2, 1]]

gap> mm:=[[1,2,3],[4,5,6],[7,8,9]];;

gap> NullspaceMatDestructive(mm);

[[1, -2, 1]]

gap> mm;

[[1, 2, 3], [0, -3, -6], [0, 0, 0]]

24.7.6 SolutionMat

▷ SolutionMat(mat, vec) (operation)

GAP - Reference Manual 354

returns a row vector x that is a solution of the equation x * mat = vec . It returns fail if no
such vector exists.

24.7.7 SolutionMatDestructive

▷ SolutionMatDestructive(mat, vec) (operation)

Does the same as SolutionMat(mat, vec) except that it may destroy the matrix mat and the
vector vec . The matrix mat must be mutable.

Example
gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;

gap> SolutionMat(mat,[3,5,7]);

[5/3, 1/3, 0]

gap> mm:= [[1,2,3],[4,5,6],[7,8,9]];;

gap> v:= [3,5,7];;

gap> SolutionMatDestructive(mm, v);

[5/3, 1/3, 0]

gap> mm;

[[1, 2, 3], [0, -3, -6], [0, 0, 0]]

gap> v;

[0, 0, 0]

24.7.8 BaseFixedSpace

▷ BaseFixedSpace(mats) (function)

BaseFixedSpace returns a list of row vectors that form a base of the vector space V such that
vM = v for all v in V and all matrices M in the list mats . (This is the common eigenspace of all
matrices in mats for the eigenvalue 1.)

Example
gap> BaseFixedSpace([[[1,2],[0,1]]]);

[[0, 1]]

24.8 Eigenvectors and eigenvalues

24.8.1 GeneralisedEigenvalues

▷ GeneralisedEigenvalues(F, A) (operation)

▷ GeneralizedEigenvalues(F, A) (operation)

The generalised eigenvalues of the matrix A over the field F .

24.8.2 GeneralisedEigenspaces

▷ GeneralisedEigenspaces(F, A) (operation)

▷ GeneralizedEigenspaces(F, A) (operation)

The generalised eigenspaces of the matrix A over the field F .

GAP - Reference Manual 355

24.8.3 Eigenvalues

▷ Eigenvalues(F, A) (operation)

The eigenvalues of the matrix A over the field F .

24.8.4 Eigenspaces

▷ Eigenspaces(F, A) (operation)

The eigenspaces of the matrix A over the field F .

24.8.5 Eigenvectors

▷ Eigenvectors(F, A) (operation)

The eigenvectors of the matrix A over the field F .

24.9 Elementary Divisors

See also chapter 25.

24.9.1 ElementaryDivisorsMat

▷ ElementaryDivisorsMat([ring,]mat) (operation)

▷ ElementaryDivisorsMatDestructive(ring, mat) (function)

returns a list of the elementary divisors, i.e., the unique d with d[i] divides d[i+ 1] and mat is
equivalent to a diagonal matrix with the elements d[i] on the diagonal. The operations are performed
over the euclidean ring ring , which must contain all matrix entries. For compatibility reasons it can
be omitted and defaults to the DefaultRing (56.1.3) of the matrix entries.

The function ElementaryDivisorsMatDestructive produces the same result but in the process
may destroy the contents of mat .

Example
gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;

gap> ElementaryDivisorsMat(mat);

[1, 3, 0]

gap> x:=Indeterminate(Rationals,"x");;

gap> mat:=mat*One(x)-x*mat^0;

[[-x+1, 2, 3], [4, -x+5, 6], [7, 8, -x+9]]

gap> ElementaryDivisorsMat(PolynomialRing(Rationals,1),mat);

[1, 1, x^3-15*x^2-18*x]

gap> mat:=KroneckerProduct(CompanionMat((x-1)^2),

> CompanionMat((x^3-1)*(x-1)));;

gap> mat:=mat*One(x)-x*mat^0;

[[-x, 0, 0, 0, 0, 0, 0, 1], [0, -x, 0, 0, -1, 0, 0, -1],

[0, 0, -x, 0, 0, -1, 0, 0], [0, 0, 0, -x, 0, 0, -1, -1],

[0, 0, 0, -1, -x, 0, 0, -2], [1, 0, 0, 1, 2, -x, 0, 2],

[0, 1, 0, 0, 0, 2, -x, 0], [0, 0, 1, 1, 0, 0, 2, -x+2]]

GAP - Reference Manual 356

gap> ElementaryDivisorsMat(PolynomialRing(Rationals,1),mat);

[1, 1, 1, 1, 1, 1, x-1, x^7-x^6-2*x^4+2*x^3+x-1]

24.9.2 ElementaryDivisorsTransformationsMat

▷ ElementaryDivisorsTransformationsMat([ring,]mat) (operation)

▷ ElementaryDivisorsTransformationsMatDestructive(ring, mat) (function)

ElementaryDivisorsTransformations, in addition to the tasks done by
ElementaryDivisorsMat, also calculates transforming matrices. It returns a record with
components normal (a matrix S), rowtrans (a matrix P), and coltrans (a matrix Q) such that
PAQ = S. The operations are performed over the euclidean ring ring , which must contain all matrix
entries. For compatibility reasons it can be omitted and defaults to the DefaultRing (56.1.3) of the
matrix entries.

The function ElementaryDivisorsTransformationsMatDestructive produces the same re-
sult but in the process destroys the contents of mat .

Example
gap> mat:=KroneckerProduct(CompanionMat((x-1)^2),CompanionMat((x^3-1)*(x-1)));;

gap> mat:=mat*One(x)-x*mat^0;

[[-x, 0, 0, 0, 0, 0, 0, 1], [0, -x, 0, 0, -1, 0, 0, -1],

[0, 0, -x, 0, 0, -1, 0, 0], [0, 0, 0, -x, 0, 0, -1, -1],

[0, 0, 0, -1, -x, 0, 0, -2], [1, 0, 0, 1, 2, -x, 0, 2],

[0, 1, 0, 0, 0, 2, -x, 0], [0, 0, 1, 1, 0, 0, 2, -x+2]]

gap> t:=ElementaryDivisorsTransformationsMat(PolynomialRing(Rationals,1),mat);

rec(coltrans := [[0, 0, 0, 0, 0, 0, 1/6*x^2-7/9*x-1/18, -3*x^3-x^2-x-1],

[0, 0, 0, 0, 0, 0, -1/6*x^2+x-1, 3*x^3-3*x^2],

[0, 0, 0, 0, 0, 1, -1/18*x^4+1/3*x^3-1/3*x^2-1/9*x, x^5-x^4+2*x^2-2*x

], [0, 0, 0, 0, -1, 0, -1/9*x^3+1/2*x^2+1/9*x, 2*x^4+x^3+x^2+2*x],

[0, -1, 0, 0, 0, 0, -2/9*x^2+19/18*x, 4*x^3+x^2+x],

[0, 0, -1, 0, 0, -x, 1/18*x^5-1/3*x^4+1/3*x^3+1/9*x^2,

-x^6+x^5-2*x^3+2*x^2],

[0, 0, 0, -1, x, 0, 1/9*x^4-2/3*x^3+2/3*x^2+1/18*x,

-2*x^5+2*x^4-x^2+x],

[1, 0, 0, 0, 0, 0, 1/6*x^3-7/9*x^2-1/18*x, -3*x^4-x^3-x^2-x]],

normal := [[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0],

[0, 0, 0, 0, 0, 0, x-1, 0],

[0, 0, 0, 0, 0, 0, 0, x^7-x^6-2*x^4+2*x^3+x-1]],

rowtrans := [[1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 1, 0, 0, 0, 0],

[-x+2, -x, 0, 0, 1, 0, 0, 0],

[2*x^2-4*x+2, 2*x^2-x, 0, 2, -2*x+1, 0, 0, 1],

[3*x^3-6*x^2+3*x, 3*x^3-2*x^2, 2, 3*x, -3*x^2+2*x, 0, 1, 2*x],

[1/6*x^8-7/6*x^7+2*x^6-4/3*x^5+7/3*x^4-4*x^3+13/6*x^2-7/6*x+2,

1/6*x^8-17/18*x^7+13/18*x^6-5/18*x^5+35/18*x^4-31/18*x^3+1/9*x^2-x+\

2, 1/9*x^5-5/9*x^4+1/9*x^3-1/9*x^2+14/9*x-1/9,

1/6*x^6-5/6*x^5+1/6*x^4-1/6*x^3+11/6*x^2-1/6*x,

-1/6*x^7+17/18*x^6-13/18*x^5+5/18*x^4-35/18*x^3+31/18*x^2-1/9*x+1,

1, 1/18*x^5-5/18*x^4+1/18*x^3-1/18*x^2+23/18*x-1/18,

1/9*x^6-5/9*x^5+1/9*x^4-1/9*x^3+14/9*x^2-1/9*x]])

GAP - Reference Manual 357

gap> t.rowtrans*mat*t.coltrans;

[[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0],

[0, 0, 0, 0, 0, 0, x-1, 0],

[0, 0, 0, 0, 0, 0, 0, x^7-x^6-2*x^4+2*x^3+x-1]]

24.9.3 DiagonalizeMat

▷ DiagonalizeMat(ring, mat) (operation)

brings the mutable matrix mat , considered as a matrix over ring , into diagonal form by elemen-
tary row and column operations.

Example
gap> m:=[[1,2],[2,1]];;

gap> DiagonalizeMat(Integers,m);m;

[[1, 0], [0, 3]]

24.10 Echelonized Matrices

24.10.1 SemiEchelonMat

▷ SemiEchelonMat(mat) (attribute)

A matrix over a field F is in semi-echelon form if the first nonzero element in each row is the
identity of F , and all values exactly below these pivots are the zero of F .

SemiEchelonMat returns a record that contains information about a semi-echelonized form of the
matrix mat .

The components of this record are

vectors

list of row vectors, each with pivot element the identity of F ,

heads

list that contains at position i , if nonzero, the number of the row for that the pivot element is in
column i .

24.10.2 SemiEchelonMatDestructive

▷ SemiEchelonMatDestructive(mat) (operation)

This does the same as SemiEchelonMat(mat), except that it may (and probably will) destroy
the matrix mat .

Example
gap> mm:=[[1,2,3],[4,5,6],[7,8,9]];;

gap> SemiEchelonMatDestructive(mm);

rec(heads := [1, 2, 0], vectors := [[1, 2, 3], [0, 1, 2]])

gap> mm;

[[1, 2, 3], [0, 1, 2], [0, 0, 0]]

GAP - Reference Manual 358

24.10.3 SemiEchelonMatTransformation

▷ SemiEchelonMatTransformation(mat) (attribute)

does the same as SemiEchelonMat (24.10.1) but additionally stores the linear transformation T
performed on the matrix. The additional components of the result are

coeffs

a list of coefficients vectors of the vectors component, with respect to the rows of mat , that is,
coeffs * mat is the vectors component.

relations

a list of basis vectors for the (left) null space of mat .
Example

gap> SemiEchelonMatTransformation([[1,2,3],[0,0,1]]);

rec(coeffs := [[1, 0], [0, 1]], heads := [1, 0, 2],

relations := [], vectors := [[1, 2, 3], [0, 0, 1]])

24.10.4 SemiEchelonMats

▷ SemiEchelonMats(mats) (operation)

A list of matrices over a field F is in semi-echelon form if the list of row vectors obtained on
concatenating the rows of each matrix is a semi-echelonized matrix (see SemiEchelonMat (24.10.1)).

SemiEchelonMats returns a record that contains information about a semi-echelonized form of
the list mats of matrices.

The components of this record are

vectors

list of matrices, each with pivot element the identity of F ,

heads

matrix that contains at position [i ,j], if nonzero, the number of the matrix that has the pivot
element in this position

24.10.5 SemiEchelonMatsDestructive

▷ SemiEchelonMatsDestructive(mats) (operation)

Does the same as SemiEchelonMats (24.10.4), except that it may destroy its argument. Therefore
the argument must be a list of matrices that are mutable.

24.11 Matrices as Basis of a Row Space

See also chapter 25

GAP - Reference Manual 359

24.11.1 BaseMat

▷ BaseMat(mat) (attribute)

returns a basis for the row space generated by the rows of mat in the form of an immutable matrix.

24.11.2 BaseMatDestructive

▷ BaseMatDestructive(mat) (operation)

Does the same as BaseMat (24.11.1), with the difference that it may destroy the matrix mat . The
matrix mat must be mutable.

Example
gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;

gap> BaseMat(mat);

[[1, 2, 3], [0, 1, 2]]

gap> mm:= [[1,2,3],[4,5,6],[5,7,9]];;

gap> BaseMatDestructive(mm);

[[1, 2, 3], [0, 1, 2]]

gap> mm;

[[1, 2, 3], [0, 1, 2], [0, 0, 0]]

24.11.3 BaseOrthogonalSpaceMat

▷ BaseOrthogonalSpaceMat(mat) (attribute)

Let V be the row space generated by the rows of mat (over any field that contains all entries of
mat). BaseOrthogonalSpaceMat(mat) computes a base of the orthogonal space of V .

The rows of mat need not be linearly independent.

24.11.4 SumIntersectionMat

▷ SumIntersectionMat(M1, M2) (operation)

performs Zassenhaus’ algorithm to compute bases for the sum and the intersection of spaces gen-
erated by the rows of the matrices M1 , M2 .

returns a list of length 2, at first position a base of the sum, at second position a base of the
intersection. Both bases are in semi-echelon form (see 24.10).

Example
gap> SumIntersectionMat(mat,[[2,7,6],[5,9,4]]);

[[[1, 2, 3], [0, 1, 2], [0, 0, 1]], [[1, -3/4, -5/2]]]

24.11.5 BaseSteinitzVectors

▷ BaseSteinitzVectors(bas, mat) (function)

find vectors extending mat to a basis spanning the span of bas . Both bas and mat must be
matrices of full (row) rank. It returns a record with the following components:

GAP - Reference Manual 360

subspace

is a basis of the space spanned by mat in upper triangular form with leading ones at all echelon
steps and zeroes above these ones.

factorspace

is a list of extending vectors in upper triangular form.

factorzero

is a zero vector.

heads

is a list of integers which can be used to decompose vectors in the basis vectors. The i th entry
indicating the vector that gives an echelon step at position i . A negative number indicates an
echelon step in the subspace, a positive number an echelon step in the complement, the absolute
value gives the position of the vector in the lists subspace and factorspace.

Example
gap> BaseSteinitzVectors(IdentityMat(3,1),[[11,13,15]]);

rec(factorspace := [[0, 1, 15/13], [0, 0, 1]],

factorzero := [0, 0, 0], heads := [-1, 1, 2],

subspace := [[1, 13/11, 15/11]])

24.12 Triangular Matrices

24.12.1 DiagonalOfMatrix

▷ DiagonalOfMatrix(mat) (function)

▷ DiagonalOfMat(mat) (function)

return the diagonal of the matrix mat . If mat is not a square matrix, then the result has the same
length as the rows of mat , and is padded with zeros if mat has fewer rows than columns.

Example
gap> DiagonalOfMatrix([[1, 2, 3], [4, 5, 6]]);

[1, 5, 0]

24.12.2 UpperSubdiagonal

▷ UpperSubdiagonal(mat, pos) (operation)

returns a mutable list containing the entries of the pos th upper subdiagonal of the matrix mat .
Example

gap> UpperSubdiagonal([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 1);

[2, 6]

gap> UpperSubdiagonal([[1, 2], [3, 4], [5, 6]], 1);

[2]

gap> UpperSubdiagonal([[1, 2, 3, 4], [5, 6, 7, 8]], 1);

[2, 7]

GAP - Reference Manual 361

24.12.3 DepthOfUpperTriangularMatrix

▷ DepthOfUpperTriangularMatrix(mat) (attribute)

If mat is an upper triangular matrix this attribute returns the index of the first nonzero diagonal.
Example

gap> DepthOfUpperTriangularMatrix([[0,1,2],[0,0,1],[0,0,0]]);

1

gap> DepthOfUpperTriangularMatrix([[0,0,2],[0,0,0],[0,0,0]]);

2

24.13 Matrices as Linear Mappings

24.13.1 CharacteristicPolynomial

▷ CharacteristicPolynomial([F, E,]mat[, ind]) (attribute)

For a square matrix mat , CharacteristicPolynomial returns the characteristic polynomial of
mat , that is, the StandardAssociate (56.5.5) of the determinant of the matrix mat −X · I, where X
is an indeterminate and I is the appropriate identity matrix.

If fields F and E are given, then F must be a subfield of E , and mat must have entries in E .
Then CharacteristicPolynomial returns the characteristic polynomial of the F-linear mapping
induced by mat on the underlying E-vector space of mat . In this case, the characteristic polynomial
is computed using BlownUpMat (24.13.4) for the field extension of E/F generated by the default field.
Thus, if F = E, the result is the same as for the one argument version.

The returned polynomials are expressed in the indeterminate number ind . If ind is not given, it
defaults to 1.

CharacteristicPolynomial(F, E, mat) is a multiple of the minimal polynomial
MinimalPolynomial(F, mat) (see MinimalPolynomial (66.8.1)).

Note that, up to GAP version 4.4.6, CharacteristicPolynomial only allowed to specify
one field (corresponding to F) as an argument. That usage has been disabled because its defini-
tion turned out to be ambiguous and may have lead to unexpected results. (To ensure backward
compatibility, it is still possible to use the old form if F contains the default field of the matrix,
see DefaultFieldOfMatrix (24.4.2), but this feature will disappear in future versions of GAP.)

Example
gap> CharacteristicPolynomial([[1, 1], [0, 1]]);

x^2-2*x+1

gap> mat := [[0,1],[E(4)-1,E(4)]];;

gap> CharacteristicPolynomial(mat);

x^2+(-E(4))*x+(1-E(4))

gap> CharacteristicPolynomial(Rationals, CF(4), mat);

x^4+3*x^2+2*x+2

gap> mat:= [[E(4), 1], [0, -E(4)]];;

gap> CharacteristicPolynomial(mat);

x^2+1

gap> CharacteristicPolynomial(Rationals, CF(4), mat);

x^4+2*x^2+1

GAP - Reference Manual 362

24.13.2 RationalCanonicalFormTransform

▷ RationalCanonicalFormTransform(mat) (function)

For a matrix A, return a matrix P such that AP is in rational canonical form (also called Frobenius
normal form). The algorithm used is the basic textbook version and thus not of optimal complexity.

Example
gap> aa:=[[0,-8,12,40,-36,4,0,59,15,-9],[-2,-2,-2,6,-11,1,-1,10,1,0],

> [1,5,0,-6,12,-2,0,-12,-4,2],[0,0,0,2,0,0,0,7,0,0],

> [0,2,-3,-7,8,-1,0,-7,-3,2],[-5,-4,-6,18,-30,2,-2,35,5,-1],

> [-1,-6,6,20,-28,3,0,24,10,-6],[0,0,0,-1,0,0,0,-3,0,0],

> [0,0,-1,-2,-2,0,-1,-7,0,0],[0,-8,9,21,-36,4,-2,12,12,-8]];;

gap> t:=RationalCanonicalFormTransform(aa);;

gap> aa^t;

[[0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0, 0, 0, 0, 1],

[0, 0, 0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 0, -1], [0, 0, 0, 0, 0, 0, 0, 0, 1, -1]]

24.13.3 JordanDecomposition

▷ JordanDecomposition(mat) (attribute)

JordanDecomposition(mat) returns a list [S,N] such that S is a semisimple matrix and N

is nilpotent. Furthermore, S and N commute and mat=S+N.
Example

gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;

gap> JordanDecomposition(mat);

[[[1, 2, 3], [4, 5, 6], [7, 8, 9]],

[[0, 0, 0], [0, 0, 0], [0, 0, 0]]]

24.13.4 BlownUpMat

▷ BlownUpMat(B, mat) (function)

Let B be a basis of a field extension F/K, and mat a matrix whose entries are all in F . (This is not
checked.) BlownUpMat returns a matrix over K that is obtained by replacing each entry of mat by its
regular representation w.r.t. B .

More precisely, regard mat as the matrix of a linear transformation on the row space Fn w.r.t. the
F-basis with vectors (v1, . . . ,vn) and suppose that the basis B consists of the vectors (b1, . . . ,bm); then
the returned matrix is the matrix of the linear transformation on the row space Kmn w.r.t. the K-basis
whose vectors are (b1v1, . . .bmv1, . . . ,bmvn).

Note that the linear transformations act on row vectors, i.e., each row of the matrix is a concatena-
tion of vectors of B-coefficients.

24.13.5 BlownUpVector

▷ BlownUpVector(B, vector) (function)

GAP - Reference Manual 363

Let B be a basis of a field extension F/K, and vector a row vector whose entries are all in F .
BlownUpVector returns a row vector over K that is obtained by replacing each entry of vector by its
coefficients w.r.t. B .

So BlownUpVector and BlownUpMat (24.13.4) are compatible in the sense that for a ma-
trix mat over F , BlownUpVector(B, mat * vector) is equal to BlownUpMat(B, mat) *

BlownUpVector(B, vector).
Example

gap> B:= Basis(CF(4), [1, E(4)]);;

gap> mat:= [[1, E(4)], [0, 1]];; vec:= [1, E(4)];;

gap> bmat:= BlownUpMat(B, mat);; bvec:= BlownUpVector(B, vec);;

gap> Display(bmat); bvec;

[[1, 0, 0, 1],

[0, 1, -1, 0],

[0, 0, 1, 0],

[0, 0, 0, 1]]

[1, 0, 0, 1]

gap> bvec * bmat = BlownUpVector(B, vec * mat);

true

24.13.6 CompanionMatrix

▷ CompanionMatrix(poly) (operation)

▷ CompanionMat(poly) (operation)

Return a fully mutable matrix that is the companion matrix of the polynomial poly . The negatives
of the coefficients of poly appear in the last column of the result.

The companion matrix of poly has poly as its minimal polynomial (see MinimalPolynomial

(66.8.1)) and as its characteristic polynomial (see CharacteristicPolynomial (24.13.1)).
Example

gap> x:= X(Rationals);; pol:= x^3 + x^2 + 2*x + 3;;

gap> M:= CompanionMatrix(pol);;

gap> Display(M);

[[0, 0, -3],

[1, 0, -2],

[0, 1, -1]]

gap> MinimalPolynomial(M) = pol;

true

24.14 Matrices over Finite Fields

Just as for row vectors, (see section 23.3), GAP has a special representation for matrices over small
finite fields.

To be eligible to be represented in this way, each row of a matrix must be able to be represented
as a compact row vector of the same length over the same finite field.

Example
gap> v := Z(2)*[1,0,0,1,1];

[Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0]

gap> ConvertToVectorRep(v,2);

GAP - Reference Manual 364

2

gap> v;

<a GF2 vector of length 5>

gap> m := [v];; ConvertToMatrixRep(m,GF(2));; m;

<a 1x5 matrix over GF2>

gap> m := [v,v];; ConvertToMatrixRep(m,GF(2));; m;

<a 2x5 matrix over GF2>

gap> m := [v,v,v];; ConvertToMatrixRep(m,GF(2));; m;

<a 3x5 matrix over GF2>

gap> v := Z(3)*[1..8];

[Z(3), Z(3)^0, 0*Z(3), Z(3), Z(3)^0, 0*Z(3), Z(3), Z(3)^0]

gap> ConvertToVectorRep(v);

3

gap> m := [v];; ConvertToMatrixRep(m,GF(3));; m;

[[Z(3), Z(3)^0, 0*Z(3), Z(3), Z(3)^0, 0*Z(3), Z(3), Z(3)^0]]

gap> RepresentationsOfObject(m);

["IsPositionalObjectRep", "Is8BitMatrixRep"]

gap> m := [v,v,v,v];; ConvertToMatrixRep(m,GF(3));; m;

< mutable compressed matrix 4x8 over GF(3) >

All compressed matrices over GF(2) are viewed as <a nxm matrix over GF2>, while over
fields GF(q) for q between 3 and 256, matrices with 25 or more entries are viewed in this way, and
smaller ones as lists of lists.

Matrices can be converted to this special representation via the following functions.
Note that the main advantage of this special representation of matrices is in low dimensions, where

various overheads can be reduced. In higher dimensions, a list of compressed vectors will be almost
as fast. Note also that list access and assignment will be somewhat slower for compressed matrices
than for plain lists.

In order to form a row of a compressed matrix a vector must accept certain restrictions. Specif-
ically, it cannot change its length or change the field over which it is compressed. The main conse-
quences of this are: that only elements of the appropriate field can be assigned to entries of the vector,
and only to positions between 1 and the original length; that the vector cannot be shared between two
matrices compressed over different fields.

This is enforced by the filter IsLockedRepresentationVector. When a vector becomes part
of a compressed matrix, this filter is set for it. Assignment, Unbind (21.5.3), ConvertToVectorRep
(23.3.1) and ConvertToMatrixRep (24.14.2) are all prevented from altering a vector with this filter.

Example
gap> v := [Z(2),Z(2)];; ConvertToVectorRep(v,GF(2));; v;

<a GF2 vector of length 2>

gap> m := [v,v];

[<a GF2 vector of length 2>, <a GF2 vector of length 2>]

gap> ConvertToMatrixRep(m,GF(2));

2

gap> m2 := [m[1], [Z(4),Z(4)]]; # now try and mix in some GF(4)

[<a GF2 vector of length 2>, [Z(2^2), Z(2^2)]]

gap> ConvertToMatrixRep(m2); # but m2[1] is locked

#I ConvertToVectorRep: locked vector not converted to different field

fail

gap> m2 := [ShallowCopy(m[1]), [Z(4),Z(4)]]; # a fresh copy of row 1

[<a GF2 vector of length 2>, [Z(2^2), Z(2^2)]]

GAP - Reference Manual 365

gap> ConvertToMatrixRep(m2); # now it works

4

gap> m2;

[[Z(2)^0, Z(2)^0], [Z(2^2), Z(2^2)]]

gap> RepresentationsOfObject(m2);

["IsPositionalObjectRep", "Is8BitMatrixRep"]

Arithmetic operations (see 21.11 and the following sections) preserve the compression status of
matrices in the sense that if all arguments are compressed matrices written over the same field and the
result is a matrix then also the result is a compressed matrix written over this field.

There are also two operations that are only available for matrices written over finite fields.

24.14.1 ImmutableMatrix

▷ ImmutableMatrix(field, matrix[, change]) (operation)

Let matrix be an object for which either IsMatrix (24.2.1) or IsMatrixObj (26.2.2) returns
true. In the former case, matrix is a list of lists, and ImmutableMatrix returns an immutable object
for which IsMatrix (24.2.1) returns true (in particular again a list of lists), which is equal to matrix ,
and which is in the optimal (concerning space and runtime) representation for matrices defined over
field , provided that the entries of matrix lie in field . In the latter case, ImmutableMatrix returns
an immutable object that is equal to the result of ChangedBaseDomain (26.6.3) when this is called
with matrix and field .

This means that matrices obtained by several calls of ImmutableMatrix for the same field are
compatible for fast arithmetic without need for field conversion.

If the input matrix matrix is in IsMatrix (24.2.1) then it or its rows might change their represen-
tation as a side effect of this function. However, one cannot rely on this side effect. Also, if matrix
is already immutable and the result of ImmutableMatrix has the same internal representation as
matrix , the result is not necessarily identical to matrix .

If change is true, matrix or its rows (if there are subobjects that represent rows) may be changed
to become immutable; otherwise the rows of matrix are copied first.

24.14.2 ConvertToMatrixRep (for a list (and a field))

▷ ConvertToMatrixRep(list[, field]) (function)

▷ ConvertToMatrixRep(list[, fieldsize]) (function)

▷ ConvertToMatrixRepNC(list[, field]) (function)

▷ ConvertToMatrixRepNC(list[, fieldsize]) (function)

This function is more technical version of ImmutableMatrix (24.14.1), which will never copy
a matrix (or any rows of it) but may fail if it encounters rows locked in the wrong representation, or
various other more technical problems. Most users should use ImmutableMatrix (24.14.1) instead.
The NC versions of the function do less checking of the argument and may cause unpredictable results
or crashes if given unsuitable arguments. Called with one argument list , ConvertToMatrixRep
converts list to an internal matrix representation if possible.

Called with a list list and a finite field field , ConvertToMatrixRep converts list to an
internal matrix representation appropriate for a matrix over field .

GAP - Reference Manual 366

Instead of a field also its size fieldsize may be given.
It is forbidden to call this function unless all elements of list are row vectors with entries in the

field field . Violation of this condition can lead to unpredictable behaviour or a system crash. (Setting
the assertion level to at least 2 might catch some violations before a crash, see SetAssertionLevel

(7.5.1).)
list may already be a compressed matrix. In this case, if no field or fieldsize is given, then

nothing happens.
The return value is the size of the field over which the matrix ends up written, if it is written in a

compressed representation.

24.14.3 ProjectiveOrder

▷ ProjectiveOrder(mat) (attribute)

Returns an integer n and a finite field element e such that A^n = eI. mat must be a matrix defined
over a finite field.

Example
gap> ProjectiveOrder([[1,4],[5,2]]*Z(11)^0);

[5, Z(11)^5]

24.14.4 SimultaneousEigenvalues

▷ SimultaneousEigenvalues(matlist, expo) (function)

The matrices in matlist must be matrices over GF(q) for some prime q . Together, they must
generate an abelian p-group of exponent expo . Then the eigenvalues of mat in the splitting field
GF(q^r) for some r are powers of an element ξ in the splitting field, which is of order expo .
SimultaneousEigenvalues returns a matrix of integers mod expo (ai, j), such that the power ξ ai, j

is an eigenvalue of the i-th matrix in matlist and the eigenspaces of the different matrices to the
eigenvalues ξ ai, j for fixed j are equal.

24.15 Inverse and Nullspace of an Integer Matrix Modulo an Ideal

The following operations deal with matrices over a ring, but only care about the residues of their
entries modulo some ring element. In the case of the integers and a prime number p, this is effectively
computation in a matrix over the prime field in characteristic p.

24.15.1 InverseMatMod

▷ InverseMatMod(mat, obj) (operation)

For a square matrix mat , InverseMatMod returns a matrix inv such that inv * mat is congruent
to the identity matrix modulo obj , if such a matrix exists, and fail otherwise.

Example
gap> mat:= [[1, 2], [3, 4]];; inv:= InverseMatMod(mat, 5);

[[3, 1], [4, 2]]

gap> mat * inv;

[[11, 5], [25, 11]]

GAP - Reference Manual 367

24.15.2 BasisNullspaceModN

▷ BasisNullspaceModN(M, n) (function)

M must be a matrix of integers and n a positive integer. Then BasisNullspaceModN returns a
set B of vectors such that every vector v of integer modulo n satisfying v M = 0 modulo n can be
expressed by a Z-linear combination of elements of B .

24.15.3 NullspaceModQ

▷ NullspaceModQ(M, q) (function)

▷ NullspaceModN(M, n) (function)

M must be a matrix of integers and n a positive integer. Then NullspaceModN returns the set of
all vectors of integers modulo n , which solve the homogeneous equation system v M = 0 modulo n .

NullspaceModQ is a synonym for NullspaceModN.
Example

gap> NullspaceModN([[2]], 8);

[[0], [4]]

gap> NullspaceModN([[2, 1], [0, 2]], 6);

[[0, 0], [0, 3]]

gap> mat:= [[1, 3], [1, 2], [1, 1]];;

gap> NullspaceModN(mat, 5);

[[0, 0, 0], [1, 3, 1], [2, 1, 2], [3, 4, 3], [4, 2, 4]]

24.16 Special Multiplication Algorithms for Matrices over GF(2)

When multiplying two compressed matrices M and N over GF(2) of dimensions a× b and b× c,
where a, b and c are all greater than or equal to 128, GAP by default uses a more sophisticated matrix
multiplication algorithm, in which linear combinations of groups of 8 rows of M are remembered and
re-used in constructing various rows of the product. This is called level 8 grease. To optimise memory
access patterns, these combinations are stored for (b+255)/256 sets of 8 rows at once. This number
is called the blocking level.

These levels of grease and blocking are found experimentally to give good performance across
a range of processors and matrix sizes, but other levels may do even better in some cases. You can
control the levels exactly using the functions below.

We plan to include greased blocked matrix multiplication for other finite fields, and greased
blocked algorithms for inversion and other matrix operations in a future release.

24.16.1 PROD_GF2MAT_GF2MAT_SIMPLE

▷ PROD_GF2MAT_GF2MAT_SIMPLE(m1, m2) (function)

This function performs the standard unblocked and ungreased matrix multiplication for matrices
of any size.

GAP - Reference Manual 368

24.16.2 PROD_GF2MAT_GF2MAT_ADVANCED

▷ PROD_GF2MAT_GF2MAT_ADVANCED(m1, m2, g, b) (function)

This function computes the product of m1 and m2 , which must be compressed matrices over GF(2)
of compatible dimensions, using level g grease and level b blocking.

24.17 Block Matrices

Block matrices are a special representation of matrices which can save a lot of memory if large matri-
ces have a block structure with lots of zero blocks. GAP uses the representation IsBlockMatrixRep

to store block matrices.

24.17.1 AsBlockMatrix

▷ AsBlockMatrix(m, nrb, ncb) (function)

returns a block matrix with nrb row blocks and ncb column blocks which is equal to the ordinary
matrix m .

24.17.2 BlockMatrix

▷ BlockMatrix(blocks, nrb, ncb[, rpb, cpb, zero]) (function)

BlockMatrix returns an immutable matrix in the sparse representation IsBlockMatrixRep. The
nonzero blocks are described by the list blocks of triples [i ,j ,M(i, j)] each consisting of a matrix
M(i, j) and its block coordinates in the block matrix to be constructed. All matrices M(i, j) must have
the same dimensions. As usual the first coordinate specifies the row and the second one the column.
The resulting matrix has nrb row blocks and ncb column blocks.

If blocks is empty (i.e., if the matrix is a zero matrix) then the dimensions of the blocks must be
entered as rpb and cpb , and the zero element as zero .

Note that all blocks must be ordinary matrices (see IsOrdinaryMatrix (24.2.2)), and also the
block matrix is an ordinary matrix.

Example
gap> M := BlockMatrix([[1,1,[[1, 2],[3, 4]]],

> [1,2,[[9,10],[11,12]]],

> [2,2,[[5, 6],[7, 8]]]],2,2);

<block matrix of dimensions (2*2)x(2*2)>

gap> Display(M);

[[1, 2, 9, 10],

[3, 4, 11, 12],

[0, 0, 5, 6],

[0, 0, 7, 8]]

24.17.3 MatrixByBlockMatrix

▷ MatrixByBlockMatrix(blockmat) (attribute)

returns a plain ordinary matrix that is equal to the block matrix blockmat .

GAP - Reference Manual 369

24.18 Linear Programming

24.18.1 SimplexMethod

▷ SimplexMethod(A, b, c) (function)

Find a rational vector x that maximizes x ·c , subject to the constraint A ·x ≤ b .
Example

gap> A:=[[3,1,1,4],[1,-3,2,3],[2,1,3,-1]];;

gap> b:=[12,7,10];;c:=[2,4,3,1];;

gap> SimplexMethod(A,b,c);

[[0, 52/5, 0, 2/5], 42]

Chapter 25

Integral matrices and lattices

25.1 Linear equations over the integers and Integral Matrices

25.1.1 NullspaceIntMat

▷ NullspaceIntMat(mat) (attribute)

If mat is a matrix with integral entries, this function returns a list of vectors that forms a basis of
the integral nullspace of mat , i.e., of those vectors in the nullspace of mat that have integral entries.

Example
gap> mat:=[[1,2,7],[4,5,6],[7,8,9],[10,11,19],[5,7,12]];;

gap> NullspaceMat(mat);

[[-7/4, 9/2, -15/4, 1, 0], [-3/4, -3/2, 1/4, 0, 1]]

gap> NullspaceIntMat(mat);

[[1, 18, -9, 2, -6], [0, 24, -13, 3, -7]]

25.1.2 SolutionIntMat

▷ SolutionIntMat(mat, vec) (operation)

If mat is a matrix with integral entries and vec a vector with integral entries, this function returns
a vector x with integer entries that is a solution of the equation x * mat = vec . It returns fail if no
such vector exists.

Example
gap> mat:=[[1,2,7],[4,5,6],[7,8,9],[10,11,19],[5,7,12]];;

gap> SolutionMat(mat,[95,115,182]);

[47/4, -17/2, 67/4, 0, 0]

gap> SolutionIntMat(mat,[95,115,182]);

[2285, -5854, 4888, -1299, 0]

25.1.3 SolutionNullspaceIntMat

▷ SolutionNullspaceIntMat(mat, vec) (operation)

This function returns a list of length two, its first entry being the result of a call to
SolutionIntMat (25.1.2) with same arguments, the second the result of NullspaceIntMat (25.1.1)

370

GAP - Reference Manual 371

applied to the matrix mat . The calculation is performed faster than if two separate calls would be
used.

Example
gap> mat:=[[1,2,7],[4,5,6],[7,8,9],[10,11,19],[5,7,12]];;

gap> SolutionNullspaceIntMat(mat,[95,115,182]);

[[2285, -5854, 4888, -1299, 0],

[[1, 18, -9, 2, -6], [0, 24, -13, 3, -7]]]

25.1.4 BaseIntMat

▷ BaseIntMat(mat) (attribute)

If mat is a matrix with integral entries, this function returns a list of vectors that forms a basis of
the integral row space of mat , i.e. of the set of integral linear combinations of the rows of mat .

Example
gap> mat:=[[1,2,7],[4,5,6],[10,11,19]];;

gap> BaseIntMat(mat);

[[1, 2, 7], [0, 3, 7], [0, 0, 15]]

25.1.5 BaseIntersectionIntMats

▷ BaseIntersectionIntMats(m, n) (operation)

If m and n are matrices with integral entries, this function returns a list of vectors that forms a
basis of the intersection of the integral row spaces of m and n .

Example
gap> nat:=[[5,7,2],[4,2,5],[7,1,4]];;

gap> BaseIntMat(nat);

[[1, 1, 15], [0, 2, 55], [0, 0, 64]]

gap> BaseIntersectionIntMats(mat,nat);

[[1, 5, 509], [0, 6, 869], [0, 0, 960]]

25.1.6 ComplementIntMat

▷ ComplementIntMat(full, sub) (operation)

Let full be a list of integer vectors generating an integral row module M and sub a list of vectors
defining a submodule S of M. This function computes a free basis for M that extends S. I.e., if the
dimension of S is n it determines a basis B = {b1, . . . ,bm} for M, as well as n integers xi such that the
n vectors si := xi ·bi form a basis for S.

It returns a record with the following components:

complement

the vectors bn+1 up to bm (they generate a complement to S).

sub the vectors si (a basis for S).

moduli

the factors xi.

GAP - Reference Manual 372

Example
gap> m:=IdentityMat(3);;

gap> n:=[[1,2,3],[4,5,6]];;

gap> ComplementIntMat(m,n);

rec(complement := [[0, 0, 1]], moduli := [1, 3],

sub := [[1, 2, 3], [0, 3, 6]])

25.2 Normal Forms over the Integers

This section describes the computation of the Hermite and Smith normal form of integer matrices.
The Hermite Normal Form (HNF) H of an integer matrix A is a row equivalent upper triangular

form such that all off-diagonal entries are reduced modulo the diagonal entry of the column they are
in. There exists a unique unimodular matrix Q such that QA = H.

The Smith Normal Form S of an integer matrix A is the unique equivalent diagonal form with Si

dividing S j for i < j. There exist unimodular integer matrices P,Q such that PAQ = S.
All routines described in this section build on the “workhorse” routine NormalFormIntMat

(25.2.9).

25.2.1 TriangulizedIntegerMat

▷ TriangulizedIntegerMat(mat) (operation)

Computes an upper triangular form of a matrix with integer entries. It returns a mutable matrix in
upper triangular form.

25.2.2 TriangulizedIntegerMatTransform

▷ TriangulizedIntegerMatTransform(mat) (operation)

Computes an upper triangular form of a matrix with integer entries. It returns a record with a
component normal (an immutable matrix in upper triangular form) and a component rowtrans that
gives the transformations done to the original matrix to bring it into upper triangular form.

25.2.3 TriangulizeIntegerMat

▷ TriangulizeIntegerMat(mat) (operation)

Changes mat to be in upper triangular form. (The result is the same as that of
TriangulizedIntegerMat (25.2.1), but mat will be modified, thus using less memory.) If mat

is immutable an error will be triggered.
Example

gap> m:=[[1,15,28],[4,5,6],[7,8,9]];;

gap> TriangulizedIntegerMat(m);

[[1, 15, 28], [0, 1, 1], [0, 0, 3]]

gap> n:=TriangulizedIntegerMatTransform(m);

rec(normal := [[1, 15, 28], [0, 1, 1], [0, 0, 3]],

rank := 3, rowC := [[1, 0, 0], [0, 1, 0], [0, 0, 1]],

rowQ := [[1, 0, 0], [1, -30, 17], [-3, 97, -55]],

GAP - Reference Manual 373

rowtrans := [[1, 0, 0], [1, -30, 17], [-3, 97, -55]],

signdet := 1)

gap> n.rowtrans*m=n.normal;

true

gap> TriangulizeIntegerMat(m); m;

[[1, 15, 28], [0, 1, 1], [0, 0, 3]]

25.2.4 HermiteNormalFormIntegerMat

▷ HermiteNormalFormIntegerMat(mat) (operation)

This operation computes the Hermite normal form of a matrix mat with integer entries. It returns
a immutable matrix in HNF.

25.2.5 HermiteNormalFormIntegerMatTransform

▷ HermiteNormalFormIntegerMatTransform(mat) (operation)

This operation computes the Hermite normal form of a matrix mat with integer entries. It returns
a record with components normal (a matrix H) and rowtrans (a matrix Q) such that QA = H.

Example
gap> m:=[[1,15,28],[4,5,6],[7,8,9]];;

gap> HermiteNormalFormIntegerMat(m);

[[1, 0, 1], [0, 1, 1], [0, 0, 3]]

gap> n:=HermiteNormalFormIntegerMatTransform(m);

rec(normal := [[1, 0, 1], [0, 1, 1], [0, 0, 3]], rank := 3,

rowC := [[1, 0, 0], [0, 1, 0], [0, 0, 1]],

rowQ := [[-2, 62, -35], [1, -30, 17], [-3, 97, -55]],

rowtrans := [[-2, 62, -35], [1, -30, 17], [-3, 97, -55]],

signdet := 1)

gap> n.rowtrans*m=n.normal;

true

25.2.6 SmithNormalFormIntegerMat

▷ SmithNormalFormIntegerMat(mat) (operation)

This operation computes the Smith normal form of a matrix mat with integer entries. It returns a
new immutable matrix in the Smith normal form.

25.2.7 SmithNormalFormIntegerMatTransforms

▷ SmithNormalFormIntegerMatTransforms(mat) (operation)

This operation computes the Smith normal form of a matrix mat with integer entries. It returns
a record with components normal (a matrix S), rowtrans (a matrix P), and coltrans (a matrix Q)
such that PAQ = S.

GAP - Reference Manual 374

25.2.8 DiagonalizeIntMat

▷ DiagonalizeIntMat(mat) (function)

This function changes mat to its SNF. (The result is the same as that of
SmithNormalFormIntegerMat (25.2.6), but mat will be modified, thus using less memory.)
If mat is immutable an error will be triggered.

Example
gap> m:=[[1,15,28],[4,5,6],[7,8,9]];;

gap> SmithNormalFormIntegerMat(m);

[[1, 0, 0], [0, 1, 0], [0, 0, 3]]

gap> n:=SmithNormalFormIntegerMatTransforms(m);

rec(colC := [[1, 0, 0], [0, 1, 0], [0, 0, 1]],

colQ := [[1, 0, -1], [0, 1, -1], [0, 0, 1]],

coltrans := [[1, 0, -1], [0, 1, -1], [0, 0, 1]],

normal := [[1, 0, 0], [0, 1, 0], [0, 0, 3]], rank := 3,

rowC := [[1, 0, 0], [0, 1, 0], [0, 0, 1]],

rowQ := [[-2, 62, -35], [1, -30, 17], [-3, 97, -55]],

rowtrans := [[-2, 62, -35], [1, -30, 17], [-3, 97, -55]],

signdet := 1)

gap> n.rowtrans*m*n.coltrans=n.normal;

true

gap> DiagonalizeIntMat(m);m;

[[1, 0, 0], [0, 1, 0], [0, 0, 3]]

25.2.9 NormalFormIntMat

▷ NormalFormIntMat(mat, options) (function)

This general operation for computation of various Normal Forms is probably the most efficient.
Options bit values:

0/1 Triangular Form / Smith Normal Form.

2 Reduce off diagonal entries.

4 Row Transformations.

8 Col Transformations.

16 Destructive (the original matrix may be destroyed)

Compute a Triangular, Hermite or Smith form of the n×m integer input matrix A. Optionally,
compute n×n and m×m unimodular transforming matrices Q,P which satisfy QA = H or QAP = S.

Note option is a value ranging from 0 to 15 but not all options make sense (e.g., reducing off
diagonal entries with SNF option selected already). If an option makes no sense it is ignored.

Returns a record with component normal containing the computed normal form and optional
components rowtrans and/or coltrans which hold the respective transformation matrix. Also in
the record are components holding the sign of the determinant, signdet, and the rank of the matrix,
rank.

GAP - Reference Manual 375

Example
gap> m:=[[1,15,28],[4,5,6],[7,8,9]];;

gap> NormalFormIntMat(m,0); # Triangular, no transforms

rec(normal := [[1, 15, 28], [0, 1, 1], [0, 0, 3]],

rank := 3, signdet := 1)

gap> NormalFormIntMat(m,6); # Hermite Normal Form with row transforms

rec(normal := [[1, 0, 1], [0, 1, 1], [0, 0, 3]], rank := 3,

rowC := [[1, 0, 0], [0, 1, 0], [0, 0, 1]],

rowQ := [[-2, 62, -35], [1, -30, 17], [-3, 97, -55]],

rowtrans := [[-2, 62, -35], [1, -30, 17], [-3, 97, -55]],

signdet := 1)

gap> NormalFormIntMat(m,13); # Smith Normal Form with both transforms

rec(colC := [[1, 0, 0], [0, 1, 0], [0, 0, 1]],

colQ := [[1, 0, -1], [0, 1, -1], [0, 0, 1]],

coltrans := [[1, 0, -1], [0, 1, -1], [0, 0, 1]],

normal := [[1, 0, 0], [0, 1, 0], [0, 0, 3]], rank := 3,

rowC := [[1, 0, 0], [0, 1, 0], [0, 0, 1]],

rowQ := [[-2, 62, -35], [1, -30, 17], [-3, 97, -55]],

rowtrans := [[-2, 62, -35], [1, -30, 17], [-3, 97, -55]],

signdet := 1)

gap> last.rowtrans*m*last.coltrans;

[[1, 0, 0], [0, 1, 0], [0, 0, 3]]

25.2.10 AbelianInvariantsOfList

▷ AbelianInvariantsOfList(list) (attribute)

Given a list of nonnegative integers, this routine returns a sorted list containing the prime power
factors of the positive entries in the original list, as well as all zeroes of the original list.

Example
gap> AbelianInvariantsOfList([4,6,2,0,12]);

[0, 2, 2, 3, 3, 4, 4]

25.3 Determinant of an integer matrix

25.3.1 DeterminantIntMat

▷ DeterminantIntMat(mat) (function)

Computes the determinant of an integer matrix using the same strategy as NormalFormIntMat

(25.2.9). This method is faster in general for matrices greater than 20× 20 but quite a lot slower for
smaller matrices. It therefore passes the work to the more general DeterminantMat (24.4.4) for these
smaller matrices.

25.4 Decompositions

For computing the decomposition of a vector of integers into the rows of a matrix of integers, with
integral coefficients, one can use p-adic approximations, as follows.

GAP - Reference Manual 376

Let A be a square integral matrix, and p an odd prime. The reduction of A modulo p is A, its entries
are chosen in the interval [−(p− 1)/2,(p− 1)/2]. If A is regular over the field with p elements, we
can form A′ = A−1. Now we consider the integral linear equation system xA = b, i.e., we look for an
integral solution x. Define b0 = b, and then iteratively compute

xi = (biA′) mod p,bi+1 = (bi − xiA)/p, i = 0,1,2,

By induction, we get

pi+1bi+1 +

(
i

∑
j=0

p jx j

)
A = b.

If there is an integral solution x then it is unique, and there is an index l such that bl+1 is zero and
x = ∑

l
j=0 p jx j.

There are two useful generalizations of this idea. First, A need not be square; it is only necessary
that there is a square regular matrix formed by a subset of columns of A. Second, A does not need to
be integral; the entries may be cyclotomic integers as well, in this case one can replace each column
of A by the columns formed by the coefficients w.r.t. an integral basis (which are integers). Note that
this preprocessing must be performed compatibly for A and b.

GAP provides the following functions for this purpose (see also InverseMatMod (24.15.1)).

25.4.1 Decomposition

▷ Decomposition(A, B, depth) (operation)

For a m×n matrix A of cyclotomics that has rank m ≤ n, and a list B of cyclotomic vectors, each
of length n, Decomposition tries to find integral solutions of the linear equation systems x * A =

B[i], by computing the p-adic series of hypothetical solutions.
Decomposition(A, B, depth), where depth is a nonnegative integer, computes for each

vector B[i] the initial part ∑
depth
k=0 xk pk, with all xk vectors of integers with entries bounded by

±(p−1)/2. The prime p is set to 83 first; if the reduction of A modulo p is singular, the next prime is
chosen automatically.

A list X is returned. If the computed initial part for x * A = B[i] is a solution, we have X[i]

= x , otherwise X[i] = fail.
If depth is not an integer then it must be the string "nonnegative". Decomposition(A, B,

"nonnegative") assumes that the solutions have only nonnegative entries, and that the first column
of A consists of positive integers. This is satisfied, e.g., for the decomposition of ordinary characters
into Brauer characters. In this case the necessary number depth of iterations can be computed; the
i-th entry of the returned list is fail if there exists no nonnegative integral solution of the system x

* A = B[i], and it is the solution otherwise.
Note that the result is a list of fail if A has not full rank, even if there might be a unique integral

solution for some equation system.

25.4.2 LinearIndependentColumns

▷ LinearIndependentColumns(mat) (function)

Called with a matrix mat , LinearIndependentColumns returns a maximal list of column posi-
tions such that the restriction of mat to these columns has the same rank as mat .

GAP - Reference Manual 377

25.4.3 PadicCoefficients

▷ PadicCoefficients(A, Amodpinv, b, prime, depth) (function)

Let A be an integral matrix, prime a prime integer, Amodpinv an inverse of A modulo prime ,
b an integral vector, and depth a nonnegative integer. PadicCoefficients returns the list
[x0,x1, . . . ,xl,bl+1] describing the prime-adic approximation of b (see above), where l = depth or l
is minimal with the property that bl+1 = 0.

25.4.4 IntegralizedMat

▷ IntegralizedMat(A[, inforec]) (function)

IntegralizedMat returns, for a matrix A of cyclotomics, a record intmat with components mat
and inforec. Each family of algebraic conjugate columns of A is encoded in a set of columns of the
rational matrix intmat.mat by replacing cyclotomics in A by their coefficients w.r.t. an integral basis.
intmat.inforec is a record containing the information how to encode the columns.

If the only argument is A , the value of the component inforec is computed that can be entered as
second argument inforec in a later call of IntegralizedMat with a matrix B that shall be encoded
compatibly with A .

25.4.5 DecompositionInt

▷ DecompositionInt(A, B, depth) (function)

DecompositionInt does the same as Decomposition (25.4.1), except that A and B must be
integral matrices, and depth must be a nonnegative integer.

25.5 Lattice Reduction

25.5.1 LLLReducedBasis

▷ LLLReducedBasis([L,]vectors[, y][, "linearcomb"][, lllout]) (function)

provides an implementation of the LLL algorithm by Lenstra, Lenstra and Lovász (see [LLJL82],
[Poh87]). The implementation follows the description in [Coh93, p. 94f.].

LLLReducedBasis returns a record whose component basis is a list of LLL reduced linearly
independent vectors spanning the same lattice as the list vectors . L must be a lattice, with scalar
product of the vectors v and w given by ScalarProduct(L, v, w). If no lattice is specified then
the scalar product of vectors given by ScalarProduct(v, w) is used.

In the case of the option "linearcomb", the result record contains also the components
relations and transformation, with the following meaning. relations is a basis of the rela-
tion space of vectors , i.e., of vectors x such that x * vectors is zero. transformation gives the
expression of the new lattice basis in terms of the old, i.e., transformation * vectors equals the
basis component of the result.

Another optional argument is y , the “sensitivity” of the algorithm, a rational number between 1/4
and 1 (the default value is 3/4).

GAP - Reference Manual 378

The optional argument lllout is a record with the components mue and B, both lists of length k,
with the meaning that if lllout is present then the first k vectors in vectors form an LLL reduced
basis of the lattice they generate, and lllout.mue and lllout.B contain their scalar products and
norms used internally in the algorithm, which are also present in the output of LLLReducedBasis. So
lllout can be used for “incremental” calls of LLLReducedBasis.

The function LLLReducedGramMat (25.5.2) computes an LLL reduced Gram matrix.
Example

gap> vectors:= [[9, 1, 0, -1, -1], [15, -1, 0, 0, 0],

> [16, 0, 1, 1, 1], [20, 0, -1, 0, 0],

> [25, 1, 1, 0, 0]];;

gap> LLLReducedBasis(vectors, "linearcomb");

rec(B := [5, 36/5, 12, 50/3],

basis := [[1, 1, 1, 1, 1], [1, 1, -2, 1, 1],

[-1, 3, -1, -1, -1], [-3, 1, 0, 2, 2]],

mue := [[], [2/5], [-1/5, 1/3], [2/5, 1/6, 1/6]],

relations := [[-1, 0, -1, 0, 1]],

transformation := [[0, -1, 1, 0, 0], [-1, -2, 0, 2, 0],

[1, -2, 0, 1, 0], [-1, -2, 1, 1, 0]])

25.5.2 LLLReducedGramMat

▷ LLLReducedGramMat(G[, y]) (function)

LLLReducedGramMat provides an implementation of the LLL algorithm by Lenstra, Lenstra and
Lovász (see [LLJL82], [Poh87]). The implementation follows the description in [Coh93, p. 94f.].

Let G the Gram matrix of the vectors (b1,b2, . . . ,bn); this means G is either a square symmetric
matrix or lower triangular matrix (only the entries in the lower triangular half are used by the program).

LLLReducedGramMat returns a record whose component remainder is the Gram matrix of the
LLL reduced basis corresponding to (b1,b2, . . . ,bn). If G is a lower triangular matrix then also the
remainder component of the result record is a lower triangular matrix.

The result record contains also the components relations and transformation, which have
the following meaning.

relations is a basis of the space of vectors (x1,x2, . . . ,xn) such that ∑
n
i=1 xibi is zero,

and transformation gives the expression of the new lattice basis in terms of the old, i.e.,
transformation is the matrix T such that T ·G ·T tr is the remainder component of the result.

The optional argument y denotes the “sensitivity” of the algorithm, it must be a rational number
between 1/4 and 1; the default value is y = 3/4.

The function LLLReducedBasis (25.5.1) computes an LLL reduced basis.
Example

gap> g:= [[4, 6, 5, 2, 2], [6, 13, 7, 4, 4],

> [5, 7, 11, 2, 0], [2, 4, 2, 8, 4], [2, 4, 0, 4, 8]];;

gap> LLLReducedGramMat(g);

rec(B := [4, 4, 75/16, 168/25, 32/7],

mue := [[], [1/2], [1/4, -1/8], [1/2, 1/4, -2/25],

[-1/4, 1/8, 37/75, 8/21]], relations := [],

remainder := [[4, 2, 1, 2, -1], [2, 5, 0, 2, 0],

[1, 0, 5, 0, 2], [2, 2, 0, 8, 2], [-1, 0, 2, 2, 7]],

transformation := [[1, 0, 0, 0, 0], [-1, 1, 0, 0, 0],

[-1, 0, 1, 0, 0], [0, 0, 0, 1, 0], [-2, 0, 1, 0, 1]])

GAP - Reference Manual 379

25.6 Orthogonal Embeddings

25.6.1 OrthogonalEmbeddings

▷ OrthogonalEmbeddings(gram[, "positive"][, maxdim]) (function)

computes all possible orthogonal embeddings of a lattice given by its Gram matrix gram , which
must be a regular symmetric matrix of integers. In other words, all integral solutions X of the equation
X tr ·X =gram are calculated. The implementation follows the description in [Ple95].

Usually there are many solutions X but all their rows belong to a small set of vectors, so
OrthogonalEmbeddings returns the solutions encoded by a record with the following components.

vectors

the list L = [x1,x2, . . . ,xn] of vectors that may be rows of a solution, up to sign; these are exactly
the vectors with the property xi·gram−1 · xtr

i ≤ 1, see ShortestVectors (25.6.2),

norms

the list of values xi·gram−1 · xtr
i , and

solutions

a list S of index lists; the i-th solution matrix is L{ S[i] }, so the dimension of the i-th solution
is the length of S[i], and we have gram= ∑ j∈S[i] xtr

j · x j,

The optional argument "positive" will cause OrthogonalEmbeddings to compute only vectors
xi with nonnegative entries. In the context of characters this is allowed (and useful) if gram is the
matrix of scalar products of ordinary characters.

When OrthogonalEmbeddings is called with the optional argument maxdim (a positive integer),
only solutions up to dimension maxdim are computed; this may accelerate the algorithm.

Example
gap> b:= [[3, -1, -1], [-1, 3, -1], [-1, -1, 3]];;

gap> c:=OrthogonalEmbeddings(b);

rec(norms := [1, 1, 1, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2],

solutions := [[1, 2, 3], [1, 6, 6, 7, 7], [2, 5, 5, 8, 8],

[3, 4, 4, 9, 9], [4, 5, 6, 7, 8, 9]],

vectors := [[-1, 1, 1], [1, -1, 1], [-1, -1, 1],

[-1, 1, 0], [-1, 0, 1], [1, 0, 0], [0, -1, 1],

[0, 1, 0], [0, 0, 1]])

gap> c.vectors{ c.solutions[1] };

[[-1, 1, 1], [1, -1, 1], [-1, -1, 1]]

gram may be the matrix of scalar products of some virtual characters. From the characters and the
embedding given by the matrix X , Decreased (72.10.7) may be able to compute irreducibles.

25.6.2 ShortestVectors

▷ ShortestVectors(G, m[, "positive"]) (function)

Let G be a regular matrix of a symmetric bilinear form, and m a nonnegative integer.
ShortestVectors computes the vectors x that satisfy x · G · xtr ≤ m , and returns a record describ-
ing these vectors. The result record has the components

GAP - Reference Manual 380

vectors

list of the nonzero vectors x, but only one of each pair (x,−x),

norms

list of norms of the vectors according to the Gram matrix G .

If the optional argument "positive" is entered, only those vectors x with nonnegative entries are
computed.

Example
gap> g:= [[2, 1, 1], [1, 2, 1], [1, 1, 2]];;

gap> ShortestVectors(g,4);

rec(norms := [4, 2, 2, 4, 2, 4, 2, 2, 2],

vectors := [[-1, 1, 1], [0, 0, 1], [-1, 0, 1], [1, -1, 1],

[0, -1, 1], [-1, -1, 1], [0, 1, 0], [-1, 1, 0],

[1, 0, 0]])

Chapter 26

Vector and Matrix Objects

This chapter describes an interface to vector and matrix objects which are not represented by plain
lists (of plain lists), cf. Chapters 23 and 24.

26.1 Concepts and Rules for Vector and Matrix Objects

Traditionally, vectors and matrices in GAP have been represented by (lists of) lists, see the chapters
23 and 24. More precisely, the term “vector” (corresponding to the filter IsVector (31.14.14)) is
used in the abstract sense of an “element of a vector space”, the term “row vector” (corresponding to
IsRowVector (23.1.1)) is used to denote a “coordinate vector” which is represented by a GAP list
(see IsList (21.1.1)), and the term “matrix” is used to denote a list of lists, with additional properties
(see IsMatrix (24.2.1)).

Unfortunately, such lists (objects in IsPlistRep (21.24.2)) cannot store their type, and so it is
impossible to use the advantages of GAP’s method selection on them. This situation is unsustainable
in the long run since more special representations (compressed, sparse, etc.) have already been and
even more will be implemented. Here we describe a programming interface to vectors and matrices,
which solves this problem,

The idea of this interface is that GAP should be able to represent vectors and matrices by objects
that store their type, in order to benefit from method selection. These objects are created by Objectify
(79.1.1), we therefore refer to the them as “vector objects” and “matrix objects” respectively.

(Of course the terminology is somewhat confusing: An “abstract matrix” in GAP can be
represented either by a list of lists or by a matrix object. It can be detected from the filter
IsMatrixOrMatrixObj (26.2.3); this is the union of the filters IsMatrix (24.2.1) –which denotes
those matrices that are represented by lists of lists– and the filter IsMatrixObj (26.2.2) –which defines
“proper” matrix objects in the above sense. In particular, we do not regard the objects in IsMatrix

(24.2.1) as special cases of objects in IsMatrixObj (26.2.2), or vice versa. Thus one can install spe-
cific methods for all three situations: just for “proper” matrix objects, just for matrices represented
by lists of lists, or for both kinds of matrices. For example, a GAP package may decide to accept
only “proper” matrix objects as arguments of its functions, or it may try to support also objects in
IsMatrix (24.2.1) as far as this is possible.)

We want to be able to write (efficient) code that is independent of the actual representation (in the
sense of GAP’s representation filters, see Section 13.4) and preserves it.

This latter requirement makes it necessary to distinguish between different representations of ma-
trices: “Row list” matrices (see IsRowListMatrix (26.2.4) behave basically like lists of rows, in par-

381

GAP - Reference Manual 382

ticular the rows are individual GAP objects that can be shared between different matrix objects. One
can think of other representations of matrices, such as matrices whose subobjects represent columns,
or “flat” matrices which do not have subobjects like rows or columns at all. The different kinds of
matrices have to be distinguished already with respect to the definition of the operations for them.

In particular vector and matrix objects know their base domain (see BaseDomain (26.3.1)) and
their dimensions. The basic condition is that the entries of vector and matrix objects must either lie in
the base domain or naturally embed in the sense that addition and multiplication automatically work
with elements of the base domain; for example, a matrix object over a polynomial ring may also
contain entries from the coefficient ring.

Vector and matrix objects may be mutable or immutable. Of course all operations changing an
object are only allowed/implemented for mutable variants.

Vector objects are equal with respect to \= (31.11.1) if they have the same length and the same
entries. It is not necessary that they have the same base domain. Matrices are equal with respect to \=

(31.11.1) if they have the same dimensions and the same entries.
For a row list matrix object, it is not guaranteed that all its rows have the same vector type. It is

for example thinkable that a matrix object stores some of its rows in a sparse representation and some
in a dense one. However, it is guaranteed that the rows of two matrices in the same representation are
compatible in the sense that all vector operations defined in this interface can be applied to them and
that new matrices in the same representation as the original matrix can be formed out of them.

Note that there is neither a default mapping from the set of matrix object representations to
the set of vector representations nor one in the reverse direction. There is in general no “as-
sociated” vector object representation to a matrix object representation or vice versa. (However,
CompatibleVectorFilter (26.3.3) may describe a vector object representation that is compatible
with a given matrix object.)

The recommended way to write code that preserves the representation basically works by using
constructing operations that take template objects to decide about the intended representation for the
new object.

Vector and matrix objects do not have to be GAP lists in the sense of IsList (21.1.1). Note that
objects not in the filter IsList (21.1.1) need not support all list operations, and their behaviour is
not prescribed by the rules for lists, e.g., behaviour w.r.t. arithmetic operations. However, row list
matrices behave nearly like lists of row vectors that insist on being dense and containing only vectors
of the same length and with the same base domain.

Vector and matrix objects are not likely to benefit from GAP’s immediate methods (see section
78.7). Therefore it may be useful to set the filter IsNoImmediateMethodsObject (78.7.2) in the
definition of new kinds of vector and matrix objects.

For information on how to implement new IsMatrixObj (26.2.2) and IsVectorObj (26.2.1)
representations see Section 26.14.

26.2 Categories of Vector and Matrix Objects

Currently the following categories of vector and matrix objects are supported in GAP. More can be
added as soon as there is need for them.

GAP - Reference Manual 383

26.2.1 IsVectorObj

▷ IsVectorObj(obj) (Category)

The idea behind vector objects is that one wants to deal with objects like coefficient lists of fixed
length over a given domain R, say, which can be added and can be multiplied from the left with el-
ements from R. A vector object v, say, is always a copyable object (see IsCopyable (12.6.1)) in
IsVector (31.14.14), which knows the values of BaseDomain (26.3.1) (with value R) and Length

(21.17.5), where R is a domain (see Chapter 12.4) that has methods for Zero (31.10.3), One (31.10.2),
\in (30.6.1), Characteristic (31.10.1), IsFinite (30.4.2). We say that v is defined over R. Typi-
cally, R will be at least a semiring.

For creating new vector objects compatible with v, NewVector (26.4.1) requires that also the value
of ConstructingFilter (26.3.2) is known for v.

Further, entry access v[i] is expected to return a GAP object, for 1≤ i≤ Length(v), and that these
entries of v belong to the base domain R.

Note that we do not require that v is a list in the sense of IsList (21.1.1), in particular the rules of
list arithmetic (see the sections 21.13 and 21.14) need not hold. For example, the sum of two vector
objects of different lengths or defined over different base domains is not defined, and a plain list of
vector objects is not a matrix. Also unbinding entries of vector objects is not defined.

Scalar multiplication from the left is defined only with elements from R.
The family of v (see FamilyObj (13.1.1)) is the same as the family of its base domain R. However,

it is not required that the entries lie in R in the sense of \in (30.6.1), also values may occur that can
be naturally embedded into R. For example, if R is a polynomial ring then some entries in v may be
elements of the coefficient ring of R.

26.2.2 IsMatrixObj

▷ IsMatrixObj(obj) (Category)

The idea behind matrix objects is that one wants to deal with objects like m by n arrays over a
given domain R, say, which can be added and multiplied and can be multiplied from the left with
elements from R. A matrix object M, say, is always a copyable object (see IsCopyable (12.6.1))
in IsVector (31.14.14) and IsScalar (31.14.20), which knows the values of BaseDomain (26.3.1)
(with value R), NumberRows (26.3.5) (with value m), NumberColumns (26.3.5) (with value n), where
R is a domain (see Chapter 12.4) that has methods for Zero (31.10.3), One (31.10.2), \in (30.6.1),
Characteristic (31.10.1), IsFinite (30.4.2). We say that v is defined over R. Typically, R will be
at least a semiring.

For creating new matrix objects compatible with M, NewMatrix (26.4.4) requires that also the
value of ConstructingFilter (26.3.2) is known for M.

Further, entry access M[i, j] is expected to return a GAP object, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and
that these entries of M belong to the base domain R.

Note that we do not require that M is a list in the sense of IsList (21.1.1), in particular the rules
of list arithmetic (see the sections 21.13 and 21.14) need not hold. For example, accessing “rows”
of M via \[\] (21.2.1) is in general not possible, and the sum of two matrix objects with different
numbers of rows or columns is not defined. Also unbinding entries of matrix objects is not defined.

Scalar multiplication from the left is defined only with elements from R.

GAP - Reference Manual 384

It is not assumed that the multiplication in R is associative, and we do not define what the k-th
power of a matrix object is in this case, for positive integers k. (However, a default powering method
is available.)

The filter IsMatrixObj alone does not imply that the multiplication is the usual matrix multiplica-
tion. This multiplication can be defined via the filter IsOrdinaryMatrix (24.2.2); this filter together
with the associativity of the base domain also implies the associativity of matrix multiplication. For
example, elements of matrix Lie algebras (see LieObject (64.1.1)) lie in IsMatrixObj but not in
IsOrdinaryMatrix (24.2.2).

The family of M (see FamilyObj (13.1.1)) is the collections family (see CollectionsFamily

(30.2.1)) of its base domain R. However, it is not required that the entries lie in R in the sense of
\in (30.6.1), also values may occur that can be naturally embedded into R. For example, if R is a
polynomial ring then some entries in M may be elements of the coefficient ring of R.

26.2.3 IsMatrixOrMatrixObj

▷ IsMatrixOrMatrixObj(obj) (Category)

Several functions are defined for objects in IsMatrix (24.2.1) and objects in IsMatrixObj

(26.2.2). All these objects lie in the filter IsMatrixOrMatrixObj. It should be used in situations
where an object can be either a list of lists in IsMatrix (24.2.1) or a “proper” matrix object in
IsMatrixObj (26.2.2), for example as a requirement in the installation of a method for such an argu-
ment.

Example
gap> m:= IdentityMat(2, GF(2));;

gap> IsMatrix(m); IsMatrixObj(m); IsMatrixOrMatrixObj(m);

true

false

true

gap> m:= NewIdentityMatrix(IsPlistMatrixRep, GF(2), 2);;

gap> IsMatrix(m); IsMatrixObj(m); IsMatrixOrMatrixObj(m);

false

true

true

26.2.4 IsRowListMatrix

▷ IsRowListMatrix(obj) (Category)

A row list matrix object is a matrix object (see IsMatrixObj (26.2.2)) M which admits access to
its rows, that is, list access M[i] (see \[\] (21.2.1)) yields the i-th row of M, for 1 ≤ i ≤ NumberRows(

M).
All rows are IsVectorObj (26.2.1) objects in the same representation. Several rows of a row list

matrix object can be identical objects, and different row list matrices may share rows. Row access just
gives a reference to the row object, without copying the row.

Matrix objects in IsRowListMatrix are not necessarily in IsList (21.1.1), and then they need
not obey the general rules for lists.

GAP - Reference Manual 385

26.3 Defining Attributes of Vector and Matrix Objects

26.3.1 BaseDomain

▷ BaseDomain(vector) (attribute)

▷ BaseDomain(matrix) (attribute)

The vector object vector or matrix object matrix , respectively, is defined over the domain given
by its BaseDomain value.

Note that not all entries of the object necessarily lie in its base domain with respect to \in (30.6.1),
see Section 26.1.

26.3.2 ConstructingFilter

▷ ConstructingFilter(v) (attribute)

▷ ConstructingFilter(M) (attribute)

Returns: a filter
Called with a vector object v or a matrix object M , respectively, ConstructingFilter returns a

filter f such that when NewVector (26.4.1) or NewMatrix (26.4.4), respectively, is called with f then
a vector object or a matrix object, respectively, in the same representation as the argument is produced.

If the ConstructingFilter value of v or M implies IsCopyable (12.6.1) then mutable versions
of v or M can be created, otherwise all vector or matrix objects with this filter are immutable.

26.3.3 CompatibleVectorFilter

▷ CompatibleVectorFilter(M) (attribute)

Returns: a filter
Called with a matrix object M , CompatibleVectorFilter returns either a filter f such that vec-

tor objects with ConstructingFilter (26.3.2) value f are compatible in the sense that M can be
multiplied with these vector objects, of fail if no such filter is known.

26.3.4 Length (for a vector object)

▷ Length(v) (attribute)

returns the length of the vector object v , which is defined to be the number of entries of v .

26.3.5 NumberRows and NumberColumns

▷ NumberRows(M) (attribute)

▷ NrRows(M) (attribute)

▷ NumberColumns(M) (attribute)

▷ NrCols(M) (attribute)

For a matrix object M , NumberRows and NumberColumns store the number of rows and columns
of M , respectively.

NrRows and NrCols are synonyms of NumberRows and NumberColumns, respectively.

GAP - Reference Manual 386

26.4 Constructing Vector and Matrix Objects

26.4.1 NewVector and NewZeroVector

▷ NewVector(filt, R, list) (operation)

▷ NewZeroVector(filt, R, n) (operation)

For a filter filt , a semiring R , and a list list of elements that belong to R , NewVector returns
a vector object which has the ConstructingFilter (26.3.2) filt , the BaseDomain (26.3.1) R , and
the entries in list . The list list is guaranteed not to be changed by this operation.

If the global option check is set to false then NewVector need not perform consistency checks.
Similarly, NewZeroVector returns a vector object of length n which has filt and R as

ConstructingFilter (26.3.2) and BaseDomain (26.3.1) values, and contains the zero of R in each
position.

The returned object is mutable if and only if filt implies IsCopyable (12.6.1).

26.4.2 Vector

▷ Vector(filt, R, list) (operation)

▷ Vector(filt, R, v) (operation)

▷ Vector(R, list) (operation)

▷ Vector(R, v) (operation)

▷ Vector(list, v) (operation)

▷ Vector(v1, v2) (operation)

▷ Vector(list) (operation)

Returns: a vector object
If a filter filt is given as the first argument then a vector object is returned that has

ConstructingFilter (26.3.2) value filt , is defined over the base domain R , and has the entries
given by the list list or the vector object v , respectively.

If a semiring R is given as the first argument then a vector object is returned whose
ConstructingFilter (26.3.2) value is guessed from R , again with base domain R and entries given
by the last argument.

In the remaining cases with two arguments, the first argument is a list or a vector object that defines
the entries of the result, and the second argument is a vector object whose ConstructingFilter

(26.3.2) and BaseDomain (26.3.1) are taken for the result.
If only a list list is given then both the ConstructingFilter (26.3.2) and the BaseDomain

(26.3.1) are guessed from this list.
The variant Vector(v1, v2) is supported also for the case that v2 is a row vector but not

a vector object. In this situation, the result is a row vector that is equal to v1 and whose internal
representation fits to that of v2 .

If the global option check is set to false then Vector need not perform consistency checks.
If the ConstructingFilter (26.3.2) value of the result implies IsCopyable (12.6.1) then the

result is mutable if and only if the argument that determines the entries of the result (list , v , v1) is
mutable.

In the case of a mutable result, it is not guaranteed that the given list of entries is copied.
Default methods for Vector delegate to NewVector (26.4.1).

GAP - Reference Manual 387

26.4.3 ZeroVector

▷ ZeroVector(filt, R, len) (operation)

▷ ZeroVector(R, len) (operation)

▷ ZeroVector(len, v) (operation)

▷ ZeroVector(len, M) (operation)

Returns: a vector object
For a filter filt , a semiring R and a nonnegative integer len , this operation returns a new vector

object of length len over R in the representation filt containing only zeros.
If only R and len are given, then GAP guesses a suitable representation.
For a vector object v and a nonnegative integer len , this operation returns a new vector object of

length len in the same representation as v containing only zeros.
For a matrix object M and a nonnegative integer len , this operation returns a new zero vector

object of length len in the representation given by the CompatibleVectorFilter (26.3.3) value of
M , provided that such a representation exists.

If the ConstructingFilter (26.3.2) value of the result implies IsCopyable (12.6.1) then the
result is mutable.

Default methods for ZeroVector delegate to NewZeroVector (26.4.1).

26.4.4 NewMatrix, NewZeroMatrix, NewIdentityMatrix

▷ NewMatrix(filt, R, ncols, list) (operation)

▷ NewZeroMatrix(filt, R, m, n) (operation)

▷ NewIdentityMatrix(filt, R, n) (operation)

For a filter filt , a semiring R , a positive integer ncols , and a list list , NewMatrix returns
a matrix object which has the ConstructingFilter (26.3.2) filt , the BaseDomain (26.3.1) R , n
columns (see NumberColumns (26.3.5)), and the entries described by list , which can be either a
plain list of vector objects of length ncols or a plain list of plain lists of length ncols or a plain list
of length a multiple of ncols containing the entries in row major order. The list list is guaranteed
not to be changed by this operation.

The corresponding entries must be in or compatible with R . If list already contains vector
objects, they are copied.

If the global option check is set to false then NewMatrix need not perform consistency checks.
Similarly, NewZeroMatrix returns a zero matrix object with m rows and n columns which has

filt and R as ConstructingFilter (26.3.2) and BaseDomain (26.3.1) values.
Similarly, NewIdentityMatrix returns an identity matrix object with n rows and columns which

has filt and R as ConstructingFilter (26.3.2) and BaseDomain (26.3.1) values, and contains the
identity element of R in the diagonal and the zero of R in each off-diagonal position.

The returned object is mutable if and only if filt implies IsCopyable (12.6.1).

26.4.5 Matrix

▷ Matrix(filt, R, list, ncols) (operation)

▷ Matrix(filt, R, list) (operation)

▷ Matrix(filt, R, M) (operation)

▷ Matrix(R, list, ncols) (operation)

GAP - Reference Manual 388

▷ Matrix(R, list) (operation)

▷ Matrix(R, M) (operation)

▷ Matrix(list, ncols, M) (operation)

▷ Matrix(list, M) (operation)

▷ Matrix(M1, M2) (operation)

▷ Matrix(list, ncols) (operation)

▷ Matrix(list) (operation)

Returns: a matrix object
If a filter filt is given as the first argument then a matrix object is returned that has

ConstructingFilter (26.3.2) value filt , is defined over the base domain R , and has the entries
given by the list list or the matrix object M , respectively. Here list can be either a list of plain
lists that describe the entries of the rows, or a flat list of the entries in row major order, where ncols

defines the number of columns.
If a semiring R is given as the first argument then a matrix object is returned whose

ConstructingFilter (26.3.2) value is guessed from R , again with base domain R and entries given
by the last argument.

In those remaining cases where the last argument is a matrix object, the first argument is a list
or a matrix object that defines (together with ncols if applicable) the entries of the result, and the
ConstructingFilter (26.3.2) and BaseDomain (26.3.1) of the last argument are taken for the result.

Finally, if only a list list and perhaps ncols is given then both the ConstructingFilter

(26.3.2) and the BaseDomain (26.3.1) are guessed from the list.
If the global option check is set to false then Matrix need not perform consistency checks.
If the ConstructingFilter (26.3.2) value of the result implies IsCopyable (12.6.1) then the

result is mutable if and only if the argument that determines the entries of the result (list , M , M1) is
mutable.

In the case of a mutable result, it is guaranteed that the given list list is copied in the sense of
ShallowCopy (12.7.1), and if list is a nested list then it is not guaranteed that also the entries of
list are copied.

Default methods for Matrix delegate to NewMatrix (26.4.4).

26.4.6 ZeroMatrix

▷ ZeroMatrix(m, n, M) (operation)

▷ ZeroMatrix(R, m, n) (operation)

▷ ZeroMatrix(filt, R, m, n) (operation)

Returns: a matrix object
For a matrix object M and two nonnegative integers m and n , this operation returns a new matrix

object with m rows and n columns in the same representation and over the same base domain as M

containing only zeros.
If a semiring R and two nonnegative integers m and n are given, the representation of the result is

guessed from R .
If a filter filt and a semiring R are given as the first and second argument, they are taken as the

values of ConstructingFilter (26.3.2) and BaseDomain (26.3.1) of the result.
If the ConstructingFilter (26.3.2) value of the result implies IsCopyable (12.6.1) then the

result is fully mutable.
Default methods for ZeroMatrix delegate to NewZeroMatrix (26.4.4).

GAP - Reference Manual 389

26.4.7 IdentityMatrix

▷ IdentityMatrix(n, M) (operation)

▷ IdentityMatrix(R, n) (operation)

▷ IdentityMatrix(filt, R, n) (operation)

Returns: a matrix object
For a matrix object M and a nonnegative integer n , this operation returns a new identity matrix

object with n rows and columns in the same representation and over the same base domain as M .
If a semiring R and a nonnegative integer n is given, the representation of the result is guessed

from R .
If a filter filt and a semiring R are given as the first and second argument, they are taken as the

values of ConstructingFilter (26.3.2) and BaseDomain (26.3.1) of the result.
If the ConstructingFilter (26.3.2) value of the result implies IsCopyable (12.6.1) then the

result is fully mutable.
Default methods for IdentityMatrix delegate to NewIdentityMatrix (26.4.4).

26.5 Operations for Base Domains of Vector and Matrix Objects

26.5.1 OneOfBaseDomain and ZeroOfBaseDomain

▷ OneOfBaseDomain(v) (attribute)

▷ OneOfBaseDomain(M) (attribute)

▷ ZeroOfBaseDomain(v) (attribute)

▷ ZeroOfBaseDomain(M) (attribute)

These attributes return the identity element and the zero element of the BaseDomain (26.3.1) value
of the vector object v or the matrix object M , respectively.

If v or M , respectively, is a plain list (see IsPlistRep (21.24.2)) then computing its
BaseDomain (26.3.1) value can be regarded as expensive, whereas calling OneOfBaseDomain or
ZeroOfBaseDomain can be regarded as cheap. If v or M , respectively, is not a plain list then one
can also call BaseDomain (26.3.1) first, without loss of performance.

26.6 Operations for Vector and Matrix Objects

26.6.1 Comparison of Vector and Matrix Objects

▷ \=(v1, v2) (operation)

▷ \=(M1, M2) (operation)

▷ \<(v1, v2) (operation)

▷ \<(M1, M2) (operation)

Two vector objects in IsList (21.1.1) are equal if they are equal as lists. Two matrix objects in
IsList (21.1.1) are equal if they are equal as lists.

Two vector objects of which at least one is not in IsList (21.1.1) are equal with respect to \=

(31.11.1) if they have the same ConstructingFilter (26.3.2) value, the same BaseDomain (26.3.1)
value, the same length, and the same entries.

GAP - Reference Manual 390

Two matrix objects of which at least one is not in IsList (21.1.1) are equal with respect to \=

(31.11.1) if they have the same ConstructingFilter (26.3.2) value, the same BaseDomain (26.3.1)
value, the same dimensions, and the same entries.

We do not state a general rule how vector and matrix objects shall behave w.r.t. the comparison
by \< (31.11.1). Note that a “row lexicographic order” would be quite unnatural for matrices that are
internally represented via a list of columns.

Note that the operations \= (31.11.1) and \< (31.11.1) are used to form sorted lists and sets of
objects, see for example Sort (21.18.1) and Set (30.3.7).

26.6.2 Unpack

▷ Unpack(v) (operation)

▷ Unpack(M) (operation)

Returns: A plain list
Returns a new mutable plain list (see IsPlistRep (21.24.2)) containing the entries of the vector

object v or the matrix object M , respectively. In the case of a matrix object, the result is a plain list of
plain lists.

Changing the result does not change v or M , respectively. The entries themselves are not copied.

26.6.3 ChangedBaseDomain

▷ ChangedBaseDomain(v, R) (operation)

▷ ChangedBaseDomain(M, R) (operation)

For a vector object v (a matrix object M) and a semiring R , ChangedBaseDomain returns a new
vector object (matrix object) with BaseDomain (26.3.1) value R , ConstructingFilter (26.3.2) value
equal to that of v (M), and the same entries as v (M).

The result is mutable if and only if v (M) is mutable.
For example, one can create a vector defined over GF(4) from a vector defined over GF(2) with

this operation.

26.6.4 Randomize

▷ Randomize([Rs,]v) (operation)

▷ Randomize([Rs,]M) (operation)

Replaces every entry in the mutable vector object v or matrix object M , respectively, with a random
one from the base domain of v or M , respectively, and returns the argument.

If given, the random source Rs is used to compute the random elements. Note that in this case,
a Random (14.7.2) method must be available that takes a random source as its first argument and the
base domain as its second argument.

26.7 List Like Operations for Vector Objects

The following operations that are defined for lists are useful also for vector objects. (More such
operations can be added if this is appropriate.)

GAP - Reference Manual 391

26.7.1 Element Access and Assignment for Vector Objects

▷ \[\](v, i) (operation)

▷ \[\]\:\=(v, i, obj) (operation)

▷ \{\}(v, list) (operation)

For a vector object v and a positive integer i that is not larger than the length of v (see Length

(26.3.4)), v[i] is the entry at position i .
If v is mutable, i is as above, and obj is an object from the base domain of v then v[i]:= obj

assigns obj to the i-th position of v .
If list is a list of positive integers that are not larger than the length of v then v{list} returns a

new mutable vector object in the same representation as v (see ConstructingFilter (26.3.2)) that
contains the list [k]-th entry of v at position k.

If the global option check is set to false then \[\]\:\= (26.7.1) need not perform consistency
checks.

Note that the sublist assignment operation \{\}\:\= (21.4.1) is left out here since it tempts the
programmer to use constructions like v{ [1 .. 3] }:= w{ [4 .. 6] } which produces
an unnecessary intermediate object; one should use CopySubVector (26.9.3) instead.

26.7.2 PositionNonZero (for a vector object)

▷ PositionNonZero(v) (operation)

Returns: An integer
Returns the index of the first entry in the vector object v that is not zero. If all entries are zero, the

function returns Length(v) + 1.

26.7.3 PositionLastNonZero (for a vector object)

▷ PositionLastNonZero(v) (operation)

Returns: An integer
Returns the index of the last entry in the vector object v that is not zero. If all entries are zero, the

function returns 0.

26.7.4 ListOp (for vector object and function)

▷ ListOp(v[, func]) (operation)

Returns: A plain list
Applies the function func to each entry of the vector object v and returns the results as a mutable

plain list. This allows for calling List (30.3.5) on vector objects.
If the argument func is not given, applies IdFunc (5.4.6) to all entries.

26.8 Arithmetical Operations for Vector Objects

26.8.1 Unary Arithmetical Operations for Vector Objects

▷ AdditiveInverseMutable(v) (operation)

▷ AdditiveInverseSameMutability(v) (operation)

▷ ZeroMutable(v) (operation)

GAP - Reference Manual 392

▷ ZeroSameMutability(v) (operation)

▷ IsZero(v) (property)

▷ Characteristic(v) (attribute)

Returns: a vector object
For a vector object v , the operations for computing the additive inverse with prescribed mutability

return a vector object with the same ConstructingFilter (26.3.2) and BaseDomain (26.3.1) values,
such that the sum with v is a zero vector. It is not specified what happens if the base domain does not
admit the additive inverses of the entries.

Analogously, the operations for computing a zero vector with prescribed mutability return a vector
object compatible with v .

IsZero returns true if all entries in v are zero, and false otherwise.
Characteristic returns the corresponding value of the BaseDomain (26.3.1) value of v .

26.8.2 Binary Arithmetical Operations for Vector Objects

▷ \+(v1, v2) (method)

▷ \-(v1, v2) (method)

▷ *(s, v) (method)

▷ *(v, s) (method)

▷ *(v1, v2) (method)

▷ ScalarProduct(v1, v2) (method)

▷ \/(v, s) (method)

The sum and the difference, respectively, of two vector objects v1 and v2 is a new mutable vector
object whose entries are the sums and the differences of the entries of the arguments.

The product of a scalar s and a vector object v (from the left or from the right) is a new mutable
vector object whose entries are the corresponding products.

The quotient of a vector object v and a scalar s is a new mutable vector object whose entries are
the corresponding quotients.

The product of two vector objects v1 and v2 as well as the result of ScalarProduct is the
standard scalar product of the two arguments (an element of the base domain of the vector objects).

All this is defined only if the vector objects have the same length and are defined over the same
base domain and have the same representation, and if the products with the given scalar belong to the
base domain; otherwise it is not specified what happens. If the result is a vector object then it has the
same representation and the same base domain as the given vector object(s).

26.8.3 AddVector (for two vector objects)

▷ AddVector(dst, src[, mul[, from, to]]) (operation)

▷ AddVector(dst, mul, src[, from, to]) (operation)

Returns: nothing
Called with two vector objects dst and src , this function replaces the entries of dst in-place by

the entries of the sum dst + src .
If a scalar mul is given as the third or second argument, respectively, then the entries of dst get

replaced by those of dst + src * mul or dst + mul * src , respectively.
If the optional parameters from and to are given then only the index range [from..to] is guar-

anteed to be affected. Other indices may be affected, if it is more convenient to do so. This can be

GAP - Reference Manual 393

helpful if entries of src are known to be zero.
If from is bigger than to , the operation does nothing.

26.8.4 MultVector (for a vector object)

▷ MultVector(v, mul[, from, to]) (operation)

▷ MultVectorLeft(v, mul[, from, to]) (operation)

▷ MultVectorRight(v, mul[, from, to]) (operation)

Returns: nothing
These operations multiply v by mul in-place where MultVectorLeft multiplies with mul from

the left and MultVectorRight does so from the right.
Note that MultVector is just a synonym for MultVectorLeft. This was chosen because vectors

in GAP are by default row vectors and scalar multiplication is usually written as a ·v = a · [v1, ...,vn] =
[a · v1, ...,a · vn] with scalars being applied from the left.

If the optional parameters from and to are given then only the index range [from..to] is guar-
anteed to be affected. Other indices may be affected, if it is more convenient to do so. This can be
helpful if entries of v are known to be zero. If from is bigger than to , the operation does nothing.

26.9 Operations for Vector Objects

26.9.1 ConcatenationOfVectors

▷ ConcatenationOfVectors(v1, v2, ...) (function)

▷ ConcatenationOfVectors(vlist) (function)

Returns: a vector object
Returns a new mutable vector object in the representation of v1 or the first entry of the nonempty

list vlist of vector objects, respectively, such that the entries are the concatenation of the given vector
objects.

(Note that Concatenation (21.20.1) is a function for which no methods can be installed.)

26.9.2 ExtractSubVector

▷ ExtractSubVector(v, l) (operation)

Returns: a vector object
Returns a new mutable vector object of the same vector representation as v , containing the entries

of v at the positions in the list l .
This is the same as v{l}, the name ExtractSubVector was introduced in analogy to

ExtractSubMatrix (26.11.3), for which no equivalent syntax using curly brackets is available.

26.9.3 CopySubVector

▷ CopySubVector(src, dst, scols, dcols) (operation)

Returns: nothing
For two vector objects src and dst , such that dst is mutable, and two lists scols and dcols of

positions, CopySubVector assigns the entries src{ scols } (see ExtractSubVector (26.9.2)) to
the positions dcols in dst , but without creating an intermediate object and thus –at least in special
cases– much more efficiently.

GAP - Reference Manual 394

For certain objects like compressed vectors this might be significantly more efficient if scols and
dcols are ranges with increment 1.

If the global option check is set to false then CopySubVector need not perform consistency
checks.

26.9.4 WeightOfVector (for a vector object)

▷ WeightOfVector(v) (operation)

Returns: an integer
returns the Hamming weight of the vector object v , i.e., the number of nonzero entries in v .

26.9.5 DistanceOfVectors (for two vector objects)

▷ DistanceOfVectors(v1, v2) (operation)

Returns: an integer
returns the Hamming distance of the vector objects v1 and v2 , i.e., the number of entries in which

the vectors differ. The vectors must have equal length.

26.10 Arithmetical Operations for Matrix Objects

26.10.1 Unary Arithmetical Operations for Matrix Objects

▷ AdditiveInverseMutable(M) (operation)

▷ AdditiveInverseSameMutability(M) (operation)

▷ ZeroMutable(M) (operation)

▷ ZeroSameMutability(M) (operation)

▷ OneMutable(M) (operation)

▷ OneSameMutability(M) (operation)

▷ InverseMutable(M) (operation)

▷ InverseSameMutability(M) (operation)

▷ IsZero(M) (property)

▷ IsOne(M) (property)

▷ Characteristic(M) (attribute)

Returns: a matrix object
For a vector object M , the operations for computing the additive inverse with prescribed mutability

return a matrix object with the same ConstructingFilter (26.3.2) and BaseDomain (26.3.1) values,
such that the sum with M is a zero matrix. It is not specified what happens if the base domain does not
admit the additive inverses of the entries.

Analogously, the operations for computing a zero matrix with prescribed mutability return a matrix
object compatible with M .

The operations for computing an identity matrix with prescribed mutability return a matrix object
compatible with M , provided that the base domain admits this and M is square and nonempty.

Analogously, the operations for computing an inverse matrix with prescribed mutability return a
matrix object compatible with M , provided that M is invertible. (If M is not invertible then the operations
return fail.)

GAP - Reference Manual 395

IsZero returns true if all entries in M are zero, and false otherwise. IsOne returns true if M
is nonempty and square and contains the identity of the base domain in the diagonal, and zero in all
other places.

Characteristic returns the corresponding value of the BaseDomain (26.3.1) value of M .

26.10.2 Binary Arithmetical Operations for Matrix Objects

▷ \+(M1, M2) (method)

▷ \-(M1, M2) (method)

▷ *(s, M) (method)

▷ *(M, s) (method)

▷ *(M1, M2) (method)

▷ \/(M, s) (method)

▷ \^(M, n) (method)

The sum and the difference, respectively, of two matrix objects M1 and M2 is a new fully mutable
matrix object whose entries are the sums and the differences of the entries of the arguments.

The product of a scalar s and a matrix object M (from the left or from the right) is a new fully
mutable matrix object whose entries are the corresponding products.

The product of two matrix objects M1 and M2 is a new fully mutable matrix object; if both M1 and
M2 are in the filter IsOrdinaryMatrix (24.2.2) then the entries of the result are those of the ordinary
matrix product.

The quotient of a matrix object M and a scalar s is a new fully mutable matrix object whose entries
are the corresponding quotients.

For a nonempty square matrix object M over an associative base domain, and a positive integer n ,
M^n is a fully mutable matrix object whose entries are those of the n-th power of M . If n is zero then
M^n is an identity matrix, and if n is a negative integer and M is invertible then M^n is the (-n)-th
power of the inverse of M .

All this is defined only if the matrix objects have the same dimensions and are defined over the
same base domain and have the same representation, and if the products with the given scalar belong
to the base domain; otherwise it is not specified what happens. If the result is a matrix object then it
has the same representation and the same base domain as the given matrix object(s).

26.11 Operations for Matrix Objects

26.11.1 MatElm

▷ MatElm(M, row, col) (operation)

Returns: an entry of the matrix object
For a matrix object M , this operation returns the entry in row row and column col .
Also the syntax M[row, col] is supported.
Note that this is not equivalent to M[row][col], which would first try to access M[row],

and this is in general not possible.

GAP - Reference Manual 396

26.11.2 SetMatElm

▷ SetMatElm(M, row, col, obj) (operation)

Returns: nothing
For a mutable matrix object M , this operation assigns the object obj to the position in row row

and column col , provided that obj is compatible with the BaseDomain (26.3.1) value of M .
Also the syntax M[row, col]:= obj is supported.
Note that this is not equivalent to M[row][col]:= obj , which would first try to access M[

row], and this is in general not possible.
If the global option check is set to false then SetMatElm need not perform consistency checks.

26.11.3 ExtractSubMatrix

▷ ExtractSubMatrix(M, rows, cols) (operation)

Creates a copy of the submatrix described by the two lists, which mean subsets of row and column
positions, respectively. This does M{rows}{cols} and returns the result. It preserves the representa-
tion of the matrix.

If the ConstructingFilter (26.3.2) value of the result implies IsCopyable (12.6.1) then the
result is fully mutable.

26.11.4 MutableCopyMatrix (for a matrix object)

▷ MutableCopyMatrix(M) (operation)

For a matrix object M , this operation returns a fully mutable copy of M , with the same
ConstructingFilter (26.3.2) and BaseDomain (26.3.1) values,

26.11.5 CopySubMatrix

▷ CopySubMatrix(src, dst, srows, drows, scols, dcols) (operation)

Returns: nothing
Does dst{drows}{dcols} := src{srows}{scols} without creating an intermediate object

and thus –at least in special cases– much more efficiently. For certain objects like compressed vectors
this might be significantly more efficient if scols and dcols are ranges with increment 1.

If the global option check is set to false then CopySubMatrix need not perform consistency
checks.

26.11.6 CompatibleVector (for a matrix object)

▷ CompatibleVector(M) (operation)

Returns: a vector object
Called with a matrix object M with m rows, this operation returns a mutable zero vector object

v of length m and in the representation given by the CompatibleVectorFilter (26.3.3) value of M
(provided that such a representation exists).

The idea is that there should be an efficient way to form the product vM .

GAP - Reference Manual 397

26.11.7 RowsOfMatrix (for a matrix object)

▷ RowsOfMatrix(M) (attribute)

Returns: a plain list
Called with a matrix object M , this operation returns a plain list of objects in the representation

given by the CompatibleVectorFilter (26.3.3) value of M (provided that such a representation
exists), where the i-th entry describes the i-th row of the input.

26.11.8 CompanionMatrix

▷ CompanionMatrix(pol, M) (operation)

▷ CompanionMatrix(filt, pol, R) (operation)

▷ CompanionMatrix(pol, R) (operation)

Returns: a matrix object
For a monic, univariate polynomial pol whose coefficients lie in the base domain of the matrix

object M , CompanionMatrix returns the companion matrix of pol , as a matrix object with the same
ConstructingFilter (26.3.2) and BaseDomain (26.3.1) values as M .

We use column convention, that is, the negatives of the coefficients of pol appear in the last
column of the result.

If a filter filt and a semiring R are given then the companion matrix is returned as a matrix object
with ConstructingFilter (26.3.2) value filt and BaseDomain (26.3.1) value R .

If only pol and a semiring R are given, the representation of the result is guessed from R .
If the ConstructingFilter (26.3.2) value of the result implies IsCopyable (12.6.1) then the

result is fully mutable.
Example

gap> x:= X(GF(5));; pol:= x^3 + x^2 + 2*x + 3;;

gap> M:= CompanionMatrix(IsPlistMatrixRep, pol, GF(25));;

gap> Display(M);

<3x3-matrix over GF(5^2):

[[0*Z(5), 0*Z(5), Z(5)]

[Z(5)^0, 0*Z(5), Z(5)^3]

[0*Z(5), Z(5)^0, Z(5)^2]

]>

26.12 Operations for Row List Matrix Objects

In general, matrix objects are not lists in the sense of IsList (21.1.1), and they need not behave like
lists, that is, they need not obey all the rules for lists that are stated in Chapter 21. There are situations
where one wants to have matrix objects that can on the one hand benefit from GAP’s method selection,
as is explained in Section 26.1, and do on the other hands support access to GAP objects that represent
their rows (which are suitable vector objects). Matrix objects whose ConstructingFilter (26.3.2)
value implies IsRowListMatrix (26.2.4) support the operations described in this section.

One implementation of such matrices is given by the ConstructingFilter (26.3.2) value
IsPlistMatrixRep (26.16.3), and any row of these matrices is a vector object in IsPlistVectorRep
(26.15.3). Note that these objects do not lie in IsList (21.1.1) (and in particular not in IsPlistRep

(21.24.2)), thus we are allowed to define the above operations only restrictively, as follows.

GAP - Reference Manual 398

Unbinding an entry in a row or unbinding a row in a matrix is allowed only in the last position,
that is, the vector and matrix objects insist on being dense. All rows of a matrix must have the same
length and the same base domain.

26.12.1 List Access for a Row List Matrix

▷ \[\](M, pos) (operation)

Returns: a vector object
If M is a row list matrix and if pos is a positive integer not larger than the number of rows of M ,

this operation returns the pos-th row of M .
It is not specified what happens if pos is larger.

26.12.2 List Assignment for a Row List Matrix

▷ \[\]\:\=(M, pos, v) (operation)

Returns: nothing
If M is a row list matrix, v is a vector object that can occur as a row in M (that is, v has the same

base domain, the right length, and the right vector representation), and if pos is a positive integer not
larger than the number of rows of M plus 1, this operation sets v as the pos-th row of M .

In all other situations, it is not specified what happens.

26.12.3 Sublist Access for a Row List Matrix

▷ \{\}(M, poss) (operation)

Returns: a row list matrix
For a row list matrix M and a list poss of positions, M{ poss } returns a new mutable row list

matrix with the same representation as M , whose rows are identical to the rows at the positions in the
list poss in M .

26.12.4 Sublist Assignment for a Row List Matrix

▷ \{\}\:\=(M, poss, M2) (operation)

Returns: nothing
For a mutable row list matrix M , a list poss of positions, and a row list matrix M2 of the same

vector type and with the same base domain, M{ poss }:= M2 assigns the rows of M2 to the positions
poss in the list of rows of M .

It is not specified what happens if the resulting range of row positions is not dense.

26.12.5 IsBound\[\] (for a row list matrix)

▷ IsBound\[\](M, pos) (operation)

Returns: true or false
For a row list matrix M and a positive integer pos , IsBound(M[pos]) returns true if pos

is at most the number of rows of M , and false otherwise.

GAP - Reference Manual 399

26.12.6 Unbind\[\] (for a row list matrix)

▷ Unbind\[\](M, pos) (operation)

Returns: nothing
For a mutable row list matrix M with pos rows, Unbind(M[pos]) removes the last row. It is

not specified what happens if pos has another value.

26.12.7 Add (for a row list matrix and a vector object)

▷ Add(M, v[, pos]) (operation)

Returns: nothing
For a mutable row list matrix M and a vector object v that is compatible with the rows of M , the

two argument version adds v at the end of the list of rows of M .
If a positive integer pos is given then v is added in position pos , and all later rows are shifted up

by one position.

26.12.8 Remove (for a row list matrix)

▷ Remove(M[, pos]) (operation)

Returns: a vector object if the removed row exists, otherwise nothing
For a mutable row list matrix M , this operation removes the pos-th row and shifts the later rows

down by one position. The default for pos is the number of rows of M .
If the pos-th row existed in M then it is returned, otherwise nothing is returned.

26.12.9 Append (for two row list matrices)

▷ Append(M1, M2) (operation)

Returns: nothing
For two row list matrices M1 , M2 such that M1 is mutable and such that the ConstructingFilter

(26.3.2) and BaseDomain (26.3.1) values are equal, this operation appends the rows of M2 to the rows
of M1 .

26.12.10 ShallowCopy (for a row list matrix)

▷ ShallowCopy(M) (operation)

Returns: a matrix object
For a row list matrix M , this operation returns a new mutable matrix with the same

ConstructingFilter (26.3.2) and BaseDomain (26.3.1) values as M , which shares its rows with
M .

26.12.11 ListOp (for a row list matrix)

▷ ListOp(M[, func]) (operation)

Returns: a plain list
For a row list matrix M , the variant with one argument returns the plain list (see IsPlistRep

(21.24.2)) of its rows, and the variant with two arguments returns the plain list of values of these rows
under the function func .

GAP - Reference Manual 400

26.13 Basic operations for row/column reductions

26.13.1 MultMatrixRowLeft

▷ MultMatrixRowLeft(mat, i, elm) (operation)

▷ MultMatrixRow(mat, i, elm) (operation)

Returns: nothing
Multiplies the i-th row of the mutable matrix mat with the scalar elm from the left in-place.
MultMatrixRow is a synonym of MultMatrixRowLeft. This was chosen because linear combi-

nations of rows of matrices are usually written as v ·A = [v1, ...,vn] ·A which multiplies scalars from
the left.

26.13.2 MultMatrixRowRight

▷ MultMatrixRowRight(M, i, elm) (operation)

Returns: nothing
Multiplies the i-th row of the mutable matrix M with the scalar elm from the right in-place.

26.13.3 MultMatrixColumnRight

▷ MultMatrixColumnRight(M, i, elm) (operation)

▷ MultMatrixColumn(M, i, elm) (operation)

Returns: nothing
Multiplies the i-th column of the mutable matrix M with the scalar elm from the right in-place.
MultMatrixColumn is a synonym of MultMatrixColumnRight. This was chosen because linear

combinations of columns of matrices are usually written as A · vT = A · [v1, ...,vn]
T which multiplies

scalars from the right.

26.13.4 MultMatrixColumnLeft

▷ MultMatrixColumnLeft(M, i, elm) (operation)

Returns: nothing
Multiplies the i-th column of the mutable matrix M with the scalar elm from the left in-place.

26.13.5 AddMatrixRowsLeft

▷ AddMatrixRowsLeft(M, i, j, elm) (operation)

▷ AddMatrixRows(M, i, j, elm) (operation)

Returns: nothing
Adds the product of elm with the j-th row of the mutable matrix M to its i-th row in-place. The

j-th row is multiplied with elm from the left.
AddMatrixRows is a synonym of AddMatrixRowsLeft. This was chosen because linear combi-

nations of rows of matrices are usually written as v ·A = [v1, ...,vn] ·A which multiplies scalars from
the left.

GAP - Reference Manual 401

26.13.6 AddMatrixRowsRight

▷ AddMatrixRowsRight(M, i, j, elm) (operation)

Returns: nothing
Adds the product of elm with the j-th row of the mutable matrix M to its i-th row in-place. The

j-th row is multiplied with elm from the right.

26.13.7 AddMatrixColumnsRight

▷ AddMatrixColumnsRight(M, i, j, elm) (operation)

▷ AddMatrixColumns(M, i, j, elm) (operation)

Returns: nothing
Adds the product of elm with the j-th column of the mutable matrix M to its i-th column

in-place. The j-th column is multiplied with elm from the right.
AddMatrixColumns is a synonym of AddMatrixColumnsRight. This was chosen because linear

combinations of columns of matrices are usually written as A · vT = A · [v1, ...,vn]
T which multiplies

scalars from the right.

26.13.8 AddMatrixColumnsLeft

▷ AddMatrixColumnsLeft(M, i, j, elm) (operation)

Returns: nothing
Adds the product of elm with the j-th column of the mutable matrix M to its i-th column

in-place. The j-th column is multiplied with elm from the left.

26.13.9 SwapMatrixRows

▷ SwapMatrixRows(M, i, j) (operation)

Returns: nothing
Swaps the i-th row and j-th row of a mutable matrix M .

26.13.10 SwapMatrixColumns

▷ SwapMatrixColumns(M, i, j) (operation)

Returns: nothing
Swaps the i-th column and j-th column of a mutable matrix M .

26.14 Implementing New Vector and Matrix Objects Types

The first step in the design of a new type of vector or matrix objects is to create a new filter that serves
as the ConstructingFilter (26.3.2) of the new objects, see the sections 26.15 and 26.16 for an
overview of such filters that are already available.

Here we list those operations for vector and matrix objects for which no default methods can be
installed. When one implements a new type of vector or matrix objects then one has to install specific
methods at least for these operations, in order to make the objects behave as described in this chapter.
It is advisable to install specific methods also for other operations, for performance reasons. The
installations of default methods can be found in the file lib/matobj.gi of the GAP distribution.

GAP - Reference Manual 402

There one can check for which operations it makes sense to overload them for the new type of vector
or matrix objects. Note that the specific methods must be installed with InstallTagBasedMethod

(78.1.6) whenever the default method is installed with this function.
Vector objects

• BaseDomain (26.3.1),

• Length (26.3.4),

• \[\] (26.7.1),

• \[\]\:\= (26.7.1) (with consistency checks if the global option check is not set to false),

• \< (31.11.1) (see \< (26.6.1)),

• ConstructingFilter (26.3.2),

• NewVector (26.4.1) (with consistency checks if the global option check is not set to false,
install the method with InstallTagBasedMethod (78.1.6)).

Matrix objects

• BaseDomain (26.3.1),

• NumberRows (26.3.5),

• NumberColumns (26.3.5),

• MatElm (26.11.1),

• SetMatElm (26.11.2) (with consistency checks if the global option check is not set to false),

• \< (31.11.1) (see \< (26.6.1)),

• ConstructingFilter (26.3.2),

• CompatibleVectorFilter (26.3.3),

• NewMatrix (26.4.4) (with consistency checks if the global option check is not set to false,
install the method with InstallTagBasedMethod (78.1.6)).

Methods for NewVector (26.4.1) and NewMatrix (26.4.4) must check their arguments for consis-
tency (do the given filter and base domain fit together, are the entries compatible with the given base
domain, is the number of matrix entries a multiple of the given number of columns) except if the global
option check is set to false. (See Chapter 8 for information about global options.) The same holds
for methods for operations that modify mutable vector or matrix objects, such as \[\]\:\= (26.7.1),
SetMatElm (26.11.2), CopySubVector (26.9.3), CopySubMatrix (26.11.5), and for those methods
of Vector (26.4.2) and Matrix (26.4.5) that do not delegate to NewVector (26.4.1) and NewMatrix

(26.4.4), respectively.

26.15 Available Representations of Vector Objects

The following filters define vector objects for which the the functionality described in this chapter is
supported.

GAP - Reference Manual 403

26.15.1 IsGF2VectorRep

▷ IsGF2VectorRep(obj) (Representation)

An object obj in IsGF2VectorRep describes a vector object (see IsVectorObj (26.2.1)) with
entries in the finite field with 2 elements.

IsGF2VectorRep implies IsCopyable (12.6.1), thus vector objects in this representation can be
mutable.

26.15.2 Is8BitVectorRep

▷ Is8BitVectorRep(obj) (Representation)

An object obj in Is8BitVectorRep describes a vector object (see IsVectorObj (26.2.1)) with
entries in a finite field with q elements, for 3 ≤ q ≤ 256. The base domain of obj is not necessarily
the smallest field that contains all matrix entries.

Is8BitVectorRep implies IsCopyable (12.6.1), thus vector objects in this representation can be
mutable.

26.15.3 IsPlistVectorRep

▷ IsPlistVectorRep(obj) (Representation)

An object obj in IsPlistVectorRep describes a vector object (see IsVectorObj (26.2.1)) that
can occur as a row in a row list matrix (see Section 26.12).

IsPlistVectorRep implies IsCopyable (12.6.1), thus vector objects in this representation can
be mutable.

26.15.4 IsZmodnZVectorRep

▷ IsZmodnZVectorRep(obj) (Representation)

An object obj in IsZmodnZVectorRep describes a vector object (see IsVectorObj (26.2.1)) with
entries in a residue class ring of the ring of integers (see ZmodnZ (14.5.2)). This ring is the base domain
(see BaseDomain (26.3.1)) of obj .

IsZmodnZVectorRep implies IsCopyable (12.6.1), thus matrix objects in this representation can
be mutable.

26.16 Available Representations of Matrix Objects

The following filters define matrix objects for which the the functionality described in this chapter is
supported.

26.16.1 IsGF2MatrixRep

▷ IsGF2MatrixRep(obj) (Representation)

GAP - Reference Manual 404

An object obj in IsGF2MatrixRep describes a matrix object (see IsMatrixObj (26.2.2)) with
entries in the finite field with 2 elements, which behaves like the list of its rows (see IsRowListMatrix
(26.2.4)). The base domain of obj is the field with 2 elements.

IsGF2MatrixRep implies IsCopyable (12.6.1), thus vector objects in this representation can be
mutable.

26.16.2 Is8BitMatrixRep

▷ Is8BitMatrixRep(obj) (Representation)

An object obj in Is8BitMatrixRep describes a matrix object (see IsMatrixObj (26.2.2)) that
behaves like the list of its rows (see IsRowListMatrix (26.2.4)). The base domain of obj is a field
that contains all matrix entries (but not necessarily the smallest such field), it must be a finite field with
q elements, for 3 ≤ q ≤ 256.

Is8BitMatrixRep implies IsCopyable (12.6.1), thus matrix objects in this representation can
be mutable.

26.16.3 IsPlistMatrixRep

▷ IsPlistMatrixRep(obj) (Representation)

An object obj in IsPlistMatrixRep describes a matrix object (see IsMatrixObj (26.2.2)) that
behaves similar to a list of its rows, in the sense of IsRowListMatrix (26.2.4).

IsPlistMatrixRep implies IsCopyable (12.6.1), thus matrix objects in this representation can
be mutable.

26.16.4 IsZmodnZMatrixRep

▷ IsZmodnZMatrixRep(obj) (Representation)

An object obj in IsZmodnZMatrixRep describes a matrix object (see IsMatrixObj (26.2.2)) that
behaves like the list of its rows (see IsRowListMatrix (26.2.4)). The matrix entries lie in a residue
class ring of the ring of integers (see ZmodnZ (14.5.2)). This ring is the base domain (see BaseDomain
(26.3.1)) of obj .

IsZmodnZMatrixRep implies IsCopyable (12.6.1), thus matrix objects in this representation can
be mutable.

Chapter 27

Strings and Characters

27.1 IsChar and IsString

27.1.1 IsChar

▷ IsChar(obj) (Category)

▷ IsCharCollection(obj) (Category)

A character is simply an object in GAP that represents an arbitrary character from the character
set of the operating system. Character literals can be entered in GAP by enclosing the character in
singlequotes '.

Example
gap> x:= 'a'; IsChar(x);

'a'

true

gap> '*';

'*'

27.1.2 IsString

▷ IsString(obj) (filter)

A string is a dense list (see IsList (21.1.1), IsDenseList (21.1.2)) of characters (see IsChar

(27.1.1)); thus strings are always homogeneous (see IsHomogeneousList (21.1.3)).
A string literal can either be entered as the list of characters or by writing the characters between

doublequotes ". GAP will always output strings in the latter format. However, the input via the
double quote syntax enables GAP to store the string in an efficient compact internal representation.
See IsStringRep (27.4.1) below for more details.

Each character, in particular those which cannot be typed directly from the keyboard, can also be
typed in three digit octal notation, or two digit hexadecimal notation. And for some special characters
(like the newline character) there is a further possibility to type them, see section 27.2.

Example
gap> s1 := ['H','e','l','l','o',' ','w','o','r','l','d','.'];

"Hello world."

gap> IsString(s1);

true

405

GAP - Reference Manual 406

gap> s2 := "Hello world.";

"Hello world."

gap> s1 = s2;

true

gap> s3 := ""; # the empty string

""

gap> s3 = [];

true

gap> IsString([]);

true

gap> IsString("123"); IsString(123);

true

false

gap> IsString(['1', '2', '3']);

true

gap> IsString(['1', '2', , '4']); # strings must be dense

false

gap> IsString(['1', '2', 3]); # strings must only contain characters

false

27.1.3 Strings As Lists

Note that a string is just a special case of a list. So everything that is possible for lists (see 21) is also
possible for strings. Thus you can access the characters in such a string (see 21.3), test for membership
(see 30.6), ask for the length, concatenate strings (see Concatenation (21.20.1)), form substrings etc.
You can even assign to a mutable string (see 21.4). Of course unless you assign a character in such a
way that the list stays dense, the resulting list will no longer be a string.

Example
gap> Length(s2);

12

gap> s2[2];

'e'

gap> 'a' in s2;

false

gap> s2[2] := 'a';; s2;

"Hallo world."

gap> s1{ [1..4] };

"Hell"

gap> Concatenation(s1{ [1 .. 6] }, s1{ [1 .. 4] });

"Hello Hell"

27.1.4 Printing Strings

▷ ViewObj(str) (method)

▷ PrintObj(str) (method)

If a string is displayed by View (6.3.3), for example as result of an evaluation (see 6.1), or
by ViewObj (6.3.5) and PrintObj (6.3.5), it is displayed with enclosing doublequotes. (But note
that there is an ambiguity for the empty string which is also an empty list of arbitrary GAP ob-

GAP - Reference Manual 407

jects; it is only printed like a string if it was input as empty string or converted to a string with
ConvertToStringRep (27.4.2).) The output of PrintObj can be read back into GAP.

Strings behave differently from other GAP objects with respect to Print (6.3.4), PrintTo (9.7.3),
or AppendTo (9.7.3). These commands interpret a string in the sense that they essentially send the
characters of the string directly to the output stream/file. (But depending on the type of the stream and
the presence of some special characters used as hints for line breaks there may be sent some additional
newline (or backslash and newline) characters.

Example
gap> s4:= "abc\"def\nghi";;

gap> View(s4); Print("\n");

"abc\"def\nghi"

gap> ViewObj(s4); Print("\n");

"abc\"def\nghi"

gap> PrintObj(s4); Print("\n");

"abc\"def\nghi"

gap> Print(s4); Print("\n");

abc"def

ghi

gap> s := "German uses strange characters: äöüÿ\n";

"German uses strange characters: äöüÿ\n"

gap> Print(s);

German uses strange characters: äöüÿ

gap> PrintObj(s); Print("\n");

"German uses strange characters: \303\244\303\266\303\274\303\237\n"

Example
gap> s := "\007";

"\007"

gap> Print(s); # rings bell in many terminals

Note that only those line breaks are printed by Print (6.3.4) that are contained in the string (\n
characters, see 27.2), as is shown in the example below.

Example
gap> s1;

"Hello world."

gap> Print(s1);

Hello world.gap> Print(s1, "\n");

Hello world.

gap> Print(s1, "\nnext line\n");

Hello world.

next line

27.2 Special Characters

There are a number of special character sequences that can be used between the singlequotes of a
character literal or between the doublequotes of a string literal to specify characters. They consist of
a backslash \ followed by a second character indicating the type of special character sequence, and
possibly more characters. The following special character sequences are currently defined. For any
other sequence starting with a backslash, the backslash is ignored.

GAP - Reference Manual 408

\n newline character. This is the character that, at least on UNIX systems, separates lines in a text
file. Printing of this character in a string has the effect of moving the cursor down one line and
back to the beginning of the line.

\" doublequote character. Inside a string a doublequote must be escaped by the backslash, because
it is otherwise interpreted as end of the string.

\' singlequote character. Inside a character a singlequote must escaped by the backslash, because
it is otherwise interpreted as end of the character.

\\ backslash character. Inside a string a backslash must be escaped by another backslash, because
it is otherwise interpreted as first character of an escape sequence.

\b backspace character. Printing this character should have the effect of moving the cursor back
one character. Whether it works or not is system dependent and should not be relied upon.

\r carriage return character. Printing this character should have the effect of moving the cursor
back to the beginning of the same line. Whether this works or not is again system dependent.

\c flush character. This character is not printed. Its purpose is to flush the output queue. Usually
GAP waits until it sees a newline before it prints a string. If you want to display a string that
does not include this character use \c.

\XYZ

with X, Y, Z three octal digits, that is one of "01234567". This is translated to the character
corresponding to the number X * 64 + Y * 8 + Z modulo 256. This can be used to specify
and store arbitrary binary data as a string in GAP.

\0xYZ

with Y, and Z hexadecimal digits, that is one of "0123456789ABCDEFabcdef", where a to f and
A to F are interpreted as the numbers 10 to 15. This is translated to the character corresponding
to the number Y*16 + Z.

other
For any other character the backslash is ignored.

Again, if the line is displayed as result of an evaluation, those escape sequences are displayed in
the same way that they are input.

Only Print (6.3.4), PrintTo (9.7.3), or AppendTo (9.7.3) send the characters directly to the
output stream.

Example
gap> "This is one line.\nThis is another line.\n";

"This is one line.\nThis is another line.\n"

gap> Print(last);

This is one line.

This is another line.

Note in particular that it is not allowed to enclose a newline inside the string. You can use the
special character sequence \n to write strings that include newline characters. If, however, an input
string is too long to fit on a single line it is possible to continue it over several lines. In this case the

GAP - Reference Manual 409

last character of each input line, except the last line must be a backslash. Both backslash and newline

are thrown away by GAP while reading the string. Note that the same continuation mechanism is
available for identifiers and integers, see 6.2. The rules on escaping are ignored in a triple quoted
string, see 27.3

27.3 Triple Quoted Strings

Another method of entering strings in GAP is triple quoted strings. Triple quoted strings ignore the
rules on escaping given in 27.2. Triple quoted strings begin an end with three doublequotes. Inside the
triple quotes no escaping is done, and the string continues, including newlines, until three doublequotes
are found.

Example
gap> """Print("\n")""";

"Print(\"\\n\")"

Triple quoted strings are represented internally identically to all other strings, they only provide an
alternative method of giving strings to GAP. Triple quoted strings still follow GAP’s line editing rules
(6.2), which state that in normal line editing mode, lines starting gap> , > or brk> will have this
beginning part removed.

27.4 Internally Represented Strings

27.4.1 IsStringRep

▷ IsStringRep(obj) (Representation)

IsStringRep is a special (internal) representation of dense lists of characters. Dense lists of
characters can be converted into this representation using ConvertToStringRep (27.4.2). Note that
calling IsString (27.1.2) does not change the representation.

27.4.2 ConvertToStringRep

▷ ConvertToStringRep(obj) (function)

If obj is a dense internally represented list of characters then ConvertToStringRep changes
the representation to IsStringRep (27.4.1). This is useful in particular for converting the empty list
[], which usually is in IsPlistRep (21.24.2), to IsStringRep (27.4.1). If obj is not a string then
ConvertToStringRep signals an error.

27.4.3 CopyToStringRep

▷ CopyToStringRep(obj) (function)

If obj is a dense internally represented list of characters then CopyToStringRep copies obj to a
new object with representation IsStringRep (27.4.1). If obj is not a string then CopyToStringRep

signals an error.

GAP - Reference Manual 410

27.4.4 IsEmptyString

▷ IsEmptyString(str) (function)

IsEmptyString returns true if str is the empty string in the representation IsStringRep

(27.4.1), and false otherwise. Note that the empty list [] and the empty string "" have the same
type, the recommended way to distinguish them is via IsEmptyString. For formatted printing, this
distinction is sometimes necessary.

Example
gap> l:= [];; IsString(l); IsEmptyString(l); IsEmpty(l);

true

false

true

gap> l; ConvertToStringRep(l); l;

[]

""

gap> IsEmptyString(l); IsEmptyString(""); IsEmptyString("abc");

true

true

false

gap> ll:= ['a', 'b']; IsStringRep(ll); ConvertToStringRep(ll);

"ab"

false

gap> ll; IsStringRep(ll);

"ab"

true

27.4.5 EmptyString

▷ EmptyString(len) (function)

Returns: a string
▷ ShrinkAllocationString(str) (function)

Returns: nothing
The function EmptyString returns an empty string in internal representation which has enough

memory allocated for len characters. This can be useful for creating and filling a string with a known
number of entries.

The function ShrinkAllocationString gives back to GAPs memory manager the physical
memory which is allocated for the string str in internal representation but not needed by its cur-
rent number of characters.

These functions are intended for saving some of GAPs memory in certain situations,
see the explanations and the example for the analogous functions EmptyPlist (21.9.1) and
ShrinkAllocationPlist (21.9.1) for plain lists.

27.4.6 CharsFamily

▷ CharsFamily (family)

GAP - Reference Manual 411

Each character lies in the family CharsFamily, each nonempty string lies in the collections family
of this family. Note the subtle differences between the empty list [] and the empty string "" when
both are printed.

27.5 Recognizing Characters

27.5.1 IsDigitChar

▷ IsDigitChar(c) (function)

checks whether the character c is a digit, i.e., occurs in the string "0123456789".

27.5.2 IsLowerAlphaChar

▷ IsLowerAlphaChar(c) (function)

checks whether the character c is a lowercase alphabet letter, i.e., occurs in the string
"abcdefghijklmnopqrstuvwxyz".

27.5.3 IsUpperAlphaChar

▷ IsUpperAlphaChar(c) (function)

checks whether the character c is an uppercase alphabet letter, i.e., occurs in the string
"ABCDEFGHIJKLMNOPQRSTUVWXYZ".

27.5.4 IsAlphaChar

▷ IsAlphaChar(c) (function)

checks whether the character c is either a lowercase or an uppercase alphabet letter.

27.6 Comparisons of Strings

27.6.1 \= (for two strings)

▷ \=(string1, string2) (method)

The equality operator = returns true if the two strings string1 and string2 are equal and false
otherwise. The inequality operator <> returns true if the two strings string1 and string2 are not
equal and false otherwise.

Example
gap> "Hello world.\n" = "Hello world.\n";

true

gap> "Hello World.\n" = "Hello world.\n"; # comparison is case sensitive

false

gap> "Hello world." = "Hello world.\n"; # first string has no <newline>

false

GAP - Reference Manual 412

gap> "Goodbye world.\n" = "Hello world.\n";

false

gap> ['a', 'b'] = "ab";

true

27.6.2 \< (for two strings)

▷ \<(string1, string2) (method)

The ordering of strings is lexicographically according to the order implied by the underlying,
system dependent, character set.

Example
gap> "Hello world.\n" < "Hello world.\n"; # the strings are equal

false

gap> # in ASCII capitals range before small letters:

gap> "Hello World." < "Hello world.";

true

gap> "Hello world." < "Hello world.\n"; # prefixes are always smaller

true

gap> # G comes before H, in ASCII at least:

gap> "Goodbye world.\n" < "Hello world.\n";

true

Strings can be compared via < with certain GAP objects that are not strings, see 4.13 for the
details.

27.7 Operations to Produce or Manipulate Strings

For the possibility to print GAP objects to strings, see 10.7.

27.7.1 DisplayString

▷ DisplayString(obj) (operation)

Returns a string which could be used to display the object obj in a nice, formatted way which
is easy to read (but might be difficult for machines to understand). The actual format used for this
depends on the type of obj . Each method should include a newline character as last character. Note
that no method for DisplayString may delegate to any of the operations Display (6.3.6), ViewObj
(6.3.5) or PrintObj (6.3.5) to avoid circular delegations.

27.7.2 DEFAULTDISPLAYSTRING

▷ DEFAULTDISPLAYSTRING (global variable)

This is the default value for DisplayString (27.7.1).

GAP - Reference Manual 413

27.7.3 ViewString

▷ ViewString(obj) (operation)

ViewString returns a string which would be displayed by ViewObj (6.3.5) for an object. Note
that no method for ViewString may delegate to any of the operations Display (6.3.6), ViewObj
(6.3.5), DisplayString (27.7.1) or PrintObj (6.3.5) to avoid circular delegations.

27.7.4 DEFAULTVIEWSTRING

▷ DEFAULTVIEWSTRING (global variable)

This is the default value for ViewString (27.7.3).

27.7.5 PrintString

▷ PrintString(obj[, length]) (operation)

PrintString returns a representation of obj , which may be an object of arbitrary type, as a
string. This string should approximate as closely as possible the character sequence you see if you
print obj using PrintObj (6.3.5).

If length is given it must be an integer. The absolute value gives the minimal length of the result.
If the string representation of obj takes less than that many characters it is filled with blanks. If
length is positive it is filled on the left, if length is negative it is filled on the right.

In the two argument case, the string returned is a new mutable string (in particular not a part of
any other object); it can be modified safely, and MakeImmutable (12.6.4) may be safely applied to it.

Example
gap> PrintString(123);PrintString([1,2,3]);

"123"

"[1, 2, 3]"

PrintString is entitled to put in additional control characters \< (ASCII 1) and \> (ASCII 2) that
allow proper line breaks. See StripLineBreakCharacters (27.7.7) for a function to get rid of these
control characters.

27.7.6 String

▷ String(obj[, length]) (attribute)

String returns a representation of obj , which may be an object of arbitrary type, as a string. This
string should approximate as closely as possible the character sequence you see if you print obj .

If length is given it must be an integer. The absolute value gives the minimal length of the result.
If the string representation of obj takes less than that many characters it is filled with blanks. If
length is positive it is filled on the left, if length is negative it is filled on the right.

In the two argument case, the string returned is a new mutable string (in particular not a part of
any other object); it can be modified safely, and MakeImmutable (12.6.4) may be safely applied to it.

GAP - Reference Manual 414

Example
gap> String(123);String([1,2,3]);

"123"

"[1, 2, 3]"

String must not put in additional control characters \< (ASCII 1) and \> (ASCII 2) that allow proper
line breaks.

27.7.7 StripLineBreakCharacters

▷ StripLineBreakCharacters(st) (function)

This function takes a string st as an argument and removes all control characters \< (ASCII 1)
and \> (ASCII 2) which are used by PrintString (27.7.5) and PrintObj (6.3.5) to ensure proper
line breaking. A new string with these characters removed is returned.

27.7.8 HexStringInt

▷ HexStringInt(int) (function)

returns a string which represents the integer int with hexadecimal digits (using A to F as digits 10
to 15). The inverse translation can be achieved with IntHexString (27.9.3).

27.7.9 StringPP

▷ StringPP(int) (function)

returns a string representing the prime factor decomposition of the integer int . See also
PrintFactorsInt (14.4.10).

Example
gap> StringPP(40320);

"2^7*3^2*5*7"

27.7.10 WordAlp

▷ WordAlp(alpha, nr) (function)

returns a string that is the nr-th word over the alphabet list alpha , w.r.t. word length and lexico-
graphical order. The empty word is WordAlp(alpha, 0).

Example
gap> List([0..5],i->WordAlp("abc",i));

["", "a", "b", "c", "aa", "ab"]

27.7.11 LowercaseString

▷ LowercaseString(string) (function)

Returns a lowercase version of the string string , that is, a string in which each uppercase alphabet
character is replaced by the corresponding lowercase character.

GAP - Reference Manual 415

Example
gap> LowercaseString("This Is UpperCase");

"this is uppercase"

27.7.12 LowercaseChar

▷ LowercaseChar(character) (function)

Returns the lowercase version of the character character .

27.7.13 UppercaseString

▷ UppercaseString(string) (function)

Returns a uppercase version of the string string , that is, a string in which each lowercase alphabet
character is replaced by the corresponding uppercase character.

Example
gap> UppercaseString("This Is UpperCase");

"THIS IS UPPERCASE"

27.7.14 UppercaseChar

▷ UppercaseChar(character) (function)

Returns the uppercase version of the character character .

27.7.15 SplitString

▷ SplitString(string, seps[, wspace]) (operation)

This function accepts a string string and lists seps and, optionally, wspace of characters. Now
string is split into substrings at each occurrence of a character in seps or wspace . The characters
in wspace are interpreted as white space characters. Substrings of characters in wspace are treated as
one white space character and they are ignored at the beginning and end of a string.

Both arguments seps and wspace can be single characters.
Each string in the resulting list of substring does not contain any characters in seps or wspace .
A character that occurs both in seps and wspace is treated as a white space character.
A separator at the end of a string is interpreted as a terminator; in this case, the separator does not

produce a trailing empty string. Also see Chomp (27.7.21).
Example

gap> SplitString("substr1:substr2::substr4", ":");

["substr1", "substr2", "", "substr4"]

gap> SplitString("a;b;c;d;", ";");

["a", "b", "c", "d"]

gap> SplitString("/home//user//dir/", "", "/");

["home", "user", "dir"]

GAP - Reference Manual 416

27.7.16 ReplacedString

▷ ReplacedString(string, old, new) (function)

replaces occurrences of the string old in string by new , starting from the left and always replac-
ing the first occurrence. To avoid infinite recursion, characters which have been replaced already, are
not subject to renewed replacement.

Example
gap> ReplacedString("abacab","a","zl");

"zlbzlczlb"

gap> ReplacedString("ababa", "aba","c");

"cba"

gap> ReplacedString("abacab","a","ba");

"babbacbab"

27.7.17 NormalizeWhitespace

▷ NormalizeWhitespace(string) (function)

This function changes the string string in place. The characters (space), \n, \r and \t are
considered as white space. Leading and trailing white space characters in string are removed. Se-
quences of white space characters between other characters are replaced by a single space character.

See NormalizedWhitespace (27.7.18) for a non-destructive version.
Example

gap> s := " x y \n\n\t\r z\n \n";

" x y \n\n\t\r z\n \n"

gap> NormalizeWhitespace(s);

gap> s;

"x y z"

27.7.18 NormalizedWhitespace

▷ NormalizedWhitespace(str) (function)

This function returns a copy of string str to which NormalizeWhitespace (27.7.17) was ap-
plied.

27.7.19 RemoveCharacters

▷ RemoveCharacters(string, chars) (function)

Both arguments must be strings. This function efficiently removes all characters given in chars

from string .
Example

gap> s := "ab c\ndef\n\ng h i .\n";

"ab c\ndef\n\ng h i .\n"

gap> RemoveCharacters(s, " \n\t\r"); # remove all whitespace characters

gap> s;

"abcdefghi."

GAP - Reference Manual 417

27.7.20 JoinStringsWithSeparator

▷ JoinStringsWithSeparator(list[, sep]) (function)

joins list (a list of strings) after interpolating sep (or "," if the second argument is omitted)
between each adjacent pair of strings; sep should be a string.

Example
gap> list := List([1..10], String);

["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"]

gap> JoinStringsWithSeparator(list);

"1,2,3,4,5,6,7,8,9,10"

gap> JoinStringsWithSeparator(["The", "quick", "brown", "fox"], " ");

"The quick brown fox"

gap> new:= JoinStringsWithSeparator(["a", "b", "c", "d"], ",\n ");

"a,\n b,\n c,\n d"

gap> Print(" ", new, "\n");

a,

b,

c,

d

27.7.21 Chomp

▷ Chomp(str) (function)

Like the similarly named Perl function, Chomp removes a trailing newline character (or car-
riage-return line-feed couplet) from a string argument str if present and returns the result. If str is
not a string or does not have such trailing character(s) it is returned unchanged. This latter property
means that Chomp is safe to use in cases where one is manipulating the result of another function which
might sometimes return fail.

Example
gap> Chomp("The quick brown fox jumps over the lazy dog.\n");

"The quick brown fox jumps over the lazy dog."

gap> Chomp("The quick brown fox jumps over the lazy dog.\r\n");

"The quick brown fox jumps over the lazy dog."

gap> Chomp("The quick brown fox jumps over the lazy dog.");

"The quick brown fox jumps over the lazy dog."

gap> Chomp(fail);

fail

gap> Chomp(32);

32

Note: Chomp only removes a trailing newline character from str . If your string contains several
newline characters and you really want to split str into lines at the newline characters (and remove
those newline characters) then you should use SplitString (27.7.15), e.g.

Example
gap> str := "The quick brown fox\njumps over the lazy dog.\n";

"The quick brown fox\njumps over the lazy dog.\n"

gap> SplitString(str, "", "\n");

["The quick brown fox", "jumps over the lazy dog."]

GAP - Reference Manual 418

gap> Chomp(str);

"The quick brown fox\njumps over the lazy dog."

27.7.22 StartsWith

▷ StartsWith(string, prefix) (function)

▷ EndsWith(string, suffix) (function)

Determines whether a string starts or ends with another string.

27.7.23 StringFormatted

▷ StringFormatted(string, data...) (function)

▷ PrintFormatted(string, data...) (function)

▷ PrintToFormatted(stream, string, data...) (function)

These functions perform a string formatting operation. They accept a format string, which can
contain replacement fields which are delimited by braces {}. Each replacement field contains a nu-
meric or positional argument, describing the element of data to replace the braces with.

There are three formatting functions, which differ only in how they output the formatted string.
StringFormatted returns the formatted string, PrintFormatted prints the formatted string and
PrintToFormatted appends the formatted string to stream , which can be either an output stream or
a filename.

The arguments after string form a list data of values used to substitute the replacement fields
in string , using the following formatting rules:

string is treated as a normal string, except for occurrences of { and }, which follow special rules,
as follows:

The contents of { } is split by a ! into {id!format}, where both id and format are optional. If
the ! is omitted, the bracket is treated as {id} with no format.

id is interpreted as follows:

An integer i
Take the ith element of data .

A string str

If this is used, the first element of data must be a record r. In this case, the value r.(str) is
taken.

No id given
Take the jth element of data , where j is the number of replacement fields with no id in the
format string so far. If any replacement field has no id, then all replacement fields must have no
id.

A single brace can be outputted by doubling, so {{ in the format string produces { and }} produces }.
The format decides how the variable is printed. format must be one of s (which uses String

(27.7.6)), v (which uses ViewString (27.7.3)) or d (which calls DisplayString (27.7.1)). The
default value for format is s.

GAP - Reference Manual 419

Example
gap> StringFormatted("I have {} cats and {} dogs", 4, 5);

"I have 4 cats and 5 dogs"

gap> StringFormatted("I have {2} cats and {1} dogs", 4, 5);

"I have 5 cats and 4 dogs"

gap> StringFormatted("I have {cats} cats and {dogs} dogs", rec(cats:=3, dogs:=2));

"I have 3 cats and 2 dogs"

gap> StringFormatted("We use {{ and }} to mark {dogs} dogs", rec(cats:=3, dogs:=2));

"We use { and } to mark 2 dogs"

gap> sym3 := SymmetricGroup(3);;

gap> StringFormatted("String: {1!s}, ViewString: {1!v}", sym3);

"String: SymmetricGroup([1 .. 3]), ViewString: Sym([1 .. 3])"

The following two functions convert basic strings to lists of numbers and vice versa. They are useful
for examples of text encryption.

27.7.24 NumbersString

▷ NumbersString(s, m[, table]) (function)

NumbersString takes a string message s and returns a list of integers, each not exceeding the
integer m that encode the message using the scheme A = 11, B = 12 and so on (and converting lower
case to upper case). If a list of characters is given in table , it is used instead for encoding).

Example
gap> l:=NumbersString("Twas brillig and the slithy toves",1000000);

[303311, 291012, 281922, 221917, 101124, 141030, 181510, 292219,

301835, 103025, 321529]

27.7.25 StringNumbers

▷ StringNumbers(l, m[, table]) (function)

StringNumbers takes a list l of integers that was encoded using NumbersString (27.7.24) and
the size integer m , and returns a message string, using the scheme A = 11, B = 12 and so on. If a list
of characters is given in table , it is used instead for decoding).

Example
gap> StringNumbers(l,1000000);

"TWAS BRILLIG AND THE SLITHY TOVES"

27.7.26 StringOfMemoryAmount

▷ StringOfMemoryAmount(numbytes) (function)

This function returns a human-readable string representing numbytes of memory. It is used in
printing amounts of memory allocated by tests and benchmarks. Binary prefixes (representing powers
of 1024) are used.

Example
gap> StringOfMemoryAmount(123456789);

"117MB"

GAP - Reference Manual 420

27.8 Character Conversion

The following functions convert characters in their internal integer values and vice versa. Note that the
number corresponding to a particular character might depend on the system used. While most systems
use an extension of ASCII, in particular character values outside the range [32 .. 126] might
differ between architectures.

27.8.1 IntChar

▷ IntChar(char) (function)

returns an integer value in the range [0 .. 255] that corresponds to char .

27.8.2 CharInt

▷ CharInt(int) (function)

returns a character that corresponds to the integer value int , which must be in the range [0 ..

255].
Example

gap> c:=CharInt(65);

'A'

gap> IntChar(c);

65

27.8.3 SIntChar

▷ SIntChar(char) (function)

returns a signed integer value in the range [-128 .. 127] that corresponds to char .

27.8.4 CharSInt

▷ CharSInt(int) (function)

returns a character which corresponds to the signed integer value int , which must be in the range
[-128 .. 127].

The signed and unsigned integer functions behave the same for values in the range [0 .. 127

].
Example

gap> SIntChar(c);

65

gap> c:=CharSInt(-20);;

gap> SIntChar(c);

-20

gap> IntChar(c);

236

gap> SIntChar(CharInt(255));

-1

GAP - Reference Manual 421

27.9 Operations to Evaluate Strings

27.9.1 Int (for strings)

▷ Int(str) (attribute)

returns an integer as represented by the string str . The argument string may optionally start with
the sign character -, followed by a sequence of decimal digits. For any other input fail is returned.

For backwards compatibility, the empty string is accepted, in which case 0 is returned as result.
Example

gap> Int("12345");

12345

gap> Int("123/45");

fail

gap> Int("1+2");

fail

gap> Int("-12");

-12

gap> Int("");

0

27.9.2 Rat (for strings)

▷ Rat(str) (attribute)

returns a rational as represented by the string str . The argument string may optionally start with
the sign character -, followed by either a sequence of decimal digits or by two sequences of decimal
digits that are separated by one of the characters / or ., where the latter stands for a decimal dot. For
any other input fail is returned.

Example
gap> Rat("123/45");

41/15

gap> Rat("-123.45");

-2469/20

27.9.3 IntHexString

▷ IntHexString(str) (function)

returns an integer as represented by the string str . The argument string may optionally start with
the sign character -, followed by a sequence of hexadecimal digits. Here the letters a-f or A-F are
used as digits 10 to 15. Any other input results in an error.

This function can be used (together with HexStringInt (27.7.8)) for efficiently storing and read-
ing large integers from respectively into GAP. Note that the translation between integers and their
hexadecimal representation costs linear computation time in terms of the number of digits, while
translation from and into decimal representation needs substantial computations.

Example
gap> IntHexString("-abcdef0123456789");

-12379813738877118345

GAP - Reference Manual 422

gap> HexStringInt(last);

"-ABCDEF0123456789"

27.9.4 Ordinal

▷ Ordinal(n) (function)

returns the ordinal of the integer n as a string.
Example

gap> Ordinal(2); Ordinal(21); Ordinal(33); Ordinal(-33);

"2nd"

"21st"

"33rd"

"-33rd"

27.9.5 EvalString

▷ EvalString(expr) (function)

passes the string expr through an input text stream so that GAP interprets it, and returns the result.
Example

gap> a:=10;

10

gap> EvalString("a^2");

100

EvalString is intended for single expressions. A sequence of commands may be interpreted by
using the functions InputTextString (10.7.1) and ReadAsFunction (10.3.2) together; see 10.3 for
an example.

If EvalString is used inside a function, then it doesn’t know about the local variables and the
arguments of the function. A possible workaround is to define global variables in advance, and then
to assign the values of the local variables to the global ones, like in the example below.

Example
gap> global_a := 0;;

gap> global_b := 0;;

gap> example := function (local_a)

> local local_b;

> local_b := 5;

> global_a := local_a;

> global_b := local_b;

> return EvalString("global_a * global_b");

> end;;

gap> example(2);

10

GAP - Reference Manual 423

27.9.6 CrcString

▷ CrcString(str) (function)

Returns: an integer
This function computes a CRC (cyclic redundancy check) number from a string str . See also

CrcFile (9.7.7) and HexSHA256 (27.9.7).
Example

gap> CrcString("GAP example string");

-50451670

27.9.7 HexSHA256

▷ HexSHA256(string) (function)

▷ HexSHA256(stream) (function)

Return the SHA-256 cryptographic checksum of the bytes in string , resp. of the data in the input
stream object stream (see Chapter 10 to learn about streams) when read from the current position until
EOF (end-of-file).

The checksum is returned as string with 64 lowercase hexadecimal digits.
Example

gap> HexSHA256("abcd");

"88d4266fd4e6338d13b845fcf289579d209c897823b9217da3e161936f031589"

gap> HexSHA256(InputTextString("abcd"));

"88d4266fd4e6338d13b845fcf289579d209c897823b9217da3e161936f031589"

27.9.8 Pluralize

▷ Pluralize([count,]string[, plural]) (function)

Returns: A string
This function returns an attempt at the appropriate pluralization of a string (considered as a singular

English noun), using several rules and heuristics of English grammar.
The arguments to this function are an optional non-negative integer count (the number of objects

in question), a non-empty string string (the singular form of the object in question), and an optional
additional string plural (the plural form of string).

If plural is given, then Pluralize uses it as the plural form of string , otherwise Pluralize

makes an informed guess at the plural.
If count is not given, then Pluralize returns this plural form of string . If count is given and

has value n ̸= 1, then this string is prepended by "\>n\< "; else if count has value 1, then Pluralize

returns string , prepended by "\>1\< ".
Note that StripLineBreakCharacters (27.7.7) can be used to remove the control characters \<

and \> from the return value.
Example

gap> Pluralize("generator");

"generators"

gap> Pluralize(1, "generator");

"\>1\< generator"

gap> Pluralize(0, "generator");

"\>0\< generators"

gap> Pluralize("man", "men");

GAP - Reference Manual 424

"men"

gap> Pluralize(1, "man", "men");

"\>1\< man"

gap> Print(Pluralize(2, "man", "men"));

2 men

gap> Print(Pluralize(2, "vertex"));

2 vertices

gap> Print(Pluralize(3, "matrix"));

3 matrices

gap> Print(Pluralize(4, "battery"));

4 batteries

27.10 Calendar Arithmetic

All calendar functions use the Gregorian calendar.

27.10.1 DaysInYear

▷ DaysInYear(year) (function)

returns the number of days in the year year .

27.10.2 DaysInMonth

▷ DaysInMonth(month, year) (function)

returns the number of days in month number month of year , and fail if month is not in the valid
range.

Example
gap> DaysInYear(1998);

365

gap> DaysInMonth(3,1998);

31

27.10.3 DMYDay

▷ DMYDay(day) (function)

converts a number of days, starting 1-Jan-1970, to a list [day, month, year] in Gregorian
calendar counting.

27.10.4 DayDMY

▷ DayDMY(dmy) (function)

returns the number of days from 01-Jan-1970 to the day given by dmy , which must be a list of the
form [day, month, year] in Gregorian calendar counting. The result is fail on input outside
valid ranges.

GAP - Reference Manual 425

Note that this makes not much sense for early dates like: before 1582 (no Gregorian calendar at
all), or before 1753 in many English speaking countries or before 1917 in Russia.

27.10.5 WeekDay

▷ WeekDay(date) (function)

returns the weekday of a day given by date , which can be a number of days since 1-Jan-1970 or
a list [day, month, year].

27.10.6 StringDate

▷ StringDate(date) (function)

converts date to a readable string. date can be a number of days since 1-Jan-1970 or a list [
day, month, year].

Example
gap> DayDMY([1,1,1970]);DayDMY([2,1,1970]);

0

1

gap> DMYDay(12345);

[20, 10, 2003]

gap> WeekDay([11,3,1998]);

"Wed"

gap> StringDate([11,3,1998]);

"11-Mar-1998"

27.10.7 HMSMSec

▷ HMSMSec(msec) (function)

converts a number msec of milliseconds into a list [hour, min, sec, milli].

27.10.8 SecHMSM

▷ SecHMSM(hmsm) (function)

is the reverse of HMSMSec (27.10.7).

27.10.9 StringTime

▷ StringTime(time) (function)

converts time (given as a number of milliseconds or a list [hour, min, sec, milli]) to a
readable string.

Example
gap> HMSMSec(Factorial(10));

[1, 0, 28, 800]

gap> SecHMSM([1,10,5,13]);

GAP - Reference Manual 426

4205013

gap> StringTime([1,10,5,13]);

" 1:10:05.013"

27.10.10 SecondsDMYhms

▷ SecondsDMYhms(DMYhms) (function)

returns the number of seconds from 01-Jan-1970, 00:00:00, to the time given by DMYhms , which
must be a list of the form [day, month, year, hour, minute, second]. The remarks on the
Gregorian calendar in the section on DayDMY (27.10.4) apply here as well. The last three arguments
must lie in the appropriate ranges.

27.10.11 DMYhmsSeconds

▷ DMYhmsSeconds(secs) (function)

This is the inverse function to SecondsDMYhms (27.10.10).
Example

gap> SecondsDMYhms([9, 9, 2001, 1, 46, 40]);

1000000000

gap> DMYhmsSeconds(-1000000000);

[24, 4, 1938, 22, 13, 20]

27.11 Obtaining LaTeX Representations of Objects

For the purpose of generating LATEX source code with GAP it is recommended to add new functions
which will print the LATEX source or return LATEX strings for further processing.

An alternative approach could be based on methods for the default LATEX representation for each
appropriate type of objects. However, there is no clear notion of a default LATEX code for any
non-trivial mathematical object; moreover, different output may be required in different contexts.

While customisation of such an operation may require changes in a variety of methods that may be
distributed all over the library, the user will have a clean overview of the whole process of LATEX code
generation if it is contained in a single function. Furthermore, there may be kinds of objects which
are not detected by the method selection, or there may be a need in additional parameters specifying
requirements for the output.

This is why having a special purpose function for each particular case is more suitable. GAP
provides several functions that produce LATEX strings for those situations where this is nontrivial and
reasonable. A useful example is LaTeXStringDecompositionMatrix (71.11.5) from the GAP li-
brary, others can be found entering ?LaTeX at the GAP prompt. Package authors are encouraged to
add an index entry LaTeX to the documentation of all LATEX string producing functions. This way,
entering ?LaTeX will give an overview of all documented functionality in this direction.

Chapter 28

Dictionaries and General Hash Tables

People and computers spend a large amount of time with searching. Dictionaries are an abstract data
structure which facilitates searching for objects. Depending on the kind of objects the implementation
will use a variety of possible internal storage methods that will aim to provide the fastest possible
access to objects. These internal methods include

Hash Tables
for objects for which a hash function has been defined.

Direct Indexing
if the domain is small and cheaply enumerable

Sorted Lists
if a total order can be computed easily

Plain lists
for objects for which nothing but an equality test is available.

28.1 Using Dictionaries

The standard way to use dictionaries is to first create a dictionary (using NewDictionary (28.2.1),
and then to store objects (and associated information) in it and look them up.

For the creation of objects the user has to make a few choices: Is the dictionary only to be used
to check whether objects are known already, or whether associated information is to be stored with
the objects. This second case is called a lookup dictionary and is selected by the second parameter of
NewDictionary (28.2.1).

The second choice is to indicate which kind of objects are to be stored. This choice will decide
the internal storage used. This kind of objects is specified by the first parameter to NewDictionary

(28.2.1), which is a “sample” object.
In some cases however such a sample object is not specific enough. For example when storing

vectors over a finite field, it would not be clear whether all vectors will be over a prime field or over
a field extension. Such an issue can be resolved by indicating in an (optional) third parameter to
NewDictionary (28.2.1) a domain which has to be a collection that will contain all objects to be used
with this dictionary. (Such a domain may also be used internally to decide that direct indexing can be
used).

427

GAP - Reference Manual 428

The reason for this choice of giving two parameters is that in some cases no suitable collection of
objects has been defined in GAP - for example for permutations there is no object representing the
symmetric group on infinitely many points.

Once a dictionary has been created, it is possible to use RepresentationsOfObject (13.4.3) to
check which representation is used by GAP.

In the following example, we create a dictionary to store permutations with associated information.
Example

gap> d:=NewDictionary((1,2,3),true);;

gap> AddDictionary(d,(1,2),1);

gap> AddDictionary(d,(5,6),9);

gap> AddDictionary(d,(4,7),2);

gap> LookupDictionary(d,(5,6));

9

gap> LookupDictionary(d,(5,7));

fail

A typical example of this use would be in an orbit algorithm. The dictionary would be used to store
the elements known in the orbit together with their respective orbit positions.

We observe that this dictionary is stored internally by a sorted list. On the other hand, if we have
an explicit, sorted element list, direct indexing is to be used.

Example
gap> RepresentationsOfObject(d);

["IsComponentObjectRep", "IsNonAtomicComponentObjectRep",

"IsDictionaryDefaultRep", "IsListDictionary",

"IsListLookupDictionary", "IsSortDictionary",

"IsSortLookupDictionary"]

gap> d:=NewDictionary((1,2,3),true,Elements(SymmetricGroup(5)));;

gap> RepresentationsOfObject(d);

["IsComponentObjectRep", "IsNonAtomicComponentObjectRep",

"IsDictionaryDefaultRep", "IsPositionDictionary",

"IsPositionLookupDictionary"]

(Just indicating SymmetricGroup(5) as a third parameter would still keep the first storage method,
as indexing would be too expensive if no explicit element list is known.)

The same effect happens in the following example, in which we work with vectors: Indicating
only a vector only enables sorted index, as it cannot be known whether all vectors will be defined over
the prime field. On the other hand, providing the vector space (and thus limiting the domain) enables
the use of hashing (which will be faster).

Example
gap> v:=GF(2)^7;;

gap> d:=NewDictionary(Zero(v),true);;

gap> RepresentationsOfObject(d);

["IsComponentObjectRep", "IsNonAtomicComponentObjectRep",

"IsDictionaryDefaultRep", "IsListDictionary",

"IsListLookupDictionary", "IsSortDictionary",

"IsSortLookupDictionary"]

gap> d:=NewDictionary(Zero(v),true,v);;

gap> RepresentationsOfObject(d);

["IsComponentObjectRep", "IsNonAtomicComponentObjectRep",

"IsDictionaryDefaultRep", "IsPositionDictionary",

"IsPositionLookupDictionary"]

GAP - Reference Manual 429

28.2 Dictionaries

This section contains the formal declarations for dictionaries. For information on how to use them,
please refer to the previous section 28.1. There are several ways how dictionaries are implemented:
As lists, as sorted lists, as hash tables or via binary lists. A user however will just have to call
NewDictionary (28.2.1) and obtain a “suitable” dictionary for the kind of objects she wants to
create. It is possible however to create hash tables (see 28.4) and dictionaries using binary lists
(see DictionaryByPosition (28.3.1)).

The use of two objects, obj and objcoll to parametrize the objects a dictionary is able to store
might look confusing. However there are situations where either of them might be needed:

The first situation is that of objects, for which no formal “collection object” has been defined. A
typical example here might be subspaces of a vector space. GAP does not formally define a “Grass-
mannian” or anything else to represent the multitude of all subspaces. So it is only possible to give the
dictionary a “sample object”.

The other situation is that of an object which might represent quite varied domains. The permuta-
tion (1,106) might be the nontrivial element of a cyclic group of order 2, it might be a representative
of S106 . In the first situation the best approach might be just to have two entries for the two possible
objects, in the second situation a much more elaborate approach might be needed.

An algorithm that creates a dictionary will usually know a priori, from what domain all the objects
will be, giving this domain permits to use a more efficient dictionary.

This is particularly true for vectors. From a single vector one cannot decide whether a calculation
will take place over the smallest field containing all its entries or over a larger field.

28.2.1 NewDictionary

▷ NewDictionary(obj, look[, objcoll]) (function)

creates a new dictionary for objects such as obj . If objcoll is given the dictionary will be for
objects only from this collection, knowing this can improve the performance. If objcoll is given,
obj may be replaced by false, i.e. no sample object is needed.

The function tries to find the right kind of dictionary for the basic dictionary functions to be quick.
If look is true, the dictionary will be a lookup dictionary, otherwise it is an ordinary dictionary.

28.3 Dictionaries via Binary Lists

As there are situations where the approach via binary lists is explicitly desired, such dictionaries can
be created deliberately.

28.3.1 DictionaryByPosition

▷ DictionaryByPosition(list, lookup) (function)

creates a new (lookup) dictionary which uses PositionCanonical (21.16.3) in list for in-
dexing. The dictionary will have an entry dict!.blist which is a bit list corresponding to list

indicating the known values. If look is true, the dictionary will be a lookup dictionary, otherwise it
is an ordinary dictionary.

GAP - Reference Manual 430

28.3.2 IsDictionary

▷ IsDictionary(obj) (Category)

A dictionary is a growable collection of objects that permits to add objects (with associated values)
and to check whether an object is already known.

28.3.3 IsLookupDictionary

▷ IsLookupDictionary(obj) (Category)

A lookup dictionary is a dictionary, which permits not only to check whether an object is contained,
but also to retrieve associated values, using the operation LookupDictionary (28.3.6).

28.3.4 AddDictionary

▷ AddDictionary(dict, key[, val]) (operation)

adds key to the dictionary dict , storing the associated value val in case dict is a lookup dic-
tionary. If key is not an object of the kind for which the dictionary was specified, or if key is known
already to dict , the results are unpredictable.

28.3.5 KnowsDictionary

▷ KnowsDictionary(dict, key) (operation)

checks, whether key is known to the dictionary dict , and returns true or false accordingly.
key must be an object of the kind for which the dictionary was specified, otherwise the results are
unpredictable.

28.3.6 LookupDictionary

▷ LookupDictionary(dict, key) (operation)

looks up key in the lookup dictionary dict and returns the associated value. If key is not known
to the dictionary, fail is returned.

28.4 General Hash Tables

These sections describe some particularities for hash tables. These are intended mainly for extend-
ing the implementation - programs requiring hash functionality ought to use the dictionary interface
described above.

We hash by keys and also store a value. Keys cannot be removed from the table, but the corre-
sponding value can be changed. Fast access to last hash index allows you to efficiently store more than
one array of values –this facility should be used with care.

This code works for any kind of object, provided you have a DenseIntKey (28.5.1) method to
convert the key into a positive integer. This method should ideally be implemented efficiently in the
core.

GAP - Reference Manual 431

Note that, for efficiency, it is currently impossible to create a hash table with non-positive inte-
gers.

28.5 Hash keys

The crucial step of hashing is to transform key objects into integers such that equal objects produce
the same integer.

The actual function used will vary very much on the type of objects. However GAP provides
already key functions for some commonly encountered objects.

28.5.1 DenseIntKey

▷ DenseIntKey(objcoll, obj) (operation)

returns a function that can be used as hash key function for objects such as obj in the collection
objcoll . Typically, objcoll will be a large domain. If the domain is not available, it can be given
as false in which case the hash key function will be determined only based on obj . (For a further
discussion of these two arguments see NewDictionary (28.2.1)).

The function returned by DenseIntKey is guaranteed to give different values for different objects.
If no suitable hash key function has been predefined, fail is returned.

28.5.2 SparseIntKey

▷ SparseIntKey(objcoll, obj) (operation)

returns a function that can be used as hash key function for objects such as obj in the collection
objcoll . In contrast to DenseIntKey (28.5.1), the function returned may return the same key value
for different objects. If no suitable hash key function has been predefined, fail is returned.

28.6 Dense hash tables

Dense hash tables are used for hashing dense sets without collisions, in particular integers. Keys are
stored as an unordered list and values as an array with holes. The position of a value is given by the
function returned by DenseIntKey (28.5.1), and so KeyIntDense must be one-to-one.

28.6.1 DenseHashTable

▷ DenseHashTable() (function)

Construct an empty dense hash table. This is the only correct way to construct such a table.

28.7 Sparse hash tables

Sparse hash tables are used for hashing sparse sets. Stores keys as an array with fail denoting an empty
position, stores values as an array with holes. Uses the result of calling SparseIntKey (28.5.2)) of

GAP - Reference Manual 432

the key. DefaultHashLength is the default starting hash table length; the table is doubled when it
becomes half full.

In sparse hash tables, the integer obtained from the hash key is then transformed to an index
position by taking it modulo the length of the hash array.

28.7.1 SparseHashTable

▷ SparseHashTable([intkeyfun[, startlength]]) (function)

Construct an empty sparse hash table. This is the only correct way to construct such a table. If the
argument intkeyfun is given, this function will be used to obtain numbers for the keys passed to it.
If also startlength is given, the hash table will be initialized at that size.

28.7.2 DoubleHashArraySize

▷ DoubleHashArraySize(hash) (function)

Double the size of the hash array and rehash all the entries. This will also happen automatically
when the hash array is half full.

Chapter 29

Records

Records are next to lists the most important way to collect objects together. A record is a collection
of components. Each component has a unique name, which is an identifier that distinguishes this
component, and a value, which is an object of arbitrary type. We often abbreviate value of a component
to element. We also say that a record contains its elements. You can access and change the elements
of a record using its name.

Record literals are written by writing down the components in order between “rec(” and “)”, and
separating them by commas “,”. Each component consists of the name, the assignment operator “:=”,
and the value. The empty record, i.e., the record with no components, is written as rec().

Example
gap> rec(a := 1, b := "2"); # a record with two components

rec(a := 1, b := "2")

gap> rec(a := 1, b := rec(c := 2)); # record may contain records

rec(a := 1, b := rec(c := 2))

We may use the Display (6.3.6) function to illustrate the hierarchy of the record components.
Example

gap> Display(last);

rec(

a := 1,

b := rec(

c := 2))

Records usually contain elements of various types, i.e., they are usually not homogeneous like
lists.

29.1 IsRecord and RecNames

29.1.1 IsRecord

▷ IsRecord(obj) (Category)

▷ IsRecordCollection(obj) (Category)

▷ IsRecordCollColl(obj) (Category)

433

GAP - Reference Manual 434

Example
gap> IsRecord(rec(a := 1, b := 2));

true

gap> IsRecord(IsRecord);

false

29.1.2 RecNames

▷ RecNames(record) (attribute)

returns a duplicate-free list of strings corresponding to the names of the record components of the
record record .

The list is sorted by RNamObj (29.7.2) for reasons of efficiency; see SortBy (21.18.1). Therefore
the ordering is consistent within one GAP session, but it is not necessarily consistent across different
sessions. To obtain a result that is consistent across GAP sessions, apply Set (30.3.7) to the returned
list.

Note that given a string name containing the name of a record component, you can access the
record component via record.(name), see Sections 29.2 and 29.3.

Example
gap> r := rec(a := 1, b := 2);;

gap> Set(RecNames(r)); # 'Set' because ordering depends on GAP session

["a", "b"]

gap> Set(RecNames(r), x -> r.(x));

[1, 2]

Note that it is most efficient to assign components to a (new or old) record in the order given by
RecNames.

29.2 Accessing Record Elements

r.name

The above construct evaluates to the value of the record component with the name name in the
record r . Note that the name is not evaluated, i.e. it is taken literal.

Example
gap> r := rec(a := 1, b := 2);;

gap> r.a;

1

gap> r.b;

2

r.(name)

This construct is similar to the above construct. The difference is that the second operand name is
evaluated. It must evaluate to a string or an integer otherwise an error is signalled. The construct then
evaluates to the element of the record r whose name is, as a string, equal to name .

Example
gap> old := rec(a := 1, b := 2);;

gap> new := rec();

GAP - Reference Manual 435

rec()

gap> for i in RecNames(old) do

> new.(i) := old.(i);

> od;

gap> Display(new);

rec(

a := 1,

b := 2)

29.3 Record Assignment

r.name := obj

The record assignment assigns the object obj , which may be an object of arbitrary type, to the
record component with the name name , which must be an identifier, of the record r . That means that
accessing the element with name name of the record r will return obj after this assignment. If the
record r has no component with the name name , the record is automatically extended to make room
for the new component.

Example
gap> r := rec(a := 1, b := 2);;

gap> r.a := 10;;

gap> Display(r);

rec(

a := 10,

b := 2)

gap> r.c := 3;;

gap> Display(r);

rec(

a := 10,

b := 2,

c := 3)

Note that assigning to a record changes the record.
The function IsBound (29.6.1) can be used to test if a record has a component with a certain name,

the function Unbind (29.6.2) can be used to remove a component with a certain name again.
Example

gap> IsBound(r.a);

true

gap> IsBound(r.d);

false

gap> Unbind(r.b);

gap> Display(r);

rec(

a := 10,

c := 3)

r.(name) := obj

This construct is similar to the above construct. The difference is that the second operand name is
evaluated. It must evaluate to a string or an integer otherwise an error is signalled. The construct then
assigns obj to the record component of the record r whose name is, as a string, equal to name .

GAP - Reference Manual 436

29.4 Identical Records

With the record assignment (see 29.3) it is possible to change a record. This section describes the
semantic consequences of this fact which are essentially the same as for lists (see 21.6).

Example
r := rec(a := 1);

r := rec(a := 1, b := 2);

The second assignment does not change the first record, instead it assigns a new record to the vari-
able r. On the other hand, in the following example the record is changed by the second assignment.

Example
r := rec(a := 1);

r.b := 2;

To understand the difference first think of a variable as a name for an object. The important point
is that a record can have several names at the same time. An assignment var := r means in this
interpretation that var is a name for the object r . At the end of the following example r2 still has the
value rec(a := 1) as this record has not been changed and nothing else has been assigned to r2.

Example
r1 := rec(a := 1);

r2 := r1;

r1 := rec(a := 1, b := 2);

But after the following example the record for which r2 is a name has been changed and thus the
value of r2 is now rec(a := 1, b := 2).

Example
r1 := rec(a := 1);

r2 := r1;

r1.b := 2;

We shall say that two records are identical if changing one of them by a record assignment also
changes the other one. This is slightly incorrect, because if two records are identical, there are actually
only two names for one record. However, the correct usage would be very awkward and would only
add to the confusion. Note that two identical records must be equal, because there is only one records
with two different names. Thus identity is an equivalence relation that is a refinement of equality.

Let us now consider under which circumstances two records are identical.
If you enter a record literal then the record denoted by this literal is a new record that is not

identical to any other record. Thus in the following example r1 and r2 are not identical, though they
are equal of course.

Example
r1 := rec(a := 1);

r2 := rec(a := 1);

Also in the following example, no records in the list l are identical.
Example

l := [];

for i in [1..10] do

l[i] := rec(a := 1);

od;

GAP - Reference Manual 437

If you assign a record to a variable no new record is created. Thus the record value of the variable
on the left hand side and the record on the right hand side of the assignment are identical. So in the
following example r1 and r2 are identical records.

Example
r1 := rec(a := 1);

r2 := r1;

If you pass a record as argument, the old record and the argument of the function are identical.
Also if you return a record from a function, the old record and the value of the function call are
identical. So in the following example r1 and r2 are identical records.

Example
r1 := rec(a := 1);

f := function (r) return r; end;

r2 := f(r1);

The functions StructuralCopy (12.7.2) and ShallowCopy (12.7.1) accept a record and return a
new record that is equal to the old record but that is not identical to the old record. The difference
between StructuralCopy (12.7.2) and ShallowCopy (12.7.1) is that in the case of ShallowCopy
(12.7.1) the corresponding components of the new and the old records will be identical, whereas in
the case of StructuralCopy (12.7.2) they will only be equal. So in the following example r1 and r2

are not identical records.
Example

r1 := rec(a := 1);

r2 := ShallowCopy(r1);

If you change a record it keeps its identity. Thus if two records are identical and you change one of
them, you also change the other, and they are still identical afterwards. On the other hand, two records
that are not identical will never become identical if you change one of them. So in the following
example both r1 and r2 are changed, and are still identical.

Example
r1 := rec(a := 1);

r2 := r1;

r1.b := 2;

29.5 Comparisons of Records

rec1 = rec2

rec1 <> rec2

Two records are considered equal, if for each component of one record the other record has a
component of the same name with an equal value and vice versa.

Example
gap> rec(a := 1, b := 2) = rec(b := 2, a := 1);

true

gap> rec(a := 1, b := 2) = rec(a := 2, b := 1);

false

gap> rec(a := 1) = rec(a := 1, b := 2);

false

gap> rec(a := 1) = 1;

false

GAP - Reference Manual 438

rec1 < rec2

rec1 <= rec2

To compare records we imagine that the components of both records are sorted according to their
names (the sorting depends on the GAP session, more precisely the order in which component names
were first used). Then the records are compared lexicographically with unbound elements considered
smaller than anything else. Precisely one record rec1 is considered less than another record rec2

if rec2 has a component with name name2 and either rec1 has no component with this name or
rec1.name2 < rec2.name2 and for each component of rec1 with name name1 < name2 rec2

has a component with this name and rec1.name1 = rec2.name1 .
Example

gap> rec(axy := 1, bxy := 2) < rec(bxy := 2, axy := 1); # are equal

false

gap> rec(axy := 1) < rec(axy := 1, bxy := 2); # unbound is < 2

true

gap> # in new session the .axy components are compared first

gap> rec(axy := 1, bxy := 2) < rec(axy := 2, bxy := 0); # 1 < 2

true

gap> rec(axy := 1) < rec(axy := 0, bxy := 2); # 0 < 1

false

gap> rec(bxy := 1) < rec(bxy := 0, axy := 2); # unbound is < 2

true

29.6 IsBound and Unbind for Records

29.6.1 IsBound (for a record component)

▷ IsBound(r.name) (operation)

IsBound returns true if the record r has a component with the name name (which must be an
identifier) and false otherwise. r must evaluate to a record, otherwise an error is signalled.

Example
gap> r := rec(a := 1, b := 2);;

gap> IsBound(r.a);

true

gap> IsBound(r.c);

false

29.6.2 Unbind (unbind a record component)

▷ Unbind(r.name) (operation)

Unbind deletes the component with the name name in the record r . That is, after execution of
Unbind, r no longer has a record component with this name. Note that it is not an error to unbind a
nonexisting record component. r must evaluate to a record, otherwise an error is signalled.

Example
gap> r := rec(a := 1, b := 2);;

gap> Unbind(r.a); r;

rec(b := 2)

GAP - Reference Manual 439

gap> Unbind(r.c); r;

rec(b := 2)

Note that IsBound (29.6.1) and Unbind are special in that they do not evaluate their argument,
otherwise IsBound (29.6.1) would always signal an error when it is supposed to return false and
there would be no way to tell Unbind which component to remove.

29.7 Record Access Operations

Internally, record accesses are done using the operations listed in this section. For the records imple-
mented in the kernel, kernel methods are provided for all these operations but otherwise it is possible
to install methods for these operations for any object. This permits objects to simulate record behavior.

To save memory, records do not store a list of all component names, but only numbers identifying
the components. There numbers are called RNams. GAP keeps a global list of all RNams that are used
and provides the functions NameRNam (29.7.1) and RNamObj (29.7.2) to translate RNams to strings that
give the component names and vice versa.

29.7.1 NameRNam

▷ NameRNam(nr) (function)

returns a string representing the component name corresponding to the RNam nr .

29.7.2 RNamObj (for a string)

▷ RNamObj(str) (function)

▷ RNamObj(int) (function)

returns a number (the RNam) corresponding to the string str . It is also possible to pass a positive
integer int in which case the decimal expansion of int is used as a string.

Example
gap> NameRNam(798);

"BravaisSupergroups"

gap> RNamObj("blubberflutsch");

2075

gap> NameRNam(last);

"blubberflutsch"

The correspondence between strings and RNams is not predetermined ab initio, but RNams are
assigned to component names dynamically on a “first come, first serve” basis. Therefore, depending
on the version of the library you are using and on the assignments done so far, the same component
name may be represented by different RNams in different GAP sessions.

29.7.3 \.

▷ \.(obj, rnam) (operation)

▷ IsBound\.(obj, rnam) (operation)

GAP - Reference Manual 440

▷ \.\:\=(obj, rnam, val) (operation)

▷ Unbind\.(obj, rnam) (operation)

These operations are called for record accesses to arbitrary objects. If applicable methods are
installed, they are called when the object is accessed as a record.

For records, the operations implement component access, test for element boundness, component
assignment and removal of the component represented by the RNam rnam .

The component identifier rnam is always required to be in IsPosInt (14.2.2).
Example

gap> r:= rec(a:= 1);;

gap> IsBound\.(r, RNamObj("a"));

true

gap> \.(r, RNamObj("a"));

1

gap> IsBound\.(r, RNamObj("b"));

false

gap> \.\:\=(r, RNamObj("b"), 2);

gap> r;

rec(a := 1, b := 2)

gap> Unbind\.(r, RNamObj("b"));

gap> r;

rec(a := 1)

gap> G:= SymmetricGroup(4);;

gap> G.1;

(1,2,3,4)

gap> \.(G, RNamObj(1));

(1,2,3,4)

gap> meth:= ApplicableMethod(\., [G, 4711]);;

gap> meth(G, RNamObj(1));

(1,2,3,4)

Chapter 30

Collections

A collection in GAP consists of elements in the same family (see 13.1). The most important kinds of
collections are homogeneous lists (see 21) and domains (see 12.4). Note that a list is never a domain,
and a domain is never a list. A list is a collection if and only if it is nonempty and homogeneous.

Basic operations for collections are Size (30.4.6) and Enumerator (30.3.2); for finite collections,
Enumerator (30.3.2) admits to delegate the other operations for collections (see 30.4 and 30.5) to
functions for lists (see 21). Obviously, special methods depending on the arguments are needed for
the computation of e.g. the intersection of two infinite domains.

30.1 IsCollection (Filter)

30.1.1 IsCollection

▷ IsCollection(obj) (Category)

tests whether an object is a collection.
Some of the functions for lists and collections are described in the chapter about lists, mainly in

Section 21.20. In the current chapter, we describe those functions for which the “collection aspect”
seems to be more important than the “list aspect”.

30.2 Collection Families

30.2.1 CollectionsFamily

▷ CollectionsFamily(Fam) (attribute)

For a family Fam , CollectionsFamily returns the family of all collections over Fam , that is, of
all dense lists and domains that consist of objects in Fam .

The NewFamily (13.1.2) call in the standard method of CollectionsFamily is executed with
second argument IsCollection (30.1.1), since every object in the collections family must be a col-
lection, and with third argument the collections categories of the involved categories in the implied
filter of Fam .

Note that families (see 13.1) are used to describe relations between objects. Important such rela-
tions are that between an element e and each collection of elements that lie in the same family as e,

441

GAP - Reference Manual 442

and that between two collections whose elements lie in the same family. Therefore, all collections of
elements in the family Fam form the new family CollectionsFamily(Fam).

30.2.2 IsCollectionFamily

▷ IsCollectionFamily(obj) (Category)

is true if Fam is a family of collections, and false otherwise.

30.2.3 ElementsFamily

▷ ElementsFamily(Fam) (attribute)

If Fam is a collections family (see IsCollectionFamily (30.2.2)) then ElementsFamily returns
the family from which Fam was created by CollectionsFamily (30.2.1). The way a collections
family is created, it always has its elements family stored. If Fam is not a collections family then an
error is signalled.

Example
gap> fam:= FamilyObj((1,2));;

gap> collfam:= CollectionsFamily(fam);;

gap> fam = collfam; fam = ElementsFamily(collfam);

false

true

gap> collfam = FamilyObj([(1,2,3)]);

true

gap> collfam = FamilyObj(Group(()));

true

gap> collfam = CollectionsFamily(collfam);

false

30.2.4 CategoryCollections

▷ CategoryCollections(filter) (function)

Let filter be a filter that is true for all elements of a family Fam , by the construction of Fam .
Then CategoryCollections returns the collections category of filter . This is a category that is
true for all elements in CollectionsFamily(Fam).

For example, the construction of PermutationsFamily (42.1.3) guarantees that each of its
elements lies in the filter IsPerm (42.1.1), and each collection of permutations (permutation
group or dense list of permutations) lies in the category CategoryCollections(IsPerm).
CategoryCollections(IsPerm). Note that this works only if the collections category is cre-
ated before the collections family. So it is necessary to construct interesting collections categories
immediately after the underlying category has been created.

30.2.5 DeclareCategoryCollections

▷ DeclareCategoryCollections(name) (function)

GAP - Reference Manual 443

Calls CategoryCollections (30.2.4) on the category that is bound to the global variable with
name name to obtain its collections category, and binds the latter to the global variable with name
nname. This name is defined as follows: If name is of the form SomethingCollection then
nname is set to SomethingCollColl, if name is of the form SomethingColl then nname is set
to SomethingCollColl, otherwise we set nname to nameCollection.

30.3 Lists and Collections

The following functions take a list or collection as argument, and return a corresponding list. They
differ in whether or not the result is mutable or immutable (see 12.6), guaranteed to be sorted, or
guaranteed to admit list access in constant time (see IsConstantTimeAccessList (21.1.6)).

30.3.1 IsListOrCollection

▷ IsListOrCollection(obj) (Category)

Several functions are defined for both lists and collections, for example Intersection (30.5.2),
Iterator (30.8.1), and Random (30.7.1). IsListOrCollection is a supercategory of IsList

(21.1.1) and IsCollection (30.1.1) (that is, all lists and collections lie in this category), which is
used to describe the arguments of functions such as the ones listed above.

30.3.2 Enumerator

▷ Enumerator(listorcoll) (attribute)

Enumerator returns an immutable list enum. If the argument is a list (which may contain holes),
then Length(enum) is the length of this list, and enum contains the elements (and holes) of this
list in the same order. If the argument is a collection that is not a list, then Length(enum) is the
number of different elements of C , and enum contains the different elements of the collection in an
unspecified order, which may change for repeated calls of Enumerator. enum[pos] may not execute
in constant time (see IsConstantTimeAccessList (21.1.6)), and the size of enum in memory is as
small as is feasible.

For lists, the default method is Immutable (12.6.3). For collections that are not lists, there is no
default method.

30.3.3 EnumeratorSorted

▷ EnumeratorSorted(listorcoll) (attribute)

EnumeratorSorted returns an immutable list enum. The argument must be a collection
or a list listorcoll which may contain holes but whose elements lie in the same family
(see 13.1). Length(enum) is the number of different elements of the argument, and enum con-
tains the different elements in sorted order, w.r.t. <. enum[pos] may not execute in constant time
(see IsConstantTimeAccessList (21.1.6)), and the size of enum in memory is as small as is feasi-
ble.

GAP - Reference Manual 444

Example
gap> Enumerator([1, 3,, 2]);

[1, 3,, 2]

gap> enum:= Enumerator(Rationals);; elm:= enum[10^6];

-69/907

gap> Position(enum, elm);

1000000

gap> IsMutable(enum); IsSortedList(enum);

false

false

gap> IsConstantTimeAccessList(enum);

false

gap> EnumeratorSorted([1, 3,, 2]);

[1, 2, 3]

30.3.4 EnumeratorByFunctions (for a domain and a record)

▷ EnumeratorByFunctions(D, record) (function)

▷ EnumeratorByFunctions(Fam, record) (function)

EnumeratorByFunctions returns an immutable, dense, and duplicate-free list enum for which
IsBound (21.5.1), element access via \[\] (21.2.1), Length (21.17.5), and Position (21.16.1) are
computed via prescribed functions.

Let record be a record with at least the following components.

ElementNumber

a function taking two arguments enum and pos , which returns enum[pos] (see 21.2); it can
be assumed that the argument pos is a positive integer, but pos may be larger than the length of
enum (in which case an error must be signalled); note that the result must be immutable since
enum itself is immutable,

NumberElement

a function taking two arguments enum and elm , which returns Position(enum, elm)

(see Position (21.16.1)); it cannot be assumed that elm is really contained in enum (and fail

must be returned if not); note that for the three argument version of Position (21.16.1), the
method that is available for duplicate-free lists suffices.

Further (data) components may be contained in record which can be used by these function.
If the first argument is a domain D then enum lists the elements of D (in general enum is not sorted),

and methods for Length (21.17.5), IsBound (21.5.1), and PrintObj (6.3.5) may use D .
If one wants to describe the result without creating a domain then the elements are given implicitly

by the functions in record , and the first argument must be a family Fam which will become the
family of enum ; if enum is not homogeneous then Fam must be ListsFamily, otherwise it must be
the collections family of any element in enum . In this case, additionally the following component in
record is needed.

Length

a function taking the argument enum , which returns the length of enum (see Length (21.17.5)).

GAP - Reference Manual 445

The following components are optional; they are used if they are present but default methods are
installed for the case that they are missing.

IsBound\[\]

a function taking two arguments enum and k , which returns IsBound(enum[k])

(see 21.2); if this component is missing then Length (21.17.5) is used for computing the re-
sult,

Membership

a function taking two arguments elm and enum , which returns true is elm is an element of
enum , and false otherwise (see 21.2); if this component is missing then NumberElement is
used for computing the result,

AsList

a function taking one argument enum , which returns a list with the property that the access
to each of its elements will take roughly the same time (see IsConstantTimeAccessList

(21.1.6)); if this component is missing then ConstantTimeAccessList (21.17.6) is used for
computing the result,

ViewObj and PrintObj

two functions that print what one wants to be printed when View(enum) or Print(enum)

is called (see 6.3), if the ViewObj component is missing then the PrintObj method is used as a
default.

If the result is known to have additional properties such as being strictly sorted
(see IsSSortedList (21.17.4)) then it can be useful to set these properties after the construction
of the enumerator, before it is used for the first time. And in the case that a new sorted enumera-
tor of a domain is implemented via EnumeratorByFunctions, and this construction is installed as
a method for the operation Enumerator (30.3.2), then it should be installed also as a method for
EnumeratorSorted (30.3.3).

Note that it is not checked that EnumeratorByFunctions really returns a dense and dupli-
cate-free list. EnumeratorByFunctions does not make a shallow copy of record , this record is
changed in place, see 79.1.

It would be easy to implement a slightly generalized setup for enumerators that need not be du-
plicate-free (where the three argument version of Position (21.16.1) is supported), but the resulting
overhead for the methods seems not to be justified.

30.3.5 List (for a collection)

▷ List(C) (function)

For a collection C (see 30) that is not a list, List returns a new mutable list new such that
Length(new) is the number of different elements of C , and new contains the different elements
of C in an unspecified order which may change for repeated calls. new[pos] executes in constant
time (see IsConstantTimeAccessList (21.1.6)), and the size of new is proportional to its length.
The generic method for this case is ShallowCopy(Enumerator(C)).

Developers who wish to adapt this for custom list or collection types need to install suitable meth-
ods for the operation ListOp.

GAP - Reference Manual 446

Example
gap> l:= List(Group((1,2,3)));

[(), (1,3,2), (1,2,3)]

gap> IsMutable(l); IsSortedList(l); IsConstantTimeAccessList(l);

true

false

true

(See also List (21.20.18).)

30.3.6 SortedList

▷ SortedList(listorcoll[, func]) (operation)

SortedList returns a new mutable and dense list new . The argument must be a collection or list
listorcoll which may contain holes but whose elements lie in the same family (see 13.1). Length(
new) is the number of elements of listorcoll , and new contains the elements in sorted order,
w.r.t. < or func if it is specified. For details, please refer to Sort (21.18.1). new[pos] executes in
constant time (see IsConstantTimeAccessList (21.1.6)), and the size of new in memory is propor-
tional to its length.

Example
gap> l:= SortedList(Group((1,2,3)));

[(), (1,2,3), (1,3,2)]

gap> IsMutable(l); IsSortedList(l); IsConstantTimeAccessList(l);

true

true

true

gap> SortedList([1, 2, 1,, 3, 2]);

[1, 1, 2, 2, 3]

30.3.7 SSortedList

▷ SSortedList(listorcoll[, fun]) (operation)

▷ Set(C[, fun]) (operation)

SSortedList (“strictly sorted list”) returns a new dense, mutable, and duplicate free list new . The
argument must be a collection or list listorcoll which may contain holes.

If the optional argument fun is not given then Length(new) is the number of different elements
of listorcoll , and new contains the different elements in strictly sorted order, w.r.t. \< (31.11.1).
For that, any two entries of listorcoll must be comparable via \< (31.11.1). (Typically, the entries
lie in the same family, see 13.1.)

If fun is given then it must be a unary function. In this case, fun is applied to all elements of
listorcoll , new contains the different return values in strictly sorted order, and Length(new)

is the number of different such values. For that, any two return values must be comparable via \<

(31.11.1).
new[pos] executes in constant time (see IsConstantTimeAccessList (21.1.6)), and the size of

new in memory is proportional to its length.
Set is simply a synonym for SSortedList.

GAP - Reference Manual 447

Example
gap> l:= SSortedList(Group((1,2,3)));

[(), (1,2,3), (1,3,2)]

gap> IsMutable(l); IsSSortedList(l); IsConstantTimeAccessList(l);

true

true

true

gap> SSortedList(Group((1,2,3)), Order);

[1, 3]

gap> SSortedList([1, 2, 1,, 3, 2]);

[1, 2, 3]

gap> SSortedList([1, 2, 1,, 3, 2], x -> x^2);

[1, 4, 9]

30.3.8 AsList

▷ AsList(listorcoll) (attribute)

AsList returns a immutable list imm . If the argument is a list (which may contain holes), then
Length(imm) is the Length (21.17.5) value of this list, and imm contains the elements (and holes)
of the list in the same order. If the argument is a collection that is not a list, then Length(imm

) is the number of different elements of this collection, and imm contains the different elements of
the collection in an unspecified order, which may change for repeated calls of AsList. imm[pos]

executes in constant time (see IsConstantTimeAccessList (21.1.6)), and the size of imm in memory
is proportional to its length.

If you expect to do many element tests in the resulting list, it might be worth to use a sorted list
instead, using AsSSortedList (30.3.10).

Example
gap> l:= AsList([1, 3, 3,, 2]);

[1, 3, 3,, 2]

gap> IsMutable(l); IsSortedList(l); IsConstantTimeAccessList(l);

false

false

true

gap> AsList(Group((1,2,3), (1,2)));

[(), (2,3), (1,3,2), (1,3), (1,2,3), (1,2)]

30.3.9 AsSortedList

▷ AsSortedList(listorcoll) (attribute)

AsSortedList returns a dense and immutable list imm . The argument must be a collection or list
listorcoll which may contain holes but whose elements lie in the same family (see 13.1). Length(
imm) is the number of elements of the argument, and imm contains the elements in sorted order,
w.r.t. <=. new[pos] executes in constant time (see IsConstantTimeAccessList (21.1.6)), and the
size of imm in memory is proportional to its length.

The only difference to the operation SortedList (30.3.6) is that AsSortedList returns an im-
mutable list.

GAP - Reference Manual 448

Example
gap> l:= AsSortedList([1, 3, 3,, 2]);

[1, 2, 3, 3]

gap> IsMutable(l); IsSortedList(l); IsConstantTimeAccessList(l);

false

true

true

gap> IsSSortedList(l);

false

30.3.10 AsSSortedList

▷ AsSSortedList(listorcoll) (attribute)

▷ AsSet(listorcoll) (attribute)

AsSSortedList (“as strictly sorted list”) returns a dense, immutable, and duplicate free list imm .
The argument must be a collection or list listorcoll which may contain holes but whose elements
lie in the same family (see 13.1). Length(imm) is the number of different elements of listorcoll ,
and imm contains the different elements in strictly sorted order, w.r.t. \< (31.11.1). imm[pos] exe-
cutes in constant time (see IsConstantTimeAccessList (21.1.6)), and the size of imm in memory is
proportional to its length.

Because the comparisons required for sorting can be very expensive for some kinds of objects,
you should use AsList (30.3.8) instead if you do not require the result to be sorted.

The only difference to the operation SSortedList (30.3.7) is that AsSSortedList returns an
immutable list.

AsSet is simply a synonym for AsSSortedList.
In general a function that returns a set of elements is free, in fact encouraged, to return a domain

instead of the proper set of its elements. This allows one to keep a given structure, and moreover the
representation by a domain object is usually more space efficient. AsSSortedList must of course not
do this, its only purpose is to create the proper set of elements.

Example
gap> l:= AsSSortedList(l);

[1, 2, 3]

gap> IsMutable(l); IsSSortedList(l); IsConstantTimeAccessList(l);

false

true

true

gap> AsSSortedList(Group((1,2,3), (1,2)));

[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

30.3.11 Elements

▷ Elements(C) (function)

Elements does the same as AsSSortedList (30.3.10), that is, the return value is a strictly sorted
list of the elements in the list or collection C .

Elements is only supported for backwards compatibility. In many situations, the sortedness of the
“element list” for a collection is in fact not needed, and one can save a lot of time by asking for a list

GAP - Reference Manual 449

that is not necessarily sorted, using AsList (30.3.8). If one is really interested in the strictly sorted
list of elements in C then one should use AsSet (30.3.10) or AsSSortedList (30.3.10) instead.

30.4 Attributes and Properties for Collections

30.4.1 IsEmpty

▷ IsEmpty(listorcoll) (property)

IsEmpty returns true if the collection or list listorcoll is empty (that is it contains no ele-
ments), and false otherwise.

30.4.2 IsFinite

▷ IsFinite(C) (property)

IsFinite returns true if the collection C is finite, and false otherwise.
The default method for IsFinite checks the size (see Size (30.4.6)) of C .
Methods for IsFinite may call Size (30.4.6), but methods for Size (30.4.6) must not call

IsFinite.

30.4.3 IsTrivial

▷ IsTrivial(C) (property)

IsTrivial returns true if the collection C consists of exactly one element.

30.4.4 IsNonTrivial

▷ IsNonTrivial(C) (property)

IsNonTrivial returns true if the collection C is empty or consists of at least two elements
(see IsTrivial (30.4.3)).

Example
gap> IsEmpty([]); IsEmpty([1 .. 100]); IsEmpty(Group((1,2,3)));

true

false

false

gap> IsFinite([1 .. 100]); IsFinite(Integers);

true

false

gap> IsTrivial(Integers); IsTrivial(Group(()));

false

true

gap> IsNonTrivial(Integers); IsNonTrivial(Group(()));

true

false

GAP - Reference Manual 450

30.4.5 IsWholeFamily

▷ IsWholeFamily(C) (property)

IsWholeFamily returns true if the collection C contains the whole family (see 13.1) of its ele-
ments.

Example
gap> IsWholeFamily(Integers)

> ; # all rationals and cyclotomics lie in the family

false

gap> IsWholeFamily(Integers mod 3)

> ; # all finite field elements in char. 3 lie in this family

false

gap> IsWholeFamily(Integers mod 4);

true

gap> IsWholeFamily(FreeGroup(2));

true

30.4.6 Size

▷ Size(listorcoll) (attribute)

Size returns the size of the list or collection listorcoll , which is either an integer or infinity
(18.2.1). If the argument is a list then the result is its length (see Length (21.17.5)).

The default method for Size checks the length of an enumerator of listorcoll .
Methods for IsFinite (30.4.2) may call Size, but methods for Size must not call IsFinite

(30.4.2).
Example

gap> Size([1,2,3]); Size(Group(())); Size(Integers);

3

1

infinity

30.4.7 Representative

▷ Representative(C) (attribute)

Representative returns a representative of the collection C .
Note that Representative is free in choosing a representative if there are several elements in C .

It is not even guaranteed that Representative returns the same representative if it is called several
times for one collection. The main difference between Representative and Random (30.7.1) is that
Representative is free to choose a value that is cheap to compute, while Random (30.7.1) must make
an effort to randomly distribute its answers.

If C is a domain then there are methods for Representative that try to fetch an element from
any known generator list of C , see 31. Note that Representative does not try to compute generators
of C , thus Representative may give up and signal an error if C has no generators stored at all.

GAP - Reference Manual 451

30.4.8 RepresentativeSmallest

▷ RepresentativeSmallest(C) (attribute)

returns the smallest element in the collection C , w.r.t. the ordering \< (31.11.1). While the opera-
tion defaults to comparing all elements, better methods are installed for some collections.

Example
gap> Representative(Rationals);

0

gap> Representative([-1, -2 .. -100]);

-1

gap> RepresentativeSmallest([-1, -2 .. -100]);

-100

30.5 Operations for Collections

30.5.1 IsSubset

▷ IsSubset(C1, C2) (operation)

IsSubset returns true if C2 , which must be a collection, is a subset of C1 , which also must be a
collection, and false otherwise.

C2 is considered a subset of C1 if and only if each element of C2 is also an element of
C1 . That is IsSubset behaves as if implemented as IsSubsetSet(AsSSortedList(C1),

AsSSortedList(C2)), except that it will also sometimes, but not always, work for infinite col-
lections, and that it will usually work much faster than the above definition. Either argument may also
be a proper set (see 21.19).

Example
gap> IsSubset(Rationals, Integers);

true

gap> IsSubset(Integers, [1, 2, 3]);

true

gap> IsSubset(Group((1,2,3,4)), [(1,2,3)]);

false

30.5.2 Intersection

▷ Intersection(C1, C2, ...) (function)

▷ Intersection(list) (function)

▷ Intersection2(C1, C2) (operation)

In the first form Intersection returns the intersection of the collections C1 , C2 , etc. In the
second form list must be a nonempty list of collections and Intersection returns the intersection
of those collections. Each argument or element of list respectively may also be a homogeneous list
that is not a proper set, in which case Intersection silently applies Set (30.3.7) to it first.

The result of Intersection is the set of elements that lie in every of the collections C1 , C2 , etc.
If the result is a list then it is mutable and new, i.e., not identical to any of C1 , C2 , etc.

GAP - Reference Manual 452

Methods can be installed for the operation Intersection2 that takes only two arguments.
Intersection calls Intersection2.

Methods for Intersection2 should try to maintain as much structure as possible, for example
the intersection of two permutation groups is again a permutation group.

Example
gap> # this is one of the rare cases where the intersection of two

gap> # infinite domains works ('CF' is a shorthand for 'CyclotomicField'):

gap> Intersection(CyclotomicField(9), CyclotomicField(12));

CF(3)

gap> D12 := Group((2,6)(3,5), (1,2)(3,6)(4,5));;

gap> Intersection(D12, Group((1,2), (1,2,3,4,5)));

Group([(1,5)(2,4)])

gap> Intersection(D12, [(1,3)(4,6), (1,2)(3,4)])

> ; # note that the second argument is not a proper set

[(1,3)(4,6)]

gap> # although the result is mathematically a group it is returned as a

gap> # proper set because the second argument is not regarded as a group:

gap> Intersection(D12, [(), (1,2)(3,4), (1,3)(4,6), (1,4)(5,6)]);

[(), (1,3)(4,6)]

gap> Intersection(Group(()), [1,2,3]);

[]

gap> Intersection([2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25])

> ; # two or more lists or collections as arguments are legal

[]

gap> Intersection([[1,2,4], [2,3,4], [1,3,4]])

> ; # or one list of lists or collections

[4]

30.5.3 Union

▷ Union(C1, C2, ...) (function)

▷ Union(list) (function)

▷ Union2(C1, C2) (operation)

In the first form Union returns the union of the collections C1 , C2 , etc. In the second form list

must be a list of collections and Union returns the union of those collections. Each argument or
element of list respectively may also be a homogeneous list that is not a proper set, in which case
Union silently applies Set (30.3.7) to it first.

The result of Union is the set of elements that lie in any of the collections C1 , C2 , etc. If the result
is a list then it is mutable and new, i.e., not identical to any of C1 , C2 , etc.

Methods can be installed for the operation Union2 that takes only two arguments. Union calls
Union2.

Example
gap> Union([(1,2,3), (1,2,3,4)], Group((1,2,3), (1,2)));

[(), (2,3), (1,2), (1,2,3), (1,2,3,4), (1,3,2), (1,3)]

gap> Union([2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25])

> ; # two or more lists or collections as arguments are legal

[2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 20, 25]

gap> Union([[1,2,4], [2,3,4], [1,3,4]])

> ; # or one list of lists or collections

GAP - Reference Manual 453

[1 .. 4]

gap> Union([]);

[]

When computing the Union of lists or sets of small integers and ranges, every attempt is made to
return the result as a range and to avoid expanding ranges provided as input.

30.5.4 Difference

▷ Difference(C1, C2) (operation)

Difference returns the set difference of the collections C1 and C2 . Either argument may also be
a homogeneous list that is not a proper set, in which case Difference silently applies Set (30.3.7) to
it first.

The result of Difference is the set of elements that lie in C1 but not in C2 . Note that C2 need
not be a subset of C1 . The elements of C2 , however, that are not elements of C1 play no role for the
result. If the result is a list then it is mutable and new, i.e., not identical to C1 or C2 .

Example
gap> Difference([(1,2,3), (1,2,3,4)], Group((1,2,3), (1,2)));

[(1,2,3,4)]

30.6 Membership Test for Collections

30.6.1 \in (for a collection)

▷ \in(obj, C) (operation)

returns true if the object obj lies in the collection C , and false otherwise.
The infix version of the command
obj in C

calls the operation \in (30.6.1), for which methods can be installed.
Example

gap> 13 in Integers; [1, 2] in Integers;

true

false

gap> g:= Group((1,2));; (1,2) in g; (1,2,3) in g;

true

false

30.7 Random Elements

The method used by GAP to obtain random elements may depend on the type object.
Most methods which produce random elements in GAP use a global random number generator

(see GlobalMersenneTwister (14.7.4)). This random number generator is (deliberately) initialized
to the same values when GAP is started, so different runs of GAP with the same input will always
produce the same result, even if random calculations are involved.

GAP - Reference Manual 454

See Reset (14.7.3) for a description of how to reset the random number generator to a previous
state.

30.7.1 Random (for a list or collection)

▷ Random(listorcoll) (operation)

▷ Random(from, to) (operation)

Random returns a (pseudo-)random element of the dense, nonempty list or nonempty collec-
tion listorcoll . The behaviour for non-dense or empty lists, and for empty collections (see
IsDenseList (21.1.2), IsEmpty (30.4.1)) is undefined.

As lists or ranges are restricted in length (228−1 or 260−1 depending on your system), the second
form returns a random integer in the range from to to (inclusive) for arbitrary integers from and to .
The behaviour in the case that from is larger than to is undefined.

See Section 14.7 for more about computing random elements, in particular for Random (14.7.2)
methods that take a random source as the first argument.

The distribution of elements returned by Random depends on the argument. For a dense, nonempty
list the distribution is uniform (all elements are equally likely). The same holds usually for finite
collections that are not lists. For infinite collections some reasonable distribution is used.

See the chapters of the various collections to find out which distribution is being used.
For some collections ensuring a reasonable distribution can be difficult and require substantial

runtime (for example for large finite groups). If speed is more important than a guaranteed distribution,
the operation PseudoRandom (30.7.2) should be used instead.

Note that Random is of course not an attribute.
Example

gap> Random([1..6]);

6

gap> Random(1, 2^100);

866227015645295902682304086250

gap> g:= Group((1,2,3));; Random(g); Random(g);

(1,3,2)

()

gap> Random(Rationals);

-4

30.7.2 PseudoRandom

▷ PseudoRandom(listorcoll) (operation)

PseudoRandom returns a pseudo random element of the list or collection listorcoll , which
can be roughly described as follows. For a list, PseudoRandom returns the same as Random (30.7.1).
For collections that are not lists, the elements returned by PseudoRandom are not necessarily equally
distributed, even for finite collections; the idea is that Random (30.7.1) returns elements according
to a reasonable distribution, PseudoRandom returns elements that are cheap to compute but need not
satisfy this strong condition, and Representative (30.4.7) returns arbitrary elements, probably the
same element for each call.

GAP - Reference Manual 455

30.7.3 RandomList

▷ RandomList([rs,]list) (function)

For a dense list list , RandomList returns a (pseudo-)random element with equal distribution.
The random source rs (see 14.7) is used to choose a random number. If rs is absent, this function

uses the GlobalMersenneTwister (14.7.4) to produce the random elements (a source of high quality
random numbers).

Example
gap> RandomList([1 .. 6]);

3

gap> elms:= AsList(Group((1,2,3)));;

gap> RandomList(elms); RandomList(elms);

(1,3,2)

(1,2,3)

gap> rs:= RandomSource(IsMersenneTwister, 1);

<RandomSource in IsMersenneTwister>

gap> RandomList(rs, elms);

(1,3,2)

30.8 Iterators

30.8.1 Iterator

▷ Iterator(listorcoll) (operation)

▷ IsStandardIterator(listorcoll) (filter)

Iterators provide a possibility to loop over the elements of a (countable) collection or list
listorcoll , without repetition. For many collections C, an iterator of C need not store all ele-
ments of C, for example it is possible to construct an iterator of some infinite domains, such as the
field of rational numbers.

Iterator returns a mutable iterator iter for its argument. If this argument is a list (which may
contain holes), then iter iterates over the elements (but not the holes) of this list in the same order
(see IteratorList (30.8.6) for details). If this argument is a collection but not a list then iter iterates
over the elements of this collection in an unspecified order, which may change for repeated calls of
Iterator. Because iterators returned by Iterator are mutable (see 12.6), each call of Iterator for
the same argument returns a new iterator. Therefore Iterator is not an attribute (see 13.5).

The only operations for iterators are IsDoneIterator (30.8.4), NextIterator (30.8.5), and
ShallowCopy (12.7.1). In particular, it is only possible to access the next element of the iterator
with NextIterator (30.8.5) if there is one, and this can be checked with IsDoneIterator (30.8.4)
For an iterator iter, ShallowCopy (12.7.1) returns a mutable iterator new that iterates over the remain-
ing elements independent of iter; the results of IsDoneIterator (30.8.4) for iter and new are equal,
and if iter is mutable then also the results of NextIterator (30.8.5) for iter and new are equal; note
that = is not defined for iterators, so the equality of two iterators cannot be checked with =.

When Iterator is called for a mutable collection C then it is not defined whether iter respects
changes to C occurring after the construction of iter, except if the documentation explicitly promises a
certain behaviour. The latter is the case if the argument is a mutable list (see IteratorList (30.8.6)
for subtleties in this case).

GAP - Reference Manual 456

It is possible to have for-loops run over mutable iterators instead of lists.
In some situations, one can construct iterators with a special succession of elements,

see IteratorByBasis (61.6.6) for the possibility to loop over the elements of a vector space w.r.t. a
given basis.

For lists, Iterator is implemented by IteratorList (30.8.6). For collections C that are not
lists, the default method is IteratorList(Enumerator(C)). Better methods depending on C
should be provided if possible.

For random access to the elements of a (possibly infinite) collection, enumerators are used.
See 21.23 for the facility to compute a list from C, which provides a (partial) mapping from C to
the positive integers.

The filter IsStandardIterator means that the iterator is implemented as a component object
and has components IsDoneIterator and NextIterator which are bound to the methods of the
operations of the same name for this iterator.

Example
gap> iter:= Iterator(GF(5));

<iterator>

gap> l:= [];;

gap> for i in iter do Add(l, i); od; l;

[0*Z(5), Z(5)^0, Z(5), Z(5)^2, Z(5)^3]

gap> iter:= Iterator([1, 2, 3, 4]);; l:= [];;

gap> for i in iter do

> new:= ShallowCopy(iter);

> for j in new do Add(l, j); od;

> od; l;

[2, 3, 4, 3, 4, 4]

30.8.2 IteratorSorted

▷ IteratorSorted(listorcoll) (operation)

IteratorSorted returns a mutable iterator. The argument must be a collection or a list that is
not necessarily dense but whose elements lie in the same family (see 13.1). It loops over the different
elements in sorted order.

For a collection C that is not a list, the generic method is IteratorList(EnumeratorSorted(

C)).

30.8.3 IsIterator

▷ IsIterator(obj) (Category)

Every iterator lies in the category IsIterator.

30.8.4 IsDoneIterator

▷ IsDoneIterator(iter) (operation)

If iter is an iterator for the list or collection C then IsDoneIterator(iter) is true if all
elements of C have been returned already by NextIterator(iter), and false otherwise.

GAP - Reference Manual 457

30.8.5 NextIterator

▷ NextIterator(iter) (operation)

Let iter be a mutable iterator for the list or collection C. If IsDoneIterator(iter) is false
then NextIterator is applicable to iter , and the result is the next element of C, according to the
succession defined by iter .

If IsDoneIterator(iter) is true then it is not defined what happens when NextIterator

is called for iter ; that is, it may happen that an error is signalled or that something meaningless is
returned, or even that GAP crashes.

Example
gap> iter:= Iterator([1, 2, 3, 4]);

<iterator>

gap> sum:= 0;;

gap> while not IsDoneIterator(iter) do

> sum:= sum + NextIterator(iter);

> od;

gap> IsDoneIterator(iter); sum;

true

10

gap> ir:= Iterator(Rationals);;

gap> l:= [];; for i in [1..20] do Add(l, NextIterator(ir)); od; l;

[0, 1, -1, 1/2, 2, -1/2, -2, 1/3, 2/3, 3/2, 3, -1/3, -2/3, -3/2, -3,

1/4, 3/4, 4/3, 4, -1/4]

gap> for i in ir do

> if DenominatorRat(i) > 10 then break; fi;

> od;

gap> i;

1/11

30.8.6 IteratorList

▷ IteratorList(list) (function)

IteratorList returns a new iterator that allows iteration over the elements of the list list (which
may have holes) in the same order.

If list is mutable then it is in principle possible to change list after the call of IteratorList.
In this case all changes concerning positions that have not yet been reached in the iteration will also
affect the iterator. For example, if list is enlarged then the iterator will iterate also over the new
elements at the end of the changed list.

Note that changes of list will also affect all shallow copies of list .

30.8.7 TrivialIterator

▷ TrivialIterator(elm) (function)

is a mutable iterator for the collection [elm] that consists of exactly one element elm

(see IsTrivial (30.4.3)).

GAP - Reference Manual 458

30.8.8 IteratorByFunctions

▷ IteratorByFunctions(record) (function)

IteratorByFunctions returns a (mutable) iterator iter for which NextIterator (30.8.5),
IsDoneIterator (30.8.4), and ShallowCopy (12.7.1) are computed via prescribed functions.

Let record be a record with at least the following components.

NextIterator

a function taking one argument iter , which returns the next element of iter

(see NextIterator (30.8.5)); for that, the components of iter are changed,

IsDoneIterator

a function taking one argument iter , which returns the IsDoneIterator (30.8.4) value of
iter ,

ShallowCopy

a function taking one argument iter , which returns a record for which IteratorByFunctions
can be called in order to create a new iterator that is independent of iter but behaves like iter
w.r.t. the operations NextIterator (30.8.5) and IsDoneIterator (30.8.4).

ViewObj and PrintObj

two functions that print what one wants to be printed when View(iter) or Print(item)

is called (see 6.3), if the ViewObj component is missing then the PrintObj method is used as a
default.

Further (data) components may be contained in record which can be used by these function.
IteratorByFunctions does not make a shallow copy of record , this record is changed in place

(see Section 79.1).
Iterators constructed with IteratorByFunctions are in the filter IsStandardIterator

(30.8.1).

Chapter 31

Domains and their Elements

Domain is GAP’s name for structured sets. The ring of Gaussian integers Z[
√
−1] is an example of a

domain, the group D12 of symmetries of a regular hexahedron is another.
The GAP library predefines some domains. For example the ring of Gaussian integers is

predefined as GaussianIntegers (60.5.1) (see 60.5) and the field of rationals is predefined as
Rationals (17.1.1) (see 17). Most domains are constructed by functions, which are called do-
main constructors (see 31.3). For example the group D12 is constructed by the construction Group(

(1,2,3,4,5,6), (2,6)(3,5)) (see Group (39.2.1)) and the finite field with 16 elements is con-
structed by GaloisField(16) (see GaloisField (59.3.2)).

The first place where you need domains in GAP is the obvious one. Sometimes you simply want
to deal with a domain. For example if you want to compute the size of the group D12, you had better
be able to represent this group in a way that the Size (30.4.6) function can understand.

The second place where you need domains in GAP is when you want to be able to specify that
an operation or computation takes place in a certain domain. For example suppose you want to fac-
tor 10 in the ring of Gaussian integers. Saying Factors(10) will not do, because this will return
the factorization [2, 5] in the ring of integers. To allow operations and computations to hap-
pen in a specific domain, Factors (56.5.9), and many other functions as well, accept this domain
as optional first argument. Thus Factors(GaussianIntegers, 10) yields the desired result [
1+E(4), 1-E(4), 2+E(4), 2-E(4)]. (The imaginary unit

√
−1 is written as E(4) in GAP, see

E (18.1.1).)
An introduction to the most important facts about domains is given in Chapter (Tutorial: Do-

mains).
There are only few operations especially for domains (see 31.9), operations such as

Intersection (30.5.2) and Random (30.7.1) are defined for the more general situation of collections
(see Chapter 30).

31.1 Operational Structure of Domains

Domains have an operational structure, that is, a collection of operations under which the domain is
closed. For example, a group is closed under multiplication, taking the zeroth power of elements, and
taking inverses of elements. The operational structure may be empty, examples of domains without
additional structure are the underlying relations of general mappings (see 32.3).

The operations under which a domain is closed are a subset of the operations that the elements of
a domain admit. It is possible that the elements admit more operations. For example, matrices can be

459

GAP - Reference Manual 460

multiplied and added. But addition plays no role in a group of matrices, and multiplication plays no
role in a vector space of matrices. In particular, a matrix group is not closed under addition.

Note that the elements of a domain exist independently of this domain, usually they existed already
before the domain was created. So it makes sense to say that a domain is generated by some elements
with respect to certain operations.

Of course, different sets of operations yield different notions of generation. For example, the group
generated by some matrices is different from the ring generated by these matrices, and these two will
in general be different from the vector space generated by the same matrices, over a suitable field.

The other way round, the same set of elements may be obtained by generation w.r.t. different
notions of generation. For example, one can get the group generated by two elements g and h also as
the monoid generated by the elements g, g−1, h, h−1; if both g and h have finite order then of course
the group generated by g and h coincides with the monoid generated by g and h.

Additionally to the operational structure, a domain can have properties. For example, the multi-
plication of a group is associative, and the multiplication in a field is commutative.

Note that associativity and commutativity depend on the set of elements for which one considers
the multiplication, i.e., it depends on the domain. For example, the multiplication in a full matrix ring
over a field is not commutative, whereas its restriction to the set of diagonal matrices is commutative.

One important difference between the operational structure and the properties of a domain is that
the operational structure is fixed when the domain is constructed, whereas properties can be discovered
later. For example, take a domain whose operational structure is given by closure under multiplication.
If it is discovered that the inverses of all its elements also do (by chance) lie in this domain, being
closed under taking inverses is not added to the operational structure. But a domain with operational
structure of multiplication, taking the identity, and taking inverses will be treated as a group as soon
as the multiplication is found out to be associative for this domain.

The operational structures available in GAP form a hierarchy, which is explicitly formulated in
terms of domain categories, see 31.6.

31.2 Equality and Comparison of Domains

Equality and comparison of domains are defined as follows.
Two domains are considered equal if and only if the sets of their elements as computed by

AsSSortedList (30.3.10)) are equal. Thus, in general = behaves as if each domain operand were
replaced by its set of elements. Except that = will also sometimes, but not always, work for infi-
nite domains, for which of course GAP cannot compute the set of elements. Note that this implies
that domains with different algebraic structure may well be equal. As a special case of this, either
operand of = may also be a proper set (see 21.19), i.e., a sorted list without holes or duplicates (see
AsSSortedList (30.3.10)), and = will return true if and only if this proper set is equal to the set of
elements of the argument that is a domain.

No general ordering of arbitrary domains via < is defined in GAP 4. This is because a well-defined
< for domains or, more general, for collections, would have to be compatible with = and would need
to be transitive and antisymmetric in order to be used to form ordered sets. In particular, < would have
to be independent of the algebraic structure of its arguments because this holds for =, and thus there
would be hardly a situation where one could implement an efficient comparison method. (Note that in
the case that two domains are comparable with <, the result is in general not compatible with the set
theoretical subset relation, which can be decided with IsSubset (30.5.1).)

GAP - Reference Manual 461

31.3 Constructing Domains

For several operational structures (see 31.1), GAP provides functions to construct domains with this
structure (note that such functions do not exist for all operational structures). For example, Group
(39.2.1) returns groups, VectorSpace (61.2.1) returns vector spaces etc.:

Struct(arg1, arg2, ...)

The syntax of these functions may vary, dependent on the structure in question. Usually a domain
is constructed as the closure of some elements under the given operations, that is, the domain is given
by its generators. For example, a group can be constructed from a list of generating permutations or
matrices or whatever is admissible as group elements, and a vector space over a given field F can be
constructed from F and a list of appropriate vectors.

The idea of generation and generators in GAP is that the domain returned by a function such as
Group, Algebra, or FreeLeftModule contains the given generators. This implies that the generators
of a group must know how they are multiplied and inverted, the generators of a module must know
how they are added and how scalar multiplication works, and so on. Thus one cannot use for example
permutations as generators of a vector space.

The function Struct first checks whether the arguments admit the construction of a domain with
the desired structure. This is done by calling the operation

IsGeneratorsOfStruct([info,]gens)

where arglist is the list of given generators and info an argument of Struct , for example the
field of scalars in the case that a vector space shall be constructed. If the check failed then Struct

returns fail, otherwise it returns the result of StructByGenerators (see below). (So if one wants
to omit the check then one should call StructByGenerators directly.)

GeneratorsOfStruct(D)

For a domain D with operational structure corresponding to Struct , the attribute
GeneratorsOfStruct returns a list of corresponding generators of D . If these generators were not
yet stored in D then D must know some generators if GeneratorsOfStruct shall have a chance to
compute the desired result; for example, monoid generators of a group can be computed from known
group generators (and vice versa). Note that several notions of generation may be meaningful for a
given domain, so it makes no sense to ask for “the generators of a domain”. Further note that the
generators may depend on other information about D . For example the generators of a vector space
depend on the underlying field of scalars; the vector space generators of a vector space over the field
with four elements need not generate the same vector space when this is viewed as a space over the
field with two elements.

StructByGenerators([info,]gens)

Domain construction from generators gens is implemented by operations StructByGenerators,
which are called by the simple functions Struct ; methods can be installed only for the operations.
Note that additional information info may be necessary to construct the domain; for example, a
vector space needs the underlying field of scalars in addition to the list of vector space generators. The
GeneratorsOfStruct value of the returned domain need not be equal to gens . But if a domain D

is printed as Struct([a, b, ...]) and if there is an attribute GeneratorsOfStruct then the list
GeneratorsOfStruct(D) is guaranteed to be equal to [a, b, ...].

StructWithGenerators([info,]gens)

The only difference between StructByGenerators and StructWithGenerators is that the
latter guarantees that the GeneratorsOfStruct value of the result is equal to the given generators
gens .

ClosureStruct(D, obj)

GAP - Reference Manual 462

For constructing a domain as the closure of a given domain with an element or another domain,
one can use the operation ClosureStruct . It returns the smallest domain with operational structure
corresponding to Struct that contains D as a subset and obj as an element.

31.4 Changing the Structure

The same set of elements can have different operational structures. For example, it may happen that a
monoid M does in fact contain the inverses of all of its elements; if M has not been constructed as a
group (see 31.6) then it is reasonable to ask for the group that is equal to M.

AsStruct([info,]D)

If D is a domain that is closed under the operational structure given by Struct then AsStruct

returns a domain E that consists of the same elements (that is, D = E) and that has this operational
structure (that is, IsStruct(E) is true); if D is not closed under the structure given by Struct

then AsStruct returns fail.
If additional information besides generators are necessary to define D then the argument info

describes the value of this information for the desired domain. For example, if we want to view D

as a vector space over the field with two elements then we may call AsVectorSpace(GF(2), D);
this allows us to change the underlying field of scalars, for example if D is a vector space over the
field with four elements. Again, if D is not equal to a domain with the desired structure and additional
information then fail is returned.

In the case that no additional information info is related to the structure given by Struct , the
operation AsStruct is in fact an attribute (see 13.5).

See the index of the GAP Reference Manual for an overview of the available AsStruct functions.

31.5 Changing the Representation

Often it is useful to answer questions about a domain via computations in a different but isomorphic
domain. In the sense that this approach keeps the structure and changes the underlying set of elements,
it can be viewed as a counterpart of keeping the set of elements and changing its structure (see 31.4).

One reason for doing so can be that computations with the elements in the given domain are not
very efficient. For example, if one is given a solvable matrix group (see Chapter 44) then one can com-
pute an isomorphism to a polycyclicly presented group G, say (see Chapter 45); the multiplication of
two matrices –which is essentially determined by the dimension of the matrices– is much more expen-
sive than the multiplication of two elements in G –which is essentially determined by the composition
length of G.

IsomorphismRepStruct(D)

If D is a domain that is closed under the operational structure given by Struct then
IsomorphismRepStruct returns a mapping hom from D to a domain E having structure given by
Struct , such that hom respects the structure Struct and Rep describes the representation of the
elements in E. If no domain E with the required properties exists then fail is returned.

For example, IsomorphismPermGroup (43.3.1) takes a group as its argument and returns a group
homomorphism (see 40) onto an isomorphic permutation group (see Chapter 43) provided the orig-
inal group is finite; for infinite groups, IsomorphismPermGroup (43.3.1) returns fail. Similarly,
IsomorphismPcGroup (46.5.2) returns a group homomorphism from its argument to a polycyclicly
presented group (see 46) if the argument is polycyclic, and fail otherwise.

GAP - Reference Manual 463

See the index of the GAP Reference Manual for an overview of the available
IsomorphismRepStruct functions.

31.6 Domain Categories

As mentioned in 31.1, the operational structure of a domain is fixed when the domain is constructed.
For example, if D was constructed by Monoid (51.2.2) then D is in general not regarded as a group in
GAP, even if D is in fact closed under taking inverses. In this case, IsGroup (39.2.7) returns false for
D . The operational structure determines which operations are applicable for a domain, so for example
SylowSubgroup (39.13.1) is not defined for D and therefore will signal an error.

IsStruct(D)

The functions IsStruct implement the tests whether a domain D has the respective opera-
tional structure (upon construction). IsStruct is a filter (see 13) that involves certain categories
(see 13.3) and usually also certain properties (see 13.7). For example, IsGroup (39.2.7) is equivalent
to IsMagmaWithInverses and IsAssociative, the first being a category and the second being a
property.

Implications between domain categories describe the hierarchy of operational structures available
in GAP. Here are some typical examples.

• IsDomain (31.9.1) is implied by each domain category,

• IsMagma (35.1.1) is implied by each category that describes the closure under multiplication *,

• IsAdditiveMagma (55.1.4) is implied by each category that describes the closure under addi-
tion +,

• IsMagmaWithOne (35.1.2) implies IsMagma (35.1.1); a magma-with-one is a magma such that
each element (and thus also the magma itself) can be asked for its zeroth power,

• IsMagmaWithInverses (35.1.4) implies IsMagmaWithOne (35.1.2); a magma-with-inverses
is a magma such that each element can be asked for its inverse; important special cases are
groups, which in addition are associative,

• a ring is a magma that is also an additive group,

• a ring-with-one is a ring that is also a magma-with-one,

• a division ring is a ring-with-one that is also closed under taking inverses of nonzero elements,

• a field is a commutative division ring.

Each operational structure Struct has associated with it a domain category IsStruct , and op-
erations StructByGenerators for constructing a domain from generators, GeneratorsOfStruct
for storing and accessing generators w.r.t. this structure, ClosureStruct for forming the closure, and
AsStruct for getting a domain with the desired structure from one with weaker operational structure
and for testing whether a given domain can be regarded as a domain with Struct .

The functions applicable to domains with the various structures are described in the correspond-
ing chapters of the Reference Manual. For example, functions for rings, fields, groups, and vector
spaces are described in Chapters 56, 58, 39, and 61, respectively. More general functions for arbitrary
collections can be found in Chapter 30.

GAP - Reference Manual 464

31.7 Parents

31.7.1 Parent

▷ Parent(D) (function)

▷ SetParent(D, P) (operation)

▷ HasParent(D) (filter)

It is possible to assign to a domain D one other domain P containing D as a subset, in order to
exploit this subset relation between D and P . Note that P need not have the same operational structure
as D , for example P may be a magma and D a field.

The assignment is done by calling SetParent, and P is called the parent of D . If D has already a
parent, calls to SetParent will be ignored.

If D has a parent P –this can be checked with HasParent– then P can be used to gain information
about D . First, the call of SetParent causes UseSubsetRelation (31.13.1) to be called. Second,
for a domain D with parent, information relative to the parent can be stored in D ; for example, there
is an attribute NormalizerInParent for storing Normalizer(P, D) in the case that D is a group.
(More about such parent dependent attributes can be found in 85.2.) Note that because of this relative
information, one cannot change the parent; that is, one can set the parent only once, subsequent calls
to SetParent for the same domain D are ignored. Further note that contrary to UseSubsetRelation

(31.13.1), also knowledge about the parent P might be used that is discovered after the SetParent

call.
A stored parent can be accessed using Parent. If D has no parent then Parent returns D itself, and

HasParent will return false also after a call to Parent. So Parent is not an attribute, the underlying
attribute to store the parent is ParentAttr.

Certain functions that return domains with parent already set, for example Subgroup (39.3.1),
are described in Section 31.8. Whenever a function has this property, the GAP Reference Man-
ual states this explicitly. Note that these functions do not guarantee a certain parent, for example
DerivedSubgroup (39.12.3) for a perfect group G may return G itself, and if G had already a parent
then this is not replaced by G. As a rule of thumb, GAP avoids to set a domain as its own parent, which
is consistent with the behaviour of Parent, at least until a parent is set explicitly with SetParent.

Example
gap> g:= Group((1,2,3), (1,2));; h:= Group((1,2));;

gap> HasParent(g); HasParent(h);

false

false

gap> SetParent(h, g);

gap> Parent(g); Parent(h);

Group([(1,2,3), (1,2)])

Group([(1,2,3), (1,2)])

gap> HasParent(g); HasParent(h);

false

true

31.8 Constructing Subdomains

For many domains D , there are functions that construct certain subsets S of D as domains with parent
(see 31.7) already set to D . For example, if G is a group that contains the elements in the list gens

GAP - Reference Manual 465

then Subgroup(G, gens) returns a group S that is generated by the elements in gens and with
Parent(S) = G .

Substruct(D, gens)

More general, if D is a domain whose algebraic structure is given by the function Struct (for ex-
ample Group, Algebra, Field) then the function Substruct (for example Subgroup, Subalgebra,
Subfield) returns domains with structure Struct and parent set to the first argument.

SubstructNC(D, gens)

Each function Substruct checks that the Struct generated by gens is in fact a subset of D . If
one wants to omit this check then one can call SubstructNC instead; the suffix NC stands for “no
check”.

AsSubstruct(D, S)

first constructs AsStruct([info,]S), where info depends on D and S , and then sets the
parent (see 31.7) of this new domain to D .

IsSubstruct(D, S)

There is no real need for functions that check whether a domain S is a Substruct of a domain
D , since this is equivalent to the checks whether S is a Struct and S is a subset of D . Note that in
many cases, only the subset relation is what one really wants to check, and that appropriate methods
for the operation IsSubset (30.5.1) are available for many special situations, such as the test whether
a group is contained in another group, where only generators need to be checked.

If a function IsSubstruct is available in GAP then it is implemented as first a call to IsStruct

for the second argument and then a call to IsSubset (30.5.1) for the two arguments.

31.9 Operations for Domains

For the meaning of the attributes Characteristic (31.10.1), One (31.10.2), Zero (31.10.3) in the
case of a domain argument, see 31.10.

31.9.1 IsGeneralizedDomain

▷ IsGeneralizedDomain(obj) (Category)

▷ IsDomain(obj) (Category)

For some purposes, it is useful to deal with objects that are similar to domains but that are not
collections in the sense of GAP because their elements may lie in different families; such objects
are called generalized domains. An instance of generalized domains are “operation domains”, for
example any G-set for a permutation group G consisting of some union of points, sets of points, sets
of sets of points etc., under a suitable action.

IsDomain is a synonym for IsGeneralizedDomain and IsCollection.

31.9.2 GeneratorsOfDomain

▷ GeneratorsOfDomain(D) (attribute)

For a domain D , GeneratorsOfDomain returns a list containing generators of D with respect to the
trivial operational structure, that is interpreting D as a set. The returned list may contain repetitions.

See 31.3 and for GeneratorsOfStruct methods with respect to other available operational struc-
tures.

GAP - Reference Manual 466

For many domains that have natural generators by construction (for example, the natural
generators of a free group of rank two are the two generators stored as value of the attribute
GeneratorsOfGroup (39.2.4), and the natural generators of a free associative algebra are those gen-
erators stored as value of the attribute GeneratorsOfAlgebra (62.9.1)), each natural generator can
be accessed using the . operator. For a domain D , D.i returns the i-th generator if i is a positive
integer, and if name is the name of a generator of D then D.name returns this generator.

Example
gap> G := DihedralGroup(IsPermGroup, 4);;

gap> GeneratorsOfGroup(G);

[(1,2), (3,4)]

gap> GeneratorsOfDomain(G);

[(), (3,4), (1,2), (1,2)(3,4)]

gap> F := FreeGroup("x");

<free group on the generators [x]>

gap> GeneratorsOfGroup(F);

[x]

gap> GeneratorsOfDomain(F);

Error, resulting list would be too large (length infinity)

31.9.3 Domain

▷ Domain([Fam,]generators) (function)

▷ DomainByGenerators(Fam, generators) (operation)

Domain returns the domain consisting of the elements in the homogeneous list generators . If
generators is empty then a family Fam must be entered as the first argument, and the returned
(empty) domain lies in the collections family of Fam .

DomainByGenerators is the operation called by Domain.

31.10 Attributes and Properties of Elements

The following attributes and properties for elements and domains correspond to the operational struc-
ture.

31.10.1 Characteristic

▷ Characteristic(obj) (attribute)

Characteristic returns the characteristic of obj .
If obj is a family, all of whose elements lie in IsAdditiveElementWithZero (31.14.5) then its

characteristic is the least positive integer n, if any, such that IsZero(n*x) is true for all x in the
family obj , otherwise it is 0.

If obj is a collections family of a family g which has a characteristic, then the characteristic of
obj is the same as the characteristic of g.

For other families obj the characteristic is not defined and fail will be returned.
For any object obj which is in the filter IsAdditiveElementWithZero (31.14.5) or in the filter

IsAdditiveMagmaWithZero (55.1.5) the characteristic of obj is the same as the characteristic of its
family if that is defined and undefined otherwise.

GAP - Reference Manual 467

For all other objects obj the characteristic is undefined and may return fail or a “no method
found” error.

31.10.2 OneImmutable

▷ OneImmutable(obj) (attribute)

▷ One(obj) (attribute)

▷ Identity(obj) (attribute)

▷ OneMutable(obj) (operation)

▷ OneOp(obj) (operation)

▷ OneSameMutability(obj) (operation)

OneImmutable, OneMutable, and OneSameMutability return the multiplicative neutral element
of the multiplicative element obj .

They differ only w.r.t. the mutability of the result. OneImmutable is an attribute and hence returns
an immutable result. OneMutable is guaranteed to return a new mutable object whenever a mutable
version of the required element exists in GAP (see IsCopyable (12.6.1)). OneSameMutability

returns a result that is mutable if obj is mutable and if a mutable version of the required element exists
in GAP; for lists, it returns a result of the same immutability level as the argument. For instance, if
the argument is a mutable matrix with immutable rows, it returns a similar object.

If obj is a multiplicative element then OneSameMutability(obj) is equivalent to obj^0.
One and Identity are synonyms of OneImmutable. OneOp is a synonym of OneMutable.
If obj is a domain or a family then One is defined as the identity element of all elements in

obj , provided that all these elements have the same identity. For example, the family of all cy-
clotomics has the identity element 1, but a collections family (see CollectionsFamily (30.2.1))
may contain matrices of all dimensions and then it cannot have a unique identity element. Note that
One is applicable to a domain only if it is a magma-with-one (see IsMagmaWithOne (35.1.2)); use
MultiplicativeNeutralElement (35.4.10) otherwise.

The identity of an object need not be distinct from its zero, so for example a ring consisting of a
single element can be regarded as a ring-with-one (see 56). This is particularly useful in the case of
finitely presented algebras, where any factor of a free algebra-with-one is again an algebra-with-one,
no matter whether or not it is a zero algebra.

The default method of One for multiplicative elements calls OneMutable (note that methods for
OneMutable must not delegate to One); so other methods to compute identity elements need to be
installed only for OneOp and (in the case of copyable objects) OneSameMutability.

For domains, One may call Representative (30.4.7), but Representative (30.4.7) is allowed
to fetch the identity of a domain D only if HasOne(D) is true.

31.10.3 ZeroImmutable

▷ ZeroImmutable(obj) (attribute)

▷ Zero(obj) (attribute)

▷ ZeroMutable(obj) (operation)

▷ ZeroOp(obj) (operation)

▷ ZeroSameMutability(obj) (operation)

GAP - Reference Manual 468

ZeroImmutable, ZeroMutable, and ZeroSameMutability all return the additive neutral ele-
ment of the additive element obj .

They differ only w.r.t. the mutability of the result. ZeroImmutable is an attribute and
hence returns an immutable result. ZeroMutable is guaranteed to return a new mutable object
whenever a mutable version of the required element exists in GAP (see IsCopyable (12.6.1)).
ZeroSameMutability returns a result that is mutable if obj is mutable and if a mutable version
of the required element exists in GAP; for lists, it returns a result of the same immutability level as the
argument. For instance, if the argument is a mutable matrix with immutable rows, it returns a similar
object.

ZeroSameMutability(obj) is equivalent to 0 * obj .
Zero is a synonym of ZeroImmutable. ZeroOp is a synonym of ZeroMutable.
If obj is a domain or a family then Zero is defined as the zero element of all elements in obj ,

provided that all these elements have the same zero. For example, the family of all cyclotomics has
the zero element 0, but a collections family (see CollectionsFamily (30.2.1)) may contain matrices
of all dimensions and then it cannot have a unique zero element. Note that Zero is applicable to a
domain only if it is an additive magma-with-zero (see IsAdditiveMagmaWithZero (55.1.5)); use
AdditiveNeutralElement (55.3.5) otherwise.

The default method of Zero for additive elements calls ZeroMutable (note that methods for
ZeroMutable must not delegate to Zero); so other methods to compute zero elements need to be
installed only for ZeroMutable and (in the case of copyable objects) ZeroSameMutability.

For domains, Zero may call Representative (30.4.7), but Representative (30.4.7) is allowed
to fetch the zero of a domain D only if HasZero(D) is true.

31.10.4 MultiplicativeZeroOp

▷ MultiplicativeZeroOp(elt) (operation)

Returns: A multiplicative zero element.
for an element elt in the category IsMultiplicativeElementWithZero (31.14.12),

MultiplicativeZeroOp returns the element z in the family F of elt with the property that
z∗m = z = m∗ z holds for all m ∈ F , if such an element can be determined.

Families of elements in the category IsMultiplicativeElementWithZero (31.14.12) often
arise from adjoining a new zero to an existing magma. See InjectionZeroMagma (35.2.13) or
MagmaWithZeroAdjoined (35.2.13) for details.

Example
gap> G:=AlternatingGroup(5);;

gap> x:=Representative(MagmaWithZeroAdjoined(G));

<group with 0 adjoined elt: ()>

gap> MultiplicativeZeroOp(x);

<group with 0 adjoined elt: 0>

31.10.5 IsOne

▷ IsOne(elm) (property)

is true if elm = One(elm), and false otherwise.

GAP - Reference Manual 469

31.10.6 IsZero

▷ IsZero(elm) (property)

is true if elm = Zero(elm), and false otherwise.

31.10.7 IsIdempotent

▷ IsIdempotent(elt) (property)

returns true iff elt is its own square. (Even if IsZero (31.10.6) returns true for elt .)

31.10.8 InverseImmutable

▷ InverseImmutable(elm) (attribute)

▷ Inverse(elm) (attribute)

▷ InverseMutable(elm) (operation)

▷ InverseOp(elm) (operation)

▷ InverseSameMutability(elm) (operation)

InverseImmutable, InverseMutable, and InverseSameMutability all return the multiplica-
tive inverse of an element elm , that is, an element inv such that elm * inv = inv * elm = One(

elm) holds; if elm is not invertible then fail (see 20.2) is returned.
Note that the above definition implies that a (general) mapping is invertible in the sense of Inverse

only if its source equals its range (see 32.14). For a bijective mapping f whose source and range differ,
InverseGeneralMapping (32.2.3) can be used to construct a mapping g with the property that f * g
is the identity mapping on the source of f and g * f is the identity mapping on the range of f .

The operations differ only w.r.t. the mutability of the result. InverseImmutable is an attribute
and hence returns an immutable result. InverseMutable is guaranteed to return a new mutable object
whenever a mutable version of the required element exists in GAP. InverseSameMutability returns
a result that is mutable if elm is mutable and if a mutable version of the required element exists in
GAP; for lists, it returns a result of the same immutability level as the argument. For instance, if the
argument is a mutable matrix with immutable rows, it returns a similar object.

InverseSameMutability(elm) is equivalent to elm^-1.
Inverse is a synonym of InverseImmutable. InverseOp is a synonym of InverseMutable.
The default method of InverseImmutable calls InverseMutable (note that methods for

InverseMutable must not delegate to InverseImmutable); other methods to compute in-
verses need to be installed only for InverseMutable and (in the case of copyable objects)
InverseSameMutability.

31.10.9 AdditiveInverseImmutable

▷ AdditiveInverseImmutable(elm) (attribute)

▷ AdditiveInverse(elm) (attribute)

▷ AdditiveInverseMutable(elm) (operation)

▷ AdditiveInverseOp(elm) (operation)

▷ AdditiveInverseSameMutability(elm) (operation)

GAP - Reference Manual 470

AdditiveInverseImmutable, AdditiveInverseMutable, and
AdditiveInverseSameMutability all return the additive inverse of elm .

They differ only w.r.t. the mutability of the result. AdditiveInverseImmutable is an attribute
and hence returns an immutable result. AdditiveInverseMutable is guaranteed to return a new
mutable object whenever a mutable version of the required element exists in GAP (see IsCopyable

(12.6.1)). AdditiveInverseSameMutability returns a result that is mutable if elm is mutable and
if a mutable version of the required element exists in GAP; for lists, it returns a result of the same
immutability level as the argument. For instance, if the argument is a mutable matrix with immutable
rows, it returns a similar object.

AdditiveInverseSameMutability(elm) is equivalent to -elm .
AdditiveInverse is a synonym of AdditiveInverseImmutable. AdditiveInverseOp is a

synonym of AdditiveInverseMutable.
The default method of AdditiveInverse calls AdditiveInverseMutable (note that methods

for AdditiveInverseMutable must not delegate to AdditiveInverse); so other methods to com-
pute additive inverses need to be installed only for AdditiveInverseMutable and (in the case of
copyable objects) AdditiveInverseSameMutability.

31.10.10 Order

▷ Order(elm) (attribute)

is the multiplicative order of elm . This is the smallest positive integer n such that elm ^ n = One(

elm) if such an integer exists. If the order is infinite, Order may return the value infinity (18.2.1),
but it also might run into an infinite loop trying to test the order.

31.11 Comparison Operations for Elements

Binary comparison operations have been introduced already in 4.13. The underlying operations for
which methods can be installed are the following.

31.11.1 \= and \<

▷ \=(left-expr, right-expr) (operation)

▷ \<(left-expr, right-expr) (operation)

Note that the comparisons via <>, <=, >, and >= are delegated to the operations \= (31.11.1) and
\< (31.11.1).

In general, objects in different families cannot be compared with \< (31.11.1). For the reason and
for exceptions from this rule, see 4.13.

31.11.2 CanEasilyCompareElements

▷ CanEasilyCompareElements(obj) (property)

▷ CanEasilyCompareElementsFamily(fam) (function)

▷ CanEasilySortElements(obj) (property)

▷ CanEasilySortElementsFamily(fam) (function)

GAP - Reference Manual 471

For some objects a “normal form” is hard to compute and thus equality of elements of a domain
might be expensive to test. Therefore GAP provides a (slightly technical) property with which an
algorithm can test whether an efficient equality test is available for elements of a certain kind.

CanEasilyCompareElements indicates whether the elements in the family fam of obj can be
easily compared with \= (31.11.1).

The default method for this property is to ask the family of obj , the default method for the family
is to return false.

The ability to compare elements may depend on the successful computation of certain information.
(For example for finitely presented groups it might depend on the knowledge of a faithful permutation
representation.) This information might change over time and thus it might not be a good idea to store
a value false too early in a family. Instead the function CanEasilyCompareElementsFamily should
be called for the family of obj which returns false if the value of CanEasilyCompareElements is
not known for the family without computing it. (This is in fact what the above mentioned family
dispatch does.)

If a family knows ab initio that it can compare elements this property should be set as implied
filter and filter for the family (the 3rd and 4th argument of NewFamily (13.1.2) respectively). This
guarantees that code which directly asks the family gets a right answer.

The property CanEasilySortElements and the function CanEasilySortElementsFamily be-
have exactly in the same way, except that they indicate that objects can be compared via \< (31.11.1).
This property implies CanEasilyCompareElements, as the ordering must be total.

31.12 Arithmetic Operations for Elements

Binary arithmetic operations have been introduced already in 4.14. The underlying operations for
which methods can be installed are the following.

31.12.1 \+, *, \/, \^, \mod

▷ \+(left-expr, right-expr) (operation)

▷ *(left-expr, right-expr) (operation)

▷ \/(left-expr, right-expr) (operation)

▷ \^(left-expr, right-expr) (operation)

▷ \mod(left-expr, right-expr) (operation)

For details about special methods for * (31.12.1), \/ (31.12.1), \^ (31.12.1) and \mod (31.12.1),
consult the appropriate index entries for them.

31.12.2 LeftQuotient

▷ LeftQuotient(elm1, elm2) (operation)

returns the product elm1^(-1) * elm2 . For some types of objects (for example permutations)
this product can be evaluated more efficiently than by first inverting elm1 and then forming the product
with elm2 .

GAP - Reference Manual 472

31.12.3 Comm

▷ Comm(elm1, elm2) (operation)

returns the commutator of elm1 and elm2 . The commutator is defined as the product elm1−1 ∗
elm2−1 ∗elm1 ∗elm2 .

Example
gap> a:= (1,3)(4,6);; b:= (1,6,5,4,3,2);;

gap> Comm(a, b);

(1,5,3)(2,6,4)

gap> LeftQuotient(a, b);

(1,2)(3,6)(4,5)

31.12.4 LieBracket

▷ LieBracket(elm1, elm2) (operation)

returns the element elm1 * elm2 - elm2 * elm1 .
The addition \+ (31.12.1) is assumed to be associative but not assumed to be commutative

(see IsAdditivelyCommutative (55.3.1)). The multiplication * (31.12.1) is not assumed to be
commutative or associative (see IsCommutative (35.4.9), IsAssociative (35.4.7)).

31.12.5 Sqrt

▷ Sqrt(obj) (operation)

Sqrt returns a square root of obj , that is, an object x with the property that x · x = obj holds. If
such an x is not unique then the choice of x depends on the type of obj . For example, ER (18.4.2) is
the Sqrt method for rationals (see IsRat (17.2.1)).

31.13 Relations Between Domains

Domains are often constructed relative to other domains. The probably most usual case is to form a
subset of a domain, for example the intersection (see Intersection (30.5.2)) of two domains, or a
Sylow subgroup of a given group (see SylowSubgroup (39.13.1)).

In such a situation, the new domain can gain knowledge by exploiting that several attributes are
maintained under taking subsets. For example, the intersection of an arbitrary domain with a finite
domain is clearly finite, a Sylow subgroup of an abelian group is abelian, too, and so on.

Since usually the new domain has access to the knowledge of the old domain(s) only when it is
created (see 31.8 for the exception), this is the right moment to take advantage of the subset relation,
using UseSubsetRelation (31.13.1).

Analogous relations occur when a factor structure is created from a domain and a subset (see
UseFactorRelation (31.13.2)), and when a domain isomorphic to a given one is created (see
UseIsomorphismRelation (31.13.3)).

The functions InstallSubsetMaintenance (31.13.4), InstallIsomorphismMaintenance

(31.13.6), and InstallFactorMaintenance (31.13.5) are used to tell GAP under what conditions an
attribute is maintained under taking subsets, or forming factor structures or isomorphic domains. This

GAP - Reference Manual 473

is used only when a new attribute or property is created, see NewAttribute (13.5.3) and NewProperty
(13.7.4). For the attributes already available, such as IsFinite (30.4.2) and IsCommutative (35.4.9),
the maintenances are already notified.

31.13.1 UseSubsetRelation

▷ UseSubsetRelation(super, sub) (operation)

Methods for this operation transfer possibly useful information from the domain super to its
subset sub , and vice versa.

UseSubsetRelation is designed to be called automatically whenever substructures of domains
are constructed. So the methods must be cheap, and the requirements should be as sharp as possible!

To achieve that all applicable methods are executed, all methods for this operation except the
default method must end with TryNextMethod(). This default method deals with the information
that is available by the calls of InstallSubsetMaintenance (31.13.4) in the GAP library.

Example
gap> g:= Group((1,2), (3,4), (5,6));; h:= Group((1,2), (3,4));;

gap> IsAbelian(g); HasIsAbelian(h);

true

false

gap> UseSubsetRelation(g, h);; HasIsAbelian(h); IsAbelian(h);

true

true

31.13.2 UseFactorRelation

▷ UseFactorRelation(numer, denom, factor) (operation)

Methods for this operation transfer possibly useful information from the domain numer or its
subset denom to the domain factor that is isomorphic to the factor of numer by denom , and vice
versa. denom may be fail, for example if factor is just known to be a factor of numer but denom
is not available as a GAP object; in this case those factor relations are used that are installed without
special requirements for denom .

UseFactorRelation is designed to be called automatically whenever factor structures of domains
are constructed. So the methods must be cheap, and the requirements should be as sharp as possible!

To achieve that all applicable methods are executed, all methods for this operation except the
default method must end with a call to TryNextMethod (78.5.1). This default method deals with
the information that is available by the calls of InstallFactorMaintenance (31.13.5) in the GAP
library.

Example
gap> g:= Group((1,2,3,4), (1,2));; h:= Group((1,2,3), (1,2));;

gap> IsSolvableGroup(g); HasIsSolvableGroup(h);

true

false

gap> UseFactorRelation(g, Subgroup(g, [(1,2)(3,4), (1,3)(2,4)]), h);;

gap> HasIsSolvableGroup(h); IsSolvableGroup(h);

true

true

GAP - Reference Manual 474

31.13.3 UseIsomorphismRelation

▷ UseIsomorphismRelation(old, new) (operation)

Methods for this operation transfer possibly useful information from the domain old to the iso-
morphic domain new .

UseIsomorphismRelation is designed to be called automatically whenever isomorphic struc-
tures of domains are constructed. So the methods must be cheap, and the requirements should be as
sharp as possible!

To achieve that all applicable methods are executed, all methods for this operation except the
default method must end with a call to TryNextMethod (78.5.1). This default method deals with
the information that is available by the calls of InstallIsomorphismMaintenance (31.13.6) in the
GAP library.

Example
gap> g:= Group((1,2));; h:= Group([[-1]]);;

gap> Size(g); HasSize(h);

2

false

gap> UseIsomorphismRelation(g, h);; HasSize(h); Size(h);

true

2

31.13.4 InstallSubsetMaintenance

▷ InstallSubsetMaintenance(opr, super_req, sub_req) (function)

opr must be a property or an attribute. The call of InstallSubsetMaintenance has the ef-
fect that for a domain D in the filter super_req , and a domain S in the filter sub_req , the call
UseSubsetRelation(D,S) (see UseSubsetRelation (31.13.1)) sets a known value of opr for D
as value of opr also for S. A typical example for which InstallSubsetMaintenance is ap-
plied is given by opr = IsFinite, super_req = IsCollection and IsFinite, and sub_req

= IsCollection.
If opr is a property and the filter super_req lies in the filter opr then we can use also the

following inverse implication. If D is in the filter whose intersection with opr is super_req and if S
is in the filter sub_req , S is a subset of D, and the value of opr for S is false then the value of opr
for D is also false.

31.13.5 InstallFactorMaintenance

▷ InstallFactorMaintenance(opr, numer_req, denom_req, factor_req) (function)

opr must be a property or an attribute. The call of InstallFactorMaintenance has the effect
that for collections N, D, F in the filters numer_req , denom_req , and factor_req , respectively,
the call UseFactorRelation(N,D,F) (see UseFactorRelation (31.13.2)) sets a known value of
opr for N as value of opr also for F . A typical example for which InstallFactorMaintenance is
applied is given by opr = IsFinite, numer_req = IsCollection and IsFinite, denom_req =

IsCollection, and factor_req = IsCollection.

GAP - Reference Manual 475

For the other direction, if numer_req involves the filter opr then a known false value of opr for
F implies a false value for D provided that D lies in the filter obtained from numer_req by removing
opr .

Note that an implication of a factor relation holds in particular for the case of isomorphisms.
So one need not install an isomorphism maintained method when a factor maintained method is al-
ready installed. For example, UseIsomorphismRelation (31.13.3) will transfer a known IsFinite

(30.4.2) value because of the installed factor maintained method.

31.13.6 InstallIsomorphismMaintenance

▷ InstallIsomorphismMaintenance(opr, old_req, new_req) (function)

opr must be a property or an attribute. The call of InstallIsomorphismMaintenance

has the effect that for a domain D in the filter old_req , and a domain E in the filter
new_req , the call UseIsomorphismRelation(D,E) (see UseIsomorphismRelation (31.13.3))
sets a known value of opr for D as value of opr also for E. A typical example for which
InstallIsomorphismMaintenance is applied is given by opr = Size, old_req = IsCollection,
and new_req = IsCollection.

31.14 Useful Categories of Elements

This section and the following one are rather technical, and may be interesting only for those GAP
users who want to implement new kinds of elements.

It deals with certain categories of elements that are useful mainly for the design of elements, from
the viewpoint that one wants to form certain domains of these elements. For example, a domain closed
under multiplication * (a so-called magma, see Chapter 35) makes sense only if its elements can be
multiplied, and the latter is indicated by the category IsMultiplicativeElement (31.14.10) for
each element. Again note that the underlying idea is that a domain is regarded as generated by given
elements, and that these elements carry information about the desired domain. For general information
on categories and their hierarchies, see 13.3.

More special categories of this kind are described in the contexts where they arise, they are
IsRowVector (23.1.1), IsMatrix (24.2.1), IsOrdinaryMatrix (24.2.2), and IsLieMatrix (24.2.3).

31.14.1 IsExtAElement

▷ IsExtAElement(obj) (Category)

An external additive element is an object that can be added via + with other elements (not neces-
sarily in the same family, see 13.1).

31.14.2 IsNearAdditiveElement

▷ IsNearAdditiveElement(obj) (Category)

A near-additive element is an object that can be added via + with elements in its family (see 13.1);
this addition is not necessarily commutative.

GAP - Reference Manual 476

31.14.3 IsAdditiveElement

▷ IsAdditiveElement(obj) (Category)

An additive element is an object that can be added via + with elements in its family (see 13.1); this
addition is commutative.

31.14.4 IsNearAdditiveElementWithZero

▷ IsNearAdditiveElementWithZero(obj) (Category)

A near-additive element-with-zero is an object that can be added via + with elements in its family
(see 13.1), and that is an admissible argument for the operation Zero (31.10.3); this addition is not
necessarily commutative.

31.14.5 IsAdditiveElementWithZero

▷ IsAdditiveElementWithZero(obj) (Category)

An additive element-with-zero is an object that can be added via + with elements in its family
(see 13.1), and that is an admissible argument for the operation Zero (31.10.3); this addition is com-
mutative.

31.14.6 IsNearAdditiveElementWithInverse

▷ IsNearAdditiveElementWithInverse(obj) (Category)

A near-additive element-with-inverse is an object that can be added via + with elements in
its family (see 13.1), and that is an admissible argument for the operations Zero (31.10.3) and
AdditiveInverse (31.10.9); this addition is not necessarily commutative.

31.14.7 IsAdditiveElementWithInverse

▷ IsAdditiveElementWithInverse(obj) (Category)

An additive element-with-inverse is an object that can be added via + with elements in its
family (see 13.1), and that is an admissible argument for the operations Zero (31.10.3) and
AdditiveInverse (31.10.9); this addition is commutative.

31.14.8 IsExtLElement

▷ IsExtLElement(obj) (Category)

An external left element is an object that can be multiplied from the left, via *, with other elements
(not necessarily in the same family, see 13.1).

GAP - Reference Manual 477

31.14.9 IsExtRElement

▷ IsExtRElement(obj) (Category)

An external right element is an object that can be multiplied from the right, via *, with other
elements (not necessarily in the same family, see 13.1).

31.14.10 IsMultiplicativeElement

▷ IsMultiplicativeElement(obj) (Category)

A multiplicative element is an object that can be multiplied via * with elements in its family
(see 13.1).

31.14.11 IsMultiplicativeElementWithOne

▷ IsMultiplicativeElementWithOne(obj) (Category)

A multiplicative element-with-one is an object that can be multiplied via * with elements in its
family (see 13.1), and that is an admissible argument for the operation One (31.10.2).

31.14.12 IsMultiplicativeElementWithZero

▷ IsMultiplicativeElementWithZero(elt) (Category)

Returns: true or false.
This is the category of elements in a family which can be the operands of * (multiplication) and

the operation MultiplicativeZeroOp (31.10.4).
Example

gap> S:=Semigroup(Transformation([1, 1, 1]));;

gap> M:=MagmaWithZeroAdjoined(S);

<<commutative transformation semigroup of degree 3 with 1 generator>

with 0 adjoined>

gap> x:=Representative(M);

<semigroup with 0 adjoined elt: Transformation([1, 1, 1])>

gap> IsMultiplicativeElementWithZero(x);

true

gap> MultiplicativeZeroOp(x);

<semigroup with 0 adjoined elt: 0>

31.14.13 IsMultiplicativeElementWithInverse

▷ IsMultiplicativeElementWithInverse(obj) (Category)

A multiplicative element-with-inverse is an object that can be multiplied via * with elements in
its family (see 13.1), and that is an admissible argument for the operations One (31.10.2) and Inverse

(31.10.8). (Note the word “admissible”: an object in this category does not necessarily have an inverse,
Inverse (31.10.8) may return fail.)

GAP - Reference Manual 478

31.14.14 IsVector

▷ IsVector(obj) (Category)

A vector is an additive-element-with-inverse that can be multiplied from the left and right with
other objects (not necessarily of the same type). Examples are cyclotomics, finite field elements, and
of course row vectors (see below).

Note that not all lists of ring elements are regarded as vectors, for example lists of matrices are
not vectors. This is because although the category IsAdditiveElementWithInverse (31.14.7) is
implied by the meet of its collections category and IsList (21.1.1), the family of a list entry may not
imply IsAdditiveElementWithInverse (31.14.7) for all its elements.

31.14.15 IsNearRingElement

▷ IsNearRingElement(obj) (Category)

IsNearRingElement is just a synonym for the meet of IsNearAdditiveElementWithInverse
(31.14.6) and IsMultiplicativeElement (31.14.10).

31.14.16 IsRingElement

▷ IsRingElement(obj) (Category)

IsRingElement is just a synonym for the meet of IsAdditiveElementWithInverse (31.14.7)
and IsMultiplicativeElement (31.14.10).

31.14.17 IsNearRingElementWithOne

▷ IsNearRingElementWithOne(obj) (Category)

IsNearRingElementWithOne is just a synonym for the meet of
IsNearAdditiveElementWithInverse (31.14.6) and IsMultiplicativeElementWithOne

(31.14.11).

31.14.18 IsRingElementWithOne

▷ IsRingElementWithOne(obj) (Category)

IsRingElementWithOne is just a synonym for the meet of IsAdditiveElementWithInverse
(31.14.7) and IsMultiplicativeElementWithOne (31.14.11).

31.14.19 IsNearRingElementWithInverse

▷ IsNearRingElementWithInverse(obj) (Category)

IsNearRingElementWithInverse is just a synonym for the meet of
IsNearAdditiveElementWithInverse (31.14.6) and IsMultiplicativeElementWithInverse

(31.14.13).

GAP - Reference Manual 479

31.14.20 IsRingElementWithInverse

▷ IsRingElementWithInverse(obj) (Category)

▷ IsScalar(obj) (Category)

IsRingElementWithInverse and IsScalar are just synonyms for the meet of
IsAdditiveElementWithInverse (31.14.7) and IsMultiplicativeElementWithInverse

(31.14.13).

31.15 Useful Categories for all Elements of a Family

The following categories of elements are to be understood mainly as categories for all objects in a
family, they are usually used as third argument of NewFamily (13.1.2). The purpose of each of the
following categories is then to guarantee that each collection of its elements automatically lies in its
collections category (see CategoryCollections (30.2.4)).

For example, the multiplication of permutations is associative, and it is stored in the family of
permutations that each permutation lies in IsAssociativeElement (31.15.1). As a consequence,
each magma consisting of permutations (more precisely: each collection that lies in the family
CollectionsFamily(PermutationsFamily), see CollectionsFamily (30.2.1)) automatically
lies in CategoryCollections(IsAssociativeElement). A magma in this category is always
known to be associative, via a logical implication (see 78.8).

Similarly, if a family knows that all its elements are in the categories IsJacobianElement

(31.15.5) and IsZeroSquaredElement (31.15.6), then each algebra of these elements is automati-
cally known to be a Lie algebra (see Chapter 62).

31.15.1 IsAssociativeElement

▷ IsAssociativeElement(obj) (Category)

▷ IsAssociativeElementCollection(obj) (Category)

▷ IsAssociativeElementCollColl(obj) (Category)

An element obj in the category IsAssociativeElement knows that the multiplication of any
elements in the family of obj is associative. For example, all permutations lie in this category,
as well as those ordinary matrices (see IsOrdinaryMatrix (24.2.2)) whose entries are also in
IsAssociativeElement.

31.15.2 IsAdditivelyCommutativeElement

▷ IsAdditivelyCommutativeElement(obj) (Category)

▷ IsAdditivelyCommutativeElementCollection(obj) (Category)

▷ IsAdditivelyCommutativeElementCollColl(obj) (Category)

▷ IsAdditivelyCommutativeElementFamily(obj) (Category)

An element obj in the category IsAdditivelyCommutativeElement knows that the addition of
any elements in the family of obj is commutative. For example, each finite field element and each
rational number lies in this category.

GAP - Reference Manual 480

31.15.3 IsCommutativeElement

▷ IsCommutativeElement(obj) (Category)

▷ IsCommutativeElementCollection(obj) (Category)

▷ IsCommutativeElementCollColl(obj) (Category)

An element obj in the category IsCommutativeElement knows that the multiplication of any
elements in the family of obj is commutative. For example, each finite field element and each rational
number lies in this category.

31.15.4 IsFiniteOrderElement

▷ IsFiniteOrderElement(obj) (Category)

▷ IsFiniteOrderElementCollection(obj) (Category)

▷ IsFiniteOrderElementCollColl(obj) (Category)

An element obj in the category IsFiniteOrderElement knows that it has finite multiplicative
order. For example, each finite field element and each permutation lies in this category. However the
value may be false even if obj has finite order, but if this was not known when obj was constructed.

Although it is legal to set this filter for any object with finite order, this is really useful only in the
case that all elements of a family are known to have finite order.

31.15.5 IsJacobianElement

▷ IsJacobianElement(obj) (Category)

▷ IsJacobianElementCollection(obj) (Category)

▷ IsJacobianElementCollColl(obj) (Category)

▷ IsRestrictedJacobianElement(obj) (Category)

▷ IsRestrictedJacobianElementCollection(obj) (Category)

▷ IsRestrictedJacobianElementCollColl(obj) (Category)

An element obj in the category IsJacobianElement knows that the multiplication of any ele-
ments in the family F of obj satisfies the Jacobi identity, that is, x∗y∗ z+ z∗x∗y+y∗ z∗x is zero for
all x, y, z in F .

For example, each Lie matrix (see IsLieMatrix (24.2.3)) lies in this category.

31.15.6 IsZeroSquaredElement

▷ IsZeroSquaredElement(obj) (Category)

▷ IsZeroSquaredElementCollection(obj) (Category)

▷ IsZeroSquaredElementCollColl(obj) (Category)

An element obj in the category IsZeroSquaredElement knows that obj^2 = Zero(obj).
For example, each Lie matrix (see IsLieMatrix (24.2.3)) lies in this category.

Although it is legal to set this filter for any zero squared object, this is really useful only in the
case that all elements of a family are known to have square zero.

Chapter 32

Mappings

A mapping in GAP is what is called a “function” in mathematics. GAP also implements generalized
mappings in which one element might have several images, these can be imagined as subsets of the
cartesian product and are often called “relations”.

Most operations are declared for general mappings and therefore this manual often refers to “(gen-
eral) mappings”, unless you deliberately need the generalization you can ignore the “general” bit and
just read it as “mappings”.

A general mapping F in GAP is described by its source S, its range R, and a subset Rel of the direct
product S×R, which is called the underlying relation of F . S, R, and Rel are generalized domains (see
12.4). The corresponding attributes for general mappings are Source (32.3.8), Range (32.3.7), and
UnderlyingRelation (32.3.9).

Note that general mappings themselves are not domains. One reason for this is that two general
mappings with same underlying relation are regarded as equal only if also the sources are equal and
the ranges are equal. Other, more technical, reasons are that general mappings and domains have
different basic operations, and that general mappings are arithmetic objects (see 32.6); both should
not apply to domains.

Each element of an underlying relation of a general mapping lies in the category of direct product
elements (see IsDirectProductElement (32.1.1)).

For each s ∈ S, the set {r ∈ R|(s,r) ∈ Rel} is called the set of images of s. Analogously, for r ∈ R,
the set {s ∈ S|(s,r) ∈ Rel} is called the set of preimages of r.

The ordering of general mappings via < is defined by the ordering of source, range, and underlying
relation. Specifically, if the source and range domains of map1 and map2 are the same, then one
considers the union of the preimages of map1 and map2 as a strictly ordered set. The smaller of map1
and map2 is the one whose image is smaller on the first point of this sequence where they differ.

For mappings which preserve an algebraic structure a kernel is defined. Depending on the structure
preserved the operation to compute this kernel is called differently, see Section 32.7.

Some technical details of general mappings are described in section 32.13.

32.1 Direct Products and their Elements

32.1.1 IsDirectProductElement

▷ IsDirectProductElement(obj) (Category)

481

GAP - Reference Manual 482

IsDirectProductElement is a subcategory of the meet of IsDenseList (21.1.2),
IsMultiplicativeElementWithInverse (31.14.13), IsAdditiveElementWithInverse

(31.14.7), and IsCopyable (12.6.1), where the arithmetic operations (addition, zero, additive
inverse, multiplication, powering, one, inverse) are defined componentwise.

Note that each of these operations will cause an error message if its result for at least one compo-
nent cannot be formed.

For an object in the filter IsDirectProductElement, ShallowCopy (12.7.1) returns a mutable
plain list with the same entries. The sum and the product of a direct product element and a list in
IsListDefault (21.12.3) is the list of sums and products, respectively. The sum and the product of a
direct product element and an object that is neither a list nor a collection is the direct product element
of componentwise sums and products, respectively.

32.1.2 DirectProductFamily

▷ DirectProductFamily(args) (function)

args must be a dense list of CollectionsFamily (30.2.1) families, otherwise the function raises
an error.

DirectProductFamily returns fam, a collections family of IsDirectProductElement (32.1.1)
objects.

fam is the CollectionsFamily (30.2.1) of IsDirectProductElement (32.1.1) objects whose
i-th component is in ElementsFamily(args[i]).

Note that a collection in fam may not itself be a direct product; it just is a subcollection of a direct
product.

Example
gap> D8 := DihedralGroup(IsPermGroup, 8);;

gap> FamilyObj(D8) = CollectionsFamily(PermutationsFamily);

true

gap> fam := DirectProductFamily([FamilyObj(D8), FamilyObj(D8)]);;

gap> ComponentsOfDirectProductElementsFamily(ElementsFamily(fam));

[<Family: "PermutationsFamily">, <Family: "PermutationsFamily">]

Also note that not all direct products in GAP are created via these families. For example if the
arguments to DirectProduct (49.1.1) are permutation groups, then it returns a permutation group as
well, whose elements are not IsDirectProductElement (32.1.1) objects.

Example
gap> fam = FamilyObj(DirectProduct(D8, D8));

false

gap> D4 := DihedralGroup(IsPcGroup, 4);;

gap> fam2 := DirectProductFamily([FamilyObj(D8), FamilyObj(D4)]);;

gap> fam2 = FamilyObj(DirectProduct(D8, D4));

true

GAP - Reference Manual 483

32.2 Creating Mappings

32.2.1 GeneralMappingByElements

▷ GeneralMappingByElements(S, R, elms) (function)

is the general mapping with source S and range R , and with underlying relation consisting of the
collection elms of direct product elements.

32.2.2 MappingByFunction

▷ MappingByFunction(S, R, fun[, invfun]) (function)

▷ MappingByFunction(S, R, fun, false, prefun) (function)

MappingByFunction returns a mapping map with source S and range R , such that each element s
of S is mapped to the element fun(s), where fun is a GAP function.

If the argument invfun is bound then map is a bijection between S and R , and the preimage of
each element r of R is given by invfun(r), where invfun is a GAP function.

If five arguments are given and the fourth argument is false then the GAP function prefun can
be used to compute a single preimage also if map is not bijective.

The mapping returned by MappingByFunction lies in the filter IsNonSPGeneralMapping

(32.14.1), see 32.14.

32.2.3 InverseGeneralMapping

▷ InverseGeneralMapping(map) (attribute)

The inverse general mapping of a general mapping map is the general mapping whose underlying
relation (see UnderlyingRelation (32.3.9)) contains a pair (r,s) if and only if the underlying relation
of map contains the pair (s,r).

See the introduction to Chapter 32 for the subtleties concerning the difference between
InverseGeneralMapping and Inverse (31.10.8).

Note that the inverse general mapping of a mapping map is in general only a general mapping. If
map knows to be bijective its inverse general mapping will know to be a mapping. In this case also
Inverse(map) works.

32.2.4 RestrictedInverseGeneralMapping

▷ RestrictedInverseGeneralMapping(map) (attribute)

The restricted inverse general mapping of a general mapping map is the general mapping whose
underlying relation (see UnderlyingRelation (32.3.9)) contains a pair (r,s) if and only if the under-
lying relation of map contains the pair (s,r), and whose domain is restricted to the image of map and
whose range is the domain of map .

GAP - Reference Manual 484

32.2.5 CompositionMapping

▷ CompositionMapping(map1, map2, ...) (function)

CompositionMapping allows one to compose arbitrarily many general mappings, and delegates
each step to CompositionMapping2 (32.2.6). The result is a map that maps an element first under the
last argument, then under the penultimate argument and so forth.

Additionally, the properties IsInjective (32.3.4) and IsSingleValued (32.3.2) are maintained.
If the range of the i+ 1-th argument is identical to the range of the i-th argument, also IsTotal

(32.3.1) and IsSurjective (32.3.5) are maintained. (So one should not call CompositionMapping2
(32.2.6) directly if one wants to maintain these properties.)

Depending on the types of map1 and map2 , the returned mapping might be constructed completely
new (for example by giving domain generators and their images, this is for example the case if both
mappings preserve the same algebraic structures and GAP can decompose elements of the source of
map2 into generators) or as an (iterated) composition (see IsCompositionMappingRep (32.2.7)).

Example
gap> f := GroupHomomorphismByImages(CyclicGroup(IsPermGroup, 2),

> CyclicGroup(IsPermGroup, 1));

[(1,2)] -> [()]

gap> g := GroupHomomorphismByImages(CyclicGroup(IsPermGroup, 6),

> CyclicGroup(IsPermGroup, 2));

[(1,2,3,4,5,6)] -> [(1,2)]

gap> CompositionMapping(f, g);

[(1,2,3,4,5,6)] -> [()]

gap> CompositionMapping(g, f);

[(1,2)] -> [()]

32.2.6 CompositionMapping2

▷ CompositionMapping2(map2, map1) (operation)

▷ CompositionMapping2General(map2, map1) (function)

CompositionMapping2 returns the composition of map2 and map1 , this is the general mapping
that maps an element first under map1 , and then maps the images under map2 .

(Note the reverse ordering of arguments in the composition via the multiplication * (31.12.1).
CompositionMapping2General is the method that forms a composite mapping with two con-

stituent mappings. (This is used in some algorithms.)

32.2.7 IsCompositionMappingRep

▷ IsCompositionMappingRep(map) (Representation)

Mappings in this representation are stored as composition of two mappings, (pre)images of el-
ements are computed in a two-step process. The constituent mappings of the composition can be
obtained via ConstituentsCompositionMapping (32.2.8).

GAP - Reference Manual 485

32.2.8 ConstituentsCompositionMapping

▷ ConstituentsCompositionMapping(map) (function)

If map is stored in the representation IsCompositionMappingRep (32.2.7) as composition of two
mappings map1 and map2 , this function returns the two constituent mappings in a list [map1, map2

].

32.2.9 ZeroMapping

▷ ZeroMapping(S, R) (operation)

A zero mapping is a total general mapping that maps each element of its source to the zero element
of its range.

(Each mapping with empty source is a zero mapping.)

32.2.10 IdentityMapping

▷ IdentityMapping(D) (attribute)

is the bijective mapping with source and range equal to the collection D , which maps each element
of D to itself.

32.2.11 Embedding

▷ Embedding(S, T) (operation)

▷ Embedding(S, i) (operation)

returns the embedding of the domain S in the domain T , or in the second form, some domain
indexed by the positive integer i . The precise natures of the various methods are described elsewhere:
for Lie algebras, see LieFamily (64.1.3); for group products, see 49.6 for a general description, or
for examples see 49.1 for direct products, 49.2 for semidirect products, or 49.4 for wreath products;
or for magma rings see 65.3.

32.2.12 Projection

▷ Projection(S, T) (operation)

▷ Projection(S, i) (operation)

▷ Projection(S) (operation)

returns the projection of the domain S onto the domain T , or in the second form, some domain
indexed by the positive integer i , or in the third form some natural quotient domain of S . Various
methods are defined for group products; see 49.6 for a general description, or for examples see 49.1 for
direct products, 49.2 for semidirect products, 49.3 for subdirect products, or 49.4 for wreath products.

GAP - Reference Manual 486

32.2.13 RestrictedMapping

▷ RestrictedMapping(map, subdom) (operation)

If subdom is a subdomain of the source of the general mapping map , this operation returns the
restriction of map to subdom .

32.3 Properties and Attributes of (General) Mappings

32.3.1 IsTotal

▷ IsTotal(map) (property)

is true if each element in the source S of the general mapping map has images, i.e., smap ̸= /0 for
all s ∈ S, and false otherwise.

32.3.2 IsSingleValued

▷ IsSingleValued(map) (property)

is true if each element in the source S of the general mapping map has at most one image, i.e.,
|smap | ≤ 1 for all s ∈ S, and false otherwise.

Equivalently, IsSingleValued(map) is true if and only if the preimages of different elements
in R are disjoint.

32.3.3 IsMapping

▷ IsMapping(map) (filter)

A mapping map is a general mapping that assigns to each element elm of its source a unique
element Image(map, elm) of its range.

Equivalently, the general mapping map is a mapping if and only if it is total and single-valued
(see IsTotal (32.3.1), IsSingleValued (32.3.2)).

32.3.4 IsInjective

▷ IsInjective(map) (property)

is true if the images of different elements in the source S of the general mapping map are disjoint,
i.e., xmap ∩ ymap = /0 for x ̸= y ∈ S, and false otherwise.

Equivalently, IsInjective(map) is true if and only if each element in the range of map has
at most one preimage in S.

32.3.5 IsSurjective

▷ IsSurjective(map) (property)

GAP - Reference Manual 487

is true if each element in the range R of the general mapping map has preimages in the source S
of map , i.e., {s ∈ S | x ∈ smap } ̸= /0 for all x ∈ R, and false otherwise.

32.3.6 IsBijective

▷ IsBijective(map) (property)

A general mapping map is bijective if and only if it is an injective and surjective mapping
(see IsMapping (32.3.3), IsInjective (32.3.4), IsSurjective (32.3.5)).

32.3.7 Range (of a general mapping)

▷ Range(map) (attribute)

The range of a general mapping.

32.3.8 Source

▷ Source(map) (attribute)

The source of a general mapping.

32.3.9 UnderlyingRelation

▷ UnderlyingRelation(map) (attribute)

The underlying relation of a general mapping map is the domain of pairs (s,r), with s in the source
and r in the range of map (see Source (32.3.8), Range (32.3.7)), and r ∈ ImagesElm(map, s).

Each element of the underlying relation is represented by a direct product element
(see IsDirectProductElement (32.1.1)).

32.3.10 UnderlyingGeneralMapping

▷ UnderlyingGeneralMapping(map) (attribute)

attribute for underlying relations of general mappings

32.4 Images under Mappings

32.4.1 ImagesSource

▷ ImagesSource(map) (attribute)

is the set of images of the source of the general mapping map .
ImagesSource delegates to ImagesSet (32.4.4), it is introduced only to store the image of map

as attribute value.

GAP - Reference Manual 488

32.4.2 ImagesRepresentative

▷ ImagesRepresentative(map, elm) (operation)

If elm is an element of the source of the general mapping map then ImagesRepresentative

returns either a representative of the set of images of elm under map or fail, the latter if and only if
elm has no images under map .

Anything may happen if elm is not an element of the source of map .

32.4.3 ImagesElm

▷ ImagesElm(map, elm) (operation)

If elm is an element of the source of the general mapping map then ImagesElm returns the set of
all images of elm under map .

Anything may happen if elm is not an element of the source of map .

32.4.4 ImagesSet

▷ ImagesSet(map, elms) (operation)

If elms is a subset of the source of the general mapping map then ImagesSet returns the set of all
images of elms under map .

The result will be either a proper set or a domain. Anything may happen if elms is not a subset of
the source of map .

32.4.5 ImageElm

▷ ImageElm(map, elm) (operation)

If elm is an element of the source of the total and single-valued mapping map then ImageElm

returns the unique image of elm under map .
Anything may happen if elm is not an element of the source of map .

32.4.6 Image

▷ Image(map) (function)

▷ Image(map, elm) (function)

▷ Image(map, coll) (function)

Image(map) is the image of the general mapping map , i.e., the subset of elements of the range
of map that are actually values of map . Note that in this case the argument may also be multi-valued.

Image(map, elm) is the image of the element elm of the source of the mapping map under
map , i.e., the unique element of the range to which map maps elm . This can also be expressed as
elm^map or as map(elm).

Note that map must be total and single valued, a multi valued general mapping is not allowed
(see Images (32.4.7)).

GAP - Reference Manual 489

Image(map, coll) is the image of the subset coll of the source of the mapping map under
map , i.e., the subset of the range to which map maps elements of coll .

coll may be a proper set or a domain. The result will be either a proper set or a domain. Note
that in this case map may also be multi-valued. (If coll and the result are lists then the positions of
entries do in general not correspond.)

Image(map, coll) can also be expressed as map(coll) and Image(map, elm) as
map(elm). Those using this notation should remember that composition of mappings in GAP still
follows the conventions appropriate for mapping acting from the right, so that (map1*map2)(x) is
equivalent to map2(map1(x))

Image delegates to ImagesSource (32.4.1) when called with one argument, and to ImageElm

(32.4.5) resp. ImagesSet (32.4.4) when called with two arguments.
If the second argument is not an element or a subset of the source of the first argument, an error is

signalled.

32.4.7 Images

▷ Images(map) (function)

▷ Images(map, elm) (function)

▷ Images(map, coll) (function)

Images(map) is the image of the general mapping map , i.e., the subset of elements of the range
of map that are actually values of map .

Images(map, elm) is the set of images of the element elm of the source of the general map-
ping map under map , i.e., the set of elements of the range to which map maps elm .

Images(map, coll) is the set of images of the subset coll of the source of the general
mapping map under map , i.e., the subset of the range to which map maps elements of coll . coll

may be a proper set or a domain. The result will be either a proper set or a domain. (If coll and the
result are lists then the positions of entries do in general not correspond.)

Images delegates to ImagesSource (32.4.1) when called with one argument, and to ImagesElm

(32.4.3) resp. ImagesSet (32.4.4) when called with two arguments.
If the second argument is not an element or a subset of the source of the first argument, an error is

signalled.

32.5 Preimages under Mappings

32.5.1 PreImagesRange

▷ PreImagesRange(map) (attribute)

is the set of preimages of the range of the general mapping map .
PreImagesRange delegates to PreImagesSet (32.5.5), it is introduced only to store the preimage

of map as attribute value.

32.5.2 PreImagesElm

▷ PreImagesElm(map, elm) (operation)

GAP - Reference Manual 490

If elm is an element of the range of the general mapping map then PreImagesElm returns the set
of all preimages of elm under map .

Anything may happen if elm is not an element of the range of map .

32.5.3 PreImageElm

▷ PreImageElm(map, elm) (operation)

If elm is an element of the range of the injective and surjective general mapping map then
PreImageElm returns the unique preimage of elm under map .

Anything may happen if elm is not an element of the range of map .

32.5.4 PreImagesRepresentative

▷ PreImagesRepresentative(map, elm) (operation)

If elm is an element of the range of the general mapping map then PreImagesRepresentative

returns either a representative of the set of preimages of elm under map or fail, the latter if and only
if elm has no preimages under map .

Anything may happen if elm is not an element of the range of map .

32.5.5 PreImagesSet

▷ PreImagesSet(map, elms) (operation)

If elms is a subset of the range of the general mapping map then PreImagesSet returns the set of
all preimages of elms under map .

Anything may happen if elms is not a subset of the range of map .

32.5.6 PreImage

▷ PreImage(map) (function)

▷ PreImage(map, elm) (function)

▷ PreImage(map, coll) (function)

PreImage(map) is the preimage of the general mapping map , i.e., the subset of elements of the
source of map that actually have values under map . Note that in this case the argument may also be
non-injective or non-surjective.

PreImage(map, elm) is the preimage of the element elm of the range of the injective and
surjective mapping map under map , i.e., the unique element of the source which is mapped under map
to elm . Note that map must be injective and surjective (see PreImages (32.5.7)).

PreImage(map, coll) is the preimage of the subset coll of the range of the general mapping
map under map , i.e., the subset of the source which is mapped under map to elements of coll . coll
may be a proper set or a domain. The result will be either a proper set or a domain. Note that in
this case map may also be non-injective or non-surjective. (If coll and the result are lists then the
positions of entries do in general not correspond.)

PreImage delegates to PreImagesRange (32.5.1) when called with one argument, and to
PreImageElm (32.5.3) resp. PreImagesSet (32.5.5) when called with two arguments.

GAP - Reference Manual 491

If the second argument is not an element or a subset of the range of the first argument, an error is
signalled.

32.5.7 PreImages

▷ PreImages(map) (function)

▷ PreImages(map, elm) (function)

▷ PreImages(map, coll) (function)

PreImages(map) is the preimage of the general mapping map , i.e., the subset of elements of
the source of map that have actually values under map .

PreImages(map, elm) is the set of preimages of the element elm of the range of the general
mapping map under map , i.e., the set of elements of the source which map maps to elm .

PreImages(map, coll) is the set of images of the subset coll of the range of the general
mapping map under map , i.e., the subset of the source which map maps to elements of coll . coll

may be a proper set or a domain. The result will be either a proper set or a domain. (If coll and the
result are lists then the positions of entries do in general not correspond.)

PreImages delegates to PreImagesRange (32.5.1) when called with one argument, and to
PreImagesElm (32.5.2) resp. PreImagesSet (32.5.5) when called with two arguments.

If the second argument is not an element or a subset of the range of the first argument, an error is
signalled.

32.6 Arithmetic Operations for General Mappings

General mappings are arithmetic objects. One can form groups and vector spaces of general mappings
provided that they are invertible or can be added and admit scalar multiplication, respectively.

For two general mappings with same source, range, preimage, and image, the sum is defined
pointwise, i.e., the images of a point under the sum is the set of all sums with first summand in the
images of the first general mapping and second summand in the images of the second general mapping.

Scalar multiplication of general mappings is defined likewise.
The product of two general mappings is defined as the composition. This multiplication is always

associative. In addition to the composition via *, general mappings can be composed –in reversed
order– via CompositionMapping (32.2.5).

General mappings are in the category of multiplicative elements with inverses. Similar to matrices,
not every general mapping has an inverse or an identity, and we define the behaviour of One (31.10.2)
and Inverse (31.10.8) for general mappings as follows. One (31.10.2) returns fail when called for a
general mapping whose source and range differ, otherwise One (31.10.2) returns the identity mapping
of the source. (Note that the source may differ from the preimage). Inverse (31.10.8) returns fail
when called for a non-bijective general mapping or for a general mapping whose source and range
differ; otherwise Inverse (31.10.8) returns the inverse mapping.

Besides the usual inverse of multiplicative elements, which means that Inverse(

g) * g = g * Inverse(g) = One(g), for general mappings we have the attribute
InverseGeneralMapping (32.2.3). If F is a general mapping with source S, range R, and underly-
ing relation Rel then InverseGeneralMapping(F) has source R, range S, and underlying relation
{(r,s) | (s,r) ∈ Rel}. For a general mapping that has an inverse in the usual sense, i.e., for a bijection
of the source, of course both concepts coincide.

GAP - Reference Manual 492

Inverse (31.10.8) may delegate to InverseGeneralMapping (32.2.3).
InverseGeneralMapping (32.2.3) must not delegate to Inverse (31.10.8), but a known value
of Inverse (31.10.8) may be fetched. So methods to compute the inverse of a general mapping
should be installed for InverseGeneralMapping (32.2.3).

(Note that in many respects, general mappings behave similar to matrices, for example one can
define left and right identities and inverses, which do not fit into the current concepts of GAP.)

32.7 Mappings which are Compatible with Algebraic Structures

From an algebraical point of view, the most important mappings are those which are compatible with a
structure. For Magmas, Groups and Rings, GAP supports the following four types of such mappings:

1. General mappings that respect multiplication

2. General mappings that respect addition

3. General mappings that respect scalar mult.

4. General mappings that respect multiplicative and additive structure

(Very technical note: GAP defines categories IsSPGeneralMapping and
IsNonSPGeneralMapping. The distinction between these is orthogonal to the structure com-
patibility described here and should not be confused.)

32.8 Magma Homomorphisms

32.8.1 IsMagmaHomomorphism

▷ IsMagmaHomomorphism(mapp) (filter)

A magma homomorphism is a total single valued mapping which respects multiplication.

32.8.2 MagmaHomomorphismByFunctionNC

▷ MagmaHomomorphismByFunctionNC(G, H, fn) (function)

Creates the homomorphism from G to H without checking that fn is a homomorphism.

32.8.3 NaturalHomomorphismByGenerators

▷ NaturalHomomorphismByGenerators(f, s) (operation)

returns a mapping from the magma f with n generators to the magma s with n generators, which
maps the i-th generator of f to the i-th generator of s .

GAP - Reference Manual 493

32.9 Mappings that Respect Multiplication

32.9.1 RespectsMultiplication

▷ RespectsMultiplication(mapp) (property)

Let mapp be a general mapping with underlying relation F ⊆ S×R, where S and R are the source
and the range of mapp , respectively. Then RespectsMultiplication returns true if S and R are
magmas such that (s1,r1),(s2,r2) ∈ F implies (s1 ∗ s2,r1 ∗ r2) ∈ F , and false otherwise.

If mapp is single-valued then RespectsMultiplication returns true if and only if the equation
s1^mapp * s2^mapp = (s1 * s2)^mapp holds for all s1 , s2 in S.

32.9.2 RespectsOne

▷ RespectsOne(mapp) (property)

Let mapp be a general mapping with underlying relation F ⊆ S × R , where S and R are the
source and the range of mapp , respectively. Then RespectsOne returns true if S and R are mag-
mas-with-one such that (One(S),One(R)) ∈ F , and false otherwise.

If mapp is single-valued then RespectsOne returns true if and only if the equation One(S

)^mapp = One(R) holds.

32.9.3 RespectsInverses

▷ RespectsInverses(mapp) (property)

Let mapp be a general mapping with underlying relation F ⊆ S ×R , where S and R are the source
and the range of mapp , respectively. Then RespectsInverses returns true if S and R are mag-
mas-with-inverses such that, for s ∈ S and r ∈ R , (s,r) ∈ F implies (s−1,r−1) ∈ F , and false other-
wise.

If mapp is single-valued then RespectsInverses returns true if and only if the equation
Inverse(s)^mapp = Inverse(s^mapp) holds for all s in S.

32.9.4 IsGroupGeneralMapping

▷ IsGroupGeneralMapping(mapp) (filter)

▷ IsGroupHomomorphism(mapp) (filter)

A group general mapping is a mapping which respects multiplication and inverses. If it is total
and single valued it is called a group homomorphism.

Chapter 40 explains group homomorphisms in more detail.

32.9.5 KernelOfMultiplicativeGeneralMapping

▷ KernelOfMultiplicativeGeneralMapping(mapp) (attribute)

Let mapp be a general mapping. Then KernelOfMultiplicativeGeneralMapping returns the
set of all elements in the source of mapp that have the identity of the range in their set of images.

GAP - Reference Manual 494

(This is a monoid if mapp respects multiplication and one, and if the source of mapp is associa-
tive.)

32.9.6 CoKernelOfMultiplicativeGeneralMapping

▷ CoKernelOfMultiplicativeGeneralMapping(mapp) (attribute)

Let mapp be a general mapping. Then CoKernelOfMultiplicativeGeneralMapping returns
the set of all elements in the range of mapp that have the identity of the source in their set of preimages.

(This is a monoid if mapp respects multiplication and one, and if the range of mapp is associative.)

32.10 Mappings that Respect Addition

32.10.1 RespectsAddition

▷ RespectsAddition(mapp) (property)

Let mapp be a general mapping with underlying relation F ⊆ S×R, where S and R are the source
and the range of mapp , respectively. Then RespectsAddition returns true if S and R are additive
magmas such that (s1,r1),(s2,r2) ∈ F implies (s1 + s2,r1 + r2) ∈ F , and false otherwise.

If mapp is single-valued then RespectsAddition returns true if and only if the equation
s1^mapp + s2^mapp = (s1+s2)^mapp holds for all s1 , s2 in S.

32.10.2 RespectsAdditiveInverses

▷ RespectsAdditiveInverses(mapp) (property)

Let mapp be a general mapping with underlying relation F ⊆ S×R, where S and R are the source
and the range of mapp , respectively. Then RespectsAdditiveInverses returns true if S and R are
additive-magmas-with-inverses such that (s,r) ∈ F implies (−s,−r) ∈ F , and false otherwise.

If mapp is single-valued then RespectsAdditiveInverses returns true if and only if the equa-
tion AdditiveInverse(s)^mapp = AdditiveInverse(s^mapp) holds for all s in S.

32.10.3 RespectsZero

▷ RespectsZero(mapp) (property)

Let mapp be a general mapping with underlying relation F ⊆ S × R , where S and R are the
source and the range of mapp , respectively. Then RespectsZero returns true if S and R are ad-
ditive-magmas-with-zero such that (Zero(S),Zero(R)) ∈ F , and false otherwise.

If mapp is single-valued then RespectsZero returns true if and only if the equation Zero(S

)^mapp = Zero(R) holds.

32.10.4 IsAdditiveGroupGeneralMapping

▷ IsAdditiveGroupGeneralMapping(mapp) (filter)

▷ IsAdditiveGroupHomomorphism(mapp) (filter)

GAP - Reference Manual 495

IsAdditiveGroupGeneralMapping specifies whether a general mapping mapp respects addition
(see RespectsAddition (32.10.1)) and respects additive inverses (see RespectsAdditiveInverses
(32.10.2)).

IsAdditiveGroupHomomorphism is a synonym for the meet of
IsAdditiveGroupGeneralMapping and IsMapping (32.3.3).

32.10.5 KernelOfAdditiveGeneralMapping

▷ KernelOfAdditiveGeneralMapping(mapp) (attribute)

Let mapp be a general mapping. Then KernelOfAdditiveGeneralMapping returns the set of all
elements in the source of mapp that have the zero of the range in their set of images.

32.10.6 CoKernelOfAdditiveGeneralMapping

▷ CoKernelOfAdditiveGeneralMapping(mapp) (attribute)

Let mapp be a general mapping. Then CoKernelOfAdditiveGeneralMapping returns the set of
all elements in the range of mapp that have the zero of the source in their set of preimages.

32.11 Linear Mappings

Also see Sections 32.9, 32.10, and KernelOfMultiplicativeGeneralMapping (32.9.5),
CoKernelOfMultiplicativeGeneralMapping (32.9.6).

32.11.1 RespectsScalarMultiplication

▷ RespectsScalarMultiplication(mapp) (property)

Let mapp be a general mapping, with underlying relation F ⊆ S×R, where S and R are the source
and the range of mapp , respectively. Then RespectsScalarMultiplication returns true if S and
R are left modules with the left acting domain D of S contained in the left acting domain of R and such
that (s,r) ∈ F implies (c∗ s,c∗ r) ∈ F for all c ∈ D, and false otherwise.

If mapp is single-valued then RespectsScalarMultiplication returns true if and only if the
equation c * s^mapp = (c * s)^mapp holds for all c in D and s in S.

32.11.2 IsLeftModuleGeneralMapping

▷ IsLeftModuleGeneralMapping(mapp) (filter)

▷ IsLeftModuleHomomorphism(mapp) (filter)

IsLeftModuleGeneralMapping specifies whether a general mapping mapp satisfies the
property IsAdditiveGroupGeneralMapping (32.10.4) and respects scalar multiplication (see
RespectsScalarMultiplication (32.11.1)).

IsLeftModuleHomomorphism is a synonym for the meet of IsLeftModuleGeneralMapping and
IsMapping (32.3.3).

GAP - Reference Manual 496

32.11.3 IsLinearMapping

▷ IsLinearMapping(F, mapp) (operation)

For a field F and a general mapping mapp , IsLinearMapping returns true if mapp is an F-linear
mapping, and false otherwise.

A mapping f is a linear mapping (or vector space homomorphism) if the source and range are
vector spaces over the same division ring D, and if f (a+b) = f (a)+ f (b) and f (s∗a) = s∗ f (a) hold
for all elements a, b in the source of f and s ∈ D.

32.12 Ring Homomorphisms

32.12.1 IsRingGeneralMapping

▷ IsRingGeneralMapping(mapp) (filter)

▷ IsRingHomomorphism(mapp) (filter)

IsRingGeneralMapping specifies whether a general mapping mapp satisfies the
property IsAdditiveGroupGeneralMapping (32.10.4) and respects multiplication (see
RespectsMultiplication (32.9.1)).

IsRingHomomorphism is a synonym for the meet of IsRingGeneralMapping and IsMapping

(32.3.3).

32.12.2 IsRingWithOneGeneralMapping

▷ IsRingWithOneGeneralMapping(mapp) (filter)

▷ IsRingWithOneHomomorphism(mapp) (filter)

32.12.3 IsAlgebraGeneralMapping

▷ IsAlgebraGeneralMapping(mapp) (filter)

▷ IsAlgebraHomomorphism(mapp) (filter)

IsAlgebraGeneralMapping specifies whether a general mapping mapp satisfies both properties
IsRingGeneralMapping (32.12.1) and (see IsLeftModuleGeneralMapping (32.11.2)).

IsAlgebraHomomorphism is a synonym for the meet of IsAlgebraGeneralMapping and
IsMapping (32.3.3).

32.12.4 IsAlgebraWithOneGeneralMapping

▷ IsAlgebraWithOneGeneralMapping(mapp) (filter)

▷ IsAlgebraWithOneHomomorphism(mapp) (filter)

IsAlgebraWithOneGeneralMapping specifies whether a general mapping mapp satisfies both
properties IsAlgebraGeneralMapping (32.12.3) and RespectsOne (32.9.2).

IsAlgebraWithOneHomomorphism is a synonym for the meet of
IsAlgebraWithOneGeneralMapping and IsMapping (32.3.3).

GAP - Reference Manual 497

32.12.5 IsFieldHomomorphism

▷ IsFieldHomomorphism(mapp) (property)

A general mapping is a field homomorphism if and only if it is a ring homomorphism with source
a field.

32.13 General Mappings

32.13.1 IsGeneralMapping

▷ IsGeneralMapping(map) (Category)

Each general mapping lies in the category IsGeneralMapping. It implies the categories
IsMultiplicativeElementWithInverse (31.14.13) and IsAssociativeElement (31.15.1); for
a discussion of these implications, see 32.6.

32.13.2 IsConstantTimeAccessGeneralMapping

▷ IsConstantTimeAccessGeneralMapping(map) (property)

is true if the underlying relation of the general mapping map knows its AsList (30.3.8) value,
and false otherwise.

In the former case, map is allowed to use this list for calls to ImagesElm (32.4.3) etc.

32.13.3 IsEndoGeneralMapping

▷ IsEndoGeneralMapping(obj) (property)

If a general mapping has this property then its source and range are equal.

32.14 Technical Matters Concerning General Mappings

Source (32.3.8) and Range (32.3.7) are basic operations for general mappings.
UnderlyingRelation (32.3.9) is secondary, its default method sets up a domain that dele-
gates tasks to the general mapping. (Note that this allows one to handle also infinite relations by
generic methods if source or range of the general mapping is finite.)

The distinction between basic operations and secondary operations for general mappings may
be a little bit complicated. Namely, each general mapping must be in one of the two cat-
egories IsNonSPGeneralMapping (32.14.1), IsSPGeneralMapping (32.14.1). (The category
IsGeneralMapping (32.13.1) is defined as the disjoint union of these two.)

For general mappings of the first category, ImagesElm (32.4.3) and PreImagesElm (32.5.2) are
basic operations. (Note that in principle it is possible to delegate from PreImagesElm (32.5.2)
to ImagesElm (32.4.3).) Methods for the secondary operations ImageElm (32.4.5), PreImageElm
(32.5.3), ImagesSet (32.4.4), PreImagesSet (32.5.5), ImagesRepresentative (32.4.2), and
PreImagesRepresentative (32.5.4) may use ImagesElm (32.4.3) and PreImagesElm (32.5.2), re-
spectively, and methods for ImagesElm (32.4.3), PreImagesElm (32.5.2) must not call the secondary

GAP - Reference Manual 498

operations. In particular, there are no generic methods for ImagesElm (32.4.3) and PreImagesElm

(32.5.2).
Methods for ImagesSet (32.4.4) and PreImagesSet (32.5.5) must not use PreImagesRange

(32.5.1) and ImagesSource (32.4.1), e.g., compute the intersection of the set in question with the
preimage of the range resp. the image of the source.

For general mappings of the second category (which means structure preserving gen-
eral mappings), the situation is different. The set of preimages under a group ho-
momorphism, for example, is either empty or can be described as a coset of the
(multiplicative) kernel. So it is reasonable to have ImagesRepresentative (32.4.2),
PreImagesRepresentative (32.5.4), KernelOfMultiplicativeGeneralMapping (32.9.5), and
CoKernelOfMultiplicativeGeneralMapping (32.9.6) as basic operations here, and to make
ImagesElm (32.4.3) and PreImagesElm (32.5.2) secondary operations that may delegate to these.

In order to avoid infinite recursions, we must distinguish between the two different types of map-
pings.

(Note that the basic domain operations such as AsList (30.3.8) for the underlying relation of
a general mapping may use either ImagesElm (32.4.3) or ImagesRepresentative (32.4.2) and
the appropriate cokernel. Conversely, if AsList (30.3.8) for the underlying relation is known then
ImagesElm (32.4.3) resp. ImagesRepresentative (32.4.2) may delegate to it, the general mapping
gets the property IsConstantTimeAccessGeneralMapping (32.13.2) for this; note that this is not
allowed if only an enumerator of the underlying relation is known.)

Secondary operations are IsInjective (32.3.4), IsSingleValued (32.3.2), IsSurjective

(32.3.5), IsTotal (32.3.1); they may use the basic operations, and must not be used by them.
Methods for the operations ImagesElm (32.4.3), ImagesRepresentative (32.4.2), ImagesSet

(32.4.4), ImageElm (32.4.5), PreImagesElm (32.5.2), PreImagesRepresentative (32.5.4),
PreImagesSet (32.5.5), and PreImageElm (32.5.3) take two arguments, a general mapping map and
an element or collection of elements elm . These methods must not check whether elm lies in the
source or the range of map . In the case that elm does not, fail may be returned as well as any other
GAP object, and even an error message is allowed. Checks of the arguments are done only by the
functions Image (32.4.6), Images (32.4.7), PreImage (32.5.6), and PreImages (32.5.7), which then
delegate to the operations listed above.

32.14.1 IsSPGeneralMapping

▷ IsSPGeneralMapping(map) (Category)

▷ IsNonSPGeneralMapping(map) (Category)

32.14.2 IsGeneralMappingFamily

▷ IsGeneralMappingFamily(obj) (Category)

The family category of the category of general mappings.

32.14.3 FamilyRange

▷ FamilyRange(Fam) (attribute)

GAP - Reference Manual 499

is the elements family of the family of the range of each general mapping in the family Fam .

32.14.4 FamilySource

▷ FamilySource(Fam) (attribute)

is the elements family of the family of the source of each general mapping in the family Fam .

32.14.5 FamiliesOfGeneralMappingsAndRanges

▷ FamiliesOfGeneralMappingsAndRanges(Fam) (attribute)

is a list that stores at the odd positions the families of general mappings with source in the family
Fam , at the even positions the families of ranges of the general mappings.

32.14.6 GeneralMappingsFamily

▷ GeneralMappingsFamily(sourcefam, rangefam) (function)

All general mappings with same source family FS and same range family FR lie in the family
GeneralMappingsFamily(FS, FR).

32.14.7 TypeOfDefaultGeneralMapping

▷ TypeOfDefaultGeneralMapping(source, range, filter) (function)

is the type of mappings with IsDefaultGeneralMappingRep with source source and range
range and additional categories filter .

Chapter 33

Relations

A binary relation R on a set X is a subset of X ×X . A binary relation can also be thought of as a
(general) mapping from X to itself or as a directed graph where each edge represents an element of R.

In GAP, a relation is conceptually represented as a general mapping from X to itself. The category
IsBinaryRelation (33.1.1) is a synonym for IsEndoGeneralMapping (32.13.3). Attributes and
properties of relations in GAP are supported for relations, via considering relations as a subset of
X × X , or as a directed graph; examples include finding the strongly connected components of a
relation, via StronglyConnectedComponents (33.4.5), or enumerating the tuples of the relation.

33.1 General Binary Relations

This section lists general constructors of relations.

33.1.1 IsBinaryRelation

▷ IsBinaryRelation(R) (property)

is exactly the same category as (i.e. a synonym for) IsEndoGeneralMapping (32.13.3).

33.1.2 BinaryRelationByElements

▷ BinaryRelationByElements(domain, elms) (function)

is the binary relation on domain and with underlying relation consisting of the tuples collection
elms . This construction is similar to GeneralMappingByElements (32.2.1) where the source and
range are the same set.

Example
gap> r:=BinaryRelationByElements(Domain([1..3]),[DirectProductElement([1,2]),DirectProductElement([1,3])]);

<general mapping: Domain([1 .. 3]) -> Domain([1 .. 3]) >

33.1.3 IdentityBinaryRelation

▷ IdentityBinaryRelation(degree) (function)

▷ IdentityBinaryRelation(domain) (function)

500

GAP - Reference Manual 501

is the binary relation which consists of diagonal pairs, i.e., pairs of the form (x,x). In the first form
if a positive integer degree is given then the domain is the set of the integers {1, . . . ,degree}. In the
second form, the objects x are from the domain domain .

Example
gap> IdentityBinaryRelation(5);

<equivalence relation on Domain([1 .. 5]) >

gap> s4:=SymmetricGroup(4);

Sym([1 .. 4])

gap> IdentityBinaryRelation(s4);

IdentityMapping(Sym([1 .. 4]))

33.1.4 EmptyBinaryRelation (for a degree)

▷ EmptyBinaryRelation(degree) (function)

▷ EmptyBinaryRelation(domain) (function)

is the relation with R empty. In the first form of the command with degree an integer, the domain
is the set of points {1, . . . ,degree}. In the second form, the domain is that given by the argument
domain .

Example
gap> EmptyBinaryRelation(3) = BinaryRelationOnPoints([[], [], []]);

true

33.2 Properties and Attributes of Binary Relations

33.2.1 IsReflexiveBinaryRelation

▷ IsReflexiveBinaryRelation(R) (property)

returns true if the binary relation R is reflexive, and false otherwise.
A binary relation R (as a set of pairs) on a set X is reflexive if for all x ∈ X , (x,x)∈ R. Alternatively,

R as a mapping is reflexive if for all x ∈ X , x is an element of the image set R(x).
A reflexive binary relation is necessarily a total endomorphic mapping (tested via IsTotal

(32.3.1)).
Example

gap> IsReflexiveBinaryRelation(BinaryRelationOnPoints([[1,3],[2],[3]]));

true

gap> IsReflexiveBinaryRelation(BinaryRelationOnPoints([[2],[2]]));

false

33.2.2 IsSymmetricBinaryRelation

▷ IsSymmetricBinaryRelation(R) (property)

returns true if the binary relation R is symmetric, and false otherwise.
A binary relation R (as a set of pairs) on a set X is symmetric if (x,y) ∈ R then (y,x) ∈ R. Alterna-

tively, R as a mapping is symmetric if for all x ∈ X , the preimage set of x under R equals the image set
R(x).

GAP - Reference Manual 502

Example
gap> IsSymmetricBinaryRelation(BinaryRelationOnPoints([[2],[1]]));

true

gap> IsSymmetricBinaryRelation(BinaryRelationOnPoints([[2],[2]]));

false

33.2.3 IsTransitiveBinaryRelation

▷ IsTransitiveBinaryRelation(R) (property)

returns true if the binary relation R is transitive, and false otherwise.
A binary relation R (as a set of pairs) on a set X is transitive if (x,y),(y,z) ∈ R implies (x,z) ∈ R.

Alternatively, R as a mapping is transitive if for all x ∈ X , the image set R(R(x)) of the image set R(x)
of x is a subset of R(x).

Example
gap> IsTransitiveBinaryRelation(BinaryRelationOnPoints([[1,2,3],[2,3],[]]));

true

gap> IsTransitiveBinaryRelation(BinaryRelationOnPoints([[1,2],[2,3],[]]));

false

33.2.4 IsAntisymmetricBinaryRelation

▷ IsAntisymmetricBinaryRelation(rel) (property)

returns true if the binary relation rel is antisymmetric, and false otherwise.
A binary relation R (as a set of pairs) on a set X is antisymmetric if (x,y),(y,x) ∈ R implies x = y.

Alternatively, R as a mapping is antisymmetric if for all x ∈ X , the intersection of the preimage set of
x under R and the image set R(x) is {x}.

33.2.5 IsPreOrderBinaryRelation

▷ IsPreOrderBinaryRelation(rel) (property)

returns true if the binary relation rel is a preorder, and false otherwise.
A preorder is a binary relation that is both reflexive and transitive.

33.2.6 IsPartialOrderBinaryRelation

▷ IsPartialOrderBinaryRelation(rel) (property)

returns true if the binary relation rel is a partial order, and false otherwise.
A partial order is a preorder which is also antisymmetric.

33.2.7 IsHasseDiagram

▷ IsHasseDiagram(rel) (property)

GAP - Reference Manual 503

returns true if the binary relation rel is a Hasse Diagram of a partial order, i.e., was computed
via HasseDiagramBinaryRelation (33.4.4).

33.2.8 IsEquivalenceRelation

▷ IsEquivalenceRelation(R) (property)

returns true if the binary relation R is an equivalence relation, and false otherwise.
Recall, that a relation R is an equivalence relation if it is symmetric, transitive, and reflexive.

33.2.9 Successors

▷ Successors(R) (attribute)

returns the list of images of a binary relation R . If the underlying domain of the relation is not
{1, . . . ,n}, for some positive integer n, then an error is signalled.

The returned value of Successors is a list of lists where the lists are ordered as the elements
according to the sorted order of the underlying set of R . Each list consists of the images of the element
whose index is the same as the list with the underlying set in sorted order.

The Successors of a relation is the adjacency list representation of the relation.
Example

gap> r1:=BinaryRelationOnPoints([[2],[3],[1]]);;

gap> Successors(r1);

[[2], [3], [1]]

33.2.10 DegreeOfBinaryRelation

▷ DegreeOfBinaryRelation(R) (attribute)

returns the size of the underlying domain of the binary relation R . This is most natural when
working with a binary relation on points.

Example
gap> DegreeOfBinaryRelation(r1);

3

33.2.11 PartialOrderOfHasseDiagram

▷ PartialOrderOfHasseDiagram(HD) (attribute)

is the partial order associated with the Hasse Diagram HD i.e. the partial order generated by the
reflexive and transitive closure of HD .

33.3 Binary Relations on Points

We have special construction methods when the underlying X of our relation is the set of integers
{1, . . . ,n}.

GAP - Reference Manual 504

33.3.1 BinaryRelationOnPoints

▷ BinaryRelationOnPoints(list) (function)

▷ BinaryRelationOnPointsNC(list) (function)

Given a list of n lists, each containing elements from the set {1, . . . ,n}, this function constructs a
binary relation such that 1 is related to list[1], 2 to list[2] and so on. The first version checks
whether the list supplied is valid. The NC version skips this check.

Example
gap> R:=BinaryRelationOnPoints([[1,2],[2],[3]]);

Binary Relation on 3 points

33.3.2 RandomBinaryRelationOnPoints

▷ RandomBinaryRelationOnPoints(degree) (function)

creates a relation on points with degree degree .

33.3.3 AsBinaryRelationOnPoints

▷ AsBinaryRelationOnPoints(trans) (function)

▷ AsBinaryRelationOnPoints(perm) (function)

▷ AsBinaryRelationOnPoints(rel) (function)

return the relation on points represented by general relation rel , transformation trans or permu-
tation perm . If rel is already a binary relation on points then rel is returned.

Transformations and permutations are special general endomorphic mappings and have a natural
representation as a binary relation on points.

In the last form, an isomorphic relation on points is constructed where the points are indices of the
elements of the underlying domain in sorted order.

Example
gap> t:=Transformation([2,3,1]);;

gap> r1:=AsBinaryRelationOnPoints(t);

Binary Relation on 3 points

gap> r2:=AsBinaryRelationOnPoints((1,2,3));

Binary Relation on 3 points

gap> r1=r2;

true

33.4 Closure Operations and Other Constructors

33.4.1 ReflexiveClosureBinaryRelation

▷ ReflexiveClosureBinaryRelation(R) (operation)

is the smallest binary relation containing the binary relation R which is reflexive. This closure
inherits the properties symmetric and transitive from R . E.g., if R is symmetric then its reflexive
closure is also.

GAP - Reference Manual 505

33.4.2 SymmetricClosureBinaryRelation

▷ SymmetricClosureBinaryRelation(R) (operation)

is the smallest binary relation containing the binary relation R which is symmetric. This closure
inherits the properties reflexive and transitive from R . E.g., if R is reflexive then its symmetric closure
is also.

33.4.3 TransitiveClosureBinaryRelation

▷ TransitiveClosureBinaryRelation(rel) (operation)

is the smallest binary relation containing the binary relation R which is transitive. This closure
inherits the properties reflexive and symmetric from R . E.g., if R is symmetric then its transitive
closure is also.

TransitiveClosureBinaryRelation is a modified version of the Floyd-Warshall method of
solving the all-pairs shortest-paths problem on a directed graph. Its asymptotic runtime is O(n3)
where n is the size of the vertex set. It only assumes there is an arbitrary (but fixed) ordering of the
vertex set.

33.4.4 HasseDiagramBinaryRelation

▷ HasseDiagramBinaryRelation(partial-order) (operation)

is the smallest relation contained in the partial order partial-order whose reflexive and transi-
tive closure is equal to partial-order .

33.4.5 StronglyConnectedComponents

▷ StronglyConnectedComponents(R) (operation)

returns an equivalence relation on the vertices of the binary relation R .

33.4.6 PartialOrderByOrderingFunction

▷ PartialOrderByOrderingFunction(dom, orderfunc) (function)

constructs a partial order whose elements are from the domain dom and are ordered using the
ordering function orderfunc . The ordering function must be a binary function returning a boolean
value. If the ordering function does not describe a partial order then fail is returned.

33.5 Equivalence Relations

An equivalence relation E over the set X is a relation on X which is reflexive, symmetric, and transitive.
A partition P is a set of subsets of X such that for all R,S ∈ P, R∩S is the empty set and ∪P = X . An
equivalence relation induces a partition such that if (x,y) ∈ E then x,y are in the same element of P .

GAP - Reference Manual 506

Like all binary relations in GAP equivalence relations are regarded as general endomorphic map-
pings (and the operations, properties and attributes of general mappings are available). However, parti-
tions provide an efficient way of representing equivalence relations. Moreover, only the non-singleton
classes or blocks are listed allowing for small equivalence relations to be represented on infinite
sets. Hence the main attribute of equivalence relations is EquivalenceRelationPartition (33.6.1)
which provides the partition induced by the given equivalence.

33.5.1 EquivalenceRelationByPartition

▷ EquivalenceRelationByPartition(domain, list) (function)

▷ EquivalenceRelationByPartitionNC(domain, list) (function)

constructs the equivalence relation over the set domain which induces the partition represented by
list . This representation includes only the non-trivial blocks (or equivalent classes). list is a list
of lists, each of these lists contain elements of domain and are pairwise mutually exclusive.

The list of lists do not need to be in any order nor do the elements in the blocks (see
EquivalenceRelationPartition (33.6.1)). a list of elements of domain The partition list is
a list of lists, each of these is a list of elements of domain that makes up a block (or equivalent class).
The domain is the domain over which the relation is defined, and list is a list of lists, each of these
is a list of elements of domain which are related to each other. list need only contain the nontrivial
blocks and singletons will be ignored. The NC version will not check to see if the lists are pairwise
mutually exclusive or that they contain only elements of the domain.

Example
gap> er:=EquivalenceRelationByPartition(Domain([1..10]),[[1,3,5,7,9],[2,4,6,8,10]]);

<equivalence relation on Domain([1 .. 10]) >

gap> IsEquivalenceRelation(er);

true

33.5.2 EquivalenceRelationByRelation

▷ EquivalenceRelationByRelation(rel) (function)

returns the smallest equivalence relation containing the binary relation rel .

33.5.3 EquivalenceRelationByPairs

▷ EquivalenceRelationByPairs(D, elms) (function)

▷ EquivalenceRelationByPairsNC(D, elms) (function)

return the smallest equivalence relation on the domain D such that every pair in elms is in the
relation.

In the NC form, it is not checked that elms are in the domain D .

33.5.4 EquivalenceRelationByProperty

▷ EquivalenceRelationByProperty(domain, property) (function)

GAP - Reference Manual 507

creates an equivalence relation on domain whose only defining datum is that of having the prop-
erty property .

33.6 Attributes of and Operations on Equivalence Relations

33.6.1 EquivalenceRelationPartition

▷ EquivalenceRelationPartition(equiv) (attribute)

returns a list of lists of elements of the underlying set of the equivalence relation equiv . The
lists are precisely the nonsingleton equivalence classes of the equivalence. This allows us to describe
“small” equivalences on infinite sets.

33.6.2 GeneratorsOfEquivalenceRelationPartition

▷ GeneratorsOfEquivalenceRelationPartition(equiv) (attribute)

is a set of generating pairs for the equivalence relation equiv . This set is not unique. The equiva-
lence equiv is the smallest equivalence relation over the underlying set which contains the generating
pairs.

33.6.3 JoinEquivalenceRelations

▷ JoinEquivalenceRelations(equiv1, equiv2) (operation)

▷ MeetEquivalenceRelations(equiv1, equiv2) (operation)

JoinEquivalenceRelations returns the smallest equivalence relation containing both the equiv-
alence relations equiv1 and equiv2 .

MeetEquivalenceRelations returns the intersection of the two equivalence relations equiv1

and equiv2 .

33.7 Equivalence Classes

33.7.1 IsEquivalenceClass

▷ IsEquivalenceClass(obj) (Category)

returns true if the object obj is an equivalence class, and false otherwise.
An equivalence class is a collection of elements which are mutually related to each other in the

associated equivalence relation. Note, this is a special category of objects and not just a list of ele-
ments.

33.7.2 EquivalenceClassRelation

▷ EquivalenceClassRelation(C) (attribute)

returns the equivalence relation of which C is a class.

GAP - Reference Manual 508

33.7.3 EquivalenceClasses (attribute)

▷ EquivalenceClasses(rel) (attribute)

returns a list of all equivalence classes of the equivalence relation rel . Note that it is possible for
different methods to yield the list in different orders, so that for two equivalence relations c1 and c2
we may have c1 = c2 without having EquivalenceClasses(c1) =EquivalenceClasses(c2).

Example
gap> er:=EquivalenceRelationByPartition(Domain([1..10]),[[1,3,5,7,9],[2,4,6,8,10]]);

<equivalence relation on Domain([1 .. 10]) >

gap> classes := EquivalenceClasses(er);

[{1}, {2}]

33.7.4 EquivalenceClassOfElement

▷ EquivalenceClassOfElement(rel, elt) (operation)

▷ EquivalenceClassOfElementNC(rel, elt) (operation)

return the equivalence class of elt in the binary relation rel , where elt is an element (i.e. a
pair) of the domain of rel . In the NC form, it is not checked that elt is in the domain over which rel

is defined.
Example

gap> EquivalenceClassOfElement(er,3);

{3}

Chapter 34

Orderings

In GAP an ordering is a relation defined on a family, which is reflexive, anti-symmetric and transitive.

34.1 IsOrdering (Filter)

34.1.1 IsOrdering

▷ IsOrdering(obj) (Category)

returns true if and only if the object ord is an ordering.

34.1.2 OrderingsFamily

▷ OrderingsFamily(fam) (attribute)

for a family fam , returns the family of all orderings on elements of fam .

34.2 Building new orderings

34.2.1 OrderingByLessThanFunctionNC

▷ OrderingByLessThanFunctionNC(fam, lt[, l]) (operation)

Called with two arguments, OrderingByLessThanFunctionNC returns the ordering on the ele-
ments of the elements of the family fam , according to the LessThanFunction (34.3.5) value given
by lt , where lt is a function that takes two arguments in fam and returns true or false.

Called with three arguments, for a family fam , a function lt that takes two arguments in fam and
returns true or false, and a list l of properties of orderings, OrderingByLessThanFunctionNC
returns the ordering on the elements of fam with LessThanFunction (34.3.5) value given by lt and
with the properties from l set to true.

34.2.2 OrderingByLessThanOrEqualFunctionNC

▷ OrderingByLessThanOrEqualFunctionNC(fam, lteq[, l]) (operation)

509

GAP - Reference Manual 510

Called with two arguments, OrderingByLessThanOrEqualFunctionNC returns the ordering on
the elements of the elements of the family fam according to the LessThanOrEqualFunction (34.3.6)
value given by lteq , where lteq is a function that takes two arguments in fam and returns true or
false.

Called with three arguments, for a family fam , a function lteq that takes two ar-
guments in fam and returns true or false, and a list l of properties of orderings,
OrderingByLessThanOrEqualFunctionNC returns the ordering on the elements of fam with
LessThanOrEqualFunction (34.3.6) value given by lteq and with the properties from l set to
true.

Notice that these functions do not check whether fam and lt or lteq are compatible, and whether
the properties listed in l are indeed satisfied.

Example
gap> f := FreeSemigroup("a","b");;

gap> a := GeneratorsOfSemigroup(f)[1];;

gap> b := GeneratorsOfSemigroup(f)[2];;

gap> lt := function(x,y) return Length(x)<Length(y); end;

function(x, y) ... end

gap> fam := FamilyObj(a);;

gap> ord := OrderingByLessThanFunctionNC(fam,lt);

Ordering

34.3 Properties and basic functionality

34.3.1 IsWellFoundedOrdering

▷ IsWellFoundedOrdering(ord) (property)

for an ordering ord , returns true if and only if the ordering is well founded. An ordering ord

is well founded if it admits no infinite descending chains. Normally this property is set at the time
of creation of the ordering and there is no general method to check whether a certain ordering is well
founded.

34.3.2 IsTotalOrdering

▷ IsTotalOrdering(ord) (property)

for an ordering ord , returns true if and only if the ordering is total. An ordering ord is total if
any two elements of the family are comparable under ord . Normally this property is set at the time of
creation of the ordering and there is no general method to check whether a certain ordering is total.

34.3.3 IsIncomparableUnder

▷ IsIncomparableUnder(ord, el1, el2) (operation)

for an ordering ord on the elements of the family of el1 and el2 , returns true if el1 ̸= el2 and
IsLessThanUnder(ord ,el1 ,el2), IsLessThanUnder(ord ,el2 ,el1) are both false; and returns
false otherwise.

GAP - Reference Manual 511

34.3.4 FamilyForOrdering

▷ FamilyForOrdering(ord) (attribute)

for an ordering ord , returns the family of elements that the ordering ord compares.

34.3.5 LessThanFunction

▷ LessThanFunction(ord) (attribute)

for an ordering ord , returns a function f which takes two elements el1, el2 in
FamilyForOrdering(ord) and returns true if el1 is strictly less than el2 (with respect to ord),
and returns false otherwise.

34.3.6 LessThanOrEqualFunction

▷ LessThanOrEqualFunction(ord) (attribute)

for an ordering ord , returns a function that takes two elements el1, el2 in
FamilyForOrdering(ord) and returns true if el1 is less than or equal to el2 (with respect to
ord), and returns false otherwise.

34.3.7 IsLessThanUnder

▷ IsLessThanUnder(ord, el1, el2) (operation)

for an ordering ord on the elements of the family of el1 and el2 , returns true if el1 is (strictly)
less than el2 with respect to ord , and false otherwise.

34.3.8 IsLessThanOrEqualUnder

▷ IsLessThanOrEqualUnder(ord, el1, el2) (operation)

for an ordering ord on the elements of the family of el1 and el2 , returns true if el1 is less than
or equal to el2 with respect to ord , and false otherwise.

Example
gap> IsLessThanUnder(ord,a,a*b);

true

gap> IsLessThanOrEqualUnder(ord,a*b,a*b);

true

gap> IsIncomparableUnder(ord,a,b);

true

gap> FamilyForOrdering(ord) = FamilyObj(a);

true

34.4 Orderings on families of associative words

We now consider orderings on families of associative words.

GAP - Reference Manual 512

Examples of families of associative words are the families of elements of a free semigroup or a
free monoid; these are the two cases that we consider mostly. Associated with those families is an
alphabet, which is the semigroup (resp. monoid) generating set of the correspondent free semigroup
(resp. free monoid). For definitions of the orderings considered, see Sims [Sim94].

34.4.1 IsOrderingOnFamilyOfAssocWords

▷ IsOrderingOnFamilyOfAssocWords(ord) (property)

for an ordering ord , returns true if ord is an ordering over a family of associative words.

34.4.2 IsTranslationInvariantOrdering

▷ IsTranslationInvariantOrdering(ord) (property)

for an ordering ord on a family of associative words, returns true if and only if the ordering is
translation invariant.

This is a property of orderings on families of associative words. An ordering ord over a family
F , with alphabet X is translation invariant if IsLessThanUnder(ord , u, v) implies that for any
a,b ∈ X∗, IsLessThanUnder(ord , a∗u∗b, a∗ v∗b).

34.4.3 IsReductionOrdering

▷ IsReductionOrdering(ord) (property)

for an ordering ord on a family of associative words, returns true if and only if the ordering is
a reduction ordering. An ordering ord is a reduction ordering if it is well founded and translation
invariant.

34.4.4 OrderingOnGenerators

▷ OrderingOnGenerators(ord) (attribute)

for an ordering ord on a family of associative words, returns a list in which the generators are
considered. This could be indeed the ordering of the generators in the ordering, but, for exam-
ple, if a weight is associated to each generator then this is not true anymore. See the example for
WeightLexOrdering (34.4.8).

34.4.5 LexicographicOrdering

▷ LexicographicOrdering(D[, gens]) (operation)

Let D be a free semigroup, a free monoid, or the elements family of such a domain. Called with
only argument D , LexicographicOrdering returns the lexicographic ordering on the elements of D .

The optional argument gens can be either the list of free generators of D , in the desired order, or
a list of the positions of these generators, in the desired order, and LexicographicOrdering returns
the lexicographic ordering on the elements of D with the ordering on the generators as given.

GAP - Reference Manual 513

Example
gap> f := FreeSemigroup(3);

<free semigroup on the generators [s1, s2, s3]>

gap> lex := LexicographicOrdering(f,[2,3,1]);

Ordering

gap> IsLessThanUnder(lex,f.2*f.3,f.3);

true

gap> IsLessThanUnder(lex,f.3,f.2);

false

34.4.6 ShortLexOrdering

▷ ShortLexOrdering(D[, gens]) (operation)

Let D be a free semigroup, a free monoid, or the elements family of such a domain. Called with
only argument D , ShortLexOrdering returns the shortlex ordering on the elements of D .

The optional argument gens can be either the list of free generators of D , in the desired order, or
a list of the positions of these generators, in the desired order, and ShortLexOrdering returns the
shortlex ordering on the elements of D with the ordering on the generators as given.

34.4.7 IsShortLexOrdering

▷ IsShortLexOrdering(ord) (property)

for an ordering ord of a family of associative words, returns true if and only if ord is a shortlex
ordering.

Example
gap> f := FreeSemigroup(3);

<free semigroup on the generators [s1, s2, s3]>

gap> sl := ShortLexOrdering(f,[2,3,1]);

Ordering

gap> IsLessThanUnder(sl,f.1,f.2);

false

gap> IsLessThanUnder(sl,f.3,f.2);

false

gap> IsLessThanUnder(sl,f.3,f.1);

true

34.4.8 WeightLexOrdering

▷ WeightLexOrdering(D, gens, wt) (operation)

Let D be a free semigroup, a free monoid, or the elements family of such a domain. gens can be
either the list of free generators of D , in the desired order, or a list of the positions of these generators,
in the desired order. Let wt be a list of weights. WeightLexOrdering returns the weightlex ordering
on the elements of D with the ordering on the generators and weights of the generators as given.

GAP - Reference Manual 514

34.4.9 IsWeightLexOrdering

▷ IsWeightLexOrdering(ord) (property)

for an ordering ord on a family of associative words, returns true if and only if ord is a weightlex
ordering.

34.4.10 WeightOfGenerators

▷ WeightOfGenerators(ord) (attribute)

for a weightlex ordering ord , returns a list with length the size of the alphabet of the family. This
list gives the weight of each of the letters of the alphabet which are used for weightlex orderings with
respect to the ordering given by OrderingOnGenerators (34.4.4).

Example
gap> f := FreeSemigroup(3);

<free semigroup on the generators [s1, s2, s3]>

gap> wtlex := WeightLexOrdering(f,[f.2,f.3,f.1],[3,2,1]);

Ordering

gap> IsLessThanUnder(wtlex,f.1,f.2);

true

gap> IsLessThanUnder(wtlex,f.3,f.2);

true

gap> IsLessThanUnder(wtlex,f.3,f.1);

false

gap> OrderingOnGenerators(wtlex);

[s2, s3, s1]

gap> WeightOfGenerators(wtlex);

[3, 2, 1]

34.4.11 BasicWreathProductOrdering

▷ BasicWreathProductOrdering(D[, gens]) (operation)

Let D be a free semigroup, a free monoid, or the elements family of such a domain. Called with
only argument D , BasicWreathProductOrdering returns the basic wreath product ordering on the
elements of D .

The optional argument gens can be either the list of free generators of D , in the desired order, or
a list of the positions of these generators, in the desired order, and BasicWreathProductOrdering

returns the lexicographic ordering on the elements of D with the ordering on the generators as given.

34.4.12 IsBasicWreathProductOrdering

▷ IsBasicWreathProductOrdering(ord) (property)

Example
gap> f := FreeSemigroup(3);

<free semigroup on the generators [s1, s2, s3]>

gap> basic := BasicWreathProductOrdering(f,[2,3,1]);

Ordering

GAP - Reference Manual 515

gap> IsLessThanUnder(basic,f.3,f.1);

true

gap> IsLessThanUnder(basic,f.3*f.2,f.1);

true

gap> IsLessThanUnder(basic,f.3*f.2*f.1,f.1*f.3);

false

34.4.13 WreathProductOrdering

▷ WreathProductOrdering(D[, gens], levels) (operation)

Let D be a free semigroup, a free monoid, or the elements family of such a domain, let gens be
either the list of free generators of D , in the desired order, or a list of the positions of these generators,
in the desired order, and let levels be a list of levels for the generators. If gens is omitted then
the default ordering is taken. WreathProductOrdering returns the wreath product ordering on the
elements of D with the ordering on the generators as given.

34.4.14 IsWreathProductOrdering

▷ IsWreathProductOrdering(ord) (property)

specifies whether an ordering is a wreath product ordering (see WreathProductOrdering

(34.4.13)).

34.4.15 LevelsOfGenerators

▷ LevelsOfGenerators(ord) (attribute)

for a wreath product ordering ord , returns the levels of the generators as given at creation (with
respect to OrderingOnGenerators (34.4.4)).

Example
gap> f := FreeSemigroup(3);

<free semigroup on the generators [s1, s2, s3]>

gap> wrp := WreathProductOrdering(f,[1,2,3],[1,1,2,]);

Ordering

gap> IsLessThanUnder(wrp,f.3,f.1);

false

gap> IsLessThanUnder(wrp,f.3,f.2);

false

gap> IsLessThanUnder(wrp,f.1,f.2);

true

gap> LevelsOfGenerators(wrp);

[1, 1, 2]

Chapter 35

Magmas

This chapter deals with domains (see 31) that are closed under multiplication *. Following [Bou70],
we call them magmas in GAP. Together with the domains closed under addition + (see 55), they are
the basic algebraic structures; every semigroup, monoid (see 51), group (see 39), ring (see 56), or
field (see 58) is a magma. In the cases of a magma-with-one or magma-with-inverses, additional
multiplicative structure is present, see 35.1. For functions to create free magmas, see 36.4.

35.1 Magma Categories

35.1.1 IsMagma

▷ IsMagma(obj) (Category)

A magma in GAP is a domain M with (not necessarily associative) multiplication *: M×M → M.

35.1.2 IsMagmaWithOne

▷ IsMagmaWithOne(obj) (Category)

A magma-with-one in GAP is a magma M with an operation ^0 (or One (31.10.2)) that yields the
identity of M.

So a magma-with-one M does always contain a unique multiplicatively neutral element e, i.e.,
e * m = m = m * e holds for all m ∈ M (see MultiplicativeNeutralElement (35.4.10)). This
element e can be computed with the operation One (31.10.2) as One(M), and e is also equal to One(

m) and to m^0 for each element m ∈ M.
Note that a magma may contain a multiplicatively neutral element but not an identity (see One

(31.10.2)), and a magma containing an identity may not lie in the category IsMagmaWithOne (see
Section 31.6).

35.1.3 IsMagmaWithInversesIfNonzero

▷ IsMagmaWithInversesIfNonzero(obj) (Category)

516

GAP - Reference Manual 517

An object in this GAP category is a magma-with-one M with an operation ^-1: M \Z → M \Z
that maps each element m of M \Z to its inverse m^-1 (or Inverse(m), see Inverse (31.10.8)),
where Z is either empty or consists exactly of one element of M.

This category was introduced mainly to describe division rings, since the nonzero elements in a
division ring form a group; So an object M in IsMagmaWithInversesIfNonzero will usually have
both a multiplicative and an additive structure (see 55), and the set Z, if it is nonempty, contains exactly
the zero element (see Zero (31.10.3)) of M.

35.1.4 IsMagmaWithInverses

▷ IsMagmaWithInverses(obj) (Category)

A magma-with-inverses in GAP is a magma-with-one M with an operation ^-1: M → M that
maps each element m of M to its inverse m^-1 (or Inverse(m), see Inverse (31.10.8)).

Note that not every trivial magma is a magma-with-one, but every trivial magma-with-one is a
magma-with-inverses. This holds also if the identity of the magma-with-one is a zero element. So a
magma-with-inverses-if-nonzero can be a magma-with-inverses if either it contains no zero element
or consists of a zero element that has itself as zero-th power.

35.2 Magma Generation

This section describes functions that create magmas from generators (see Magma (35.2.1),
MagmaWithOne (35.2.2), MagmaWithInverses (35.2.3)), the underlying operations for which meth-
ods can be installed (see MagmaByGenerators (35.2.4), MagmaWithOneByGenerators (35.2.5),
MagmaWithInversesByGenerators (35.2.6)), functions for forming submagmas (see Submagma

(35.2.7), SubmagmaWithOne (35.2.8), SubmagmaWithInverses (35.2.9)), and functions that form
a magma equal to a given collection (see AsMagma (35.2.10), AsSubmagma (35.2.11)).

InjectionZeroMagma (35.2.13) creates a new magma which is the original magma with a zero
adjoined.

35.2.1 Magma

▷ Magma([Fam,]gens) (function)

returns the magma M that is generated by the elements in the list gens , that is, the closure of gens
under multiplication * (31.12.1). The family Fam of M can be entered as the first argument; this is
obligatory if gens is empty (and hence also M is empty).

35.2.2 MagmaWithOne

▷ MagmaWithOne([Fam,]gens) (function)

returns the magma-with-one M that is generated by the elements in the list gens , that is, the
closure of gens under multiplication * (31.12.1) and One (31.10.2). The family Fam of M can be
entered as first argument; this is obligatory if gens is empty (and hence M is trivial).

GAP - Reference Manual 518

35.2.3 MagmaWithInverses

▷ MagmaWithInverses([Fam,]gens) (function)

returns the magma-with-inverses M that is generated by the elements in the list gens , that is, the
closure of gens under multiplication * (31.12.1), One (31.10.2), and Inverse (31.10.8). The family
Fam of M can be entered as first argument; this is obligatory if gens is empty (and hence M is trivial).

35.2.4 MagmaByGenerators

▷ MagmaByGenerators([Fam,]gens) (operation)

An underlying operation for Magma (35.2.1).

35.2.5 MagmaWithOneByGenerators

▷ MagmaWithOneByGenerators([Fam,]gens) (operation)

An underlying operation for MagmaWithOne (35.2.2).

35.2.6 MagmaWithInversesByGenerators

▷ MagmaWithInversesByGenerators([Fam,]gens) (operation)

An underlying operation for MagmaWithInverses (35.2.3).

35.2.7 Submagma

▷ Submagma(D, gens) (function)

▷ SubmagmaNC(D, gens) (function)

Submagma returns the magma generated by the elements in the list gens , with parent the domain
D . SubmagmaNC does the same, except that it is not checked whether the elements of gens lie in D .

35.2.8 SubmagmaWithOne

▷ SubmagmaWithOne(D, gens) (function)

▷ SubmagmaWithOneNC(D, gens) (function)

SubmagmaWithOne returns the magma-with-one generated by the elements in the list gens , with
parent the domain D . SubmagmaWithOneNC does the same, except that it is not checked whether the
elements of gens lie in D .

35.2.9 SubmagmaWithInverses

▷ SubmagmaWithInverses(D, gens) (function)

▷ SubmagmaWithInversesNC(D, gens) (function)

GAP - Reference Manual 519

SubmagmaWithInverses returns the magma-with-inverses generated by the elements in the list
gens , with parent the domain D . SubmagmaWithInversesNC does the same, except that it is not
checked whether the elements of gens lie in D .

35.2.10 AsMagma

▷ AsMagma(C) (attribute)

For a collection C whose elements form a magma, AsMagma returns this magma. Otherwise fail
is returned.

35.2.11 AsSubmagma

▷ AsSubmagma(D, C) (operation)

Let D be a domain and C a collection. If C is a subset of D that forms a magma then AsSubmagma

returns this magma, with parent D . Otherwise fail is returned.

35.2.12 IsMagmaWithZeroAdjoined

▷ IsMagmaWithZeroAdjoined(M) (Category)

Returns: true or false.
IsMagmaWithZeroAdjoined returns true if the magma M was created using

InjectionZeroMagma (35.2.13) or MagmaWithZeroAdjoined (35.2.13) and returns false if
it was not.

Example
gap> S:=Semigroup(Transformation([1,1,1]), Transformation([1,3,2]));;

gap> IsMagmaWithZeroAdjoined(S);

false

gap> M:=MagmaWithZeroAdjoined(S);

<<transformation semigroup of degree 3 with 2 generators>

with 0 adjoined>

gap> IsMagmaWithZeroAdjoined(M);

true

35.2.13 InjectionZeroMagma

▷ InjectionZeroMagma(M) (attribute)

▷ MagmaWithZeroAdjoined(M) (attribute)

InjectionZeroMagma returns an embedding from the magma M into a new magma
formed from M by adjoining a single new element which is the multiplicative zero of
the resulting magma. The elements of the new magma form a family of elements in
the category IsMultiplicativeElementWithZero (31.14.12) and the magma itself satisfies
IsMagmaWithZeroAdjoined (35.2.12).

MagmaWithZeroAdjoined is just shorthand for Range(InjectionZeroMagma(M))).
If N is a magma with zero adjoined, then the embedding used to create N can be recovered using

UnderlyingInjectionZeroMagma (35.2.14).

GAP - Reference Manual 520

Example
gap> S:=Monoid(Transformation([7, 7, 5, 3, 1, 3, 7]),

> Transformation([5, 1, 4, 1, 4, 4, 7]));;

gap> MultiplicativeZero(S);

Transformation([7, 7, 7, 7, 7, 7, 7])

gap> T:=MagmaWithZeroAdjoined(S);

<<transformation monoid of degree 7 with 2 generators>

with 0 adjoined>

gap> map:=UnderlyingInjectionZeroMagma(T);;

gap> x:=Transformation([7, 7, 7, 3, 7, 3, 7]);;

gap> x^map;

<monoid with 0 adjoined elt: Transformation([7, 7, 7, 3, 7, 3, 7]

)>

gap> PreImage(map, x^map)=x;

true

35.2.14 UnderlyingInjectionZeroMagma

▷ UnderlyingInjectionZeroMagma(M) (attribute)

UnderlyingInjectionZeroMagma returns the embedding used to create the magma with zero
adjoined M .

Example
gap> S:=Monoid(Transformation([8, 7, 5, 3, 1, 3, 8, 8]),

> Transformation([5, 1, 4, 1, 4, 4, 7, 8]));;

gap> MultiplicativeZero(S);

Transformation([8, 8, 8, 8, 8, 8, 8, 8])

gap> T:=MagmaWithZeroAdjoined(S);

<<transformation monoid of degree 8 with 2 generators>

with 0 adjoined>

gap> UnderlyingInjectionZeroMagma(T);

MappingByFunction(<transformation monoid of degree 8 with 2

generators>, <<transformation monoid of degree 8 with 2 generators>

with 0 adjoined>, function(elt) ... end, function(x) ... end)

35.3 Magmas Defined by Multiplication Tables

The most elementary (but of course usually not recommended) way to implement a magma with only
few elements is via a multiplication table.

35.3.1 MagmaByMultiplicationTable

▷ MagmaByMultiplicationTable(A) (function)

For a square matrix A with n rows such that all entries of A are in the range [1..n],
MagmaByMultiplicationTable returns a magma M with multiplication * defined by A . That is,
M consists of the elements m1,m2, . . . ,mn, and mi ∗m j = mk, with k = A [i][j].

The ordering of elements is defined by m1 < m2 < · · · < mn, so mi can be accessed as
MagmaElement(M, i), see MagmaElement (35.3.4).

GAP - Reference Manual 521

Example
gap> MagmaByMultiplicationTable([[1,2,3],[2,3,1],[1,1,1]]);

<magma with 3 generators>

35.3.2 MagmaWithOneByMultiplicationTable

▷ MagmaWithOneByMultiplicationTable(A) (function)

The only differences between MagmaByMultiplicationTable (35.3.1) and
MagmaWithOneByMultiplicationTable are that the latter returns a magma-with-one
(see MagmaWithOne (35.2.2)) if the magma described by the matrix A has an identity, and
returns fail if not.

Example
gap> MagmaWithOneByMultiplicationTable([[1,2,3],[2,3,1],[3,1,1]]);

<magma-with-one with 3 generators>

gap> MagmaWithOneByMultiplicationTable([[1,2,3],[2,3,1],[1,1,1]]);

fail

35.3.3 MagmaWithInversesByMultiplicationTable

▷ MagmaWithInversesByMultiplicationTable(A) (function)

MagmaByMultiplicationTable (35.3.1) and MagmaWithInversesByMultiplicationTable

differ only in that the latter returns magma-with-inverses (see MagmaWithInverses (35.2.3)) if each
element in the magma described by the matrix A has an inverse, and returns fail if not.

Example
gap> MagmaWithInversesByMultiplicationTable([[1,2,3],[2,3,1],[3,1,2]]);

<magma-with-inverses with 3 generators>

gap> MagmaWithInversesByMultiplicationTable([[1,2,3],[2,3,1],[3,2,1]]);

fail

35.3.4 MagmaElement

▷ MagmaElement(M, i) (function)

For a magma M and a positive integer i , MagmaElement returns the i-th element of M , w.r.t. the
ordering <. If M has less than i elements then fail is returned.

35.3.5 MultiplicationTable

▷ MultiplicationTable(elms) (attribute)

▷ MultiplicationTable(M) (attribute)

For a list elms of elements that form a magma M, MultiplicationTable returns a square matrix
A of positive integers such that A[i][j] = k holds if and only if elms [i]∗ elms [j] = elms [k]. This matrix
can be used to construct a magma isomorphic to M, using MagmaByMultiplicationTable (35.3.1).

For a magma M , MultiplicationTable returns the multiplication table w.r.t. the sorted list of
elements of M .

GAP - Reference Manual 522

Example
gap> l:= [(), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)];;

gap> a:= MultiplicationTable(l);

[[1, 2, 3, 4], [2, 1, 4, 3], [3, 4, 1, 2], [4, 3, 2, 1]]

gap> m:= MagmaByMultiplicationTable(a);

<magma with 4 generators>

gap> One(m);

m1

gap> elm:= MagmaElement(m, 2); One(elm); elm^2;

m2

m1

m1

gap> Inverse(elm);

m2

gap> AsGroup(m);

<group of size 4 with 2 generators>

gap> a:= [[1, 2], [2, 2]];

[[1, 2], [2, 2]]

gap> m:= MagmaByMultiplicationTable(a);

<magma with 2 generators>

gap> One(m); Inverse(MagmaElement(m, 2));

m1

fail

35.4 Attributes and Properties for Magmas

Note that IsAssociative (35.4.7) and IsCommutative (35.4.9) always refer to the multiplication of
a domain. If a magma M has also an additive structure, e.g., if M is a ring (see 56), then the addition +

is always assumed to be associative and commutative, see 31.12.

35.4.1 GeneratorsOfMagma

▷ GeneratorsOfMagma(M) (attribute)

is a list gens of elements of the magma M that generates M as a magma, that is, the closure of
gens under multiplication * (31.12.1) is M .

For a free magma, each generator can also be accessed using the . operator (see
GeneratorsOfDomain (31.9.2)).

35.4.2 GeneratorsOfMagmaWithOne

▷ GeneratorsOfMagmaWithOne(M) (attribute)

is a list gens of elements of the magma-with-one M that generates M as a magma-with-one, that
is, the closure of gens under multiplication * (31.12.1) and One (31.10.2) is M .

For a free magma with one, each generator can also be accessed using the . operator (see
GeneratorsOfDomain (31.9.2)).

GAP - Reference Manual 523

35.4.3 GeneratorsOfMagmaWithInverses

▷ GeneratorsOfMagmaWithInverses(M) (attribute)

is a list gens of elements of the magma-with-inverses M that generates M as a
magma-with-inverses, that is, the closure of gens under multiplication * (31.12.1) and taking in-
verses (see Inverse (31.10.8)) is M .

35.4.4 Centralizer

▷ Centralizer(M, elm) (operation)

▷ Centralizer(M, S) (operation)

▷ Centralizer(class) (attribute)

For an element elm of the magma M this operation returns the centralizer of elm . This is the
domain of those elements m ∈ M that commute with elm .

For a submagma S it returns the domain of those elements that commute with all elements s of S .
If class is a class of objects of a magma (this magma then is stored as the ActingDomain

of class) such as given by ConjugacyClass (39.10.1), Centralizer returns the centralizer of
Representative(class) (which is a slight abuse of the notation).

Example
gap> g:=Group((1,2,3,4),(1,2));;

gap> Centralizer(g,(1,2,3));

Group([(1,2,3)])

gap> Centralizer(g,Subgroup(g,[(1,2,3)]));

Group([(1,2,3)])

gap> Centralizer(g,Subgroup(g,[(1,2,3),(1,2)]));

Group(())

35.4.5 Centre

▷ Centre(M) (attribute)

▷ Center(M) (attribute)

Centre returns the centre of the magma M , i.e., the domain of those elements m ∈ M that com-
mute and associate with all elements of M . That is, the set {m ∈ M;∀a,b ∈ M : ma = am,(ma)b =
m(ab),(am)b = a(mb),(ab)m = a(bm)}.

Center is just a synonym for Centre.
For associative magmas we have that Centre(M) = Centralizer(M, M),

see Centralizer (35.4.4).
The centre of a magma is always commutative (see IsCommutative (35.4.9)). (When one installs

a new method for Centre, one should set the IsCommutative (35.4.9) value of the result to true, in
order to make this information available.)

35.4.6 Idempotents

▷ Idempotents(M) (attribute)

The set of elements of M which are their own squares.

GAP - Reference Manual 524

35.4.7 IsAssociative

▷ IsAssociative(M) (property)

A collection M of elements that can be multiplied via * (31.12.1) is associative if for all elements
a,b,c ∈ M the equality (a * b) * c = a * (b * c) holds.

An associative magma is called a semigroup (see 51), an associative magma-with-one is called a
monoid (see 51), and an associative magma-with-inverses is called a group (see 39).

35.4.8 IsCentral

▷ IsCentral(M, obj) (operation)

IsCentral returns true if the object obj , which must either be an element or a magma, com-
mutes with all elements in the magma M .

35.4.9 IsCommutative

▷ IsCommutative(M) (property)

▷ IsAbelian(M) (property)

A collection M of elements that can be multiplied via * (31.12.1) is commutative if for all elements
a,b ∈ M the equality a * b = b * a holds. IsAbelian is a synonym of IsCommutative.

Note that the commutativity of the addition \+ (31.12.1) in an additive structure can be tested with
IsAdditivelyCommutative (55.3.1).

35.4.10 MultiplicativeNeutralElement

▷ MultiplicativeNeutralElement(M) (attribute)

returns the element e in the magma M with the property that e * m = m = m * e holds for all
m ∈ M , if such an element exists. Otherwise fail is returned.

A magma that is not a magma-with-one can have a multiplicative neutral element e; in this case,
e cannot be obtained as One(M), see One (31.10.2).

35.4.11 MultiplicativeZero

▷ MultiplicativeZero(M) (attribute)

▷ IsMultiplicativeZero(M, z) (operation)

MultiplicativeZero returns the multiplicative zero of the magma M which is the element z in
M such that z * m = m * z = z for all m in M .

IsMultiplicativeZero returns true if the element z of the magma M equals the multiplicative
zero of M .

Example
gap> S:=Semigroup(Transformation([1, 1, 1]),

> Transformation([2, 3, 1]));

<transformation semigroup of degree 3 with 2 generators>

gap> MultiplicativeZero(S);

GAP - Reference Manual 525

fail

gap> S:=Semigroup(Transformation([1, 1, 1]),

> Transformation([1, 3, 2]));

<transformation semigroup of degree 3 with 2 generators>

gap> MultiplicativeZero(S);

Transformation([1, 1, 1])

35.4.12 SquareRoots

▷ SquareRoots(M, elm) (operation)

is the proper set of all elements r in the magma M such that r ∗ r = elm holds.

35.4.13 TrivialSubmagmaWithOne

▷ TrivialSubmagmaWithOne(M) (attribute)

is the magma-with-one that has the identity of the magma-with-one M as only element.

Chapter 36

Words

This chapter describes categories of words and nonassociative words, and operations for them. For
information about associative words, which occur for example as elements in free groups, see Chap-
ter 37.

36.1 Categories of Words and Nonassociative Words

36.1.1 IsWord

▷ IsWord(obj) (Category)

▷ IsWordWithOne(obj) (Category)

▷ IsWordWithInverse(obj) (Category)

Given a free multiplicative structure M that is freely generated by a subset X , any expression of an
element in M as an iterated product of elements in X is called a word over X .

Interesting cases of free multiplicative structures are those of free semigroups, free monoids, and
free groups, where the multiplication is associative (see IsAssociative (35.4.7)), which are de-
scribed in Chapter 37, and also the case of free magmas, where the multiplication is nonassociative
(see IsNonassocWord (36.1.3)).

Elements in free magmas (see FreeMagma (36.4.1)) lie in the category IsWord; similarly, elements
in free magmas-with-one (see FreeMagmaWithOne (36.4.2)) lie in the category IsWordWithOne, and
so on.

IsWord is mainly a “common roof” for the two disjoint categories IsAssocWord (37.1.1) and
IsNonassocWord (36.1.3) of associative and nonassociative words. This means that associative words
are not regarded as special cases of nonassociative words. The main reason for this setup is that we
are interested in different external representations for associative and nonassociative words (see 36.5
and 37.7).

Note that elements in finitely presented groups and also elements in polycyclic groups in GAP are
not in IsWord although they are usually called words, see Chapters 47 and 46.

Words are constants (see 12.6), that is, they are not copyable and not mutable.
The usual way to create words is to form them as products of known words, starting from gener-

ators of a free structure such as a free magma or a free group (see FreeMagma (36.4.1), FreeGroup
(37.2.1)).

526

GAP - Reference Manual 527

Words are also used to implement free algebras, in the same way as group elements are used to
implement group algebras (see 62.3 and Chapter 65).

Example
gap> m:= FreeMagmaWithOne(2);; gens:= GeneratorsOfMagmaWithOne(m);

[x1, x2]

gap> w1:= gens[1] * gens[2] * gens[1];

((x1*x2)*x1)

gap> w2:= gens[1] * (gens[2] * gens[1]);

(x1*(x2*x1))

gap> w1 = w2; IsAssociative(m);

false

false

gap> IsWord(w1); IsAssocWord(w1); IsNonassocWord(w1);

true

false

true

gap> s:= FreeMonoid(2);; gens:= GeneratorsOfMagmaWithOne(s);

[m1, m2]

gap> u1:= (gens[1] * gens[2]) * gens[1];

m1*m2*m1

gap> u2:= gens[1] * (gens[2] * gens[1]);

m1*m2*m1

gap> u1 = u2; IsAssociative(s);

true

true

gap> IsWord(u1); IsAssocWord(u1); IsNonassocWord(u1);

true

true

false

gap> a:= (1,2,3);; b:= (1,2);;

gap> w:= a*b*a;; IsWord(w);

false

36.1.2 IsWordCollection

▷ IsWordCollection(obj) (Category)

IsWordCollection is the collections category (see CategoryCollections (30.2.4)) of IsWord
(36.1.1).

Example
gap> IsWordCollection(m); IsWordCollection(s);

true

true

gap> IsWordCollection(["a", "b"]);

false

36.1.3 IsNonassocWord

▷ IsNonassocWord(obj) (Category)

▷ IsNonassocWordWithOne(obj) (Category)

GAP - Reference Manual 528

A nonassociative word in GAP is an element in a free magma or a free magma-with-one
(see 36.4).

The default methods for ViewObj (6.3.5) and PrintObj (6.3.5) show nonassociative words as
products of letters, where the succession of multiplications is determined by round brackets.

In this sense each nonassociative word describes a “program” to form a product of generators.
(Also associative words can be interpreted as such programs, except that the exact succession of mul-
tiplications is not prescribed due to the associativity.) The function MappedWord (36.3.1) implements
a way to apply such a program. A more general way is provided by straight line programs (see 37.8).

Note that associative words (see Chapter 37) are not regarded as special cases of nonassociative
words (see IsWord (36.1.1)).

36.1.4 IsNonassocWordCollection

▷ IsNonassocWordCollection(obj) (Category)

▷ IsNonassocWordWithOneCollection(obj) (Category)

IsNonassocWordCollection is the collections category (see CategoryCollections (30.2.4))
of IsNonassocWord (36.1.3), and IsNonassocWordWithOneCollection is the collections category
of IsNonassocWordWithOne (36.1.3).

36.2 Comparison of Words

36.2.1 \= (for nonassociative words)

▷ \=(w1, w2) (operation)

Two words are equal if and only if they are words over the same alphabet and with equal external
representations (see 36.5 and 37.7). For nonassociative words, the latter means that the words arise
from the letters of the alphabet by the same sequence of multiplications.

36.2.2 \< (for nonassociative words)

▷ \<(w1, w2) (operation)

Words are ordered according to their external representation. More precisely, two words can be
compared if they are words over the same alphabet, and the word with smaller external representation
is smaller. For nonassociative words, the ordering is defined in 36.5; associative words are ordered by
the shortlex ordering via < (see 37.7).

Note that the alphabet of a word is determined by its family (see 13.1), and that the result of
each call to FreeMagma (36.4.1), FreeGroup (37.2.1) etc. consists of words over a new alphabet. In
particular, there is no “universal” empty word, every families of words in IsWordWithOne (36.1.1)
has its own empty word.

Example
gap> m:= FreeMagma("a", "b");;

gap> x:= FreeMagma("a", "b");;

gap> mgens:= GeneratorsOfMagma(m);

[a, b]

gap> xgens:= GeneratorsOfMagma(x);

GAP - Reference Manual 529

[a, b]

gap> a:= mgens[1];; b:= mgens[2];;

gap> a = xgens[1];

false

gap> a*(a*a) = (a*a)*a; a*b = b*a; a*a = a*a;

false

false

true

gap> a < b; b < a; a < a*b;

true

false

true

36.3 Operations for Words

Two words can be multiplied via * only if they are words over the same alphabet (see 36.2).

36.3.1 MappedWord

▷ MappedWord(w, gens, imgs) (operation)

MappedWord returns the object that is obtained by replacing each occurrence in the word w of a
generator in the list gens by the corresponding object in the list imgs . The lists gens and imgs must
of course have the same length.

MappedWord needs to do some preprocessing to get internal generator numbers etc. When map-
ping many (several thousand) words, a dedicated loop might be faster.

For example, if the elements in imgs are all associative words (see Chapter 37) in the same family
as the elements in gens , and some of them are equal to the corresponding generators in gens , then
those may be omitted from gens and imgs . In this situation, the special case that the lists gens and
imgs have only length 1 is handled more efficiently by EliminatedWord (37.4.6).

If the word is from a free group, it is permitted to give inverses of (some) of the generators as extra
generators. This can speed up the execution by removing the need to calculate inverses anew.

Example
gap> m:= FreeMagma("a", "b");; gens:= GeneratorsOfMagma(m);;

gap> a:= gens[1]; b:= gens[2];

a

b

gap> w:= (a*b)*((b*a)*a)*b;

(((a*b)*((b*a)*a))*b)

gap> MappedWord(w, gens, [(1,2), (1,2,3,4)]);

(2,4,3)

gap> a:= (1,2);; b:= (1,2,3,4);; (a*b)*((b*a)*a)*b;

(2,4,3)

gap> f:= FreeGroup("a", "b");;

gap> a:= GeneratorsOfGroup(f)[1];; b:= GeneratorsOfGroup(f)[2];;

gap> w:= a^5*b*a^2/b^4*a;

a^5*b*a^2*b^-4*a

gap> MappedWord(w, [a, b], [(1,2), (1,2,3,4)]);

(1,3,4,2)

GAP - Reference Manual 530

gap> MappedWord(w, [a, b, b^-1], [(1,2), (1,2,3,4), (1,4,3,2)]);

(1,3,4,2)

gap> (1,2)^5*(1,2,3,4)*(1,2)^2/(1,2,3,4)^4*(1,2);

(1,3,4,2)

gap> MappedWord(w, [a], [a^2]);

a^10*b*a^4*b^-4*a^2

36.4 Free Magmas

The easiest way to create a family of words is to construct the free object generated by these words.
Each such free object defines a unique alphabet, and its generators are simply the words of length one
over this alphabet; These generators can be accessed via GeneratorsOfMagma (35.4.1) in the case of
a free magma, and via GeneratorsOfMagmaWithOne (35.4.2) in the case of a free magma-with-one.

36.4.1 FreeMagma

▷ FreeMagma(rank[, name]) (function)

▷ FreeMagma(name1[, name2[, ...]]) (function)

▷ FreeMagma(names) (function)

▷ FreeMagma(infinity[, name][, init]) (function)

FreeMagma returns a free magma. The number of generators, and the labels given to the genera-
tors, can be specified in several different ways. Warning: the labels of generators are only an aid for
printing, and do not necessarily distinguish generators; see the examples at the end of FreeSemigroup
(51.1.10) for more information.

1: For a given rank, and an optional generator name prefix
Called with a positive integer rank , FreeMagma returns a free magma on rank generators. The
optional argument name must be a string; its default value is "x".

If name is not given but the generatorNames option is, then this option is respected as de-
scribed in Section 50.1.16.

Otherwise, the generators of the returned free magma are labelled name1, ..., namek, where k

is the value of rank .

2: For given generator names
Called with various (at least one) nonempty strings, FreeMagma returns a free magma on as
many generators as arguments, which are labelled name1 , name2 , etc.

3: For a given list of generator names
Called with a finite nonempty list names of nonempty strings, FreeMagma returns a free magma
on Length(names) generators, whose i-th generator is labelled names[i].

4: For the rank infinity, an optional default generator name prefix, and an optional finite list
of generator names
Called in the fourth form, FreeMagma returns a free magma on infinitely many generators. The
optional argument name must be a string; its default value is "x", and the optional argument
init must be a finite list of nonempty strings; its default value is an empty list. The generators

GAP - Reference Manual 531

are initially labelled according to the list init , followed by namei for each i in the range from
Length(init)+1 to infinity.

Example
gap> FreeMagma(4);

<free magma on the generators [x1, x2, x3, x4]>

gap> FreeMagma(3, "a");

<free magma on the generators [a1, a2, a3]>

gap> FreeMagma("a", "b");

<free magma on the generators [a, b]>

gap> FreeMagma(["a", "b"]);

<free magma on the generators [a, b]>

gap> FreeMagma(infinity);

<free magma with infinity generators>

gap> F := FreeMagma(infinity, "gen");;

gap> GeneratorsOfMagma(F){[1 .. 4]};

[gen1, gen2, gen3, gen4]

gap> F := FreeMagma(infinity, ["z", "a"]);;

gap> GeneratorsOfMagma(F){[1 .. 3]};

[z, a, x3]

gap> F := FreeMagma(infinity, "y", ["z", "a"]);;

gap> GeneratorsOfMagma(F){[1 .. 4]};

[z, a, y3, y4]

gap> FreeMagma(3 : generatorNames := "elt");

<free magma on the generators [elt1, elt2, elt3]>

gap> FreeMagma(2 : generatorNames := ["u", "v", "w"]);

<free magma on the generators [u, v]>

36.4.2 FreeMagmaWithOne

▷ FreeMagmaWithOne(rank[, name]) (function)

▷ FreeMagmaWithOne([name1[, name2[, ...]]]) (function)

▷ FreeMagmaWithOne(names) (function)

▷ FreeMagmaWithOne(infinity[, name][, init]) (function)

FreeMagmaWithOne returns a free magma-with-one. The number of generators, and the labels
given to the generators, can be specified in several different ways. Warning: the labels of generators
are only an aid for printing, and do not necessarily distinguish generators; see the examples at the end
of FreeSemigroup (51.1.10) for more information.

1: For a given rank, and an optional generator name prefix
Called with a nonnegative integer rank , FreeMagmaWithOne returns a free magma-with-one
on rank generators. The optional argument name must be a string; its default value is "x".

If name is not given but the generatorNames option is, then this option is respected as de-
scribed in Section 50.1.16.

Otherwise, the generators of the returned free magma-with-one are labelled name1, ..., namek,
where k is the value of rank .

2: For given generator names
Called with various nonempty strings, FreeMagmaWithOne returns a free magma-with-one on
as many generators as arguments, which are labelled name1 , name2 , etc.

GAP - Reference Manual 532

3: For a given list of generator names
Called with a finite list names of nonempty strings, FreeMagmaWithOne returns a free
magma-with-one on Length(names) generators, whose i-th generator is labelled names[i].

4: For the rank infinity, an optional default generator name prefix, and an optional finite list
of generator names
Called in the fourth form, FreeMagmaWithOne returns a free magma-with-one on infinitely
many generators. The optional argument name must be a string; its default value is "x", and the
optional argument init must be a finite list of nonempty strings; its default value is an empty
list. The generators are initially labelled according to the list init , followed by namei for each
i in the range from Length(init)+1 to infinity.

Example
gap> FreeMagmaWithOne(4);

<free magma-with-one on the generators [x1, x2, x3, x4]>

gap> FreeMagmaWithOne(3, "a");

<free magma-with-one on the generators [a1, a2, a3]>

gap> FreeMagmaWithOne("a", "b");

<free magma-with-one on the generators [a, b]>

gap> FreeMagmaWithOne(["a", "b"]);

<free magma-with-one on the generators [a, b]>

gap> FreeMagmaWithOne(infinity);

<free magma-with-one with infinity generators>

gap> F := FreeMagmaWithOne(infinity, "gen");;

gap> GeneratorsOfMagmaWithOne(F){[1 .. 4]};

[gen1, gen2, gen3, gen4]

gap> F := FreeMagmaWithOne(infinity, ["z", "a"]);;

gap> GeneratorsOfMagmaWithOne(F){[1 .. 3]};

[z, a, x3]

gap> F := FreeMagmaWithOne(infinity, "y", ["z", "a"]);;

gap> GeneratorsOfMagmaWithOne(F){[1 .. 4]};

[z, a, y3, y4]

gap> FreeMagmaWithOne(0);

<free group of rank zero>

gap> FreeMagmaWithOne(3 : generatorNames := "elt");

<free magma-with-one on the generators [elt1, elt2, elt3]>

gap> FreeMagmaWithOne(2 : generatorNames := ["u", "v", "w"]);

<free magma-with-one on the generators [u, v]>

36.5 External Representation for Nonassociative Words

The external representation of nonassociative words is defined as follows. The i-th generator of the
family of elements in question has external representation i, the identity (if exists) has external repre-
sentation 0, the inverse of the i-th generator (if exists) has external representation −i. If v and w are
nonassociative words with external representations ev and ew, respectively then the product v ∗w has
external representation [ev,ew]. So the external representation of any nonassociative word is either an
integer or a nested list of integers and lists, where each list has length two.

One can create a nonassociative word from a family of words and the external representation of a
nonassociative word using ObjByExtRep (79.8.1).

GAP - Reference Manual 533

Example
gap> m:= FreeMagma(2);; gens:= GeneratorsOfMagma(m);

[x1, x2]

gap> w:= (gens[1] * gens[2]) * gens[1];

((x1*x2)*x1)

gap> ExtRepOfObj(w); ExtRepOfObj(gens[1]);

[[1, 2], 1]

1

gap> ExtRepOfObj(w*w);

[[[1, 2], 1], [[1, 2], 1]]

gap> ObjByExtRep(FamilyObj(w), 2);

x2

gap> ObjByExtRep(FamilyObj(w), [1, [2, 1]]);

(x1*(x2*x1))

Chapter 37

Associative Words

37.1 Categories of Associative Words

Associative words are used to represent elements in free groups, semigroups and monoids in GAP
(see 37.2). An associative word is just a sequence of letters, where each letter is an element of an
alphabet (in the following called a generator) or its inverse. Associative words can be multiplied; in
free monoids also the computation of an identity is permitted, in free groups also the computation of
inverses (see 37.4).

Different alphabets correspond to different families of associative words. There is no relation
whatsoever between words in different families.

Example
gap> f:= FreeGroup("a", "b", "c");

<free group on the generators [a, b, c]>

gap> gens:= GeneratorsOfGroup(f);

[a, b, c]

gap> w:= gens[1]*gens[2]/gens[3]*gens[2]*gens[1]/gens[1]*gens[3]/gens[2];

a*b*c^-1*b*c*b^-1

gap> w^-1;

b*c^-1*b^-1*c*b^-1*a^-1

Words are displayed as products of letters. The letters are usually printed like f1, f2, . . ., but it
is possible to give user defined names to them, which can be arbitrary strings. These names do not
necessarily identify a unique letter (generator), it is possible to have several letters –even in the same
family– that are displayed in the same way. Note also that there is no relation between the names of
letters and variable names. In the example above, we might have typed

Example
gap> a:= f.1;; b:= f.2;; c:= f.3;;

(Interactively, the function AssignGeneratorVariables (37.2.3) provides a shorthand for this.)
This allows us to define w more conveniently:

Example
gap> w := a*b/c*b*a/a*c/b;

a*b*c^-1*b*c*b^-1

Using homomorphisms it is possible to express elements of a group as words in terms of genera-
tors, see 39.5.

534

GAP - Reference Manual 535

37.1.1 IsAssocWord

▷ IsAssocWord(obj) (Category)

▷ IsAssocWordWithOne(obj) (Category)

▷ IsAssocWordWithInverse(obj) (Category)

IsAssocWord is the category of associative words in free semigroups, IsAssocWordWithOne is
the category of associative words in free monoids (which admit the operation One (31.10.2) to compute
an identity), IsAssocWordWithInverse is the category of associative words in free groups (which
have an inverse). See IsWord (36.1.1) for more general categories of words.

37.2 Free Groups, Monoids and Semigroups

Usually a family of associative words will be generated by constructing the free object generated by
them. See FreeMonoid (51.2.9), FreeSemigroup (51.1.10) for details.

37.2.1 FreeGroup

▷ FreeGroup([wfilt,]rank[, name]) (function)

▷ FreeGroup([wfilt][,] [name1[, name2[, ...]]]) (function)

▷ FreeGroup([wfilt,]names) (function)

▷ FreeGroup([wfilt,]infinity[, name][, init]) (function)

FreeGroup returns a free group. The number of generators, and the labels given to the generators,
can be specified in several different ways. Warning: the labels of generators are only an aid for
printing, and do not necessarily distinguish generators; see the examples at the end of FreeSemigroup
(51.1.10) for more information.

1: For a given rank, and an optional generator name prefix
Called with a nonnegative integer rank , FreeGroup returns a free group on rank generators.
The optional argument name must be a string; its default value is "f".

If name is not given but the generatorNames option is, then this option is respected as de-
scribed in Section 50.1.16.

Otherwise, the generators of the returned free group are labelled name1, ..., namek, where k is
the value of rank .

2: For given generator names
Called with various nonempty strings, FreeGroup returns a free group on as many generators
as arguments, which are labelled name1 , name2 , etc.

3: For a given list of generator names
Called with a finite list names of nonempty strings, FreeGroup returns a free group on
Length(names) generators, whose i-th generator is labelled names[i].

4: For the rank infinity, an optional default generator name prefix, and an optional finite list
of generator names
Called in the fourth form, FreeGroup returns a free group on infinitely many generators. The
optional argument name must be a string; its default value is "f", and the optional argument

GAP - Reference Manual 536

init must be a finite list of nonempty strings; its default value is an empty list. The generators
are initially labelled according to the list init , followed by namei for each i in the range from
Length(init)+1 to infinity.

If the optional first argument wfilt is given, then it must be either IsSyllableWordsFamily,
IsLetterWordsFamily, IsWLetterWordsFamily, or IsBLetterWordsFamily. This filter speci-
fies the representation used for the elements of the free group (see 37.6). If no such filter is given, a
letter representation is used.

(For interfacing to old code that omits the representation flag, use of the syllable representation is
also triggered by setting the option FreeGroupFamilyType to the string "syllable"; this is over-
written by the optional first argument if it is given.)

Example
gap> FreeGroup(5);

<free group on the generators [f1, f2, f3, f4, f5]>

gap> FreeGroup(4, "gen");

<free group on the generators [gen1, gen2, gen3, gen4]>

gap> FreeGroup(3 : generatorNames := "ack");

<free group on the generators [ack1, ack2, ack3]>

gap> FreeGroup(2 : generatorNames := ["u", "v", "w"]);

<free group on the generators [u, v]>

gap> FreeGroup();

<free group of rank zero>

gap> FreeGroup("a", "b", "c");

<free group on the generators [a, b, c]>

gap> FreeGroup(["x", "y"]);

<free group on the generators [x, y]>

gap> FreeGroup(infinity);

<free group with infinity generators>

gap> F := FreeGroup(infinity, "g", ["a", "b"]);

<free group with infinity generators>

gap> GeneratorsOfGroup(F){[1..4]};

[a, b, g3, g4]

gap> GeneratorsOfGroup(FreeGroup(infinity, "gen")){[1..3]};

[gen1, gen2, gen3]

gap> FreeGroup(IsSyllableWordsFamily, 50);

<free group with 50 generators>

37.2.2 IsFreeGroup

▷ IsFreeGroup(obj) (Category)

Any group consisting of elements in IsAssocWordWithInverse (37.1.1) lies in the filter
IsFreeGroup; this holds in particular for any group created with FreeGroup (37.2.1), or any sub-
group of such a group.

Also see Chapter 47.

37.2.3 AssignGeneratorVariables

▷ AssignGeneratorVariables(G) (operation)

GAP - Reference Manual 537

If G is a group, whose generators are represented by symbols (for example a free group, a finitely
presented group or a pc group) this function assigns these generators to global variables with the same
names.

The aim of this function is to make it easy in interactive use to work with (for example) a free
group. It is a shorthand for a sequence of assignments of the form

Example
var1:=GeneratorsOfGroup(G)[1];

var2:=GeneratorsOfGroup(G)[2];

...

varn:=GeneratorsOfGroup(G)[n];

However, since overwriting global variables can be very dangerous, it is not permitted to use this
function within a function. (If –despite this warning– this is done, the result is undefined.)

If the assignment overwrites existing variables a warning is given, if any of the variables is write
protected, or any of the generator names would not be a proper variable name, an error is raised.

37.3 Comparison of Associative Words

37.3.1 \= (for associative words)

▷ \=(w1, w2) (operation)

Two associative words are equal if they are words over the same alphabet and if they are sequences
of the same letters. This is equivalent to saying that the external representations of the words are equal,
see 37.7 and 36.2.

There is no “universal” empty word, every alphabet (that is, every family of words) has its own
empty word.

Example
gap> f:= FreeGroup("a", "b", "b");;

gap> gens:= GeneratorsOfGroup(f);

[a, b, b]

gap> gens[2] = gens[3];

false

gap> x:= gens[1]*gens[2];

a*b

gap> y:= gens[2]/gens[2]*gens[1]*gens[2];

a*b

gap> x = y;

true

gap> z:= gens[2]/gens[2]*gens[1]*gens[3];

a*b

gap> x = z;

false

37.3.2 \< (for associative words)

▷ \<(w1, w2) (operation)

GAP - Reference Manual 538

The ordering of associative words is defined by length and lexicography (this ordering is called
short-lex ordering), that is, shorter words are smaller than longer words, and words of the same length
are compared w.r.t. the lexicographical ordering induced by the ordering of generators. Generators are
sorted according to the order in which they were created. If the generators are invertible then each
generator g is larger than its inverse g^-1, and g^-1 is larger than every generator that is smaller than
g .

Example
gap> f:= FreeGroup(2);; gens:= GeneratorsOfGroup(f);;

gap> a:= gens[1];; b:= gens[2];;

gap> One(f) < a^-1; a^-1 < a; a < b^-1; b^-1 < b; b < a^2; a^2 < a*b;

true

true

true

true

true

true

37.3.3 IsShortLexLessThanOrEqual

▷ IsShortLexLessThanOrEqual(u, v) (function)

returns IsLessThanOrEqualUnder(ord, u, v) where ord is the short less ordering for the
family of u and v . (This is here for compatibility with GAP 4.2.)

37.3.4 IsBasicWreathLessThanOrEqual

▷ IsBasicWreathLessThanOrEqual(u, v) (function)

returns IsLessThanOrEqualUnder(ord, u, v) where ord is the basic wreath product order-
ing for the family of u and v . (This is here for compatibility with GAP 4.2.)

37.4 Operations for Associative Words

The product of two given associative words is defined as the freely reduced concatenation of the
words. Besides the multiplication * (31.12.1), the arithmetical operators One (31.10.2) (if the word
lies in a family with identity) and (if the generators are invertible) Inverse (31.10.8), \/ (31.12.1),\^
(31.12.1), Comm (31.12.3), and LeftQuotient (31.12.2) are applicable to associative words, see 31.12.

See also MappedWord (36.3.1), an operation that is applicable to arbitrary words.
See Section 37.6 for a discussion of the internal representations of associative words that are

supported by GAP. Note that operations to extract or act on parts of words (letter or syllables) can
carry substantially different costs, depending on the representation the words are in.

37.4.1 Length (for an associative word)

▷ Length(w) (attribute)

For an associative word w , Length returns the number of letters in w .

GAP - Reference Manual 539

Example
gap> f := FreeGroup("a","b");; gens := GeneratorsOfGroup(f);;

gap> a := gens[1];; b := gens[2];;w := a^5*b*a^2*b^-4*a;;

gap> w; Length(w); Length(a^17); Length(w^0);

a^5*b*a^2*b^-4*a

13

17

0

37.4.2 ExponentSumWord

▷ ExponentSumWord(w, gen) (operation)

For an associative word w and a generator gen , ExponentSumWord returns the number of times
gen appears in w minus the number of times its inverse appears in w . If both gen and its inverse do
not occur in w then 0 is returned. gen may also be the inverse of a generator.

Example
gap> w; ExponentSumWord(w, a); ExponentSumWord(w, b);

a^5*b*a^2*b^-4*a

8

-3

gap> ExponentSumWord((a*b*a^-1)^3, a); ExponentSumWord(w, b^-1);

0

3

37.4.3 Subword

▷ Subword(w, from, to) (operation)

For an associative word w and two positive integers from and to , Subword returns the subword
of w that begins at position from and ends at position to . Indexing is done with origin 1.

Example
gap> w; Subword(w, 3, 7);

a^5*b*a^2*b^-4*a

a^3*b*a

37.4.4 PositionWord

▷ PositionWord(w, sub, from) (operation)

Let w and sub be associative words, and from a positive integer. PositionWord returns the
position of the first occurrence of sub as a subword of w , starting at position from . If there is no such
occurrence, fail is returned. Indexing is done with origin 1.

In other words, PositionWord(w, sub, from) is the smallest integer i larger than or equal
to from such that Subword(w, i, i+Length(sub)-1) = sub , see Subword (37.4.3).

Example
gap> w; PositionWord(w, a/b, 1);

a^5*b*a^2*b^-4*a

8

GAP - Reference Manual 540

gap> Subword(w, 8, 9);

a*b^-1

gap> PositionWord(w, a^2, 1);

1

gap> PositionWord(w, a^2, 2);

2

gap> PositionWord(w, a^2, 6);

7

gap> PositionWord(w, a^2, 8);

fail

37.4.5 SubstitutedWord

▷ SubstitutedWord(w, from, to, by) (operation)

▷ SubstitutedWord(w, sub, from, by) (operation)

Let w be an associative word.
In the first form, SubstitutedWord returns the associative word obtained by replacing the sub-

word of w that begins at position from and ends at position to by the associative word by . from and
to must be positive integers, indexing is done with origin 1. In other words, SubstitutedWord(w,

from, to, by) is the product of the three words Subword(w, 1, from-1), by , and Subword(
w, to+1, Length(w)), see Subword (37.4.3).

In the second form, SubstitutedWord returns the associative word obtained by replacing the first
occurrence of the associative word sub of w , starting at position from , by the associative word by ; if
there is no such occurrence, fail is returned.

Example
gap> w; SubstitutedWord(w, 3, 7, a^19);

a^5*b*a^2*b^-4*a

a^22*b^-4*a

gap> SubstitutedWord(w, a, 6, b^7);

a^5*b^8*a*b^-4*a

gap> SubstitutedWord(w, a*b, 6, b^7);

fail

37.4.6 EliminatedWord

▷ EliminatedWord(w, gen, by) (operation)

For an associative word w , a generator gen , and an associative word by , EliminatedWord returns
the associative word obtained by replacing each occurrence of gen in w by by .

Example
gap> w; EliminatedWord(w, a, a^2); EliminatedWord(w, a, b^-1);

a^5*b*a^2*b^-4*a

a^10*b*a^4*b^-4*a^2

b^-11

GAP - Reference Manual 541

37.5 Operations for Associative Words by their Syllables

For an associative word w = xn1
1 xn2

2 · · ·xnk
k over an alphabet containing x1,x2, . . . ,xk, such that xi ̸= x±1

i+1
for 1 ≤ i ≤ k−1, the subwords xei

i are uniquely determined; these powers of generators are called the
syllables of w.

37.5.1 NumberSyllables

▷ NumberSyllables(w) (attribute)

NumberSyllables returns the number of syllables of the associative word w .

37.5.2 ExponentSyllable

▷ ExponentSyllable(w, i) (operation)

ExponentSyllable returns the exponent of the i-th syllable of the associative word w .

37.5.3 GeneratorSyllable

▷ GeneratorSyllable(w, i) (operation)

GeneratorSyllable returns the number of the generator that is involved in the i-th syllable of
the associative word w .

37.5.4 SubSyllables

▷ SubSyllables(w, from, to) (operation)

SubSyllables returns the subword of the associative word w that consists of the syllables from
positions from to to , where from and to must be positive integers, and indexing is done with origin
1.

Example
gap> w; NumberSyllables(w);

a^5*b*a^2*b^-4*a

5

gap> ExponentSyllable(w, 3);

2

gap> GeneratorSyllable(w, 3);

1

gap> SubSyllables(w, 2, 3);

b*a^2

37.6 Representations for Associative Words

GAP provides two different internal kinds of representations of associative words. The first one
are “syllable representations” in which words are stored in syllable (i.e. generator,exponent) form.
(Older versions of GAP only used this representation.) The second kind are “letter representations”

GAP - Reference Manual 542

in which each letter in a word is represented by its index number. Negative numbers are used for
inverses. Unless the syllable representation is specified explicitly when creating the free group/monoid
or semigroup, a letter representation is used by default.

Depending on the task in mind, either of these two representations will perform better in time
or in memory use and algorithms that are syllable or letter based (for example GeneratorSyllable

(37.5.3) and Subword (37.4.3)) perform substantially better in the corresponding representation. For
example when creating pc groups (see 46), it is advantageous to use a syllable representation while
calculations in free groups usually benefit from using a letter representation.

37.6.1 IsLetterAssocWordRep

▷ IsLetterAssocWordRep(obj) (Representation)

A word in letter representation stores a list of generator/inverses numbers (as given by
LetterRepAssocWord (37.6.8)). Letter access is fast, syllable access is slow for such words.

37.6.2 IsLetterWordsFamily

▷ IsLetterWordsFamily(obj) (Category)

A letter word family stores words by default in letter form.
Internally, there are letter representations that use integers (4 Byte) to represent a generator and let-

ter representations that use single bytes to represent a character. The latter are more memory efficient,
but can only be used if there are less than 128 generators (in which case they are used by default).

37.6.3 IsBLetterAssocWordRep

▷ IsBLetterAssocWordRep(obj) (Representation)

▷ IsWLetterAssocWordRep(obj) (Representation)

these two subrepresentations of IsLetterAssocWordRep (37.6.1) indicate whether the word is
stored as a list of bytes (in a string) or as a list of integers).

37.6.4 IsBLetterWordsFamily

▷ IsBLetterWordsFamily(obj) (Category)

▷ IsWLetterWordsFamily(obj) (Category)

These two subcategories of IsLetterWordsFamily (37.6.2) specify the type of letter representa-
tion to be used.

37.6.5 IsSyllableAssocWordRep

▷ IsSyllableAssocWordRep(obj) (Representation)

A word in syllable representation stores generator/exponents pairs (as given by ExtRepOfObj

(79.8.1). Syllable access is fast, letter access is slow for such words.

GAP - Reference Manual 543

37.6.6 IsSyllableWordsFamily

▷ IsSyllableWordsFamily(obj) (Category)

A syllable word family stores words by default in syllable form. There are also different versions
of syllable representations, which compress a generator exponent pair in 8, 16 or 32 bits or use a pair
of integers. Internal mechanisms try to make this as memory efficient as possible.

37.6.7 Is16BitsFamily

▷ Is16BitsFamily(obj) (Category)

▷ Is32BitsFamily(obj) (Category)

▷ IsInfBitsFamily(obj) (Category)

Regardless of the internal representation used, it is possible to convert a word in a list of numbers
in letter or syllable representation and vice versa.

37.6.8 LetterRepAssocWord

▷ LetterRepAssocWord(w[, gens]) (operation)

The letter representation of an associated word is as a list of integers, each entry corresponding
to a group generator. Inverses of the generators are represented by negative numbers. The generator
numbers are as associated to the family.

This operation returns the letter representation of the associative word w .
In the call with two arguments, the generator numbers correspond to the generator order given in

the list gens .
(For words stored in syllable form the letter representation has to be computed.)

37.6.9 AssocWordByLetterRep

▷ AssocWordByLetterRep(Fam, lrep[, gens]) (operation)

takes a letter representation lrep (see LetterRepAssocWord (37.6.8)) and returns an associative
word in family fam corresponding to this letter representation.

If gens is given, the numbers in the letter representation correspond to gens .
Example

gap> w:=AssocWordByLetterRep(FamilyObj(a), [-1,2,1,-2,-2,-2,1,1,1,1]);

a^-1*b*a*b^-3*a^4

gap> LetterRepAssocWord(w^2);

[-1, 2, 1, -2, -2, -2, 1, 1, 1, 2, 1, -2, -2, -2, 1, 1, 1, 1]

The external representation (see section 37.7) can be used if a syllable representation is needed.

37.7 The External Representation for Associative Words

The external representation of the associative word w is defined as follows. If w = ge1
i1 ∗ge2

i2 ∗ · · · ∗gek
ik

is a word over the alphabet g1,g2, . . ., i.e., gi denotes the i-th generator of the family of w, then w has

GAP - Reference Manual 544

external representation [i1,e1, i2,e2, . . . , ik,ek]. The empty list describes the identity element (if exists)
of the family. Exponents may be negative if the family allows inverses. The external representation of
an associative word is guaranteed to be freely reduced; for example, g1 ∗g2 ∗g−1

2 ∗g1 has the external
representation [1, 2].

Regardless of the family preference for letter or syllable representations (see 37.6), ExtRepOfObj
and ObjByExtRep can be used and interface to this “syllable”-like representation.

Example
gap> w:= ObjByExtRep(FamilyObj(a), [1,5,2,-7,1,3,2,4,1,-2]);

a^5*b^-7*a^3*b^4*a^-2

gap> ExtRepOfObj(w^2);

[1, 5, 2, -7, 1, 3, 2, 4, 1, 3, 2, -7, 1, 3, 2, 4, 1, -2]

37.8 Straight Line Programs

Straight line programs describe an efficient way for evaluating an abstract word at concrete generators,
in a more efficient way than with MappedWord (36.3.1). For example, the associative word ababbab of
length 7 can be computed from the generators a, b with only four multiplications, by first computing
c = ab, then d = cb, and then cdc; Alternatively, one can compute c = ab, e = bc, and aee. In each
step of these computations, one forms words in terms of the words computed in the previous steps.

A straight line program in GAP is represented by an object in the category
IsStraightLineProgram (37.8.1)) that stores a list of “lines” each of which has one of the
following three forms.

1. a nonempty dense list l of integers,

2. a pair [l, i] where l is a list of form 1. and i is a positive integer,

3. a list [l1, l2, . . . , lk] where each li is a list of form 1.; this may occur only for the last line of the
program.

The lists of integers that occur are interpreted as external representations of associative words (see
Section 37.7); for example, the list [1,3,2,−1] represents the word g3

1g−1
2 , with g1 and g2 the first and

second abstract generator, respectively.
For the meaning of the list of lines, see ResultOfStraightLineProgram (37.8.5).
Straight line programs can be constructed using StraightLineProgram (37.8.2).
Defining attributes for straight line programs are NrInputsOfStraightLineProgram (37.8.4)

and LinesOfStraightLineProgram (37.8.3). Another operation for straight line programs is
ResultOfStraightLineProgram (37.8.5).

Special methods applicable to straight line programs are installed for the operations Display

(6.3.6), IsInternallyConsistent (12.8.4), PrintObj (6.3.5), and ViewObj (6.3.5).
For a straight line program prog , the default Display (6.3.6) method prints the interpretation

of prog as a sequence of assignments of associative words; a record with components gensnames

(with value a list of strings) and listname (a string) may be entered as second argument of Display
(6.3.6), in this case these names are used, the default for gensnames is [g1, g2, . . .], the default
for listname is r.

GAP - Reference Manual 545

37.8.1 IsStraightLineProgram

▷ IsStraightLineProgram(obj) (Category)

Each straight line program in GAP lies in the category IsStraightLineProgram.

37.8.2 StraightLineProgram (for a list of lines (and the number of generators))

▷ StraightLineProgram(lines[, nrgens]) (function)

▷ StraightLineProgram(string, gens) (function)

▷ StraightLineProgramNC(lines[, nrgens]) (function)

▷ StraightLineProgramNC(string, gens) (function)

In the first form, lines must be a nonempty list of lists that defines a unique straight line program
(see IsStraightLineProgram (37.8.1)); in this case StraightLineProgram returns this program,
otherwise an error is signalled. The optional argument nrgens specifies the number of input genera-
tors of the program; if a line of form 1. (that is, a list of integers) occurs in lines except in the last
position, this number is not determined by lines and therefore must be specified by the argument
nrgens ; if not then StraightLineProgram returns fail.

In the second form, string must be a nonempty string describing an arithmetic expression in
terms of the strings in the list gens , where multiplication is denoted by concatenation, powering is
denoted by ^, and round brackets (,) may be used. Each entry in gens must consist only of uppercase
or lowercase letters (i.e., letters in IsAlphaChar (27.5.4)) such that no entry is an initial part of another
one. Called with this input, StraightLineProgram returns a straight line program that evaluates to
the word corresponding to string when called with generators corresponding to gens .

The NC variant does the same, except that the internal consistency of the program is not checked.

37.8.3 LinesOfStraightLineProgram

▷ LinesOfStraightLineProgram(prog) (attribute)

For a straight line program prog , LinesOfStraightLineProgram returns the list of program
lines. There is no default method to compute these lines if they are not stored.

37.8.4 NrInputsOfStraightLineProgram

▷ NrInputsOfStraightLineProgram(prog) (attribute)

For a straight line program prog , NrInputsOfStraightLineProgram returns the number of
generators that are needed as input.

If a line of form 1. (that is, a list of integers) occurs in the lines of prog except the last line then the
number of generators is not determined by the lines, and must be set in the construction of the straight
line program (see StraightLineProgram (37.8.2)). So if prog contains a line of form 1. other than
the last line and does not store the number of generators then NrInputsOfStraightLineProgram

signals an error.

GAP - Reference Manual 546

37.8.5 ResultOfStraightLineProgram

▷ ResultOfStraightLineProgram(prog, gens) (operation)

ResultOfStraightLineProgram evaluates the straight line program
(see IsStraightLineProgram (37.8.1)) prog at the group elements in the list gens .

The result of a straight line program with lines p1, p2, . . . , pk when applied to gens is defined as
follows.

(a) First a list r of intermediate results is initialized with a shallow copy of gens .

(b) For i < k, before the i-th step, let r be of length n. If pi is the external representation of an
associative word in the first n generators then the image of this word under the homomorphism
that is given by mapping r to these first n generators is added to r; if pi is a pair [l, j], for a list
l, then the same element is computed, but instead of being added to r, it replaces the j-th entry
of r.

(c) For i = k, if pk is the external representation of an associative word then the element described
in (b) is the result of the program, if pk is a pair [l, j], for a list l, then the result is the element
described by l, and if pk is a list [l1, l2, . . . , lk] of lists then the result is a list of group elements,
where each li is treated as in (b).

Example
gap> f:= FreeGroup("x", "y");; gens:= GeneratorsOfGroup(f);;

gap> x:= gens[1];; y:= gens[2];;

gap> prg:= StraightLineProgram([[]]);

<straight line program>

gap> ResultOfStraightLineProgram(prg, []);

[]

The above straight line program prg returns –for any list of input generators– an empty list.
Example

gap> StraightLineProgram([[1,2,2,3], [3,-1]]);

fail

gap> prg:= StraightLineProgram([[1,2,2,3], [3,-1]], 2);

<straight line program>

gap> LinesOfStraightLineProgram(prg);

[[1, 2, 2, 3], [3, -1]]

gap> prg:= StraightLineProgram("(a^2b^3)^-1", ["a", "b"]);

<straight line program>

gap> LinesOfStraightLineProgram(prg);

[[[1, 2, 2, 3], 3], [[3, -1], 4]]

gap> res:= ResultOfStraightLineProgram(prg, gens);

y^-3*x^-2

gap> res = (x^2 * y^3)^-1;

true

gap> NrInputsOfStraightLineProgram(prg);

2

gap> Print(prg, "\n");

StraightLineProgram([[[1, 2, 2, 3], 3], [[3, -1], 4]], 2)

gap> Display(prg);

input:

GAP - Reference Manual 547

r:= [g1, g2];

program:

r[3]:= r[1]^2*r[2]^3;

r[4]:= r[3]^-1;

return value:

r[4]

gap> IsInternallyConsistent(StraightLineProgramNC([[1,2]]));

true

gap> IsInternallyConsistent(StraightLineProgramNC([[1,2,3]]));

false

gap> prg1:= StraightLineProgram([[1,1,2,2], [3,3,1,1]], 2);;

gap> prg2:= StraightLineProgram([[[1,1,2,2], 2], [2,3,1,1]]);;

gap> res1:= ResultOfStraightLineProgram(prg1, gens);

(x*y^2)^3*x

gap> res1 = (x*y^2)^3*x;

true

gap> res2:= ResultOfStraightLineProgram(prg2, gens);

(x*y^2)^3*x

gap> res2 = (x*y^2)^3*x;

true

gap> prg:= StraightLineProgram([[2,3], [[3,1,1,4], [1,2,3,1]]], 2);;

gap> res:= ResultOfStraightLineProgram(prg, gens);

[y^3*x^4, x^2*y^3]

37.8.6 StringOfResultOfStraightLineProgram

▷ StringOfResultOfStraightLineProgram(prog, gensnames[, "LaTeX"]) (function)

StringOfResultOfStraightLineProgram returns a string that describes the result of the
straight line program (see IsStraightLineProgram (37.8.1)) prog as word(s) in terms of the
strings in the list gensnames . If the result of prog is a single element then the return value of
StringOfResultOfStraightLineProgram is a string consisting of the entries of gensnames , open-
ing and closing brackets (and), and powering by integers via ^. If the result of prog is a list of
elements then the return value of StringOfResultOfStraightLineProgram is a comma separated
concatenation of the strings of the single elements, enclosed in square brackets [,].

Example
gap> prg:= StraightLineProgram([[1, 2, 2, 3], [3, -1]], 2);;

gap> StringOfResultOfStraightLineProgram(prg, ["a", "b"]);

"(a^2b^3)^-1"

gap> StringOfResultOfStraightLineProgram(prg, ["a", "b"], "LaTeX");

"(a^{2}b^{3})^{-1}"

37.8.7 CompositionOfStraightLinePrograms

▷ CompositionOfStraightLinePrograms(prog2, prog1) (function)

For two straight line programs prog1 and prog2 , CompositionOfStraightLinePrograms re-
turns a straight line program prog with the properties that prog1 and prog have the same number of

GAP - Reference Manual 548

inputs, and the result of prog when applied to given generators gens equals the result of prog2 when
this is applied to the output of prog1 applied to gens .

(Of course the number of outputs of prog1 must be the same as the number of inputs of prog2 .)
Example

gap> prg1:= StraightLineProgram("a^2b", ["a","b"]);;

gap> prg2:= StraightLineProgram("c^5", ["c"]);;

gap> comp:= CompositionOfStraightLinePrograms(prg2, prg1);

<straight line program>

gap> StringOfResultOfStraightLineProgram(comp, ["a", "b"]);

"(a^2b)^5"

gap> prg:= StraightLineProgram([[2,3], [[3,1,1,4], [1,2,3,1]]], 2);;

gap> StringOfResultOfStraightLineProgram(prg, ["a", "b"]);

"[b^3a^4, a^2b^3]"

gap> comp:= CompositionOfStraightLinePrograms(prg, prg);

<straight line program>

gap> StringOfResultOfStraightLineProgram(comp, ["a", "b"]);

"[(a^2b^3)^3(b^3a^4)^4, (b^3a^4)^2(a^2b^3)^3]"

37.8.8 IntegratedStraightLineProgram

▷ IntegratedStraightLineProgram(listofprogs) (function)

For a nonempty dense list listofprogs of straight line programs p1, p2, . . . , pm that
have the same number n of inputs (see NrInputsOfStraightLineProgram (37.8.4)),
IntegratedStraightLineProgram returns a straight line program prog with n inputs such
that for each n-tuple gens of generators, ResultOfStraightLineProgram(prog,gens) is the
concatenation of the lists r1,r2, . . . ,rm, where ri is equal to ResultOfStraightLineProgram(

pi,gens) if this result is a list of elements, and otherwise ri is equal to the list of length one that
contains this result.

Example
gap> f:= FreeGroup("x", "y");; gens:= GeneratorsOfGroup(f);;

gap> prg1:= StraightLineProgram([[[1, 2], 1], [1, 2, 2, -1]], 2);;

gap> prg2:= StraightLineProgram([[[2, 2], 3], [1, 3, 3, 2]], 2);;

gap> prg3:= StraightLineProgram([[2, 2], [1, 3, 3, 2]], 2);;

gap> prg:= IntegratedStraightLineProgram([prg1, prg2, prg3]);;

gap> ResultOfStraightLineProgram(prg, gens);

[x^4*y^-1, x^3*y^4, x^3*y^4]

gap> prg:= IntegratedStraightLineProgram([prg2, prg3, prg1]);;

gap> ResultOfStraightLineProgram(prg, gens);

[x^3*y^4, x^3*y^4, x^4*y^-1]

gap> prg:= IntegratedStraightLineProgram([prg3, prg1, prg2]);;

gap> ResultOfStraightLineProgram(prg, gens);

[x^3*y^4, x^4*y^-1, x^3*y^4]

gap> prg:= IntegratedStraightLineProgram([prg, prg]);;

gap> ResultOfStraightLineProgram(prg, gens);

[x^3*y^4, x^4*y^-1, x^3*y^4, x^3*y^4, x^4*y^-1, x^3*y^4]

37.8.9 RestrictOutputsOfSLP

▷ RestrictOutputsOfSLP(slp, k) (function)

GAP - Reference Manual 549

slp must be a straight line program returning a tuple of values. This function returns a new slp that
calculates only those outputs specified by k . The argument k may be an integer or a list of integers.
If k is an integer, the resulting slp calculates only the result with that number in the original output
tuple. If k is a list of integers, the resulting slp calculates those results with indices k in the original
output tuple. In both cases the resulting slp does only what is necessary. Obviously, the slp must have
a line with enough expressions (lists) for the supplied k as its last line. slp is either an slp or a pair
where the first entry are the lines of the slp and the second is the number of inputs.

37.8.10 IntermediateResultOfSLP

▷ IntermediateResultOfSLP(slp, k) (function)

Returns a new slp that calculates only the value of slot k at the end of slp doing only what is
necessary. slp is either an slp or a pair where the first entry are the lines of the slp and the second is
the number of inputs. Note that this assumes a general SLP with possible overwriting. If you know
that your SLP does not overwrite slots, please use IntermediateResultOfSLPWithoutOverwrite

(37.8.11), which is much faster in this case.

37.8.11 IntermediateResultOfSLPWithoutOverwrite

▷ IntermediateResultOfSLPWithoutOverwrite(slp, k) (function)

Returns a new slp that calculates only the value of slot k , which must be an integer. Note that slp
must not overwrite slots but only append!!! Use IntermediateResultOfSLP (37.8.10) in the other
case! slp is either an slp or a pair where the first entry is the list of lines of the slp and the second is
the number of its inputs.

37.8.12 IntermediateResultsOfSLPWithoutOverwrite

▷ IntermediateResultsOfSLPWithoutOverwrite(slp, k) (function)

Returns a new slp that calculates only the values of slots contained in the list k . Note that slp
must not overwrite slots but only append!!! Use IntermediateResultOfSLP (37.8.10) in the other
case! slp is either a slp or a pair where the first entry is the list of lines of the slp and the second is
the number of its inputs.

37.8.13 ProductOfStraightLinePrograms

▷ ProductOfStraightLinePrograms(s1, s2) (function)

s1 and s2 must be two slps that return a single element with the same number of inputs. This
function constructs an slp that returns the product of the two results the slps s1 and s2 would produce
with the same input.

37.8.14 SlotUsagePattern

▷ SlotUsagePattern(s) (attribute)

GAP - Reference Manual 550

Analyses the straight line program s for more efficient evaluation. This means in particular two
things, when this attribute is known: First of all, intermediate results which are not actually needed
later on are not computed at all, and once an intermediate result is used for the last time in this SLP, it
is discarded. The latter leads to the fact that the evaluation of the SLP needs less memory.

37.9 Straight Line Program Elements

When computing with very large (in terms of memory) elements, for example permutations of degree
a few hundred thousands, it can be helpful (in terms of memory usage) to represent them via straight
line programs in terms of an original generator set. (So every element takes only small extra storage
for the straight line program.)

A straight line program element has a seed (a list of group elements) and a straight line program
on the same number of generators as the length of this seed, its value is the value of the evaluated
straight line program.

At the moment, the entries of the straight line program have to be simple lists (i.e. of the first
form).

Straight line program elements are in the same categories and families as the elements of the seed,
so they should work together with existing algorithms.

Note however, that due to the different way of storage some normally very cheap operations (such
as testing for element equality) can become more expensive when dealing with straight line program
elements. This is essentially the tradeoff for using less memory.

See also Section 43.13.

37.9.1 IsStraightLineProgElm

▷ IsStraightLineProgElm(obj) (Representation)

A straight line program element is a group element given (for memory reasons) as a straight line
program. Straight line program elements are positional objects, the first component is a record with a
component seeds, the second component the straight line program.

37.9.2 StraightLineProgElm

▷ StraightLineProgElm(seed, prog) (function)

Creates a straight line program element for seed seed and program prog .

37.9.3 StraightLineProgGens

▷ StraightLineProgGens(gens[, base]) (function)

returns a set of straight line program elements corresponding to the generators in gens . If gens is
a set of permutations then base can be given which must be a base for the group generated by gens .
(Such a base will be used to speed up equality tests.)

GAP - Reference Manual 551

37.9.4 EvalStraightLineProgElm

▷ EvalStraightLineProgElm(slpel) (function)

evaluates a straight line program element slpel from its seeds.

37.9.5 StretchImportantSLPElement

▷ StretchImportantSLPElement(elm) (operation)

If elm is a straight line program element whose straight line representation is very long, this
operation changes the representation of elm to a straight line program element, equal to elm , whose
seed contains the evaluation of elm and whose straight line program has length 1.

For other objects nothing happens.
This operation permits to designate “important” elements within an algorithm (elements that will

be referred to often), which will be represented by guaranteed short straight line program elements.
Example

gap> gens:=StraightLineProgGens([(1,2,3,4),(1,2)]);

[<[[2, 1]]|(1,2,3,4)>, <[[1, 1]]|(1,2)>]

gap> g:=Group(gens);;

gap> (gens[1]^3)^gens[2];

<[[1, -1, 2, 3, 1, 1]]|(1,2,4,3)>

gap> Size(g);

24

Chapter 38

Rewriting Systems

Rewriting systems in GAP are a framework for dealing with the very general task of rewriting ele-
ments of a free (or term) algebra in some normal form. Although most rewriting systems currently in
use are string rewriting systems (where the algebra has only one binary operation which is associative)
the framework in GAP is general enough to encompass the task of rewriting algebras of any signature
from groups to semirings.

Rewriting systems are already implemented in GAP for finitely presented semigroups and for pc
groups. The use of these particular rewriting systems is described in the corresponding chapters. We
describe here only the general framework of rewriting systems with a particular emphasis on material
which would be helpful for a developer implementing a rewriting system.

We fix some definitions and terminology for the rest of this chapter. Let T be a term algebra
in some signature. A term rewriting system for T is a set of ordered pairs of elements of T of the
form (l,r). Viewed as a set of relations, the rewriting system determines a presentation for a quotient
algebra A of T .

When we take into account the fact that the relations are expressed as ordered pairs, we have a
way of reducing the elements of T . Suppose an element u of T has a subword l and (l,r) is a rule of
the rewriting system, then we can replace the subterm l of u by the term r and obtain a new word v.
We say that we have rewritten u as v. Note that u and v represent the same element of A. If u cannot
be rewritten using any rule of the rewriting system we sat that u is reduced.

38.1 Operations on rewriting systems

38.1.1 IsRewritingSystem

▷ IsRewritingSystem(obj) (Category)

This is the category in which all rewriting systems lie.

38.1.2 Rules

▷ Rules(rws) (attribute)

The rules comprising the rewriting system. Note that these may change through the life of the
rewriting system, however they will always be a set of defining relations of the algebra described by
the rewriting system.

552

GAP - Reference Manual 553

38.1.3 OrderOfRewritingSystem

▷ OrderOfRewritingSystem(rws) (attribute)

▷ OrderingOfRewritingSystem(rws) (attribute)

return the ordering of the rewriting system rws .

38.1.4 ReducedForm

▷ ReducedForm(rws, u) (operation)

Given an element u in the free (or term) algebra T over which rws is defined, rewrite u by
successive applications of the rules of rws until no further rewriting is possible, and return the resulting
element of T .

38.1.5 IsConfluent

▷ IsConfluent(rws) (property)

▷ IsConfluent(A) (property)

For a rewriting system rws , IsConfluent returns true if and only if rws is confluent. A rewriting
system is confluent if, for every two words u and v in the free algebra T which represent the same
element of the algebra A defined by rws , ReducedForm(rws, u) = ReducedForm(rws, v) as
words in the free algebra T . This element is the unique normal form of the element represented by u.

For an algebra A with a canonical rewriting system associated with it, IsConfluent checks
whether that rewriting system is confluent.

Also see IsConfluent (46.4.7).

38.1.6 ConfluentRws

▷ ConfluentRws(rws) (attribute)

Return a new rewriting system defining the same algebra as rws which is confluent.

38.1.7 IsReduced

▷ IsReduced(rws) (property)

A rewriting system is reduced if for each rule (l,r), l and r are both reduced.

38.1.8 ReduceRules

▷ ReduceRules(rws) (operation)

Reduce rules and remove redundant rules to make rws reduced.

GAP - Reference Manual 554

38.1.9 AddRule

▷ AddRule(rws, rule) (operation)

Add rule to a rewriting system rws .

38.1.10 AddRuleReduced

▷ AddRuleReduced(rws, rule) (operation)

Add rule to rewriting system rws . Performs a reduction operation on the resulting system, so
that if rws is reduced it will remain reduced.

38.1.11 MakeConfluent

▷ MakeConfluent(rws) (operation)

Add rules (and perhaps reduce) in order to make rws confluent

38.1.12 GeneratorsOfRws

▷ GeneratorsOfRws(rws) (attribute)

Returns the list of generators of the rewriting system rws .

38.2 Operations on elements of the algebra

In this section let u denote an element of the term algebra T representing [u] in the quotient algebra A.

38.2.1 ReducedProduct

▷ ReducedProduct(rws, u, v) (operation)

▷ ReducedSum(rws, left, right) (operation)

▷ ReducedOne(rws) (operation)

▷ ReducedAdditiveInverse(rws, obj) (operation)

▷ ReducedComm(rws, left, right) (operation)

▷ ReducedConjugate(rws, left, right) (operation)

▷ ReducedDifference(rws, left, right) (operation)

▷ ReducedInverse(rws, obj) (operation)

▷ ReducedLeftQuotient(rws, left, right) (operation)

▷ ReducedPower(rws, obj, pow) (operation)

▷ ReducedQuotient(rws, left, right) (operation)

▷ ReducedScalarProduct(rws, left, right) (operation)

▷ ReducedZero(rws) (operation)

The result of ReducedProduct is w where [w] equals [u][v] in A and w is in reduced form.
The remaining operations are defined similarly when they are defined (as determined by the sig-

nature of the term algebra).

GAP - Reference Manual 555

38.3 Properties of rewriting systems

38.3.1 IsBuiltFromAdditiveMagmaWithInverses

▷ IsBuiltFromAdditiveMagmaWithInverses(obj) (property)

▷ IsBuiltFromMagma(obj) (property)

▷ IsBuiltFromMagmaWithOne(obj) (property)

▷ IsBuiltFromMagmaWithInverses(obj) (property)

▷ IsBuiltFromSemigroup(obj) (property)

▷ IsBuiltFromGroup(obj) (property)

These properties may be used to identify the type of term algebra over which the rewriting system
is defined.

38.4 Rewriting in Groups and Monoids

One application of rewriting is to reduce words in finitely presented groups and monoids. The rewrit-
ing system still has to be built for a finitely presented monoid (using IsomorphismFpMonoid for
conversion). Rewriting then can take place for words in the underlying free monoid. (These can be
obtained from monoid elements with the command UnderlyingElement.)

Example
gap> f:=FreeGroup(3);;

gap> rels:=[f.1*f.2^2/f.3,f.2*f.3^2/f.1,f.3*f.1^2/f.2];;

gap> g:=f/rels;

<fp group on the generators [f1, f2, f3]>

gap> mhom:=IsomorphismFpMonoid(g);

MappingByFunction(<fp group on the generators

[f1, f2, f3]>, <fp monoid on the generators

[f1, f1^-1, f2, f2^-1, f3, f3^-1

]>, function(x) ... end, function(x) ... end)

gap> mon:=Image(mhom);

<fp monoid on the generators [f1, f1^-1, f2, f2^-1, f3, f3^-1]>

gap> k:=KnuthBendixRewritingSystem(mon);

Knuth Bendix Rewriting System for Monoid(

[f1, f1^-1, f2, f2^-1, f3, f3^-1]) with rules

[[f1*f1^-1, <identity ...>], [f1^-1*f1, <identity ...>],

[f2*f2^-1, <identity ...>], [f2^-1*f2, <identity ...>],

[f3*f3^-1, <identity ...>], [f3^-1*f3, <identity ...>],

[f1*f2^2*f3^-1, <identity ...>], [f2*f3^2*f1^-1, <identity ...>]

, [f3*f1^2*f2^-1, <identity ...>]]

gap> MakeConfluent(k);

gap> a:=Product(GeneratorsOfMonoid(mon));

f1*f1^-1*f2*f2^-1*f3*f3^-1

gap> ReducedForm(k,UnderlyingElement(a));

<identity ...>

To rewrite a word in the finitely presented group, one has to convert it to a word in the monoid
first, rewrite in the underlying free monoid and convert back (by forming first again an element of the
fp monoid) to the finitely presented group.

GAP - Reference Manual 556

Example
gap> r:=PseudoRandom(g);;

gap> Length(r);

3704

gap> melm:=Image(mhom,r);;

gap> red:=ReducedForm(k,UnderlyingElement(melm));

f1^-1^3*f2^-1*f1^2

gap> melm:=ElementOfFpMonoid(FamilyObj(One(mon)),red);

f1^-1^3*f2^-1*f1^2

gap> gpelm:=PreImagesRepresentative(mhom,melm);

f1^-3*f2^-1*f1^2

gap> r=gpelm;

true

gap> CategoriesOfObject(red);

["IsExtLElement", "IsExtRElement", "IsMultiplicativeElement",

"IsMultiplicativeElementWithOne", "IsAssociativeElement", "IsWord"]

gap> CategoriesOfObject(melm);

["IsExtLElement", "IsExtRElement", "IsMultiplicativeElement",

"IsMultiplicativeElementWithOne", "IsAssociativeElement",

"IsElementOfFpMonoid"]

gap> CategoriesOfObject(gpelm);

["IsExtLElement", "IsExtRElement", "IsMultiplicativeElement",

"IsMultiplicativeElementWithOne", "IsMultiplicativeElementWithInverse",

"IsAssociativeElement", "IsElementOfFpGroup"]

Note, that the elements red (free monoid) melm (fp monoid) and gpelm (group) differ, though
they are displayed identically.

Under Unix, it is possible to use the kbmag package to replace the built-in rewriting by this pack-
ages efficient C implementation. You can do this (after loading the kbmag package) by assigning the
variable KB_REW (52.5.2) to KBMAG_REW. Assignment to GAPKB_REW reverts to the built-in implemen-
tation.

Example
gap> LoadPackage("kbmag");

true

gap> KB_REW:=KBMAG_REW;;

38.5 Developing rewriting systems

The key point to note about rewriting systems is that they have properties such as IsConfluent

(38.1.5) and attributes such as Rules (38.1.2), however they are rarely stored, but rather computed
afresh each time they are asked for, from data stored in the private members of the rewriting sys-
tem object. This is because a rewriting system often evolves through a session, starting with some
rules which define the algebra A as relations, and then adding more rules to make the system con-
fluent. For example, in the case of Knuth-Bendix rewriting systems (see Chapter 52), the function
CreateKnuthBendixRewritingSystem creating the rewriting system (in the file lib/kbsemi.gi)
uses

Example
kbrws := Objectify(NewType(rwsfam,

IsMutable and IsKnuthBendixRewritingSystem and

GAP - Reference Manual 557

IsKnuthBendixRewritingSystemRep),

rec(family:= fam,

reduced:=false,

tzrules:=List(relwco,i->

[LetterRepAssocWord(i[1]),LetterRepAssocWord(i[2])]),

pairs2check:=CantorList(Length(r)),

ordering:=wordord,

freefam:=freefam));

In particular, since we don’t use the filter IsAttributeStoringRep in the Objectify (79.1.1),
whenever IsConfluent (38.1.5) is called, the appropriate method to determine confluence is called.

Chapter 39

Groups

This chapter explains how to create groups and defines operations for groups, that is operations whose
definition does not depend on the representation used. However methods for these operations in most
cases will make use of the representation.

If not otherwise specified, in all examples in this chapter the group g will be the symmetric group
S4 acting on the letters {1, . . . ,4}.

39.1 Group Elements

Groups in GAP are written multiplicatively. The elements from which a group can be generated must
permit multiplication and multiplicative inversion (see 31.14).

Example
gap> a:=(1,2,3);;b:=(2,3,4);;

gap> One(a);

()

gap> Inverse(b);

(2,4,3)

gap> a*b;

(1,3)(2,4)

gap> Order(a*b);

2

gap> Order([[1, 1], [0, 1]]);

infinity

The next example may run into an infinite loop because the given matrix in fact has infinite order.
Example

gap> Order([[1, 1], [0, 1]] * Indeterminate(Rationals));

#I Order: warning, order of <mat> might be infinite

Since groups are domains, the recommended command to compute the order of a group is Size
(30.4.6). For convenience, group orders can also be computed with Order (31.10.10).

The operation Comm (31.12.3) can be used to compute the commutator of two elements, the oper-
ation LeftQuotient (31.12.2) computes the product x−1y.

558

GAP - Reference Manual 559

39.2 Creating Groups

When groups are created from generators, this means that the generators must be elements that can be
multiplied and inverted (see also 31.3). For creating a free group on a set of symbols, see FreeGroup
(37.2.1).

39.2.1 Group

▷ Group(gen, ...) (function)

▷ Group(gens[, id]) (function)

Group(gen, ...) is the group generated by the arguments gen , ...
If the only argument gens is a list that is not a matrix then Group(gens) is the group generated

by the elements of that list.
If there are two arguments, a list gens and an element id , then Group(gens, id) is the group

generated by the elements of gens , with identity id .
Note that the value of the attribute GeneratorsOfGroup (39.2.4) need not be equal to the list

gens of generators entered as argument. Use GroupWithGenerators (39.2.3) if you want to be sure
that the argument gens is stored as value of GeneratorsOfGroup (39.2.4).

Example
gap> g:=Group((1,2,3,4),(1,2));

Group([(1,2,3,4), (1,2)])

39.2.2 GroupByGenerators

▷ GroupByGenerators(gens) (operation)

▷ GroupByGenerators(gens, id) (operation)

GroupByGenerators returns the group G generated by the list gens . If a second argument id is
present then this is stored as the identity element of the group.

The value of the attribute GeneratorsOfGroup (39.2.4) of G need not be equal to gens .
GroupByGenerators is the underlying operation called by Group (39.2.1).

39.2.3 GroupWithGenerators

▷ GroupWithGenerators(gens[, id]) (operation)

GroupWithGenerators returns the group G generated by the list gens . If a second argument
id is present then this is stored as the identity element of the group. The value of the attribute
GeneratorsOfGroup (39.2.4) of G is equal to gens .

39.2.4 GeneratorsOfGroup

▷ GeneratorsOfGroup(G) (attribute)

returns a list of generators of the group G . If G has been created by the command
GroupWithGenerators (39.2.3) with argument gens , then the list returned by GeneratorsOfGroup

will be equal to gens . For such a group, each generator can also be accessed using the . operator

GAP - Reference Manual 560

(see GeneratorsOfDomain (31.9.2)): for a positive integer i, G.i returns the i-th element of the list
returned by GeneratorsOfGroup. Moreover, if G is a free group, and name is the name of a generator
of G then G.name also returns this generator.

Example
gap> g:=GroupWithGenerators([(1,2,3,4),(1,2)]);

Group([(1,2,3,4), (1,2)])

gap> GeneratorsOfGroup(g);

[(1,2,3,4), (1,2)]

While in this example GAP displays the group via the generating set stored in the attribute
GeneratorsOfGroup, the methods installed for View (6.3.3) will in general display only some in-
formation about the group which may even be just the fact that it is a group.

39.2.5 AsGroup

▷ AsGroup(D) (attribute)

if the elements of the collection D form a group the command returns this group, otherwise it
returns fail.

Example
gap> AsGroup([(1,2)]);

fail

gap> AsGroup([(),(1,2)]);

Group([(1,2)])

39.2.6 ConjugateGroup

▷ ConjugateGroup(G, obj) (operation)

returns the conjugate group of G , obtained by applying the conjugating element obj .
To form a conjugate (group) by any object acting via ^, one can also use the infix operator ^.

Example
gap> ConjugateGroup(g,(1,5));

Group([(2,3,4,5), (2,5)])

39.2.7 IsGroup

▷ IsGroup(obj) (Category)

A group is a magma-with-inverses (see IsMagmaWithInverses (35.1.4)) and associative
(see IsAssociative (35.4.7)) multiplication.

IsGroup tests whether the object obj fulfills these conditions, it does not test whether obj is a
set of elements that forms a group under multiplication; use AsGroup (39.2.5) if you want to perform
such a test. (See 13.3 for details about categories.)

Example
gap> IsGroup(g);

true

GAP - Reference Manual 561

39.2.8 InfoGroup

▷ InfoGroup (info class)

is the info class for the generic group theoretic functions (see 7.4).

39.3 Subgroups

For the general concept of parents and subdomains, see 31.7 and 31.8. More functions that construct
certain subgroups can be found in the sections 39.11, 39.12, 39.13, and 39.14.

If a group U is created as a subgroup of another group G, G becomes the parent of U . There is
no “universal” parent group, parent-child chains can be arbitrary long. GAP stores the result of some
operations (such as Normalizer (39.11.1)) with the parent as an attribute.

39.3.1 Subgroup

▷ Subgroup(G, gens) (function)

▷ SubgroupNC(G, gens) (function)

▷ Subgroup(G) (function)

creates the subgroup U of G generated by gens . The Parent (31.7.1) value of U will be G . The
NC version does not check, whether the elements in gens actually lie in G .

The unary version of Subgroup creates a (shell) subgroup that does not even know generators but
can be used to collect information about a particular subgroup over time.

Example
gap> u:=Subgroup(g,[(1,2,3),(1,2)]);

Group([(1,2,3), (1,2)])

39.3.2 Index (GAP operation)

▷ Index(G, U) (operation)

▷ IndexNC(G, U) (operation)

For a subgroup U of the group G , Index returns the index [G : U] = |G |/|U | of U in G . The NC

version does not test whether U is contained in G .
Example

gap> Index(g,u);

4

39.3.3 IndexInWholeGroup

▷ IndexInWholeGroup(G) (attribute)

If the family of elements of G itself forms a group P , this attribute returns the index of G in P . It is
used primarily for free groups or finitely presented groups.

GAP - Reference Manual 562

Example
gap> freegp:=FreeGroup(1);;

gap> freesub:=Subgroup(freegp,[freegp.1^5]);;

gap> IndexInWholeGroup(freesub);

5

39.3.4 AsSubgroup

▷ AsSubgroup(G, U) (operation)

creates a subgroup of G which contains the same elements as U
Example

gap> v:=AsSubgroup(g,Group((1,2,3),(1,4)));

Group([(1,2,3), (1,4)])

gap> Parent(v);

Group([(1,2,3,4), (1,2)])

39.3.5 IsSubgroup

▷ IsSubgroup(G, U) (function)

IsSubgroup returns true if U is a group that is a subset of the domain G . This is actually checked
by calling IsGroup(U) and IsSubset(G, U); note that special methods for IsSubset (30.5.1)
are available that test only generators of U if G is closed under the group operations. So in most cases,
for example whenever one knows already that U is a group, it is better to call only IsSubset (30.5.1).

Example
gap> IsSubgroup(g,u);

true

gap> v:=Group((1,2,3),(1,2));

Group([(1,2,3), (1,2)])

gap> u=v;

true

gap> IsSubgroup(g,v);

true

39.3.6 IsNormal

▷ IsNormal(G, U) (operation)

returns true if the group G normalizes the group U and false otherwise.
A group G normalizes a group U if and only if for every g ∈ G and u ∈ U the element ug is a

member of U . Note that U need not be a subgroup of G .
Example

gap> IsNormal(g,u);

false

GAP - Reference Manual 563

39.3.7 IsCharacteristicSubgroup

▷ IsCharacteristicSubgroup(G, N) (operation)

tests whether N is invariant under all automorphisms of G .
Example

gap> IsCharacteristicSubgroup(g,u);

false

39.3.8 ConjugateSubgroup

▷ ConjugateSubgroup(G, g) (operation)

For a group G which has a parent group P (see Parent (31.7.1)), returns the subgroup of P, ob-
tained by conjugating G using the conjugating element g .

If G has no parent group, it just delegates to the call to ConjugateGroup (39.2.6) with the same
arguments.

To form a conjugate (subgroup) by any object acting via ^, one can also use the infix operator ^.

39.3.9 ConjugateSubgroups

▷ ConjugateSubgroups(G, U) (operation)

returns a list of all images of the group U under conjugation action by G .

39.3.10 IsSubnormal

▷ IsSubnormal(G, U) (operation)

A subgroup U of the group G is subnormal if it is contained in a subnormal series of G .
Example

gap> IsSubnormal(g,Group((1,2,3)));

false

gap> IsSubnormal(g,Group((1,2)(3,4)));

true

39.3.11 SubgroupByProperty

▷ SubgroupByProperty(G, prop) (function)

creates a subgroup of G consisting of those elements fulfilling prop (which is a tester function).
No test is done whether the property actually defines a subgroup.

Note that currently very little functionality beyond an element test exists for groups created this
way.

GAP - Reference Manual 564

39.3.12 SubgroupShell

▷ SubgroupShell(G) (function)

creates a subgroup of G which at this point is not yet specified further (but will be later, for example
by assigning a generating set).

Example
gap> u:=SubgroupByProperty(g,i->3^i=3);

<subgrp of Group([(1,2,3,4), (1,2)]) by property>

gap> (1,3) in u; (1,4) in u; (1,5) in u;

false

true

false

gap> GeneratorsOfGroup(u);

[(1,2), (1,4,2)]

gap> u:=SubgroupShell(g);

<group>

39.4 Closures of (Sub)groups

39.4.1 ClosureGroup

▷ ClosureGroup(G, obj) (operation)

creates the group generated by the elements of G and obj . obj can be either an element or a
collection of elements, in particular another group.

Example
gap> g:=SmallGroup(24,12);;u:=Subgroup(g,[g.3,g.4]);

Group([f3, f4])

gap> ClosureGroup(u,g.2);

Group([f2, f3, f4])

gap> ClosureGroup(u,[g.1,g.2]);

Group([f1, f2, f3, f4])

gap> ClosureGroup(u,Group(g.2*g.1));

Group([f1*f2^2, f3, f4])

39.4.2 ClosureGroupAddElm

▷ ClosureGroupAddElm(G, elm) (function)

▷ ClosureGroupCompare(G, elm) (function)

▷ ClosureGroupIntest(G, elm) (function)

These three functions together with ClosureGroupDefault (39.4.3) implement the main meth-
ods for ClosureGroup (39.4.1). In the ordering given, they just add elm to the generators, remove
duplicates and identity elements, and test whether elm is already contained in G .

39.4.3 ClosureGroupDefault

▷ ClosureGroupDefault(G, elm) (function)

GAP - Reference Manual 565

This functions returns the closure of the group G with the element elm . If G has the attribute
AsSSortedList (30.3.10) then also the result has this attribute. This is used to implement the default
method for Enumerator (30.3.2) and EnumeratorSorted (30.3.3).

39.4.4 ClosureSubgroup

▷ ClosureSubgroup(G, obj) (function)

▷ ClosureSubgroupNC(G, obj) (function)

For a group G that stores a parent group (see 31.7), ClosureSubgroup calls ClosureGroup

(39.4.1) with the same arguments; if the result is a subgroup of the parent of G then the parent of
G is set as parent of the result, otherwise an error is raised. The check whether the result is contained
in the parent of G is omitted by the NC version. As a wrong parent might imply wrong properties this
version should be used with care.

39.5 Expressing Group Elements as Words in Generators

Using homomorphisms (see chapter 40) it is possible to express group elements as words in given gen-
erators: Create a free group (see FreeGroup (37.2.1)) on the correct number of generators and create
a homomorphism from this free group onto the group G in whose generators you want to factorize.
Then the preimage of an element of G is a word in the free generators, that will map on this element
again.

39.5.1 EpimorphismFromFreeGroup

▷ EpimorphismFromFreeGroup(G) (attribute)

For a group G with a known generating set, this attribute returns a homomorphism from a free
group that maps the free generators to the generators of G .

The option names can be used to prescribe a (print) name for the free generators.
The following example shows how to decompose elements of S4 in the generators (1,2,3,4) and

(1,2):
Example

gap> g:=Group((1,2,3,4),(1,2));

Group([(1,2,3,4), (1,2)])

gap> hom:=EpimorphismFromFreeGroup(g:names:=["x","y"]);

[x, y] -> [(1,2,3,4), (1,2)]

gap> PreImagesRepresentative(hom,(1,4));

y^-1*x^-1*(x^-1*y^-1)^2*x

The following example stems from a real request to the GAP Forum. In September 2000 a GAP
user working with puzzles wanted to express the permutation (1,2) as a word as short as possible in
particular generators of the symmetric group S16.

Example
gap> perms := [(1,2,3,7,11,10,9,5), (2,3,4,8,12,11,10,6),

> (5,6,7,11,15,14,13,9), (6,7,8,12,16,15,14,10)];;

gap> puzzle := Group(perms);;Size(puzzle);

20922789888000

GAP - Reference Manual 566

gap> hom:=EpimorphismFromFreeGroup(puzzle:names:=["a", "b", "c", "d"]);;

gap> word := PreImagesRepresentative(hom, (1,2));

a^-1*c*b*c^-1*a*b^-1*a^-2*c^-1*a*b^-1*c*b

gap> Length(word);

13

39.5.2 Factorization

▷ Factorization(G, elm) (operation)

returns a factorization of elm as word in the generators of the group G given in the attribute
GeneratorsOfGroup (39.2.4). The attribute EpimorphismFromFreeGroup (39.5.1) of G will con-
tain a map from the free group in which the word is expressed to the group G . The attribute
MappingGeneratorsImages (40.10.2) of this map gives a list of generators and corresponding letters.

The algorithm used forms all elements of the group to ensure a short word is found. Therefore this
function should not be used when the group G has more than a few million elements. Because of this,
one should not call this function within algorithms, but use homomorphisms instead.

Example
gap> G:=SymmetricGroup(6);;

gap> r:=(3,4);; s:=(1,2,3,4,5,6);;

gap> # create subgroup to force the system to use the generators r and s:

gap> H:= Subgroup(G, [r, s]);

Group([(3,4), (1,2,3,4,5,6)])

gap> Factorization(H, (1,2,3));

(x2*x1)^2*x2^-2

gap> s*r*s*r*s^-2;

(1,2,3)

gap> MappingGeneratorsImages(EpimorphismFromFreeGroup(H));

[[x1, x2], [(3,4), (1,2,3,4,5,6)]]

39.5.3 GrowthFunctionOfGroup

▷ GrowthFunctionOfGroup(G) (attribute)

▷ GrowthFunctionOfGroup(G, radius) (operation)

For a group G with a generating set given in GeneratorsOfGroup (39.2.4), this function calculates
the number of elements whose shortest expression as words in the generating set is of a particular
length. It returns a list L , whose i+ 1 entry counts the number of elements whose shortest word
expression has length i. If a maximal length radius is given, only words up to length radius are
counted. Otherwise the group must be finite and all elements are enumerated.

Example
gap> GrowthFunctionOfGroup(MathieuGroup(12));

[1, 5, 19, 70, 255, 903, 3134, 9870, 25511, 38532, 16358, 382]

gap> GrowthFunctionOfGroup(MathieuGroup(12),2);

[1, 5, 19]

gap> GrowthFunctionOfGroup(MathieuGroup(12),99);

[1, 5, 19, 70, 255, 903, 3134, 9870, 25511, 38532, 16358, 382]

gap> free:=FreeGroup("a","b");

<free group on the generators [a, b]>

GAP - Reference Manual 567

gap> product:=free/ParseRelators(free,"a2,b3");

<fp group on the generators [a, b]>

gap> SetIsFinite(product,false);

gap> GrowthFunctionOfGroup(product,10);

[1, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64]

39.6 Structure Descriptions

39.6.1 StructureDescription

▷ StructureDescription(G) (attribute)

The method for StructureDescription exhibits a structure of the given group G to some extent,
using the strategy outlined below. The idea is to return a possibly short string which gives some insight
in the structure of the considered group. It is intended primarily for small groups (order less than 100)
or groups with few normal subgroups, in other cases, in particular large p-groups, it can be very costly.
Furthermore, the string returned is -- as the action on chief factors is not described -- often not the
most useful way to describe a group.

The string returned by StructureDescription is NOT an isomorphism invariant:
non-isomorphic groups can have the same string value, and two isomorphic groups in different
representations can produce different strings. The value returned by StructureDescription is a
string of the following form:

StructureDescription(<G>) ::=

1 ; trivial group

| C<size> ; finite cyclic group

| Z ; infinite cyclic group

| A<degree> ; alternating group

| S<degree> ; symmetric group

| D<size> ; dihedral group

| Q<size> ; quaternion group

| QD<size> ; quasidihedral group

| PSL(<n>,<q>) ; projective special linear group

| SL(<n>,<q>) ; special linear group

| GL(<n>,<q>) ; general linear group

| PSU(<n>,<q>) ; proj. special unitary group

| O(2<n>+1,<q>) ; orthogonal group, type B

| O+(2<n>,<q>) ; orthogonal group, type D

| O-(2<n>,<q>) ; orthogonal group, type 2D

| PSp(2<n>,<q>) ; proj. special symplectic group

| Sz(<q>) ; Suzuki group

| Ree(<q>) ; Ree group (type 2F or 2G)

| E(6,<q>) | E(7,<q>) | E(8,<q>) ; Lie group of exceptional type

| 2E(6,<q>) | F(4,<q>) | G(2,<q>)

| 3D(4,<q>) ; Steinberg triality group

| M11 | M12 | M22 | M23 | M24

| J1 | J2 | J3 | J4 | Co1 | Co2

| Co3 | Fi22 | Fi23 | Fi24' | Suz

| HS | McL | He | HN | Th | B

| M | ON | Ly | Ru ; sporadic simple group

GAP - Reference Manual 568

| 2F(4,2)' ; Tits group

| PerfectGroup(<size>,<id>) ; the indicated group from the

; library of perfect groups

| A x B ; direct product

| N : H ; semidirect product

| C(G) . G/C(G) = G' . G/G' ; non-split extension

; (equal alternatives and

; trivial extensions omitted)

| Phi(G) . G/Phi(G) ; non-split extension:

; Frattini subgroup and

; Frattini factor group

Note that the StructureDescription is only one possible way of building up the given group
from smaller pieces.

The option “short” is recognized - if this option is set, an abbreviated output format is used (e.g.
"6x3" instead of "C6 x C3").

If the Name (12.8.2) attribute is not bound, but StructureDescription is, View (6.3.3) prints the
value of the attribute StructureDescription. The Print (6.3.4)ed representation of a group is not
affected by computing a StructureDescription.

The strategy used to compute a StructureDescription is as follows:

1. Lookup in a precomputed list, if the order of G is not larger than 100 and not equal to 64 or 96.

2. If G is abelian, then decompose it into cyclic factors in “elementary divisors style”. For example,
"C2 x C3 x C3" is "C6 x C3". For infinite abelian groups, "Z" denotes the group of integers.

3. Recognize alternating groups, symmetric groups, dihedral groups, quasidihedral groups, quater-
nion groups, PSL’s, SL’s, GL’s and simple groups not listed so far as basic building blocks.

4. Decompose G into a direct product of irreducible factors.

5. Recognize semidirect products G=N:H, where N is normal. Select a pair N, H with the follow-
ing preferences:

1. if G is defined as a semidirect product of N, H then select N, H,

2. if G is solvable, then select a solvable normal Hall subgroup N, if exists, and consider the
semidirect decomposition of N and G/N,

3. find any nontrivial normal subgroup N which has a complement H.

The option “nice” is recognized. If this option is set, then all semidirect products are computed
in order to find a possibly nicer presentation. Note, that this may take a very long time if G has
many normal subgroups, e.g. if G/G ′ has many cyclic factors. If the option “nice” is set, then
GAP would select a pair N, H with the following preferences:

1. H is abelian

2. N is abelian

2a. N has many abelian invariants

3. N is a direct product

GAP - Reference Manual 569

3a. N has many direct factors

4. φ : H → Aut(N), h 7→ (n 7→ nh) is injective.

6. Fall back to non-splitting extensions: If the centre or the commutator factor group is non-trivial,
write G as Z(G).G/Z(G) or G ′.G/G ′, respectively. Otherwise if the Frattini subgroup is
non-trivial, write G as Φ(G).G /Φ(G).

7. If no decomposition is found (maybe this is not the case for any finite group), try to identify G

in the perfect groups library. If this fails also, then return a string describing this situation.

Note that StructureDescription is not intended to be a research tool, but rather an educational
tool. The reasons for this are as follows:

1. “Most” groups do not have “nice” decompositions. This is in some contrast to what is often
taught in elementary courses on group theory, where it is sometimes suggested that basically
every group can be written as iterated direct or semidirect product of cyclic groups and non-
abelian simple groups.

2. In particular many p-groups have very “similar” structure, and StructureDescription can
only exhibit a little of it. Changing this would likely make the output not essentially easier to
read than a pc presentation.

Example
gap> l := AllSmallGroups(12);;

gap> List(l,StructureDescription);; l;

[C3 : C4, C12, A4, D12, C6 x C2]

gap> List(AllSmallGroups(40),G->StructureDescription(G:short));

["5:8", "40", "5:8", "5:Q8", "4xD10", "D40", "2x(5:4)", "(10x2):2",

"20x2", "5xD8", "5xQ8", "2x(5:4)", "2^2xD10", "10x2^2"]

gap> List(AllTransitiveGroups(DegreeAction,6),

> G->StructureDescription(G:short));

["6", "S3", "D12", "A4", "3xS3", "2xA4", "S4", "S4", "S3xS3",

"(3^2):4", "2xS4", "A5", "(S3xS3):2", "S5", "A6", "S6"]

gap> StructureDescription(SmallGroup(504,7));

"C7 : (C9 x Q8)"

gap> StructureDescription(SmallGroup(504,7):nice);

"(C7 : Q8) : C9"

gap> StructureDescription(AbelianGroup([0,2,3]));

"Z x C6"

gap> StructureDescription(AbelianGroup([0,0,0,2,3,6]):short);

"Z^3x6^2"

gap> StructureDescription(PSL(4,2));

"A8"

39.7 Cosets

39.7.1 RightCoset

▷ RightCoset(U, g) (operation)

GAP - Reference Manual 570

returns the right coset of U with representative g , which is the set of all elements of the form ug
for all u ∈ U . g must be an element of a larger group G which contains U . For element operations such
as in a right coset behaves like a set of group elements.

Right cosets are external orbits for the action of U which acts via OnLeftInverse (41.2.3). Of
course the action of a larger group G on right cosets is via OnRight (41.2.2).

Example
gap> u:=Group((1,2,3), (1,2));;

gap> c:=RightCoset(u,(2,3,4));

RightCoset(Group([(1,2,3), (1,2)]),(2,3,4))

gap> ActingDomain(c);

Group([(1,2,3), (1,2)])

gap> Representative(c);

(2,3,4)

gap> Size(c);

6

gap> AsList(c);

[(2,3,4), (1,4,2), (1,3,4,2), (1,3)(2,4), (2,4), (1,4,2,3)]

gap> IsBiCoset(c);

false

39.7.2 RightCosets

▷ RightCosets(G, U) (function)

▷ RightCosetsNC(G, U) (operation)

computes a duplicate free list of right cosets U g for g∈ G . A set of representatives for the elements
in this list forms a right transversal of U in G . (By inverting the representatives one obtains a list of
representatives of the left cosets of U .) The NC version does not check whether U is a subgroup of G .

Example
gap> RightCosets(g,u);

[RightCoset(Group([(1,2,3), (1,2)]),()),

RightCoset(Group([(1,2,3), (1,2)]),(1,3)(2,4)),

RightCoset(Group([(1,2,3), (1,2)]),(1,4)(2,3)),

RightCoset(Group([(1,2,3), (1,2)]),(1,2)(3,4))]

39.7.3 CanonicalRightCosetElement

▷ CanonicalRightCosetElement(U, g) (operation)

returns a “canonical” representative of the right coset U g which is independent of the given
representative g . This can be used to compare cosets by comparing their canonical representatives.

The representative chosen to be the “canonical” one is representation dependent and only guaran-
teed to remain the same within one GAP session.

Example
gap> CanonicalRightCosetElement(u,(2,4,3));

(3,4)

GAP - Reference Manual 571

39.7.4 IsRightCoset

▷ IsRightCoset(obj) (Category)

The category of right cosets.
GAP does not provide left cosets as a separate data type, but as the left coset gU consists of exactly

the inverses of the elements of the right coset Ug−1 calculations with left cosets can be emulated using
right cosets by inverting the representatives.

39.7.5 IsBiCoset

▷ IsBiCoset(C) (property)

A (right) coset Ug is considered a bicoset if its set of elements simultaneously forms a left coset for
the same subgroup. This is the case if and only if the coset representative g normalizes the subgroup
U .

39.7.6 CosetDecomposition

▷ CosetDecomposition(G, S) (function)

For a finite group G and a subgroup S ≤ G this function returns a partition of the elements of G
according to the (right) cosets of S . The result is a list of lists, each sublist corresponding to one coset.
The first sublist is the elements list of the subgroup, the other lists are arranged accordingly.

Example
gap> CosetDecomposition(SymmetricGroup(4),SymmetricGroup(3));

[[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)],

[(1,4), (1,4)(2,3), (1,2,4), (1,2,3,4), (1,3,2,4), (1,3,4)],

[(1,4,2), (1,4,2,3), (2,4), (2,3,4), (1,3)(2,4), (1,3,4,2)],

[(1,4,3), (1,4,3,2), (1,2,4,3), (1,2)(3,4), (2,4,3), (3,4)]]

39.8 Transversals

39.8.1 RightTransversal

▷ RightTransversal(G, U) (operation)

A right transversal t is a list of representatives for the set U \G of right cosets (consisting of cosets
Ug) of U in G.

The object returned by RightTransversal is not a plain list, but an object that behaves like an im-
mutable list of length [G : U], except if U is the trivial subgroup of G in which case RightTransversal
may return the sorted plain list of coset representatives.

The operation PositionCanonical (21.16.3), called for a transversal t and an element g of G ,
will return the position of the representative in t that lies in the same coset of U as the element g does.
(In comparison, Position (21.16.1) will return fail if the element is not equal to the representative.)
Functions that implement group actions such as Action (41.7.2) or Permutation (41.9.1) (see Chap-
ter 41) use PositionCanonical (21.16.3), therefore it is possible to “act” on a right transversal to
implement the action on the cosets. This is often much more efficient than acting on cosets.

GAP - Reference Manual 572

Example
gap> g:=Group((1,2,3,4),(1,2));;

gap> u:=Subgroup(g,[(1,2,3),(1,2)]);;

gap> rt:=RightTransversal(g,u);

RightTransversal(Group([(1,2,3,4), (1,2)]),Group([(1,2,3), (1,2)]))

gap> Length(rt);

4

gap> Position(rt,(1,2,3));

fail

Note that the elements of a right transversal are not necessarily “canonical” in the sense of
CanonicalRightCosetElement (39.7.3), but we may compute a list of canonical coset represen-
tatives by calling that function. (See also PositionCanonical (21.16.3).)

Example
gap> List(RightTransversal(g,u),i->CanonicalRightCosetElement(u,i));

[(), (2,3,4), (1,2,3,4), (3,4)]

gap> PositionCanonical(rt,(1,2,3));

1

gap> rt[1];

()

39.9 Double Cosets

39.9.1 DoubleCoset

▷ DoubleCoset(U, g, V) (operation)

The groups U and V must be subgroups of a common supergroup G of which g is an element. This
command constructs the double coset U g V which is the set of all elements of the form ugv for any
u ∈ U , v ∈ V . For element operations such as in, a double coset behaves like a set of group elements.
The double coset stores U in the attribute LeftActingGroup, g as Representative (30.4.7), and V

as RightActingGroup.

39.9.2 RepresentativesContainedRightCosets

▷ RepresentativesContainedRightCosets(D) (attribute)

A double coset D = UgV can be considered as a union of right cosets Uhi. (It is the union of
the orbit of Ug under right multiplication by V .) For a double coset D this function returns a set
of representatives hi such that D =

⋃
hi

Uhi. The representatives returned are canonical for U (see
CanonicalRightCosetElement (39.7.3)) and form a set.

Example
gap> u:=Subgroup(g,[(1,2,3),(1,2)]);;v:=Subgroup(g,[(3,4)]);;

gap> c:=DoubleCoset(u,(2,4),v);

DoubleCoset(Group([(1,2,3), (1,2)]),(2,4),Group([(3,4)]))

gap> (1,2,3) in c;

false

gap> (2,3,4) in c;

true

GAP - Reference Manual 573

gap> LeftActingGroup(c);

Group([(1,2,3), (1,2)])

gap> RightActingGroup(c);

Group([(3,4)])

gap> RepresentativesContainedRightCosets(c);

[(2,3,4)]

39.9.3 DoubleCosets

▷ DoubleCosets(G, U, V) (function)

▷ DoubleCosetsNC(G, U, V) (operation)

computes a duplicate free list of all double cosets U g V for g ∈ G . The groups U and V must be
subgroups of the group G . The NC version does not check whether U and V are subgroups of G .

Example
gap> dc:=DoubleCosets(g,u,v);

[DoubleCoset(Group([(1,2,3), (1,2)]),(),Group([(3,4)])),

DoubleCoset(Group([(1,2,3), (1,2)]),(1,3)(2,4),Group(

[(3,4)])), DoubleCoset(Group([(1,2,3), (1,2)]),(1,4)

(2,3),Group([(3,4)]))]

gap> List(dc,Representative);

[(), (1,3)(2,4), (1,4)(2,3)]

39.9.4 IsDoubleCoset (operation)

▷ IsDoubleCoset(obj) (Category)

The category of double cosets.

39.9.5 DoubleCosetRepsAndSizes

▷ DoubleCosetRepsAndSizes(G, U, V) (operation)

returns a list of double coset representatives and their sizes, the entries are lists of the form [r,n]
where r and n are an element of the double coset and the size of the coset, respectively. This operation
is faster than DoubleCosetsNC (39.9.3) because no double coset objects have to be created.

Example
gap> dc:=DoubleCosetRepsAndSizes(g,u,v);

[[(), 12], [(1,3)(2,4), 6], [(1,4)(2,3), 6]]

39.9.6 InfoCoset

▷ InfoCoset (info class)

The information function for coset and double coset operations is InfoCoset.

GAP - Reference Manual 574

39.10 Conjugacy Classes

39.10.1 ConjugacyClass

▷ ConjugacyClass(G, g) (operation)

creates the conjugacy class in G with representative g . This class is an external set, so functions
such as Representative (30.4.7) (which returns g), ActingDomain (41.12.3) (which returns G),
StabilizerOfExternalSet (41.12.10) (which returns the centralizer of g) and AsList (30.3.8)
work for it.

A conjugacy class is an external orbit (see ExternalOrbit (41.12.9)) of group elements with the
group acting by conjugation on it. Thus element tests or operation representatives can be computed.
The attribute Centralizer (35.4.4) gives the centralizer of the representative (which is the same
result as StabilizerOfExternalSet (41.12.10)). (This is a slight abuse of notation: This is not the
centralizer of the class as a set which would be the standard behaviour of Centralizer (35.4.4).)

39.10.2 ConjugacyClasses (attribute)

▷ ConjugacyClasses(G) (attribute)

returns the conjugacy classes of elements of G as a list of class objects of G (see ConjugacyClass
(39.10.1) for details). It is guaranteed that the class of the identity is in the first position, the further
arrangement depends on the method chosen (and might be different for equal but not identical groups).

For very small groups (of size up to 500) the classes will be computed by the conjugation action of
G on itself (see ConjugacyClassesByOrbits (39.10.4)). This can be deliberately switched off using
the “noaction” option shown below.

For solvable groups, the default method to compute the classes is by homomorphic lift (see sec-
tion 45.17).

For other groups the method of [Hul00] is employed.
ConjugacyClasses supports the following options that can be used to modify this strategy:

random

The classes are computed by random search. See ConjugacyClassesByRandomSearch

(39.10.3) below.

action

The classes are computed by action of G on itself. See ConjugacyClassesByOrbits (39.10.4)
below.

noaction

Even for small groups ConjugacyClassesByOrbits (39.10.4) is not used as a default. This
can be useful if the elements of the group use a lot of memory.

Example
gap> g:=SymmetricGroup(4);;

gap> cl:=ConjugacyClasses(g);

[()^G, (1,2)^G, (1,2)(3,4)^G, (1,2,3)^G, (1,2,3,4)^G]

gap> Representative(cl[3]);Centralizer(cl[3]);

(1,2)(3,4)

Group([(1,2), (1,3)(2,4), (3,4)])

GAP - Reference Manual 575

gap> Size(Centralizer(cl[5]));

4

gap> Size(cl[2]);

6

In general, you will not need to have to influence the method, but simply call ConjugacyClasses
–GAP will try to select a suitable method on its own. The method specifications are provided here
mainly for expert use.

39.10.3 ConjugacyClassesByRandomSearch

▷ ConjugacyClassesByRandomSearch(G) (function)

computes the classes of the group G by random search. This works very efficiently for almost
simple groups.

This function is also accessible via the option random to the function ConjugacyClass (39.10.1).

39.10.4 ConjugacyClassesByOrbits

▷ ConjugacyClassesByOrbits(G) (function)

computes the classes of the group G as orbits of G on its elements. This can be quick but unsur-
prisingly may also take a lot of memory if G becomes larger. All the classes will store their element
list and thus a membership test will be quick as well.

This function is also accessible via the option action to the function ConjugacyClass (39.10.1).
Typically, for small groups (roughly of order up to 103) the computation of classes as orbits under

the action is fastest; memory restrictions (and the increasing cost of eliminating duplicates) make this
less efficient for larger groups.

Calculation by random search has the smallest memory requirement, but in generally performs
worse, the more classes are there.

The following example shows the effect of this for a small group with many classes:
Example

gap> h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:noaction);;time;

110

gap> h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:random);;time;

300

gap> h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:action);;time;

30

39.10.5 NrConjugacyClasses

▷ NrConjugacyClasses(G) (attribute)

returns the number of conjugacy classes of G .
Example

gap> g:=Group((1,2,3,4),(1,2));;

gap> NrConjugacyClasses(g);

5

GAP - Reference Manual 576

39.10.6 RationalClass

▷ RationalClass(G, g) (operation)

creates the rational class in G with representative g . A rational class consists of all elements that
are conjugate to g or to an i-th power of g where i is coprime to the order of g. Thus a rational
class can be interpreted as a conjugacy class of cyclic subgroups. A rational class is an external set
(IsExternalSet (41.12.1)) of group elements with the group acting by conjugation on it, but not an
external orbit.

39.10.7 RationalClasses

▷ RationalClasses(G) (attribute)

returns a list of the rational classes of the group G . (See RationalClass (39.10.6).)
Example

gap> RationalClasses(DerivedSubgroup(g));

[RationalClass(AlternatingGroup([1 .. 4]), ()),

RationalClass(AlternatingGroup([1 .. 4]), (1,2)(3,4)),

RationalClass(AlternatingGroup([1 .. 4]), (1,2,3))]

39.10.8 GaloisGroup (of rational class of a group)

▷ GaloisGroup(ratcl) (attribute)

Suppose that ratcl is a rational class of a group G with representative g. The exponents i for
which gi lies already in the ordinary conjugacy class of g, form a subgroup of the prime residue class
group Pn (see PrimitiveRootMod (15.3.4)), the so-called Galois group of the rational class. The
prime residue class group Pn is obtained in GAP as Units(Integers mod n), the unit group of a
residue class ring. The Galois group of a rational class ratcl is stored in the attribute GaloisGroup
as a subgroup of this group.

39.10.9 IsConjugate

▷ IsConjugate(G, x, y) (operation)

▷ IsConjugate(G, U, V) (operation)

tests whether the elements x and y or the subgroups U and V are conjugate under the action of G .
(They do not need to be contained in G .) This command is only a shortcut to RepresentativeAction
(41.6.1).

Example
gap> IsConjugate(g,Group((1,2,3,4),(1,3)),Group((1,3,2,4),(1,2)));

true

RepresentativeAction (41.6.1) can be used to obtain conjugating elements.
Example

gap> RepresentativeAction(g,(1,2),(3,4));

(1,3)(2,4)

GAP - Reference Manual 577

39.10.10 NthRootsInGroup

▷ NthRootsInGroup(G, e, n) (function)

Let e be an element in the group G . This function returns a list of all those elements in G whose
n-th power is e .

Example
gap> NthRootsInGroup(g,(1,2)(3,4),2);

[(1,3,2,4), (1,4,2,3)]

39.11 Normal Structure

For the operations Centralizer (35.4.4) and Centre (35.4.5), see Chapter 35.

39.11.1 Normalizer

▷ Normalizer(G, U) (operation)

▷ Normalizer(G, g) (operation)

For two groups G , U , Normalizer computes the normalizer NG (U), that is, the stabilizer of U
under the conjugation action of G .

For a group G and a group element g , Normalizer computes NG (⟨g⟩).
Example

gap> Normalizer(g,Subgroup(g,[(1,2,3)]));

Group([(1,2,3), (2,3)])

39.11.2 Core

▷ Core(S, U) (operation)

If S and U are groups of elements in the same family, this operation returns the core of U in S , that
is the intersection of all S-conjugates of U .

Example
gap> g:=Group((1,2,3,4),(1,2));;

gap> Core(g,Subgroup(g,[(1,2,3,4)]));

Group(())

39.11.3 PCore

▷ PCore(G, p) (operation)

The p-core of G is the largest normal p-subgroup of G . It is the core of a Sylow p-subgroup of
G , see Core (39.11.2).

Example
gap> g:=DicyclicGroup(12);;

gap> PCore(g,2);

Group([y3])

GAP - Reference Manual 578

gap> PCore(g,2) = Core(g,SylowSubgroup(g,2));

true

gap> PCore(g,3);

Group([y*y3])

gap> PCore(g,5);

Group([])

gap> g:=SymmetricGroup(4);;

gap> PCore(g,2);

Group([(1,4)(2,3), (1,2)(3,4)])

gap> PCore(g,2) = Core(g,SylowSubgroup(g,2));

true

39.11.4 NormalClosure

▷ NormalClosure(G, U) (operation)

▷ NormalClosure(G, list) (operation)

The normal closure of U in G is the smallest normal subgroup of the closure of G and U which
contains U .

The second argument may also be a list of group elements, in which case the normal closure of
the group generated by these elements is computed.

Example
gap> NormalClosure(g,Subgroup(g,[(1,2,3)])) = Group([(1,2,3), (2,3,4)]);

true

gap> NormalClosure(g,[(1,2,3)]) = Group([(1,2,3), (2,3,4)]);

true

gap> NormalClosure(g,Group((3,4,5))) = Group([(3,4,5), (1,5,4), (1,2,5)]);

true

39.11.5 NormalIntersection

▷ NormalIntersection(G, U) (operation)

computes the intersection of G and U , assuming that G is normalized by U . This works faster than
Intersection, but will not produce the intersection if G is not normalized by U .

Example
gap> NormalIntersection(Group((1,2)(3,4),(1,3)(2,4)),Group((1,2,3,4)));

Group([(1,3)(2,4)])

39.11.6 ComplementClassesRepresentatives

▷ ComplementClassesRepresentatives(G, N) (operation)

Let N be a normal subgroup of G . This command returns a set of representatives for the conjugacy
classes of complements of N in G . Complements are subgroups of G which intersect trivially with N

and together with N generate G .
At the moment methods are available only for the case that N or G/N is solvable.

GAP - Reference Manual 579

Example
gap> ComplementClassesRepresentatives(g,Group((1,2)(3,4),(1,3)(2,4)));

[Group([(3,4), (2,4,3)])]

39.11.7 InfoComplement

▷ InfoComplement (info class)

Info class for the complement routines.

39.12 Specific and Parametrized Subgroups

The centre of a group (the subgroup of those elements that commute with all other elements of the
group) can be computed by the operation Centre (35.4.5).

39.12.1 TrivialSubgroup

▷ TrivialSubgroup(G) (attribute)

Example
gap> TrivialSubgroup(g);

Group(())

39.12.2 CommutatorSubgroup

▷ CommutatorSubgroup(G, H) (operation)

If G and H are two groups of elements in the same family, this operation returns the group generated
by all commutators [g,h] = g−1h−1gh (see Comm (31.12.3)) of elements g ∈ G and h ∈ H , that is the
group ⟨[g,h] | g ∈ G ,h ∈ H⟩.

Example
gap> CommutatorSubgroup(Group((1,2,3),(1,2)),Group((2,3,4),(3,4)));

Group([(1,4)(2,3), (1,3,4)])

gap> Size(last);

12

39.12.3 DerivedSubgroup

▷ DerivedSubgroup(G) (attribute)

The derived subgroup G ′ of G is the subgroup generated by all commutators of pairs of elements
of G . It is normal in G and the factor group G/G ′ is the largest abelian factor group of G .

Example
gap> g:=Group((1,2,3,4),(1,2));;

gap> DerivedSubgroup(g) = Group([(1,3,2), (2,4,3)]);

true

GAP - Reference Manual 580

39.12.4 CommutatorLength

▷ CommutatorLength(G) (attribute)

returns the minimal number n such that each element in the derived subgroup
(see DerivedSubgroup (39.12.3)) of the group G can be written as a product of (at most) n
commutators of elements in G .

Example
gap> CommutatorLength(g);

1

39.12.5 FittingSubgroup

▷ FittingSubgroup(G) (attribute)

The Fitting subgroup of a group G is its largest nilpotent normal subgroup.
Example

gap> FittingSubgroup(g);

Group([(1,2)(3,4), (1,4)(2,3)])

39.12.6 FrattiniSubgroup

▷ FrattiniSubgroup(G) (attribute)

The Frattini subgroup of a group G is the intersection of all maximal subgroups of G .
Example

gap> FrattiniSubgroup(g);

Group(())

39.12.7 PrefrattiniSubgroup

▷ PrefrattiniSubgroup(G) (attribute)

returns a Prefrattini subgroup of the finite solvable group G .
A factor M/N of G is called a Frattini factor if M/N is contained in the Frattini subgroup of G/N.

A subgroup P is a Prefrattini subgroup of G if P covers each Frattini chief factor of G , and if for
each maximal subgroup of G there exists a conjugate maximal subgroup, which contains P. In a finite
solvable group G the Prefrattini subgroups form a characteristic conjugacy class of subgroups and the
intersection of all these subgroups is the Frattini subgroup of G .

Example
gap> G := SmallGroup(60, 7);

<pc group of size 60 with 4 generators>

gap> P := PrefrattiniSubgroup(G);

Group([f2])

gap> Size(P);

2

gap> IsNilpotent(P);

true

gap> Core(G,P);

GAP - Reference Manual 581

Group([])

gap> FrattiniSubgroup(G);

Group([])

39.12.8 PerfectResiduum

▷ PerfectResiduum(G) (attribute)

is the smallest normal subgroup of G that has a solvable factor group.
Example

gap> PerfectResiduum(SymmetricGroup(5));

Alt([1 .. 5])

39.12.9 SolvableRadical

▷ SolvableRadical(G) (attribute)

is the solvable radical of the group G , i.e., the largest solvable normal subgroup of G .
Example

gap> rad:= SolvableRadical(SL(2,5));

<group of 2x2 matrices of size 2 over GF(5)>

gap> Size(rad);

2

39.12.10 Socle

▷ Socle(G) (attribute)

The socle of the group G is the subgroup generated by all minimal normal subgroups.
Example

gap> Socle(g);

Group([(1,4)(2,3), (1,2)(3,4)])

39.12.11 SupersolvableResiduum

▷ SupersolvableResiduum(G) (attribute)

is the supersolvable residuum of the group G , that is, its smallest normal subgroup N such that the
factor group G/N is supersolvable.

Example
gap> SupersolvableResiduum(g) = Group([(1,3)(2,4), (1,4)(2,3)]);

true

GAP - Reference Manual 582

39.12.12 PRump

▷ PRump(G, p) (operation)

For a prime p, the p-rump of a group G is the subgroup G ′Gp . Unless it equals G itself (which
is the e.g. the case if G is perfect), it is equal to the second term of the p-central series of G , see
PCentralSeries (39.17.13).

Example
gap> g:=DicyclicGroup(12);;

gap> PRump(g,2) = PCentralSeries(g,2)[2];

true

gap> g:=SymmetricGroup(4);;

gap> PRump(g,2) = AlternatingGroup(4);

true

39.13 Sylow Subgroups and Hall Subgroups

With respect to the following GAP functions, please note that by theorems of P. Hall, a group G is
solvable if and only if one of the following conditions holds.

1. For each prime p dividing the order of G, there exists a p-complement (see SylowComplement
(39.13.2)).

2. For each set P of primes dividing the order of G, there exists a P-Hall subgroup
(see HallSubgroup (39.13.3)).

3. G has a Sylow system (see SylowSystem (39.13.4)).

4. G has a complement system (see ComplementSystem (39.13.5)).

39.13.1 SylowSubgroup

▷ SylowSubgroup(G, p) (operation)

returns a Sylow p-subgroup of the finite group G . This is a p-subgroup of G whose index in G is
coprime to p . SylowSubgroup computes Sylow subgroups via the operation SylowSubgroupOp.

Example
gap> g:=SymmetricGroup(4);;

gap> SylowSubgroup(g,2);

Group([(1,2), (3,4), (1,3)(2,4)])

39.13.2 SylowComplement

▷ SylowComplement(G, p) (operation)

returns a Sylow p-complement of the finite group G . This is a subgroup U of order coprime to p

such that the index [G : U] is a p-power.
At the moment methods exist only if G is solvable and GAP will issue an error if G is not solvable.

GAP - Reference Manual 583

Example
gap> SylowComplement(g,3);

Group([(1,2), (3,4), (1,3)(2,4)])

39.13.3 HallSubgroup

▷ HallSubgroup(G, P) (operation)

computes a P-Hall subgroup for a set P of primes. This is a subgroup the order of which is only
divisible by primes in P and whose index is coprime to all primes in P . Such a subgroup is unique up to
conjugacy if G is solvable. The function computes Hall subgroups via the operation HallSubgroupOp.

If G is solvable this function always returns a subgroup. If G is not solvable this function might
return a subgroup (if it is unique up to conjugacy), a list of subgroups (which are representatives of
the conjugacy classes in case there are several such classes) or fail if no such subgroup exists.

Example
gap> h:=SmallGroup(60,10);;

gap> u:=HallSubgroup(h,[2,3]);

Group([f1, f2, f3])

gap> Size(u);

12

gap> h:=PSL(3,5);;

gap> HallSubgroup(h,[2,3]);

[<permutation group of size 96 with 6 generators>,

<permutation group of size 96 with 6 generators>]

gap> u := HallSubgroup(h,[3,31]);;

gap> Size(u); StructureDescription(u);

93

"C31 : C3"

gap> HallSubgroup(h,[5,31]);

fail

39.13.4 SylowSystem

▷ SylowSystem(G) (attribute)

A Sylow system of a group G is a set of Sylow subgroups of G such that every pair of subgroups
from this set commutes as subgroups. Sylow systems exist only for solvable groups. The operation
returns fail if the group G is not solvable.

Example
gap> h:=SmallGroup(60,10);;

gap> SylowSystem(h);

[Group([f1, f2]), Group([f3]), Group([f4])]

gap> List(last,Size);

[4, 3, 5]

39.13.5 ComplementSystem

▷ ComplementSystem(G) (attribute)

GAP - Reference Manual 584

A complement system of a group G is a set of Hall p′-subgroups of G , where p′ runs through
the subsets of prime factors of |G | that omit exactly one prime. Every pair of subgroups from
this set commutes as subgroups. Complement systems exist only for solvable groups, therefore
ComplementSystem returns fail if the group G is not solvable.

Example
gap> ComplementSystem(h);

[Group([f3, f4]), Group([f1, f2, f4]), Group([f1, f2, f3])]

gap> List(last,Size);

[15, 20, 12]

39.13.6 HallSystem

▷ HallSystem(G) (attribute)

returns a list containing one Hall P-subgroup for each set P of prime divisors of the order of G .
Hall systems exist only for solvable groups. The operation returns fail if the group G is not solvable.

Example
gap> HallSystem(h);

[Group([]), Group([f1, f2]), Group([f1, f2, f3]),

Group([f1, f2, f3, f4]), Group([f1, f2, f4]), Group([f3]),

Group([f3, f4]), Group([f4])]

gap> List(last,Size);

[1, 4, 12, 60, 20, 3, 15, 5]

39.14 Subgroups characterized by prime powers

39.14.1 Omega

▷ Omega(G, p[, n]) (operation)

For a p-group G , one defines Ωn (G) = ⟨g ∈ G | gp
n
= 1⟩. The default value for n is 1.

Example
gap> h:=SmallGroup(16,10);

<pc group of size 16 with 4 generators>

gap> Omega(h,2);

Group([f2, f3, f4])

39.14.2 Agemo

▷ Agemo(G, p[, n]) (function)

For a p-group G , one defines ℧n (G) = ⟨gpn | g ∈ G⟩. The default value for n is 1.
Example

gap> Agemo(h,2);Agemo(h,2,2);

Group([f4])

Group([])

GAP - Reference Manual 585

39.15 Group Properties

Some properties of groups can be defined not only for groups but also for other structures. For exam-
ple, nilpotency and solvability make sense also for algebras. Note that these names refer to different
definitions for groups and algebras, contrary to the situation with finiteness or commutativity. In such
cases, the name of the function for groups got a suffix Group to distinguish different meanings for
different structures.

Some functions, such as IsPSolvable (39.15.26) and IsPNilpotent (39.15.27), although they
are mathematical properties, are not properties in the sense of GAP (see 13.5 and 13.7), as they depend
on a parameter.

39.15.1 IsCyclic

▷ IsCyclic(G) (property)

A group is cyclic if it can be generated by one element. For a cyclic group, one can compute a
generating set consisting of only one element using MinimalGeneratingSet (39.22.3).

39.15.2 IsElementaryAbelian

▷ IsElementaryAbelian(G) (property)

A group G is elementary abelian if it is commutative and if there is a prime p such that the order
of each element in G divides p.

39.15.3 IsNilpotentGroup

▷ IsNilpotentGroup(G) (property)

A group is nilpotent if the lower central series (see LowerCentralSeriesOfGroup (39.17.11) for
a definition) reaches the trivial subgroup in a finite number of steps.

39.15.4 NilpotencyClassOfGroup

▷ NilpotencyClassOfGroup(G) (attribute)

The nilpotency class of a nilpotent group G is the number of steps in the lower central series of G
(see LowerCentralSeriesOfGroup (39.17.11));

If G is not nilpotent an error is issued.

39.15.5 IsPerfectGroup

▷ IsPerfectGroup(G) (property)

A group is perfect if it equals its derived subgroup (see DerivedSubgroup (39.12.3)).

GAP - Reference Manual 586

39.15.6 IsSolvableGroup

▷ IsSolvableGroup(G) (property)

A group is solvable if the derived series (see DerivedSeriesOfGroup (39.17.7) for a definition)
reaches the trivial subgroup in a finite number of steps.

For finite groups this is the same as being polycyclic (see IsPolycyclicGroup (39.15.7)), and
each polycyclic group is solvable, but there are infinite solvable groups that are not polycyclic.

39.15.7 IsPolycyclicGroup

▷ IsPolycyclicGroup(G) (property)

A group is polycyclic if it has a subnormal series with cyclic factors. For finite groups this is the
same as if the group is solvable (see IsSolvableGroup (39.15.6)).

39.15.8 IsSupersolvableGroup

▷ IsSupersolvableGroup(G) (property)

A finite group is supersolvable if it has a normal series with cyclic factors.

39.15.9 IsMonomialGroup

▷ IsMonomialGroup(G) (property)

A finite group is monomial if every irreducible complex character is induced from a linear charac-
ter of a subgroup.

39.15.10 IsSimpleGroup

▷ IsSimpleGroup(G) (property)

▷ IsNonabelianSimpleGroup(G) (property)

A group is simple if it is nontrivial and has no nontrivial normal subgroups. A nonabelian simple
group is simple and not abelian.

39.15.11 IsAlmostSimpleGroup

▷ IsAlmostSimpleGroup(G) (property)

A group G is almost simple if a nonabelian simple group S exists such that G is isomorphic to a
subgroup of the automorphism group of S that contains all inner automorphisms of S.

Equivalently, G is almost simple if and only if it has a unique minimal normal subgroup N and if
N is a nonabelian simple group.

Note that an almost simple group is not defined as an extension of a simple group by outer au-
tomorphisms, since we want to exclude extensions of groups of prime order. In particular, a simple
group is almost simple if and only if it is nonabelian.

GAP - Reference Manual 587

Example
gap> IsAlmostSimpleGroup(AlternatingGroup(5));

true

gap> IsAlmostSimpleGroup(SymmetricGroup(5));

true

gap> IsAlmostSimpleGroup(SymmetricGroup(3));

false

gap> IsAlmostSimpleGroup(SL(2, 5));

false

39.15.12 IsQuasisimpleGroup

▷ IsQuasisimpleGroup(G) (property)

A group G is quasisimple if G is perfect (see IsPerfectGroup (39.15.5)) and if G/Z(G) is simple
(see IsSimpleGroup (39.15.10)), where Z(G) is the centre of G (see Centre (35.4.5)).

Example
gap> IsQuasisimpleGroup(AlternatingGroup(5));

true

gap> IsQuasisimpleGroup(SymmetricGroup(5));

false

gap> IsQuasisimpleGroup(SL(2, 5));

true

39.15.13 IsomorphismTypeInfoFiniteSimpleGroup

▷ IsomorphismTypeInfoFiniteSimpleGroup(G) (attribute)

▷ IsomorphismTypeInfoFiniteSimpleGroup(n) (attribute)

For a finite simple group G , IsomorphismTypeInfoFiniteSimpleGroup returns a record with
the components name, shortname, series, and possibly parameter, describing the isomorphism
type of G .

The values of the components name, shortname, and series are strings, name gives name(s) for
G , shortname gives one name for G that is compatible with the naming scheme used in the GAP pack-
ages CTblLib and AtlasRep (and in the Atlas of Finite Groups [CCN+85]), and series describes
the following series.

(If different characterizations of G are possible only one is given by series and parameter, while
name may give several names.)

"A" Alternating groups, parameter gives the natural degree.

"L" Linear groups (Chevalley type A), parameter is a list [n,q] that indicates L(n,q).

"2A"

Twisted Chevalley type 2A, parameter is a list [n,q] that indicates 2A(n,q).

"B" Chevalley type B, parameter is a list [n,q] that indicates B(n,q).

"2B"

Twisted Chevalley type 2B, parameter is a value q that indicates 2B(2,q).

GAP - Reference Manual 588

"C" Chevalley type C, parameter is a list [n,q] that indicates C(n,q).

"D" Chevalley type D, parameter is a list [n,q] that indicates D(n,q).

"2D"

Twisted Chevalley type 2D, parameter is a list [n,q] that indicates 2D(n,q).

"3D"

Twisted Chevalley type 3D, parameter is a value q that indicates 3D(4,q).

"E" Exceptional Chevalley type E, parameter is a list [n,q] that indicates En(q). The value of n is
6, 7, or 8.

"2E"

Twisted exceptional Chevalley type E6, parameter is a value q that indicates 2E6(q).

"F" Exceptional Chevalley type F , parameter is a value q that indicates F(4,q).

"2F"

Twisted exceptional Chevalley type 2F (Ree groups), parameter is a value q that indicates
2F(4,q).

"G" Exceptional Chevalley type G, parameter is a value q that indicates G(2,q).

"2G"

Twisted exceptional Chevalley type 2G (Ree groups), parameter is a value q that indicates
2G(2,q).

"Spor"

Sporadic simple groups, name gives the name.

"Z" Cyclic groups of prime size, parameter gives the size.

An equal sign in the name denotes different naming schemes for the same group, a tilde sign
abstract isomorphisms between groups constructed in a different way.

Example
gap> IsomorphismTypeInfoFiniteSimpleGroup(

> Group((4,5)(6,7),(1,2,4)(3,5,6)));

rec(

name := "A(1,7) = L(2,7) ~ B(1,7) = O(3,7) ~ C(1,7) = S(2,7) ~ 2A(1,\

7) = U(2,7) ~ A(2,2) = L(3,2)", parameter := [2, 7], series := "L",

shortname := "L3(2)")

For a positive integer n , IsomorphismTypeInfoFiniteSimpleGroup returns fail if n is not the
order of a finite simple group, and a record as described for the case of a group G otherwise. If more
than one simple group of order n exists then the result record contains only the name component, a
string that lists the two possible isomorphism types of simple groups of this order.

Example
gap> IsomorphismTypeInfoFiniteSimpleGroup(5);

rec(name := "Z(5)", parameter := 5, series := "Z", shortname := "C5"

)

gap> IsomorphismTypeInfoFiniteSimpleGroup(6);

GAP - Reference Manual 589

fail

gap> IsomorphismTypeInfoFiniteSimpleGroup(Size(SymplecticGroup(6,3))/2);

rec(

name := "cannot decide from size alone between B(3,3) = O(7,3) and C\

(3,3) = S(6,3)", parameter := [3, 3])

39.15.14 SimpleGroup

▷ SimpleGroup(id[, param]) (function)

This function will construct AN instance of the specified nonabelian simple group. Groups are
specified via their name in ATLAS style notation, with parameters added if necessary. The intelligence
applied to parsing the name is limited, and at the moment no proper extensions can be constructed.
For groups which do not have a permutation representation of small degree the AtlasRep package
might need to be installed to construct these groups.

Example
gap> g:=SimpleGroup("M(23)");

M23

gap> Size(g);

10200960

gap> g:=SimpleGroup("PSL",3,5);

PSL(3,5)

gap> Size(g);

372000

gap> g:=SimpleGroup("PSp6",2);

PSp(6,2)

39.15.15 SimpleGroupsIterator

▷ SimpleGroupsIterator([start[, end]]) (function)

This function returns an iterator that will run over all nonabelian simple groups, starting at order
start if specified, up to order 1027 (or -- if specified -- order end). If the option NOPSL2 is given,
groups of type PSL2(q) are omitted.

Example
gap> it:=SimpleGroupsIterator(20000);

<iterator>

gap> List([1..8],x->NextIterator(it));

[A8, PSL(3,4), PSL(2,37), PSp(4,3), Sz(8), PSL(2,32), PSL(2,41),

PSL(2,43)]

gap> it:=SimpleGroupsIterator(1,2000);;

gap> l:=[];;for i in it do Add(l,i);od;l;

[A5, PSL(2,7), A6, PSL(2,8), PSL(2,11), PSL(2,13)]

gap> it:=SimpleGroupsIterator(20000,100000:NOPSL2);;

gap> l:=[];;for i in it do Add(l,i);od;l;

[A8, PSL(3,4), PSp(4,3), Sz(8), PSU(3,4), M12]

GAP - Reference Manual 590

39.15.16 SmallSimpleGroup

▷ SmallSimpleGroup(order[, i]) (function)

Returns: The i th simple group of order order in the stored list, given in a small-degree permu-
tation representation, or fail (20.2.1) if no such simple group exists.

If i is not given, it defaults to 1. Currently, all simple groups of order less than 106 are available
via this function.

Example
gap> SmallSimpleGroup(60);

A5

gap> SmallSimpleGroup(20160,1);

A8

gap> SmallSimpleGroup(20160,2);

PSL(3,4)

39.15.17 AllSmallNonabelianSimpleGroups

▷ AllSmallNonabelianSimpleGroups(orders) (function)

Returns: A list of all nonabelian simple groups whose order lies in the range orders .
The groups are given in small-degree permutation representations. The returned list is sorted

by ascending group order. Currently, all simple groups of order less than 106 are available via this
function.

Example
gap> List(AllSmallNonabelianSimpleGroups([1..1000000]),

> StructureDescription);

["A5", "PSL(3,2)", "A6", "PSL(2,8)", "PSL(2,11)", "PSL(2,13)",

"PSL(2,17)", "A7", "PSL(2,19)", "PSL(2,16)", "PSL(3,3)",

"PSU(3,3)", "PSL(2,23)", "PSL(2,25)", "M11", "PSL(2,27)",

"PSL(2,29)", "PSL(2,31)", "A8", "PSL(3,4)", "PSL(2,37)", "O(5,3)",

"Sz(8)", "PSL(2,32)", "PSL(2,41)", "PSL(2,43)", "PSL(2,47)",

"PSL(2,49)", "PSU(3,4)", "PSL(2,53)", "M12", "PSL(2,59)",

"PSL(2,61)", "PSU(3,5)", "PSL(2,67)", "J1", "PSL(2,71)", "A9",

"PSL(2,73)", "PSL(2,79)", "PSL(2,64)", "PSL(2,81)", "PSL(2,83)",

"PSL(2,89)", "PSL(3,5)", "M22", "PSL(2,97)", "PSL(2,101)",

"PSL(2,103)", "HJ", "PSL(2,107)", "PSL(2,109)", "PSL(2,113)",

"PSL(2,121)", "PSL(2,125)", "O(5,4)"]

39.15.18 IsFinitelyGeneratedGroup

▷ IsFinitelyGeneratedGroup(G) (property)

tests whether the group G can be generated by a finite number of generators. (This property is
mainly used to obtain finiteness conditions.)

Note that this is a pure existence statement. Even if a group is known to be generated by a finite
number of elements, it can be very hard or even impossible to obtain such a generating set if it is not
known.

GAP - Reference Manual 591

39.15.19 IsSubsetLocallyFiniteGroup

▷ IsSubsetLocallyFiniteGroup(U) (property)

A group is called locally finite if every finitely generated subgroup is finite. This property checks
whether the group U is a subset of a locally finite group. This is used to check whether finite generation
will imply finiteness, as it does for example for permutation groups.

39.15.20 IsPGroup

▷ IsPGroup(G) (property)

A p-group is a group in which the order (see Order (31.10.10)) of every element is of the form
pn for a prime integer p and a nonnegative integer n. IsPGroup returns true if G is a p-group, and
false otherwise.

Finite p-groups are precisely those groups whose order (see Size (30.4.6)) is 1 or a prime power
(see IsPrimePowerInt (14.4.4), and are always nilpotent.

Note that p-groups can also be infinite, and in that case, need not be nilpotent.
Example

gap> IsPGroup(DihedralGroup(8));

true

gap> IsPGroup(TrivialGroup());

true

gap> IsPGroup(DihedralGroup(10));

false

39.15.21 IsPowerfulPGroup

▷ IsPowerfulPGroup(G) (property)

A finite p-group G is said to be a powerful p-group if the commutator subgroup [G ,G] is contained
in G p if the prime p is odd, or if [G ,G] is contained in G 4 if p = 2. The subgroup G p is called the
first Agemo subgroup, (see Agemo (39.14.2)). IsPowerfulPGroup returns true if G is a powerful
p-group, and false otherwise. Note: This function returns true if G is the trivial group.

39.15.22 IsRegularPGroup

▷ IsRegularPGroup(G) (property)

A finite p-group G is a regular p-group if for all a,b in G , one has apbp = (ab)pcp where c is an
element of the derived subgroup of the group generated by a and b (see [Hal34]). IsRegularPGroup
returns true if G is a regular p-group, and false otherwise. Note: This function returns true if G is
the trivial group.

39.15.23 PrimePGroup

▷ PrimePGroup(G) (attribute)

GAP - Reference Manual 592

If G is a nontrivial p-group (see IsPGroup (39.15.20)), PrimePGroup returns the prime integer
p; if G is trivial then PrimePGroup returns fail. Otherwise an error is issued.

(One should avoid a common error of writing if IsPGroup(g) then ... PrimePGroup(g)

... where the code represented by dots assumes that PrimePGroup(g) is an integer.)

39.15.24 PClassPGroup

▷ PClassPGroup(G) (attribute)

The p-class of a p-group G (see IsPGroup (39.15.20)) is the length of the lower p-central series
(see PCentralSeries (39.17.13)) of G . If G is not a p-group then an error is issued.

39.15.25 RankPGroup

▷ RankPGroup(G) (attribute)

For a p-group G (see IsPGroup (39.15.20)), RankPGroup returns the rank of G , which is defined
as the minimal size of a generating system of G . If G is not a p-group then an error is issued.

Example
gap> h:=Group((1,2,3,4),(1,3));;

gap> PClassPGroup(h);

2

gap> RankPGroup(h);

2

39.15.26 IsPSolvable

▷ IsPSolvable(G, p) (operation)

A finite group is p-solvable if every chief factor either has order not divisible by p, or is solvable.

39.15.27 IsPNilpotent

▷ IsPNilpotent(G, p) (operation)

A group is p-nilpotent if it possesses a normal p-complement.

39.16 Numerical Group Attributes

This section gives only some examples of numerical group attributes, so it should not serve as a
collection of all numerical group attributes. The manual contains more such attributes documented
in this manual, for example, NrConjugacyClasses (39.10.5), NilpotencyClassOfGroup (39.15.4)
and others.

Note also that some functions, such as EulerianFunction (39.16.3), are mathematical attributes,
but not GAP attributes (see 13.5) as they are depending on a parameter.

GAP - Reference Manual 593

39.16.1 AbelianInvariants

▷ AbelianInvariants(G) (attribute)

returns the abelian invariants (also sometimes called primary decomposition) of the commutator
factor group of the group G . These are given as a list of prime-powers or zeroes and describe the
structure of G/G ′ as a direct product of cyclic groups of prime power (or infinite) order.

(See IndependentGeneratorsOfAbelianGroup (39.22.5) to obtain actual generators).
Example

gap> g:=Group((1,2,3,4),(1,2),(5,6));;

gap> AbelianInvariants(g);

[2, 2]

gap> h:=FreeGroup(2);;h:=h/[h.1^3];;

gap> AbelianInvariants(h);

[0, 3]

39.16.2 Exponent

▷ Exponent(G) (attribute)

The exponent e of a group G is the lcm of the orders of its elements, that is, e is the smallest integer
such that ge = 1 for all g ∈ G .

Example
gap> Exponent(g);

12

39.16.3 EulerianFunction

▷ EulerianFunction(G, n) (operation)

returns the number of n-tuples (g1,g2, . . . ,gn) of elements of the group G that generate the whole
group G . The elements of such an n-tuple need not be different.

In [Hal36], the notation φn (G) is used for the value returned by EulerianFunction, and the
quotient of φn (G) by the order of the automorphism group of G is called dn (G). If G is a nonabelian
simple group then dn (G) is the greatest number d for which the direct product of d groups isomorphic
with G can be generated by n elements.

If the Library of Tables of Marks (see Chapter 70) covers the group G , you may also use
EulerianFunctionByTom (70.9.9).

Example
gap> EulerianFunction(g, 2);

432

39.17 Subgroup Series

In group theory many subgroup series are considered, and GAP provides commands to compute them.
In the following sections, there is always a series G =U1 >U2 > · · ·>Um = ⟨1⟩ of subgroups consid-
ered. A series also may stop without reaching G or ⟨1⟩.

GAP - Reference Manual 594

A series is called subnormal if every Ui+1 is normal in Ui.
A series is called normal if every Ui is normal in G.
A series of normal subgroups is called central if Ui/Ui+1 is central in G/Ui+1.
We call a series refinable if intermediate subgroups can be added to the series without destroying

the properties of the series.
Unless explicitly declared otherwise, all subgroup series are descending. That is they are stored in

decreasing order.

39.17.1 ChiefSeries

▷ ChiefSeries(G) (attribute)

is a series of normal subgroups of G which cannot be refined further. That is there is no normal
subgroup N of G with Ui > N > Ui+1. This attribute returns one chief series (of potentially many
possibilities).

Example
gap> g:=Group((1,2,3,4),(1,2));;

gap> ChiefSeries(g);

[Group([(1,2,3,4), (1,2)]),

Group([(2,4,3), (1,4)(2,3), (1,3)(2,4)]),

Group([(1,4)(2,3), (1,3)(2,4)]), Group(())]

39.17.2 ChiefSeriesThrough

▷ ChiefSeriesThrough(G, l) (operation)

is a chief series of the group G going through the normal subgroups in the list l , which must be a
list of normal subgroups of G contained in each other, sorted by descending size. This attribute returns
one chief series (of potentially many possibilities).

39.17.3 ChiefSeriesUnderAction

▷ ChiefSeriesUnderAction(H, G) (operation)

returns a series of normal subgroups of G which are invariant under H such that the series cannot
be refined any further. G must be a subgroup of H . This attribute returns one such series (of potentially
many possibilities).

39.17.4 SubnormalSeries

▷ SubnormalSeries(G, U) (operation)

If U is a subgroup of G this operation returns a subnormal series that descends from G to a subnor-
mal subgroup V ≥U . If U is subnormal, V = U .

Example
gap> s:=SubnormalSeries(g,Group((1,2)(3,4))) =

> [Group([(1,2,3,4), (1,2)]),

> Group([(1,2)(3,4), (1,3)(2,4)]),

GAP - Reference Manual 595

> Group([(1,2)(3,4)])];

true

39.17.5 CompositionSeries

▷ CompositionSeries(G) (attribute)

▷ CompositionSeriesThrough(G, normals) (operation)

A composition series is a subnormal series which cannot be refined. This attribute returns one com-
position series (of potentially many possibilities). The variant CompositionSeriesThrough takes as
second argument a list normals of normal subgroups of the group, and returns a composition series
that incorporates these normal subgroups.

39.17.6 DisplayCompositionSeries

▷ DisplayCompositionSeries(G) (function)

Displays a composition series of G in a nice way, identifying the simple factors.
Example

gap> CompositionSeries(g);

[Group([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)]),

Group([(2,4,3), (1,4)(2,3), (1,3)(2,4)]),

Group([(1,4)(2,3), (1,3)(2,4)]), Group([(1,3)(2,4)]), Group(())

]

gap> DisplayCompositionSeries(Group((1,2,3,4,5,6,7),(1,2)));

G (2 gens, size 5040)

| C2

S (5 gens, size 2520)

| A7

1 (0 gens, size 1)

39.17.7 DerivedSeriesOfGroup

▷ DerivedSeriesOfGroup(G) (attribute)

The derived series of a group is obtained by Ui+1 =U ′
i . It stops if Ui is perfect.

39.17.8 DerivedLength

▷ DerivedLength(G) (attribute)

The derived length of a group is the number of steps in the derived series. (As there is always the
group, it is the series length minus 1.)

Example
gap> List(DerivedSeriesOfGroup(g),Size);

[24, 12, 4, 1]

gap> DerivedLength(g);

3

GAP - Reference Manual 596

39.17.9 ElementaryAbelianSeries

▷ ElementaryAbelianSeries(G) (attribute)

▷ ElementaryAbelianSeriesLargeSteps(G) (attribute)

▷ ElementaryAbelianSeries(list) (attribute)

returns a series of normal subgroups of G such that all factors are elementary abelian. If the group
is not solvable (and thus no such series exists) it returns fail.

The variant ElementaryAbelianSeriesLargeSteps tries to make the steps in this series large
(by eliminating intermediate subgroups if possible) at a small additional cost.

In the third variant, an elementary abelian series through the given series of normal subgroups in
the list list is constructed.

Example
gap> List(ElementaryAbelianSeries(g),Size);

[24, 12, 4, 1]

39.17.10 InvariantElementaryAbelianSeries

▷ InvariantElementaryAbelianSeries(G, morph[, N[, fine]]) (function)

For a (solvable) group G and a list of automorphisms morph of G , this command finds a normal
series of G with elementary abelian factors such that every group in this series is invariant under every
automorphism in morph .

If a normal subgroup N of G which is invariant under morph is given, this series is chosen to
contain N . No tests are performed to check the validity of the arguments.

The series obtained will be constructed to prefer large steps unless fine is given as true.
Example

gap> g:=Group((1,2,3,4),(1,3));

Group([(1,2,3,4), (1,3)])

gap> hom:=GroupHomomorphismByImages(g,g,GeneratorsOfGroup(g),

> [(1,4,3,2),(1,4)(2,3)]);

[(1,2,3,4), (1,3)] -> [(1,4,3,2), (1,4)(2,3)]

gap> InvariantElementaryAbelianSeries(g,[hom]);

[Group([(1,2,3,4), (1,3)]), Group([(1,3)(2,4)]), Group(())]

39.17.11 LowerCentralSeriesOfGroup

▷ LowerCentralSeriesOfGroup(G) (attribute)

The lower central series of a group G is defined as Ui+1 := [G ,Ui]. It is a central series of normal
subgroups. The name derives from the fact that Ui is contained in the i-th step subgroup of any central
series.

39.17.12 UpperCentralSeriesOfGroup

▷ UpperCentralSeriesOfGroup(G) (attribute)

GAP - Reference Manual 597

The upper central series of a group G is defined as an ending series Ui/Ui+1 := Z(G/Ui+1). It is
a central series of normal subgroups. The name derives from the fact that Ui contains every i-th step
subgroup of a central series.

39.17.13 PCentralSeries

▷ PCentralSeries(G, p) (operation)

The p-central series of G is defined by U1 := G , Ui := [G ,Ui−1]U
p
i−1.

Example
gap> g:=DicyclicGroup(12);;

gap> PCentralSeries(g,2);

[<pc group of size 12 with 3 generators>, Group([y3, y*y3]), Group([y*y3])]

gap> g:=SymmetricGroup(4);;

gap> List(PCentralSeries(g,2), StructureDescription);

["S4", "A4"]

39.17.14 JenningsSeries

▷ JenningsSeries(G) (attribute)

For a p-group G , this function returns its Jennings series. This series is defined by setting G1 = G

and for i ≥ 0, Gi+1 = [Gi,G]G
p
j , where j is the smallest integer > i/p.

39.17.15 DimensionsLoewyFactors

▷ DimensionsLoewyFactors(G) (attribute)

This operation computes the dimensions of the factors of the Loewy series of G . (See [HB82, p.
157] for the slightly complicated definition of the Loewy Series.)

The dimensions are computed via the JenningsSeries (39.17.14) without computing the Loewy
series itself.

Example
gap> G:= SmallGroup(3^6, 100);

<pc group of size 729 with 6 generators>

gap> JenningsSeries(G);

[<pc group of size 729 with 6 generators>, Group([f3, f4, f5, f6]),

Group([f4, f5, f6]), Group([f5, f6]), Group([f5, f6]),

Group([f5, f6]), Group([f6]), Group([f6]), Group([f6]),

Group([<identity> of ...])]

gap> DimensionsLoewyFactors(G);

[1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26,

27, 27, 27, 27, 27, 27, 27, 27, 27, 26, 25, 23, 22, 20, 19, 17, 16,

14, 13, 11, 10, 8, 7, 5, 4, 2, 1]

39.17.16 AscendingChain

▷ AscendingChain(G, U) (function)

GAP - Reference Manual 598

This function computes an ascending chain of subgroups from U to G . This chain is given as a list
whose first entry is U and the last entry is G . The function tries to make the links in this chain small.

The option refineIndex can be used to give a bound for refinements of steps to avoid GAP trying
to enforce too small steps. The option cheap (if set to true) will overall limit the amount of heuristic
searches.

39.17.17 IntermediateGroup

▷ IntermediateGroup(G, U) (function)

This routine tries to find a subgroup E of G , such that G > E > U holds. If U is maximal in G ,
the function returns fail. This is done by finding minimal blocks for the operation of G on the right
cosets of U .

39.17.18 IntermediateSubgroups

▷ IntermediateSubgroups(G, U) (operation)

returns a list of all subgroups of G that properly contain U ; that is all subgroups between G and
U . It returns a record with a component subgroups, which is a list of these subgroups, as well as
a component inclusions, which lists all maximality inclusions among these subgroups. A maxi-
mality inclusion is given as a list [i, j] indicating that the subgroup number i is a maximal subgroup
of the subgroup number j, the numbers 0 and 1+ Length(subgroups) are used to denote U and G ,
respectively.

39.17.19 StructuralSeriesOfGroup

▷ StructuralSeriesOfGroup(G) (attribute)

The structural series of a finite group G is a descending series of characteristic subgroups which
goes through the derived series of the solvable radical of G, refined into elementary abelian factors,
as well as the socle and the Pker (kernel of the action on socle components) of the radical factor

Example
gap> gp:=WreathProduct(SymmetricGroup(5),SymmetricGroup(3));;

gap> gp:=WreathProduct(Group((1,2,3,4,5,6)),gp);;

gap> List(StructuralSeriesOfGroup(gp),Size);

[4874877920083968000, 812479653347328000, 101559956668416000, 470184984576, 32768, 1]

39.18 Factor Groups

39.18.1 NaturalHomomorphismByNormalSubgroup

▷ NaturalHomomorphismByNormalSubgroup(G, N) (function)

▷ NaturalHomomorphismByNormalSubgroupNC(G, N) (function)

returns a homomorphism from G to another group whose kernel is N . GAP will try to select the
image group as to make computations in it as efficient as possible. As the factor group G/N can be

GAP - Reference Manual 599

identified with the image of G this permits efficient computations in the factor group. The homo-
morphism returned is not necessarily surjective, so ImagesSource (32.4.1) should be used instead of
Range (32.3.7) to get a group isomorphic to the factor group. The NC variant does not check whether
N is normal in G .

39.18.2 FactorGroup

▷ FactorGroup(G, N) (function)

▷ FactorGroupNC(G, N) (operation)

returns the image of the NaturalHomomorphismByNormalSubgroup(G,N). This function is
provided for compatibility with older code, but if a connection between group and factor is desired,
users need to start by obtaining the NaturalHomomorphismByNormalSubgroup in the first place. The
NC version does not test whether N is normal in G .

Example
gap> g:=Group((1,2,3,4),(1,2));;n:=Subgroup(g,[(1,2)(3,4),(1,3)(2,4)]);;

gap> hom:=NaturalHomomorphismByNormalSubgroup(g,n);

[(1,2,3,4), (1,2)] -> [f1*f2, f1]

gap> Size(ImagesSource(hom));

6

gap> StructureDescription(Image(hom,g));

"S3"

39.18.3 CommutatorFactorGroup

▷ CommutatorFactorGroup(G) (attribute)

computes the commutator factor group G/G ′ of the group G .
Example

gap> CommutatorFactorGroup(g);

Group([f1])

39.18.4 MaximalAbelianQuotient

▷ MaximalAbelianQuotient(G) (attribute)

returns an epimorphism from G onto the maximal abelian quotient of G . The kernel of this epi-
morphism is the derived subgroup of G , see DerivedSubgroup (39.12.3).

39.18.5 HasAbelianFactorGroup

▷ HasAbelianFactorGroup(G, N) (function)

tests whether G / N is abelian (without explicitly constructing the factor group and without testing
whether N is in fact a normal subgroup).

Example
gap> HasAbelianFactorGroup(g,n);

false

GAP - Reference Manual 600

gap> HasAbelianFactorGroup(DerivedSubgroup(g),n);

true

39.18.6 HasElementaryAbelianFactorGroup

▷ HasElementaryAbelianFactorGroup(G, N) (function)

tests whether G / N is elementary abelian (without explicitly constructing the factor group and
without testing whether N is in fact a normal subgroup).

39.18.7 CentralizerModulo

▷ CentralizerModulo(G, N, elm) (operation)

Computes the full preimage of the centralizer CG /N (elm ·N) in G (without necessarily constructing
the factor group).

Example
gap> CentralizerModulo(g,n,(1,2));

Group([(3,4), (1,3)(2,4), (1,4)(2,3)])

39.19 Sets of Subgroups

39.19.1 ConjugacyClassSubgroups

▷ ConjugacyClassSubgroups(G, U) (operation)

generates the conjugacy class of subgroups of G with representative U . This class is an external set,
so functions such as Representative (30.4.7), (which returns U), ActingDomain (41.12.3) (which
returns G), StabilizerOfExternalSet (41.12.10) (which returns the normalizer of U), and AsList

(30.3.8) work for it.
(The use of the [] list access to select elements of the class is considered obsolescent and will be

removed in future versions. Use ClassElementLattice (39.20.2) instead.)
Example

gap> g:=Group((1,2,3,4),(1,2));;IsNaturalSymmetricGroup(g);;

gap> cl:=ConjugacyClassSubgroups(g,Subgroup(g,[(1,2)]));

Group([(1,2)])^G

gap> Size(cl);

6

gap> ClassElementLattice(cl,4);

Group([(2,3)])

39.19.2 IsConjugacyClassSubgroupsRep

▷ IsConjugacyClassSubgroupsRep(obj) (Representation)

▷ IsConjugacyClassSubgroupsByStabilizerRep(obj) (Representation)

GAP - Reference Manual 601

Is the representation GAP uses for conjugacy classes of subgroups. It can be
used to check whether an object is a class of subgroups. The second representation
IsConjugacyClassSubgroupsByStabilizerRep in addition is an external orbit by stabilizer and
will compute its elements via a transversal of the stabilizer.

39.19.3 ConjugacyClassesSubgroups

▷ ConjugacyClassesSubgroups(G) (attribute)

This attribute returns a list of all conjugacy classes of subgroups of the group G . It also is applicable
for lattices of subgroups (see LatticeSubgroups (39.20.1)). The order in which the classes are listed
depends on the method chosen by GAP. For each class of subgroups, a representative can be accessed
using Representative (30.4.7).

Example
gap> ConjugacyClassesSubgroups(g);

[Group(())^G, Group([(1,3)(2,4)])^G, Group([(3,4)])^G,

Group([(2,4,3)])^G, Group([(1,4)(2,3), (1,3)(2,4)])^G,

Group([(3,4), (1,2)(3,4)])^G,

Group([(1,3,2,4), (1,2)(3,4)])^G, Group([(3,4), (2,4,3)])^G,

Group([(1,4)(2,3), (1,3)(2,4), (3,4)])^G,

Group([(1,4)(2,3), (1,3)(2,4), (2,4,3)])^G,

Group([(1,4)(2,3), (1,3)(2,4), (2,4,3), (3,4)])^G]

39.19.4 ConjugacyClassesMaximalSubgroups

▷ ConjugacyClassesMaximalSubgroups(G) (attribute)

returns the conjugacy classes of maximal subgroups of G . Representatives of the classes can be
computed directly by MaximalSubgroupClassReps (39.19.5).

Example
gap> ConjugacyClassesMaximalSubgroups(g);

[Group([(2,4,3), (1,4)(2,3), (1,3)(2,4)])^G,

Group([(3,4), (1,3)(2,4)])^G, Group([(3,4), (2,4,3)])^G]

39.19.5 MaximalSubgroupClassReps

▷ MaximalSubgroupClassReps(G) (attribute)

returns a list of conjugacy representatives of the maximal subgroups of G .
Example

gap> MaximalSubgroupClassReps(g);

[Group([(2,4,3), (1,4)(2,3), (1,3)(2,4)]),

Group([(3,4), (1,3)(2,4)]), Group([(3,4), (2,4,3)])]

39.19.6 LowIndexSubgroups

▷ LowIndexSubgroups(G, index) (operation)

GAP - Reference Manual 602

The operation LowIndexSubgroups computes representatives of the conjugacy classes of sub-
groups of the group G that have index less than or equal to index .

For finitely presented groups this operation simply defaults to LowIndexSubgroupsFpGroup

(47.10.1). In other cases, it uses repeated calculation of maximal subgroups.
The function LowLayerSubgroups (39.20.6) works similar but does not bound the index, but

instead considers up to layer-th maximal subgroups.
Example

gap> g:=TransitiveGroup(18,950);;

gap> l:=LowIndexSubgroups(g,20);;Collected(List(l,x->Index(g,x)));

[[1, 1], [2, 1], [5, 1], [6, 1], [10, 2], [12, 3], [15, 1],

[16, 2], [18, 1], [20, 9]]

39.19.7 AllSubgroups

▷ AllSubgroups(G) (function)

For a finite group G AllSubgroups returns a list of all subgroups of G , intended primarily
for use in class for small examples. This list will quickly get very long and in general use of
ConjugacyClassesSubgroups (39.19.3) is recommended.

Example
gap> AllSubgroups(SymmetricGroup(3));

[Group(()), Group([(2,3)]), Group([(1,2)]), Group([(1,3)]),

Group([(1,2,3)]), Group([(1,2,3), (2,3)])]

39.19.8 MaximalSubgroups

▷ MaximalSubgroups(G) (attribute)

returns a list of all maximal subgroups of G . This may take up much space, therefore the command
should be avoided if possible. See ConjugacyClassesMaximalSubgroups (39.19.4).

Example
gap> MaximalSubgroups(Group((1,2,3),(1,2)));

[Group([(1,2,3)]), Group([(2,3)]), Group([(1,2)]),

Group([(1,3)])]

39.19.9 NormalSubgroups

▷ NormalSubgroups(G) (attribute)

returns a list of all normal subgroups of G .
Example

gap> g:=SymmetricGroup(4);;

gap> List(NormalSubgroups(g), StructureDescription);

["S4", "A4", "C2 x C2", "1"]

gap> g:=AbelianGroup([2,2]);; NormalSubgroups(g);

[<pc group of size 4 with 2 generators>, Group([f2]),

Group([f1*f2]), Group([f1]), Group([])]

The algorithm for the computation of normal subgroups is described in [Hul98].

GAP - Reference Manual 603

39.19.10 MaximalNormalSubgroups

▷ MaximalNormalSubgroups(G) (attribute)

is a list containing those proper normal subgroups of the group G that are maximal among the
proper normal subgroups. Gives error if G /G' is infinite, yielding infinitely many maximal normal
subgroups. Note, that the maximal normal subgroups of a group G can be computed more efficiently
if the character table of G is known or if G is known to be abelian or solvable (even if infinite). So if
the character table is needed, anyhow, or G is suspected to be abelian or solvable, then these should be
computed before computing the maximal normal subgroups.

Example
gap> g:=SymmetricGroup(4);; MaximalNormalSubgroups(g);

[Alt([1 .. 4])]

gap> f := FreeGroup("x", "y");; x := f.1;; y := f.2;;

gap> List(MaximalNormalSubgroups(f/[x^2, y^2]), GeneratorsOfGroup);

[[x, y*x*y^-1], [y, x*y*x^-1], [y*x^-1]]

39.19.11 MinimalNormalSubgroups

▷ MinimalNormalSubgroups(G) (attribute)

is a list containing those nontrivial normal subgroups of the group G that are minimal among the
nontrivial normal subgroups.

Example
gap> g:=SymmetricGroup(4);; MinimalNormalSubgroups(g);

[Group([(1,4)(2,3), (1,3)(2,4)])]

39.19.12 CharacteristicSubgroups

▷ CharacteristicSubgroups(G) (attribute)

returns a list of all characteristic subgroups of G , that is subgroups that are invariant under all
automorphisms.

Example
gap> g:=SymmetricGroup(4);;

gap> List(CharacteristicSubgroups(g), StructureDescription);

["S4", "A4", "C2 x C2", "1"]

gap> g:=AbelianGroup([2,2]);; CharacteristicSubgroups(g);

[<pc group of size 4 with 2 generators>, Group([])]

39.20 Subgroup Lattice

39.20.1 LatticeSubgroups

▷ LatticeSubgroups(G) (attribute)

computes the lattice of subgroups of the group G . This lattice has the conjugacy classes of
subgroups as attribute ConjugacyClassesSubgroups (39.19.3) and permits one to test maximal-
ity/minimality relations.

GAP - Reference Manual 604

Example
gap> g:=SymmetricGroup(4);;

gap> l:=LatticeSubgroups(g);

<subgroup lattice of Sym([1 .. 4]), 11 classes, 30 subgroups>

gap> ConjugacyClassesSubgroups(l);

[Group(())^G, Group([(1,3)(2,4)])^G, Group([(3,4)])^G,

Group([(2,4,3)])^G, Group([(1,4)(2,3), (1,3)(2,4)])^G,

Group([(3,4), (1,2)(3,4)])^G,

Group([(1,3,2,4), (1,2)(3,4)])^G, Group([(3,4), (2,4,3)])^G,

Group([(1,4)(2,3), (1,3)(2,4), (3,4)])^G,

Group([(1,4)(2,3), (1,3)(2,4), (2,4,3)])^G,

Group([(1,4)(2,3), (1,3)(2,4), (2,4,3), (3,4)])^G]

39.20.2 ClassElementLattice

▷ ClassElementLattice(C, n) (operation)

For a class C of subgroups, obtained by a lattice computation, this operation returns the n-th
conjugate subgroup in the class.

Because of other methods installed, calling AsList (30.3.8) with C can give a different arrange-
ment of the class elements!

The GAP package XGAP permits a graphical display of the lattice of subgroups in a nice way.

39.20.3 DotFileLatticeSubgroups

▷ DotFileLatticeSubgroups(L, file) (function)

This function produces a graphical representation of the subgroup lattice L in file file . The
output is in .dot (also known as GraphViz format). For details on the format, and information about
how to display or edit this format see https://www.graphviz.org. (On the Macintosh, the program
OmniGraffle is also able to read this format.)

Subgroups are labelled in the form i-j where i is the number of the class of subgroups and j the
number within this class. Normal subgroups are represented by a box.

Example
gap> DotFileLatticeSubgroups(l,"s4lat.dot");

39.20.4 MaximalSubgroupsLattice

▷ MaximalSubgroupsLattice(lat) (attribute)

For a lattice lat of subgroups this attribute contains the maximal subgroup relations among the
subgroups of the lattice. It is a list corresponding to the ConjugacyClassesSubgroups (39.19.3)
value of the lattice, each entry giving a list of the maximal subgroups of the representative of this
class. Every maximal subgroup is indicated by a list of the form [c,n] which means that the n-th
subgroup in class number c is a maximal subgroup of the representative.

The number n corresponds to access via ClassElementLattice (39.20.2) and not necessarily the
AsList (30.3.8) arrangement! See also MinimalSupergroupsLattice (39.20.5).

https://www.graphviz.org

GAP - Reference Manual 605

Example
gap> MaximalSubgroupsLattice(l);

[[], [[1, 1]], [[1, 1]], [[1, 1]],

[[2, 1], [2, 2], [2, 3]], [[3, 1], [3, 6], [2, 3]],

[[2, 3]], [[4, 1], [3, 1], [3, 2], [3, 3]],

[[7, 1], [6, 1], [5, 1]],

[[5, 1], [4, 1], [4, 2], [4, 3], [4, 4]],

[[10, 1], [9, 1], [9, 2], [9, 3], [8, 1], [8, 2],

[8, 3], [8, 4]]]

gap> last[6];

[[3, 1], [3, 6], [2, 3]]

gap> u1:=Representative(ConjugacyClassesSubgroups(l)[6]);

Group([(3,4), (1,2)(3,4)])

gap> u2:=ClassElementLattice(ConjugacyClassesSubgroups(l)[3],1);;

gap> u3:=ClassElementLattice(ConjugacyClassesSubgroups(l)[3],6);;

gap> u4:=ClassElementLattice(ConjugacyClassesSubgroups(l)[2],3);;

gap> IsSubgroup(u1,u2);IsSubgroup(u1,u3);IsSubgroup(u1,u4);

true

true

true

39.20.5 MinimalSupergroupsLattice

▷ MinimalSupergroupsLattice(lat) (attribute)

For a lattice lat of subgroups this attribute contains the minimal supergroup relations among the
subgroups of the lattice. It is a list corresponding to the ConjugacyClassesSubgroups (39.19.3)
value of the lattice, each entry giving a list of the minimal supergroups of the representative of this
class. Every minimal supergroup is indicated by a list of the form [c,n], which means that the n-th
subgroup in class number c is a minimal supergroup of the representative.

The number n corresponds to access via ClassElementLattice (39.20.2) and not necessarily the
AsList (30.3.8) arrangement! See also MaximalSubgroupsLattice (39.20.4).

Example
gap> MinimalSupergroupsLattice(l);

[[[2, 1], [2, 2], [2, 3], [3, 1], [3, 2], [3, 3],

[3, 4], [3, 5], [3, 6], [4, 1], [4, 2], [4, 3],

[4, 4]], [[5, 1], [6, 2], [7, 2]],

[[6, 1], [8, 1], [8, 3]], [[8, 1], [10, 1]],

[[9, 1], [9, 2], [9, 3], [10, 1]], [[9, 1]],

[[9, 1]], [[11, 1]], [[11, 1]], [[11, 1]], []]

gap> last[3];

[[6, 1], [8, 1], [8, 3]]

gap> u5:=ClassElementLattice(ConjugacyClassesSubgroups(l)[8],1);

Group([(3,4), (2,4,3)])

gap> u6:=ClassElementLattice(ConjugacyClassesSubgroups(l)[8],3);

Group([(1,3), (1,3,4)])

gap> IsSubgroup(u5,u2);

true

gap> IsSubgroup(u6,u2);

true

GAP - Reference Manual 606

39.20.6 LowLayerSubgroups

▷ LowLayerSubgroups([act,]G, lim[, cond, dosub]) (function)

This function computes representatives of the conjugacy classes of subgroups of the finite group G

such that the subgroups can be obtained as lim-fold iterated maximal subgroups. If a function cond

is given, only subgroups for which this function returns true (also for their intermediate overgroups)
is returned. If also a function dosub is given, maximal subgroups are only attempted if this function
returns true (this is separated for performance reasons). In the example below, the result would be
the same with leaving out the fourth function, but calculation this way is slightly faster. If an initial
argument act is given, it must be a group containing and normalizing G , and representatives for
classes under the action of this group are chosen.

Example
gap> g:=SymmetricGroup(12);;

gap> l:=LowLayerSubgroups(g,2,x->Size(x)>100000,x->Size(x)>200000);;

gap> Collected(List(l,Size));

[[100800, 1], [120960, 1], [161280, 1], [241920, 1], [302400, 3],

[322560, 1], [483840, 3], [518400, 3], [604800, 1], [725760, 1],

[967680, 1], [1036800, 1], [1088640, 3], [2177280, 1],

[3628800, 3], [7257600, 1], [19958400, 1], [39916800, 1],

[239500800, 1], [479001600, 1]]

39.20.7 ContainedConjugates

▷ ContainedConjugates(G, A, B[, onlyone]) (operation)

For A,B ≤ G this operation returns representatives of the A conjugacy classes of subgroups that
are conjugate to B under G . The function returns a list of pairs of subgroup and conjugating element.
If the optional fourth argument onlyone is given as true , then only one pair (or fail if none exists)
is returned.

Example
gap> g:=SymmetricGroup(8);;

gap> a:=TransitiveGroup(8,47);;b:=TransitiveGroup(8,9);;

gap> ContainedConjugates(g,a,b);

[[Group([(1,8)(2,3)(4,5)(6,7), (1,3)(2,8)(4,6)(5,7), (1,5)(2,6)(3,7)(4,8),

(4,5)(6,7)]), ()],

[Group([(1,8)(2,3)(4,5)(6,7), (1,5)(2,6)(3,7)(4,8), (1,3)(2,8)(4,6)(5,7),

(2,3)(6,7)]), (2,4)(3,5)]]

gap> ContainedConjugates(g,a,b,true);

[Group([(1,8)(2,3)(4,5)(6,7), (1,3)(2,8)(4,6)(5,7), (1,5)(2,6)(3,7)(4,8),

(4,5)(6,7)]), ()]

39.20.8 ContainingConjugates

▷ ContainingConjugates(G, A, B) (operation)

For A,B ≤ G this operation returns all G conjugates of A that contain B . The function returns a list
of pairs of subgroup and conjugating element.

GAP - Reference Manual 607

Example
gap> g:=SymmetricGroup(8);;

gap> a:=TransitiveGroup(8,47);;b:=TransitiveGroup(8,7);;

gap> ContainingConjugates(g,a,b);

[[Group([(1,3,5,7), (3,5), (1,4)(2,7)(3,6)(5,8)]), (2,3,5,4)(7,8)]]

39.20.9 MinimalFaithfulPermutationDegree

▷ MinimalFaithfulPermutationDegree(G) (operation)

▷ MinimalFaithfulPermutationRepresentation(G) (operation)

For a finite group G , MinimalFaithfulPermutationDegree calculates the least posi-
tive integer n = µ(G) such that G is isomorphic to a subgroup of the symmetric group
of degree n. This can require calculating the whole subgroup lattice. The operation
MinimalFaithfulPermutationRepresentation returns a corresponding isomorphism.

Example
gap> MinimalFaithfulPermutationDegree(SmallGroup(96,3));

12

gap> g:=TransitiveGroup(10,32);;

gap> MinimalFaithfulPermutationDegree(g);

6

gap> map:=MinimalFaithfulPermutationRepresentation(g);;

gap> Size(Image(map));

720

39.20.10 RepresentativesPerfectSubgroups

▷ RepresentativesPerfectSubgroups(G) (attribute)

▷ RepresentativesSimpleSubgroups(G) (attribute)

returns a list of conjugacy representatives of perfect (respectively simple) subgroups of G . This
uses the library of perfect groups (see PerfectGroup (50.6.2)), thus it will issue an error if the library
is insufficient to determine all perfect subgroups.

Example
gap> m11:=TransitiveGroup(11,6);

M(11)

gap> r:=RepresentativesPerfectSubgroups(m11);;

gap> List(r,Size);

[60, 60, 360, 660, 7920, 1]

gap> List(r,StructureDescription);

["A5", "A5", "A6", "PSL(2,11)", "M11", "1"]

39.20.11 ConjugacyClassesPerfectSubgroups

▷ ConjugacyClassesPerfectSubgroups(G) (attribute)

returns a list of the conjugacy classes of perfect subgroups of G . (see
RepresentativesPerfectSubgroups (39.20.10).)

GAP - Reference Manual 608

Example
gap> r := ConjugacyClassesPerfectSubgroups(m11);;

gap> List(r, x -> StructureDescription(Representative(x)));

["A5", "A5", "A6", "PSL(2,11)", "M11", "1"]

gap> SortedList(List(r,Size));

[1, 1, 11, 12, 66, 132]

39.20.12 Zuppos

▷ Zuppos(G) (attribute)

The Zuppos of a group are the cyclic subgroups of prime power order. (The name “Zuppo” de-
rives from the German abbreviation for “zyklische Untergruppen von Primzahlpotenzordnung”.) This
attribute gives generators of all such subgroups of a group G . That is all elements of G of prime power
order up to the equivalence that they generate the same cyclic subgroup.

39.20.13 InfoLattice

▷ InfoLattice (info class)

is the information class used by the cyclic extension methods for subgroup lattice calculations.

39.21 Specific Methods for Subgroup Lattice Computations

39.21.1 LatticeByCyclicExtension

▷ LatticeByCyclicExtension(G[, func[, noperf]]) (function)

computes the lattice of G using the cyclic extension algorithm. If the function func is given, the
algorithm will discard all subgroups not fulfilling func (and will also not extend them), returning a
partial lattice. This can be useful to compute only subgroups with certain properties. Note however
that this will not necessarily yield all subgroups that fulfill func , but the subgroups whose subgroups
are used for the construction must also fulfill func as well. (In fact the filter func will simply
discard subgroups in the cyclic extension algorithm. Therefore the trivial subgroup will always be
included.) Also note, that for such a partial lattice maximality/minimality inclusion relations cannot
be computed. (If func is a list of length 2, its first entry is such a discarding function, the second a
function for discarding zuppos.)

The cyclic extension algorithm requires the perfect subgroups of G . However GAP cannot analyze
the function func for its implication but can only apply it. If it is known that func implies solvability,
the computation of the perfect subgroups can be avoided by giving a third parameter noperf set to
true.

Example
gap> g:=WreathProduct(Group((1,2,3),(1,2)),Group((1,2,3,4)));;

gap> l:=LatticeByCyclicExtension(g,function(G)

> return Size(G) in [1,2,3,6];end);

<subgroup lattice of <permutation group of size 5184 with

9 generators>, 47 classes,

2628 subgroups, restricted under further condition l!.func>

GAP - Reference Manual 609

The total number of classes in this example is much bigger, as the following example shows:
Example

gap> LatticeSubgroups(g);

<subgroup lattice of <permutation group of size 5184 with

9 generators>, 566 classes, 27134 subgroups>

39.21.2 InvariantSubgroupsElementaryAbelianGroup

▷ InvariantSubgroupsElementaryAbelianGroup(G, homs[, dims]) (function)

Let G be an elementary abelian group and homs be a set of automorphisms of G . Then this function
computes all subspaces of G which are invariant under all automorphisms in homs . When considering
G as a module for the algebra generated by homs , these are all submodules. If homs is empty, it
computes all subgroups. If the optional parameter dims is given, only submodules of this dimension
are computed.

Example
gap> g:=Group((1,2,3),(4,5,6),(7,8,9));

Group([(1,2,3), (4,5,6), (7,8,9)])

gap> hom:=GroupHomomorphismByImages(g,g,[(1,2,3),(4,5,6),(7,8,9)],

> [(7,8,9),(1,2,3),(4,5,6)]);

[(1,2,3), (4,5,6), (7,8,9)] -> [(7,8,9), (1,2,3), (4,5,6)]

gap> u:=InvariantSubgroupsElementaryAbelianGroup(g,[hom]);

[Group([(7,8,9), (4,5,6), (1,2,3)]),

Group([(1,3,2)(7,8,9), (1,3,2)(4,5,6)]),

Group([(1,2,3)(4,5,6)(7,8,9)]), Group(())]

39.21.3 SubgroupsSolvableGroup

▷ SubgroupsSolvableGroup(G[, opt]) (function)

This function (implementing the algorithm published in [Hul99]) computes subgroups of a solv-
able group G , using the homomorphism principle. It returns a list of representatives up to G-conjugacy.

The optional argument opt is a record, which may be used to suggest restrictions on the subgroups
computed. The following record components of opt are recognized and have the following effects.
Note that all of the following restrictions to subgroups with particular properties are only used to speed
up the calculation, but the result might still contain subgroups (that had to be computed in any case)
that do not satisfy the properties. If this is not desired, the calculation must be followed by an explicit
test for the desired properties (which is not done by default, as it would be a general slowdown). The
function guarantees that representatives of all subgroups that satisfy the properties are found, i.e. there
can be only false positives.

actions

must be a list of automorphisms of G . If given, only groups which are invariant under all these
automorphisms are computed. The algorithm must know the normalizer in G of the group gener-
ated by actions (defined formally by embedding in the semidirect product of G with actions).
This can be given in the component funcnorm and will be computed if this component is not
given.

GAP - Reference Manual 610

normal

if set to true only normal subgroups are guaranteed to be returned (though some of the returned
subgroups might still be not normal).

consider

a function to restrict the groups computed. This must be a function of five parameters, C, A,
N, B, M, that are interpreted as follows: The arguments are subgroups of a factor F of G in the
relation F ≥C > A > N > B > M. N and M are normal subgroups. C is the full preimage of the
normalizer of A/N in F/N. When computing modulo M and looking for subgroups U such that
U ∩N = B and ⟨U,N⟩= A, this function is called. If it returns false then all potential groups U
(and therefore all groups later arising from them) are disregarded. This can be used for example
to compute only subgroups of certain sizes.

(This is just a restriction to speed up computations. The function may still return (invariant)
subgroups which don’t fulfill this condition!) This parameter is used to permit calculations of
some subgroups if the set of all subgroups would be too large to handle.

The actual groups C, A, N and B which are passed to this function are not necessarily subgroups
of G but might be subgroups of a proper factor group F = G/H. Therefore the consider

function may not relate the parameter groups to G .

retnorm

if set to true the function not only returns a list subs of subgroups but also a corresponding list
norms of normalizers in the form [subs, norms].

series

is an elementary abelian series of G which will be used for the computation.

groups

is a list of groups to seed the calculation. Only subgroups of these groups are constructed.
Example

gap> g:=Group((1,2,3),(1,2),(4,5,6),(4,5),(7,8,9),(7,8));

Group([(1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8)])

gap> hom:=GroupHomomorphismByImages(g,g,

> [(1,2,3),(1,2),(4,5,6),(4,5),(7,8,9),(7,8)],

> [(4,5,6),(4,5),(7,8,9),(7,8),(1,2,3),(1,2)]);

[(1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8)] ->

[(4,5,6), (4,5), (7,8,9), (7,8), (1,2,3), (1,2)]

gap> l:=SubgroupsSolvableGroup(g,rec(actions:=[hom]));;

gap> SortedList(List(l,Size));

[1, 2, 3, 4, 6, 8, 9, 18, 27, 54, 108, 216]

gap> Length(ConjugacyClassesSubgroups(g)); # to compare

162

39.21.4 SizeConsiderFunction

▷ SizeConsiderFunction(size) (function)

This function returns a function consider of five arguments that can be used in
SubgroupsSolvableGroup (39.21.3) for the option consider to compute subgroups whose sizes
are divisible by size .

GAP - Reference Manual 611

Example
gap> l:=SubgroupsSolvableGroup(g,rec(actions:=[hom],

> consider:=SizeConsiderFunction(6)));;

gap> SortedList(List(l,Size));

[1, 3, 6, 9, 18, 27, 54, 108, 216]

This example shows that in general the consider function does not provide a perfect filter. It
is guaranteed that all subgroups fulfilling the condition are returned, but not all subgroups returned
necessarily fulfill the condition.

39.21.5 ExactSizeConsiderFunction

▷ ExactSizeConsiderFunction(size) (function)

This function returns a function consider of five arguments that can be used in
SubgroupsSolvableGroup (39.21.3) for the option consider to compute subgroups whose sizes
are exactly size .

Example
gap> l:=SubgroupsSolvableGroup(g,rec(actions:=[hom],

> consider:=ExactSizeConsiderFunction(6)));;

gap> SortedList(List(l,Size));

[1, 3, 6, 9, 27, 54, 108, 216]

Again, the consider function does not provide a perfect filter. It is guaranteed that all subgroups
fulfilling the condition are returned, but not all subgroups returned necessarily fulfill the condition.

39.21.6 InfoPcSubgroup

▷ InfoPcSubgroup (info class)

Information function for the subgroup lattice functions using pcgs.

39.22 Special Generating Sets

39.22.1 GeneratorsSmallest

▷ GeneratorsSmallest(G) (attribute)

returns a “smallest” generating set for the group G . This is the lexicographically (using GAPs
order of group elements) smallest list l of elements of G such that G = ⟨l⟩ and li ̸∈ ⟨l1, . . . , li−1⟩ (in
particular l1 is not the identity element of the group). The comparison of two groups via lexicographic
comparison of their sorted element lists yields the same relation as lexicographic comparison of their
smallest generating sets.

Example
gap> g:=SymmetricGroup(4);;

gap> GeneratorsSmallest(g);

[(3,4), (2,3), (1,2)]

GAP - Reference Manual 612

39.22.2 LargestElementGroup

▷ LargestElementGroup(G) (attribute)

returns the largest element of G with respect to the ordering < of the elements family.

39.22.3 MinimalGeneratingSet

▷ MinimalGeneratingSet(G) (attribute)

returns a generating set of G of minimal possible length.
Note that only methods for finite groups, solvable groups, or finitely generated nilpotent groups

are available (the latter through the Polycyclic package) and that calculations for nonsolvable finite
groups of higher rank can be expensive.

If you do not really need a minimal generating set, but are satisfied with getting a reasonably small
set of generators, you better use SmallGeneratingSet (39.22.4).

Information about the minimal generating sets of the finite simple groups of order less than 106

can be found in [MY79]. See also the package AtlasRep.
Example

gap> MinimalGeneratingSet(g);

[(2,4,3), (1,4,2,3)]

39.22.4 SmallGeneratingSet

▷ SmallGeneratingSet(G) (attribute)

returns a generating set of G which has few elements. As neither irredundancy, nor minimal length
is proven it runs much faster than MinimalGeneratingSet (39.22.3). It can be used whenever a short
generating set is desired which not necessarily needs to be optimal.

Example
gap> SmallGeneratingSet(g);

[(1,2,3,4), (1,2)]

39.22.5 IndependentGeneratorsOfAbelianGroup

▷ IndependentGeneratorsOfAbelianGroup(A) (attribute)

returns a list of generators a1,a2, . . . of prime power order or infinite order of the abelian group
A such that A is the direct product of the cyclic groups generated by the ai. The list of orders of the
returned generators must match the result of AbelianInvariants (39.16.1) (taking into account that
zero and infinity (18.2.1) are identified).

Example
gap> g:=AbelianGroup(IsPermGroup,[15,14,22,78]);;

gap> List(IndependentGeneratorsOfAbelianGroup(g),Order);

[2, 2, 2, 3, 3, 5, 7, 11, 13]

gap> AbelianInvariants(g);

[2, 2, 2, 3, 3, 5, 7, 11, 13]

GAP - Reference Manual 613

39.22.6 IndependentGeneratorExponents

▷ IndependentGeneratorExponents(G, g) (operation)

For an abelian group G , with IndependentGeneratorsOfAbelianGroup (39.22.5) value the list
[a1, . . . ,an], this operation returns the exponent vector [e1, . . . ,en] to represent g = ∏i aei

i .
Example

gap> g := AbelianGroup([16,9,625]);;

gap> gens := IndependentGeneratorsOfAbelianGroup(g);;

gap> List(gens, Order);

[9, 16, 625]

gap> AbelianInvariants(g);

[9, 16, 625]

gap> r:=gens[1]^4*gens[2]^12*gens[3]^128;;

gap> IndependentGeneratorExponents(g,r);

[4, 12, 128]

39.23 1-Cohomology

Let G be a finite group and M an elementary abelian normal p-subgroup of G. Then the group of
1-cocycles Z1(G/M,M) is defined as

Z1(G/M,M) = {γ : G/M → M | ∀g1,g2 ∈ G : γ(g1M ·g2M) = γ(g1M)g2 · γ(g2M)}

and is a GF(p)-vector space.
The group of 1-coboundaries B1(G/M,M) is defined as

B1(G/M,M) = {γ : G/M → M | ∃m ∈ M∀g ∈ G : γ(gM) = (m−1)g ·m}

It also is a GF(p)-vector space.
Let α be the isomorphism of M into a row vector space W and (g1, . . . ,gl) representatives for a

generating set of G/M. Then there exists a monomorphism β of Z1(G/M,M) in the l-fold direct sum
of W , such that β (γ) = (α(γ(g1M)), . . . ,α(γ(glM))) for every γ ∈ Z1(G/M,M).

39.23.1 OneCocycles

▷ OneCocycles(G, M) (function)

▷ OneCocycles(G, mpcgs) (function)

▷ OneCocycles(gens, M) (function)

▷ OneCocycles(gens, mpcgs) (function)

Computes the group of 1-cocycles Z1(G/M ,M). The normal subgroup M may be given by a (Mod-
ulo)Pcgs mpcgs . In this case the whole calculation is performed modulo the normal subgroup defined
by DenominatorOfModuloPcgs(mpcgs) (see 45.1). Similarly the group G may instead be specified
by a set of elements gens that are representatives for a generating system for the factor group G /M . If
this is done the 1-cocycles are computed with respect to these generators (otherwise the routines try to
select suitable generators themselves). The current version of the code assumes that G is a permutation
group or a pc group.

GAP - Reference Manual 614

39.23.2 OneCoboundaries

▷ OneCoboundaries(G, M) (function)

computes the group of 1-coboundaries. Syntax of input and output otherwise is the same as with
OneCocycles (39.23.1) except that entries that refer to cocycles are not computed.

The operations OneCocycles (39.23.1) and OneCoboundaries return a record with (at least) the
components:

generators

Is a list of representatives for a generating set of G /M . Cocycles are represented with respect to
these generators.

oneCocycles

A space of row vectors over GF(p), representing Z1. The vectors are represented in dimension
a ·b where a is the length of generators and pb the size of M .

oneCoboundaries

A space of row vectors that represents B1.

cocycleToList

is a function to convert a cocycle (a row vector in oneCocycles) to a corresponding list of
elements of M .

listToCocycle

is a function to convert a list of elements of M to a cocycle.

isSplitExtension

indicates whether G splits over M . The following components are only bound if the extension
splits. Note that if M is given by a modulo pcgs all subgroups are given as subgroups of G
by generators corresponding to generators and thus may not contain the denominator of the
modulo pcgs. In this case taking the closure with this denominator will give the full preimage
of the complement in the factor group.

complement

One complement to M in G .

cocycleToComplement(cyc)

is a function that takes a cocycle from oneCocycles and returns the corresponding complement
to M in G (with respect to the fixed complement complement).

complementToCocycle(U)

is a function that takes a complement and returns the corresponding cocycle.

If the factor G /M is given by a (modulo) pcgs gens then special methods are used that compute a
presentation for the factor implicitly from the pcgs.

Note that the groups of 1-cocycles and 1-coboundaries are not groups in the sense of Group

(39.2.1) for GAP but vector spaces.

GAP - Reference Manual 615

Example
gap> g:=Group((1,2,3,4),(1,2));;

gap> n:=Group((1,2)(3,4),(1,3)(2,4));;

gap> oc:=OneCocycles(g,n);

rec(cocycleToComplement := function(c) ... end,

cocycleToList := function(c) ... end,

complement := Group([(3,4), (2,4,3)]),

complementGens := [(3,4), (2,4,3)],

complementToCocycle := function(K) ... end,

factorGens := [(3,4), (2,4,3)], generators := [(3,4), (2,4,3)],

isSplitExtension := true, listToCocycle := function(L) ... end,

oneCoboundaries := <vector space over GF(2), with 2 generators>,

oneCocycles := <vector space over GF(2), with 2 generators>)

gap> oc.cocycleToList([0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0]);

[(1,2)(3,4), (1,2)(3,4)]

gap> oc.listToCocycle([(),(1,3)(2,4)]) = Z(2) * [0, 0, 1, 0];

true

gap> oc.cocycleToComplement([0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)]);

Group([(3,4), (1,3,4)])

gap> oc.complementToCocycle(Group((1,2,4),(1,4))) = Z(2) * [0, 1, 1, 1];

true

The factor group H1(G/M ,M) = Z1(G/M ,M)/B1(G/M ,M) is called the first cohomology group.
Currently there is no function which explicitly computes this group. The easiest way to represent it is
as a vector space complement to B1 in Z1.

If the only purpose of the calculation of H1 is the determination of complements it might be
desirable to stop calculations once it is known that the extension cannot split. This can be achieved
via the more technical function OCOneCocycles (39.23.3).

39.23.3 OCOneCocycles

▷ OCOneCocycles(ocr, onlySplit) (function)

is the more technical function to compute 1-cocycles. It takes a record ocr as first argument which
must contain at least the components group for the group and modulePcgs for a (modulo) pcgs of the
module. This record will also be returned with components as described under OneCocycles (39.23.1)
(with the exception of isSplitExtension which is indicated by the existence of a complement) but
components such as oneCoboundaries will only be computed if not already present.

If onlySplit is true, OCOneCocycles returns false as soon as possible if the extension does
not split.

39.23.4 ComplementClassesRepresentativesEA

▷ ComplementClassesRepresentativesEA(G, N) (function)

computes complement classes to an elementary abelian normal subgroup N via 1-Cohomology.
Normally, a user program should call ComplementClassesRepresentatives (39.11.6) instead,
which also works for a solvable (not necessarily elementary abelian) N .

GAP - Reference Manual 616

39.23.5 InfoCoh

▷ InfoCoh (info class)

The info class for the cohomology calculations is InfoCoh.

39.24 Schur Covers and Multipliers

Additional attributes and properties of a group can be derived from computing its Schur cover. For
example, if G is a finitely presented group, the derived subgroup of a Schur cover of G is invariant and
isomorphic to the NonabelianExteriorSquare (39.24.5) value of G, see [BJR87].

39.24.1 EpimorphismSchurCover

▷ EpimorphismSchurCover(G[, pl]) (attribute)

returns an epimorphism epi from a group D onto G . The group D is one (of possibly several) Schur
covers of G . The group D can be obtained as the Source (32.3.8) value of epi . The kernel of epi is
the Schur multiplier of G . If pl is given as a list of primes, only the multiplier part for these primes is
realized. At the moment, D is represented as a finitely presented group.

39.24.2 SchurCover

▷ SchurCover(G) (attribute)

returns one (of possibly several) Schur covers of the group G .
At the moment this cover is represented as a finitely presented group and IsomorphismPermGroup

(43.3.1) would be needed to convert it to a permutation group.
If also the relation to G is needed, EpimorphismSchurCover (39.24.1) should be used.

Example
gap> g:=Group((1,2,3,4),(1,2));;

gap> epi:=EpimorphismSchurCover(g);

[F1, F2, F3] -> [(1,2), (2,3), (3,4)]

gap> Size(Source(epi));

48

gap> f:=FreeGroup("a","b");;

gap> g:=f/ParseRelators(f,"a2,b3,(ab)5");;

gap> epi:=EpimorphismSchurCover(g);

[a, b] -> [a, b]

gap> Size(Kernel(epi));

2

If the group becomes bigger, Schur Cover calculations might become unfeasible.
There is another operation, AbelianInvariantsMultiplier (39.24.3), which only returns the

structure of the Schur Multiplier, and which should work for larger groups as well.

GAP - Reference Manual 617

39.24.3 AbelianInvariantsMultiplier

▷ AbelianInvariantsMultiplier(G) (attribute)

returns a list of the abelian invariants of the Schur multiplier of G .
At the moment, this operation will not give any information about how to extend the multiplier to

a Schur Cover.
Example

gap> AbelianInvariantsMultiplier(g);

[2]

gap> AbelianInvariantsMultiplier(AlternatingGroup(6));

[2, 3]

gap> AbelianInvariantsMultiplier(SL(2,3));

[]

gap> AbelianInvariantsMultiplier(SL(3,2));

[2]

gap> AbelianInvariantsMultiplier(PSU(4,2));

[2]

(Note that the last command from the example will take some time.)
The GAP 4.4.12 manual contained examples for larger groups e.g. M22. However, some issues

that may very rarely (and not easily reproducibly) lead to wrong results were discovered in the code
capable of handling larger groups, and in GAP 4.5 it was replaced by a more reliable basic method. To
deal with larger groups, one can use the function SchurMultiplier (cohomolo: SchurMultiplier)
from the cohomolo package. Also, additional methods for AbelianInvariantsMultiplier are
installed in the Polycyclic package for pcp-groups.

39.24.4 Epicentre

▷ Epicentre(G) (attribute)

▷ ExteriorCentre(G) (attribute)

There are various ways of describing the epicentre of a group G . It is the smallest normal subgroup
N of G such that G/N is a central quotient of a group. It is also equal to the Exterior Center of G , see
[Ell98].

39.24.5 NonabelianExteriorSquare

▷ NonabelianExteriorSquare(G) (operation)

Computes the nonabelian exterior square G ∧G of the group G , which for a finitely presented group
is the derived subgroup of any Schur cover of G (see [BJR87]).

39.24.6 EpimorphismNonabelianExteriorSquare

▷ EpimorphismNonabelianExteriorSquare(G) (operation)

Computes the mapping G ∧G → G . The kernel of this mapping is equal to the Schur multiplier of
G .

GAP - Reference Manual 618

39.24.7 IsCentralFactor

▷ IsCentralFactor(G) (property)

This function determines if there exists a group H such that G is isomorphic to the quotient
H/Z(H). A group with this property is called in literature capable. A group being capable is equiva-
lent to the epicentre of G being trivial, see [BFS79].

39.24.8 Covering groups of symmetric groups

The covering groups of symmetric groups were classified in [Sch11]; an inductive procedure to con-
struct faithful, irreducible representations of minimal degree over all fields was presented in [Maa10].
Methods for EpimorphismSchurCover (39.24.1) are provided for natural symmetric groups which
use these representations. For alternating groups, the restriction of these representations are provided,
but they may not be irreducible. In the case of degree 6 and 7, they are not the full covering groups
and so matrix representations are just stored explicitly for the six-fold covers.

Example
gap> EpimorphismSchurCover(SymmetricGroup(15));

[< immutable compressed matrix 64x64 over GF(9) >,

< immutable compressed matrix 64x64 over GF(9) >] ->

[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15), (1,2)]

gap> EpimorphismSchurCover(AlternatingGroup(15));

[< immutable compressed matrix 64x64 over GF(9) >,

< immutable compressed matrix 64x64 over GF(9) >] ->

[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15), (13,14,15)]

gap> SchurCoverOfSymmetricGroup(12);

<matrix group of size 958003200 with 2 generators>

gap> DoubleCoverOfAlternatingGroup(12);

<matrix group of size 479001600 with 2 generators>

gap> BasicSpinRepresentationOfSymmetricGroup(10, 3, -1);

[< immutable compressed matrix 16x16 over GF(9) >,

< immutable compressed matrix 16x16 over GF(9) >,

< immutable compressed matrix 16x16 over GF(9) >,

< immutable compressed matrix 16x16 over GF(9) >,

< immutable compressed matrix 16x16 over GF(9) >,

< immutable compressed matrix 16x16 over GF(9) >,

< immutable compressed matrix 16x16 over GF(9) >,

< immutable compressed matrix 16x16 over GF(9) >,

< immutable compressed matrix 16x16 over GF(9) >]

39.24.9 BasicSpinRepresentationOfSymmetricGroup

▷ BasicSpinRepresentationOfSymmetricGroup(n, p, sign) (function)

Constructs the image of the Coxeter generators in the basic spin (projective) representation of the
symmetric group of degree n over a field of characteristic p ≥ 0. There are two such representations
and sign controls which is returned: +1 gives a group where the preimage of an adjacent transposition
(i, i+ 1) has order 4, -1 gives a group where the preimage of an adjacent transposition (i, i+ 1) has
order 2. If no sign is specified, +1 is used by default. If no p is specified, 3 is used by default. (Note
that the convention of which cover is labelled as +1 is inconsistent in the literature.)

GAP - Reference Manual 619

39.24.10 SchurCoverOfSymmetricGroup

▷ SchurCoverOfSymmetricGroup(n, p, sign) (operation)

Constructs a Schur cover of SymmetricGroup(n) as a faithful, irreducible matrix group in char-
acteristic p (p ̸= 2). For n ≥ 4, there are two such covers, and sign determines which is returned: +1
gives a group where the preimage of an adjacent transposition (i, i+1) has order 4, -1 gives a group
where the preimage of an adjacent transposition (i, i+ 1) has order 2. If no sign is specified, +1 is
used by default. If no p is specified, 3 is used by default. (Note that the convention of which cover
is labelled as +1 is inconsistent in the literature.) For n ≤ 3, the symmetric group is its own Schur
cover and sign is ignored. For p = 2, there is no faithful, irreducible representation of the Schur
cover unless n = 1 or n = 3, so fail is returned if p = 2. For p = 3, n = 3, the representation is
indecomposable, but reducible. The field of the matrix group is generally GF(p^2) if p > 0, and an
abelian number field if p = 0.

39.24.11 DoubleCoverOfAlternatingGroup

▷ DoubleCoverOfAlternatingGroup(n, p) (operation)

Constructs a double cover of AlternatingGroup(n) as a faithful, completely reducible matrix
group in characteristic p (p ̸= 2) for n ≥ 4. For n ≤ 3, the alternating group is its own Schur cover,
and fail is returned. For p = 2, there is no faithful, completely reducible representation of the double
cover, so fail is returned. The field of the matrix group is generally GF(p^2) if p > 0, and an abelian
number field if p = 0. If p is omitted, the default is 3.

39.25 2-Cohomology

39.25.1 TwoCohomologyGeneric

▷ TwoCohomologyGeneric(G, M) (operation)

This function computes the second cohomology group for an arbitrary finite group G . The gen-
erators of the module M must correspond to the generators of G . It returns a record with compo-
nents coboundaries, cocycles and cohomology which are lists of vectors that form a basis of the
respective group. cohomology is chosen as a vector space complement to coboundaries in the
cocycles. These vectors are representing tails in M with respect to the relators of the presentation
presentation of G . (Note that this presentation is on a generating set chosen by the routine, this
generating system corresponds to the components group and module of the record returned. The
extension corresponding to a cocyle c can be constructed as FpGroupCocycle(r,c) where r is the
cohomology record. This is currently done as a finitely presented group.

Example
gap> g:=Group((1,2,3,4,5),(1,2,3));;

gap> mats:=[[[2,0,0,1],[1,2,1,0],[2,1,1,1],[2,1,1,0]],

> [[0,2,0,0],[1,2,1,0],[0,0,1,0],[0,0,0,1]]]*Z(3)^0;;

gap> mo:=GModuleByMats(mats,GF(3));;

gap> coh:=TwoCohomologyGeneric(g,mo);;

gap> coh.cocycles;

< immutable compressed matrix 8x44 over GF(3) >

GAP - Reference Manual 620

gap> coh.coboundaries;

[< immutable compressed vector length 44 over GF(3) >,

< immutable compressed vector length 44 over GF(3) >,

< immutable compressed vector length 44 over GF(3) >,

< immutable compressed vector length 44 over GF(3) >,

< immutable compressed vector length 44 over GF(3) >,

< immutable compressed vector length 44 over GF(3) >,

< immutable compressed vector length 44 over GF(3) >]

gap> coh.cohomology;

[< immutable compressed vector length 44 over GF(3) >]

gap> g1:=FpGroupCocycle(coh,coh.zero,true);

<fp group of size 4860 on the generators [F1, F2, F3, m1, m2, m3, m4]>

gap> g2:=FpGroupCocycle(coh,coh.cohomology[1],true);

<fp group of size 4860 on the generators [F1, F2, F3, m1, m2, m3, m4]>

gap> g1:=Image(IsomorphismPermGroup(g1));

<permutation group with 7 generators>

gap> Length(ComplementClassesRepresentatives(g1,SolvableRadical(g1)));

3

gap> g2:=Image(IsomorphismPermGroup(g2));

<permutation group with 7 generators>

gap> Length(ComplementClassesRepresentatives(g2,SolvableRadical(g2)));

0

39.25.2 FpGroupCocycle

▷ FpGroupCocycle(r, c[, doperm]) (function)

For a record r as returned by TwoCohomologyGeneric (39.25.1) and a vector c in the space of
two-cocycles, this operation returns a finitely presented group that is an extension corresponding to
the cocycle c . If the underlying module has dimension d, the last d generators generate the normal
subgroup. If the optional parameter doperm is given as true , a faithful permutation representation is
computed and stored in the attribute IsomorphismPermGroup (43.3.1) of the computed group. If the
option normalform is given as true, arithmetic in the resulting finitely presented group will bring
words into normal form.

Example
gap> g:=Group((2,15,8,16)(3,17,14,21)(4,23,20,6)(5,9,22,11)(7,13,19,25),

> (2,12,7,17)(3,18,13,23)(4,24,19,9)(5,10,25,15)(6,11,16,21));;

gap> StructureDescription(g);

"GL(2,5)"

gap> mats:=[[[1,1,0,2],[2,0,0,0],[0,2,2,0],[0,1,0,0]],

> [[0,0,0,1],[1,1,2,0],[1,0,2,1],[1,0,1,0]]]*Z(3)^0;;

gap> mo:=GModuleByMats(mats,GF(3));;

gap> coh:=TwoCohomologyGeneric(g,mo);;

gap> coh.cohomology;

[< immutable compressed vector length 116 over GF(3) >]

gap> p:=FpGroupCocycle(coh,coh.zero,true);

<fp group of size 38880 on the generators

[F1, F2, F3, F4, F5, F6, m1, m2, m3, m4]>

gap> g1:=Image(IsomorphismPermGroup(p));

<permutation group with 10 generators>

gap> p:=FpGroupCocycle(coh,coh.cohomology[1],true);

GAP - Reference Manual 621

<fp group of size 38880 on the generators

[F1, F2, F3, F4, F5, F6, m1, m2, m3, m4]>

gap> g2:=Image(IsomorphismPermGroup(p));

<permutation group with 10 generators>

gap> Collected(List(MaximalSubgroupClassReps(g1),Size));

[[480, 3], [3888, 1], [6480, 1], [7776, 1], [19440, 1]]

gap> Collected(List(MaximalSubgroupClassReps(g2),Size));

[[3888, 1], [6480, 1], [7776, 1], [19440, 1]]

gap> p:=FpGroupCocycle(coh,coh.cohomology[1],true:normalform);;

Example
gap> p.7*p.1; # i.e. m1*F1, but in normal form

F1*m4

Also see Section 46.8 for operations and methods specific for Pc groups.

39.26 Tests for the Availability of Methods

The following filters and operations indicate capabilities of GAP. They can be used in the method
selection or algorithms to check whether it is feasible to compute certain operations for a given group.
In general, they return true if good algorithms for the given arguments are available in GAP. An
answer false indicates that no method for this group may exist, or that the existing methods might
run into problems.

Typical examples when this might happen is with finitely presented groups, for which many of the
methods cannot be guaranteed to succeed in all situations.

The willingness of GAP to perform certain operations may change, depending on which further
information is known about the arguments. Therefore the filters used are not implemented as properties
but as “other filters” (see 13.7 and 13.8).

39.26.1 CanEasilyTestMembership

▷ CanEasilyTestMembership(G) (filter)

This filter indicates whether GAP can test membership of elements in the group G (via the op-
eration \in (30.6.1)) in reasonable time. It is used by the method selection to decide whether an
algorithm that relies on membership tests may be used.

39.26.2 CanEasilyComputeWithIndependentGensAbelianGroup

▷ CanEasilyComputeWithIndependentGensAbelianGroup(G) (filter)

This filter indicates whether GAP can in reasonable time compute independent abelian generators
of the group G (via IndependentGeneratorsOfAbelianGroup (39.22.5)) and then can decompose
arbitrary group elements with respect to these generators using IndependentGeneratorExponents

(39.22.6). It is used by the method selection to decide whether an algorithm that relies on these two
operations may be used.

GAP - Reference Manual 622

39.26.3 CanComputeSize

▷ CanComputeSize(dom) (filter)

This filter indicates that we know that the size of the domain dom (which might be infinity

(18.2.1)) can be computed reasonably easily. It doesn’t imply as quick a computation as HasSize

would but its absence does not imply that the size cannot be computed.

39.26.4 CanComputeSizeAnySubgroup

▷ CanComputeSizeAnySubgroup(G) (filter)

This filter indicates whether GAP can easily compute the size of any subgroup of the group G .
(This is for example advantageous if one can test that a stabilizer index equals the length of the orbit
computed so far to stop early.)

39.26.5 CanComputeIndex

▷ CanComputeIndex(G, H) (operation)

This function indicates whether the index [G : H] (which might be infinity (18.2.1)) can be
computed. It assumes that H ≤ G (see CanComputeIsSubset (39.26.6)).

39.26.6 CanComputeIsSubset

▷ CanComputeIsSubset(A, B) (operation)

This filter indicates that GAP can test (via IsSubset (30.5.1)) whether B is a subset of A .

39.26.7 KnowsHowToDecompose

▷ KnowsHowToDecompose(G[, gens]) (property)

Tests whether the group G can decompose elements in the generators gens . If gens is not given
it tests, whether it can decompose in the generators given in the GeneratorsOfGroup (39.2.4) value
of G .

This property can be used for example to check whether a group homomorphism by images (see
GroupHomomorphismByImages (40.1.1)) can be reasonably defined from this group.

39.27 Specific functions for Normalizer calculation

39.27.1 NormalizerViaRadical

▷ NormalizerViaRadical(G, S) (function)

This function implements a particular approach, following the SolvableRadical paradigm, for cal-
culating the normalizer of a subgroup S in G . It is at the moment provided only as a separate function,

GAP - Reference Manual 623

and not as method for the operation Normalizer, as it can often be slower than other built-in rou-
tines. In certain hard cases (non-solvable groups with nontrivial radical), however its performance is
substantially superior. The function thus is provided as a non-automated tool for advanced users.

Example
gap> g:=TransitiveGroup(30,2030);;

gap> s:=SylowSubgroup(g,5);;

gap> Size(NormalizerViaRadical(g,s));

28800

Note that this example only demonstrates usage, but that in this case in fact the ordinary Normalizer

routine performs faster.

Chapter 40

Group Homomorphisms

A group homomorphism is a mapping from one group to another that respects multiplication
and inverses. They are implemented as a special class of mappings, so in particular all op-
erations for mappings, such as Image (32.4.6), PreImage (32.5.6), PreImagesRepresentative

(32.5.4), KernelOfMultiplicativeGeneralMapping (32.9.5), Source (32.3.8), Range (32.3.7),
IsInjective (32.3.4) and IsSurjective (32.3.5) (see chapter 32, in particular section 32.9) are
applicable to them.

Homomorphisms can be used to transfer calculations into isomorphic groups in another represen-
tation, for which better algorithms are available. Section 40.5 explains a technique how to enforce this
automatically.

Homomorphisms are also used to represent group automorphisms, and section 40.6 explains
GAP’s facilities to work with automorphism groups.

Section 40.9 explains how to make GAP to search for all homomorphisms between two groups
which fulfill certain specifications.

40.1 Creating Group Homomorphisms

The most important way of creating group homomorphisms is to give images for a set of group gener-
ators and to extend it to the group generated by them by the homomorphism property.

A second way to create homomorphisms is to give functions that compute image and preimage.
(A similar case are homomorphisms that are induced by conjugation. Special constructors for such
mappings are described in section 40.6).

The third class are epimorphisms from a group onto its factor group. Such homomorphisms can
be constructed by NaturalHomomorphismByNormalSubgroup (39.18.1).

The fourth class is homomorphisms in a permutation group that are induced by an action on a set.
Such homomorphisms are described in the context of group actions, see chapter 41 and in particular
ActionHomomorphism (41.7.1).

40.1.1 GroupHomomorphismByImages

▷ GroupHomomorphismByImages(G, H[[, gens], imgs]) (function)

GroupHomomorphismByImages returns the group homomorphism with source G and range H that
is defined by mapping the list gens of generators of G to the list imgs of images in H .

624

GAP - Reference Manual 625

If omitted, the arguments gens and imgs default to the GeneratorsOfGroup (39.2.4) value of G
and H , respectively. If H is not given the mapping is automatically considered as surjective.

If gens does not generate G or if the mapping of the generators does not extend to a homomor-
phism (i.e., if mapping the generators describes only a multi-valued mapping) then fail is returned.

This test can be quite expensive. If one is certain that the mapping of the generators ex-
tends to a homomorphism, one can avoid the checks by calling GroupHomomorphismByImagesNC

(40.1.2). (There also is the possibility to construct potentially multi-valued mappings with
GroupGeneralMappingByImages (40.1.3) and to test with IsMapping (32.3.3) whether they are in-
deed homomorphisms.)

40.1.2 GroupHomomorphismByImagesNC

▷ GroupHomomorphismByImagesNC(G, H[[, gens], imgs]) (operation)

GroupHomomorphismByImagesNC creates a homomorphism as GroupHomomorphismByImages

(40.1.1) does, however it does not test whether gens generates G and that the mapping of gens to
imgs indeed defines a group homomorphism. Because these tests can be expensive it can be substan-
tially faster than GroupHomomorphismByImages (40.1.1). Results are unpredictable if the conditions
do not hold.

If omitted, the arguments gens and imgs default to the GeneratorsOfGroup (39.2.4) value of G
and H , respectively.

(For creating a possibly multi-valued mapping from G to H that respects multiplication and in-
verses, GroupGeneralMappingByImages (40.1.3) can be used.)

Example
gap> gens:=[(1,2,3,4),(1,2)];

[(1,2,3,4), (1,2)]

gap> g:=Group(gens);

Group([(1,2,3,4), (1,2)])

gap> h:=Group((1,2,3),(1,2));

Group([(1,2,3), (1,2)])

gap> hom:=GroupHomomorphismByImages(g,h,gens,[(1,2),(1,3)]);

[(1,2,3,4), (1,2)] -> [(1,2), (1,3)]

gap> Image(hom,(1,4));

(2,3)

gap> map:=GroupHomomorphismByImages(g,h,gens,[(1,2,3),(1,2)]);

fail

40.1.3 GroupGeneralMappingByImages

▷ GroupGeneralMappingByImages(G, H, gens, imgs) (operation)

▷ GroupGeneralMappingByImages(G, gens, imgs) (operation)

▷ GroupGeneralMappingByImagesNC(G, H, gens, imgs) (operation)

▷ GroupGeneralMappingByImagesNC(G, gens, imgs) (operation)

returns a general mapping defined by extending the mapping from gens to imgs homo-
morphically. If the range H is not given the mapping will be made automatically surjective.
The NC version does not test whether gens are contained in G or imgs are contained in H .

GAP - Reference Manual 626

(GroupHomomorphismByImages (40.1.1) creates a group general mapping by images and tests
whether it is in IsMapping (32.3.3).)

Example
gap> map:=GroupGeneralMappingByImages(g,h,gens,[(1,2,3),(1,2)]);

[(1,2,3,4), (1,2)] -> [(1,2,3), (1,2)]

gap> IsMapping(map);

false

40.1.4 GroupHomomorphismByFunction

▷ GroupHomomorphismByFunction(S, R, fun[, invfun]) (function)

▷ GroupHomomorphismByFunction(S, R, fun, false, prefun) (function)

GroupHomomorphismByFunction returns a group homomorphism hom with source S and range
R , such that each element s of S is mapped to the element fun(s), where fun is a GAP function.

If the argument invfun is bound then hom is a bijection between S and R , and the preimage of
each element r of R is given by invfun(r), where invfun is a GAP function.

If five arguments are given and the fourth argument is false then the GAP function prefun can
be used to compute a single preimage also if hom is not bijective.

No test is performed on whether the functions actually give an homomorphism between both
groups because this would require testing the full multiplication table.

GroupHomomorphismByFunction creates a mapping which lies in IsSPGeneralMapping

(32.14.1).
Example

gap> hom:=GroupHomomorphismByFunction(g,h,

> function(x) if SignPerm(x)=-1 then return (1,2); else return ();fi;end);

MappingByFunction(Group([(1,2,3,4), (1,2)]), Group(

[(1,2,3), (1,2)]), function(x) ... end)

gap> ImagesSource(hom);

Group([(1,2), (1,2)])

gap> Image(hom,(1,2,3,4));

(1,2)

40.1.5 AsGroupGeneralMappingByImages

▷ AsGroupGeneralMappingByImages(map) (attribute)

If map is a mapping from one group to another this attribute returns a group general mapping
that which implements the same abstract mapping. (Some operations can be performed more effec-
tive in this representation, see also IsGroupGeneralMappingByAsGroupGeneralMappingByImages
(40.10.3).)

Example
gap> AsGroupGeneralMappingByImages(hom);

[(1,2,3,4), (1,2)] -> [(1,2), (1,2)]

GAP - Reference Manual 627

40.2 Operations for Group Homomorphisms

Group homomorphisms are mappings, so all the operations and properties for mappings described in
chapter 32 are applicable to them. (However often much better methods, than for general mappings
are available.)

Group homomorphisms will map groups to groups by just mapping the set of generators.
KernelOfMultiplicativeGeneralMapping (32.9.5) can be used to compute the kernel of a

group homomorphism.
Example

gap> hom:=GroupHomomorphismByImages(g,h,gens,[(1,2),(1,3)]);;

gap> Kernel(hom);

Group([(1,4)(2,3), (1,2)(3,4)])

Homomorphisms can map between groups in different representations and are also used to get
isomorphic groups in a different representation.

Example
gap> m1:=[[0,-1],[1,0]];;m2:=[[0,-1],[1,1]];;

gap> sl2z:=Group(m1,m2);; # SL(2,Integers) as matrix group

gap> F:=FreeGroup(2);;

gap> psl2z:=F/[F.1^2,F.2^3]; #PSL(2,Z) as FP group

<fp group on the generators [f1, f2]>

gap> phom:=GroupHomomorphismByImagesNC(sl2z,psl2z,[m1,m2],

> GeneratorsOfGroup(psl2z)); # the non NC-version would be expensive

[[[0, -1], [1, 0]], [[0, -1], [1, 1]]] -> [f1, f2]

gap> Kernel(phom); # the diagonal matrices

Group([[[-1, 0], [0, -1]], [[-1, 0], [0, -1]]])

gap> p1:=(1,2)(3,4);;p2:=(2,4,5);;a5:=Group(p1,p2);;

gap> ahom:=GroupHomomorphismByImages(psl2z,a5,

> GeneratorsOfGroup(psl2z),[p1,p2]); # here homomorphism test is cheap.

[f1, f2] -> [(1,2)(3,4), (2,4,5)]

gap> u:=PreImage(ahom,Group((1,2,3),(1,2)(4,5)));

Group(<fp, no generators known>)

gap> Index(psl2z,u);

10

gap> isofp:=IsomorphismFpGroup(u);; Image(isofp);

<fp group of size infinity on the generators [F1, F2, F3, F4]>

gap> RelatorsOfFpGroup(Image(isofp));

[F1^2, F4^2, F3^3]

gap> up:=PreImage(phom,u);;

gap> List(GeneratorsOfGroup(up),TraceMat);

[-2, -2, 0, -4, 1, 0]

For an automorphism aut , Inverse (31.10.8) returns the inverse automorphism aut−1. However
if hom is a bijective homomorphism between different groups, or if hom is injective and considered to
be a bijection to its image, the operation InverseGeneralMapping (32.2.3) should be used instead.
(See Inverse (31.10.8) for a further discussion of this problem.)

Example
gap> iso:=IsomorphismPcGroup(g);

Pcgs([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)]) -> [f1, f2, f3, f4]

gap> Inverse(iso);

GAP - Reference Manual 628

#I The mapping must be bijective and have source=range

#I You might want to use `InverseGeneralMapping'

fail

gap> InverseGeneralMapping(iso);

[f1, f2, f3, f4] -> Pcgs([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)])

40.3 Efficiency of Homomorphisms

GAP permits to create homomorphisms between arbitrary groups. This section considers the effi-
ciency of the implementation and shows ways how to choose suitable representations. For permutation
groups (see 43) or Pc groups (see 46) this is normally nothing to worry about, unless the groups get ex-
tremely large. For other groups however certain calculations might be expensive and some precaution
might be needed to avoid unnecessarily expensive calculations.

In short, it is always worth to tell a mapping that it is a homomorphism (this can be done by calling
SetIsMapping) (or to create it directly with GroupHomomorphismByImagesNC (40.1.2)).

The basic operations required are to compute image and preimage of elements and to test whether
a mapping is a homomorphism. Their cost will differ depending on the type of the mapping.

40.3.1 Mappings given on generators

See GroupHomomorphismByImages (40.1.1) and GroupGeneralMappingByImages (40.1.3).
Computing images requires to express an element of the source as word in the generators. If

it cannot be done effectively (this is determined by KnowsHowToDecompose (39.26.7) which returns
true for example for arbitrary permutation groups, for Pc groups or for finitely presented groups with
the images of the free generators) the span of the generators has to be computed elementwise which
can be very expensive and memory consuming.

Computing preimages adheres to the same rules with swapped rôles of generators and their images.
The test whether a mapping is a homomorphism requires the computation of a presentation for

the source and evaluation of its relators in the images of its generators. For larger groups this can be
expensive and GroupHomomorphismByImagesNC (40.1.2) should be used if the mapping is known to
be a homomorphism.

40.3.2 Action homomorphisms

See ActionHomomorphism (41.7.1).
The calculation of images is determined by the acting function used and –for large domains– is

often dominated by the search for the position of an image in a list of the domain elements. This can
be improved by sorting this list if an efficient method for \< (31.11.1) to compare elements of the
domain is available.

Once the images of a generating set are computed, computing preimages (which is done via
AsGroupGeneralMappingByImages (40.1.5)) and computing the kernel behaves the same as for a
homomorphism created with GroupHomomorphismByImages (40.1.1) from a permutation group.

GAP will always assume that the acting function provided implements a proper group action and
thus that the mapping is indeed a homomorphism.

GAP - Reference Manual 629

40.3.3 Mappings given by functions

See GroupHomomorphismByFunction (40.1.4).
Computing images is wholly determined by the function that performs the image calculation. If

no function to compute preimages is given, computing preimages requires mapping every element of
the source to find an element that maps to the requested image. This is time and memory consuming.

40.3.4 Other operations

To compute the kernel of a homomorphism (unless the mapping is known to be injective) requires the
capability to compute a presentation of the image and to evaluate the relators of this presentation in
preimages of the presentations generators.

The calculation of the Image (32.4.6) (respectively ImagesSource (32.4.1)) value requires to map
a generating set of the source, testing surjectivity is a comparison for equality with the range.

Testing injectivity is a test for triviality of the kernel.
The comparison of mappings is based on a lexicographic comparison of a sorted element list of

the source. For group homomorphisms, this can be simplified, using ImagesSmallestGenerators

(40.3.5)

40.3.5 ImagesSmallestGenerators

▷ ImagesSmallestGenerators(map) (attribute)

returns the list of images of GeneratorsSmallest(Source(map)). This list can be used to
compare group homomorphisms. (The standard comparison is to compare the image lists on the set
of elements of the source. If however x and y have the same images under a and b, certainly all their
products have. Therefore it is sufficient to test this on the images of the smallest generators.)

40.4 Homomorphism for very large groups

Some homomorphisms (notably particular actions) transfer known information about the source group
(such as a stabilizer chain) to the image group if this is substantially cheaper than to compute the
information in the image group anew. In most cases this is no problem and in fact speeds up further
calculations notably.

For a huge source group, however this can be time consuming or take a large amount of extra
memory for storage. In this case it can be helpful to avoid as much automatism as possible.

The following list of tricks might be useful in such a case. (However you will lose much automatic
deduction. So please restrict the use of these to cases where the standard approach does not work.)

• Compute only images (or the PreImagesRepresentative (32.5.4)) of group elements. Do not
compute the images of (sub)groups or the full preimage of a subgroup.

• Create action homomorphisms as “surjective” (see ActionHomomorphism (41.7.1)), otherwise
the range is set to be the full symmetric group. However do not compute Range (32.3.7) or
Image (32.4.6) values, but only the images of a generator set.

• If you suspect an action homomorphism to do too much internally, replace the action function
with a function that does the same; i.e. replace OnPoints (41.2.1) by function(p, g)

GAP - Reference Manual 630

return p^g; end;. The action will be the same, but as the action function is not OnPoints
(41.2.1), the extra processing for special cases is not triggered.

40.5 Nice Monomorphisms

GAP contains very efficient algorithms for some special representations of groups (for example pc
groups or permutation groups) while for other representations only slow generic methods are available.
In this case it can be worthwhile to do all calculations rather in an isomorphic image of the group,
which is in a “better” representation. The way to achieve this in GAP is via nice monomorphisms.

For this mechanism to work, of course there must be effective methods to evaluate the
NiceMonomorphism (40.5.2) value on elements and to take preimages under it. As by definition
no good algorithms exist for the source group, normally this can only be achieved by using the result
of a call to ActionHomomorphism (41.7.1) or GroupHomomorphismByFunction (40.1.4) (see also
section 40.3).

It may happen that one knows a monomorphism map that is suitable as a nice monomorphism of a
given group G, for example if G is a matrix group and map describes the faithful action of G on a small
set of vectors. In such a case, one can prescribe this monomorphism via SetNiceMonomorphism(

G, map), provided that map stores that it is injective. The latter can be achieved by calling
IsInjective(map) or, if one is sure that map is injective and one wants to avoid the overhead
of the test, by calling SetIsInjective(map, true).

40.5.1 IsHandledByNiceMonomorphism

▷ IsHandledByNiceMonomorphism(obj) (property)

If this property is true, high-valued methods that translate all calculations in obj in the image
under the NiceMonomorphism (40.5.2) value of obj become available for obj .

40.5.2 NiceMonomorphism

▷ NiceMonomorphism(obj) (attribute)

is a homomorphism that is defined (at least) on the whole of obj and whose restriction to obj

is injective. The concrete morphism (and also the image group) will depend on the representation of
obj .

WARNING: The domain of the homomorphism may be larger than obj . To obtain the image of
obj under the homomorphism, use NiceObject (40.5.3); see there for an example where it matters.

40.5.3 NiceObject

▷ NiceObject(obj) (attribute)

The NiceObject value of obj is the image of obj under the mapping stored as the value of
NiceMonomorphism (40.5.2) for obj .

A typical example are finite matrix groups, which use a faithful action on vectors to translate all
calculations in a permutation group.

GAP - Reference Manual 631

Example
gap> gl:=GL(3,2);

SL(3,2)

gap> IsHandledByNiceMonomorphism(gl);

true

gap> NiceObject(gl);

Group([(5,7)(6,8), (2,3,5)(4,7,6)])

gap> Image(NiceMonomorphism(gl),Z(2)*[[1,0,0],[0,1,1],[1,0,1]]);

(2,6)(3,4,7,8)

40.5.4 IsCanonicalNiceMonomorphism

▷ IsCanonicalNiceMonomorphism(nhom) (property)

A nice monomorphism (see NiceMonomorphism (40.5.2) nhom is canonical if the image set will
only depend on the set of group elements but not on the generating set and \< (31.11.1) comparison
of group elements translates through the nice monomorphism. This implies that equal objects will
always have equal NiceObject (40.5.3) values. In some situations however this condition would be
expensive to achieve, therefore it is not guaranteed for every nice monomorphism.

40.6 Group Automorphisms

Group automorphisms are bijective homomorphism from a group onto itself. An important subclass
are automorphisms which are induced by conjugation of the group itself or a supergroup.

40.6.1 ConjugatorIsomorphism

▷ ConjugatorIsomorphism(G, g) (operation)

Let G be a group, and g an element in the same family as the elements of G .
ConjugatorIsomorphism returns the isomorphism from G to G^g defined by h 7→ hg for all h ∈ G .

If g normalizes G then ConjugatorIsomorphism does the same as
ConjugatorAutomorphismNC (40.6.2).

40.6.2 ConjugatorAutomorphism

▷ ConjugatorAutomorphism(G, g) (function)

▷ ConjugatorAutomorphismNC(G, g) (operation)

Let G be a group, and g an element in the same family as the elements of G such that g normalizes
G . ConjugatorAutomorphism returns the automorphism of G defined by h 7→ hg for all h ∈ G .

If conjugation by g does not leave G invariant, ConjugatorAutomorphism returns fail; in
this case, the isomorphism from G to G^g induced by conjugation with g can be constructed with
ConjugatorIsomorphism (40.6.1).

ConjugatorAutomorphismNC does the same as ConjugatorAutomorphism, except that the
check is omitted whether g normalizes G and it is assumed that g is chosen to be in G if possible.

GAP - Reference Manual 632

40.6.3 InnerAutomorphism

▷ InnerAutomorphism(G, g) (function)

▷ InnerAutomorphismNC(G, g) (operation)

Let G be a group, and g ∈ G . InnerAutomorphism returns the automorphism of G defined by
h 7→ hg for all h ∈ G .

If g is not an element of G , InnerAutomorphism returns fail; in this case, the isomorphism from
G to G^g induced by conjugation with g can be constructed with ConjugatorIsomorphism (40.6.1)
or with ConjugatorAutomorphism (40.6.2).

InnerAutomorphismNC does the same as InnerAutomorphism, except that the check is omitted
whether g ∈ G .

40.6.4 IsConjugatorIsomorphism

▷ IsConjugatorIsomorphism(hom) (property)

▷ IsConjugatorAutomorphism(hom) (property)

▷ IsInnerAutomorphism(hom) (property)

Let hom be a group general mapping (see IsGroupGeneralMapping (32.9.4)) with source G.
IsConjugatorIsomorphism returns true if hom is induced by conjugation of G by an element g that
lies in G or in a group into which G is naturally embedded in the sense described below, and false

otherwise.
Natural embeddings are dealt with in the case that G is a permutation group (see Chapter 43), a

matrix group (see Chapter 44), a finitely presented group (see Chapter 47), or a group given w.r.t. a
polycyclic presentation (see Chapter 46). In all other cases, IsConjugatorIsomorphism may return
false if hom is induced by conjugation but is not an inner automorphism.

If IsConjugatorIsomorphism returns true for hom then an element g that induces hom can be
accessed as value of the attribute ConjugatorOfConjugatorIsomorphism (40.6.5).

IsConjugatorAutomorphism returns true if hom is an automorphism
(see IsEndoGeneralMapping (32.13.3)) that is regarded as a conjugator isomorphism by
IsConjugatorIsomorphism, and false otherwise.

IsInnerAutomorphism returns true if hom is a conjugator automorphism such that an element
g inducing hom can be chosen in G, and false otherwise.

40.6.5 ConjugatorOfConjugatorIsomorphism

▷ ConjugatorOfConjugatorIsomorphism(hom) (attribute)

For a conjugator isomorphism hom (see ConjugatorIsomorphism (40.6.1)),
ConjugatorOfConjugatorIsomorphism returns an element g such that mapping under hom

is induced by conjugation with g.
To avoid problems with IsInnerAutomorphism (40.6.4), it is guaranteed that the conjugator is

taken from the source of hom if possible.
Example

gap> hgens:=[(1,2,3),(1,2,4)];;h:=Group(hgens);;

gap> hom:=GroupHomomorphismByImages(h,h,hgens,[(1,2,3),(2,3,4)]);;

gap> IsInnerAutomorphism(hom);

GAP - Reference Manual 633

true

gap> ConjugatorOfConjugatorIsomorphism(hom);

(1,2,3)

gap> hom:=GroupHomomorphismByImages(h,h,hgens,[(1,3,2),(1,4,2)]);

[(1,2,3), (1,2,4)] -> [(1,3,2), (1,4,2)]

gap> IsInnerAutomorphism(hom);

false

gap> IsConjugatorAutomorphism(hom);

true

gap> ConjugatorOfConjugatorIsomorphism(hom);

(1,2)

40.7 Groups of Automorphisms

Group automorphism can be multiplied and inverted and thus it is possible to form groups of automor-
phisms.

40.7.1 AutomorphismGroup

▷ AutomorphismGroup(G) (attribute)

returns the full automorphism group of the group G . The automorphisms act on G by the caret
operator ^. The automorphism group often stores a NiceMonomorphism (40.5.2) value whose image
is a permutation group, obtained by the action on a subset of G .

Note that current methods for the calculation of the automorphism group of a group G require G to
be a permutation group or a pc group to be efficient. For groups in other representations the calculation
is likely very slow.

Also, the AutPGrp package installs enhanced methods for AutomorphismGroup for finite
p-groups, and the FGA package - for finitely generated subgroups of free groups.

Methods may be installed for AutomorphismGroup for other domains, such as e.g. for linear
codes in the GUAVA package, loops in the loops package and nilpotent Lie algebras in the Sophus
package (see package manuals for their descriptions).

40.7.2 IsGroupOfAutomorphisms

▷ IsGroupOfAutomorphisms(G) (property)

indicates whether G consists of automorphisms of another group H. The group H can be obtained
from G via the attribute AutomorphismDomain (40.7.3).

40.7.3 AutomorphismDomain

▷ AutomorphismDomain(G) (attribute)

If G consists of automorphisms of H, this attribute returns H.

GAP - Reference Manual 634

40.7.4 IsAutomorphismGroup

▷ IsAutomorphismGroup(G) (property)

indicates whether G , which must be IsGroupOfAutomorphisms (40.7.2), is the full automorphism
group of another group H, this group is given as AutomorphismDomain (40.7.3) value of G .

Example
gap> g:=Group((1,2,3,4),(1,3));

Group([(1,2,3,4), (1,3)])

gap> au:=AutomorphismGroup(g);

<group of size 8 with 3 generators>

gap> GeneratorsOfGroup(au);

[Pcgs([(2,4), (1,2,3,4), (1,3)(2,4)]) ->

[(1,2)(3,4), (1,2,3,4), (1,3)(2,4)],

Pcgs([(2,4), (1,2,3,4), (1,3)(2,4)]) ->

[(1,3), (1,2,3,4), (1,3)(2,4)],

Pcgs([(2,4), (1,2,3,4), (1,3)(2,4)]) ->

[(2,4), (1,4,3,2), (1,3)(2,4)]]

gap> NiceObject(au);

Group([(1,2,4,6), (1,4)(2,6), (2,6)(3,5)])

40.7.5 InnerAutomorphismsAutomorphismGroup

▷ InnerAutomorphismsAutomorphismGroup(autgroup) (attribute)

For an automorphism group autgroup of a group this attribute stores the subgroup of inner auto-
morphisms (automorphisms induced by conjugation) of the original group.

Example
gap> InnerAutomorphismsAutomorphismGroup(au);

<group with 2 generators>

40.7.6 InnerAutomorphismGroup

▷ InnerAutomorphismGroup(G) (attribute)

For a group G this attribute stores the group of inner automorphisms (automorphisms induced by
conjugation) of the original group.

Example
gap> InnerAutomorphismGroup(SymmetricGroup(5));

<group with 2 generators>

40.7.7 InducedAutomorphism

▷ InducedAutomorphism(epi, aut) (function)

Let aut be an automorphism of a group G and epi be a homomorphism from G to a group H
such that the kernel of epi is fixed under aut . Let U be the image of epi . This command returns the
automorphism of U induced by aut via epi , that is, the automorphism of U which maps g^epi to
(g^aut)^epi , for g ∈ G.

GAP - Reference Manual 635

Example
gap> g:=Group((1,2,3,4),(1,2));

Group([(1,2,3,4), (1,2)])

gap> n:=Subgroup(g,[(1,2)(3,4),(1,3)(2,4)]);

Group([(1,2)(3,4), (1,3)(2,4)])

gap> epi:=NaturalHomomorphismByNormalSubgroup(g,n);

[(1,2,3,4), (1,2)] -> [f1*f2, f1]

gap> aut:=InnerAutomorphism(g,(1,2,3));

^(1,2,3)

gap> InducedAutomorphism(epi,aut);

^f2

40.8 Calculating with Group Automorphisms

Usually the best way to calculate in a group of automorphisms is to translate all calculations to an
isomorphic group in a representation for which better algorithms are available, such as a permutation
group. This translation can be done automatically using NiceMonomorphism (40.5.2).

Once a group knows to be a group of automorphisms (this can be achieved by testing or setting the
property IsGroupOfAutomorphisms (40.7.2)), GAP will try itself to find such a nice monomorphism
once calculations in the automorphism group are done.

Note that nice homomorphisms inherit down to subgroups, but cannot necessarily be extended
from a subgroup to the whole group. Thus when working with a group of automorphisms, it can
be beneficial to enforce calculation of the nice monomorphism for the whole group (for example by
explicitly calling Random (30.7.1) and ignoring the result –it will be stored internally) at the start of
the calculation. Otherwise GAP might first calculate a nice monomorphism for the subgroup, only to
be forced to calculate a new nice monomorphism for the whole group later on.

If a good domain for a faithful permutation action is known already, a homomorphism for the
action on it can be created using NiceMonomorphismAutomGroup (40.8.2). It might be stored by
SetNiceMonomorphism (see NiceMonomorphism (40.5.2)).

Another nice way of representing automorphisms as permutations has been described in [Sim97].
It is not yet available in GAP, a description however can be found in section 87.3.

40.8.1 AssignNiceMonomorphismAutomorphismGroup

▷ AssignNiceMonomorphismAutomorphismGroup(autgrp, group) (function)

computes a nice monomorphism for autgroup acting on group and stores it as
NiceMonomorphism (40.5.2) value of autgrp .

If the centre of AutomorphismDomain (40.7.3) of autgrp is trivial, the operation will first try to
represent all automorphisms by conjugation (in group or in a natural parent of group).

If this fails the operation tries to find a small subset of group on which the action will be faithful.
The operation sets the attribute NiceMonomorphism (40.5.2) and does not return a value.

40.8.2 NiceMonomorphismAutomGroup

▷ NiceMonomorphismAutomGroup(autgrp, elms, elmsgens) (function)

GAP - Reference Manual 636

This function creates a monomorphism for an automorphism group autgrp of a group by per-
muting the group elements in the list elms . This list must be chosen to yield a faithful representation.
elmsgens is a list of generators which are a subset of elms . (They can differ from the group’s original
generators.) It does not yet assign it as NiceMonomorphism (40.5.2) value.

40.9 Searching for Homomorphisms

40.9.1 IsomorphismGroups

▷ IsomorphismGroups(G, H) (function)

computes an isomorphism between the groups G and H if they are isomorphic and returns fail
otherwise.

With the existing methods the amount of time needed grows with the size of a generating system
of G . (Thus in particular for p-groups calculations can be slow.) If you do only need to know whether
groups are isomorphic, you might want to consider IdGroup (smallgrp: IdGroup) or the random
isomorphism test (see RandomIsomorphismTest (46.10.1)).

Example
gap> g:=Group((1,2,3,4),(1,3));;

gap> h:=Group((1,4,6,7)(2,3,5,8), (1,5)(2,6)(3,4)(7,8));;

gap> IsomorphismGroups(g,h);

[(1,2,3,4), (1,3)] -> [(1,4,6,7)(2,3,5,8), (1,2)(3,7)(4,8)(5,6)]

gap> IsomorphismGroups(g,Group((1,2,3,4),(1,2)));

fail

40.9.2 AllHomomorphismClasses

▷ AllHomomorphismClasses(G, H) (function)

For two finite groups G and H , this function returns representatives of all homomorphisms G toH
up to H-conjugacy.

Example
gap> AllHomomorphismClasses(SymmetricGroup(4),SymmetricGroup(3));

[[(2,4,3), (1,4,2,3)] -> [(), ()],

[(2,4,3), (1,4,2,3)] -> [(), (1,2)],

[(2,4,3), (1,4,2,3)] -> [(1,2,3), (1,2)]]

40.9.3 AllHomomorphisms

▷ AllHomomorphisms(G, H) (function)

▷ AllEndomorphisms(G) (function)

▷ AllAutomorphisms(G) (function)

For two finite groups G and H , this function returns all homomorphisms G toH . Since this
number will grow quickly, AllHomomorphismClasses (40.9.2) should be used in most cases.
AllEndomorphisms returns all homomorphisms from G to itself, AllAutomorphisms returns all bi-
jective endomorphisms.

GAP - Reference Manual 637

Example
gap> AllHomomorphisms(SymmetricGroup(3),SymmetricGroup(3));

[[(2,3), (1,2,3)] -> [(), ()],

[(2,3), (1,2,3)] -> [(1,2), ()],

[(2,3), (1,2,3)] -> [(2,3), ()],

[(2,3), (1,2,3)] -> [(1,3), ()],

[(2,3), (1,2,3)] -> [(2,3), (1,2,3)],

[(2,3), (1,2,3)] -> [(1,3), (1,2,3)],

[(2,3), (1,2,3)] -> [(1,3), (1,3,2)],

[(2,3), (1,2,3)] -> [(1,2), (1,2,3)],

[(2,3), (1,2,3)] -> [(2,3), (1,3,2)],

[(2,3), (1,2,3)] -> [(1,2), (1,3,2)]]

40.9.4 GQuotients

▷ GQuotients(F, G) (operation)

computes all epimorphisms from F onto G up to automorphisms of G . This classifies all factor
groups of F which are isomorphic to G .

With the existing methods the amount of time needed grows with the size of a generating system
of G . (Thus in particular for p-groups calculations can be slow.)

If the findall option is set to false, the algorithm will stop once one homomorphism has been
found (this can be faster and might be sufficient if not all homomorphisms are needed).

Example
gap> g:=Group((1,2,3,4),(1,2));

Group([(1,2,3,4), (1,2)])

gap> h:=Group((1,2,3),(1,2));

Group([(1,2,3), (1,2)])

gap> quo:=GQuotients(g,h);

[[(1,2,3,4), (1,4,3)] -> [(2,3), (1,2,3)]]

40.9.5 IsomorphicSubgroups

▷ IsomorphicSubgroups(G, H) (operation)

computes all monomorphisms from H into G up to G-conjugacy of the image groups. This classi-
fies all G-classes of subgroups of G which are isomorphic to H .

With the existing methods, the amount of time needed grows with the size of a generating system of
G . (Thus in particular for p-groups calculations can be slow.) A main use of IsomorphicSubgroups
therefore is to find nonsolvable subgroups (which often can be generated by 2 elements).

(To find p-subgroups it is often faster to compute the subgroup lattice of the Sylow subgroup and
to use IdGroup (smallgrp: IdGroup) to identify the type of the subgroups.)

If the findall option is set to false, the algorithm will stop once one homomorphism has been
found (this can be faster and might be sufficient if not all homomorphisms are needed).

Example
gap> g:=Group((1,2,3,4),(1,2));

Group([(1,2,3,4), (1,2)])

gap> h:=Group((3,4),(1,2));;

gap> emb:=IsomorphicSubgroups(g,h);

GAP - Reference Manual 638

[[(3,4), (1,2)] -> [(1,2), (3,4)],

[(3,4), (1,2)] -> [(1,3)(2,4), (1,2)(3,4)]]

gap> g1:=PSO(-1,8,2);;

gap> Length(IsomorphicSubgroups(g1,PSL(2,7)));

3

gap> Length(IsomorphicSubgroups(g1,PSL(2,7):findall:=false));

1

40.9.6 MorClassLoop

▷ MorClassLoop(range, classes, params, action) (function)

This function loops over element tuples taken from classes and checks these for properties such
as generating a given group, or fulfilling relations. This can be used to find small generating sets or all
types of Morphisms. The element tuples are used only up to inner automorphisms as all images can
be obtained easily from them by conjugation while running through all of them usually would take too
long.

range is a group from which these elements are taken. The classes are given in a list classes
which is a list of records with the following components.

classes

list of conjugacy classes

representative

One element in the union of these classes

size

The sum of the sizes of these classes

params is a record containing the following optional components.

gens

generators that are to be mapped (for testing morphisms). The length of this list determines the
length of element tuples considered.

from

a preimage group (that contains gens)

to image group (which might be smaller than range)

free

free generators, a list of the same length than the generators gens.

rels

some relations that hold among the generators gens. They are given as a list [word, order

] where word is a word in the free generators free.

dom a set of elements on which automorphisms act faithfully (used to do element tests in partial
automorphism groups).

aut Subgroup of already known automorphisms.

GAP - Reference Manual 639

condition

A function that will be applied to the homomorphism and must return true for the homomor-
phism to be accepted.

action is a number whose bit-representation indicates the requirements which are enforced on
the element tuples found, as follows.

1 homomorphism

2 injective

4 surjective

8 find all (otherwise stops after the first find)

If the search is for homomorphisms, the function returns homomorphisms obtained by mapping the
given generators gens instead of element tuples.

The “Morpheus” algorithm used to find homomorphisms is described in [Hul96, Section V.5].

40.10 Representations for Group Homomorphisms

The different representations of group homomorphisms are used to indicate from what type of group
to what type of group they map and thus determine which methods are used to compute images and
preimages.

The information in this section is mainly relevant for implementing new methods and not for using
homomorphisms.

40.10.1 IsGroupGeneralMappingByImages

▷ IsGroupGeneralMappingByImages(map) (Representation)

Representation for mappings from one group to another that are defined by extending a
mapping of group generators homomorphically. Instead of record components, the attribute
MappingGeneratorsImages (40.10.2) is used to store generators and their images.

40.10.2 MappingGeneratorsImages

▷ MappingGeneratorsImages(map) (attribute)

This attribute contains a list of length 2, the first entry being a list of generators of the source
of map and the second entry a list of their images. This attribute is used, for example, by
GroupHomomorphismByImages (40.1.1) to store generators and images.

40.10.3 IsGroupGeneralMappingByAsGroupGeneralMappingByImages

▷ IsGroupGeneralMappingByAsGroupGeneralMappingByImages(map) (Representation)

Representation for mappings that delegate work on a GroupHomomorphismByImages (40.1.1).

GAP - Reference Manual 640

40.10.4 IsPreimagesByAsGroupGeneralMappingByImages

▷ IsPreimagesByAsGroupGeneralMappingByImages(map) (Representation)

Representation for mappings that delegate work for preimages to a mapping created with
GroupHomomorphismByImages (40.1.1).

40.10.5 IsPermGroupGeneralMapping

▷ IsPermGroupGeneralMapping(map) (Representation)

▷ IsPermGroupGeneralMappingByImages(map) (Representation)

▷ IsPermGroupHomomorphism(map) (Representation)

▷ IsPermGroupHomomorphismByImages(map) (Representation)

are the representations for mappings that map from a perm group

40.10.6 IsToPermGroupGeneralMappingByImages

▷ IsToPermGroupGeneralMappingByImages(map) (Representation)

▷ IsToPermGroupHomomorphismByImages(map) (Representation)

is the representation for mappings that map to a perm group

40.10.7 IsGroupGeneralMappingByPcgs

▷ IsGroupGeneralMappingByPcgs(map) (Representation)

is the representations for mappings that map a pcgs to images and thus may use exponents to
decompose generators.

40.10.8 IsPcGroupGeneralMappingByImages

▷ IsPcGroupGeneralMappingByImages(map) (Representation)

▷ IsPcGroupHomomorphismByImages(map) (Representation)

is the representation for mappings from a pc group

40.10.9 IsToPcGroupGeneralMappingByImages

▷ IsToPcGroupGeneralMappingByImages(map) (Representation)

▷ IsToPcGroupHomomorphismByImages(map) (Representation)

is the representation for mappings to a pc group

40.10.10 IsFromFpGroupGeneralMappingByImages

▷ IsFromFpGroupGeneralMappingByImages(map) (Representation)

▷ IsFromFpGroupHomomorphismByImages(map) (Representation)

GAP - Reference Manual 641

is the representation of mappings from an fp group.

40.10.11 IsFromFpGroupStdGensGeneralMappingByImages

▷ IsFromFpGroupStdGensGeneralMappingByImages(map) (Representation)

▷ IsFromFpGroupStdGensHomomorphismByImages(map) (Representation)

is the representation of total mappings from an fp group that give images of the standard genera-
tors.

Chapter 41

Group Actions

A group action is a triple (G,Ω,µ), where G is a group, Ω a set and µ:Ω×G → Ω a function that is
compatible with the group arithmetic. We call Ω the domain of the action.

In GAP, Ω can be a duplicate-free collection (an object that permits access to its elements via the
Ω[n] operation, for example a list), it does not need to be sorted (see IsSet (21.17.4)).

The acting function µ is a binary GAP function that returns the image µ(x,g) for a point x ∈ Ω

and a group element g ∈ G.
In GAP, groups always act from the right, that is µ(µ(x,g),h) = µ(x,gh).
GAP does not test whether the acting function µ satisfies the conditions for a group operation but

silently assumes that is does. (If it does not, results are unpredictable.)
The first section of this chapter, 41.1, describes the various ways how operations for group actions

can be called.
Functions for several commonly used action are already built into GAP. These are listed in sec-

tion 41.2.
The sections 41.7 and 41.8 describe homomorphisms and mappings associated to group actions as

well as the permutation group image of an action.
The other sections then describe operations to compute orbits, stabilizers, as well as properties of

actions.
Finally section 41.12 describes the concept of “external sets” which represent the concept of a

G-set and underly the actions mechanism.

41.1 About Group Actions

The syntax which is used by the operations for group actions is quite flexible. For example we can
call the operation OrbitsDomain (41.4.3) for the orbits of the group G on the domain Omega in the
following ways:

OrbitsDomain(G,Ω[,µ])
The acting function µ is optional. If it is not given, the built-in action OnPoints (41.2.1) (which
defines an action via the caret operator ^) is used as a default.

OrbitsDomain(G,Ω,gens,acts[,µ])
This second version of OrbitsDomain (41.4.3) permits one to implement an action induced by
a homomorphism: If the group H acts on Ω via µ and ϕ:G → H is a homomorphism, G acts on
Ω via the induced action µ ′(x,g) = µ(x,gϕ).

642

GAP - Reference Manual 643

Here gens must be a set of generators of G and acts the images of gens under ϕ . µ is the acting
function for H. Again, the function µ is optional and OnPoints (41.2.1) is used as a default.

The advantage of this notation is that GAP does not need to construct this homomorphism ϕ

and the range group H as GAP objects. (If a small group G acts via complicated objects acts
this otherwise could lead to performance problems.)

GAP does not test whether the mapping gens 7→ acts actually induces a homomorphism and the
results are unpredictable if this is not the case.

OrbitsDomain(xset)
A third variant is to call the operation with an external set, which then provides G, Ω and µ .
You will find more about external sets in Section 41.12.

For operations like Stabilizer (41.5.2) of course the domain must be replaced by an element of
the domain of the action.

41.2 Basic Actions

GAP already provides acting functions for the more common actions of a group. For built-in opera-
tions such as Stabilizer (41.5.2) special methods are available for many of these actions.

If one needs an action for which no acting function is provided by the library it can be implemented
via a GAP function that conforms to the syntax

actfun(omega, g)

where omega is an element of the action domain, g is an element of the acting group, and the return
value is the image of omega under g.

For example one could define the following function that acts on pairs of polynomials via
OnIndeterminates (41.2.13):

Example
OnIndeterminatesPairs:= function(polypair, g)

return [OnIndeterminates(polypair[1], g),

OnIndeterminates(polypair[2], g)];

end;

Note that this function must implement a group action from the right. This is not verified by GAP
and results are unpredictable otherwise.

41.2.1 OnPoints

▷ OnPoints(pnt, g) (function)

returns pnt ^ g . This is for example the action of a permutation group on points, or the action
of a group on its elements via conjugation, that is, if both pnt and g are elements from a common
group then pnt ^ g is equal to g−1*pnt*g . The action of a matrix group on vectors from the right
is described by both OnPoints and OnRight (41.2.2).

Example
gap> OnPoints(1, (1,2,3));

2

gap> OnPoints((1,2), (1,2,3));

GAP - Reference Manual 644

(2,3)

gap> g:= Group((1,2,3), (2,3,4));;

gap> Orbit(g, 1, OnPoints);

[1, 2, 3, 4]

41.2.2 OnRight

▷ OnRight(pnt, g) (function)

returns pnt * g . This is for example the action of a group on its elements via right multiplication,
or the action of a group on the cosets of a subgroup. The action of a matrix group on vectors from the
right is described by both OnPoints (41.2.1) and OnRight.

Example
gap> OnRight([1, 2], [[1, 2], [3, 4]]);

[7, 10]

gap> OnRight((1,2,3), (2,3,4));

(1,3)(2,4)

gap> g:= Group((1,2,3), (2,3,4));;

gap> Orbit(g, (), OnRight);

[(), (1,2,3), (2,3,4), (1,3,2), (1,3)(2,4), (1,2)(3,4), (2,4,3),

(1,4,2), (1,4,3), (1,3,4), (1,2,4), (1,4)(2,3)]

41.2.3 OnLeftInverse

▷ OnLeftInverse(pnt, g) (function)

returns g−1 * pnt . Forming the inverse is necessary to make this a proper action, as in GAP
groups always act from the right.

OnLeftInverse is used for example in the representation of a right coset as an external set
(see 41.12), that is, a right coset Ug is an external set for the group U acting on it via OnLeftInverse.)

Example
gap> OnLeftInverse([1, 2], [[1, 2], [3, 4]]);

[0, 1/2]

gap> OnLeftInverse((1,2,3), (2,3,4));

(1,2,4)

gap> g:= Group((1,2,3), (2,3,4));;

gap> Orbit(g, (), OnLeftInverse);

[(), (1,3,2), (2,4,3), (1,2,3), (1,3)(2,4), (1,2)(3,4), (2,3,4),

(1,2,4), (1,3,4), (1,4,3), (1,4,2), (1,4)(2,3)]

41.2.4 OnSets

▷ OnSets(set, g) (function)

Let set be a proper set (see 21.19). OnSets returns the proper set formed by the images of all
points x of set via the action function OnPoints (41.2.1), applied to x and g .

OnSets is for example used to compute the action of a permutation group on blocks.
(OnTuples (41.2.5) is an action on lists that preserves the ordering of entries.)

GAP - Reference Manual 645

Example
gap> OnSets([1, 3], (1,2,3));

[1, 2]

gap> OnSets([(2,3), (1,2)], (1,2,3));

[(2,3), (1,3)]

gap> g:= Group((1,2,3), (2,3,4));;

gap> Orbit(g, [1, 2], OnSets);

[[1, 2], [2, 3], [1, 3], [3, 4], [1, 4], [2, 4]]

41.2.5 OnTuples

▷ OnTuples(tup, g) (function)

Let tup be a list. OnTuples returns the list formed by the images of all points x of tup via the
action function OnPoints (41.2.1), applied to x and g .

(OnSets (41.2.4) is an action on lists that additionally sorts the entries of the result.)
Example

gap> OnTuples([1, 3], (1,2,3));

[2, 1]

gap> OnTuples([(2,3), (1,2)], (1,2,3));

[(1,3), (2,3)]

gap> g:= Group((1,2,3), (2,3,4));;

gap> Orbit(g, [1, 2], OnTuples);

[[1, 2], [2, 3], [1, 3], [3, 1], [3, 4], [2, 1],

[1, 4], [4, 1], [4, 2], [3, 2], [2, 4], [4, 3]]

41.2.6 OnPairs

▷ OnPairs(tup, g) (function)

is a special case of OnTuples (41.2.5) for lists tup of length 2.

41.2.7 OnSetsSets

▷ OnSetsSets(set, g) (function)

implements the action on sets of sets. For the special case that the sets are pairwise disjoint, it
is possible to use OnSetsDisjointSets (41.2.8). set must be a sorted list whose entries are again
sorted lists, otherwise an error is triggered (see 41.3).

Example
gap> OnSetsSets([[1, 2], [3, 4]], (1,2,3));

[[1, 4], [2, 3]]

gap> g:= Group((1,2,3), (2,3,4));;

gap> Orbit(g, [[1, 2], [3, 4]], OnSetsSets);

[[[1, 2], [3, 4]], [[1, 4], [2, 3]],

[[1, 3], [2, 4]]]

GAP - Reference Manual 646

41.2.8 OnSetsDisjointSets

▷ OnSetsDisjointSets(set, g) (function)

implements the action on sets of pairwise disjoint sets (see also OnSetsSets (41.2.7)). set must
be a sorted list whose entries are again sorted lists, otherwise an error is triggered (see 41.3).

41.2.9 OnSetsTuples

▷ OnSetsTuples(set, g) (function)

implements the action on sets of tuples. set must be a sorted list, otherwise an error is triggered
(see 41.3).

Example
gap> OnSetsTuples([[1, 2], [3, 4]], (1,2,3));

[[1, 4], [2, 3]]

gap> g:= Group((1,2,3), (2,3,4));;

gap> Orbit(g, [[1, 2], [3, 4]], OnSetsTuples);

[[[1, 2], [3, 4]], [[1, 4], [2, 3]],

[[1, 3], [4, 2]], [[2, 4], [3, 1]],

[[2, 1], [4, 3]], [[3, 2], [4, 1]]]

41.2.10 OnTuplesSets

▷ OnTuplesSets(set, g) (function)

implements the action on tuples of sets. set must be a list whose entries are again sorted lists,
otherwise an error is triggered (see 41.3).

Example
gap> OnTuplesSets([[2, 3], [3, 4]], (1,2,3));

[[1, 3], [1, 4]]

gap> g:= Group((1,2,3), (2,3,4));;

gap> Orbit(g, [[1, 2], [3, 4]], OnTuplesSets);

[[[1, 2], [3, 4]], [[2, 3], [1, 4]],

[[1, 3], [2, 4]], [[3, 4], [1, 2]],

[[1, 4], [2, 3]], [[2, 4], [1, 3]]]

41.2.11 OnTuplesTuples

▷ OnTuplesTuples(set, g) (function)

implements the action on tuples of tuples.
Example

gap> OnTuplesTuples([[2, 3], [3, 4]], (1,2,3));

[[3, 1], [1, 4]]

gap> g:=Group((1,2,3),(2,3,4));;

gap> Orbit(g,[[1,2],[3,4]],OnTuplesTuples);

[[[1, 2], [3, 4]], [[2, 3], [1, 4]],

[[1, 3], [4, 2]], [[3, 1], [2, 4]],

[[3, 4], [1, 2]], [[2, 1], [4, 3]],

GAP - Reference Manual 647

[[1, 4], [2, 3]], [[4, 1], [3, 2]],

[[4, 2], [1, 3]], [[3, 2], [4, 1]],

[[2, 4], [3, 1]], [[4, 3], [2, 1]]]

41.2.12 OnLines

▷ OnLines(vec, g) (function)

Let vec be a normed row vector, that is, its first nonzero entry is normed to the identity of the
relevant field, see NormedRowVector (23.2.1). The function OnLines returns the row vector obtained
from first multiplying vec from the right with g (via OnRight (41.2.2)) and then normalizing the
resulting row vector by scalar multiplication from the left.

This action corresponds to the projective action of a matrix group on one-dimensional subspaces.
If vec is a zero vector or is not normed then an error is triggered (see 41.3).

Example
gap> OnLines([1, 2], [[1, 2], [3, 4]]);

[1, 10/7]

gap> gl:=GL(2,5);;v:=[1,0]*Z(5)^0;

[Z(5)^0, 0*Z(5)]

gap> h:=Action(gl,Orbit(gl,v,OnLines),OnLines);

Group([(2,3,5,6), (1,2,4)(3,6,5)])

41.2.13 OnIndeterminates (as a permutation action)

▷ OnIndeterminates(poly, perm) (function)

A permutation perm acts on the multivariate polynomial poly by permuting the indeterminates
as it permutes points.

Example
gap> x:=Indeterminate(Rationals,1);; y:=Indeterminate(Rationals,2);;

gap> OnIndeterminates(x^7*y+x*y^4,(1,17)(2,28));

x_17^7*x_28+x_17*x_28^4

gap> Stabilizer(Group((1,2,3,4),(1,2)),x*y,OnIndeterminates);

Group([(1,2), (3,4)])

41.2.14 Permuted (as a permutation action)

▷ Permuted(list, perm) (method)

The following example demonstrates Permuted (21.20.17) being used to implement a permutation
action on a domain:

Example
gap> g:=Group((1,2,3),(1,2));;

gap> dom:=["a", "b", "c"];;

gap> Orbit(g,dom,Permuted);

[["a", "b", "c"], ["c", "a", "b"], ["b", "a", "c"],

["b", "c", "a"], ["a", "c", "b"], ["c", "b", "a"]]

GAP - Reference Manual 648

41.2.15 OnSubspacesByCanonicalBasis

▷ OnSubspacesByCanonicalBasis(bas, mat) (function)

▷ OnSubspacesByCanonicalBasisConcatenations(basvec, mat) (function)

implements the operation of a matrix group on subspaces of a vector space. bas must be a list of
(linearly independent) vectors which forms a basis of the subspace in Hermite normal form. mat is
an element of the acting matrix group. The function returns a mutable matrix which gives the basis of
the image of the subspace in Hermite normal form. (In other words: it triangulizes the product of bas
with mat .)

bas must be given in Hermite normal form, otherwise an error is triggered (see 41.3).

41.3 Action on canonical representatives

A variety of action functions assumes that the objects on which it acts are given in a particular
form, for example canonical representatives. Affected actions are for example OnSetsSets (41.2.7),
OnSetsDisjointSets (41.2.8), OnSetsTuples (41.2.9), OnTuplesSets (41.2.10), OnLines

(41.2.12) and OnSubspacesByCanonicalBasis (41.2.15).
If orbit seeds or domain elements are not given in the required form GAP will issue an error

message:
Example

gap> Orbit(SymmetricGroup(5),[[2,4],[1,3]],OnSetsSets);

Error, Action not well-defined. See the manual section

``Action on canonical representatives''.

In this case the affected domain elements have to be brought in canonical form, as documented for
the respective action function. For interactive use this is most easily done by acting with the identity
element of the group.

(A similar error could arise if a user-defined action function is used which actually does not
implement an action from the right.)

41.4 Orbits

If a group G acts on a set Ω, the set of all images of x ∈ Ω under elements of G is called the orbit of
x. The set of orbits of G is a partition of Ω.

41.4.1 Orbit

▷ Orbit(G[, Omega], pnt[, gens, acts][, act]) (operation)

The orbit of the point pnt is the list of all images of pnt under the action of the group G w.r.t. the
action function act or OnPoints (41.2.1) if no action function is given.

(Note that the arrangement of points in this list is not defined by the operation.)
The orbit of pnt will always contain one element that is equal to pnt , however for performance

reasons this element is not necessarily identical to pnt , in particular if pnt is mutable.

GAP - Reference Manual 649

Example
gap> g:=Group((1,3,2),(2,4,3));;

gap> Orbit(g,1);

[1, 3, 2, 4]

gap> Orbit(g,[1,2],OnSets);

[[1, 2], [1, 3], [1, 4], [2, 3], [3, 4], [2, 4]]

(See Section 41.2 for information about specific actions.)

41.4.2 Orbits (operation)

▷ Orbits(G, seeds[, gens, acts][, act]) (operation)

▷ Orbits(G) (attribute)

▷ Orbits(xset) (attribute)

returns a duplicate-free list of the orbits of the elements in seeds under the action act of G or
under OnPoints (41.2.1) if no action function is given.

For a permutation group G , one may also invoke this as Orbits(G), which returns all the orbits
of its natural action on the set of points moved by it. For example the group ⟨(1,2,3),(4,5)⟩ has the
orbits {1,2,3} and {4,5}.

(Note that the arrangement of orbits or of points within one orbit is not defined by the operation.)

41.4.3 OrbitsDomain

▷ OrbitsDomain(G, Omega[, gens, acts][, act]) (operation)

▷ OrbitsDomain(G) (attribute)

▷ OrbitsDomain(xset) (attribute)

returns a list of the orbits of G on the domain Omega (given as lists) under the action act or under
OnPoints (41.2.1) if no action function is given.

This operation is often faster than Orbits (41.4.2). The domain Omega must be closed under the
action of G , otherwise an error can occur.

For a permutation group G , one may also invoke this as OrbitsDomain(G), which returns all the
orbits of its natural action on the set of points moved by it.

(Note that the arrangement of orbits or of points within one orbit is not defined by the operation.)
Example

gap> g:=Group((1,3,2),(2,4,3));;

gap> Orbits(g,[1..5]);

[[1, 3, 2, 4], [5]]

gap> OrbitsDomain(g,Arrangements([1..4],3),OnTuples);

[[[1, 2, 3], [3, 1, 2], [1, 4, 2], [2, 3, 1], [2, 1, 4],

[3, 4, 1], [1, 3, 4], [4, 2, 1], [4, 1, 3],

[2, 4, 3], [3, 2, 4], [4, 3, 2]],

[[1, 2, 4], [3, 1, 4], [1, 4, 3], [2, 3, 4], [2, 1, 3],

[3, 4, 2], [1, 3, 2], [4, 2, 3], [4, 1, 2],

[2, 4, 1], [3, 2, 1], [4, 3, 1]]]

gap> OrbitsDomain(g,GF(2)^2,[(1,2,3),(1,4)(2,3)],

> [[[Z(2)^0,Z(2)^0],[Z(2)^0,0*Z(2)]],[[Z(2)^0,0*Z(2)],[0*Z(2),Z(2)^0]]]);

[[<an immutable GF2 vector of length 2>],

GAP - Reference Manual 650

[<an immutable GF2 vector of length 2>,

<an immutable GF2 vector of length 2>,

<an immutable GF2 vector of length 2>]]

(See Section 41.2 for information about specific actions.)

41.4.4 OrbitLength

▷ OrbitLength(G[, Omega], pnt[, gens, acts][, act]) (operation)

computes the length of the orbit of pnt under the action function act or OnPoints (41.2.1) if no
action function is given.

41.4.5 OrbitLengths

▷ OrbitLengths(G, seeds[, gens, acts][, act]) (operation)

▷ OrbitLengths(G) (attribute)

▷ OrbitLengths(xset) (attribute)

computes the lengths of all the orbits of the elements in seeds under the action act of G .
For a permutation group G , one may also invoke this as OrbitLengths(G), which returns the

lengths of all the orbits of its natural action on the set of points moved by it. For example the group
⟨(1,2,3),(5,6)⟩ has the orbit lengths 2 and 3.

41.4.6 OrbitLengthsDomain

▷ OrbitLengthsDomain(G, Omega[, gens, acts][, act]) (operation)

▷ OrbitLengthsDomain(G) (attribute)

▷ OrbitLengthsDomain(xset) (attribute)

computes the lengths of all the orbits of G on Omega .
This operation is often faster than OrbitLengths (41.4.5). The domain Omega must be closed

under the action of G , otherwise an error can occur.
For a permutation group G , one may also invoke this as OrbitLengthsDomain(G), which returns

the length of all the orbits of its natural action on the set of points moved by it.
Example

gap> g:=Group((1,3,2),(2,4,3));;

gap> OrbitLength(g,[1,2,3,4],OnTuples);

12

gap> OrbitLengths(g,Arrangements([1..4],4),OnTuples);

[12, 12]

gap> g:=Group((1,2,3),(5,6,7));;

gap> OrbitLengthsDomain(g,[1,2,3]);

[3]

gap> OrbitLengthsDomain(g);

[3, 3]

GAP - Reference Manual 651

41.5 Stabilizers

The stabilizer of a point x under the action of a group G is the set of all those elements in G which fix
x.

41.5.1 OrbitStabilizer

▷ OrbitStabilizer(G[, Omega], pnt[, gens, acts][, act]) (operation)

computes the orbit and the stabilizer of pnt simultaneously in a single orbit-stabilizer algorithm.
The stabilizer will have G as its parent.

41.5.2 Stabilizer

▷ Stabilizer(G[, Omega], pnt[, gens, acts][, act]) (function)

computes the stabilizer in G of the point pnt , that is the subgroup of those elements of G that fix
pnt . The stabilizer will have G as its parent.

Example
gap> g:=Group((1,3,2),(2,4,3));;

gap> stab:=Stabilizer(g,4);

Group([(1,3,2)])

gap> Parent(stab);

Group([(1,3,2), (2,4,3)])

The stabilizer of a set or tuple of points can be computed by specifying an action of sets or tuples
of points.

Example
gap> Stabilizer(g,[1,2],OnSets);

Group([(1,2)(3,4)])

gap> Stabilizer(g,[1,2],OnTuples);

Group(())

gap> orbstab:=OrbitStabilizer(g,[1,2],OnSets);

rec(

orbit := [[1, 2], [1, 3], [1, 4], [2, 3], [3, 4],

[2, 4]], stabilizer := Group([(1,2)(3,4)]))

gap> Parent(orbstab.stabilizer);

Group([(1,3,2), (2,4,3)])

(See Section 41.2 for information about specific actions.)
The standard methods for all these actions are an orbit-stabilizer algorithm. For permutation

groups backtrack algorithms are used. For solvable groups an orbit-stabilizer algorithm for solvable
groups, which uses the fact that the orbits of a normal subgroup form a block system (see [LNS84]) is
used.

41.5.3 OrbitStabilizerAlgorithm

▷ OrbitStabilizerAlgorithm(G, Omega, blist, gens, acts, pntact) (operation)

GAP - Reference Manual 652

This operation should not be called by a user. It is documented however for purposes to extend
or maintain the group actions package (the word “package” here refers to the GAP functionality for
group actions, not to a GAP package).

OrbitStabilizerAlgorithm performs an orbit stabilizer algorithm for the group G acting with
the generators gens via the generator images gens and the group action act on the element pnt .
(For technical reasons pnt and act are put in one record with components pnt and act respectively.)

The pntact record may carry a component stabsub . If given, this must be a subgroup stabilizing
all points in the domain and can be used to abbreviate stabilizer calculations.

The pntact component also may contain the boolean entry onlystab set to true. In this case
the orbit component may be omitted from the result.

The argument Omega (which may be replaced by false to be ignored) is the set within which the
orbit is computed (once the orbit is the full domain, the orbit calculation may stop). If blist is given
it must be a bit list corresponding to Omega in which elements which have been found already will be
“ticked off” with true. (In particular, the entries for the orbit of pnt still must be all set to false).
Again the remaining action domain (the bits set initially to false) can be used to stop if the orbit
cannot grow any longer. Another use of the bit list is if Omega is an enumerator which can determine
PositionCanonical (21.16.3) values very quickly. In this situation it can be worth to search images
not in the orbit found so far, but via their position in Omega and use a the bit list to keep track whether
the element is in the orbit found so far.

41.6 Elements with Prescribed Images

41.6.1 RepresentativeAction

▷ RepresentativeAction(G[, Omega], d, e[, gens, acts][, act]) (function)

computes an element of G that maps d to e under the given action and returns fail if no such
element exists.

Example
gap> g:=Group((1,3,2),(2,4,3));;

gap> RepresentativeAction(g,1,3);

(1,3)(2,4)

gap> RepresentativeAction(g,1,3,OnPoints);

(1,3)(2,4)

gap> RepresentativeAction(g,(1,2,3),(2,4,3));

(1,2,4)

gap> RepresentativeAction(g,(1,2,3),(2,3,4));

fail

gap> RepresentativeAction(g,Group((1,2,3)),Group((2,3,4)));

(1,2,4)

gap> RepresentativeAction(g,[1,2,3],[1,2,4],OnSets);

(2,4,3)

gap> RepresentativeAction(g,[1,2,3],[1,2,4],OnTuples);

fail

(See Section 41.2 for information about specific actions.)
Again the standard method for RepresentativeAction is an orbit-stabilizer algorithm, for per-

mutation groups and standard actions a backtrack algorithm is used.

GAP - Reference Manual 653

41.7 The Permutation Image of an Action

When a group G acts on a domain Ω, an enumeration of Omega yields a homomorphism from G into
the symmetric group on {1, . . . , |Ω|}. In GAP, the enumeration of Ω is provided by the Enumerator

(30.3.2) value of Ω which of course is Ω itself if it is a list.
For an action homomorphism, the operation UnderlyingExternalSet (41.12.16) will return the

external set on Ω which affords the action.

41.7.1 ActionHomomorphism

▷ ActionHomomorphism(G, Omega[, gens, acts][, act][, "surjective"]) (function)

▷ ActionHomomorphism(xset[, "surjective"]) (function)

▷ ActionHomomorphism(action) (function)

computes a homomorphism from G into the symmetric group on |Omega | points that gives the
permutation action of G on Omega . (In particular, this homomorphism is a permutation equivalence,
that is the permutation image of a group element is given by the positions of points in Omega .)

The result is undefined if G does not act on Omega .
By default the homomorphism returned by ActionHomomorphism is not necessarily surjective (its

Range (32.3.7) value is the full symmetric group) to avoid unnecessary computation of the image. If
the optional string argument "surjective" is given, a surjective homomorphism is created.

The third version (which is supported only for GAP3 compatibility) returns the action homomor-
phism that belongs to the image obtained via Action (41.7.2).

(See Section 41.2 for information about specific actions.)
Example

gap> g:=Group((1,2,3),(1,2));;

gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),OnTuples);

<action homomorphism>

gap> Image(hom);

Group(

[(1,9,13)(2,10,14)(3,7,15)(4,8,16)(5,12,17)(6,11,18)(19,22,23)(20,21,

24), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,15)(14,16)(17,18)(19,

21)(20,22)(23,24)])

gap> Size(Range(hom));Size(Image(hom));

620448401733239439360000

6

gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),OnTuples,

> "surjective");;

gap> Size(Range(hom));

6

When acting on a domain, the operation PositionCanonical (21.16.3) is used to determine the
position of elements in the domain. This can be used to act on a domain given by a list of repre-
sentatives for which PositionCanonical (21.16.3) is implemented, for example the return value of
RightTransversal (39.8.1).

GAP - Reference Manual 654

41.7.2 Action (for a group, an action domain, etc.)

▷ Action(G, Omega[, gens, acts][, act]) (function)

▷ Action(xset) (function)

returns the image group of ActionHomomorphism (41.7.1) called with the same parameters.
Note that (for compatibility reasons to be able to get the action homomorphism) this image group

internally stores the action homomorphism. If G or Omega are extremely big, this can cause memory
problems. In this case compute only generator images and form the image group yourself.

(See Section 41.2 for information about specific actions.)
The following code shows for example how to create the regular action of a group.

Example
gap> g:=Group((1,2,3),(1,2));;

gap> Action(g,AsList(g),OnRight);

Group([(1,5,3)(2,6,4), (1,6)(2,5)(3,4)])

41.7.3 SparseActionHomomorphism

▷ SparseActionHomomorphism(G, start[, gens, acts][, act]) (operation)

▷ SortedSparseActionHomomorphism(G, start[, gens, acts][, act]) (operation)

SparseActionHomomorphism computes the action homomorphism (see ActionHomomorphism

(41.7.1)) with arguments G , D, and the optional arguments given, where D is the union of the G-orbits
of all points in start . In the Orbit (41.4.1) calls that are used to create D, again the optional
arguments given are entered.)

If G acts on a very large domain not surjectively this may yield a permutation image of substantially
smaller degree than by action on the whole domain.

The operation SparseActionHomomorphism will only use \= (31.11.1) comparisons of points in
the orbit. Therefore it can be used even if no good \< (31.11.1) comparison method for these points is
available. However the image group will depend on the generators gens of G .

The operation SortedSparseActionHomomorphism in contrast will sort the orbit and thus pro-
duce an image group which does not depend on these generators.

Example
gap> h:=Group(Z(3)*[[[1,1],[0,1]]]);

Group([[[Z(3), Z(3)], [0*Z(3), Z(3)]]])

gap> hom:=ActionHomomorphism(h,GF(3)^2,OnRight);;

gap> Image(hom);

Group([(2,3)(4,9,6,7,5,8)])

gap> hom:=SparseActionHomomorphism(h,[Z(3)*[1,0]],OnRight);;

gap> Image(hom);

Group([(1,2,3,4,5,6)])

41.8 Action of a group on itself

Of particular importance is the action of a group on its elements or cosets of a subgroup. These actions
can be obtained by using ActionHomomorphism (41.7.1) for a suitable domain (for example a list of
subgroups). For the following (frequently used) types of actions however special (often particularly
efficient) functions are provided. A special case is the regular action on all elements.

GAP - Reference Manual 655

41.8.1 FactorCosetAction (for a group and subgroup)

▷ FactorCosetAction(G, U[, N]) (operation)

▷ FactorCosetAction(G, L) (operation)

This command computes the action of the group G on the right cosets of the subgroup U . If a nor-
mal subgroup N of G is given, it is stored as kernel of this action. When calling FactorCosetAction

with a list of subgroups as the second argument, an action with image isomorphic to the subdirect
product of the coset actions of all subgroups is computed. (However a degree reduction may take
place if some of the actions are redundant, i.e. there is no guarantee that every subgroup in the list is
represented by an orbit.)

Example
gap> g:=Group((1,2,3,4,5),(1,2));;u:=SylowSubgroup(g,2);;Index(g,u);

15

gap> FactorCosetAction(g,u);

[(1,2,3,4,5), (1,2)] -> [(1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15),\

(1,4)(2,6)(3,5)(7,8)(10,12)(13,14)]

gap> StructureDescription(Range(last));

"S5"

gap> FactorCosetAction(g,[u,SylowSubgroup(g,3)]);;

gap> Size(Image(last));

120

The correspondence of points with cosets will, for performance reasons, depend on the method used.
It is not guaranteed that it will be the same as used by RightTransversal or RightCosets.

41.8.2 RegularActionHomomorphism

▷ RegularActionHomomorphism(G) (attribute)

returns an isomorphism from G onto the regular permutation representation of G .

41.8.3 AbelianSubfactorAction

▷ AbelianSubfactorAction(G, M, N) (operation)

Let G be a group and M ≥ N be subgroups of a common parent that are normal under G , such that
the subfactor M/N is elementary abelian. The operation AbelianSubfactorAction returns a list [
phi, alpha, bas] where bas is a list of elements of M which are representatives for a basis of
M/N , alpha is a map from M into a n-dimensional row space over GF(p) where [M : N] = pn that is
the natural homomorphism of M by N with the quotient represented as an additive group. Finally phi

is a homomorphism from G into GLn(p) that represents the action of G on the factor M/N .
Note: If only matrices for the action are needed, LinearActionLayer (45.14.3) might be faster.

Example
gap> g:=Group((1,8,10,7,3,5)(2,4,12,9,11,6),

> (1,9,5,6,3,10)(2,11,12,8,4,7));;

gap> c:=ChiefSeries(g);;List(c,Size);

[96, 48, 16, 4, 1]

gap> HasElementaryAbelianFactorGroup(c[3],c[4]);

true

GAP - Reference Manual 656

gap> SetName(c[3],"my_group");;

gap> a:=AbelianSubfactorAction(g,c[3],c[4]);

[[(1,8,10,7,3,5)(2,4,12,9,11,6), (1,9,5,6,3,10)(2,11,12,8,4,7)] ->

[<an immutable 2x2 matrix over GF2>,

<an immutable 2x2 matrix over GF2>],

MappingByFunction(my_group, (GF(2)^

2), function(e) ... end, function(r) ... end),

Pcgs([(2,9,3,8)(4,11,5,10), (1,6,12,7)(4,10,5,11)])]

gap> mat:=Image(a[1],g);

Group([<an immutable 2x2 matrix over GF2>,

<an immutable 2x2 matrix over GF2>])

gap> Size(mat);

3

gap> e:=PreImagesRepresentative(a[2],[Z(2),0*Z(2)]);

(2,9,3,8)(4,11,5,10)

gap> e in c[3];e in c[4];

true

false

41.9 Permutations Induced by Elements and Cycles

If only the permutation image of a single element is needed, it might not be worth to create the action
homomorphism, the following operations yield the permutation image and cycles of a single element.

41.9.1 Permutation

▷ Permutation(g, Omega[, gens, acts][, act]) (function)

▷ Permutation(g, xset) (function)

computes the permutation that corresponds to the action of g on the permutation domain Omega

(a list of objects that are permuted). If an external set xset is given, the permutation domain is the
HomeEnumerator (41.12.5) value of this external set (see Section 41.12). Note that the points of the
returned permutation refer to the positions in Omega , even if Omega itself consists of integers.

If g does not leave the domain invariant, or does not map the domain injectively then fail is
returned.

41.9.2 PermutationCycle

▷ PermutationCycle(g, Omega, pnt[, act]) (function)

computes the permutation that represents the cycle of pnt under the action of the element g .
Example

gap> Permutation([[Z(3),-Z(3)],[Z(3),0*Z(3)]],AsList(GF(3)^2));

(2,7,6)(3,4,8)

gap> Permutation((1,2,3)(4,5)(6,7),[4..7]);

(1,2)(3,4)

gap> PermutationCycle((1,2,3)(4,5)(6,7),[4..7],4);

(1,2)

GAP - Reference Manual 657

41.9.3 Cycle

▷ Cycle(g, Omega, pnt[, act]) (function)

returns a list of the points in the cycle of pnt under the action of the element g .

41.9.4 CycleLength

▷ CycleLength(g, Omega, pnt[, act]) (function)

returns the length of the cycle of pnt under the action of the element g .

41.9.5 Cycles

▷ Cycles(g, Omega[, act]) (function)

returns a list of the cycles (as lists of points) of the action of the element g .

41.9.6 CycleLengths

▷ CycleLengths(g, Omega[, act]) (operation)

returns the lengths of all the cycles under the action of the element g on Omega .
Example

gap> Cycle((1,2,3)(4,5)(6,7),[4..7],4);

[4, 5]

gap> CycleLength((1,2,3)(4,5)(6,7),[4..7],4);

2

gap> Cycles((1,2,3)(4,5)(6,7),[4..7]);

[[4, 5], [6, 7]]

gap> CycleLengths((1,2,3)(4,5)(6,7),[4..7]);

[2, 2]

41.9.7 CycleIndex

▷ CycleIndex(g, Omega[, act]) (function)

▷ CycleIndex(G, Omega[, act]) (function)

The cycle index of a permutation g acting on Omega is defined as

z(g) = sc1
1 sc2

2 · · ·scn
n

where ck is the number of k-cycles in the cycle decomposition of g and the si are indeterminates.
The cycle index of a group G is defined as

Z(G) =

(
∑

g∈G
z(g)

)
/|G |.

The indeterminates used by CycleIndex are the indeterminates 1 to n over the rationals
(see Indeterminate (66.1.1)).

GAP - Reference Manual 658

Example
gap> g:=TransitiveGroup(6,8);

S_4(6c) = 1/2[2^3]S(3)

gap> CycleIndex(g);

1/24*x_1^6+1/8*x_1^2*x_2^2+1/4*x_1^2*x_4+1/4*x_2^3+1/3*x_3^2

41.10 Tests for Actions

41.10.1 IsTransitive

▷ IsTransitive(G, Omega[, gens, acts][, act]) (operation)

▷ IsTransitive(G) (property)

▷ IsTransitive(xset) (property)

returns true if the action implied by the arguments is transitive, or false otherwise.
We say that a group G acts transitively on a domain D if and only if G acts on D and for every pair

of points d,e ∈ D there is an element g in G such that dg = e.
For a permutation group G , one may also invoke this as IsTransitive(G), which tests whether

the group is transitive with respect to its natural action on the set of points moved by it. For example
the group ⟨(2,3,4),(2,3)⟩ is transitive on the set {2,3,4}.

Example
gap> G:= Group((2,3,4), (2,3));;

gap> IsTransitive(G, [2 .. 4]);

true

gap> IsTransitive(G, [2, 3]); # G does not act on [2, 3]

false

gap> IsTransitive(G, [1 .. 4]); # G has two orbits on [1 .. 4]

false

gap> IsTransitive(G); # G is transitive on [2 .. 4]

true

gap> IsTransitive(SL(2, 3), NormedRowVectors(GF(3)^2));

false

gap> IsTransitive(SL(2, 3), NormedRowVectors(GF(3)^2), OnLines);

true

41.10.2 Transitivity

▷ Transitivity(G, Omega[, gens, acts][, act]) (operation)

▷ Transitivity(G) (attribute)

▷ Transitivity(xset) (attribute)

returns the degree k (a non-negative integer) of transitivity of the action implied by the arguments,
i.e. the largest integer k such that the action is k-transitive. If the action is not transitive 0 is returned.

An action is k-transitive if every k-tuple of points can be mapped simultaneously to every other
k-tuple.

For a permutation group G , one may also invoke this as Transitivity(G), which returns the
degree of transitivity of the group with respect to its natural action on the set of points moved by it.
For example the group ⟨(2,3,4),(2,3)⟩ is 3-transitive on the set {2,3,4}.

GAP - Reference Manual 659

Example
gap> g:=Group((1,3,2),(2,4,3));;

gap> IsTransitive(g,[1..5]);

false

gap> Transitivity(g,[1..4]);

2

gap> Transitivity(g);

2

41.10.3 RankAction

▷ RankAction(G, Omega[, gens, acts][, act]) (operation)

▷ RankAction(xset) (attribute)

returns the rank of the transitive (see IsTransitive (41.10.1)) action of G on Omega , i. e., the
number of orbits of any point stabilizer.

Example
gap> RankAction(g,Combinations([1..4],2),OnSets);

4

41.10.4 IsSemiRegular

▷ IsSemiRegular(G, Omega[, gens, acts][, act]) (operation)

▷ IsSemiRegular(G) (property)

▷ IsSemiRegular(xset) (property)

returns true if the action implied by the arguments is semiregular, or false otherwise.
An action is semiregular if the stabilizer of each point is the identity.
For a permutation group G , one may also invoke this as IsSemiRegular(G), which tests whether

the group is semiregular with respect to its natural action on the set of points moved by it. For example
the group ⟨(2,3,4)(5,6,7)⟩ is semiregular on the set {2,3,4,5,6,7}.

41.10.5 IsRegular

▷ IsRegular(G, Omega[, gens, acts][, act]) (operation)

▷ IsRegular(G) (property)

▷ IsRegular(xset) (property)

returns true if the action implied by the arguments is regular, or false otherwise.
An action is regular if it is both semiregular (see IsSemiRegular (41.10.4)) and transitive

(see IsTransitive (41.10.1)). In this case every point pnt of Omega defines a one-to-one cor-
respondence between G and Omega .

For a permutation group G , one may also invoke this as IsRegular(G), which tests whether the
group is regular with respect to its natural action on the set of points moved by it. For example the
group ⟨(2,3,4)⟩ is regular on the set {2,3,4}.

Example
gap> IsSemiRegular(g,Arrangements([1..4],3),OnTuples);

true

GAP - Reference Manual 660

gap> IsRegular(g,Arrangements([1..4],3),OnTuples);

false

41.10.6 Earns

▷ Earns(G, Omega[, gens, acts][, act]) (operation)

▷ Earns(xset) (attribute)

returns a list of the elementary abelian regular (when acting on Omega) normal subgroups of G .
At the moment only methods for a primitive group G are implemented.

41.10.7 IsPrimitive

▷ IsPrimitive(G, Omega[, gens, acts][, act]) (operation)

▷ IsPrimitive(G) (property)

▷ IsPrimitive(xset) (property)

returns true if the action implied by the arguments is primitive, or false otherwise.
An action is primitive if it is transitive (see IsTransitive (41.10.1)) and the action admits no

nontrivial block systems. See 41.11 for the definition of block systems.
For a permutation group G , one may also invoke this as IsPrimitive(G), which tests whether

the group is primitive with respect to its natural action on the set of points moved by it. For example
the group ⟨(2,3,4),(2,3)⟩ is primitive on the set {2,3,4}.

For an explanation of the meaning of all the inputs, please refer to 41.1.
Note: This operation does not tell whether a matrix group is primitive in the sense of preserving

a direct sum of vector spaces. To do this use IsPrimitiveMatrixGroup or IsPrimitive from the
package IRREDSOL.

Example
gap> IsPrimitive(g,Orbit(g,(1,2)(3,4)));

true

41.11 Block Systems

A block system (system of imprimitivity) for the action of a group G on an action domain Ω is a par-
tition of Ω which –as a partition– remains invariant under the action of G. For operations concerning
block systems, GAP assumes that G acts transitively on Ω (see IsTransitive (41.10.1)). One may
get wrong results or error messages (perhaps at a much later stage) if this condition is not satisfied.

41.11.1 Blocks

▷ Blocks(G, Omega[, seed][, gens, acts][, act]) (operation)

▷ Blocks(xset[, seed]) (attribute)

computes a block system for the transitive (see IsTransitive (41.10.1)) action of G on Omega .
If seed is not given and the action is imprimitive, a minimal nontrivial block system will be found. If
seed is given, a block system in which seed is the subset of one block is computed.

The result is undefined if the action is not transitive.

GAP - Reference Manual 661

Example
gap> g:=TransitiveGroup(8,3);

E(8)=2[x]2[x]2

gap> Blocks(g,[1..8]);

[[1, 8], [2, 3], [4, 5], [6, 7]]

gap> Blocks(g,[1..8],[1,4]);

[[1, 4], [2, 7], [3, 6], [5, 8]]

(See Section 41.2 for information about specific actions.)

41.11.2 MaximalBlocks

▷ MaximalBlocks(G, Omega[, seed][, gens, acts][, act]) (operation)

▷ MaximalBlocks(xset[, seed]) (attribute)

returns a block system that is maximal (i.e., blocks are maximal with respect to inclusion) for the
transitive (see IsTransitive (41.10.1)) action of G on Omega . If seed is given, a block system is
computed in which seed is a subset of one block.

The result is undefined if the action is not transitive.
Example

gap> MaximalBlocks(g,[1..8]);

[[1, 2, 3, 8], [4 .. 7]]

41.11.3 RepresentativesMinimalBlocks

▷ RepresentativesMinimalBlocks(G, Omega[, gens, acts][, act]) (operation)

▷ RepresentativesMinimalBlocks(xset) (attribute)

computes a list of block representatives for all minimal (i.e blocks are minimal with respect to
inclusion) nontrivial block systems for the transitive (see IsTransitive (41.10.1)) action of G on
Omega .

The result is undefined if the action is not transitive.
Example

gap> RepresentativesMinimalBlocks(g,[1..8]);

[[1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7],

[1, 8]]

41.11.4 AllBlocks

▷ AllBlocks(G) (attribute)

computes a list of representatives of all block systems for a permutation group G acting transitively
on the points moved by the group.

Each representative in the returned list is sorted and contains the smallest point moved by G .
Example

gap> AllBlocks(g);

[[1, 8], [1, 2, 3, 8], [1, 4, 5, 8], [1, 6, 7, 8], [1, 3],

[1, 3, 5, 7], [1, 3, 4, 6], [1, 5], [1, 2, 5, 6], [1, 2],

[1, 2, 4, 7], [1, 4], [1, 7], [1, 6]]

GAP - Reference Manual 662

The stabilizer of a block can be computed via the action OnSets (41.2.4):
Example

gap> Stabilizer(g,[1,8],OnSets);

Group([(1,8)(2,3)(4,5)(6,7)])

If bs is a partition of the action domain, given as a set of sets, the stabilizer under the action
OnSetsDisjointSets (41.2.8) returns the largest subgroup which preserves bs as a block system.

Example
gap> g:=Group((1,2,3,4,5,6,7,8),(1,2));;

gap> bs:=[[1,2,3,4],[5,6,7,8]];;

gap> Stabilizer(g,bs,OnSetsDisjointSets);

Group([(6,7), (5,6), (5,8), (2,3), (3,4)(5,7), (1,4),

(1,5,4,8)(2,6,3,7)])

41.12 External Sets

When considering group actions, sometimes the concept of a G-set is used. This is a set Ω endowed
with an action of G. The elements of the G-set are the same as those of Ω, however concepts like
equality and equivalence of G-sets do not only consider the underlying domain Ω but the group action
as well.

This concept is implemented in GAP via external sets.
The constituents of an external set are stored in the attributes ActingDomain (41.12.3),

FunctionAction (41.12.4) and HomeEnumerator (41.12.5).
Most operations for actions are applicable as an attribute for an external set.
The most prominent external subsets are orbits, see ExternalOrbit (41.12.9).
Many subsets of a group, such as conjugacy classes or cosets (see ConjugacyClass (39.10.1) and

RightCoset (39.7.1)) are implemented as external orbits.
External sets also are implicitly underlying action homomorphisms, see

UnderlyingExternalSet (41.12.16) and SurjectiveActionHomomorphismAttr (41.12.17).

41.12.1 IsExternalSet

▷ IsExternalSet(obj) (Category)

An external set specifies a group action µ : Ω×G 7→ Ω of a group G on a domain Ω. The external
set knows the group, the domain and the actual acting function. Mathematically, an external set is the
set Ω, which is endowed with the action of a group G via the group action µ . For this reason GAP
treats an external set as a domain whose elements are the elements of Ω. An external set is always a
union of orbits. Currently the domain Ω must always be finite. If Ω is not a list, an enumerator for Ω

is automatically chosen, see Enumerator (30.3.2).

41.12.2 ExternalSet

▷ ExternalSet(G, Omega[, gens, acts][, act]) (operation)

GAP - Reference Manual 663

creates the external set for the action act of G on Omega . Omega can be either a proper set, or a
domain which is represented as described in 12.4 and 30, or (to use less memory but with a slower
performance) an enumerator (see Enumerator (30.3.2)) of this domain.

The result is undefined if G does not act on Omega .
Example

gap> g:=Group((1,2,3),(2,3,4));;

gap> e:=ExternalSet(g,[1..4]);

<xset:[1, 2, 3, 4]>

gap> e:=ExternalSet(g,g,OnRight);

<xset:[(), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2),

(1,3,4), (1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3)]>

gap> Orbits(e);

[[(), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (2,4,3), (1,4,2),

(1,2,3), (1,3,4), (2,3,4), (1,3,2), (1,4,3), (1,2,4)]]

41.12.3 ActingDomain

▷ ActingDomain(xset) (attribute)

This attribute returns the group with which the external set xset was defined.

41.12.4 FunctionAction

▷ FunctionAction(xset) (attribute)

is the acting function with which the external set xset was defined.

41.12.5 HomeEnumerator

▷ HomeEnumerator(xset) (attribute)

returns an enumerator of the action domain with which the external set xset was defined. For
external subsets, this is in general different from the Enumerator (30.3.2) value of xset , which
enumerates only the subset.

Example
gap> ActingDomain(e);

Group([(1,2,3), (2,3,4)])

gap> FunctionAction(e)=OnRight;

true

gap> HomeEnumerator(e);

[(), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2),

(1,3,4), (1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3)]

41.12.6 IsExternalSubset

▷ IsExternalSubset(obj) (Representation)

An external subset is the restriction of an external set to a subset of the domain (which must be
invariant under the action). It is again an external set.

GAP - Reference Manual 664

41.12.7 ExternalSubset

▷ ExternalSubset(G, Omega, start[, gens, acts], act) (operation)

constructs the external subset of Omega on the union of orbits of the points in start .
The result is undefined if G does not act on Omega .

41.12.8 IsExternalOrbit

▷ IsExternalOrbit(obj) (Representation)

An external orbit is an external subset consisting of one orbit.

41.12.9 ExternalOrbit

▷ ExternalOrbit(G, Omega, pnt[, gens, acts], act) (operation)

constructs the external subset on the orbit of pnt . The Representative (30.4.7) value of this
external set is pnt .

The result is undefined if G does not act on Omega .
Example

gap> e:=ExternalOrbit(g,g,(1,2,3));

(1,2,3)^G

41.12.10 StabilizerOfExternalSet

▷ StabilizerOfExternalSet(xset) (attribute)

computes the stabilizer of the Representative (30.4.7) value of the external set xset . The
stabilizer will have the acting group of xset as its parent.

Example
gap> Representative(e);

(1,2,3)

gap> StabilizerOfExternalSet(e);

Group([(1,2,3)])

41.12.11 ExternalOrbits

▷ ExternalOrbits(G, Omega[, gens, acts][, act]) (operation)

▷ ExternalOrbits(xset) (attribute)

computes a list of external orbits that give the orbits of G .
Example

gap> ExternalOrbits(g,AsList(g));

[()^G, (2,3,4)^G, (2,4,3)^G, (1,2)(3,4)^G]

GAP - Reference Manual 665

41.12.12 ExternalOrbitsStabilizers

▷ ExternalOrbitsStabilizers(G, Omega[, gens, acts][, act]) (operation)

▷ ExternalOrbitsStabilizers(xset) (attribute)

In addition to ExternalOrbits (41.12.11), this operation also computes the stabilizers of the
representatives of the external orbits at the same time. (This can be quicker than computing the
ExternalOrbits (41.12.11) value first and the stabilizers afterwards.)

Example
gap> e:=ExternalOrbitsStabilizers(g,AsList(g));

[()^G, (2,3,4)^G, (2,4,3)^G, (1,2)(3,4)^G]

gap> HasStabilizerOfExternalSet(e[3]);

true

gap> StabilizerOfExternalSet(e[3]);

Group([(2,4,3)])

41.12.13 CanonicalRepresentativeOfExternalSet

▷ CanonicalRepresentativeOfExternalSet(xset) (attribute)

The canonical representative of an external set xset may only depend on the defin-
ing attributes G , Omega , act of xset and (in the case of external subsets) Enumerator(

xset). It must not depend, e.g., on the representative of an external orbit. GAP
does not know methods for arbitrary external sets to compute a canonical representative, see
CanonicalRepresentativeDeterminatorOfExternalSet (41.12.14).

41.12.14 CanonicalRepresentativeDeterminatorOfExternalSet

▷ CanonicalRepresentativeDeterminatorOfExternalSet(xset) (attribute)

returns a function that takes as its arguments the acting group and a point. This function re-
turns a list of length 1 or 3, the first entry being the canonical representative and the other entries
(if bound) being the stabilizer of the canonical representative and a conjugating element, respec-
tively. An external set is only guaranteed to be able to compute a canonical representative if it has
a CanonicalRepresentativeDeterminatorOfExternalSet.

41.12.15 ActorOfExternalSet

▷ ActorOfExternalSet(xset) (attribute)

returns an element mapping Representative(xset) to
CanonicalRepresentativeOfExternalSet(xset) under the given action.

Example
gap> u:=Subgroup(g,[(1,2,3)]);;

gap> e:=RightCoset(u,(1,2)(3,4));;

gap> CanonicalRepresentativeOfExternalSet(e);

(2,4,3)

gap> ActorOfExternalSet(e);

(1,3,2)

GAP - Reference Manual 666

gap> FunctionAction(e)((1,2)(3,4),last);

(2,4,3)

41.12.16 UnderlyingExternalSet

▷ UnderlyingExternalSet(acthom) (attribute)

The underlying set of an action homomorphism acthom is the external set on which it was defined.
Example

gap> g:=Group((1,2,3),(1,2));;

gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),OnTuples);;

gap> s:=UnderlyingExternalSet(hom);

<xset:[[1, 2, 3],[1, 2, 4],[1, 3, 2],[1, 3, 4],[1, 4, 2],

[1, 4, 3],[2, 1, 3],[2, 1, 4],[2, 3, 1],[2, 3, 4],

[2, 4, 1],[2, 4, 3],[3, 1, 2],[3, 1, 4],[3, 2, 1], ...]>

gap> Print(s,"\n");

[[1, 2, 3], [1, 2, 4], [1, 3, 2], [1, 3, 4], [1, 4, 2],

[1, 4, 3], [2, 1, 3], [2, 1, 4], [2, 3, 1], [2, 3, 4],

[2, 4, 1], [2, 4, 3], [3, 1, 2], [3, 1, 4], [3, 2, 1],

[3, 2, 4], [3, 4, 1], [3, 4, 2], [4, 1, 2], [4, 1, 3],

[4, 2, 1], [4, 2, 3], [4, 3, 1], [4, 3, 2]]

41.12.17 SurjectiveActionHomomorphismAttr

▷ SurjectiveActionHomomorphismAttr(xset) (attribute)

returns an action homomorphism for the external set xset which is surjective. (As the Image

(32.4.6) value of this homomorphism has to be computed to obtain the range, this may take substan-
tially longer than ActionHomomorphism (41.7.1).)

Chapter 42

Permutations

GAP offers a data type permutation to describe the elements of permutation groups.
The points on which permutations in GAP act are the positive integers up to a certain architecture

dependent limit, and the image of a point i under a permutation p is written ip, which is expressed as
i^p in GAP. (This action is also implemented by the function OnPoints (41.2.1).) If i^p is different
from i, we say that i is moved by p, otherwise it is fixed. Permutations in GAP are entered and
displayed in cycle notation, such as (1,2,3)(4,5).

The preimage of the point i under the permutation p can be computed as i/p, see
PERM_INVERSE_THRESHOLD (42.1.4).

For arithmetic operations for permutations and their precedence, see 31.12.
In the names of the GAP functions that deal with permutations, the word “Permutation” is usually

abbreviated to “Perm”, to save typing. For example, the category test function for permutations is
IsPerm (42.1.1).

42.1 IsPerm (Filter)

Internally, GAP stores a permutation as a list of the d images of the integers 1, . . . ,d, where the
“internal degree” d is the largest integer moved by the permutation or bigger. When a permutation is
read in cycle notation, d is always set to the largest moved integer, but a bigger d can result from a
multiplication of two permutations, because the product is not shortened if it fixes d. The images are
stored all as 16-bit integers or all as 32-bit integers, depending on whether d ≤ 65536 or not. For
example, if m ≥ 65536, the permutation (1,2, . . . ,m) has internal degree d = m and takes 4m bytes of
memory for storage. But --- since the internal degree is not reduced --- this means that the identity
permutation () calculated as (1,2, . . . ,m)∗ (1,2, . . . ,m)−1 also takes 4m bytes of storage. It can take
even more because the internal list has sometimes room for more than d images.

On 32-bit systems, the limit on the degree of permutations is, for technical reasons, 228 − 1. On
64-bit systems, it is 232 −1 because only a 32-bit integer is used to represent each image internally.
Error messages should be given if any command would require creating a permutation exceeding this
limit.

The operation RestrictedPerm (42.5.4) reduces the storage degree of its result and therefore can
be used to save memory if intermediate calculations in large degree result in a small degree result.

Permutations do not belong to a specific group. That means that one can work with permutations
without defining a permutation group that contains them.

667

GAP - Reference Manual 668

Example
gap> (1,2,3);

(1,2,3)

gap> (1,2,3) * (2,3,4);

(1,3)(2,4)

gap> 17^(2,5,17,9,8);

9

gap> OnPoints(17,(2,5,17,9,8));

9

The operation Permuted (21.20.17) can be used to permute the entries of a list according to a
permutation.

42.1.1 IsPerm

▷ IsPerm(obj) (Category)

Each permutation in GAP lies in the category IsPerm. Basic operations for permutations are
LargestMovedPoint (42.3.2), multiplication of two permutations via *, and exponentiation ^ with
first argument a positive integer i and second argument a permutation π , the result being the image iπ

of the point i under π .

42.1.2 IsPermCollection

▷ IsPermCollection(obj) (Category)

▷ IsPermCollColl(obj) (Category)

are the categories for collections of permutations and collections of collections of permutations,
respectively.

42.1.3 PermutationsFamily

▷ PermutationsFamily (family)

is the family of all permutations.

42.1.4 PERM_INVERSE_THRESHOLD

▷ PERM_INVERSE_THRESHOLD (global variable)

For permutations of degree up to PERM_INVERSE_THRESHOLD whenever the inverse image of a
point under a permutations is needed, the entire inverse is computed and stored. Otherwise, if the
inverse is not stored, the point is traced around the cycle it is part of to find the inverse image. This
takes time when it happens, and uses memory, but saves time on a variety of subsequent computations.
This threshold can be adjusted by simply assigning to the variable. The default is 10000.

GAP - Reference Manual 669

42.2 Comparison of Permutations

42.2.1 \= (for permutations)

▷ \=(p1, p2) (method)

▷ \<(p1, p2) (method)

Two permutations are equal if they move the same points and all these points have the same images
under both permutations.

The permutation p1 is smaller than p2 if p1 ̸= p2 and ip1 < ip2 , where i is the smallest point
with ip1 ̸= ip2 . Therefore the identity permutation is the smallest permutation, see also Section 31.11.

Permutations can be compared with certain other GAP objects, see 4.13 for the details.
Example

gap> (1,2,3) = (2,3,1);

true

gap> (1,2,3) * (2,3,4) = (1,3)(2,4);

true

gap> (1,2,3) < (1,3,2); # 1^(1,2,3) = 2 < 3 = 1^(1,3,2)

true

gap> (1,3,2,4) < (1,3,4,2); # 2^(1,3,2,4) = 4 > 1 = 2^(1,3,4,2)

false

42.2.2 DistancePerms

▷ DistancePerms(perm1, perm2) (operation)

returns the number of points for which perm1 and perm2 have different images. This should
always produce the same result as NrMovedPoints(perm1/perm2) but some methods may be much
faster than this form, since no new permutation needs to be created.

42.2.3 SmallestGeneratorPerm

▷ SmallestGeneratorPerm(perm) (attribute)

is the smallest permutation that generates the same cyclic group as the permutation perm . This is
very efficient, even when perm has large order.

Example
gap> SmallestGeneratorPerm((1,4,3,2));

(1,2,3,4)

42.3 Moved Points of Permutations

42.3.1 SmallestMovedPoint (for a permutation)

▷ SmallestMovedPoint(perm) (attribute)

▷ SmallestMovedPoint(C) (attribute)

GAP - Reference Manual 670

is the smallest positive integer that is moved by perm if such an integer exists, and infinity

(18.2.1) if perm is the identity. For C a collection or list of permutations, the smallest value of
SmallestMovedPoint for the elements of C is returned (and infinity (18.2.1) if C is empty).

42.3.2 LargestMovedPoint (for a permutation)

▷ LargestMovedPoint(perm) (attribute)

▷ LargestMovedPoint(C) (attribute)

For a permutation perm , this attribute contains the largest positive integer which is moved by perm
if such an integer exists, and 0 if perm is the identity. For C a collection or list of permutations, the
largest value of LargestMovedPoint for the elements of C is returned (and 0 if C is empty).

42.3.3 MovedPoints (for a permutation)

▷ MovedPoints(perm) (attribute)

▷ MovedPoints(C) (attribute)

is the proper set of the positive integers moved by at least one permutation in the collection C ,
respectively by the permutation perm .

42.3.4 NrMovedPoints (for a permutation)

▷ NrMovedPoints(perm) (attribute)

▷ NrMovedPoints(C) (attribute)

is the number of positive integers that are moved by perm , respectively by at least one element in
the collection C . (The actual moved points are returned by MovedPoints (42.3.3).)

Example
gap> SmallestMovedPointPerm((4,5,6)(7,2,8));

2

gap> LargestMovedPointPerm((4,5,6)(7,2,8));

8

gap> NrMovedPointsPerm((4,5,6)(7,2,8));

6

gap> MovedPoints([(2,3,4),(7,6,3),(5,47)]);

[2, 3, 4, 5, 6, 7, 47]

gap> NrMovedPoints([(2,3,4),(7,6,3),(5,47)]);

7

gap> SmallestMovedPoint([(2,3,4),(7,6,3),(5,47)]);

2

gap> LargestMovedPoint([(2,3,4),(7,6,3),(5,47)]);

47

gap> LargestMovedPoint([()]);

0

GAP - Reference Manual 671

42.4 Sign and Cycle Structure

42.4.1 SignPerm

▷ SignPerm(perm) (attribute)

The sign of a permutation perm is defined as (−1)k where k is the number of cycles of perm of
even length.

The sign is a homomorphism from the symmetric group onto the multiplicative group {+1,−1},
the kernel of which is the alternating group.

42.4.2 CycleStructurePerm

▷ CycleStructurePerm(perm) (attribute)

is the cycle structure (i.e. the numbers of cycles of different lengths) of the permutation perm .
This is encoded in a list l in the following form: The i-th entry of l contains the number of cycles of
perm of length i+1. If perm contains no cycles of length i+1 it is not bound. Cycles of length 1 are
ignored.

Example
gap> SignPerm((1,2,3)(4,5));

-1

gap> CycleStructurePerm((1,2,3)(4,5,9,7,8));

[, 1,, 1]

42.5 Creating Permutations

42.5.1 ListPerm

▷ ListPerm(perm[, n]) (function)

is a list l that contains the images of the positive integers from 1 to n under the permutation perm .
That means that l[i] = i^perm , where i lies between 1 and n .

If the optional second argument n is omitted then the largest point moved by perm is used
(see LargestMovedPoint (42.3.2)).

42.5.2 PermList

▷ PermList(list) (function)

is the permutation π that moves points as described by the list list . That means that iπ = list[i]
if i lies between 1 and the length of list , and iπ = i if i is larger than the length of the list list .
PermList will return fail if list does not define a permutation, i.e., if list is not dense, or if list
contains a positive integer twice, or if list contains an integer not in the range [1 .. Length(

list)], or if list contains non-integer entries, etc.

GAP - Reference Manual 672

42.5.3 MappingPermListList

▷ MappingPermListList(src, dst) (function)

Let src and dst be lists of positive integers of the same length, such that there is a permutation
π such that OnTuples(src, π) = dst . MappingPermListList returns such a permutation (i. e.,
src[i]^π = dst[i] holds), with the property that π fixes any point which is not in src or dst . If
there are several such permutations, it is not specified which of them MappingPermListList returns.
If there is no such permutation, then MappingPermListList returns fail.

42.5.4 RestrictedPerm

▷ RestrictedPerm(perm, list) (operation)

▷ RestrictedPermNC(perm, list) (operation)

RestrictedPerm returns the new permutation that acts on the points in the list list in the same
way as the permutation perm , and that fixes those points that are not in list . The resulting permuta-
tion is stored internally of degree given by the maximal entry of list . list must be a list of positive
integers such that for each i in list the image i^perm is also in list , i.e., list must be the union
of cycles of perm .

RestrictedPermNC does not check whether list is a union of cycles.
Example

gap> ListPerm((3,4,5));

[1, 2, 4, 5, 3]

gap> PermList([1,2,4,5,3]);

(3,4,5)

gap> MappingPermListList([2,5,1,6],[7,12,8,2]);

(1,8,5,12,6,2,7)

gap> RestrictedPerm((1,2)(3,4),[3..5]);

(3,4)

42.5.5 CycleFromList

▷ CycleFromList(list) (function)

For the given dense, duplicate-free list of positive integers [a1,a2, ...,an] return the n-cycle
(a1,a2, ...,an). For the empty list the trivial permutation () is returned.

If the given list contains duplicates or holes, return fail.
Example

gap> CycleFromList([1,2,3,4]);

(1,2,3,4)

gap> CycleFromList([3,2,6,4,5]);

(2,6,4,5,3)

gap> CycleFromList([2,3,2]);

fail

gap> CycleFromList([1,,3]);

fail

GAP - Reference Manual 673

42.5.6 AsPermutation

▷ AsPermutation(f) (attribute)

Returns: A permutation or fail.
Partial permutations and transformations which define permutations (mathematically) can be con-

verted into GAP permutations using AsPermutation; see Chapters 53 and 54 for more details about
transformations and partial permutations.

for partial permutations
If the partial permutation f is a permutation of its image, then AsPermutation returns this
permutation. If f does not permute its image, then fail is returned.

for transformations
A transformation is a permutation if and only if its rank equals its degree. If a transformation in
GAP is a permutation, then AsPermutation returns this permutation. If f is not a permutation,
then fail is returned.

The function Permutation (41.9.1) can also be used to convert partial permutations and transforma-
tions into permutations where appropriate.

Example
gap> f:=PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],

> [2, 7, 9, 4, 1, 10, 5, 6, 3, 8]);

(1,2,7,5)(3,9)(4)(6,10,8)

gap> AsPermutation(f);

(1,2,7,5)(3,9)(6,10,8)

gap> f:= PartialPerm([1, 2, 3, 4, 5, 7, 8], [5, 3, 8, 1, 9, 4, 10]);

[2,3,8,10][7,4,1,5,9]

gap> AsPermutation(f);

fail

gap> f:=Transformation([5, 8, 3, 5, 8, 6, 2, 2, 7, 8]);;

gap> AsPermutation(f);

fail

gap> f:=Transformation([1, 3, 6, 6, 2, 10, 2, 3, 10, 5]);;

gap> AsPermutation(f);

fail

gap> f:=Transformation([2, 7, 9, 4, 1, 10, 5, 6, 3, 8]);

Transformation([2, 7, 9, 4, 1, 10, 5, 6, 3, 8])

gap> AsPermutation(f);

(1,2,7,5)(3,9)(6,10,8)

Chapter 43

Permutation Groups

43.1 IsPermGroup (Filter)

43.1.1 IsPermGroup

▷ IsPermGroup(obj) (Category)

A permutation group is a group of permutations on a finite set Ω of positive integers. GAP does
not require the user to specify the operation domain Ω when a permutation group is defined.

Example
gap> g:=Group((1,2,3,4),(1,2));

Group([(1,2,3,4), (1,2)])

Permutation groups are groups and therefore all operations for groups (see Chapter 39) can be
applied to them. In many cases special methods are installed for permutation groups that make com-
putations more effective.

43.2 The Natural Action

The functions MovedPoints (42.3.3), NrMovedPoints (42.3.4), LargestMovedPoint (42.3.2), and
SmallestMovedPoint (42.3.1) are defined for arbitrary collections of permutations (see 42.3), in
particular they can be applied to permutation groups.

Example
gap> g:= Group((2,3,5,6), (2,3));;

gap> MovedPoints(g); NrMovedPoints(g);

[2, 3, 5, 6]

4

gap> LargestMovedPoint(g); SmallestMovedPoint(g);

6

2

The action of a permutation group on the positive integers is a group action (via the acting function
OnPoints (41.2.1)). Therefore all action functions can be applied (see the Chapter 41), for example
Orbit (41.4.1), Stabilizer (41.5.2), Blocks (41.11.1), IsTransitive (41.10.1), IsPrimitive
(41.10.7).

674

GAP - Reference Manual 675

If one has a list of group generators and is interested in the moved points (see above) or orbits, it
may be useful to avoid the explicit construction of the group for efficiency reasons. For the special
case of the action of permutations on positive integers via ^, the functions OrbitPerms (43.2.1) and
OrbitsPerms (43.2.2) are provided for this purpose.

Similarly, several functions concerning the natural action of permutation groups address stabilizer
chains (see 43.6) rather than permutation groups themselves, for example BaseStabChain (43.10.1).

43.2.1 OrbitPerms

▷ OrbitPerms(perms, pnt) (function)

returns the orbit of the positive integer pnt under the group generated by the permutations in the
list perms .

43.2.2 OrbitsPerms

▷ OrbitsPerms(perms, D) (function)

returns the list of orbits of the positive integers in the list D under the group generated by the
permutations in the list perms .

Example
gap> OrbitPerms([(1,2,3)(4,5), (3,6)], 1);

[1, 2, 3, 6]

gap> OrbitsPerms([(1,2,3)(4,5), (3,6)], [1 .. 6]);

[[1, 2, 3, 6], [4, 5]]

43.3 Computing a Permutation Representation

43.3.1 IsomorphismPermGroup

▷ IsomorphismPermGroup(G) (attribute)

returns an isomorphism from the group G onto a permutation group which is isomorphic to G . The
method will select a suitable permutation representation.

Example
gap> g:=SmallGroup(24,12);

<pc group of size 24 with 4 generators>

gap> iso:=IsomorphismPermGroup(g);

[f1, f2, f3, f4] -> [(2,3), (2,3,4), (1,2)(3,4), (1,3)(2,4)]

gap> Image(iso,g.3*g.4);

(1,4)(2,3)

In many cases the permutation representation constructed by IsomorphismPermGroup is regular.

43.3.2 SmallerDegreePermutationRepresentation

▷ SmallerDegreePermutationRepresentation(G) (function)

GAP - Reference Manual 676

Let G be a permutation group. SmallerDegreePermutationRepresentation tries to find a
faithful permutation representation of smaller degree. The result is a group homomorphism onto a
permutation group, in the worst case this is the identity mapping on G .

If the cheap option is given, the function only tries to reduce to orbits or actions on blocks,
otherwise also actions on cosets of random subgroups are tried.

Note that the result is not guaranteed to be a faithful permutation representation of smallest degree,
or of smallest degree among the transitive permutation representations of G . Using GAP interactively,
one might be able to choose subgroups of small index for which the cores intersect trivially; in this
case, the actions on the cosets of these subgroups give rise to an intransitive permutation representation
the degree of which may be smaller than the original degree.

The methods used might involve the use of random elements and the permutation representa-
tion (or even the degree of the representation) is not guaranteed to be the same for different calls of
SmallerDegreePermutationRepresentation.

If the option cheap is given less work is spent on trying to get a small degree representation, if
the value of this option is set to the string "skip" the identity mapping is returned. (This is useful if a
function called internally might try a degree reduction.)

Example
gap> iso:=RegularActionHomomorphism(SymmetricGroup(4));;

gap> image:= Image(iso);; NrMovedPoints(image);

24

gap> small:= SmallerDegreePermutationRepresentation(image);;

gap> Image(small);

Group([(2,5,4,3), (1,4)(2,6)(3,5)])

gap> g:=Image(IsomorphismPermGroup(GL(4,5)));;

gap> sm:=SmallerDegreePermutationRepresentation(g:cheap);;

gap> NrMovedPoints(Range(sm));

624

Example
gap> p:=Group((1,2,3,4,5,6),(1,2));;p:=Action(p,AsList(p),OnRight);;

gap> Length(MovedPoints(p));

720

gap> q:=SmallerDegreePermutationRepresentation(p);;

gap> NrMovedPoints(Image(q));

6

43.4 Symmetric and Alternating Groups

The commands SymmetricGroup (50.1.12) and AlternatingGroup (50.1.11) (see Section 50.1)
construct symmetric and alternating permutation groups. GAP can also detect whether a given per-
mutation group is a symmetric or alternating group on the set of its moved points; if so then the group
is called a natural symmetric or alternating group, respectively.

The functions IsSymmetricGroup (43.4.2) and IsAlternatingGroup (43.4.3) can be used to
check whether a given group (not necessarily a permutation group) is isomorphic to a symmetric or
alternating group.

GAP - Reference Manual 677

43.4.1 IsNaturalSymmetricGroup

▷ IsNaturalSymmetricGroup(group) (property)

▷ IsNaturalAlternatingGroup(group) (property)

A group is a natural symmetric or alternating group if it is a permutation group acting as symmetric
or alternating group, respectively, on its moved points.

For groups that are known to be natural symmetric or natural alternating groups, very efficient
methods for computing membership, conjugacy classes, Sylow subgroups etc. are used.

Example
gap> g:=Group((1,5,7,8,99),(1,99,13,72));;

gap> IsNaturalSymmetricGroup(g);

true

gap> g;

Sym([1, 5, 7, 8, 13, 72, 99])

gap> IsNaturalSymmetricGroup(Group((1,2)(4,5), (1,2,3)(4,5,6)));

false

43.4.2 IsSymmetricGroup

▷ IsSymmetricGroup(group) (property)

is true if the group group is isomorphic to a symmetric group.

43.4.3 IsAlternatingGroup

▷ IsAlternatingGroup(group) (property)

is true if the group group is isomorphic to an alternating group.

43.4.4 SymmetricParentGroup

▷ SymmetricParentGroup(grp) (attribute)

For a permutation group grp this function returns the symmetric group that moves the same points
as grp does.

Example
gap> SymmetricParentGroup(Group((1,2), (4,5), (7,8,9)));

Sym([1, 2, 4, 5, 7, 8, 9])

43.5 Primitive Groups

43.5.1 ONanScottType

▷ ONanScottType(G) (attribute)

returns the type of a primitive permutation group G , according to the O’Nan-Scott classification.
The labelling of the different types is not consistent in the literature, we use the following identifica-
tions. The two-letter code given is the name of the type as used by Praeger.

GAP - Reference Manual 678

1 Affine. (HA)

2 Almost simple. (AS)

3a Diagonal, Socle consists of two normal subgroups. (HS)

3b Diagonal, Socle is minimal normal. (SD)

4a Product action with the first factor primitive of type 3a. (HC)

4b Product action with the first factor primitive of type 3b. (CD)

4c Product action with the first factor primitive of type 2. (PA)

5 Twisted wreath product (TW)

See [EH01] for correspondence to other labellings used in the literature. As it can contain letters, the
type is returned as a string.

If G is not a permutation group or does not act primitively on the points moved by it, the result is
undefined.

43.5.2 SocleTypePrimitiveGroup

▷ SocleTypePrimitiveGroup(G) (attribute)

returns the socle type of the primitive permutation group G . The socle of a primitive group is
the direct product of isomorphic simple groups, therefore the type is indicated by a record with com-
ponents series, parameter (both as described under IsomorphismTypeInfoFiniteSimpleGroup
(39.15.13)), and width for the number of direct factors.

If G does not act primitively on its moved points, an error is returned.
Example

gap> g:=AlternatingGroup(5);;

gap> h:=DirectProduct(g,g);;

gap> p:=List([1,2],i->Projection(h,i));;

gap> ac:=Action(h,AsList(g),

> function(g,h) return Image(p[1],h)^-1*g*Image(p[2],h);end);;

gap> Size(ac);NrMovedPoints(ac);IsPrimitive(ac,[1..60]);

3600

60

true

gap> ONanScottType(ac);

"3a"

gap> SocleTypePrimitiveGroup(ac);

rec(

name := "A(5) ~ A(1,4) = L(2,4) ~ B(1,4) = O(3,4) ~ C(1,4) = S(2,4) \

~ 2A(1,4) = U(2,4) ~ A(1,5) = L(2,5) ~ B(1,5) = O(3,5) ~ C(1,5) = S(2,\

5) ~ 2A(1,5) = U(2,5)", parameter := 5, series := "A", width := 2)

GAP - Reference Manual 679

43.6 Stabilizer Chains

Many of the algorithms for permutation groups use a stabilizer chain of the group. The concepts
of stabilizer chains, bases, and strong generating sets were introduced by Charles Sims in [Sim70].
An extensive account of basic algorithms together with asymptotic runtime analysis can be found in
reference [Ser03, Chapter 4]. A further discussion of base change is given in section 87.1.

Let B = [b1, . . . ,bn] be a list of points, G(1) = G and G(i+1) = StabG(i)(bi), such that G(n+1) = {()}.
Then the list [b1, . . . ,bn] is called a base of G, the points bi are called base points. A set S of generators
for G satisfying the condition ⟨S∩G(i)⟩ = G(i) for each 1 ≤ i ≤ n, is called a strong generating set
(SGS) of G. (More precisely we ought to say that it is a SGS of G relative to B). The chain of
subgroups G(i) of G itself is called the stabilizer chain of G relative to B.

Since [b1, . . . ,bn], where n is the degree of G and bi are the moved points of G, certainly is a
base for G there exists a base for each permutation group. The number of points in a base is called
the length of the base. A base B is called reduced if there exists no i such that G(i) = G(i+1). (This
however does not imply that no subset of B could also serve as a base.) Note that different reduced
bases for one permutation group G may have different lengths. For example, the irreducible degree
416 permutation representation of the Chevalley Group G2(4) possesses reduced bases of lengths 5
and 7.

Let R(i) be a right transversal of G(i+1) in G(i), i.e. a set of right coset representatives of the cosets
of G(i+1) in G(i). Then each element g of G has a unique representation as a product of the form
g = rn . . .r1 with ri ∈ R(i). The cosets of G(i+1) in G(i) are in bijective correspondence with the points
in O(i) := bG(i)

i . So we could represent a transversal as a list T such that T [p] is a representative of the
coset corresponding to the point p ∈ O(i), i.e., an element of G(i) that takes bi to p. (Note that such a
list has holes in all positions corresponding to points not contained in O(i).)

This approach however will store many different permutations as coset representatives which can
be a problem if the degree n gets bigger. Our goal therefore is to store as few different permutations
as possible such that we can still reconstruct each representative in R(i), and from them the elements
in G. A factorized inverse transversal T is a list where T [p] is a generator of G(i) such that pT [p] is
a point that lies earlier in O(i) than p (note that we consider O(i) as a list, not as a set). If we assume
inductively that we know an element r ∈ G(i) that takes bi to pT [p], then rT [p]−1 is an element in G(i)

that takes bi to p. GAP uses such factorized inverse transversals.
Another name for a factorized inverse transversal is a Schreier tree. The vertices of the tree are the

points in O(i), and the root of the tree is bi. The edges are defined as the ordered pairs (p, pT [p]), for
p ∈ O(i) \{bi}. The edge (p, pT [p]) is labelled with the generator T [p], and the product of edge labels
along the unique path from p to bi is the inverse of the transversal element carrying bi to p.

Before we describe the construction of stabilizer chains in 43.8, we explain in 43.7 the idea of
using non-deterministic algorithms; this is necessary for understanding the options available for the
construction of stabilizer chains. After that, in 43.9 it is explained how a stabilizer chain is stored in
GAP, 43.10 lists operations for stabilizer chains, and 43.11 lists low level routines for manipulating
stabilizer chains.

43.7 Randomized Methods for Permutation Groups

For most computations with permutation groups, it is crucial to construct stabilizer chains efficiently.
Sims’s original construction in [Sim70] is deterministic, and is called the Schreier-Sims algorithm,
because it is based on Schreier’s Lemma ([HJ59, p. 96]): given K = ⟨S⟩ and a transversal T for K mod

GAP - Reference Manual 680

L, one can obtain |S||T | generators for L. This lemma is applied recursively, with consecutive point
stabilizers G(i) and G(i+1) playing the role of K and L.

In permutation groups of large degree, the number of Schreier generators to be processed becomes
too large, and the deterministic Schreier-Sims algorithm becomes impractical. Therefore, GAP uses
randomized algorithms. The method selection process, which is quite different from Version 3, works
the following way.

If a group acts on not more than a hundred points, Sims’s original deterministic algorithm is
applied. In groups of degree greater than hundred, a heuristic algorithm based on ideas in [BCFS91]
constructs a stabilizer chain. This construction is complemented by a verify-routine that either proves
the correctness of the stabilizer chain or causes the extension of the chain to a correct one. The user
can influence the verification process by setting the value of the record component random (cf. 43.8).

If the random value equals 1000 then a slight extension of an unpublished method of Sims is used.
The outcome of this verification process is always correct. The user also can prescribe any integer x,
1 ≤ x ≤ 999 as the value of random. In this case, a randomized verification process from [BCFS91] is
applied, and the result of the stabilizer chain construction is guaranteed to be correct with probability at
least x/1000. The practical performance of the algorithm is much better than the theoretical guarantee.

If the stabilizer chain is not correct then the elements in the product of transversals
R(m)R(m−1) · · ·R(1) constitute a proper subset of the group G in question. This means that a mem-
bership test with this stabilizer chain returns false for all elements that are not in G, but it may also
return false for some elements of G; in other words, the result true of a membership test is always
correct, whereas the result false may be incorrect.

The construction and verification phases are separated because there are situations where the ver-
ification step can be omitted; if one happens to know the order of the group in advance then the
randomized construction of the stabilizer chain stops as soon as the product of the lengths of the basic
orbits of the chain equals the group order, and the chain will be correct (see the size option of the
StabChain (43.8.1) command).

Although the worst case running time is roughly quadratic for Sims’s verification and roughly
linear for the randomized one, in most examples the running time of the stabilizer chain construction
with random value 1000 (i.e., guaranteed correct output) is about the same as the running time of
randomized verification with guarantee of at least 90 percent correctness. Therefore, we suggest to
use the default value random= 1000. Possible uses of random values less than 1000 are when one has
to run through a large collection of subgroups, and a low value of random is used to choose quickly
a candidate for more thorough examination; another use is when the user suspects that the quadratic
bottleneck of the guaranteed correct verification is hit.

We will give two examples to illustrate these ideas.
Example

gap> h:= SL(4,7);;

gap> o:= Orbit(h, [1,0,0,0]*Z(7)^0, OnLines);;

gap> op:= Action(h, o, OnLines);;

gap> NrMovedPoints(op);

400

We created a permutation group on 400 points. First we compute a guaranteed correct stabilizer
chain (see StabChain (43.8.1)).

Example
gap> h:= Group(GeneratorsOfGroup(op));;

gap> StabChain(h);; time;

GAP - Reference Manual 681

1120

gap> Size(h);

2317591180800

Now randomized verification will be used. We require that the result is guaranteed correct with
probability 90 percent. This means that if we would do this calculation many times over, GAP would
guarantee that in least 90 percent of all calculations the result is correct. In fact the results are much
better than the guarantee, but we cannot promise that this will really happen. (For the meaning of the
random component in the second argument of StabChain (43.8.1).)

First the group is created anew.
Example

gap> h:= Group(GeneratorsOfGroup(op));;

gap> StabChain(h, rec(random:= 900));; time;

1410

gap> Size(h);

2317591180800

The result is still correct, and the running time is actually somewhat slower. If you give the
algorithm the order of the group, then it can check its result, and so things become faster and the result
is guaranteed to be correct. This can be done with the size option (see StabChain (43.8.1)), or by
setting the size of the group beforehand with SetSize.

Example
gap> h:=Group(GeneratorsOfGroup(op));;

gap> SetSize(h, 2317591180800);

gap> StabChain(h);; time;

170

The second example gives a typical group when the verification with random value 1000 is slow.
The problem is that the group has a stabilizer subgroup G(i) such that the fundamental orbit O(i) is
split into a lot of orbits when we stabilize bi and one additional point of O(i).

Example
gap> p1:=PermList(Concatenation([401],[1..400]));;

gap> p2:=PermList(List([1..400],i->(i*20 mod 401)));;

gap> d:=DirectProduct(Group(p1,p2),SymmetricGroup(5));;

gap> h:=Group(GeneratorsOfGroup(d));;

gap> StabChain(h);;time;Size(h);

1030

192480

gap> h:=Group(GeneratorsOfGroup(d));;

gap> StabChain(h,rec(random:=900));;time;Size(h);

570

192480

When stabilizer chains of a group G are created with random value less than 1000, this is
noted in the group G, by setting of the record component random in the value of the attribute
StabChainOptions (43.8.2) for G. As errors induced by the random methods might propagate, any
group or homomorphism created from G inherits a random component in its StabChainOptions

(43.8.2) value from the corresponding component for G.

GAP - Reference Manual 682

A lot of algorithms dealing with permutation groups use randomized methods; however, if the ini-
tial stabilizer chain construction for a group is correct, these further methods will provide guaranteed
correct output.

43.8 Construction of Stabilizer Chains

43.8.1 StabChain (for a group (and a record))

▷ StabChain(G[, options]) (function)

▷ StabChain(G, base) (function)

▷ StabChainOp(G, options) (operation)

▷ StabChainMutable(G) (attribute)

▷ StabChainMutable(permhomom) (attribute)

▷ StabChainImmutable(G) (attribute)

These commands compute a stabilizer chain for the permutation group G ; additionally,
StabChainMutable is also an attribute for the group homomorphism permhomom whose source is
a permutation group.

(The mathematical background of stabilizer chains is sketched in 43.6, more information about
the objects representing stabilizer chains in GAP can be found in 43.9.)

StabChainOp is an operation with two arguments G and options , the latter being a record which
controls some aspects of the computation of a stabilizer chain (see below); StabChainOp returns a
mutable stabilizer chain. StabChainMutable is a mutable attribute for groups or homomorphisms, its
default method for groups is to call StabChainOp with empty options record. StabChainImmutable
is an attribute with immutable values; its default method dispatches to StabChainMutable.

StabChain is a function with first argument a permutation group G , and optionally a record
options as second argument. If the value of StabChainImmutable for G is already known and
if this stabilizer chain matches the requirements of options , StabChain simply returns this stored
stabilizer chain. Otherwise StabChain calls StabChainOp and returns an immutable copy of the re-
sult; additionally, this chain is stored as StabChainImmutable value for G . If no options argument
is given, its components default to the global variable DefaultStabChainOptions (43.8.3). If base
is a list of positive integers, the version StabChain(G, base) defaults to StabChain(G, rec(

base:= base)).
If given, options is a record whose components specify properties of the desired stabilizer chain

or which may help the algorithm. Default values for all of them can be given in the global variable
DefaultStabChainOptions (43.8.3). The following options are supported.

base (default an empty list)
A list of points, through which the resulting stabilizer chain shall run. For the base B of the
resulting stabilizer chain S this means the following. If the reduced component of options is
true then those points of base with nontrivial basic orbits form the initial segment of B, if the
reduced component is false then base itself is the initial segment of B. Repeated occurrences
of points in base are ignored. If a stabilizer chain for G is already known then the stabilizer
chain is computed via a base change.

knownBase (no default value)
A list of points which is known to be a base for the group. Such a known base makes it easier to

GAP - Reference Manual 683

test whether a permutation given as a word in terms of a set of generators is the identity, since
it suffices to map the known base with each factor consecutively, rather than multiplying the
whole permutations (which would mean to map every point). This speeds up the Schreier-Sims
algorithm which is used when a new stabilizer chain is constructed; it will not affect a base
change, however. The component knownBase bears no relation to the base component, you
may specify a known base knownBase and a desired base base independently.

reduced (default true)
If this is true the resulting stabilizer chain S is reduced, i.e., the case G(i) = G(i+1) does not
occur. Setting reduced to false makes sense only if the component base (see above) is also
set; in this case all points of base will occur in the base B of S , even if they have trivial basic
orbits. Note that if base is just an initial segment of B, the basic orbits of the points in B\base
are always nontrivial.

tryPcgs (default true)
If this is true and either the degree is at most 100 or the group is known to be solvable, GAP will
first try to construct a pcgs (see Chapter 45) for G which will succeed and implicitly construct
a stabilizer chain if G is solvable. If G turns out non-solvable, one of the other methods will be
used. This solvability check is comparatively fast, even if it fails, and it can save a lot of time if
G is solvable.

random (default 1000)
If the value is less than 1000, the resulting chain is correct with probability at
least random/1000. The random option is explained in more detail in 43.7.

size (default Size(G) if this is known, i.e., if HasSize(G) is true)
If this component is present, its value is assumed to be the order of the group G . This information
can be used to prove that a non-deterministically constructed stabilizer chain is correct. In this
case, GAP does a non-deterministic construction until the size is correct.

limit (default Size(Parent(G)) or StabChainOptions(Parent(G)).limit if it is present)
If this component is present, it must be greater than or equal to the order of G . The stabilizer
chain construction stops if size limit is reached.

43.8.2 StabChainOptions

▷ StabChainOptions(G) (attribute)

is a record that stores the options with which the stabilizer chain stored in StabChainImmutable

(43.8.1) has been computed (see StabChain (43.8.1) for the options that are supported).

43.8.3 DefaultStabChainOptions

▷ DefaultStabChainOptions (global variable)

are the options for StabChain (43.8.1) which are set as default.

GAP - Reference Manual 684

43.8.4 StabChainBaseStrongGenerators

▷ StabChainBaseStrongGenerators(base, sgs[, one]) (function)

Let base be a base for a permutation group G, and let sgs be a strong generating set for G
with respect to base ; one must be the appropriate identity element of G (see One (31.10.2), in most
cases this will be ()). This function constructs a stabilizer chain corresponding to the given base and
strong generating set without the need to find Schreier generators; so this is much faster than the other
algorithms.

If sgs is nonempty, then the argument one is optional; if not given, then the One (31.10.2) of
sgs[1] is taken as the identity element.

Example
gap> sc := StabChainBaseStrongGenerators([1,2], [(1,3,4), (2,3,4)], ());

<stabilizer chain record, Base [1, 2], Orbit length 4, Size: 12>

gap> GroupStabChain(sc) = AlternatingGroup(4);

true

gap> StabChainBaseStrongGenerators([1,3], [(1,2),(3,4)]);

<stabilizer chain record, Base [1, 3], Orbit length 2, Size: 4>

43.8.5 MinimalStabChain

▷ MinimalStabChain(G) (attribute)

returns the reduced stabilizer chain corresponding to the base [1,2,3,4, . . .].

43.9 Stabilizer Chain Records

If a permutation group has a stabilizer chain, this is stored as a recursive structure. This structure is
itself a record S and it has

(1) components that provide information about one level G(i) of the stabilizer chain (which we call
the “current stabilizer”) and

(2) a component stabilizer that holds another such record, namely the stabilizer chain of the
next stabilizer G(i+1).

This gives a recursive structure where the “outermost” record representing the “topmost” stabilizer
is bound to the group record component stabChain and has the components explained below. Note:
Since the structure is recursive, never print a stabilizer chain! (Unless you want to exercise the
scrolling capabilities of your terminal.)

identity

the identity element of the current stabilizer.

labels

a list of permutations which contains labels for the Schreier tree of the current stabilizer, i.e., it
contains elements for the factorized inverse transversal. The first entry in this list is always the
identity. Note that GAP tries to arrange things so that the labels components are identical
(i.e., the same GAP object) in every stabilizer of the chain; thus the labels of a stabilizer do
not necessarily all lie in the this stabilizer (but see genlabels below).

GAP - Reference Manual 685

genlabels

a list of integers indexing some of the permutations in the labels component. The labels ad-
dressed in this way form a generating set for the current stabilizer. If the genlabels component
is empty, the rest of the stabilizer chain represents the trivial subgroup, and can be ignored, e.g.,
when calculating the size.

generators

a list of generators for the current stabilizer. Usually, it is labels{ genlabels }.

orbit

the vertices of the Schreier tree, which form the basic orbit bG(i)

i , ordered in such a way that the
base point bi is in the first position in the orbit.

transversal

The factorized inverse transversal found during the orbit algorithm. The element g stored at
transversal[i] will map i to another point j that in the Schreier tree is closer to the base point.
By iterated application (transversal[j] and so on) eventually the base point is reached and an
element that maps i to the base point found as product.

translabels

An index list such that transversal[j] = labels[translabels[j]]. This list takes up com-
paratively little memory and is used to speed up base changes.

stabilizer

If the current stabilizer is not yet the trivial group, the stabilizer chain continues with the
stabilizer of the current base point, which is again represented as a record with components
labels, identity, genlabels, generators, orbit, translabels, transversal (and per-
haps stabilizer). This record is bound to the stabilizer component of the current stabi-
lizer. The last member of a stabilizer chain is recognized by the fact that it has no stabilizer

component bound.

It is possible that different stabilizer chains share the same record as one of their iterated stabilizer

components.
Example

gap> g:=Group((1,2,3,4),(1,2));;

gap> StabChain(g);

<stabilizer chain record, Base [1, 2, 3], Orbit length 4, Size: 24>

gap> BaseOfGroup(g);

[1, 2, 3]

gap> StabChainOptions(g);

rec(random := 1000)

gap> DefaultStabChainOptions;

rec(random := 1000, reduced := true, tryPcgs := true)

43.10 Operations for Stabilizer Chains

43.10.1 BaseStabChain

▷ BaseStabChain(S) (function)

GAP - Reference Manual 686

returns the base belonging to the stabilizer chain S .

43.10.2 BaseOfGroup

▷ BaseOfGroup(G) (attribute)

returns a base of the permutation group G . There is no guarantee that a stabilizer chain stored in G

corresponds to this base!

43.10.3 SizeStabChain

▷ SizeStabChain(S) (function)

returns the product of the orbit lengths in the stabilizer chain S , that is, the order of the group
described by S .

43.10.4 StrongGeneratorsStabChain

▷ StrongGeneratorsStabChain(S) (function)

returns a strong generating set corresponding to the stabilizer chain S .

43.10.5 GroupStabChain

▷ GroupStabChain([G,]S) (function)

constructs a permutation group with stabilizer chain S , i.e., a group with generators Generators(
S) to which S is assigned as component stabChain. If the optional argument G is given, the result
will have the parent G .

43.10.6 OrbitStabChain

▷ OrbitStabChain(S, pnt) (function)

returns the orbit of pnt under the group described by the stabilizer chain S .

43.10.7 IndicesStabChain

▷ IndicesStabChain(S) (function)

returns a list of the indices of the stabilizers in the stabilizer chain S .

43.10.8 ListStabChain

▷ ListStabChain(S) (function)

returns a list that contains at position i the stabilizer of the first i− 1 base points in the stabilizer
chain S .

GAP - Reference Manual 687

43.10.9 ElementsStabChain

▷ ElementsStabChain(S) (function)

returns a list of all elements of the group described by the stabilizer chain S . The list is duplicate
free but may be unsorted.

43.10.10 IteratorStabChain

▷ IteratorStabChain(S) (function)

returns an iterator for the elements of the group described by the stabilizer chain S . The elements
of the group G are produced by iterating through all base images in turn, and in the ordering induced
by the base. For more details see 43.6

43.10.11 InverseRepresentative

▷ InverseRepresentative(S, pnt) (function)

calculates the transversal element which maps pnt back to the base point of S . It just runs back
through the Schreier tree from pnt to the root and multiplies the labels along the way.

43.10.12 SiftedPermutation

▷ SiftedPermutation(S, g) (function)

sifts the permutation g through the stabilizer chain S and returns the result after the last step.
The element g is sifted as follows: g is replaced by g * InverseRepresentative(S,

S.orbit[1]^g), then S is replaced by S.stabilizer and this process is repeated until S is trivial
or S.orbit[1]^g is not in the basic orbit S.orbit. The remainder g is returned, it is the identity
permutation if and only if the original g is in the group G described by the original S .

43.10.13 MinimalElementCosetStabChain

▷ MinimalElementCosetStabChain(S, g) (function)

Let G be the group described by the stabilizer chain S . This function returns a permutation h such
that Gg = Gh (that is, g/h ∈ G) and with the additional property that the list of images under h of the
base belonging to S is minimal w.r.t. lexicographical ordering.

43.10.14 LargestElementStabChain

▷ LargestElementStabChain(S, id) (function)

Let G be the group described by the stabilizer chain S . This function returns the element h∈G with
the property that the list of images under h of the base belonging to S is maximal w.r.t. lexicographical
ordering. The second argument must be an identity element (used to start the recursion).

GAP - Reference Manual 688

43.10.15 ApproximateSuborbitsStabilizerPermGroup

▷ ApproximateSuborbitsStabilizerPermGroup(G, pnt) (function)

returns an approximation of the orbits of Stabilizer(G, pnt) on all points of the orbit
Orbit(G, pnt), without computing the full point stabilizer; As not all Schreier generators are
used, the result may represent the orbits of only a subgroup of the point stabilizer.

43.11 Low Level Routines to Modify and Create Stabilizer Chains

These operations modify a stabilizer chain or obtain new chains with specific properties. They are
rather technical and should only be used if such low-level routines are deliberately required. (For all
functions in this section the parameter S is a stabilizer chain.)

43.11.1 CopyStabChain

▷ CopyStabChain(S) (function)

This function returns a mutable copy of the stabilizer chain S that has no mutable object (list or
record) in common with S . The labels components of the result are possibly shared by several levels,
but superfluous labels are removed. (An entry in labels is superfluous if it does not occur among the
genlabels or translabels on any of the levels which share that labels component.)

This is useful for stabiliser sub-chains that have been obtained as the (iterated) stabilizer com-
ponent of a bigger chain.

43.11.2 CopyOptionsDefaults

▷ CopyOptionsDefaults(G, options) (function)

sets components in a stabilizer chain options record options according to what is known about
the group G . This can be used to obtain a new stabilizer chain for G quickly.

43.11.3 ChangeStabChain

▷ ChangeStabChain(S, base[, reduced]) (function)

changes or reduces a stabilizer chain S to be adapted to the base base . The optional argument
reduced is interpreted as follows.

reduced = false :
change the stabilizer chain, do not reduce it,

reduced = true :
change the stabilizer chain, reduce it.

GAP - Reference Manual 689

43.11.4 ExtendStabChain

▷ ExtendStabChain(S, base) (function)

extends the stabilizer chain S so that it corresponds to base base . The original base of S must be
a subset of base .

43.11.5 ReduceStabChain

▷ ReduceStabChain(S) (function)

changes the stabilizer chain S to a reduced stabilizer chain by eliminating trivial steps.

43.11.6 RemoveStabChain

▷ RemoveStabChain(S) (function)

S must be a stabilizer record in a stabilizer chain. This chain then is cut off at S by changing the
entries in S . This can be used to remove trailing trivial steps.

43.11.7 EmptyStabChain

▷ EmptyStabChain(labels, id[, pnt]) (function)

constructs a stabilizer chain for the trivial group with identity value equal toid and labels =

{id}∪ labels (but of course with genlabels and generators values an empty list). If the optional
third argument pnt is present, the only stabilizer of the chain is initialized with the one-point basic
orbit [pnt] and with translabels and transversal components.

43.11.8 InsertTrivialStabilizer

▷ InsertTrivialStabilizer(S, pnt) (function)

InsertTrivialStabilizer initializes the current stabilizer with pnt as EmptyStabChain

(43.11.7) did, but assigns the original S to the new S.stabilizer component, such that a new
level with trivial basic orbit (but identical labels and ShallowCopyed genlabels and generators)
is inserted. This function should be used only if pnt really is fixed by the generators of S , be-
cause then new generators can be added and the orbit and transversal at the same time extended with
AddGeneratorsExtendSchreierTree (43.11.10).

43.11.9 IsFixedStabilizer

▷ IsFixedStabilizer(S, pnt) (function)

returns true if pnt is fixed by all generators of S and false otherwise.

GAP - Reference Manual 690

43.11.10 AddGeneratorsExtendSchreierTree

▷ AddGeneratorsExtendSchreierTree(S, new) (function)

adds the elements in new to the list of generators of S and at the same time extends the orbit and
transversal. This is the only legal way to extend a Schreier tree (because this involves careful handling
of the tree components).

43.12 Backtrack

A main use for stabilizer chains is in backtrack algorithms for permutation groups. GAP implements
a partition-backtrack algorithm as described in [Leo91] and refined in [The97].

43.12.1 SubgroupProperty

▷ SubgroupProperty(G, Pr[, L]) (function)

Pr must be a one-argument function that returns true or false for elements of the permutation
group G , and the subset of elements of G that fulfill Pr must be a subgroup. (If the latter is not true
the result of this operation is unpredictable!) This command computes this subgroup. The optional
argument L must be a subgroup of the set of all elements in G fulfilling Pr and can be given if known
in order to speed up the calculation.

43.12.2 ElementProperty

▷ ElementProperty(G, Pr[, L[, R]]) (function)

ElementProperty returns an element π of the permutation group G such that the one-argument
function Pr returns true for π . It returns fail if no such element exists in G . The optional arguments
L and R are subgroups of G such that the property Pr has the same value for all elements in the cosets
L g and g R , respectively, with g ∈ G .

A typical example of using the optional subgroups L and R is the conjugacy test for elements a
and b for which one can set L :=CG (a) and R :=CG (b).

Example
gap> propfun:= el -> (1,2,3)^el in [(1,2,3), (1,3,2)];;

gap> SubgroupProperty(g, propfun, Subgroup(g, [(1,2,3)]));

Group([(1,2,3), (2,3)])

gap> ElementProperty(g, el -> Order(el) = 2);

(2,4)

Chapter 42 describes special operations to construct permutations in the symmetric group without
using backtrack constructions.

Backtrack routines are also called by the methods for permutation groups that compute central-
izers, normalizers, intersections, conjugating elements as well as stabilizers for the operations of a
permutation group via OnPoints (41.2.1), OnSets (41.2.4), OnTuples (41.2.5) and OnSetsSets

(41.2.7). Some of these methods use more specific refinements than SubgroupProperty (43.12.1)
or ElementProperty. For the definition of refinements, and how one can define refinements, see
Section 87.2.

GAP - Reference Manual 691

43.12.3 TwoClosure

▷ TwoClosure(G) (attribute)

The 2-closure of a transitive permutation group G on n points is the largest subgroup of the sym-
metric group Sn which has the same orbits on sets of ordered pairs of points as the group G has. It also
can be interpreted as the stabilizer of the orbital graphs of G .

Example
gap> TwoClosure(Group((1,2,3),(2,3,4)));

Sym([1 .. 4])

43.12.4 InfoBckt

▷ InfoBckt (info class)

is the info class for the partition backtrack routines.

43.13 Working with large degree permutation groups

Permutation groups of large degree (usually at least a few 10000) can pose a challenge to the heuristics
used in the algorithms for permutation groups. This section lists a few useful tricks that may speed up
calculations with such large groups enormously.

The first aspect concerns solvable groups: A lot of calculations (including an initial stabilizer
chain computation thanks to the algorithm from [Sim90]) are faster if a permutation group is known
to be solvable. On the other hand, proving nonsolvability can be expensive for higher degrees.
Therefore GAP will automatically test a permutation group for solvability, only if the degree is not
exceeding 100. (See also the tryPcgs component of StabChainOptions (43.8.2).) It is there-
fore beneficial to tell a group of larger degree, which is known to be solvable, that it is, using
SetIsSolvableGroup(G,true).

The second aspect concerns memory usage. A permutation on more than 65536 points requires
4 bytes per point for storing. So permutations on 256000 points require roughly 1MB of storage per
permutation. Just storing the permutations required for a stabilizer chain might already go beyond the
available memory, in particular if the base is not very short. In such a situation it can be useful, to
replace the permutations by straight line program elements (see 37.9).

The following code gives an example of usage: We create a group of degree 231000. Using
straight line program elements, one can compute a stabilizer chain in about 200 MB of memory.

Example
gap> Read("largeperms"); # read generators from file

gap> gens:=StraightLineProgGens(permutationlist);;

gap> g:=Group(gens);

<permutation group with 5 generators>

gap> # use random algorithm (faster, but result is monte carlo)

gap> StabChainOptions(g).random:=1;;

gap> Size(g); # enforce computation of a stabilizer chain

3529698298145066075557232833758234188056080273649172207877011796336000

Without straight line program elements, the same calculation runs into memory problems after a
while even with 512MB of workspace:

GAP - Reference Manual 692

Example
gap> h:=Group(permutationlist);

<permutation group with 5 generators>

gap> StabChainOptions(h).random:=1;;

gap> Size(h);

exceeded the permitted memory (`-o' command line option) at

mlimit := 1; called from

SCRMakeStabStrong(S.stabilizer, [g], param, orbits, where, basesize,

base, correct, missing, false); called from

SCRMakeStabStrong(S.stabilizer, [g], param, orbits, where, basesize,

...

The advantage in memory usage however is paid for in runtime: Comparisons of elements become
much more expensive. One can avoid some of the related problems by registering a known base
with the straight line program elements (see StraightLineProgGens (37.9.3)). In this case element
comparison will only compare the images of the given base points. If we are planning to do extensive
calculations with the group, it can even be worth to recreate it with straight line program elements
knowing a previously computed base:

Example
gap> # get the base we computed already

gap> bas:=BaseStabChain(StabChainMutable(g));

[1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55,

...

2530, 2533, 2554, 2563, 2569]

gap> gens:=StraightLineProgGens(permutationlist,bas);;

gap> g:=Group(gens);;

gap> SetSize(g,

> 3529698298145066075557232833758234188056080273649172207877011796336000);

gap> Random(g);; # enforce computation of a stabilizer chain

As we know already base and size, this second stabilizer chain calculation is much faster than the
first one and takes less memory.

Chapter 44

Matrix Groups

Matrix groups are groups generated by invertible square matrices.
In the following example we temporarily increase the line length limit from its default value 80 to

83 in order to get a nicer output format.
Example

gap> m1 := [[Z(3)^0, Z(3)^0, Z(3)],

> [Z(3), 0*Z(3), Z(3)],

> [0*Z(3), Z(3), 0*Z(3)]];;

gap> m2 := [[Z(3), Z(3), Z(3)^0],

> [Z(3), 0*Z(3), Z(3)],

> [Z(3)^0, 0*Z(3), Z(3)]];;

gap> m := Group(m1, m2);

Group(

[

[[Z(3)^0, Z(3)^0, Z(3)], [Z(3), 0*Z(3), Z(3)],

[0*Z(3), Z(3), 0*Z(3)]],

[[Z(3), Z(3), Z(3)^0], [Z(3), 0*Z(3), Z(3)],

[Z(3)^0, 0*Z(3), Z(3)]]])

44.1 IsMatrixGroup (Filter)

For most operations, GAP only provides methods for finite matrix groups. Many calculations in
finite matrix groups are done via so-called “nice monomorphisms” (see Section 40.5) that represent a
faithful action on vectors.

44.1.1 IsMatrixGroup

▷ IsMatrixGroup(grp) (Category)

The category of matrix groups.

693

GAP - Reference Manual 694

44.2 Attributes and Properties for Matrix Groups

44.2.1 DimensionOfMatrixGroup

▷ DimensionOfMatrixGroup(mat-grp) (attribute)

The dimension of the matrix group.

44.2.2 DefaultFieldOfMatrixGroup

▷ DefaultFieldOfMatrixGroup(mat-grp) (attribute)

Is a field containing all the matrix entries. It is not guaranteed to be the smallest field with this
property.

44.2.3 FieldOfMatrixGroup

▷ FieldOfMatrixGroup(matgrp) (attribute)

The smallest field containing all the matrix entries of all elements of the matrix group matgrp . As
the calculation of this can be hard, this should only be used if one really needs the smallest field, use
DefaultFieldOfMatrixGroup (44.2.2) to get (for example) the characteristic.

Example
gap> DimensionOfMatrixGroup(m);

3

gap> DefaultFieldOfMatrixGroup(m);

GF(3)

44.2.4 TransposedMatrixGroup

▷ TransposedMatrixGroup(matgrp) (attribute)

returns the transpose of the matrix group matgrp . The transpose of the transpose of matgrp is
identical to matgrp .

Example
gap> G := Group([[0,-1],[1,0]]);

Group([[[0, -1], [1, 0]]])

gap> T := TransposedMatrixGroup(G);

Group([[[0, 1], [-1, 0]]])

gap> IsIdenticalObj(G, TransposedMatrixGroup(T));

true

44.2.5 IsFFEMatrixGroup

▷ IsFFEMatrixGroup(G) (Category)

tests whether all matrices in G have finite field element entries.

GAP - Reference Manual 695

44.3 Actions of Matrix Groups

The basic operations for groups are described in Chapter 41, special actions for matrix groups
mentioned there are OnLines (41.2.12), OnRight (41.2.2), and OnSubspacesByCanonicalBasis

(41.2.15).
For subtleties concerning multiplication from the left or from the right, see 44.7.

44.3.1 ProjectiveActionOnFullSpace

▷ ProjectiveActionOnFullSpace(G, F, n) (function)

Let G be a group of n by n matrices over a field contained in the finite field F .
ProjectiveActionOnFullSpace returns the image of the projective action of G on the full row
space Fn .

44.3.2 ProjectiveActionHomomorphismMatrixGroup

▷ ProjectiveActionHomomorphismMatrixGroup(G) (function)

returns an action homomorphism for a faithful projective action of G on the underlying vector
space. (Note: The action is not necessarily on the full space, if a smaller subset can be found on which
the action is faithful.)

44.3.3 BlowUpIsomorphism

▷ BlowUpIsomorphism(matgrp, B) (function)

For a matrix group matgrp and a basis B of a field extension L/K such that the entries of all
matrices in matgrp lie in L, BlowUpIsomorphism returns the isomorphism with source matgrp that
is defined by mapping the matrix A to BlownUpMat(A,B), see BlownUpMat (24.13.4).

Example
gap> g:= GL(2,4);;

gap> B:= CanonicalBasis(GF(4));; BasisVectors(B);

[Z(2)^0, Z(2^2)]

gap> iso:= BlowUpIsomorphism(g, B);;

gap> Display(Image(iso, [[Z(4), Z(2)], [0*Z(2), Z(4)^2]]));

. 1 1 .

1 1 . 1

. . 1 1

. . 1 .

gap> img:= Image(iso, g);

<matrix group with 2 generators>

gap> Index(GL(4,2), img);

112

44.4 GL and SL

(See also section 50.2.)

GAP - Reference Manual 696

44.4.1 IsGeneralLinearGroup

▷ IsGeneralLinearGroup(grp) (property)

▷ IsGL(grp) (property)

The General Linear group is the group of all invertible matrices over a ring. This property tests,
whether a group is isomorphic to a General Linear group. (Note that currently only a few trivial
methods are available for this operation. We hope to improve this in the future.)

44.4.2 IsNaturalGL

▷ IsNaturalGL(matgrp) (property)

This property tests, whether a matrix group is the General Linear group in the right dimension
over the (smallest) ring which contains all entries of its elements. (Currently, only a trivial test that
computes the order of the group is available.)

44.4.3 IsSpecialLinearGroup

▷ IsSpecialLinearGroup(grp) (property)

▷ IsSL(grp) (property)

The Special Linear group is the group of all invertible matrices over a ring, whose determinant is
equal to 1. This property tests, whether a group is isomorphic to a Special Linear group. (Note that
currently only a few trivial methods are available for this operation. We hope to improve this in the
future.)

44.4.4 IsNaturalSL

▷ IsNaturalSL(matgrp) (property)

This property tests, whether a matrix group is the Special Linear group in the right dimension
over the (smallest) ring which contains all entries of its elements. (Currently, only a trivial test that
computes the order of the group is available.)

Example
gap> IsNaturalGL(m);

false

44.4.5 IsSubgroupSL

▷ IsSubgroupSL(matgrp) (property)

This property tests, whether a matrix group is a subgroup of the Special Linear group in the right
dimension over the (smallest) ring which contains all entries of its elements.

GAP - Reference Manual 697

44.5 Invariant Forms

44.5.1 InvariantBilinearForm

▷ InvariantBilinearForm(matgrp) (attribute)

This attribute describes a bilinear form that is invariant under the matrix group matgrp . The form
is given by a record with the component matrix which is a matrix F such that for every generator g
of matgrp the equation g ·F ·gtr = F holds.

44.5.2 IsFullSubgroupGLorSLRespectingBilinearForm

▷ IsFullSubgroupGLorSLRespectingBilinearForm(matgrp) (property)

This property tests, whether a matrix group matgrp is the full subgroup of GL or SL (the
property IsSubgroupSL (44.4.5) determines which it is) respecting the form stored as the value of
InvariantBilinearForm (44.5.1) for matgrp .

44.5.3 InvariantSesquilinearForm

▷ InvariantSesquilinearForm(matgrp) (attribute)

This attribute describes a sesquilinear form that is invariant under the matrix group matgrp over
the field F with q2 elements. The form is given by a record with the component matrix which is a
matrix M such that for every generator g of matgrp the equation g ·M · (gtr) f = M holds, where f is
the automorphism of F that raises each element to its q-th power. (f can be obtained as a power of
the FrobeniusAutomorphism (59.4.1) value of F .)

44.5.4 IsFullSubgroupGLorSLRespectingSesquilinearForm

▷ IsFullSubgroupGLorSLRespectingSesquilinearForm(matgrp) (property)

This property tests, whether a matrix group matgrp is the full subgroup of GL or SL (the
property IsSubgroupSL (44.4.5) determines which it is) respecting the form stored as the value of
InvariantSesquilinearForm (44.5.3) for matgrp .

44.5.5 InvariantQuadraticForm

▷ InvariantQuadraticForm(matgrp) (attribute)

For a matrix group matgrp , InvariantQuadraticForm returns a record containing at least the
component matrix whose value is a matrix Q. The quadratic form q on the natural vector space V on
which matgrp acts is given by q(v) = vQvtr, and the invariance under matgrp is given by the equation
q(v) = q(vM) for all v ∈ V and M in matgrp . (Note that the invariance of q does not imply that the
matrix Q is invariant under matgrp .)

q is defined relative to an invariant symmetric bilinear form f (see InvariantBilinearForm

(44.5.1)), via the equation q(λx+ µy) = λ 2q(x)+λ µ f (x,y)+ µ2q(y), see [CCN+85, Chapter 3.4].
If f is represented by the matrix F then this implies F = Q+Qtr. In characteristic different from 2,

GAP - Reference Manual 698

we have q(x) = f (x,x)/2, so Q can be chosen as the strictly upper triangular part of F plus half of the
diagonal part of F . In characteristic 2, F does not determine Q but still Q can be chosen as an upper
(or lower) triangular matrix.

Whenever the InvariantQuadraticForm value is set in a matrix group then also the
InvariantBilinearForm (44.5.1) value can be accessed, and the two values are compatible in the
above sense.

44.5.6 IsFullSubgroupGLorSLRespectingQuadraticForm

▷ IsFullSubgroupGLorSLRespectingQuadraticForm(matgrp) (property)

This property tests, whether the matrix group matgrp is the full subgroup of GL or SL (the
property IsSubgroupSL (44.4.5) determines which it is) respecting the InvariantQuadraticForm

(44.5.5) value of matgrp .
Example

gap> g:= Sp(2, 3);;

gap> m:= InvariantBilinearForm(g).matrix;

[[0*Z(3), Z(3)^0], [Z(3), 0*Z(3)]]

gap> [0, 1] * m * [1, -1]; # evaluate the bilinear form

Z(3)

gap> IsFullSubgroupGLorSLRespectingBilinearForm(g);

true

gap> g:= SU(2, 4);;

gap> m:= InvariantSesquilinearForm(g).matrix;

[[0*Z(2), Z(2)^0], [Z(2)^0, 0*Z(2)]]

gap> [0, 1] * m * [1, 1]; # evaluate the bilinear form

Z(2)^0

gap> IsFullSubgroupGLorSLRespectingSesquilinearForm(g);

true

gap> g:= GO(1, 2, 3);;

gap> m:= InvariantBilinearForm(g).matrix;

[[0*Z(3), Z(3)^0], [Z(3)^0, 0*Z(3)]]

gap> [0, 1] * m * [1, 1]; # evaluate the bilinear form

Z(3)^0

gap> q:= InvariantQuadraticForm(g).matrix;

[[0*Z(3), Z(3)^0], [0*Z(3), 0*Z(3)]]

gap> [0, 1] * q * [0, 1]; # evaluate the quadratic form

0*Z(3)

gap> IsFullSubgroupGLorSLRespectingQuadraticForm(g);

true

44.6 Matrix Groups in Characteristic 0

Most of the functions described in this and the following section have implementations which use
functions from the GAP package CaratInterface. If CaratInterface is not installed or not compiled,
no suitable methods are available.

GAP - Reference Manual 699

44.6.1 IsCyclotomicMatrixGroup

▷ IsCyclotomicMatrixGroup(G) (Category)

tests whether all matrices in G have cyclotomic entries.

44.6.2 IsRationalMatrixGroup

▷ IsRationalMatrixGroup(G) (property)

tests whether all matrices in G have rational entries.

44.6.3 IsIntegerMatrixGroup

▷ IsIntegerMatrixGroup(G) (property)

tests whether all matrices in G have integer entries.

44.6.4 IsNaturalGLnZ

▷ IsNaturalGLnZ(G) (property)

tests whether G is GLn(Z) in its natural representation by n×n integer matrices. (The dimension
n will be read off the generating matrices.)

Example
gap> IsNaturalGLnZ(GL(2, Integers));

true

44.6.5 IsNaturalSLnZ

▷ IsNaturalSLnZ(G) (property)

tests whether G is SLn(Z) in its natural representation by n×n integer matrices. (The dimension n
will be read off the generating matrices.)

Example
gap> IsNaturalSLnZ(SL(2, Integers));

true

44.6.6 InvariantLattice

▷ InvariantLattice(G) (attribute)

returns a matrix B, whose rows form a basis of a Z-lattice that is invariant under the rational
matrix group G acting from the right. It returns fail if the group is not unimodular. The columns of
the inverse of B span a Z-lattice invariant under G acting from the left.

GAP - Reference Manual 700

44.6.7 NormalizerInGLnZ

▷ NormalizerInGLnZ(G) (attribute)

is an attribute used to store the normalizer of G in GLn(Z), where G is an integer matrix group of
dimension n . This attribute is used by Normalizer(GL(n, Integers), G).

44.6.8 CentralizerInGLnZ

▷ CentralizerInGLnZ(G) (attribute)

is an attribute used to store the centralizer of G in GLn(Z), where G is an integer matrix group of
dimension n . This attribute is used by Centralizer(GL(n, Integers), G).

44.6.9 ZClassRepsQClass

▷ ZClassRepsQClass(G) (attribute)

The conjugacy class in GLn(Q) of the finite integer matrix group G splits into finitely many con-
jugacy classes in GLn(Z). ZClassRepsQClass(G) returns representative groups for these.

44.6.10 IsBravaisGroup

▷ IsBravaisGroup(G) (property)

test whether G coincides with its Bravais group (see BravaisGroup (44.6.11)).

44.6.11 BravaisGroup

▷ BravaisGroup(G) (attribute)

returns the Bravais group of a finite integer matrix group G . If C is the cone of positive definite
quadratic forms Q invariant under g 7→ gQgtr for all g ∈ G , then the Bravais group of G is the maximal
subgroup of GLn(Z) leaving the forms in that same cone invariant. Alternatively, the Bravais group of
G can also be defined with respect to the action g 7→ gtrQg on positive definite quadratic forms Q. This
latter definition is appropriate for groups G acting from the right on row vectors, whereas the former
definition is appropriate for groups acting from the left on column vectors. Both definitions yield the
same Bravais group.

44.6.12 BravaisSubgroups

▷ BravaisSubgroups(G) (attribute)

returns the subgroups of the Bravais group of G , which are themselves Bravais groups.

GAP - Reference Manual 701

44.6.13 BravaisSupergroups

▷ BravaisSupergroups(G) (attribute)

returns the subgroups of GLn(Z) that contain the Bravais group of G and are Bravais groups them-
selves.

44.6.14 NormalizerInGLnZBravaisGroup

▷ NormalizerInGLnZBravaisGroup(G) (attribute)

returns the normalizer of the Bravais group of G in the appropriate GLn(Z).

44.7 Acting OnRight and OnLeft

In GAP, matrices by convention act on row vectors from the right, whereas in crystallography the
convention is to act on column vectors from the left. The definition of certain algebraic objects impor-
tant in crystallography implicitly depends on which action is assumed. This holds true in particular
for quadratic forms invariant under a matrix group. In a similar way, the representation of affine crys-
tallographic groups, as they are provided by the GAP package CrystGap, depends on which action is
assumed. Crystallographers are used to the action from the left, whereas the action from the right is the
natural one for GAP. For this reason, a number of functions which are important in crystallography,
and whose result depends on which action is assumed, are provided in two versions, one for the usual
action from the right, and one for the crystallographic action from the left.

For every such function, this fact is explicitly mentioned. The naming scheme is as follows: If
SomeThing is such a function, there will be functions SomeThingOnRight and SomeThingOnLeft,
assuming action from the right and from the left, respectively. In addition, there is a generic function
SomeThing, which returns either the result of SomeThingOnRight or SomeThingOnLeft, depending
on the global variable CrystGroupDefaultAction (44.7.1).

44.7.1 CrystGroupDefaultAction

▷ CrystGroupDefaultAction (global variable)

can have either of the two values RightAction and LeftAction. The initial value is
RightAction. For functions which have variants OnRight and OnLeft, this variable determines which
variant is returned by the generic form. The value of CrystGroupDefaultAction can be changed
with the function SetCrystGroupDefaultAction (44.7.2).

44.7.2 SetCrystGroupDefaultAction

▷ SetCrystGroupDefaultAction(action) (function)

allows one to set the value of the global variable CrystGroupDefaultAction (44.7.1).
Only the arguments RightAction and LeftAction are allowed. Initially, the value of
CrystGroupDefaultAction (44.7.1) is RightAction.

Chapter 45

Polycyclic Groups

A group G is polycyclic if there exists a subnormal series G =C1 >C2 > .. . >Cn >Cn+1 = {1} with
cyclic factors. Such a series is called pc series of G .

Every polycyclic group is solvable and every finite solvable group is polycyclic. However, there
are infinite solvable groups which are not polycyclic.

In GAP there exists a large number of methods for polycyclic groups which are based upon the
polycyclic structure of these groups. These methods are usually very efficient, especially for groups
which are given by a pc-presentation (see chapter 46), and can be applied to many types of groups.
Hence GAP tries to use them whenever possible, for example, for permutation groups and matrix
groups over finite fields that are known to be polycyclic (the only exception is the representation as
finitely presented group for which the polycyclic methods cannot be used in general).

At the current state of implementations the GAP library contains methods to compute with finite
polycyclic groups, while the GAP package Polycyclic by Bettina Eick and Werner Nickel allows also
computations with infinite polycyclic groups which are given by a pc-presentation.

45.1 Polycyclic Generating Systems

Let G be a polycyclic group with a pc series as above. A polycyclic generating sequence (pcgs for
short) of G is a sequence P := (g1, . . . ,gn) of elements of G such that Ci = ⟨Ci+1,gi⟩ for 1 ≤ i ≤ n.
Note that each polycyclic group has a pcgs, but except for very small groups, a pcgs is not unique.

For each index i the subsequence of elements (gi, . . . ,gn) forms a pcgs of the subgroup Ci. In
particular, these tails generate the subgroups of the pc series and hence we say that the pc series is
determined by P.

Let ri be the index of Ci+1 in Ci which is either a finite positive number or infinity. Then ri is the
order of giCi+1 and we call the resulting list of indices the relative orders of the pcgs P .

Moreover, with respect to a given pcgs (g1, . . . ,gn) each element g of G can be represented in a
unique way as a product g = ge1

1 ·ge2
2 · · ·gen

n with exponents ei ∈ {0, . . . ,ri−1}, if ri is finite, and ei ∈ Z
otherwise. Words of this form are called normal words or words in normal form. Then the integer
vector [e1, . . . ,en] is called the exponent vector of the element g. Furthermore, the smallest index k
such that ek ̸= 0 is called the depth of g and ek is the leading exponent of g .

For many applications we have to assume that each of the relative orders ri is either a prime or
infinity. This is equivalent to saying that there are no trivial factors in the pc series and the finite factors
of the pc series are maximal refined. Then we obtain that ri is the order of gCi+1 for all elements g in
Ci \Ci+1 and we call ri the relative order of the element g.

702

GAP - Reference Manual 703

45.2 Computing a Pcgs

Suppose a group G is given; for example, let G be a permutation or matrix group. Then we can ask
GAP to compute a pcgs of this group. If G is not polycyclic, the result will be fail.

Note that these methods can only be applied if G is not given as finitely presented group. For
finitely presented groups one can try to compute a pcgs via the polycyclic quotient methods, see
47.14.

Note also that a pcgs behaves like a list.

45.2.1 Pcgs

▷ Pcgs(G) (attribute)

returns a pcgs for the group G . If grp is not polycyclic it returns fail and this result is not stored
as attribute value, in particular in this case the filter HasPcgs is not set for G !

45.2.2 IsPcgs

▷ IsPcgs(obj) (Category)

The category of pcgs.
Example

gap> G := Group((1,2,3,4),(1,2));;

gap> p := Pcgs(G);

Pcgs([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)])

gap> IsPcgs(p);

true

gap> p[1];

(3,4)

gap> G := Group((1,2,3,4,5),(1,2));;

gap> Pcgs(G);

fail

45.2.3 CanEasilyComputePcgs

▷ CanEasilyComputePcgs(grp) (filter)

This filter indicates whether it is possible to compute a pcgs for grp cheaply. Clearly, grp must
be polycyclic in this case. However, not for every polycyclic group there is a method to compute a
pcgs at low costs. This filter is used in the method selection mainly. Note that this filter may change
its value from false to true.

Example
gap> G := Group((1,2,3,4),(1,2));

Group([(1,2,3,4), (1,2)])

gap> CanEasilyComputePcgs(G);

false

gap> Pcgs(G);

Pcgs([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)])

gap> CanEasilyComputePcgs(G);

true

GAP - Reference Manual 704

45.3 Defining a Pcgs Yourself

In a number of situations it might be useful to supply a pcgs to a group.
Note that the elementary operations for such a pcgs might be rather inefficient, since GAP has to

use generic methods in this case. It might be helpful to supply the relative orders of the self-defined
pcgs as well by SetRelativeOrder. See also IsPrimeOrdersPcgs (45.4.3).

45.3.1 PcgsByPcSequence

▷ PcgsByPcSequence(fam, pcs) (operation)

▷ PcgsByPcSequenceNC(fam, pcs) (operation)

constructs a pcgs for the elements family fam from the elements in the list pcs . The elements
must lie in the family fam . PcgsByPcSequence and its NC variant will always create a new pcgs
which is not induced by any other pcgs (cf. InducedPcgsByPcSequence (45.7.2)).

Example
gap> fam := FamilyObj((1,2));; # the family of permutations

gap> p := PcgsByPcSequence(fam, [(1,2),(1,2,3)]);

Pcgs([(1,2), (1,2,3)])

gap> RelativeOrders(p);

[2, 3]

gap> ExponentsOfPcElement(p, (1,3,2));

[0, 2]

45.4 Elementary Operations for a Pcgs

45.4.1 RelativeOrders

▷ RelativeOrders(pcgs) (attribute)

returns the list of relative orders of the pcgs pcgs .

45.4.2 IsFiniteOrdersPcgs

▷ IsFiniteOrdersPcgs(pcgs) (property)

tests whether the relative orders of pcgs are all finite.

45.4.3 IsPrimeOrdersPcgs

▷ IsPrimeOrdersPcgs(pcgs) (property)

tests whether the relative orders of pcgs are prime numbers. Many algorithms require a pcgs to
have this property. The operation IsomorphismRefinedPcGroup (46.4.8) can be of help here.

GAP - Reference Manual 705

45.4.4 PcSeries

▷ PcSeries(pcgs) (attribute)

returns the subnormal series determined by pcgs .

45.4.5 GroupOfPcgs

▷ GroupOfPcgs(pcgs) (attribute)

The group generated by pcgs .

45.4.6 OneOfPcgs

▷ OneOfPcgs(pcgs) (attribute)

The identity of the group generated by pcgs .
Example

gap> G := Group((1,2,3,4),(1,2));; p := Pcgs(G);;

gap> RelativeOrders(p);

[2, 3, 2, 2]

gap> IsFiniteOrdersPcgs(p);

true

gap> IsPrimeOrdersPcgs(p);

true

gap> PcSeries(p);

[Group([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)]),

Group([(2,4,3), (1,4)(2,3), (1,3)(2,4)]),

Group([(1,4)(2,3), (1,3)(2,4)]), Group([(1,3)(2,4)]), Group(())

]

45.5 Elementary Operations for a Pcgs and an Element

45.5.1 RelativeOrderOfPcElement

▷ RelativeOrderOfPcElement(pcgs, elm) (operation)

The relative order of elm with respect to the prime order pcgs pcgs .

45.5.2 ExponentOfPcElement

▷ ExponentOfPcElement(pcgs, elm, pos) (operation)

returns the pos-th exponent of elm with respect to pcgs .

45.5.3 ExponentsOfPcElement

▷ ExponentsOfPcElement(pcgs, elm[, posran]) (operation)

GAP - Reference Manual 706

returns the exponents of elm with respect to pcgs . The three argument version returns the expo-
nents in the positions given in posran .

45.5.4 DepthOfPcElement

▷ DepthOfPcElement(pcgs, elm) (operation)

returns the depth of the element elm with respect to pcgs .

45.5.5 LeadingExponentOfPcElement

▷ LeadingExponentOfPcElement(pcgs, elm) (operation)

returns the leading exponent of elm with respect to pcgs .

45.5.6 PcElementByExponents

▷ PcElementByExponents(pcgs, list) (function)

▷ PcElementByExponentsNC(pcgs[, basisind], list) (operation)

returns the element corresponding to the exponent vector list with respect to pcgs . The ex-
ponents in list must be in the range of permissible exponents for pcgs . It is not guaranteed that
PcElementByExponents will reduce the exponents modulo the relative orders. (You should use the
operation LinearCombinationPcgs (45.5.7) for this purpose.) The NC version does not check that
the lengths of the lists fit together and does not check the exponent range.

The three argument version gives exponents only w.r.t. the generators in pcgs indexed by
basisind .

45.5.7 LinearCombinationPcgs

▷ LinearCombinationPcgs(pcgs, list[, one]) (function)

returns the product ∏i pcgs [i]list [i]. In contrast to PcElementByExponents (45.5.6) this per-
mits negative exponents. pcgs might be a list of group elements. In this case, an appropriate identity
element one must be given. list can be empty.

Example
gap> G := Group((1,2,3,4),(1,2));; P := Pcgs(G);;

gap> g := PcElementByExponents(P, [0,1,1,1]);

(1,2,3)

gap> ExponentsOfPcElement(P, g);

[0, 1, 1, 1]

45.5.8 SiftedPcElement

▷ SiftedPcElement(pcgs, elm) (operation)

sifts elm through pcgs , reducing it if the depth is the same as the depth of one of the generators
in pcgs . Thus the identity is returned if elm lies in the group generated by pcgs . pcgs must be an
induced pcgs (see section 45.7) and elm must lie in the span of the parent of pcgs .

GAP - Reference Manual 707

45.5.9 CanonicalPcElement

▷ CanonicalPcElement(ipcgs, elm) (operation)

reduces elm at the induces pcgs ipcgs such that the exponents of the reduced result r are zero
at the depths for which there are generators in ipcgs . Elements, whose quotient lies in the group
generated by ipcgs yield the same canonical element.

45.5.10 ReducedPcElement

▷ ReducedPcElement(pcgs, x, y) (operation)

reduces the element x by dividing off (from the left) a power of y such that the leading coefficient
of the result with respect to pcgs becomes zero. The elements x and y therefore have to have the
same depth.

45.5.11 CleanedTailPcElement

▷ CleanedTailPcElement(pcgs, elm, dep) (operation)

returns an element in the span of pcgs whose exponents for indices 1 to dep −1 with respect to
pcgs are the same as those of elm , the remaining exponents are undefined. This can be used to obtain
more “simple” elements if only representatives in a factor are required, see 45.9.

The difference to HeadPcElementByNumber (45.5.12) is that this function is guaranteed to zero
out trailing coefficients while CleanedTailPcElement will only do this if it can be done cheaply.

45.5.12 HeadPcElementByNumber

▷ HeadPcElementByNumber(pcgs, elm, dep) (operation)

returns an element in the span of pcgs whose exponents for indices 1 to dep−1 with respect to
pcgs are the same as those of elm , the remaining exponents are zero. This can be used to obtain more
“simple” elements if only representatives in a factor are required.

45.6 Exponents of Special Products

There are certain products of elements whose exponents are used often within algorithms, and which
might be obtained more easily than by computing the product first and to obtain its exponents after-
wards. The operations in this section provide a way to obtain such exponent vectors directly.

(The circumstances under which these operations give a speedup depend very much on the pcgs
and the representation of elements that is used. So the following operations are not guaranteed to give
a speedup in every case, however the default methods are not slower than to compute the exponents of
a product and thus these operations should always be used if applicable.)

The second class are exponents of products of the generators which make up the pcgs. If the pcgs
used is a family pcgs (see FamilyPcgs (46.1.1)) then these exponents can be looked up and do not
need to be computed.

GAP - Reference Manual 708

45.6.1 ExponentsConjugateLayer

▷ ExponentsConjugateLayer(mpcgs, elm, e) (operation)

Computes the exponents of elm^e with respect to mpcgs ; elm must be in the span of mpcgs ,
e a pc element in the span of the parent pcgs of mpcgs and mpcgs must be the modulo pcgs for an
abelian layer. (This is the usual case when acting on a chief factor). In this case if mpcgs is induced by
the family pcgs (see section 45.7), the exponents can be computed directly by looking up exponents
without having to compute in the group and having to collect a potential tail.

45.6.2 ExponentsOfRelativePower

▷ ExponentsOfRelativePower(pcgs, i) (operation)

For p = pcgs [i] this function returns the exponent vector with respect to pcgs of the element pe

where e is the relative order of p in pcgs . For the family pcgs or pcgs induced by it (see section 45.7),
this might be faster than computing the element and computing its exponent vector.

45.6.3 ExponentsOfConjugate

▷ ExponentsOfConjugate(pcgs, i, j) (operation)

returns the exponents of pcgs[i]^pcgs[j] with respect to pcgs . For the family pcgs or pcgs
induced by it (see section 45.7), this might be faster than computing the element and computing its
exponent vector.

45.6.4 ExponentsOfCommutator

▷ ExponentsOfCommutator(pcgs, i, j) (operation)

returns the exponents of the commutator Comm(pcgs [i],pcgs [j]) with respect to pcgs . For
the family pcgs or pcgs induced by it, (see section 45.7), this might be faster than computing the
element and computing its exponent vector.

45.7 Subgroups of Polycyclic Groups – Induced Pcgs

Let U be a subgroup of G and let P be a pcgs of G as above such that P determines the subnormal
series G =C1 > .. . >Cn+1 = {1}. Then the series of subgroups U ∩Ci is a subnormal series of U with
cyclic or trivial factors. Hence, if we choose an element ui j ∈ (U ∩Ci j) \ (U ∩Ci j+1) whenever this
factor is non-trivial, then we obtain a pcgs Q = (ui1 , . . . ,uim) of U . We say that Q is an induced pcgs
with respect to P . The pcgs P is the parent pcgs to the induced pcgs Q .

Note that the pcgs Q is induced with respect to P if and only if the matrix of exponent vectors of
the elements ui j with respect to P is in upper triangular form. Thus Q is not unique in general.

In particular, the elements of an induced pcgs do not necessarily have leading coefficient 1 relative
to the inducing pcgs. The attribute LeadCoeffsIGS (45.7.7) holds the leading coefficients in case they
have to be renormed in an algorithm.

GAP - Reference Manual 709

Each induced pcgs is a pcgs and hence allows all elementary operations for pcgs. On the other
hand each pcgs could be transformed into an induced pcgs for the group defined by the pcgs, but note
that an arbitrary pcgs is in general not an induced pcgs for technical reasons.

An induced pcgs is “compatible” with its parent, see ParentPcgs (45.7.3).
In [LNS84] a “non-commutative Gauss” algorithm is described to compute an induced pcgs of a

subgroup U from a generating set of U . For calling this in GAP, see 45.7.4 to 45.7.8.
To create a subgroup generated by an induced pcgs such that the induced pcgs gets stored auto-

matically, use SubgroupByPcgs (45.7.9).

45.7.1 IsInducedPcgs

▷ IsInducedPcgs(pcgs) (Category)

The category of induced pcgs. This a subcategory of pcgs.

45.7.2 InducedPcgsByPcSequence

▷ InducedPcgsByPcSequence(pcgs, pcs) (operation)

▷ InducedPcgsByPcSequenceNC(pcgs, pcs[, depths]) (operation)

If pcs is a list of elements that form an induced pcgs with respect to pcgs this operation returns
an induced pcgs with these elements.

In the third version, the depths of pcs with respect to pcgs can be given (they are computed anew
otherwise).

45.7.3 ParentPcgs

▷ ParentPcgs(pcgs) (attribute)

returns the pcgs by which pcgs was induced. If pcgs was not induced, it simply returns pcgs .
Example

gap> G := Group((1,2,3,4),(1,2));;

gap> P := Pcgs(G);;

gap> K := InducedPcgsByPcSequence(P, [(1,2,3,4),(1,3)(2,4)]);

Pcgs([(1,2,3,4), (1,3)(2,4)])

gap> ParentPcgs(K);

Pcgs([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)])

gap> IsInducedPcgs(K);

true

45.7.4 InducedPcgs

▷ InducedPcgs(pcgs, grp) (function)

computes a pcgs for grp which is induced by pcgs . If pcgs has a parent pcgs, then the result is
induced with respect to this parent pcgs.

InducedPcgs is a wrapper function only. Therefore, methods for computing an induced pcgs
should be installed for the operation InducedPcgsOp.

GAP - Reference Manual 710

45.7.5 InducedPcgsByGenerators

▷ InducedPcgsByGenerators(pcgs, gens) (operation)

▷ InducedPcgsByGeneratorsNC(pcgs, gens) (operation)

returns an induced pcgs with respect to pcgs for the subgroup generated by gens .

45.7.6 InducedPcgsByPcSequenceAndGenerators

▷ InducedPcgsByPcSequenceAndGenerators(pcgs, ind, gens) (operation)

returns an induced pcgs with respect to pcgs of the subgroup generated by ind and gens . Here
ind must be an induced pcgs with respect to pcgs (or a list of group elements that form such an igs)
and it will be used as initial sequence for the computation.

Example
gap> G := Group((1,2,3,4),(1,2));; P := Pcgs(G);;

gap> I := InducedPcgsByGenerators(P, [(1,2,3,4)]);

Pcgs([(1,2,3,4), (1,3)(2,4)])

gap> J := InducedPcgsByPcSequenceAndGenerators(P, I, [(1,2)]);

Pcgs([(1,2,3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)])

45.7.7 LeadCoeffsIGS

▷ LeadCoeffsIGS(igs) (attribute)

This attribute is used to store leading coefficients with respect to the parent pcgs. the i-th entry
–if bound– is the leading exponent of the element of igs that has depth i in the parent. (It cannot
be assigned to a component in the object created by InducedPcgsByPcSequenceNC (45.7.2) as the
permutation group methods call it from within the postprocessing, before this postprocessing however
no coefficients may be computed.)

45.7.8 ExtendedPcgs

▷ ExtendedPcgs(N, gens) (operation)

extends the pcgs N (induced w.r.t. home) to a new induced pcgs by prepending gens . No checks
are performed that this really yields an induced pcgs.

45.7.9 SubgroupByPcgs

▷ SubgroupByPcgs(G, pcgs) (operation)

returns a subgroup of G generated by the elements of pcgs .

45.8 Subgroups of Polycyclic Groups – Canonical Pcgs

The induced pcgs Q of U is called canonical if the matrix of exponent vectors contains normed vectors
only and above each leading entry in the matrix there are 0’s only. The canonical pcgs of U with

GAP - Reference Manual 711

respect to P is unique and hence such pcgs can be used to compare subgroups.

45.8.1 IsCanonicalPcgs

▷ IsCanonicalPcgs(pcgs) (property)

An induced pcgs is canonical if the matrix of the exponent vectors of the elements of pcgs with
respect to the ParentPcgs (45.7.3) value of pcgs is in Hermite normal form (see [LNS84]). While a
subgroup can have various induced pcgs with respect to a parent pcgs a canonical pcgs is unique.

45.8.2 CanonicalPcgs

▷ CanonicalPcgs(pcgs) (attribute)

returns the canonical pcgs corresponding to the induced pcgs pcgs .
Example

gap> G := Group((1,2,3,4),(5,6,7));

Group([(1,2,3,4), (5,6,7)])

gap> P := Pcgs(G);

Pcgs([(5,6,7), (1,2,3,4), (1,3)(2,4)])

gap> I := InducedPcgsByPcSequence(P, [(5,6,7)*(1,3)(2,4),(1,3)(2,4)]);

Pcgs([(1,3)(2,4)(5,6,7), (1,3)(2,4)])

gap> CanonicalPcgs(I);

Pcgs([(5,6,7), (1,3)(2,4)])

45.9 Factor Groups of Polycyclic Groups – Modulo Pcgs

Let N be a normal subgroup of G such that G/N is polycyclic with pcgs (h1N, . . . ,hrN). Then we call
the sequence of preimages (h1, . . .hr) a modulo pcgs of G/N . G is called the numerator of the modulo
pcgs and N is the denominator of the modulo pcgs.

Modulo pcgs are often used to facilitate efficient computations with factor groups, since they allow
computations with factor groups without formally defining the factor group at all.

All elementary operations of pcgs, see Sections 45.4 and 45.5, apply to modulo pcgs as well.
However, it is in general not possible to compute induced pcgs with respect to a modulo pcgs.

Two more elementary operations for modulo pcgs are NumeratorOfModuloPcgs (45.9.3) and
DenominatorOfModuloPcgs (45.9.4).

45.9.1 ModuloPcgs

▷ ModuloPcgs(G, N) (operation)

returns a modulo pcgs for the factor G/N which must be solvable, while N may be non-solvable.
ModuloPcgs will return a pcgs for the factor, there is no guarantee that it will be “compatible” with
any other pcgs. If this is required, the mod operator must be used on induced pcgs, see \mod (45.9.5).

GAP - Reference Manual 712

45.9.2 IsModuloPcgs

▷ IsModuloPcgs(obj) (Category)

The category of modulo pcgs. Note that each pcgs is a modulo pcgs for the trivial subgroup.

45.9.3 NumeratorOfModuloPcgs

▷ NumeratorOfModuloPcgs(pcgs) (attribute)

returns a generating set for the numerator of the modulo pcgs pcgs .

45.9.4 DenominatorOfModuloPcgs

▷ DenominatorOfModuloPcgs(pcgs) (attribute)

returns a generating set for the denominator of the modulo pcgs pcgs .
Example

gap> G := Group((1,2,3,4,5),(1,2));

Group([(1,2,3,4,5), (1,2)])

gap> P := ModuloPcgs(G, DerivedSubgroup(G));

Pcgs([(4,5)])

gap> NumeratorOfModuloPcgs(P);

[(1,2,3,4,5), (1,2)]

gap> DenominatorOfModuloPcgs(P);

[(1,3,2), (1,4,3), (2,5,4)]

gap> RelativeOrders(P);

[2]

gap> ExponentsOfPcElement(P, (1,2,3,4,5));

[0]

gap> ExponentsOfPcElement(P, (4,5));

[1]

45.9.5 \mod (for two pcgs)

▷ \mod(P, I) (method)

Modulo Pcgs can also be built from compatible induced pcgs. Let G be a group with pcgs P and
let I be an induced pcgs of a normal subgroup N of G. (Respectively: P and I are both induced with
respect to the same Pcgs.) Then we can compute a modulo pcgs of G mod N by

P mod I

Note that in this case we obtain the advantage that the values of NumeratorOfModuloPcgs

(45.9.3) and DenominatorOfModuloPcgs (45.9.4) are just P and I , respectively, and hence are
unique.

The resulting modulo pcgs will consist of a subset of P and will be “compatible” with P (or its
parent).

Example
gap> G := Group((1,2,3,4));;

gap> P := Pcgs(G);

GAP - Reference Manual 713

Pcgs([(1,2,3,4), (1,3)(2,4)])

gap> I := InducedPcgsByGenerators(P, [(1,3)(2,4)]);

Pcgs([(1,3)(2,4)])

gap> M := P mod I;

[(1,2,3,4)]

gap> NumeratorOfModuloPcgs(M);

Pcgs([(1,2,3,4), (1,3)(2,4)])

gap> DenominatorOfModuloPcgs(M);

Pcgs([(1,3)(2,4)])

45.9.6 CorrespondingGeneratorsByModuloPcgs

▷ CorrespondingGeneratorsByModuloPcgs(mpcgs, imgs) (function)

Let mpcgs be a modulo pcgs for a factor of a group G and let U be a subgroup of G generated by
imgs such that U covers the factor for the modulo pcgs. Then this function computes elements in U
corresponding to the generators of the modulo pcgs.

Note that the computation of induced generating sets is not possible for some modulo pcgs.

45.9.7 CanonicalPcgsByGeneratorsWithImages

▷ CanonicalPcgsByGeneratorsWithImages(pcgs, gens, imgs) (operation)

computes a canonical, pcgs-induced pcgs for the span of gens and simultaneously does the same
transformations on imgs , preserving thus a correspondence between gens and imgs . This operation
is used to represent homomorphisms from a pc group.

45.10 Factor Groups of Polycyclic Groups in their Own Representation

If substantial calculations are done in a factor it might be worth still to construct the factor group in its
own representation (for example by calling PcGroupWithPcgs (46.5.1) on a modulo pcgs.

The following functions are intended for working with factor groups obtained by factoring out the
tail of a pcgs. They provide a way to map elements or induced pcgs quickly in the factor (respectively
to take preimages) without the need to construct a homomorphism.

The setup is always a pcgs pcgs of G and a pcgs fpcgs of a factor group H = G/N which corre-
sponds to a head of pcgs .

No tests for validity of the input are performed.

45.10.1 ProjectedPcElement

▷ ProjectedPcElement(pcgs, fpcgs, elm) (function)

returns the image in H of an element elm of G .

45.10.2 ProjectedInducedPcgs

▷ ProjectedInducedPcgs(pcgs, fpcgs, ipcgs) (function)

GAP - Reference Manual 714

ipcgs must be an induced pcgs with respect to pcgs . This operation returns an induced pcgs with
respect to fpcgs consisting of the nontrivial images of ipcgs .

45.10.3 LiftedPcElement

▷ LiftedPcElement(pcgs, fpcgs, elm) (function)

returns a preimage in G of an element elm of H .

45.10.4 LiftedInducedPcgs

▷ LiftedInducedPcgs(pcgs, fpcgs, ipcgs, ker) (function)

ipcgs must be an induced pcgs with respect to fpcgs . This operation returns an induced pcgs
with respect to pcgs consisting of the preimages of ipcgs , appended by the elements in ker (assum-
ing there is a bijection of pcgs mod ker to fpcgs). ker might be a simple element list.

45.11 Pcgs and Normal Series

By definition, a pcgs determines a pc series of its underlying group. However, in many applications
it will be necessary that this pc series refines a normal series with certain properties; for example, a
normal series with abelian factors.

There are functions in GAP to compute a pcgs through a normal series with elementary abelian
factors, a central series or the lower p-central series. See also Section 45.13 for a more explicit
possibility.

45.11.1 IsPcgsElementaryAbelianSeries

▷ IsPcgsElementaryAbelianSeries(pcgs) (property)

returns true if the pcgs pcgs refines an elementary abelian series. IndicesEANormalSteps

(45.11.3) then gives the indices in the Pcgs, at which the subgroups of this series start.

45.11.2 PcgsElementaryAbelianSeries (for a group)

▷ PcgsElementaryAbelianSeries(G) (attribute)

▷ PcgsElementaryAbelianSeries(list) (attribute)

computes a pcgs for G that refines an elementary abelian series. IndicesEANormalSteps

(45.11.3) gives the indices in the pcgs, at which the normal subgroups of this series start. The second
variant returns a pcgs that runs through the normal subgroups in the list list .

45.11.3 IndicesEANormalSteps

▷ IndicesEANormalSteps(pcgs) (attribute)

▷ IndicesEANormalStepsBounded(pcgs, bound) (function)

GAP - Reference Manual 715

Let pcgs be a pcgs obtained as corresponding to a series of normal subgroups with elemen-
tary abelian factors (for example from calling PcgsElementaryAbelianSeries (45.11.2)) Then
IndicesEANormalSteps returns a sorted list of integers, indicating the tails of pcgs which gen-
erate these normal subgroup of G . If i is an element of this list, (gi, . . . ,gn) is a normal subgroup of
G . The list always starts with 1 and ends with n+1. (These indices form one series with elementary
abelian subfactors, not necessarily the most refined one.)

The attribute EANormalSeriesByPcgs (45.11.4) returns the actual series of subgroups.
For arbitrary pcgs not obtained as belonging to a special series such a set of indices not necessarily

exists, and IndicesEANormalSteps is not guaranteed to work in this situation.
Typically, IndicesEANormalSteps is set by PcgsElementaryAbelianSeries (45.11.2).
The variant IndicesEANormalStepsBounded will aim to ensure that no factor will be larger than

the given bound.

45.11.4 EANormalSeriesByPcgs

▷ EANormalSeriesByPcgs(pcgs) (attribute)

Let pcgs be a pcgs obtained as corresponding to a series of normal subgroups with elementary
abelian factors (for example from calling PcgsElementaryAbelianSeries (45.11.2)). This attribute
returns the actual series of normal subgroups, corresponding to IndicesEANormalSteps (45.11.3).

45.11.5 IsPcgsCentralSeries

▷ IsPcgsCentralSeries(pcgs) (property)

returns true if the pcgs pcgs refines an central elementary abelian series.
IndicesCentralNormalSteps (45.11.7) then gives the indices in the pcgs, at which the sub-
groups of this series start.

45.11.6 PcgsCentralSeries

▷ PcgsCentralSeries(G) (attribute)

computes a pcgs for G that refines a central elementary abelian series.
IndicesCentralNormalSteps (45.11.7) gives the indices in the pcgs, at which the normal
subgroups of this series start.

45.11.7 IndicesCentralNormalSteps

▷ IndicesCentralNormalSteps(pcgs) (attribute)

Let pcgs be a pcgs obtained as corresponding to a series of normal subgroups with cen-
tral elementary abelian factors (for example from calling PcgsCentralSeries (45.11.6)). Then
IndicesCentralNormalSteps returns a sorted list of integers, indicating the tails of pcgs which
generate these normal subgroups of G . If i is an element of this list, (gi, . . . ,gn) is a normal subgroup
of G . The list always starts with 1 and ends with n+ 1. (These indices form one series with central
elementary abelian subfactors, not necessarily the most refined one.)

GAP - Reference Manual 716

The attribute CentralNormalSeriesByPcgs (45.11.8) returns the actual series of subgroups.
For arbitrary pcgs not obtained as belonging to a special series such a set of indices not necessarily

exists, and IndicesCentralNormalSteps is not guaranteed to work in this situation.
Typically, IndicesCentralNormalSteps is set by PcgsCentralSeries (45.11.6).

45.11.8 CentralNormalSeriesByPcgs

▷ CentralNormalSeriesByPcgs(pcgs) (attribute)

Let pcgs be a pcgs obtained as corresponding to a series of normal subgroups with central elemen-
tary abelian factors (for example from calling PcgsCentralSeries (45.11.6)). This attribute returns
the actual series of normal subgroups, corresponding to IndicesCentralNormalSteps (45.11.7).

45.11.9 IsPcgsPCentralSeriesPGroup

▷ IsPcgsPCentralSeriesPGroup(pcgs) (property)

returns true if the pcgs pcgs refines a p-central elementary abelian series for a p-group.
IndicesPCentralNormalStepsPGroup (45.11.11) then gives the indices in the pcgs, at which the
subgroups of this series start.

45.11.10 PcgsPCentralSeriesPGroup

▷ PcgsPCentralSeriesPGroup(G) (attribute)

computes a pcgs for the p-group G that refines a p-central elementary abelian series.
IndicesPCentralNormalStepsPGroup (45.11.11) gives the indices in the pcgs, at which the normal
subgroups of this series start.

45.11.11 IndicesPCentralNormalStepsPGroup

▷ IndicesPCentralNormalStepsPGroup(pcgs) (attribute)

Let pcgs be a pcgs obtained as corresponding to a series of normal subgroups with p-central el-
ementary abelian factors (for example from calling PcgsPCentralSeriesPGroup (45.11.10)). Then
IndicesPCentralNormalStepsPGroup returns a sorted list of integers, indicating the tails of pcgs
which generate these normal subgroups of G . If i is an element of this list, (gi, . . . ,gn) is a normal
subgroup of G . The list always starts with 1 and ends with n+1. (These indices form one series with
central elementary abelian subfactors, not necessarily the most refined one.)

The attribute PCentralNormalSeriesByPcgsPGroup (45.11.12) returns the actual series of sub-
groups.

For arbitrary pcgs not obtained as belonging to a special series such a set of indices not necessarily
exists, and IndicesPCentralNormalStepsPGroup is not guaranteed to work in this situation.

Typically, IndicesPCentralNormalStepsPGroup is set by PcgsPCentralSeriesPGroup

(45.11.10).

GAP - Reference Manual 717

45.11.12 PCentralNormalSeriesByPcgsPGroup

▷ PCentralNormalSeriesByPcgsPGroup(pcgs) (attribute)

Let pcgs be a pcgs obtained as corresponding to a series of normal subgroups with
p-central elementary abelian factors (for example from calling PcgsPCentralSeriesPGroup

(45.11.10)). This attribute returns the actual series of normal subgroups, corresponding to
IndicesPCentralNormalStepsPGroup (45.11.11).

45.11.13 IsPcgsChiefSeries

▷ IsPcgsChiefSeries(pcgs) (property)

returns true if the pcgs pcgs refines a chief series. IndicesChiefNormalSteps (45.11.15) then
gives the indices in the pcgs, at which the subgroups of this series start.

45.11.14 PcgsChiefSeries

▷ PcgsChiefSeries(G) (attribute)

computes a pcgs for G that refines a chief series. IndicesChiefNormalSteps (45.11.15) gives
the indices in the pcgs, at which the normal subgroups of this series start.

45.11.15 IndicesChiefNormalSteps

▷ IndicesChiefNormalSteps(pcgs) (attribute)

Let pcgs be a pcgs obtained as corresponding to a chief series for example from calling
PcgsChiefSeries (45.11.14)). Then IndicesChiefNormalSteps returns a sorted list of integers,
indicating the tails of pcgs which generate these normal subgroups of G . If i is an element of this
list, (gi, . . . ,gn) is a normal subgroup of G . The list always starts with 1 and ends with n+1. (These
indices form one series with elementary abelian subfactors, not necessarily the most refined one.)

The attribute ChiefNormalSeriesByPcgs (45.11.16) returns the actual series of subgroups.
For arbitrary pcgs not obtained as belonging to a special series such a set of indices not necessarily

exists, and IndicesChiefNormalSteps is not guaranteed to work in this situation.
Typically, IndicesChiefNormalSteps is set by PcgsChiefSeries (45.11.14).

45.11.16 ChiefNormalSeriesByPcgs

▷ ChiefNormalSeriesByPcgs(pcgs) (attribute)

Let pcgs be a pcgs obtained as corresponding to a chief series (for example from calling
PcgsChiefSeries (45.11.14)). This attribute returns the actual series of normal subgroups, corre-
sponding to IndicesChiefNormalSteps (45.11.15).

Example
gap> g:=Group((1,2,3,4),(1,2));;

gap> p:=PcgsElementaryAbelianSeries(g);

Pcgs([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)])

gap> IndicesEANormalSteps(p);

GAP - Reference Manual 718

[1, 2, 3, 5]

gap> g:=Group((1,2,3,4),(1,5)(2,6)(3,7)(4,8));;

gap> p:=PcgsCentralSeries(g);

Pcgs([(1,5)(2,6)(3,7)(4,8), (5,6,7,8), (5,7)(6,8),

(1,4,3,2)(5,6,7,8), (1,3)(2,4)(5,7)(6,8)])

gap> IndicesCentralNormalSteps(p);

[1, 2, 4, 5, 6]

gap> q:=PcgsPCentralSeriesPGroup(g);

Pcgs([(1,5)(2,6)(3,7)(4,8), (5,6,7,8), (5,7)(6,8),

(1,4,3,2)(5,6,7,8), (1,3)(2,4)(5,7)(6,8)])

gap> IndicesPCentralNormalStepsPGroup(q);

[1, 3, 5, 6]

45.11.17 IndicesNormalSteps

▷ IndicesNormalSteps(pcgs) (attribute)

returns the indices of all steps in the pc series, which are normal in the group defined by the pcgs.
(In general, this function yields a slower performance than the more specialized index functions

for elementary abelian series etc.)

45.11.18 NormalSeriesByPcgs

▷ NormalSeriesByPcgs(pcgs) (attribute)

returns the subgroups the pc series, which are normal in the group defined by the pcgs.
(In general, this function yields a slower performance than the more specialized index functions

for elementary abelian series etc.)

45.12 Sum and Intersection of Pcgs

45.12.1 SumFactorizationFunctionPcgs

▷ SumFactorizationFunctionPcgs(parentpcgs, n, u, kerpcgs) (operation)

computes the sum and intersection of the lists n and u whose elements form modulo pcgs induced
by parentpcgs for two subgroups modulo a kernel given by kerpcgs . If kerpcgs is a tail if the
parent-pcgs it is sufficient to give the starting depth, this can be more efficient than to construct
an explicit pcgs. The factor group modulo kerpcgs generated by n must be elementary abelian and
normal under u .

The function returns a record with components

sum elements that form a modulo pcgs for the span of both subgroups.

intersection

elements that form a modulo pcgs for the intersection of both subgroups.

GAP - Reference Manual 719

factorization

a function that returns for an element x in the span of sum a record with components u and n

that give its decomposition.

The record components sum and intersection are not pcgs but only lists of pc elements (to
avoid unnecessary creation of induced pcgs).

45.13 Special Pcgs

In short, a special pcgs is a pcgs which has particularly nice properties, for example it always refines
an elementary abelian series, for p-groups it even refines a central series. These nice properties permit
particularly efficient algorithms.

Let G be a finite polycyclic group. A special pcgs of G is a pcgs which is closely related to a Hall
system and the maximal subgroups of G . These pcgs have been introduced by C. R. Leedham-Green
who also gave an algorithm to compute them. Improvements to this algorithm are due to Bettina Eick.
For a more detailed account of their definition the reader is referred to [Eic97]

To introduce the definition of special pcgs we first need to define the LG-series and head comple-
ments of a finite polycyclic group G . Let G = G1 > G2 > .. .Gm > Gm+1 = {1} be the lower nilpotent
series of G; that is, Gi is the smallest normal subgroup of Gi−1 with nilpotent factor. To obtain the
LG-series of G we need to refine this series. Thus consider a factor Fi := Gi/Gi+1. Since Fi is finite
nilpotent, it is a direct product of its Sylow subgroups Fi = Pi,1 · · ·Pi,ri . For each Sylow p j-subgroup
Pi, j we can consider its lower p j-central series. To obtain a characteristic central series with elemen-
tary abelian factors of Fi we loop over its Sylow subgroups. Each time we consider Pi, j in this process
we take the next step of its lower p j-central series into the series of Fi. If there is no next step, then we
just skip the consideration of Pi, j. Note that the second term of the lower p-central series of a p-group
is in fact its Frattini subgroup. Thus the Frattini subgroup of Fi is contained in the computed series of
this group. We denote the Frattini subgroup of Fi = Gi/Gi+1 by G∗

i /Gi+1.
The factors Gi/G∗

i are called the heads of G, while the (possibly trivial) factors G∗
i /Gi+1 are the

tails of G. A head complement of G is a subgroup U of G such that U/G∗
i is a complement to the head

Gi/G∗
i in G/G∗

i for some i.
Now we are able to define a special pcgs of G . It is a pcgs of G with three additional properties.

First, the pc series determined by the pcgs refines the LG-series of G . Second, a special pcgs exhibits
a Hall system of the group G ; that is, for each set of primes π the elements of the pcgs with relative
order in π form a pcgs of a Hall π-subgroup in a Hall system of G . Third, a special pcgs exhibits a
head complement for each head of G .

To record information about the LG-series with the special pcgs we define the LGWeights of the
special pcgs. These weights are a list which contains a weight w for each elements g of the special
pcgs. Such a weight w represents the smallest subgroup of the LG-series containing g.

Since the LG-series is defined in terms of the lower nilpotent series, Sylow subgroups of the
factors and lower p-central series of the Sylow subgroup, the weight w is a triple. More precisely, g
is contained in the w[1]th term U of the lower nilpotent series of G , but not in the next smaller one V .
Then w[3] is a prime such that gV is contained in the Sylow w[3]-subgroup P/V of U/V . Moreover,
gV is contained in the w[2]th term of the lower p-central series of P/V .

There are two more attributes of a special pcgs containing information about the LG-series: the
list LGLayers and the list LGFirst. The list of layers corresponds to the elements of the special pcgs
and denotes the layer of the LG-series in which an element lies. The list LGFirst corresponds to the
LG-series and gives the number of the first element in the special pcgs of the corresponding subgroup.

GAP - Reference Manual 720

45.13.1 IsSpecialPcgs

▷ IsSpecialPcgs(obj) (property)

tests whether obj is a special pcgs.

45.13.2 SpecialPcgs

▷ SpecialPcgs(pcgs) (attribute)

▷ SpecialPcgs(G) (attribute)

computes a special pcgs for the group defined by pcgs or for G .

45.13.3 LGWeights

▷ LGWeights(pcgs) (attribute)

returns the LGWeights of the special pcgs pcgs .

45.13.4 LGLayers

▷ LGLayers(pcgs) (attribute)

returns the layers of the special pcgs pcgs .

45.13.5 LGFirst

▷ LGFirst(pcgs) (attribute)

returns the first indices for each layer of the special pcgs pcgs .

45.13.6 LGLength

▷ LGLength(G) (attribute)

returns the length of the LG-series of the group G , if G is solvable, and fail otherwise.
Example

gap> G := SmallGroup(96, 220);

<pc group of size 96 with 6 generators>

gap> spec := SpecialPcgs(G);

Pcgs([f1, f2, f3, f4, f5, f6])

gap> LGWeights(spec);

[[1, 1, 2], [1, 1, 2], [1, 1, 2], [1, 1, 2], [1, 1, 3],

[1, 2, 2]]

gap> LGLayers(spec);

[1, 1, 1, 1, 2, 3]

gap> LGFirst(spec);

[1, 5, 6, 7]

gap> LGLength(G);

3

GAP - Reference Manual 721

gap> p := SpecialPcgs(Pcgs(SmallGroup(96, 120)));

Pcgs([f1, f2, f3, f4, f5, f6])

gap> LGWeights(p);

[[1, 1, 2], [1, 1, 2], [1, 1, 2], [1, 2, 2], [1, 3, 2],

[2, 1, 3]]

Thus the first group, SmallGroup(96, 220), has a lower nilpotent series of length 1; that is, the
group is nilpotent. It is a direct product of its Sylow subgroups. Moreover the Sylow 2-subgroup is
generated by the elements f1, f2, f3, f4, f6, and the Sylow 3-subgroup is generated by f5. The
lower 2-central series of the Sylow 2-subgroup has length 2 and the second subgroup in this series is
generated by f6.

The second group, SmallGroup(96, 120), has a lower nilpotent series of length 2 and hence is
not nilpotent. The second subgroup in this series is just the Sylow 3-subgroup and it is generated
by f6. The subgroup generated by f1, . . ., f5 is a Sylow 2-subgroup of the group and also a head
complement to the second head of the group. Its lower 2-central series has length 2.

In this example the FamilyPcgs (46.1.1) value of the groups used was a special pcgs, but
this is not necessarily the case. For performance reasons it can be worth to enforce this,
see IsomorphismSpecialPcGroup (46.5.3).

45.13.7 IsInducedPcgsWrtSpecialPcgs

▷ IsInducedPcgsWrtSpecialPcgs(pcgs) (property)

tests whether pcgs is induced with respect to a special pcgs.

45.13.8 InducedPcgsWrtSpecialPcgs

▷ InducedPcgsWrtSpecialPcgs(G) (attribute)

computes an induced pcgs with respect to the special pcgs of the parent of G .
InducedPcgsWrtSpecialPcgs will return a pcgs induced by a special pcgs (which might differ

from the one you had in mind). If you need an induced pcgs compatible with a given special pcgs use
InducedPcgs (45.7.4) for this special pcgs.

45.14 Action on Subfactors Defined by a Pcgs

When working with a polycyclic group, one often needs to compute matrix operations of the group on
a factor of the group. For this purpose there are the functions described in 45.14.1 to 45.14.3.

In certain situations, for example within the computation of conjugacy classes of finite soluble
groups as described in [MN89], affine actions of groups are required. For this purpose we introduce
the functions AffineAction (45.14.4) and AffineActionLayer (45.14.5).

45.14.1 VectorSpaceByPcgsOfElementaryAbelianGroup

▷ VectorSpaceByPcgsOfElementaryAbelianGroup(mpcgs, fld) (function)

returns the vector space over fld corresponding to the modulo pcgs mpcgs . Note that mpcgs has
to define an elementary abelian p-group where p is the characteristic of fld .

GAP - Reference Manual 722

45.14.2 LinearAction

▷ LinearAction(gens, basisvectors, linear) (operation)

▷ LinearOperation(gens, basisvectors, linear) (operation)

returns a list of matrices, one for each element of gens , which corresponds to the matrix action of
the elements in gens on the basis basisvectors via linear .

45.14.3 LinearActionLayer

▷ LinearActionLayer(G, gens, pcgs) (function)

▷ LinearOperationLayer(G, gens, pcgs) (function)

returns a list of matrices, one for each element of gens , which corresponds to the matrix action of
G on the vector space corresponding to the modulo pcgs pcgs .

45.14.4 AffineAction

▷ AffineAction(gens, basisvectors, linear, transl) (operation)

return a list of matrices, one for each element of gens , which corresponds to the affine action of
the elements in gens on the basis basisvectors via linear with translation transl .

45.14.5 AffineActionLayer

▷ AffineActionLayer(G, gens, pcgs, transl) (function)

returns a list of matrices, one for each element of gens , which corresponds to the affine action of
G on the vector space corresponding to the modulo pcgs pcgs with translation transl .

Example
gap> G := SmallGroup(96, 51);

<pc group of size 96 with 6 generators>

gap> spec := SpecialPcgs(G);

Pcgs([f1, f2, f3, f4, f5, f6])

gap> LGWeights(spec);

[[1, 1, 2], [1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 2],

[1, 3, 2]]

gap> mpcgs := InducedPcgsByPcSequence(spec, spec{[4,5,6]});

Pcgs([f4, f5, f6])

gap> npcgs := InducedPcgsByPcSequence(spec, spec{[6]});

Pcgs([f6])

gap> modu := mpcgs mod npcgs;

[f4, f5]

gap> mat:=LinearActionLayer(G, spec{[1,2,3]}, modu);

[<an immutable 2x2 matrix over GF2>,

<an immutable 2x2 matrix over GF2>,

<an immutable 2x2 matrix over GF2>]

gap> Print(mat, "\n");

[[[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]],

GAP - Reference Manual 723

[[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]],

[[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]]]

45.15 Orbit Stabilizer Methods for Polycyclic Groups

If a pcgs pcgs is known for a group G , then orbits and stabilizers can be computed by a special method
which is particularly efficient. Note that within this function only the elements in pcgs and the relative
orders of pcgs are needed. Hence this function works effectively even if the elementary operations
for pcgs are slow.

45.15.1 StabilizerPcgs

▷ StabilizerPcgs(pcgs, pnt[, acts][, act]) (function)

computes the stabilizer in the group generated by pcgs of the point pnt . If given, acts are
elements by which pcgs acts, act is the acting function. This function returns a pcgs for the stabilizer
which is induced by the ParentPcgs of pcgs , that is it is compatible with pcgs .

45.15.2 Pcgs_OrbitStabilizer

▷ Pcgs_OrbitStabilizer(pcgs, domain, pnt, oprs, opr) (function)

runs a solvable group orbit-stabilizer algorithm on pnt with pcgs acting via the images oprs and
the operation function opr . The domain domain can be used to speed up search, if it is not known,
false can be given instead. The function returns a record with components orbit, stabpcgs and
lengths, the latter indicating the lengths of the orbit whenever it got extended. This can be used to
recompute transversal elements. This function should be used only inside algorithms when speed is
essential.

45.16 Operations which have Special Methods for Groups with Pcgs

For the following operations there are special methods for groups with pcgs installed:
IsNilpotentGroup (39.15.3), IsSupersolvableGroup (39.15.8), Size (30.4.6),

CompositionSeries (39.17.5), ConjugacyClasses (39.10.2), Centralizer (35.4.4),
FrattiniSubgroup (39.12.6), PrefrattiniSubgroup (39.12.7), MaximalSubgroups (39.19.8) and
related operations, HallSystem (39.13.6) and related operations, MinimalGeneratingSet (39.22.3),
Centre (35.4.5), Intersection (30.5.2), AutomorphismGroup (40.7.1), IrreducibleModules

(71.15.1).

45.17 Conjugacy Classes in Solvable Groups

There are a variety of algorithms to compute conjugacy classes and centralizers in solvable groups via
epimorphic images ([FN79], [MN89], [The93]). Usually these are only invoked as methods, but it is
possible to access the algorithm directly.

GAP - Reference Manual 724

45.17.1 ClassesSolvableGroup

▷ ClassesSolvableGroup(G, mode[, opt]) (function)

computes conjugacy classes and centralizers in solvable groups. G is the acting group. mode

indicates the type of the calculation:
0 Conjugacy classes
4 Conjugacy test for the two elements in opt.candidates

In mode 0 the function returns a list of records containing components representative and
centralizer . In mode 4 it returns a conjugating element.

The optional record opt may contain the following components that will affect the algorithm’s
behaviour:

pcgs

is a pcgs that will be used for the calculation. The attribute EANormalSeriesByPcgs (45.11.4)
must return an appropriate series of normal subgroups with elementary abelian factors among
them. The algorithm will step down this series. In the case of the calculation of rational classes,
it must be a pcgs refining a central series.

candidates

is a list of elements for which canonical representatives are to be computed or for which a
conjugacy test is performed. Both elements must lie in G , but this is not tested. In mode 4
these elements must be given. In mode 0 a list of classes corresponding to candidates is
returned (which may contain duplicates). The representatives chosen are canonical with
respect to pcgs. The records returned also contain components operator such that candidate
^ operator = representative.

consider

is a function consider(fhome, rep, cenp, K, L). Here fhome is a home pcgs for the
factor group F in which the calculation currently takes place, rep is an element of the factor
and cenp is a pcgs for the centralizer of rep modulo K. In mode 0, when lifting from F /K to F /L
(note: for efficiency reasons, F can be different from G or L might be not trivial) this function
is called before performing the actual lifting and only those representatives for which it returns
true are passed to the next level. This permits for example the calculation of only those classes
with small centralizers or classes of restricted orders.

45.17.2 CentralizerSizeLimitConsiderFunction

▷ CentralizerSizeLimitConsiderFunction(sz) (function)

returns a function (with arguments fhome, rep, cen, K, L) that can be used in
ClassesSolvableGroup (45.17.1) as the consider component of the options record. It will restrict
the lifting to those classes, for which the size of the centralizer (in the factor) is at most sz .

See also SubgroupsSolvableGroup (39.21.3).

Chapter 46

Pc Groups

Pc groups are polycyclic groups that use the polycyclic presentation for element arithmetic. This pre-
sentation gives them a “natural” pcgs, the FamilyPcgs (46.1.1) with respect to which pcgs operations
as described in chapter 45 are particularly efficient.

Let G be a polycyclic group with pcgs P = (g1, . . . ,gn) and corresponding relative orders
(r1, . . . ,rn). Recall that the ri are positive integers or infinity and let I be the set of indices i with
ri a positive integer. Then G has a finite presentation on the generators g1, . . . ,gn with relations of the
following form.

gri
i = ga(i,i,i+1)

i+1 · · ·ga(i,i,n)
n

for 1 ≤ i ≤ n and i ∈ I
g−1

i g jgi = ga(i, j,i+1)
i+1 · · ·ga(i, j,n)

n

for 1 ≤ i < j ≤ n

For infinite groups we need additionally

g−1
i g−1

j gi = gb(i, j,i+1)
i+1 · · ·gb(i, j,n)

n

for 1 ≤ i < j ≤ n and j ̸∈ I
gig jg−1

i = gc(i, j,i+1)
i+1 · · ·gc(i, j,n)

n

for 1 ≤ i < j ≤ n and i ̸∈ I
gig−1

j g−1
i = gd(i, j,i+1)

i+1 · · ·gd(i, j,n)
n

for 1 ≤ i < j ≤ n and i, j, ̸∈ I

Here the right hand sides are assumed to be words in normal form; that is, for k ∈ I we have for
all exponents 0 ≤ a(i, j,k),b(i, j,k),c(i, j,k),d(i, j,k)< rk.

A finite presentation of this type is called a power-conjugate presentation and a pc group is a
polycyclic group defined by a power-conjugate presentation. Instead of conjugates we could just as
well work with commutators and then the presentation would be called a power-commutator presen-
tation. Both types of presentation are abbreviated as pc presentation. Note that a pc presentation is a
rewriting system.

Clearly, whenever a group G with pcgs P is given, then we can write down the corresponding
pc presentation. On the other hand, one may just write down a presentation on n abstract generators
g1, . . . ,gn with relations of the above form and define a group H by this. Then the subgroups Ci =
⟨gi, . . . ,gn⟩ of H form a subnormal series whose factors are cyclic or trivial. In the case that all factors
are non-trivial, we say that the pc presentation of H is confluent. Note that GAP 4 can only work
correctly with pc groups defined by a confluent pc presentation.

725

GAP - Reference Manual 726

At the current state of implementations the GAP library contains methods to compute with finite
polycyclic groups, while the GAP package Polycyclic by Bettina Eick and Werner Nickel allows also
computations with infinite polycyclic groups which are given by a pc-presentation.

Algorithms for pc groups use the methods for polycyclic groups described in chapter 45.

46.1 The Family Pcgs

Clearly, the generators of a power-conjugate presentation of a pc group G form a pcgs of the pc group.
This pcgs is called the family pcgs.

46.1.1 FamilyPcgs

▷ FamilyPcgs(grp) (attribute)

returns, for a pc group grp , a “natural” pcgs of some group G which contains grp and is maximal
with this property.

The pcgs operations described in Chapter 45 are particularly efficient with respect to this pcgs.

46.1.2 IsFamilyPcgs

▷ IsFamilyPcgs(pcgs) (property)

specifies whether the pcgs is a FamilyPcgs (46.1.1) of a pc group.

46.1.3 InducedPcgsWrtFamilyPcgs

▷ InducedPcgsWrtFamilyPcgs(grp) (attribute)

returns the pcgs which induced with respect to a family pcgs (see IsParentPcgsFamilyPcgs

(46.1.4) for further details).

46.1.4 IsParentPcgsFamilyPcgs

▷ IsParentPcgsFamilyPcgs(pcgs) (property)

This property indicates that the pcgs pcgs is induced with respect to a family pcgs.
This property is needed to distinguish between different independent polycyclic generating se-

quences which a pc group may have, since the elementary operations for a non-family pcgs may not
be as efficient as the elementary operations for the family pcgs.

This can have a significant influence on the performance of algorithms for polycyclic
groups. Many algorithms require a pcgs that corresponds to an elementary abelian series
(see PcgsElementaryAbelianSeries (45.11.2)) or even a special pcgs (see 45.13). If the family
pcgs has the required properties, it will be used for these purposes, if not GAP has to work with re-
spect to a new pcgs which is not the family pcgs and thus takes longer for elementary calculations like
ExponentsOfPcElement (45.5.3).

GAP - Reference Manual 727

Therefore, if the family pcgs chosen for arithmetic is not of importance it might be worth to change
to another, nicer, pcgs to speed up calculations. This can be achieved, for example, by using the Range
(32.3.7) value of the isomorphism obtained by IsomorphismSpecialPcGroup (46.5.3).

46.2 Elements of Pc Groups

46.2.1 Comparison of elements of pc groups

▷ \=(pcword1, pcword2) (method)

▷ \<(pcword1, pcword2) (method)

The elements of a pc group G are always represented as words in normal form with respect to the
family pcgs of G. Thus it is straightforward to compare elements of a pc group, since this boils down
to a mere comparison of exponent vectors with respect to the family pcgs. In particular, the word
problem is efficiently solvable in pc groups.

46.2.2 Arithmetic operations for elements of pc groups

▷ *(pcword1, pcword2) (method)

▷ Inverse(pcword) (attribute)

However, multiplication and inversion of elements in pc groups is not as straightforward as in
arbitrary finitely presented groups where a simple concatenation or reversion of the corresponding
words is sufficient (but one cannot solve the word problem).

To multiply two elements in a pc group, we first concatenate the corresponding words and then
use an algorithm called collection to transform the new word into a word in normal form.

Example
gap> g := FamilyPcgs(SmallGroup(24, 12));

Pcgs([f1, f2, f3, f4])

gap> g[4] * g[1];

f1*f3

gap> (g[2] * g[3])^-1;

f2^2*f3*f4

46.3 Pc Groups versus Fp Groups

In theory pc groups are finitely presented groups. In practice the arithmetic in pc groups is different
from the arithmetic in fp groups. Thus for technical reasons the pc groups in GAP do not form a
subcategory of the fp groups and hence the methods for fp groups cannot be applied to pc groups in
general.

46.3.1 IsPcGroup

▷ IsPcGroup(G) (Category)

tests whether G is a pc group.

GAP - Reference Manual 728

Example
gap> G := SmallGroup(24, 12);

<pc group of size 24 with 4 generators>

gap> IsPcGroup(G);

true

gap> IsFpGroup(G);

false

46.3.2 IsomorphismFpGroupByPcgs

▷ IsomorphismFpGroupByPcgs(pcgs, str) (function)

It is possible to convert a pc group to a fp group in GAP. The function
IsomorphismFpGroupByPcgs computes the power-commutator presentation defined by pcgs .
The string str can be used to give a name to the generators of the fp group.

Example
gap> p := FamilyPcgs(SmallGroup(24, 12));

Pcgs([f1, f2, f3, f4])

gap> iso := IsomorphismFpGroupByPcgs(p, "g");

[f1, f2, f3, f4] -> [g1, g2, g3, g4]

gap> F := Image(iso);

<fp group of size 24 on the generators [g1, g2, g3, g4]>

gap> RelatorsOfFpGroup(F);

[g1^2, g2^-1*g1^-1*g2*g1*g2^-1, g3^-1*g1^-1*g3*g1*g4^-1*g3^-1,

g4^-1*g1^-1*g4*g1*g4^-1*g3^-1, g2^3, g3^-1*g2^-1*g3*g2*g4^-1*g3^-1,

g4^-1*g2^-1*g4*g2*g3^-1, g3^2, g4^-1*g3^-1*g4*g3, g4^2]

46.4 Constructing Pc Groups

If necessary, you can supply GAP with a pc presentation by hand. (Although this is the most tedious
way to input a pc group.) Note that the pc presentation has to be confluent in order to work with the
pc group in GAP.

(If you have already a suitable pcgs in another representation, use PcGroupWithPcgs (46.5.1), see
below.)

One way is to define a finitely presented group with a pc presentation in GAP and then convert this
presentation into a pc group, see PcGroupFpGroup (46.4.1). Note that this does not work for arbitrary
presentations of polycyclic groups, see Chapter 47.14 for further information.

Another way is to create and manipulate a collector of a pc group by hand and to use it to define a
pc group. This is the most technical way and has little error checking and thus is intended mostly for
experts who want to create a pc presentation in a particular way. GAP provides different collectors
for different collecting strategies; at the moment, there are two collectors to choose from: the single
collector for finite pc groups (see SingleCollector (46.4.2)) and the combinatorial collector for
finite p-groups. See [Sim94] for further information on collecting strategies.

A collector is initialized with an underlying free group and the relative orders of the pc series.
Then one adds the right hand sides of the power and the commutator or conjugate relations one by
one. Note that omitted relators are assumed to be trivial.

GAP - Reference Manual 729

For performance reasons it is beneficial to enforce a “syllable” representation in the free group
(see 37.6).

Note that in the end, the collector has to be converted to a group, see GroupByRws (46.4.6).
With these methods a pc group with arbitrary defining pcgs can be constructed. However, for

almost all applications within GAP we need to have a pc group whose defining pcgs is a prime order
pcgs, see IsomorphismRefinedPcGroup (46.4.8) and RefinedPcGroup (46.4.9).

46.4.1 PcGroupFpGroup

▷ PcGroupFpGroup(G) (function)

creates a pc group P from an fp group (see Chapter 47) G whose presentation is polycyclic. The
resulting group P has generators corresponding to the generators of G . They are printed in the same
way as generators of G , but they lie in a different family. If the pc presentation of G is not confluent,
an error message occurs.

Example
gap> F := FreeGroup(IsSyllableWordsFamily,"a","b","c","d");;

gap> a := F.1;; b := F.2;; c := F.3;; d := F.4;;

gap> rels := [a^2, b^3, c^2, d^2, Comm(b,a)/b, Comm(c,a)/d, Comm(d,a),

> Comm(c,b)/(c*d), Comm(d,b)/c, Comm(d,c)];

[a^2, b^3, c^2, d^2, b^-1*a^-1*b*a*b^-1, c^-1*a^-1*c*a*d^-1,

d^-1*a^-1*d*a, c^-1*b^-1*c*b*d^-1*c^-1, d^-1*b^-1*d*b*c^-1,

d^-1*c^-1*d*c]

gap> G := F / rels;

<fp group on the generators [a, b, c, d]>

gap> H := PcGroupFpGroup(G);

<pc group of size 24 with 4 generators>

46.4.2 SingleCollector

▷ SingleCollector(fgrp, relorders) (operation)

▷ CombinatorialCollector(fgrp, relorders) (operation)

initializes a single collector or a combinatorial collector, where fgrp must be a free group and
relorders must be a list of the relative orders of the pc series.

A combinatorial collector can only be set up for a finite p-group. Here, the relative orders
relorders must all be equal and a prime.

46.4.3 SetConjugate

▷ SetConjugate(coll, j, i, w) (operation)

Let f1, . . . , fn be the generators of the underlying free group of the collector coll .
For i < j , SetConjugate sets the conjugate f fi

j to equal w , which is assumed to be a canonical
word in fi+1, . . . , fn. No check of the arguments is performed.

GAP - Reference Manual 730

46.4.4 SetCommutator

▷ SetCommutator(coll, j, i, w) (operation)

Let f1, . . . , fn be the generators of the underlying free group of the collector coll .
For i < j , SetCommutator sets the commutator of f j and fi to equal w , which is assumed to be

a canonical word in fi+1, . . . , fn. No check of the arguments is performed.

46.4.5 SetPower

▷ SetPower(coll, i, w) (operation)

Let f1, . . . , fn be the generators of the underlying free group of the collector coll , and let ri be the
corresponding relative orders.

SetPower sets the power f ri
i to equal w , which is assumed to be a canonical word in fi+1, . . . , fn.

No check of the arguments is performed.

46.4.6 GroupByRws

▷ GroupByRws(coll) (operation)

▷ GroupByRwsNC(coll) (operation)

creates a group from a rewriting system. In the first version it is checked whether the rewriting
system is confluent, in the second version this is assumed to be true.

46.4.7 IsConfluent (for pc groups)

▷ IsConfluent(G) (property)

checks whether the pc group G has been built from a collector with a confluent power-commutator
presentation.

Example
gap> F := FreeGroup(IsSyllableWordsFamily, 2);;

gap> coll1 := SingleCollector(F, [2,3]);

<<single collector, 8 Bits>>

gap> SetConjugate(coll1, 2, 1, F.2);

gap> SetPower(coll1, 1, F.2);

gap> G1 := GroupByRws(coll1);

<pc group of size 6 with 2 generators>

gap> IsConfluent(G1);

true

gap> IsAbelian(G1);

true

gap> coll2 := SingleCollector(F, [2,3]);

<<single collector, 8 Bits>>

gap> SetConjugate(coll2, 2, 1, F.2^2);

gap> G2 := GroupByRws(coll2);

<pc group of size 6 with 2 generators>

gap> IsAbelian(G2);

false

GAP - Reference Manual 731

46.4.8 IsomorphismRefinedPcGroup

▷ IsomorphismRefinedPcGroup(G) (attribute)

returns an isomorphism from G onto an isomorphic pc group whose family pcgs is a prime order
pcgs.

46.4.9 RefinedPcGroup

▷ RefinedPcGroup(G) (attribute)

returns the range of the IsomorphismRefinedPcGroup (46.4.8) value of G .

46.5 Computing Pc Groups

Another possibility to get a pc group in GAP is to convert a polycyclic group given by some other rep-
resentation to a pc group. For finitely presented groups there are various quotient methods available.
For all other types of groups one can use the following functions.

46.5.1 PcGroupWithPcgs

▷ PcGroupWithPcgs(mpcgs) (attribute)

creates a new pc group G whose family pcgs is isomorphic to the (modulo) pcgs mpcgs .
Example

gap> G := Group((1,2,3), (3,4,1));;

gap> PcGroupWithPcgs(Pcgs(G));

<pc group of size 12 with 3 generators>

If a pcgs is only given by a list of pc elements, PcgsByPcSequence (45.3.1) can be used:
Example

gap> G:=Group((1,2,3,4),(1,2));;

gap> p:=PcgsByPcSequence(FamilyObj(One(G)),

> [(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)]);

Pcgs([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)])

gap> PcGroupWithPcgs(p);

<pc group of size 24 with 4 generators>

gap> G := SymmetricGroup(5);

Sym([1 .. 5])

gap> H := Subgroup(G, [(1,2,3,4,5), (3,4,5)]);

Group([(1,2,3,4,5), (3,4,5)])

gap> modu := ModuloPcgs(G, H);

Pcgs([(4,5)])

gap> PcGroupWithPcgs(modu);

<pc group of size 2 with 1 generator>

GAP - Reference Manual 732

46.5.2 IsomorphismPcGroup

▷ IsomorphismPcGroup(G) (attribute)

returns an isomorphism from G onto an isomorphic pc group. The series chosen for this pc rep-
resentation depends on the method chosen. G must be a polycyclic group of any kind, for example a
solvable permutation group.

Example
gap> G := Group((1,2,3), (3,4,1));;

gap> iso := IsomorphismPcGroup(G);

Pcgs([(2,4,3), (1,2)(3,4), (1,3)(2,4)]) -> [f1, f2, f3]

gap> H := Image(iso);

Group([f1, f2, f3])

46.5.3 IsomorphismSpecialPcGroup

▷ IsomorphismSpecialPcGroup(G) (attribute)

returns an isomorphism from G onto an isomorphic pc group whose family pcgs is a special pcgs.
(This can be beneficial to the runtime of calculations.) G may be a polycyclic group of any kind, for
example a solvable permutation group.

46.6 Saving a Pc Group

As printing a polycyclic group does not display the presentation, one cannot simply print a pc group
to a file to save it. For this purpose we need the following function.

46.6.1 GapInputPcGroup

▷ GapInputPcGroup(grp, string) (function)

Example
gap> G := SmallGroup(24, 12);

<pc group of size 24 with 4 generators>

gap> PrintTo("save", GapInputPcGroup(G, "H"));

gap> Read("save");

#I A group of order 24 has been defined.

#I It is called H

gap> H = G;

false

gap> IdSmallGroup(H) = IdSmallGroup(G);

true

gap> RemoveFile("save");;

46.7 Operations for Pc Groups

All the operations described in Chapters 39 and 45 apply to a pc group. Nearly all methods for pc
groups are methods for groups with pcgs as described in Chapter 45. The only method with is special

GAP - Reference Manual 733

for pc groups is a method to compute intersections of subgroups, since here a pcgs of a parent group
is needed and this can only by guaranteed within pc groups. Section 39.25 describes operations and
methods for arbitrary finite groups.

46.8 2-Cohomology and Extensions

One of the most interesting applications of pc groups is the possibility to compute with extensions
of these groups by elementary abelian groups; that is, H is an extension of G by M, if there exists a
normal subgroup N in H which is isomorphic to M such that H/N is isomorphic to G.

Pc groups are particularly suited for such applications, since the 2-cohomology can be computed
efficiently for such groups and, moreover, extensions of pc groups by elementary abelian groups can
be represented as pc groups again.

To define the elementary abelian group M together with an action of G on M we consider M as a
MeatAxe module for G over a finite field (section IrreducibleModules (71.15.1) describes functions
that can be used to obtain certain modules). For further information on meataxe modules see Chapter
69. Note that the matrices defining the module must correspond to the pcgs of the group G .

There exists an action of the subgroup of compatible pairs in Aut(G)×Aut(M) which acts on the
second cohomology group, see CompatiblePairs (46.8.8). 2-cocycles which lie in the same orbit
under this action define isomorphic extensions of G. However, there may be isomorphic extensions of
G corresponding to cocycles in different orbits.

See also the GAP package GrpConst by Hans Ulrich Besche and Bettina Eick that contains
methods to construct up to isomorphism the groups of a given order.

Finally we note that for the computation of split extensions it is not necessary that M must corre-
spond to an elementary abelian group. Here it is possible to construct split extensions of arbitrary pc
groups, see SplitExtension (46.8.6).

46.8.1 TwoCoboundaries

▷ TwoCoboundaries(G, M) (operation)

returns the group of 2-coboundaries of a pc group G by the G-module M . The generators of M
must correspond to the Pcgs (45.2.1) value of G . The group of coboundaries is given as vector space
over the field underlying M .

46.8.2 TwoCocycles

▷ TwoCocycles(G, M) (operation)

returns the 2-cocycles of a pc group G by the G-module M . The generators of M must correspond
to the Pcgs (45.2.1) value of G . The operation returns a list of vectors over the field underlying M and
the additive group generated by these vectors is the group of 2-cocyles.

46.8.3 TwoCohomology

▷ TwoCohomology(G, M) (operation)

GAP - Reference Manual 734

This operation computes the second cohomology group for the special case of a Pc Group. It
returns a record defining the second cohomology group as factor space of the space of cocycles by the
space of coboundaries. G must be a pc group and the generators of M must correspond to the pcgs of
G .

Example
gap> G := SmallGroup(4, 2);

<pc group of size 4 with 2 generators>

gap> mats := List(Pcgs(G), x -> IdentityMat(1, GF(2)));

[[<a GF2 vector of length 1>], [<a GF2 vector of length 1>]]

gap> M := GModuleByMats(mats, GF(2));

rec(IsOverFiniteField := true, dimension := 1, field := GF(2),

generators := [<an immutable 1x1 matrix over GF2>,

<an immutable 1x1 matrix over GF2>], isMTXModule := true)

gap> TwoCoboundaries(G, M);

[]

gap> TwoCocycles(G, M);

[[Z(2)^0, 0*Z(2), 0*Z(2)], [0*Z(2), Z(2)^0, 0*Z(2)],

[0*Z(2), 0*Z(2), Z(2)^0]]

gap> cc := TwoCohomology(G, M);;

gap> cc.cohom;

<linear mapping by matrix, <vector space of dimension 3 over GF(

2)> -> (GF(2)^3)>

46.8.4 Extensions

▷ Extensions(G, M) (operation)

returns all extensions of G by the G-module M up to equivalence as pc groups.

46.8.5 Extension

▷ Extension(G, M, c) (operation)

▷ ExtensionNC(G, M, c) (operation)

returns the extension of G by the G-module M via the cocycle c as pc groups. The NC version does
not check the resulting group for consistence.

46.8.6 SplitExtension

▷ SplitExtension(G, M) (operation)

returns the split extension of G by the G-module M . See also SplitExtension (46.8.10) for its
3-argument version.

46.8.7 ModuleOfExtension

▷ ModuleOfExtension(E) (attribute)

returns the module of an extension E of G by M . This is the normal subgroup of E which corre-
sponds to M .

GAP - Reference Manual 735

Example
gap> G := SmallGroup(4, 2);;

gap> mats := List(Pcgs(G), x -> IdentityMat(1, GF(2)));;

gap> M := GModuleByMats(mats, GF(2));;

gap> co := TwoCocycles(G, M);;

gap> Extension(G, M, co[2]);

<pc group of size 8 with 3 generators>

gap> SplitExtension(G, M);

<pc group of size 8 with 3 generators>

gap> Extensions(G, M);

[<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>]

gap> List(last, IdSmallGroup);

[[8, 5], [8, 2], [8, 3], [8, 3], [8, 2], [8, 2],

[8, 3], [8, 4]]

Note that the extensions returned by Extensions (46.8.4) are computed up to equivalence, but
not up to isomorphism.

46.8.8 CompatiblePairs

▷ CompatiblePairs([A,]G, M[, D]) (function)

returns the group of compatible pairs of the group G with the G-module M as subgroup of the
direct product Aut(G) × Aut(M). Here Aut(M) is considered as subgroup of a general linear group.
The optional argument D should be a subgroup of Aut(G) × Aut(M). If it is given, then only the
compatible pairs in D are computed. If a group A of automorphisms of G is given as optional first
argument, it is used in place of the full automorphism group of G , avoiding the need to compute this
automorphism group.

46.8.9 ExtensionRepresentatives

▷ ExtensionRepresentatives(G, M, P) (operation)

returns all extensions of G by the G-module M up to equivalence under action of P where P has to
be a subgroup of the group of compatible pairs of G with M .

Example
gap> G := SmallGroup(4, 2);;

gap> mats := List(Pcgs(G), x -> IdentityMat(1, GF(2)));;

gap> M := GModuleByMats(mats, GF(2));;

gap> A := AutomorphismGroup(G);;

gap> B := GL(1, 2);;

gap> D := DirectProduct(A, B);; Size(D);

6

GAP - Reference Manual 736

gap> P := CompatiblePairs(G, M, D);

<group of size 6 with 2 generators>

gap> ExtensionRepresentatives(G, M, P);

[<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>]

gap> Extensions(G, M);

[<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>]

46.8.10 SplitExtension (with specified homomorphism)

▷ SplitExtension(G, aut, N) (operation)

returns the split extensions of the pc group G by the pc group N . aut should be a homomorphism
from G into Aut(N).

In the following example we construct the holomorph of Q8 as split extension of Q8 by S4.
Example

gap> N := SmallGroup(8, 4);

<pc group of size 8 with 3 generators>

gap> IsAbelian(N);

false

gap> A := AutomorphismGroup(N);

<group of size 24 with 4 generators>

gap> iso := IsomorphismPcGroup(A);

CompositionMapping(Pcgs([(2,6,5,3), (1,3,5)(2,4,6), (2,5)(3,6),

(1,4)(3,6)]) -> [f1, f2, f3, f4], <action isomorphism>)

gap> H := Image(iso);

Group([f1, f2, f3, f4])

gap> G := Subgroup(H, Pcgs(H){[1,2]});

Group([f1, f2])

gap> inv := InverseGeneralMapping(iso);

[f1*f2, f2^2*f3, f4, f3] ->

[Pcgs([f1, f2, f3]) -> [f1*f2, f2, f3],

Pcgs([f1, f2, f3]) -> [f2, f1*f2, f3],

Pcgs([f1, f2, f3]) -> [f1*f3, f2, f3],

Pcgs([f1, f2, f3]) -> [f1, f2*f3, f3]]

gap> K := SplitExtension(G, inv, N);

<pc group of size 192 with 7 generators>

GAP - Reference Manual 737

46.9 Coding a Pc Presentation

If one wants to store a large number of pc groups, then it can be useful to store them in a compressed
format, since pc presentations can be space consuming. Here we introduce a method to code and
decode pc presentations by integers. To decode a given code the size of the underlying pc group is
needed as well. For the full definition and the coding and decoding procedures see [BE99]. This
method is used with the small groups library (see (smallgrp: The Small Groups Library).

46.9.1 CodePcgs

▷ CodePcgs(pcgs) (function)

returns the code corresponding to pcgs .
Example

gap> G := CyclicGroup(512);;

gap> p := Pcgs(G);;

gap> CodePcgs(p);

162895587718739690298008513020159

46.9.2 CodePcGroup

▷ CodePcGroup(G) (function)

returns the code for a pcgs of G .
Example

gap> G := DihedralGroup(512);;

gap> CodePcGroup(G);

2940208627577393070560341803949986912431725641726

46.9.3 PcGroupCode

▷ PcGroupCode(code, size) (function)

returns a pc group of size size corresponding to code . The argument code must be a valid code
for a pcgs, otherwise anything may happen. Valid codes are usually obtained by one of the functions
CodePcgs (46.9.1) or CodePcGroup (46.9.2).

Example
gap> G := SmallGroup(24, 12);;

gap> p := Pcgs(G);;

gap> code := CodePcgs(p);

5790338948

gap> H := PcGroupCode(code, 24);

<pc group of size 24 with 4 generators>

gap> map := GroupHomomorphismByImages(G, H, p, FamilyPcgs(H));

Pcgs([f1, f2, f3, f4]) -> Pcgs([f1, f2, f3, f4])

gap> IsBijective(map);

true

GAP - Reference Manual 738

46.10 Random Isomorphism Testing

The generic isomorphism test for groups may be applied to pc groups as well. However, this test is
often quite time consuming. Here we describe another method to test isomorphism by a probabilistic
approach.

46.10.1 RandomIsomorphismTest

▷ RandomIsomorphismTest(coderecs, n) (function)

The first argument is a list coderecs containing records describing groups, and the second argu-
ment is a non-negative integer n .

The test returns a sublist of coderecs where isomorphic copies detected by the probabilistic test
have been removed.

The list coderecs should contain records with two components, code and order, describing a
group via PcGroupCode(code, order) (see PcGroupCode (46.9.3)).

The integer n gives a certain amount of control over the probability to detect all isomorphisms.
If it is 0, then nothing will be done at all. The larger n is, the larger is the probability of finding all
isomorphisms. However, due to the underlying method we cannot guarantee that the algorithm finds
all isomorphisms, no matter how large n is.

Chapter 47

Finitely Presented Groups

A finitely presented group (in short: FpGroup) is a group generated by a finite set of abstract gen-
erators subject to a finite set of relations that these generators satisfy. Every finite group can be
represented as a finitely presented group, though in almost all cases it is computationally much more
efficient to work in another representation (even the regular permutation representation).

Finitely presented groups are obtained by factoring a free group by a set of relators. Their elements
know about this presentation and compare accordingly.

So to create a finitely presented group you first have to generate a free group (see FreeGroup

(37.2.1) for details). There are two ways to specify a quotient of the free group: either by giving a list
of relators or by giving a list of equations. Relators are just words in the generators of the free group.
Equations are represented as pairs of words in the generators of the free group. In either case the
generators of the quotient are the images of the free generators under the canonical homomorphism
from the free group onto the quotient. So for example to create the group

⟨a,b | a2,b3,(ab)5⟩

you can use the following commands:
Example

gap> f := FreeGroup("a", "b");;

gap> g := f / [f.1^2, f.2^3, (f.1*f.2)^5];

<fp group on the generators [a, b]>

gap> h := f / [[f.1^2, f.1^0], [f.2^3, f.1^0], [(f.1*f.2)^4, f.2^-1*f.1^-1]];

<fp group on the generators [a, b]>

Note that you cannot call the generators by their names. These names are not variables, but just
display figures. So, if you want to access the generators by their names, you first have to introduce the
respective variables and to assign the generators to them.

Example
gap> Unbind(a);

gap> GeneratorsOfGroup(g);

[a, b]

gap> a;

Error, Variable: 'a' must have a value

gap> a := g.1;; b := g.2;; # assign variables

gap> GeneratorsOfGroup(g);

[a, b]

gap> a in f;

739

GAP - Reference Manual 740

false

gap> a in g;

true

To relieve you of the tedium of typing the above assignments, when working interactively, there is
the function AssignGeneratorVariables (37.2.3).

Note that the generators of the free group are different from the generators of the FpGroup (even
though they are displayed by the same names). That means that words in the generators of the free
group are not elements of the finitely presented group. Vice versa elements of the FpGroup are not
words.

Example
gap> a*b = b*a;

false

gap> (b^2*a*b)^2 = a^0;

true

Such calculations comparing elements of an FpGroup may run into problems: There exist finitely
presented groups for which no algorithm exists (it is known that no such algorithm can exist) that will
tell for two arbitrary words in the generators whether the corresponding elements in the FpGroup are
equal.

Therefore the methods used by GAP to compute in finitely presented groups may run into warn-
ing errors, run out of memory or run forever. If the FpGroup is (by theory) known to be finite the
algorithms are guaranteed to terminate (if there is sufficient memory available), but the time needed
for the calculation cannot be bounded a priori. See 47.6 and 47.16.

Example
gap> (b^2*a*b)^2;

(b^2*a*b)^2

gap> a^0;

<identity ...>

A consequence of our convention is that elements of finitely presented groups are not printed in a
unique way. See also SetReducedMultiplication (47.3.4).

47.1 IsSubgroupFpGroup and IsFpGroup

47.1.1 IsSubgroupFpGroup

▷ IsSubgroupFpGroup(H) (Category)

is the category for finitely presented groups or subgroups of a finitely presented group.

47.1.2 IsFpGroup

▷ IsFpGroup(G) (filter)

is a synonym for IsSubgroupFpGroup(G) and IsGroupOfFamily(G).
Free groups are a special case of finitely presented groups, namely finitely presented groups with

no relators.

GAP - Reference Manual 741

Note that FreeGroup(infinity) (which exists e.g. for purposes of rewriting presentations with
further generators) satisfies this filter, though of course it is not finitely generated (and thus not finitely
presented). IsFpGroup thus is not a proper property test and slightly misnamed for the sake of its
most prominent uses.

Another special case are groups given by polycyclic presentations. GAP uses a special represen-
tation for these groups which is created in a different way. See chapter 46 for details.

Example
gap> g:=FreeGroup(2);

<free group on the generators [f1, f2]>

gap> IsFpGroup(g);

true

gap> h:=CyclicGroup(2);

<pc group of size 2 with 1 generator>

gap> IsFpGroup(h);

false

47.1.3 InfoFpGroup

▷ InfoFpGroup (info class)

The info class for functions dealing with finitely presented groups is InfoFpGroup.

47.2 Creating Finitely Presented Groups

47.2.1 \/ (for a free group and a list of elements)

▷ \/(F, rels) (method)

▷ \/(F, eqns) (method)

creates a finitely presented group given by the presentation ⟨gens | rels⟩ or ⟨gens | eqns⟩, respec-
tively where gens are the free generators of the free group F . Relations can be entered either as words
or as pairs of words in the generators of F . In the former case we refer to the words given as relators,
in the latter we refer to the pairs of words as equations. The two methods can currently not be mixed.

The same result is obtained with the infix operator /, i.e., as F / rels .
Example

gap> f := FreeGroup(3);;

gap> f / [f.1^4, f.2^3, f.3^5, f.1*f.2*f.3];

<fp group on the generators [f1, f2, f3]>

gap> f / [[f.1^4, f.1^0], [f.2^3, f.1^0], [f.1, f.2^-1*f.3^-1]];

<fp group on the generators [f1, f2, f3]>

47.2.2 FactorGroupFpGroupByRels

▷ FactorGroupFpGroupByRels(G, elts) (function)

returns the factor group G /N of G by the normal closure N of elts where elts is expected to be
a list of elements of G .

GAP - Reference Manual 742

47.2.3 ParseRelators

▷ ParseRelators(gens, rels) (function)

Will translate a list of relations as given in print, e.g. xy2 = (xy3x)2xy = yzx into relators. gens

must be a list of generators of a free group, each being displayed by a single letter. rels is a string
that lists a sequence of equalities. These must be written in the letters which are the names of the
generators in gens . Change of upper/lower case is interpreted to indicate inverses.

Example
gap> f:=FreeGroup("x","y","z");;

gap> AssignGeneratorVariables(f);

#I Assigned the global variables [x, y, z]

gap> r:=ParseRelators([x,y,z],

> "x^2 = y^5 = z^3 = (xyxyxy^4)^2 = (xz)^2 = (y^2z)^2 = 1");

[x^2, y^5, z^3, (x*z)^2, (y^2*z)^2, ((x*y)^3*y^3)^2]

gap> g:=f/r;

<fp group on the generators [x, y, z]>

47.2.4 StringFactorizationWord

▷ StringFactorizationWord(w) (function)

returns a string that expresses a given word w in compact form written as a string. Inverses are
expressed by changing the upper/lower case of the generators, recurring expressions are written as
products.

Example
gap> StringFactorizationWord(z^-1*x*y*y*y*x*x*y*y*y*x*y^-1*x);

"Z(xy3x)2Yx"

47.3 Comparison of Elements of Finitely Presented Groups

47.3.1 \= (for two elements in a f.p. group)

▷ \=(a, b) (method)

Two elements of a finitely presented group are equal if they are equal in this group. Nevertheless
they may be represented as different words in the generators. Because of the fundamental problems
mentioned in the introduction to this chapter such a test may take very long and cannot be guaranteed
to finish.

The method employed by GAP for such an equality test use the underlying finitely presented
group. First (unless this group is known to be infinite) GAP tries to find a faithful permutation rep-
resentation by a bounded Todd-Coxeter. If this fails, a Knuth-Bendix (see 52.5) is attempted and the
words are compared via their normal form.

If only elements in a subgroup are to be tested for equality it thus can be useful to translate the
problem in a new finitely presented group by rewriting (see IsomorphismFpGroup (47.11.1));

The equality test of elements underlies many “basic” calculations, such as the order of an element,
and the same type of problems can arise there. In some cases, working with rewriting systems can still

GAP - Reference Manual 743

help to solve the problem. The kbmag package provides such functionality, see the package manual
for further details.

47.3.2 \< (for two elements in a f.p. group)

▷ \<(a, b) (method)

Compared with equality testing, problems get even worse when trying to compute a total ordering
on the elements of a finitely presented group. As any ordering that is guaranteed to be reproducible in
different runs of GAP or even with different groups given by syntactically equal presentations would
be prohibitively expensive to implement, the ordering of elements is depending on a method chosen
by GAP and not guaranteed to stay the same when repeating the construction of an FpGroup. The
only guarantee given for the < ordering for such elements is that it will stay the same for one family
during its lifetime. The attribute FpElmComparisonMethod (47.3.3) is used to obtain a comparison
function for a family of FpGroup elements.

47.3.3 FpElmComparisonMethod

▷ FpElmComparisonMethod(fam) (attribute)

If fam is the elements family of a finitely presented group this attribute returns a function
smaller(left, right) that will be used to compare elements in fam .

47.3.4 SetReducedMultiplication

▷ SetReducedMultiplication(obj) (function)

For an FpGroup obj , an element obj of it or the family obj of its elements, this function will
force immediate reduction when multiplying, keeping words short at extra cost per multiplication.

47.4 Preimages in the Free Group

47.4.1 FreeGroupOfFpGroup

▷ FreeGroupOfFpGroup(G) (attribute)

returns the underlying free group for the finitely presented group G . This is the group generated
by the free generators provided by the FreeGeneratorsOfFpGroup (47.4.2) value of G .

47.4.2 FreeGeneratorsOfFpGroup

▷ FreeGeneratorsOfFpGroup(G) (attribute)

▷ FreeGeneratorsOfWholeGroup(U) (operation)

FreeGeneratorsOfFpGroup returns the underlying free generators corresponding to the genera-
tors of the finitely presented group G which must be a full FpGroup.

FreeGeneratorsOfWholeGroup also works for subgroups of an FpGroup and returns the free
generators of the full group that defines the family.

GAP - Reference Manual 744

47.4.3 RelatorsOfFpGroup

▷ RelatorsOfFpGroup(G) (attribute)

returns the relators of the finitely presented group G as words in the free generators provided by
the FreeGeneratorsOfFpGroup (47.4.2) value of G .

Example
gap> f := FreeGroup("a", "b");;

gap> g := f / [f.1^5, f.2^2, f.1^f.2*f.1];

<fp group on the generators [a, b]>

gap> Size(g);

10

gap> FreeGroupOfFpGroup(g) = f;

true

gap> FreeGeneratorsOfFpGroup(g);

[a, b]

gap> RelatorsOfFpGroup(g);

[a^5, b^2, b^-1*a*b*a]

Note that these attributes are only available for the full finitely presented group. It is possible (for
example by using Subgroup (39.3.1)) to construct a subgroup of index 1 which is not identical to the
whole group. The latter one can be obtained in this situation via Parent (31.7.1).

Elements of a finitely presented group are not words, but are represented using a word from the
free group as representative. The following two commands obtain this representative, respectively
create an element in the finitely presented group.

47.4.4 UnderlyingElement (fp group elements)

▷ UnderlyingElement(elm) (operation)

Let elm be an element of a group whose elements are represented as words with further properties.
Then UnderlyingElement returns the word from the free group that is used as a representative for
elm .

Example
gap> w := g.1*g.2;

a*b

gap> IsWord(w);

false

gap> ue := UnderlyingElement(w);

a*b

gap> IsWord(ue);

true

47.4.5 ElementOfFpGroup

▷ ElementOfFpGroup(fam, word) (operation)

If fam is the elements family of a finitely presented group and word is a word in the free generators
underlying this finitely presented group, this operation creates the element with the representative
word in the free group.

GAP - Reference Manual 745

Example
gap> ge := ElementOfFpGroup(FamilyObj(g.1), f.1*f.2);

a*b

gap> ge in f;

false

gap> ge in g;

true

47.5 Operations for Finitely Presented Groups

Finitely presented groups are groups and so all operations for groups should be applicable to them
(though not necessarily efficient methods are available). Most methods for finitely presented groups
rely on coset enumeration. See 47.6 for details.

The command IsomorphismPermGroup (43.3.1) can be used to obtain a faithful permutation
representation, if such a representation of small degree exists. (Otherwise it might run very long or
fail.)

Example
gap> f := FreeGroup("a", "b");

<free group on the generators [a, b]>

gap> g := f / [f.1^2, f.2^3, (f.1*f.2)^5];

<fp group on the generators [a, b]>

gap> h := IsomorphismPermGroup(g);

[a, b] -> [(2,4)(5,6), (1,2,3)(4,5,6)]

gap> u:=Subgroup(g,[g.1*g.2]);;rt:=RightTransversal(g,u);

RightTransversal(<fp group of size 60 on the generators

[a, b]>,Group([a*b]))

gap> Image(ActionHomomorphism(g,rt,OnRight));

Group([(1,2)(3,4)(5,7)(6,8)(9,10)(11,12),

(1,3,2)(4,5,6)(7,8,9)(10,11,12)])

47.5.1 PseudoRandom (for finitely presented groups)

▷ PseudoRandom(F: radius := l) (method)

The default algorithm for PseudoRandom (30.7.2) makes little sense for finitely presented or free
groups, as it produces words that are extremely long.

By specifying the option radius, instead elements are taken as words in the generators of F in the
ball of radius l with equal distribution in the free group.

Example
gap> PseudoRandom(g:radius:=20);

a^3*b^2*a^-2*b^-1*a*b^-4*a*b^-1*a*b^-4

47.6 Coset Tables and Coset Enumeration

Coset enumeration (see [Neu82] for an explanation) is one of the fundamental tools for the examina-
tion of finitely presented groups. This section describes GAP functions that can be used to invoke a
coset enumeration.

GAP - Reference Manual 746

Note that in addition to the built-in coset enumerator there is the GAP package ACE. Moreover,
GAP provides an interactive Todd-Coxeter in the GAP package ITC which is based on the XGAP
package.

47.6.1 CosetTable

▷ CosetTable(G, H) (operation)

returns the coset table of the finitely presented group G on the cosets of the subgroup H .
Basically a coset table is the permutation representation of the finitely presented group on the

cosets of a subgroup (which need not be faithful if the subgroup has a nontrivial core). Most of the
set theoretic and group functions use the regular representation of G , i.e., the coset table of G over the
trivial subgroup.

The coset table is returned as a list of lists. For each generator of G and its inverse the table
contains a generator list. A generator list is simply a list of integers. If l is the generator list for the
generator g and if l[i] = j then generator g takes the coset i to the coset j by multiplication from the
right. Thus the permutation representation of G on the cosets of H is obtained by applying PermList

(42.5.2) to each generator list.
The coset table is standard (see below).
For finitely presented groups, a coset table is computed by a Todd-Coxeter coset enumeration.

Note that you may influence the performance of that enumeration by changing the values of the
global variables CosetTableDefaultLimit (47.6.7) and CosetTableDefaultMaxLimit (47.6.6)
described below and that the options described under CosetTableFromGensAndRels (47.6.5) are
recognized.

Example
gap> tab := CosetTable(g, Subgroup(g, [g.1, g.2*g.1*g.2*g.1*g.2^-1]));

[[1, 4, 5, 2, 3], [1, 4, 5, 2, 3], [2, 3, 1, 4, 5],

[3, 1, 2, 4, 5]]

gap> List(last, PermList);

[(2,4)(3,5), (2,4)(3,5), (1,2,3), (1,3,2)]

gap> PrintArray(TransposedMat(tab));

[[1, 1, 2, 3],

[4, 4, 3, 1],

[5, 5, 1, 2],

[2, 2, 4, 4],

[3, 3, 5, 5]]

The last printout in the preceding example provides the coset table in the form in which it is
usually used in hand calculations: The rows correspond to the cosets, the columns correspond to the
generators and their inverses in the ordering g1,g−1

1 ,g2,g−1
2 . (See section 47.7 for a description on the

way the numbers are assigned.)

47.6.2 TracedCosetFpGroup

▷ TracedCosetFpGroup(tab, word, pt) (function)

Traces the coset number pt under the word word through the coset table tab . (Note: word must
be in the free group, use UnderlyingElement (47.4.4) if in doubt.)

GAP - Reference Manual 747

Example
gap> TracedCosetFpGroup(tab,UnderlyingElement(g.1),2);

4

47.6.3 FactorCosetAction (for fp groups)

▷ FactorCosetAction(G, H) (operation)

returns the action of G on the cosets of its subgroup H .
Example

gap> u := Subgroup(g, [g.1, g.1^g.2]);

Group([a, b^-1*a*b])

gap> FactorCosetAction(g, u);

[a, b] -> [(2,4)(5,6), (1,2,3)(4,5,6)]

47.6.4 CosetTableBySubgroup

▷ CosetTableBySubgroup(G, H) (operation)

returns a coset table for the action of G on the cosets of H . The columns of the table correspond to
the GeneratorsOfGroup (39.2.4) value of G .

47.6.5 CosetTableFromGensAndRels

▷ CosetTableFromGensAndRels(fgens, grels, fsgens) (function)

is an internal function which is called by the functions CosetTable (47.6.1),
CosetTableInWholeGroup (47.8.1) and others. It is, in fact, the workhorse that performs a
Todd-Coxeter coset enumeration. fgens must be a set of free generators and grels a set of relators
in these generators. fsgens are subgroup generators expressed as words in these generators. The
function returns a coset table with respect to fgens .

CosetTableFromGensAndRels will call TCENUM.CosetTableFromGensAndRels. This makes
it possible to replace the built-in coset enumerator with another one by assigning TCENUM to another
record.

The library version which is used by default performs a standard Felsch strategy coset enumer-
ation. You can call this function explicitly as GAPTCENUM.CosetTableFromGensAndRels even if
other coset enumerators are installed.

The expected parameters are

fgens

generators of the free group F

grels

relators as words in F

fsgens

subgroup generators as words in F .

CosetTableFromGensAndRels processes two options (see chapter 8):

GAP - Reference Manual 748

max The limit of the number of cosets to be defined. If the enumeration does not finish with this
number of cosets, an error is raised and the user is asked whether she wants to continue. The
default value is the value given in the variable CosetTableDefaultMaxLimit. (Due to the
algorithm the actual limit used can be a bit higher than the number given.)

silent

If set to true the algorithm will not raise the error mentioned under option max but silently
return fail. This can be useful if an enumeration is only wanted unless it becomes too big.

47.6.6 CosetTableDefaultMaxLimit

▷ CosetTableDefaultMaxLimit (global variable)

is the default limit for the number of cosets allowed in a coset enumeration.
A coset enumeration will not finish if the subgroup does not have finite index, and even if it has

it may take many more intermediate cosets than the actual index of the subgroup is. To avoid a coset
enumeration “running away” therefore GAP has a “safety stop” built in. This is controlled by the
global variable CosetTableDefaultMaxLimit.

If this number of cosets is reached, GAP will issue an error message and prompt the user to either
continue the calculation or to stop it. The default value is 4096000.

See also the description of the options to CosetTableFromGensAndRels (47.6.5).
Example

gap> f := FreeGroup("a", "b");;

gap> u := Subgroup(f, [f.2]);

Group([b])

gap> Index(f, u);

Error, the coset enumeration has defined more than 4096000 cosets

called from

TCENUM.CosetTableFromGensAndRels(fgens, grels, fsgens) called from

CosetTableFromGensAndRels(fgens, grels, fsgens) called from

TryCosetTableInWholeGroup(H) called from

CosetTableInWholeGroup(H) called from

IndexInWholeGroup(H) called from

...

Entering break read-eval-print loop ...

type 'return;' if you want to continue with a new limit of 8192000 cosets,

type 'quit;' if you want to quit the coset enumeration,

type 'maxlimit := 0; return;' in order to continue without a limit

brk> quit;

At this point, a break-loop (see Section 6.4) has been entered. The line beginning Error tells you
why this occurred. The next seven lines occur if OnBreak (6.4.3) has its default value Where (6.4.5).
They explain, in this case, how GAP came to be doing a coset enumeration. Then you are given a
number of options of how to escape the break-loop: you can either continue the calculation with a
larger number of permitted cosets, stop the calculation if you don’t expect the enumeration to finish
(like in the example above), or continue without a limit on the number of cosets. (Choosing the first
option will, of course, land you back in a break-loop. Try it!)

Setting CosetTableDefaultMaxLimit (or the max option value, for any function that invokes a
coset enumeration) to infinity (18.2.1) (or to 0) will force all coset enumerations to continue until

GAP - Reference Manual 749

they either get a result or exhaust the whole available space. For example, each of the following two
inputs

gap> CosetTableDefaultMaxLimit := 0;;

gap> Index(f, u);

or

gap> Index(f, u : max := 0);

have essentially the same effect as choosing the third option (typing: maxlimit := 0; return;)
at the brk> prompt above (instead of quit;).

47.6.7 CosetTableDefaultLimit

▷ CosetTableDefaultLimit (global variable)

is the default number of cosets with which any coset table is initialized before doing a coset
enumeration.

The function performing this coset enumeration will automatically extend the table whenever nec-
essary (as long as the number of cosets does not exceed the value of CosetTableDefaultMaxLimit
(47.6.6)), but this is an expensive operation. Thus, if you change the value of
CosetTableDefaultLimit, you should set it to a number of cosets that you expect to be sufficient
for your subsequent coset enumerations. On the other hand, if you make it too large, your job will
unnecessarily waste a lot of space.

The default value of CosetTableDefaultLimit is 1000.

47.6.8 MostFrequentGeneratorFpGroup

▷ MostFrequentGeneratorFpGroup(G) (function)

is an internal function which is used in some applications of coset table methods. It returns the
first of those generators of the given finitely presented group G which occur most frequently in the
relators.

47.6.9 IndicesInvolutaryGenerators

▷ IndicesInvolutaryGenerators(G) (attribute)

returns the indices of those generators of the finitely presented group G which are known to be
involutions. This knowledge is used by internal functions to improve the performance of coset enu-
merations.

47.7 Standardization of coset tables

For any two coset numbers i and j with i < j the first occurrence of i in a coset table precedes the
first occurrence of j with respect to the usual row-wise ordering of the table entries. Following the

GAP - Reference Manual 750

notation of Charles Sims’ book on computation with finitely presented groups [Sim94] we call such a
table a standard coset table.

The table entries which contain the first occurrences of the coset numbers i> 1 recursively provide
for each i a representative of the corresponding coset in form of a unique word wi in the generators
and inverse generators of G. The first coset (which is H itself) can be represented by the empty word
w1. A coset table is standard if and only if the words w1,w2, . . . are length-plus-lexicographic ordered
(as defined in [Sim94]), for short: lenlex.

This standardization of coset tables is different from that used in GAP versions 4.2 and earlier.
Before that, we ignored the columns that correspond to inverse generators and hence only considered
words in the generators of G. We call this older ordering the semilenlex standard as it also applies to
the case of semigroups where no inverses of the generators are known.

We changed our default from the semilenlex standard to the lenlex standard to be consis-
tent with [Sim94]. However, the semilenlex standardisation remains available and the convention
used for all implicit standardisations can be selected by setting the value of the global variable
CosetTableStandard (47.7.1) to either "lenlex" or "semilenlex". Independent of the current
value of CosetTableStandard (47.7.1) you can standardize (or restandardize) a coset table at any
time using StandardizeTable (47.7.2).

47.7.1 CosetTableStandard

▷ CosetTableStandard (global variable)

specifies the definition of a standard coset table. It is used whenever coset tables or augmented
coset tables are created. Its value may be "lenlex" or "semilenlex". If it is "lenlex" coset tables
will be standardized using all their columns as defined in Charles Sims’ book (this is the new default
standard of GAP). If it is "semilenlex" they will be standardized using only their generator columns
(this was the original GAP standard). The default value of CosetTableStandard is "lenlex".

47.7.2 StandardizeTable

▷ StandardizeTable(table, standard) (function)

standardizes the given coset table table . The second argument is optional. It defines the standard
to be used, its values may be "lenlex" or "semilenlex" specifying the new or the old convention,
respectively. If no value for the parameter standard is provided the function will use the global
variable CosetTableStandard (47.7.1) instead. Note that the function alters the given table, it does
not create a copy.

Example
gap> StandardizeTable(tab, "semilenlex");

gap> PrintArray(TransposedMat(tab));

[[1, 1, 2, 4],

[3, 3, 4, 1],

[2, 2, 3, 3],

[5, 5, 1, 2],

[4, 4, 5, 5]]

GAP - Reference Manual 751

47.8 Coset tables for subgroups in the whole group

47.8.1 CosetTableInWholeGroup

▷ CosetTableInWholeGroup(H) (attribute)

▷ TryCosetTableInWholeGroup(H) (operation)

is equivalent to CosetTable(G,H) where G is the (unique) finitely presented group such that H
is a subgroup of G . It overrides a silent option (see CosetTableFromGensAndRels (47.6.5)) with
false.

The variant TryCosetTableInWholeGroup does not override the silent option with false in
case a coset table is only wanted if not too expensive. It will store a result that is not fail in the
attribute CosetTableInWholeGroup.

47.8.2 SubgroupOfWholeGroupByCosetTable

▷ SubgroupOfWholeGroupByCosetTable(fpfam, tab) (function)

takes a family fpfam of an FpGroup and a standardized coset table tab and returns the subgroup
of fpfam!.wholeGroup defined by this coset table. The function will not check whether the coset
table is standardized. See also CosetTableBySubgroup (47.6.4).

47.9 Augmented Coset Tables and Rewriting

47.9.1 AugmentedCosetTableInWholeGroup

▷ AugmentedCosetTableInWholeGroup(H[, gens]) (function)

For a subgroup H of a finitely presented group, this function returns an augmented coset table. If a
generator set gens is given, it is guaranteed that gens will be a subset of the primary and secondary
subgroup generators of this coset table.

It is mutable so we are permitted to add further entries. However existing entries may not be
changed. Any entries added however should correspond to the subgroup only and not to a homomor-
phism.

47.9.2 AugmentedCosetTableMtc

▷ AugmentedCosetTableMtc(G, H, type, string) (function)

is an internal function used by the subgroup presentation functions described in 48.2. It applies a
Modified Todd-Coxeter coset representative enumeration to construct an augmented coset table (see
48.2) for the given subgroup H of G . The subgroup generators will be named string1, string2,

The function accepts the options max and silent as described for the function
CosetTableFromGensAndRels (47.6.5).

GAP - Reference Manual 752

47.9.3 AugmentedCosetTableRrs

▷ AugmentedCosetTableRrs(G, table, type, string) (function)

is an internal function used by the subgroup presentation functions described in 48.2. It applies
the Reduced Reidemeister-Schreier method to construct an augmented coset table for the subgroup
of G which is defined by the given coset table table . The new subgroup generators will be named
string1, string2,

47.9.4 RewriteWord

▷ RewriteWord(aug, word) (function)

RewriteWord rewrites word (which must be a word in the underlying free group with respect to
which the augmented coset table aug is given) in the subgroup generators given by the augmented
coset table aug . It returns a Tietze-type word (i.e. a list of integers), referring to the primary and
secondary generators of aug .

If word is not contained in the subgroup, fail is returned.

47.10 Low Index Subgroups

47.10.1 LowIndexSubgroupsFpGroupIterator

▷ LowIndexSubgroupsFpGroupIterator(G[, H], index[, excluded]) (operation)

▷ LowIndexSubgroupsFpGroup(G[, H], index[, excluded]) (operation)

These functions compute representatives of the conjugacy classes of subgroups of the finitely
presented group G that contain the subgroup H of G and that have index less than or equal to index .

LowIndexSubgroupsFpGroupIterator returns an iterator (see 30.8) that can be used to run
over these subgroups, and LowIndexSubgroupsFpGroup returns the list of these subgroups. If one is
interested only in one or a few subgroups up to a given index then preferably the iterator should be
used.

If the optional argument excluded has been specified, then it is expected to be a list of words in
the free generators of the underlying free group of G , and LowIndexSubgroupsFpGroup returns only
those subgroups of index at most index that contain H , but do not contain any conjugate of any of the
group elements defined by these words.

If not given, H defaults to the trivial subgroup.
The algorithm used finds the requested subgroups by systematically running through a tree of all

potential coset tables of G of length at most index (where it skips all branches of that tree for which
it knows in advance that they cannot provide new classes of such subgroups). The time required to
do this depends, of course, on the presentation of G , but in general it will grow exponentially with the
value of index . So you should be careful with the choice of index .

Example
gap> li:=LowIndexSubgroupsFpGroup(g, TrivialSubgroup(g), 10);

[Group(<fp, no generators known>), Group(<fp, no generators known>),

Group(<fp, no generators known>), Group(<fp, no generators known>)]

GAP - Reference Manual 753

By default, the algorithm computes no generating sets for the subgroups. This can be enforced
with GeneratorsOfGroup (39.2.4):

Example
gap> GeneratorsOfGroup(li[2]);

[a, b*a*b^-1]

If we are interested just in one (proper) subgroup of index at most 10, we can use the function that
returns an iterator. The first subgroup found is the group itself, except if a list of excluded elements is
entered (see below), so we look at the second subgroup.

Example
gap> iter:= LowIndexSubgroupsFpGroupIterator(g, 10);;

gap> s1:= NextIterator(iter);; Index(g, s1);

1

gap> IsDoneIterator(iter);

false

gap> s2:= NextIterator(iter);; s2 = li[2];

true

As an example for an application of the optional parameter excluded , we compute all
conjugacy classes of torsion free subgroups of index at most 24 in the group G = ⟨x,y,z |
x2,y4,z3,(xy)3,(yz)2,(xz)3⟩. It is know from theory that each torsion element of this group is con-
jugate to a power of x, y, z, xy, xz, or yz. (Note that this includes conjugates of y2.)

Example
gap> F := FreeGroup("x", "y", "z");;

gap> x := F.1;; y := F.2;; z := F.3;;

gap> G := F / [x^2, y^4, z^3, (x*y)^3, (y*z)^2, (x*z)^3];;

gap> torsion := [x, y, y^2, z, x*y, x*z, y*z];;

gap> SetInfoLevel(InfoFpGroup, 2);

gap> lis := LowIndexSubgroupsFpGroup(G, TrivialSubgroup(G), 24, torsion);;

#I LowIndexSubgroupsFpGroup called

#I class 1 of index 24 and length 8

#I class 2 of index 24 and length 24

#I class 3 of index 24 and length 24

#I class 4 of index 24 and length 24

#I class 5 of index 24 and length 24

#I LowIndexSubgroupsFpGroup done. Found 5 classes

gap> SetInfoLevel(InfoFpGroup, 0);

If a particular image group is desired, the operation GQuotients (40.9.4) (see 47.14) can be useful
as well.

47.11 Converting Groups to Finitely Presented Groups

47.11.1 IsomorphismFpGroup

▷ IsomorphismFpGroup(G) (attribute)

returns an isomorphism from the given finite group G to a finitely presented group isomorphic to
G . The function first chooses a set of generators of G and then computes a presentation in terms of
these generators.

GAP - Reference Manual 754

Example
gap> g := Group((2,3,4,5), (1,2,5));;

gap> iso := IsomorphismFpGroup(g);

[(1,2), (2,3), (3,4), (4,5)] -> [F1, F2, F3, F4]

gap> fp := Image(iso);

<fp group of size 120 on the generators [F1, F2, F3, F4]>

gap> RelatorsOfFpGroup(fp);

[F1^2, F2^2, F3^2, F4^2, (F1*F2)^3, (F1*F3)^2, (F1*F4)^2, (F2*F3)^3,

(F2*F4)^2, (F3*F4)^3]

47.11.2 IsomorphismFpGroupByGenerators

▷ IsomorphismFpGroupByGenerators(G, gens[, string]) (function)

▷ IsomorphismFpGroupByGeneratorsNC(G, gens, string) (operation)

returns an isomorphism from a finite group G to a finitely presented group F isomorphic to G . The
generators of F correspond to the generators of G given in the list gens. If string is given it is used
to name the generators of the finitely presented group.

The NC version will avoid testing whether the elements in gens generate G .
Example

gap> SetInfoLevel(InfoFpGroup, 1);

gap> iso := IsomorphismFpGroupByGenerators(g, [(1,2), (1,2,3,4,5)]);

#I the image group has 2 gens and 5 rels of total length 39

[(1,2), (1,2,3,4,5)] -> [F1, F2]

gap> fp := Image(iso);

<fp group of size 120 on the generators [F1, F2]>

The main task of the function IsomorphismFpGroupByGenerators is to find a presentation of G
in the provided generators gens . In the case of a permutation group G it does this by first constructing
a stabilizer chain of G and then it works through that chain from the bottom to the top, recursively
computing a presentation for each of the involved stabilizers. The method used is essentially an
implementation of John Cannon’s multi-stage relations-finding algorithm as described in [Neu82]
(see also [Can73] for a more graph theoretical description). Moreover, it makes heavy use of Tietze
transformations in each stage to avoid an explosion of the total length of the relators.

Note that because of the random methods involved in the construction of the stabilizer chain the
resulting presentations of G will in general be different for repeated calls with the same arguments.

Example
gap> M12 := MathieuGroup(12);

Group([(1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6),

(1,12)(2,11)(3,6)(4,8)(5,9)(7,10)])

gap> gens := GeneratorsOfGroup(M12);;

gap> iso := IsomorphismFpGroupByGenerators(M12, gens);;

#I the image group has 3 gens and 24 rels of total length 669

gap> iso := IsomorphismFpGroupByGenerators(M12, gens);;

#I the image group has 3 gens and 20 rels of total length 414

Also in the case of a permutation group G , the function IsomorphismFpGroupByGenerators

supports the option method that can be used to modify the strategy. The option method may take the
following values.

GAP - Reference Manual 755

method := "regular"

This may be specified for groups of small size, up to 105 say. It implies that the function
first constructs a regular representation R of G and then a presentation of R . In general, this
presentation will be much more concise than the default one, but the price is the time needed for
the construction of R .

method := ["regular", bound]

This is a refinement of the previous possibility. In this case, bound should be an integer, and if
so the method "regular" as described above is applied to the largest stabilizer in the stabilizer
chain of G whose size does not exceed the given bound and then the multi-stage algorithm is
used to work through the chain from that subgroup to the top.

method := "fast"

This chooses an alternative method which essentially is a kind of multi-stage algorithm for a
stabilizer chain of G but does not make any attempt do reduce the number of relators as it is
done in Cannon’s algorithm or to reduce their total length. Hence it is often much faster than
the default method, but the total length of the resulting presentation may be huge.

method := "default"

This simply means that the default method shall be used, which is the case if the option method

is not given a value.
Example

gap> iso := IsomorphismFpGroupByGenerators(M12, gens :

> method := "regular");;

#I the image group has 3 gens and 11 rels of total length 92

gap> iso := IsomorphismFpGroupByGenerators(M12, gens :

> method := "fast");;

#I the image group has 3 gens and 136 rels of total length 3170

Though the option method := "regular" is only checked in the case of a permutation group
it also affects the performance and the results of the function IsomorphismFpGroupByGenerators

for other groups, e. g. for matrix groups. This happens because, for these groups, the function first
calls the function NiceMonomorphism (40.5.2) to get a bijective action homomorphism from G to a
suitable permutation group, P say, and then, recursively, calls itself for the group P so that now the
option becomes relevant.

Example
gap> G := ImfMatrixGroup(5, 1, 3);

ImfMatrixGroup(5,1,3)

gap> gens := GeneratorsOfGroup(G);

[[[-1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 0, 1, 0],

[-1, -1, -1, -1, 2], [-1, 0, 0, 0, 1]],

[[0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0],

[1, 0, 0, 0, 0], [0, 0, 0, 0, 1]]]

gap> iso := IsomorphismFpGroupByGenerators(G, gens);;

#I the image group has 2 gens and 11 rels of total length 120

gap> iso := IsomorphismFpGroupByGenerators(G, gens :

> method := "regular");;

#I the image group has 2 gens and 6 rels of total length 56

gap> SetInfoLevel(InfoFpGroup, 0);

gap> iso;

GAP - Reference Manual 756

<composed isomorphism:[[[-1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, \

0, 0, 1, 0], [-1, -1, -1, -1, 2], [-1, 0, 0, 0, 1]], [[0, 1, 0\

, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [1, 0, 0, 0, 0], [0\

, 0, 0, 0, 1]]]->[F1, F2]>

gap> ConstituentsCompositionMapping(iso);

[<action isomorphism>,

[(2,3,4)(5,6)(8,9,10), (1,2,3,5)(6,7,8,9)] -> [F1, F2]]

Since GAP cannot decompose elements of a matrix group into generators, the resulting isomor-
phism is stored as a composition of a (faithful) permutation action on vectors and a homomorphism
from the permutation image to the finitely presented group. In such a situation the constituent map-
pings can be obtained via ConstituentsCompositionMapping (32.2.8) as separate GAP objects.

47.12 New Presentations and Presentations for Subgroups

IsomorphismFpGroup (47.11.1) is also used to compute a new finitely presented group that is iso-
morphic to the given subgroup of a finitely presented group. (This is typically the only method to
compute with subgroups of a finitely presented group.)

Example
gap> f:=FreeGroup(2);;

gap> g:=f/[f.1^2,f.2^3,(f.1*f.2)^5];

<fp group on the generators [f1, f2]>

gap> u:=Subgroup(g,[g.1*g.2]);

Group([f1*f2])

gap> hom:=IsomorphismFpGroup(u);

[<[[1, 1]]|f2^-1*f1^-1>] -> [F1]

gap> new:=Range(hom);

<fp group on the generators [F1]>

gap> List(GeneratorsOfGroup(new),i->PreImagesRepresentative(hom,i));

[<[[1, 1]]|f2^-1*f1^-1>]

When working with such homomorphisms, some subgroup elements are expressed as extremely
long words in the group generators. Therefore the underlying words of subgroup generators stored
in the isomorphism (as obtained by MappingGeneratorsImages (40.10.2) and displayed when View

(6.3.3)ing the homomorphism) as well as preimages under the homomorphism are stored in the form
of straight line program elements (see 37.9). These will behave like ordinary words and no extra
treatment should be necessary.

Example
gap> r:=Range(hom).1^10;

F1^10

gap> p:=PreImagesRepresentative(hom,r);

<[[1, 10]]|(f2^-1*f1^-1)^10>

If desired, it also is possible to convert these underlying words using EvalStraightLineProgElm

(37.9.4):
Example

gap> r:=EvalStraightLineProgElm(UnderlyingElement(p));

(f2^-1*f1^-1)^10

GAP - Reference Manual 757

gap> p:=ElementOfFpGroup(FamilyObj(p),r);

(f2^-1*f1^-1)^10

(If you are only interested in a finitely presented group isomorphic to the given subgroup but
not in the isomorphism, you may also use the functions PresentationViaCosetTable (48.1.5) and
FpGroupPresentation (48.1.4) (see 48.1).)

Homomorphisms can also be used to obtain an isomorphic finitely presented group with a (hope-
fully) simpler presentation.

47.12.1 IsomorphismSimplifiedFpGroup

▷ IsomorphismSimplifiedFpGroup(G) (attribute)

applies Tietze transformations to a copy of the presentation of the given finitely presented group
G in order to reduce it with respect to the number of generators, the number of relators, and the relator
lengths.

The operation returns an isomorphism with source G , range a group H isomorphic to G , so that the
presentation of H has been simplified using Tietze transformations.

Example
gap> f:=FreeGroup(3);;

gap> g:=f/[f.1^2,f.2^3,(f.1*f.2)^5,f.1/f.3];

<fp group on the generators [f1, f2, f3]>

gap> hom:=IsomorphismSimplifiedFpGroup(g);

[f1, f2, f3] -> [f1, f2, f1]

gap> Range(hom);

<fp group on the generators [f1, f2]>

gap> RelatorsOfFpGroup(Range(hom));

[f1^2, f2^3, (f1*f2)^5]

gap> RelatorsOfFpGroup(g);

[f1^2, f2^3, (f1*f2)^5, f1*f3^-1]

IsomorphismSimplifiedFpGroup uses Tietze transformations to simplify the presentation, see
48.1.6.

47.13 Preimages under Homomorphisms from an FpGroup

For some subgroups of a finitely presented group the number of subgroup generators increases with the
index of the subgroup. However often these generators are not needed at all for further calculations,
but what is needed is the action of the cosets of the subgroup. This gives the image of the subgroup
in a finite quotient and this finite quotient can be used to calculate normalizers, closures, intersections
and so forth [Hul01].

The same applies for subgroups that are obtained as preimages under homomorphisms.

47.13.1 SubgroupOfWholeGroupByQuotientSubgroup

▷ SubgroupOfWholeGroupByQuotientSubgroup(fpfam, Q, U) (function)

GAP - Reference Manual 758

takes a FpGroup family fpfam , a finitely generated group Q such that the fp generators of fpfam
can be mapped by an epimorphism phi onto the GeneratorsOfGroup (39.2.4) value of Q , and a
subgroup U of Q . It returns the subgroup of fpfam!.wholeGroup which is the full preimage of U
under phi.

47.13.2 IsSubgroupOfWholeGroupByQuotientRep

▷ IsSubgroupOfWholeGroupByQuotientRep(G) (Representation)

is the representation for subgroups of an FpGroup, given by a quotient subgroup. The components
G!.quot and G!.sub hold quotient, respectively subgroup.

47.13.3 AsSubgroupOfWholeGroupByQuotient

▷ AsSubgroupOfWholeGroupByQuotient(U) (attribute)

returns the same subgroup in the representation AsSubgroupOfWholeGroupByQuotient.
See also SubgroupOfWholeGroupByCosetTable (47.8.2) and CosetTableBySubgroup

(47.6.4).
This technique is used by GAP for example to represent the derived subgroup, which is obtained

from the quotient G/G′.
Example

gap> f:=FreeGroup(2);;g:=f/[f.1^6,f.2^6,(f.1*f.2)^6];;

gap> d:=DerivedSubgroup(g);

Group(<fp, no generators known>)

gap> Index(g,d);

36

47.13.4 DefiningQuotientHomomorphism

▷ DefiningQuotientHomomorphism(U) (function)

if U is a subgroup in quotient representation (IsSubgroupOfWholeGroupByQuotientRep
(47.13.2)), this function returns the defining homomorphism from the whole group to U!.quot.

47.14 Quotient Methods

An important class of algorithms for finitely presented groups are the quotient algorithms which
compute quotient groups of a given finitely presented group. There are algorithms for epi-
morphisms onto abelian groups, p-groups and solvable groups. (The “low index” algorithm
–LowIndexSubgroupsFpGroup (47.10.1)– can be considered as well as an algorithm that produces
permutation group quotients.)

MaximalAbelianQuotient (39.18.4), as defined for general groups, returns the largest abelian
quotient of the given group.

Example
gap> f:=FreeGroup(2);;fp:=f/[f.1^6,f.2^6,(f.1*f.2)^12];

<fp group on the generators [f1, f2]>

gap> hom:=MaximalAbelianQuotient(fp);

GAP - Reference Manual 759

[f1, f2] -> [f1, f3]

gap> Size(Image(hom));

36

47.14.1 PQuotient

▷ PQuotient(F, p[, c][, logord][, ctype]) (function)

computes a factor p-group of a finitely presented group F in form of a quotient system. The
quotient system can be converted into an epimorphism from F onto the p-group computed by the
function EpimorphismQuotientSystem (47.14.2).

For a group G define the exponent-p central series of G inductively by P1(G)=G and Pi+1(G)=
[Pi(G),G]Pi+1(G)p. The factor groups modulo the terms of the lower exponent-p central series are
p-groups. The group G has p-class c if Pc(G) ̸= Pc+1(G) = 1.

The algorithm computes successive quotients modulo the terms of the exponent-p central series
of F . If the parameter c is present, then the factor group modulo the (c+1)-th term of the exponent-p
central series of F is returned. If c is not present, then the algorithm attempts to compute the largest
factor p-group of F . In case F does not have a largest factor p-group, the algorithm will not terminate.

By default the algorithm computes only with factor groups of order at most p256. If the parameter
logord is present, it will compute with factor groups of order at most plogord . If this parameter
is specified, then the parameter c must also be given. The present implementation produces an error
message if the order of a p-quotient exceeds p256 or plogord , respectively. Note that the order of
intermediate p-groups may be larger than the final order of a p-quotient.

The parameter ctype determines the type of collector that is used for computations within the
factor p-group. ctype must either be "single" in which case a simple collector from the left is used
or "combinatorial" in which case a combinatorial collector from the left is used.

47.14.2 EpimorphismQuotientSystem

▷ EpimorphismQuotientSystem(quotsys) (operation)

For a quotient system quotsys obtained from the function PQuotient (47.14.1), this operation
returns an epimorphism F → P where F is the finitely presented group of which quotsys is a quotient
system and P is a pc group isomorphic to the quotient of F determined by quotsys .

Different calls to this operation will create different groups P , each with its own family.
Example

gap> PQuotient(FreeGroup(2), 5, 10, 1024, "combinatorial");

<5-quotient system of 5-class 10 with 520 generators>

gap> phi := EpimorphismQuotientSystem(last);

[f1, f2] -> [a1, a2]

gap> Collected(Factors(Size(Image(phi))));

[[5, 520]]

47.14.3 EpimorphismPGroup

▷ EpimorphismPGroup(fpgrp, p[, cl]) (operation)

GAP - Reference Manual 760

computes an epimorphism from the finitely presented group fpgrp to the largest p-group of
p-class cl which is a quotient of fpgrp . If cl is omitted, the largest finite p-group quotient (of
p-class up to 1000) is determined.

Example
gap> hom:=EpimorphismPGroup(fp,2);

[f1, f2] -> [a1, a2]

gap> Size(Image(hom));

8

gap> hom:=EpimorphismPGroup(fp,3,7);

[f1, f2] -> [a1, a2]

gap> Size(Image(hom));

6561

47.14.4 EpimorphismNilpotentQuotient

▷ EpimorphismNilpotentQuotient(fpgrp[, n]) (function)

returns an epimorphism on the class n finite nilpotent quotient of the finitely presented group
fpgrp . If n is omitted, the largest finite nilpotent quotient (of p-class up to 1000) is taken.

Example
gap> hom:=EpimorphismNilpotentQuotient(fp,7);

[f1, f2] -> [f1*f4, f2*f5]

gap> Size(Image(hom));

52488

A related operation which is also applicable to finitely presented groups is GQuotients (40.9.4),
which computes all epimorphisms from a (finitely presented) group F onto a given (finite) group G .

Example
gap> GQuotients(fp,Group((1,2,3),(1,2)));

[[f1, f2] -> [(1,2), (2,3)], [f1, f2] -> [(2,3), (1,2,3)],

[f1, f2] -> [(1,2,3), (2,3)]]

47.14.5 SolvableQuotient (for a f.p. group and a size)

▷ SolvableQuotient(F, size) (function)

▷ SolvableQuotient(F, primes) (function)

▷ SolvableQuotient(F, tuples) (function)

▷ SQ(F, ...) (function)

This routine calls the solvable quotient algorithm for a finitely presented group F . The quotient
to be found can be specified in the following ways: Specifying an integer size finds a quotient of
size up to size (if such large quotients exist). Specifying a list of primes in primes finds the largest
quotient involving the given primes. Finally tuples can be used to prescribe a chief series.

SQ can be used as a synonym for SolvableQuotient.

GAP - Reference Manual 761

47.14.6 EpimorphismSolvableQuotient

▷ EpimorphismSolvableQuotient(F, param) (function)

computes an epimorphism from the finitely presented group fpgrp to the largest solvable quotient
given by param (specified as in SolvableQuotient (47.14.5)).

Example
gap> f := FreeGroup("a", "b", "c", "d");;

gap> fp := f / [f.1^2, f.2^2, f.3^2, f.4^2, f.1*f.2*f.1*f.2*f.1*f.2,

> f.2*f.3*f.2*f.3*f.2*f.3*f.2*f.3, f.3*f.4*f.3*f.4*f.3*f.4,

> f.1^-1*f.3^-1*f.1*f.3, f.1^-1*f.4^-1*f.1*f.4,

> f.2^-1*f.4^-1*f.2*f.4];;

gap> hom:=EpimorphismSolvableQuotient(fp,300);Size(Image(hom));

[a, b, c, d] -> [f1*f2, f1*f2, f2*f3, f2]

12

gap> hom:=EpimorphismSolvableQuotient(fp,[2,3]);Size(Image(hom));

[a, b, c, d] -> [f1*f2*f4, f1*f2*f6*f8, f2*f3, f2]

1152

47.14.7 LargerQuotientBySubgroupAbelianization

▷ LargerQuotientBySubgroupAbelianization(hom, U) (function)

Let hom a homomorphism from a finitely presented group G to a finite group H and U ≤ H. This
function will –if it exists– return a subgroup S ≤ G , such that the core of S is properly contained in
the kernel of hom as well as in the derived subgroup of V , where V is the pre-image of U under hom .
Thus S exposes a larger quotient of G. If no such subgroup exists, fail is returned.

Example
gap> f:=FreeGroup("x","y","z");;

gap> g:=f/ParseRelators(f,"x^3=y^3=z^5=(xyx^2y^2)^2=(xz)^2=(yz^3)^2=1");

<fp group on the generators [x, y, z]>

gap> l:=LowIndexSubgroupsFpGroup(g,6);;

gap> List(l,IndexInWholeGroup);

[1, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6]

gap> q:=DefiningQuotientHomomorphism(l[6]);;p:=Image(q);Size(p);

Group([(4,5,6), (1,2,3)(4,6,5), (2,4,6,3,5)])

360

gap> s:=LargerQuotientBySubgroupAbelianization(q,SylowSubgroup(p,3));

Group(<fp, no generators known>)

gap> Size(Image(DefiningQuotientHomomorphism(s)));

193273528320

47.15 Abelian Invariants for Subgroups

Using variations of coset enumeration it is possible to compute the abelian invariants of a subgroup
of a finitely presented group without computing a complete presentation for the subgroup in the first
place. Typically, the operation AbelianInvariants (39.16.1) when called for subgroups should
automatically take care of this, but in case you want to have further control about the methods used,
the following operations might be of use.

GAP - Reference Manual 762

47.15.1 AbelianInvariantsSubgroupFpGroup

▷ AbelianInvariantsSubgroupFpGroup(G, H) (function)

AbelianInvariantsSubgroupFpGroup is a synonym for
AbelianInvariantsSubgroupFpGroupRrs (47.15.3).

47.15.2 AbelianInvariantsSubgroupFpGroupMtc

▷ AbelianInvariantsSubgroupFpGroupMtc(G, H) (function)

uses the Modified Todd-Coxeter method to compute the abelian invariants of a subgroup H of a
finitely presented group G .

47.15.3 AbelianInvariantsSubgroupFpGroupRrs

▷ AbelianInvariantsSubgroupFpGroupRrs(G, H) (function)

▷ AbelianInvariantsSubgroupFpGroupRrs(G, table) (function)

uses the Reduced Reidemeister-Schreier method to compute the abelian invariants of a subgroup
H of a finitely presented group G .

Alternatively to the subgroup H , its coset table table in G may be given as second argument.

47.15.4 AbelianInvariantsNormalClosureFpGroup

▷ AbelianInvariantsNormalClosureFpGroup(G, H) (function)

AbelianInvariantsNormalClosureFpGroup is a synonym for
AbelianInvariantsNormalClosureFpGroupRrs (47.15.5).

47.15.5 AbelianInvariantsNormalClosureFpGroupRrs

▷ AbelianInvariantsNormalClosureFpGroupRrs(G, H) (function)

uses the Reduced Reidemeister-Schreier method to compute the abelian invariants of the normal
closure of a subgroup H of a finitely presented group G . See 48.2 for details on the different strategies.

The following example shows a calculation for the Coxeter group B1. This calculation and a
similar one for B0 have been used to prove that B′

1/B′′
1
∼= Z9

2 ×Z3 and B′
0/B′′

0
∼= Z91

2 ×Z27 as stated in
in [FJNT95, Proposition 5].

Example
gap> # Define the Coxeter group E1.

gap> F := FreeGroup("x1", "x2", "x3", "x4", "x5");

<free group on the generators [x1, x2, x3, x4, x5]>

gap> x1 := F.1;; x2 := F.2;; x3 := F.3;; x4 := F.4;; x5 := F.5;;

gap> rels := [x1^2, x2^2, x3^2, x4^2, x5^2,

> (x1 * x3)^2, (x2 * x4)^2, (x1 * x2)^3, (x2 * x3)^3, (x3 * x4)^3,

> (x4 * x1)^3, (x1 * x5)^3, (x2 * x5)^2, (x3 * x5)^3, (x4 * x5)^2,

> (x1 * x2 * x3 * x4 * x3 * x2)^2];;

gap> E1 := F / rels;

GAP - Reference Manual 763

<fp group on the generators [x1, x2, x3, x4, x5]>

gap> x1 := E1.1;; x2 := E1.2;; x3 := E1.3;; x4 := E1.4;; x5 := E1.5;;

gap> # Get normal subgroup generators for B1.

gap> H := Subgroup(E1, [x5 * x2^-1, x5 * x4^-1]);;

gap> # Compute the abelian invariants of B1/B1'.

gap> A := AbelianInvariantsNormalClosureFpGroup(E1, H);

[2, 2, 2, 2, 2, 2, 2, 2]

gap> # Compute a presentation for B1.

gap> P := PresentationNormalClosure(E1, H);

<presentation with 18 gens and 46 rels of total length 132>

gap> SimplifyPresentation(P);

#I there are 8 generators and 30 relators of total length 148

gap> B1 := FpGroupPresentation(P);

<fp group on the generators [_x1, _x2, _x3, _x4, _x6, _x7, _x8, _x11

]>

gap> # Compute normal subgroup generators for B1'.

gap> gens := GeneratorsOfGroup(B1);;

gap> numgens := Length(gens);;

gap> comms := [];;

gap> for i in [1 .. numgens - 1] do

> for j in [i+1 .. numgens] do

> Add(comms, Comm(gens[i], gens[j]));

> od;

> od;

gap> # Compute the abelian invariants of B1'/B1".

gap> K := Subgroup(B1, comms);;

gap> A := AbelianInvariantsNormalClosureFpGroup(B1, K);

[0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2]

47.16 Testing Finiteness of Finitely Presented Groups

As a consequence of the algorithmic insolvabilities mentioned in the introduction to this chapter, there
cannot be a general method that will test whether a given finitely presented group is actually finite.

Therefore testing the finiteness of a finitely presented group can be problematic. What GAP
actually does upon a call of IsFinite (30.4.2) (or if it is –probably implicitly– asked for a faithful
permutation representation) is to test whether it can find (via coset enumeration) a cyclic subgroup of
finite index. If it can, it rewrites the presentation to this subgroup. Since the subgroup is cyclic, its
size can be checked easily from the resulting presentation, the size of the whole group is the product
of the index and the subgroup size. Since however no bound for the index of such a subgroup (if any
exist) is known, such a test might continue unsuccessfully until memory is exhausted.

On the other hand, a couple of methods exist, that might prove that a group is infinite. Again, none
is guaranteed to work in every case:

The first method is to find (for example via the low index algorithm,
see LowIndexSubgroupsFpGroup (47.10.1)) a subgroup U such that [U : U ′] is infinite. If U
has finite index, this can be checked by IsInfiniteAbelianizationGroup (47.16.1).

Note that this test has been done traditionally by checking the AbelianInvariants (39.16.1)
(see section 47.15) of U , IsInfiniteAbelianizationGroup (47.16.1) does a similar calculation
but stops as soon as it is known whether 0 is an invariant without computing the actual values. This
can be notably faster.

GAP - Reference Manual 764

Another method is based on p-group quotients, see NewmanInfinityCriterion (47.16.2).

47.16.1 IsInfiniteAbelianizationGroup

▷ IsInfiniteAbelianizationGroup(G) (property)

returns true if the commutator factor group G/G ′ is infinite. This might be done without computing
the full structure of the commutator factor group.

47.16.2 NewmanInfinityCriterion

▷ NewmanInfinityCriterion(G, p) (function)

Let G be a finitely presented group and p a prime that divides the order of the commutator factor
group of G . This function applies an infinity criterion due to M. F. Newman [New90] to G . (See [Joh97,
chapter 16] for a more explicit description.) It returns true if the criterion succeeds in proving that G
is infinite and fail otherwise.

Note that the criterion uses the number of generators and relations in the presentation of G . Re-
duction of the presentation via Tietze transformations (IsomorphismSimplifiedFpGroup (47.12.1))
therefore might produce an isomorphic group, for which the criterion will work better.

Example
gap> g:=FibonacciGroup(2,9);

<fp group on the generators [f1, f2, f3, f4, f5, f6, f7, f8, f9]>

gap> hom:=EpimorphismNilpotentQuotient(g,2);;

gap> k:=Kernel(hom);;

gap> Index(g,k);

152

gap> AbelianInvariants(k);

[5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]

gap> NewmanInfinityCriterion(Kernel(hom),5);

true

This proves that the subgroup k (and thus the whole group g) is infinite. (This is the original
example from [New90].)

Chapter 48

Presentations and Tietze Transformations

A finite presentation describes a group, but usually there is a multitude of presentations that describe
isomorphic groups. Therefore a presentation in GAP is different from a finitely presented group
though there are ways to translate between both.

An important feature of presentations is that they can be modified (see sections 48.5 to 48.8).
If you only want to get new presentations for subgroups of a finitely presented group (and do

not want to manipulate presentations yourself), chances are that the operation IsomorphismFpGroup

(47.11.1) already does what you want (see 47.12).

48.1 Creating Presentations

Most of the functions creating presentations and all functions performing Tietze transformations on
them sort the relators by increasing lengths. The function PresentationFpGroup (48.1.1) is an
exception because it is intended to reflect the relators that were used to define the involved f. p. group.
You may use the command TzSort (48.1.2) to sort the presentation.

48.1.1 PresentationFpGroup

▷ PresentationFpGroup(G[, printlevel]) (function)

creates a presentation, i. e., a Tietze object, for the given finitely presented group G . This pre-
sentation will be exactly as the presentation of G and no initial Tietze transformations are applied to
it.

The optional printlevel parameter can be used to restrict or to extend the amount of output
provided by Tietze transformation commands when being applied to the created presentation. The
default value 1 is designed for interactive use and implies explicit messages to be displayed by most
of these commands. A printlevel value of 0 will suppress these messages, whereas a printlevel
value of 2 will enforce some additional output.

Example
gap> f := FreeGroup("a", "b");

<free group on the generators [a, b]>

gap> g := f / [f.1^3, f.2^2, (f.1*f.2)^3];

<fp group on the generators [a, b]>

gap> p := PresentationFpGroup(g);

<presentation with 2 gens and 3 rels of total length 11>

765

GAP - Reference Manual 766

48.1.2 TzSort

▷ TzSort(P) (function)

sorts the relators of the given presentation P by increasing lengths. There is no particular ordering
defined for the relators of equal length. Note that TzSort does not return a new object. It changes the
given presentation.

48.1.3 GeneratorsOfPresentation

▷ GeneratorsOfPresentation(P) (function)

returns a list of free generators that is a shallow copy (see ShallowCopy (12.7.1)) of the current
generators of the presentation P .

48.1.4 FpGroupPresentation

▷ FpGroupPresentation(P[, nam]) (function)

constructs an f. p. group as defined by the given Tietze presentation P .
Example

gap> h := FpGroupPresentation(p);

<fp group on the generators [a, b]>

gap> h = g;

false

48.1.5 PresentationViaCosetTable

▷ PresentationViaCosetTable(G[, F, words]) (function)

constructs a presentation for a given concrete finite group. It applies the relations finding algorithm
which has been described in [Can73] and [Neu82]. It automatically applies Tietze transformations to
the presentation found.

If only a group G has been specified, the single stage algorithm is applied.
The operation IsomorphismFpGroup (47.11.1) in contrast uses a multiple-stage algo-

rithm using a chief series and stabilizer chains. It usually should be used rather than
PresentationViaCosetTable. (It does not apply Tietze transformations automatically.)

If the two stage algorithm is to be used, PresentationViaCosetTable expects a subgroup H of
G to be provided in form of two additional arguments F and words , where F is a free group with the
same number of generators as G , and words is a list of words in the generators of F which supply a
list of generators of H if they are evaluated as words in the corresponding generators of G .

Example
gap> G := GeneralLinearGroup(2, 7);

GL(2,7)

gap> GeneratorsOfGroup(G);

[[[Z(7), 0*Z(7)], [0*Z(7), Z(7)^0]],

[[Z(7)^3, Z(7)^0], [Z(7)^3, 0*Z(7)]]]

gap> Size(G);

2016

GAP - Reference Manual 767

gap> P := PresentationViaCosetTable(G);

<presentation with 2 gens and 5 rels of total length 46>

gap> TzPrintRelators(P);

#I 1. f2^3

#I 2. f1^6

#I 3. (f1*f2)^6

#I 4. f1*f2*f1^-1*f2*f1*f2^-1*f1^-1*f2*f1*f2*f1^-1*f2^-1

#I 5. f1^-3*f2*f1*f2*(f1^-1*f2^-1)^2*f1^-2*f2

The two stage algorithm saves an essential amount of space by constructing two coset tables of
lengths |H| and |G|/|H| instead of just one coset table of length |G|. The next example shows an
application of this option in the case of a subgroup of size 7920 and index 12 in a permutation group
of size 95040.

Example
gap> M12 := Group([(1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6),

> (1,12)(2,11)(3,6)(4,8)(5,9)(7,10)], ());;

gap> F := FreeGroup("a", "b", "c");

<free group on the generators [a, b, c]>

gap> words := [F.1, F.2];

[a, b]

gap> P := PresentationViaCosetTable(M12, F, words);

<presentation with 3 gens and 10 rels of total length 97>

gap> G := FpGroupPresentation(P);

<fp group on the generators [a, b, c]>

gap> RelatorsOfFpGroup(G);

[c^2, b^4, (a*c)^3, (a*b^-2)^3, a^11,

a^2*b*a^-2*b^-1*(b^-1*a)^2*a*b^-1, (a*(b*a^-1)^2*b^-1)^2,

a^2*b*a^2*b^-2*a^-1*b*(a^-1*b^-1)^2,

a^2*b^-1*a^-1*b^-1*a*c*b*c*(a*b)^2, a^2*(a^2*b)^2*a^-2*c*a*b*a^-1*c

]

Before it is returned, the resulting presentation is being simplified by appropriate calls of the
function SimplifyPresentation (48.6.2) (see 48.6), but without allowing any eliminations of gen-
erators. This restriction guarantees that we get a bijection between the list of generators of G and the
list of generators in the presentation. Hence, if the generators of G are redundant and if you don’t care
for the bijection, you may get a shorter presentation by calling the function SimplifyPresentation

(48.6.2), now without this restriction, once more yourself.
Example

gap> H := Group(

> [(2,5,3), (2,7,5), (1,8,4), (1,8,6), (4,8,6), (3,5,7)], ());;

gap> P := PresentationViaCosetTable(H);

<presentation with 6 gens and 12 rels of total length 42>

gap> SimplifyPresentation(P);

#I there are 4 generators and 10 relators of total length 36

If you apply the function FpGroupPresentation (48.1.4) to the resulting presentation
you will get a finitely presented group isomorphic to G . Note, however, that the function
IsomorphismFpGroup (47.11.1) is recommended for this purpose.

GAP - Reference Manual 768

48.1.6 SimplifiedFpGroup

▷ SimplifiedFpGroup(G) (function)

applies Tietze transformations to a copy of the presentation of the given finitely presented group
G in order to reduce it with respect to the number of generators, the number of relators, and the relator
lengths.

SimplifiedFpGroup returns a group isomorphic to the given one with a presentation which has
been tried to simplify via Tietze transformations.

If the connection to the original group is important, then the operation
IsomorphismSimplifiedFpGroup (47.12.1) should be used instead.

Example
gap> F6 := FreeGroup(6, "G");;

gap> G := F6 / [F6.1^2, F6.2^2, F6.4*F6.6^-1, F6.5^2, F6.6^2,

> F6.1*F6.2^-1*F6.3, F6.1*F6.5*F6.3^-1, F6.2*F6.4^-1*F6.3,

> F6.3*F6.4*F6.5^-1, F6.1*F6.6*F6.3^-2, F6.3^4];;

gap> H := SimplifiedFpGroup(G);

<fp group on the generators [G1, G3]>

gap> RelatorsOfFpGroup(H);

[G1^2, (G1*G3^-1)^2, G3^4]

In fact, the command
Example

H := SimplifiedFpGroup(G);

is an abbreviation of the command sequence
Example

P := PresentationFpGroup(G, 0);;

SimplifyPresentation(P);

H := FpGroupPresentation(P);

which applies a rather simple-minded strategy of Tietze transformations to the intermediate pre-
sentation P . If, for some concrete group, the resulting presentation is unsatisfying, then you should
try a more sophisticated, interactive use of the available Tietze transformation commands (see 48.6).

48.2 Subgroup Presentations

48.2.1 PresentationSubgroup

▷ PresentationSubgroup(G, H[, string]) (function)

PresentationSubgroup is a synonym for PresentationSubgroupRrs (48.2.2).

48.2.2 PresentationSubgroupRrs

▷ PresentationSubgroupRrs(G, H[, string]) (function)

▷ PresentationSubgroupRrs(G, table[, string]) (function)

GAP - Reference Manual 769

uses the Reduced Reidemeister-Schreier method to compute a presentation P for a subgroup H

of a finitely presented group G . The generators in the resulting presentation will be named string1,
string2, . . ., the default string is "_x". You may access the i-th of these generators by P!.i.

Alternatively to the subgroup H , its coset table table in G may be given as second argument.
Example

gap> f := FreeGroup("a", "b");;

gap> g := f / [f.1^2, f.2^3, (f.1*f.2)^5];

<fp group on the generators [a, b]>

gap> g1 := Size(g);

60

gap> u := Subgroup(g, [g.1, g.1^g.2]);

Group([a, b^-1*a*b])

gap> p := PresentationSubgroup(g, u, "g");

<presentation with 3 gens and 4 rels of total length 12>

gap> gens := GeneratorsOfPresentation(p);

[g1, g2, g3]

gap> TzPrintRelators(p);

#I 1. g1^2

#I 2. g2^2

#I 3. g3*g2*g1

#I 4. g3^5

Note that you cannot call the generators by their names. These names are not variables, but just
display figures. So, if you want to access the generators by their names, you first will have to introduce
the respective variables and to assign the generators to them.

Example
gap> gens[1] = g1;

false

gap> g1;

60

gap> g1 := gens[1];; g2 := gens[2];; g3 := gens[3];;

gap> g1;

g1

The Reduced Reidemeister-Schreier algorithm is a modification of the Reidemeister-Schreier al-
gorithm of George Havas [Hav74]. It was proposed by Joachim Neubüser and first implemented in
1986 by Andrea Lucchini and Volkmar Felsch in the SPAS system [SPA89]. Like the Reidemeis-
ter-Schreier algorithm of George Havas, it needs only the presentation of G and a coset table of H in
G to construct a presentation of H .

Whenever you call the command PresentationSubgroupRrs, it first obtains a coset table of H
in G if not given. Next, a set of generators of H is determined by reconstructing the coset table and
introducing in that process as many Schreier generators of H in G as are needed to do a Felsch strategy
coset enumeration without any coincidences. (In general, though containing redundant generators,
this set will be much smaller than the set of all Schreier generators. That is why we call the method
the Reduced Reidemeister-Schreier.)

After having constructed this set of primary subgroup generators, say, the coset table is extended
to an augmented coset table which describes the action of the group generators on coset representa-
tives, i.e., on elements instead of cosets. For this purpose, suitable words in the (primary) subgroup
generators have to be associated to the coset table entries. In order to keep the lengths of these words

GAP - Reference Manual 770

short, additional secondary subgroup generators are introduced as abbreviations of subwords. Their
number may be large.

Finally, a Reidemeister rewriting process is used to get defining relators for H from the relators of
G . As the resulting presentation of H is a presentation on primary and secondary generators, in general
you will have to simplify it by appropriate Tietze transformations (see 48.6) or by the command
DecodeTree (48.10.1) before you can use it. Therefore it is returned in the form of a presentation, P
say.

Compared with the Modified Todd-Coxeter method described below, the Reduced Reidemeis-
ter-Schreier method (as well as Havas’ original Reidemeister-Schreier program) has the advantage
that it does not require generators of H to be given if a coset table of H in G is known. This
provides a possibility to compute a presentation of the normal closure of a given subgroup (see
PresentationNormalClosureRrs (48.2.5)).

For certain applications you may be interested in getting not only just a presentation for H , but also
a relation between the involved generators of H and the generators of G . The subgroup generators in
the presentation are sorted such that the primary generators precede the secondary ones. Moreover, for
each secondary subgroup generator there is a relator in the presentation which expresses this generator
as a word in preceding ones. Hence, all we need in addition is a list of words in the generators of
G which express the primary subgroup generators. In fact, such a list is provided in the attribute
PrimaryGeneratorWords (48.2.3) of the resulting presentation.

48.2.3 PrimaryGeneratorWords

▷ PrimaryGeneratorWords(P) (attribute)

is an attribute of the presentation P which holds a list of words in the associated group generators
(of the underlying free group) which express the primary subgroup generators of P .

Example
gap> PrimaryGeneratorWords(p);

[a, b^-1*a*b]

48.2.4 PresentationSubgroupMtc

▷ PresentationSubgroupMtc(G, H[, string][, print, level]) (function)

uses the Modified Todd-Coxeter coset representative enumeration method to compute a presen-
tation P for a subgroup H of a finitely presented group G . The presentation returned is in generators
corresponding to the generators of H . The generators in the resulting presentation will be named
string1, string2, . . ., the default string is "_x". You may access the i-th of these generators by
P!.i.

The default print level is 1. If the print level is set to 0, then the printout of the implicitly called
function DecodeTree (48.10.1) will be suppressed.

Example
gap> p := PresentationSubgroupMtc(g, u);

<presentation with 2 gens and 3 rels of total length 14>

The so called Modified Todd-Coxeter method was proposed, in slightly different forms, by Nathan
S. Mendelsohn and William O. J. Moser in 1966. Moser’s method was proved in [BC76]. It has been
generalized to cover a broad spectrum of different versions (see the survey [Neu82]).

GAP - Reference Manual 771

The Modified Todd-Coxeter method performs an enumeration of coset representatives. It proceeds
like an ordinary coset enumeration (see 47.6), but as the product of a coset representative by a group
generator or its inverse need not be a coset representative itself, the Modified Todd-Coxeter has to
store a kind of correction element for each coset table entry. Hence it builds up a so called augmented
coset table of H in G consisting of the ordinary coset table and a second table in parallel which contains
the associated subgroup elements.

Theoretically, these subgroup elements could be expressed as words in the given generators of H ,
but in general these words tend to become unmanageable because of their enormous lengths. There-
fore, a highly redundant list of subgroup generators is built up starting from the given (“primary”)
generators of H and adding additional (“secondary”) generators which are defined as abbreviations of
suitable words of length two in the preceding generators such that each of the subgroup elements in
the augmented coset table can be expressed as a word of length at most one in the resulting (primary
and secondary) subgroup generators.

Then a rewriting process (which is essentially a kind of Reidemeister rewriting process) is used to
get relators for H from the defining relators of G .

The resulting presentation involves all the primary, but not all the secondary generators of H . In
fact, it contains only those secondary generators which explicitly occur in the augmented coset table.
If we extended this presentation by those secondary generators which are not yet contained in it as
additional generators, and by the definitions of all secondary generators as additional relators, we
would get a presentation of H , but, in general, we would end up with a large number of generators and
relators.

On the other hand, if we avoid this extension, the current presentation will not neces-
sarily define H although we have used the same rewriting process which in the case of the
PresentationSubgroupRrs (48.2.2) command computes a defining set of relators for H from an
augmented coset table and defining relators of G . The different behaviour here is caused by the fact
that coincidences may have occurred in the Modified Todd-Coxeter coset enumeration.

To overcome this problem without extending the presentation by all secondary generators, the
PresentationSubgroupMtc command applies the so called decoding tree algorithm which pro-
vides a more economical approach. The reader is strongly recommended to carefully read section
48.10 where this algorithm is described in more detail. Here we will only mention that this proce-
dure may add a lot of intermediate generators and relators (and even change the isomorphism type)
in a process which in fact eliminates all secondary generators from the presentation and hence fi-
nally provides a presentation of H on the primary, i.e., the originally given, generators of H . This
is a remarkable advantage of the command PresentationSubgroupMtc compared to the command
PresentationSubgroupRrs (48.2.2). But note that, for some particular subgroup H , the Reduced
Reidemeister-Schreier method might quite well produce a more concise presentation.

The resulting presentation is returned in the form of a presentation, P say.
As the function PresentationSubgroupRrs (48.2.2) described above (see there for details), the

function PresentationSubgroupMtc returns a list of the primary subgroup generators of H in the
attribute PrimaryGeneratorWords (48.2.3) of P. In fact, this list is not very exciting here because
it is just a shallow copy of the value of GeneratorsOfPresentation (48.1.3) of H , however it is
needed to guarantee a certain consistency between the results of the different functions for computing
subgroup presentations.

Though the decoding tree routine already involves a lot of Tietze transformations, we recommend
that you try to further simplify the resulting presentation by appropriate Tietze transformations (see
48.6).

GAP - Reference Manual 772

48.2.5 PresentationNormalClosureRrs

▷ PresentationNormalClosureRrs(G, H[, string]) (function)

uses the Reduced Reidemeister-Schreier method to compute a presentation P for the normal clo-
sure of a subgroup H of a finitely presented group G . The generators in the resulting presentation
will be named string1, string2, . . ., the default string is "_x". You may access the i-th of these
generators by P!.i.

48.2.6 PresentationNormalClosure

▷ PresentationNormalClosure(G, H[, string]) (function)

PresentationNormalClosure is a synonym for PresentationNormalClosureRrs (48.2.5).

48.3 Relators in a Presentation

In order to speed up the Tietze transformation routines, each relator in a presentation is internally
represented by a list of positive or negative generator numbers, i.e., each factor of the proper GAP
word is represented by the position number of the corresponding generator with respect to the current
list of generators, or by the respective negative number, if the factor is the inverse of a generator. Note
that the numbering of the generators in Tietze words is always relative to a generator list and bears no
relation to the internal numbering of generators in a family of associative words.

48.3.1 TietzeWordAbstractWord

▷ TietzeWordAbstractWord(word, fgens) (operation)

assumes fgens to be a list of free group generators and word to be an abstract word in these
generators. It converts word into a Tietze word, i. e., a list of positive or negative generator numbers.

This function simply calls LetterRepAssocWord (37.6.8).

48.3.2 AbstractWordTietzeWord

▷ AbstractWordTietzeWord(word, fgens) (function)

assumes fgens to be a list of free group generators and word to be a Tietze word in these gener-
ators, i. e., a list of positive or negative generator numbers. It converts word to an abstract word.

This function simply calls AssocWordByLetterRep (37.6.9).
Example

gap> F := FreeGroup("a", "b", "c" ,"d");

<free group on the generators [a, b, c, d]>

gap> tzword := TietzeWordAbstractWord(

> Comm(F.4,F.2) * (F.3^2 * F.2)^-1, GeneratorsOfGroup(F){[2,3,4]});

[-3, -1, 3, -2, -2]

gap> AbstractWordTietzeWord(tzword, GeneratorsOfGroup(F){[2,3,4]});

d^-1*b^-1*d*c^-2

GAP - Reference Manual 773

48.4 Printing Presentations

Whenever you create a presentation P, or assign it to a variable, GAP will respond by printing P.
However, as P may contain a lot of generators and many relators of large length, it would be annoying
if the standard print facilities displayed all this information in detail. So they restrict the printout to
just one line of text containing the number of generators, the number of relators, and the total length of
all relators of P. As compensation, GAP offers some special print commands which display various
details of a presentation. Note that there is also a function TzPrintOptions (48.11.2). It is described
in Section 48.11.

48.4.1 TzPrintGenerators

▷ TzPrintGenerators(P[, list]) (function)

prints the generators of the given Tietze presentation P together with the number of their oc-
currences in the relators. The optional second argument can be used to specify the numbers of the
generators to be printed. Default: all generators are printed.

Example
gap> G := Group([(1,2,3,4,5), (2,3,5,4), (1,6)(3,4)], ());

Group([(1,2,3,4,5), (2,3,5,4), (1,6)(3,4)])

gap> P := PresentationViaCosetTable(G);

<presentation with 3 gens and 6 rels of total length 28>

gap> TzPrintGenerators(P);

#I 1. f1 11 occurrences

#I 2. f2 10 occurrences

#I 3. f3 7 occurrences involution

48.4.2 TzPrintRelators

▷ TzPrintRelators(P[, list]) (function)

prints the relators of the given Tietze presentation P . The optional second argument list can be
used to specify the numbers of the relators to be printed. Default: all relators are printed.

Example
gap> TzPrintRelators(P);

#I 1. f3^2

#I 2. f2^4

#I 3. (f2*f3)^2

#I 4. f1^5

#I 5. f1^2*f2*f1*f2^-1

#I 6. f1*f2^-2*f3*f1*f3*f1^-1*f3

48.4.3 TzPrintLengths

▷ TzPrintLengths(P) (function)

prints just a list of all relator lengths of the given presentation P .
Example

gap> TzPrintLengths(P);

[2, 4, 4, 5, 5, 8]

GAP - Reference Manual 774

48.4.4 TzPrintStatus

▷ TzPrintStatus(P[, norepeat]) (function)

is an internal function which is used by the Tietze transformation routines to print the number of
generators, the number of relators, and the total length of all relators in the given Tietze presentation
P . If norepeat is specified as true, the printing is suppressed if none of the three values has changed
since the last call.

Example
gap> TzPrintStatus(P);

#I there are 3 generators and 6 relators of total length 28

48.4.5 TzPrintPresentation

▷ TzPrintPresentation(P) (function)

prints the generators and the relators of a Tietze presentation. In fact, it is an abbreviation for the
successive call of the three commands TzPrintGenerators (48.4.1), TzPrintRelators (48.4.2),
and TzPrintStatus (48.4.4), each with the presentation P as only argument.

48.4.6 TzPrint

▷ TzPrint(P[, list]) (function)

prints the current generators of the given presentation P , and prints the relators of P as Tietze
words (without converting them back to abstract words as the functions TzPrintRelators (48.4.2)
and TzPrintPresentation (48.4.5) do). The optional second argument can be used to specify the
numbers of the relators to be printed. Default: all relators are printed.

Example
gap> TzPrint(P);

#I generators: [f1, f2, f3]

#I relators:

#I 1. 2 [3, 3]

#I 2. 4 [2, 2, 2, 2]

#I 3. 4 [2, 3, 2, 3]

#I 4. 5 [1, 1, 1, 1, 1]

#I 5. 5 [1, 1, 2, 1, -2]

#I 6. 8 [1, -2, -2, 3, 1, 3, -1, 3]

48.4.7 TzPrintPairs

▷ TzPrintPairs(P[, n]) (function)

prints the n most often occurring relator subwords of the form ab, where a and b are different
generators or inverses of generators, together with the number of their occurrences. The default value
of n is 10. A value n = 0 is interpreted as infinity (18.2.1).

The function TzPrintPairs is useful in the context of Tietze transformations which introduce
new generators by substituting words in the current generators (see 48.8). It gives some evidence for
an appropriate choice of a word of length 2 to be substituted.

GAP - Reference Manual 775

Example
gap> TzPrintPairs(P, 3);

#I 1. 3 occurrences of f2^-1 * f3

#I 2. 2 occurrences of f2 * f3

#I 3. 2 occurrences of f1^-1 * f3

48.5 Changing Presentations

The functions described in this section may be used to change a presentation. Note, however, that in
general they do not perform Tietze transformations because they change or may change the isomor-
phism type of the group defined by the presentation.

48.5.1 AddGenerator

▷ AddGenerator(P) (function)

extends the presentation P by a new generator.
Let i be the smallest positive integer which has not yet been used as a generator number in the

given presentation. AddGenerator defines a new abstract generator xi with the name "_xi" and adds
it to the list of generators of P .

You may access the generator xi by typing P!.i. However, this is only
practicable if you are running an interactive job because you have to know the
value of i. Hence the proper way to access the new generator is to write
GeneratorsOfPresentation(P)[Length(GeneratorsOfPresentation(P))].

Example
gap> G := PerfectGroup(IsFpGroup, 120);;

gap> H := Subgroup(G, [G.1^G.2, G.3]);;

gap> P := PresentationSubgroup(G, H);

<presentation with 4 gens and 7 rels of total length 21>

gap> AddGenerator(P);

#I now the presentation has 5 generators, the new generator is _x7

gap> gens := GeneratorsOfPresentation(P);

[_x1, _x2, _x4, _x5, _x7]

gap> gen := gens[Length(gens)];

_x7

gap> gen = P!.7;

true

48.5.2 TzNewGenerator

▷ TzNewGenerator(P) (function)

is an internal function which defines a new abstract generator and adds it to the presentation P . It
is called by AddGenerator (48.5.1) and by several Tietze transformation commands. As it does not
know which global lists have to be kept consistent, you should not call it. Instead, you should call the
function AddGenerator (48.5.1), if needed.

GAP - Reference Manual 776

48.5.3 AddRelator

▷ AddRelator(P, word) (function)

adds the relator word to the presentation P , probably changing the group defined by P . word must
be an abstract word in the generators of P .

48.5.4 RemoveRelator

▷ RemoveRelator(P, n) (function)

removes the n-th relator from the presentation P , probably changing the group defined by P .

48.6 Tietze Transformations

The commands in this section can be used to modify a presentation by Tietze transformations.
In general, the aim of such modifications will be to simplify the given presentation, i.e., to reduce

the number of generators and the number of relators without increasing too much the sum of all relator
lengths which we will call the total length of the presentation. Depending on the concrete presentation
under investigation one may end up with a nice, short presentation or with a very huge one.

Unfortunately there is no algorithm which could be applied to find the shortest presentation which
can be obtained by Tietze transformations from a given one. Therefore, what GAP offers are some
lower-level Tietze transformation commands and, in addition, some higher-level commands which
apply the lower-level ones in a kind of default strategy which of course cannot be the optimal choice
for all presentations.

The design of these commands follows closely the concept of the ANU Tietze transformation
program [Hav69] and its later revisions (see [HKRR84], [Rob88]).

48.6.1 TzGo

▷ TzGo(P[, silent]) (function)

automatically performs suitable Tietze transformations of the given presentation P . It is perhaps
the most convenient one among the interactive Tietze transformation commands. It offers a kind of
default strategy which, in general, saves you from explicitly calling the lower-level commands it
involves.

If silent is specified as true, the printing of the status line by TzGo is suppressed if the Tietze
option printLevel (see 48.11) has a value less than 2.

48.6.2 SimplifyPresentation

▷ SimplifyPresentation(P) (function)

SimplifyPresentation is a synonym for TzGo (48.6.1).
Example

gap> F2 := FreeGroup("a", "b");;

gap> G := F2 / [F2.1^9, F2.2^2, (F2.1*F2.2)^4, (F2.1^2*F2.2)^3];;

gap> a := G.1;; b := G.2;;

GAP - Reference Manual 777

gap> H := Subgroup(G, [(a*b)^2, (a^-1*b)^2]);;

gap> Index(G, H);

408

gap> P := PresentationSubgroup(G, H);

<presentation with 8 gens and 36 rels of total length 111>

gap> PrimaryGeneratorWords(P);

[b, a*b*a]

gap> TzOptions(P).protected := 2;

2

gap> TzOptions(P).printLevel := 2;

2

gap> SimplifyPresentation(P);

#I eliminating _x7 = _x5^-1

#I eliminating _x5 = _x4

#I eliminating _x18 = _x3

#I eliminating _x8 = _x3

#I there are 4 generators and 8 relators of total length 21

#I there are 4 generators and 7 relators of total length 18

#I eliminating _x4 = _x3^-1*_x2^-1

#I eliminating _x3 = _x2*_x1^-1

#I there are 2 generators and 4 relators of total length 14

#I there are 2 generators and 4 relators of total length 13

#I there are 2 generators and 3 relators of total length 9

gap> TzPrintRelators(P);

#I 1. _x1^2

#I 2. _x2^3

#I 3. (_x2*_x1)^2

Roughly speaking, TzGo (48.6.1) consists of a loop over a procedure which involves two phases:
In the search phase it calls TzSearch (48.7.2) and TzSearchEqual (48.7.3) described below which
try to reduce the relator lengths by substituting common subwords of relators, in the elimination
phase it calls the command TzEliminate (48.7.1) described below (or, more precisely, a subroutine
of TzEliminate (48.7.1) in order to save some administrative overhead) which tries to eliminate
generators that can be expressed as words in the remaining generators.

If TzGo (48.6.1) succeeds in reducing the number of generators, the number of relators, or the
total length of all relators, it displays the new status before returning (provided that you did not set the
print level to zero). However, it does not provide any output if all these three values have remained
unchanged, even if the command TzSearchEqual (48.7.3) involved has changed the presentation such
that another call of TzGo (48.6.1) might provide further progress. Hence, in such a case it makes sense
to repeat the call of the command for several times (or to call the command TzGoGo (48.6.3) instead).

48.6.3 TzGoGo

▷ TzGoGo(P) (function)

calls the command TzGo (48.6.1) again and again until it does not reduce the presentation any
more.

The result of the Tietze transformations can be affected substantially by the options parameters
(see 48.11). To demonstrate the effect of the eliminationsLimit parameter, we will give an example
in which we handle a subgroup of index 240 in a group of order 40320 given by a presentation due

GAP - Reference Manual 778

to B. H. Neumann. First we construct a presentation of the subgroup, and then we apply to it the
command TzGoGo for different values of the parameter eliminationsLimit (including the default
value 100). In fact, we also alter the printLevel parameter, but this is only done in order to suppress
most of the output. In all cases the resulting presentations cannot be improved any more by applying
the command TzGoGo again, i.e., they are the best results which we can get without substituting new
generators.

Example
gap> F3 := FreeGroup("a", "b", "c");;

gap> G := F3 / [F3.1^3, F3.2^3, F3.3^3, (F3.1*F3.2)^5,

> (F3.1^-1*F3.2)^5, (F3.1*F3.3)^4, (F3.1*F3.3^-1)^4,

> F3.1*F3.2^-1*F3.1*F3.2*F3.3^-1*F3.1*F3.3*F3.1*F3.3^-1,

> (F3.2*F3.3)^3, (F3.2^-1*F3.3)^4];;

gap> a := G.1;; b := G.2;; c := G.3;;

gap> H := Subgroup(G, [a, c]);;

gap> for i in [61, 62, 63, 90, 97] do

> Pi := PresentationSubgroup(G, H);

> TzOptions(Pi).eliminationsLimit := i;

> Print("#I eliminationsLimit set to ",i,"\n");

> TzOptions(Pi).printLevel := 0;

> TzGoGo(Pi);

> TzPrintStatus(Pi);

> od;

#I eliminationsLimit set to 61

#I there are 2 generators and 104 relators of total length 7012

#I eliminationsLimit set to 62

#I there are 2 generators and 7 relators of total length 56

#I eliminationsLimit set to 63

#I there are 3 generators and 97 relators of total length 5998

#I eliminationsLimit set to 90

#I there are 3 generators and 11 relators of total length 68

#I eliminationsLimit set to 97

#I there are 4 generators and 109 relators of total length 3813

Similarly, we demonstrate the influence of the saveLimit parameter by just continuing the pre-
ceding example for some different values of the saveLimit parameter (including its default value 10),
but without changing the eliminationsLimit parameter which keeps its default value 100.

Example
gap> for i in [7 .. 11] do

> Pi := PresentationSubgroup(G, H);

> TzOptions(Pi).saveLimit := i;

> Print("#I saveLimit set to ", i, "\n");

> TzOptions(Pi).printLevel := 0;

> TzGoGo(Pi);

> TzPrintStatus(Pi);

> od;

#I saveLimit set to 7

#I there are 3 generators and 99 relators of total length 2713

#I saveLimit set to 8

#I there are 2 generators and 103 relators of total length 11982

#I saveLimit set to 9

#I there are 2 generators and 6 relators of total length 41

GAP - Reference Manual 779

#I saveLimit set to 10

#I there are 3 generators and 118 relators of total length 13713

#I saveLimit set to 11

#I there are 3 generators and 11 relators of total length 58

48.7 Elementary Tietze Transformations

48.7.1 TzEliminate

▷ TzEliminate(P[, gen]) (function)

▷ TzEliminate(P[, n]) (function)

tries to eliminate a generator from a presentation P via Tietze transformations.
Any relator which contains some generator just once can be used to substitute that generator by a

word in the remaining generators. If such generators and relators exist, then TzEliminate chooses a
generator for which the product of its number of occurrences and the length of the substituting word
is minimal, and then it eliminates this generator from the presentation, provided that the resulting total
length of the relators does not exceed the associated Tietze option parameter spaceLimit (see 48.11).
The default value of that parameter is infinity (18.2.1), but you may alter it appropriately.

If a generator gen has been specified, TzEliminate eliminates it if possible, i. e. if there is
a relator in which gen occurs just once. If no second argument has been specified, TzEliminate
eliminates some appropriate generator if possible and if the resulting total length of the relators will
not exceed the Tietze options parameter lengthLimit.

If an integer n has been specified, TzEliminate tries to eliminate up to n generators. Note that
the calls TzEliminate(P) and TzEliminate(P,1) are equivalent.

48.7.2 TzSearch

▷ TzSearch(P) (function)

searches for relator subwords which, in some relator, have a complement of shorter length and
which occur in other relators, too, and uses them to reduce these other relators.

The idea is to find pairs of relators r1 and r2 of length l1 and l2, respectively, such that l1 ≤ l2 and
r1 and r2 coincide (possibly after inverting or conjugating one of them) in some maximal subword w
of length greater than l1/2, and then to substitute each copy of w in r2 by the inverse complement of
w in r1.

Two of the Tietze option parameters which are listed in section 48.11 may strongly influence the
performance and the results of the command TzSearch. These are the parameters saveLimit and
searchSimultaneous. The first of them has the following effect:

When TzSearch has finished its main loop over all relators, then, in general, there are relators
which have changed and hence should be handled again in another run through the whole procedure.
However, experience shows that it really does not pay to continue this way until no more relators
change. Therefore, TzSearch starts a new loop only if the loop just finished has reduced the total
length of the relators by at least saveLimit per cent.

The default value of saveLimit is 10 per cent.
To understand the effect of the option searchSimultaneous, we have to look in more detail at

how TzSearch proceeds:

GAP - Reference Manual 780

First, it sorts the list of relators by increasing lengths. Then it performs a loop over this list. In
each step of this loop, the current relator is treated as short relator r1, and a subroutine is called which
loops over the succeeding relators, treating them as long relators r2 and performing the respective
comparisons and substitutions.

As this subroutine performs a very expensive process, it has been implemented as a C routine in
the GAP kernel. For the given relator r1 of length l1 it first determines the minimal match length l
which is l1/2+1, if l1 is even, or (l1 +1)/2, otherwise. Then it builds up a hash list for all subwords
of length l occurring in the conjugates of r1 or r−1

1 , and finally it loops over all long relators r2 and
compares the hash values of their subwords of length l against this list. A comparison of subwords
which is much more expensive is only done if a hash match has been found.

To improve the efficiency of this process we allow the subroutine to handle several short relators
simultaneously provided that they have the same minimal match length. If, for example, it handles n
short relators simultaneously, then you save n−1 loops over the long relators r2, but you pay for it by
additional fruitless subword comparisons. In general, you will not get the best performance by always
choosing the maximal possible number of short relators to be handled simultaneously. In fact, the
optimal choice of the number will depend on the concrete presentation under investigation. You can
use the parameter searchSimultaneous to prescribe an upper bound for the number of short relators
to be handled simultaneously.

The default value of searchSimultaneous is 20.

48.7.3 TzSearchEqual

▷ TzSearchEqual(P) (function)

searches for Tietze relator subwords which, in some relator, have a complement of equal length
and which occur in other relators, too, and uses them to modify these other relators.

The idea is to find pairs of relators r1 and r2 of length l1 and l2, respectively, such that l1 is even,
l1 ≤ l2, and r1 and r2 coincide (possibly after inverting or conjugating one of them) in some maximal
subword w of length at least l1/2. Let l be the length of w. Then, if l > l1/2, the pair is handled as in
TzSearch (48.7.2). Otherwise, if l = l1/2, then TzSearchEqual substitutes each copy of w in r2 by
the inverse complement of w in r1.

The Tietze option parameter searchSimultaneous is used by TzSearchEqual in the same
way as described for TzSearch (48.7.2). However, TzSearchEqual does not use the parameter
saveLimit: The loop over the relators is executed exactly once.

48.7.4 TzFindCyclicJoins

▷ TzFindCyclicJoins(P) (function)

searches for power and commutator relators in order to find pairs of generators which generate a
common cyclic subgroup. It uses these pairs to introduce new relators, but it does not introduce any
new generators as is done by TzSubstituteCyclicJoins (48.8.2).

More precisely: TzFindCyclicJoins searches for pairs of generators a and b such that (possibly
after inverting or conjugating some relators) the set of relators contains the commutator [a,b], a power
an, and a product of the form asbt with s prime to n. For each such pair, TzFindCyclicJoins uses
the Euclidean algorithm to express a as a power of b, and then it eliminates a.

GAP - Reference Manual 781

48.8 Tietze Transformations that introduce new Generators

Some of the Tietze transformation commands listed so far may eliminate generators and hence change
the given presentation to a presentation on a subset of the given set of generators, but they all do
not introduce new generators. However, sometimes there will be the need to substitute certain words
as new generators in order to improve a presentation. Therefore GAP offers the two commands
TzSubstitute (48.8.1) and TzSubstituteCyclicJoins (48.8.2) which introduce new generators.

48.8.1 TzSubstitute

▷ TzSubstitute(P, word) (function)

▷ TzSubstitute(P[, n[, eliminate]]) (function)

In the first form TzSubstitute expects P to be a presentation and word to be either an abstract
word or a Tietze word in the generators of P . It substitutes the given word as a new generator of P .
This is done as follows: First, TzSubstitute creates a new abstract generator, g say, and adds it to
the presentation, then it adds a new relator g−1 ·word .

In its second form, TzSubstitute substitutes a squarefree word of length 2 as a new generator
and then eliminates a generator from the extended generator list. We will describe this process in more
detail below.

The parameters n and eliminate are optional. If you specify arguments for them, then n is
expected to be a positive integer, and eliminate is expected to be 0, 1, or 2. The default values are n
= 1 and eliminate = 0.

TzSubstitute first determines the n most frequently occurring relator subwords of the form g1g2,
where g1 and g2 are different generators or their inverses, and sorts them by decreasing numbers of
occurrences.

Let ab be the last word in that list, and let i be the smallest positive integer which has not yet
been used as a generator number in the presentation P so far. TzSubstitute defines a new abstract
generator xi named "_xi" and adds it to P (see AddGenerator (48.5.1)). Then it adds the word x−1

i ab
as a new relator to P and replaces all occurrences of ab in the relators by xi. Finally, it eliminates some
suitable generator from P .

The choice of the generator to be eliminated depends on the actual value of the parameter
eliminate :

If eliminate is zero, TzSubstitute just calls the function TzEliminate (48.7.1). So it may
happen that it is the just introduced generator xi which now is deleted again so that you don’t get
any remarkable progress in simplifying your presentation. On the first glance this does not look
reasonable, but it is a consequence of the request that a call of TzSubstitute with eliminate = 0
must not increase the total length of the relators.

Otherwise, if eliminate is 1 or 2, TzSubstitute eliminates the respective factor of the substi-
tuted word ab, i. e., it eliminates a if eliminate = 1 or b if eliminate = 2. In this case, it may
happen that the total length of the relators increases, but sometimes such an intermediate extension is
the only way to finally reduce a given presentation.

There is still another property of the command TzSubstitute which should be mentioned. If, for
instance, word is an abstract word, a call

Example
TzSubstitute(P, word);

GAP - Reference Manual 782

is more or less equivalent to
Example

AddGenerator(P);

g := GeneratorsOfPresentation(P)[Length(GeneratorsOfPresentation(P))];

AddRelator(P, g^-1 * word);

However, there is a difference: If you are tracing generator images and preimages of P through the
Tietze transformations applied to P (see 48.9), then TzSubstitute, as a Tietze transformation of P ,
will update and save the respective lists, whereas a call of the function AddGenerator (48.5.1) (which
does not perform a Tietze transformation) will delete these lists and hence terminate the tracing.

Example
gap> G := PerfectGroup(IsSubgroupFpGroup, 960, 1);

A5 2^4

gap> P := PresentationFpGroup(G);

<presentation with 6 gens and 21 rels of total length 84>

gap> GeneratorsOfPresentation(P);

[a, b, s, t, u, v]

gap> TzGoGo(P);

#I there are 3 generators and 10 relators of total length 81

#I there are 3 generators and 10 relators of total length 80

gap> TzPrintGenerators(P);

#I 1. a 31 occurrences involution

#I 2. b 26 occurrences

#I 3. t 23 occurrences involution

gap> a := GeneratorsOfPresentation(P)[1];;

gap> b := GeneratorsOfPresentation(P)[2];;

gap> TzSubstitute(P, a*b);

#I now the presentation has 4 generators, the new generator is _x7

#I substituting new generator _x7 defined by a*b

#I there are 4 generators and 11 relators of total length 83

gap> TzGo(P);

#I there are 3 generators and 10 relators of total length 74

gap> TzPrintGenerators(P);

#I 1. a 23 occurrences involution

#I 2. t 23 occurrences involution

#I 3. _x7 28 occurrences

As an example of an application of the command TzSubstitute in its second form we handle a
subgroup of index 266 in the Janko group J1.

Example
gap> F2 := FreeGroup("a", "b");;

gap> J1 := F2 / [F2.1^2, F2.2^3, (F2.1*F2.2)^7,

> Comm(F2.1,F2.2)^10, Comm(F2.1,F2.2^-1*(F2.1*F2.2)^2)^6];;

gap> a := J1.1;; b := J1.2;;

gap> H := Subgroup (J1, [a, b^(a*b*(a*b^-1)^2)]);;

gap> P := PresentationSubgroup(J1, H);

<presentation with 23 gens and 82 rels of total length 530>

gap> TzGoGo(P);

#I there are 3 generators and 47 relators of total length 1368

#I there are 2 generators and 46 relators of total length 3773

#I there are 2 generators and 46 relators of total length 2570

GAP - Reference Manual 783

gap> TzGoGo(P);

#I there are 2 generators and 46 relators of total length 2568

gap> TzGoGo(P);

Here we do not get any more progress without substituting a new generator.
Example

gap> TzSubstitute(P);

#I substituting new generator _x28 defined by _x6*_x23^-1

#I eliminating _x28 = _x6*_x23^-1

GAP cannot substitute a new generator without extending the total length, so we have to explic-
itly ask for it by using the second form of the command TzSubstitute. Our problem is to choose
appropriate values for the arguments n and eliminate . For this purpose it may be helpful to print
out a list of the most frequently occurring squarefree relator subwords of length 2.

Example
gap> TzPrintPairs(P);

#I 1. 504 occurrences of _x6 * _x23^-1

#I 2. 504 occurrences of _x6^-1 * _x23

#I 3. 448 occurrences of _x6 * _x23

#I 4. 448 occurrences of _x6^-1 * _x23^-1

gap> TzSubstitute(P, 2, 1);

#I substituting new generator _x29 defined by _x6^-1*_x23

#I eliminating _x6 = _x23*_x29^-1

#I there are 2 generators and 46 relators of total length 2867

gap> TzGoGo(P);

#I there are 2 generators and 45 relators of total length 2417

#I there are 2 generators and 45 relators of total length 2122

gap> TzSubstitute(P, 1, 2);

#I substituting new generator _x30 defined by _x23*_x29^-1

#I eliminating _x29 = _x30^-1*_x23

#I there are 2 generators and 45 relators of total length 2192

gap> TzGoGo(P);

#I there are 2 generators and 42 relators of total length 1637

#I there are 2 generators and 40 relators of total length 1286

#I there are 2 generators and 36 relators of total length 807

#I there are 2 generators and 32 relators of total length 625

#I there are 2 generators and 22 relators of total length 369

#I there are 2 generators and 18 relators of total length 213

#I there are 2 generators and 13 relators of total length 141

#I there are 2 generators and 12 relators of total length 121

#I there are 2 generators and 10 relators of total length 101

gap> TzPrintPairs(P);

#I 1. 19 occurrences of _x23 * _x30^-1

#I 2. 19 occurrences of _x23^-1 * _x30

#I 3. 14 occurrences of _x23 * _x30

#I 4. 14 occurrences of _x23^-1 * _x30^-1

If we save a copy of the current presentation, then later we will be able to restart the computation
from the current state.

GAP - Reference Manual 784

Example
gap> P1 := ShallowCopy(P);

<presentation with 2 gens and 10 rels of total length 101>

Just for demonstration we make an inconvenient choice:
Example

gap> TzSubstitute(P, 3, 1);

#I substituting new generator _x31 defined by _x23*_x30

#I eliminating _x23 = _x31*_x30^-1

#I there are 2 generators and 10 relators of total length 122

gap> TzGoGo(P);

#I there are 2 generators and 9 relators of total length 105

This presentation is worse than the one we have saved, so we restart from that presentation again.
Example

gap> P := ShallowCopy(P1);

<presentation with 2 gens and 10 rels of total length 101>

gap> TzSubstitute(P, 2, 1);

#I substituting new generator _x31 defined by _x23^-1*_x30

#I eliminating _x23 = _x30*_x31^-1

#I there are 2 generators and 10 relators of total length 107

gap> TzGoGo(P);

#I there are 2 generators and 9 relators of total length 84

#I there are 2 generators and 8 relators of total length 75

gap> TzSubstitute(P, 2, 1);

#I substituting new generator _x32 defined by _x30^-1*_x31

#I eliminating _x30 = _x31*_x32^-1

#I there are 2 generators and 8 relators of total length 71

gap> TzGoGo(P);

#I there are 2 generators and 7 relators of total length 56

#I there are 2 generators and 5 relators of total length 36

gap> TzPrintRelators(P);

#I 1. _x32^5

#I 2. _x31^5

#I 3. (_x31^-1*_x32^-1)^3

#I 4. _x31*(_x32*_x31^-1)^2*_x32*_x31*_x32^-2

#I 5. _x31^-1*_x32^2*(_x31*_x32^-1*_x31)^2*_x32^2

48.8.2 TzSubstituteCyclicJoins

▷ TzSubstituteCyclicJoins(P) (function)

tries to find pairs of commuting generators a and b such that the exponent of a (i. e. the least
currently known positive integer n such that an is a relator in P) is prime to the exponent of b. For
each such pair, their product ab is substituted as a new generator, and a and b are eliminated.

48.9 Tracing generator images through Tietze transformations

Any sequence of Tietze transformations applied to a presentation, starting from some presentation P1
and ending up with some presentation P2, defines an isomorphism, ϕ say, between the groups defined

GAP - Reference Manual 785

by P1 and P2, respectively. Sometimes it is desirable to know the images of the (old) generators of
P1 or the preimages of the (new) generators of P2 under ϕ . The GAP Tietze transformation func-
tions are able to trace these images. This is not automatically done because the involved words may
grow to tremendous length, but it will be done if you explicitly request for it by calling the function
TzInitGeneratorImages (48.9.1).

48.9.1 TzInitGeneratorImages

▷ TzInitGeneratorImages(P) (function)

expects P to be a presentation. It defines the current generators to be the “old generators” of P
and initializes the (pre)image tracing. See TzImagesOldGens (48.9.3) and TzPreImagesNewGens

(48.9.4) for details.
You can reinitialize the tracing of the generator images at any later state by just calling the function

TzInitGeneratorImages again.
Note: A subsequent call of the function DecodeTree (48.10.1) will imply that the images and

preimages are deleted and reinitialized after decoding the tree.
Moreover, if you introduce a new generator by calling the function AddGenerator (48.5.1)

described in Section 48.5, this new generator cannot be traced in the old generators. Therefore
AddGenerator (48.5.1) will terminate the tracing of the generator images and preimages and delete
the respective lists whenever it is called.

48.9.2 OldGeneratorsOfPresentation

▷ OldGeneratorsOfPresentation(P) (function)

assumes that P is a presentation for which the generator images and preimages are being traced
under Tietze transformations. It returns the list of old generators of P .

48.9.3 TzImagesOldGens

▷ TzImagesOldGens(P) (function)

assumes that P is a presentation for which the generator images and preimages are being traced
under Tietze transformations. It returns a list l of words in the (current) GeneratorsOfPresentation
(48.1.3) value of P such that the i-th word l[i] represents the i-th old generator of P , i. e., the i-th
entry of the OldGeneratorsOfPresentation (48.9.2) value of P .

48.9.4 TzPreImagesNewGens

▷ TzPreImagesNewGens(P) (function)

assumes that P is a presentation for which the generator images and preimages are being
traced under Tietze transformations. It returns a list l of words in the old generators of P (the
OldGeneratorsOfPresentation (48.9.2) value of P) such that the i-th entry of l represents the
i-th (current) generator of P (the GeneratorsOfPresentation (48.1.3) value of P).

GAP - Reference Manual 786

48.9.5 TzPrintGeneratorImages

▷ TzPrintGeneratorImages(P) (function)

assumes that P is a presentation for which the generator images and preimages are being traced
under Tietze transformations. It displays the preimages of the current generators as Tietze words in
the old generators, and the images of the old generators as Tietze words in the current generators.

Example
gap> G := PerfectGroup(IsSubgroupFpGroup, 960, 1);

A5 2^4

gap> P := PresentationFpGroup(G);

<presentation with 6 gens and 21 rels of total length 84>

gap> TzInitGeneratorImages(P);

gap> TzGo(P);

#I there are 3 generators and 11 relators of total length 96

#I there are 3 generators and 10 relators of total length 81

gap> TzPrintGeneratorImages(P);

#I preimages of current generators as Tietze words in the old ones:

#I 1. [1]

#I 2. [2]

#I 3. [4]

#I images of old generators as Tietze words in the current ones:

#I 1. [1]

#I 2. [2]

#I 3. [1, -2, 1, 3, 1, 2, 1]

#I 4. [3]

#I 5. [-2, 1, 3, 1, 2]

#I 6. [1, 3, 1]

gap> gens := GeneratorsOfPresentation(P);

[a, b, t]

gap> oldgens := OldGeneratorsOfPresentation(P);

[a, b, s, t, u, v]

gap> TzImagesOldGens(P);

[a, b, a*b^-1*a*t*a*b*a, t, b^-1*a*t*a*b, a*t*a]

gap> for i in [1 .. Length(oldgens)] do

> Print(oldgens[i], " = ", TzImagesOldGens(P)[i], "\n");

> od;

a = a

b = b

s = a*b^-1*a*t*a*b*a

t = t

u = b^-1*a*t*a*b

v = a*t*a

48.10 The Decoding Tree Procedure

48.10.1 DecodeTree

▷ DecodeTree(P) (function)

GAP - Reference Manual 787

assumes that P is a subgroup presentation provided by the Reduced Reidemeister-Schreier
or by the Modified Todd-Coxeter method (see PresentationSubgroupRrs (48.2.2),
PresentationNormalClosureRrs (48.2.5), PresentationSubgroupMtc (48.2.4)). It elimi-
nates the secondary generators of P (see Section 48.2) by applying the so called “decoding tree”
procedure.

DecodeTree is called automatically by the command PresentationSubgroupMtc (48.2.4)
where it reduces P to a presentation on the given (primary) subgroup generators.

In order to explain the effect of this command we need to insert a few remarks on the subgroup
presentation commands described in section 48.2. All these commands have the common property
that in the process of constructing a presentation for a given subgroup H of a finitely presented group
G they first build up a highly redundant list of generators of H which consists of an (in general small)
list of “primary” generators, followed by an (in general large) list of “secondary” generators, and then
construct a presentation P0 on a sublist of these generators by rewriting the defining relators of G . This
sublist contains all primary, but, at least in general, by far not all secondary generators.

The role of the primary generators depends on the concrete choice of the subgroup presentation
command. If the Modified Todd-Coxeter method is used, they are just the given generators of H ,
whereas in the case of the Reduced Reidemeister-Schreier algorithm they are constructed by the pro-
gram.

Each of the secondary generators is defined by a word of length two in the preceding generators
and their inverses. By historical reasons, the list of these definitions is called the subgroup generators
tree though in fact it is not a tree but rather a kind of bush.

Now we have to distinguish two cases. If P0 has been constructed by the Reduced Reidemeis-
ter-Schreier routines, it is a presentation of H . However, if the Modified Todd-Coxeter routines have
been used instead, then the relators in P0 are valid relators of H , but they do not necessarily define H .
We handle these cases in turn, starting with the latter one.

In fact, we could easily receive a presentation of H also in this case if we extended P0 by adding
to it all the secondary generators which are not yet contained in it and all the definitions from the gen-
erators tree as additional generators and relators. Then we could recursively eliminate all secondary
generators by Tietze transformations using the new relators. However, this procedure turns out to be
too inefficient to be of interest.

Instead, we use the so called decoding tree procedure (see [AMW82], [AR84]). It proceeds as
follows.

Starting from P = P0, it runs through a number of steps in each of which it eliminates the current
“last” generator (with respect to the list of all primary and secondary generators). If the last generator g
is a primary generator, then the procedure terminates. Otherwise it checks whether there is a relator in
the current presentation which can be used to substitute g by a Tietze transformation. If so, this is done.
Otherwise, and only then, the tree definition of g is added to P as a new relator, and the generators
involved are added as new generators if they have not yet been contained in P . Subsequently, g is
eliminated.

Note that the extension of P by one or two new generators is not a Tietze transformation. In
general, it will change the isomorphism type of the group defined by P . However, it is a remark-
able property of this procedure, that at the end, i.e., as soon as all secondary generators have been
eliminated, it provides a presentation P = P1, say, which defines a group isomorphic to H . In fact,
it is this presentation which is returned by the command DecodeTree and hence by the command
PresentationSubgroupMtc (48.2.4).

If, in the other case, the presentation P0 has been constructed by the Reduced Reidemeis-

GAP - Reference Manual 788

ter-Schreier algorithm, then P0 itself is a presentation of H , and the corresponding subgroup pre-
sentation command (PresentationSubgroupRrs (48.2.2) or PresentationNormalClosureRrs

(48.2.5)) just returns P0.
As mentioned in section 48.2, we recommend to further simplify this presentation before you use

it. The standard way to do this is to start from P0 and to apply suitable Tietze transformations, e. g., by
calling the commands TzGo (48.6.1) or TzGoGo (48.6.3). This is probably the most efficient approach,
but you will end up with a presentation on some unpredictable set of generators. As an alternative,
GAP offers you the DecodeTree command which you can use to eliminate all secondary generators
(provided that there are no space or time problems). For this purpose, the subgroup presentation com-
mands do not only return the resulting presentation, but also the tree (together with some associated
lists) as a kind of side result in a component P!.tree of the resulting presentation P .

Note, however, that the decoding tree routines will not work correctly any more on a presentation
from which generators have already been eliminated by Tietze transformations. Therefore, to prevent
you from getting wrong results by calling DecodeTree in such a situation, GAP will automatically
remove the subgroup generators tree from a presentation as soon as one of the generators is substituted
by a Tietze transformation.

Nevertheless, a certain misuse of the command is still possible, and we want to explicitly warn
you from this. The reason is that the Tietze option parameters described in Section 48.11 apply to
DecodeTree as well. Hence, in case of inadequate values of these parameters, it may happen that
DecodeTree stops before all the secondary generators have vanished. In this case GAP will display
an appropriate warning. Then you should change the respective parameters and continue the process
by calling DecodeTree again. Otherwise, if you would apply Tietze transformations, it might happen
because of the convention described above that the tree is removed and that you end up with a wrong
presentation.

After a successful run of DecodeTree it is convenient to further simplify the resulting presentation
by suitable Tietze transformations.

As an example of an explicit call of DecodeTree we compute two presentations of a subgroup
of order 384 in a group of order 6912. In both cases we use the Reduced Reidemeister-Schreier
algorithm, but in the first run we just apply the Tietze transformations offered by the TzGoGo (48.6.3)
command with its default parameters, whereas in the second run we call the DecodeTree command
before.

Example
gap> F2 := FreeGroup("a", "b");;

gap> G := F2 / [F2.1*F2.2^2*F2.1^-1*F2.2^-1*F2.1^3*F2.2^-1,

> F2.2*F2.1^2*F2.2^-1*F2.1^-1*F2.2^3*F2.1^-1];;

gap> a := G.1;; b := G.2;;

gap> H := Subgroup(G, [Comm(a^-1,b^-1), Comm(a^-1,b), Comm(a,b)]);;

We use the Reduced Reidemeister Schreier method and default Tietze transformations to get a
presentation for H .

Example
gap> P := PresentationSubgroupRrs(G, H);

<presentation with 18 gens and 35 rels of total length 169>

gap> TzGoGo(P);

#I there are 3 generators and 20 relators of total length 488

#I there are 3 generators and 20 relators of total length 466

GAP - Reference Manual 789

We end up with 20 relators of total length 466. Now we repeat the procedure, but we call the
decoding tree algorithm before doing the Tietze transformations.

Example
gap> P := PresentationSubgroupRrs(G, H);

<presentation with 18 gens and 35 rels of total length 169>

gap> DecodeTree(P);

#I there are 9 generators and 26 relators of total length 185

#I there are 6 generators and 23 relators of total length 213

#I there are 3 generators and 20 relators of total length 252

#I there are 3 generators and 20 relators of total length 244

gap> TzGoGo(P);

#I there are 3 generators and 19 relators of total length 168

#I there are 3 generators and 17 relators of total length 138

#I there are 3 generators and 15 relators of total length 114

#I there are 3 generators and 13 relators of total length 96

#I there are 3 generators and 12 relators of total length 84

This time we end up with a shorter presentation.

48.11 Tietze Options

Several of the Tietze transformation commands described above are controlled by certain parame-
ters, the Tietze options, which often have a tremendous influence on their performance and results.
However, in each application of the commands, an appropriate choice of these option parameters will
depend on the concrete presentation under investigation. Therefore we have implemented the Tietze
options in such a way that they are associated to the presentation: Each presentation keeps its own set
of Tietze option parameters as an attribute.

48.11.1 TzOptions

▷ TzOptions(P) (attribute)

is a record whose components direct the heuristics applied by the Tietze transformation functions.
You may alter the value of any of these Tietze options by just assigning a new value to the respec-

tive record component.
The following Tietze options are recognized by GAP:

protected:
The first protected generators in a presentation P are protected from being eliminated by
the Tietze transformations functions. There are only two exceptions: The option protected

is ignored by the functions TzEliminate (48.7.1) and TzSubstitute (48.8.1) because they
explicitly specify the generator to be eliminated. The default value of protected is 0.

eliminationsLimit:
Whenever the elimination phase of the TzGo (48.6.1) command is entered for a presentation P ,
then it will eliminate at most eliminationsLimit generators (except for further ones which
have turned out to be trivial). Hence you may use the eliminationsLimit parameter as a break
criterion for the TzGo (48.6.1) command. Note, however, that it is ignored by the TzEliminate
(48.7.1) command. The default value of eliminationsLimit is 100.

GAP - Reference Manual 790

expandLimit:
Whenever the routine for eliminating more than 1 generator is called for a presentation P by
the TzEliminate (48.7.1) command or the elimination phase of the TzGo (48.6.1) command,
then it saves the given total length of the relators, and subsequently it checks the current total
length against its value before each elimination. If the total length has increased to more than
expandLimit per cent of its original value, then the routine returns instead of eliminating an-
other generator. Hence you may use the expandLimit parameter as a break criterion for the
TzGo (48.6.1) command. The default value of expandLimit is 150.

generatorsLimit:
Whenever the elimination phase of the TzGo (48.6.1) command is entered for a presentation P

with n generators, then it will eliminate at most n−generatorsLimit generators (except for
generators which turn out to be trivial). Hence you may use the generatorsLimit parameter
as a break criterion for the TzGo (48.6.1) command. The default value of generatorsLimit is
0.

lengthLimit:
The Tietze transformation commands will never eliminate a generator of a presentation P , if
they cannot exclude the possibility that the resulting total length of the relators exceeds the
maximal GAP list length of 231 −1 or the value of the option lengthLimit. The default value
of lengthLimit is 231 −1.

loopLimit:
Whenever the TzGo (48.6.1) command is called for a presentation P , then it will loop over at
most loopLimit of its basic steps. Hence you may use the loopLimit parameter as a break
criterion for the TzGo (48.6.1) command. The default value of loopLimit is infinity (18.2.1).

printLevel:
Whenever Tietze transformation commands are called for a presentation P with printLevel

= 0, they will not provide any output except for error messages. If printLevel = 1, they
will display some reasonable amount of output which allows you to watch the progress of the
computation and to decide about your next commands. In the case printLevel = 2, you will
get a much more generous amount of output. Finally, if printLevel = 3, various messages on
internal details will be added. The default value of printLevel is 1.

saveLimit:
Whenever the TzSearch (48.7.2) command has finished its main loop over all relators of a
presentation P , then it checks whether during this loop the total length of the relators has been
reduced by at least saveLimit per cent. If this is the case, then TzSearch (48.7.2) repeats
its procedure instead of returning. Hence you may use the saveLimit parameter as a break
criterion for the TzSearch (48.7.2) command and, in particular, for the search phase of the
TzGo (48.6.1) command. The default value of saveLimit is 10.

searchSimultaneous:
Whenever the TzSearch (48.7.2) or the TzSearchEqual (48.7.3) command is called for a pre-
sentation P , then it is allowed to handle up to searchSimultaneous short relators simultane-
ously (see the description of the TzSearch (48.7.2) command for more details). The choice
of this parameter may heavily influence the performance as well as the result of the TzSearch

GAP - Reference Manual 791

(48.7.2) and the TzSearchEqual (48.7.3) commands and hence also of the search phase of the
TzGo (48.6.1) command. The default value of searchSimultaneous is 20.

48.11.2 TzPrintOptions

▷ TzPrintOptions(P) (function)

prints the current values of the Tietze options of the presentation P .
Example

gap> TzPrintOptions(P);

#I protected = 0

#I eliminationsLimit = 100

#I expandLimit = 150

#I generatorsLimit = 0

#I lengthLimit = 2147483647

#I loopLimit = infinity

#I printLevel = 1

#I saveLimit = 10

#I searchSimultaneous = 20

Chapter 49

Group Products

This chapter describes the various group product constructions that are possible in GAP.
At the moment for some of the products methods are available only if both factors are given in

the same representation or only for certain types of groups such as permutation groups and pc groups
when the product can be naturally represented as a group of the same kind.

GAP does not guarantee that a product of two groups will be in a particular representation.
(Exceptions are WreathProductImprimitiveAction (49.4.2) and WreathProductProductAction
(49.4.3) which are construction that makes sense only for permutation groups, see WreathProduct

(49.4.1)).
GAP however will try to choose an efficient representation, so products of permutation groups or

pc groups often will be represented as a group of the same kind again.
Therefore the only guaranteed way to relate a product to its factors is via the embedding and

projection homomorphisms, see 49.6.

49.1 Direct Products

The direct product of groups is the cartesian product of the groups (considered as element sets) with
component-wise multiplication.

49.1.1 DirectProduct

▷ DirectProduct(G[, H, ...]) (function)

▷ DirectProductOp(list, expl) (operation)

These functions construct the direct product of the groups given as arguments. DirectProduct
takes an arbitrary positive number of arguments and calls the operation DirectProductOp, which
takes exactly two arguments, namely a nonempty list list of groups and one of these groups, expl .
(This somewhat strange syntax allows the method selection to choose a reasonable method for special
cases, e.g., if all groups are permutation groups or pc groups.)

GAP will try to choose an efficient representation for the direct product. For example the direct
product of permutation groups will be a permutation group again and the direct product of pc groups
will be a pc group.

If the groups are in different representations a generic direct product will be formed which may
not be particularly efficient for many calculations. Instead it may be worth to convert all factors to a

792

GAP - Reference Manual 793

common representation first, before forming the product.
For a direct product P, calling Embedding (32.2.11) with P and n yields the homomorphism em-

bedding the n-th factor into P; calling Projection (32.2.12) with P and n yields the projection of P
onto the n-th factor, see 49.6.

Example
gap> g:=Group((1,2,3),(1,2));;

gap> d:=DirectProduct(g,g,g);

Group([(1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8)])

gap> Size(d);

216

gap> e:=Embedding(d,2);

2nd embedding into Group([(1,2,3), (1,2), (4,5,6), (4,5), (7,8,9),

(7,8)])

gap> Image(e,(1,2));

(4,5)

gap> Image(Projection(d,2),(1,2,3)(4,5)(8,9));

(1,2)

gap> f:=FreeGroup("a","b");;

gap> g:=f/ParseRelators(f,"a2,b3,(ab)5");

<fp group on the generators [a, b]>

gap> f2:=FreeGroup("x","y");;

gap> h:=f2/ParseRelators(f2,"x2,y4,xy=Yx");

<fp group on the generators [x, y]>

gap> d:=DirectProduct(g,h);

<fp group on the generators [a, b, x, y]>

49.2 Semidirect Products

The semidirect product of a group N with a group G acting on N via a homomorphism α from G into
the automorphism group of N is the cartesian product G×N with the multiplication (g,n) · (h,m) =
(gh,nhα

m).

49.2.1 SemidirectProduct

▷ SemidirectProduct(G, alpha, N) (operation)

▷ SemidirectProduct(autgp, N) (operation)

constructs the semidirect product of N with G acting via alpha , which must be a homomorphism
from G into a group of automorphisms of N .

If N is a group, alpha must be a homomorphism from G into a group of automorphisms of N .
If N is a full row space over a field F , alpha must be a homomorphism from G into a matrix group

of the right dimension over a subfield of F , or into a permutation group (in this case permutation
matrices are taken).

In the second variant, autgp must be a group of automorphism of N , it is a shorthand for
SemidirectProduct(autgp,IdentityMapping(autgp),N). Note that (unless autgrp has been
obtained by the operation AutomorphismGroup (40.7.1)) you have to test IsGroupOfAutomorphisms
(40.7.2) for autgrp to ensure that GAP knows that autgrp consists of group automorphisms.

GAP - Reference Manual 794

Example
gap> n:=AbelianGroup(IsPcGroup,[5,5]);

<pc group of size 25 with 2 generators>

gap> au:=DerivedSubgroup(AutomorphismGroup(n));;

gap> Size(au);

120

gap> p:=SemidirectProduct(au,n);;

gap> Size(p);

3000

gap> n:=Group((1,2),(3,4));;

gap> au:=AutomorphismGroup(n);;

gap> au:=First(AsSet(au),i->Order(i)=3);;

gap> au:=Group(au);

<group with 1 generator>

gap> IsGroupOfAutomorphisms(au);

true

gap> SemidirectProduct(au,n);

<pc group with 3 generators>

gap> n:=AbelianGroup(IsPcGroup,[2,2]);

<pc group of size 4 with 2 generators>

gap> au:=AutomorphismGroup(n);;

gap> apc:=IsomorphismPcGroup(au);;

gap> g:=Image(apc);

Group([f1, f2])

gap> apci:=InverseGeneralMapping(apc);;

gap> IsGroupHomomorphism(apci);

true

gap> p:=SemidirectProduct(g,apci,n);

<pc group of size 24 with 4 generators>

gap> IsomorphismGroups(p,Group((1,2,3,4),(1,2))) <> fail;

true

gap> SemidirectProduct(SU(3,3),GF(9)^3);

<matrix group of size 4408992 with 3 generators>

gap> SemidirectProduct(Group((1,2,3),(2,3,4)),GF(5)^4);

<matrix group of size 7500 with 3 generators>

gap> g:=Group((3,4,5),(1,2,3));;

gap> mats:=[[[Z(2^2),0*Z(2)],[0*Z(2),Z(2^2)^2]],

> [[Z(2)^0,Z(2)^0], [Z(2)^0,0*Z(2)]]];;

gap> hom:=GroupHomomorphismByImages(g,Group(mats),[g.1,g.2],mats);;

gap> SemidirectProduct(g,hom,GF(4)^2);

<matrix group of size 960 with 3 generators>

gap> SemidirectProduct(g,hom,GF(16)^2);

<matrix group of size 15360 with 4 generators>

For a semidirect product P of G with N , calling Embedding (32.2.11) with P and 1 yields the
embedding of G , calling Embedding (32.2.11) with P and 2 yields the embedding of N ; calling
Projection (32.2.12) with P yields the projection of P onto G , see 49.6.

Example
gap> Size(Image(Embedding(p,1)));

6

gap> Embedding(p,2);

[f1, f2] -> [f3, f4]

GAP - Reference Manual 795

gap> Projection(p);

[f1, f2, f3, f4] -> [f1, f2, <identity> of ..., <identity> of ...]

49.3 Subdirect Products

The subdirect product of the groups G and H with respect to the epimorphisms ϕ:G→A and ψ:H →A
(for a common group A) is the subgroup of the direct product G×H consisting of the elements (g,h)
for which gϕ = hψ . It is the pull-back of the following diagram.

Gy ϕ

H
ψ−→ A

49.3.1 SubdirectProduct

▷ SubdirectProduct(G, H, Ghom, Hhom) (function)

constructs the subdirect product of G and H with respect to the epimorphisms Ghom from G onto a
group A and Hhom from H onto the same group A.

For a subdirect product P, calling Projection (32.2.12) with P and n yields the projection on the
n-th factor. (In general the factors do not embed into a subdirect product.)

Example
gap> g:=Group((1,2,3),(1,2));

Group([(1,2,3), (1,2)])

gap> hom:=GroupHomomorphismByImagesNC(g,g,[(1,2,3),(1,2)],[(),(1,2)]);

[(1,2,3), (1,2)] -> [(), (1,2)]

gap> s:=SubdirectProduct(g,g,hom,hom);

Group([(1,2,3), (1,2)(4,5), (4,5,6)])

gap> Size(s);

18

gap> p:=Projection(s,2);

2nd projection of Group([(1,2,3), (1,2)(4,5), (4,5,6)])

gap> Image(p,(1,3,2)(4,5,6));

(1,2,3)

49.3.2 SubdirectProducts

▷ SubdirectProducts(G, H) (function)

this function computes all subdirect products of G and H up to conjugacy in the direct product of
Parent(G) and Parent(H). The subdirect products are returned as subgroups of this direct product.

49.4 Wreath Products

The wreath product of a group G with a permutation group P acting on n points is the semidirect
product of the normal subgroup G n with the group P which acts on G n by permuting the components.

GAP - Reference Manual 796

Note that GAP always considers the domain of a permutation group to be the points moved by
elements of the group as returned by MovedPoints (42.3.3), i.e. it is not possible to have a domain to
include fixed points, I.e. P = ⟨(1,2,3)⟩ and P = ⟨(1,3,5)⟩ result in isomorphic wreath products. (If
fixed points are desired the wreath product G ≀T has to be formed with a transitive overgroup T of P
and then the pre-image of P under the projection G ≀T → T has to be taken.)

49.4.1 WreathProduct

▷ WreathProduct(G, H[, hom]) (operation)

▷ StandardWreathProduct(G, H) (operation)

WreathProduct constructs the wreath product of the group G with the group H , acting as a per-
mutation group.

If a third argument hom is given, it must be a homomorphism from H into a permutation group,
and the action of this group on its moved points is considered.

If only two arguments are given, H must be a permutation group.
StandardWreathProduct returns the wreath product for the (right regular) permutation action of

H on its elements.
For a wreath product W of G with a permutation group P of degree n and 1 ≤ i ≤ n calling

Embedding (32.2.11) with W and i yields the embedding of G in the i-th component of the direct
product of the base group G n of W . For i = n+ 1, Embedding (32.2.11) yields the embedding of P
into W . Calling Projection (32.2.12) with W yields the projection onto the acting group P, see 49.6.

Example
gap> g:=Group((1,2,3),(1,2));

Group([(1,2,3), (1,2)])

gap> p:=Group((1,2,3));

Group([(1,2,3)])

gap> w:=WreathProduct(g,p);

Group([(1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8),

(1,4,7)(2,5,8)(3,6,9)])

gap> Size(w);

648

gap> Embedding(w,1);

1st embedding into Group([(1,2,3), (1,2), (4,5,6), (4,5), (7,8,9),

(7,8), (1,4,7)(2,5,8)(3,6,9)])

gap> Image(Embedding(w,3));

Group([(7,8,9), (7,8)])

gap> Image(Embedding(w,4));

Group([(1,4,7)(2,5,8)(3,6,9)])

gap> Image(Projection(w),(1,4,8,2,6,7,3,5,9));

(1,2,3)

49.4.2 WreathProductImprimitiveAction

▷ WreathProductImprimitiveAction(G, H) (function)

For two permutation groups G and H , this function constructs the wreath product of G and H in the
imprimitive action. If G acts on l points and H on m points this action will be on l ·m points, it will be
imprimitive with m blocks of size l each.

GAP - Reference Manual 797

The operations Embedding (32.2.11) and Projection (32.2.12) operate on this product as de-
scribed for general wreath products.

Example
gap> w:=WreathProductImprimitiveAction(g,p);;

gap> LargestMovedPoint(w);

9

49.4.3 WreathProductProductAction

▷ WreathProductProductAction(G, H) (function)

For two permutation groups G and H , this function constructs the wreath product in product action.
If G acts on l points and H on m points this action will be on lm points.

The operations Embedding (32.2.11) and Projection (32.2.12) operate on this product as de-
scribed for general wreath products.

Example
gap> w:=WreathProductProductAction(g,p);

<permutation group of size 648 with 7 generators>

gap> LargestMovedPoint(w);

27

49.4.4 KuKGenerators

▷ KuKGenerators(G, beta, alpha) (function)

If beta is a homomorphism from G into a transitive permutation group, U the full preimage of
the point stabilizer and alpha a homomorphism defined on (a superset) of U , this function returns
images of the generators of G when mapping to the wreath product (Ualpha) ≀ (Gbeta). (This is the
Krasner-Kaloujnine embedding theorem.)

Example
gap> g:=Group((1,2,3,4),(1,2));;

gap> hom:=GroupHomomorphismByImages(g,Group((1,2)),

> GeneratorsOfGroup(g),[(1,2),(1,2)]);;

gap> u:=PreImage(hom,Stabilizer(Image(hom),1));

Group([(2,3,4), (1,2,4)])

gap> hom2:=GroupHomomorphismByImages(u,Group((1,2,3)),

> GeneratorsOfGroup(u),[(1,2,3), (1,2,3)]);;

gap> KuKGenerators(g,hom,hom2);

[(1,4)(2,5)(3,6), (1,6)(2,4)(3,5)]

49.4.5 ListWreathProductElement

▷ ListWreathProductElement(G, x[, testDecomposition]) (function)

▷ ListWreathProductElementNC(G, x, testDecomposition) (operation)

Let x be an element of a wreath product G where G = K ≀H and H acts as a finite permutation
group of degree m. We can identify the element x with a tuple (f1, . . . , fm;h), where fi ∈ K is the i-th
base component of x and h ∈ H is the top component of x .

GAP - Reference Manual 798

ListWreathProductElement returns a list [f1, . . . , fm,h] containing the components of x or fail
if x cannot be decomposed in the wreath product.

If omitted, the argument testDecomposition defaults to true. If testDecomposition is true,
ListWreathProductElement makes additional tests to ensure that the computed decomposition of
x is correct, i.e. it checks that x is an element of the parent wreath product of G :

If K ≤ Sym(l), this ensures that x ∈ Sym(l) ≀Sym(m) where the parent wreath product is considered
in the same action as G , i.e. either in imprimitive action or product action.

If K ≤ GL(n,q), this ensures that x ∈ GL(n,q) ≀Sym(m).

49.4.6 WreathProductElementList

▷ WreathProductElementList(G, list) (function)

▷ WreathProductElementListNC(G, list) (operation)

Let list be equal to [f1, . . . , fm,h] and G be a wreath product where G = K ≀H, H acts as a finite
permutation group of degree m, fi ∈ K and h ∈ H.

WreathProductElementList returns the element x ∈ G identified by the tuple (f1, . . . , fm;h).

49.5 Free Products

Let G and H be groups with presentations ⟨X | R⟩ and ⟨Y | S⟩, respectively. Then the free product
G ∗ H is the group with presentation ⟨X ∪Y | R ∪ S⟩. This construction can be generalized to an
arbitrary number of groups.

49.5.1 FreeProduct

▷ FreeProduct(G[, H, ...]) (function)

▷ FreeProduct(list) (function)

constructs a finitely presented group which is the free product of the groups given as arguments.
If the group arguments are not finitely presented groups, then IsomorphismFpGroup (47.11.1) must
be defined for them.

The operation Embedding (32.2.11) operates on this product.
Example

gap> g := DihedralGroup(8);;

gap> h := CyclicGroup(5);;

gap> fp := FreeProduct(g,h,h);

<fp group on the generators [f1, f2, f3, f4, f5]>

gap> fp := FreeProduct([g,h,h]);

<fp group on the generators [f1, f2, f3, f4, f5]>

gap> Embedding(fp,2);

[f1] -> [f4]

49.6 Embeddings and Projections for Group Products

The relation between a group product and its factors is provided via homomorphisms, the embeddings
in the product and the projections from the product. Depending on the kind of product only some of

GAP - Reference Manual 799

these are defined.

49.6.1 Embedding (for group products)

▷ Embedding(P, nr) (operation)

returns the nr-th embedding in the group product P . The actual meaning of this embedding is
described in the manual section for the appropriate product.

49.6.2 Projection (for group products)

▷ Projection(P, nr) (operation)

returns the (nr-th) projection of the group product P . The actual meaning of the projection re-
turned is described in the manual section for the appropriate product.

Chapter 50

Group Libraries

When you start GAP, it already knows several groups. Currently GAP initially knows the following
groups:

• some basic groups, such as cyclic groups or symmetric groups (see 50.1),

• Classical matrix groups (see 50.2),

• the transitive permutation groups of degree at most 30, provided by the TransGrp package
(see (transgrp: Transitive Permutation Groups)),

• a library of groups of small order (see (smallgrp: The Small Groups Library)),

• the finite perfect groups of size at most 2 ·106 (see 50.6).

• the primitive permutation groups of degree < 4096, provided by the PrimGrp package
(see (primgrp: Primitive Permutation Groups)),

• the irreducible solvable subgroups of GL(n, p) for n> 1 and pn < 256, provided by the PrimGrp
package (see (primgrp: Irreducible Solvable Matrix Groups)),

• the irreducible maximal finite integral matrix groups of dimension at most 31 (see 50.7),

• the crystallographic groups of dimension at most 4

There is usually no relation between the groups in the different libraries and a group may occur in
different libraries in different incarnations.

Note that a system administrator may choose to install all, or only a few, or even none of the
libraries. So some of the libraries mentioned below may not be available on your installation.

GAP might use data libraries that are available to speed up calculations, for example in using a
classification to determine that groups must be isomorphic, based on agreement of properties; or to
determine maximal subgroups or subgroup maximality. This will be indicated by an info message
of level 2 in the info class InfoPerformance. If the calculation is to be independent of such data
library use, for example if it is used to verify the data library, functions can be called with the option
NoPrecomputedData, to turn these features off. Doing so might cause significantly longer calcula-
tions, or even failure of certain calculations.

800

GAP - Reference Manual 801

50.1 Basic Groups

There are several infinite families of groups which are parametrized by numbers. GAP provides var-
ious functions to construct these groups. The functions always permit (but do not require) one to in-
dicate a filter (see 13.2), for example IsPermGroup (43.1.1), IsMatrixGroup (44.1.1) or IsPcGroup
(46.3.1), in which the group shall be constructed. There always is a default filter corresponding to a
“natural” way to describe the group in question. Note that not every group can be constructed in every
filter, there may be theoretical restrictions (IsPcGroup (46.3.1) only works for solvable groups) or
methods may be available only for a few filters.

Certain filters may admit additional hints. For example, groups constructed in IsMatrixGroup

(44.1.1) may be constructed over a specified field, which can be given as second argument of the
function that constructs the group; The default field is Rationals (17.1.1).

50.1.1 TrivialGroup

▷ TrivialGroup([filter]) (function)

constructs a trivial group in the category given by the filter filter . If filter is not given it
defaults to IsPcGroup (46.3.1). For more information on possible values of filt see section (50.1).

Example
gap> TrivialGroup();

<pc group of size 1 with 0 generators>

gap> TrivialGroup(IsPermGroup);

Group(())

50.1.2 CyclicGroup

▷ CyclicGroup([filt,]n) (function)

constructs the cyclic group of size n in the category given by the filter filt . If filt is not given it
defaults to IsPcGroup (46.3.1), unless n equals infinity (18.2.1), in which case the default filter is
switched to IsFpGroup (47.1.2). For more information on possible values of filt see section (50.1).

Example
gap> CyclicGroup(12);

<pc group of size 12 with 3 generators>

gap> CyclicGroup(infinity);

<free group on the generators [a]>

gap> CyclicGroup(IsPermGroup,12);

Group([(1,2,3,4,5,6,7,8,9,10,11,12)])

gap> matgrp1:= CyclicGroup(IsMatrixGroup, 12);

<matrix group of size 12 with 1 generator>

gap> FieldOfMatrixGroup(matgrp1);

Rationals

gap> matgrp2:= CyclicGroup(IsMatrixGroup, GF(2), 12);

<matrix group of size 12 with 1 generator>

gap> FieldOfMatrixGroup(matgrp2);

GF(2)

GAP - Reference Manual 802

50.1.3 AbelianGroup

▷ AbelianGroup([filt,]ints) (function)

constructs an abelian group in the category given by the filter filt which is of isomorphism
type Cints [1] ×Cints [2] × . . .×Cints [n], where ints must be a list of non-negative integers or
infinity (18.2.1); for the latter value or 0, Cints [i] is taken as an infinite cyclic group, otherwise as
a cyclic group of order ints [i]. If filt is not given it defaults to IsPcGroup (46.3.1), unless any 0
or infinity is contained in ints , in which the default filter is switched to IsFpGroup (47.1.2). The
generators of the group returned are the elements corresponding to the factors Cints [i] and hence the
integers in ints . For more information on possible values of filt see section (50.1).

Example
gap> AbelianGroup([1,2,3]);

<pc group of size 6 with 3 generators>

gap> G:=AbelianGroup([0,3]);

<fp group of size infinity on the generators [f1, f2]>

gap> AbelianInvariants(G);

[0, 3]

50.1.4 ElementaryAbelianGroup

▷ ElementaryAbelianGroup([filt,]n) (function)

constructs the elementary abelian group of size n in the category given by the filter filt . If filt
is not given it defaults to IsPcGroup (46.3.1). For more information on possible values of filt see
section (50.1).

Example
gap> ElementaryAbelianGroup(8192);

<pc group of size 8192 with 13 generators>

50.1.5 FreeAbelianGroup

▷ FreeAbelianGroup([filt,]rank) (function)

constructs the free abelian group of rank n in the category given by the filter filt . If filt is not
given it defaults to IsFpGroup (47.1.2). For more information on possible values of filt see section
(50.1).

Example
gap> FreeAbelianGroup(4);

<fp group of size infinity on the generators [f1, f2, f3, f4]>

50.1.6 DihedralGroup

▷ DihedralGroup([filt,]n) (function)

constructs the dihedral group of size n in the category given by the filter filt . If filt is not
given it defaults to IsPcGroup (46.3.1), unless n equals infinity (18.2.1), in which case the default

GAP - Reference Manual 803

filter is switched to IsFpGroup (47.1.2). For more information on possible values of filt see section
(50.1).

Example
gap> DihedralGroup(8);

<pc group of size 8 with 3 generators>

gap> DihedralGroup(IsPermGroup, 8);

Group([(1,2,3,4), (2,4)])

gap> DihedralGroup(infinity);

<fp group of size infinity on the generators [r, s]>

50.1.7 IsDihedralGroup

▷ IsDihedralGroup(G) (property)

▷ DihedralGenerators(G) (attribute)

IsDihedralGroup indicates whether the group G is a dihedral group. If it is, methods may set
the attribute DihedralGenerators to [t ,s], where t and s are two elements such that G = ⟨t,s|t2 =
sn = 1,st = s−1⟩.

50.1.8 DicyclicGroup

▷ DicyclicGroup([filt, [field,]]n) (function)

▷ QuaternionGroup([filt, [field,]]n) (function)

DicyclicGroup constructs the dicyclic group of size n in the category given by the filter filt .
Here, n must be a multiple of 4. The synonym QuaternionGroup for DicyclicGroup is provided for
backward compatibility, but will print a warning if n is not a power of 2. If filt is not given it defaults
to IsPcGroup (46.3.1). For more information on possible values of filt see section (50.1). Methods
are also available for permutation and matrix groups (of minimal degree and minimal dimension in
coprime characteristic).

Example
gap> DicyclicGroup(24);

<pc group of size 24 with 4 generators>

gap> g:=QuaternionGroup(IsMatrixGroup,CF(16),32);

Group([[[0, 1], [-1, 0]], [[E(16), 0], [0, -E(16)^7]]])

50.1.9 IsGeneralisedQuaternionGroup

▷ IsGeneralisedQuaternionGroup(G) (property)

▷ IsQuaternionGroup(G) (property)

▷ GeneralisedQuaternionGenerators(G) (attribute)

▷ QuaternionGenerators(G) (attribute)

IsGeneralisedQuaternionGroup indicates whether the group G is a generalized quater-
nion group of size N = 2(k + 1), k >= 2. If it is, methods may set the attribute
GeneralisedQuaternionGenerators to [t ,s], where t and s are two elements such that G =
⟨t,s|s(2k) = 1, t2 = s(2

k−1),st = s−1⟩. IsQuaternionGroup and QuaternionGenerators are provided
for backwards compatibility with existing code.

GAP - Reference Manual 804

50.1.10 ExtraspecialGroup

▷ ExtraspecialGroup([filt,]order, exp) (function)

Let order be of the form p2n+1, for a prime integer p and a positive integer n.
ExtraspecialGroup returns the extraspecial group of order order that is determined by exp , in
the category given by the filter filt .

If p is odd then admissible values of exp are the exponent of the group (either p or p2) or one of
'+', "+", '-', "-". For p = 2, only the above plus or minus signs are admissible.

If filt is not given it defaults to IsPcGroup (46.3.1). For more information on possible values
of filt see section (50.1).

Example
gap> ExtraspecialGroup(27, 3);

<pc group of size 27 with 3 generators>

gap> ExtraspecialGroup(27, '+');

<pc group of size 27 with 3 generators>

gap> ExtraspecialGroup(8, "-");

<pc group of size 8 with 3 generators>

50.1.11 AlternatingGroup

▷ AlternatingGroup([filt,]deg) (function)

▷ AlternatingGroup([filt,]dom) (function)

constructs the alternating group of degree deg in the category given by the filter filt . If filt is
not given it defaults to IsPermGroup (43.1.1). For more information on possible values of filt see
section (50.1). In the second version, the function constructs the alternating group on the points given
in the set dom which must be a set of positive integers.

Example
gap> AlternatingGroup(5);

Alt([1 .. 5])

50.1.12 SymmetricGroup

▷ SymmetricGroup([filt,]deg) (function)

▷ SymmetricGroup([filt,]dom) (function)

constructs the symmetric group of degree deg in the category given by the filter filt . If filt is
not given it defaults to IsPermGroup (43.1.1). For more information on possible values of filt see
section (50.1). In the second version, the function constructs the symmetric group on the points given
in the set dom which must be a set of positive integers.

Example
gap> SymmetricGroup(10);

Sym([1 .. 10])

Note that permutation groups provide special treatment of symmetric and alternating groups,
see 43.4.

GAP - Reference Manual 805

50.1.13 MathieuGroup

▷ MathieuGroup([filt,]degree) (function)

constructs the Mathieu group of degree degree in the category given by the filter filt ,
where degree must be in the set {9,10,11,12,21,22,23,24}. If filt is not given it defaults to
IsPermGroup (43.1.1). For more information on possible values of filt see section (50.1).

Example
gap> MathieuGroup(11);

Group([(1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6)])

50.1.14 SuzukiGroup

▷ SuzukiGroup([filt,]q) (function)

▷ Sz([filt,]q) (function)

Constructs a group isomorphic to the Suzuki group Sz(q) over the field with q elements, where
q is a non-square power of 2.

If filt is not given it defaults to IsMatrixGroup (44.1.1), and the returned group is the Suzuki
group itself. For more information on possible values of filt see section (50.1).

Example
gap> SuzukiGroup(32);

Sz(32)

50.1.15 ReeGroup

▷ ReeGroup([filt,]q) (function)

▷ Ree([filt,]q) (function)

Constructs a group isomorphic to the Ree group 2G2(q) where q = 31+2m for m a non-negative
integer.

If filt is not given it defaults to IsMatrixGroup (44.1.1) and the generating matrices are based
on [KLM01]. (No particular choice of a generating set is guaranteed.) For more information on
possible values of filt see section (50.1).

Example
gap> ReeGroup(27);

Ree(27)

50.1.16 Generator Names

For groups created as finitely presented groups, including polycyclic groups, the generators are la-
belled, by default, with a letter and a number. It is possible to influence this naming with the option
generatorNames, see Section 4.12.2. If this option holds a string, then the generators are named
with this string and sequential numbers starting with 1. If this option holds a list of sufficient length
consisting of nonempty strings, then the generator names are taken from this list, in order.

GAP - Reference Manual 806

Example
gap> GeneratorsOfGroup(AbelianGroup([5,7]));

[f1, f2]

gap> GeneratorsOfGroup(AbelianGroup([5,7]:generatorNames:="a"));

[a1, a2]

gap> GeneratorsOfGroup(AbelianGroup([5,7]:generatorNames:=["u","v","w"]));

[u, v]

gap> AsSSortedList(DihedralGroup(12:generatorNames:="a"));

[<identity> of ..., a1, a2, a3, a1*a2, a1*a3, a2*a3, a3^2, a1*a2*a3,

a1*a3^2, a2*a3^2, a1*a2*a3^2]

gap> AsSSortedList(DihedralGroup(12:generatorNames:=["a","b","c"]));

[<identity> of ..., a, b, c, a*b, a*c, b*c, c^2, a*b*c, a*c^2, b*c^2,

a*b*c^2]

50.2 Classical Groups

The following functions return classical groups.
For the linear, symplectic, and unitary groups (the latter in dimension at least 3), the generators are

taken from [Tay87]. For the unitary groups in dimension 2, the isomorphism of SU(2,q) and SL(2,q)
is used, see for example [Hup67].

The generators of the general and special orthogonal groups are taken from [IE94] and [KL90],
except that the generators of the groups in odd dimension in even characteristic are constructed via the
isomorphism to a symplectic group, see for example [Car72].

The generators of the groups Ωε(d,q) are taken from [RT98], except that in odd dimension and
even characteristic, the generators of SO(d,q) are taken for Ω(d,q). Note that the generators claimed
in [RT98, Section 4.5 and 4.6] do not describe orthogonal groups, one would have to transpose these
matrices in order to get groups that respect the required forms. The matrices from [RT98] generate
groups of the right isomorphism types but not orthogonal groups, except in the case (d,q) = (5,2),
where the matrices from [RT98] generate the simple group S4(2)′ and not the group S4(2).

The generators for the semilinear groups are constructed from the generators of the corresponding
linear groups plus one additional generator that describes the action of the group of field automor-
phisms; for prime integers p and positive integers f , this yields the matrix groups GammaL(d, p f)
and SigmaL(d, p f) as groups of d f ×d f matrices over the field with p elements.

For symplectic and orthogonal matrix groups returned by the functions described below, the in-
variant bilinear form is stored as the value of the attribute InvariantBilinearForm (44.5.1). Analo-
gously, the invariant sesquilinear form defining the unitary groups is stored as the value of the attribute
InvariantSesquilinearForm (44.5.3)). The defining quadratic form of orthogonal groups is stored
as the value of the attribute InvariantQuadraticForm (44.5.5).

Note that due to the different sources for the generators, the invariant forms for the groups
Ω(e,d,q) are in general different from the forms for SO(e,d,q) and GO(e,d,q). If version at least
1.2.6 of the Forms package is loaded then compatible groups can be created by specifying the desired
form, see the sections below.

50.2.1 GeneralLinearGroup

▷ GeneralLinearGroup([filt,]d, R) (function)

▷ GL([filt,]d, R) (function)

GAP - Reference Manual 807

▷ GeneralLinearGroup([filt,]d, q) (function)

▷ GL([filt,]d, q) (function)

The first two forms construct a group isomorphic to the general linear group GL(d , R) of all
d ×d matrices that are invertible over the ring R , in the category given by the filter filt .

The third and the fourth form construct the general linear group over the finite field with q ele-
ments.

If filt is not given it defaults to IsMatrixGroup (44.1.1), and the returned group is the general
linear group as a matrix group in its natural action (see also IsNaturalGL (44.4.2), IsNaturalGLnZ
(44.6.4)).

Currently supported rings R are finite fields, the ring Integers (14.1.1), and residue class rings
Integers mod m , see 14.5.

Example
gap> GL(4,3);

GL(4,3)

gap> GL(2,Integers);

GL(2,Integers)

gap> GL(3,Integers mod 12);

GL(3,Z/12Z)

Using the OnLines (41.2.12) operation it is possible to obtain the corresponding projective groups
in a permutation action:

Example
gap> g:=GL(4,3);;Size(g);

24261120

gap> pgl:=Action(g,Orbit(g,Z(3)^0*[1,0,0,0],OnLines),OnLines);;

gap> Size(pgl);

12130560

If you are interested only in the projective group as a permutation group and not in the correspon-
dence between its moved points and the points in the projective space, you can also use PGL (50.2.11).

50.2.2 SpecialLinearGroup

▷ SpecialLinearGroup([filt,]d, R) (function)

▷ SL([filt,]d, R) (function)

▷ SpecialLinearGroup([filt,]d, q) (function)

▷ SL([filt,]d, q) (function)

The first two forms construct a group isomorphic to the special linear group SL(d , R) of all those
d × d matrices over the ring R whose determinant is the identity of R , in the category given by the
filter filt .

The third and the fourth form construct the special linear group over the finite field with q ele-
ments.

If filt is not given it defaults to IsMatrixGroup (44.1.1), and the returned group is the special
linear group as a matrix group in its natural action (see also IsNaturalSL (44.4.4), IsNaturalSLnZ
(44.6.5)).

GAP - Reference Manual 808

Currently supported rings R are finite fields, the ring Integers (14), and residue class rings
Integers mod m , see 14.5.

Example
gap> SpecialLinearGroup(2,2);

SL(2,2)

gap> SL(3,Integers);

SL(3,Integers)

gap> SL(4,Integers mod 4);

SL(4,Z/4Z)

50.2.3 GeneralUnitaryGroup

▷ GeneralUnitaryGroup([filt,]d, q[, form]) (function)

▷ GeneralUnitaryGroup([filt,]form) (function)

▷ GU([filt,]d, q[, form]) (function)

▷ GU([filt,]form) (function)

constructs a group isomorphic to the general unitary group GU(d , q) of those d × d matrices
over the field with q 2 elements that respect a fixed nondegenerate sesquilinear form, in the category
given by the filter filt .

If filt is not given it defaults to IsMatrixGroup (44.1.1), and the returned group is the general
unitary group itself.

If version at least 1.2.6 of the Forms package is loaded then the desired sesquilinear form can
be specified via form , which can be either a matrix or a form object in IsHermitianForm (Forms:
IsHermitianForm) or a group with stored InvariantSesquilinearForm (44.5.3) value (and then
this form is taken).

A given form determines d , and also q except if form is a matrix that does not store its
BaseDomain (26.3.1) value. These parameters can be entered, and an error is signalled if they do
not fit to the given form .

If form is not given then a default is chosen as described in the introduction to Section 50.2.
Example

gap> GeneralUnitaryGroup(3, 5);

GU(3,5)

gap> GeneralUnitaryGroup(IsPermGroup, 3, 5);

Perm_GU(3,5)

50.2.4 SpecialUnitaryGroup

▷ SpecialUnitaryGroup([filt,]d, q[, form]) (function)

▷ SpecialUnitaryGroup([filt,]form) (function)

▷ SU([filt,]d, q[, form]) (function)

▷ SU([filt,]form) (function)

constructs a group isomorphic to the special unitary group SU(d , q) of those d × d matrices
over the field with q 2 elements whose determinant is the identity of the field and that respect a fixed
nondegenerate sesquilinear form, in the category given by the filter filt .

If filt is not given it defaults to IsMatrixGroup (44.1.1), and the returned group is the special
unitary group itself.

GAP - Reference Manual 809

If version at least 1.2.6 of the Forms package is loaded then the desired sesquilinear form can
be specified via form , which can be either a matrix or a form object in IsHermitianForm (Forms:
IsHermitianForm) or a group with stored InvariantSesquilinearForm (44.5.3) value (and then
this form is taken).

A given form determines d , and also q except if form is a matrix that does not store its
BaseDomain (26.3.1) value. These parameters can be entered, and an error is signalled if they do
not fit to the given form .

If form is not given then a default is chosen as described in the introduction to Section 50.2.
Example

gap> SpecialUnitaryGroup(3, 5);

SU(3,5)

gap> SpecialUnitaryGroup(IsPermGroup, 3, 5);

Perm_SU(3,5)

50.2.5 SymplecticGroup

▷ SymplecticGroup([filt,]d, q[, form]) (function)

▷ SymplecticGroup([filt,]d, ring[, form]) (function)

▷ SymplecticGroup([filt,]form) (function)

▷ Sp([filt,]d, q[, form]) (function)

▷ Sp([filt,]d, ring[, form]) (function)

▷ Sp([filt,]form) (function)

▷ SP([filt,]d, q[, form]) (function)

▷ SP([filt,]d, ring[, form]) (function)

▷ SP([filt,]form) (function)

constructs a group isomorphic to the symplectic group Sp(d , q) of those d ×d matrices over the
field with q elements (respectively the ring ring) that respect a fixed nondegenerate symplectic form,
in the category given by the filter filt .

If filt is not given it defaults to IsMatrixGroup (44.1.1), and the returned group is the sym-
plectic group itself.

At the moment finite fields or residue class rings Integers mod q , with q an odd prime power,
are supported.

If version at least 1.2.6 of the Forms package is loaded and the arguments describe a matrix
group over a finite field then the desired bilinear form can be specified via form , which can be either
a matrix or a form object in IsBilinearForm (Forms: IsBilinearForm) or a group with stored
InvariantBilinearForm (44.5.1) value (and then this form is taken).

A given form determines and d , and also q except if form is a matrix that does not store its
BaseDomain (26.3.1) value. These parameters can be entered, and an error is signalled if they do not
fit to the given form .

If form is not given then a default is chosen as described in the introduction to Section 50.2.
Example

gap> SymplecticGroup(4, 2);

Sp(4,2)

gap> g:=SymplecticGroup(6,Integers mod 9);

Sp(6,Z/9Z)

gap> Size(g);

GAP - Reference Manual 810

95928796265538862080

gap> SymplecticGroup(IsPermGroup, 4, 2);

Perm_Sp(4,2)

50.2.6 GeneralOrthogonalGroup

▷ GeneralOrthogonalGroup([filt,][e,]d, q[, form]) (function)

▷ GeneralOrthogonalGroup([filt,]form) (function)

▷ GO([filt,][e,]d, q[, form]) (function)

▷ GO([filt,]form) (function)

constructs a group isomorphic to the general orthogonal group GO(e , d , q) of those
d × d matrices over the field with q elements that respect a non-singular quadratic form
(see InvariantQuadraticForm (44.5.5)) specified by e , in the category given by the filter filt .

The value of e must be 0 for odd d (and can optionally be omitted in this case), respectively one
of 1 or −1 for even d . If filt is not given it defaults to IsMatrixGroup (44.1.1), and the returned
group is the general orthogonal group itself.

If version at least 1.2.6 of the Forms package is loaded then the desired quadratic form can be
specified via form , which can be either a matrix or a form object in IsQuadraticForm (Forms:
IsQuadraticForm) or a group with stored InvariantQuadraticForm (44.5.5) value (and then this
form is taken).

A given form determines e and d , and also q except if form is a matrix that does not store its
BaseDomain (26.3.1) value. These parameters can be entered, and an error is signalled if they do not
fit to the given form .

If form is not given then a default is chosen as described in the introduction to Section 50.2.
Note that in [KL90], GO is defined as the stabilizer ∆(V,F,κ) of the quadratic form, up to scalars,

whereas our GO is called I(V,F,κ) there.
Example

gap> GeneralOrthogonalGroup(5, 3);

GO(0,5,3)

gap> GeneralOrthogonalGroup(-1, 8, 2);

GO(-1,8,2)

gap> GeneralOrthogonalGroup(IsPermGroup, -1, 8, 2);

Perm_GO(-1,8,2)

50.2.7 SpecialOrthogonalGroup

▷ SpecialOrthogonalGroup([filt,][e,]d, q[, form]) (function)

▷ SpecialOrthogonalGroup([filt,]form) (function)

▷ SO([filt,][e,]d, q[, form]) (function)

▷ SO([filt,]form) (function)

constructs a group isomorphic to the special orthogonal group SO(e , d , q), which is the subgroup
of all those matrices in the general orthogonal group (see GeneralOrthogonalGroup (50.2.6)) that
have determinant one, in the category given by the filter filt . (The index of SO(e , d , q) in GO(e ,
d , q) is 2 if q is odd, and 1 if q is even.) Also interesting is the group Omega(e , d , q), see Omega

(50.2.8), which is of index 2 in SO(e , d , q), except in the case d = 1.

GAP - Reference Manual 811

If filt is not given it defaults to IsMatrixGroup (44.1.1), and the returned group is the special
orthogonal group itself.

If version at least 1.2.6 of the Forms package is loaded then the desired quadratic form can be
specified via form , which can be either a matrix or a form object in IsQuadraticForm (Forms:
IsQuadraticForm) or a group with stored InvariantQuadraticForm (44.5.5) value (and then this
form is taken).

A given form determines e and d , and also q except if form is a matrix that does not store its
BaseDomain (26.3.1) value. These parameters can be entered, and an error is signalled if they do not
fit to the given form .

If form is not given then a default is chosen as described in the introduction to Section 50.2.
Example

gap> SpecialOrthogonalGroup(5, 3);

SO(0,5,3)

gap> SpecialOrthogonalGroup(-1, 8, 2); # here SO and GO coincide

GO(-1,8,2)

gap> SpecialOrthogonalGroup(IsPermGroup, 5, 3);

Perm_SO(0,5,3)

50.2.8 Omega (construct an orthogonal group)

▷ Omega([filt,][e,]d, q[, form]) (operation)

▷ Omega([filt,]form) (operation)

constructs a group isomorphic to the group Ω(e , d , q) of those d × d matrices over the field
with q elements that respect a non-singular quadratic form (see InvariantQuadraticForm (44.5.5))
specified by e , and that have square spinor norm in odd characteristic or Dickson invariant 0 in even
characteristic, respectively, in the category given by the filter filt .

For odd q and d ≥ 2, this group has always index two in the corresponding special orthog-
onal group, which will be conjugate in GL(d,q) to the group returned by SO(e , d , q), see
SpecialOrthogonalGroup (50.2.7), but may fix a different form (see 50.2).

The value of e must be 0 for odd d (and can optionally be omitted in this case), respectively one
of 1 or −1 for even d . If filt is not given it defaults to IsMatrixGroup (44.1.1), and the returned
group is the group Ω(e , d , q) itself.

If version at least 1.2.6 of the Forms package is loaded then the desired quadratic form can be
specified via form , which can be either a matrix or a form object in IsQuadraticForm (Forms:
IsQuadraticForm) or a group with stored InvariantQuadraticForm (44.5.5) value (and then this
form is taken).

A given form determines e and d , and also q except if form is a matrix that does not store its
BaseDomain (26.3.1) value. These parameters can be entered, and an error is signalled if they do not
fit to the given form .

If form is not given then a default is chosen as described in the introduction to Section 50.2.
Example

gap> g:= Omega(3, 5); StructureDescription(g);

Omega(0,3,5)

"A5"

gap> g:= Omega(1, 4, 4); StructureDescription(g);

Omega(+1,4,4)

"A5 x A5"

GAP - Reference Manual 812

gap> g:= Omega(-1, 4, 3); StructureDescription(g);

Omega(-1,4,3)

"A6"

gap> g:= Omega(IsPermGroup, 1, 6, 2); StructureDescription(g);

Perm_Omega(+1,6,2)

"A8"

gap> IsSubset(GO(3, 5), Omega(3, 5)); # different forms!

false

50.2.9 GeneralSemilinearGroup

▷ GeneralSemilinearGroup([filt,]d, q) (function)

▷ GammaL([filt,]d, q) (function)

GeneralSemilinearGroup returns a group isomorphic to the general semilinear group ΓL(d , q
) of semilinear mappings of the vector space GF(q)^d .

If filt is not given it defaults to IsMatrixGroup (44.1.1), and the returned group consists of
matrices of dimension d f over the field with p elements, where q = p f , for a prime integer p.

50.2.10 SpecialSemilinearGroup

▷ SpecialSemilinearGroup([filt,]d, q) (function)

▷ SigmaL([filt,]d, q) (function)

SpecialSemilinearGroup returns a group isomorphic to the special semilinear group ΣL(d ,
q) of those semilinear mappings of the vector space GF(q)^d (see GeneralSemilinearGroup

(50.2.9)) whose linear part has determinant one.
If filt is not given it defaults to IsMatrixGroup (44.1.1), and the returned group consists of

matrices of dimension d f over the field with p elements, where q = p f , for a prime integer p.

50.2.11 ProjectiveGeneralLinearGroup

▷ ProjectiveGeneralLinearGroup([filt,]d, q) (function)

▷ PGL([filt,]d, q) (function)

constructs a group isomorphic to the projective general linear group PGL(d , q) of those d × d

matrices over the field with q elements, modulo the centre, in the category given by the filter filt .
If filt is not given it defaults to IsPermGroup (43.1.1), and the returned group is the action on

lines of the underlying vector space.

50.2.12 ProjectiveSpecialLinearGroup

▷ ProjectiveSpecialLinearGroup([filt,]d, q) (function)

▷ PSL([filt,]d, q) (function)

constructs a group isomorphic to the projective special linear group PSL(d , q) of those d × d

matrices over the field with q elements whose determinant is the identity of the field, modulo the
centre, in the category given by the filter filt .

GAP - Reference Manual 813

If filt is not given it defaults to IsPermGroup (43.1.1), and the returned group is the action on
lines of the underlying vector space.

50.2.13 ProjectiveGeneralUnitaryGroup

▷ ProjectiveGeneralUnitaryGroup([filt,]d, q) (function)

▷ PGU([filt,]d, q) (function)

constructs a group isomorphic to the projective general unitary group PGU(d , q) of those d ×d

matrices over the field with q 2 elements that respect a fixed nondegenerate sesquilinear form, modulo
the centre, in the category given by the filter filt .

If filt is not given it defaults to IsPermGroup (43.1.1), and the returned group is the action on
lines of the underlying vector space.

50.2.14 ProjectiveSpecialUnitaryGroup

▷ ProjectiveSpecialUnitaryGroup([filt,]d, q) (function)

▷ PSU([filt,]d, q) (function)

constructs a group isomorphic to the projective special unitary group PSU(d , q) of those d ×d

matrices over the field with q 2 elements that respect a fixed nondegenerate sesquilinear form and have
determinant 1, modulo the centre, in the category given by the filter filt .

If filt is not given it defaults to IsPermGroup (43.1.1), and the returned group is the action on
lines of the underlying vector space.

50.2.15 ProjectiveSymplecticGroup

▷ ProjectiveSymplecticGroup([filt,]d, q) (function)

▷ PSP([filt,]d, q) (function)

▷ PSp([filt,]d, q) (function)

constructs a group isomorphic to the projective symplectic group PSp(d ,q) of those d×d matrices
over the field with q elements that respect a fixed nondegenerate symplectic form, modulo the centre,
in the category given by the filter filt .

If filt is not given it defaults to IsPermGroup (43.1.1), and the returned group is the action on
lines of the underlying vector space.

50.2.16 ProjectiveGeneralOrthogonalGroup

▷ ProjectiveGeneralOrthogonalGroup([filt,][e,]d, q) (function)

▷ PGO([filt,][e,]d, q) (function)

constructs a group isomorphic to the projective group PGO(e , d , q) of GO(e , d , q), modulo
the centre (see GeneralOrthogonalGroup (50.2.6)), in the category given by the filter filt .

If filt is not given it defaults to IsPermGroup (43.1.1), and the returned group is the action on
lines of the underlying vector space.

GAP - Reference Manual 814

50.2.17 ProjectiveSpecialOrthogonalGroup

▷ ProjectiveSpecialOrthogonalGroup([filt,][e,]d, q) (function)

▷ PSO([filt,][e,]d, q) (function)

constructs a group isomorphic to the projective group PSO(e , d , q) of SO(e , d , q), modulo the
centre (see SpecialOrthogonalGroup (50.2.7)), in the category given by the filter filt .

If filt is not given it defaults to IsPermGroup (43.1.1), and the returned group is the action on
lines of the underlying vector space.

50.2.18 ProjectiveOmega

▷ ProjectiveOmega([filt,][e,]d, q) (function)

▷ POmega([filt,][e,]d, q) (function)

constructs a group isomorphic to the projective group PΩ(e , d , q) of Ω(e , d , q), modulo the
centre (see Omega (50.2.8)), in the category given by the filter filt .

If filt is not given it defaults to IsPermGroup (43.1.1), and the returned group is the action on
lines of the underlying vector space.

50.2.19 ProjectiveGeneralSemilinearGroup

▷ ProjectiveGeneralSemilinearGroup([filt,]d, q) (function)

▷ PGammaL([filt,]d, q) (function)

ProjectiveGeneralSemilinearGroup returns a group isomorphic to the factor group of the
general semilinear group GammaL(d , q) modulo the center of its normal subgroup GL(d , q).

If filt is not given it defaults to IsPermGroup (43.1.1), and the returned group is the action on
lines of the underlying vector space GF(q)^d .

50.2.20 ProjectiveSpecialSemilinearGroup

▷ ProjectiveSpecialSemilinearGroup([filt,]d, q) (function)

▷ PSigmaL([filt,]d, q) (function)

ProjectiveSpecialSemilinearGroup returns a group isomorphic to the factor group of the
special semilinear group SigmaL(d , q) modulo the center of its normal subgroup SL(d , q).

If filt is not given it defaults to IsPermGroup (43.1.1), and the returned group is the action on
lines of the underlying vector space GF(q)^d .

50.3 Conjugacy Classes in Classical Groups

For general and special linear groups (see GeneralLinearGroup (50.2.1) and SpecialLinearGroup

(50.2.2)) GAP has an efficient method to generate representatives of the conjugacy classes. This uses
results from linear algebra on normal forms of matrices. If you know how to do this for other types of
classical groups, please, tell us.

GAP - Reference Manual 815

Example
gap> g := SL(4,9);

SL(4,9)

gap> NrConjugacyClasses(g);

861

gap> cl := ConjugacyClasses(g);;

gap> Length(cl);

861

50.3.1 NrConjugacyClassesGL

▷ NrConjugacyClassesGL(n, q) (function)

▷ NrConjugacyClassesGU(n, q) (function)

▷ NrConjugacyClassesSL(n, q) (function)

▷ NrConjugacyClassesSU(n, q) (function)

▷ NrConjugacyClassesPGL(n, q) (function)

▷ NrConjugacyClassesPGU(n, q) (function)

▷ NrConjugacyClassesPSL(n, q) (function)

▷ NrConjugacyClassesPSU(n, q) (function)

▷ NrConjugacyClassesSLIsogeneous(n, q, f) (function)

▷ NrConjugacyClassesSUIsogeneous(n, q, f) (function)

The first of these functions compute for given positive integer n and prime power q the number
of conjugacy classes in the classical groups GL(n , q), GU(n , q), SL(n , q), SU(n , q), PGL(n ,
q), PGU(n , q), PSL(n , q), PSL(n , q), respectively. (See also ConjugacyClasses (39.10.2) and
Section 50.2.)

For each divisor f of n there is a group of Lie type with the same order as SL(n , q), such that its
derived subgroup modulo its center is isomorphic to PSL(n , q). The various such groups with fixed
n and q are called isogeneous. (Depending on congruence conditions on q and n several of these
groups may actually be isomorphic.) The function NrConjugacyClassesSLIsogeneous computes
the number of conjugacy classes in this group. The extreme cases f = 1 and f = n lead to the groups
SL(n , q) and PGL(n , q), respectively.

The function NrConjugacyClassesSUIsogeneous is the analogous one for the corresponding
unitary groups.

The formulae for the number of conjugacy classes are taken from [Mac81].
Example

gap> NrConjugacyClassesGL(24,27);

22528399544939174406067288580609952

gap> NrConjugacyClassesPSU(19,17);

15052300411163848367708

gap> NrConjugacyClasses(SL(16,16));

1229782938228219920

50.4 Constructors for Basic Groups

All functions described in the previous sections call constructor operations to do the work. The names
of the constructors are obtained from the names of the functions by appending "Cons", so for example

GAP - Reference Manual 816

CyclicGroup (50.1.2) calls the constructor
CyclicGroupCons(cat, n)

The first argument cat for each method of this constructor must be the category for which the
method is installed. For example the method for constructing a cyclic permutation group is installed
as follows (see InstallMethod (78.3.1) for the meaning of the arguments.

Example
InstallMethod(CyclicGroupCons,

"regular perm group",

true,

[IsPermGroup and IsRegularProp and IsFinite, IsInt and IsPosRat], 0,

function(filter, n)

...

end);

50.5 Selection Functions

AllLibraryGroups(fun1, val1, ...)

For a number of the group libraries two selection functions are provided. Each
AllLibraryGroups selection function permits one to select all groups from the library Library

that have a given set of properties. Currently, the library selection functions provided, of this type,
are AllSmallGroups (smallgrp: AllSmallGroups), AllIrreducibleSolvableGroups (primgrp:
AllIrreducibleSolvableGroups), AllTransitiveGroups (transgrp: AllTransitiveGroups), and
AllPrimitiveGroups (primgrp: AllPrimitiveGroups). Corresponding to each of these there is
a OneLibraryGroup function (see below) which returns at most one group.

These functions take an arbitrary number of pairs (but at least one pair) of arguments. The first
argument in such a pair is a function that can be applied to the groups in the library, and the second ar-
gument is either a single value that this function must return in order to have this group included in the
selection, or a list of such values. For the function AllSmallGroups (smallgrp: AllSmallGroups)
the first such function must be Size (30.4.6), and, unlike the other library selection functions, it sup-
ports an alternative syntax where Size (30.4.6) is omitted (see AllSmallGroups (smallgrp: AllS-
mallGroups)). Also, see AllIrreducibleSolvableGroups (primgrp: AllIrreducibleSolvable-
Groups), for details pertaining to this function.

For an example, let us consider the selection function for the library of transitive groups (also
see (transgrp: Transitive Permutation Groups)). The command

Example
gap> AllTransitiveGroups(NrMovedPoints,[10..15],

> Size, [1..100],

> IsAbelian, false);

returns a list of all transitive groups with degree between 10 and 15 and size less than 100 that are
not abelian.

Thus AllTransitiveGroups behaves as if it was implemented by a function similar to the one
defined below, where TransitiveGroupsList is a list of all transitive groups. (Note that in the
definition below we assume for simplicity that AllTransitiveGroups accepts exactly 4 arguments.
It is of course obvious how to change this definition so that the function would accept a variable
number of arguments.)

GAP - Reference Manual 817

Example
AllTransitiveGroups := function(fun1, val1, fun2, val2)

local groups, g, i;

groups := [];

for i in [1 .. Length(TransitiveGroupsList)] do

g := TransitiveGroupsList[i];

if fun1(g) = val1 or IsList(val1) and fun1(g) in val1

and fun2(g) = val2 or IsList(val2) and fun2(g) in val2

then

Add(groups, g);

fi;

od;

return groups;

end;

Note that the real selection functions are considerably more difficult, to improve the efficiency.
Most important, each recognizes a certain set of properties which are precomputed for the library
without having to compute them anew for each group. This will substantially speed up the selection
process. In the description of each library we will list the properties that are stored for this library.

OneLibraryGroup(fun1, val1, ...)

For each AllLibraryGroups function (see above) there is a corresponding function
OneLibraryGroup on exactly the same arguments, i.e., there are OneSmallGroup (smallgrp:
OneSmallGroup), OneIrreducibleSolvableGroup (primgrp: OneIrreducibleSolvableGroup),
OneTransitiveGroup (transgrp: OneTransitiveGroup), and OnePrimitiveGroup (primgrp:
OnePrimitiveGroup). Each function simply returns one group in the library that has the prescribed
properties, instead of all such groups. It returns fail if no such group exists in the library.

50.6 Finite Perfect Groups

The GAP library of finite perfect groups provides, up to isomorphism, a list of all perfect groups whose
sizes are less than 2 ·106. The groups of orders up to 106 have been enumerated by Derek F. Holt and
Wilhelm Plesken and published in their book “Perfect Groups” [HP89]. For orders n= 86016, 368640,
or 737280 this work only counted the groups (but did not explicitly list them), the groups of orders
n = 61440, 122880, 172032, 245760, 344064, 491520, 688128, or 983040 were omitted.

We are grateful to Derek Holt and Wilhelm Plesken for making their groups available to the GAP
community by contributing their files. It should be noted that their book contains a lot of further
information for many of the library groups. So we would like to recommend it to any GAP user who
is interested in the groups. The library of these has been brought into GAP format by Volkmar Felsch.

Several additional groups omitted from the book “Perfect Groups” have also been included. Two
groups -- one of order 450000 with a factor group of type A6 and the one of order 962280 -- were
found by Jack Schmidt in 2005. Two groups of order 243000 and one each of orders 729000, 871200,
878460 were found in 2020 by Alexander Hulpke.

The perfect groups of size less than 2 · 106 which had not been classified in the work of Holt
and Plesken have been enumerated by Alexander Hulpke. They are stored directly and provide less
construction information in their names.

As all groups are stored by presentations, a permutation representation is obtained by coset enu-
meration. Note that some of the library groups do not have a faithful permutation representation of
small degree. Computations in these groups may be rather time consuming.

GAP - Reference Manual 818

50.6.1 SizesPerfectGroups

▷ SizesPerfectGroups() (function)

This is the ordered list of all numbers up to 2 ·106 that occur as sizes of perfect groups. One can
iterate over part of the perfect groups library with:

Example
gap> for n in Intersection([100..500],SizesPerfectGroups()) do

> for k in [1..NrPerfectGroups(n)] do

> pg := PerfectGroup(n,k);

> od;

> od;

50.6.2 PerfectGroup

▷ PerfectGroup([filt,]size[, n]) (function)

▷ PerfectGroup([filt,]sizenumberpair) (function)

returns a group which is isomorphic to the library group specified by the size number [size, n

] or by the two separate arguments size and n , assuming a default value of n = 1. The optional ar-
gument filt defines the filter in which the group is returned. Possible filters so far are IsPermGroup
(43.1.1) and IsSubgroupFpGroup (47.1.1). In the latter case, the generators and relators used coin-
cide with those given in [HP89]. The default filter is IsPermGroup (43.1.1).

Example
gap> G := PerfectGroup(IsPermGroup,6048,1);

U3(3)

gap> G:=PerfectGroup(IsPermGroup,823080,2);

A5 2^1 19^2 C 19^1

gap> NrMovedPoints(G);

6859

gap> G:=PerfectGroup(1866240,12);

PG1866240.12

gap> NrMovedPoints(G);

270

50.6.3 PerfectIdentification

▷ PerfectIdentification(G) (attribute)

This attribute is set for all groups obtained from the perfect groups library and has the value
[size,nr] if the group is obtained with these parameters from the library.

50.6.4 NumberPerfectGroups

▷ NumberPerfectGroups(size) (function)

▷ NrPerfectGroups(size) (function)

▷ NumberPerfectLibraryGroups(size) (function)

▷ NrPerfectLibraryGroups(size) (function)

GAP - Reference Manual 819

returns the number of non-isomorphic perfect groups of size size for each positive integer
size up to 2 · 106. Additionally, for odd size an answer is returned (odd order groups are
solvable). For any other argument out of range it returns fail. NrPerfectGroups is a syn-
onym for NumberPerfectGroups. Moreover NumberPerfectLibraryGroups (and its synonym
NrPerfectLibraryGroups) exist for historical reasons, and return 0 instead of fail for arguments
outside the library scope.

50.6.5 SizeNumbersPerfectGroups

▷ SizeNumbersPerfectGroups(factor1, factor2, ...) (function)

SizeNumbersPerfectGroups returns a list of pairs, each entry consisting of a group order and
the number of those groups in the library of perfect groups that contain the specified factors factor1 ,
factor2 , ... among their composition factors.

Each argument must either be the name of a nonabelian simple group or an integer which stands
for the product of the sizes of one or more cyclic factors. (In fact, the function replaces all integers
among the arguments by their product.)

The following text strings are accepted as simple group names.

• An or A(n) for the alternating groups An , 5 ≤ n ≤ 9, for example A5 or A(6).

• Ln(q) or L(n,q) for PSL(n,q), where n ∈ {2,3} and q a prime power, ranging

– for n = 2 from 4 to 125

– for n = 3 from 2 to 5

• Un(q) or U(n,q) for PSU(n,q), where n ∈ {3,4} and q a prime power, ranging

– for n = 3 from 3 to 5

– for n = 4 from 2 to 2

• Sp4(4) or S(4,4) for the symplectic group Sp(4,4),

• Sz(8) for the Suzuki group Sz(8),

• Mn or M(n) for the Mathieu groups M11, M12, and M22, and

• Jn or J(n) for the Janko groups J1 and J2.

Note that, for most of the groups, the preceding list offers two different names in order
to be consistent with the notation used in [HP89] as well as with the notation used in the
DisplayCompositionSeries (39.17.6) command of GAP. However, as the names are compared as
text strings, you are restricted to the above choice. Even expressions like L2(2^5) are not accepted.

As the use of the term PSU(n,q) is not unique in the literature, we mention that in this library
it denotes the factor group of SU(n,q) by its centre, where SU(n,q) is the group of all n× n unitary
matrices with entries in GF(q2) and determinant 1.

The purpose of the function is to provide a simple way to formulate a loop over all library groups
which contain certain composition factors.

GAP - Reference Manual 820

50.6.6 DisplayInformationPerfectGroups

▷ DisplayInformationPerfectGroups(size[, n]) (function)

▷ DisplayInformationPerfectGroups(sizenumberpair) (function)

DisplayInformationPerfectGroups displays some invariants of the n-th group of order size
from the perfect groups library.

If no value of n has been specified, the invariants will be displayed for all groups of size size

available in the library.
Alternatively, also a list of length two may be entered as the only argument, with entries size and

n .
The information provided for G includes the following items:

• a headline containing the size number [size, n] of G in the form size.n (the suffix .n

will be suppressed if, up to isomorphism, G is the only perfect group of order size),

• a message if G is simple or quasisimple, i.e., if the factor group of G by its centre is simple,

• the “description” of the structure of G as it is given by Holt and Plesken in [HP89] (see below),

• the size of the centre of G (suppressed, if G is simple),

• the prime decomposition of the size of G,

• orbit sizes for a faithful permutation representation of G which is provided by the library (see
below),

• a reference to each occurrence of G in the tables of section 5.3 of [HP89]. Each of these
references consists of a class number and an internal number (i, j) under which G is listed in
that class. For some groups, there is more than one reference because these groups belong to
more than one of the classes in the book.

Example
gap> DisplayInformationPerfectGroups(30720, 3);

#I Perfect group 30720: A5 (2^4 E N 2^1 E 2^4) A

#I size = 2^11*3*5 orbit size = 240

#I Holt-Plesken class 1 (9,3)

gap> DisplayInformationPerfectGroups(30720, 6);

#I Perfect group 30720: A5 (2^4 x 2^4) C N 2^1

#I centre = 2 size = 2^11*3*5 orbit size = 384

#I Holt-Plesken class 1 (9,6)

gap> DisplayInformationPerfectGroups(Factorial(8) / 2);

#I Perfect group 20160.1: A5 x L3(2) 2^1

#I centre = 2 size = 2^6*3^2*5*7 orbit sizes = 5 + 16

#I Holt-Plesken class 31 (1,1) (occurs also in class 32)

#I Perfect group 20160.2: A5 2^1 x L3(2)

#I centre = 2 size = 2^6*3^2*5*7 orbit sizes = 7 + 24

#I Holt-Plesken class 31 (1,2) (occurs also in class 32)

#I Perfect group 20160.3: (A5 x L3(2)) 2^1

#I centre = 2 size = 2^6*3^2*5*7 orbit size = 192

#I Holt-Plesken class 31 (1,3)

#I Perfect group 20160.4: simple group A8

#I size = 2^6*3^2*5*7 orbit size = 8

GAP - Reference Manual 821

#I Holt-Plesken class 26 (0,1)

#I Perfect group 20160.5: simple group L3(4)

#I size = 2^6*3^2*5*7 orbit size = 21

#I Holt-Plesken class 27 (0,1)

50.6.7 More about the Perfect Groups Library

For any library group G, the library files do not only provide a presentation, but, in addition, a list
of one or more subgroups S1, . . . ,Sr of G such that there is a faithful permutation representation of
G of degree ∑

r
i=1[G : Si] on the set {Sig | 1 ≤ i ≤ r,g ∈ G} of the cosets of the Si. This allows one

to construct the groups as permutation groups. The function DisplayInformationPerfectGroups

(50.6.6) displays only the available degree. The message
Example

orbit size = 8

in the above example means that the available permutation representation is transitive and of de-
gree 8, whereas the message

Example
orbit sizes = 5 + 16

means that a nontransitive permutation representation is available which acts on two orbits of size 5
and 16 respectively.

The notation used in the “description” of a group is explained in section 5.1.2 of [HP89]. We quote
the respective page from there:

Within a class Q# p, an isomorphism type of groups will be denoted by an ordered pair of integers
(r,n), where r ≥ 0 and n > 0. More precisely, the isomorphism types in Q#p of order pr|Q| will be
denoted by (r,1),(r,2),(r,3), Thus Q will always get the size number (0,1).

In addition to the symbol (r,n), the groups in Q# p will also be given a more descriptive name.
The purpose of this is to provide a very rough idea of the structure of the group. The names are
derived in the following manner. First of all, the isomorphism classes of irreducible FpQ-modules
M with |Q|.|M| ≤ 106, where Fp is the field of order p, are assigned symbols. These will either
be simply px, where x is the dimension of the module, or, if there is more than one isomorphism
class of irreducible modules having the same dimension, they will be denoted bypx, px′ , etc. The
one-dimensional module with trivial Q-action will therefore be denoted by p1. These symbols will
be listed under the description of Q. The group name consists essentially of a list of the composition
factors working from the top of the group downwards; hence it always starts with the name of Q
itself. (This convention is the most convenient in our context, but it is different from that adopted in
the ATLAS [CCN+85], for example, where composition factors are listed in the reverse order. For
example, we denote a group isomorphic to SL(2,5) by A521 rather than 2.A5.)

Some other symbols are used in the name, in order to give some idea of the relationship between
these composition factors, and splitting properties. We shall now list these additional symbols.

× between two factors denotes a direct product of FpQ-modules or groups.

C (for “commutator”) between two factors means that the second lies in the commutator subgroup
of the first. Similarly, a segment of the form (f1× f2)C f3 would mean that the factors f1 and f2
commute modulo f3 and f3 lies in [f1, f2].

GAP - Reference Manual 822

A (for “abelian”) between two factors indicates that the second is in the pth power (but not the
commutator subgroup) of the first. “A” may also follow the factors, if bracketed.

E (for “elementary abelian”) between two factors indicates that together they generate an elemen-
tary abelian group (modulo subsequent factors), but that the resulting FpQ-module extension
does not split.

N (for “nonsplit”) before a factor indicates that Q (or possibly its covering group) splits down as
far at this factor but not over the factor itself. So “Q f1N f2” means that the normal subgroup
f1 f2 of the group has no complement but, modulo f2, f1, does have a complement.

Brackets have their obvious meaning. Summarizing, we have:

× = direct product;

C = commutator subgroup;

A = abelian;

E = elementary abelian; and

N = nonsplit.

Here are some examples.

(i) A5(24E21E24)A means that the pairs 24E21 and 21E24 are both elementary abelian of exponent
4.

(ii) A5(24E21A)C21 means that O2(G) is of symplectic type 21+5, with Frattini factor group of type
24E21. The “A” after the 21 indicates that G has a central cyclic subgroup 21A21 of order 4.

(iii) L3(2)((21E)×(N23E23′A)C)23′ means that the 23′ factor at the bottom lies in the commutator
subgroup of the pair 23E23′ in the middle, but the lower pair 23′A23′ is abelian of exponent 4.
There is also a submodule 21E23′ , and the covering group L3(2)21 of L3(2) does not split over
the 23 factor. (Since G is perfect, it goes without saying that the extension L3(2)21 cannot split
itself.)

We must stress that this notation does not always succeed in being precise or even unambiguous,
and the reader is free to ignore it if it does not seem helpful.

If such a group description has been given in the book for G (and, in fact, this is the case for most
of the library groups), it is displayed by DisplayInformationPerfectGroups (50.6.6). Otherwise
the function provides a less explicit description of the (in these cases unique) Holt-Plesken class to
which G belongs, together with a serial number if this is necessary to make it unique.

50.7 Irreducible Maximal Finite Integral Matrix Groups

A library of irreducible maximal finite integral matrix groups is provided with GAP. It contains
Q-class representatives for all of these groups of dimension at most 31, and Z-class representatives
for those of dimension at most 11 or of dimension 13, 17, 19, or 23.

GAP - Reference Manual 823

The groups provided in this library have been determined by Wilhelm Plesken, partially as joint
work with Michael Pohst, or by members of his institute (Lehrstuhl B für Mathematik, RWTH
Aachen). In particular, the data for the groups of dimensions 2 to 9 have been taken from the output
of computer calculations which they performed in 1979 (see [PP77], [PP80]). The Z-class repre-
sentatives of the groups of dimension 10 have been determined and computed by Bernd Souvignier
([Sou94]), and those of dimensions 11, 13, and 17 have been recomputed for this library from the cir-
culant Gram matrices given in [Ple85], using the stand-alone programs for the computation of short
vectors and Bravais groups which have been developed in Plesken’s institute. The Z-class represen-
tatives of the groups of dimensions 19 and 23 had already been determined in [Ple85]. Gabriele Nebe
has recomputed them for us. Her main contribution to this library, however, is that she has determined
and computed the Q-class representatives of the groups of non-prime dimensions between 12 and 24
and the groups of dimensions 25 to 31 (see [PN95], [NP95b], [Neb95], [Neb96]).

The library has been brought into GAP format by Volkmar Felsch. He has applied several GAP
routines to check certain consistency of the data. However, the credit and responsibility for the lists
remain with the authors. We are grateful to Wilhelm Plesken, Gabriele Nebe, and Bernd Souvignier
for supplying their results to GAP.

In the preceding acknowledgement, we used some notations that will also be needed in the sequel.
We first define these.

Any integral matrix group G of dimension n is a subgroup of GLn(Z) as well as of GLn(Q) and
hence lies in some conjugacy class of integral matrix groups under GLn(Z) and also in some conjugacy
class of rational matrix groups under GLn(Q). As usual, we call these classes the Z-class and the
Q-class of G, respectively. Note that any conjugacy class of subgroups of GLn(Q) contains at least
one Z-class of subgroups of GLn(Z) and hence can be considered as the Q-class of some integral
matrix group.

In the context of this library we are only concerned with Z-classes and Q-classes of subgroups
of GLn(Z) which are irreducible and maximal finite in GLn(Z) (we will call them i.m.f. subgroups of
GLn(Z)). We can distinguish two types of these groups:

First, there are those i.m.f. subgroups of GLn(Z) which are also maximal finite subgroups of
GLn(Q). Let us denote the set of their Q-classes by Q1(n). It is clear from the above remark that
Q1(n) just consists of the Q-classes of i.m.f. subgroups of GLn(Q).

Secondly, there is the set Q2(n) of the Q-classes of the remaining i.m.f. subgroups of GLn(Z), i.e.,
of those which are not maximal finite subgroups of GLn(Q). For any such group G, there is at least
one class C ∈ Q1(n) such that G is conjugate under Q to a proper subgroup of some group H ∈C. In
fact, the class C is uniquely determined for any group G occurring in the library (though there seems
to be no reason to assume that this property should hold in general). Hence we may call C the rational
i.m.f. class of G. Finally, we will denote the number of classes in Q1(n) and Q2(n) by q1(n) and q2(n),
respectively.

As an example, let us consider the case n = 4. There are 6 Z-classes of i.m.f. subgroups of
GL4(Z) with representative subgroups G1, . . . ,G6 of isomorphism types G1 ∼= W (F4), G2 ∼= D12 ≀C2,
G3 ∼= G4 ∼=C2 ×S5, G5 ∼=W (B4), and G6 ∼= (D12YD12) :C2. The corresponding Q-classes, which we
denote R1, . . . ,R6, are pairwise different except that R3 coincides with R4. The groups G1, G2, and G3
are i.m.f. subgroups of GL4(Q), but G5 and G6 are not because they are conjugate under GL4(Q) to
proper subgroups of G1 and G2, respectively. So we have Q1(4) = {R1,R2,R3}, Q2(4) = {R5,R6},
q1(4) = 3, and q2(4) = 2.

The q1(n)Q-classes of i.m.f. subgroups of GLn(Q) have been determined for each dimension n ≤
31. The current GAP library provides integral representative groups for all these classes. Moreover,

GAP - Reference Manual 824

all Z-classes of i.m.f. subgroups of GLn(Z) are known for n ≤ 11 and for n ∈ {13,17,19,23}. For
these dimensions, the library offers integral representative groups for all Q-classes in Q1(n) and Q2(n)
as well as for all Z-classes of i.m.f. subgroups of GLn(Z).

Any group G of dimension n given in the library is represented as the automorphism group G =
Aut(F,L) = {g ∈ GLn(Z) | Lg = L,gFgtr = F} of a positive definite symmetric n×n matrix F ∈ Zn×n

on an n-dimensional lattice L ∼= Z1×n (for details see e.g. [PN95]). GAP provides for G a list of
matrix generators and the Gram matrix F .

The positive definite quadratic form defined by F defines a norm vFvtr for each vector v ∈ L, and
there is only a finite set of vectors of minimal norm. These vectors are often simply called the short
vectors. Their set splits into orbits under G, and G being irreducible acts faithfully on each of these
orbits by multiplication from the right. GAP provides for each of these orbits the orbit size and a
representative vector.

Like most of the other GAP libraries, the library of i.m.f. integral matrix groups supplies an ex-
traction function, ImfMatrixGroup. However, as the library involves only 525 different groups, there
is no need for a selection or an example function. Instead, there are two functions, ImfInvariants
(50.7.3) and DisplayImfInvariants (50.7.2), which provide some Z-class invariants that can be
extracted from the library without actually constructing the representative groups themselves. The
difference between these two functions is that the latter one displays the resulting data in some easily
readable format, whereas the first one returns them as record components so that you can properly
access them.

We shall give an individual description of each of the library functions, but first we would like
to insert a short remark concerning their names: Any self-explaining name of a function handling
irreducible maximal finite integral matrix groups would have to include this term in full length and
hence would grow extremely long. Therefore we have decided to use the abbreviation Imf instead in
order to restrict the names to some reasonable length.

The first three functions can be used to formulate loops over the classes.

50.7.1 ImfNumberQQClasses

▷ ImfNumberQQClasses(dim) (function)

▷ ImfNumberQClasses(dim) (function)

▷ ImfNumberZClasses(dim, q) (function)

ImfNumberQQClasses returns the number q1(dim) of Q-classes of i.m.f. rational matrix groups
of dimension dim . Valid values of dim are all positive integers up to 31.

Note: In order to enable you to loop just over the classes belonging to Q1(dim), we have arranged
the list of Q-classes of dimension dim for any dimension dim in the library such that, whenever the
classes of Q2(dim) are known, too, i.e., in the cases dim ≤ 11 or dim ∈ {13,17,19,23}, the classes of
Q1(dim) precede those of Q2(dim) and hence are numbered from 1 to q1(dim).

ImfNumberQClasses returns the number of Q-classes of groups of dimension dim which are
available in the library. If dim ≤ 11 or dim ∈ {13,17,19,23}, this is the number q1(dim)+ q2(dim)
of Q-classes of i.m.f. subgroups of GLdim(Z). Otherwise, it is just the number q1(dim) of Q-classes
of i.m.f. subgroups of GLdim(Q). Valid values of dim are all positive integers up to 31.

ImfNumberZClasses returns the number of Z-classes in the q-th Q-class of i.m.f. integral matrix
groups of dimension dim . Valid values of dim are all positive integers up to 11 and all primes up to
23.

GAP - Reference Manual 825

50.7.2 DisplayImfInvariants

▷ DisplayImfInvariants(dim, q[, z]) (function)

DisplayImfInvariants displays the following Z-class invariants of the groups in the z-th
Z-class in the q-th Q-class of i.m.f. integral matrix groups of dimension dim :

• its Z-class number in the form dim .q .z , if dim is at most 11 or a prime at most 23, or its
Q-class number in the form dim .q , else,

• a message if the group is solvable,

• the size of the group,

• the isomorphism type of the group,

• the elementary divisors of the associated quadratic form,

• the sizes of the orbits of short vectors (these sizes are the degrees of the faithful permutation
representations which you may construct using the functions IsomorphismPermGroup (50.7.5)
or IsomorphismPermGroupImfGroup (50.7.6) below),

• the norm of the associated short vectors,

• only in case that the group is not an i.m.f. group in GLn(Q): an appropriate message, including
the Q-class number of the corresponding rational i.m.f. class.

If you specify the value 0 for any of the parameters dim , q , or z , the command will loop over all
available dimensions, Q-classes of given dimension, or Z-classes within the given Q-class, respec-
tively. Otherwise, the values of the arguments must be in range. A value z ̸= 1 must not be specified
if the Z-classes are not known for the given dimension, i.e., if dim > 11 and dim ̸∈ {13,17,19,23}.
The default value of z is 1. This value of z will be accepted even if the Z-classes are not known.
Then it specifies the only representative group which is available for the q-th Q-class. The greatest
legal value of dim is 31.

Example
gap> DisplayImfInvariants(3, 1, 0);

#I Z-class 3.1.1: Solvable, size = 2^4*3

#I isomorphism type = C2 wr S3 = C2 x S4 = W(B3)

#I elementary divisors = 1^3

#I orbit size = 6, minimal norm = 1

#I Z-class 3.1.2: Solvable, size = 2^4*3

#I isomorphism type = C2 wr S3 = C2 x S4 = C2 x W(A3)

#I elementary divisors = 1*4^2

#I orbit size = 8, minimal norm = 3

#I Z-class 3.1.3: Solvable, size = 2^4*3

#I isomorphism type = C2 wr S3 = C2 x S4 = C2 x W(A3)

#I elementary divisors = 1^2*4

#I orbit size = 12, minimal norm = 2

gap> DisplayImfInvariants(8, 15, 1);

#I Z-class 8.15.1: Solvable, size = 2^5*3^4

#I isomorphism type = C2 x (S3 wr S3)

#I elementary divisors = 1*3^3*9^3*27

GAP - Reference Manual 826

#I orbit size = 54, minimal norm = 8

#I not maximal finite in GL(8,Q), rational imf class is 8.5

gap> DisplayImfInvariants(20, 23);

#I Q-class 20.23: Size = 2^5*3^2*5*11

#I isomorphism type = (PSL(2,11) x D12).C2

#I elementary divisors = 1^18*11^2

#I orbit size = 3*660 + 2*1980 + 2640 + 3960, minimal norm = 4

Note that the function DisplayImfInvariants uses a kind of shorthand to display the elementary
divisors. E. g., the expression 1*3^3*9^3*27 in the preceding example stands for the elementary
divisors 1,3,3,3,9,9,9,27. (See also the next example which shows that the function ImfInvariants
(50.7.3) provides the elementary divisors in form of an ordinary GAP list.)

In the description of the isomorphism types the following notations are used:

A x B
denotes a direct product of a group A by a group B,

A subd B
denotes a subdirect product of A by B,

A Y B
denotes a central product of A by B,

A wr B
denotes a wreath product of A by B,

A:B denotes a split extension of A by B,

A.B denotes just an extension of A by B (split or nonsplit).

The groups involved are

• the cyclic groups Cn, dihedral groups Dn, and generalized quaternion groups Qn of order n,
denoted by Cn , Dn , and Qn , respectively,

• the alternating groups An and symmetric groups Sn of degree n, denoted by An and Sn , respec-
tively,

• the linear groups GLn(q), PGLn(q), SLn(q), and PSLn(q), denoted by GL(n ,q), PGL(n ,q),
SL(n ,q), and PSL(n ,q), respectively,

• the unitary groups SUn(q) and PSUn(q), denoted by SU(n ,q) and PSU(n ,q), respectively,

• the symplectic groups Sp(n,q) and PSp(n,q), denoted by Sp(n ,q) and PSp(n ,q), respectively,

• the orthogonal groups O+
8 (2) and PO+

8 (2), denoted by O+(8,2) and PO+(8,2), respectively,

• the extraspecial groups 21+8
+ , 31+2

+ , 31+4
+ , and 51+2

+ , denoted by 2+^(1+8), 3+^(1+2),
3+^(1+4), and 5+^(1+2), respectively,

• the Chevalley group G2(3), denoted by G2(3),

• the twisted Chevalley group 3D4(2), denoted by 3D4(2),

GAP - Reference Manual 827

• the Suzuki group Sz(8), denoted by Sz(8),

• the Weyl groups W (An), W (Bn), W (Dn), W (En), and W (F4), denoted by W(An), W(Bn), W(Dn),
W(En), and W(F4), respectively,

• the sporadic simple groups Co1, Co2, Co3, HS, J2, M12, M22, M23, M24, and Mc, denoted by
Co1, Co2, Co3, HS, J2, M12, M22, M23, M24, and Mc, respectively,

• a point stabilizer of index 11 in M11, denoted by M10.

As mentioned above, the data assembled by the function DisplayImfInvariants are “cheap
data” in the sense that they can be provided by the library without loading any of its large matrix files
or performing any matrix calculations. The following function allows you to get proper access to these
cheap data instead of just displaying them.

50.7.3 ImfInvariants

▷ ImfInvariants(dim, q[, z]) (function)

ImfInvariants returns a record which provides some Z-class invariants of the groups in the
z-th Z-class in the q-th Q-class of i.m.f. integral matrix groups of dimension dim . A value z ̸= 1
must not be specified if the Z-classes are not known for the given dimension, i.e., if dim > 11 and dim

̸∈ {13,17,19,23}. The default value of z is 1. This value of z will be accepted even if the Z-classes
are not known. Then it specifies the only representative group which is available for the q-th Q-class.
The greatest legal value of dim is 31.

The resulting record contains six or seven components:

size

the size of any representative group G ,

isSolvable

is true if G is solvable,

isomorphismType

a text string describing the isomorphism type of G (in the same notation as used by the function
DisplayImfInvariants above),

elementaryDivisors

the elementary divisors of the associated Gram matrix F (in the same format as the result of the
function ElementaryDivisorsMat (24.9.1),

minimalNorm

the norm of the associated short vectors,

sizesOrbitsShortVectors

the sizes of the orbits of short vectors under F ,

maximalQClass

the Q-class number of an i.m.f. group in GLn(Q) that contains G as a subgroup (only in case
that not G itself is an i.m.f. subgroup of GLn(Q)).

GAP - Reference Manual 828

Note that four of these data, namely the group size, the solvability, the isomorphism type, and the
corresponding rational i.m.f. class, are not only Z-class invariants, but also Q-class invariants.

Note further that, though the isomorphism type is a Q-class invariant, you will sometimes get
different descriptions for different Z-classes of the same Q-class (as, e.g., for the classes 3.1.1 and
3.1.2 in the last example above). The purpose of this behaviour is to provide some more information
about the underlying lattices.

Example
gap> ImfInvariants(8, 15, 1);

rec(elementaryDivisors := [1, 3, 3, 3, 9, 9, 9, 27],

isSolvable := true, isomorphismType := "C2 x (S3 wr S3)",

maximalQClass := 5, minimalNorm := 8, size := 2592,

sizesOrbitsShortVectors := [54])

gap> ImfInvariants(24, 1).size;

10409396852733332453861621760000

gap> ImfInvariants(23, 5, 2).sizesOrbitsShortVectors;

[552, 53130]

gap> for i in [1 .. ImfNumberQClasses(22)] do

> Print(ImfInvariants(22, i).isomorphismType, "\n"); od;

C2 wr S22 = W(B22)

(C2 x PSU(6,2)).S3

(C2 x S3) wr S11 = (C2 x W(A2)) wr S11

(C2 x S12) wr C2 = (C2 x W(A11)) wr C2

C2 x S3 x S12 = C2 x W(A2) x W(A11)

(C2 x HS).C2

(C2 x Mc).C2

C2 x S23 = C2 x W(A22)

C2 x PSL(2,23)

C2 x PSL(2,23)

C2 x PGL(2,23)

C2 x PGL(2,23)

50.7.4 ImfMatrixGroup

▷ ImfMatrixGroup(dim, q[, z]) (function)

ImfMatrixGroup is the essential extraction function of this library (note that its name has been
changed from ImfMatGroup in GAP 3 to ImfMatrixGroup in GAP 4). It returns a representative
group, G say, of the z-th Z-class in the q-th Q-class of i.m.f. integral matrix groups of dimension
dim . A value z ̸= 1 must not be specified if the Z-classes are not known for the given dimension, i.e.,
if dim > 11 and dim ̸∈ {13,17,19,23}. The default value of z is 1. This value of z will be accepted
even if the Z-classes are not known. Then it specifies the only representative group which is available
for the q-th Q-class. The greatest legal value of dim is 31.

Example
gap> G := ImfMatrixGroup(5, 1, 3);

ImfMatrixGroup(5,1,3)

gap> for m in GeneratorsOfGroup(G) do PrintArray(m); od;

[[-1, 0, 0, 0, 0],

[0, 1, 0, 0, 0],

[0, 0, 0, 1, 0],

[-1, -1, -1, -1, 2],

GAP - Reference Manual 829

[-1, 0, 0, 0, 1]]

[[0, 1, 0, 0, 0],

[0, 0, 1, 0, 0],

[0, 0, 0, 1, 0],

[1, 0, 0, 0, 0],

[0, 0, 0, 0, 1]]

The attributes Size (30.4.6) and IsSolvable will be properly set in the resulting matrix group G.
In addition, it has two attributes IsImfMatrixGroup and ImfRecord where the first one is just a logi-
cal flag set to true and the latter one is a record. Except for the group size and the solvability flag, this
record contains the same components as the resulting record of the function ImfInvariants (50.7.3)
described above, namely the components isomorphismType, elementaryDivisors, minimalNorm,
and sizesOrbitsShortVectors and, if G is not a rational i.m.f. group, maximalQClass. Moreover,
it has the two components

form

the associated Gram matrix F , and

repsOrbitsShortVectors

representatives of the orbits of short vectors under F .

The last one of these components will be required by the function IsomorphismPermGroup

(50.7.5) below.
Example

gap> Size(G);

3840

gap> imf := ImfRecord(G);;

gap> imf.isomorphismType;

"C2 wr S5 = C2 x W(D5)"

gap> PrintArray(imf.form);

[[4, 0, 0, 0, 2],

[0, 4, 0, 0, 2],

[0, 0, 4, 0, 2],

[0, 0, 0, 4, 2],

[2, 2, 2, 2, 5]]

gap> imf.elementaryDivisors;

[1, 4, 4, 4, 4]

gap> imf.minimalNorm;

4

If you want to perform calculations in such a matrix group G you should be aware of the
fact that the permutation group routines of GAP are much more efficient than the matrix group
routines. Hence we recommend that you do your computations, whenever possible, in the iso-
morphic permutation group which is induced by the action of G on one of the orbits of the as-
sociated short vectors. You may call one of the following functions IsomorphismPermGroup

(50.7.5) or IsomorphismPermGroupImfGroup (50.7.6) to get an isomorphism to such a permuta-
tion group (note that these GAP 4 functions have replaced the GAP 3 functions PermGroup and
PermGroupImfGroup).

GAP - Reference Manual 830

50.7.5 IsomorphismPermGroup (for Imf matrix groups)

▷ IsomorphismPermGroup(G) (method)

returns an isomorphism, ϕ say, from the given i.m.f. integral matrix group G to a permutation
group P := ϕ(G) acting on a minimal orbit, S say, of short vectors of G such that each matrix m ∈ G
is mapped to the permutation induced by its action on S.

Note that in case of a large orbit the construction of ϕ may be space and time consuming. For-
tunately, there are only six Q-classes in the library for which the smallest orbit of short vectors is of
size greater than 20000, the worst case being the orbit of size 196560 for the Leech lattice (dim = 24,
q = 3).

The inverse isomorphism ϕ−1 from P to G is constructed by determining a Q-base B⊂ S of Q1×dim

in S and, in addition, the associated base change matrix M which transforms B into the standard base
of Z1×dim. This allows a simple computation of the preimage ϕ−1(p) of any permutation p ∈ P, as
follows. If, for 1 ≤ i ≤ dim , bi is the position number in S of the i-th base vector in B, it suffices to
look up the vector whose position number in S is the image of bi under p and to multiply this vector
by M to get the i-th row of ϕ−1(p).

You may use the functions Image (32.4.6) and PreImage (32.5.6) to switch from G to P and back
from P to G.

As an example, let us continue the preceding example and compute the solvable residuum of the
group G.

Example
gap> # Perform the computations in an isomorphic permutation group.

gap> phi := IsomorphismPermGroup(G);;

gap> P := Image(phi);

Group([(1,7,6)(2,9)(4,5,10), (2,3,4,5)(6,9,8,7)])

gap> D := DerivedSubgroup(P);;

gap> Size(D);

960

gap> IsPerfectGroup(D);

true

gap> # We have found the solvable residuum of P,

gap> # now move the results back to the matrix group G.

gap> R := PreImage(phi, D);;

gap> StructureDescription(R);

"(C2 x C2 x C2 x C2) : A5"

gap> IdGroup(D)=IdGroup(R);

true

50.7.6 IsomorphismPermGroupImfGroup

▷ IsomorphismPermGroupImfGroup(G, n) (function)

IsomorphismPermGroupImfGroup returns an isomorphism, ϕ say, from the given i.m.f. integral
matrix group G to a permutation group P acting on the n-th orbit, S say, of short vectors of G such
that each matrix m ∈ G is mapped to the permutation induced by its action on S.

The only difference to the above function IsomorphismPermGroup (50.7.5) is that you can
specify the orbit to be used. In fact, as the orbits of short vectors are sorted by increasing sizes,

GAP - Reference Manual 831

the function IsomorphismPermGroup(G) has been implemented such that it is equivalent to
IsomorphismPermGroupImfGroup(G, 1).

Example
gap> ImfInvariants(12, 9).sizesOrbitsShortVectors;

[120, 300]

gap> G := ImfMatrixGroup(12, 9);

ImfMatrixGroup(12,9)

gap> phi1 := IsomorphismPermGroupImfGroup(G, 1);;

gap> P1 := Image(phi1);

<permutation group of size 2400 with 2 generators>

gap> LargestMovedPoint(P1);

120

gap> phi2 := IsomorphismPermGroupImfGroup(G, 2);;

gap> P2 := Image(phi2);

<permutation group of size 2400 with 2 generators>

gap> LargestMovedPoint(P2);

300

Chapter 51

Semigroups and Monoids

This chapter describes functions for creating semigroups and monoids and determining information
about them.

51.1 Semigroups

51.1.1 IsSemigroup

▷ IsSemigroup(D) (Synonym)

returns true if the object D is a semigroup. A semigroup is a magma (see 35) with associative
multiplication.

51.1.2 Semigroup

▷ Semigroup(gen1, gen2, ...) (function)

▷ Semigroup(gens) (function)

In the first form, Semigroup returns the semigroup generated by the arguments gen1 , gen2 , . . .,
that is, the closure of these elements under multiplication. In the second form, Semigroup returns the
semigroup generated by the elements in the homogeneous list gens ; a square matrix as only argument
is treated as one generator, not as a list of generators.

It is not checked whether the underlying multiplication is associative, use Magma (35.2.1) and
IsAssociative (35.4.7) if you want to check whether a magma is in fact a semigroup.

Example
gap> a:= Transformation([2, 3, 4, 1]);

Transformation([2, 3, 4, 1])

gap> b:= Transformation([2, 2, 3, 4]);

Transformation([2, 2])

gap> s:= Semigroup(a, b);

<transformation semigroup of degree 4 with 2 generators>

51.1.3 Subsemigroup

▷ Subsemigroup(S, gens) (function)

▷ SubsemigroupNC(S, gens) (function)

832

GAP - Reference Manual 833

are just synonyms of Submagma (35.2.7) and SubmagmaNC (35.2.7), respectively.
Example

gap> a:=GeneratorsOfSemigroup(s)[1];

Transformation([2, 3, 4, 1])

gap> t:=Subsemigroup(s,[a]);

<commutative transformation semigroup of degree 4 with 1 generator>

51.1.4 IsSubsemigroup

▷ IsSubsemigroup(S, T) (operation)

Returns: true or false.
This operation returns true if the semigroup T is a subsemigroup of the semigroup S and false

if it is not.
Example

gap> f := Transformation([5, 6, 7, 1, 4, 3, 2, 7]);

Transformation([5, 6, 7, 1, 4, 3, 2, 7])

gap> T := Semigroup(f);;

gap> IsSubsemigroup(FullTransformationSemigroup(4), T);

false

gap> S := Semigroup(f);;

gap> T := Semigroup(f ^ 2);;

gap> IsSubsemigroup(S, T);

true

51.1.5 SemigroupByGenerators

▷ SemigroupByGenerators(gens) (operation)

is the underlying operation of Semigroup (51.1.2).

51.1.6 AsSemigroup

▷ AsSemigroup(C) (operation)

If C is a collection whose elements form a semigroup under * (31.12.1) (see IsSemigroup

(51.1.1)) then AsSemigroup returns this semigroup. Otherwise fail is returned.

51.1.7 AsSubsemigroup

▷ AsSubsemigroup(D, C) (operation)

Let D be a domain and C a collection. If C is a subset of D that forms a semigroup then
AsSubsemigroup returns this semigroup, with parent D . Otherwise fail is returned.

GAP - Reference Manual 834

51.1.8 GeneratorsOfSemigroup

▷ GeneratorsOfSemigroup(S) (attribute)

Semigroup generators of a semigroup D are the same as magma generators,
see GeneratorsOfMagma (35.4.1).

Example
gap> GeneratorsOfSemigroup(s);

[Transformation([2, 3, 4, 1]), Transformation([2, 2])]

gap> GeneratorsOfSemigroup(t);

[Transformation([2, 3, 4, 1])]

51.1.9 IsGeneratorsOfSemigroup

▷ IsGeneratorsOfSemigroup(C) (property)

This property reflects whether the list or collection C generates a semigroup.
IsAssociativeElementCollection (31.15.1) implies IsGeneratorsOfSemigroup, but is
not used directly in semigroup code, because of conflicts with matrices.

Example
gap> IsGeneratorsOfSemigroup([Transformation([2,3,1])]);

true

51.1.10 FreeSemigroup

▷ FreeSemigroup([wfilt,]rank[, name]) (function)

▷ FreeSemigroup([wfilt,]name1[, name2[, ...]]) (function)

▷ FreeSemigroup([wfilt,]names) (function)

▷ FreeSemigroup([wfilt,]infinity[, name][, init]) (function)

FreeSemigroup returns a free semigroup. The number of generators, and the labels given to the
generators, can be specified in several different ways. Warning: the labels of generators are only an
aid for printing, and do not necessarily distinguish generators; see the examples at the end for more
information.

1: For a given rank, and an optional generator name prefix
Called with a positive integer rank , FreeSemigroup returns a free semigroup on rank gener-
ators. The optional argument name must be a string; its default value is "s".

If name is not given but the generatorNames option is, then this option is respected as de-
scribed in Section 50.1.16.

Otherwise, the generators of the returned free semigroup are labelled name1, ..., namek, where
k is the value of rank .

2: For given generator names
Called with various (at least one) nonempty strings, FreeSemigroup returns a free semigroup
on as many generators as arguments, which are labelled name1 , name2 , etc.

GAP - Reference Manual 835

3: For a given list of generator names
Called with a nonempty finite list names of nonempty strings, FreeSemigroup returns a free
semigroup on Length(names) generators, whose i-th generator is labelled names[i].

4: For the rank infinity, an optional default generator name prefix, and an optional finite list
of generator names
Called in the fourth form, FreeSemigroup returns a free semigroup on infinitely many gener-
ators. The optional argument name must be a string; its default value is "s", and the optional
argument init must be a finite list of nonempty strings; its default value is an empty list. The
generators are initially labelled according to the list init , followed by namei for each i in the
range from Length(init)+1 to infinity; such a label is not allowed to appear in init .

If the optional first argument wfilt is given, then it must be either IsSyllableWordsFamily,
IsLetterWordsFamily, IsWLetterWordsFamily, or IsBLetterWordsFamily. This filter speci-
fies the representation used for the elements of the free semigroup (see 37.6). If no such filter is given,
a letter representation is used.

For more on associative words see Chapter 37.
Example

gap> f1 := FreeSemigroup(3);

<free semigroup on the generators [s1, s2, s3]>

gap> f2 := FreeSemigroup(3 , "generator");

<free semigroup on the generators

[generator1, generator2, generator3]>

gap> f3 := FreeSemigroup("gen1" , "gen2");

<free semigroup on the generators [gen1, gen2]>

gap> f4 := FreeSemigroup(["gen1" , "gen2"]);

<free semigroup on the generators [gen1, gen2]>

gap> FreeSemigroup(3 : generatorNames := "boom");

<free semigroup on the generators [boom1, boom2, boom3]>

gap> FreeSemigroup(2 : generatorNames := ["u", "v", "w"]);

<free semigroup on the generators [u, v]>

gap> FreeSemigroup(infinity) ;

<free semigroup on the generators [s1, s2, ...]>

gap> F := FreeSemigroup(infinity, "g", ["a", "b"]);

<free semigroup on the generators [a, b, ...]>

gap> GeneratorsOfSemigroup(F){[1..4]};

[a, b, g3, g4]

gap> GeneratorsOfSemigroup(FreeSemigroup(infinity, "gen")){[1..3]};

[gen1, gen2, gen3]

gap> GeneratorsOfSemigroup(FreeSemigroup(infinity, ["f"])){[1..3]};

[f, s2, s3]

gap> FreeSemigroup(IsSyllableWordsFamily, 5);

<free semigroup on the generators [s1, s2, s3, s4, s5]>

Each free object defines a unique alphabet (and a unique family of words). Its generators are the
letters of this alphabet, thus words of length one.

Example
gap> FreeSemigroup(5);

<free semigroup on the generators [s1, s2, s3, s4, s5]>

gap> FreeMonoid("a", "b");

GAP - Reference Manual 836

<free monoid on the generators [a, b]>

gap> FreeGroup(infinity);

<free group with infinity generators>

gap> FreeSemigroup("x", "y");

<free semigroup on the generators [x, y]>

gap> FreeMonoid(7);

<free monoid on the generators [m1, m2, m3, m4, m5, m6, m7]>

Remember that names are just a help for printing and do not necessarily distinguish letters. It is
possible to create arbitrarily weird situations by choosing strange names for the letters.

Example
gap> f := FreeGroup("x", "x");

<free group on the generators [x, x]>

gap> gens := GeneratorsOfGroup(f);

[x, x]

gap> gens[1] = gens[2];

false

gap> f:= FreeGroup("f1*f2", "f2^-1", "Group([f1, f2])");

<free group on the generators [f1*f2, f2^-1, Group([f1, f2])]>

gap> gens:= GeneratorsOfGroup(f);;

gap> gens[1] * gens[2];

f1*f2*f2^-1

gap> gens[1] / gens[3];

f1*f2*Group([f1, f2])^-1

gap> gens[3] / gens[1] / gens[2];

Group([f1, f2])*f1*f2^-1*f2^-1^-1

51.1.11 SemigroupByMultiplicationTable

▷ SemigroupByMultiplicationTable(A) (function)

returns the semigroup whose multiplication is defined by the square matrix A

(see MagmaByMultiplicationTable (35.3.1)) if such a semigroup exists. Otherwise fail is
returned.

Example
gap> SemigroupByMultiplicationTable([[1,2,3],[2,3,1],[3,1,2]]);

<semigroup of size 3, with 3 generators>

gap> SemigroupByMultiplicationTable([[1,2,3],[2,3,1],[3,2,1]]);

fail

51.2 Monoids

51.2.1 IsMonoid

▷ IsMonoid(D) (Synonym)

A monoid is a magma-with-one (see 35) with associative multiplication.

GAP - Reference Manual 837

51.2.2 Monoid

▷ Monoid(gen1, gen2, ...) (function)

▷ Monoid(gens[, id]) (function)

In the first form, Monoid returns the monoid generated by the arguments gen1 , gen2 , . . ., that
is, the closure of these elements under multiplication and taking the 0-th power. In the second form,
Monoid returns the monoid generated by the elements in the homogeneous list gens ; a square matrix
as only argument is treated as one generator, not as a list of generators. In the second form, the identity
element id may be given as the second argument.

It is not checked whether the underlying multiplication is associative, use MagmaWithOne (35.2.2)
and IsAssociative (35.4.7) if you want to check whether a magma-with-one is in fact a monoid.

51.2.3 Submonoid

▷ Submonoid(M, gens) (function)

▷ SubmonoidNC(M, gens) (function)

are just synonyms of SubmagmaWithOne (35.2.8) and SubmagmaWithOneNC (35.2.8), respec-
tively.

51.2.4 MonoidByGenerators

▷ MonoidByGenerators(gens[, one]) (operation)

is the underlying operation of Monoid (51.2.2).

51.2.5 AsMonoid

▷ AsMonoid(C) (operation)

If C is a collection whose elements form a monoid, then AsMonoid returns this monoid. Otherwise
fail is returned.

51.2.6 AsSubmonoid

▷ AsSubmonoid(D, C) (operation)

Let D be a domain and C a collection. If C is a subset of D that forms a monoid then AsSubmonoid

returns this monoid, with parent D . Otherwise fail is returned.

51.2.7 GeneratorsOfMonoid

▷ GeneratorsOfMonoid(M) (attribute)

Monoid generators of a monoid M are the same as magma-with-one generators
(see GeneratorsOfMagmaWithOne (35.4.2)).

GAP - Reference Manual 838

51.2.8 TrivialSubmonoid

▷ TrivialSubmonoid(M) (attribute)

is just a synonym for TrivialSubmagmaWithOne (35.4.13).

51.2.9 FreeMonoid

▷ FreeMonoid([wfilt,]rank[, name]) (function)

▷ FreeMonoid([wfilt][,] [name1[, name2[, ...]]]) (function)

▷ FreeMonoid([wfilt,]names) (function)

▷ FreeMonoid([wfilt,]infinity[, name][, init]) (function)

FreeMonoid returns a free monoid. The number of generators, and the labels given to the gener-
ators, can be specified in several different ways. Warning: the labels of generators are only an aid for
printing, and do not necessarily distinguish generators; see the examples at the end of FreeSemigroup
(51.1.10) for more information.

1: For a given rank, and an optional generator name prefix
Called with a nonnegative integer rank , FreeMonoid returns a free monoid on rank generators.
The optional argument name must be a string; its default value is "m".

If name is not given but the generatorNames option is, then this option is respected as de-
scribed in Section 50.1.16.

Otherwise, the generators of the returned free monoid are labelled name1, ..., namek, where k

is the value of rank .

2: For given generator names
Called with various nonempty strings, FreeMonoid returns a free monoid on as many generators
as arguments, which are labelled name1 , name2 , etc.

3: For a given list of generator names
Called with a finite list names of nonempty strings, FreeMonoid returns a free monoid on
Length(names) generators, whose i-th generator is labelled names[i].

4: For the rank infinity, an optional default generator name prefix, and an optional finite list
of generator names
Called in the fourth form, FreeMonoid returns a free monoid on infinitely many generators. The
optional argument name must be a string; its default value is "m", and the optional argument
init must be a finite list of nonempty strings; its default value is an empty list. The generators
are initially labelled according to the list init , followed by namei for each i in the range from
Length(init)+1 to infinity.

If the optional first argument wfilt is given, then it must be either IsSyllableWordsFamily,
IsLetterWordsFamily, IsWLetterWordsFamily, or IsBLetterWordsFamily. This filter speci-
fies the representation used for the elements of the free monoid (see 37.6). If no such filter is given, a
letter representation is used.

For more on associative words see Chapter 37.

GAP - Reference Manual 839

Example
gap> FreeMonoid(5);

<free monoid on the generators [m1, m2, m3, m4, m5]>

gap> FreeMonoid(4, "gen");

<free monoid on the generators [gen1, gen2, gen3, gen4]>

gap> FreeMonoid(3 : generatorNames := "turbo");

<free monoid on the generators [turbo1, turbo2, turbo3]>

gap> FreeMonoid(2 : generatorNames := ["u", "v", "w"]);

<free monoid on the generators [u, v]>

gap> FreeMonoid(); FreeMonoid(0); FreeMonoid([]);

<free monoid of rank zero>

<free monoid of rank zero>

<free monoid of rank zero>

gap> FreeMonoid("a", "b", "c");

<free monoid on the generators [a, b, c]>

gap> FreeMonoid(["x", "y"]);

<free monoid on the generators [x, y]>

gap> FreeMonoid(infinity);

<free monoid with infinity generators>

gap> F := FreeMonoid(infinity, "g", ["a", "b"]);

<free monoid with infinity generators>

gap> GeneratorsOfMonoid(F){[1..4]};

[a, b, g3, g4]

gap> GeneratorsOfMonoid(FreeMonoid(infinity, "gen")){[1..3]};

[gen1, gen2, gen3]

gap> GeneratorsOfMonoid(FreeMonoid(infinity, ["f", "g"])){[1..3]};

[f, g, m3]

gap> FreeMonoid(IsSyllableWordsFamily, 50);

<free monoid with 50 generators>

51.2.10 MonoidByMultiplicationTable

▷ MonoidByMultiplicationTable(A) (function)

returns the monoid whose multiplication is defined by the square matrix A

(see MagmaByMultiplicationTable (35.3.1)) if such a monoid exists. Otherwise fail is
returned.

Example
gap> MonoidByMultiplicationTable([[1,2,3],[2,3,1],[3,1,2]]);

<monoid of size 3, with 3 generators>

gap> MonoidByMultiplicationTable([[1,2,3],[2,3,1],[1,3,2]]);

fail

51.3 Inverse semigroups and monoids

51.3.1 InverseSemigroup

▷ InverseSemigroup(obj1, obj2, ...) (function)

Returns: An inverse semigroup.

GAP - Reference Manual 840

If obj1 , obj2 , ... are (any combination) of associative elements with unique semigroup inverses,
semigroups of such elements, or collections of such elements, then InverseSemigroup returns the
inverse semigroup generated by the union of obj1 , obj2 , This equals the semigroup generated by
the union of obj1 , obj2 , ... and their inverses.

For example if S and T are inverse semigroups, then InverseSemigroup(S,

f, Idempotents(T)); is the inverse semigroup generated by
Union(GeneratorsOfInverseSemigroup(S), [f], Idempotents(T)));.

As present, the only associative elements with unique semigroup inverses, which do not always
generate a group, are partial permutations; see Chapter 54.

Example
gap> S := InverseSemigroup(

> PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]));;

gap> f := PartialPerm([1, 2, 3, 4, 5, 8, 10],

> [7, 1, 4, 3, 2, 6, 5]);;

gap> S := InverseSemigroup(S, f, Idempotents(SymmetricInverseSemigroup(5)));

<inverse partial perm semigroup of rank 10 with 34 generators>

gap> Size(S);

1233

51.3.2 InverseMonoid

▷ InverseMonoid(obj1, obj2, ...) (function)

Returns: An inverse monoid.
If obj1 , obj2 , ... are (any combination) of associative elements with unique semigroup inverses,

semigroups of such elements, or collections of such elements, then InverseMonoid returns the inverse
monoid generated by the union of obj1 , obj2 , This equals the monoid generated by the union of
obj1 , obj2 , ... and their inverses.

As present, the only associative elements with unique semigroup inverses are partial permutations;
see Chapter 54.

For example if S and T are inverse monoids, then InverseMonoid(S, f, Idempotents(T));

is the inverse monoid generated by Union(GeneratorsOfInverseMonoid(S), [f],

Idempotents(T)));.
Example

gap> S := InverseMonoid(

> PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]));;

gap> f := PartialPerm([1, 2, 3, 4, 5, 8, 10],

> [7, 1, 4, 3, 2, 6, 5]);;

gap> S := InverseMonoid(S, f, Idempotents(SymmetricInverseSemigroup(5)));

<inverse partial perm monoid of rank 10 with 35 generators>

gap> Size(S);

1243

51.3.3 GeneratorsOfInverseSemigroup

▷ GeneratorsOfInverseSemigroup(S) (attribute)

Returns: The generators of an inverse semigroup.
If S is an inverse semigroup, then GeneratorsOfInverseSemigroup returns the generators used

to define S , i.e. an inverse semigroup generating set for S .

GAP - Reference Manual 841

The value of GeneratorsOfSemigroup(S), for an inverse semigroup S , is the union of inverse
semigroup generator and their inverses. So, S is the semigroup, as opposed to inverse semigroup,
generated by the elements of GeneratorsOfInverseSemigroup(S) and their inverses.

If S is an inverse monoid, then GeneratorsOfInverseSemigroup returns the generators used to
define S , as described above, and the identity of S .

Example
gap> S:=InverseMonoid(

> PartialPerm([1, 2], [1, 4]),

> PartialPerm([1, 2, 4], [3, 4, 1]));;

gap> GeneratorsOfSemigroup(S);

[<identity partial perm on [1, 2, 3, 4]>, [2,4](1), [2,4,1,3],

[4,2](1), [3,1,4,2]]

gap> GeneratorsOfInverseSemigroup(S);

[[2,4](1), [2,4,1,3], <identity partial perm on [1, 2, 3, 4]>]

gap> GeneratorsOfMonoid(S);

[[2,4](1), [2,4,1,3], [4,2](1), [3,1,4,2]]

51.3.4 GeneratorsOfInverseMonoid

▷ GeneratorsOfInverseMonoid(S) (attribute)

Returns: The generators of an inverse monoid.
If S is an inverse monoid, then GeneratorsOfInverseMonoid returns the generators used to

define S , i.e. an inverse monoid generating set for S .
There are four different possible generating sets which define an inverse monoid.

More precisely, an inverse monoid can be generated as an inverse monoid, inverse
semigroup, monoid, or semigroup. The different generating sets in each case can
be obtained using GeneratorsOfInverseMonoid, GeneratorsOfInverseSemigroup (51.3.3),
GeneratorsOfMonoid (51.2.7), and GeneratorsOfSemigroup (51.1.8), respectively.

Example
gap> S:=InverseMonoid(

> PartialPerm([1, 2], [1, 4]),

> PartialPerm([1, 2, 4], [3, 4, 1]));;

gap> GeneratorsOfInverseMonoid(S);

[[2,4](1), [2,4,1,3]]

51.3.5 IsInverseSubsemigroup

▷ IsInverseSubsemigroup(S, T) (operation)

Returns: true or false.
If the semigroup T is an inverse subsemigroup of the semigroup S , then this operation returns

true.
Example

gap> T:=InverseSemigroup(RandomPartialPerm(4));;

gap> IsInverseSubsemigroup(SymmetricInverseSemigroup(4), T);

true

gap> T:=Semigroup(Transformation([1, 2, 4, 5, 6, 3, 7, 8]),

> Transformation([3, 3, 4, 5, 6, 2, 7, 8]),

> Transformation([1, 2, 5, 3, 6, 8, 4, 4]));;

gap> IsInverseSubsemigroup(FullTransformationSemigroup(8), T);

true

GAP - Reference Manual 842

51.4 Properties of Semigroups

The following functions determine information about semigroups.

51.4.1 IsRegularSemigroup

▷ IsRegularSemigroup(S) (property)

returns true if S is regular, i.e., if every D-class of S is regular.

51.4.2 IsRegularSemigroupElement

▷ IsRegularSemigroupElement(S, x) (operation)

returns true if x has a general inverse in S , i.e., there is an element y ∈ S such that xyx = x and
yxy = y.

51.4.3 InversesOfSemigroupElement

▷ InversesOfSemigroupElement(S, x) (operation)

Returns: A list of the inverses of an element of a semigroup.
InversesOfSemigroupElement returns a list of the inverses of the element x in the semigroup

S .
An element y in S is an inverse of x if x*y*x=x and y*x*y=y. The element x has an inverse if

and only if x is a regular element of S .
Example

gap> S := Semigroup([

> Transformation([3, 1, 4, 2, 5, 2, 1, 6, 1]),

> Transformation([5, 7, 8, 8, 7, 5, 9, 1, 9]),

> Transformation([7, 6, 2, 8, 4, 7, 5, 8, 3])]);

<transformation semigroup of degree 9 with 3 generators>

gap> x := Transformation([3, 1, 4, 2, 5, 2, 1, 6, 1]);;

gap> InversesOfSemigroupElement(S, x);

[]

gap> IsRegularSemigroupElement(S, x);

false

gap> x := Transformation([1, 9, 7, 5, 5, 1, 9, 5, 1]);;

gap> Set(InversesOfSemigroupElement(S, x));

[Transformation([1, 2, 3, 5, 5, 1, 3, 5, 2]),

Transformation([1, 5, 1, 1, 5, 1, 3, 1, 2]),

Transformation([1, 5, 1, 2, 5, 1, 3, 2, 2])]

gap> IsRegularSemigroupElement(S, x);

true

gap> S := ReesZeroMatrixSemigroup(Group((1,2,3)),

> [[(), ()], [(), 0], [(), (1,2,3)]]);;

gap> x := ReesZeroMatrixSemigroupElement(S, 2, (1,2,3), 3);;

gap> InversesOfSemigroupElement(S, x);

[(1,(1,2,3),3), (1,(1,3,2),1), (2,(),3), (2,(1,2,3),1)]

GAP - Reference Manual 843

51.4.4 IsSimpleSemigroup

▷ IsSimpleSemigroup(S) (property)

is true if and only if the semigroup S has no proper ideals.

51.4.5 IsZeroSimpleSemigroup

▷ IsZeroSimpleSemigroup(S) (property)

is true if and only if the semigroup has no proper ideals except for 0, where S is a semigroup
with zero. If the semigroup does not find its zero, then a break-loop is entered.

51.4.6 IsZeroGroup

▷ IsZeroGroup(S) (property)

is true if and only if the semigroup S is a group with zero adjoined.

51.4.7 IsReesCongruenceSemigroup

▷ IsReesCongruenceSemigroup(S) (property)

returns true if S is a Rees Congruence semigroup, that is, if all congruences of S are Rees
Congruences.

51.4.8 IsInverseSemigroup

▷ IsInverseSemigroup(S) (property)

▷ IsInverseMonoid(S) (Category)

Returns: true or false.
A semigroup S is an inverse semigroup if every element x in S has a unique semigroup inverse,

that is, a unique element y in S such that x*y*x=x and y*x*y=y.
A monoid that happens to be an inverse semigroup is called an inverse monoid; see IsMonoid

(51.2.1).
Example

gap> S := Semigroup([

> Transformation([1, 2, 4, 5, 6, 3, 7, 8]),

> Transformation([3, 3, 4, 5, 6, 2, 7, 8]),

> Transformation([1, 2, 5, 3, 6, 8, 4, 4])]);;

gap> IsInverseSemigroup(S);

true

51.5 Ideals of semigroups

Ideals of semigroups are the same as ideals of the semigroup when considered as a magma. For
documentation on ideals for magmas, see Magma (35.2.1).

GAP - Reference Manual 844

51.5.1 SemigroupIdealByGenerators

▷ SemigroupIdealByGenerators(S, gens) (operation)

S is a semigroup, gens is a list of elements of S . Returns the two-sided ideal of S generated by
gens .

51.5.2 ReesCongruenceOfSemigroupIdeal

▷ ReesCongruenceOfSemigroupIdeal(I) (attribute)

A two sided ideal I of a semigroup S defines a congruence on S given by ∆∪ I × I.

51.5.3 IsLeftSemigroupIdeal

▷ IsLeftSemigroupIdeal(I) (property)

▷ IsRightSemigroupIdeal(I) (property)

▷ IsSemigroupIdeal(I) (property)

Categories of semigroup ideals.

51.6 Congruences on semigroups

An equivalence or a congruence on a semigroup is the equivalence or congruence on the semigroup
considered as a magma. So, to deal with equivalences and congruences on semigroups, magma func-
tions are used. For documentation on equivalences and congruences on magmas, see Magma (35.2.1).

51.6.1 IsSemigroupCongruence

▷ IsSemigroupCongruence(c) (property)

a magma congruence c on a semigroup.

51.6.2 IsReesCongruence

▷ IsReesCongruence(c) (property)

returns true if and only if the congruence c has at most one nonsingleton congruence class.

51.7 Quotients

Given a semigroup and a congruence on the semigroup, one can construct a new semigroup:
the quotient semigroup. The following functions deal with quotient semigroups in GAP.
For a semigroup S, elements of a quotient semigroup are equivalence classes of elements of
the QuotientSemigroupPreimage (51.7.3) value under the congruence given by the value of
QuotientSemigroupCongruence (51.7.3).

GAP - Reference Manual 845

It is probably most useful for calculating the elements of the equivalence classes by using
Elements (30.3.11) or by looking at the images of elements of QuotientSemigroupPreimage

(51.7.3) under the map returned by QuotientSemigroupHomomorphism (51.7.3), which maps the
QuotientSemigroupPreimage (51.7.3) value to S .

For intensive computations in a quotient semigroup, it is probably worthwhile finding another
representation as the equality test could involve enumeration of the elements of the congruence classes
being compared.

51.7.1 IsQuotientSemigroup

▷ IsQuotientSemigroup(S) (Category)

is the category of semigroups constructed from another semigroup and a congruence on it.

51.7.2 HomomorphismQuotientSemigroup

▷ HomomorphismQuotientSemigroup(cong) (function)

for a congruence cong and a semigroup S . Returns the homomorphism from S to the quotient of
S by cong .

51.7.3 QuotientSemigroupPreimage

▷ QuotientSemigroupPreimage(S) (attribute)

▷ QuotientSemigroupCongruence(S) (attribute)

▷ QuotientSemigroupHomomorphism(S) (attribute)

for a quotient semigroup S .

51.8 Green’s Relations

Green’s equivalence relations play a very important role in semigroup theory. In this section we
describe how they can be used in GAP.

The five Green’s relations are R, L, J, H, D: two elements x, y from a semigroup S are R-related
if and only if xS1 = yS1, L-related if and only if S1x = S1y and J-related if and only if S1xS1 = S1yS1;
finally, H = R∧L, and D = R◦L.

Recall that relations R, L and J induce a partial order among the elements of the semigroup S:
for two elements x, y from S, we say that x is less than or equal to y in the order on R if xS1 ⊆ yS1;
similarly, x is less than or equal to y under L if S1x ⊆ S1y; finally x is less than or equal to y under J if
S1xS1 ⊆ S1tS1. We extend this preorder to a partial order on equivalence classes in the natural way.

51.8.1 GreensRRelation

▷ GreensRRelation(semigroup) (attribute)

▷ GreensLRelation(semigroup) (attribute)

▷ GreensJRelation(semigroup) (attribute)

▷ GreensDRelation(semigroup) (attribute)

GAP - Reference Manual 846

▷ GreensHRelation(semigroup) (attribute)

The Green’s relations (which are equivalence relations) are attributes of the semigroup
semigroup .

51.8.2 IsGreensRelation

▷ IsGreensRelation(bin-relation) (filter)

▷ IsGreensRRelation(equiv-relation) (filter)

▷ IsGreensLRelation(equiv-relation) (filter)

▷ IsGreensJRelation(equiv-relation) (filter)

▷ IsGreensHRelation(equiv-relation) (filter)

▷ IsGreensDRelation(equiv-relation) (filter)

Categories for the Green’s relations.

51.8.3 IsGreensClass

▷ IsGreensClass(equiv-class) (filter)

▷ IsGreensRClass(equiv-class) (filter)

▷ IsGreensLClass(equiv-class) (filter)

▷ IsGreensJClass(equiv-class) (filter)

▷ IsGreensHClass(equiv-class) (filter)

▷ IsGreensDClass(equiv-class) (filter)

return true if the equivalence class equiv-class is a Green’s class of any type, or of R, L, J, H,
D type, respectively, or false otherwise.

51.8.4 IsGreensLessThanOrEqual

▷ IsGreensLessThanOrEqual(C1, C2) (operation)

returns true if the Green’s class C1 is less than or equal to C2 under the respective ordering (as
defined above), and false otherwise.

Only defined for R, L and J classes.

51.8.5 RClassOfHClass

▷ RClassOfHClass(H) (attribute)

▷ LClassOfHClass(H) (attribute)

are attributes reflecting the natural ordering over the various Green’s classes. RClassOfHClass

and LClassOfHClass return the R and L classes, respectively, in which an H class is contained.

51.8.6 EggBoxOfDClass

▷ EggBoxOfDClass(Dclass) (attribute)

GAP - Reference Manual 847

returns for a Green’s D class Dclass a matrix whose rows represent R classes and columns repre-
sent L classes. The entries are the H classes.

51.8.7 DisplayEggBoxOfDClass

▷ DisplayEggBoxOfDClass(Dclass) (function)

displays a “picture” of the D class Dclass , as an array of 1s and 0s. A 1 represents a group H
class.

51.8.8 GreensRClassOfElement

▷ GreensRClassOfElement(S, a) (operation)

▷ GreensLClassOfElement(S, a) (operation)

▷ GreensDClassOfElement(S, a) (operation)

▷ GreensJClassOfElement(S, a) (operation)

▷ GreensHClassOfElement(S, a) (operation)

Creates the X class of the element a in the semigroup S where X is one of L, R, D, J, or H.

51.8.9 GreensRClasses

▷ GreensRClasses(S) (attribute)

▷ GreensLClasses(S) (attribute)

▷ GreensHClasses(S) (attribute)

▷ GreensJClasses(S) (attribute)

▷ GreensDClasses(S) (attribute)

If S is a semigroup, then these attributes return the Green’s R-, L-, H-, J-, or D-classes, respec-
tively for the semigroup S .

Additionally, if S is a Green’s D-class of a semigroup, then GreensRClasses and
GreensLClasses return the Green’s R- or L−classes of the semigroup, respectively, contained in
the D-class S ; if S is a Green’s D-, R-, or L-class of a semigroup, then GreensHClasses returns the
Green’s H-classes of the semigroup contained in the Green’s class S .

EquivalenceClasses (33.7.3) for a Green’s relation lead to one of these functions.

51.8.10 GroupHClassOfGreensDClass

▷ GroupHClassOfGreensDClass(Dclass) (attribute)

for a D class Dclass of a semigroup, returns a group H class of the D class, or fail if there is no
group H class.

51.8.11 IsGroupHClass

▷ IsGroupHClass(Hclass) (property)

GAP - Reference Manual 848

returns true if the Green’s H class Hclass is a group, which in turn is true if and only if Hclass 2

intersects Hclass .

51.8.12 IsRegularDClass

▷ IsRegularDClass(Dclass) (property)

returns true if the Greens D class Dclass is regular. A D class is regular if and only if each
of its elements is regular, which in turn is true if and only if any one element of Dclass is regular.
Idempotents are regular since eee = e so it follows that a Green’s D class containing an idempotent is
regular. Conversely, it is true that a regular D class must contain at least one idempotent. (See [How76,
Prop. 3.2].)

51.8.13 DisplaySemigroup

▷ DisplaySemigroup(S) (operation)

Produces a convenient display of a transformation semigroup’s D-Class structure. Let S be a
transformation semigroup of degree n. Then for each r ≤ n, we show all D-classes of rank r.

A regular D-class with a single H-class of size 120 appears as
Example

*[H size = 120, 1 L-class, 1 R-class]

(the * denoting regularity).

51.9 Rees Matrix Semigroups

In this section, we describe the functions in GAP for Rees matrix and 0-matrix semigroups and their
subsemigroups. The importance of these semigroups lies in the fact that Rees matrix semigroups over
groups are exactly the completely simple semigroups, and Rees 0-matrix semigroups over groups are
the completely 0-simple semigroups.

Let I and J be sets, let S be a semigroup, and let P = (p ji) j∈J,i∈I be a |J|× |I| matrix with entries
in S. Then the Rees matrix semigroup with underlying semigroup S and matrix P is just the direct
product I ×S× J with multiplication defined by

(i,s, j)(k, t, l) = (i,s · p j,k · t, l).

Rees 0-matrix semigroups are defined as follows. If I, J, S, and P are as above and 0 denotes a new
element, then the Rees 0-matrix semigroup with underlying semigroup S and matrix P is (I×S×J)∪
{0} with multiplication defined by

(i,s, j)(k, t, l) = (i,s · p j,k · t, l)

when p j,k is not 0 and 0 if p j,k is 0.
If R is a Rees matrix or 0-matrix semigroup, then the rows of R is the index set I, the columns of

R is the index set J, the semigroup S is the underlying semigroup of R, and the matrix P is the matrix
of S.

GAP - Reference Manual 849

Thoroughout this section, wherever the distinction is unimportant, we will refer to Rees matrix or
0-matrix semigroups collectively as Rees matrix semigroups.

Multiplication of elements of a Rees matrix semigroup obviously depends on the matrix used to
create the semigroup. Hence elements of a Rees matrix semigroup can only be created with reference
to the semigroup to which they belong. More specifically, every collection or semigroup of Rees
matrix semigroup elements is created from a specific Rees matrix semigroup, which contains the
whole family of its elements. So, it is not possible to multiply or compare elements belonging to
distinct Rees matrix semigroups, since they belong to different families. For example, this situation is
similar to free groups, but it is different to permutations, which belong to a single family, and where
arbitrary permutations can be compared and multiplied without reference to any group containing
them.

A subsemigroup of a Rees matrix semigroup is not necessarily a Rees matrix semigroup.
Every semigroup consisting of elements of a Rees matrix semigroup satisfies the property
IsReesMatrixSubsemigroup (51.9.6) and every semigroup of Rees 0-matrix semigroup elements
satisfies IsReesZeroMatrixSubsemigroup (51.9.6).

Rees matrix and 0-matrix semigroups can be created using the operations ReesMatrixSemigroup
(51.9.1) and ReesZeroMatrixSemigroup (51.9.1), respectively, from an underlying semigroup and
a matrix. Rees matrix semigroups created in this way contain the whole family of their elements.
Every element of a Rees matrix semigroup belongs to a unique semigroup created in this way; every
subsemigroup of a Rees matrix semigroup is a subsemigroup of a unique semigroup created in this
way.

Subsemigroups of Rees matrix semigroups can also be created by specifying generators. A sub-
semigroup of a Rees matrix semigroup I ×U × J satisfies IsReesMatrixSemigroup (51.9.7) if and
only if it is equal to I′×U ′× J′ where I′ ⊆ I, J′ ⊆ J, and U ′ is a subsemigroup of U . The analogous
statements holds for Rees 0-matrix semigroups.

It is not necessarily the case that a simple subsemigroups of Rees matrix semigroups satis-
fies IsReesMatrixSemigroup (51.9.7). A Rees matrix semigroup is simple if and only if its
underlying semigroup is simple. A finite semigroup is simple if and only if it is isomorphic
to a Rees matrix semigroup over a group; this isomorphism can be obtained explicitly using
IsomorphismReesMatrixSemigroup (51.9.3).

Similarly, 0-simple subsemigroups of Rees 0-matrix semigroups do not have to satisfy
IsReesZeroMatrixSemigroup (51.9.7). A Rees 0-matrix semigroup with more than 2 elements
is 0-simple if and only if every row and every column of its matrix contains a non-zero entry,
and its underlying semigroup is simple. A finite semigroup is 0-simple if and only if it is isomor-
phic to a Rees 0-matrix semigroup over a group; again this isomorphism can be found by using
IsomorphismReesZeroMatrixSemigroup (51.9.3).

Elements of a Rees matrix or 0-matrix semigroup belong to the categories
IsReesMatrixSemigroupElement (51.9.4) and IsReesZeroMatrixSemigroupElement

(51.9.4), respectively. Such elements can be created directly using the functions
ReesMatrixSemigroupElement (51.9.5) and ReesZeroMatrixSemigroupElement (51.9.5).

A semigroup in GAP can either satisfies IsReesMatrixSemigroup (51.9.7) or
IsReesZeroMatrixSemigroup (51.9.7) but not both.

51.9.1 ReesMatrixSemigroup

▷ ReesMatrixSemigroup(S, mat) (operation)

▷ ReesZeroMatrixSemigroup(S, mat) (operation)

GAP - Reference Manual 850

Returns: A Rees matrix or 0-matrix semigroup.
When S is a semigroup and mat is an m by n matrix with entries in S , the function

ReesMatrixSemigroup returns the n by m Rees matrix semigroup over S with multiplication defined
by mat .

The arguments of ReesZeroMatrixSemigroup should be a semigroup S and an m by n matrix
mat with entries in S or equal to the integer 0. ReesZeroMatrixSemigroup returns the n by m Rees
0-matrix semigroup over S with multiplication defined by mat . In GAP a Rees 0-matrix semigroup
always contains a multiplicative zero element, regardless of whether there are any entries in mat which
are equal to 0.

Example
gap> G:=Random(AllSmallGroups(Size, 32));;

gap> mat:=List([1..5], x-> List([1..3], y-> Random(G)));;

gap> S:=ReesMatrixSemigroup(G, mat);

<Rees matrix semigroup 3x5 over <pc group of size 32 with

5 generators>>

gap> mat:=[[(), 0, (), ()], [0, 0, 0, 0]];;

gap> S:=ReesZeroMatrixSemigroup(DihedralGroup(IsPermGroup, 8), mat);

<Rees 0-matrix semigroup 4x2 over Group([(1,2,3,4), (2,4)])>

51.9.2 ReesMatrixSubsemigroup

▷ ReesMatrixSubsemigroup(R, I, U, J) (operation)

▷ ReesZeroMatrixSubsemigroup(R, I, U, J) (operation)

Returns: A Rees matrix or 0-matrix subsemigroup.
The arguments of ReesMatrixSubsemigroup should be a Rees matrix semigroup R , subsets I

and J of the rows and columns of R , respectively, and a subsemigroup U of the underlying semigroup
of R . ReesMatrixSubsemigroup returns the subsemigroup of R generated by the direct product of
I , U , and J .

The usage and returned value of ReesZeroMatrixSubsemigroup is analogous when R is a Rees
0-matrix semigroup.

Example
gap> G:=CyclicGroup(IsPermGroup, 1007);;

gap> mat:=[[(), 0, 0], [0, (), 0], [0, 0, ()],

> [(), (), ()], [0, 0, ()]];;

gap> R:=ReesZeroMatrixSemigroup(G, mat);

<Rees 0-matrix semigroup 3x5 over

<permutation group of size 1007 with 1 generator>>

gap> ReesZeroMatrixSubsemigroup(R, [1,3], G, [1..5]);

<Rees 0-matrix semigroup 2x5 over

<permutation group of size 1007 with 1 generator>>

51.9.3 IsomorphismReesMatrixSemigroup

▷ IsomorphismReesMatrixSemigroup(S) (attribute)

▷ IsomorphismReesZeroMatrixSemigroup(S) (attribute)

Returns: An isomorphism.
Every finite simple semigroup is isomorphic to a Rees matrix semigroup over a group, and every

finite 0-simple semigroup is isomorphic to a Rees 0-matrix semigroup over a group.

GAP - Reference Manual 851

If the argument S is a simple semigroup, then IsomorphismReesMatrixSemigroup re-
turns an isomorphism to a Rees matrix semigroup over a group. If S is not simple, then
IsomorphismReesMatrixSemigroup returns an error.

If the argument S is a 0-simple semigroup, then IsomorphismReesZeroMatrixSemigroup re-
turns an isomorphism to a Rees 0-matrix semigroup over a group. If S is not 0-simple, then
IsomorphismReesZeroMatrixSemigroup returns an error.

See IsSimpleSemigroup (51.4.4) and IsZeroSimpleSemigroup (51.4.5).
Example

gap> S := Semigroup(Transformation([2, 1, 1, 2, 1]),

> Transformation([3, 4, 3, 4, 4]),

> Transformation([3, 4, 3, 4, 3]),

> Transformation([4, 3, 3, 4, 4]));;

gap> IsSimpleSemigroup(S);

true

gap> Range(IsomorphismReesMatrixSemigroup(S));

<Rees matrix semigroup 4x2 over Group([(1,2)])>

gap> mat := [[(), 0, 0],

> [0, (), 0],

> [0, 0, ()]];;

gap> R := ReesZeroMatrixSemigroup(Group((1,2,4,5,6)), mat);

<Rees 0-matrix semigroup 3x3 over Group([(1,2,4,5,6)])>

gap> U := ReesZeroMatrixSubsemigroup(R, [1, 2], Group(()), [2, 3]);

<subsemigroup of 3x3 Rees 0-matrix semigroup with 4 generators>

gap> IsZeroSimpleSemigroup(U);

false

gap> U := ReesZeroMatrixSubsemigroup(R, [2, 3], Group(()), [2, 3]);

<subsemigroup of 3x3 Rees 0-matrix semigroup with 3 generators>

gap> IsZeroSimpleSemigroup(U);

true

gap> Rows(U); Columns(U);

[2, 3]

[2, 3]

gap> V := Range(IsomorphismReesZeroMatrixSemigroup(U));

<Rees 0-matrix semigroup 2x2 over Group(())>

gap> Rows(V); Columns(V);

[1, 2]

[1, 2]

51.9.4 IsReesMatrixSemigroupElement

▷ IsReesMatrixSemigroupElement(elt) (Category)

▷ IsReesZeroMatrixSemigroupElement(elt) (Category)

Returns: true or false.
Every element of a Rees matrix semigroup belongs to the category

IsReesMatrixSemigroupElement, and every element of a Rees 0-matrix semigroup belongs
to the category IsReesZeroMatrixSemigroupElement.

Example
gap> G:=Group((1,2,3));;

gap> mat:=[[(), (1,3,2)], [(1,3,2), ()]];;

gap> R:=ReesMatrixSemigroup(G, mat);

<Rees matrix semigroup 2x2 over Group([(1,2,3)])>

GAP - Reference Manual 852

gap> GeneratorsOfSemigroup(R);

[(1,(1,2,3),1), (2,(),2)]

gap> IsReesMatrixSemigroupElement(last[1]);

true

gap> IsReesZeroMatrixSemigroupElement(last2[1]);

false

51.9.5 ReesMatrixSemigroupElement

▷ ReesMatrixSemigroupElement(R, i, x, j) (function)

▷ ReesZeroMatrixSemigroupElement(R, i, x, j) (function)

Returns: An element of a Rees matrix or 0-matrix semigroup.
The arguments of ReesMatrixSemigroupElement should be a Rees matrix subsemigroup R , el-

ements i and j of the the rows and columns of R , respectively, and an element x of the underlying
semigroup of R . ReesMatrixSemigroupElement returns the element of R with row index i , under-
lying element x in the underlying semigroup of R , and column index j , if such an element exist, if
such an element exists.

The usage of ReesZeroMatrixSemigroupElement is analogous to that of
ReesMatrixSemigroupElement, when R is a Rees 0-matrix semigroup.

The row i , underlying element x , and column j of an element y of a Rees matrix (or 0-matrix)
semigroup can be recovered from y using y[1], y[2], and y[3], respectively.

Example
gap> G:=Group((1,2,3));;

gap> mat:=[[0, ()], [(1,3,2), (1,3,2)]];;

gap> R:=ReesZeroMatrixSemigroup(G, mat);

<Rees 0-matrix semigroup 2x2 over Group([(1,2,3)])>

gap> ReesZeroMatrixSemigroupElement(R, 1, (1,2,3), 2);

(1,(1,2,3),2)

gap> MultiplicativeZero(R);

0

51.9.6 IsReesMatrixSubsemigroup

▷ IsReesMatrixSubsemigroup(R) (Synonym)

▷ IsReesZeroMatrixSubsemigroup(R) (Synonym)

Returns: true or false.
Every semigroup consisting of elements of a Rees matrix semigroup satisfies the property

IsReesMatrixSubsemigroup and every semigroup of Rees 0-matrix semigroup elements satisfies
IsReesZeroMatrixSubsemigroup.

Note that a subsemigroup of a Rees matrix semigroup is not necessarily a Rees matrix semigroup.
Example

gap> G:=DihedralGroup(32);;

gap> mat:=List([1..2], x-> List([1..10], x-> Random(G)));;

gap> R:=ReesMatrixSemigroup(G, mat);

<Rees matrix semigroup 10x2 over <pc group of size 32 with

5 generators>>

gap> S:=Semigroup(GeneratorsOfSemigroup(R));

<subsemigroup of 10x2 Rees matrix semigroup with 14 generators>

gap> IsReesMatrixSubsemigroup(S);

GAP - Reference Manual 853

true

gap> S:=Semigroup(GeneratorsOfSemigroup(R)[1]);

<subsemigroup of 10x2 Rees matrix semigroup with 1 generator>

gap> IsReesMatrixSubsemigroup(S);

true

51.9.7 IsReesMatrixSemigroup

▷ IsReesMatrixSemigroup(R) (property)

▷ IsReesZeroMatrixSemigroup(R) (property)

Returns: true or false.
A subsemigroup of a Rees matrix semigroup I ×U × J satisfies IsReesMatrixSemigroup if and

only if it is equal to I′×U ′×J′ where I′ ⊆ I, J′ ⊆ J, and U ′ is a subsemigroup of U . It can be costly to
check that a subsemigroup defined by generators satisfies IsReesMatrixSemigroup. The analogous
statements holds for Rees 0-matrix semigroups.

It is not necessarily the case that a simple subsemigroups of Rees matrix semigroups satisfies
IsReesMatrixSemigroup. A Rees matrix semigroup is simple if and only if its underlying semigroup
is simple. A finite semigroup is simple if and only if it is isomorphic to a Rees matrix semigroup over
a group; this isomorphism can be obtained explicitly using IsomorphismReesMatrixSemigroup

(51.9.3).
Similarly, 0-simple subsemigroups of Rees 0-matrix semigroups do not have to satisfy

IsReesZeroMatrixSemigroup. A Rees 0-matrix semigroup with more than 2 elements is 0-simple
if and only if every row and every column of its matrix contains a non-zero entry, and its un-
derlying semigroup is simple. A finite semigroup is 0-simple if and only if it is isomorphic
to a Rees 0-matrix semigroup over a group; again this isomorphism can be found by using
IsomorphismReesMatrixSemigroup (51.9.3).

Example
gap> G:=PSL(2,5);;

gap> mat:=[[0, (), 0, (2,6,3,5,4)],

> [(), 0, (), 0], [0, 0, 0, ()]];;

gap> R:=ReesZeroMatrixSemigroup(G, mat);

<Rees 0-matrix semigroup 4x3 over Group([(3,5)(4,6), (1,2,5)

(3,4,6)])>

gap> IsReesZeroMatrixSemigroup(R);

true

gap> U:=ReesZeroMatrixSubsemigroup(R, [1..3], Group(()), [1..2]);

<subsemigroup of 4x3 Rees 0-matrix semigroup with 4 generators>

gap> IsReesZeroMatrixSemigroup(U);

true

gap> V:=Semigroup(GeneratorsOfSemigroup(U));

<subsemigroup of 4x3 Rees 0-matrix semigroup with 4 generators>

gap> IsReesZeroMatrixSemigroup(V);

true

gap> S:=Semigroup(Transformation([1,1]), Transformation([1,2]));

<commutative transformation monoid of degree 2 with 1 generator>

gap> IsSimpleSemigroup(S);

false

gap> mat:=[[0, One(S), 0, One(S)], [One(S), 0, One(S), 0],

> [0, 0, 0, One(S)]];;

gap> R:=ReesZeroMatrixSemigroup(S, mat);;

GAP - Reference Manual 854

gap> U:=ReesZeroMatrixSubsemigroup(R, [1..3],

> Semigroup(Transformation([1,1])), [1..2]);

<subsemigroup of 4x3 Rees 0-matrix semigroup with 6 generators>

gap> V:=Semigroup(GeneratorsOfSemigroup(U));

<subsemigroup of 4x3 Rees 0-matrix semigroup with 6 generators>

gap> IsReesZeroMatrixSemigroup(V);

true

gap> T:=Semigroup(

> ReesZeroMatrixSemigroupElement(R, 3, Transformation([1, 1]), 3),

> ReesZeroMatrixSemigroupElement(R, 2, Transformation([1, 1]), 2));

<subsemigroup of 4x3 Rees 0-matrix semigroup with 2 generators>

gap> IsReesZeroMatrixSemigroup(T);

false

51.9.8 Matrix (for Rees matrix semigroups)

▷ Matrix(R) (operation)

▷ MatrixOfReesMatrixSemigroup(R) (attribute)

▷ MatrixOfReesZeroMatrixSemigroup(R) (attribute)

Returns: A matrix.
If R is a Rees matrix or 0-matrix semigroup, then MatrixOfReesMatrixSemigroup respectively

MatrixOfReesZeroMatrixSemigroup return the matrix used to define multiplication in R . For con-
venience, one may also abbreviate either to Matrix.

More specifically, if R is a Rees matrix or 0-matrix semigroup, which is a proper subsemigroup of
another such semigroup, then Matrix returns the matrix used to define the Rees matrix (or 0-matrix)
semigroup consisting of the whole family to which the elements of R belong. Thus, for example, a 1

by 1 Rees matrix semigroup can have a 65 by 15 matrix.
Arbitrary subsemigroups of Rees matrix or 0-matrix semigroups do not have a matrix. Such

a subsemigroup R has a matrix if and only if it satisfies IsReesMatrixSemigroup (51.9.7) or
IsReesZeroMatrixSemigroup (51.9.7).

Example
gap> G:=AlternatingGroup(5);;

gap> mat:=[[(), (), ()], [(), (), ()]];;

gap> R:=ReesMatrixSemigroup(G, mat);

<Rees matrix semigroup 3x2 over Alt([1 .. 5])>

gap> Matrix(R);

[[(), (), ()], [(), (), ()]]

gap> R:=ReesMatrixSubsemigroup(R, [1,2], Group(()), [2]);

<subsemigroup of 3x2 Rees matrix semigroup with 2 generators>

gap> Matrix(R);

[[(), (), ()], [(), (), ()]]

51.9.9 Rows and columns

▷ Rows(R) (attribute)

▷ Columns(R) (attribute)

Returns: The rows or columns of R .
Rows returns the rows of the Rees matrix or 0-matrix semigroup R . Note that the rows of the

semigroup correspond to the columns of the matrix used to define multiplication in R .

GAP - Reference Manual 855

Columns returns the columns of the Rees matrix or 0-matrix semigroup R . Note that the columns
of the semigroup correspond to the rows of the matrix used to define multiplication in R .

Arbitrary subsemigroups of Rees matrix or 0-matrix semigroups do not have rows or columns.
Such a subsemigroup R has rows and columns if and only if it satisfies IsReesMatrixSemigroup

(51.9.7) or IsReesZeroMatrixSemigroup (51.9.7).
Example

gap> G:=Group((1,2,3));;

gap> mat:=List([1..100], x-> List([1..200], x->Random(G)));;

gap> R:=ReesZeroMatrixSemigroup(G, mat);

<Rees 0-matrix semigroup 200x100 over Group([(1,2,3)])>

gap> Rows(R);

[1 .. 200]

gap> Columns(R);

[1 .. 100]

51.9.10 UnderlyingSemigroup (for a Rees matrix semigroup)

▷ UnderlyingSemigroup(R) (attribute)

▷ UnderlyingSemigroup(R) (attribute)

Returns: A semigroup.
UnderlyingSemigroup returns the underlying semigroup of the Rees matrix or 0-matrix semi-

group R .
Arbitrary subsemigroups of Rees matrix or 0-matrix semigroups do not have an underly-

ing semigroup. Such a subsemigroup R has an underlying semigroup if and only if it satisfies
IsReesMatrixSemigroup (51.9.7) or IsReesZeroMatrixSemigroup (51.9.7).

Example
gap> S:=Semigroup(Transformation([2, 1, 1, 2, 1]),

> Transformation([3, 4, 3, 4, 4]), Transformation([3, 4, 3, 4, 3]),

> Transformation([4, 3, 3, 4, 4]));;

gap> R:=Range(IsomorphismReesMatrixSemigroup(S));

<Rees matrix semigroup 4x2 over Group([(1,2)])>

gap> UnderlyingSemigroup(R);

Group([(1,2)])

51.9.11 AssociatedReesMatrixSemigroupOfDClass

▷ AssociatedReesMatrixSemigroupOfDClass(D) (attribute)

Returns: A Rees matrix or 0-matrix semigroup.
If D is a regular D-class of a finite semigroup S, then there is a standard way of associating a Rees

matrix semigroup to D . If D is a subsemigroup of S, then D is simple and hence is isomorphic to a
Rees matrix semigroup. In this case, the associated Rees matrix semigroup of D is just the Rees matrix
semigroup isomorphic to D .

If D is not a subsemigroup of S, then we define a semigroup with elements D and a new element 0
with multiplication of x,y ∈ D defined by:

xy =
{

x∗ y (in S) if x∗ y ∈ D
0 if xy ̸∈ D.

The semigroup thus defined is 0-simple and hence is isomorphic to a Rees 0-matrix semigroup. This
semigroup can also be described as the Rees quotient of the ideal generated by D by it maximal

GAP - Reference Manual 856

subideal. The associated Rees matrix semigroup of D is just the Rees 0-matrix semigroup isomorphic
to the semigroup defined above.

Example
gap> S:=FullTransformationSemigroup(5);;

gap> D:=GreensDClasses(S)[3];

{Transformation([1, 1, 1, 2, 3])}

gap> AssociatedReesMatrixSemigroupOfDClass(D);

<Rees 0-matrix semigroup 25x10 over Group([(1,2)(3,5)(4,6), (1,3)

(2,4)(5,6)])>

Chapter 52

Finitely Presented Semigroups and
Monoids

A finitely presented semigroup (resp. finitely presented monoid) is a quotient of a free semigroup
(resp. free monoid) on a finite number of generators over a finitely generated congruence on the free
semigroup (resp. free monoid).

Finitely presented semigroups are obtained by factoring a free semigroup by a set of relations (a
generating set for the congruence), i.e., a set of pairs of words in the free semigroup.

Example
gap> f := FreeSemigroup("a", "b");;

gap> x := GeneratorsOfSemigroup(f);;

gap> s := f / [[x[1] * x[2], x[2] * x[1]]];

<fp semigroup on the generators [a, b]>

gap> GeneratorsOfSemigroup(s);

[a, b]

gap> RelationsOfFpSemigroup(s);

[[a*b, b*a]]

Finitely presented monoids are obtained by factoring a free monoid by a set of relations, i.e. a set
of pairs of words in the free monoid.

Example
gap> f := FreeMonoid("a", "b");;

gap> x := GeneratorsOfMonoid(f);

[a, b]

gap> e := Identity(f);

<identity ...>

gap> m := f / [[x[1] * x[2], e]];

<fp monoid on the generators [a, b]>

gap> RelationsOfFpMonoid(m);

[[a*b, <identity ...>]]

Notice that for GAP a finitely presented monoid is not a finitely presented semigroup.
Example

gap> IsFpSemigroup(m);

false

857

GAP - Reference Manual 858

However, one can build a finitely presented semigroup isomorphic to that finitely presented
monoid (see IsomorphismFpSemigroup (52.2.3)).

Also note that is not possible to refer to the generators by their names. These names are not
variables, but just display figures. So, if one wants to access the generators by their names, one first
has to introduce the respective variables and to assign the generators to them.

Example
gap> Unbind(a);

gap> f := FreeSemigroup("a", "b");;

gap> s := f / [[f.1 * f.2, f.2 * f.1]];;

gap> a;

Error, Variable: 'a' must have a value

gap> a := s.1;

a

gap> a in f;

false

gap> a in s;

true

The generators of the free semigroup (resp. free monoid) are different from the generators of the
finitely presented semigroup (resp. finitely presented monoid) (even though they are displayed by the
same names). This means that words in the generators of the free semigroup (resp. free monoid)
are not elements of the finitely presented semigroup (resp. finitely presented monoid). Conversely
elements of the finitely presented semigroup (resp. finitely presented monoid) are not words of the
free semigroup (resp. free monoid).

Calculations comparing elements of a finitely presented semigroup may run into problems: there
are finitely presented semigroups for which no algorithm exists (it is known that no such algorithm
can exist) that will tell for two arbitrary words in the generators whether the corresponding elements in
the finitely presented semigroup are equal. Therefore the methods used by GAP to compute in finitely
presented semigroups may run into warning errors, run out of memory or run forever. If the finitely
presented semigroup is (by theory) known to be finite the algorithms are guaranteed to terminate (if
there is sufficient memory available), but the time needed for the calculation cannot be bounded a
priori. The same can be said for monoids. (See 52.5.)

Example
gap> b := s.2;;

gap> a*b = a^5;

false

gap> a^5 * b^2 * a = a^6 * b^2;

true

Note that elements of a finitely presented semigroup (or monoid) are not printed in a unique way:
Example

gap> a^5 * b^2 * a;

a^5*b^2*a

gap> a^6 * b^2;

a^6*b^2

GAP - Reference Manual 859

52.1 IsSubsemigroupFpSemigroup (Filter)

52.1.1 IsSubsemigroupFpSemigroup

▷ IsSubsemigroupFpSemigroup(t) (filter)

▷ IsSubmonoidFpMonoid(t) (filter)

The first function returns true if t is a finitely presented semigroup or a subsemigroup of a finitely
presented semigroup. The second function does the equivalent thing for monoids. (Generally speak-
ing, such a subsemigroup or monoid can be constructed with Semigroup(gens) or Monoid(gens),
where gens is a list of elements of a finitely presented semigroup or monoid.)

A submonoid of a monoid has the same identity as the monoid.

52.1.2 IsFpSemigroup

▷ IsFpSemigroup(s) (filter)

▷ IsFpMonoid(m) (filter)

The first function is a synonym for IsSubsemigroupFpSemigroup(s) and IsWholeFamily(s)

(this is because a subsemigroup of a finitely presented semigroup is not necessarily finitely presented).
Similarly, the second function is a synonym for IsSubmonoidFpMonoid(m) and

IsWholeFamily(m).

52.1.3 IsElementOfFpSemigroup

▷ IsElementOfFpSemigroup(elm) (Category)

▷ IsElementOfFpMonoid(elm) (Category)

returns true if elm is an element of a finitely presented semigroup or monoid.
Example

gap> f := FreeSemigroup("a", "b");;

gap> IsFpSemigroup(f);

false

gap> s := f / [[f.1^2, f.2^2]];;

gap> IsFpSemigroup(s);

true

gap> t := Semigroup([s.1^2]);

<commutative semigroup with 1 generator>

gap> IsSubsemigroupFpSemigroup(t);

true

gap> IsSubsemigroupFpSemigroup(s);

true

gap> IsSubsemigroupFpSemigroup(f);

false

gap> IsElementOfFpSemigroup(t.1^3);

true

GAP - Reference Manual 860

52.1.4 FpGrpMonSmgOfFpGrpMonSmgElement

▷ FpGrpMonSmgOfFpGrpMonSmgElement(elm) (operation)

returns the finitely presented group, monoid or semigroup to which elm belongs.
Example

gap> s = FpGrpMonSmgOfFpGrpMonSmgElement(s.1);

true

gap> s = FpGrpMonSmgOfFpGrpMonSmgElement(t.1);

true

gap> f := FreeMonoid(2);;

gap> m := f / [[f.1^2, f.2^2]];

<fp monoid on the generators [m1, m2]>

gap> m = FpGrpMonSmgOfFpGrpMonSmgElement(m.1 * m.2);

true

52.2 Creating Finitely Presented Semigroups and Monoids

52.2.1 \/ (for a free semigroup or monoid and a list of pairs of elements)

▷ \/(F, rels) (method)

creates a finitely presented semigroup or monoid given by the presentation ⟨gens | rels⟩ where
gens are the generators of the free semigroup or free monoid F , and the relations rels are entered as
pairs of words in the generators of the free semigroup or free monoid.

The same result is obtained with the infix operator /, i.e. as F / rels .
Example

gap> fs := FreeSemigroup(3);;

gap> x := GeneratorsOfSemigroup(fs);;

gap> s := fs / [[x[1] * x[2] * x[1], x[1]], [x[2]^4, x[1]]];

<fp semigroup on the generators [s1, s2, s3]>

52.2.2 FactorFreeSemigroupByRelations

▷ FactorFreeSemigroupByRelations(f, rels) (function)

▷ FactorFreeMonoidByRelations(f, rels) (function)

for a free semigroup or free monoid f and a list rels of pairs of elements of f . Returns the finitely
presented semigroup or monoid which is the quotient of f by the least congruence on f generated by
the pairs in rels .

Users should be aware that much of the code described in this chapter is in need of substantial
revision. In particular, the two functions described here are not called by the operation \/ of the
previous subsection, and so are liable to be removed in due course.

Example
gap> fm := FreeMonoid(3);;

gap> y := GeneratorsOfMonoid(fm);;

gap> m := FactorFreeMonoidByRelations(fm,

> [[y[1] * y[2] * y[1], y[1]],[y[2]^4, y[1]]]);

<fp monoid on the generators [m1, m2, m3]>

GAP - Reference Manual 861

52.2.3 IsomorphismFpSemigroup

▷ IsomorphismFpSemigroup(m) (attribute)

▷ IsomorphismFpMonoid(g) (attribute)

for a finitely presented monoid m or a finitely presented group g . Returns an isomorphism from m

or g to a finitely presented semigroup or monoid.
Example

gap> phis := IsomorphismFpSemigroup(m);

MappingByFunction(<fp monoid on the generators

[m1, m2, m3]>, <fp semigroup on the generators [<identity ...>, m1, m2, m3

]>, function(x) ... end, function(x) ... end)

gap> fg := FreeGroup(2);;

gap> g := fg / [fg.1^4, fg.2^5];

<fp group on the generators [f1, f2]>

gap> phim := IsomorphismFpMonoid(g);

MappingByFunction(<fp group on the generators

[f1, f2]>, <fp monoid on the generators [f1, f1^-1, f2, f2^-1

]>, function(x) ... end, function(x) ... end)

52.3 Comparison of Elements of Finitely Presented Semigroups

52.3.1 \= (for two elements in a f.p. semigroup)

▷ \=(a, b) (method)

Two elements a , b of a finitely presented semigroup are equal if they are equal in the semigroup.
Nevertheless they may be represented as different words in the generators. Because of the fundamental
problems mentioned in the introduction to this chapter such a test may take a very long time and cannot
be guaranteed to finish (see 52.5).

52.4 Preimages in the Free Semigroup or Monoid

Elements of a finitely presented semigroup or monoid are not words, but are represented using a word
from the free semigroup or free monoid as representative.

52.4.1 UnderlyingElement (of an element in a fp semigroup or monoid)

▷ UnderlyingElement(elm) (operation)

for an element elm of a finitely presented semigroup or monoid. Returns the word from the free
semigroup or free monoid that is used as a representative for elm .

Example
gap> genm := GeneratorsOfMonoid(m);;

gap> e := genm[2]^4;

m2^4

gap> IsWord(e);

false

GAP - Reference Manual 862

gap> ue := UnderlyingElement(e);

m2^4

gap> IsWord(ue);

true

52.4.2 ElementOfFpSemigroup

▷ ElementOfFpSemigroup(fam, word) (operation)

▷ ElementOfFpMonoid(fam, word) (operation)

for a family fam of elements of a finitely presented semigroup or monoid and a word word in
the free generators underlying this finitely presented semigroup or monoid. Returns the element of
the finitely presented semigroup or monoid with the representative word in the free semigroup or free
monoid. These operations are inverse to UnderlyingElement.

Example
gap> fam := FamilyObj(genm[1]);;

gap> w := y[1]^3 * y[2]^4 * y[3]^5;

m1^3*m2^4*m3^5

gap> ew := ElementOfFpMonoid(fam, w);

m1^3*m2^4*m3^5

gap> ew in fm;

false

gap> ew in m;

true

gap> w = UnderlyingElement(ew);

true

52.4.3 FreeSemigroupOfFpSemigroup

▷ FreeSemigroupOfFpSemigroup(s) (attribute)

▷ FreeMonoidOfFpMonoid(m) (attribute)

returns the underlying free semigroup or free monoid for the finitely presented semigroup s

or monoid m , i.e. the free semigroup or free monoid over which s or m is defined as a quo-
tient. (This is the free semigroup or free monoid generated by the free generators provided by
FreeGeneratorsOfFpSemigroup(s) or FreeGeneratorsOfFpMonoid(m)).

52.4.4 FreeGeneratorsOfFpSemigroup

▷ FreeGeneratorsOfFpSemigroup(s) (attribute)

▷ FreeGeneratorsOfFpMonoid(m) (attribute)

returns the underlying free generators corresponding to the generators of the finitely presented
semigroup s or monoid m .

52.4.5 RelationsOfFpSemigroup

▷ RelationsOfFpSemigroup(s) (attribute)

▷ RelationsOfFpMonoid(m) (attribute)

GAP - Reference Manual 863

returns the relations of the finitely presented semigroup s or monoid m as pairs of words in the free
generators provided by FreeGeneratorsOfFpSemigroup(s) or FreeGeneratorsOfFpMonoid(m).

Example
gap> fs = FreeSemigroupOfFpSemigroup(s);

true

gap> FreeGeneratorsOfFpMonoid(m);

[m1, m2, m3]

gap> RelationsOfFpSemigroup(s);

[[s1*s2*s1, s1], [s2^4, s1]]

52.5 Rewriting Systems and the Knuth-Bendix Procedure

If a finitely presented semigroup (or monoid) has a confluent rewriting system then it has a solvable
word problem, that is, there is an algorithm to decide when two words in the free underlying semigroup
represent the same element of the finitely presented semigroup. Indeed, once we have a confluent
rewriting system, it is possible to successfully test that two words represent the same element in the
semigroup, by reducing both words using the rewriting system rules. This is, at the moment, the
method that GAP uses to check equality in finitely presented semigroups and monoids.

52.5.1 ReducedConfluentRewritingSystem

▷ ReducedConfluentRewritingSystem(S[, ordering]) (attribute)

returns a reduced confluent rewriting system of the finitely presented semigroup or monoid S with
respect to the reduction ordering ordering (see 34).

The default for ordering is the length plus lexicographic ordering on words, also called the
shortlex ordering; for the definition see for example [Sim94].

Notice that this might not terminate. In particular, if the semigroup or monoid S does not have
a solvable word problem then it this will certainly never end. Also, in this case, the object returned
is an immutable rewriting system, because once we have a confluent rewriting system for a finitely
presented semigroup or monoid we do not want to allow it to change (as it was most probably very
time consuming to get it in the first place). Furthermore, this is also an attribute storing object (see
13.4).

Example
gap> f := FreeSemigroup("a", "b");;

gap> a := f.1;; b := f.2;;

gap> s := f / [[a*b*a, b], [b*a*b, a]];;

gap> rws := ReducedConfluentRewritingSystem(s);

Rewriting System for Semigroup([a, b]) with rules

[[a*b*a, b], [b*a*b, a], [b*a^2, a^2*b], [b^2, a^2],

[a^5, a], [a^3*b, b*a]]

gap> c := s.1;; d := s.2;;

gap> e := (c*d^2)^3;

(a*b^2)^3

gap> ## ReducedForm(rws, e); gives an error!

gap> w := UnderlyingElement(e);

(a*b^2)^3

GAP - Reference Manual 864

gap> ReducedForm(rws, w);

a

The creation of a reduced confluent rewriting system for a semigroup or for a monoid, in GAP,
uses the Knuth-Bendix procedure for strings, which manipulates a rewriting system of the semigroup
or monoid and attempts to make it confluent, (see Chapter 38 and also Sims [Sim94]). (Since the
word problem for semigroups/monoids is not solvable in general, the Knuth-Bendix procedure cannot
always terminate).

In order to apply this procedure we will build a rewriting system for the semigroup or monoid,
which we will call a Knuth-Bendix Rewriting System (we need to define this because we need the
rewriting system to store some information needed for the implementation of the Knuth-Bendix pro-
cedure).

Actually, Knuth-Bendix Rewriting Systems do not only serve this purpose. Indeed these are
objects which are mutable and which can be manipulated (see 38).

Note that the implemented version of the Knuth-Bendix procedure, in GAP returns, if it termi-
nates, a confluent rewriting system which is reduced. Also, a reduction ordering has to be specified
when building a rewriting system. If none is specified, the shortlex ordering is assumed (note that the
procedure may terminate with a certain ordering and not with another one).

On Unix systems it is possible to replace the built-in Knuth-Bendix by other routines, for example
the package kbmag offers such a possibility.

52.5.2 KB_REW

▷ KB_REW (global variable)

▷ GAPKB_REW (global variable)

KB_REW is a global record variable whose components contain functions used for Knuth-Bendix.
By default KB_REW is assigned to GAPKB_REW, which contains the KB functions provided by the GAP
library.

52.5.3 KnuthBendixRewritingSystem

▷ KnuthBendixRewritingSystem(s, wordord) (operation)

▷ KnuthBendixRewritingSystem(m, wordord) (operation)

in the first form, for a semigroup s and a reduction ordering for the underlying free semigroup, it
returns the Knuth-Bendix rewriting system of the finitely presented semigroup s using the reduction
ordering wordord . In the second form, for a monoid m and a reduction ordering for the underlying
free monoid, it returns the Knuth-Bendix rewriting system of the finitely presented monoid m using
the reduction ordering wordord .

52.5.4 SemigroupOfRewritingSystem

▷ SemigroupOfRewritingSystem(rws) (attribute)

▷ MonoidOfRewritingSystem(rws) (attribute)

returns the semigroup or monoid over which rws is a rewriting system.

GAP - Reference Manual 865

52.5.5 FreeSemigroupOfRewritingSystem

▷ FreeSemigroupOfRewritingSystem(rws) (attribute)

▷ FreeMonoidOfRewritingSystem(rws) (attribute)

returns the free semigroup or monoid over which rws is a rewriting system.
Example

gap> f1 := FreeSemigroupOfRewritingSystem(rws);

<free semigroup on the generators [a, b]>

gap> f1 = f;

true

gap> s1 := SemigroupOfRewritingSystem(rws);

<fp semigroup on the generators [a, b]>

gap> s1 = s;

true

As mentioned before, having a confluent rewriting system, one can decide whether two words
represent the same element of a finitely presented semigroup (or finitely presented monoid).

Example
gap> d^6 = c^2;

true

gap> ReducedForm(rws, UnderlyingElement(d^6));

a^2

gap> ReducedForm(rws, UnderlyingElement(c^2));

a^2

52.6 Todd-Coxeter Procedure

This procedure gives a standard way of finding a transformation representation of a
finitely presented semigroup. Usually one does not explicitly call this procedure but uses
IsomorphismTransformationSemigroup (53.7.5).

52.6.1 CosetTableOfFpSemigroup

▷ CosetTableOfFpSemigroup(r) (attribute)

r is a right congruence of an fp-semigroup S . This attribute is the coset table of FP semigroup S

on a right congruence r . Given a right congruence r we represent S as a set of transformations of the
congruence classes of r .

The images of the cosets under the generators are compiled in a list table such that table[i][s]
contains the image of coset s under generator i .

Chapter 53

Transformations

This chapter describes the functions in GAP for transformations.
A transformation in GAP is simply a function from the positive integers to the positive integers.

Transformations are to semigroup theory what permutations are to group theory, in the sense that every
semigroup can be realised as a semigroup of transformations. In GAP transformation semigroups are
always finite, and so only finite semigroups can be realised in this way.

A transformation in GAP acts on the positive integers (up to some architecture dependent limit)
on the right. The image of a point i under a transformation f is expressed as i ^ f in GAP. This
action is also implemented by the function OnPoints (41.2.1). If i ^ f is different from i, then i is
moved by f and otherwise it is fixed by f. Transformations in GAP are created using the operations
described in Section 53.2.

The degree of a transformation f is usually defined as the largest positive integer where f is de-
fined. In previous versions of GAP, transformations were only defined on positive integers less than
their degree, it was only possible to multiply transformations of equal degree, and a transformation did
not act on any point exceeding its degree. Starting with version 4.7 of GAP, transformations behave
more like permutations, in that they fix unspecified points and it is possible to multiply arbitrary trans-
formations; see Chapter 42. The definition of the degree of a transformation f in the current version of
GAP is the largest value n such that n ^ f <> n or i ^ f = n for some i <> n. Equivalently, the
degree of a transformation is the least value n such that [n + 1, n + 2, ...] is fixed pointwise
by f.

The transformations of a given degree belong to the full transformation semigroup of that degree;
see FullTransformationSemigroup (53.7.3). Transformation semigroups are hence subsemigroups
of the full transformation semigroup.

It is possible to use transformations in GAP without reference to the degree, much as it is possi-
ble to use permutations in this way. However, for backwards compatibility, and because it is some-
times useful, it is possible to access the degree of a transformation using DegreeOfTransformation

(53.5.1). Certain attributes of transformations are also calculated with respect to the degree, such as
the rank, image set, or kernel (these values can also be calculated with respect to any positive integer).
So, it is possible to ignore the degree of a transformation if you prefer to think of transformations as
acting on the positive integers in a similar way to permutations. For example, this approach is used in
the FR package. It is also possible to think of transformations as only acting on the positive integers
not exceeding their degree. For example, this was the approach formerly used in GAP and it is also
useful in the Semigroups package.

Transformations are displayed, by default, using the list [1 ^ f .. n ^ f] where n is the

866

GAP - Reference Manual 867

degree of f. This behaviour differs from that of versions of GAP earlier than 4.7. See Section 53.6 for
more information.

The rank of a transformation on the positive integers up to n is the number of distinct points in [1

^ f .. n ^ f]. The kernel of a transformation f on [1 .. n] is the equivalence relation on
[1 .. n] consisting of those pairs (i, j) of positive integers such that i ^ f = j ^ f. The
kernel of a transformation is represented in two ways: as a partition of [1 .. n] or as the image
list of a transformation g such that the kernel of g on [1 .. n] equals the kernel of f and j ^ g

= i for all j in ith class. The latter is referred to as the flat kernel of f. For any given transformation
f and value n, there is a unique transformation g with this property.

A functional digraph is a directed graph where every vertex has out-degree 1. A transformation
f can be thought of as a functional digraph with vertices the positive integers and edges from i to i

^ f for every i. A component of a transformation is defined as a component of the corresponding
functional digraph. More specifically, i and j are in the same component if and only if there are
i = v0,v1, . . . ,vn = j such that either vk+1 = v f

k or vk = v f
k+1 for all k. A cycle of a transformation is

defined as a cycle (or strongly connected component) of the corresponding functional digraph. More
specifically, i belongs to a cycle of f if there are i = v0,v1, . . . ,vn = i such that either vk+1 = v f

k or
vk = v f

k+1 for all k.
Internally, GAP stores a transformation f as a list consisting of the images i ^ f for all values

of i less than a value which is at least the degree of f and which is determined at the time of the
creation of f. When the degree of a transformation f is at most 65536, the images of points under
f are stored as 16-bit integers, the kernel and image set are subobjects of f which are plain lists of
GAP integers. When the degree of f is greater than 65536, the images of points under f are stored
as 32-bit integers; the kernel and image set are stored in the same way as before. A transformation
belongs to IsTrans2Rep if it is stored using 16-bit integers and to IsTrans4Rep if it is stored using
32-bit integers.

53.1 The family and categories of transformations

53.1.1 IsTransformation

▷ IsTransformation(obj) (Category)

Every transformation in GAP belongs to the category IsTransformation. Basic operations
for transformations are ImageListOfTransformation (53.5.2), ImageSetOfTransformation

(53.5.3), KernelOfTransformation (53.5.12), FlatKernelOfTransformation (53.5.11),
RankOfTransformation (53.5.4), DegreeOfTransformation (53.5.1), multiplication of two
transformations via *, and exponentiation with the first argument a positive integer i and second
argument a transformation f where the result is the image i ^ f of the point i under f.

53.1.2 IsTransformationCollection

▷ IsTransformationCollection(obj) (Category)

Every collection of transformations belongs to the category IsTransformationCollection. For
example, transformation semigroups belong to IsTransformationCollection.

GAP - Reference Manual 868

53.1.3 TransformationFamily

▷ TransformationFamily (family)

The family of all transformations is TransformationFamily.

53.2 Creating transformations

There are several ways of creating transformations in GAP, which are described in this section.

53.2.1 Transformation (for an image list)

▷ Transformation(list) (operation)

▷ Transformation(list, func) (operation)

▷ TransformationList(list) (operation)

Returns: A transformation.
TransformationList returns the transformation f such that i ^ f = list[i] if i is between

1 and the length of list and i ^ f = i if i is larger than the length of list . An error will occur
in TransformationList if list is not dense, if list contains an element which is not a positive
integer, or if list contains an integer not in [1 .. Length(list)].

TransformationList is the analogue in the context of transformations of PermList (42.5.2).
Transformation is a synonym of TransformationList when the argument is a list.

When the arguments are a list of positive integers list and a function func , Transformation
returns the transformation f such that list[i] ^ f = func(list[i]) if i is in the range [1

.. Length(list)] and f fixes all other points.
Example

gap> SetUserPreference("NotationForTransformations", "input");

gap> f := Transformation([11, 10, 2, 11, 4, 4, 7, 6, 9, 10, 1, 11]);

Transformation([11, 10, 2, 11, 4, 4, 7, 6, 9, 10, 1, 11])

gap> f := TransformationList([2, 3, 3, 1]);

Transformation([2, 3, 3, 1])

gap> SetUserPreference("NotationForTransformations", "fr");

gap> f := Transformation([10, 11], x -> x ^ 2);

<transformation: 1,2,3,4,5,6,7,8,9,100,121>

gap> SetUserPreference("NotationForTransformations", "input");

53.2.2 Transformation (for a source and destination)

▷ Transformation(src, dst) (operation)

▷ TransformationListList(src, dst) (operation)

Returns: A transformation.
If src and dst are lists of positive integers of the same length, such that src contains no element

twice, then TransformationListList(src, dst) returns a transformation f such that src[i]
^ f = dst[i]. The transformation f fixes all points larger than the maximum of the entries in src

and dst .
TransformationListList is the analogue in the context of transformations of

MappingPermListList (42.5.3). Transformation is a synonym of TransformationListList

when its arguments are two lists of positive integers.

GAP - Reference Manual 869

Example
gap> Transformation([10, 11],[11, 12]);

Transformation([1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 12])

gap> TransformationListList([1, 2, 3], [4, 5, 6]);

Transformation([4, 5, 6, 4, 5, 6])

53.2.3 TransformationByImageAndKernel (for an image and kernel)

▷ TransformationByImageAndKernel(im, ker) (operation)

Returns: A transformation or fail.
This operation returns the transformation f where i ^ f = im[ker[i]] for i in the range [

1 .. Length(ker)]. This transformation has flat kernel equal to ker and image set equal to
Set(im).

The argument im should be a duplicate free list of positive integers and ker should be the flat
kernel of a transformation with rank equal to the length of im . If the arguments do not fulfil these
conditions, then fail is returned.

Example
gap> TransformationByImageAndKernel([8, 1, 3, 4],

> [1, 2, 3, 1, 2, 1, 2, 4]);

Transformation([8, 1, 3, 8, 1, 8, 1, 4])

gap> TransformationByImageAndKernel([1, 3, 8, 4],

> [1, 2, 3, 1, 2, 1, 2, 4]);

Transformation([1, 3, 8, 1, 3, 1, 3, 4])

53.2.4 Idempotent

▷ Idempotent(im, ker) (operation)

Returns: A transformation or fail.
Idempotent returns the idempotent transformation with image set im and flat kernel ker if such

a transformation exists and fail if it does not. More specifically, a transformation is returned when
the argument im is a set of positive integers and ker is the flat kernel of a transformation with rank
equal to the length of im and where im has one element in every class of the kernel corresponding to
ker .

Note that this is function does not always return the same transformation as
TransformationByImageAndKernel with the same arguments.

Example
gap> Idempotent([2, 4, 6, 7, 8, 10, 11],

> [1, 2, 1, 3, 3, 4, 5, 1, 6, 6, 7, 5]);

Transformation([8, 2, 8, 4, 4, 6, 7, 8, 10, 10, 11, 7])

gap> TransformationByImageAndKernel([2, 4, 6, 7, 8, 10, 11],

> [1, 2, 1, 3, 3, 4, 5, 1, 6, 6, 7, 5]);

Transformation([2, 4, 2, 6, 6, 7, 8, 2, 10, 10, 11, 8])

53.2.5 TransformationOp

▷ TransformationOp(obj, list[, func]) (operation)

▷ TransformationOpNC(obj, list[, func]) (operation)

Returns: A transformation or fail.

GAP - Reference Manual 870

TransformationOp returns the transformation that corresponds to the action of the object obj on
the domain or list list via the function func . If the optional third argument func is not specified,
then the action OnPoints (41.2.1) is used by default. Note that the returned transformation refers to
the positions in list even if list itself consists of integers.

This function is the analogue in the context of transformations of Permutation (41.9.1).
If obj does not map elements of list into list , then fail is returned.
TransformationOpNC does not check that obj maps elements of list to elements of list or

that a transformation is defined by the action of obj on list via func . This function should be
used only with caution, and in situations where it is guaranteed that the arguments have the required
properties.

Example
gap> f := Transformation([10, 2, 3, 10, 5, 10, 7, 2, 5, 6]);;

gap> TransformationOp(f, [2, 3]);

IdentityTransformation

gap> TransformationOp(f, [1, 2, 3]);

fail

gap> S := SemigroupByMultiplicationTable([[1, 1, 1],

> [1, 1, 1],

> [1, 1, 2]]);;

gap> TransformationOp(Elements(S)[1], S, OnRight);

Transformation([1, 1, 1])

gap> TransformationOp(Elements(S)[3], S, OnRight);

Transformation([1, 1, 2])

53.2.6 TransformationNumber

▷ TransformationNumber(m, n) (operation)

▷ NumberTransformation(f[, n]) (operation)

Returns: A transformation or a number.
These functions implement a bijection from the transformations with degree at most n to the

numbers [1 .. n ^ n].
More precisely, if m and n are positive integers such that m is at most n ^ n , then

TransformationNumber returns the m th transformation with degree at most n .
If f is a transformation and n is a positive integer, which is greater than or equal to the degree of

f , then NumberTransformation returns the number in [1 .. n ^ n] that corresponds to f . If
the optional second argument n is not specified, then the degree of f is used by default.

Example
gap> f := Transformation([3, 3, 5, 3, 3]);;

gap> NumberTransformation(f, 5);

1613

gap> NumberTransformation(f, 10);

2242256790

gap> TransformationNumber(2242256790, 10);

Transformation([3, 3, 5, 3, 3])

gap> TransformationNumber(1613, 5);

Transformation([3, 3, 5, 3, 3])

GAP - Reference Manual 871

53.2.7 RandomTransformation

▷ RandomTransformation(n) (operation)

Returns: A random transformation.
If n is a positive integer, then RandomTransformation returns a random transformation with

degree at most n .
Example

gap> RandomTransformation(6);

Transformation([2, 1, 2, 1, 1, 2])

53.2.8 IdentityTransformation

▷ IdentityTransformation (global variable)

This variable is bound to the identity transformation, which has degree 0.
Example

gap> IdentityTransformation;

IdentityTransformation

53.2.9 ConstantTransformation

▷ ConstantTransformation(m, n) (operation)

Returns: A transformation.
This function returns a constant transformation f such that i ^ f = n for all i less than or equal

to m , when n and m are positive integers.
Example

gap> ConstantTransformation(5, 1);

Transformation([1, 1, 1, 1, 1])

gap> ConstantTransformation(6, 4);

Transformation([4, 4, 4, 4, 4, 4])

53.3 Changing the representation of a transformation

It is possible that a transformation in GAP can be represented as another type of object, or that another
type of GAP object can be represented as a transformation.

The operations AsPermutation (42.5.6) and AsPartialPerm (54.4.2) can be used to convert
transformations into permutations or partial permutations, where appropriate. In this section we de-
scribe functions for converting other types of objects into transformations.

53.3.1 AsTransformation

▷ AsTransformation(f[, n]) (attribute)

Returns: A transformation.
AsTransformation returns the permutation, transformation, partial permutation or binary rela-

tion f as a transformation.

GAP - Reference Manual 872

for permutations
If f is a permutation and n is a non-negative integer, then AsTransformation(f, n) re-
turns the transformation g such that i ^ g = i ^ f for all i in the range [1 .. n].

If no non-negative integer n is specified, then the largest moved point of f is used as the value
for n ; see LargestMovedPoint (42.3.2).

for transformations
If f is a transformation and n is a non-negative integer less than the degree of f such that f is
a transformation of [1 .. n], then AsTransformation returns the restriction of f to [1

.. n].

If f is a transformation and n is not specified or is greater than or equal to the degree of f , then
f is returned.

for partial permutations
A partial permutation f can be converted into a transformation g as follows. The degree m of
g is equal to the maximum of n , the largest moved point of f plus 1, and the largest image of
a moved point plus 1. The transformation g agrees with f on the domain of f and maps the
points in [1 .. m], which are not in the domain of f to n, i.e. i ^ g = i ^ f for all i in
the domain of f , i ^ g = n for all i in [1 .. n], and i ^ g = i for all i greater than
n . AsTransformation(f) returns the transformation g defined in the previous sentences.

If the optional argument n is not present, then the default value of the maximum of the largest
moved point and the largest image of a moved point of f plus 1 is used.

for binary relations
In the case that f is a binary relation, which defines a transformation, AsTransformation
returns that transformation.

Example
gap> f := Transformation([3, 5, 3, 4, 1, 2]);;

gap> AsTransformation(f, 5);

Transformation([3, 5, 3, 4, 1])

gap> AsTransformation(f, 10);

Transformation([3, 5, 3, 4, 1, 2])

gap> AsTransformation((1,3)(2,4));

Transformation([3, 4, 1, 2])

gap> AsTransformation((1,3)(2,4), 10);

Transformation([3, 4, 1, 2])

gap> f := PartialPerm([1, 2, 3, 4, 5, 6], [6, 7, 1, 4, 3, 2]);

[5,3,1,6,2,7](4)

gap> AsTransformation(f, 11);

Transformation([6, 7, 1, 4, 3, 2, 11, 11, 11, 11, 11])

gap> AsPartialPerm(last, DomainOfPartialPerm(f));

[5,3,1,6,2,7](4)

gap> AsTransformation(f, 14);

Transformation([6, 7, 1, 4, 3, 2, 14, 14, 14, 14, 14, 14, 14, 14])

gap> AsPartialPerm(last, DomainOfPartialPerm(f));

[5,3,1,6,2,7](4)

gap> AsTransformation(f);

Transformation([6, 7, 1, 4, 3, 2, 8, 8])

gap> AsTransformation(Transformation([1, 1, 2]), 0);

IdentityTransformation

GAP - Reference Manual 873

53.3.2 RestrictedTransformation

▷ RestrictedTransformation(f, list) (function)

Returns: A transformation.
RestrictedTransformation returns the new transformation g such that i ^ g = i ^ f for

all i in list and such that i ^ g = i for all i not in list .
Example

gap> f := Transformation([2, 10, 5, 9, 10, 9, 6, 3, 8, 4, 6, 5]);;

gap> RestrictedTransformation(f, [1, 2, 3, 10, 11, 12]);

Transformation([2, 10, 5, 4, 5, 6, 7, 8, 9, 4, 6, 5])

53.3.3 PermutationOfImage

▷ PermutationOfImage(f) (function)

Returns: A permutation or fail.
If the transformation f is a permutation of the points in its image, then PermutationOfImage

returns this permutation. If f does not permute its image, then fail is returned.
If f happens to be a permutation, then PermutationOfImage with argument f returns the same

value as AsPermutation with argument f .
Example

gap> f := Transformation([5, 8, 3, 5, 8, 6, 2, 2, 7, 8]);;

gap> PermutationOfImage(f);

fail

gap> f := Transformation([8, 2, 10, 2, 4, 4, 7, 6, 9, 10]);;

gap> PermutationOfImage(f);

fail

gap> f := Transformation([1, 3, 6, 6, 2, 10, 2, 3, 10, 5]);;

gap> PermutationOfImage(f);

(2,3,6,10,5)

gap> f := Transformation([5, 2, 8, 4, 1, 8, 10, 3, 5, 7]);;

gap> PermutationOfImage(f);

(1,5)(3,8)(7,10)

53.4 Operators for transformations

53.4.1 \^ (for a positive integer and a transformation)

▷ \^(i, f) (method)

i ^ f returns the image of the positive integer i under the transformation f .

53.4.2 \^ (for a transformation and a permutation)

▷ \^(f, g) (method)

f ^ g returns g ^ -1 * f * g when f is a transformation and g is a permutation \^ (31.12.1).
This operation requires essentially the same number of steps as multiplying a transformation by a
permutation, which is approximately one third of the number required to first invert g , take the product
with f , and then the product with g .

GAP - Reference Manual 874

53.4.3 * (for transformations)

▷ *(f, g) (method)

f * g returns the composition of f and g when f and g are transformations or permutations.
The product of a permutation and a transformation is returned as a transformation.

53.4.4 \/ (for a transformation and a permutation)

▷ \/(f, g) (method)

f / g returns f * g ^ -1 when f is a transformation and g is a permutation. This operation
requires essentially the same number of steps as multiplying a transformation by a permutation, which
is approximately half the number required to first invert g and then take the product with f .

53.4.5 LeftQuotient (for a permutation and transformation)

▷ LeftQuotient(g, f) (method)

returns g ^ -1 * f when f is a transformation and g is a permutation. This operation uses
essentially the same number of steps as multiplying a transformation by a permutation, which is ap-
proximately half the number required to first invert g and then take the product with f .

53.4.6 \< (for transformations)

▷ \<(i, f) (method)

f < g returns true if the image list of f is lexicographically less than the image list of g and
false if it is not.

53.4.7 \= (for transformations)

▷ \=(f, g) (method)

f = g returns true if the transformation f equals the transformation g and returns false if it
does not.

53.4.8 PermLeftQuoTransformation

▷ PermLeftQuoTransformation(f, g) (operation)

▷ PermLeftQuoTransformationNC(f, g) (function)

Returns: A permutation.
Returns the permutation on the image set of f induced by f ^ -1 * g when the transformations

f and g have equal kernel and image set.
PermLeftQuoTransformation verifies that f and g have equal kernels and image sets, and re-

turns an error if they do not. PermLeftQuoTransformationNC does no checks.

GAP - Reference Manual 875

Example
gap> f := Transformation([5, 6, 7, 1, 4, 3, 2, 7]);;

gap> g := Transformation([5, 7, 1, 6, 4, 3, 2, 1]);;

gap> PermLeftQuoTransformation(f, g);

(1,6,7)

gap> PermLeftQuoTransformation(g, f);

(1,7,6)

53.4.9 IsInjectiveListTrans

▷ IsInjectiveListTrans(list, obj) (function)

Returns: true or false.
The argument obj should be a transformation or the list of images of a transformation and list

should be a list of positive integers. IsInjectiveListTrans checks if obj is injective on list .
More precisely, if obj is a transformation, then we define f := obj and if obj is the image list of

a transformation we define f := Transformation(obj). IsInjectiveListTrans returns true
if f is injective on list and false if it is not. If list is not duplicate free, then false is returned.

Example
gap> f := Transformation([2, 6, 7, 2, 6, 9, 9, 1, 1, 5]);;

gap> IsInjectiveListTrans([1, 5], f);

true

gap> IsInjectiveListTrans([5, 1], f);

true

gap> IsInjectiveListTrans([5, 1, 5, 1, 1,], f);

false

gap> IsInjectiveListTrans([5, 1, 2, 3], [1, 2, 3, 4, 5]);

true

53.4.10 ComponentTransformationInt

▷ ComponentTransformationInt(f, n) (operation)

Returns: A list of positive integers.
If f is a transformation and n is a positive integer, then ComponentTransformationInt returns

those elements i such that n ^ f ^ j = i for some positive integer j, i.e. the elements of the
component of f containing n that can be obtained by applying powers of f to n .

Example
gap> f := Transformation([6, 2, 8, 4, 7, 5, 8, 3, 5, 8]);;

gap> ComponentTransformationInt(f, 1);

[1, 6, 5, 7, 8, 3]

gap> ComponentTransformationInt(f, 12);

[12]

gap> ComponentTransformationInt(f, 5);

[5, 7, 8, 3]

53.4.11 PreImagesOfTransformation

▷ PreImagesOfTransformation(f, n) (operation)

Returns: A set of positive integers.

GAP - Reference Manual 876

Returns the preimages of the positive integer n under the transformation f , i.e. the positive integers
i such that i ^ f = n.

Example
gap> f := Transformation([2, 6, 7, 2, 6, 9, 9, 1, 1, 5]);;

gap> PreImagesOfTransformation(f, 1);

[8, 9]

gap> PreImagesOfTransformation(f, 3);

[]

gap> PreImagesOfTransformation(f, 100);

[100]

53.5 Attributes for transformations

In this section we describe the functions available in GAP for finding various properties and attributes
of transformations.

53.5.1 DegreeOfTransformation

▷ DegreeOfTransformation(f) (function)

▷ DegreeOfTransformationCollection(coll) (attribute)

Returns: A positive integer.
The degree of a transformation f is the largest value such that n ^ f <> n or i ^ f = n for

some i <> n. Equivalently, the degree of a transformation is the least value n such that [n + 1, n

+ 2, ...] is fixed pointwise by f .
The degree of a collection of transformations coll is the maximum degree of any transformation

in coll .
Example

gap> DegreeOfTransformation(IdentityTransformation);

0

gap> DegreeOfTransformationCollection(

> [Transformation([1, 3, 4, 1]),

> Transformation([3, 1, 1, 3, 4]),

> Transformation([2, 4, 1, 2])]);

5

53.5.2 ImageListOfTransformation

▷ ImageListOfTransformation(f[, n]) (operation)

▷ ListTransformation(f[, n]) (operation)

Returns: The list of images of a transformation.
Returns the list of images of [1 .. n] under the transformation f , which is [1 ^ f .. n

^ f]. If the optional second argument n is not present, then the degree of f is used by default.
This is the analogue for transformations of ListPerm (42.5.1) for permutations.

Example
gap> f := Transformation([2 ,3, 4, 2, 4]);;

gap> ImageListOfTransformation(f);

[2, 3, 4, 2, 4]

gap> ImageListOfTransformation(f, 10);

[2, 3, 4, 2, 4, 6, 7, 8, 9, 10]

GAP - Reference Manual 877

53.5.3 ImageSetOfTransformation

▷ ImageSetOfTransformation(f[, n]) (attribute)

Returns: The set of images of the transformation.
Returns the set of points in the list of images of [1 .. n] under f , i.e. the sorted list of

images with duplicates removed. If the optional second argument n is not given, then the degree of f
is used.

Example
gap> f := Transformation([5, 6, 7, 1, 4, 3, 2, 7]);;

gap> ImageSetOfTransformation(f);

[1, 2, 3, 4, 5, 6, 7]

gap> ImageSetOfTransformation(f, 10);

[1, 2, 3, 4, 5, 6, 7, 9, 10]

53.5.4 RankOfTransformation (for a transformation and a positive integer)

▷ RankOfTransformation(f[, n]) (attribute)

▷ RankOfTransformation(f[, list]) (attribute)

Returns: The rank of a transformation.
When the arguments are a transformation f and a positive integer n , RankOfTransformation

returns the size of the set of images of the transformation f in the range [1 .. n]. If the optional
second argument n is not specified, then the degree of f is used.

When the arguments are a transformation f and a list list of positive integers, this function
returns the size of the set of images of the transformation f on list .

Example
gap> f := Transformation([8, 5, 8, 2, 2, 8, 4, 7, 3, 1]);;

gap> ImageSetOfTransformation(f);

[1, 2, 3, 4, 5, 7, 8]

gap> RankOfTransformation(f);

7

gap> RankOfTransformation(f, 100);

97

gap> RankOfTransformation(f, [2, 5, 8]);

3

53.5.5 MovedPoints (for a transformation)

▷ MovedPoints(f) (attribute)

▷ MovedPoints(coll) (attribute)

Returns: A set of positive integers.
When the argument is a transformation, MovedPoints returns the set of positive integers i such

that i ^ f <> i.
MovedPoints returns the set of points moved by some element of the collection of transformations

coll .
Example

gap> f := Transformation([6, 10, 1, 4, 6, 5, 1, 2, 3, 3]);;

gap> MovedPoints(f);

[1, 2, 3, 5, 6, 7, 8, 9, 10]

gap> f := IdentityTransformation;

GAP - Reference Manual 878

IdentityTransformation

gap> MovedPoints(f);

[]

53.5.6 NrMovedPoints (for a transformation)

▷ NrMovedPoints(f) (attribute)

▷ NrMovedPoints(coll) (attribute)

Returns: A positive integer.
When the argument is a transformation,NrMovedPoints returns the number of positive integers i

such that i ^ f <> i.
MovedPoints returns the number of points which are moved by at least one element of the collec-

tion of transformations coll .
Example

gap> f := Transformation([7, 1, 4, 3, 2, 7, 7, 6, 6, 5]);;

gap> NrMovedPoints(f);

9

gap> NrMovedPoints(IdentityTransformation);

0

53.5.7 SmallestMovedPoint (for a transformation)

▷ SmallestMovedPoint(f) (attribute)

▷ SmallestMovedPoint(coll) (method)

Returns: A positive integer or infinity.
SmallestMovedPoint returns the smallest positive integer i such that i ^ f <> i if such an i

exists. If f is the identity transformation, then infinity is returned.
If the argument is a collection of transformations coll , then the smallest point which is moved

by at least one element of coll is returned, if such a point exists. If coll only contains identity
transformations, then SmallestMovedPoint returns infinity.

Example
gap> S := FullTransformationSemigroup(5);

<full transformation monoid of degree 5>

gap> SmallestMovedPoint(S);

1

gap> S := Semigroup(IdentityTransformation);

<trivial transformation group of degree 0 with 1 generator>

gap> SmallestMovedPoint(S);

infinity

gap> f := Transformation([1, 2, 3, 6, 6, 6]);;

gap> SmallestMovedPoint(f);

4

53.5.8 LargestMovedPoint (for a transformation)

▷ LargestMovedPoint(f) (attribute)

▷ LargestMovedPoint(coll) (method)

Returns: A positive integer.

GAP - Reference Manual 879

LargestMovedPoint returns the largest positive integers i such that i ^ f <> i if such an i

exists. If f is the identity transformation, then 0 is returned.
If the argument is a collection of transformations coll , then the largest point which is moved

by at least one element of coll is returned, if such a point exists. If coll only contains identity
transformations, then LargestMovedPoint returns 0.

Example
gap> S := FullTransformationSemigroup(5);

<full transformation monoid of degree 5>

gap> LargestMovedPoint(S);

5

gap> S := Semigroup(IdentityTransformation);

<trivial transformation group of degree 0 with 1 generator>

gap> LargestMovedPoint(S);

0

gap> f := Transformation([1, 2, 3, 6, 6, 6]);;

gap> LargestMovedPoint(f);

5

53.5.9 SmallestImageOfMovedPoint (for a transformation)

▷ SmallestImageOfMovedPoint(f) (attribute)

▷ SmallestImageOfMovedPoint(coll) (method)

Returns: A positive integer or infinity.
SmallestImageOfMovedPoint returns the smallest positive integer i ^ f such that i ^ f <>

i if such an i exists. If f is the identity transformation, then infinity is returned.
If the argument is a collection of transformations coll , then the smallest integer which is the

image a point moved by at least one element of coll is returned, if such a point exists. If coll only
contains identity transformations, then SmallestImageOfMovedPoint returns infinity.

Example
gap> S := FullTransformationSemigroup(5);

<full transformation monoid of degree 5>

gap> SmallestImageOfMovedPoint(S);

1

gap> S := Semigroup(IdentityTransformation);

<trivial transformation group of degree 0 with 1 generator>

gap> SmallestImageOfMovedPoint(S);

infinity

gap> f := Transformation([1, 2, 3, 6, 6, 6]);;

gap> SmallestImageOfMovedPoint(f);

6

53.5.10 LargestImageOfMovedPoint (for a transformation)

▷ LargestImageOfMovedPoint(f) (attribute)

▷ LargestImageOfMovedPoint(coll) (method)

Returns: A positive integer.
LargestImageOfMovedPoint returns the largest positive integer i ^ f such that i ^ f <> i

if such an i exists. If f is the identity transformation, then 0 is returned.

GAP - Reference Manual 880

If the argument is a collection of transformations coll , then the largest integer which is the image
a point moved by at least one element of coll is returned, if such a point exists. If coll only contains
identity transformations, then LargestImageOfMovedPoint returns 0.

Example
gap> S := FullTransformationSemigroup(5);

<full transformation monoid of degree 5>

gap> LargestImageOfMovedPoint(S);

5

gap> S := Semigroup(IdentityTransformation);;

gap> LargestImageOfMovedPoint(S);

0

gap> f := Transformation([1, 2, 3, 6, 6, 6]);;

gap> LargestImageOfMovedPoint(f);

6

53.5.11 FlatKernelOfTransformation

▷ FlatKernelOfTransformation(f[, n]) (attribute)

Returns: The flat kernel of a transformation.
If the kernel classes of the transformation f on [1 .. n] are K1, . . . ,Kr, then

FlatKernelOfTransformation returns a list L such that L[i] = j for all i in K j. For a given
transformation and positive integer n , there is a unique such list.

If the optional second argument n is not present, then the degree of f is used by default.
Example

gap> f := Transformation([10, 3, 7, 10, 1, 5, 9, 2, 6, 10]);;

gap> FlatKernelOfTransformation(f);

[1, 2, 3, 1, 4, 5, 6, 7, 8, 1]

53.5.12 KernelOfTransformation

▷ KernelOfTransformation(f[, n, bool]) (attribute)

Returns: The kernel of a transformation.
When the arguments are a transformation f , a positive integer n , and true,

KernelOfTransformation returns the kernel of the transformation f on [1 .. n] as a
set of sets of positive integers. If the argument bool is false, then only the non-singleton classes
are returned.

The second and third arguments are optional, the default values are the degree of f and true.
Example

gap> f := Transformation([2, 6, 7, 2, 6, 9, 9, 1, 11, 1, 12, 5]);;

gap> KernelOfTransformation(f);

[[1, 4], [2, 5], [3], [6, 7], [8, 10], [9], [11],

[12]]

gap> KernelOfTransformation(f, 5);

[[1, 4], [2, 5], [3]]

gap> KernelOfTransformation(f, 5, false);

[[1, 4], [2, 5]]

gap> KernelOfTransformation(f, 15);

[[1, 4], [2, 5], [3], [6, 7], [8, 10], [9], [11],

[12], [13], [14], [15]]

GAP - Reference Manual 881

gap> KernelOfTransformation(f, false);

[[1, 4], [2, 5], [6, 7], [8, 10]]

53.5.13 InverseOfTransformation

▷ InverseOfTransformation(f) (function)

Returns: A transformation.
InverseOfTransformation returns a semigroup inverse of the transformation f in the full trans-

formation semigroup. An inverse of f is any transformation g such that f * g * f = f and g * f

* g = g. Every transformation has at least one inverse.
Example

gap> f := Transformation([2, 6, 7, 2, 6, 9, 9, 1, 1, 5]);;

gap> g := InverseOfTransformation(f);

Transformation([8, 1, 1, 1, 10, 2, 3, 1, 6, 1])

gap> f * g * f;

Transformation([2, 6, 7, 2, 6, 9, 9, 1, 1, 5])

gap> g * f * g;

Transformation([8, 1, 1, 1, 10, 2, 3, 1, 6, 1])

53.5.14 Inverse (for a transformation)

▷ Inverse(f) (attribute)

Returns: A transformation.
If the transformation f is a bijection, then Inverse or f ^ -1 returns the inverse of f . If f is not

a bijection, then fail is returned.
Example

gap> Transformation([3, 8, 12, 1, 11, 9, 9, 4, 10, 5, 10, 6]) ^ -1;

fail

gap> Transformation([2, 3, 1]) ^ -1;

Transformation([3, 1, 2])

53.5.15 IndexPeriodOfTransformation

▷ IndexPeriodOfTransformation(f) (function)

Returns: A pair of positive integers.
Returns the least positive integers m and r such that f ^ (m + r) = f ^ m, which are known as

the index and period of the transformation f .
Example

gap> f := Transformation([3, 4, 4, 6, 1, 3, 3, 7, 1]);;

gap> IndexPeriodOfTransformation(f);

[2, 3]

gap> f ^ 2 = f ^ 5;

true

gap> IndexPeriodOfTransformation(IdentityTransformation);

[1, 1]

gap> IndexPeriodOfTransformation(Transformation([1, 2, 1]));

[1, 1]

gap> IndexPeriodOfTransformation(Transformation([1, 2, 3]));

[1, 1]

GAP - Reference Manual 882

gap> IndexPeriodOfTransformation(Transformation([1, 3, 2]));

[1, 2]

53.5.16 SmallestIdempotentPower (for a transformation)

▷ SmallestIdempotentPower(f) (attribute)

Returns: A positive integer.
This function returns the least positive integer n such that the transformation f ^ n is an idempo-

tent. The smallest idempotent power of f is the least multiple of the period of f that is greater than or
equal to the index of f ; see IndexPeriodOfTransformation (53.5.15).

Example
gap> f := Transformation([6, 7, 4, 1, 7, 4, 6, 1, 3, 4]);;

gap> SmallestIdempotentPower(f);

3

gap> f := Transformation([6, 6, 6, 2, 7, 1, 5, 3, 10, 6]);;

gap> SmallestIdempotentPower(f);

2

53.5.17 ComponentsOfTransformation

▷ ComponentsOfTransformation(f) (attribute)

Returns: A list of lists of positive integers.
ComponentsOfTransformation returns a list of the components of the transformation f . Each

component is a subset of [1 .. DegreeOfTransformation(f)], and the union of the com-
ponents is [1 .. DegreeOfTransformation(f)].

Example
gap> f := Transformation([6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12]);

Transformation([6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12])

gap> ComponentsOfTransformation(f);

[[1, 6, 4, 9], [2, 12, 3, 11, 5, 7, 10], [8]]

gap> f := AsTransformation((1,8,2,4,11,5,10)(3,7)(9,12));

Transformation([8, 4, 7, 11, 10, 6, 3, 2, 12, 1, 5, 9])

gap> ComponentsOfTransformation(f);

[[1, 8, 2, 4, 11, 5, 10], [3, 7], [6], [9, 12]]

53.5.18 NrComponentsOfTransformation

▷ NrComponentsOfTransformation(f) (attribute)

Returns: A positive integer.
NrComponentsOfTransformation returns the number of components of the transformation f on

the range [1 .. DegreeOfTransformation(f)].
Example

gap> f := Transformation([6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12]);

Transformation([6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12])

gap> NrComponentsOfTransformation(f);

3

gap> f := AsTransformation((1,8,2,4,11,5,10)(3,7)(9,12));

Transformation([8, 4, 7, 11, 10, 6, 3, 2, 12, 1, 5, 9])

gap> NrComponentsOfTransformation(f);

4

GAP - Reference Manual 883

53.5.19 ComponentRepsOfTransformation

▷ ComponentRepsOfTransformation(f) (attribute)

Returns: A list of lists of positive integers.
ComponentRepsOfTransformation returns the representatives, in the following sense, of the

components of the transformation f . For every i in [1 .. DegreeOfTransformation(f)]

there exists a representative j and a positive integer k such that i ^ (f ^ k) = j. The represen-
tatives returned by ComponentRepsOfTransformation are partitioned according to the component
they belong to. ComponentRepsOfTransformation returns the least number of representatives.

Example
gap> f := Transformation([6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12]);

Transformation([6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12])

gap> ComponentRepsOfTransformation(f);

[[3, 10], [9], [8]]

gap> f := AsTransformation((1,8,2,4,11,5,10)(3,7)(9,12));

Transformation([8, 4, 7, 11, 10, 6, 3, 2, 12, 1, 5, 9])

gap> ComponentRepsOfTransformation(f);

[[1], [3], [6], [9]]

53.5.20 CyclesOfTransformation

▷ CyclesOfTransformation(f[, list]) (attribute)

Returns: A list of lists of positive integers.
When the arguments of this function are a transformation f and a list list , it returns a list of the

cycles of the components of f containing any element of list .
If the optional second argument is not present, then the range [1 ..

DegreeOfTransformation(f)] is used as the default value for list .
Example

gap> f := Transformation([6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12]);

Transformation([6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12])

gap> CyclesOfTransformation(f);

[[6], [12], [8]]

gap> CyclesOfTransformation(f, [1, 2, 4]);

[[6], [12]]

gap> CyclesOfTransformation(f, [1 .. 17]);

[[6], [12], [8], [13], [14], [15], [16], [17]]

53.5.21 CycleTransformationInt

▷ CycleTransformationInt(f, n) (operation)

Returns: A list of positive integers.
If f is a transformation and n is a positive integer, then CycleTransformationInt returns the

cycle of the component of f containing n .
Example

gap> f := Transformation([6, 2, 8, 4, 7, 5, 8, 3, 5, 8]);;

gap> CycleTransformationInt(f, 1);

[8, 3]

gap> CycleTransformationInt(f, 12);

[12]

GAP - Reference Manual 884

gap> CycleTransformationInt(f, 5);

[8, 3]

53.5.22 LeftOne (for a transformation)

▷ LeftOne(f) (attribute)

▷ RightOne(f) (attribute)

Returns: A transformation.
LeftOne returns an idempotent transformation e such that the kernel (with respect to the degree

of f) of e equals the kernel of the transformation f and e * f = f.
RightOne returns an idempotent transformation e such that the image set (with respect to the

degree of f) of e equals the image set of f and f * e = f.
Example

gap> f := Transformation([11, 10, 2, 11, 4, 4, 7, 6, 9, 10, 1, 11]);;

gap> e := RightOne(f);

Transformation([1, 2, 2, 4, 4, 6, 7, 7, 9, 10, 11, 11])

gap> IsIdempotent(e);

true

gap> f * e = f;

true

gap> e := LeftOne(f);

Transformation([1, 2, 3, 1, 5, 5, 7, 8, 9, 2, 11, 1])

gap> e * f = f;

true

gap> IsIdempotent(e);

true

53.5.23 TrimTransformation

▷ TrimTransformation(f[, n]) (operation)

Returns: Nothing.
It can happen that the internal representation of a transformation uses more memory than nec-

essary. For example, this can happen when composing transformations where it is possible that the
resulting transformation f belongs to IsTrans4Rep and stores its images as 32-bit integers, while
none of its moved points exceeds 65536. The purpose of TrimTransformation is to change the in-
ternal representation of such an f to remove the trailing fixed points in the internal representation of
f .

If the optional second argument n is provided, then the internal representation of f is reduced to
the images of the first n positive integers. Please note that it must be the case that i ^ f <= n for all
i in the range [1 .. n] otherwise the resulting object will not define a transformation.

If the optional second argument is not included, then the degree of f is used by default.
The transformation f is changed in-place, and nothing is returned by this function.

Example
gap> f := Transformation([1 .. 2 ^ 16], x -> x + 1);

<transformation on 65537 pts with rank 65536>

gap> g := Transformation([1 .. 2 ^ 16 + 1],

> function(x)

> if x = 1 or x = 65537 then

> return x;

GAP - Reference Manual 885

> else

> return x - 1;

> fi;

> end);

<transformation on 65536 pts with rank 65535>

gap> h := g * f;

Transformation([2, 2])

gap> DegreeOfTransformation(h); IsTrans4Rep(h); MemoryUsage(h);

65537

true

262188

gap> TrimTransformation(h); h;

Transformation([2, 2])

gap> DegreeOfTransformation(h); IsTrans4Rep(h); MemoryUsage(h);

2

false

44

53.6 Displaying transformations

It is possible to change the way that GAP displays transformations using the user
preferences TransformationDisplayLimit and NotationForTransformations; see Section
UserPreference (3.2.3) for more information about user preferences.

If f is a transformation where the degree n of f exceeds the value of the user preference
TransformationDisplayLimit, then f is displayed as:

Example
<transformation on n pts with rank r>

where r is the rank of f relative to n. The idea is to abbreviate the display of transformations defined
on many points. The default value for the TransformationDisplayLimit is 100.

If the degree of f does not exceed the value of TransformationDisplayLimit, then how f is
displayed depends on the value of the user preference NotationForTransformations.

There are two possible values for NotationForTransformations:

input
With this option a transformation f is displayed in as: Transformation(

ImageListOfTransformation(f, n)) where n is the degree of f . The only ex-
ception is the identity transformation, which is displayed as: IdentityTransformation.

fr With this option a transformation f is displayed in as: <transformation:

ImageListOfTransformation(f, n)> where n is the largest moved point of f .
The only exception is the identity transformation, which is displayed as: <identity

transformation>.
Example

gap> SetUserPreference("TransformationDisplayLimit", 12);

gap> f := Transformation([3, 8, 12, 1, 11, 9, 9, 4, 10, 5, 10, 6]);

<transformation on 12 pts with rank 10>

gap> SetUserPreference("TransformationDisplayLimit", 100);

gap> f;

GAP - Reference Manual 886

Transformation([3, 8, 12, 1, 11, 9, 9, 4, 10, 5, 10, 6])

gap> SetUserPreference("NotationForTransformations", "fr");

gap> f;

<transformation: 3,8,12,1,11,9,9,4,10,5,10,6>

53.7 Semigroups of transformations

As mentioned at the start of the chapter, every semigroup is isomorphic to a semigroup of transforma-
tions, and in this section we describe the functions in GAP specific to transformation semigroups. For
more information about semigroups in general see Chapter 51.

The Semigroups package contains many additional functions and methods for computing
with semigroups of transformations. In particular, Semigroups contains more efficient meth-
ods than those available in the GAP library (and in many cases more efficient than any other
software) for creating semigroups of transformations, calculating their Green’s classes, size, ele-
ments, group of units, minimal ideal, small generating sets, testing membership, finding the in-
verses of a regular element, factorizing elements over the generators, and more. Since a transfor-
mation semigroup is also a transformation collection, there are special methods for MovedPoints
(53.5.5), NrMovedPoints (53.5.6), LargestMovedPoint (53.5.8), SmallestMovedPoint (53.5.7),
LargestImageOfMovedPoint (53.5.10), and SmallestImageOfMovedPoint (53.5.9), when applied
to a transformation semigroup.

53.7.1 IsTransformationSemigroup

▷ IsTransformationSemigroup(obj) (Synonym)

▷ IsTransformationMonoid(obj) (Synonym)

Returns: true or false.
A transformation semigroup is simply a semigroup consisting of transformations. An ob-

ject obj is a transformation semigroup in GAP if it satisfies IsSemigroup (51.1.1) and
IsTransformationCollection (53.1.2).

A transformation monoid is a monoid consisting of transformations. An object obj is a trans-
formation monoid in GAP if it satisfies IsMonoid (51.2.1) and IsTransformationCollection

(53.1.2).
Note that it is possible for a transformation semigroup to have a multiplicative neutral element (i.e.

an identity element) but not to satisfy IsTransformationMonoid. For example,
Example

gap> f := Transformation([2, 6, 7, 2, 6, 9, 9, 1, 1, 5]);;

gap> S := Semigroup(f, One(f));

<commutative transformation monoid of degree 10 with 1 generator>

gap> IsMonoid(S);

true

gap> IsTransformationMonoid(S);

true

gap> S := Semigroup(

> Transformation([3, 8, 1, 4, 5, 6, 7, 1, 10, 10]),

> Transformation([1, 2, 3, 4, 5, 6, 7, 8, 10, 10]));

<transformation semigroup of degree 10 with 2 generators>

gap> One(S);

fail

GAP - Reference Manual 887

gap> MultiplicativeNeutralElement(S);

Transformation([1, 2, 3, 4, 5, 6, 7, 8, 10, 10])

gap> IsMonoid(S);

false

In this example S cannot be converted into a monoid using AsMonoid (51.2.5) since the One (31.10.2)
of any element in S differs from the multiplicative neutral element.

For more details see IsMagmaWithOne (35.1.2).

53.7.2 DegreeOfTransformationSemigroup

▷ DegreeOfTransformationSemigroup(S) (attribute)

Returns: A non-negative integer.
The degree of a transformation semigroup S is just the maximum of the degrees of the elements

of S .
Example

gap> S := Semigroup(

> Transformation([3, 8, 1, 4, 5, 6, 7, 1, 10, 10, 11]),

> Transformation([1, 2, 3, 4, 5, 6, 7, 8, 1, 1, 11]));

<transformation semigroup of degree 10 with 2 generators>

gap> DegreeOfTransformationSemigroup(S);

10

53.7.3 FullTransformationSemigroup

▷ FullTransformationSemigroup(n) (function)

▷ FullTransformationMonoid(n) (function)

Returns: The full transformation semigroup of degree n .
If n is a positive integer, then FullTransformationSemigroup returns the monoid consisting of

all transformations with degree at most n , called the full transformation semigroup.
The full transformation semigroup is regular, has n ^ n elements, and is generated by any set

containing transformations that generate the symmetric group on n points and any transformation of
rank n - 1.

FulTransformationMonoid is a synonym for FullTransformationSemigroup.
Example

gap> FullTransformationSemigroup(1234);

<full transformation monoid of degree 1234>

53.7.4 IsFullTransformationSemigroup

▷ IsFullTransformationSemigroup(S) (property)

▷ IsFullTransformationMonoid(S) (property)

Returns: true or false.
If the transformation semigroup S of degree n contains every transformation of degree at most n,

then IsFullTransformationSemigroup returns true and otherwise it returns false.
IsFullTransformationMonoid is a synonym of IsFullTransformationSemigroup. It is

common in the literature for the full transformation monoid to be referred to as the full transformation
semigroup.

GAP - Reference Manual 888

Example
gap> S := Semigroup(AsTransformation((1,3,4,2), 5),

> AsTransformation((1,3,5), 5),

> Transformation([1, 1, 2, 3, 4]));

<transformation semigroup of degree 5 with 3 generators>

gap> IsFullTransformationSemigroup(S);

true

gap> S;

<full transformation monoid of degree 5>

gap> IsFullTransformationMonoid(S);

true

gap> S := FullTransformationSemigroup(5);;

gap> IsFullTransformationSemigroup(S);

true

53.7.5 IsomorphismTransformationSemigroup

▷ IsomorphismTransformationSemigroup(S) (attribute)

▷ IsomorphismTransformationMonoid(S) (attribute)

Returns: An isomorphism to a transformation semigroup or monoid.
Returns an isomorphism from the finite semigroup S to a transformation semigroup. For most

types of objects in GAP the degree of this transformation semigroup will be equal to the size of S plus
1.

Let S ^ 1 denote the monoid obtained from S by adjoining an identity element. Then S acts faith-
fully on S ^ 1 by right multiplication, i.e. every element of S describes a transformation on 1, ..

, |S| + 1. The isomorphism from S to the transformation semigroup described in this way is called
the right regular representation of S . In most cases, IsomorphismTransformationSemigroup will
return the right regular representation of S .

As exceptions, if S is a permutation group or a partial perm semigroup, then the elements of S act
naturally and faithfully by transformations on the values from 1 to the largest moved point of S .

If S is a finitely presented semigroup, then the Todd-Coxeter approach will be attempted.
IsomorphismTransformationMonoid differs from IsomorphismTransformationSemigroup

only in that its range is a transformation monoid, and not only a semigroup, when the semigroup S is
a monoid.

Example
gap> S := Semigroup([[[Z(3), 0*Z(3)], [0*Z(3), Z(3) ^ 0]],

> [[Z(3), Z(3)^0], [Z(3), 0*Z(3)]],

> [[Z(3)^0, 0*Z(3)], [0*Z(3), 0*Z(3)]]]);;

gap> Size(S);

81

gap> IsomorphismTransformationSemigroup(S);;

gap> S := SymmetricInverseSemigroup(4);

<symmetric inverse monoid of degree 4>

gap> IsomorphismTransformationMonoid(S);

MappingByFunction(<symmetric inverse monoid of degree 4>,

<transformation monoid of degree 5 with 4 generators>

, function(x) ... end, <Operation "AsPartialPerm">)

gap> G := Group((1,2,3));

Group([(1,2,3)])

gap> IsomorphismTransformationMonoid(G);

GAP - Reference Manual 889

MappingByFunction(Group([(1,2,3)]), <commutative transformation

monoid of degree 3 with 1 generator>

, function(x) ... end, function(x) ... end)

53.7.6 AntiIsomorphismTransformationSemigroup

▷ AntiIsomorphismTransformationSemigroup(S) (attribute)

Returns: An anti-isomorphism.
If S is a semigroup, then AntiIsomorphismTransformationSemigroup returns an

anti-isomorphism from S to a transformation semigroup. At present, the degree of the resulting
transformation semigroup equals the size of S plus 1, and, consequently, this function is of limited
use.

Example
gap> S := Semigroup(Transformation([5, 5, 1, 1, 3]),

> Transformation([2, 4, 1, 5, 5]));

<transformation semigroup of degree 5 with 2 generators>

gap> Size(S);

172

gap> AntiIsomorphismTransformationSemigroup(S);

MappingByFunction(<transformation semigroup of size 172, degree 5

with 2 generators>, <transformation semigroup of degree 173 with 2

generators>, function(x) ... end, function(x) ... end)

Chapter 54

Partial permutations

This chapter describes the functions in GAP for partial permutations.
A partial permutation in GAP is simply an injective function from any finite set of positive in-

tegers to any other finite set of positive integers. The largest point on which a partial permutation
can be defined, and the largest value that the image of such a point can have, are defined by certain
architecture dependent limits.

Every inverse semigroup is isomorphic to an inverse semigroup of partial permutations and, as
such, partial permutations are to inverse semigroup theory what permutations are to group theory and
transformations are to semigroup theory. In this way, partial permutations are the elements of inverse
partial permutation semigroups.

A partial permutations in GAP acts on a finite set of positive integers on the right. The image of
a point i under a partial permutation f is expressed as i^f in GAP. This action is also implemented
by the function OnPoints (41.2.1). The preimage of a point i under the partial permutation f can be
computed using i/f without constructing the inverse of f. Partial permutations in GAP are created
using the operations described in Section 54.2. Partial permutations are, by default, displayed in
component notation, which is described in Section 54.6.

The fundamental attributes of a partial permutation are:

Domain
The domain of a partial permutation is just the set of positive integers where it is defined; see
DomainOfPartialPerm (54.3.4). We will denote the domain of a partial permutation f by
dom(f).

Degree
The degree of a partial permutation f is just the largest positive integer where f is de-
fined. In other words, the degree of f is the largest element in the domain of f; see
DegreeOfPartialPerm (54.3.1).

Image list
The image list of a partial permutation f is the list [i_1^f, i_2^f, .. , i_n^f] where the
domain of f is [i_1, i_2, .., i_n] see ImageListOfPartialPerm (54.3.6). For example,
the partial perm sending 1 to 5 and 2 to 4 has image list [5, 4].

Image set
The image set of a partial permutation f is just the set of points in the image list (i.e. the image

890

GAP - Reference Manual 891

list after it has been sorted into increasing order); see ImageSetOfPartialPerm (54.3.7). We
will denote the image set of a partial permutation f by im(f).

Codegree
The codegree of a partial permutation f is just the largest positive integer of the form i^f for
any i in the domain of f. In other words, the codegree of f is the largest element in the image
of f; see CodegreeOfPartialPerm (54.3.2).

Rank
The rank of a partial permutation f is the size of its domain, or equivalently the size of its image
set or image list; see RankOfPartialPerm (54.3.3).

A functional digraph is a directed graph where every vertex has out-degree 1. A partial permutation f

can be thought of as a functional digraph with vertices [1..DegreeOfPartialPerm(f)] and edges
from i to i^f for every i. A component of a partial permutation is defined as a component of the
corresponding functional digraph. More specifically, i and j are in the same component if and only if
there are i = v0,v1, . . . ,vn = j such that either vk+1 = v f

k or vk = v f
k+1 for all k.

If S is a semigroup and s is an element of S, then an element t in S is a semigroup inverse for s
if s*t*s=s and t*s*t=t; see, for example, InverseOfTransformation (53.5.13). A semigroup in
which every element has a unique semigroup inverse is called an inverse semigroup.

Every partial permutation belongs to a symmetric inverse monoid; see
SymmetricInverseSemigroup (54.7.3). Inverse semigroups of partial permutations are hence
inverse subsemigroups of the symmetric inverse monoids.

The inverse f^-1 of a partial permutation f is simply the partial permutation that maps i^f to i

for all i in the image of f. It follows that the domain of f^-1 equals the image of f and that the image
of f^-1 equals the domain of f. The inverse f^-1 is the unique partial permutation with the property
that f*f^-1*f=f and f^-1*f*f^-1=f^-1. In other words, f^-1 is the unique semigroup inverse of
f in the symmetric inverse monoid.

If f and g are partial permutations, then the domain and image of the product are:

dom(f g) = (im(f)∩dom(g)) f−1 and im(f g) = (im(f)∩dom(g))g

A partial permutation is an idempotent if and only if it is the identity function on its domain. The prod-
ucts f*f^-1 and f^-1*f are just the identity functions on the domain and image of f, respectively. It
follows that f*f^-1 is a left identity for f and f^-1*f is a right identity. These products will be re-
ferred to here as the left one and right one of the partial permutation f; see LeftOne (54.3.21). The one
of a partial permutation is just the identity on the union of its domain and its image, and the zero of a
partial permutation is just the empty partial permutation; see One (54.3.22) and MultiplicativeZero
(54.3.23).

If S is an arbitrary inverse semigroup, the natural partial order on S is defined as follows: for
elements x and y of S we say x≤y if there exists an idempotent element e in S such that x=ey. In
the context of the symmetric inverse monoid, a partial permutation f is less than or equal to a partial
permutation g in the natural partial order if and only if f is a restriction of g. The natural partial
order is a meet semilattice, in other words, every pair of elements has a greatest lower bound; see
MeetOfPartialPerms (54.2.5).

Note that unlike permutations, partial permutations do not fix unspecified points but are simply
undefined on such points; see Chapter 42. Similar to permutations, and unlike transformations, it is
possible to multiply any two partial permutations in GAP.

GAP - Reference Manual 892

Internally, GAP stores a partial permutation f as a list consisting of the codegree of f and the
images i^f of the points i that are less than or equal to the degree of f; the value 0 is stored where i^f
is undefined. The domain and image set of f are also stored after either of these values is computed.
When the codegree of a partial permutation f is less than 65536, the codegree and images i^f are
stored as 16-bit integers, the domain and image set are subobjects of f which are immutable plain
lists of GAP integers. When the codegree of f is greater than or equal to 65536, the codegree and
images are stored as 32-bit integers; the domain and image set are stored in the same way as before. A
partial permutation belongs to IsPPerm2Rep if it is stored using 16-bit integers and to IsPPerm4Rep

otherwise.
In the names of the GAP functions that deal with partial permutations, the word “Permutation”

is usually abbreviated to “Perm”, to save typing. For example, the category test function for partial
permutations is IsPartialPerm (54.1.1).

54.1 The family and categories of partial permutations

54.1.1 IsPartialPerm

▷ IsPartialPerm(obj) (Category)

Returns: true or false.
Every partial permutation in GAP belongs to the category IsPartialPerm. Basic operations

for partial permutations are DomainOfPartialPerm (54.3.4), ImageListOfPartialPerm (54.3.6),
ImageSetOfPartialPerm (54.3.7), RankOfPartialPerm (54.3.3), DegreeOfPartialPerm

(54.3.1), multiplication of two partial permutations is via *, and exponentiation with the first
argument a positive integer i and second argument a partial permutation f where the result is the
image i^f of the point i under f. The inverse of a partial permutation f can be obtains using f^-1.

54.1.2 IsPartialPermCollection

▷ IsPartialPermCollection(obj) (Category)

Every collection of partial permutations belongs to the category IsPartialPermCollection.
For example, a semigroup of partial permutations belongs in IsPartialPermCollection.

54.1.3 PartialPermFamily

▷ PartialPermFamily (family)

The family of all partial permutations is PartialPermFamily

54.2 Creating partial permutations

There are several ways of creating partial permutations in GAP, which are described in this section.

54.2.1 PartialPerm (for a domain and image)

▷ PartialPerm(dom, img) (function)

▷ PartialPerm(list) (function)

GAP - Reference Manual 893

Returns: A partial permutation.
Partial permutations can be created in two ways: by giving the domain and the image, or the dense

image list.

Domain and image
The partial permutation defined by a domain dom and image img , where dom is a set of positive
integers and img is a duplicate free list of positive integers, maps dom[i] to img[i]. For
example, the partial permutation mapping 1 and 5 to 20 and 2 can be created using:

Example
PartialPerm([1,5],[20,2]);

In this setting, PartialPerm is the analogue in the context of partial permutations of
MappingPermListList (42.5.3).

Dense image list
The partial permutation defined by a dense image list list , maps the positive integer i to
list[i] if list[i]<>0 and is undefined at i if list[i]=0. For example, the partial permu-
tation mapping 1 and 5 to 20 and 2 can be created using:

Example
PartialPerm([20,0,0,0,2]);

In this setting, PartialPerm is the analogue in the context of partial permutations of PermList
(42.5.2).

Regardless of which of these two methods are used to create a partial permutation in GAP the internal
representation is the same.

If the largest point in the domain is larger than the rank of the partial permutation, then using the
dense image list to define the partial permutation will require less typing; otherwise using the domain
and the image will require less typing. For example, the partial permutation mapping 10000 to 1 can
be defined using:

Example
PartialPerm([10000], [1]);

but using the dense image list would require a list with 9999 entries equal to 0 and the final entry equal
to 1. On the other hand, the identity on [1,2,3,4,6] can be defined using:

Example
PartialPerm([1,2,3,4,0,6]);

Please note that a partial permutation in GAP is never a permutation nor is a permutation ever
a partial permutation. For example, the permutation (1,4,2) fixes 3 but the partial permutation
PartialPerm([4,1,0,2]); is not defined on 3.

54.2.2 PartialPermOp

▷ PartialPermOp(obj, list[, func]) (operation)

▷ PartialPermOpNC(obj, list[, func]) (operation)

Returns: A partial permutation or fail.
PartialPermOp returns the partial permutation that corresponds to the action of the object obj

on the domain or list list via the function func . If the optional third argument func is not specified,

GAP - Reference Manual 894

then the action OnPoints (41.2.1) is used by default. Note that the returned partial permutation refers
to the positions in list even if list itself consists of integers.

This function is the analogue in the context of partial permutations of Permutation (41.9.1) or
TransformationOp (53.2.5).

If obj does not map the elements of list injectively, then fail is returned.
PartialPermOpNC does not check that obj maps elements of list injectively or that a partial

permutation is defined by the action of obj on list via func . This function should be used only
with caution, in situations where it is guaranteed that the arguments have the required properties.

Example
gap> f:=Transformation([9, 10, 4, 2, 10, 5, 9, 10, 9, 6]);;

gap> PartialPermOp(f, [6 .. 8], OnPoints);

[1,4][2,5][3,6]

54.2.3 RestrictedPartialPerm

▷ RestrictedPartialPerm(f, set) (operation)

Returns: A partial permutation.
RestrictedPartialPerm returns a new partial permutation that acts on the points in the set of

positive integers set in the same way as the partial permutation f , and that is undefined on those
points that are not in set .

Example
gap> f:=PartialPerm([1, 3, 4, 7, 8, 9], [9, 4, 1, 6, 2, 8]);;

gap> RestrictedPartialPerm(f, [2, 3, 6, 10]);

[3,4]

54.2.4 JoinOfPartialPerms

▷ JoinOfPartialPerms(arg) (function)

▷ JoinOfIdempotentPartialPermsNC(arg) (function)

Returns: A partial permutation or fail.
The join of partial permutations f and g is just the join, or supremum, of f and g under the natural

partial ordering of partial permutations.
JoinOfPartialPerms returns the union of the partial permutations in its argument if this defines

a partial permutation, and fail if it is not. The argument arg can be a partial permutation collection
or a number of partial permutations.

The function JoinOfIdempotentPartialPermsNC returns the join of its argument which is as-
sumed to be a collection of idempotent partial permutations or a number of idempotent partial per-
mutations. It is not checked that the arguments are idempotents. The performance of this function is
higher than JoinOfPartialPerms when it is known a priori that the argument consists of idempo-
tents.

The union of f and g is a partial permutation if and only if f and g agree on the intersection
dom(f)∩ dom(g) of their domains and the images of dom(f)\ dom(g) and dom(g)\ dom(f) under f
and g , respectively, are disjoint.

Example
gap> f:=PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]);

[3,7][8,1,2,6,9][10,5]

gap> g:=PartialPerm([11, 12, 14, 16, 18, 19],

> [17, 20, 11, 19, 14, 12]);

GAP - Reference Manual 895

[16,19,12,20][18,14,11,17]

gap> JoinOfPartialPerms(f, g);

[3,7][8,1,2,6,9][10,5][16,19,12,20][18,14,11,17]

gap> f:=PartialPerm([1, 4, 5, 6, 7], [5, 7, 3, 1, 4]);

[6,1,5,3](4,7)

gap> g:=PartialPerm([100], [1]);

[100,1]

gap> JoinOfPartialPerms(f, g);

fail

gap> f:=PartialPerm([1, 3, 4], [3, 2, 4]);

[1,3,2](4)

gap> g:=PartialPerm([1, 2, 4], [2, 3, 4]);

[1,2,3](4)

gap> JoinOfPartialPerms(f, g);

fail

gap> f:=PartialPerm([1], [2]);

[1,2]

gap> JoinOfPartialPerms(f, f^-1);

(1,2)

54.2.5 MeetOfPartialPerms

▷ MeetOfPartialPerms(arg) (function)

Returns: A partial permutation.
The meet of partial permutations f and g is just the meet, or infimum, of f and g under the natural

partial ordering of partial permutations. In other words, the meet is the greatest partial permutation
which is a restriction of both f and g .

Note that unlike the join of partial permutations, the meet always exists.
MeetOfPartialPerms returns the meet of the partial permutations in its argument. The argument

arg can be a partial permutation collection or a number of partial permutations.
Example

gap> f:=PartialPerm([1, 2, 3, 6, 100000], [2, 6, 7, 1, 5]);

[3,7][100000,5](1,2,6)

gap> g:=PartialPerm([1, 2, 3, 4, 6], [2, 4, 6, 1, 5]);

[3,6,5](1,2,4)

gap> MeetOfPartialPerms(f, g);

[1,2]

gap> g:=PartialPerm([1, 2, 3, 5, 6, 7, 9, 10],

> [4, 10, 5, 6, 7, 1, 3, 2]);

[9,3,5,6,7,1,4](2,10)

gap> MeetOfPartialPerms(f, g);

<empty partial perm>

54.2.6 EmptyPartialPerm

▷ EmptyPartialPerm() (function)

Returns: The empty partial permutation.
The empty partial permutation is returned by this function when it is called with no arguments.

This is just short hand for PartialPerm([]);.

GAP - Reference Manual 896

Example
gap> EmptyPartialPerm();

<empty partial perm>

54.2.7 RandomPartialPerm

▷ RandomPartialPerm(n) (function)

▷ RandomPartialPerm(set) (function)

▷ RandomPartialPerm(dom, img) (function)

Returns: A random partial permutation.
In its first form, RandomPartialPerm returns a randomly chosen partial permutation where points

in the domain and image are bounded above by the positive integer n .
Example

gap> RandomPartialPerm(10);

[2,9][4,1,6,5][7,3](8)

In its second form, RandomPartialPerm returns a randomly chosen partial permutation with points
in the domain and image contained in the set of positive integers set .

Example
gap> RandomPartialPerm([1,2,3,1000]);

[2,3,1000](1)

In its third form, RandomPartialPerm creates a randomly chosen partial permutation with domain
contained in the set of positive integers dom and image contained in the set of positive integers img .
The arguments dom and img do not have to have equal length.

Note that it is not guaranteed in either of these cases that partial permutations are chosen with a
uniform distribution.

54.3 Attributes for partial permutations

In this section we describe the functions available in GAP for finding various attributes of partial
permutations.

54.3.1 DegreeOfPartialPerm

▷ DegreeOfPartialPerm(f) (function)

▷ DegreeOfPartialPermCollection(coll) (attribute)

Returns: A non-negative integer.
The degree of a partial permutation f is the largest positive integer where it is defined, i.e. the

maximum element in the domain of f .
The degree a collection of partial permutations coll is the largest degree of any partial permuta-

tion in coll .
Example

gap> f:=PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]);

[3,7][8,1,2,6,9][10,5]

gap> DegreeOfPartialPerm(f);

10

GAP - Reference Manual 897

54.3.2 CodegreeOfPartialPerm

▷ CodegreeOfPartialPerm(f) (function)

▷ CodegreeOfPartialPermCollection(coll) (attribute)

Returns: A non-negative integer.
The codegree of a partial permutation f is the largest positive integer in its image.
The codegree a collection of partial permutations coll is the largest codegree of any partial per-

mutation in coll .
Example

gap> f:=PartialPerm([1, 2, 3, 4, 5, 8, 10], [7, 1, 4, 3, 2, 6, 5]);

[8,6][10,5,2,1,7](3,4)

gap> CodegreeOfPartialPerm(f);

7

54.3.3 RankOfPartialPerm

▷ RankOfPartialPerm(f) (function)

▷ RankOfPartialPermCollection(coll) (attribute)

Returns: A non-negative integer.
The rank of a partial permutation f is the size of its domain, or equivalently the size of its image

set or image list.
The rank of a partial permutation collection coll is the size of the union of the domains of the

elements of coll , or equivalently, the total number of points on which the elements of coll act. Note
that this is value may not the same as the size of the union of the images of the elements in coll .

Example
gap> f:=PartialPerm([1, 2, 4, 6, 8, 9], [7, 10, 1, 9, 4, 2]);

[6,9,2,10][8,4,1,7]

gap> RankOfPartialPerm(f);

6

54.3.4 DomainOfPartialPerm

▷ DomainOfPartialPerm(f) (attribute)

▷ DomainOfPartialPermCollection(f) (attribute)

Returns: A set of positive integers (maybe empty).
The domain of a partial permutation f is the set of positive integers where f is defined.
The domain of a partial permutation collection coll is the union of the domains of its elements.

Example
gap> f:=PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]);

[3,7][8,1,2,6,9][10,5]

gap> DomainOfPartialPerm(f);

[1, 2, 3, 6, 8, 10]

54.3.5 ImageOfPartialPermCollection

▷ ImageOfPartialPermCollection(coll) (attribute)

Returns: A set of positive integers (maybe empty).
The image of a partial permutation collection coll is the union of the images of its elements.

GAP - Reference Manual 898

Example
gap> S := SymmetricInverseSemigroup(5);

<symmetric inverse monoid of degree 5>

gap> ImageOfPartialPermCollection(GeneratorsOfInverseSemigroup(S));

[1 .. 5]

54.3.6 ImageListOfPartialPerm

▷ ImageListOfPartialPerm(f) (attribute)

Returns: The list of images of a partial permutation.
The image list of a partial permutation f is the list of images of the elements of the domain f where

ImageListOfPartialPerm(f)[i]=DomainOfPartialPerm(f)[i]^f for any i in the range from
1 to the rank of f .

Example
gap> f:=PartialPerm([1, 2, 3, 4, 5, 8, 10], [7, 1, 4, 3, 2, 6, 5]);

[8,6][10,5,2,1,7](3,4)

gap> ImageListOfPartialPerm(f);

[7, 1, 4, 3, 2, 6, 5]

54.3.7 ImageSetOfPartialPerm

▷ ImageSetOfPartialPerm(f) (attribute)

Returns: The image set of a partial permutation.
The image set of a partial permutation f is just the set of points in the image list (i.e. the image

list after it has been sorted into increasing order).
Example

gap> f:=PartialPerm([1, 2, 3, 5, 7, 10], [10, 2, 3, 5, 7, 6]);

[1,10,6](2)(3)(5)(7)

gap> ImageSetOfPartialPerm(f);

[2, 3, 5, 6, 7, 10]

54.3.8 FixedPointsOfPartialPerm (for a partial perm)

▷ FixedPointsOfPartialPerm(f) (attribute)

▷ FixedPointsOfPartialPerm(coll) (method)

Returns: A set of positive integers.
FixedPointsOfPartialPerm returns the set of points i in the domain of the partial permutation

f such that i^f=i.
When the argument is a collection of partial permutations coll , FixedPointsOfPartialPerm

returns the set of points fixed by every element of the collection of partial permutations coll .
Example

gap> f := PartialPerm([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]);

[2,3,4][6,7,5](1)

gap> FixedPointsOfPartialPerm(f);

[1]

gap> f := PartialPerm([1 .. 10]);;

gap> FixedPointsOfPartialPerm(f);

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

GAP - Reference Manual 899

54.3.9 MovedPoints (for a partial perm)

▷ MovedPoints(f) (attribute)

▷ MovedPoints(coll) (method)

Returns: A set of positive integers.
MovedPoints returns the set of points i in the domain of the partial permutation f such that

i^f<>i.
When the argument is a collection of partial permutations coll , MovedPoints returns the set of

points moved by some element of the collection of partial permutations coll .
Example

gap> f := PartialPerm([1, 2, 3, 4], [5, 7, 1, 6]);

[2,7][3,1,5][4,6]

gap> MovedPoints(f);

[1, 2, 3, 4]

gap> FixedPointsOfPartialPerm(f);

[]

gap> FixedPointsOfPartialPerm(PartialPerm([1 .. 4]));

[1, 2, 3, 4]

54.3.10 NrFixedPoints (for a partial perm)

▷ NrFixedPoints(f) (attribute)

▷ NrFixedPoints(coll) (method)

Returns: A positive integer.
NrFixedPoints returns the number of points i in the domain of the partial permutation f such

that i^f=i.
When the argument is a collection of partial permutations coll , NrFixedPoints returns the

number of points fixed by every element of the collection of partial permutations coll .
Example

gap> f := PartialPerm([1, 2, 3, 4, 5], [3, 2, 4, 6, 1]);

[5,1,3,4,6](2)

gap> NrFixedPoints(f);

1

gap> NrFixedPoints(PartialPerm([1 .. 10]));

10

54.3.11 NrMovedPoints (for a partial perm)

▷ NrMovedPoints(f) (attribute)

▷ NrMovedPoints(coll) (method)

Returns: A positive integer.
NrMovedPoints returns the number of points i in the domain of the partial permutation f such

that i^f<>i.
When the argument is a collection of partial permutations coll , NrMovedPoints returns the

number of points moved by some element of the collection of partial permutations coll .
Example

gap> f := PartialPerm([1, 2, 3, 4, 5, 7, 8], [4, 5, 6, 7, 1, 3, 2]);

[8,2,5,1,4,7,3,6]

gap> NrMovedPoints(f);

GAP - Reference Manual 900

7

gap> NrMovedPoints(PartialPerm([1 .. 4]));

0

54.3.12 SmallestMovedPoint (for a partial perm)

▷ SmallestMovedPoint(f) (attribute)

▷ SmallestMovedPoint(coll) (method)

Returns: A positive integer or infinity.
SmallestMovedPoint returns the smallest positive integer i such that i^f<>i if such an i exists.

If f is an identity partial permutation, then infinity is returned.
If the argument is a collection of partial permutations coll , then the smallest point which is moved

by at least one element of coll is returned, if such a point exists. If coll only contains identity partial
permutations, then SmallestMovedPoint returns infinity.

Example
gap> f := PartialPerm([1, 3], [4, 3]);

[1,4](3)

gap> SmallestMovedPoint(f);

1

gap> SmallestMovedPoint(PartialPerm([1 .. 10]));

infinity

54.3.13 LargestMovedPoint (for a partial perm)

▷ LargestMovedPoint(f) (attribute)

▷ LargestMovedPoint(coll) (method)

Returns: A positive integer or infinity.
LargestMovedPoint returns the largest positive integers i such that i^f<>i if such an i exists.

If f is the identity partial permutation, then 0 is returned.
If the argument is a collection of partial permutations coll , then the largest point which is moved

by at least one element of coll is returned, if such a point exists. If coll only contains identity partial
permutations, then LargestMovedPoint returns 0.

Example
gap> f := PartialPerm([1, 3, 4, 5], [5, 1, 6, 4]);

[3,1,5,4,6]

gap> LargestMovedPoint(f);

5

gap> LargestMovedPoint(PartialPerm([1 .. 10]));

0

54.3.14 SmallestImageOfMovedPoint (for a partial permutation)

▷ SmallestImageOfMovedPoint(f) (attribute)

▷ SmallestImageOfMovedPoint(coll) (method)

Returns: A positive integer or infinity.
SmallestImageOfMovedPoint returns the smallest positive integer i^f such that i^f<>i if such

an i exists. If f is the identity partial permutation, then infinity is returned.

GAP - Reference Manual 901

If the argument is a collection of partial permutations coll , then the smallest integer which is the
image a point moved by at least one element of coll is returned, if such a point exists. If coll only
contains identity partial permutations, then SmallestImageOfMovedPoint returns infinity.

Example
gap> S := SymmetricInverseSemigroup(5);

<symmetric inverse monoid of degree 5>

gap> SmallestImageOfMovedPoint(S);

1

gap> S := Semigroup(PartialPerm([10 .. 100], [10 .. 100]));;

gap> SmallestImageOfMovedPoint(S);

infinity

gap> f := PartialPerm([1, 2, 3, 6]);

[4,6](1)(2)(3)

gap> SmallestImageOfMovedPoint(f);

6

54.3.15 LargestImageOfMovedPoint (for a partial permutation)

▷ LargestImageOfMovedPoint(f) (attribute)

▷ LargestImageOfMovedPoint(coll) (method)

Returns: A positive integer.
LargestImageOfMovedPoint returns the largest positive integer i^f such that i^f<>i if such

an i exists. If f is an identity partial permutation, then 0 is returned.
If the argument is a collection of partial permutations coll , then the largest integer which is the

image of a point moved by at least one element of coll is returned, if such a point exists. If coll
only contains identity partial permutations, then LargestImageOfMovedPoint returns 0.

Example
gap> S := SymmetricInverseSemigroup(5);

<symmetric inverse monoid of degree 5>

gap> LargestImageOfMovedPoint(S);

5

gap> S := Semigroup(PartialPerm([10 .. 100], [10 .. 100]));;

gap> LargestImageOfMovedPoint(S);

0

gap> f := PartialPerm([1, 2, 3, 6]);;

gap> LargestImageOfMovedPoint(f);

6

54.3.16 IndexPeriodOfPartialPerm

▷ IndexPeriodOfPartialPerm(f) (attribute)

Returns: A pair of positive integers.
Returns the least positive integers m, r such that f^(m+r)=f^m, which are known as the index

and period of the partial permutation f .
Example

gap> f:=PartialPerm([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19],

> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1]);

[2,18][3,20][6,5,11,19,1,9][7,16,13][12,14](8)

gap> IndexPeriodOfPartialPerm(f);

[6, 1]

GAP - Reference Manual 902

gap> f^6=f^7;

true

54.3.17 SmallestIdempotentPower (for a partial perm)

▷ SmallestIdempotentPower(f) (attribute)

Returns: A positive integer.
This function returns the least positive integer n such that the partial permutation f^n is an idem-

potent. The smallest idempotent power of f is the least multiple of the period of f that is greater than
or equal to the index of f ; see IndexPeriodOfPartialPerm (54.3.16).

Example
gap> f:=PartialPerm([1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 18, 19, 20],

> [5, 1, 7, 3, 10, 2, 12, 14, 11, 16, 6, 9, 15]);

[4,3,7,2,1,5,10,14][8,12][13,16][18,6][19,9][20,15](11)

gap> SmallestIdempotentPower(f);

8

gap> f^8;

<identity partial perm on [11]>

54.3.18 ComponentsOfPartialPerm

▷ ComponentsOfPartialPerm(f) (attribute)

Returns: A list of lists of positive integer.
ComponentsOfPartialPerm returns a list of the components of the partial permutation f . Each

component is a subset of the domain of f , and the union of the components equals the domain.
Example

gap> f:=PartialPerm([1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 19],

> [20, 4, 6, 19, 9, 14, 3, 12, 17, 5, 15, 13]);

[1,20][2,4,19,13,15][7,14][8,3,6][10,12,5,9][11,17]

gap> ComponentsOfPartialPerm(f);

[[1, 20], [2, 4, 19, 13, 15], [7, 14], [8, 3, 6],

[10, 12, 5, 9], [11, 17]]

54.3.19 NrComponentsOfPartialPerm

▷ NrComponentsOfPartialPerm(f) (attribute)

Returns: A positive integer.
NrComponentsOfPartialPerm returns the number of components of the partial permutation f

on its domain.
Example

gap> f:=PartialPerm([1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 19],

> [20, 4, 6, 19, 9, 14, 3, 12, 17, 5, 15, 13]);

[1,20][2,4,19,13,15][7,14][8,3,6][10,12,5,9][11,17]

gap> NrComponentsOfPartialPerm(f);

6

GAP - Reference Manual 903

54.3.20 ComponentRepsOfPartialPerm

▷ ComponentRepsOfPartialPerm(f) (attribute)

Returns: A list of positive integers.
ComponentRepsOfPartialPerm returns the representatives, in the following sense, of the com-

ponents of the partial permutation f . Every component of f contains a unique element in the domain
but not the image of f ; this element is called the representative of the component. If i is a represen-
tative of a component of f , then for every j ̸=i in the component of i, there exists a positive integer
k such that i ^ (f ^ k) = j. Unlike transformations, there is exactly one representative for every
component of f . ComponentRepsOfPartialPerm returns the least number of representatives.

Example
gap> f:=PartialPerm([1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 19],

> [20, 4, 6, 19, 9, 14, 3, 12, 17, 5, 15, 13]);

[1,20][2,4,19,13,15][7,14][8,3,6][10,12,5,9][11,17]

gap> ComponentRepsOfPartialPerm(f);

[1, 2, 7, 8, 10, 11]

54.3.21 LeftOne (for a partial perm)

▷ LeftOne(f) (attribute)

▷ RightOne(f) (attribute)

Returns: A partial permutation.
LeftOne returns the identity partial permutation e such that the domain and image of e equal the

domain of the partial permutation f and such that e*f=f.
RightOne returns the identity partial permutation e such that the domain and image of e equal the

image of f and such that f*e=f.
Example

gap> f:=PartialPerm([1, 2, 4, 5, 6, 7], [10, 1, 6, 5, 8, 7]);

[2,1,10][4,6,8](5)(7)

gap> RightOne(f);

<identity partial perm on [1, 5, 6, 7, 8, 10]>

gap> LeftOne(f);

<identity partial perm on [1, 2, 4, 5, 6, 7]>

54.3.22 One (for a partial perm)

▷ One(f) (method)

Returns: A partial permutation.
As described in OneImmutable (31.10.2), One returns the multiplicative neutral element of the

partial permutation f , which is the identity partial permutation on the union of the domain and image
of f . Equivalently, the one of f is the join of the right one and left one of f .

Example
gap> f:=PartialPerm([1, 2, 3, 4, 5, 7, 10], [3, 7, 9, 6, 1, 10, 2]);;

gap> One(f);

<identity partial perm on [1, 2, 3, 4, 5, 6, 7, 9, 10]>

GAP - Reference Manual 904

54.3.23 MultiplicativeZero (for a partial perm)

▷ MultiplicativeZero(f) (method)

Returns: The empty partial permutation.
As described in MultiplicativeZero (35.4.11), Zero returns the multiplicative zero element of

the partial permutation f , which is the empty partial permutation.
Example

gap> f := PartialPerm([1, 2, 3, 4, 5, 7, 10], [3, 7, 9, 6, 1, 10, 2]);;

gap> MultiplicativeZero(f);

<empty partial perm>

54.4 Changing the representation of a partial permutation

It is possible that a partial permutation in GAP can be represented by other types of objects, or
that other types of GAP objects can be represented by partial permutations. Partial permutations
which are mathematically permutations can be converted into permutations in GAP using the func-
tion AsPermutation (42.5.6). Similarly, a partial permutation can be converted into a transformation
using AsTransformation (53.3.1).

In this section we describe functions for converting other types of objects in GAP into partial
permutations.

54.4.1 AsPartialPerm (for a permutation and a set of positive integers)

▷ AsPartialPerm(f, set) (operation)

▷ AsPartialPerm(f) (method)

▷ AsPartialPerm(f, n) (method)

Returns: A partial permutation.
A permutation f defines a partial permutation when it is restricted to any finite set of positive

integers. AsPartialPerm can be used to obtain this partial permutation.
There are several possible arguments for AsPartialPerm:

for a permutation and set of positive integers
AsPartialPerm returns the partial permutation that equals f on the set of positive integers set
and that is undefined on every other positive integer.

Note that as explained in PartialPerm (54.2.1) a permutation is never a partial permutation
in GAP, please keep this in mind when using AsPartialPerm.

for a permutation
AsPartialPerm returns the partial permutation that agrees with f on
[1..LargestMovedPoint(f)] and that is not defined on any other positive integer.

for a permutation and a positive integer
AsPartialPerm returns the partial permutation that agrees with f on [1..n], when n is a
positive integer, and that is not defined on any other positive integer.

The operation PartialPermOp (54.2.2) can also be used to convert permutations into partial permu-
tations.

GAP - Reference Manual 905

Example
gap> f:=(2,8,19,9,14,10,20,17,4,13,12,3,5,7,18,16);;

gap> AsPartialPerm(f);

(1)(2,8,19,9,14,10,20,17,4,13,12,3,5,7,18,16)(6)(11)(15)

gap> AsPartialPerm(f, [1, 2, 3]);

[2,8][3,5](1)

54.4.2 AsPartialPerm (for a transformation and a set of positive integer)

▷ AsPartialPerm(f, set) (operation)

▷ AsPartialPerm(f, n) (method)

Returns: A partial permutation or fail.
A transformation f defines a partial permutation when it is restricted to a set of positive integers

where it is injective. AsPartialPerm can be used to obtain this partial permutation.
There are several possible arguments for AsPartialPerm:

for a transformation and set of positive integers
AsPartialPerm returns the partial permutation obtained by restricting f to the set of positive
integers set when:

• set contains no elements exceeding the degree of f ;

• f is injective on set .

for a transformation and a positive integer
AsPartialPerm returns the partial permutation that agrees with f on [1..n] when A is a
positive integer and this set satisfies the conditions given above.

The operation PartialPermOp (54.2.2) can also be used to convert transformations into partial per-
mutations.

Example
gap> f:=Transformation([8, 3, 5, 9, 6, 2, 9, 7, 9]);;

gap> AsPartialPerm(f, [1, 2, 3, 5, 8]);

[1,8,7][2,3,5,6]

gap> AsPartialPerm(f, 3);

[1,8][2,3,5]

gap> AsPartialPerm(f, [2 .. 4]);

[2,3,5][4,9]

54.5 Operators and operations for partial permutations

54.5.1 Inverse (for a partial permutation)

▷ Inverse(f) (method)

returns the inverse of the partial permutation f .

GAP - Reference Manual 906

54.5.2 \^ (for a positive integer and a partial permutation)

▷ \^(i, f) (method)

returns the image of the positive integer i under the partial permutation f if it is defined and 0 if
it is not.

54.5.3 \/ (for a positive integer and a partial permutation)

▷ \/(i, f) (method)

returns the preimage of the positive integer i under the partial permutation f if it is defined and 0

if it is not. Note that the inverse of f is not calculated to find the preimage of i .

54.5.4 \^ (for a partial permutation and a permutation or partial permutation)

▷ \^(f, g) (method)

f ^ g returns g^-1*f*g when f is a partial permutation and g is a permutation or partial permu-
tation; see \^ (31.12.1). This operation requires essentially the same number of steps as multiplying
partial permutations, which is around one third as many as inverting and multiplying twice.

54.5.5 * (for permutations and partial permutations)

▷ *(f, g) (method)

f * g returns the composition of f and g when f and g are partial permutations or permutations.
The product of a permutation and a partial permutation is returned as a partial permutation.

54.5.6 \/ (for a partial permutation and permutation or partial permutation)

▷ \/(f, g) (method)

f / g returns f*g^-1 when f is a partial permutation and g is a permutation or partial permuta-
tion. This operation requires essentially the same number of steps as multiplying partial permutations,
which is approximately half that required to first invert g and then take the product with f .

54.5.7 LeftQuotient (for a permutation or partial permutation and a partial permuta-
tion)

▷ LeftQuotient(g, f) (method)

returns g^-1*f when f is a partial permutation and g is a permutation or partial permutation. This
operation requires essentially the same number of steps as multiplying partial permutations, which is
approximately half that required to first invert g and then take the product with f .

GAP - Reference Manual 907

54.5.8 \< (for partial permutations)

▷ \<(f, g) (method)

f < g returns true if the image of f on the range from 1 to the degree of f is lexicographi-
cally less than the corresponding image for g and false if it is not. See NaturalLeqPartialPerm

(54.5.13) and ShortLexLeqPartialPerm (54.5.14) for additional orders for partial permutations.

54.5.9 \= (for partial permutations)

▷ \=(f, g) (method)

f = g returns true if the partial permutation f equals the partial permutation g and returns
false if it does not.

54.5.10 PermLeftQuoPartialPerm

▷ PermLeftQuoPartialPerm(f, g) (operation)

▷ PermLeftQuoPartialPermNC(f, g) (operation)

Returns: A permutation.
Returns the permutation on the image set of f induced by f^-1*g when the partial permutations

f and g have equal domain and image set.
PermLeftQuoPartialPerm verifies that f and g have equal domains and image sets, and returns

an error if they do not. PermLeftQuoPartialPermNC does no checks.
Example

gap> f:=PartialPerm([1, 2, 3, 4, 5, 7], [7, 9, 10, 4, 2, 5]);

[1,7,5,2,9][3,10](4)

gap> g:=PartialPerm([1, 2, 3, 4, 5, 7], [7, 4, 9, 2, 5, 10]);

[1,7,10][3,9](2,4)(5)

gap> PermLeftQuoPartialPerm(f, g);

(2,5,10,9,4)

54.5.11 PreImagePartialPerm

▷ PreImagePartialPerm(f, i) (operation)

Returns: A positive integer or fail.
PreImagePartialPerm returns the preimage of the positive integer i under the partial permuta-

tion f if i belongs to the image of f . If i does not belong to the image of f , then fail is returned.
The same result can be obtained by using i/f as described in Section 54.5.

Example
gap> f:=PartialPerm([1, 2, 3, 5, 9, 10], [5, 10, 7, 8, 9, 1]);

[2,10,1,5,8][3,7](9)

gap> PreImagePartialPerm(f, 8);

5

gap> PreImagePartialPerm(f, 5);

1

gap> PreImagePartialPerm(f, 1);

10

gap> PreImagePartialPerm(f, 10);

2

GAP - Reference Manual 908

gap> PreImagePartialPerm(f, 2);

fail

54.5.12 ComponentPartialPermInt

▷ ComponentPartialPermInt(f, i) (operation)

Returns: A set of positive integers.
ComponentPartialPermInt returns the elements of the component of f containing i that can be

obtained by repeatedly applying f to i .
Example

gap> f:=PartialPerm([1, 2, 4, 5, 6, 7, 8, 10, 14, 15, 16, 17, 18],

> [11, 4, 14, 16, 15, 3, 20, 8, 17, 19, 1, 6, 12]);

[2,4,14,17,6,15,19][5,16,1,11][7,3][10,8,20][18,12]

gap> ComponentPartialPermInt(f, 4);

[4, 14, 17, 6, 15, 19]

gap> ComponentPartialPermInt(f, 3);

[]

gap> ComponentPartialPermInt(f, 10);

[10, 8, 20]

gap> ComponentPartialPermInt(f, 100);

[]

54.5.13 NaturalLeqPartialPerm

▷ NaturalLeqPartialPerm(f, g) (function)

Returns: true or false.
The natural partial order ≤ on an inverse semigroup S is defined by s≤t if there exists an idem-

potent e in S such that s=et. Hence if f and g are partial permutations, then f≤g if and only if f is
a restriction of g ; see RestrictedPartialPerm (54.2.3).

NaturalLeqPartialPerm returns true if f is a restriction of g and false if it is not. Note that
since this is a partial order and not a total order, it is possible that f and g are incomparable with
respect to the natural partial order.

Example
gap> f:=PartialPerm(

> [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19],

> [3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19]);;

gap> g:=RestrictedPartialPerm(f, [1, 2, 3, 9, 13, 20]);

[1,3,14][2,12]

gap> NaturalLeqPartialPerm(g,f);

true

gap> NaturalLeqPartialPerm(f,g);

false

gap> g:=PartialPerm([1, 2, 3, 4, 5, 8, 10],

> [7, 1, 4, 3, 2, 6, 5]);;

gap> NaturalLeqPartialPerm(f, g);

false

gap> NaturalLeqPartialPerm(g, f);

false

GAP - Reference Manual 909

54.5.14 ShortLexLeqPartialPerm

▷ ShortLexLeqPartialPerm(f, g) (function)

Returns: true or false.
ShortLexLeqPartialPerm returns true if the concatenation of the domain and image list of f

is short-lex less than the corresponding concatenation for g and false otherwise.
Note that this is not the natural partial order on partial permutation or the same as comparing f

and g using \<.
Example

gap> f:=PartialPerm([1, 2, 3, 4, 6, 7, 8, 10],

> [3, 8, 1, 9, 4, 10, 5, 6]);

[2,8,5][7,10,6,4,9](1,3)

gap> g:=PartialPerm([1, 2, 3, 4, 5, 8, 10],

> [7, 1, 4, 3, 2, 6, 5]);

[8,6][10,5,2,1,7](3,4)

gap> f<g;

true

gap> g<f;

false

gap> ShortLexLeqPartialPerm(f, g);

false

gap> ShortLexLeqPartialPerm(g, f);

true

gap> NaturalLeqPartialPerm(f, g);

false

gap> NaturalLeqPartialPerm(g, f);

false

54.5.15 TrimPartialPerm

▷ TrimPartialPerm(f) (operation)

Returns: Nothing.
It can happen that the internal representation of a partial permutation uses more memory than nec-

essary. For example, by composing a partial permutation with codegree less than 65536 with a partial
permutation with codegree greater than 65535. It is possible that the resulting partial permutation f

has its codegree and images stored as 32-bit integers, while none of its image points exceeds 65536.
The purpose of this function is to change the internal representation of such an f from using 32-bit to
using 16-bit integers.

Note that the partial permutation f is changed in-place, and nothing is returned by this function.
Example

gap> f:=PartialPerm([1, 2], [3, 4])

> *PartialPerm([3, 5], [3, 100000]);

[1,3]

gap> IsPPerm4Rep(f);

true

gap> TrimPartialPerm(f); f;

[1,3]

gap> IsPPerm4Rep(f);

false

GAP - Reference Manual 910

54.6 Displaying partial permutations

It is possible to change the way that GAP displays partial permutations using the user prefer-
ences PartialPermDisplayLimit and NotationForPartialPerms; see Section UserPreference

(3.2.3) for more information about user preferences.
If f is a partial permutation of rank r exceeding the value of the user preference

PartialPermDisplayLimit, then f is displayed as:
Example

<partial perm on r pts with degree m, codegree n>

where the degree and codegree are m and n, respectively. The idea is to abbreviate the display of partial
permutations defined on many points. The default value for the PartialPermDisplayLimit is 100.

If the rank of f does not exceed the value of PartialPermDisplayLimit, then how f is displayed
depends on the value of the user preference NotationForPartialPerms except in the case that f is
the empty partial permutation or an identity partial permutation.

There are three possible values for NotationForPartialPerms user preference, which are de-
scribed below.

component
Similar to permutations, and unlike transformations, partial permutations can be expressed as
products of disjoint permutations and chains. A chain is a list c of some length n such that:

• c[1] is an element of the domain of f but not the image

• c[i]^f=c[i+1] for all i in the range from 1 to n-1.

• c[n] is in the image of f but not the domain.

In the display, permutations are displayed as they usually are in GAP, except that fixed points
are displayed enclosed in round brackets, and chains are displayed enclosed in square brackets.

Example
gap> f := PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19],

> [3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19]);

[1,3,14][16,8,2,12,15](4)(5,11)[6,18,10,9][7,17,20](19)

This option is the most compact way to display a partial permutation and is the default value of
the user preference NotationForPartialPerms.

domainimage
With this option a partial permutation f is displayed in the format:
DomainOfPartialPerm(f)-> ImageListOfPartialPerm(f).

Example
gap> f:=PartialPerm([1, 2, 4, 5, 6, 7], [10, 1, 6, 5, 8, 7]);

[1, 2, 4, 5, 6, 7] -> [10, 1, 6, 5, 8, 7]

input
With this option a partial permutation f is displayed as:
PartialPerm(DomainOfPartialPerm(f), ImageListOfPartialPerm(f)) which
corresponds to the input (of the first type described in PartialPerm (54.2.1)).

GAP - Reference Manual 911

Example
gap> f:=PartialPerm([1, 2, 3, 5, 6, 9, 10],

> [4, 7, 3, 8, 2, 1, 6]);

PartialPerm([1, 2, 3, 5, 6, 9, 10], [4, 7, 3, 8, 2, 1, 6])

Example
gap> SetUserPreference("PartialPermDisplayLimit", 12);

gap> UserPreference("PartialPermDisplayLimit");

12

gap> f:=PartialPerm([1,2,3,4,5,6], [6,7,1,4,3,2]);

[5,3,1,6,2,7](4)

gap> f:=PartialPerm(

> [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19],

> [3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19]);

<partial perm on 15 pts with degree 19, codegree 20>

gap> SetUserPreference("PartialPermDisplayLimit", 100);

gap> f;

[1,3,14][6,18,10,9][7,17,20][16,8,2,12,15](4)(5,11)(19)

gap> UserPreference("NotationForPartialPerms");

"component"

gap> SetUserPreference("NotationForPartialPerms", "domainimage");

gap> f;

[1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19] ->

[3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19]

gap> SetUserPreference("NotationForPartialPerms", "input");

gap> f;

PartialPerm(

[1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19],

[3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19])

54.7 Semigroups and inverse semigroups of partial permutations

As mentioned at the start of the chapter, every inverse semigroup is isomorphic to a semigroup of par-
tial permutations, and in this section we describe the functions in GAP specific to partial permutation
semigroups. For more information about semigroups and inverse semigroups see Chapter 51.

The Semigroups package contains many additional functions and methods for computing with
semigroups of partial permutations. In particular, Semigroups contains more efficient methods than
those available in the GAP library (and in many cases more efficient than any other software) for cre-
ating semigroups of transformations, calculating their Green’s classes, size, elements, group of units,
minimal ideal, small generating sets, testing membership, finding the inverses of a regular element,
factorizing elements over the generators, and more.

Since a partial permutation semigroup is also a partial permutation collection, there are spe-
cial methods for DomainOfPartialPermCollection (54.3.4), ImageOfPartialPermCollection
(54.3.5), FixedPointsOfPartialPerm (54.3.8), MovedPoints (54.3.9), NrFixedPoints (54.3.10),
NrMovedPoints (54.3.11), LargestMovedPoint (54.3.13), and SmallestMovedPoint (54.3.12)
when applied to a partial permutation semigroup.

GAP - Reference Manual 912

54.7.1 IsPartialPermSemigroup

▷ IsPartialPermSemigroup(obj) (filter)

▷ IsPartialPermMonoid(obj) (filter)

Returns: true or false.
A partial perm semigroup is simply a semigroup consisting of partial permutations, which may or

may not be an inverse semigroup. An object obj in GAP is a partial perm semigroup if and only if it
satisfies IsSemigroup (51.1.1) and IsPartialPermCollection (54.1.2).

A partial perm monoid is a monoid consisting of partial permutations. An object in GAP is a
partial perm monoid if it satisfies IsMonoid (51.2.1) and IsPartialPermCollection (54.1.2).

Note that it is possible for a partial perm semigroup to have a multiplicative neutral element (i.e.
an identity element) but not to satisfy IsPartialPermMonoid. For example,

Example
gap> f := PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]);;

gap> S := Semigroup(f, One(f));

<commutative partial perm monoid of rank 9 with 1 generator>

gap> IsMonoid(S);

true

gap> IsPartialPermMonoid(S);

true

Note that unlike transformation semigroups, the One (31.10.2) of a partial permutation semigroup
must coincide with the multiplicative neutral element, if either exists.

For more details see IsMagmaWithOne (35.1.2).

54.7.2 DegreeOfPartialPermSemigroup

▷ DegreeOfPartialPermSemigroup(S) (attribute)

▷ CodegreeOfPartialPermSemigroup(S) (attribute)

▷ RankOfPartialPermSemigroup(S) (attribute)

Returns: A non-negative integer.
The degree of a partial permutation semigroup S is the largest degree of any partial permutation

in S .
The codegree of a partial permutation semigroup S is the largest positive integer in its image.
The rank of a partial permutation semigroup S is the number of points on which it acts.

Example
gap> S := Semigroup(PartialPerm([1, 5], [10000, 3]));

<commutative partial perm semigroup of rank 2 with 1 generator>

gap> DegreeOfPartialPermSemigroup(S);

5

gap> CodegreeOfPartialPermSemigroup(S);

10000

gap> RankOfPartialPermSemigroup(S);

2

54.7.3 SymmetricInverseSemigroup

▷ SymmetricInverseSemigroup(n) (operation)

▷ SymmetricInverseMonoid(n) (operation)

Returns: The symmetric inverse semigroup of degree n .

GAP - Reference Manual 913

If n is a non-negative integer, then SymmetricInverseSemigroup returns the inverse semi-
group consisting of all partial permutations with degree and codegree at most n . Note that n must
be non-negative, but in particular, can equal 0.

The symmetric inverse semigroup has ∑
n
r=0
(n

r

)2 · r! elements and is generated by any set that of
partial permutations that generate the symmetric group on n points and any partial permutation of rank
n-1.

SymmetricInverseMonoid is a synonym for SymmetricInverseSemigroup.
Example

gap> S := SymmetricInverseSemigroup(5);

<symmetric inverse monoid of degree 5>

gap> Size(S);

1546

gap> GeneratorsOfInverseMonoid(S);

[(1,2,3,4,5), (1,2)(3)(4)(5), [5,4,3,2,1]]

54.7.4 IsSymmetricInverseSemigroup

▷ IsSymmetricInverseSemigroup(S) (property)

▷ IsSymmetricInverseMonoid(S) (property)

Returns: true or false.
If the partial perm semigroup S of degree and codegree n equals the symmetric inverse semigroup

on n points, then IsSymmetricInverseSemigroup return true and otherwise it returns false.
IsSymmetricInverseMonoid is a synonym of IsSymmetricInverseSemigroup. It is common

in the literature for the symmetric inverse monoid to be referred to as the symmetric inverse semigroup.
Example

gap> S := Semigroup(AsPartialPerm((1, 3, 4, 2), 5), AsPartialPerm((1, 3, 5), 5),

> PartialPerm([1, 2, 3, 4]));

<partial perm semigroup of rank 5 with 3 generators>

gap> IsSymmetricInverseSemigroup(S);

true

gap> S;

<symmetric inverse monoid of degree 5>

54.7.5 NaturalPartialOrder

▷ NaturalPartialOrder(S) (attribute)

▷ ReverseNaturalPartialOrder(S) (attribute)

Returns: The natural partial order on an inverse semigroup.
The natural partial order ≤ on an inverse semigroup S is defined by s≤t if there exists an idem-

potent e in S such that s=et. Hence if f and g are partial permutations, then f≤g if and only if f is a
restriction of g; see RestrictedPartialPerm (54.2.3).

NaturalPartialOrder returns the natural partial order on the inverse semigroup of partial per-
mutations S as a list of sets of positive integers where entry i in NaturalPartialOrder(S) is
the set of positions in Elements(S) of elements which are less than Elements(S)[i]. See also
NaturalLeqPartialPerm (54.5.13).

ReverseNaturalPartialOrder returns the reverse of the natural partial order on the in-
verse semigroup of partial permutations S as a list of sets of positive integers where entry i in

GAP - Reference Manual 914

ReverseNaturalPartialOrder(S) is the set of positions in Elements(S) of elements which are
greater than Elements(S)[i]. See also NaturalLeqPartialPerm (54.5.13).

Example
gap> S := InverseSemigroup([PartialPerm([1, 3], [1, 3]),

> PartialPerm([1, 2], [3, 2])]);

<inverse partial perm semigroup of rank 3 with 2 generators>

gap> Size(S);

11

gap> NaturalPartialOrder(S);

[[], [1], [1], [1], [1, 2, 4], [1, 3, 4], [1], [1],

[1, 4, 7], [1, 4, 8], [1, 2, 8]]

gap> NaturalLeqPartialPerm(Elements(S)[4], Elements(S)[10]);

true

gap> NaturalLeqPartialPerm(Elements(S)[4], Elements(S)[1]);

false

54.7.6 IsomorphismPartialPermSemigroup

▷ IsomorphismPartialPermSemigroup(S) (attribute)

▷ IsomorphismPartialPermMonoid(S) (attribute)

Returns: An isomorphism.
IsomorphismPartialPermSemigroup(S) returns an isomorphism from the inverse semigroup

S to an inverse semigroup of partial permutations.
IsomorphismPartialPermMonoid(S) returns an isomorphism from the inverse semigroup S to

an inverse monoid of partial permutations, if possible.
We only describe IsomorphismPartialPermMonoid, the corresponding statements for

IsomorphismPartialPermSemigroup also hold.

Partial permutation semigroups
If S is a partial permutation semigroup that does not satisfy IsMonoid (51.2.1) but where
MultiplicativeNeutralElement(S)<>fail, then IsomorphismPartialPermMonoid(S)

returns an isomorphism from S to an inverse monoid of partial permutations.

Permutation groups
If S is a permutation group, then IsomorphismPartialPermMonoid returns an isomorphism
from S to an inverse monoid of partial permutations on the set MovedPoints(S) obtained using
AsPartialPerm (54.4.1). The inverse of this isomorphism is obtained using AsPermutation

(42.5.6).

Transformation semigroups
If S is a transformation semigroup which is mathematically a monoid but which does not nec-
essarily belong to the category IsMonoid (51.2.1), then IsomorphismPartialPermMonoid

returns an isomorphism from S to an inverse monoid of partial permutations.
Example

gap> S := InverseSemigroup(

> PartialPerm([1, 2, 3, 4, 5], [4, 2, 3, 1, 5]),

> PartialPerm([1, 2, 4, 5], [3, 1, 4, 2]));;

gap> IsMonoid(S);

false

gap> Size(S);

GAP - Reference Manual 915

508

gap> iso := IsomorphismPartialPermMonoid(S);

MappingByFunction(<inverse partial perm semigroup of size 508,

rank 5 with 2 generators>, <inverse partial perm monoid of size 508,

rank 5 with 2 generators>

, function(object) ... end, function(object) ... end)

gap> Size(S);

508

gap> Size(Range(iso));

508

gap> G := Group((1,2)(3,8)(4,6)(5,7), (1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)(5,8));;

gap> IsomorphismPartialPermSemigroup(G);

MappingByFunction(Group([(1,2)(3,8)(4,6)(5,7), (1,3,4,7)

(2,5,6,8), (1,4)(2,6)(3,7)

(5,8)]), <partial perm group of rank 8 with 3 generators>

, function(p) ... end, <Attribute "AsPermutation">)

gap> S := Semigroup(Transformation([2, 5, 1, 7, 3, 7, 7]),

> Transformation([3, 6, 5, 7, 2, 1, 7]));;

gap> iso := IsomorphismPartialPermMonoid(S);;

gap> MultiplicativeNeutralElement(S) ^ iso;

<identity partial perm on [1, 2, 3, 4, 5, 6]>

gap> One(Range(iso));

<identity partial perm on [1, 2, 3, 4, 5, 6]>

gap> MovedPoints(Range(iso));

[1 .. 5]

Chapter 55

Additive Magmas

This chapter deals with domains that are closed under addition +, which are called near-additive mag-
mas in GAP. Together with the domains closed under multiplication * (see 35), they are the basic
algebraic structures. In many cases, the addition is commutative (see IsAdditivelyCommutative

(55.3.1)), the domain is called an additive magma then. Every module (see 57), vector space
(see 61), ring (see 56), or field (see 58) is an additive magma. In the cases of all (near-)additive
magma-with-zero or (near-)additive magma-with-inverses, additional additive structure is present
(see 55.1).

55.1 (Near-)Additive Magma Categories

55.1.1 IsNearAdditiveMagma

▷ IsNearAdditiveMagma(obj) (Category)

A near-additive magma in GAP is a domain A with an associative but not necessarily commutative
addition +: A×A → A.

55.1.2 IsNearAdditiveMagmaWithZero

▷ IsNearAdditiveMagmaWithZero(obj) (Category)

A near-additive magma-with-zero in GAP is a near-additive magma A with an operation 0* (or
Zero (31.10.3)) that yields the zero element of A.

So a near-additive magma-with-zero A does always contain a unique additively neutral element z,
i.e., z+a = a = a+z holds for all a ∈ A (see AdditiveNeutralElement (55.3.5)). This zero element
z can be computed with the operation Zero (31.10.3), by applying this function to A or to any element
a in A. The zero element can be computed also as 0 * a, for any a in A.

Note that it may happen that a near-additive magma containing a zero does not lie in the category
IsNearAdditiveMagmaWithZero (see 31.6).

55.1.3 IsNearAdditiveGroup

▷ IsNearAdditiveGroup(obj) (Category)

▷ IsNearAdditiveMagmaWithInverses(obj) (Category)

916

GAP - Reference Manual 917

A near-additive group in GAP is a near-additive magma-with-zero A with an operation -1*:
A → A that maps each element a of A to its additive inverse -1*a (or AdditiveInverse(a),
see AdditiveInverse (31.10.9)).

The addition + of A is assumed to be associative, so a near-additive group is not more than
a near-additive magma-with-inverses. IsNearAdditiveMagmaWithInverses is just a synonym
for IsNearAdditiveGroup, and can be used alternatively in all function names involving the string
"NearAdditiveGroup".

Note that not every trivial near-additive magma is a near-additive magma-with-zero, but every
trivial near-additive magma-with-zero is a near-additive group.

55.1.4 IsAdditiveMagma

▷ IsAdditiveMagma(obj) (Category)

An additive magma in GAP is a domain A with an associative and commutative addition +: A×
A → A, see IsNearAdditiveMagma (55.1.1) and IsAdditivelyCommutative (55.3.1).

55.1.5 IsAdditiveMagmaWithZero

▷ IsAdditiveMagmaWithZero(obj) (Category)

An additive magma-with-zero in GAP is an additive magma A (see IsAdditiveMagma (55.1.4)
with an operation 0* (or Zero (31.10.3)) that yields the zero of A.

So an additive magma-with-zero A does always contain a unique additively neutral element z, i.e.,
z+a = a = a+ z holds for all a ∈ A (see AdditiveNeutralElement (55.3.5)). This element z can be
computed with the operation Zero (31.10.3) as Zero(A), and z is also equal to Zero(a) and to
0*a for each element a in A.

Note that it may happen that an additive magma containing a zero does not lie in the category
IsAdditiveMagmaWithZero (see 31.6).

55.1.6 IsAdditiveGroup

▷ IsAdditiveGroup(obj) (Category)

▷ IsAdditiveMagmaWithInverses(obj) (Category)

An additive group in GAP is an additive magma-with-zero A with an operation -1*: A →
A that maps each element a of A to its additive inverse -1*a (or AdditiveInverse(a),
see AdditiveInverse (31.10.9)).

The addition + of A is assumed to be commutative and associative, so an additive group is
not more than an additive magma-with-inverses. IsAdditiveMagmaWithInverses is just a syn-
onym for IsAdditiveGroup, and can be used alternatively in all function names involving the string
"AdditiveGroup".

Note that not every trivial additive magma is an additive magma-with-zero, but every trivial ad-
ditive magma-with-zero is an additive group.

GAP - Reference Manual 918

55.2 (Near-)Additive Magma Generation

This section describes functions that create additive magmas from generators (see
NearAdditiveMagma (55.2.1), NearAdditiveMagmaWithZero (55.2.2), NearAdditiveGroup

(55.2.3)), the underlying operations for which methods can be installed (see
NearAdditiveMagmaByGenerators (55.2.4), NearAdditiveMagmaWithZeroByGenerators

(55.2.5), NearAdditiveGroupByGenerators (55.2.6)) and functions for forming additive sub-
magmas (see SubnearAdditiveMagma (55.2.7), SubnearAdditiveMagmaWithZero (55.2.8),
SubnearAdditiveGroup (55.2.9)).

55.2.1 NearAdditiveMagma

▷ NearAdditiveMagma([Fam,]gens) (function)

returns the (near-)additive magma A that is generated by the elements in the list gens , that is,
the closure of gens under addition +. The family Fam of A can be entered as first argument; this is
obligatory if gens is empty (and hence also A is empty).

55.2.2 NearAdditiveMagmaWithZero

▷ NearAdditiveMagmaWithZero([Fam,]gens) (function)

returns the (near-)additive magma-with-zero A that is generated by the elements in the list gens ,
that is, the closure of gens under addition + and Zero (31.10.3). The family Fam of A can be entered
as first argument; this is obligatory if gens is empty (and hence A is trivial).

55.2.3 NearAdditiveGroup

▷ NearAdditiveGroup([Fam,]gens) (function)

returns the (near-)additive group A that is generated by the elements in the list gens , that is, the
closure of gens under addition +, Zero (31.10.3), and AdditiveInverse (31.10.9). The family Fam

of A can be entered as first argument; this is obligatory if gens is empty (and hence A is trivial).

55.2.4 NearAdditiveMagmaByGenerators

▷ NearAdditiveMagmaByGenerators([Fam,]gens) (operation)

An underlying operation for NearAdditiveMagma (55.2.1).

55.2.5 NearAdditiveMagmaWithZeroByGenerators

▷ NearAdditiveMagmaWithZeroByGenerators([Fam,]gens) (operation)

An underlying operation for NearAdditiveMagmaWithZero (55.2.2).

GAP - Reference Manual 919

55.2.6 NearAdditiveGroupByGenerators

▷ NearAdditiveGroupByGenerators([Fam,]gens) (operation)

An underlying operation for NearAdditiveGroup (55.2.3).

55.2.7 SubnearAdditiveMagma

▷ SubnearAdditiveMagma(D, gens) (function)

▷ SubadditiveMagma(D, gens) (function)

▷ SubnearAdditiveMagmaNC(D, gens) (function)

▷ SubadditiveMagmaNC(D, gens) (function)

SubnearAdditiveMagma returns the near-additive magma generated by the elements in the list
gens , with parent the domain D . SubnearAdditiveMagmaNC does the same, except that it does not
check whether the elements of gens lie in D .

SubadditiveMagma and SubadditiveMagmaNC are just synonyms of these functions.

55.2.8 SubnearAdditiveMagmaWithZero

▷ SubnearAdditiveMagmaWithZero(D, gens) (function)

▷ SubadditiveMagmaWithZero(D, gens) (function)

▷ SubnearAdditiveMagmaWithZeroNC(D, gens) (function)

▷ SubadditiveMagmaWithZeroNC(D, gens) (function)

SubnearAdditiveMagmaWithZero returns the near-additive magma-with-zero generated by the
elements in the list gens , with parent the domain D . SubnearAdditiveMagmaWithZeroNC does the
same, except that it does not check whether the elements of gens lie in D .

SubadditiveMagmaWithZero and SubadditiveMagmaWithZeroNC are just synonyms of these
functions.

55.2.9 SubnearAdditiveGroup

▷ SubnearAdditiveGroup(D, gens) (function)

▷ SubadditiveGroup(D, gens) (function)

▷ SubnearAdditiveGroupNC(D, gens) (function)

▷ SubadditiveGroupNC(D, gens) (function)

SubnearAdditiveGroup returns the near-additive group generated by the elements in the list
gens , with parent the domain D . SubadditiveGroupNC does the same, except that it does not check
whether the elements of gens lie in D .

SubadditiveGroup and SubadditiveGroupNC are just synonyms of these functions.

GAP - Reference Manual 920

55.3 Attributes and Properties for (Near-)Additive Magmas

55.3.1 IsAdditivelyCommutative

▷ IsAdditivelyCommutative(A) (property)

A near-additive magma A in GAP is additively commutative if for all elements a,b∈ A the equality
a+b = b+a holds.

Note that the commutativity of the multiplication * in a multiplicative structure can be tested with
IsCommutative (35.4.9).

55.3.2 GeneratorsOfNearAdditiveMagma

▷ GeneratorsOfNearAdditiveMagma(A) (attribute)

▷ GeneratorsOfAdditiveMagma(A) (attribute)

is a list of elements of the near-additive magma A that generates A as a near-additive magma, that
is, the closure of this list under addition is A .

55.3.3 GeneratorsOfNearAdditiveMagmaWithZero

▷ GeneratorsOfNearAdditiveMagmaWithZero(A) (attribute)

▷ GeneratorsOfAdditiveMagmaWithZero(A) (attribute)

is a list of elements of the near-additive magma-with-zero A that generates A as a near-additive
magma-with-zero, that is, the closure of this list under addition and Zero (31.10.3) is A .

55.3.4 GeneratorsOfNearAdditiveGroup

▷ GeneratorsOfNearAdditiveGroup(A) (attribute)

▷ GeneratorsOfAdditiveGroup(A) (attribute)

is a list of elements of the near-additive group A that generates A as a near-additive group,
that is, the closure of this list under addition, taking the zero element, and taking additive inverses
(see AdditiveInverse (31.10.9)) is A .

55.3.5 AdditiveNeutralElement

▷ AdditiveNeutralElement(A) (attribute)

returns the element z in the near-additive magma A with the property that z+a = a = a+ z holds
for all a ∈ A , if such an element exists. Otherwise fail is returned.

A near-additive magma that is not a near-additive magma-with-zero can have an additive neutral
element z; in this case, z cannot be obtained as Zero(A) or as 0*a for an element a in A , see Zero
(31.10.3).

GAP - Reference Manual 921

55.3.6 TrivialSubnearAdditiveMagmaWithZero

▷ TrivialSubnearAdditiveMagmaWithZero(A) (attribute)

is the additive magma-with-zero that has the zero of the near-additive magma-with-zero A as its
only element.

55.4 Operations for (Near-)Additive Magmas

55.4.1 ClosureNearAdditiveGroup

▷ ClosureNearAdditiveGroup(A, a) (operation)

▷ ClosureNearAdditiveGroup(A, B) (operation)

returns the closure of the near-additive magma A with the element a or with the near-additive
magma B , w.r.t. addition, taking the zero element, and taking additive inverses.

55.4.2 ShowAdditionTable

▷ ShowAdditionTable(R) (function)

▷ ShowMultiplicationTable(M) (function)

For a structure R with an addition given by +, respectively a structure M with a multiplication given
by *, this command displays the addition (multiplication) table of the structure in a pretty way.

Example
gap> ShowAdditionTable(GF(4));

+ | 0*Z(2) Z(2)^0 Z(2^2) Z(2^2)^2

---------+------------------------------------

0*Z(2) | 0*Z(2) Z(2)^0 Z(2^2) Z(2^2)^2

Z(2)^0 | Z(2)^0 0*Z(2) Z(2^2)^2 Z(2^2)

Z(2^2) | Z(2^2) Z(2^2)^2 0*Z(2) Z(2)^0

Z(2^2)^2 | Z(2^2)^2 Z(2^2) Z(2)^0 0*Z(2)

gap> ShowMultiplicationTable(GF(4));

* | 0*Z(2) Z(2)^0 Z(2^2) Z(2^2)^2

---------+------------------------------------

0*Z(2) | 0*Z(2) 0*Z(2) 0*Z(2) 0*Z(2)

Z(2)^0 | 0*Z(2) Z(2)^0 Z(2^2) Z(2^2)^2

Z(2^2) | 0*Z(2) Z(2^2) Z(2^2)^2 Z(2)^0

Z(2^2)^2 | 0*Z(2) Z(2^2)^2 Z(2)^0 Z(2^2)

Chapter 56

Rings

This chapter deals with domains that are additive groups (see IsAdditiveGroup (55.1.6) closed under
multiplication *. Such a domain, if * and + are distributive, is called a ring in GAP. Each division
ring, field (see 58), or algebra (see 62) is a ring. Important examples of rings are the integers (see 14)
and matrix rings.

In the case of a ring-with-one, additional multiplicative structure is present, see IsRingWithOne
(56.3.1). There is a little support in GAP for rings that have no additional structure: it is possible to
perform some computations for small finite rings; infinite rings are handled by GAP in an acceptable
way in the case that they are algebras.

Also, the SONATA package provides support for near-rings, and a related functionality for mul-
tiplicative semigroups of near-rings is available in the Smallsemi package.

Several functions for ring elements, such as IsPrime (56.5.8) and Factors (56.5.9), are defined
only relative to a ring R , which can be entered as an optional argument; if R is omitted then a default
ring is formed from the ring elements given as arguments, see DefaultRing (56.1.3).

56.1 Generating Rings

56.1.1 IsRing

▷ IsRing(R) (filter)

A ring in GAP is an additive group (see IsAdditiveGroup (55.1.6)) that is also a
magma (see IsMagma (35.1.1)), such that addition + and multiplication * are distributive, see
IsDistributive (56.4.5).

The multiplication need not be associative (see IsAssociative (35.4.7)). For example, a Lie
algebra (see 64) is regarded as a ring in GAP.

56.1.2 Ring

▷ Ring(r, s, ...) (function)

▷ Ring(coll) (function)

In the first form Ring returns the smallest ring that contains all the elements r , s , . . . In the
second form Ring returns the smallest ring that contains all the elements in the collection coll . If
any element is not an element of a ring or if the elements lie in no common ring an error is raised.

922

GAP - Reference Manual 923

Ring differs from DefaultRing (56.1.3) in that it returns the smallest ring in which the elements
lie, while DefaultRing (56.1.3) may return a larger ring if that makes sense.

Example
gap> Ring(2, E(4));

<ring with 2 generators>

56.1.3 DefaultRing

▷ DefaultRing(r, s, ...) (function)

▷ DefaultRing(coll) (function)

In the first form DefaultRing returns a ring that contains all the elements r , s , . . . etc. In the
second form DefaultRing returns a ring that contains all the elements in the collection coll . If any
element is not an element of a ring or if the elements lie in no common ring an error is raised.

The ring returned by DefaultRing need not be the smallest ring in which the elements lie. For
example for elements from cyclotomic fields, DefaultRing may return the ring of integers of the
smallest cyclotomic field in which the elements lie, which need not be the smallest ring overall, be-
cause the elements may in fact lie in a smaller number field which is itself not a cyclotomic field.

(For the exact definition of the default ring of a certain type of elements, look at the corresponding
method installation.)

DefaultRing is used by ring functions such as Quotient (56.1.9), IsPrime (56.5.8), Factors
(56.5.9), or Gcd (56.7.1) if no explicit ring is given.

Ring (56.1.2) differs from DefaultRing in that it returns the smallest ring in which the elements
lie, while DefaultRing may return a larger ring if that makes sense.

Example
gap> DefaultRing(2, E(4));

GaussianIntegers

56.1.4 RingByGenerators

▷ RingByGenerators(C) (operation)

RingByGenerators returns the ring generated by the elements in the collection C , i. e., the closure
of C under addition, multiplication, and taking additive inverses.

Example
gap> RingByGenerators([2, E(4)]);

<ring with 2 generators>

56.1.5 DefaultRingByGenerators

▷ DefaultRingByGenerators(coll) (operation)

For a collection coll , returns a default ring in which coll is contained.
Example

gap> DefaultRingByGenerators([2, E(4)]);

GaussianIntegers

GAP - Reference Manual 924

56.1.6 GeneratorsOfRing

▷ GeneratorsOfRing(R) (attribute)

GeneratorsOfRing returns a list of elements such that the ring R is the closure of these elements
under addition, multiplication, and taking additive inverses.

Example
gap> R:=Ring(2, 1/2);

<ring with 2 generators>

gap> GeneratorsOfRing(R);

[2, 1/2]

56.1.7 Subring

▷ Subring(R, gens) (function)

▷ SubringNC(R, gens) (function)

returns the ring with parent R generated by the elements in gens . When the second form,
SubringNC is used, it is not checked whether all elements in gens lie in R .

Example
gap> R:= Integers;

Integers

gap> S:= Subring(R, [4, 6]);

<ring with 1 generator>

gap> Parent(S);

Integers

56.1.8 ClosureRing

▷ ClosureRing(R, r) (operation)

▷ ClosureRing(R, S) (operation)

For a ring R and either an element r of its elements family or a ring S , ClosureRing returns the
ring generated by both arguments.

Example
gap> ClosureRing(Integers, E(4));

<ring-with-one, with 2 generators>

56.1.9 Quotient

▷ Quotient([R,]r, s) (operation)

Quotient returns a (right) quotient of the two ring elements r and s in the ring R , if given, and
otherwise in their default ring (see DefaultRing (56.1.3)). More specifically, it returns a ring element
q such that r = q∗ s holds, or fail if no such elements exists in the respective ring.

The result may not be unique if the ring contains zero divisors.
(To perform the division in the quotient field of a ring, use the quotient operator /.)

GAP - Reference Manual 925

Example
gap> Quotient(2, 3);

fail

gap> Quotient(6, 3);

2

56.2 Ideals of Rings

A left ideal in a ring R is a subring of R that is closed under multiplication with elements of R from
the left.

A right ideal in a ring R is a subring of R that is closed under multiplication with elements of R
from the right.

A two-sided ideal or simply ideal in a ring R is both a left ideal and a right ideal in R.
So being a (left/right/two-sided) ideal is not a property of a domain but refers to the acting ring(s).

Hence we must ask, e. g., IsIdeal(R, I) if we want to know whether the ring I is an ideal in the
ring R. The property IsTwoSidedIdealInParent (56.2.3) can be used to store whether a ring is an
ideal in its parent.

(Whenever the term "Ideal" occurs in an identifier without a specifying prefix "Left"

or "Right", this means the same as "TwoSidedIdeal". Conversely, any occurrence of
"TwoSidedIdeal" can be substituted by "Ideal".)

For any of the above kinds of ideals, there is a notion of generators,
namely GeneratorsOfLeftIdeal (56.2.8), GeneratorsOfRightIdeal (56.2.9), and
GeneratorsOfTwoSidedIdeal (56.2.7). The acting rings can be accessed as
LeftActingRingOfIdeal (56.2.10) and RightActingRingOfIdeal (56.2.10), respectively.
Note that ideals are detected from known values of these attributes, especially it is assumed that
whenever a domain has both a left and a right acting ring then these two are equal.

Note that we cannot use LeftActingDomain (57.1.11) and RightActingDomain here, since ide-
als in algebras are themselves vector spaces, and such a space can of course also be a module for an
action from the right. In order to make the usual vector space functionality automatically available for
ideals, we have to distinguish the left and right module structure from the additional closure properties
of the ideal.

Further note that the attributes denoting ideal generators and acting ring are used to create ideals if
this is explicitly wanted, but the ideal relation in the sense of IsTwoSidedIdeal (56.2.3) is of course
independent of the presence of the attribute values.

Ideals are constructed with LeftIdeal (56.2.1), RightIdeal (56.2.1), TwoSidedIdeal (56.2.1).
Principal ideals of the form x∗R, R∗ x, R∗ x∗R can also be constructed with a simple multiplication.

Currently many methods for dealing with ideals need linear algebra to work, so they are mainly
applicable to ideals in algebras.

56.2.1 TwoSidedIdeal

▷ TwoSidedIdeal(R, gens[, "basis"]) (function)

▷ Ideal(R, gens[, "basis"]) (function)

▷ LeftIdeal(R, gens[, "basis"]) (function)

▷ RightIdeal(R, gens[, "basis"]) (function)

GAP - Reference Manual 926

Let R be a ring, and gens a list of collection of elements in R . TwoSidedIdeal, LeftIdeal, and
RightIdeal return the two-sided, left, or right ideal, respectively, I in R that is generated by gens .
The ring R can be accessed as LeftActingRingOfIdeal (56.2.10) or RightActingRingOfIdeal
(56.2.10) (or both) of I.

If R is a left F-module then also I is a left F-module, in particular the LeftActingDomain

(57.1.11) values of R and I are equal.
If the optional argument "basis" is given then gens are assumed to be a list of basis vectors of

I viewed as a free F-module. (This is mainly applicable to ideals in algebras.) In this case, it is not
checked whether gens really is linearly independent and whether gens is a subset of R .

Ideal is simply a synonym of TwoSidedIdeal.
Example

gap> R:= Integers;;

gap> I:= Ideal(R, [2]);

<two-sided ideal in Integers, (1 generator)>

56.2.2 TwoSidedIdealNC

▷ TwoSidedIdealNC(R, gens[, "basis"]) (function)

▷ IdealNC(R, gens[, "basis"]) (function)

▷ LeftIdealNC(R, gens[, "basis"]) (function)

▷ RightIdealNC(R, gens[, "basis"]) (function)

The effects of TwoSidedIdealNC, LeftIdealNC, and RightIdealNC are the same as
TwoSidedIdeal (56.2.1), LeftIdeal (56.2.1), and RightIdeal (56.2.1), respectively, but they do
not check whether all entries of gens lie in R .

56.2.3 IsTwoSidedIdeal

▷ IsTwoSidedIdeal(R, I) (operation)

▷ IsLeftIdeal(R, I) (operation)

▷ IsRightIdeal(R, I) (operation)

▷ IsTwoSidedIdealInParent(I) (property)

▷ IsLeftIdealInParent(I) (property)

▷ IsRightIdealInParent(I) (property)

The properties IsTwoSidedIdealInParent etc., are attributes of the ideal, and once known they
are stored in the ideal.

Example
gap> A:= FullMatrixAlgebra(Rationals, 3);

(Rationals^[3, 3])

gap> I:= Ideal(A, [Random(A)]);

<two-sided ideal in (Rationals^[3, 3]), (1 generator)>

gap> IsTwoSidedIdeal(A, I);

true

GAP - Reference Manual 927

56.2.4 TwoSidedIdealByGenerators

▷ TwoSidedIdealByGenerators(R, gens) (operation)

▷ IdealByGenerators(R, gens) (operation)

TwoSidedIdealByGenerators returns the ring that is generated by the elements of the collection
gens under addition, multiplication, and multiplication with elements of the ring R from the left and
from the right.

R can be accessed by LeftActingRingOfIdeal (56.2.10) or RightActingRingOfIdeal

(56.2.10), gens can be accessed by GeneratorsOfTwoSidedIdeal (56.2.7).

56.2.5 LeftIdealByGenerators

▷ LeftIdealByGenerators(R, gens) (operation)

LeftIdealByGenerators returns the ring that is generated by the elements of the collection
gens under addition, multiplication, and multiplication with elements of the ring R from the left.

R can be accessed by LeftActingRingOfIdeal (56.2.10), gens can be accessed by
GeneratorsOfLeftIdeal (56.2.8).

56.2.6 RightIdealByGenerators

▷ RightIdealByGenerators(R, gens) (operation)

RightIdealByGenerators returns the ring that is generated by the elements of the collection
gens under addition, multiplication, and multiplication with elements of the ring R from the right.

R can be accessed by RightActingRingOfIdeal (56.2.10), gens can be accessed by
GeneratorsOfRightIdeal (56.2.9).

56.2.7 GeneratorsOfTwoSidedIdeal

▷ GeneratorsOfTwoSidedIdeal(I) (attribute)

▷ GeneratorsOfIdeal(I) (attribute)

is a list of generators for the ideal I , with respect to the action of the rings that are stored as the
values of LeftActingRingOfIdeal (56.2.10) and RightActingRingOfIdeal (56.2.10), from the
left and from the right, respectively.

Example
gap> A:= FullMatrixAlgebra(Rationals, 3);;

gap> I:= Ideal(A, [One(A)]);;

gap> GeneratorsOfIdeal(I);

[[[1, 0, 0], [0, 1, 0], [0, 0, 1]]]

56.2.8 GeneratorsOfLeftIdeal

▷ GeneratorsOfLeftIdeal(I) (attribute)

GAP - Reference Manual 928

is a list of generators for the left ideal I , with respect to the action from the left of the ring that is
stored as the value of LeftActingRingOfIdeal (56.2.10).

56.2.9 GeneratorsOfRightIdeal

▷ GeneratorsOfRightIdeal(I) (attribute)

is a list of generators for the right ideal I , with respect to the action from the right of the ring that
is stored as the value of RightActingRingOfIdeal (56.2.10).

56.2.10 LeftActingRingOfIdeal

▷ LeftActingRingOfIdeal(I) (attribute)

▷ RightActingRingOfIdeal(I) (attribute)

returns the left (resp. right) acting ring of an ideal I .

56.2.11 AsLeftIdeal

▷ AsLeftIdeal(R, S) (operation)

▷ AsRightIdeal(R, S) (operation)

▷ AsTwoSidedIdeal(R, S) (operation)

Let S be a subring of the ring R .
If S is a left ideal in R then AsLeftIdeal returns this left ideal, otherwise fail is returned.
If S is a right ideal in R then AsRightIdeal returns this right ideal, otherwise fail is returned.
If S is a two-sided ideal in R then AsTwoSidedIdeal returns this two-sided ideal, otherwise fail

is returned.
Example

gap> A:= FullMatrixAlgebra(Rationals, 3);;

gap> B:= DirectSumOfAlgebras(A, A);

<algebra over Rationals, with 6 generators>

gap> C:= Subalgebra(B, Basis(B){[1..9]});

<algebra over Rationals, with 9 generators>

gap> I:= AsTwoSidedIdeal(B, C);

<two-sided ideal in <algebra of dimension 18 over Rationals>,

(9 generators)>

56.3 Rings With One

56.3.1 IsRingWithOne

▷ IsRingWithOne(R) (filter)

A ring-with-one in GAP is a ring (see IsRing (56.1.1)) that is also a magma-with-one
(see IsMagmaWithOne (35.1.2)).

Note that the identity and the zero of a ring-with-one need not be distinct. This means that a ring
that consists only of its zero element can be regarded as a ring-with-one.

GAP - Reference Manual 929

This is especially useful in the case of finitely presented rings, in the sense that each factor of a
ring-with-one is again a ring-with-one.

56.3.2 RingWithOne

▷ RingWithOne(r, s, ...) (function)

▷ RingWithOne(coll) (function)

In the first form RingWithOne returns the smallest ring with one that contains all the elements
r , s , . . . In the second form RingWithOne returns the smallest ring with one that contains all the
elements in the collection C . If any element is not an element of a ring or if the elements lie in no
common ring an error is raised.

Example
gap> RingWithOne([4, 6]);

Integers

56.3.3 RingWithOneByGenerators

▷ RingWithOneByGenerators(coll) (operation)

RingWithOneByGenerators returns the ring-with-one generated by the elements in the collec-
tion coll , i. e., the closure of coll under addition, multiplication, taking additive inverses, and taking
the identity of an element.

56.3.4 GeneratorsOfRingWithOne

▷ GeneratorsOfRingWithOne(R) (attribute)

GeneratorsOfRingWithOne returns a list of elements such that the ring R is the closure of these
elements under addition, multiplication, taking additive inverses, and taking the identity element One(
R).

R itself need not be known to be a ring-with-one.
Example

gap> R:= RingWithOne([4, 6]);

Integers

gap> GeneratorsOfRingWithOne(R);

[1]

56.3.5 SubringWithOne

▷ SubringWithOne(R, gens) (function)

▷ SubringWithOneNC(R, gens) (function)

returns the ring with one with parent R generated by the elements in gens . When the second form,
SubringWithOneNC is used, it is not checked whether all elements in gens lie in R .

GAP - Reference Manual 930

Example
gap> R:= SubringWithOne(Integers, [4, 6]);

Integers

gap> Parent(R);

Integers

56.4 Properties of Rings

56.4.1 IsIntegralRing

▷ IsIntegralRing(R) (property)

A ring-with-one R is integral if it is commutative, contains no nontrivial zero divisors, and if its
identity is distinct from its zero.

Example
gap> IsIntegralRing(Integers);

true

56.4.2 IsUniqueFactorizationRing

▷ IsUniqueFactorizationRing(R) (Category)

A ring R is called a unique factorization ring if every nonzero element has a unique fac-
torization into irreducible elements, i.e., a unique representation as product of irreducibles (see
IsIrreducibleRingElement (56.5.7)). Unique in this context means unique up to permutations
of the factors and up to multiplication of the factors by units (see Units (56.5.2)).

(Note that we cannot install a subset maintained method for this filter since the factorization of an
element needs not exist in a subring. As an example, consider the subring 4N+1 of the ring 4Z+1;
in the subring, the element 3 ·3 ·11 ·7 has the two factorizations 33 ·21 = 9 ·77, but in the large ring
there is the unique factorization (−3) · (−3) · (−11) · (−7), and it is easy to see that every element in
4Z+1 has a unique factorization.)

Example
gap> IsUniqueFactorizationRing(PolynomialRing(Rationals, 1));

true

56.4.3 IsLDistributive

▷ IsLDistributive(C) (property)

is true if the relation a∗ (b+ c) = (a∗b)+ (a∗ c) holds for all elements a, b, c in the collection
C , and false otherwise.

56.4.4 IsRDistributive

▷ IsRDistributive(C) (property)

is true if the relation (a+b)∗ c = (a∗ c)+ (b∗ c) holds for all elements a, b, c in the collection
C , and false otherwise.

GAP - Reference Manual 931

56.4.5 IsDistributive

▷ IsDistributive(C) (property)

is true if the collection C is both left and right distributive (see IsLDistributive (56.4.3),
IsRDistributive (56.4.4)), and false otherwise.

Example
gap> IsDistributive(Integers);

true

56.4.6 IsAnticommutative

▷ IsAnticommutative(R) (property)

is true if the relation a∗b =−b∗a holds for all elements a, b in the ring R , and false otherwise.

56.4.7 IsZeroSquaredRing

▷ IsZeroSquaredRing(R) (property)

is true if a∗a is the zero element of the ring R for all a in R , and false otherwise.

56.4.8 IsJacobianRing

▷ IsJacobianRing(R) (property)

is true if the Jacobi identity holds in the ring R , and false otherwise. The Jacobi identity means
that x∗ (y∗ z)+ z∗ (x∗ y)+ y∗ (z∗ x) is the zero element of R , for all elements x, y, z in R .

Example
gap> L:= FullMatrixLieAlgebra(GF(5), 7);

<Lie algebra over GF(5), with 13 generators>

gap> IsJacobianRing(L);

true

56.5 Units and Factorizations

56.5.1 IsUnit

▷ IsUnit([R,]r) (operation)

IsUnit returns true if r is a unit in the ring R , if given, and otherwise in its default ring (see
DefaultRing (56.1.3)). If r is not a unit then false is returned.

An element r is called a unit in a ring R , if r has an inverse in R .
IsUnit may call Quotient (56.1.9).

GAP - Reference Manual 932

56.5.2 Units

▷ Units(R) (attribute)

Units returns the group of units of the ring R . This may either be returned as a list or as a group.
An element r is called a unit of a ring R if r has an inverse in R. It is easy to see that the set of

units forms a multiplicative group.
Example

gap> Units(GaussianIntegers);

[-1, 1, -E(4), E(4)]

gap> Units(GF(16));

<group of size 15 with 1 generator>

56.5.3 IsAssociated

▷ IsAssociated([R,]r, s) (operation)

IsAssociated returns true if the two ring elements r and s are associated in the ring R , if given,
and otherwise in their default ring (see DefaultRing (56.1.3)). If the two elements are not associated
then false is returned.

Two elements r and s of a ring R are called associated if there is a unit u of R such that r u =s .

56.5.4 Associates

▷ Associates([R,]r) (operation)

Associates returns the set of associates of r in the ring R , if given, and otherwise in its default
ring (see DefaultRing (56.1.3)).

Two elements r and s of a ring R are called associated if there is a unit u of R such that ru = s.
Example

gap> Associates(Integers, 2);

[-2, 2]

gap> Associates(GaussianIntegers, 2);

[-2, 2, -2*E(4), 2*E(4)]

56.5.5 StandardAssociate

▷ StandardAssociate([R,]r) (operation)

StandardAssociate returns the standard associate of the ring element r in the ring R , if given,
and otherwise in its default ring (see DefaultRing (56.1.3)).

The standard associate of a ring element r of R is an associated element of r which is, in a ring
dependent way, distinguished among the set of associates of r . For example, in the ring of integers
the standard associate is the absolute value.

Example
gap> x:= Indeterminate(Rationals, "x");;

gap> StandardAssociate(-x^2-x+1);

x^2+x-1

GAP - Reference Manual 933

56.5.6 StandardAssociateUnit

▷ StandardAssociateUnit([R,]r) (operation)

StandardAssociateUnit returns a unit in the ring R such that the ring element r times this unit
equals the standard associate of r in R .

If R is not given, the default ring of r is used instead. (see DefaultRing (56.1.3)).
Example

gap> y:= Indeterminate(Rationals, "y");;

gap> r:= -y^2-y+1;

-y^2-y+1

gap> StandardAssociateUnit(r);

-1

gap> StandardAssociateUnit(r) * r = StandardAssociate(r);

true

56.5.7 IsIrreducibleRingElement

▷ IsIrreducibleRingElement([R,]r) (operation)

IsIrreducibleRingElement returns true if the ring element r is irreducible in the ring R , if
given, and otherwise in its default ring (see DefaultRing (56.1.3)). If r is not irreducible then false

is returned.
An element r of a ring R is called irreducible if r is not a unit in R and if there is no nontrivial

factorization of r in R , i.e., if there is no representation of r as product st such that neither s nor t is a
unit (see IsUnit (56.5.1)). Each prime element (see IsPrime (56.5.8)) is irreducible.

Example
gap> IsIrreducibleRingElement(Integers, 2);

true

56.5.8 IsPrime

▷ IsPrime([R,]r) (operation)

IsPrime returns true if the ring element r is a prime in the ring R , if given, and otherwise in its
default ring (see DefaultRing (56.1.3)). If r is not a prime then false is returned.

An element r of a ring R is called prime if for each pair s and t such that r divides st the el-
ement r divides either s or t. Note that there are rings where not every irreducible element (see
IsIrreducibleRingElement (56.5.7)) is a prime.

56.5.9 Factors

▷ Factors([R,]r) (operation)

Factors returns the factorization of the ring element r in the ring R , if given, and otherwise
in its default ring (see DefaultRing (56.1.3)). The factorization is returned as a list of primes (see
IsPrime (56.5.8)). Each element in the list is a standard associate (see StandardAssociate (56.5.5))
except the first one, which is multiplied by a unit as necessary to have Product(Factors(R, r)

GAP - Reference Manual 934

) = r . This list is usually also sorted, thus smallest prime factors come first. If r is a unit or zero,
Factors(R, r) = [r].

Example
gap> x:= Indeterminate(GF(2), "x");;

gap> pol:= x^2+x+1;

x^2+x+Z(2)^0

gap> Factors(pol);

[x^2+x+Z(2)^0]

gap> Factors(PolynomialRing(GF(4)), pol);

[x+Z(2^2), x+Z(2^2)^2]

56.5.10 PadicValuation

▷ PadicValuation(r, p) (operation)

PadicValuation is the operation to compute the p-adic valuation of a ring element r .

56.6 Euclidean Rings

56.6.1 IsEuclideanRing

▷ IsEuclideanRing(R) (Category)

A ring R is called a Euclidean ring if it is a non-trivial commutative ring and there exists a func-
tion δ , called the Euclidean degree, from R−{0R} into a well-ordered set (such as the nonnegative
integers), such that for every pair r ∈ R and s ∈ R−{0R} there exists an element q such that either
r − qs = 0R or δ (r − qs) < δ (s). In GAP the Euclidean degree δ is implicitly built into a ring and
cannot be changed. The existence of this division with remainder implies that the Euclidean algorithm
can be applied to compute a greatest common divisor of two elements, which in turn implies that R is
a unique factorization ring.

Example
gap> IsEuclideanRing(GaussianIntegers);

true

56.6.2 EuclideanDegree

▷ EuclideanDegree([R,]r) (operation)

EuclideanDegree returns the Euclidean degree of the ring element r in the ring R , if given, and
otherwise in its default ring (see DefaultRing (56.1.3)).

The ring R must be a Euclidean ring (see IsEuclideanRing (56.6.1)).
Example

gap> EuclideanDegree(GaussianIntegers, 3);

9

GAP - Reference Manual 935

56.6.3 EuclideanQuotient

▷ EuclideanQuotient([R,]r, m) (operation)

EuclideanQuotient returns the Euclidean quotient of the ring elements r and m in the ring R , if
given, and otherwise in their default ring (see DefaultRing (56.1.3)).

The ring R must be a Euclidean ring (see IsEuclideanRing (56.6.1)), otherwise an error is sig-
nalled.

Example
gap> EuclideanQuotient(8, 3);

2

56.6.4 EuclideanRemainder

▷ EuclideanRemainder([R,]r, m) (operation)

EuclideanRemainder returns the Euclidean remainder of the ring element r modulo the ring
element m in the ring R , if given, and otherwise in their default ring (see DefaultRing (56.1.3)).

The ring R must be a Euclidean ring (see IsEuclideanRing (56.6.1)), otherwise an error is sig-
nalled.

Example
gap> EuclideanRemainder(8, 3);

2

56.6.5 QuotientRemainder

▷ QuotientRemainder([R,]r, m) (operation)

QuotientRemainder returns the Euclidean quotient and the Euclidean remainder of the ring ele-
ments r and m in the ring R , if given, and otherwise in their default ring (see DefaultRing (56.1.3)).
The result is a pair of ring elements.

The ring R must be a Euclidean ring (see IsEuclideanRing (56.6.1)), otherwise an error is sig-
nalled.

Example
gap> QuotientRemainder(GaussianIntegers, 8, 3);

[3, -1]

56.7 Gcd and Lcm

56.7.1 Gcd

▷ Gcd([R,]r1, r2, ...) (function)

▷ Gcd([R,]list) (function)

Gcd returns the greatest common divisor of the ring elements r1 , r2 , . . . resp. of the ring elements
in the list list in the ring R , if given, and otherwise in their default ring, see DefaultRing (56.1.3).

Gcd returns the standard associate (see StandardAssociate (56.5.5)) of the greatest common
divisors.

GAP - Reference Manual 936

A divisor of an element r in the ring R is an element d ∈ R such that r is a multiple of d. A common
divisor of the elements r1,r2, . . . in the ring R is an element d ∈ R which is a divisor of each r1,r2,
A greatest common divisor d in addition has the property that every other common divisor of r1,r2, . . .
is a divisor of d.

Note that this in particular implies the following: For the zero element z of R , we have Gcd(r,

z) = Gcd(z, r) = StandardAssociate(r) and Gcd(z, z) = z.
Example

gap> Gcd(Integers, [10, 15]);

5

56.7.2 GcdOp

▷ GcdOp([R,]r, s) (operation)

GcdOp is the operation to compute the greatest common divisor of two ring elements r , s in the
ring R or in their default ring.

56.7.3 GcdRepresentation

▷ GcdRepresentation([R,]r1, r2, ...) (function)

▷ GcdRepresentation([R,]list) (function)

GcdRepresentation returns a representation of the greatest common divisor of the ring elements
r1 , r2 , . . . resp. of the ring elements in the list list in the Euclidean ring R , if given, and otherwise
in their default ring, see DefaultRing (56.1.3).

A representation of the gcd g of the elements r1,r2, . . . of a ring R is a list of ring elements s1,s2, . . .
of R, such that g = s1r1 + s2r2 + · · ·. Such representations do not exist in all rings, but they do exist in
Euclidean rings (see IsEuclideanRing (56.6.1)), which can be shown using the Euclidean algorithm,
which in fact can compute those coefficients.

Example
gap> a:= Indeterminate(Rationals, "a");;

gap> GcdRepresentation(a^2+1, a^3+1);

[-1/2*a^2-1/2*a+1/2, 1/2*a+1/2]

Gcdex (14.3.5) provides similar functionality over the integers.

56.7.4 GcdRepresentationOp

▷ GcdRepresentationOp([R,]r, s) (operation)

GcdRepresentationOp is the operation to compute the representation of the greatest common
divisor of two ring elements r , s in the Euclidean ring R or in their default ring, respectively.

56.7.5 ShowGcd

▷ ShowGcd(a, b) (function)

GAP - Reference Manual 937

This function takes two elements a and b of an Euclidean ring and returns their greatest common
divisor. It will print out the steps performed by the Euclidean algorithm, as well as the rearrangement
of these steps to express the gcd as a ring combination of a and b .

Example
gap> ShowGcd(192,42);

192=4*42 + 24

42=1*24 + 18

24=1*18 + 6

18=3*6 + 0

The Gcd is 6

= 1*24 -1*18

= -1*42 + 2*24

= 2*192 -9*42

6

56.7.6 Lcm

▷ Lcm([R,]r1, r2, ...) (function)

▷ Lcm([R,]list) (function)

Lcm returns the least common multiple of the ring elements r1 , r2 , . . . resp. of the ring elements
in the list list in the ring R , if given, and otherwise in their default ring, see DefaultRing (56.1.3).

Lcm returns the standard associate (see StandardAssociate (56.5.5)) of the least common mul-
tiples.

A least common multiple of the elements r1,r2, . . . of the ring R is an element m that is a multiple
of r1,r2, . . ., and every other multiple of these elements is a multiple of m.

Note that this in particular implies the following: For the zero element z of R , we have Lcm(r,

z) = Lcm(z, r) = StandardAssociate(r) and Lcm(z, z) = z.

56.7.7 LcmOp

▷ LcmOp([R,]r, s) (operation)

LcmOp is the operation to compute the least common multiple of two ring elements r , s in the ring
R or in their default ring, respectively.

The default methods for this uses the equality lcm(m,n) = m∗n/gcd(m,n) (see GcdOp (56.7.2)).

56.7.8 QuotientMod

▷ QuotientMod([R,]r, s, m) (operation)

QuotientMod returns a quotient of the ring elements r and s modulo the ring element m in the
ring R , if given, and otherwise in their default ring, see DefaultRing (56.1.3).

R must be a Euclidean ring (see IsEuclideanRing (56.6.1)) so that EuclideanRemainder

(56.6.4) can be applied. If no modular quotient exists, fail is returned.
A quotient q of r and s modulo m is an element of R such that qs = r modulo m, i.e., such that

qs −r is divisible by m in R and that q is either zero (if r is divisible by m) or the Euclidean degree
of q is strictly smaller than the Euclidean degree of m .

GAP - Reference Manual 938

Example
gap> QuotientMod(7, 2, 3);

2

56.7.9 PowerMod

▷ PowerMod([R,]r, e, m) (operation)

PowerMod returns the e-th power of the ring element r modulo the ring element m in the ring R ,
if given, and otherwise in their default ring, see DefaultRing (56.1.3). e must be an integer.

R must be a Euclidean ring (see IsEuclideanRing (56.6.1)) so that EuclideanRemainder

(56.6.4) can be applied to its elements.
If e is positive the result is r^e modulo m . If e is negative then PowerMod first tries to find the

inverse of r modulo m , i.e., i such that ir = 1 modulo m . If the inverse does not exist an error is
signalled. If the inverse does exist PowerMod returns PowerMod(R, i, -e, m).

PowerMod reduces the intermediate values modulo m , improving performance drastically when e

is large and m small.
Example

gap> PowerMod(12, 100000, 7);

2

56.7.10 InterpolatedPolynomial

▷ InterpolatedPolynomial(R, x, y) (operation)

InterpolatedPolynomial returns, for given lists x , y of elements in a ring R of the same length
n the unique polynomial of degree less than n which has value y [i] at x [i], for all i ∈ {1, . . . ,n}. Note
that the elements in x must be distinct.

Example
gap> InterpolatedPolynomial(Integers, [1, 2, 3], [5, 7, 0]);

-9/2*x^2+31/2*x-6

56.8 Homomorphisms of Rings

A ring homomorphism is a mapping between two rings that respects addition and multiplication.
Currently GAP supports ring homomorphisms between finite rings (using straightforward meth-

ods) and ring homomorphisms with additional structures, where source and range are in fact algebras
and where also the linear structure is respected, see 62.10.

56.8.1 RingGeneralMappingByImages

▷ RingGeneralMappingByImages(R, S, gens, imgs) (operation)

is a general mapping from the ring A to the ring S . This general mapping is defined by mapping
the entries in the list gens (elements of R) to the entries in the list imgs (elements of S), and taking
the additive and multiplicative closure.

GAP - Reference Manual 939

gens need not generate R as a ring, and if the specification does not define an additive and multi-
plicative mapping then the result will be multivalued. Hence, in general it is not a mapping.

56.8.2 RingHomomorphismByImages

▷ RingHomomorphismByImages(R, S, gens, imgs) (function)

RingHomomorphismByImages returns the ring homomorphism with source R and range S that is
defined by mapping the list gens of generators of R to the list imgs of images in S .

If gens does not generate R or if the homomorphism does not exist (i.e., if mapping the generators
describes only a multi-valued mapping) then fail is returned.

One can avoid the checks by calling RingHomomorphismByImagesNC (56.8.3), and one can con-
struct multi-valued mappings with RingGeneralMappingByImages (56.8.1).

56.8.3 RingHomomorphismByImagesNC

▷ RingHomomorphismByImagesNC(R, S, gens, imgs) (operation)

RingHomomorphismByImagesNC is the operation that is called by the function
RingHomomorphismByImages (56.8.2). Its methods may assume that gens generates R as a
ring and that the mapping of gens to imgs defines a ring homomorphism. Results are unpredictable
if these conditions do not hold.

For creating a possibly multi-valued mapping from R to S that respects addition and multiplica-
tion, RingGeneralMappingByImages (56.8.1) can be used.

56.8.4 NaturalHomomorphismByIdeal

▷ NaturalHomomorphismByIdeal(R, I) (operation)

is the homomorphism of rings provided by the natural projection map of R onto the quotient ring
R /I . This map can be used to take pre-images in the original ring from elements in the quotient.

56.9 Small Rings

GAP contains a library of small (order up to 15) rings.

56.9.1 SmallRing

▷ SmallRing(s, n) (function)

returns the n-th ring of order s from a library of rings of small order (up to isomorphism).
Example

gap> R:=SmallRing(8,37);

<ring with 3 generators>

gap> ShowMultiplicationTable(R);

* | 0*a c b b+c a a+c a+b a+b+c

------+--

0*a | 0*a 0*a 0*a 0*a 0*a 0*a 0*a 0*a

GAP - Reference Manual 940

c | 0*a 0*a 0*a 0*a 0*a 0*a 0*a 0*a

b | 0*a 0*a 0*a 0*a b b b b

b+c | 0*a 0*a 0*a 0*a b b b b

a | 0*a c b b+c a+b a+b+c a a+c

a+c | 0*a c b b+c a+b a+b+c a a+c

a+b | 0*a c b b+c a a+c a+b a+b+c

a+b+c | 0*a c b b+c a a+c a+b a+b+c

56.9.2 NumberSmallRings

▷ NumberSmallRings(s) (function)

returns the number of (nonisomorphic) rings of order s stored in the library of small rings.
Example

gap> List([1..15],NumberSmallRings);

[1, 2, 2, 11, 2, 4, 2, 52, 11, 4, 2, 22, 2, 4, 4]

56.9.3 Subrings

▷ Subrings(R) (attribute)

for a finite ring R this function returns a list of all subrings of R .
Example

gap> Subrings(SmallRing(8,37));

[<ring with 1 generator>, <ring with 1 generator>,

<ring with 1 generator>, <ring with 1 generator>,

<ring with 1 generator>, <ring with 1 generator>,

<ring with 2 generators>, <ring with 2 generators>,

<ring with 2 generators>, <ring with 2 generators>,

<ring with 3 generators>]

56.9.4 Ideals

▷ Ideals(R) (attribute)

for a finite ring R this function returns a list of all ideals of R .
Example

gap> Ideals(SmallRing(8,37));

[<ring with 1 generator>, <ring with 1 generator>,

<ring with 1 generator>, <ring with 2 generators>,

<ring with 3 generators>]

56.9.5 DirectSum

▷ DirectSum(R{, S}) (function)

▷ DirectSumOp(list, expl) (operation)

These functions construct the direct sum of the rings given as arguments. DirectSum takes an
arbitrary positive number of arguments and calls the operation DirectSumOp, which takes exactly two

GAP - Reference Manual 941

arguments, namely a nonempty list of rings and one of these rings. (This somewhat strange syntax
allows the method selection to choose a reasonable method for special cases.)

Example
gap> DirectSum(SmallRing(5,1),SmallRing(5,1));

<ring with 2 generators>

56.9.6 RingByStructureConstants

▷ RingByStructureConstants(moduli, sctable[, nameinfo]) (function)

returns a ring R whose additive group is described by the list moduli , with multiplication defined
by the structure constants table sctable . The optional argument nameinfo can be used to prescribe
names for the elements of the canonical generators of R; it can be either a string name (then name1,
name2 etc. are chosen) or a list of strings which are then chosen.

Chapter 57

Modules

57.1 Generating modules

57.1.1 IsLeftOperatorAdditiveGroup

▷ IsLeftOperatorAdditiveGroup(D) (Category)

A domain D lies in IsLeftOperatorAdditiveGroup if it is an additive group that is closed under
scalar multiplication from the left, and such that λ ∗(x+y) = λ ∗x+λ ∗y for all scalars λ and elements
x,y ∈ D (here and below by scalars we mean elements of a domain acting on D from left or right as
appropriate).

57.1.2 IsLeftModule

▷ IsLeftModule(M) (Category)

A domain M lies in IsLeftModule if it lies in IsLeftOperatorAdditiveGroup, and the set of
scalars forms a ring, and (λ +µ)∗x= λ ∗x+µ ∗x for scalars λ ,µ and x∈M, and scalar multiplication
satisfies λ ∗ (µ ∗ x) = (λ ∗µ)∗ x for scalars λ ,µ and x ∈ M.

Example
gap> V:= FullRowSpace(Rationals, 3);

(Rationals^3)

gap> IsLeftModule(V);

true

57.1.3 GeneratorsOfLeftOperatorAdditiveGroup

▷ GeneratorsOfLeftOperatorAdditiveGroup(D) (attribute)

returns a list of elements of D that generates D as a left operator additive group.

57.1.4 GeneratorsOfLeftModule

▷ GeneratorsOfLeftModule(M) (attribute)

returns a list of elements of M that generate M as a left module.

942

GAP - Reference Manual 943

Example
gap> V:= FullRowSpace(Rationals, 3);;

gap> GeneratorsOfLeftModule(V);

[[1, 0, 0], [0, 1, 0], [0, 0, 1]]

57.1.5 AsLeftModule

▷ AsLeftModule(R, D) (operation)

if the domain D forms an additive group and is closed under left multiplication by the elements of
R , then AsLeftModule(R, D) returns the domain D viewed as a left module.

Example
gap> coll:= [[0*Z(2),0*Z(2)], [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)]];

[[0*Z(2), 0*Z(2)], [Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0],

[Z(2)^0, Z(2)^0]]

gap> AsLeftModule(GF(2), coll);

<vector space of dimension 2 over GF(2)>

57.1.6 IsRightOperatorAdditiveGroup

▷ IsRightOperatorAdditiveGroup(D) (Category)

A domain D lies in IsRightOperatorAdditiveGroup if it is an additive group that is closed
under scalar multiplication from the right, and such that (x+y)∗λ = x∗λ +y∗λ for all scalars λ and
elements x,y ∈ D.

57.1.7 IsRightModule

▷ IsRightModule(M) (Category)

A domain M lies in IsRightModule if it lies in IsRightOperatorAdditiveGroup, and the set of
scalars forms a ring, and x∗(λ +µ)= x∗λ +x∗µ for scalars λ ,µ and x∈M, and scalar multiplication
satisfies (x∗µ)∗λ = x∗ (µ ∗λ) for scalars λ ,µ and x ∈ M.

57.1.8 GeneratorsOfRightOperatorAdditiveGroup

▷ GeneratorsOfRightOperatorAdditiveGroup(D) (attribute)

returns a list of elements of D that generates D as a right operator additive group.

57.1.9 GeneratorsOfRightModule

▷ GeneratorsOfRightModule(M) (attribute)

returns a list of elements of M that generate M as a left module.

GAP - Reference Manual 944

57.1.10 LeftModuleByGenerators

▷ LeftModuleByGenerators(R, gens[, zero]) (operation)

returns the left module over R generated by gens .
Example

gap> coll:= [[Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)]];;

gap> V:= LeftModuleByGenerators(GF(16), coll);

<vector space over GF(2^4), with 3 generators>

57.1.11 LeftActingDomain

▷ LeftActingDomain(D) (attribute)

Let D be an external left set, that is, D is closed under the action of a domain L by multiplication
from the left. Then L can be accessed as value of LeftActingDomain for D .

57.2 Submodules

57.2.1 Submodule

▷ Submodule(M, gens[, "basis"]) (function)

is the left module generated by the collection gens , with parent module M . If the string "basis"

is entered as the third argument then the submodule of M is created for which the list gens is known
to be a list of basis vectors; in this case, it is not checked whether gens really is linearly independent
and whether all in gens lie in M .

Example
gap> coll:= [[Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)]];;

gap> V:= LeftModuleByGenerators(GF(16), coll);;

gap> W:= Submodule(V, [coll[1], coll[2]]);

<vector space over GF(2^4), with 2 generators>

gap> Parent(W) = V;

true

57.2.2 SubmoduleNC

▷ SubmoduleNC(M, gens[, "basis"]) (function)

SubmoduleNC does the same as Submodule (57.2.1), except that it does not check whether all in
gens lie in M .

57.2.3 ClosureLeftModule

▷ ClosureLeftModule(M, m) (operation)

is the left module generated by the left module generators of M and the element m .

GAP - Reference Manual 945

Example
gap> V:= LeftModuleByGenerators(Rationals, [[1, 0, 0], [0, 1, 0]]);

<vector space over Rationals, with 2 generators>

gap> ClosureLeftModule(V, [1, 1, 1]);

<vector space over Rationals, with 3 generators>

57.2.4 TrivialSubmodule

▷ TrivialSubmodule(M) (attribute)

returns the zero submodule of M .
Example

gap> V:= LeftModuleByGenerators(Rationals, [[1, 0, 0], [0, 1, 0]]);;

gap> TrivialSubmodule(V);

<vector space of dimension 0 over Rationals>

57.3 Free Modules

57.3.1 IsFreeLeftModule

▷ IsFreeLeftModule(M) (Category)

A left module is free as module if it is isomorphic to a direct sum of copies of its left acting
domain.

Free left modules can have bases.
The characteristic (see Characteristic (31.10.1)) of a free left module is defined as the charac-

teristic of its left acting domain (see LeftActingDomain (57.1.11)).

57.3.2 FreeLeftModule

▷ FreeLeftModule(R, gens[, zero][, "basis"]) (function)

FreeLeftModule(R, gens) is the free left module over the ring R , generated by the vectors
in the collection gens .

If there are three arguments, a ring R and a collection gens and an element zero , then
FreeLeftModule(R, gens, zero) is the R-free left module generated by gens , with zero ele-
ment zero .

If the last argument is the string "basis" then the vectors in gens are known to form a basis of
the free module.

It should be noted that the generators gens must be vectors, that is, they must support an addi-
tion and a scalar action of R via left multiplication. (See also Section 31.3 for the general mean-
ing of “generators” in GAP.) In particular, FreeLeftModule is not an equivalent of commands
such as FreeGroup (37.2.1) in the sense of a constructor of a free group on abstract generators.
Such a construction seems to be unnecessary for vector spaces, for that one can use for exam-
ple row spaces (see FullRowSpace (61.9.4)) in the finite dimensional case and polynomial rings
(see PolynomialRing (66.15.1)) in the infinite dimensional case. Moreover, the definition of a “nat-
ural” addition for elements of a given magma (for example a permutation group) is possible via the
construction of magma rings (see Chapter 65).

GAP - Reference Manual 946

Example
gap> V:= FreeLeftModule(Rationals, [[1, 0, 0], [0, 1, 0]], "basis");

<vector space of dimension 2 over Rationals>

57.3.3 Dimension

▷ Dimension(M) (attribute)

A free left module has dimension n if it is isomorphic to a direct sum of n copies of its left acting
domain.

(We do not mark Dimension as invariant under isomorphisms since we want to call
UseIsomorphismRelation (31.13.3) also for free left modules over different left acting domains.)

Example
gap> V:= FreeLeftModule(Rationals, [[1, 0], [0, 1], [1, 1]]);;

gap> Dimension(V);

2

57.3.4 IsFiniteDimensional

▷ IsFiniteDimensional(M) (property)

is true if M is a free left module that is finite dimensional over its left acting domain, and false

otherwise.
Example

gap> V:= FreeLeftModule(Rationals, [[1, 0], [0, 1], [1, 1]]);;

gap> IsFiniteDimensional(V);

true

57.3.5 UseBasis

▷ UseBasis(V, gens) (operation)

The vectors in the list gens are known to form a basis of the free left module V . UseBasis stores
information in V that can be derived form this fact, namely

• gens are stored as left module generators if no such generators were bound (this is useful
especially if V is an algebra),

• the dimension of V is stored.
Example

gap> V:= FreeLeftModule(Rationals, [[1, 0], [0, 1], [1, 1]]);;

gap> UseBasis(V, [[1, 0], [1, 1]]);

gap> V; # now V knows its dimension

<vector space of dimension 2 over Rationals>

57.3.6 IsRowModule

▷ IsRowModule(V) (property)

A row module is a free left module whose elements are row vectors.

GAP - Reference Manual 947

57.3.7 IsMatrixModule

▷ IsMatrixModule(V) (property)

A matrix module is a free left module whose elements are matrices.

57.3.8 IsFullRowModule

▷ IsFullRowModule(M) (property)

A full row module is a module Rn, for a ring R and a nonnegative integer n.
More precisely, a full row module is a free left module over a ring R such that the elements are

row vectors of the same length n and with entries in R and such that the dimension is equal to n.
Several functions delegate their tasks to full row modules, for example Iterator (30.8.1) and

Enumerator (30.3.2).

57.3.9 FullRowModule

▷ FullRowModule(R, n) (function)

is the row module R^n , for a ring R and a nonnegative integer n .
Example

gap> V:= FullRowModule(Integers, 5);

(Integers^5)

57.3.10 IsFullMatrixModule

▷ IsFullMatrixModule(M) (property)

A full matrix module is a module R[m,n], for a ring R and two nonnegative integers m, n.
More precisely, a full matrix module is a free left module over a ring R such that the elements are

m by n matrices with entries in R and such that the dimension is equal to mn.

57.3.11 FullMatrixModule

▷ FullMatrixModule(R, m, n) (function)

is the matrix module R^[m,n], for a ring R and nonnegative integers m and n .
Example

gap> FullMatrixModule(GaussianIntegers, 3, 6);

(GaussianIntegers^[3, 6])

Chapter 58

Fields and Division Rings

A division ring is a ring (see Chapter 56) in which every non-zero element has an inverse. The most
important class of division rings are the commutative ones, which are called fields.

GAP supports finite fields (see Chapter 59) and abelian number fields (see Chapter 60), in partic-
ular the field of rationals (see Chapter 17).

This chapter describes the general GAP functions for fields and division rings.
If a field F is a subfield of a commutative ring C , C can be considered as a vector space over the

(left) acting domain F (see Chapter 61). In this situation, we call F the field of definition of C .
Each field in GAP is represented as a vector space over a subfield (see IsField (58.1.2)), thus

each field is in fact a field extension in a natural way, which is used by functions such as Norm (58.3.4)
and Trace (58.3.5) (see 58.3).

58.1 Generating Fields

58.1.1 IsDivisionRing

▷ IsDivisionRing(D) (Category)

A division ring in GAP is a nontrivial associative algebra D with a multiplicative inverse for each
nonzero element. In GAP every division ring is a vector space over a division ring (possibly over
itself). Note that being a division ring is thus not a property that a ring can get, because a ring is
usually not represented as a vector space.

The field of coefficients is stored as the value of the attribute LeftActingDomain (57.1.11) of D .

58.1.2 IsField

▷ IsField(D) (filter)

A field is a commutative division ring (see IsDivisionRing (58.1.1) and IsCommutative

(35.4.9)).
Example

gap> IsField(GaloisField(16)); # the field with 16 elements

true

gap> IsField(Rationals); # the field of rationals

true

948

GAP - Reference Manual 949

gap> q:= QuaternionAlgebra(Rationals);; # noncommutative division ring

gap> IsField(q); IsDivisionRing(q);

false

true

gap> mat:= [[1]];; a:= Algebra(Rationals, [mat]);;

gap> IsDivisionRing(a); # algebra not constructed as a division ring

false

58.1.3 Field (for several generators)

▷ Field(z, ...) (function)

▷ Field([F,]list) (function)

Field returns the smallest field K that contains all the elements z , . . ., or the smallest field K that
contains all elements in the list list . If no subfield F is given, K is constructed as a field over itself,
i.e. the left acting domain of K is K. Called with a field F and a list list , Field constructs the field
generated by F and the elements in list , as a vector space over F .

58.1.4 DefaultField (for several generators)

▷ DefaultField(z, ...) (function)

▷ DefaultField(list) (function)

DefaultField returns a field K that contains all the elements z , . . ., or a field K that contains all
elements in the list list .

This field need not be the smallest field in which the elements lie, cf. Field (58.1.3). For example,
for elements from cyclotomic fields DefaultField returns the smallest cyclotomic field in which the
elements lie, but the elements may lie in a smaller number field which is not a cyclotomic field.

Example
gap> Field(Z(4)); Field([Z(4), Z(8)]); # finite fields

GF(2^2)

GF(2^6)

gap> Field(E(9)); Field(CF(4), [E(9)]); # abelian number fields

CF(9)

AsField(GaussianRationals, CF(36))

gap> f1:= Field(EB(5)); f2:= DefaultField(EB(5));

NF(5,[1, 4])

CF(5)

gap> f1 = f2; IsSubset(f2, f1);

false

true

58.1.5 DefaultFieldByGenerators

▷ DefaultFieldByGenerators([z, ...]) (operation)

returns the default field containing the elements z , This field may be bigger than the smallest
field containing these elements.

GAP - Reference Manual 950

58.1.6 GeneratorsOfDivisionRing

▷ GeneratorsOfDivisionRing(D) (attribute)

generators with respect to addition, multiplication, and taking inverses (the identity cannot be
omitted ...)

58.1.7 GeneratorsOfField

▷ GeneratorsOfField(F) (attribute)

generators with respect to addition, multiplication, and taking inverses. This attribute is the same
as GeneratorsOfDivisionRing (58.1.6).

58.1.8 DivisionRingByGenerators

▷ DivisionRingByGenerators([F,]gens) (operation)

▷ FieldByGenerators([F,]gens) (operation)

Called with a field F and a list gens of scalars, DivisionRingByGenerators returns the division
ring over F generated by gens . The unary version returns the division ring as vector space over
FieldOverItselfByGenerators(gens).

FieldByGenerators is just a synonym for DivisionRingByGenerators.

58.1.9 AsDivisionRing

▷ AsDivisionRing([F,]C) (operation)

▷ AsField([F,]C) (operation)

If the collection C can be regarded as a division ring then AsDivisionRing(C) is the division
ring that consists of the elements of C , viewed as a vector space over its prime field; otherwise fail

is returned.
In the second form, if F is a division ring contained in C then the returned division ring is viewed

as a vector space over F .
AsField is just a synonym for AsDivisionRing.

58.2 Subfields of Fields

58.2.1 Subfield

▷ Subfield(F, gens) (function)

▷ SubfieldNC(F, gens) (function)

Constructs the subfield of F generated by gens .

GAP - Reference Manual 951

58.2.2 FieldOverItselfByGenerators

▷ FieldOverItselfByGenerators([z, ...]) (operation)

This operation is needed for the call of Field (58.1.3) or FieldByGenerators (58.1.8) without
explicitly given subfield, in order to construct a left acting domain for such a field.

58.2.3 PrimitiveElement

▷ PrimitiveElement(D) (attribute)

is an element of D that generates D as a division ring together with the left acting domain.

58.2.4 PrimeField

▷ PrimeField(D) (attribute)

The prime field of a division ring D is the smallest field which is contained in D . For example, the
prime field of any field in characteristic zero is isomorphic to the field of rational numbers.

58.2.5 IsPrimeField

▷ IsPrimeField(D) (property)

A division ring is a prime field if it is equal to its prime field (see PrimeField (58.2.4)).

58.2.6 DegreeOverPrimeField

▷ DegreeOverPrimeField(F) (attribute)

is the degree of the field F over its prime field (see PrimeField (58.2.4)).

58.2.7 DefiningPolynomial

▷ DefiningPolynomial(F) (attribute)

is the defining polynomial of the field F as a field extension over the left acting domain of F . A
root of the defining polynomial can be computed with RootOfDefiningPolynomial (58.2.8).

58.2.8 RootOfDefiningPolynomial

▷ RootOfDefiningPolynomial(F) (attribute)

is a root in the field F of its defining polynomial as a field extension over the left acting domain of
F . The defining polynomial can be computed with DefiningPolynomial (58.2.7).

GAP - Reference Manual 952

58.2.9 FieldExtension

▷ FieldExtension(F, poly) (operation)

is the field obtained on adjoining a root of the irreducible polynomial poly to the field F .

58.2.10 Subfields

▷ Subfields(F) (attribute)

is the set of all subfields of the field F .

58.3 Galois Action

Let L > K be a field extension of finite degree. Then to each element α ∈ L, we can associate a
K-linear mapping ϕα on L, and for a fixed K-basis of L, we can associate to α the matrix Mα (over
K) of this mapping.

The norm of α is defined as the determinant of Mα , the trace of α is defined as the trace of Mα ,
the minimal polynomial µα and the trace polynomial χα of α are defined as the minimal polyno-
mial (see 66.8.1) and the characteristic polynomial (see CharacteristicPolynomial (24.13.1) and
TracePolynomial (58.3.3)) of Mα . (Note that µα depends only on K whereas χα depends on both L
and K.)

Thus norm and trace of α are elements of K, and µα and χα are polynomials over K, χα being a
power of µα , and the degree of χα equals the degree of the field extension L > K.

The conjugates of α in L are those roots of χα (with multiplicity) that lie in L; note that if only L
is given, there is in general no way to access the roots outside L.

Analogously, the Galois group of the extension L > K is defined as the group of all those field
automorphisms of L that fix K pointwise.

If L > K is a Galois extension then the conjugates of α are all roots of χα (with multiplicity), the
set of conjugates equals the roots of µα , the norm of α equals the product and the trace of α equals
the sum of the conjugates of α , and the Galois group in the sense of the above definition equals the
usual Galois group,

Note that MinimalPolynomial(F, z) is a polynomial over F , whereas Norm(F, z) is the
norm of the element z in F w.r.t. the field extension F > LeftActingDomain(F).

The default methods for field elements are as follows. MinimalPolynomial (66.8.1) solves a sys-
tem of linear equations, TracePolynomial (58.3.3) computes the appropriate power of the minimal
polynomial, Norm (58.3.4) and Trace (58.3.5) values are obtained as coefficients of the characteristic
polynomial, and Conjugates (58.3.6) uses the factorization of the characteristic polynomial.

For elements in finite fields and cyclotomic fields, one wants to do the computations in a different
way since the field extensions in question are Galois extensions, and the Galois groups are well-known
in these cases. More general, if a field is in the category IsFieldControlledByGaloisGroup

then the default methods are the following. Conjugates (58.3.6) returns the sorted list of images
(with multiplicity) of the element under the Galois group, Norm (58.3.4) computes the product of
the conjugates, Trace (58.3.5) computes the sum of the conjugates, TracePolynomial (58.3.3) and
MinimalPolynomial (66.8.1) compute the product of linear factors x− c with c ranging over the
conjugates and the set of conjugates, respectively.

GAP - Reference Manual 953

58.3.1 GaloisGroup (of field)

▷ GaloisGroup(F) (attribute)

The Galois group of a field F is the group of all field automorphisms of F that fix the subfield
K =LeftActingDomain(F) pointwise.

Note that the field extension F > K need not be a Galois extension.
Example

gap> g:= GaloisGroup(AsField(GF(2^2), GF(2^12)));;

gap> Size(g); IsCyclic(g);

6

true

gap> h:= GaloisGroup(CF(60));;

gap> Size(h); IsAbelian(h);

16

true

58.3.2 MinimalPolynomial (over a field)

▷ MinimalPolynomial(F, z[, ind]) (operation)

returns the minimal polynomial of z over the field F . This is a generator of the ideal in F [x]
of all polynomials which vanish on z . (This definition is consistent with the general definition of
MinimalPolynomial (66.8.1) for rings.)

Example
gap> MinimalPolynomial(Rationals, E(8));

x_1^4+1

gap> MinimalPolynomial(CF(4), E(8));

x_1^2+(-E(4))

gap> MinimalPolynomial(CF(8), E(8));

x_1+(-E(8))

58.3.3 TracePolynomial

▷ TracePolynomial(L, K, z[, inum]) (operation)

returns the polynomial that is the product of (X − c) where c runs over the conjugates of z in
the field extension L over K . The polynomial is returned as a univariate polynomial over K in the
indeterminate number inum (defaulting to 1).

This polynomial is sometimes also called the characteristic polynomial of z w.r.t. the field ex-
tension L > K . Therefore methods are installed for CharacteristicPolynomial (24.13.1) that call
TracePolynomial in the case of field extensions.

Example
gap> TracePolynomial(CF(8), Rationals, E(8));

x_1^4+1

gap> TracePolynomial(CF(16), Rationals, E(8));

x_1^8+2*x_1^4+1

GAP - Reference Manual 954

58.3.4 Norm

▷ Norm([L, [K,]]z) (attribute)

Norm returns the norm of the field element z . If two fields L and K are given then the norm is
computed w.r.t. the field extension L>K , if only one field L is given then LeftActingDomain(L)

is taken as default for the subfield K , and if no field is given then DefaultField(z) is taken as
default for L .

58.3.5 Traces of field elements and matrices

▷ Trace([L, [K,]]z) (attribute)

▷ Trace(mat) (attribute)

Trace returns the trace of the field element z . If two fields L and K are given then the trace is
computed w.r.t. the field extension L > K , if only one field L is given then LeftActingDomain(L

) is taken as default for the subfield K , and if no field is given then DefaultField(z) is taken as
default for L .

The trace of a matrix is the sum of its diagonal entries. Note that this is not compatible with the
definition of Trace for field elements, so the one-argument version is not suitable when matrices shall
be regarded as field elements.

58.3.6 Conjugates

▷ Conjugates([L, [K,]]z) (attribute)

Conjugates returns the list of conjugates of the field element z . If two fields L and K are
given then the conjugates are computed w.r.t. the field extension L>K , if only one field L is given
then LeftActingDomain(L) is taken as default for the subfield K , and if no field is given then
DefaultField(z) is taken as default for L .

The result list will contain duplicates if z lies in a proper subfield of L , or of the default field of z ,
respectively. The result list need not be sorted.

Example
gap> Norm(E(8)); Norm(CF(8), E(8));

1

1

gap> Norm(CF(8), CF(4), E(8));

-E(4)

gap> Norm(AsField(CF(4), CF(8)), E(8));

-E(4)

gap> Trace(E(8)); Trace(CF(8), CF(8), E(8));

0

E(8)

gap> Conjugates(CF(8), E(8));

[E(8), E(8)^3, -E(8), -E(8)^3]

gap> Conjugates(CF(8), CF(4), E(8));

[E(8), -E(8)]

gap> Conjugates(CF(16), E(8));

[E(8), E(8)^3, -E(8), -E(8)^3, E(8), E(8)^3, -E(8), -E(8)^3]

GAP - Reference Manual 955

58.3.7 NormalBase

▷ NormalBase(F[, elm]) (attribute)

Let F be a field that is a Galois extension of its subfield LeftActingDomain(F). Then
NormalBase returns a list of elements in F that form a normal basis of F , that is, a vector space
basis that is closed under the action of the Galois group (see GaloisGroup (58.3.1)) of F .

If a second argument elm is given, it is used as a hint for the algorithm to find a normal basis with
the algorithm described in [Art73].

Example
gap> NormalBase(CF(5));

[-E(5), -E(5)^2, -E(5)^3, -E(5)^4]

gap> NormalBase(CF(4));

[1/2-1/2*E(4), 1/2+1/2*E(4)]

gap> NormalBase(GF(3^6));

[Z(3^6)^2, Z(3^6)^6, Z(3^6)^18, Z(3^6)^54, Z(3^6)^162, Z(3^6)^486]

gap> NormalBase(GF(GF(8), 2));

[Z(2^6), Z(2^6)^8]

Chapter 59

Finite Fields

This chapter describes the special functionality which exists in GAP for finite fields and their elements.
Of course the general functionality for fields (see Chapter 58) also applies to finite fields.

In the following, the term finite field element is used to denote GAP objects in the category IsFFE

(59.1.1), and finite field means a field consisting of such elements. Note that in principle we must
distinguish these fields from (abstract) finite fields. For example, the image of the embedding of a
finite field into a field of rational functions in the same characteristic is of course a finite field but its
elements are not in IsFFE (59.1.1), and in fact GAP does currently not support such fields.

Special representations exist for row vectors and matrices over small finite fields (see sections 23.3
and 24.14).

59.1 Finite Field Elements

59.1.1 IsFFE

▷ IsFFE(obj) (Category)

▷ IsFFECollection(obj) (Category)

▷ IsFFECollColl(obj) (Category)

▷ IsFFECollCollColl(obj) (Category)

Objects in the category IsFFE are used to implement elements of finite fields. In this manual,
the term finite field element always means an object in IsFFE. All finite field elements of the same
characteristic form a family in GAP (see 13.1). Any collection of finite field elements of the same
characteristic (see IsCollection (30.1.1)) lies in IsFFECollection, and a collection of such col-
lections (e.g., a matrix of finite field elements) lies in IsFFECollColl.

59.1.2 Z (for field size)

▷ Z(p^d) (function)

▷ Z(p, d) (function)

For creating elements of a finite field, the function Z can be used. The call Z(p,d) (alternatively
Z(p^d)) returns the designated generator of the multiplicative group of the finite field with p^d

elements. p must be a prime integer.

956

GAP - Reference Manual 957

GAP can represent elements of all finite fields GF(p^d) such that either (1) p^d <= 65536 (in
which case an extremely efficient internal representation is used); (2) d = 1, (in which case, for large
p , the field is represented using the machinery of residue class rings (see section 14.5) or (3) if the
Conway polynomial of degree d over the field with p elements is known, or can be computed (see
ConwayPolynomial (59.5.1)).

If you attempt to construct an element of GF(p^d) for which d > 1 and the relevant Conway
polynomial is not known, and not necessarily easy to find (see IsCheapConwayPolynomial (59.5.2)),
then GAP will stop with an error and enter the break loop. If you leave this break loop by entering
return; GAP will attempt to compute the Conway polynomial, which may take a very long time.

The root returned by Z is a generator of the multiplicative group of the finite field with p^d ele-
ments, which is cyclic. The order of the element is of course p^d −1. The p^d −1 different powers
of the root are exactly the nonzero elements of the finite field.

Thus all nonzero elements of the finite field with p^d elements can be entered as Z(p^d)^i. Note
that this is also the form that GAP uses to output those elements when they are stored in the internal
representation. In larger fields, it is more convenient to enter and print elements as linear combinations
of powers of the primitive element, see section 59.6.

The additive neutral element is 0 * Z(p). It is different from the integer 0 in subtle ways. First
IsInt(0 * Z(p)) (see IsInt (14.2.1)) is false and IsFFE(0 * Z(p)) (see IsFFE (59.1.1))
is true, whereas it is just the other way around for the integer 0.

The multiplicative neutral element is Z(p)^0. It is different from the integer 1 in subtle ways.
First IsInt(Z(p)^0) (see IsInt (14.2.1)) is false and IsFFE(Z(p)^0) (see IsFFE (59.1.1))
is true, whereas it is just the other way around for the integer 1. Also 1+1 is 2, whereas, e.g., Z(2)^0
+ Z(2)^0 is 0 * Z(2).

The various roots returned by Z for finite fields of the same characteristic are compatible in the
following sense. If the field GF(p,n) is a subfield of the field GF(p,m), i.e., n divides m, then
Z(p n) =Z(pm)(p

m−1)/(p n−1). Note that this is the simplest relation that may hold between a generator
of GF(p,n) and GF(p,m), since Z(p n) is an element of order pm−1 and Z(pm) is an element of order
p n − 1. This is achieved by choosing Z(p) as the smallest primitive root modulo p and Z(p^n) as
a root of the n-th Conway polynomial (see ConwayPolynomial (59.5.1)) of characteristic p . Those
polynomials were defined by J. H. Conway, and many of them were computed by R. A. Parker.

Example
gap> a:= Z(32);

Z(2^5)

gap> a+a;

0*Z(2)

gap> a*a;

Z(2^5)^2

gap> b := Z(3,12);

z

gap> b*b;

z2

gap> b+b;

2z

gap> Print(b^100,"\n");

Z(3)^0+Z(3,12)^5+Z(3,12)^6+2*Z(3,12)^8+Z(3,12)^10+Z(3,12)^11

Example
gap> Z(11,40);

Error, Conway Polynomial 11^40 will need to computed and might be slow

GAP - Reference Manual 958

return to continue called from

FFECONWAY.ZNC(p, d) called from

<function>(<arguments>) called from read-eval-loop

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can 'return;' to continue

brk>

59.1.3 IsLexOrderedFFE

▷ IsLexOrderedFFE(ffe) (Category)

▷ IsLogOrderedFFE(ffe) (Category)

Elements of finite fields can be compared using the operators = and <. The call a = b returns
true if and only if the finite field elements a and b are equal. Furthermore a < b tests whether a is
smaller than b . The exact behaviour of this comparison depends on which of two categories the field
elements belong to:

Finite field elements are ordered in GAP (by \< (31.11.1)) first by characteristic and then by
their degree (i.e. the sizes of the smallest fields containing them). Amongst irreducible elements of a
given field, the ordering depends on which of these categories the elements of the field belong to (all
irreducible elements of a given field should belong to the same one)

Elements in IsLexOrderedFFE are ordered lexicographically by their coefficients with respect to
the canonical basis of the field.

Elements in IsLogOrderedFFE are ordered according to their discrete logarithms with respect to
the PrimitiveElement (58.2.3) attribute of the field. For the comparison of finite field elements with
other GAP objects, see 4.13.

Example
gap> Z(16)^10 = Z(4)^2; # illustrates embedding of GF(4) in GF(16)

true

gap> 0 < 0*Z(101);

true

gap> Z(256) > Z(101);

false

gap> Z(2,20) < Z(2,20)^2; # this illustrates the lexicographic ordering

false

59.2 Operations for Finite Field Elements

Since finite field elements are scalars, the operations Characteristic (31.10.1), One (31.10.2), Zero
(31.10.3), Inverse (31.10.8), AdditiveInverse (31.10.9), Order (31.10.10) can be applied to them
(see 31.10). Contrary to the situation with other scalars, Order (31.10.10) is defined also for the zero
element in a finite field, with value 0.

Example
gap> Characteristic(Z(16)^10); Characteristic(Z(9)^2);

2

3

gap> Characteristic([Z(4), Z(8)]);

2

GAP - Reference Manual 959

gap> One(Z(9)); One(0*Z(4));

Z(3)^0

Z(2)^0

gap> Inverse(Z(9)); AdditiveInverse(Z(9));

Z(3^2)^7

Z(3^2)^5

gap> Order(Z(9)^7);

8

59.2.1 DegreeFFE (for a FFE)

▷ DegreeFFE(z) (attribute)

▷ DegreeFFE(vec) (method)

▷ DegreeFFE(mat) (method)

DegreeFFE returns the degree of the smallest finite field F containing the element z , respectively
all elements of the row vector vec over a finite field (see 23), or the matrix mat over a finite field
(see 24).

Example
gap> DegreeFFE(Z(16)^10);

2

gap> DegreeFFE(Z(16)^11);

4

gap> DegreeFFE([Z(2^13), Z(2^10)]);

130

59.2.2 LogFFE

▷ LogFFE(z, r) (operation)

LogFFE returns the discrete logarithm of the element z in a finite field with respect to the root r .
An error is signalled if z is zero. fail is returned if z is not a power of r .

The discrete logarithm of the element z with respect to the root r is the smallest nonnegative
integer i such that r i = z holds.

Example
gap> LogFFE(Z(409)^116, Z(409)); LogFFE(Z(409)^116, Z(409)^2);

116

58

59.2.3 IntFFE

▷ IntFFE(z) (attribute)

▷ Int(z) (method)

IntFFE returns the integer corresponding to the element z , which must lie in a finite prime field.
That is, IntFFE returns the smallest nonnegative integer i such that i * One(z) = z .

GAP - Reference Manual 960

The correspondence between elements from a finite prime field of characteristic p (for p < 216)
and the integers between 0 and p− 1 is defined by choosing Z(p) the element corresponding to the
smallest primitive root mod p (see PrimitiveRootMod (15.3.4)).

IntFFE is installed as a method for the operation Int (14.2.3) with argument a finite field element.
Example

gap> IntFFE(Z(13)); PrimitiveRootMod(13);

2

2

gap> IntFFE(Z(409));

21

gap> IntFFE(Z(409)^116); 21^116 mod 409;

311

311

See also IntFFESymm (59.2.4).

59.2.4 IntFFESymm (for a FFE)

▷ IntFFESymm(z) (attribute)

▷ IntFFESymm(vec) (attribute)

For a finite prime field element z , IntFFESymm returns the corresponding integer of smallest
absolute value. That is, IntFFESymm returns the integer i of smallest absolute value such that i *

One(z) = z holds.
For a vector vec of FFEs, the operation returns the result of applying IntFFESymm to every entry

of the vector.
The correspondence between elements from a finite prime field of characteristic p (for p < 216)

and the integers between −p/2 and p/2 is defined by choosing Z(p) the element corresponding to the
smallest positive primitive root mod p (see PrimitiveRootMod (15.3.4)) and reducing results to the
−p/2..p/2 range.

Example
gap> IntFFE(Z(13)^2);IntFFE(Z(13)^3);

4

8

gap> IntFFESymm(Z(13)^2);IntFFESymm(Z(13)^3);

4

-5

See also IntFFE (59.2.3)

59.2.5 IntVecFFE

▷ IntVecFFE(vecffe) (operation)

is the list of integers corresponding to the vector vecffe of finite field elements in a prime field
(see IntFFE (59.2.3)).

GAP - Reference Manual 961

59.2.6 AsInternalFFE

▷ AsInternalFFE(ffe) (attribute)

return an internal FFE equal to ffe if one exists, otherwise fail

59.2.7 RootFFE

▷ RootFFE(F, z, k) (operation)

RootFFE returns a finite field element r from F whose k-th power is z . If no such element exists
then fail is returned.

59.3 Creating Finite Fields

59.3.1 DefaultField (for finite field elements)

▷ DefaultField(list) (function)

▷ DefaultRing(list) (function)

DefaultField and DefaultRing for finite field elements are defined to return the smallest field
containing the given elements.

Example
gap> DefaultField([Z(4), Z(4)^2]); DefaultField([Z(4), Z(8)]);

GF(2^2)

GF(2^6)

59.3.2 GaloisField (for field size)

▷ GaloisField(p^d) (function)

▷ GF(p^d) (function)

▷ GaloisField(p, d) (function)

▷ GF(p, d) (function)

▷ GaloisField(subfield, d) (function)

▷ GF(subfield, d) (function)

▷ GaloisField(p, pol) (function)

▷ GF(p, pol) (function)

▷ GaloisField(subfield, pol) (function)

▷ GF(subfield, pol) (function)

GaloisField returns a finite field. It takes two arguments. The form GaloisField(p, d

), where p , d are integers, can also be given as GaloisField(p^d). GF is an abbreviation for
GaloisField.

The first argument specifies the subfield S over which the new field is to be taken. It can be a prime
integer or a finite field. If it is a prime p , the subfield is the prime field of this characteristic.

The second argument specifies the extension. It can be an integer or an irreducible polynomial
over the field S. If it is an integer d , the new field is constructed as the polynomial extension w.r.t.

GAP - Reference Manual 962

the Conway polynomial (see ConwayPolynomial (59.5.1)) of degree d over S. If it is an irreducible
polynomial pol over S, the new field is constructed as polynomial extension of S with this polynomial;
in this case, pol is accessible as the value of DefiningPolynomial (58.2.7) for the new field, and a
root of pol in the new field is accessible as the value of RootOfDefiningPolynomial (58.2.8).

Note that the subfield over which a field was constructed determines over which field
the Galois group, conjugates, norm, trace, minimal polynomial, and trace polynomial are
computed (see GaloisGroup (58.3.1), Conjugates (58.3.6), Norm (58.3.4), Trace (58.3.5),
MinimalPolynomial (58.3.2), TracePolynomial (58.3.3)).

The field is regarded as a vector space (see 61) over the given subfield, so this determines the
dimension and the canonical basis of the field.

Example
gap> f1:= GF(2^4);

GF(2^4)

gap> Size(GaloisGroup (f1));

4

gap> BasisVectors(Basis(f1));

[Z(2)^0, Z(2^4), Z(2^4)^2, Z(2^4)^3]

gap> f2:= GF(GF(4), 2);

AsField(GF(2^2), GF(2^4))

gap> Size(GaloisGroup(f2));

2

gap> BasisVectors(Basis(f2));

[Z(2)^0, Z(2^4)]

59.3.3 PrimitiveRoot

▷ PrimitiveRoot(F) (attribute)

A primitive root of a finite field is a generator of its multiplicative group. A primitive root is always
a primitive element (see PrimitiveElement (58.2.3)), the converse is in general not true.

Example
gap> f:= GF(3^5);

GF(3^5)

gap> PrimitiveRoot(f);

Z(3^5)

59.4 Frobenius Automorphisms

59.4.1 FrobeniusAutomorphism

▷ FrobeniusAutomorphism(F) (attribute)

returns the Frobenius automorphism of the finite field F as a field homomorphism (see 32.12).
The Frobenius automorphism f of a finite field F of characteristic p is the function that takes each

element z of F to its p-th power. Each field automorphism of F is a power of f . Thus f is a generator
for the Galois group of F relative to the prime field of F , and an appropriate power of f is a generator
of the Galois group of F over a subfield (see GaloisGroup (58.3.1)).

GAP - Reference Manual 963

Example
gap> f := GF(16);

GF(2^4)

gap> x := FrobeniusAutomorphism(f);

FrobeniusAutomorphism(GF(2^4))

gap> Z(16) ^ x;

Z(2^4)^2

gap> x^2;

FrobeniusAutomorphism(GF(2^4))^2

The image of an element z under the i-th power of f is computed as the pi-th power of z. The prod-
uct of the i-th power and the j-th power of f is the k-th power of f , where k is i j mod Size(F)−1.
The zeroth power of f is IdentityMapping(F).

59.5 Conway Polynomials

59.5.1 ConwayPolynomial

▷ ConwayPolynomial(p, n) (function)

is the Conway polynomial of the finite field GF(pn) as polynomial over the prime field in charac-
teristic p .

The Conway polynomial Φn,p of GF(pn) is defined by the following properties.
First define an ordering of polynomials of degree n over GF(p), as follows. f = ∑

n
i=0(−1)i fixi is

smaller than g = ∑
n
i=0(−1)igixi if and only if there is an index m ≤ n such that fi = gi for all i > m,

and f̃m < g̃m, where c̃ denotes the integer value in {0,1, . . . , p−1} that is mapped to c ∈ GF(p) under
the canonical epimorphism that maps the integers onto GF(p).

Φn,p is primitive over GF(p) (see IsPrimitivePolynomial (66.4.12)). That is, Φn,p is irre-
ducible, monic, and is the minimal polynomial of a primitive root of GF(pn).

For all divisors d of n the compatibility condition Φd,p(x
pn−1
pm−1) ≡ 0 (mod Φn,p(x)) holds. (That

is, the appropriate power of a zero of Φn,p is a zero of the Conway polynomial Φd,p.)
With respect to the ordering defined above, Φn,p shall be minimal.
The computation of Conway polynomials can be time consuming. Therefore, GAP comes with a

list of precomputed polynomials. If a requested polynomial is not stored then GAP prints a warning
and computes it by checking all polynomials in the order defined above for the defining conditions.
If n is not a prime this is probably a very long computation. (Some previously known polynomi-
als with prime n are not stored in GAP because they are quickly recomputed.) Use the function
IsCheapConwayPolynomial (59.5.2) to check in advance if ConwayPolynomial will give a result
after a short time.

Note that primitivity of a polynomial can only be checked if GAP can factorize pn − 1. A suffi-
ciently new version of the FactInt package contains many precomputed factors of such numbers from
various factorization projects.

See [Lüb03] for further information on known Conway polynomials.
An interactive overview of the Conway polynomials known to GAP is provided by the func-

tion BrowseConwayPolynomials from the GAP package Browse, see BrowseGapData (Browse:
BrowseGapData).

GAP - Reference Manual 964

If pol is a result returned by ConwayPolynomial the command Print(InfoText(pol));

will print some info on the origin of that particular polynomial.
For some purposes it may be enough to have any primitive polynomial for an extension of a finite

field instead of the Conway polynomial, see RandomPrimitivePolynomial (59.5.3) below.
Example

gap> ConwayPolynomial(2, 5); ConwayPolynomial(3, 7);

x_1^5+x_1^2+Z(2)^0

x_1^7-x_1^2+Z(3)^0

59.5.2 IsCheapConwayPolynomial

▷ IsCheapConwayPolynomial(p, n) (function)

Returns true if ConwayPolynomial(p, n) will give a result in reasonable time. This is either
the case when this polynomial is pre-computed, or if n is a not too big prime.

59.5.3 RandomPrimitivePolynomial

▷ RandomPrimitivePolynomial(F, n[, i]) (function)

For a finite field F and a positive integer n this function returns a primitive polynomial of degree
n over F , that is a zero of this polynomial has maximal multiplicative order |F |n−1. If i is given then
the polynomial is written in variable number i over F (see Indeterminate (66.1.1)), the default for
i is 1.

Alternatively, F can be a prime power q, then F = GF(q) is assumed. And i can be a univariate
polynomial over F , then the result is a polynomial in the same variable.

This function can work for much larger fields than those for which Conway polynomials are avail-
able, of course GAP must be able to factorize |F |n −1.

59.6 Printing, Viewing and Displaying Finite Field Elements

59.6.1 ViewObj (for a ffe)

▷ ViewObj(z) (method)

▷ PrintObj(z) (method)

▷ Display(z) (method)

Internal finite field elements are viewed, printed and displayed (see section 6.3 for the distinc-
tions between these operations) as powers of the primitive root (except for the zero element, which is
displayed as 0 times the primitive root). Thus:

Example
gap> Z(2);

Z(2)^0

gap> Z(5)+Z(5);

Z(5)^2

gap> Z(256);

Z(2^8)

GAP - Reference Manual 965

gap> Zero(Z(125));

0*Z(5)

Note also that each element is displayed as an element of the field it generates, and that the size of
the field is printed as a power of the characteristic.

Elements of larger fields are printed as GAP expressions which represent them as sums of low
powers of the primitive root:

Example
gap> Print(Z(3,20)^100, "\n");

2*Z(3,20)^2+Z(3,20)^4+Z(3,20)^6+Z(3,20)^7+2*Z(3,20)^9+2*Z(3,20)^10+2*Z\

(3,20)^12+2*Z(3,20)^15+2*Z(3,20)^17+Z(3,20)^18+Z(3,20)^19

gap> Print(Z(3,20)^((3^20-1)/(3^10-1)), "\n");

Z(3,20)^3+2*Z(3,20)^4+2*Z(3,20)^7+Z(3,20)^8+2*Z(3,20)^10+Z(3,20)^11+2*\

Z(3,20)^12+Z(3,20)^13+Z(3,20)^14+Z(3,20)^15+Z(3,20)^17+Z(3,20)^18+2*Z(\

3,20)^19

gap> Z(3,20)^((3^20-1)/(3^10-1)) = Z(3,10);

true

Note from the second example above, that these elements are not always written over the smallest
possible field before being output.

The ViewObj and Display methods for these large finite field elements use a slightly more com-
pact, but mathematically equivalent representation. The primitive root is represented by z; its i-th
power by zi and k times this power by kzi.

Example
gap> Z(5,20)^100;

z2+z4+4z5+2z6+z8+3z9+4z10+3z12+z13+2z14+4z16+3z17+2z18+2z19

This output format is always used for Display. For ViewObj it is used only if its length would not
exceed the number of lines specified in the user preference ViewLength (see SetUserPreference

(3.2.3). Longer output is replaced by <<an element of GF(p, d)>>.
Example

gap> Z(2,409)^100000;

<<an element of GF(2, 409)>>

gap> Display(Z(2,409)^100000);

z2+z3+z4+z5+z6+z7+z8+z10+z11+z13+z17+z19+z20+z29+z32+z34+z35+z37+z40+z\

45+z46+z48+z50+z52+z54+z55+z58+z59+z60+z66+z67+z68+z70+z74+z79+z80+z81\

+z82+z83+z86+z91+z93+z94+z95+z96+z98+z99+z100+z101+z102+z104+z106+z109\

+z110+z112+z114+z115+z118+z119+z123+z126+z127+z135+z138+z140+z142+z143\

+z146+z147+z154+z159+z161+z162+z168+z170+z171+z173+z174+z181+z182+z183\

+z186+z188+z189+z192+z193+z194+z195+z196+z199+z202+z204+z205+z207+z208\

+z209+z211+z212+z213+z214+z215+z216+z218+z219+z220+z222+z223+z229+z232\

+z235+z236+z237+z238+z240+z243+z244+z248+z250+z251+z256+z258+z262+z263\

+z268+z270+z271+z272+z274+z276+z282+z286+z288+z289+z294+z295+z299+z300\

+z301+z302+z303+z304+z305+z306+z307+z308+z309+z310+z312+z314+z315+z316\

+z320+z321+z322+z324+z325+z326+z327+z330+z332+z335+z337+z338+z341+z344\

+z348+z350+z352+z353+z356+z357+z358+z360+z362+z364+z366+z368+z372+z373\

+z374+z375+z378+z379+z380+z381+z383+z384+z386+z387+z390+z395+z401+z402\

+z406+z408

GAP - Reference Manual 966

Finally note that elements of large prime fields are stored and displayed as residue class objects.
So

Example
gap> Z(65537);

ZmodpZObj(3, 65537)

Chapter 60

Abelian Number Fields

An abelian number field is a field in characteristic zero that is a finite dimensional normal extension of
its prime field such that the Galois group is abelian. In GAP, one implementation of abelian number
fields is given by fields of cyclotomic numbers (see Chapter 18). Note that abelian number fields can
also be constructed with the more general AlgebraicExtension (67.1.1), a discussion of advantages
and disadvantages can be found in 18.6. The functions described in this chapter have been developed
for fields whose elements are in the filter IsCyclotomic (18.1.3), they may or may not work well for
abelian number fields consisting of other kinds of elements.

Throughout this chapter, Qn will denote the cyclotomic field generated by the field Q of rationals
together with n-th roots of unity.

In 60.1, constructors for abelian number fields are described, 60.2 introduces operations for abelian
number fields, 60.3 deals with the vector space structure of abelian number fields, and 60.4 describes
field automorphisms of abelian number fields,

60.1 Construction of Abelian Number Fields

Besides the usual construction using Field (58.1.3) or DefaultField (18.1.16) (see DefaultField
(18.1.16)), abelian number fields consisting of cyclotomics can be created with CyclotomicField

(60.1.1) and AbelianNumberField (60.1.2).

60.1.1 CyclotomicField (for (subfield and) conductor)

▷ CyclotomicField([subfield,]n) (function)

▷ CyclotomicField([subfield,]gens) (function)

▷ CF([subfield,]n) (function)

▷ CF([subfield,]gens) (function)

The first version creates the n-th cyclotomic field Qn. The second version creates the smallest
cyclotomic field containing the elements in the list gens . In both cases the field can be generated as
an extension of a designated subfield subfield (cf. 60.3).

CyclotomicField can be abbreviated to CF, this form is used also when GAP prints cyclotomic
fields.

Fields constructed with the one argument version of CF are stored in the global list
CYCLOTOMIC_FIELDS, so repeated calls of CF just fetch these field objects after they have been created

967

GAP - Reference Manual 968

once.
Example

gap> CyclotomicField(5); CyclotomicField([Sqrt(3)]);

CF(5)

CF(12)

gap> CF(CF(3), 12); CF(CF(4), [Sqrt(7)]);

AsField(CF(3), CF(12))

AsField(GaussianRationals, CF(28))

60.1.2 AbelianNumberField

▷ AbelianNumberField(n, stab) (function)

▷ NF(n, stab) (function)

For a positive integer n and a list stab of prime residues modulo n , AbelianNumberField re-
turns the fixed field of the group described by stab (cf. GaloisStabilizer (60.2.5)), in the n-th
cyclotomic field. AbelianNumberField is mainly thought for internal use and for printing fields in a
standard way; Field (58.1.3) (cf. also 60.2) is probably more suitable if one knows generators of the
field in question.

AbelianNumberField can be abbreviated to NF, this form is used also when GAP prints abelian
number fields.

Fields constructed with NF are stored in the global list ABELIAN_NUMBER_FIELDS, so repeated
calls of NF just fetch these field objects after they have been created once.

Example
gap> NF(7, [1]);

CF(7)

gap> f:= NF(7, [1, 2]); Sqrt(-7); Sqrt(-7) in f;

NF(7,[1, 2, 4])

E(7)+E(7)^2-E(7)^3+E(7)^4-E(7)^5-E(7)^6

true

60.1.3 GaussianRationals

▷ GaussianRationals (global variable)

▷ IsGaussianRationals(obj) (Category)

GaussianRationals is the field Q4 = Q(
√
−1) of Gaussian rationals, as a set of cyclotomic

numbers, see Chapter 18 for basic operations. This field can also be obtained as CF(4) (see
CyclotomicField (60.1.1)).

The filter IsGaussianRationals returns true for the GAP object GaussianRationals, and
false for all other GAP objects.

(For details about the field of rationals, see Chapter Rationals (17.1.1).)
Example

gap> CF(4) = GaussianRationals;

true

gap> Sqrt(-1) in GaussianRationals;

true

GAP - Reference Manual 969

60.2 Operations for Abelian Number Fields

For operations for elements of abelian number fields, e.g., Conductor (18.1.7) or ComplexConjugate
(18.5.2), see Chapter 18.

60.2.1 Factors (for polynomials over abelian number fields)

▷ Factors(F) (method)

Factoring of polynomials over abelian number fields consisting of cyclotomics works in principle
but is not very efficient if the degree of the field extension is large.

Example
gap> x:= Indeterminate(CF(5));

x_1

gap> Factors(PolynomialRing(Rationals), x^5-1);

[x_1-1, x_1^4+x_1^3+x_1^2+x_1+1]

gap> Factors(PolynomialRing(CF(5)), x^5-1);

[x_1-1, x_1+(-E(5)), x_1+(-E(5)^2), x_1+(-E(5)^3), x_1+(-E(5)^4)]

60.2.2 IsNumberField

▷ IsNumberField(F) (property)

returns true if the field F is a finite dimensional extension of a prime field in characteristic zero,
and false otherwise.

60.2.3 IsAbelianNumberField

▷ IsAbelianNumberField(F) (property)

returns true if the field F is a number field (see IsNumberField (60.2.2)) that is a Galois exten-
sion of the prime field, with abelian Galois group (see GaloisGroup (58.3.1)).

60.2.4 IsCyclotomicField

▷ IsCyclotomicField(F) (property)

returns true if the field F is a cyclotomic field, i.e., an abelian number field
(see IsAbelianNumberField (60.2.3)) that can be generated by roots of unity.

Example
gap> IsNumberField(CF(9)); IsAbelianNumberField(Field([ER(3)]));

true

true

gap> IsNumberField(GF(2));

false

gap> IsCyclotomicField(CF(9));

true

gap> IsCyclotomicField(Field([Sqrt(-3)]));

true

GAP - Reference Manual 970

gap> IsCyclotomicField(Field([Sqrt(3)]));

false

60.2.5 GaloisStabilizer

▷ GaloisStabilizer(F) (attribute)

Let F be an abelian number field (see IsAbelianNumberField (60.2.3)) with conductor n,
say. (This means that the n-th cyclotomic field is the smallest cyclotomic field containing F ,
see Conductor (18.1.7).) GaloisStabilizer returns the set of all those integers k in the range
[1..n] such that the field automorphism induced by raising n-th roots of unity to the k-th power acts
trivially on F .

Example
gap> r5:= Sqrt(5);

E(5)-E(5)^2-E(5)^3+E(5)^4

gap> GaloisCyc(r5, 4) = r5; GaloisCyc(r5, 2) = r5;

true

false

gap> GaloisStabilizer(Field([r5]));

[1, 4]

60.3 Integral Bases of Abelian Number Fields

Each abelian number field is naturally a vector space over Q. Moreover, if the abelian number field
F contains the n-th cyclotomic field Qn then F is a vector space over Qn. In GAP, each field object
represents a vector space object over a certain subfield S, which depends on the way F was constructed.
The subfield S can be accessed as the value of the attribute LeftActingDomain (57.1.11).

The return values of NF (60.1.2) and of the one argument versions of CF (60.1.1) represent vector
spaces over Q, and the return values of the two argument version of CF (60.1.1) represent vector spaces
over the field that is given as the first argument. For an abelian number field F and a subfield S of F ,
a GAP object representing F as a vector space over S can be constructed using AsField (58.1.9).

Let F be the cyclotomic field Qn, represented as a vector space over the subfield S . If S is the
cyclotomic field Qm, with m a divisor of n, then CanonicalBasis(F) returns the Zumbroich basis
of F relative to S , which consists of the roots of unity E(n)^i where i is an element of the list
ZumbroichBase(n, m) (see ZumbroichBase (60.3.1)). If S is an abelian number field that is not
a cyclotomic field then CanonicalBasis(F) returns a normal S-basis of F , i.e., a basis that is
closed under the field automorphisms of F .

Let F be the abelian number field NF(n, stab), with conductor n , that is itself not a cyclo-
tomic field, represented as a vector space over the subfield S . If S is the cyclotomic field Qm, with m a
divisor of n, then CanonicalBasis(F) returns the Lenstra basis of F relative to S that consists of
the sums of roots of unity described by LenstraBase(n, stab, stab, m) (see LenstraBase

(60.3.2)). If S is an abelian number field that is not a cyclotomic field then CanonicalBasis(F)

returns a normal S-basis of F .
Example

gap> f:= CF(8);; # a cycl. field over the rationals

gap> b:= CanonicalBasis(f);; BasisVectors(b);

[1, E(8), E(4), E(8)^3]

GAP - Reference Manual 971

gap> Coefficients(b, Sqrt(-2));

[0, 1, 0, 1]

gap> f:= AsField(CF(4), CF(8));; # a cycl. field over a cycl. field

gap> b:= CanonicalBasis(f);; BasisVectors(b);

[1, E(8)]

gap> Coefficients(b, Sqrt(-2));

[0, 1+E(4)]

gap> f:= AsField(Field([Sqrt(-2)]), CF(8));;

gap> # a cycl. field over a non-cycl. field

gap> b:= CanonicalBasis(f);; BasisVectors(b);

[1/2+1/2*E(8)-1/2*E(8)^2-1/2*E(8)^3,

1/2-1/2*E(8)+1/2*E(8)^2+1/2*E(8)^3]

gap> Coefficients(b, Sqrt(-2));

[E(8)+E(8)^3, E(8)+E(8)^3]

gap> f:= Field([Sqrt(-2)]); # a non-cycl. field over the rationals

NF(8,[1, 3])

gap> b:= CanonicalBasis(f);; BasisVectors(b);

[1, E(8)+E(8)^3]

gap> Coefficients(b, Sqrt(-2));

[0, 1]

60.3.1 ZumbroichBase

▷ ZumbroichBase(n, m) (function)

Let n and m be positive integers, such that m divides n . ZumbroichBase returns the set of ex-
ponents i for which E(n)^i belongs to the (generalized) Zumbroich basis of the cyclotomic field Qn,
viewed as a vector space over Qm.

This basis is defined as follows. Let P denote the set of prime divisors of n , n = ∏p∈P pνp , and
m = ∏p∈P pµp with µp ≤ νp. Let el = E(l) for any positive integer l, and {e j

n1} j∈J ⊗{ek
n2
}k∈K =

{e j
n1 · ek

n2
} j∈J,k∈K .

Then the basis is

Bn,m =
⊗
p∈P

νp−1⊗
k=µp

{e j
pk+1} j∈Jk,p

where Jk,p =

{0} ; k = 0, p = 2
{0,1} ; k > 0, p = 2
{1, . . . , p−1} ; k = 0, p ̸= 2
{−(p−1)/2, . . . ,(p−1)/2} ; k > 0, p ̸= 2

Bn,1 is equal to the basis of Qn over the rationals which is introduced in [Zum89]. Also the
conversion of arbitrary sums of roots of unity into its basis representation, and the reduction to the
minimal cyclotomic field are described in this thesis. (Note that the notation here is slightly different
from that there.)

Bn,m consists of roots of unity, it is an integral basis (that is, exactly the integral elements in Qn

have integral coefficients w.r.t. Bn,m, cf. IsIntegralCyclotomic (18.1.4)), it is a normal basis for
squarefree n and closed under complex conjugation for odd n.

GAP - Reference Manual 972

Note: For n ≡ 2 (mod 4), we have ZumbroichBase(n, 1) = 2 * ZumbroichBase(n/2,

1) and List(ZumbroichBase(n, 1), x -> E(n)^x) = List(ZumbroichBase(n/2, 1),

x -> E(n/2)^x).
Example

gap> ZumbroichBase(15, 1); ZumbroichBase(12, 3);

[1, 2, 4, 7, 8, 11, 13, 14]

[0, 3]

gap> ZumbroichBase(10, 2); ZumbroichBase(32, 4);

[2, 4, 6, 8]

[0, 1, 2, 3, 4, 5, 6, 7]

60.3.2 LenstraBase

▷ LenstraBase(n, stabilizer, super, m) (function)

Let n and m be positive integers such that m divides n , stabilizer be a list of prime residues
modulo n , which describes a subfield of the n-th cyclotomic field (see GaloisStabilizer (60.2.5)),
and super be a list representing a supergroup of the group given by stabilizer .

LenstraBase returns a list [b1,b2, . . . ,bk] of lists, each bi consisting of integers such that the
elements ∑ j∈biE(n)

j form a basis of the abelian number field NF(n, stabilizer), as a vector
space over the m-th cyclotomic field (see AbelianNumberField (60.1.2)).

This basis is an integral basis, that is, exactly the integral elements in NF(n, stabilizer)

have integral coefficients. (For details about this basis, see [Bre97].)
If possible then the result is chosen such that the group described by super acts on it, consistently

with the action of stabilizer , i.e., each orbit of super is a union of orbits of stabilizer . (A usual
case is super = stabilizer , so there is no additional condition.

Note: The bi are in general not sets, since for stabilizer = super , the first entry is always
an element of ZumbroichBase(n, m); this property is used by NF (60.1.2) and Coefficients

(61.6.3) (see 60.3).
stabilizer must not contain the stabilizer of a proper cyclotomic subfield of the n-th cyclotomic

field, i.e., the result must describe a basis for a field with conductor n .
Example

gap> LenstraBase(24, [1, 19], [1, 19], 1);

[[1, 19], [8], [11, 17], [16]]

gap> LenstraBase(24, [1, 19], [1, 5, 19, 23], 1);

[[1, 19], [5, 23], [8], [16]]

gap> LenstraBase(15, [1, 4], PrimeResidues(15), 1);

[[1, 4], [2, 8], [7, 13], [11, 14]]

The first two results describe two bases of the field Q3(
√

6), the third result describes a normal
basis of Q3(

√
5).

60.4 Galois Groups of Abelian Number Fields

The field automorphisms of the cyclotomic field Qn (see Chapter 18) are given by the linear maps ∗k
on Qn that are defined by E(n)∗k =E(n)k, where 1 ≤ k < n and Gcd(n,k) = 1 hold (see GaloisCyc

GAP - Reference Manual 973

(18.5.1)). Note that this action is not equal to exponentiation of cyclotomics, i.e., for general cyclo-
tomics z, z∗k is different from zk.

(In GAP, the image of a cyclotomic z under ∗k can be computed as GaloisCyc(z,k).)
Example

gap> (E(5) + E(5)^4)^2; GaloisCyc(E(5) + E(5)^4, 2);

-2*E(5)-E(5)^2-E(5)^3-2*E(5)^4

E(5)^2+E(5)^3

For Gcd(n,k) ̸= 1, the map E(n) 7→ E(n)k does not define a field automorphism of Qn but only a
Q-linear map.

Example
gap> GaloisCyc(E(5)+E(5)^4, 5); GaloisCyc((E(5)+E(5)^4)^2, 5);

2

-6

60.4.1 GaloisGroup (for abelian number fields)

▷ GaloisGroup(F) (method)

The Galois group Gal(Qn,Q) of the field extension Qn/Q is isomorphic to the group (Z/nZ)∗ of
prime residues modulo n, via the isomorphism (Z/nZ)∗ → Gal(Qn,Q) that is defined by k+ nZ 7→
(z 7→ z∗k).

The Galois group of the field extension Qn/L with any abelian number field L ⊆ Qn is sim-
ply the factor group of Gal(Qn,Q) modulo the stabilizer of L, and the Galois group of L/L′, with
L′ an abelian number field contained in L, is the subgroup in this group that stabilizes L′. These
groups are easily described in terms of (Z/nZ)∗. Generators of (Z/nZ)∗ can be computed using
GeneratorsPrimeResidues (15.2.4).

In GAP, a field extension L/L′ is given by the field object L with LeftActingDomain (57.1.11)
value L′ (see 60.3).

Example
gap> f:= CF(15);

CF(15)

gap> g:= GaloisGroup(f);

<group with 2 generators>

gap> Size(g); IsCyclic(g); IsAbelian(g);

8

false

true

gap> Action(g, NormalBase(f), OnPoints);

Group([(1,6)(2,4)(3,8)(5,7), (1,4,3,7)(2,8,5,6)])

The following example shows Galois groups of a cyclotomic field and of a proper subfield that is
not a cyclotomic field.

Example
gap> gens1:= GeneratorsOfGroup(GaloisGroup(CF(5)));

[ANFAutomorphism(CF(5), 2)]

gap> gens2:= GeneratorsOfGroup(GaloisGroup(Field(Sqrt(5))));

[ANFAutomorphism(NF(5,[1, 4]), 2)]

GAP - Reference Manual 974

gap> Order(gens1[1]); Order(gens2[1]);

4

2

gap> Sqrt(5)^gens1[1] = Sqrt(5)^gens2[1];

true

The following example shows the Galois group of a cyclotomic field over a non-cyclotomic field.
Example

gap> g:= GaloisGroup(AsField(Field([Sqrt(5)]), CF(5)));

<group of size 2 with 1 generator>

gap> gens:= GeneratorsOfGroup(g);

[ANFAutomorphism(AsField(NF(5,[1, 4]), CF(5)), 4)]

gap> x:= last[1];; x^2;

IdentityMapping(AsField(NF(5,[1, 4]), CF(5)))

60.4.2 ANFAutomorphism

▷ ANFAutomorphism(F, k) (function)

Let F be an abelian number field and k be an integer that is coprime to the conductor (see
Conductor (18.1.7)) of F . Then ANFAutomorphism returns the automorphism of F that is defined
as the linear extension of the map that raises each root of unity in F to its k-th power.

Example
gap> f:= CF(25);

CF(25)

gap> alpha:= ANFAutomorphism(f, 2);

ANFAutomorphism(CF(25), 2)

gap> alpha^2;

ANFAutomorphism(CF(25), 4)

gap> Order(alpha);

20

gap> E(5)^alpha;

E(5)^2

60.5 Gaussians

60.5.1 GaussianIntegers

▷ GaussianIntegers (global variable)

GaussianIntegers is the ring Z[
√
−1] of Gaussian integers. This is a subring of the cyclotomic

field GaussianRationals (60.1.3).

60.5.2 IsGaussianIntegers

▷ IsGaussianIntegers(obj) (Category)

is the defining category for the domain GaussianIntegers (60.5.1).

Chapter 61

Vector Spaces

61.1 IsLeftVectorSpace (Filter)

61.1.1 IsLeftVectorSpace

▷ IsLeftVectorSpace(V) (Category)

▷ IsVectorSpace(V) (Category)

A vector space in GAP is a free left module (see IsFreeLeftModule (57.3.1)) over a division
ring (see Chapter 58).

Whenever we talk about an F-vector space V then V is an additive group (see IsAdditiveGroup
(55.1.6)) on which the division ring F acts via multiplication from the left such that this action and
the addition in V are left and right distributive. The division ring F can be accessed as value of the
attribute LeftActingDomain (57.1.11).

Vector spaces in GAP are always left vector spaces, IsLeftVectorSpace and IsVectorSpace

are synonyms.

61.2 Constructing Vector Spaces

61.2.1 VectorSpace

▷ VectorSpace(F, gens[, zero][, "basis"]) (function)

For a field F and a collection gens of vectors, VectorSpace returns the F-vector space spanned
by the elements in gens .

The optional argument zero can be used to specify the zero element of the space; zero must
be given if gens is empty. The optional string "basis" indicates that gens is known to be linearly
independent over F , in particular the dimension of the vector space is immediately set; note that Basis
(61.5.2) need not return the basis formed by gens if the string "basis" is given as an argument.

Example
gap> V:= VectorSpace(Rationals, [[1, 2, 3], [1, 1, 1]]);

<vector space over Rationals, with 2 generators>

975

GAP - Reference Manual 976

61.2.2 Subspace

▷ Subspace(V, gens[, "basis"]) (function)

▷ SubspaceNC(V, gens[, "basis"]) (function)

For an F-vector space V and a list or collection gens that is a subset of V , Subspace returns the
F-vector space spanned by gens ; if gens is empty then the trivial subspace (see TrivialSubspace
(61.3.2)) of V is returned. The parent (see 31.7) of the returned vector space is set to V .

SubspaceNC does the same as Subspace, except that it omits the check whether gens is a subset
of V .

The optional string "basis" indicates that gens is known to be linearly independent over F . In
this case the dimension of the subspace is immediately set, and both Subspace and SubspaceNC do
not check whether gens really is linearly independent and whether gens is a subset of V .

Example
gap> V:= VectorSpace(Rationals, [[1, 2, 3], [1, 1, 1]]);;

gap> W:= Subspace(V, [[0, 1, 2]]);

<vector space over Rationals, with 1 generator>

61.2.3 AsVectorSpace

▷ AsVectorSpace(F, D) (operation)

Let F be a division ring and D a domain. If the elements in D form an F-vector space then
AsVectorSpace returns this F-vector space, otherwise fail is returned.

AsVectorSpace can be used for example to view a given vector space as a vector space over a
smaller or larger division ring.

Example
gap> V:= FullRowSpace(GF(27), 3);

(GF(3^3)^3)

gap> Dimension(V); LeftActingDomain(V);

3

GF(3^3)

gap> W:= AsVectorSpace(GF(3), V);

<vector space over GF(3), with 9 generators>

gap> Dimension(W); LeftActingDomain(W);

9

GF(3)

gap> AsVectorSpace(GF(9), V);

fail

61.2.4 AsSubspace

▷ AsSubspace(V, U) (operation)

Let V be an F-vector space, and U a collection. If U is a subset of V such that the elements
of U form an F-vector space then AsSubspace returns this vector space, with parent set to V

(see AsVectorSpace (61.2.3)). Otherwise fail is returned.

GAP - Reference Manual 977

Example
gap> V:= VectorSpace(Rationals, [[1, 2, 3], [1, 1, 1]]);;

gap> W:= VectorSpace(Rationals, [[1/2, 1/2, 1/2]]);;

gap> U:= AsSubspace(V, W);

<vector space over Rationals, with 1 generator>

gap> Parent(U) = V;

true

gap> AsSubspace(V, [[1, 1, 1]]);

fail

61.3 Operations and Attributes for Vector Spaces

61.3.1 GeneratorsOfLeftVectorSpace

▷ GeneratorsOfLeftVectorSpace(V) (attribute)

▷ GeneratorsOfVectorSpace(V) (attribute)

For an F-vector space V , GeneratorsOfLeftVectorSpace returns a list of vectors in V that
generate V as an F-vector space.

Example
gap> GeneratorsOfVectorSpace(FullRowSpace(Rationals, 3));

[[1, 0, 0], [0, 1, 0], [0, 0, 1]]

61.3.2 TrivialSubspace

▷ TrivialSubspace(V) (attribute)

For a vector space V , TrivialSubspace returns the subspace of V that consists of the zero vector
in V .

Example
gap> V:= GF(3)^3;;

gap> triv:= TrivialSubspace(V);

<vector space of dimension 0 over GF(3)>

gap> AsSet(triv);

[[0*Z(3), 0*Z(3), 0*Z(3)]]

61.4 Domains of Subspaces of Vector Spaces

61.4.1 Subspaces

▷ Subspaces(V[, k]) (attribute)

Called with a finite vector space v , Subspaces returns the domain of all subspaces of V .
Called with V and a nonnegative integer k , Subspaces returns the domain of all k-dimensional

subspaces of V .
Special Size (30.4.6) and Iterator (30.8.1) methods are provided for these domains.

GAP - Reference Manual 978

61.4.2 IsSubspacesVectorSpace

▷ IsSubspacesVectorSpace(D) (Category)

The domain of all subspaces of a (finite) vector space or of all subspaces of fixed di-
mension, as returned by Subspaces (61.4.1) (see Subspaces (61.4.1)) lies in the category
IsSubspacesVectorSpace.

Example
gap> D:= Subspaces(GF(3)^3);

Subspaces((GF(3)^3))

gap> Size(D);

28

gap> iter:= Iterator(D);;

gap> NextIterator(iter);

<vector space of dimension 0 over GF(3)>

gap> NextIterator(iter);

<vector space of dimension 1 over GF(3)>

gap> IsSubspacesVectorSpace(D);

true

61.5 Bases of Vector Spaces

In GAP, a basis of a free left F-module V is a list of vectors B = [v1,v2, . . . ,vn] in V such that V is
generated as a left F-module by these vectors and such that B is linearly independent over F . The
integer n is the dimension of V (see Dimension (57.3.3)). In particular, as each basis is a list (see
Chapter 21), it has a length (see Length (21.17.5)), and the i-th vector of B can be accessed as B[i].

Example
gap> V:= Rationals^3;

(Rationals^3)

gap> B:= Basis(V);

CanonicalBasis((Rationals^3))

gap> Length(B);

3

gap> B[1];

[1, 0, 0]

The operations described below make sense only for bases of finite dimensional vector spaces. (In
practice this means that the vector spaces must be low dimensional, that is, the dimension should not
exceed a few hundred.)

Besides the basic operations for lists (see 21.2), the basic operations for bases are BasisVectors
(61.6.1), Coefficients (61.6.3), LinearCombination (61.6.4), and UnderlyingLeftModule

(61.6.2). These and other operations for arbitrary bases are described in 61.6.
For special kinds of bases, further operations are defined (see 61.7).
GAP supports the following three kinds of bases.
Relative bases delegate the work to other bases of the same free left module, via basechange

matrices (see RelativeBasis (61.5.4)).
Bases handled by nice bases delegate the work to bases of isomorphic left modules over the same

left acting domain (see 61.11).
Finally, of course there must be bases in GAP that really do the work.

GAP - Reference Manual 979

For example, in the case of a Gaussian row or matrix space V (see 61.9), Basis(V) is a
semi-echelonized basis (see IsSemiEchelonized (61.9.7)) that uses Gaussian elimination; such a
basis is of the third kind. Basis(V, vectors) is either semi-echelonized or a relative basis.
Other examples of bases of the third kind are canonical bases of finite fields and of abelian number
fields.

Bases handled by nice bases are described in 61.11. Examples are non-Gaussian row and matrix
spaces, and subspaces of finite fields and abelian number fields that are themselves not fields.

61.5.1 IsBasis

▷ IsBasis(obj) (Category)

In GAP, a basis of a free left module is an object that knows how to compute coefficients w.r.t. its
basis vectors (see Coefficients (61.6.3)). Bases are constructed by Basis (61.5.2). Each basis is
an immutable list, the i-th entry being the i-th basis vector.

(See 61.8 for mutable bases.)
Example

gap> V:= GF(2)^2;;

gap> B:= Basis(V);;

gap> IsBasis(B);

true

gap> IsBasis([[1, 0], [0, 1]]);

false

gap> IsBasis(Basis(Rationals^2, [[1, 0], [0, 1]]));

true

61.5.2 Basis

▷ Basis(V[, vectors]) (attribute)

▷ BasisNC(V, vectors) (operation)

Called with a free left F-module V as the only argument, Basis returns an F-basis of V whose
vectors are not further specified.

If additionally a list vectors of vectors in V is given that forms an F-basis of V then Basis

returns this basis; if vectors is not linearly independent over F or does not generate V as a free left
F-module then fail is returned.

BasisNC does the same as the two argument version of Basis, except that it does not check
whether vectors form a basis.

If no basis vectors are prescribed then Basis need not compute basis vectors; in this case, the
vectors are computed in the first call to BasisVectors (61.6.1).

Example
gap> V:= VectorSpace(Rationals, [[1, 2, 7], [1/2, 1/3, 5]]);;

gap> B:= Basis(V);

SemiEchelonBasis(<vector space over Rationals, with

2 generators>, ...)

gap> BasisVectors(B);

[[1, 2, 7], [0, 1, -9/4]]

gap> B:= Basis(V, [[1, 2, 7], [3, 2, 30]]);

Basis(<vector space over Rationals, with 2 generators>,

GAP - Reference Manual 980

[[1, 2, 7], [3, 2, 30]])

gap> Basis(V, [[1, 2, 3]]);

fail

61.5.3 CanonicalBasis

▷ CanonicalBasis(V) (attribute)

If the vector space V supports a canonical basis then CanonicalBasis returns this basis, other-
wise fail is returned.

The defining property of a canonical basis is that its vectors are uniquely determined by the
vector space. If canonical bases exist for two vector spaces over the same left acting domain
(see LeftActingDomain (57.1.11)) then the equality of these vector spaces can be decided by com-
paring the canonical bases.

The exact meaning of a canonical basis depends on the type of V . Canonical bases are defined for
example for Gaussian row and matrix spaces (see 61.9).

If one designs a new kind of vector spaces (see 61.12) and defines a canonical basis for these
spaces then the CanonicalBasis method one installs (see InstallMethod (78.3.1)) must not call
Basis (61.5.2). On the other hand, one probably should install a Basis (61.5.2) method that simply
calls CanonicalBasis, the value of the method (see 78.3 and 78.4) being CANONICAL_BASIS_FLAGS.

Example
gap> vecs:= [[1, 2, 3], [1, 1, 1], [1, 1, 1]];;

gap> V:= VectorSpace(Rationals, vecs);;

gap> B:= CanonicalBasis(V);

CanonicalBasis(<vector space over Rationals, with 3 generators>)

gap> BasisVectors(B);

[[1, 0, -1], [0, 1, 2]]

61.5.4 RelativeBasis

▷ RelativeBasis(B, vectors) (operation)

▷ RelativeBasisNC(B, vectors) (operation)

A relative basis is a basis of the free left module V that delegates the computation of coefficients
etc. to another basis of V via a basechange matrix.

Let B be a basis of the free left module V , and vectors a list of vectors in V .
RelativeBasis checks whether vectors form a basis of V , and in this case a basis is returned

in which vectors are the basis vectors; otherwise fail is returned.
RelativeBasisNC does the same, except that it omits the check.

61.6 Operations for Vector Space Bases

61.6.1 BasisVectors

▷ BasisVectors(B) (attribute)

GAP - Reference Manual 981

For a vector space basis B , BasisVectors returns the list of basis vectors of B . The lists B and
BasisVectors(B) are equal; the main purpose of BasisVectors is to provide access to a list of
vectors that does not know about an underlying vector space.

Example
gap> V:= VectorSpace(Rationals, [[1, 2, 7], [1/2, 1/3, 5]]);;

gap> B:= Basis(V, [[1, 2, 7], [0, 1, -9/4]]);;

gap> BasisVectors(B);

[[1, 2, 7], [0, 1, -9/4]]

61.6.2 UnderlyingLeftModule

▷ UnderlyingLeftModule(B) (attribute)

For a basis B of a free left module V , UnderlyingLeftModule returns V .
The reason why a basis stores a free left module is that otherwise one would have to store the

basis vectors and the coefficient domain separately. Storing the module allows one for example to deal
with bases whose basis vectors have not yet been computed yet (see Basis (61.5.2)); furthermore, in
some cases it is convenient to test membership of a vector in the module before computing coefficients
w.r.t. a basis.

Example
gap> B:= Basis(GF(2)^6);; UnderlyingLeftModule(B);

(GF(2)^6)

61.6.3 Coefficients

▷ Coefficients(B, v) (operation)

Let V be the underlying left module of the basis B , and v a vector such that the family of v is
the elements family of the family of V . Then Coefficients(B, v) is the list of coefficients of v
w.r.t. B if v lies in V , and fail otherwise.

Example
gap> V:= VectorSpace(Rationals, [[1, 2, 7], [1/2, 1/3, 5]]);;

gap> B:= Basis(V, [[1, 2, 7], [0, 1, -9/4]]);;

gap> Coefficients(B, [1/2, 1/3, 5]);

[1/2, -2/3]

gap> Coefficients(B, [1, 0, 0]);

fail

61.6.4 LinearCombination

▷ LinearCombination(B, coeff) (operation)

If B is a basis object (see IsBasis (61.5.1)) or a homogeneous list of length n, and coeff is a row
vector of the same length, LinearCombination returns the vector ∑

n
i=1 coeff [i]∗B [i].

Perhaps the most important usage is the case where B forms a basis.
Example

gap> V:= VectorSpace(Rationals, [[1, 2, 7], [1/2, 1/3, 5]]);;

gap> B:= Basis(V, [[1, 2, 7], [0, 1, -9/4]]);;

gap> LinearCombination(B, [1/2, -2/3]);

[1/2, 1/3, 5]

GAP - Reference Manual 982

61.6.5 EnumeratorByBasis

▷ EnumeratorByBasis(B) (attribute)

For a basis B of the free left F-module V of dimension n, EnumeratorByBasis returns an enu-
merator that loops over the elements of V as linear combinations of the vectors of B with coefficients
the row vectors in the full row space (see FullRowSpace (61.9.4)) of dimension n over F , in the
succession given by the default enumerator of this row space.

Example
gap> V:= GF(2)^3;;

gap> enum:= EnumeratorByBasis(CanonicalBasis(V));;

gap> Print(enum{ [1 .. 4] }, "\n");

[[0*Z(2), 0*Z(2), 0*Z(2)], [0*Z(2), 0*Z(2), Z(2)^0],

[0*Z(2), Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0, Z(2)^0]]

gap> B:= Basis(V, [[1, 1, 1], [1, 1, 0], [1, 0, 0]] * Z(2));;

gap> enum:= EnumeratorByBasis(B);;

gap> Print(enum{ [1 .. 4] }, "\n");

[[0*Z(2), 0*Z(2), 0*Z(2)], [Z(2)^0, 0*Z(2), 0*Z(2)],

[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0, 0*Z(2)]]

61.6.6 IteratorByBasis

▷ IteratorByBasis(B) (operation)

For a basis B of the free left F-module V of dimension n, IteratorByBasis returns an iterator
that loops over the elements of V as linear combinations of the vectors of B with coefficients the row
vectors in the full row space (see FullRowSpace (61.9.4)) of dimension n over F , in the succession
given by the default enumerator of this row space.

Example
gap> V:= GF(2)^3;;

gap> iter:= IteratorByBasis(CanonicalBasis(V));;

gap> for i in [1 .. 4] do Print(NextIterator(iter), "\n"); od;

[0*Z(2), 0*Z(2), 0*Z(2)]

[0*Z(2), 0*Z(2), Z(2)^0]

[0*Z(2), Z(2)^0, 0*Z(2)]

[0*Z(2), Z(2)^0, Z(2)^0]

gap> B:= Basis(V, [[1, 1, 1], [1, 1, 0], [1, 0, 0]] * Z(2));;

gap> iter:= IteratorByBasis(B);;

gap> for i in [1 .. 4] do Print(NextIterator(iter), "\n"); od;

[0*Z(2), 0*Z(2), 0*Z(2)]

[Z(2)^0, 0*Z(2), 0*Z(2)]

[Z(2)^0, Z(2)^0, 0*Z(2)]

[0*Z(2), Z(2)^0, 0*Z(2)]

61.7 Operations for Special Kinds of Bases

61.7.1 IsCanonicalBasis

▷ IsCanonicalBasis(B) (property)

GAP - Reference Manual 983

If the underlying free left module V of the basis B supports a canonical basis
(see CanonicalBasis (61.5.3)) then IsCanonicalBasis returns true if B is equal to the canoni-
cal basis of V , and false otherwise.

61.7.2 IsIntegralBasis

▷ IsIntegralBasis(B) (property)

Let B be an S-basis of a field F for a subfield S of F , and let R and M be the rings of algebraic
integers in S and F , respectively. IsIntegralBasis returns true if B is also an R-basis of M, and
false otherwise.

61.7.3 IsNormalBasis

▷ IsNormalBasis(B) (property)

Let B be an S-basis of a field F for a subfield S of F . IsNormalBasis returns true if B is invariant
under the Galois group (see GaloisGroup (58.3.1)) of the field extension F/S, and false otherwise.

Example
gap> B:= CanonicalBasis(GaussianRationals);

CanonicalBasis(GaussianRationals)

gap> IsIntegralBasis(B); IsNormalBasis(B);

true

false

61.8 Mutable Bases

It is useful to have a mutable basis of a free module when successively closures with new vectors are
formed, since one does not want to create a new module and a corresponding basis for each step.

Note that the situation here is different from the situation with stabilizer chains, which are (mu-
table or immutable) records that do not need to know about the groups they describe, whereas each
(immutable) basis stores the underlying left module (see UnderlyingLeftModule (61.6.2)).

So immutable bases and mutable bases are different categories of objects. The only thing they
have in common is that one can ask both for their basis vectors and for the coefficients of a given
vector.

Since Immutable produces an immutable copy of any GAP object, it would in principle be possi-
ble to construct a mutable basis that is in fact immutable. In the sequel, we will deal only with mutable
bases that are in fact mutable GAP objects, hence these objects are unable to store attribute values.

Basic operations for immutable bases are NrBasisVectors (61.8.3), IsContainedInSpan

(61.8.5), CloseMutableBasis (61.8.6), ImmutableBasis (61.8.4), Coefficients (61.6.3), and
BasisVectors (61.6.1). ShallowCopy (12.7.1) for a mutable basis returns a mutable plain list con-
taining the current basis vectors.

Since mutable bases do not admit arbitrary changes of their lists of basis vectors, a mutable basis
is not a list. It is, however, a collection, more precisely its family (see 13.1) equals the family of its
collection of basis vectors.

Mutable bases can be constructed with MutableBasis.

GAP - Reference Manual 984

Similar to the situation with bases (cf. 61.5), GAP supports the following three kinds of mutable
bases.

The generic method of MutableBasis returns a mutable basis that simply stores an immutable
basis; clearly one wants to avoid this whenever possible with reasonable effort.

There are mutable bases that store a mutable basis for a nicer module. Note that this is meaningful
only if the mechanism of computing nice and ugly vectors (see 61.11) is invariant under closures of
the basis; this is the case for example if the vectors are matrices, Lie objects, or elements of structure
constants algebras.

There are mutable bases that use special information to perform their tasks; examples are mutable
bases of Gaussian row and matrix spaces.

61.8.1 IsMutableBasis

▷ IsMutableBasis(MB) (Category)

Every mutable basis lies in the category IsMutableBasis.

61.8.2 MutableBasis

▷ MutableBasis(R, vectors[, zero]) (operation)

MutableBasis returns a mutable basis for the R-free module generated by the vectors in the list
vectors . The optional argument zero is the zero vector of the module; it must be given if vectors
is empty.

Note that vectors will in general not be the basis vectors of the mutable basis!
Example

gap> MB:= MutableBasis(Rationals, [[1, 2, 3], [0, 1, 0]]);

<mutable basis over Rationals, 2 vectors>

61.8.3 NrBasisVectors

▷ NrBasisVectors(MB) (operation)

For a mutable basis MB , NrBasisVectors returns the current number of basis vectors of MB . Note
that this operation is not an attribute, as it makes no sense to store the value. NrBasisVectors is used
mainly as an equivalent of Dimension for the underlying left module in the case of immutable bases.

Example
gap> MB:= MutableBasis(Rationals, [[1, 1], [2, 2]]);;

gap> NrBasisVectors(MB);

1

61.8.4 ImmutableBasis

▷ ImmutableBasis(MB[, V]) (operation)

ImmutableBasis returns the immutable basis B with the same basis vectors as in the mutable
basis MB .

GAP - Reference Manual 985

If the second argument V is present then V is the value of UnderlyingLeftModule (61.6.2) for
B. The second variant is used mainly for the case that one knows the module for the desired basis in
advance, and if it has a nicer structure than the module known to MB , for example if it is an algebra.

Example
gap> MB:= MutableBasis(Rationals, [[1, 1], [2, 2]]);;

gap> B:= ImmutableBasis(MB);

SemiEchelonBasis(<vector space of dimension 1 over Rationals>,

[[1, 1]])

gap> UnderlyingLeftModule(B);

<vector space of dimension 1 over Rationals>

61.8.5 IsContainedInSpan

▷ IsContainedInSpan(MB, v) (operation)

For a mutable basis MB over the coefficient ring R and a vector v , IsContainedInSpan returns
true is v lies in the R-span of the current basis vectors of MB , and false otherwise.

61.8.6 CloseMutableBasis

▷ CloseMutableBasis(MB, v) (operation)

For a mutable basis MB over the coefficient ring R and a vector v , CloseMutableBasis changes
MB such that afterwards it describes the R-span of the former basis vectors together with v .

Note that if v enlarges the dimension then this does in general not mean that v is simply added
to the basis vectors of MB . Usually a linear combination of v and the other basis vectors is added,
and also the old basis vectors may be modified, for example in order to keep the list of basis vectors
echelonized (see IsSemiEchelonized (61.9.7)).

CloseMutableBasis returns false if v was already in the R-span described by MB , and true if
MB got extended.

Example
gap> MB:= MutableBasis(Rationals, [[1, 1, 3], [2, 2, 1]]);

<mutable basis over Rationals, 2 vectors>

gap> IsContainedInSpan(MB, [1, 0, 0]);

false

gap> CloseMutableBasis(MB, [1, 0, 0]);

true

gap> MB;

<mutable basis over Rationals, 3 vectors>

gap> IsContainedInSpan(MB, [1, 0, 0]);

true

gap> CloseMutableBasis(MB, [1, 0, 0]);

false

GAP - Reference Manual 986

61.9 Row and Matrix Spaces

61.9.1 IsRowSpace

▷ IsRowSpace(V) (filter)

A row space in GAP is a vector space that consists of row vectors (see Chapter 23).

61.9.2 IsMatrixSpace

▷ IsMatrixSpace(V) (filter)

A matrix space in GAP is a vector space that consists of matrices (see Chapter 24).

61.9.3 IsGaussianSpace

▷ IsGaussianSpace(V) (filter)

The filter IsGaussianSpace (see 13.2) for the row space (see IsRowSpace (61.9.1)) or matrix
space (see IsMatrixSpace (61.9.2)) V over a field F indicates that the entries of all row vectors or
matrices in V , respectively, are all contained in F . In this case, V is called a Gaussian vector space.
Bases for Gaussian spaces can be computed using Gaussian elimination for a given list of vector space
generators.

Example
gap> mats:= [[[1,1],[2,2]], [[3,4],[0,1]]];;

gap> V:= VectorSpace(Rationals, mats);;

gap> IsGaussianSpace(V);

true

gap> mats[1][1][1]:= E(4);; # an element in an extension field

gap> V:= VectorSpace(Rationals, mats);;

gap> IsGaussianSpace(V);

false

gap> V:= VectorSpace(Field(Rationals, [E(4)]), mats);;

gap> IsGaussianSpace(V);

true

61.9.4 FullRowSpace

▷ FullRowSpace(F, n) (function)

▷ \^(F, n) (method)

For a field F and a nonnegative integer n , FullRowSpace returns the F-vector space that consists
of all row vectors (see IsRowVector (23.1.1)) of length n with entries in F .

An alternative to construct this vector space is via F^n .
Example

gap> FullRowSpace(GF(9), 3);

(GF(3^2)^3)

gap> GF(9)^3; # the same as above

(GF(3^2)^3)

GAP - Reference Manual 987

61.9.5 FullMatrixSpace

▷ FullMatrixSpace(F, m, n) (function)

▷ \^(F, dims) (method)

For a field F and two positive integers m and n , FullMatrixSpace returns the F-vector space
that consists of all m by n matrices (see IsMatrix (24.2.1)) with entries in F .

If m = n then the result is in fact an algebra (see FullMatrixAlgebra (62.5.4)).
An alternative to construct this vector space is via F^[m ,n].

Example
gap> FullMatrixSpace(GF(2), 4, 5);

(GF(2)^[4, 5])

gap> GF(2)^[4, 5]; # the same as above

(GF(2)^[4, 5])

61.9.6 DimensionOfVectors

▷ DimensionOfVectors(M) (attribute)

For a left module M that consists of row vectors (see IsRowModule (57.3.6)),
DimensionOfVectors returns the common length of all row vectors in M . For a left module
M that consists of matrices (see IsMatrixModule (57.3.7)), DimensionOfVectors returns the
common matrix dimensions (see DimensionsMat (24.4.1)) of all matrices in M .

Example
gap> DimensionOfVectors(GF(2)^5);

5

gap> DimensionOfVectors(GF(2)^[2,3]);

[2, 3]

61.9.7 IsSemiEchelonized

▷ IsSemiEchelonized(B) (property)

Let B be a basis of a Gaussian row or matrix space V (see IsGaussianSpace (61.9.3)) over the
field F .

If V is a row space then B is semi-echelonized if the matrix formed by its basis vectors has the
property that the first nonzero element in each row is the identity of F , and all values exactly below
these pivot elements are the zero of F (cf. SemiEchelonMat (24.10.1)).

If V is a matrix space then B is semi-echelonized if the matrix obtained by replacing each ba-
sis vector by the concatenation of its rows is semi-echelonized (see above, cf. SemiEchelonMats
(24.10.4)).

Example
gap> V:= GF(2)^2;;

gap> B1:= Basis(V, [[0, 1], [1, 0]] * Z(2));;

gap> IsSemiEchelonized(B1);

true

gap> B2:= Basis(V, [[0, 1], [1, 1]] * Z(2));;

gap> IsSemiEchelonized(B2);

false

GAP - Reference Manual 988

61.9.8 SemiEchelonBasis

▷ SemiEchelonBasis(V[, vectors]) (attribute)

▷ SemiEchelonBasisNC(V, vectors) (operation)

Let V be a Gaussian row or matrix vector space over the field F (see IsGaussianSpace (61.9.3),
IsRowSpace (61.9.1), IsMatrixSpace (61.9.2)).

Called with V as the only argument, SemiEchelonBasis returns a basis of V that has the property
IsSemiEchelonized (61.9.7).

If additionally a list vectors of vectors in V is given that forms a semi-echelonized basis of V
then SemiEchelonBasis returns this basis; if vectors do not form a basis of V then fail is returned.

SemiEchelonBasisNC does the same as the two argument version of SemiEchelonBasis, except
that it is not checked whether vectors form a semi-echelonized basis.

Example
gap> V:= GF(2)^2;;

gap> B:= SemiEchelonBasis(V);

SemiEchelonBasis((GF(2)^2), ...)

gap> Print(BasisVectors(B), "\n");

[[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]]

gap> B:= SemiEchelonBasis(V, [[1, 1], [0, 1]] * Z(2));

SemiEchelonBasis((GF(2)^2), <an immutable 2x2 matrix over GF2>)

gap> Print(BasisVectors(B), "\n");

[[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]]

gap> Coefficients(B, [0, 1] * Z(2));

[0*Z(2), Z(2)^0]

gap> Coefficients(B, [1, 0] * Z(2));

[Z(2)^0, Z(2)^0]

gap> SemiEchelonBasis(V, [[0, 1], [1, 1]] * Z(2));

fail

61.9.9 IsCanonicalBasisFullRowModule

▷ IsCanonicalBasisFullRowModule(B) (property)

IsCanonicalBasisFullRowModule returns true if B is the canonical basis
(see IsCanonicalBasis (61.7.1)) of a full row module (see IsFullRowModule (57.3.8)), and
false otherwise.

The canonical basis of a Gaussian row space is defined as the unique semi-echelonized
(see IsSemiEchelonized (61.9.7)) basis with the additional property that for j > i the position of
the pivot of row j is bigger than the position of the pivot of row i, and that each pivot column contains
exactly one nonzero entry.

61.9.10 IsCanonicalBasisFullMatrixModule

▷ IsCanonicalBasisFullMatrixModule(B) (property)

IsCanonicalBasisFullMatrixModule returns true if B is the canonical basis
(see IsCanonicalBasis (61.7.1)) of a full matrix module (see IsFullMatrixModule (57.3.10)),
and false otherwise.

GAP - Reference Manual 989

The canonical basis of a Gaussian matrix space is defined as the unique semi-echelonized
(see IsSemiEchelonized (61.9.7)) basis for which the list of concatenations of the basis vectors
forms the canonical basis of the corresponding Gaussian row space.

61.9.11 NormedRowVectors

▷ NormedRowVectors(V) (attribute)

For a finite Gaussian row space V (see IsRowSpace (61.9.1), IsGaussianSpace (61.9.3)),
NormedRowVectors returns a list of those nonzero vectors in V that have a one in the first nonzero
component.

The result list can be used as action domain for the action of a matrix group via OnLines (41.2.12),
which yields the natural action on one-dimensional subspaces of V (see also Subspaces (61.4.1)).

Example
gap> vecs:= NormedRowVectors(GF(3)^2);

[[0*Z(3), Z(3)^0], [Z(3)^0, 0*Z(3)], [Z(3)^0, Z(3)^0],

[Z(3)^0, Z(3)]]

gap> Action(GL(2,3), vecs, OnLines);

Group([(3,4), (1,2,4)])

61.9.12 SiftedVector

▷ SiftedVector(B, v) (operation)

Let B be a semi-echelonized basis (see IsSemiEchelonized (61.9.7)) of a Gaussian row or ma-
trix space V (see IsGaussianSpace (61.9.3)), and v a row vector or matrix, respectively, of the same
dimension as the elements in V . SiftedVector returns the residuum of v with respect to B , which is
obtained by successively cleaning the pivot positions in v by subtracting multiples of the basis vectors
in B . So the result is the zero vector in V if and only if v lies in V .

B may also be a mutable basis (see 61.8) of a Gaussian row or matrix space.
Example

gap> V:= VectorSpace(Rationals, [[1, 2, 7], [1/2, 1/3, 5]]);;

gap> B:= Basis(V);;

gap> SiftedVector(B, [1, 2, 8]);

[0, 0, 1]

61.10 Vector Space Homomorphisms

Vector space homomorphisms (or linear mappings) are defined in Section 32.11. GAP provides spe-
cial functions to construct a particular linear mapping from images of given elements in the source,
from a matrix of coefficients, or as a natural epimorphism.

F-linear mappings with same source and same range can be added, so one can form vector spaces
of linear mappings.

61.10.1 LeftModuleGeneralMappingByImages

▷ LeftModuleGeneralMappingByImages(V, W, gens, imgs) (operation)

GAP - Reference Manual 990

Let V and W be two left modules over the same left acting domain R and gens and imgs lists
(of the same length) of elements in V and W , respectively. LeftModuleGeneralMappingByImages

returns the general mapping with source V and range W that is defined by mapping the elements in
gens to the corresponding elements in imgs , and taking the R-linear closure.

gens need not generate V as a left R-module, and if the specification does not define a linear
mapping then the result will be multi-valued; hence in general it is not a mapping (see IsMapping

(32.3.3)).
Example

gap> V:= Rationals^2;;

gap> W:= VectorSpace(Rationals, [[1,2,3], [1,0,1]]);;

gap> f:= LeftModuleGeneralMappingByImages(V, W,

> [[1,0],[2,0]], [[1,0,1],[1,0,1]]);

[[1, 0], [2, 0]] -> [[1, 0, 1], [1, 0, 1]]

gap> IsMapping(f);

false

61.10.2 LeftModuleHomomorphismByImages

▷ LeftModuleHomomorphismByImages(V, W, gens, imgs) (function)

▷ LeftModuleHomomorphismByImagesNC(V, W, gens, imgs) (operation)

Let V and W be two left modules over the same left acting domain R and gens and imgs lists (of
the same length) of elements in V and W , respectively. LeftModuleHomomorphismByImages returns
the left R-module homomorphism with source V and range W that is defined by mapping the elements
in gens to the corresponding elements in imgs .

If gens does not generate V or if the homomorphism does not exist (i.e., if mapping the gen-
erators describes only a multi-valued mapping) then fail is returned. For creating a possibly
multi-valued mapping from V to W that respects addition, multiplication, and scalar multiplication,
LeftModuleGeneralMappingByImages (61.10.1) can be used.

LeftModuleHomomorphismByImagesNC does the same as
LeftModuleHomomorphismByImages, except that it omits all checks.

Example
gap> V:=Rationals^2;;

gap> W:=VectorSpace(Rationals, [[1, 0, 1], [1, 2, 3]]);;

gap> f:=LeftModuleHomomorphismByImages(V, W,

> [[1, 0], [0, 1]], [[1, 0, 1], [1, 2, 3]]);

[[1, 0], [0, 1]] -> [[1, 0, 1], [1, 2, 3]]

gap> Image(f, [1,1]);

[2, 2, 4]

61.10.3 LeftModuleHomomorphismByMatrix

▷ LeftModuleHomomorphismByMatrix(BS, matrix, BR) (operation)

Let BS and BR be bases of the left R-modules V and W , respectively.
LeftModuleHomomorphismByMatrix returns the R-linear mapping from V to W that is de-
fined by the matrix matrix , as follows. The image of the i-th basis vector of BS is the linear
combination of the basis vectors of BR with coefficients the i-th row of matrix .

GAP - Reference Manual 991

Example
gap> V:= Rationals^2;;

gap> W:= VectorSpace(Rationals, [[1, 0, 1], [1, 2, 3]]);;

gap> f:= LeftModuleHomomorphismByMatrix(Basis(V),

> [[1, 2], [3, 1]], Basis(W));

<linear mapping by matrix, (Rationals^

2) -> <vector space over Rationals, with 2 generators>>

61.10.4 NaturalHomomorphismBySubspace

▷ NaturalHomomorphismBySubspace(V, W) (operation)

For an R-vector space V and a subspace W of V , NaturalHomomorphismBySubspace returns the
R-linear mapping that is the natural projection of V onto the factor space V / W .

Example
gap> V:= Rationals^3;;

gap> W:= VectorSpace(Rationals, [[1, 1, 1]]);;

gap> f:= NaturalHomomorphismBySubspace(V, W);

<linear mapping by matrix, (Rationals^3) -> (Rationals^2)>

61.10.5 Hom

▷ Hom(F, V, W) (operation)

For a field F and two vector spaces V and W that can be regarded as F-modules (see AsLeftModule
(57.1.5)), Hom returns the F-vector space of all F-linear mappings from V to W .

Example
gap> V:= Rationals^2;;

gap> W:= VectorSpace(Rationals, [[1, 0, 1], [1, 2, 3]]);;

gap> H:= Hom(Rationals, V, W);

Hom(Rationals, (Rationals^2), <vector space over Rationals, with

2 generators>)

gap> Dimension(H);

4

61.10.6 End

▷ End(F, V) (operation)

For a field F and a vector space V that can be regarded as an F-module (see AsLeftModule

(57.1.5)), End returns the F-algebra of all F-linear mappings from V to V .
Example

gap> A:= End(Rationals, Rationals^2);

End(Rationals, (Rationals^2))

gap> Dimension(A);

4

GAP - Reference Manual 992

61.10.7 IsFullHomModule

▷ IsFullHomModule(M) (property)

A full hom module is a module of all R-linear mappings between two left R-modules. The function
Hom (61.10.5) can be used to construct a full hom module.

Example
gap> V:= Rationals^2;;

gap> W:= VectorSpace(Rationals, [[1, 0, 1], [1, 2, 3]]);;

gap> H:= Hom(Rationals, V, W);;

gap> IsFullHomModule(H);

true

61.10.8 IsPseudoCanonicalBasisFullHomModule

▷ IsPseudoCanonicalBasisFullHomModule(B) (property)

A basis of a full hom module is called pseudo canonical basis if the matrices of its basis vectors
w.r.t. the stored bases of source and range contain exactly one identity entry and otherwise zeros.

Note that this is not a canonical basis (see CanonicalBasis (61.5.3)) because it depends on the
stored bases of source and range.

Example
gap> IsPseudoCanonicalBasisFullHomModule(Basis(H));

true

61.10.9 IsLinearMappingsModule

▷ IsLinearMappingsModule(V) (filter)

If an F-vector space V is in the filter IsLinearMappingsModule then this expresses that V con-
sists of linear mappings, and that V is handled via the mechanism of nice bases (see 61.11), in the
following way. Let S and R be the source and the range, respectively, of each mapping in V . Then
the NiceFreeLeftModuleInfo (61.11.3) value of V is a record with the components basissource
(a basis BS of S) and basisrange (a basis BR of R), and the NiceVector (61.11.2) value of v ∈ V is
defined as the matrix of the F-linear mapping v w.r.t. the bases BS and BR.

61.11 Vector Spaces Handled By Nice Bases

There are kinds of free R-modules for which efficient computations are possible because the elements
are “nice”, for example subspaces of full row modules or of full matrix modules. In other cases, a
“nice” canonical basis is known that allows one to do the necessary computations in the corresponding
row module, for example algebras given by structure constants.

In many other situations, one knows at least an isomorphism from the given module V to a “nicer”
free left module W , in the sense that for each vector in V , the image in W can easily be computed, and
analogously for each vector in W , one can compute the preimage in V .

This allows one to delegate computations w.r.t. a basis B of V to the corresponding basis C of W .
We call W the nice free left module of V , and C the nice basis of B. (Note that it may happen that

GAP - Reference Manual 993

also C delegates questions to a “nicer” basis.) The basis B indicates the intended behaviour by the
filter IsBasisByNiceBasis (61.11.5), and stores C as value of the attribute NiceBasis (61.11.4).
V indicates the intended behaviour by the filter IsHandledByNiceBasis (61.11.6), and stores W as
value of the attribute NiceFreeLeftModule (61.11.1).

The bijection between V and W is implemented by the functions NiceVector (61.11.2) and
UglyVector (61.11.2); additional data needed to compute images and preimages can be stored as
value of NiceFreeLeftModuleInfo (61.11.3).

61.11.1 NiceFreeLeftModule

▷ NiceFreeLeftModule(V) (attribute)

For a free left module V that is handled via the mechanism of nice bases, this attribute stores the
associated free left module to which the tasks are delegated.

61.11.2 NiceVector

▷ NiceVector(V, v) (operation)

▷ UglyVector(V, r) (operation)

NiceVector and UglyVector provide the linear bijection between the free left module V and W:=

NiceFreeLeftModule(V).
If v lies in the elements family of the family of V then NiceVector(v) is either fail or an

element in the elements family of the family of W .
If r lies in the elements family of the family of W then UglyVector(r) is either fail or an

element in the elements family of the family of V .
If v lies in V (which usually cannot be checked without using W) then UglyVector(V,

NiceVector(V, v)) = v . If r lies in W (which usually can be checked) then NiceVector(

V, UglyVector(V, r)) = r .
(This allows one to implement for example a membership test for V using the membership test in

W .)

61.11.3 NiceFreeLeftModuleInfo

▷ NiceFreeLeftModuleInfo(V) (attribute)

For a free left module V that is handled via the mechanism of nice bases, this operation has
to provide the necessary information (if any) for calls of NiceVector (61.11.2) and UglyVector

(61.11.2).

61.11.4 NiceBasis

▷ NiceBasis(B) (attribute)

Let B be a basis of a free left module V that is handled via nice bases. If B has no basis vec-
tors stored at the time of the first call to NiceBasis then NiceBasis(B) is obtained as Basis(

NiceFreeLeftModule(V)). If basis vectors are stored then NiceBasis(B) is the result of the

GAP - Reference Manual 994

call of Basis with arguments NiceFreeLeftModule(V) and the NiceVector values of the basis
vectors of B .

Note that the result is fail if and only if the “basis vectors” stored in B are in fact not basis
vectors.

The attributes GeneratorsOfLeftModule of the underlying left modules of B and the result of
NiceBasis correspond via NiceVector (61.11.2) and UglyVector (61.11.2).

61.11.5 IsBasisByNiceBasis

▷ IsBasisByNiceBasis(B) (Category)

This filter indicates that the basis B delegates tasks such as the computation of coefficients
(see Coefficients (61.6.3)) to a basis of an isomorphic “nicer” free left module.

61.11.6 IsHandledByNiceBasis

▷ IsHandledByNiceBasis(M) (Category)

For a free left module M in this category, essentially all operations are performed using a “nicer”
free left module, which is usually a row module.

61.12 How to Implement New Kinds of Vector Spaces

61.12.1 DeclareHandlingByNiceBasis

▷ DeclareHandlingByNiceBasis(name, info) (function)

▷ InstallHandlingByNiceBasis(name, record) (function)

These functions are used to implement a new kind of free left modules that shall be handled via
the mechanism of nice bases (see 61.11).

name must be a string, a filter f with this name is created which implies IsFreeLeftModule

(57.3.1), and a logical implication from the join of f with IsAttributeStoringRep (13.5.5) to
IsHandledByNiceBasis (61.11.6) is installed.

record must be a record with the following components.

detect

a function of four arguments R, l, V , and z, where V is a free left module over the ring R with
generators the list or collection l, and z is either the zero element of V or false (then l is
nonempty); the function returns true if V shall lie in the filter f , and false otherwise; the
return value may also be fail, which indicates that V is not to be handled via the mechanism
of nice bases at all,

NiceFreeLeftModuleInfo

the NiceFreeLeftModuleInfo (61.11.3) method for left modules in f ,

NiceVector

the NiceVector (61.11.2) method for left modules V in f ; called with V and a vector v ∈ V ,
this function returns the nice vector r associated with v, and

GAP - Reference Manual 995

UglyVector

the UglyVector (61.11.2) method for left modules V in f ; called with V and a vector r in the
NiceFreeLeftModule (61.11.1) value of V , this function returns the vector v ∈V to which r is
associated.

The idea is that all one has to do for implementing a new kind of free left mod-
ules handled by the mechanism of nice bases is to call DeclareHandlingByNiceBasis and
InstallHandlingByNiceBasis, which causes the installation of the necessary methods and
adds the pair [f ,record.detect] to the global list NiceBasisFiltersInfo (61.12.2). The
LeftModuleByGenerators (57.1.10) methods call CheckForHandlingByNiceBasis (61.12.3),
which sets the appropriate filter for the desired left module if applicable.

61.12.2 NiceBasisFiltersInfo

▷ NiceBasisFiltersInfo (global variable)

An overview of all kinds of vector spaces that are currently handled by nice bases is
given by the global list NiceBasisFiltersInfo. Examples of such vector spaces are vector
spaces of field elements (but not the fields themselves) and non-Gaussian row and matrix spaces
(see IsGaussianSpace (61.9.3)).

61.12.3 CheckForHandlingByNiceBasis

▷ CheckForHandlingByNiceBasis(R, gens, M, zero) (function)

Whenever a free left module is constructed for which the filter IsHandledByNiceBasis may
be useful, CheckForHandlingByNiceBasis should be called. (This is done in the methods for
VectorSpaceByGenerators, AlgebraByGenerators, IdealByGenerators etc. in the GAP li-
brary.)

The arguments of this function are the coefficient ring R , the list gens of generators, the con-
structed module M itself, and the zero element zero of M ; if gens is nonempty then the zero value
may also be false.

61.13 Tensor Products and Exterior and Symmetric Powers

61.13.1 TensorProduct (for a list of vector spaces)

▷ TensorProduct(list) (operation)

▷ TensorProduct(V, W, ...) (operation)

Here list must be a list of vector spaces. This function returns the tensor product of the elements
in the list. The vector spaces must be defined over the same field.

In the second form, the vector spaces are given individually.
Elements of the tensor product V1 ⊗·· ·⊗Vk are linear combinations of v1 ⊗·· ·⊗ vk, where the vi

are arbitrary basis elements of Vi. In GAP a tensor element like that is printed as
Example

v_1<x> ... <x>v_k

GAP - Reference Manual 996

Furthermore, the zero of a tensor product is printed as
Example

<0-tensor>

This does not mean that all tensor products have the same zero element: zeros of different tensor
products have different families.

Example
gap> V:=TensorProduct(Rationals^2, Rationals^3);

<vector space over Rationals, with 6 generators>

gap> Basis(V);

Basis(<vector space over Rationals, with 6 generators>,

[1*([0, 1]<x>[0, 0, 1]), 1*([0, 1]<x>[0, 1, 0]),

1*([0, 1]<x>[1, 0, 0]), 1*([1, 0]<x>[0, 0, 1]),

1*([1, 0]<x>[0, 1, 0]), 1*([1, 0]<x>[1, 0, 0])])

See also KroneckerProduct (24.5.9).

61.13.2 ExteriorPower

▷ ExteriorPower(V, k) (operation)

Here V must be a vector space. This function returns the k-th exterior power of V .
Elements of the exterior power

∧k V are linear combinations of vi1 ∧ ·· · ∧ vik , where the vi j are
basis elements of V , and 1 ≤ i1 < i2 · · ·< ik. In GAP a wedge element like that is printed as

Example
v_1/\ ... /\v_k

Furthermore, the zero of an exterior power is printed as
Example

<0-wedge>

This does not mean that all exterior powers have the same zero element: zeros of different exterior
powers have different families.

Example
gap> V:=ExteriorPower(Rationals^3, 2);

<vector space of dimension 3 over Rationals>

gap> Basis(V);

Basis(<vector space of dimension 3 over Rationals>, [

1*([0, 1, 0]/\[0, 0, 1]), 1*([1, 0, 0]/\[0, 0, 1]),

1*([1, 0, 0]/\[0, 1, 0])])

61.13.3 SymmetricPower

▷ SymmetricPower(V, k) (operation)

Here V must be a vector space. This function returns the k-th symmetric power of V .

GAP - Reference Manual 997

Example
gap> V:=SymmetricPower(Rationals^3, 2);

<vector space over Rationals, with 6 generators>

gap> Basis(V);

Basis(<vector space over Rationals, with 6 generators>,

[1*([0, 0, 1].[0, 0, 1]), 1*([0, 1, 0].[0, 0, 1]),

1*([0, 1, 0].[0, 1, 0]), 1*([1, 0, 0].[0, 0, 1]),

1*([1, 0, 0].[0, 1, 0]), 1*([1, 0, 0].[1, 0, 0])

])

Chapter 62

Algebras

An algebra is a vector space equipped with a bilinear map (multiplication). This chapter describes the
functions in GAP that deal with general algebras and associative algebras.

Algebras in GAP are vector spaces in a natural way. So all the functionality for vector spaces (see
Chapter 61) is also applicable to algebras.

62.1 InfoAlgebra (Info Class)

62.1.1 InfoAlgebra

▷ InfoAlgebra (info class)

is the info class for the functions dealing with algebras (see 7.4).

62.2 Constructing Algebras by Generators

62.2.1 Algebra

▷ Algebra(F, gens[, zero][, "basis"]) (function)

Algebra(F, gens) is the algebra over the division ring F , generated by the vectors in the list
gens .

If there are three arguments, a division ring F and a list gens and an element zero , then Algebra(
F, gens, zero) is the F-algebra generated by gens , with zero element zero .

If the last argument is the string "basis" then the vectors in gens are known to form a basis of
the algebra (as an F-vector space).

Example
gap> m:= [[0, 1, 2], [0, 0, 3], [0, 0, 0]];;

gap> A:= Algebra(Rationals, [m]);

<algebra over Rationals, with 1 generator>

gap> Dimension(A);

2

998

GAP - Reference Manual 999

62.2.2 AlgebraWithOne

▷ AlgebraWithOne(F, gens[, zero][, "basis"]) (function)

AlgebraWithOne(F, gens) is the algebra-with-one over the division ring F , generated by
the vectors in the list gens .

If there are three arguments, a division ring F and a list gens and an element zero , then
AlgebraWithOne(F, gens, zero) is the F-algebra-with-one generated by gens , with zero
element zero .

If the last argument is the string "basis" then the vectors in gens are known to form a basis of
the algebra (as an F-vector space).

Example
gap> m:= [[0, 1, 2], [0, 0, 3], [0, 0, 0]];;

gap> A:= AlgebraWithOne(Rationals, [m]);

<algebra-with-one over Rationals, with 1 generator>

gap> Dimension(A);

3

gap> One(A);

[[1, 0, 0], [0, 1, 0], [0, 0, 1]]

62.3 Constructing Algebras as Free Algebras

62.3.1 FreeAlgebra (for ring, rank (and name))

▷ FreeAlgebra(R, rank[, name]) (function)

▷ FreeAlgebra(R, name1, name2, ...) (function)

is a free (nonassociative) algebra of rank rank over the division ring R . Here name , and name1 ,
name2 , ... are optional strings that can be used to provide names for the generators.

Example
gap> A:= FreeAlgebra(Rationals, "a", "b");

<algebra over Rationals, with 2 generators>

gap> g:= GeneratorsOfAlgebra(A);

[(1)*a, (1)*b]

gap> (g[1]*g[2])*((g[2]*g[1])*g[1]);

(1)*((a*b)*((b*a)*a))

62.3.2 FreeAlgebraWithOne (for ring, rank (and name))

▷ FreeAlgebraWithOne(R, rank[, name]) (function)

▷ FreeAlgebraWithOne(R, name1, name2, ...) (function)

is a free (nonassociative) algebra-with-one of rank rank over the division ring R . Here name ,
and name1 , name2 , ... are optional strings that can be used to provide names for the generators.

Example
gap> A:= FreeAlgebraWithOne(Rationals, 4, "q");

<algebra-with-one over Rationals, with 4 generators>

gap> GeneratorsOfAlgebra(A);

[(1)*<identity ...>, (1)*q.1, (1)*q.2, (1)*q.3, (1)*q.4]

GAP - Reference Manual 1000

gap> One(A);

(1)*<identity ...>

62.3.3 FreeAssociativeAlgebra (for ring, rank (and name))

▷ FreeAssociativeAlgebra(R, rank[, name]) (function)

▷ FreeAssociativeAlgebra(R, name1, name2, ...) (function)

is a free associative algebra of rank rank over the division ring R . Here name , and name1 , name2 ,
... are optional strings that can be used to provide names for the generators.

Example
gap> A:= FreeAssociativeAlgebra(GF(5), 4, "a");

<algebra over GF(5), with 4 generators>

62.3.4 FreeAssociativeAlgebraWithOne (for ring, rank (and name))

▷ FreeAssociativeAlgebraWithOne(R, rank[, name]) (function)

▷ FreeAssociativeAlgebraWithOne(R, name1, name2, ...) (function)

is a free associative algebra-with-one of rank rank over the division ring R . Here name , and
name1 , name2 , ... are optional strings that can be used to provide names for the generators.

Example
gap> A:= FreeAssociativeAlgebraWithOne(Rationals, "a", "b", "c");

<algebra-with-one over Rationals, with 3 generators>

gap> GeneratorsOfAlgebra(A);

[(1)*<identity ...>, (1)*a, (1)*b, (1)*c]

gap> One(A);

(1)*<identity ...>

62.4 Constructing Algebras by Structure Constants

For an introduction into structure constants and how they are handled by GAP, we refer to Section
(Tutorial: Algebras) of the user’s tutorial.

62.4.1 AlgebraByStructureConstants

▷ AlgebraByStructureConstants(R, sctable[, nameinfo]) (function)

returns a free left module A over the division ring R , with multiplication defined by the structure
constants table sctable . The optional argument nameinfo can be used to prescribe names for the
elements of the canonical basis of A; it can be either a string name (then name1, name2 etc. are
chosen) or a list of strings which are then chosen. The vectors of the canonical basis of A correspond
to the vectors of the basis given by sctable .

It is not checked whether the coefficients in sctable are really elements in R .
Example

gap> T:= EmptySCTable(2, 0);;

gap> SetEntrySCTable(T, 1, 1, [1/2, 1, 2/3, 2]);

GAP - Reference Manual 1001

gap> A:= AlgebraByStructureConstants(Rationals, T);

<algebra of dimension 2 over Rationals>

gap> b:= BasisVectors(Basis(A));;

gap> b[1]^2;

(1/2)*v.1+(2/3)*v.2

gap> b[1]*b[2];

0*v.1

62.4.2 AlgebraWithOneByStructureConstants

▷ AlgebraWithOneByStructureConstants(R, sctable[, nameinfo], onecoeffs) (function)

The only differences between this function and AlgebraByStructureConstants (62.4.1) are
that AlgebraWithOneByStructureConstants takes an additional argument onecoeffs , the coeffi-
cients vector over the ring R that describes the unique multiplicative identity element of the returned
algebra w. r. t. the defining basis of this algebra, and that the returned algebra is an algebra-with-one
(see IsAlgebraWithOne (62.8.4)).

Example
gap> A:= GF(2)^[2,2];;

gap> B:= Basis(A);;

gap> onecoeffs:= Coefficients(B, One(A));

[Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0]

gap> T:= StructureConstantsTable(B);;

gap> sc1:= AlgebraByStructureConstants(GF(2), T);

<algebra of dimension 4 over GF(2)>

gap> HasOne(sc1);

false

gap> One(sc1);

v.1+v.4

gap> sc2:= AlgebraWithOneByStructureConstants(GF(2), T, onecoeffs);

<algebra-with-one of dimension 4 over GF(2)>

gap> HasOne(sc2);

true

gap> One(sc2);

v.1+v.4

62.4.3 StructureConstantsTable

▷ StructureConstantsTable(B) (attribute)

Let B be a basis of a free left module R that is also a ring. In this case StructureConstantsTable
returns a structure constants table T in sparse representation, as used for structure constants algebras
(see Section (Tutorial: Algebras) of the GAP User’s Tutorial).

If B has length n then T is a list of length n+ 2. The first n entries of T are lists of length n.
T [n+1] is one of 1, −1, or 0; in the case of 1 the table is known to be symmetric, in the case of −1
it is known to be antisymmetric, and 0 occurs in all other cases. T [n+ 2] is the zero element of the
coefficient domain.

GAP - Reference Manual 1002

The coefficients w.r.t. B of the product of the i-th and j-th basis vector of B are stored in T [i][j]
as a list of length 2; its first entry is the list of positions of nonzero coefficients, the second entry is the
list of these coefficients themselves.

The multiplication in an algebra A with vector space basis B with basis vectors [v1, . . . ,vn] is
determined by the so-called structure matrices Mk = [mi jk]i j, 1 ≤ k ≤ n. The Mk are defined by
viv j = ∑k mi jkvk. Let a = [a1, . . . ,an] and b = [b1, . . . ,bn]. Then(

∑
i

aivi

)(
∑

j
b jv j

)
= ∑

i, j
aib j (viv j) = ∑

k

(
∑

j

(
∑

i
aimi jk

)
b j

)
vk = ∑

k

(
aMkbtr)vk.

Example
gap> A:= QuaternionAlgebra(Rationals);;

gap> StructureConstantsTable(Basis(A));

[[[[1], [1]], [[2], [1]], [[3], [1]],

[[4], [1]]],

[[[2], [1]], [[1], [-1]], [[4], [1]],

[[3], [-1]]],

[[[3], [1]], [[4], [-1]], [[1], [-1]],

[[2], [1]]],

[[[4], [1]], [[3], [1]], [[2], [-1]],

[[1], [-1]]], 0, 0]

62.4.4 EmptySCTable

▷ EmptySCTable(dim, zero[, flag]) (function)

EmptySCTable returns a structure constants table for an algebra of dimension dim , describing
trivial multiplication. zero must be the zero of the coefficients domain. If the multiplication is known
to be (anti)commutative then this can be indicated by the optional third argument flag , which must
be one of the strings "symmetric", "antisymmetric".

For filling up the structure constants table, see SetEntrySCTable (62.4.5).
Example

gap> EmptySCTable(2, Zero(GF(5)), "antisymmetric");

[[[[], []], [[], []]],

[[[], []], [[], []]], -1, 0*Z(5)]

62.4.5 SetEntrySCTable

▷ SetEntrySCTable(T, i, j, list) (function)

sets the entry of the structure constants table T that describes the product of the i-th basis element
with the j-th basis element to the value given by the list list .

If T is known to be antisymmetric or symmetric then also the value T[j][i] is set.
list must be of the form [ck1

i j ,k1,c
k2
i j ,k2, . . .].

The entries at the odd positions of list must be compatible with the zero element stored in T .
For convenience, these entries may also be rational numbers that are automatically replaced by the
corresponding elements in the appropriate prime field in finite characteristic if necessary.

GAP - Reference Manual 1003

Example
gap> T:= EmptySCTable(2, 0);;

gap> SetEntrySCTable(T, 1, 1, [1/2, 1, 2/3, 2]);

gap> T;

[[[[1, 2], [1/2, 2/3]], [[], []]],

[[[], []], [[], []]], 0, 0]

62.4.6 GapInputSCTable

▷ GapInputSCTable(T, varname) (function)

is a string that describes the structure constants table T in terms of EmptySCTable (62.4.4) and
SetEntrySCTable (62.4.5). The assignments are made to the variable varname .

Example
gap> T:= EmptySCTable(2, 0);;

gap> SetEntrySCTable(T, 1, 2, [1, 2]);

gap> SetEntrySCTable(T, 2, 1, [1, 2]);

gap> GapInputSCTable(T, "T");

"T:= EmptySCTable(2, 0);\nSetEntrySCTable(T, 1, 2, [1,2]);\nSetEnt\

rySCTable(T, 2, 1, [1,2]);\n"

62.4.7 TestJacobi

▷ TestJacobi(T) (function)

tests whether the structure constants table T satisfies the Jacobi identity vi∗(v j ∗vk)+v j ∗(vk∗vi)+
vk ∗(vi ∗v j) = 0 for all basis vectors vi of the underlying algebra, where i ≤ j ≤ k. (Thus antisymmetry
is assumed.)

The function returns true if the Jacobi identity is satisfied, and a failing triple [i, j,k] otherwise.
Example

gap> T:= EmptySCTable(2, 0, "antisymmetric");;

gap> SetEntrySCTable(T, 1, 2, [1, 2]);;

gap> TestJacobi(T);

true

62.4.8 IdentityFromSCTable

▷ IdentityFromSCTable(T) (function)

Let T be a structure constants table of an algebra A of dimension n. IdentityFromSCTable(T

) is either fail or the vector of length n that contains the coefficients of the multiplicative identity of
A with respect to the basis that belongs to T .

Example
gap> T:= EmptySCTable(2, 0);;

gap> SetEntrySCTable(T, 1, 1, [1, 1]);;

gap> SetEntrySCTable(T, 1, 2, [1, 2]);;

gap> SetEntrySCTable(T, 2, 1, [1, 2]);;

gap> IdentityFromSCTable(T);

[1, 0]

GAP - Reference Manual 1004

62.4.9 QuotientFromSCTable

▷ QuotientFromSCTable(T, num, den) (function)

Let T be a structure constants table of an algebra A of dimension n. QuotientFromSCTable(T

) is either fail or the vector of length n that contains the coefficients of the quotient of num and den

with respect to the basis that belongs to T .
We solve the equation system num= x∗ den . If no solution exists, fail is returned.
In terms of the basis B with vectors b1, . . . ,bn this means for num = ∑

n
i=1 aibi, den = ∑

n
i=1 cibi,

x = ∑
n
i=1 xibi that ak = ∑i, j cix jci jk for all k. Here ci jk denotes the structure constants with respect to

B. This means that (as a vector) a = xM with M jk = ∑
n
i=1 ci jkci.

Example
gap> T:= EmptySCTable(2, 0);;

gap> SetEntrySCTable(T, 1, 1, [1, 1]);;

gap> SetEntrySCTable(T, 2, 1, [1, 2]);;

gap> SetEntrySCTable(T, 1, 2, [1, 2]);;

gap> QuotientFromSCTable(T, [0,1], [1,0]);

[0, 1]

62.5 Some Special Algebras

62.5.1 QuaternionAlgebra

▷ QuaternionAlgebra(F[, a, b]) (function)

Returns: a quaternion algebra over F , with parameters a and b .
Let F be a field or a list of field elements, let F be the field generated by F , and let a and b

two elements in F . QuaternionAlgebra returns a quaternion algebra over F , with parameters a

and b , i.e., a four-dimensional associative F-algebra with basis (e, i, j,k) and multiplication defined
by ee = e, ei = ie = i, e j = je = j, ek = ke = k, ii = ae, i j = − ji = k, ik = −ki = a j, j j = be,
k j =− jk = b i, kk =−abe. The default value for both a and b is −1 ∈ F .

The GeneratorsOfAlgebra (62.9.1) and CanonicalBasis (61.5.3) value of an algebra con-
structed with QuaternionAlgebra is the list [e, i, j,k].

Two quaternion algebras with the same parameters a , b lie in the same family, so it makes sense
to consider their intersection or to ask whether they are contained in each other. (This is due to the fact
that the results of QuaternionAlgebra are cached, in the global variable QuaternionAlgebraData.)

The embedding of the field GaussianRationals (60.1.3) into a quaternion algebra A over
Rationals (17.1.1) is not uniquely determined. One can specify one embedding as a vector space
homomorphism that maps 1 to the first algebra generator of A, and E(4) to one of the others.

Example
gap> QuaternionAlgebra(Rationals);

<algebra-with-one of dimension 4 over Rationals>

62.5.2 ComplexificationQuat (for a vector)

▷ ComplexificationQuat(vector) (function)

▷ ComplexificationQuat(matrix) (function)

GAP - Reference Manual 1005

Let A = eF ⊕ iF ⊕ jF ⊕ kF be a quaternion algebra over the field F of cyclotomics, with basis
(e, i, j,k).

If v = v1 + v2 j is a row vector over A with v1 = ew1 + iw2 and v2 = ew3 + iw4 then
ComplexificationQuat called with argument v returns the concatenation of w1+E(4)w2 and
w3+E(4)w4.

If M = M1 + M2 j is a matrix over A with M1 = eN1 + iN2 and M2 = eN3 + iN4 then
ComplexificationQuat called with argument M returns the block matrix A over eF ⊕ iF such that
A(1,1) = N1+E(4)N2, A(2,2) = N1−E(4)N2, A(1,2) = N3+E(4)N4, and A(2,1) =−N3+E(4)N4.

Then ComplexificationQuat(v) * ComplexificationQuat(M)=

ComplexificationQuat(v * M), since

vM = v1M1 + v2 jM1 + v1M2 j+ v2 jM2 j = (v1M1 − v2M2)+(v1M2 + v2M1) j.

62.5.3 OctaveAlgebra

▷ OctaveAlgebra(F) (function)

The algebra of octonions over F .
Example

gap> OctaveAlgebra(Rationals);

<algebra of dimension 8 over Rationals>

62.5.4 FullMatrixAlgebra

▷ FullMatrixAlgebra(R, n) (function)

▷ MatrixAlgebra(R, n) (function)

▷ MatAlgebra(R, n) (function)

is the full matrix algebra of n ×n matrices over the ring R , for a nonnegative integer n .
Example

gap> A:=FullMatrixAlgebra(Rationals, 20);

(Rationals^[20, 20])

gap> Dimension(A);

400

62.5.5 NullAlgebra

▷ NullAlgebra(R) (attribute)

The zero-dimensional algebra over R .
Example

gap> A:= NullAlgebra(Rationals);

<algebra of dimension 0 over Rationals>

gap> Dimension(A);

0

GAP - Reference Manual 1006

62.6 Subalgebras

62.6.1 Subalgebra

▷ Subalgebra(A, gens[, "basis"]) (function)

is the F-algebra generated by gens , with parent algebra A , where F is the left acting domain of
A .

Note that being a subalgebra of A means to be an algebra, to be contained in A , and to have the
same left acting domain as A .

An optional argument "basis" may be added if it is known that the generators already form a
basis of the algebra. Then it is not checked whether gens really are linearly independent and whether
all elements in gens lie in A .

Example
gap> m:= [[0, 1, 2], [0, 0, 3], [0, 0, 0]];;

gap> A:= Algebra(Rationals, [m]);

<algebra over Rationals, with 1 generator>

gap> B:= Subalgebra(A, [m^2]);

<algebra over Rationals, with 1 generator>

62.6.2 SubalgebraNC

▷ SubalgebraNC(A, gens[, "basis"]) (function)

SubalgebraNC does the same as Subalgebra (62.6.1), except that it does not check whether all
elements in gens lie in A .

Example
gap> m:= RandomMat(3, 3);;

gap> A:= Algebra(Rationals, [m]);

<algebra over Rationals, with 1 generator>

gap> SubalgebraNC(A, [IdentityMat(3, 3)], "basis");

<algebra of dimension 1 over Rationals>

62.6.3 SubalgebraWithOne

▷ SubalgebraWithOne(A, gens[, "basis"]) (function)

is the algebra-with-one generated by gens , with parent algebra A .
The optional third argument, the string "basis", may be added if it is known that the elements

from gens are linearly independent. Then it is not checked whether gens really are linearly indepen-
dent and whether all elements in gens lie in A .

Example
gap> m:= [[0, 1, 2], [0, 0, 3], [0, 0, 0]];;

gap> A:= AlgebraWithOne(Rationals, [m]);

<algebra-with-one over Rationals, with 1 generator>

gap> B1:= SubalgebraWithOne(A, [m]);;

gap> B2:= Subalgebra(A, [m]);;

gap> Dimension(B1);

3

GAP - Reference Manual 1007

gap> Dimension(B2);

2

62.6.4 SubalgebraWithOneNC

▷ SubalgebraWithOneNC(A, gens[, "basis"]) (function)

SubalgebraWithOneNC does the same as SubalgebraWithOne (62.6.3), except that it does not
check whether all elements in gens lie in A .

Example
gap> m:= RandomMat(3, 3);; A:= Algebra(Rationals, [m]);;

gap> SubalgebraWithOneNC(A, [m]);

<algebra-with-one over Rationals, with 1 generator>

62.6.5 TrivialSubalgebra

▷ TrivialSubalgebra(A) (attribute)

The zero dimensional subalgebra of the algebra A .
Example

gap> A:= QuaternionAlgebra(Rationals);;

gap> B:= TrivialSubalgebra(A);

<algebra of dimension 0 over Rationals>

gap> Dimension(B);

0

62.7 Ideals of Algebras

For constructing and working with ideals in algebras the same functions are available as for ideals in
rings. So for the precise description of these functions we refer to Chapter 56. Here we give examples
demonstrating the use of ideals in algebras. For an introduction into the construction of quotient
algebras we refer to Chapter (Tutorial: Algebras) of the user’s tutorial.

Example
gap> m:= [[0, 2, 3], [0, 0, 4], [0, 0, 0]];;

gap> A:= AlgebraWithOne(Rationals, [m]);;

gap> I:= Ideal(A, [m]); # the two-sided ideal of `A' generated by `m'

<two-sided ideal in <algebra-with-one of dimension 3 over Rationals>,

(1 generator)>

gap> Dimension(I);

2

gap> GeneratorsOfIdeal(I);

[[[0, 2, 3], [0, 0, 4], [0, 0, 0]]]

gap> BasisVectors(Basis(I));

[[[0, 1, 3/2], [0, 0, 2], [0, 0, 0]],

[[0, 0, 1], [0, 0, 0], [0, 0, 0]]]

gap> A:= FullMatrixAlgebra(Rationals, 4);;

gap> m:= NullMat(4, 4);; m[1][4]:=1;;

gap> I:= LeftIdeal(A, [m]);

GAP - Reference Manual 1008

<left ideal in (Rationals^[4, 4]), (1 generator)>

gap> Dimension(I);

4

gap> GeneratorsOfLeftIdeal(I);

[[[0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]]

gap> mats:= [[[1,0],[0,0]], [[0,1],[0,0]], [[0,0],[0,1]]];;

gap> A:= Algebra(Rationals, mats);;

gap> # Form the two-sided ideal for which `mats[2]' is known to be

gap> # the unique basis element.

gap> I:= Ideal(A, [mats[2]], "basis");

<two-sided ideal in <algebra of dimension 3 over Rationals>,

(dimension 1)>

62.8 Categories and Properties of Algebras

62.8.1 IsFLMLOR

▷ IsFLMLOR(obj) (Category)

A FLMLOR (“free left module left operator ring”) in GAP is a ring that is also a free left module.
Note that this means that being a FLMLOR is not a property a ring can get, since a ring is usually

not represented as an external left set.
Examples are magma rings (e.g. over the integers) or algebras.

Example
gap> A:= FullMatrixAlgebra(Rationals, 2);;

gap> IsFLMLOR (A);

true

62.8.2 IsFLMLORWithOne

▷ IsFLMLORWithOne(obj) (Category)

A FLMLOR-with-one in GAP is a ring-with-one that is also a free left module.
Note that this means that being a FLMLOR-with-one is not a property a ring-with-one can get,

since a ring-with-one is usually not represented as an external left set.
Examples are magma rings-with-one or algebras-with-one (but also over the integers).

Example
gap> A:= FullMatrixAlgebra(Rationals, 2);;

gap> IsFLMLORWithOne (A);

true

62.8.3 IsAlgebra

▷ IsAlgebra(obj) (Category)

An algebra in GAP is a ring that is also a left vector space. Note that this means that being an
algebra is not a property a ring can get, since a ring is usually not represented as an external left set.

GAP - Reference Manual 1009

Example
gap> A:= MatAlgebra(Rationals, 3);;

gap> IsAlgebra(A);

true

62.8.4 IsAlgebraWithOne

▷ IsAlgebraWithOne(obj) (Category)

An algebra-with-one in GAP is a ring-with-one that is also a left vector space. Note that
this means that being an algebra-with-one is not a property a ring-with-one can get, since a
ring-with-one is usually not represented as an external left set.

Example
gap> A:= MatAlgebra(Rationals, 3);;

gap> IsAlgebraWithOne(A);

true

62.8.5 IsLieAlgebra

▷ IsLieAlgebra(A) (filter)

An algebra A is called Lie algebra if a ∗ a = 0 for all a in A and (a ∗ (b ∗ c))+ (b ∗ (c ∗ a))+ (c ∗
(a∗b)) = 0 for all a,b,c ∈A (Jacobi identity).

Example
gap> A:= FullMatrixLieAlgebra(Rationals, 3);;

gap> IsLieAlgebra(A);

true

62.8.6 IsSimpleAlgebra

▷ IsSimpleAlgebra(A) (property)

is true if the algebra A is simple, and false otherwise. This function is only implemented for the
cases where A is an associative or a Lie algebra. And for Lie algebras it is only implemented for the
case where the ground field is of characteristic zero.

Example
gap> A:= FullMatrixLieAlgebra(Rationals, 3);;

gap> IsSimpleAlgebra(A);

false

gap> A:= MatAlgebra(Rationals, 3);;

gap> IsSimpleAlgebra(A);

true

62.8.7 IsFiniteDimensional (for matrix algebras)

▷ IsFiniteDimensional(matalg) (method)

returns true (always) for a matrix algebra matalg , since matrix algebras are always finite dimen-
sional.

GAP - Reference Manual 1010

Example
gap> A:= MatAlgebra(Rationals, 3);;

gap> IsFiniteDimensional(A);

true

62.8.8 IsQuaternion

▷ IsQuaternion(obj) (Category)

▷ IsQuaternionCollection(obj) (Category)

▷ IsQuaternionCollColl(obj) (Category)

IsQuaternion is the category of elements in an algebra constructed by QuaternionAlgebra

(62.5.1). A collection of quaternions lies in the category IsQuaternionCollection. Fi-
nally, a collection of quaternion collections (e.g., a matrix of quaternions) lies in the category
IsQuaternionCollColl.

Example
gap> A:= QuaternionAlgebra(Rationals);;

gap> b:= BasisVectors(Basis(A));

[e, i, j, k]

gap> IsQuaternion(b[1]);

true

gap> IsQuaternionCollColl([[b[1], b[2]], [b[3], b[4]]]);

true

62.9 Attributes and Operations for Algebras

62.9.1 GeneratorsOfAlgebra

▷ GeneratorsOfAlgebra(A) (attribute)

returns a list of elements that generate A as an algebra.
For a free algebra, each generator can also be accessed using the . operator (see

GeneratorsOfDomain (31.9.2)).
Example

gap> m:= [[0, 1, 2], [0, 0, 3], [0, 0, 0]];;

gap> A:= AlgebraWithOne(Rationals, [m]);

<algebra-with-one over Rationals, with 1 generator>

gap> GeneratorsOfAlgebra(A);

[[[1, 0, 0], [0, 1, 0], [0, 0, 1]],

[[0, 1, 2], [0, 0, 3], [0, 0, 0]]]

62.9.2 GeneratorsOfAlgebraWithOne

▷ GeneratorsOfAlgebraWithOne(A) (attribute)

returns a list of elements of A that generate A as an algebra with one.
For a free algebra with one, each generator can also be accessed using the . operator (see

GeneratorsOfDomain (31.9.2)).

GAP - Reference Manual 1011

Example
gap> m:= [[0, 1, 2], [0, 0, 3], [0, 0, 0]];;

gap> A:= AlgebraWithOne(Rationals, [m]);

<algebra-with-one over Rationals, with 1 generator>

gap> GeneratorsOfAlgebraWithOne(A);

[[[0, 1, 2], [0, 0, 3], [0, 0, 0]]]

62.9.3 ProductSpace

▷ ProductSpace(U, V) (operation)

is the vector space ⟨u∗ v;u ∈U,v ∈V ⟩, where U and V are subspaces of the same algebra.
If U = V is known to be an algebra then the product space is also an algebra, moreover it is an

ideal in U . If U and V are known to be ideals in an algebra A then the product space is known to be an
algebra and an ideal in A.

Example
gap> A:= QuaternionAlgebra(Rationals);;

gap> b:= BasisVectors(Basis(A));;

gap> B:= Subalgebra(A, [b[4]]);

<algebra over Rationals, with 1 generator>

gap> ProductSpace(A, B);

<vector space of dimension 4 over Rationals>

62.9.4 PowerSubalgebraSeries

▷ PowerSubalgebraSeries(A) (attribute)

returns a list of subalgebras of A , the first term of which is A ; and every next term is the product
space of the previous term with itself.

Example
gap> A:= QuaternionAlgebra(Rationals);

<algebra-with-one of dimension 4 over Rationals>

gap> PowerSubalgebraSeries(A);

[<algebra-with-one of dimension 4 over Rationals>]

62.9.5 AdjointBasis

▷ AdjointBasis(B) (attribute)

The adjoint map ad(x) of an element x in an F-algebra A is the left multiplication by x. This
map is F-linear and thus, w.r.t. the given basis B= (x1,x2, . . . ,xn) of A, ad(x) can be represented by
a matrix over F . Let V denote the F-vector space of the matrices corresponding to ad(x), for x ∈ A.
Then AdjointBasis returns the basis of V that consists of the matrices for ad(x1), . . . ,ad(xn).

Example
gap> A:= QuaternionAlgebra(Rationals);;

gap> AdjointBasis(Basis(A));

Basis(<vector space over Rationals, with 4 generators>,

[[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],

[[0, -1, 0, 0], [1, 0, 0, 0], [0, 0, 0, -1], [0, 0, 1, 0]]

GAP - Reference Manual 1012

,

[[0, 0, -1, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, -1, 0, 0]]

,

[[0, 0, 0, -1], [0, 0, -1, 0], [0, 1, 0, 0], [1, 0, 0, 0]

]])

62.9.6 IndicesOfAdjointBasis

▷ IndicesOfAdjointBasis(B) (attribute)

Let A be an algebra and let B be the basis that is output by AdjointBasis(Basis(A)). This
function returns a list of indices. If i is an index belonging to this list, then adxi is a basis vector of the
matrix space spanned by adA, where xi is the i-th basis vector of the basis B .

Example
gap> L:= FullMatrixLieAlgebra(Rationals, 3);;

gap> B:= AdjointBasis(Basis(L));;

gap> IndicesOfAdjointBasis(B);

[1, 2, 3, 4, 5, 6, 7, 8]

62.9.7 AsAlgebra

▷ AsAlgebra(F, A) (operation)

Returns the algebra over F generated by A .
Example

gap> V:= VectorSpace(Rationals, [IdentityMat(2)]);;

gap> AsAlgebra(Rationals, V);

<algebra of dimension 1 over Rationals>

62.9.8 AsAlgebraWithOne

▷ AsAlgebraWithOne(F, A) (operation)

If the algebra A has an identity, then it can be viewed as an algebra with one over F . This function
returns this algebra with one.

Example
gap> V:= VectorSpace(Rationals, [IdentityMat(2)]);;

gap> A:= AsAlgebra(Rationals, V);;

gap> AsAlgebraWithOne(Rationals, A);

<algebra-with-one over Rationals, with 1 generator>

62.9.9 AsSubalgebra

▷ AsSubalgebra(A, B) (operation)

If all elements of the algebra B happen to be contained in the algebra A , then B can be viewed as
a subalgebra of A . This function returns this subalgebra.

GAP - Reference Manual 1013

Example
gap> A:= FullMatrixAlgebra(Rationals, 2);;

gap> V:= VectorSpace(Rationals, [IdentityMat(2)]);;

gap> B:= AsAlgebra(Rationals, V);;

gap> BA:= AsSubalgebra(A, B);

<algebra of dimension 1 over Rationals>

62.9.10 AsSubalgebraWithOne

▷ AsSubalgebraWithOne(A, B) (operation)

If B is an algebra with one, all elements of which happen to be contained in the algebra with one
A , then B can be viewed as a subalgebra with one of A . This function returns this subalgebra with one.

Example
gap> A:= FullMatrixAlgebra(Rationals, 2);;

gap> V:= VectorSpace(Rationals, [IdentityMat(2)]);;

gap> B:= AsAlgebra(Rationals, V);;

gap> C:= AsAlgebraWithOne(Rationals, B);;

gap> AC:= AsSubalgebraWithOne(A, C);

<algebra-with-one over Rationals, with 1 generator>

62.9.11 MutableBasisOfClosureUnderAction

▷ MutableBasisOfClosureUnderAction(F, Agens, from, init, opr, zero, maxdim)

(function)

Let F be a ring, Agens a list of generators for an F-algebra A, and from one of "left", "right",
"both"; this means that elements of A act via multiplication from the respective side(s). init must
be a list of initial generating vectors, and opr the operation (a function of two arguments).

MutableBasisOfClosureUnderAction returns a mutable basis of the F-free left module gener-
ated by the vectors in init and their images under the action of Agens from the respective side(s).

zero is the zero element of the desired module. maxdim is an upper bound for the dimension of
the closure; if no such upper bound is known then the value of maxdim must be infinity (18.2.1).

MutableBasisOfClosureUnderAction can be used to compute a basis of an associative algebra
generated by the elements in Agens . In this case from may be "left" or "right", opr is the multi-
plication *, and init is a list containing either the identity of the algebra or a list of algebra generators.
(Note that if the algebra has an identity then it is in general not sufficient to take algebra-with-one
generators as init , whereas of course Agens need not contain the identity.)

(Note that bases of not necessarily associative algebras can be computed using
MutableBasisOfNonassociativeAlgebra (62.9.12).)

Other applications of MutableBasisOfClosureUnderAction are the computations of bases for
(left/ right/ two-sided) ideals I in an associative algebra A from ideal generators of I; in these cases
Agens is a list of algebra generators of A, from denotes the appropriate side(s), init is a list of ideal
generators of I, and opr is again *.

(Note that bases of ideals in not necessarily associative algebras can be computed using
MutableBasisOfIdealInNonassociativeAlgebra (62.9.13).)

GAP - Reference Manual 1014

Finally, bases of right A-modules also can be computed using
MutableBasisOfClosureUnderAction. The only difference to the ideal case is that init is
now a list of right module generators, and opr is the operation of the module.

Example
gap> A:= QuaternionAlgebra(Rationals);;

gap> g:= GeneratorsOfAlgebra(A);;

gap> B:= MutableBasisOfClosureUnderAction(Rationals,

> g, "left", [g[1]], *, Zero(A), 4);

<mutable basis over Rationals, 4 vectors>

gap> BasisVectors(B);

[e, i, j, k]

62.9.12 MutableBasisOfNonassociativeAlgebra

▷ MutableBasisOfNonassociativeAlgebra(F, Agens, zero, maxdim) (function)

is a mutable basis of the (not necessarily associative) F-algebra that is generated by Agens , has
zero element zero , and has dimension at most maxdim . If no finite bound for the dimension is known
then infinity (18.2.1) must be the value of maxdim .

The difference to MutableBasisOfClosureUnderAction (62.9.11) is that in general it is not
sufficient to multiply just with algebra generators. (For special cases of nonassociative algebras, espe-
cially for Lie algebras, multiplying with algebra generators suffices.)

Example
gap> L:= FullMatrixLieAlgebra(Rationals, 4);;

gap> m1:= Random(L);;

gap> m2:= Random(L);;

gap> MutableBasisOfNonassociativeAlgebra(Rationals, [m1, m2],

> Zero(L), 16);

<mutable basis over Rationals, 16 vectors>

62.9.13 MutableBasisOfIdealInNonassociativeAlgebra

▷ MutableBasisOfIdealInNonassociativeAlgebra(F, Vgens, Igens, zero, from,

maxdim) (function)

is a mutable basis of the ideal generated by Igens under the action of the (not neces-
sarily associative) F-algebra with vector space generators Vgens . The zero element of the
ideal is zero , from is one of "left", "right", "both" (with the same meaning as in
MutableBasisOfClosureUnderAction (62.9.11)), and maxdim is a known upper bound on the di-
mension of the ideal; if no finite bound for the dimension is known then infinity (18.2.1) must be
the value of maxdim .

The difference to MutableBasisOfClosureUnderAction (62.9.11) is that in general it is not
sufficient to multiply just with algebra generators. (For special cases of nonassociative algebras, espe-
cially for Lie algebras, multiplying with algebra generators suffices.)

Example
gap> mats:= [[[1, 0], [0, -1]], [[0,1],[0,0]]];;

gap> A:= Algebra(Rationals, mats);;

gap> basA:= BasisVectors(Basis(A));;

GAP - Reference Manual 1015

gap> B:= MutableBasisOfIdealInNonassociativeAlgebra(Rationals, basA,

> [mats[2]], 0*mats[1], "both", infinity);

<mutable basis over Rationals, 1 vector>

gap> BasisVectors(B);

[[[0, 1], [0, 0]]]

62.9.14 DirectSumOfAlgebras (for two algebras)

▷ DirectSumOfAlgebras(A1, A2) (operation)

▷ DirectSumOfAlgebras(list) (operation)

is the direct sum of the two algebras A1 and A2 respectively of the algebras in the list list .
If all involved algebras are associative algebras then the result is also known to be associative. If

all involved algebras are Lie algebras then the result is also known to be a Lie algebra.
All involved algebras must have the same left acting domain.
The default case is that the result is a structure constants algebra. If all involved algebras are

matrix algebras, and either both are Lie algebras or both are associative then the result is again a
matrix algebra of the appropriate type.

Example
gap> A:= QuaternionAlgebra(Rationals);;

gap> DirectSumOfAlgebras([A, A, A]);

<algebra of dimension 12 over Rationals>

62.9.15 FullMatrixAlgebraCentralizer

▷ FullMatrixAlgebraCentralizer(F, lst) (function)

Let lst be a nonempty list of square matrices of the same dimension n with entries in the field F .
FullMatrixAlgebraCentralizer returns the (pointwise) centralizer of all matrices in lst , inside
the full matrix algebra of n×n matrices over F .

Example
gap> A:= QuaternionAlgebra(Rationals);;

gap> b:= Basis(A);;

gap> mats:= List(BasisVectors(b), x -> AdjointMatrix(b, x));;

gap> FullMatrixAlgebraCentralizer(Rationals, mats);

<algebra-with-one of dimension 4 over Rationals>

62.9.16 RadicalOfAlgebra

▷ RadicalOfAlgebra(A) (attribute)

is the maximal nilpotent ideal of A , where A is an associative algebra.
Example

gap> m:= [[0, 1, 2], [0, 0, 3], [0, 0, 0]];;

gap> A:= AlgebraWithOneByGenerators(Rationals, [m]);

<algebra-with-one over Rationals, with 1 generator>

gap> RadicalOfAlgebra(A);

<algebra of dimension 2 over Rationals>

GAP - Reference Manual 1016

62.9.17 CentralIdempotentsOfAlgebra

▷ CentralIdempotentsOfAlgebra(A) (attribute)

For an associative algebra A , this function returns a list of central primitive idempotents such that
their sum is the identity element of A . Therefore A is required to have an identity.

(This is a synonym of CentralIdempotentsOfSemiring.)
Example

gap> A:= QuaternionAlgebra(Rationals);;

gap> B:= DirectSumOfAlgebras([A, A, A]);

<algebra of dimension 12 over Rationals>

gap> CentralIdempotentsOfAlgebra(B);

[v.9, v.5, v.1]

62.9.18 DirectSumDecomposition (for Lie algebras)

▷ DirectSumDecomposition(L) (attribute)

This function calculates a list of ideals of the algebra L such that L is equal to their direct sum. Cur-
rently this is only implemented for semisimple associative algebras, and for Lie algebras (semisimple
or not).

Example
gap> G:= SymmetricGroup(4);;

gap> A:= GroupRing(Rationals, G);

<algebra-with-one over Rationals, with 2 generators>

gap> dd:= DirectSumDecomposition(A);

[<two-sided ideal in

<algebra-with-one of dimension 24 over Rationals>,

(1 generator)>,

<two-sided ideal in

<algebra-with-one of dimension 24 over Rationals>,

(1 generator)>,

<two-sided ideal in

<algebra-with-one of dimension 24 over Rationals>,

(1 generator)>,

<two-sided ideal in

<algebra-with-one of dimension 24 over Rationals>,

(1 generator)>,

<two-sided ideal in

<algebra-with-one of dimension 24 over Rationals>,

(1 generator)>]

gap> List(dd, Dimension);

[1, 1, 4, 9, 9]

Example
gap> L:= FullMatrixLieAlgebra(Rationals, 5);;

gap> DirectSumDecomposition(L);

[<two-sided ideal in

<two-sided ideal in <Lie algebra of dimension 25 over Rationals>

, (dimension 1)>, (dimension 1)>,

<two-sided ideal in

GAP - Reference Manual 1017

<two-sided ideal in <Lie algebra of dimension 25 over Rationals>

, (dimension 24)>, (dimension 24)>]

62.9.19 LeviMalcevDecomposition (for Lie algebras)

▷ LeviMalcevDecomposition(L) (attribute)

A Levi-Malcev subalgebra of the algebra L is a semisimple subalgebra complementary to the
radical of L . This function returns a list with two components. The first component is a Levi-Malcev
subalgebra, the second the radical. This function is implemented for associative and Lie algebras.

Example
gap> m:= [[1, 2, 0], [0, 1, 3], [0, 0, 1]];;

gap> A:= Algebra(Rationals, [m]);;

gap> LeviMalcevDecomposition(A);

[<algebra of dimension 1 over Rationals>,

<algebra of dimension 2 over Rationals>]

Example
gap> L:= FullMatrixLieAlgebra(Rationals, 5);;

gap> LeviMalcevDecomposition(L);

[<Lie algebra of dimension 24 over Rationals>,

<two-sided ideal in <Lie algebra of dimension 25 over Rationals>,

(dimension 1)>]

62.9.20 Grading

▷ Grading(A) (attribute)

Let G be an Abelian group and A an algebra. Then A is said to be graded over G if for every g ∈ G
there is a subspace Ag of A such that Ag ·Ah ⊂ Ag+h for g,h ∈ G. In GAP 4 a grading of an algebra is
a record containing the following components.

source

the Abelian group over which the algebra is graded.

hom_components

a function assigning to each element from the source a subspace of the algebra.

min_degree

in the case where the algebra is graded over the integers this is the minimum number for which
hom_components returns a nonzero subspace.

max_degree

is analogous to min_degree.

We note that there are no methods to compute a grading of an arbitrary algebra; however some
algebras get a natural grading when they are constructed (see JenningsLieAlgebra (64.8.4),
NilpotentQuotientOfFpLieAlgebra (64.11.2)).

We note also that these components may be not enough to handle the grading efficiently,
and another record component may be needed. For instance in a Lie algebra L constructed by

GAP - Reference Manual 1018

JenningsLieAlgebra (64.8.4), the length of the of the range [Grading(L)!.min_degree ..

Grading(L)!.max_degree] may be non-polynomial in the dimension of L. To handle efficiently
this situation, an optional component can be used:

non_zero_hom_components

the subset of source for which hom_components returns a nonzero subspace.
Example

gap> G:= SmallGroup(3^6, 100);

<pc group of size 729 with 6 generators>

gap> L:= JenningsLieAlgebra(G);

<Lie algebra of dimension 6 over GF(3)>

gap> g:= Grading(L);

rec(hom_components := function(d) ... end, max_degree := 9,

min_degree := 1, source := Integers)

gap> g.hom_components(3);

<vector space over GF(3), with 1 generator>

gap> g.hom_components(14);

<vector space of dimension 0 over GF(3)>

62.10 Homomorphisms of Algebras

Algebra homomorphisms are vector space homomorphisms that preserve the multiplication. So the
default methods for vector space homomorphisms work, and in fact there is not much use of the fact
that source and range are algebras, except that preimages and images are algebras (or even ideals) in
certain cases.

62.10.1 AlgebraGeneralMappingByImages

▷ AlgebraGeneralMappingByImages(A, B, gens, imgs) (operation)

is a general mapping from the F-algebra A to the F-algebra B . This general mapping is defined
by mapping the entries in the list gens (elements of A) to the entries in the list imgs (elements of B),
and taking the F-linear and multiplicative closure.

gens need not generate A as an F-algebra, and if the specification does not define a lin-
ear and multiplicative mapping then the result will be multivalued. Hence, in general it is not
a mapping. For constructing a linear map that is not necessarily multiplicative, we refer to
LeftModuleHomomorphismByImages (61.10.2).

Example
gap> A:= QuaternionAlgebra(Rationals);;

gap> B:= FullMatrixAlgebra(Rationals, 2);;

gap> bA:= BasisVectors(Basis(A));; bB:= BasisVectors(Basis(B));;

gap> f:= AlgebraGeneralMappingByImages(A, B, bA, bB);

[e, i, j, k] -> [[[1, 0], [0, 0]], [[0, 1], [0, 0]],

[[0, 0], [1, 0]], [[0, 0], [0, 1]]]

gap> Images(f, bA[1]);

<add. coset of <algebra over Rationals, with 16 generators>>

GAP - Reference Manual 1019

62.10.2 AlgebraHomomorphismByImages

▷ AlgebraHomomorphismByImages(A, B, gens, imgs) (function)

AlgebraHomomorphismByImages returns the algebra homomorphism with source A and range B
that is defined by mapping the list gens of generators of A to the list imgs of images in B .

If gens does not generate A or if the homomorphism does not exist (i.e., if mapping the generators
describes only a multi-valued mapping) then fail is returned.

One can avoid the checks by calling AlgebraHomomorphismByImagesNC (62.10.3), and one can
construct multi-valued mappings with AlgebraGeneralMappingByImages (62.10.1).

Example
gap> T:= EmptySCTable(2, 0);;

gap> SetEntrySCTable(T, 1, 1, [1,1]); SetEntrySCTable(T, 2, 2, [1,2]);

gap> A:= AlgebraByStructureConstants(Rationals, T);;

gap> m1:= NullMat(2, 2);; m1[1][1]:= 1;;

gap> m2:= NullMat(2, 2);; m2[2][2]:= 1;;

gap> B:= AlgebraByGenerators(Rationals, [m1, m2]);;

gap> bA:= BasisVectors(Basis(A));; bB:= BasisVectors(Basis(B));;

gap> f:= AlgebraHomomorphismByImages(A, B, bA, bB);

[v.1, v.2] -> [[[1, 0], [0, 0]], [[0, 0], [0, 1]]]

gap> Image(f, bA[1]+bA[2]);

[[1, 0], [0, 1]]

62.10.3 AlgebraHomomorphismByImagesNC

▷ AlgebraHomomorphismByImagesNC(A, B, gens, imgs) (operation)

AlgebraHomomorphismByImagesNC is the operation that is called by the function
AlgebraHomomorphismByImages (62.10.2). Its methods may assume that gens generates A

and that the mapping of gens to imgs defines an algebra homomorphism. Results are unpredictable
if these conditions do not hold.

For creating a possibly multi-valued mapping from A to B that respects addition, multiplication,
and scalar multiplication, AlgebraGeneralMappingByImages (62.10.1) can be used.

For the definitions of the algebras A and B in the next example we refer to the previous example.
Example

gap> f:= AlgebraHomomorphismByImagesNC(A, B, bA, bB);

[v.1, v.2] -> [[[1, 0], [0, 0]], [[0, 0], [0, 1]]]

62.10.4 AlgebraWithOneGeneralMappingByImages

▷ AlgebraWithOneGeneralMappingByImages(A, B, gens, imgs) (operation)

This function is analogous to AlgebraGeneralMappingByImages (62.10.1); the only difference
being that the identity of A is automatically mapped to the identity of B .

Example
gap> A:= QuaternionAlgebra(Rationals);;

gap> B:= FullMatrixAlgebra(Rationals, 2);;

gap> bA:= BasisVectors(Basis(A));; bB:= BasisVectors(Basis(B));;

gap> f:=AlgebraWithOneGeneralMappingByImages(A,B,bA{[2,3,4]},bB{[1,2,3]});

GAP - Reference Manual 1020

[i, j, k, e] -> [[[1, 0], [0, 0]], [[0, 1], [0, 0]],

[[0, 0], [1, 0]], [[1, 0], [0, 1]]]

62.10.5 AlgebraWithOneHomomorphismByImages

▷ AlgebraWithOneHomomorphismByImages(A, B, gens, imgs) (function)

AlgebraWithOneHomomorphismByImages returns the algebra-with-one homomorphism with
source A and range B that is defined by mapping the list gens of generators of A to the list imgs
of images in B .

The difference between an algebra homomorphism and an algebra-with-one homomorphism is
that in the latter case, it is assumed that the identity of A is mapped to the identity of B , and therefore
gens needs to generate A only as an algebra-with-one.

If gens does not generate A or if the homomorphism does not exist (i.e., if mapping the generators
describes only a multi-valued mapping) then fail is returned.

One can avoid the checks by calling AlgebraWithOneHomomorphismByImagesNC (62.10.6),
and one can construct multi-valued mappings with AlgebraWithOneGeneralMappingByImages

(62.10.4).
Example

gap> m1:= NullMat(2, 2);; m1[1][1]:=1;;

gap> m2:= NullMat(2, 2);; m2[2][2]:=1;;

gap> A:= AlgebraByGenerators(Rationals, [m1,m2]);;

gap> T:= EmptySCTable(2, 0);;

gap> SetEntrySCTable(T, 1, 1, [1,1]);

gap> SetEntrySCTable(T, 2, 2, [1,2]);

gap> B:= AlgebraByStructureConstants(Rationals, T);;

gap> bA:= BasisVectors(Basis(A));; bB:= BasisVectors(Basis(B));;

gap> f:= AlgebraWithOneHomomorphismByImages(A, B, bA{[1]}, bB{[1]});

[[[1, 0], [0, 0]], [[1, 0], [0, 1]]] -> [v.1, v.1+v.2]

62.10.6 AlgebraWithOneHomomorphismByImagesNC

▷ AlgebraWithOneHomomorphismByImagesNC(A, B, gens, imgs) (operation)

AlgebraWithOneHomomorphismByImagesNC is the operation that is called by the function
AlgebraWithOneHomomorphismByImages (62.10.5). Its methods may assume that gens generates
A and that the mapping of gens to imgs defines an algebra-with-one homomorphism. Results are
unpredictable if these conditions do not hold.

For creating a possibly multi-valued mapping from A to B that respects addition, multiplica-
tion, identity, and scalar multiplication, AlgebraWithOneGeneralMappingByImages (62.10.4) can
be used.

Example
gap> m1:= NullMat(2, 2);; m1[1][1]:=1;;

gap> m2:= NullMat(2, 2);; m2[2][2]:=1;;

gap> A:= AlgebraByGenerators(Rationals, [m1,m2]);;

gap> T:= EmptySCTable(2, 0);;

gap> SetEntrySCTable(T, 1, 1, [1,1]);

gap> SetEntrySCTable(T, 2, 2, [1,2]);

gap> B:= AlgebraByStructureConstants(Rationals, T);;

GAP - Reference Manual 1021

gap> bA:= BasisVectors(Basis(A));; bB:= BasisVectors(Basis(B));;

gap> f:= AlgebraWithOneHomomorphismByImagesNC(A, B, bA{[1]}, bB{[1]});

[[[1, 0], [0, 0]], [[1, 0], [0, 1]]] -> [v.1, v.1+v.2]

62.10.7 AlgebraHomomorphismByFunction

▷ AlgebraHomomorphismByFunction(A, B, f) (operation)

▷ AlgebraWithOneHomomorphismByFunction(A, B, f) (operation)

These functions construct an algebra homomorphism from the algebra A to the algebra B using a
one-argument function f . They do not check that the function actually defines a homomorphism.

Example
gap> A := MatrixAlgebra(Rationals, 2);;

gap> f := AlgebraHomomorphismByFunction(Rationals, A, q->[[q,0],[0,0]]);

MappingByFunction(Rationals, (Rationals^[2, 2]), function(q) ... end)

gap> 11^f;

[[11, 0], [0, 0]]

62.10.8 NaturalHomomorphismByIdeal (for an algebra and an ideal)

▷ NaturalHomomorphismByIdeal(A, I) (method)

For an algebra A and an ideal I in A , the return value of NaturalHomomorphismByIdeal (56.8.4)
is a homomorphism of algebras, in particular the range of this mapping is also an algebra.

Example
gap> L:= FullMatrixLieAlgebra(Rationals, 3);;

gap> C:= LieCentre(L);

<two-sided ideal in <Lie algebra of dimension 9 over Rationals>,

(dimension 1)>

gap> hom:= NaturalHomomorphismByIdeal(L, C);

<linear mapping by matrix, <Lie algebra of dimension

9 over Rationals> -> <Lie algebra of dimension 8 over Rationals>>

gap> ImagesSource(hom);

<Lie algebra of dimension 8 over Rationals>

62.10.9 OperationAlgebraHomomorphism (action w.r.t. a basis of the module)

▷ OperationAlgebraHomomorphism(A, B[, opr]) (operation)

▷ OperationAlgebraHomomorphism(A, V[, opr]) (operation)

OperationAlgebraHomomorphism returns an algebra homomorphism from the F-algebra A into
a matrix algebra over F that describes the F-linear action of A on the basis B of a free left module
respectively on the free left module V (in which case some basis of V is chosen), via the operation
opr .

The homomorphism need not be surjective. The default value for opr is OnRight (41.2.2).
If A is an algebra-with-one then the operation homomorphism is an algebra-with-one homomor-

phism because the identity of A must act as the identity.

GAP - Reference Manual 1022

Example
gap> m1:= NullMat(2, 2);; m1[1][1]:= 1;;

gap> m2:= NullMat(2, 2);; m2[2][2]:= 1;;

gap> B:= AlgebraByGenerators(Rationals, [m1, m2]);;

gap> V:= FullRowSpace(Rationals, 2);

(Rationals^2)

gap> f:=OperationAlgebraHomomorphism(B, Basis(V), OnRight);

<op. hom. Algebra(Rationals,

[[[1, 0], [0, 0]], [[0, 0], [0, 1]]

]) -> matrices of dim. 2>

gap> Image(f, m1);

[[1, 0], [0, 0]]

62.10.10 NiceAlgebraMonomorphism

▷ NiceAlgebraMonomorphism(A) (attribute)

If A is an associative algebra with one, returns an isomorphism from A onto a matrix algebra (see
IsomorphismMatrixAlgebra (62.10.12) for an example). If A is a finitely presented Lie algebra,
returns an isomorphism from A onto a Lie algebra defined by a structure constants table (see 64.11 for
an example).

62.10.11 IsomorphismFpAlgebra

▷ IsomorphismFpAlgebra(A) (attribute)

isomorphism from the algebra A onto a finitely presented algebra. Currently this is only imple-
mented for associative algebras with one.

Example
gap> A:= QuaternionAlgebra(Rationals);

<algebra-with-one of dimension 4 over Rationals>

gap> f:= IsomorphismFpAlgebra(A);

[e, i, j, k, e] -> [[(1)*x.1], [(1)*x.2], [(1)*x.3], [(1)*x.4],

[(1)*<identity ...>]]

62.10.12 IsomorphismMatrixAlgebra

▷ IsomorphismMatrixAlgebra(A) (attribute)

isomorphism from the algebra A onto a matrix algebra. Currently this is only implemented for
associative algebras with one.

Example
gap> T:= EmptySCTable(2, 0);;

gap> SetEntrySCTable(T, 1, 1, [1,1]); SetEntrySCTable(T, 2, 2, [1,2]);

gap> A:= AlgebraByStructureConstants(Rationals, T);;

gap> A:= AsAlgebraWithOne(Rationals, A);;

gap> f:=IsomorphismMatrixAlgebra(A);

<op. hom. AlgebraWithOne(Rationals, ...) -> matrices of dim. 2>

gap> Image(f, BasisVectors(Basis(A))[1]);

[[1, 0], [0, 0]]

GAP - Reference Manual 1023

62.10.13 IsomorphismSCAlgebra (w.r.t. a given basis)

▷ IsomorphismSCAlgebra(B) (attribute)

▷ IsomorphismSCAlgebra(A) (attribute)

For a basis B of an algebra A, IsomorphismSCAlgebra returns an algebra isomorphism from A
to an algebra S given by structure constants (see 62.4), such that the canonical basis of S is the image
of B .

For an algebra A , IsomorphismSCAlgebra chooses a basis of A and returns the
IsomorphismSCAlgebra value for that basis.

Example
gap> IsomorphismSCAlgebra(GF(8));

CanonicalBasis(GF(2^3)) -> CanonicalBasis(<algebra of dimension

3 over GF(2)>)

gap> IsomorphismSCAlgebra(GF(2)^[2,2]);

CanonicalBasis((GF(2)^

[2, 2])) -> CanonicalBasis(<algebra of dimension 4 over GF(2)>)

62.10.14 RepresentativeLinearOperation

▷ RepresentativeLinearOperation(A, v, w, opr) (operation)

is an element of the algebra A that maps the vector v to the vector w under the linear operation
described by the function opr . If no such element exists then fail is returned.

Example
gap> m1:= NullMat(2, 2);; m1[1][1]:= 1;;

gap> m2:= NullMat(2, 2);; m2[2][2]:= 1;;

gap> B:= AlgebraByGenerators(Rationals, [m1, m2]);;

gap> RepresentativeLinearOperation(B, [1,0], [1,0], OnRight);

[[1, 0], [0, 0]]

gap> RepresentativeLinearOperation(B, [1,0], [0,1], OnRight);

fail

62.11 Representations of Algebras

An algebra module is a vector space together with an action of an algebra. So a module over an al-
gebra is constructed by giving generators of a vector space, and a function for calculating the action
of algebra elements on elements of the vector space. When creating an algebra module, the genera-
tors of the vector space are wrapped up and given the category IsLeftAlgebraModuleElement or
IsRightModuleElement if the algebra acts from the left, or right respectively. (So in the case of a
bi-module the elements get both categories.) Most linear algebra computations are delegated to the
original vector space.

The transition between the original vector space and the corresponding algebra module is handled
by ExtRepOfObj and ObjByExtRep. For an element v of the algebra module, ExtRepOfObj(v)

returns the underlying element of the original vector space. Furthermore, if vec is an element of
the original vector space, and fam the elements family of the corresponding algebra module, then
ObjByExtRep(fam, vec) returns the corresponding element of the algebra module. Below is an
example of this.

GAP - Reference Manual 1024

The action of the algebra on elements of the algebra module is constructed by using the operator
^. If x is an element of an algebra A, and v an element of a left A-module, then x^v calculates the
result of the action of x on v. Similarly, if v is an element of a right A-module, then v^x calculates the
action of x on v.

62.11.1 LeftAlgebraModuleByGenerators

▷ LeftAlgebraModuleByGenerators(A, op, gens) (operation)

Constructs the left algebra module over A generated by the list of vectors gens . The action of
A is described by the function op . This must be a function of two arguments; the first argument is
the algebra element, and the second argument is a vector; it outputs the result of applying the algebra
element to the vector.

62.11.2 RightAlgebraModuleByGenerators

▷ RightAlgebraModuleByGenerators(A, op, gens) (operation)

Constructs the right algebra module over A generated by the list of vectors gens . The action of
A is described by the function op . This must be a function of two arguments; the first argument is a
vector, and the second argument is the algebra element; it outputs the result of applying the algebra
element to the vector.

62.11.3 BiAlgebraModuleByGenerators

▷ BiAlgebraModuleByGenerators(A, B, opl, opr, gens) (operation)

Constructs the algebra bi-module over A and B generated by the list of vectors gens . The left
action of A is described by the function opl , and the right action of B by the function opr . opl must
be a function of two arguments; the first argument is the algebra element, and the second argument
is a vector; it outputs the result of applying the algebra element on the left to the vector. opr must
be a function of two arguments; the first argument is a vector, and the second argument is the algebra
element; it outputs the result of applying the algebra element on the right to the vector.

Example
gap> A:= Rationals^[3,3];

(Rationals^[3, 3])

gap> V:= LeftAlgebraModuleByGenerators(A, *, [[1, 0, 0]]);

<left-module over (Rationals^[3, 3])>

gap> W:= RightAlgebraModuleByGenerators(A, *, [[1, 0, 0]]);

<right-module over (Rationals^[3, 3])>

gap> M:= BiAlgebraModuleByGenerators(A, A, *, *, [[1, 0, 0]]);

<bi-module over (Rationals^[3, 3]) (left) and (Rationals^

[3, 3]) (right)>

In the above examples, the modules V, W, and M are 3-dimensional vector spaces over the rationals.
The algebra A acts from the left on V, from the right on W, and from the left and from the right on M.

GAP - Reference Manual 1025

62.11.4 LeftAlgebraModule

▷ LeftAlgebraModule(A, op, V) (operation)

Constructs the left algebra module over A with underlying space V . The action of A is described by
the function op . This must be a function of two arguments; the first argument is the algebra element,
and the second argument is a vector from V ; it outputs the result of applying the algebra element to
the vector.

62.11.5 RightAlgebraModule

▷ RightAlgebraModule(A, op, V) (operation)

Constructs the right algebra module over A with underlying space V . The action of A is described
by the function op . This must be a function of two arguments; the first argument is a vector, from V

and the second argument is the algebra element; it outputs the result of applying the algebra element
to the vector.

62.11.6 BiAlgebraModule

▷ BiAlgebraModule(A, B, opl, opr, V) (operation)

Constructs the algebra bi-module over A and B with underlying space V . The left action of A is
described by the function opl , and the right action of B by the function opr . opl must be a function of
two arguments; the first argument is the algebra element, and the second argument is a vector from V ;
it outputs the result of applying the algebra element on the left to the vector. opr must be a function of
two arguments; the first argument is a vector from V , and the second argument is the algebra element;
it outputs the result of applying the algebra element on the right to the vector.

Example
gap> A:= Rationals^[3,3];;

gap> V:= Rationals^3;

(Rationals^3)

gap> V:= Rationals^3;;

gap> M:= BiAlgebraModule(A, A, *, *, V);

<bi-module over (Rationals^[3, 3]) (left) and (Rationals^

[3, 3]) (right)>

gap> Dimension(M);

3

62.11.7 GeneratorsOfAlgebraModule

▷ GeneratorsOfAlgebraModule(M) (attribute)

A list of elements of M that generate M as an algebra module.
Example

gap> A:= Rationals^[3,3];;

gap> V:= LeftAlgebraModuleByGenerators(A, *, [[1, 0, 0]]);;

gap> GeneratorsOfAlgebraModule(V);

[[1, 0, 0]]

GAP - Reference Manual 1026

62.11.8 IsAlgebraModuleElement

▷ IsAlgebraModuleElement(obj) (Category)

▷ IsAlgebraModuleElementCollection(obj) (Category)

▷ IsAlgebraModuleElementFamily(fam) (Category)

Category of algebra module elements. If an object has IsAlgebraModuleElementCollection,
then it is an algebra module. If a family has IsAlgebraModuleElementFamily, then it is a family of
algebra module elements (every algebra module has its own elements family).

62.11.9 IsLeftAlgebraModuleElement

▷ IsLeftAlgebraModuleElement(obj) (Category)

▷ IsLeftAlgebraModuleElementCollection(obj) (Category)

Category of left algebra module elements. If an object has
IsLeftAlgebraModuleElementCollection, then it is a left-algebra module.

62.11.10 IsRightAlgebraModuleElement

▷ IsRightAlgebraModuleElement(obj) (Category)

▷ IsRightAlgebraModuleElementCollection(obj) (Category)

Category of right algebra module elements. If an object has
IsRightAlgebraModuleElementCollection, then it is a right-algebra module.

Example
gap> A:= Rationals^[3,3];

(Rationals^[3, 3])

gap> M:= BiAlgebraModuleByGenerators(A, A, *, *, [[1, 0, 0]]);

<bi-module over (Rationals^[3, 3]) (left) and (Rationals^

[3, 3]) (right)>

gap> vv:= BasisVectors(Basis(M));

[[1, 0, 0], [0, 1, 0], [0, 0, 1]]

gap> IsLeftAlgebraModuleElement(vv[1]);

true

gap> IsRightAlgebraModuleElement(vv[1]);

true

gap> vv[1] = [1, 0, 0];

false

gap> ExtRepOfObj(vv[1]) = [1, 0, 0];

true

gap> ObjByExtRep(ElementsFamily(FamilyObj(M)), [1, 0, 0]) in M;

true

gap> xx:= BasisVectors(Basis(A));;

gap> xx[4]^vv[1]; # left action

[0, 1, 0]

gap> vv[1]^xx[2]; # right action

[0, 1, 0]

GAP - Reference Manual 1027

62.11.11 LeftActingAlgebra

▷ LeftActingAlgebra(V) (attribute)

Here V is a left-algebra module; this function returns the algebra that acts from the left on V .

62.11.12 RightActingAlgebra

▷ RightActingAlgebra(V) (attribute)

Here V is a right-algebra module; this function returns the algebra that acts from the right on V .

62.11.13 ActingAlgebra

▷ ActingAlgebra(V) (operation)

Here V is an algebra module; this function returns the algebra that acts on V (this is the same as
LeftActingAlgebra(V) if V is a left module, and RightActingAlgebra(V) if V is a right
module; it will signal an error if V is a bi-module).

Example
gap> A:= Rationals^[3,3];;

gap> M:= BiAlgebraModuleByGenerators(A, A, *, *, [[1, 0, 0]]);;

gap> LeftActingAlgebra(M);

(Rationals^[3, 3])

gap> RightActingAlgebra(M);

(Rationals^[3, 3])

gap> V:= RightAlgebraModuleByGenerators(A, *, [[1, 0, 0]]);;

gap> ActingAlgebra(V);

(Rationals^[3, 3])

62.11.14 IsBasisOfAlgebraModuleElementSpace

▷ IsBasisOfAlgebraModuleElementSpace(B) (Category)

If a basis B lies in the category IsBasisOfAlgebraModuleElementSpace, then B is a basis of a
subspace of an algebra module. This means that B has the record field B!.delegateBasis set. This
last object is a basis of the corresponding subspace of the vector space underlying the algebra module
(i.e., the vector space spanned by all ExtRepOfObj(v) for v in the algebra module).

Example
gap> A:= Rationals^[3,3];;

gap> M:= BiAlgebraModuleByGenerators(A, A, *, *, [[1, 0, 0]]);;

gap> B:= Basis(M);

Basis(<3-dimensional bi-module over (Rationals^

[3, 3]) (left) and (Rationals^[3, 3]) (right)>,

[[1, 0, 0], [0, 1, 0], [0, 0, 1]])

gap> IsBasisOfAlgebraModuleElementSpace(B);

true

gap> B!.delegateBasis;

SemiEchelonBasis(<vector space of dimension 3 over Rationals>,

[[1, 0, 0], [0, 1, 0], [0, 0, 1]])

GAP - Reference Manual 1028

62.11.15 MatrixOfAction

▷ MatrixOfAction(B, x[, side]) (operation)

Here B is a basis of an algebra module and x is an element of the algebra that acts on this module.
This function returns the matrix of the action of x with respect to B . If x acts from the left, then the
coefficients of the images of the basis elements of B (under the action of x) are the columns of the
output. If x acts from the right, then they are the rows of the output.

If the module is a bi-module, then the third parameter side must be specified. This is the string
"left", or "right" depending whether x acts from the left or the right.

Example
gap> M:= LeftAlgebraModuleByGenerators(A, *, [[1, 0, 0]]);;

gap> x:= Basis(A)[3];

[[0, 0, 1], [0, 0, 0], [0, 0, 0]]

gap> MatrixOfAction(Basis(M), x);

[[0, 0, 1], [0, 0, 0], [0, 0, 0]]

62.11.16 SubAlgebraModule

▷ SubAlgebraModule(M, gens[, "basis"]) (operation)

is the sub-module of the algebra module M , generated by the vectors in gens . If as an optional
argument the string basis is added, then it is assumed that the vectors in gens form a basis of the
submodule.

Example
gap> m1:= NullMat(2, 2);; m1[1][1]:= 1;;

gap> m2:= NullMat(2, 2);; m2[2][2]:= 1;;

gap> A:= Algebra(Rationals, [m1, m2]);;

gap> M:= LeftAlgebraModuleByGenerators(A, *, [[1, 0], [0, 1]]);

<left-module over <algebra over Rationals, with 2 generators>>

gap> bb:= BasisVectors(Basis(M));

[[1, 0], [0, 1]]

gap> V:= SubAlgebraModule(M, [bb[1]]);

<left-module over <algebra over Rationals, with 2 generators>>

gap> Dimension(V);

1

62.11.17 LeftModuleByHomomorphismToMatAlg

▷ LeftModuleByHomomorphismToMatAlg(A, hom) (operation)

Here A is an algebra and hom a homomorphism from A into a matrix algebra. This function returns
the left A-module defined by the homomorphism hom .

62.11.18 RightModuleByHomomorphismToMatAlg

▷ RightModuleByHomomorphismToMatAlg(A, hom) (operation)

GAP - Reference Manual 1029

Here A is an algebra and hom a homomorphism from A into a matrix algebra. This function returns
the right A-module defined by the homomorphism hom .

First we produce a structure constants algebra with basis elements x, y, z such that x2 = x, y2 = y,
xz = z, zy = z and all other products are zero.

Example
gap> T:= EmptySCTable(3, 0);;

gap> SetEntrySCTable(T, 1, 1, [1, 1]);

gap> SetEntrySCTable(T, 2, 2, [1, 2]);

gap> SetEntrySCTable(T, 1, 3, [1, 3]);

gap> SetEntrySCTable(T, 3, 2, [1, 3]);

gap> A:= AlgebraByStructureConstants(Rationals, T);

<algebra of dimension 3 over Rationals>

Now we construct an isomorphic matrix algebra.
Example

gap> m1:= NullMat(2, 2);; m1[1][1]:= 1;;

gap> m2:= NullMat(2, 2);; m2[2][2]:= 1;;

gap> m3:= NullMat(2, 2);; m3[1][2]:= 1;;

gap> B:= Algebra(Rationals, [m1, m2, m3]);

<algebra over Rationals, with 3 generators>

Finally we construct the homomorphism and the corresponding right module.
Example

gap> f:= AlgebraHomomorphismByImages(A, B, Basis(A), [m1, m2, m3]);;

gap> RightModuleByHomomorphismToMatAlg(A, f);

<right-module over <algebra of dimension 3 over Rationals>>

62.11.19 AdjointModule

▷ AdjointModule(A) (attribute)

returns the A-module defined by the left action of A on itself.
Example

gap> m1:= NullMat(2, 2);; m1[1][1]:= 1;;

gap> m2:= NullMat(2, 2);; m2[2][2]:= 1;;

gap> m3:= NullMat(2, 2);; m3[1][2]:= 1;;

gap> A:= Algebra(Rationals, [m1, m2, m3]);

<algebra over Rationals, with 3 generators>

gap> V:= AdjointModule(A);

<3-dimensional left-module over <algebra of dimension

3 over Rationals>>

gap> v:= Basis(V)[3];

[[0, 1], [0, 0]]

gap> W:= SubAlgebraModule(V, [v]);

<left-module over <algebra of dimension 3 over Rationals>>

gap> Dimension(W);

1

GAP - Reference Manual 1030

62.11.20 FaithfulModule (for Lie algebras)

▷ FaithfulModule(A) (attribute)

returns a faithful finite-dimensional left-module over the algebra A . This is only implemented for
associative algebras, and for Lie algebras of characteristic 0. (It may also work for certain Lie algebras
of characteristic p > 0.)

Example
gap> T:= EmptySCTable(2, 0);;

gap> A:= AlgebraByStructureConstants(Rationals, T);

<algebra of dimension 2 over Rationals>

Example
gap> T:= EmptySCTable(3, 0, "antisymmetric");;

gap> SetEntrySCTable(T, 1, 2, [1, 3]);

gap> L:= LieAlgebraByStructureConstants(Rationals, T);

<Lie algebra of dimension 3 over Rationals>

gap> V:= FaithfulModule(L);

<left-module over <Lie algebra of dimension 3 over Rationals>>

gap> vv:= BasisVectors(Basis(V));

[[1, 0, 0], [0, 1, 0], [0, 0, 1]]

gap> x:= Basis(L)[3];

v.3

gap> List(vv, v -> x^v);

[[0, 0, 0], [1, 0, 0], [0, 0, 0]]

A is a 2-dimensional algebra where all products are zero.
Example

gap> V:= FaithfulModule(A);

<left-module over <algebra of dimension 2 over Rationals>>

gap> vv:= BasisVectors(Basis(V));

[[1, 0, 0], [0, 1, 0], [0, 0, 1]]

gap> xx:= BasisVectors(Basis(A));

[v.1, v.2]

gap> xx[1]^vv[3];

[1, 0, 0]

62.11.21 ModuleByRestriction

▷ ModuleByRestriction(V, sub1[, sub2]) (operation)

Here V is an algebra module and sub1 is a subalgebra of the acting algebra of V . This function
returns the module that is the restriction of V to sub1 . So it has the same underlying vector space as
V , but the acting algebra is sub . If two subalgebras sub1 , sub2 are given then V is assumed to be
a bi-module, and sub1 a subalgebra of the algebra acting on the left, and sub2 a subalgebra of the
algebra acting on the right.

Example
gap> A:= Rationals^[3,3];;

gap> V:= LeftAlgebraModuleByGenerators(A, *, [[1, 0, 0]]);;

gap> B:= Subalgebra(A, [Basis(A)[1]]);

<algebra over Rationals, with 1 generator>

GAP - Reference Manual 1031

gap> W:= ModuleByRestriction(V, B);

<left-module over <algebra over Rationals, with 1 generator>>

62.11.22 NaturalHomomorphismBySubAlgebraModule

▷ NaturalHomomorphismBySubAlgebraModule(V, W) (operation)

Here V must be a sub-algebra module of V . This function returns the projection from V onto V/W .
It is a linear map, that is also a module homomorphism. As usual images can be formed with Image(

f, v) and pre-images with PreImagesRepresentative(f, u).
The quotient module can also be formed by entering V/W .

Example
gap> A:= Rationals^[3,3];;

gap> B:= DirectSumOfAlgebras(A, A);

<algebra over Rationals, with 6 generators>

gap> T:= StructureConstantsTable(Basis(B));;

gap> C:= AlgebraByStructureConstants(Rationals, T);

<algebra of dimension 18 over Rationals>

gap> V:= AdjointModule(C);

<left-module over <algebra of dimension 18 over Rationals>>

gap> W:= SubAlgebraModule(V, [Basis(V)[1]]);

<left-module over <algebra of dimension 18 over Rationals>>

gap> f:= NaturalHomomorphismBySubAlgebraModule(V, W);

<linear mapping by matrix, <

18-dimensional left-module over <algebra of dimension

18 over Rationals>> -> <

9-dimensional left-module over <algebra of dimension

18 over Rationals>>>

gap> quo:= ImagesSource(f); # i.e., the quotient module

<9-dimensional left-module over <algebra of dimension

18 over Rationals>>

gap> v:= Basis(quo)[1];

[1, 0, 0, 0, 0, 0, 0, 0, 0]

gap> PreImagesRepresentative(f, v);

v.4

gap> Basis(C)[4]^v;

[1, 0, 0, 0, 0, 0, 0, 0, 0]

62.11.23 DirectSumOfAlgebraModules (for a list of Lie algebra modules)

▷ DirectSumOfAlgebraModules(list) (operation)

▷ DirectSumOfAlgebraModules(V, W) (operation)

Here list must be a list of algebra modules. This function returns the direct sum of the elements
in the list (as an algebra module). The modules must be defined over the same algebras.

In the second form is short for DirectSumOfAlgebraModules([V, W])
Example

gap> A:= FullMatrixAlgebra(Rationals, 3);;

gap> V:= BiAlgebraModuleByGenerators(A, A, *, *, [[1,0,0]]);;

gap> W:= DirectSumOfAlgebraModules(V, V);

GAP - Reference Manual 1032

<6-dimensional left-module over (Rationals^[3, 3])>

gap> BasisVectors(Basis(W));

[([1, 0, 0])(+)([0, 0, 0]), ([0, 1, 0])(+)([0, 0, 0])

, ([0, 0, 1])(+)([0, 0, 0]),

([0, 0, 0])(+)([1, 0, 0]), ([0, 0, 0])(+)([0, 1, 0])

, ([0, 0, 0])(+)([0, 0, 1])]

Example
gap> L:= SimpleLieAlgebra("C", 3, Rationals);;

gap> V:= HighestWeightModule(L, [1, 1, 0]);

<64-dimensional left-module over <Lie algebra of dimension

21 over Rationals>>

gap> W:= HighestWeightModule(L, [0, 0, 2]);

<84-dimensional left-module over <Lie algebra of dimension

21 over Rationals>>

gap> U:= DirectSumOfAlgebraModules(V, W);

<148-dimensional left-module over <Lie algebra of dimension

21 over Rationals>>

62.11.24 TranslatorSubalgebra

▷ TranslatorSubalgebra(M, U, W) (operation)

Here M is an algebra module, and U and W are two subspaces of M . Let A be the algebra acting on M .
This function returns the subspace of elements of A that map U into W . If W is a sub-algebra-module
(i.e., closed under the action of A), then this space is a subalgebra of A .

This function works for left, or right modules over a finite-dimensional algebra. We stress that it
is not checked whether U and W are indeed subspaces of M . If this is not the case nothing is guaranteed
about the behaviour of the function.

Example
gap> A:= FullMatrixAlgebra(Rationals, 3);

(Rationals^[3, 3])

gap> V:= Rationals^[3,2];

(Rationals^[3, 2])

gap> M:= LeftAlgebraModule(A, *, V);

<left-module over (Rationals^[3, 3])>

gap> bm:= Basis(M);;

gap> U:= SubAlgebraModule(M, [bm[1]]);

<left-module over (Rationals^[3, 3])>

gap> TranslatorSubalgebra(M, U, M);

<algebra of dimension 9 over Rationals>

gap> W:= SubAlgebraModule(M, [bm[4]]);

<left-module over (Rationals^[3, 3])>

gap> T:=TranslatorSubalgebra(M, U, W);

<algebra of dimension 0 over Rationals>

Chapter 63

Finitely Presented Algebras

Currently the GAP library contains only few functions dealing with general finitely presented algebras,
so this chapter is merely a placeholder.

The special case of finitely presented Lie algebras is described in 64.11, and there is also a GAP
package fplsa for computing structure constants of f initely presented Lie (super)algebras.

1033

Chapter 64

Lie Algebras

A Lie algebra L is an algebra such that xx= 0 and x(yz)+y(zx)+z(xy)= 0 for all x,y,z∈ L. A common
way of creating a Lie algebra is by taking an associative algebra together with the commutator as
product. Therefore the product of two elements x,y of a Lie algebra is usually denoted by [x,y], but in
GAP this denotes the list of the elements x and y; hence the product of elements is made by the usual
*. This gives no problems when dealing with Lie algebras given by a table of structure constants.
However, for matrix Lie algebras the situation is not so easy as * denotes the ordinary (associative)
matrix multiplication. In GAP this problem is solved by wrapping elements of a matrix Lie algebra
up as LieObjects, and then define the * for LieObjects to be the commutator (see 64.1).

64.1 Lie Objects

Let x be a ring element, then LieObject(x) (see LieObject (64.1.1)) wraps x up into an object
that contains the same data (namely x). The multiplication * for Lie objects is formed by taking the
commutator. More exactly, if l1 and l2 are the Lie objects corresponding to the ring elements r1 and
r2, then l1 * l2 is equal to the Lie object corresponding to r1 * r2 - r2 * r1. Two rules for Lie
objects are worth noting:

• An element is not equal to its Lie element.

• If we take the Lie object of an ordinary (associative) matrix then this is again a matrix; it is
therefore a collection (of its rows) and a list. But it is not a collection of collections of its
entries, and its family is not a collections family.

Given a family F of ring elements, we can form its Lie family L. The elements of F and L are in
bijection, only the multiplications via * differ for both families. More exactly, if l1 and l2 are the Lie
elements corresponding to the elements f1 and f2 in F, we have l1 * l2 equal to the Lie element
corresponding to f1 * f2 - f2 * f1. Furthermore, the product of Lie elements l1, l2 and l3 is
left-normed, that is l1*l2*l3 is equal to (l1*l2)*l3.

The main reason to distinguish elements and Lie elements on the family level is that this helps
to avoid forming domains that contain elements of both types. For example, if we could form vector
spaces of matrices then at first glance it would be no problem to have both ordinary and Lie matrices
in it, but as soon as we find out that the space is in fact an algebra (e.g., because its dimension is that
of the full matrix algebra), we would run into strange problems.

Note that the family situation with Lie families may be not familiar.

1034

GAP - Reference Manual 1035

• We have to be careful when installing methods for certain types of domains that may involve
Lie elements. For example, the zero element of a matrix space is either an ordinary matrix or
its Lie element, depending on the space. So either the method must be aware of both cases, or
the method selection must distinguish the two cases. In the latter situation, only one method
may be applicable to each case; this means that it is not sufficient to treat the Lie case with the
additional requirement IsLieObjectCollection but that we must explicitly require non-Lie
elements for the non-Lie case.

• Being a full matrix space is a property that may hold for a space of ordinary matrices or a space
of Lie matrices. So methods for full matrix spaces must also be aware of Lie matrices.

64.1.1 LieObject

▷ LieObject(obj) (attribute)

Let obj be a ring element. Then LieObject(obj) is the corresponding Lie object. If obj
lies in the family F, then LieObject(obj) lies in the family LieFamily(F) (see LieFamily

(64.1.3)).
Example

gap> m:= [[1, 0], [0, 1]];;

gap> lo:= LieObject(m);

LieObject([[1, 0], [0, 1]])

gap> m*m;

[[1, 0], [0, 1]]

gap> lo*lo;

LieObject([[0, 0], [0, 0]])

64.1.2 IsLieObject

▷ IsLieObject(obj) (Category)

▷ IsLieObjectCollection(obj) (Category)

▷ IsRestrictedLieObject(obj) (Category)

▷ IsRestrictedLieObjectCollection(obj) (Category)

An object lies in IsLieObject if and only if it lies in a family constructed by LieFamily (64.1.3).
Example

gap> m:= [[1, 0], [0, 1]];;

gap> lo:= LieObject(m);

LieObject([[1, 0], [0, 1]])

gap> IsLieObject(m);

false

gap> IsLieObject(lo);

true

64.1.3 LieFamily

▷ LieFamily(Fam) (attribute)

GAP - Reference Manual 1036

is a family F in bijection with the family Fam , but with the Lie bracket as infix multiplication. That
is, for x, y in Fam , the product of the images in F will be the image of x * y - y * x.

The standard type of objects in a Lie family F is F!.packedType.
The bijection from Fam to F is given by Embedding(Fam, F) (see Embedding (32.2.11)); this

bijection respects addition and additive inverses.

64.1.4 UnderlyingFamily

▷ UnderlyingFamily(Fam) (attribute)

If Fam is a Lie family then UnderlyingFamily(Fam) is a family F such that Fam =

LieFamily(F).

64.1.5 UnderlyingRingElement

▷ UnderlyingRingElement(obj) (attribute)

Let obj be a Lie object constructed from a ring element r by calling LieObject(r). Then
UnderlyingRingElement(obj) returns the ring element r used to construct obj . If r lies in the
family F, then obj lies in the family LieFamily(F) (see LieFamily (64.1.3)).

Example
gap> lo:= LieObject([[1, 0], [0, 1]]);

LieObject([[1, 0], [0, 1]])

gap> m:=UnderlyingRingElement(lo);

[[1, 0], [0, 1]]

gap> lo*lo;

LieObject([[0, 0], [0, 0]])

gap> m*m;

[[1, 0], [0, 1]]

64.2 Constructing Lie algebras

In this section we describe functions that create Lie algebras. Creating and working with subalgebras
goes exactly in the same way as for general algebras; so for that we refer to Chapter 62.

64.2.1 LieAlgebraByStructureConstants

▷ LieAlgebraByStructureConstants(R, sct[, nameinfo]) (function)

LieAlgebraByStructureConstants does the same as AlgebraByStructureConstants

(62.4.1), and has the same meaning of arguments, except that the result is assumed to be a Lie al-
gebra. Note that the function does not check whether sct satisfies the Jacobi identity. (So if one
creates a Lie algebra this way with a table that does not satisfy the Jacobi identity, errors may occur
later on.)

Example
gap> T:= EmptySCTable(2, 0, "antisymmetric");;

gap> SetEntrySCTable(T, 1, 2, [1/2, 1]);

GAP - Reference Manual 1037

gap> L:= LieAlgebraByStructureConstants(Rationals, T);

<Lie algebra of dimension 2 over Rationals>

64.2.2 RestrictedLieAlgebraByStructureConstants

▷ RestrictedLieAlgebraByStructureConstants(R, sct[, nameinfo], pmapping) (func-

tion)

RestrictedLieAlgebraByStructureConstants does the same as
LieAlgebraByStructureConstants (64.2.1), and has the same meaning of all arguments,
except that the result is assumed to be a restricted Lie algebra (see 64.8) with the p-map given by the
additional argument pmapping . This last argument is a list of the length equal to the dimension of the
algebra; its i-th entry specifies the p-th power of the i-th basis vector in the same format [coeff1,

position1, coeff2, position2, ...] as SetEntrySCTable (62.4.5) uses to specify entries
of the structure constants table.

Note that the function does not check whether sct satisfies the Jacobi identity, of whether
pmapping specifies a legitimate p-mapping.

The following example creates a commutative restricted Lie algebra of dimension 3, in which the
p-th power of the i-th basis element is the i+ 1-th basis element (except for the 3rd basis element
which goes to zero).

Example
gap> T:= EmptySCTable(3, Zero(GF(5)), "antisymmetric");;

gap> L:= RestrictedLieAlgebraByStructureConstants(

> GF(5), T, [[1,2],[1,3],[]]);

<Lie algebra of dimension 3 over GF(5)>

gap> List(Basis(L),PthPowerImage);

[v.2, v.3, 0*v.1]

gap> PthPowerImage(L.1+L.2);

v.2+v.3

64.2.3 LieAlgebra (for an associative algebra)

▷ LieAlgebra(L) (function)

▷ LieAlgebra(F, gens[, zero][, "basis"]) (function)

For an associative algebra L , LieAlgebra(L) is the Lie algebra isomorphic to L as a vector
space but with the Lie bracket as product.

LieAlgebra(F, gens) is the Lie algebra over the division ring F , generated as Lie algebra
by the Lie objects corresponding to the vectors in the list gens .

Note that the algebra returned by LieAlgebra does not contain the vectors in gens . The elements
in gens are wrapped up as Lie objects (see 64.1). This allows one to create Lie algebras from ring
elements with respect to the Lie bracket as product. But of course the product in the Lie algebra is the
usual *.

If there are three arguments, a division ring F and a list gens and an element zero , then
LieAlgebra(F, gens, zero) is the corresponding F-Lie algebra with zero element the Lie
object corresponding to zero .

GAP - Reference Manual 1038

If the last argument is the string "basis" then the vectors in gens are known to form a basis of
the algebra (as an F-vector space).

Note that even if each element in gens is already a Lie element, i.e., is of the form LieElement(

elm) for an object elm , the elements of the result lie in the Lie family of the family that contains
gens as a subset.

Example
gap> A:= FullMatrixAlgebra(GF(7), 4);;

gap> L:= LieAlgebra(A);

<Lie algebra of dimension 16 over GF(7)>

gap> mats:= [[[1, 0], [0, -1]], [[0, 1], [0, 0]],

> [[0, 0], [1, 0]]];;

gap> L:= LieAlgebra(Rationals, mats);

<Lie algebra over Rationals, with 3 generators>

64.2.4 FreeLieAlgebra (for ring, rank (and name))

▷ FreeLieAlgebra(R, rank[, name]) (function)

▷ FreeLieAlgebra(R, name1, name2, ...) (function)

Returns a free Lie algebra of rank rank over the ring R . FreeLieAlgebra(R, name1,

name2,...) returns a free Lie algebra over R with generators named name1 , name2 , and so on.
The elements of a free Lie algebra are written on the Hall-Lyndon basis.

Example
gap> L:= FreeLieAlgebra(Rationals, "x", "y", "z");

<Lie algebra over Rationals, with 3 generators>

gap> g:= GeneratorsOfAlgebra(L);; x:= g[1];; y:=g[2];; z:= g[3];;

gap> z*(y*(x*(z*y)));

(-1)*((x*(y*z))*(y*z))+(-1)*((x*((y*z)*z))*y)+(-1)*(((x*z)*(y*z))*y)

64.2.5 FullMatrixLieAlgebra

▷ FullMatrixLieAlgebra(R, n) (function)

▷ MatrixLieAlgebra(R, n) (function)

▷ MatLieAlgebra(R, n) (function)

is the full matrix Lie algebra of n ×n matrices over the ring R , for a nonnegative integer n .
Example

gap> FullMatrixLieAlgebra(GF(9), 10);

<Lie algebra over GF(3^2), with 19 generators>

64.2.6 RightDerivations

▷ RightDerivations(B) (attribute)

▷ LeftDerivations(B) (attribute)

▷ Derivations(B) (attribute)

These functions all return the matrix Lie algebra of derivations of the algebra A with basis B .

GAP - Reference Manual 1039

RightDerivations(B) returns the algebra of derivations represented by their right action on
the algebra A. This means that with respect to the basis B of A, the derivation D is described by the
matrix [di, j] which means that D maps the i-th basis element bi to ∑

n
j=1 di, jb j.

LeftDerivations(B) returns the Lie algebra of derivations represented by their left action on
the algebra A. So the matrices contained in the algebra output by LeftDerivations(B) are the
transposes of the matrices contained in the output of RightDerivations(B).

Derivations is just a synonym for RightDerivations.
Example

gap> A:= OctaveAlgebra(Rationals);

<algebra of dimension 8 over Rationals>

gap> L:= Derivations(Basis(A));

<Lie algebra of dimension 14 over Rationals>

64.2.7 SimpleLieAlgebra

▷ SimpleLieAlgebra(type, n, F) (function)

This function constructs the simple Lie algebra of type given by the string type and rank n over
the field F . The string type must be one of "A", "B", "C", "D", "E", "F", "G", "H", "K", "S", "W"
or "M". For the types A to G, n must be a positive integer. The last five types only exist over fields
of characteristic p > 0. If the type is H, then n must be a list of positive integers of even length. If
the type is K, then n must be a list of positive integers of odd length. For the types S and W, n must
be a list of positive integers of any length. If the type is M, then the Melikyan algebra is constructed.
In this case n must be a list of two positive integers. This Lie algebra only exists over fields of
characteristic 5. This Lie algebra is Z×Z graded; and the grading can be accessed via the attribute
Grading(L) (see Grading (62.9.20)). In some cases the Lie algebra returned by this function is not
simple. Examples are the Lie algebras of type An over a field of characteristic p > 0 where p divides
n+1, and the Lie algebras of type Kn where n is a list of length 1.

If type is one of A, B, C, D, E, F, G, and F is a field of characteristic zero, then the basis of the
returned Lie algebra is a Chevalley basis.

Example
gap> SimpleLieAlgebra("E", 6, Rationals);

<Lie algebra of dimension 78 over Rationals>

gap> SimpleLieAlgebra("A", 6, GF(5));

<Lie algebra of dimension 48 over GF(5)>

gap> SimpleLieAlgebra("W", [1,2], GF(5));

<Lie algebra of dimension 250 over GF(5)>

gap> SimpleLieAlgebra("H", [1,2], GF(5));

<Lie algebra of dimension 123 over GF(5)>

gap> L:= SimpleLieAlgebra("M", [1,1], GF(5));

<Lie algebra of dimension 125 over GF(5)>

64.3 Distinguished Subalgebras

Here we describe functions that calculate well-known subalgebras and ideals of a Lie algebra (such
as the centre, the centralizer of a subalgebra, etc.).

GAP - Reference Manual 1040

64.3.1 LieCentre

▷ LieCentre(L) (attribute)

▷ LieCenter(L) (attribute)

The Lie centre of the Lie algebra L is the kernel of the adjoint mapping, that is, the set {a ∈ L :
∀x ∈ L : ax = 0}.

In characteristic 2 this may differ from the usual centre (that is the set of all a ∈ L such that ax = xa
for all x ∈ L). Therefore, this operation is named LieCentre and not Centre (35.4.5).

Example
gap> L:= FullMatrixLieAlgebra(GF(3), 3);

<Lie algebra over GF(3), with 5 generators>

gap> LieCentre(L);

<two-sided ideal in <Lie algebra of dimension 9 over GF(3)>,

(dimension 1)>

64.3.2 LieCentralizer

▷ LieCentralizer(L, S) (operation)

is the annihilator of S in the Lie algebra L , that is, the set {a ∈ L : ∀s ∈ S : a∗ s = 0}. Here S may
be a subspace or a subalgebra of L .

Example
gap> L:= SimpleLieAlgebra("G", 2, Rationals);

<Lie algebra of dimension 14 over Rationals>

gap> b:= BasisVectors(Basis(L));;

gap> LieCentralizer(L, Subalgebra(L, [b[1], b[2]]));

<Lie algebra of dimension 1 over Rationals>

64.3.3 LieNormalizer

▷ LieNormalizer(L, U) (operation)

is the normalizer of the subspace U in the Lie algebra L , that is, the set NL(U) = {x ∈ L : [x,U]⊂
U}.

Example
gap> L:= SimpleLieAlgebra("G", 2, Rationals);

<Lie algebra of dimension 14 over Rationals>

gap> b:= BasisVectors(Basis(L));;

gap> LieNormalizer(L, Subalgebra(L, [b[1], b[2]]));

<Lie algebra of dimension 8 over Rationals>

64.3.4 LieDerivedSubalgebra

▷ LieDerivedSubalgebra(L) (attribute)

is the (Lie) derived subalgebra of the Lie algebra L .

GAP - Reference Manual 1041

Example
gap> L:= FullMatrixLieAlgebra(GF(3), 3);

<Lie algebra over GF(3), with 5 generators>

gap> LieDerivedSubalgebra(L);

<Lie algebra of dimension 8 over GF(3)>

64.3.5 LieNilRadical

▷ LieNilRadical(L) (attribute)

This function calculates the (Lie) nil radical of the Lie algebra L .
Example

gap> mats:= [[[1,0],[0,0]], [[0,1],[0,0]], [[0,0],[0,1]]];;

gap> L:= LieAlgebra(Rationals, mats);;

gap> LieNilRadical(L);

<two-sided ideal in <Lie algebra of dimension 3 over Rationals>,

(dimension 2)>

64.3.6 LieSolvableRadical

▷ LieSolvableRadical(L) (attribute)

Returns the (Lie) solvable radical of the Lie algebra L .
Example

gap> L:= FullMatrixLieAlgebra(Rationals, 3);;

gap> LieSolvableRadical(L);

<two-sided ideal in <Lie algebra of dimension 9 over Rationals>,

(dimension 1)>

64.3.7 CartanSubalgebra

▷ CartanSubalgebra(L) (attribute)

A Cartan subalgebra of a Lie algebra L is defined as a nilpotent subalgebra of L equal to its own
Lie normalizer in L .

Example
gap> L:= SimpleLieAlgebra("G", 2, Rationals);;

gap> CartanSubalgebra(L);

<Lie algebra of dimension 2 over Rationals>

64.4 Series of Ideals

64.4.1 LieDerivedSeries

▷ LieDerivedSeries(L) (attribute)

is the (Lie) derived series of the Lie algebra L .

GAP - Reference Manual 1042

Example
gap> mats:= [[[1,0],[0,0]], [[0,1],[0,0]], [[0,0],[0,1]]];;

gap> L:= LieAlgebra(Rationals, mats);;

gap> LieDerivedSeries(L);

[<Lie algebra of dimension 3 over Rationals>,

<Lie algebra of dimension 1 over Rationals>,

<Lie algebra of dimension 0 over Rationals>]

64.4.2 LieLowerCentralSeries

▷ LieLowerCentralSeries(L) (attribute)

is the (Lie) lower central series of the Lie algebra L .
Example

gap> mats:= [[[1, 0], [0, 0]], [[0,1],[0,0]], [[0,0],[0,1]]];;

gap> L:=LieAlgebra(Rationals, mats);;

gap> LieLowerCentralSeries(L);

[<Lie algebra of dimension 3 over Rationals>,

<Lie algebra of dimension 1 over Rationals>]

64.4.3 LieUpperCentralSeries

▷ LieUpperCentralSeries(L) (attribute)

is the (Lie) upper central series of the Lie algebra L .
Example

gap> mats:= [[[1, 0], [0, 0]], [[0,1],[0,0]], [[0,0],[0,1]]];;

gap> L:=LieAlgebra(Rationals, mats);;

gap> LieUpperCentralSeries(L);

[<two-sided ideal in <Lie algebra of dimension 3 over Rationals>,

(dimension 1)>, <Lie algebra of dimension 0 over Rationals>

]

64.5 Properties of a Lie Algebra

64.5.1 IsLieAbelian

▷ IsLieAbelian(L) (property)

returns true if L is a Lie algebra such that each product of elements in L is zero, and false

otherwise.
Example

gap> T:= EmptySCTable(5, 0, "antisymmetric");;

gap> L:= LieAlgebraByStructureConstants(Rationals, T);

<Lie algebra of dimension 5 over Rationals>

gap> IsLieAbelian(L);

true

GAP - Reference Manual 1043

64.5.2 IsLieNilpotent

▷ IsLieNilpotent(L) (property)

A Lie algebra L is defined to be (Lie) nilpotent when its (Lie) lower central series reaches the
trivial subalgebra.

Example
gap> T:= EmptySCTable(5, 0, "antisymmetric");;

gap> L:= LieAlgebraByStructureConstants(Rationals, T);

<Lie algebra of dimension 5 over Rationals>

gap> IsLieNilpotent(L);

true

64.5.3 IsLieSolvable

▷ IsLieSolvable(L) (property)

A Lie algebra L is defined to be (Lie) solvable when its (Lie) derived series reaches the trivial
subalgebra.

Example
gap> T:= EmptySCTable(5, 0, "antisymmetric");;

gap> L:= LieAlgebraByStructureConstants(Rationals, T);

<Lie algebra of dimension 5 over Rationals>

gap> IsLieSolvable(L);

true

64.6 Semisimple Lie Algebras and Root Systems

This section contains some functions for dealing with semisimple Lie algebras and their root systems.

64.6.1 SemiSimpleType

▷ SemiSimpleType(L) (attribute)

Let L be a semisimple Lie algebra, i.e., a direct sum of simple Lie algebras. Then
SemiSimpleType returns the type of L , i.e., a string containing the types of the simple summands
of L .

Example
gap> L:= SimpleLieAlgebra("E", 8, Rationals);;

gap> b:= BasisVectors(Basis(L));;

gap> K:= LieCentralizer(L, Subalgebra(L, [b[61]+b[79]+b[101]+b[102]]));

<Lie algebra of dimension 102 over Rationals>

gap> lev:= LeviMalcevDecomposition(K);;

gap> SemiSimpleType(lev[1]);

"B3 A1"

GAP - Reference Manual 1044

64.6.2 ChevalleyBasis

▷ ChevalleyBasis(L) (attribute)

Here L must be a semisimple Lie algebra with a split Cartan subalgebra. Then
ChevalleyBasis(L) returns a list consisting of three sublists. Together these sublists form a Cheval-
ley basis of L . The first list contains the positive root vectors, the second list contains the negative root
vectors, and the third list the Cartan elements of the Chevalley basis.

Example
gap> L:= SimpleLieAlgebra("G", 2, Rationals);

<Lie algebra of dimension 14 over Rationals>

gap> ChevalleyBasis(L);

[[v.1, v.2, v.3, v.4, v.5, v.6],

[v.7, v.8, v.9, v.10, v.11, v.12], [v.13, v.14]]

64.6.3 IsRootSystem

▷ IsRootSystem(obj) (Category)

Category of root systems.

64.6.4 IsRootSystemFromLieAlgebra

▷ IsRootSystemFromLieAlgebra(obj) (Category)

Category of root systems that come from (semisimple) Lie algebras. They often have
special attributes such as UnderlyingLieAlgebra (64.6.6), PositiveRootVectors (64.6.9),
NegativeRootVectors (64.6.10), CanonicalGenerators (64.6.14).

64.6.5 RootSystem

▷ RootSystem(L) (attribute)

RootSystem calculates the root system of the semisimple Lie algebra L with a split Cartan subal-
gebra.

Example
gap> L:= SimpleLieAlgebra("G", 2, Rationals);

<Lie algebra of dimension 14 over Rationals>

gap> R:= RootSystem(L);

<root system of rank 2>

gap> IsRootSystem(R);

true

gap> IsRootSystemFromLieAlgebra(R);

true

64.6.6 UnderlyingLieAlgebra

▷ UnderlyingLieAlgebra(R) (attribute)

For a root system R coming from a semisimple Lie algebra L, returns the Lie algebra L.

GAP - Reference Manual 1045

64.6.7 PositiveRoots

▷ PositiveRoots(R) (attribute)

The list of positive roots of the root system R .

64.6.8 NegativeRoots

▷ NegativeRoots(R) (attribute)

The list of negative roots of the root system R .

64.6.9 PositiveRootVectors

▷ PositiveRootVectors(R) (attribute)

A list of positive root vectors of the root system R that comes from a Lie algebra L. This is a list
in bijection with the list PositiveRoots(L) (see PositiveRoots (64.6.7)). The root vector is a
non-zero element of the root space (in L) of the corresponding root.

64.6.10 NegativeRootVectors

▷ NegativeRootVectors(R) (attribute)

A list of negative root vectors of the root system R that comes from a Lie algebra L. This is a list
in bijection with the list NegativeRoots(L) (see NegativeRoots (64.6.8)). The root vector is a
non-zero element of the root space (in L) of the corresponding root.

64.6.11 SimpleSystem

▷ SimpleSystem(R) (attribute)

A list of simple roots of the root system R .

64.6.12 CartanMatrix

▷ CartanMatrix(R) (attribute)

The Cartan matrix of the root system R , relative to the simple roots in SimpleSystem(R)

(see SimpleSystem (64.6.11)).

64.6.13 BilinearFormMat

▷ BilinearFormMat(R) (attribute)

The matrix of the bilinear form of the root system R . If we denote this matrix by B, then we have
B(i, j) = (αi,α j), where the αi are the simple roots of R .

GAP - Reference Manual 1046

64.6.14 CanonicalGenerators

▷ CanonicalGenerators(R) (attribute)

Here R must be a root system coming from a semisimple Lie algebra L. This function returns 3l
generators of L , x1, . . . ,xl,y1, . . . ,yl,h1, . . . ,hl , where xi lies in the root space corresponding to the i-th
simple root of the root system of L , yi lies in the root space corresponding to − the i-th simple root,
and the hi are elements of the Cartan subalgebra. These elements satisfy the relations hi ∗ h j = 0,
xi ∗y j = δi jhi, h j ∗xi = ci jxi, h j ∗yi =−ci jyi, where ci j is the entry of the Cartan matrix on position i j.

Also if a is a root of the root system R (so a is a list of numbers), then we have the relation
hi ∗ x = a[i]x, where x is a root vector corresponding to a.

Example
gap> L:= SimpleLieAlgebra("G", 2, Rationals);;

gap> R:= RootSystem(L);;

gap> UnderlyingLieAlgebra(R);

<Lie algebra of dimension 14 over Rationals>

gap> PositiveRoots(R);

[[2, -1], [-3, 2], [-1, 1], [1, 0], [3, -1], [0, 1]]

gap> x:= PositiveRootVectors(R);

[v.1, v.2, v.3, v.4, v.5, v.6]

gap> g:=CanonicalGenerators(R);

[[v.1, v.2], [v.7, v.8], [v.13, v.14]]

gap> g[3][1]*x[1];

(2)*v.1

gap> g[3][2]*x[1];

(-1)*v.1

gap> # i.e., x[1] is the root vector belonging to the root [2, -1]

gap> BilinearFormMat(R);

[[1/12, -1/8], [-1/8, 1/4]]

64.7 Semisimple Lie Algebras and Weyl Groups of Root Systems

This section deals with the Weyl group of a root system. A Weyl group is represented by its ac-
tion on the weight lattice. A weight is by definition a linear function λ : H → F (where F is the
ground field), such that the values λ (hi) are all integers (where the hi are the Cartan elements of the
CanonicalGenerators (64.6.14)). On the other hand each weight is determined by these values.
Therefore we represent a weight by a vector of integers; the i-th entry of this vector is the value λ (hi).
Now the elements of the Weyl group are represented by matrices, and if g is an element of a Weyl
group and w a weight, then w*g gives the result of applying g to w. Another way of applying the i-th
simple reflection to a weight is by using the function ApplySimpleReflection (64.7.4).

A Weyl group is generated by the simple reflections. So GeneratorsOfGroup (39.2.4) for a Weyl
group W gives a list of matrices and the i-th entry of this list is the simple reflection corresponding to
the i-th simple root of the corresponding root system.

64.7.1 IsWeylGroup

▷ IsWeylGroup(G) (property)

GAP - Reference Manual 1047

A Weyl group is a group generated by reflections, with the attribute SparseCartanMatrix

(64.7.2) set.

64.7.2 SparseCartanMatrix

▷ SparseCartanMatrix(W) (attribute)

This is a sparse form of the Cartan matrix of the corresponding root system. If we denote the
Cartan matrix by C, then the sparse Cartan matrix of W is a list (of length equal to the length of the
Cartan matrix), where the i-th entry is a list consisting of elements [j, C[i][j]], where j is such
that C[i][j] is non-zero.

64.7.3 WeylGroup

▷ WeylGroup(R) (attribute)

The Weyl group of the root system R . It is generated by the simple reflections. A simple reflection
is represented by a matrix, and the result of letting a simple reflection m act on a weight w is obtained
by w*m.

Example
gap> L:= SimpleLieAlgebra("F", 4, Rationals);;

gap> R:= RootSystem(L);;

gap> W:= WeylGroup(R);

<matrix group with 4 generators>

gap> IsWeylGroup(W);

true

gap> SparseCartanMatrix(W);

[[[1, 2], [3, -1]], [[2, 2], [4, -1]],

[[1, -1], [3, 2], [4, -1]],

[[2, -1], [3, -2], [4, 2]]]

gap> g:= GeneratorsOfGroup(W);;

gap> [1, 1, 1, 1]*g[2];

[1, -1, 1, 2]

64.7.4 ApplySimpleReflection

▷ ApplySimpleReflection(SC, i, wt) (operation)

Here SC is the sparse Cartan matrix of a Weyl group. This function applies the i-th simple
reflection to the weight wt , thus changing wt .

Example
gap> L:= SimpleLieAlgebra("F", 4, Rationals);;

gap> W:= WeylGroup(RootSystem(L));;

gap> C:= SparseCartanMatrix(W);;

gap> w:= [1, 1, 1, 1];;

gap> ApplySimpleReflection(C, 2, w);

gap> w;

[1, -1, 1, 2]

GAP - Reference Manual 1048

64.7.5 LongestWeylWordPerm

▷ LongestWeylWordPerm(W) (attribute)

Let g0 be the longest element in the Weyl group W , and let {α1, . . . ,αl} be a simple system of the
corresponding root system. Then g0 maps αi to −ασ(i), where σ is a permutation of (1, . . . , l). This
function returns that permutation.

Example
gap> L:= SimpleLieAlgebra("E", 6, Rationals);;

gap> W:= WeylGroup(RootSystem(L));;

gap> LongestWeylWordPerm(W);

(1,6)(3,5)

64.7.6 ConjugateDominantWeight

▷ ConjugateDominantWeight(W, wt) (operation)

▷ ConjugateDominantWeightWithWord(W, wt) (operation)

Here W is a Weyl group and wt a weight (i.e., a list of integers). ConjugateDominantWeight

returns the unique dominant weight conjugate to wt under W .
ConjugateDominantWeightWithWord returns a list of two elements. The first of these is the

dominant weight conjugate to wt . The second element is a list of indices of simple reflections that
have to be applied to wt in order to get the dominant weight conjugate to it.

Example
gap> L:= SimpleLieAlgebra("E", 6, Rationals);;

gap> W:= WeylGroup(RootSystem(L));;

gap> C:= SparseCartanMatrix(W);;

gap> w:= [1, -1, 2, -2, 3, -3];;

gap> ConjugateDominantWeight(W, w);

[2, 1, 0, 0, 0, 0]

gap> c:= ConjugateDominantWeightWithWord(W, w);

[[2, 1, 0, 0, 0, 0], [2, 4, 2, 3, 6, 5, 4, 2, 3, 1]]

gap> for i in [1..Length(c[2])] do

> ApplySimpleReflection(C, c[2][i], w);

> od;

gap> w;

[2, 1, 0, 0, 0, 0]

64.7.7 WeylOrbitIterator

▷ WeylOrbitIterator(W, wt) (operation)

Returns an iterator for the orbit of the weight wt under the action of the Weyl group W .
Example

gap> L:= SimpleLieAlgebra("E", 6, Rationals);;

gap> W:= WeylGroup(RootSystem(L));;

gap> orb:= WeylOrbitIterator(W, [1, 1, 1, 1, 1, 1]);

<iterator>

gap> NextIterator(orb);

[1, 1, 1, 1, 1, 1]

GAP - Reference Manual 1049

gap> NextIterator(orb);

[-1, -1, -1, -1, -1, -1]

gap> orb:= WeylOrbitIterator(W, [1, 1, 1, 1, 1, 1]);

<iterator>

gap> k:= 0;

0

gap> while not IsDoneIterator(orb) do

> w:= NextIterator(orb); k:= k+1;

> od;

gap> k; # this is the size of the Weyl group of E6

51840

64.8 Restricted Lie algebras

A Lie algebra L over a field of characteristic p > 0 is called restricted if there is a map x 7→ xp from L
into L (called a p-map) such that ad xp = (adx)p, (αx)p = α pxp and (x+y)p = xp+yp+∑

p−1
i=1 si(x,y),

where si : L × L → L are certain Lie polynomials in two variables. Using these relations we can
calculate yp for all y ∈ L, once we know xp for x in a basis of L. Therefore a p-map is represented in
GAP by a list containing the images of the basis vectors of a basis B of L. For this reason this list is
an attribute of the basis B.

64.8.1 IsRestrictedLieAlgebra

▷ IsRestrictedLieAlgebra(L) (property)

Test whether L is restricted.
Example

gap> L:= SimpleLieAlgebra("W", [2], GF(5));

<Lie algebra of dimension 25 over GF(5)>

gap> IsRestrictedLieAlgebra(L);

false

gap> L:= SimpleLieAlgebra("W", [1], GF(5));

<Lie algebra of dimension 5 over GF(5)>

gap> IsRestrictedLieAlgebra(L);

true

64.8.2 PthPowerImages

▷ PthPowerImages(B) (attribute)

Here B is a basis of a restricted Lie algebra. This function returns the list of the images of the basis
vectors of B under the p-map.

Example
gap> L:= SimpleLieAlgebra("W", [1], GF(11));

<Lie algebra of dimension 11 over GF(11)>

gap> B:= Basis(L);

CanonicalBasis(<Lie algebra of dimension 11 over GF(11)>)

gap> PthPowerImages(B);

GAP - Reference Manual 1050

[0*v.1, v.2, 0*v.1, 0*v.1, 0*v.1, 0*v.1, 0*v.1, 0*v.1, 0*v.1, 0*v.1,

0*v.1]

64.8.3 PthPowerImage (for basis and element)

▷ PthPowerImage(B, x) (operation)

▷ PthPowerImage(x) (operation)

▷ PthPowerImage(x, n) (operation)

This function computes the image of an element x of a restricted Lie algebra under its p-map.
In the first form, a basis of the Lie algebra is provided; this basis stores the pth powers of its

elements. It is the traditional form, provided for backwards compatibility.
In its second form, only the element x is provided. It is the only form for elements of Lie algebras

with no predetermined basis, such as those constructed by LieObject (64.1.1).
In its third form, an extra non-negative integer n is specified; the p-mapping is iterated n times

on the element x .
Example

gap> L:= SimpleLieAlgebra("W", [1], GF(11));;

gap> B:= Basis(L);;

gap> x:= B[1]+B[11];

v.1+v.11

gap> PthPowerImage(B, x);

v.1+v.11

gap> PthPowerImage(x, 2);

v.1+v.11

gap> f := FreeAssociativeAlgebra(GF(2),"x","y");

<algebra over GF(2), with 2 generators>

gap> x := LieObject(f.1);; y := LieObject(f.2);;

gap> x*y; x^2; PthPowerImage(x);

LieObject((Z(2)^0)*x*y+(Z(2)^0)*y*x)

LieObject(<zero> of ...)

LieObject((Z(2)^0)*x^2)

64.8.4 JenningsLieAlgebra

▷ JenningsLieAlgebra(G) (attribute)

Let G be a nontrivial p-group, and let G = G1 ⊃ G2 ⊃ ·· · ⊃ Gm = 1 be its Jennings series
(see JenningsSeries (39.17.14)). Then the quotients Gi/Gi+1 are elementary abelian p-groups,
i.e., they can be viewed as vector spaces over GF(p). Now the Jennings-Lie algebra L of G is the di-
rect sum of those vector spaces. The Lie bracket on L is induced by the commutator in G . Furthermore,
the map g 7→ gp in G induces a p-map in L making L into a restricted Lie algebra. In the canonical
basis of L this p-map is added as an attribute. A Lie algebra created by JenningsLieAlgebra is
naturally graded. The attribute Grading (62.9.20) is set.

64.8.5 PCentralLieAlgebra

▷ PCentralLieAlgebra(G) (attribute)

GAP - Reference Manual 1051

Here G is a nontrivial p-group. PCentralLieAlgebra(G) does the same as
JenningsLieAlgebra (64.8.4) except that the p-central series is used instead of the Jennings se-
ries (see PCentralSeries (39.17.13)). This function also returns a graded Lie algebra. However, it
is not necessarily restricted.

Example
gap> G:= SmallGroup(3^6, 123);

<pc group of size 729 with 6 generators>

gap> L:= JenningsLieAlgebra(G);

<Lie algebra of dimension 6 over GF(3)>

gap> HasPthPowerImages(Basis(L));

true

gap> PthPowerImages(Basis(L));

[v.6, 0*v.1, 0*v.1, 0*v.1, 0*v.1, 0*v.1]

gap> g:= Grading(L);

rec(hom_components := function(d) ... end, max_degree := 3,

min_degree := 1, source := Integers)

gap> List([1,2,3], g.hom_components);

[<vector space over GF(3), with 3 generators>,

<vector space over GF(3), with 2 generators>,

<vector space over GF(3), with 1 generator>]

64.8.6 NaturalHomomorphismOfLieAlgebraFromNilpotentGroup

▷ NaturalHomomorphismOfLieAlgebraFromNilpotentGroup(L) (attribute)

This is an attribute of Lie algebras created by JenningsLieAlgebra (64.8.4) or
PCentralLieAlgebra (64.8.5). Then L is the direct sum of quotients of successive terms of the
Jennings, or p-central series of a p-group G. Let Gi be the i-th term in this series, and let f =

NaturalHomomorphismOfLieAlgebraFromNilpotentGroup(L), then for g in Gi, f(g, i)

returns the element of L (lying in the i-th homogeneous component) corresponding to g.

64.9 The Adjoint Representation

In this section we show functions for calculating with the adjoint representation of a Lie algebra
(and the corresponding trace form, called the Killing form) (see also AdjointBasis (62.9.5) and
IndicesOfAdjointBasis (62.9.6)).

64.9.1 AdjointMatrix

▷ AdjointMatrix(B, x) (operation)

is the matrix of the adjoint representation of the element x w.r.t. the basis B . The adjoint map is
the left multiplication by x . The i-th column of the resulting matrix represents the image of the i-th
basis vector of B under left multiplication by x .

Example
gap> L:= SimpleLieAlgebra("A", 1, Rationals);;

gap> AdjointMatrix(Basis(L), Basis(L)[1]);

[[0, 0, -2], [0, 0, 0], [0, 1, 0]]

GAP - Reference Manual 1052

64.9.2 AdjointAssociativeAlgebra

▷ AdjointAssociativeAlgebra(L, K) (operation)

is the associative matrix algebra (with 1) generated by the matrices of the adjoint representation of
the subalgebra K on the Lie algebra L .

Example
gap> L:= SimpleLieAlgebra("A", 1, Rationals);;

gap> AdjointAssociativeAlgebra(L, L);

<algebra of dimension 9 over Rationals>

gap> AdjointAssociativeAlgebra(L, CartanSubalgebra(L));

<algebra of dimension 3 over Rationals>

64.9.3 KillingMatrix

▷ KillingMatrix(B) (attribute)

is the matrix of the Killing form κ with respect to the basis B , i.e., the matrix (κ(bi,b j)) where
b1,b2, . . . are the basis vectors of B .

Example
gap> L:= SimpleLieAlgebra("A", 1, Rationals);;

gap> KillingMatrix(Basis(L));

[[0, 4, 0], [4, 0, 0], [0, 0, 8]]

64.9.4 KappaPerp

▷ KappaPerp(L, U) (operation)

is the orthogonal complement of the subspace U of the Lie algebra L with respect to the Killing
form κ , that is, the set U⊥ = {x ∈ L;κ(x,y) = 0 for all y ∈ L}.

U⊥ is a subspace of L , and if U is an ideal of L then U⊥ is a subalgebra of L .
Example

gap> L:= SimpleLieAlgebra("A", 1, Rationals);;

gap> b:= BasisVectors(Basis(L));;

gap> V:= VectorSpace(Rationals, [b[1],b[2]]);;

gap> KappaPerp(L, V);

<vector space of dimension 1 over Rationals>

64.9.5 IsNilpotentElement

▷ IsNilpotentElement(L, x) (operation)

x is nilpotent in L if its adjoint matrix is a nilpotent matrix.
Example

gap> L:= SimpleLieAlgebra("A", 1, Rationals);;

gap> IsNilpotentElement(L, Basis(L)[1]);

true

GAP - Reference Manual 1053

64.9.6 NonNilpotentElement

▷ NonNilpotentElement(L) (attribute)

A non-nilpotent element of a Lie algebra L is an element x such that adx is not nilpotent. If L is
not nilpotent, then by Engel’s theorem non-nilpotent elements exist in L . In this case this function
returns a non-nilpotent element of L , otherwise (if L is nilpotent) fail is returned.

Example
gap> L:= SimpleLieAlgebra("G", 2, Rationals);;

gap> NonNilpotentElement(L);

v.13

gap> IsNilpotentElement(L, last);

false

64.9.7 FindSl2

▷ FindSl2(L, x) (function)

This function tries to find a subalgebra S of the Lie algebra L with S isomorphic to sl2 and such that
the nilpotent element x of L is contained in S. If such an algebra exists then it is returned, otherwise
fail is returned.

Example
gap> L:= SimpleLieAlgebra("G", 2, Rationals);;

gap> b:= BasisVectors(Basis(L));;

gap> IsNilpotentElement(L, b[1]);

true

gap> FindSl2(L, b[1]);

<Lie algebra of dimension 3 over Rationals>

64.10 Universal Enveloping Algebras

64.10.1 UniversalEnvelopingAlgebra

▷ UniversalEnvelopingAlgebra(L[, B]) (attribute)

Returns the universal enveloping algebra of the Lie algebra L . The elements of this algebra are
written on a Poincare-Birkhoff-Witt basis.

If a second argument B is given, it must be a basis of L , and an isomorphic copy of the universal
enveloping algebra is returned, generated by the images (in the universal enveloping algebra) of the
elements of B .

Example
gap> L:= SimpleLieAlgebra("A", 1, Rationals);;

gap> UL:= UniversalEnvelopingAlgebra(L);

<algebra-with-one of dimension infinity over Rationals>

gap> g:= GeneratorsOfAlgebraWithOne(UL);

[[(1)*x.1], [(1)*x.2], [(1)*x.3]]

gap> g[3]^2*g[2]^2*g[1]^2;

[(-4)*x.1*x.2*x.3^3+(1)*x.1^2*x.2^2*x.3^2+(2)*x.3^3+(2)*x.3^4]

GAP - Reference Manual 1054

64.11 Finitely Presented Lie Algebras

Finitely presented Lie algebras can be constructed from free Lie algebras by using the / constructor,
i.e., FL/[r1, ..., rk] is the quotient of the free Lie algebra FL by the ideal generated by the ele-
ments r1, ..., rk of FL. If the finitely presented Lie algebra K happens to be finite dimensional then
an isomorphic structure constants Lie algebra can be constructed by NiceAlgebraMonomorphism(K)

(see NiceAlgebraMonomorphism (62.10.10)), which returns a surjective homomorphism. The struc-
ture constants Lie algebra can then be accessed by calling Range (32.3.7) for this map. Also limited
computations with elements of the finitely presented Lie algebra are possible.

Example
gap> L:= FreeLieAlgebra(Rationals, "s", "t");

<Lie algebra over Rationals, with 2 generators>

gap> gL:= GeneratorsOfAlgebra(L);; s:= gL[1];; t:= gL[2];;

gap> K:= L/[s*(s*t), t*(t*(s*t)), s*(t*(s*t))-t*(s*t)];

<Lie algebra over Rationals, with 2 generators>

gap> h:= NiceAlgebraMonomorphism(K);

[[(1)*s], [(1)*t]] -> [v.1, v.2]

gap> U:= Range(h);

<Lie algebra of dimension 3 over Rationals>

gap> IsLieNilpotent(U);

true

gap> gK:= GeneratorsOfAlgebra(K);

[[(1)*s], [(1)*t]]

gap> gK[1]*(gK[2]*gK[1]) = Zero(K);

true

64.11.1 FpLieAlgebraByCartanMatrix

▷ FpLieAlgebraByCartanMatrix(C) (function)

Here C must be a Cartan matrix. The function returns the finitely-presented Lie algebra over the
field of rational numbers defined by this Cartan matrix. By Serre’s theorem, this Lie algebra is a
semisimple Lie algebra, and its root system has Cartan matrix C .

Example
gap> C:= [[2, -1], [-3, 2]];;

gap> K:= FpLieAlgebraByCartanMatrix(C);

<Lie algebra over Rationals, with 6 generators>

gap> h:= NiceAlgebraMonomorphism(K);

[[(1)*x1], [(1)*x2], [(1)*x3], [(1)*x4], [(1)*x5], [(1)*x6]] ->

[v.1, v.2, v.3, v.4, v.5, v.6]

gap> SemiSimpleType(Range(h));

"G2"

64.11.2 NilpotentQuotientOfFpLieAlgebra

▷ NilpotentQuotientOfFpLieAlgebra(FpL, max[, weights]) (function)

Here FpL is a finitely presented Lie algebra. Let K be the quotient of FpL by the max+1-th term of
its lower central series. This function calculates a surjective homomorphism from FpL onto K. When

GAP - Reference Manual 1055

called with the third argument weights , the k-th generator of FpL gets assigned the k-th element of
the list weights . In that case a quotient is calculated of FpL by the ideal generated by all elements of
weight max+1. If the list weights only consists of 1’s then the two calls are equivalent. The default
value of weights is a list (of length equal to the number of generators of FpL) consisting of 1’s.

If the relators of FpL are homogeneous, then the resulting algebra is naturally graded.
Example

gap> L:= FreeLieAlgebra(Rationals, "x", "y");;

gap> g:= GeneratorsOfAlgebra(L);; x:= g[1]; y:= g[2];

(1)*x

(1)*y

gap> rr:=[((y*x)*x)*x-6*(y*x)*y,

> 3*((((y*x)*x)*x)*x)*x-20*(((y*x)*x)*x)*y];

[(-1)*(x*(x*(x*y)))+(6)*((x*y)*y),

(-3)*(x*(x*(x*(x*(x*y)))))+(20)*(x*(x*((x*y)*y)))+(

-20)*((x*(x*y))*(x*y))]

gap> K:= L/rr;

<Lie algebra over Rationals, with 2 generators>

gap> h:=NilpotentQuotientOfFpLieAlgebra(K, 50, [1,2]);

[[(1)*x], [(1)*y]] -> [v.1, v.2]

gap> L:= Range(h);

<Lie algebra of dimension 50 over Rationals>

gap> Grading(L);

rec(hom_components := function(d) ... end, max_degree := 50,

min_degree := 1, source := Integers)

64.12 Modules over Lie Algebras and Their Cohomology

Representations of Lie algebras are dealt with in the same way as representations of ordinary algebras
(see 62.11). In this section we mainly deal with modules over general Lie algebras and their cohomol-
ogy. The next section is devoted to modules over semisimple Lie algebras. An s-cochain of a module
V over a Lie algebra L is an s-linear map

c : L×·· ·×L →V,

with s factors L, that is skew-symmetric (meaning that if any of the arguments are interchanged, c
changes to −c).

Let (x1, . . . ,xn) be a basis of L. Then any s-cochain is determined by the values c(xi1 , . . . ,xis),
where 1 ≤ i1 < i2 < · · · < is ≤ dimL. Now this value again is a linear combination of basis elements
of V : c(xi1 , . . . ,xis) = ∑λ k

i1,...,isvk. Denote the dimension of V by r. Then we represent an s-cocycle by
a list of r lists. The j-th of those lists consists of entries of the form

[[i1, i2, . . . , is],λ
j

i1,...,is]

where the coefficient on the second position is non-zero. (We only store those entries for which this
coefficient is non-zero.) It follows that every s-tuple (i1, . . . , is) gives rise to r basis elements.

So the zero cochain is represented by a list of the form [[], [], \ldots, []]. Further-
more, if V is, e.g., 4-dimensional, then the 2-cochain represented by

Example
[[[[1,2], 2]], [], [[[1,2], 1/2]], []]

GAP - Reference Manual 1056

maps the pair (x1,x2) to 2v1 + 1/2v3 (where v1 is the first basis element of V , and v3 the third),
and all other pairs to zero.

By definition, 0-cochains are constant maps c(x) = vc ∈ V for all x ∈ L. So 0-cochains have a
different representation: they are just represented by the list [v_c].

Cochains are constructed using the function Cochain (64.12.2), if c is a cochain, then its corre-
sponding list is returned by ExtRepOfObj(c).

64.12.1 IsCochain

▷ IsCochain(obj) (Category)

▷ IsCochainCollection(obj) (Category)

Categories of cochains and of collections of cochains.

64.12.2 Cochain

▷ Cochain(V, s, obj) (operation)

Constructs a s-cochain given by the data in obj , with respect to the Lie algebra module V . If s
is non-zero, then obj must be a list.

Example
gap> L:= SimpleLieAlgebra("A", 1, Rationals);;

gap> V:= AdjointModule(L);

<3-dimensional left-module over <Lie algebra of dimension

3 over Rationals>>

gap> c1:= Cochain(V, 2,

> [[[[1, 3], -1]], [], [[[2, 3], 1/2]]]);

<2-cochain>

gap> ExtRepOfObj(c1);

[[[[1, 3], -1]], [], [[[2, 3], 1/2]]]

gap> c2:= Cochain(V, 0, Basis(V)[1]);

<0-cochain>

gap> ExtRepOfObj(c2);

v.1

gap> IsCochain(c2);

true

64.12.3 CochainSpace

▷ CochainSpace(V, s) (operation)

Returns the space of all s-cochains with respect to V .
Example

gap> L:= SimpleLieAlgebra("A", 1, Rationals);;

gap> V:= AdjointModule(L);;

gap> C:=CochainSpace(V, 2);

<vector space of dimension 9 over Rationals>

gap> BasisVectors(Basis(C));

[<2-cochain>, <2-cochain>, <2-cochain>, <2-cochain>, <2-cochain>,

<2-cochain>, <2-cochain>, <2-cochain>, <2-cochain>]

GAP - Reference Manual 1057

gap> ExtRepOfObj(last[1]);

[[[[1, 2], 1]], [], []]

64.12.4 ValueCochain

▷ ValueCochain(c, y1, y2, ..., ys) (function)

Here c is an s-cochain. This function returns the value of c when applied to the s elements y1 to
ys (that lie in the Lie algebra acting on the module corresponding to c). It is also possible to call this
function with two arguments: first c and then the list containing y1,...,ys .

Example
gap> L:= SimpleLieAlgebra("A", 1, Rationals);;

gap> V:= AdjointModule(L);;

gap> C:= CochainSpace(V, 2);;

gap> c:= Basis(C)[1];

<2-cochain>

gap> ValueCochain(c, Basis(L)[2], Basis(L)[1]);

(-1)*v.1

64.12.5 LieCoboundaryOperator

▷ LieCoboundaryOperator(c) (function)

This is a function that takes an s-cochain c , and returns an s+1-cochain. The coboundary operator
is applied.

Example
gap> L:= SimpleLieAlgebra("A", 1, Rationals);;

gap> V:= AdjointModule(L);;

gap> C:= CochainSpace(V, 2);;

gap> c:= Basis(C)[1];;

gap> c1:= LieCoboundaryOperator(c);

<3-cochain>

gap> c2:= LieCoboundaryOperator(c1);

<4-cochain>

64.12.6 Cocycles (for Lie algebra module)

▷ Cocycles(V, s) (operation)

is the space of all s-cocycles with respect to the Lie algebra module V . That is the kernel of the
coboundary operator when restricted to the space of s-cochains.

64.12.7 Coboundaries

▷ Coboundaries(V, s) (operation)

is the space of all s-coboundaries with respect to the Lie algebra module V . That is the image of
the coboundary operator, when applied to the space of s-1-cochains. By definition the space of all
0-coboundaries is zero.

GAP - Reference Manual 1058

Example
gap> T:= EmptySCTable(3, 0, "antisymmetric");;

gap> SetEntrySCTable(T, 1, 2, [1, 3]);

gap> L:= LieAlgebraByStructureConstants(Rationals, T);;

gap> V:= FaithfulModule(L);

<left-module over <Lie algebra of dimension 3 over Rationals>>

gap> Cocycles(V, 2);

<vector space of dimension 7 over Rationals>

gap> Coboundaries(V, 2);

<vector space over Rationals, with 9 generators>

gap> Dimension(last);

5

64.13 Modules over Semisimple Lie Algebras

This section contains functions for calculating information on representations of semisimple Lie alge-
bras. First we have some functions for calculating some combinatorial data (set of dominant weights,
the dominant character, the decomposition of a tensor product, the dimension of a highest-weight
module). Then there is a function for creating an admissible lattice in the universal enveloping algebra
of a semisimple Lie algebra. Finally we have a function for constructing a highest-weight module
over a semisimple Lie algebra.

64.13.1 DominantWeights

▷ DominantWeights(R, maxw) (operation)

Returns a list consisting of two lists. The first of these contains the dominant weights (written
on the basis of fundamental weights) of the irreducible highest-weight module, with highest weight
maxw , over the Lie algebra with the root system R . The i-th element of the second list is the level of the
i-th dominant weight. (Where the level is defined as follows. For a weight µ we write µ = λ −∑i kiαi,
where the αi are the simple roots, and λ the highest weight. Then the level of µ is ∑i ki.)

64.13.2 DominantCharacter (for a semisimple Lie algebra and a highest weight)

▷ DominantCharacter(L, maxw) (operation)

▷ DominantCharacter(R, maxw) (operation)

For a highest weight maxw and a semisimple Lie algebra L , this returns the dominant weights of
the highest-weight module over L , with highest weight maxw . The output is a list of two lists, the first
list contains the dominant weights; the second list contains their multiplicities.

The first argument can also be a root system, in which case the dominant character of the high-
est-weight module over the corresponding semisimple Lie algebra is returned.

64.13.3 DecomposeTensorProduct

▷ DecomposeTensorProduct(L, w1, w2) (operation)

GAP - Reference Manual 1059

Here L is a semisimple Lie algebra and w1 , w2 are dominant weights. Let Vi be the irreducible
highest-weight module over L with highest weight wi for i = 1,2. Let W =V1 ⊗V2. Then in general
W is a reducible L-module. Now this function returns a list of two lists. The first of these is the
sorted list of highest weights of the irreducible modules occurring in the decomposition of W as a
direct sum of irreducible modules. The second list contains the multiplicities of these weights (i.e.,
the number of copies of the irreducible module with the corresponding highest weight that occur in
W). The algorithm uses Klimyk’s formula (see [Kli68] or [Kli66] for the original Russian version).

64.13.4 DimensionOfHighestWeightModule

▷ DimensionOfHighestWeightModule(L, w) (operation)

Here L is a semisimple Lie algebra, and w a dominant weight. This function returns the dimension
of the highest-weight module over L with highest weight w . The algorithm uses Weyl’s dimension
formula.

Example
gap> L:= SimpleLieAlgebra("F", 4, Rationals);;

gap> R:= RootSystem(L);;

gap> DominantWeights(R, [1, 1, 0, 0]);

[[[1, 1, 0, 0], [2, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0],

[1, 0, 0, 0], [0, 0, 0, 0]], [0, 3, 4, 8, 11, 19]]

gap> DominantCharacter(L, [1, 1, 0, 0]);

[[[1, 1, 0, 0], [2, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0],

[1, 0, 0, 0], [0, 0, 0, 0]], [1, 1, 4, 6, 14, 21]]

gap> DecomposeTensorProduct(L, [1, 0, 0, 0], [0, 0, 1, 0]);

[[[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0],

[1, 0, 1, 0], [1, 1, 0, 0], [2, 0, 0, 0]],

[1, 1, 1, 1, 1, 1, 1]]

gap> DimensionOfHighestWeightModule(L, [1, 2, 3, 4]);

79316832731136

64.14 Admissible Lattices in UEA

Let L be a semisimple Lie algebra over a field of characteristic 0, and let R be its root system. For a
positive root α we let xα and yα be positive and negative root vectors, respectively, both from a fixed
Chevalley basis of L. Furthermore, h1, . . . ,hl are the Cartan elements from the same Chevalley basis.
Also we set

x(n)α =
xn

α

n!
,y(n)α =

yn
α

n!
.

Furthermore, let α1, . . . ,αs denote the positive roots of R. For multi-indices N = (n1, . . . ,ns), M =
(m1, . . . ,ms) and K = (k1, . . . ,ks) (where ni,mi,ki ≥ 0) set

xN = x(n1)
α1 · · ·x(ns)

αs ,
yM = y(m1)

α1 · · ·y(ms)
αs ,

hK =
(h1

k1

)
· · ·
(hl

kl

)
Then by a theorem of Kostant, the x(n)α and y(n)α generate a subring of the universal enveloping

algebra U(L) spanned (as a free Z-module) by the elements

yMhKxN

GAP - Reference Manual 1060

(see, e.g., [Hum72] or [Hum78, Section 26]) So by the Poincare-Birkhoff-Witt theorem this subring
is a lattice in U(L). Furthermore, this lattice is invariant under the x(n)α and y(n)α . Therefore, it is called
an admissible lattice in U(L).

The next functions enable us to construct the generators of such an admissible lattice.

64.14.1 IsUEALatticeElement

▷ IsUEALatticeElement(obj) (Category)

▷ IsUEALatticeElementCollection(obj) (Category)

▷ IsUEALatticeElementFamily(fam) (Category)

is the category of elements of an admissible lattice in the universal enveloping algebra of a
semisimple Lie algebra L.

64.14.2 LatticeGeneratorsInUEA

▷ LatticeGeneratorsInUEA(L) (attribute)

Here L must be a semisimple Lie algebra of characteristic 0. This function returns a list of gener-
ators of an admissible lattice in the universal enveloping algebra of L , relative to the Chevalley basis
contained in ChevalleyBasis(L) (see ChevalleyBasis (64.6.2)). First are listed the negative
root vectors (denoted by y1, . . . ,ys), then the positive root vectors (denoted by x1, . . . ,xs). At the end
of the list there are the Cartan elements. They are printed as (hi/1), which means(

hi

1

)
.

In general the printed form (hi/ k) means (
hi

k

)
.

Also y(m)
i is printed as yi^(m), which means that entering yi^m at the GAP prompt results in the

output m!*yi^(m).
Products of lattice generators are collected using the following order: first come the y(mi)

i (in the
same order as the positive roots), then the

(hi
ki

)
, and then the x(ni)

i (in the same order as the positive
roots).

64.14.3 ObjByExtRep (for creating a UEALattice element)

▷ ObjByExtRep(F, descr) (method)

An UEALattice element is represented by a list of the form [m1, c1, m2, c2, ...], where
the c1, c2 etc. are coefficients, and the m1, m2 etc. are monomials. A monomial is a list of the form [

ind1, e1, ind2, e2, ...] where ind1, ind2 are indices, and e1, e2 etc. are exponents. Let N
be the number of positive roots of the underlying Lie algebra L. The indices lie between 1 and dim(L).
If an index lies between 1 and N, then it represents a negative root vector (corresponding to the root
NegativeRoots(R)[ind], where R is the root system of L; see NegativeRoots (64.6.8)). This

GAP - Reference Manual 1061

leads to a factor yind1^(e1) in the printed form of the monomial (which equals z^e1/e1!, where
z is a basis element of L). If an index lies between N + 1 and 2N, then it represents a positive root
vector. Finally, if ind lies between 2N +1 and 2N + rank, then it represents an element of the Cartan
subalgebra. This is printed as (h1/e1), meaning

(h1
e1

)
, where h1, . . . ,hrank are the canonical Cartan

generators.
The zero element is represented by the empty list, the identity element by the list [[], 1].

Example
gap> L:= SimpleLieAlgebra("G", 2, Rationals);;

gap> g:=LatticeGeneratorsInUEA(L);

[y1, y2, y3, y4, y5, y6, x1, x2, x3, x4, x5, x6, (h13/1),

(h14/1)]

gap> IsUEALatticeElement(g[1]);

true

gap> g[1]^3;

6*y1^(3)

gap> q:= g[7]*g[1]^2;

-2*y1+2*y1*(h13/1)+2*y1^(2)*x1

gap> ExtRepOfObj(q);

[[1, 1], -2, [1, 1, 13, 1], 2, [1, 2, 7, 1], 2]

64.14.4 IsWeightRepElement

▷ IsWeightRepElement(obj) (Category)

▷ IsWeightRepElementCollection(obj) (Category)

▷ IsWeightRepElementFamily(fam) (Category)

Is a category of vectors, that is used to construct elements of highest-weight modules (by
HighestWeightModule (64.14.5)).

WeightRepElements are represented by a list of the form [v1, c1, v2, c2,], where
the vi are basis vectors, and the ci are coefficients. Furthermore a basis vector v is a weight vector. It
is represented by a list of the form [k, mon, wt], where k is an integer (the basis vectors are num-
bered from 1 to dimV , where V is the highest weight module), mon is an UEALatticeElement (which
means that the result of applying mon to a highest weight vector is v; see IsUEALatticeElement

(64.14.1)) and wt is the weight of v. A WeightRepElement is printed as mon*v0, where v0 denotes a
fixed highest weight vector.

If v is a WeightRepElement, then ExtRepOfObj(v) returns the corresponding list, and if list
is such a list and fam a WeightRepElementFamily, then ObjByExtRep(list, fam) returns the
corresponding WeightRepElement.

64.14.5 HighestWeightModule

▷ HighestWeightModule(L, wt) (operation)

returns the highest weight module with highest weight wt of the semisimple Lie algebra L of
characteristic 0.

Note that the elements of such a module lie in the category IsLeftAlgebraModuleElement

(62.11.9) (and in particular they do not lie in the category IsWeightRepElement (64.14.4)). However,
if v is an element of such a module, then ExtRepOfObj(v) is a WeightRepElement.

GAP - Reference Manual 1062

Note that for the following examples of this chapter we increase the line length limit from its
default value 80 to 81 in order to make some long output expressions fit into the lines.

Example
gap> K1:= SimpleLieAlgebra("G", 2, Rationals);;

gap> K2:= SimpleLieAlgebra("B", 2, Rationals);;

gap> L:= DirectSumOfAlgebras(K1, K2);

<Lie algebra of dimension 24 over Rationals>

gap> V:= HighestWeightModule(L, [0, 1, 1, 1]);

<224-dimensional left-module over <Lie algebra of dimension

24 over Rationals>>

gap> vv:= GeneratorsOfLeftModule(V);;

gap> vv[100];

y5*y7*y10*v0

gap> e:= ExtRepOfObj(vv[100]);

y5*y7*y10*v0

gap> ExtRepOfObj(e);

[[100, y5*y7*y10, [-3, 2, -1, 1]], 1]

gap> Basis(L)[17]^vv[100];

-1*y5*y7*y8*v0-1*y5*y9*v0

64.15 Tensor Products and Exterior and Symmetric Powers of Algebra
Modules

64.15.1 TensorProductOfAlgebraModules (for a list of algebra modules)

▷ TensorProductOfAlgebraModules(list) (operation)

▷ TensorProductOfAlgebraModules(V, W) (operation)

Here the elements of list must be algebra modules. The tensor product is returned as an algebra
module. The two-argument version works in the same way and returns the tensor product of its
arguments.

Example
gap> L:= SimpleLieAlgebra("G",2,Rationals);;

gap> V:= HighestWeightModule(L, [1, 0]);;

gap> W:= TensorProductOfAlgebraModules([V, V, V]);

<343-dimensional left-module over <Lie algebra of dimension

14 over Rationals>>

gap> w:= Basis(W)[1];

1*(1*v0<x>1*v0<x>1*v0)

gap> Basis(L)[1]^w;

<0-tensor>

gap> Basis(L)[7]^w;

1*(1*v0<x>1*v0<x>y1*v0)+1*(1*v0<x>y1*v0<x>1*v0)+1*(y

1*v0<x>1*v0<x>1*v0)

64.15.2 ExteriorPowerOfAlgebraModule

▷ ExteriorPowerOfAlgebraModule(V, k) (operation)

GAP - Reference Manual 1063

Here V must be an algebra module, defined over a Lie algebra. This function returns the k-th
exterior power of V as an algebra module.

Example
gap> L:= SimpleLieAlgebra("G",2,Rationals);;

gap> V:= HighestWeightModule(L, [1, 0]);;

gap> W:= ExteriorPowerOfAlgebraModule(V, 3);

<35-dimensional left-module over <Lie algebra of dimension

14 over Rationals>>

gap> w:= Basis(W)[1];

1*(1*v0/\y1*v0/\y3*v0)

gap> Basis(L)[10]^w;

1*(1*v0/\y1*v0/\y6*v0)+1*(1*v0/\y3*v0/\y5*v0)+1*(y1*v0/\y3*v0/\y4*v0)

64.15.3 SymmetricPowerOfAlgebraModule

▷ SymmetricPowerOfAlgebraModule(V, k) (operation)

Here V must be an algebra module. This function returns the k-th symmetric power of V (as an
algebra module).

Example
gap> L:= SimpleLieAlgebra("G",2,Rationals);;

gap> V:= HighestWeightModule(L, [1, 0]);;

gap> W:= SymmetricPowerOfAlgebraModule(V, 3);

<84-dimensional left-module over <Lie algebra of dimension

14 over Rationals>>

gap> w:= Basis(W)[1];

1*(1*v0.1*v0.1*v0)

gap> Basis(L)[2]^w;

<0-symmetric element>

gap> Basis(L)[7]^w;

3*(1*v0.1*v0.y1*v0)

Chapter 65

Magma Rings

Given a magma M then the free magma ring (or magma ring for short) RM of M over a ring-with-one
R is the set of finite sums ∑i∈I rimi with ri ∈ R, and mi ∈ M. With the obvious addition and R-action
from the left, RM is a free R-module with R-basis M, and with the usual convolution product, RM is
a ring.

Typical examples of free magma rings are

• (multivariate) polynomial rings (see 66.15), where the magma is a free abelian monoid generated
by the indeterminates,

• group rings (see IsGroupRing (65.1.5)), where the magma is a group,

• Laurent polynomial rings, which are group rings of the free abelian groups generated by the
indeterminates,

• free algebras and free associative algebras, with or without one, where the magma is a free
magma or a free semigroup, or a free magma-with-one or a free monoid, respectively.

Note that formally, polynomial rings in GAP are not constructed as free magma rings.
Furthermore, a free Lie algebra is not a magma ring, because of the additional relations given by

the Jacobi identity; see 65.4 for a generalization of magma rings that covers such structures.
The coefficient ring R and the magma M cannot be regarded as subsets of RM, hence the natural

embeddings of R and M into RM must be handled via explicit embedding maps (see 65.3). Note that
in a magma ring, the addition of elements is in general different from an addition that may be defined
already for the elements of the magma; for example, the addition in the group ring of a matrix group
does in general not coincide with the addition of matrices.

Example
gap> a:= Algebra(GF(2), [[[Z(2)]]]);; Size(a);

2

gap> rm:= FreeMagmaRing(GF(2), a);;

gap> emb:= Embedding(a, rm);;

gap> z:= Zero(a);; o:= One(a);;

gap> imz:= z ^ emb; IsZero(imz);

(Z(2)^0)*[[0*Z(2)]]

false

gap> im1:= (z + o) ^ emb;

(Z(2)^0)*[[Z(2)^0]]

1064

GAP - Reference Manual 1065

gap> im2:= z ^ emb + o ^ emb;

(Z(2)^0)*[[0*Z(2)]]+(Z(2)^0)*[[Z(2)^0]]

gap> im1 = im2;

false

65.1 Free Magma Rings

65.1.1 FreeMagmaRing

▷ FreeMagmaRing(R, M) (function)

is a free magma ring over the ring R , free on the magma M .

65.1.2 GroupRing

▷ GroupRing(R, G) (function)

is the group ring of the group G , over the ring R .

65.1.3 IsFreeMagmaRing

▷ IsFreeMagmaRing(D) (Category)

A domain lies in the category IsFreeMagmaRing if it has been constructed as a free magma
ring. In particular, if D lies in this category then the operations LeftActingDomain (57.1.11) and
UnderlyingMagma (65.1.6) are applicable to D , and yield the ring R and the magma M such that D is
the magma ring RM.

So being a magma ring in GAP includes the knowledge of the ring and the magma. Note that
a magma ring RM may abstractly be generated as a magma ring by a magma different from the
underlying magma M. For example, the group ring of the dihedral group of order 8 over the field
with 3 elements is also spanned by a quaternion group of order 8 over the same field.

Example
gap> d8:= DihedralGroup(8);

<pc group of size 8 with 3 generators>

gap> rm:= FreeMagmaRing(GF(3), d8);

<algebra-with-one over GF(3), with 3 generators>

gap> emb:= Embedding(d8, rm);;

gap> gens:= List(GeneratorsOfGroup(d8), x -> x^emb);;

gap> x1:= gens[1] + gens[2];;

gap> x2:= (gens[1] - gens[2]) * gens[3];;

gap> x3:= gens[1] * gens[2] * (One(rm) - gens[3]);;

gap> g1:= x1 - x2 + x3;;

gap> g2:= x1 + x2;;

gap> q8:= Group(g1, g2);;

gap> Size(q8);

8

gap> ForAny([d8, q8], IsAbelian);

false

gap> List([d8, q8], g -> Number(AsList(g), x -> Order(x) = 2));

GAP - Reference Manual 1066

[5, 1]

gap> Dimension(Subspace(rm, q8));

8

65.1.4 IsFreeMagmaRingWithOne

▷ IsFreeMagmaRingWithOne(obj) (Category)

IsFreeMagmaRingWithOne is just a synonym for the meet of IsFreeMagmaRing (65.1.3) and
IsMagmaWithOne (35.1.2).

65.1.5 IsGroupRing

▷ IsGroupRing(obj) (property)

A group ring is a magma ring where the underlying magma is a group.

65.1.6 UnderlyingMagma

▷ UnderlyingMagma(RM) (attribute)

stores the underlying magma of a free magma ring.

65.1.7 AugmentationIdeal

▷ AugmentationIdeal(RG) (attribute)

is the augmentation ideal of the group ring RG , i.e., the kernel of the trivial representation of RG .

65.2 Elements of Free Magma Rings

In order to treat elements of free magma rings uniformly, also without an external representation,
the attributes CoefficientsAndMagmaElements (65.2.4) and ZeroCoefficient (65.2.5) were in-
troduced that allow one to “take an element of an arbitrary magma ring into pieces”.

Conversely, for constructing magma ring elements from coefficients and magma elements,
ElementOfMagmaRing (65.2.6) can be used. (Of course one can also embed each magma element
into the magma ring, see 65.3, and then form the linear combination, but many unnecessary interme-
diate elements are created this way.)

65.2.1 IsMagmaRingObjDefaultRep

▷ IsMagmaRingObjDefaultRep(obj) (Representation)

The default representation of a magma ring element is a list of length 2, at first position the zero
coefficient, at second position a list with the coefficients at the even positions, and the magma elements
at the odd positions, with the ordering as defined for the magma elements.

It is assumed that arithmetic operations on magma rings produce only normalized elements.

GAP - Reference Manual 1067

65.2.2 IsElementOfFreeMagmaRing

▷ IsElementOfFreeMagmaRing(obj) (Category)

▷ IsElementOfFreeMagmaRingCollection(obj) (Category)

The category of elements of a free magma ring (See IsFreeMagmaRing (65.1.3)).

65.2.3 IsElementOfFreeMagmaRingFamily

▷ IsElementOfFreeMagmaRingFamily(Fam) (Category)

Elements of families in this category have trivial normalisation, i.e., efficient methods for \= and
\<.

65.2.4 CoefficientsAndMagmaElements

▷ CoefficientsAndMagmaElements(elm) (attribute)

is a list that contains at the odd positions the magma elements, and at the even positions their
coefficients in the element elm .

65.2.5 ZeroCoefficient

▷ ZeroCoefficient(elm) (attribute)

For an element elm of a magma ring (modulo relations) RM, ZeroCoefficient returns the zero
element of the coefficient ring R.

65.2.6 ElementOfMagmaRing

▷ ElementOfMagmaRing(Fam, zerocoeff, coeffs, mgmelms) (operation)

ElementOfMagmaRing returns the element ∑
n
i=1 cim′

i, where coeffs = [c1,c2, . . . ,cn] is a list of
coefficients, mgmelms = [m1,m2, . . . ,mn] is a list of magma elements, and m′

i is the image of mi under
an embedding of a magma containing mi into a magma ring whose elements lie in the family Fam .
zerocoeff must be the zero of the coefficient ring containing the ci.

65.3 Natural Embeddings related to Magma Rings

Neither the coefficient ring R nor the magma M are regarded as subsets of the magma ring RM, so
one has to use embeddings (see Embedding (32.2.11)) explicitly whenever one needs for example the
magma ring element corresponding to a given magma element.

Example
gap> f:= Rationals;; g:= SymmetricGroup(3);;

gap> fg:= FreeMagmaRing(f, g);

<algebra-with-one over Rationals, with 2 generators>

gap> Dimension(fg);

6

GAP - Reference Manual 1068

gap> gens:= GeneratorsOfAlgebraWithOne(fg);

[(1)*(1,2,3), (1)*(1,2)]

gap> (3*gens[1] - 2*gens[2]) * (gens[1] + gens[2]);

(-2)*()+(3)*(2,3)+(3)*(1,3,2)+(-2)*(1,3)

gap> One(fg);

(1)*()

gap> emb:= Embedding(g, fg);;

gap> elm:= (1,2,3)^emb; elm in fg;

(1)*(1,2,3)

true

gap> new:= elm + One(fg);

(1)*()+(1)*(1,2,3)

gap> new^2;

(1)*()+(2)*(1,2,3)+(1)*(1,3,2)

gap> emb2:= Embedding(f, fg);;

gap> elm:= One(f)^emb2; elm in fg;

(1)*()

true

65.4 Magma Rings modulo Relations

A more general construction than that of free magma rings allows one to create rings that are not free
R-modules on a given magma M but arise from the magma ring RM by factoring out certain identi-
ties. Examples for such structures are finitely presented (associative) algebras and free Lie algebras
(see FreeLieAlgebra (64.2.4)).

In GAP, the use of magma rings modulo relations is limited to situations where a normal form
of the elements is known and where one wants to guarantee that all elements actually constructed are
in normal form. (In particular, the computation of the normal form must be cheap.) This is because
the methods for comparing elements in magma rings modulo relations via \= and \< just compare the
involved coefficients and magma elements, and also the vector space functions regard those monomials
as linearly independent over the coefficients ring that actually occur in the representation of an element
of a magma ring modulo relations.

Thus only very special finitely presented algebras will be represented as magma rings modulo rela-
tions, in general finitely presented algebras are dealt with via the mechanism described in Chapter 63.

65.4.1 IsElementOfMagmaRingModuloRelations

▷ IsElementOfMagmaRingModuloRelations(obj) (Category)

▷ IsElementOfMagmaRingModuloRelationsCollection(obj) (Category)

This category is used, e. g., for elements of free Lie algebras.

65.4.2 IsElementOfMagmaRingModuloRelationsFamily

▷ IsElementOfMagmaRingModuloRelationsFamily(Fam) (Category)

The family category for the category IsElementOfMagmaRingModuloRelations (65.4.1).

GAP - Reference Manual 1069

65.4.3 NormalizedElementOfMagmaRingModuloRelations

▷ NormalizedElementOfMagmaRingModuloRelations(F, descr) (operation)

Let F be a family of magma ring elements modulo relations, and descr the description of an
element in a magma ring modulo relations. NormalizedElementOfMagmaRingModuloRelations

returns a description of the same element, but normalized w.r.t. the relations. So two elements are
equal if and only if the result of NormalizedElementOfMagmaRingModuloRelations is equal for
their internal data, that is, CoefficientsAndMagmaElements (65.2.4) will return the same for the
corresponding two elements.

NormalizedElementOfMagmaRingModuloRelations is allowed to return descr itself, it need
not make a copy. This is the case for example in the case of free magma rings.

65.4.4 IsMagmaRingModuloRelations

▷ IsMagmaRingModuloRelations(obj) (Category)

A GAP object lies in the category IsMagmaRingModuloRelations if it has been constructed
as a magma ring modulo relations. Each element of such a ring has a unique normal form, so
CoefficientsAndMagmaElements (65.2.4) is well-defined for it.

This category is not inherited to factor structures, which are in general best described as finitely
presented algebras, see Chapter 63.

65.5 Magma Rings modulo the Span of a Zero Element

65.5.1 IsElementOfMagmaRingModuloSpanOfZeroFamily

▷ IsElementOfMagmaRingModuloSpanOfZeroFamily(Fam) (Category)

We need this for the normalization method, which takes a family as first argument.

65.5.2 IsMagmaRingModuloSpanOfZero

▷ IsMagmaRingModuloSpanOfZero(RM) (Category)

The category of magma rings modulo the span of a zero element.

65.5.3 MagmaRingModuloSpanOfZero

▷ MagmaRingModuloSpanOfZero(R, M, z) (function)

Let R be a ring, M a magma, and z an element of M with the property that z ∗m = z holds for
all m ∈ M. The element z could be called a “zero element” of M , but note that in general z cannot
be obtained as Zero(m) for each m ∈ M, so this situation does not match the definition of Zero
(31.10.3).

MagmaRingModuloSpanOfZero returns the magma ring RM modulo the relation given by the iden-
tification of z with zero. This is an example of a magma ring modulo relations, see 65.4.

GAP - Reference Manual 1070

65.6 Technical Details about the Implementation of Magma Rings

The family containing elements in the magma ring RM in fact contains all elements with coefficients
in the family of elements of R and magma elements in the family of elements of M. So arithmetic op-
erations with coefficients outside R or with magma elements outside M might create elements outside
RM.

It should be mentioned that each call of FreeMagmaRing (65.1.1) creates a new family of elements,
so for example the elements of two group rings of permutation groups over the same ring lie in different
families and therefore are regarded as different.

Example
gap> g:= SymmetricGroup(3);;

gap> h:= AlternatingGroup(3);;

gap> IsSubset(g, h);

true

gap> f:= GF(2);;

gap> fg:= GroupRing(f, g);

<algebra-with-one over GF(2), with 2 generators>

gap> fh:= GroupRing(f, h);

<algebra-with-one over GF(2), with 1 generator>

gap> IsSubset(fg, fh);

false

gap> o1:= One(fh); o2:= One(fg); o1 = o2;

(Z(2)^0)*()

(Z(2)^0)*()

false

gap> emb:= Embedding(g, fg);;

gap> im:= Image(emb, h);

<group of size 3 with 1 generator>

gap> IsSubset(fg, im);

true

There is no generic external representation for elements in an arbitrary free magma ring. For
example, polynomials are elements of a free magma ring, and they have an external representation
relying on the special form of the underlying monomials. On the other hand, elements in a group ring
of a permutation group do not admit such an external representation.

For convenience, magma rings constructed with FreeAlgebra (62.3.1),
FreeAssociativeAlgebra (62.3.3), FreeAlgebraWithOne (62.3.2), and
FreeAssociativeAlgebraWithOne (62.3.4) support an external representation of their ele-
ments, which is defined as a list of length 2, the first entry being the zero coefficient, the second
being a list with the external representations of the magma elements at the odd positions and the
corresponding coefficients at the even positions.

As the above examples show, there are several possible representations of magma ring elements,
the representations used for polynomials (see Chapter 66) as well as the default representation
IsMagmaRingObjDefaultRep (65.2.1) of magma ring elements. The latter simply stores the zero
coefficient and a list containing the coefficients of the element at the even positions and the corre-
sponding magma elements at the odd positions, where the succession is compatible with the ordering
of magma elements via \<.

Chapter 66

Polynomials and Rational Functions

Let R be a commutative ring-with-one. We call a free associative algebra A over R a polynomial ring
over R. The free generators of A are called indeterminates (to avoid naming conflicts with the word
variables which will be used to denote GAP variables only) , they are usually denoted by x1,x2,
The number of indeterminates is called the rank of A. The elements of A are called polynomials.
Products of indeterminates are called monomials, every polynomial can be expressed as a finite sum
of products of monomials with ring elements in a form like r1,0x1+r1,1x1x2+r0,1x2+ · · · with ri, j ∈ R.

A polynomial ring of rank 1 is called an univariate polynomial ring, its elements are univariate
polynomials.

Polynomial rings of smaller rank naturally embed in rings of higher rank; if S is a subring of R
then a polynomial ring over S naturally embeds in a polynomial ring over R of the same rank. Note
however that GAP does not consider R as a subset of a polynomial ring over R; for example the zero
of R (0) and the zero of the polynomial ring (0x0) are different objects.

Internally, indeterminates are represented by positive integers, but it is possible to give names to
them to have them printed in a nicer way. Beware, however that there is not necessarily any relation
between the way an indeterminate is called and the way it is printed. See section 66.1 for details.

If R is an integral domain, the polynomial ring A over R is an integral domain as well and one can
therefore form its quotient field Q. This field is called a field of rational functions. Again A embeds
naturally into Q and GAP will perform this embedding implicitly. (In fact it implements the ring of
rational functions over R.) To avoid problems with leading coefficients, however, R must be a unique
factorization domain.

66.1 Indeterminates

Internally, indeterminates are created for a family of objects (for example all elements of finite fields
in characteristic 3 are in one family). Thus a variable “x” over the rationals is also an “x” over the
integers, while an “x” over GF(3) is different.

Within one family, every indeterminate has a number nr and as long as no other names have been
assigned, this indeterminate will be displayed as “x_nr”. Indeterminate numbers can be arbitrary
nonnegative integers.

It is possible to assign names to indeterminates; these names are strings and only provide a means
for printing the indeterminates in a nice way. Indeterminates that have not been assigned a name will
be printed as “x_nr”.

1071

GAP - Reference Manual 1072

(Because of this printing convention, the name x_nr is interpreted specially to always denote the
variable with internal number nr .)

The indeterminate names have not necessarily any relations to variable names: this means that an
indeterminate whose name is “x” cannot be accessed using the variable x, unless x was defined to be
that indeterminate.

When asking for indeterminates with certain names, GAP usually will take the first (with respect
to the internal numbering) indeterminates that are not yet named, name these accordingly and return
them. Thus when asking for named indeterminates, no relation between names and indeterminate
numbers can be guaranteed. The attribute IndeterminateNumberOfLaurentPolynomial(indet)

will return the number of the indeterminate indet .
When asked to create an indeterminate with a name that exists already for the family, GAP will

by default return this existing indeterminate. If you explicitly want a new indeterminate, distinct from
the already existing one with the same name, you can add the new option to the function call. (This is
in most cases not a good idea.)

Example
gap> R:=PolynomialRing(GF(3),["x","y","z"]);

GF(3)[x,y,z]

gap> List(IndeterminatesOfPolynomialRing(R),

> IndeterminateNumberOfLaurentPolynomial);

[1, 2, 3]

gap> R:=PolynomialRing(GF(3),["z"]);

GF(3)[z]

gap> List(IndeterminatesOfPolynomialRing(R),

> IndeterminateNumberOfLaurentPolynomial);

[3]

gap> R:=PolynomialRing(GF(3),["x","y","z"]:new);

GF(3)[x,y,z]

gap> List(IndeterminatesOfPolynomialRing(R),

> IndeterminateNumberOfLaurentPolynomial);

[4, 5, 6]

gap> R:=PolynomialRing(GF(3),["z"]);

GF(3)[z]

gap> List(IndeterminatesOfPolynomialRing(R),

> IndeterminateNumberOfLaurentPolynomial);

[3]

66.1.1 Indeterminate

▷ Indeterminate(R[, nr]) (operation)

▷ Indeterminate(R[, name][, avoid]) (operation)

▷ Indeterminate(fam, nr) (operation)

▷ X(R[, nr]) (operation)

▷ X(R[, name][, avoid]) (operation)

▷ X(fam, nr) (operation)

returns the indeterminate number nr over the ring R . If nr is not given it defaults to 1. If the
number is not specified a list avoid of indeterminates may be given. The function will return an
indeterminate that is guaranteed to be different from all the indeterminates in the list avoid . The third
usage returns an indeterminate called name (also avoiding the indeterminates in avoid if given).

GAP - Reference Manual 1073

X is simply a synonym for Indeterminate.
Example

gap> x:=Indeterminate(GF(3),"x");

x

gap> y:=X(GF(3),"y");z:=X(GF(3),"X");

y

X

gap> X(GF(3),2);

y

gap> X(GF(3),"x_3");

X

gap> X(GF(3),[y,z]);

x

66.1.2 IndeterminateNumberOfUnivariateRationalFunction

▷ IndeterminateNumberOfUnivariateRationalFunction(rfun) (attribute)

returns the number of the indeterminate in which the univariate rational function rfun is ex-
pressed. (This also provides a way to obtain the number of a given indeterminate.)

A constant rational function might not possess an indeterminate number. In this case
IndeterminateNumberOfUnivariateRationalFunction will default to a value of 1. Therefore
two univariate polynomials may be considered to be in the same univariate polynomial ring if their
indeterminates have the same number or one if of them is constant. (see also CIUnivPols (66.1.5)
and IsLaurentPolynomialDefaultRep (66.21.7)).

66.1.3 IndeterminateOfUnivariateRationalFunction

▷ IndeterminateOfUnivariateRationalFunction(rfun) (attribute)

returns the indeterminate in which the univariate rational function rfun is expressed. (cf.
IndeterminateNumberOfUnivariateRationalFunction (66.1.2).)

Example
gap> IndeterminateNumberOfUnivariateRationalFunction(z);

3

gap> IndeterminateOfUnivariateRationalFunction(z^5+z);

X

66.1.4 IndeterminateName

▷ IndeterminateName(fam, nr) (operation)

▷ HasIndeterminateName(fam, nr) (operation)

▷ SetIndeterminateName(fam, nr, name) (operation)

SetIndeterminateName assigns the name name to indeterminate nr in the rational functions
family fam . It issues an error if the indeterminate was already named.

IndeterminateName returns the name of the nr-th indeterminate (and returns fail if no name
has been assigned).

HasIndeterminateName tests whether indeterminate nr has already been assigned a name.

GAP - Reference Manual 1074

Example
gap> IndeterminateName(FamilyObj(x),2);

"y"

gap> HasIndeterminateName(FamilyObj(x),4);

false

gap> SetIndeterminateName(FamilyObj(x),10,"bla");

gap> Indeterminate(GF(3),10);

bla

As a convenience there is a special method installed for SetName that will assign a name to an
indeterminate.

Example
gap> a:=Indeterminate(GF(3),5);

x_5

gap> SetName(a,"ah");

gap> a^5+a;

ah^5+ah

66.1.5 CIUnivPols

▷ CIUnivPols(upol1, upol2) (function)

This function (whose name stands for “common indeterminate of univariate polynomials”) takes
two univariate polynomials as arguments. If both polynomials are given in the same indeterminate
number indnum (in this case they are “compatible” as univariate polynomials) it returns indnum . In
all other cases it returns fail. CIUnivPols also accepts if either polynomial is constant but for-
mally expressed in another indeterminate, in this situation the indeterminate of the other polynomial
is selected.

66.2 Operations for Rational Functions

The rational functions form a field, therefore all arithmetic operations are applicable to rational func-
tions.

f + g

f - g

f * g

f / g

Example
gap> x:=Indeterminate(Rationals,1);;y:=Indeterminate(Rationals,2);;

gap> f:=3+x*y+x^5;;g:=5+x^2*y+x*y^2;;

gap> a:=g/f;

(x_1^2*x_2+x_1*x_2^2+5)/(x_1^5+x_1*x_2+3)

Note that the quotient f/g of two polynomials might be represented as a rational function again.
If g is known to divide f the call Quotient(f,g) (see Quotient (56.1.9)) should be used instead.

f mod g

For two Laurent polynomials f and g , f mod g is the Euclidean remainder
(see EuclideanRemainder (56.6.4)) of f modulo g .

GAP - Reference Manual 1075

As calculating a multivariate Gcd can be expensive, it is not guaranteed that rational functions
will always be represented as a quotient of coprime polynomials. In certain unfortunate situations
this might lead to a degree explosion. To ensure cancellation you can use Gcd (56.7.1) on the
NumeratorOfRationalFunction (66.4.2) and DenominatorOfRationalFunction (66.4.3) values
of a given rational function.

All polynomials as well as all the univariate polynomials in the same indeterminate form subrings
of this field. If two rational functions are known to be in the same subring, the result will be expressed
as element in this subring.

66.3 Comparison of Rational Functions

f = g

Two rational functions f and g are equal if the product Numerator(f) * Denominator(g)

equals Numerator(g) * Denominator(f).
Example

gap> x:=Indeterminate(Rationals,"x");;y:=Indeterminate(Rationals,"y");;

gap> f:=3+x*y+x^5;;g:=5+x^2*y+x*y^2;;

gap> a:=g/f;

(x^2*y+x*y^2+5)/(x^5+x*y+3)

gap> b:=(g*f)/(f^2);

(x^7*y+x^6*y^2+5*x^5+x^3*y^2+x^2*y^3+3*x^2*y+3*x*y^2+5*x*y+15)/(x^10+2\

*x^6*y+6*x^5+x^2*y^2+6*x*y+9)

gap> a=b;

true

f < g

The ordering of rational functions is defined in several steps. Monomials (products of indetermi-
nates) are sorted first by degree, then lexicographically (with x1 > x2) (see MonomialGrlexOrdering
(66.17.8)). Products of monomials with ring elements (“terms”) are compared first by their monomials
and then by their coefficients.

Example
gap> x>y;

true

gap> x^2*y<x*y^2;

false

gap> x*y<x^2*y;

true

gap> x^2*y < 5* y*x^2;

true

Polynomials are compared by comparing the largest terms in turn until they differ.
Example

gap> x+y<y;

false

gap> x<x+1;

true

GAP - Reference Manual 1076

Rational functions are compared by comparing the polynomial Numerator(f) * Denominator(g)

with the polynomial Numerator(g) * Denominator(f). (As the ordering of monomials used by
GAP is invariant under multiplication this is independent of common factors in numerator and de-
nominator.)

Example
gap> f/g<g/f;

false

gap> f/g<(g*g)/(f*g);

false

For univariate polynomials this reduces to an ordering first by total degree and then lexicographi-
cally on the coefficients.

66.4 Properties and Attributes of Rational Functions

All these tests are applicable to every rational function. Depending on the internal representation of
the rational function, however some of these tests (in particular, univariateness) might be expensive in
some cases.

For reasons of performance within algorithms it can be useful to use other attributes, which give a
slightly more technical representation. See section 66.20 for details.

66.4.1 IsPolynomialFunction

▷ IsPolynomialFunction(obj) (Category)

▷ IsRationalFunction(obj) (Category)

A rational function is an element of the quotient field of a polynomial ring over an UFD. It is
represented as a quotient of two polynomials, its numerator (see NumeratorOfRationalFunction

(66.4.2)) and its denominator (see DenominatorOfRationalFunction (66.4.3))
A polynomial function is an element of a polynomial ring (not necessarily an UFD), or a rational

function.
GAP considers IsRationalFunction as a subcategory of IsPolynomialFunction.

66.4.2 NumeratorOfRationalFunction

▷ NumeratorOfRationalFunction(ratfun) (attribute)

returns the numerator of the rational function ratfun .
As no proper multivariate gcd has been implemented yet, numerators and denominators are not

guaranteed to be reduced!

66.4.3 DenominatorOfRationalFunction

▷ DenominatorOfRationalFunction(ratfun) (attribute)

returns the denominator of the rational function ratfun .
As no proper multivariate gcd has been implemented yet, numerators and denominators are not

guaranteed to be reduced!

GAP - Reference Manual 1077

Example
gap> x:=Indeterminate(Rationals,1);;y:=Indeterminate(Rationals,2);;

gap> DenominatorOfRationalFunction((x*y+x^2)/y);

y

gap> NumeratorOfRationalFunction((x*y+x^2)/y);

x^2+x*y

66.4.4 IsPolynomial

▷ IsPolynomial(ratfun) (property)

A polynomial is a rational function whose denominator is one. (If the coefficients family forms a
field this is equivalent to the denominator being constant.)

If the base family is not a field, it may be impossible to represent the quotient of a polynomial by
a ring element as a polynomial again, but it will have to be represented as a rational function.

Example
gap> IsPolynomial((x*y+x^2*y^3)/y);

true

gap> IsPolynomial((x*y+x^2)/y);

false

66.4.5 AsPolynomial

▷ AsPolynomial(poly) (attribute)

If poly is a rational function that is a polynomial this attribute returns an equal rational function
p such that p is equal to its numerator and the denominator of p is one.

Example
gap> AsPolynomial((x*y+x^2*y^3)/y);

x^2*y^2+x

66.4.6 IsUnivariateRationalFunction

▷ IsUnivariateRationalFunction(ratfun) (property)

A rational function is univariate if its numerator and its denominator are both polynomials in the
same one indeterminate. The attribute IndeterminateNumberOfUnivariateRationalFunction

(66.1.2) can be used to obtain the number of this common indeterminate.

66.4.7 CoefficientsOfUnivariateRationalFunction

▷ CoefficientsOfUnivariateRationalFunction(rfun) (attribute)

if rfun is a univariate rational function, this attribute returns a list [ncof, dcof, val

] where ncof and dcof are coefficient lists of univariate polynomials n and d and a val-
uation val such that rfun = xval · n/d where x is the variable with the number given by
IndeterminateNumberOfUnivariateRationalFunction (66.1.2). Numerator and denominator
are guaranteed to be cancelled.

GAP - Reference Manual 1078

66.4.8 IsUnivariatePolynomial

▷ IsUnivariatePolynomial(ratfun) (property)

A univariate polynomial is a polynomial in only one indeterminate.

66.4.9 CoefficientsOfUnivariatePolynomial

▷ CoefficientsOfUnivariatePolynomial(pol) (attribute)

CoefficientsOfUnivariatePolynomial returns the coefficient list of the polynomial pol ,
sorted in ascending order. (It returns the empty list if pol is 0.)

66.4.10 IsLaurentPolynomial

▷ IsLaurentPolynomial(ratfun) (property)

A Laurent polynomial is a univariate rational function whose denominator is a monomial. There-
fore every univariate polynomial is a Laurent polynomial.

The attribute CoefficientsOfLaurentPolynomial (66.13.2) gives a compact representation as
Laurent polynomial.

66.4.11 IsConstantRationalFunction

▷ IsConstantRationalFunction(ratfun) (property)

A constant rational function is a function whose numerator and denominator are polynomials of
degree 0.

66.4.12 IsPrimitivePolynomial

▷ IsPrimitivePolynomial(F, pol) (operation)

For a univariate polynomial pol of degree d in the indeterminate X , with coefficients in a finite
field F with q elements, IsPrimitivePolynomial returns true if

1. pol divides Xqd−1 −1, and

2. for each prime divisor p of qd −1, pol does not divide X (qd−1)/p −1,

and false otherwise.

66.4.13 SplittingField

▷ SplittingField(f) (attribute)

returns the smallest field which contains the coefficients of f and the roots of f .

GAP - Reference Manual 1079

66.5 Univariate Polynomials

Some of the operations are actually defined on the larger domain of Laurent polynomials (see 66.13).
For this section you can simply ignore the word “Laurent” if it occurs in a description.

66.5.1 UnivariatePolynomial

▷ UnivariatePolynomial(ring, cofs[, ind]) (operation)

constructs an univariate polynomial over the ring ring in the indeterminate ind with the coeffi-
cients given by cofs .

66.5.2 UnivariatePolynomialByCoefficients

▷ UnivariatePolynomialByCoefficients(fam, cofs, ind) (operation)

constructs an univariate polynomial over the coefficients family fam and in the indeterminate ind
with the coefficients given by cofs . This function should be used in algorithms to create polynomials
as it avoids overhead associated with UnivariatePolynomial (66.5.1).

66.5.3 DegreeOfLaurentPolynomial

▷ DegreeOfLaurentPolynomial(pol) (attribute)

The degree of a univariate (Laurent) polynomial pol is the largest exponent n of a monomial xn

of pol . The degree of a zero polynomial is defined to be -infinity.
Example

gap> p:=UnivariatePolynomial(Rationals,[1,2,3,4],1);

4*x^3+3*x^2+2*x+1

gap> UnivariatePolynomialByCoefficients(FamilyObj(1),[9,2,3,4],73);

4*x_73^3+3*x_73^2+2*x_73+9

gap> CoefficientsOfUnivariatePolynomial(p);

[1, 2, 3, 4]

gap> DegreeOfLaurentPolynomial(p);

3

gap> DegreeOfLaurentPolynomial(Zero(p));

-infinity

gap> IndeterminateNumberOfLaurentPolynomial(p);

1

gap> IndeterminateOfLaurentPolynomial(p);

x

66.5.4 RootsOfPolynomial

▷ RootsOfPolynomial([R,]p) (function)

For a univariate polynomial p , this function returns all roots of p over the ring R . If the ring is not
specified, it defaults to the ring specified by the coefficients of p via DefaultRing (56.1.3)).

GAP - Reference Manual 1080

Example
gap> x:=X(Rationals,"x");;p:=x^4-1;

x^4-1

gap> RootsOfPolynomial(p);

[1, -1]

gap> RootsOfPolynomial(CF(4),p);

[1, -1, E(4), -E(4)]

66.5.5 RootsOfUPol

▷ RootsOfUPol([field,]upol) (function)

This function returns a list of all roots of the univariate polynomial upol in its default domain. If
the optional argument field is a field then the roots in this field are computed. If field is the string
"split" then the splitting field of the polynomial is taken.

Example
gap> RootsOfUPol(50-45*x-6*x^2+x^3);

[10, 1, -5]

66.5.6 QuotRemLaurpols

▷ QuotRemLaurpols(left, right, mode) (function)

This internal function for euclidean division of polynomials takes two polynomials left and
right and computes their quotient. No test is performed whether the arguments indeed are poly-
nomials. Depending on the integer variable mode , which may take values in a range from 1 to 4, it
returns respectively:

1. the quotient (there might be some remainder),

2. the remainder,

3. a list [q,r] of quotient and remainder,

4. the quotient if there is no remainder and fail otherwise.

66.5.7 UnivariatenessTestRationalFunction

▷ UnivariatenessTestRationalFunction(f) (function)

takes a rational function f and tests whether it is univariate rational function (or even a Laurent
polynomial). It returns a list [isunivariate, indet, islaurent, cofs].

If f is a univariate rational function then isunivariate is true and indet is the number of the
appropriate indeterminate.

Furthermore, if f is a Laurent polynomial, then islaurent is also true. In this case the fourth
entry, cofs, is the value of the attribute CoefficientsOfLaurentPolynomial (66.13.2) for f .

If isunivariate is true but islaurent is false, then cofs is the value of the attribute
CoefficientsOfUnivariateRationalFunction (66.4.7) for f .

Otherwise, each entry of the returned list is equal to fail. As there is no proper multivariate gcd,
this may also happen for the rational function which may be reduced to univariate (see example).

GAP - Reference Manual 1081

Example
gap> UnivariatenessTestRationalFunction(50-45*x-6*x^2+x^3);

[true, 1, true, [[50, -45, -6, 1], 0]]

gap> UnivariatenessTestRationalFunction((-6*y^2+y^3) / (y+1));

[true, 2, false, [[-6, 1], [1, 1], 2]]

gap> UnivariatenessTestRationalFunction((-6*y^2+y^3) / (x+1));

[false, fail, false, fail]

gap> UnivariatenessTestRationalFunction(((y+2)*(x+1)) / ((y-1)*(x+1)));

[fail, fail, fail, fail]

66.5.8 InfoPoly

▷ InfoPoly (info class)

is the info class for univariate polynomials.
We remark that some functions for multivariate polynomials (which will be defined in the fol-

lowing sections) permit a different syntax for univariate polynomials which drops the requirement
to specify the indeterminate. Examples are Value (66.7.1), Discriminant (66.6.6), Derivative
(66.6.5), LeadingCoefficient (66.6.3) and LeadingMonomial (66.6.4):

Example
gap> p:=UnivariatePolynomial(Rationals,[1,2,3,4],1);

4*x^3+3*x^2+2*x+1

gap> Value(p,Z(5));

Z(5)^2

gap> LeadingCoefficient(p);

4

gap> Derivative(p);

12*x^2+6*x+2

66.6 Polynomials as Univariate Polynomials in one Indeterminate

66.6.1 DegreeIndeterminate

▷ DegreeIndeterminate(pol, ind) (operation)

returns the degree of the polynomial pol in the indeterminate (or indeterminate number) ind .
Example

gap> f:=x^5+3*x*y+9*y^7+4*y^5*x+3*y+2;

9*y^7+4*x*y^5+x^5+3*x*y+3*y+2

gap> DegreeIndeterminate(f,1);

5

gap> DegreeIndeterminate(f,y);

7

66.6.2 PolynomialCoefficientsOfPolynomial

▷ PolynomialCoefficientsOfPolynomial(pol, ind) (operation)

GAP - Reference Manual 1082

PolynomialCoefficientsOfPolynomial returns the coefficient list (whose entries are polyno-
mials not involving the indeterminate ind) describing the polynomial pol viewed as a polynomial in
ind . Instead of the indeterminate, ind can also be an indeterminate number.

Example
gap> PolynomialCoefficientsOfPolynomial(f,2);

[x^5+2, 3*x+3, 0, 0, 0, 4*x, 0, 9]

66.6.3 LeadingCoefficient

▷ LeadingCoefficient(pol) (operation)

returns the leading coefficient (that is the coefficient of the leading monomial,
see LeadingMonomial (66.6.4)) of the polynomial pol .

66.6.4 LeadingMonomial

▷ LeadingMonomial(pol) (operation)

returns the leading monomial (with respect to the ordering given by MonomialExtGrlexLess

(66.17.14)) of the polynomial pol as a list containing indeterminate numbers and exponents.
Example

gap> LeadingCoefficient(f,1);

1

gap> LeadingCoefficient(f,2);

9

gap> LeadingMonomial(f);

[2, 7]

gap> LeadingCoefficient(f);

9

66.6.5 Derivative

▷ Derivative(ratfun[, ind]) (attribute)

If ratfun is a univariate rational function then Derivative returns the derivative of ufun by its
indeterminate. For a rational function ratfun , the derivative by the indeterminate ind is returned,
regarding ratfun as univariate in ind . Instead of the desired indeterminate, also the number of this
indeterminate can be given as ind .

Example
gap> Derivative(f,2);

63*y^6+20*x*y^4+3*x+3

66.6.6 Discriminant

▷ Discriminant(pol[, ind]) (operation)

If pol is a univariate polynomial then Discriminant returns the discriminant of pol by its inde-
terminate. The two-argument form returns the discriminant of a polynomial pol by the indeterminate

GAP - Reference Manual 1083

number ind , regarding pol as univariate in this indeterminate. Instead of the indeterminate number,
the indeterminate itself can also be given as ind .

Example
gap> Discriminant(f,1);

20503125*y^28+262144*y^25+27337500*y^22+19208040*y^21+1474560*y^17+136\

68750*y^16+18225000*y^15+6075000*y^14+1105920*y^13+3037500*y^10+648972\

0*y^9+4050000*y^8+900000*y^7+62208*y^5+253125*y^4+675000*y^3+675000*y^\

2+300000*y+50000

gap> Discriminant(f,1) = Discriminant(f,x);

true

66.6.7 Resultant

▷ Resultant(pol1, pol2, ind) (operation)

computes the resultant of the polynomials pol1 and pol2 with respect to the indeterminate ind ,
or indeterminate number ind . The resultant considers pol1 and pol2 as univariate in ind and returns
an element of the corresponding base ring (which might be a polynomial ring).

Example
gap> Resultant(x^4+y,y^4+x,1);

y^16+y

gap> Resultant(x^4+y,y^4+x,2);

x^16+x

66.7 Multivariate Polynomials

66.7.1 Value

▷ Value(ratfun, indets, vals[, one]) (operation)

▷ Value(upol, value[, one]) (operation)

The first variant takes a rational function ratfun and specializes the indeterminates given in
indets to the values given in vals , replacing the i-th entry in indets by the i-th entry in vals . If
this specialization results in a constant polynomial, an element of the coefficient ring is returned. If
the specialization would specialize the denominator of ratfun to zero, an error is raised.

A variation is the evaluation at elements of another ring R, for which a multiplication with elements
of the coefficient ring of ratfun are defined. In this situation the identity element of R may be given
by a further argument one which will be used for x0 for any specialized indeterminate x.

The second version takes an univariate rational function and specializes the value of its indeter-
minate to val . Again, an optional argument one may be given. Value(upol, val) can also be
expressed as upol(val).

Example
gap> Value(x*y+y+x^7,[x,y],[5,7]);

78167

Note that the default values for one can lead to different results than one would expect: For
example for a matrix M, the values M+M0 and M+1 are different. As Value defaults to the one of
the coefficient ring, when evaluating matrices in polynomials always the correct one should be given!

GAP - Reference Manual 1084

66.8 Minimal Polynomials

66.8.1 MinimalPolynomial

▷ MinimalPolynomial(R, elm[, ind]) (operation)

returns the minimal polynomial of elm over the ring R , expressed in the indeterminate number
ind . If ind is not given, it defaults to 1.

The minimal polynomial is the monic polynomial of smallest degree with coefficients in R that
has value zero at elm .

Example
gap> MinimalPolynomial(Rationals,[[2,0],[0,2]]);

x-2

66.9 Cyclotomic Polynomials

66.9.1 CyclotomicPolynomial

▷ CyclotomicPolynomial(F, n) (function)

is the n-th cyclotomic polynomial over the ring F .
Example

gap> CyclotomicPolynomial(Rationals,5);

x^4+x^3+x^2+x+1

66.10 Polynomial Factorization

At the moment GAP provides only methods to factorize polynomials over finite fields (see Chap-
ter 59), over subfields of cyclotomic fields (see Chapter 60), and over algebraic extensions of these
(see Chapter 67).

66.10.1 Factors (of polynomial)

▷ Factors([R,]poly[, opt]) (method)

returns a list of the irreducible factors of the polynomial poly in the polynomial ring R . (That is
factors over the CoefficientsRing (66.15.3) value of R .)

For univariate factorizations, it is possible to pass a record opt as a third argument. This record
can contain the following components:

onlydegs

is a set of positive integers. The factorization assumes that all irreducible factors have a degree
in this set.

stopdegs

is a set of positive integers. The factorization will stop once a factor of degree in stopdegs has
been found and will return the factorization found so far.

GAP - Reference Manual 1085

Example
gap> f:= CyclotomicPolynomial(GF(2), 7);

x_1^6+x_1^5+x_1^4+x_1^3+x_1^2+x_1+Z(2)^0

gap> Factors(f);

[x_1^3+x_1+Z(2)^0, x_1^3+x_1^2+Z(2)^0]

gap> Factors(PolynomialRing(GF(8)), f);

[x_1+Z(2^3), x_1+Z(2^3)^2, x_1+Z(2^3)^3, x_1+Z(2^3)^4, x_1+Z(2^3)^5,

x_1+Z(2^3)^6]

gap> f:= MinimalPolynomial(Rationals, E(4));

x^2+1

gap> Factors(f);

[x^2+1]

gap> Factors(PolynomialRing(Rationals), f);

[x^2+1]

gap> Factors(PolynomialRing(CF(4)), f);

[x+(-E(4)), x+E(4)]

66.10.2 FactorsSquarefree

▷ FactorsSquarefree(pring, upol, opt) (operation)

returns a factorization of the squarefree, monic, univariate polynomial upol in the polynomial
ring pring ; opt must be a (possibly empty) record of options. upol must not have zero as a root.
This function is used by the factoring algorithms.

The current method for multivariate factorization reduces to univariate factorization by use of a
reduction homomorphism of the form f (x1,x2,x3) 7→ f (x,xp,xp2

). It can be very time intensive for
larger degrees.

Example
gap> Factors(x^10-y^10);

[x-y, x+y, x^4-x^3*y+x^2*y^2-x*y^3+y^4, x^4+x^3*y+x^2*y^2+x*y^3+y^4]

66.11 Polynomials over the Rationals

The following functions are only available to polynomials with rational coefficients:

66.11.1 PrimitivePolynomial

▷ PrimitivePolynomial(f) (operation)

takes a polynomial f with rational coefficients and computes a new polynomial with integral
coefficients, obtained by multiplying with the Lcm of the denominators of the coefficients and casting
out the content (the Gcd of the coefficients). The operation returns a list [newpol ,coeff] with rational
coeff such that coeff*newpol=f .

66.11.2 PolynomialModP

▷ PolynomialModP(pol, p) (function)

GAP - Reference Manual 1086

for a rational polynomial pol this function returns a polynomial over the field with p elements,
obtained by reducing the coefficients modulo p .

66.11.3 GaloisType

▷ GaloisType(f) (attribute)

Let f be an irreducible polynomial with rational coefficients. This function returns the type of
Gal(f) (considered as a transitive permutation group of the roots of f). It returns a number i if
Gal(f) is permutation isomorphic to TransitiveGroup(n,i) where n is the degree of f .

Identification is performed by factoring appropriate Galois resolvents as proposed in [SM85]. This
function is provided for rational polynomials of degree up to 15. However, in some cases the required
calculations become unfeasibly large.

For a few polynomials of degree 14, a complete discrimination is not yet possible, as it would
require computations, that are not feasible with current factoring methods.

This function requires the transitive groups library to be installed (see (transgrp: Transitive
Permutation Groups)).

66.11.4 ProbabilityShapes

▷ ProbabilityShapes(f) (function)

Let f be an irreducible polynomial with rational coefficients. This function returns a list of the
most likely type(s) of Gal(f) (see GaloisType (66.11.3)), based on factorization modulo a set of
primes. It is very fast, but the result is only probabilistic.

This function requires the transitive groups library to be installed (see (transgrp: Transitive
Permutation Groups)).

Example
gap> f:=x^9-9*x^7+27*x^5-39*x^3+36*x-8;;

gap> GaloisType(f);

25

gap> TransitiveGroup(9,25);

[1/2.S(3)^3]3

gap> ProbabilityShapes(f);

[25]

66.12 Factorization of Polynomials over the Rationals

The following operations are used by GAP inside the factorization algorithm but might be of interest
also in other contexts.

66.12.1 BombieriNorm

▷ BombieriNorm(pol) (function)

computes weighted Norm [pol]2 of pol which is a good measure for factor coefficients (see
[BTW93]).

GAP - Reference Manual 1087

66.12.2 MinimizedBombieriNorm

▷ MinimizedBombieriNorm(f) (attribute)

This function applies linear Tschirnhaus transformations (x 7→ x+ i) to the polynomial f , trying to
get the Bombieri norm of f small. It returns a list [new_polynomial, i_of_transformation].

66.12.3 HenselBound

▷ HenselBound(pol[, minpol, den]) (function)

returns the Hensel bound of the polynomial pol . If the computation takes place over an algebraic
extension, then the minimal polynomial minpol and denominator den must be given.

66.12.4 OneFactorBound

▷ OneFactorBound(pol) (function)

returns the coefficient bound for a single factor of the rational polynomial pol .

66.13 Laurent Polynomials

A univariate polynomial can be written in the form r0 + r1x + · · · + rnxn, with ri ∈ R. For-
mally, there is no reason to start with 0, if m is an integer, we can consider objects of the form
rmxm + rm+1xm+1 + · · ·+ rnxn. We call these Laurent polynomials. Laurent polynomials also can be
considered as quotients of a univariate polynomial by a power of the indeterminate. The addition and
multiplication of univariate polynomials extends to Laurent polynomials (though it might be impos-
sible to interpret a Laurent polynomial as a function) and many functions for univariate polynomials
extend to Laurent polynomials (or extended versions for Laurent polynomials exist).

66.13.1 LaurentPolynomialByCoefficients

▷ LaurentPolynomialByCoefficients(fam, cofs, val[, ind]) (operation)

constructs a Laurent polynomial over the coefficients family fam and in the indeterminate ind

(defaulting to 1) with the coefficients given by cofs and valuation val .

66.13.2 CoefficientsOfLaurentPolynomial

▷ CoefficientsOfLaurentPolynomial(laurent) (attribute)

For a Laurent polynomial laurent , this function returns a pair [cof, val], consisting of the
coefficient list (in ascending order) cof and the valuation val of laurent .

Example
gap> p:=LaurentPolynomialByCoefficients(FamilyObj(1),

> [1,2,3,4,5],-2);

5*x^2+4*x+3+2*x^-1+x^-2

gap> NumeratorOfRationalFunction(p);DenominatorOfRationalFunction(p);

GAP - Reference Manual 1088

5*x^4+4*x^3+3*x^2+2*x+1

x^2

gap> CoefficientsOfLaurentPolynomial(p*p);

[[1, 4, 10, 20, 35, 44, 46, 40, 25], -4]

66.13.3 IndeterminateNumberOfLaurentPolynomial

▷ IndeterminateNumberOfLaurentPolynomial(pol) (attribute)

Is a synonym for IndeterminateNumberOfUnivariateRationalFunction (66.1.2).

66.14 Univariate Rational Functions

66.14.1 UnivariateRationalFunctionByCoefficients

▷ UnivariateRationalFunctionByCoefficients(fam, ncof, dcof, val[, ind]) (operation)

constructs a univariate rational function over the coefficients family fam and in the indeterminate
ind (defaulting to 1) with numerator and denominator coefficients given by ncof and dcof and
valuation val .

66.14.2 TaylorSeriesRationalFunction

▷ TaylorSeriesRationalFunction(ratfun, at, deg]) (attribute)

Computes the taylor series up to degree deg of ratfun at at .
Example

gap> TaylorSeriesRationalFunction((x^5+3*x+7)/(x^5+x+1),0,11);

-50*x^11+36*x^10-26*x^9+22*x^8-18*x^7+14*x^6-10*x^5+4*x^4-4*x^3+4*x^2-4*x+7

66.15 Polynomial Rings and Function Fields

While polynomials depend only on the family of the coefficients, polynomial rings A are defined over
a base ring R. A polynomial is an element of A if and only if all its coefficients are contained in R.
Besides providing domains and an easy way to create polynomials, polynomial rings can affect the
behavior of operations like factorization into irreducibles.

If you need to work with a polynomial ring and its indeterminates the following two ap-
proaches will produce a ring that contains given variables (see section 66.1 for details about
the internal numbering): Either, first create the ring and then get the indeterminates with
IndeterminatesOfPolynomialRing (66.15.2).

Example
gap> r := PolynomialRing(Rationals,["a","b"]);;

gap> indets := IndeterminatesOfPolynomialRing(r);;

gap> a := indets[1]; a := indets[2];

a

b

GAP - Reference Manual 1089

Alternatively, first create the indeterminates and then create the ring including these indetermi-
nates.

Example
gap> a:=Indeterminate(Rationals,"a":old);;

gap> b:=Indeterminate(Rationals,"b":old);;

gap> PolynomialRing(Rationals,[a,b]);;

As a convenient shortcut, intended mainly for interactive working, the i-th indeter-
minate of a polynomial ring R can be accessed as R.i, which corresponds exactly to
IndeterminatesOfPolynomialRing(R)[i] or, if it has the name nam, as R.nam. Note that the num-
ber i is in general not the indeterminate number, but simply an index into the indeterminates list of
R.

Example
gap> r := PolynomialRing(Rationals, ["a", "b"]:old);;

gap> r.1; r.2; r.a; r.b;

a

b

a

b

gap> IndeterminateNumberOfLaurentPolynomial(r.1);

3

Polynomials as GAP objects can exist without a polynomial ring being defined and polynomials
cannot be associated to a particular polynomial ring. (For example dividing a polynomial which is in
a polynomial ring over the integers by another integer will result in a polynomial over the rationals,
not in a rational function over the integers.)

66.15.1 PolynomialRing

▷ PolynomialRing(R, rank[, avoid]) (operation)

▷ PolynomialRing(R, names[, avoid]) (operation)

▷ PolynomialRing(R, indets) (operation)

▷ PolynomialRing(R, indetnums) (operation)

creates a polynomial ring over the ring R . If a positive integer rank is given, this creates the poly-
nomial ring in rank indeterminates. These indeterminates will have the internal index numbers 1 to
rank . The second usage takes a list names of strings and returns a polynomial ring in indeterminates
labelled by names . These indeterminates have “new” internal index numbers as if they had been cre-
ated by calls to Indeterminate (66.1.1). (If the argument avoid is given it contains indeterminates
that should be avoided, in this case internal index numbers are incremented to skip these variables.)
In the third version, a list of indeterminates indets is given. This creates the polynomial ring in the
indeterminates indets . Finally, the fourth version specifies indeterminates by their index numbers.

To get the indeterminates of a polynomial ring use IndeterminatesOfPolynomialRing

(66.15.2). (Indeterminates created independently with Indeterminate (66.1.1) will usually differ,
though they might be given the same name and display identically, see Section 66.1.)

GAP - Reference Manual 1090

66.15.2 IndeterminatesOfPolynomialRing

▷ IndeterminatesOfPolynomialRing(pring) (attribute)

▷ IndeterminatesOfFunctionField(ffield) (attribute)

returns a list of the indeterminates of the polynomial ring pring , respectively the function field
ffield .

66.15.3 CoefficientsRing

▷ CoefficientsRing(pring) (attribute)

returns the ring of coefficients of the polynomial ring pring , that is the ring over which pring

was defined.
Example

gap> r:=PolynomialRing(GF(7));

GF(7)[x_1]

gap> r:=PolynomialRing(GF(7),3);

GF(7)[x_1,x_2,x_3]

gap> IndeterminatesOfPolynomialRing(r);

[x_1, x_2, x_3]

gap> r2:=PolynomialRing(GF(7),[5,7,12]);

GF(7)[x_5,x_7,x_12]

gap> CoefficientsRing(r);

GF(7)

gap> r:=PolynomialRing(GF(7),3);

GF(7)[x_1,x_2,x_3]

gap> r2:=PolynomialRing(GF(7),3,IndeterminatesOfPolynomialRing(r));

GF(7)[x_4,x_5,x_6]

gap> r:=PolynomialRing(GF(7),["x","y","z","z2"]);

GF(7)[x,y,z,z2]

66.15.4 IsPolynomialRing

▷ IsPolynomialRing(pring) (Category)

is the category of polynomial rings

66.15.5 IsFiniteFieldPolynomialRing

▷ IsFiniteFieldPolynomialRing(pring) (Category)

is the category of polynomial rings over a finite field (see Chapter 59).

66.15.6 IsAbelianNumberFieldPolynomialRing

▷ IsAbelianNumberFieldPolynomialRing(pring) (Category)

is the category of polynomial rings over a field of cyclotomics (see the chapters 18 and 60).

GAP - Reference Manual 1091

66.15.7 IsRationalsPolynomialRing

▷ IsRationalsPolynomialRing(pring) (Category)

is the category of polynomial rings over the rationals (see Chapter 17).
Example

gap> r := PolynomialRing(Rationals, ["a", "b"]);;

gap> IsPolynomialRing(r);

true

gap> IsFiniteFieldPolynomialRing(r);

false

gap> IsRationalsPolynomialRing(r);

true

66.15.8 FunctionField

▷ FunctionField(R, rank[, avoid]) (operation)

▷ FunctionField(R, names[, avoid]) (operation)

▷ FunctionField(R, indets) (operation)

▷ FunctionField(R, indetnums) (operation)

creates a function field over the integral ring R . If a positive integer rank is given, this creates the
function field in rank indeterminates. These indeterminates will have the internal index numbers 1 to
rank . The second usage takes a list names of strings and returns a function field in indeterminates
labelled by names . These indeterminates have “new” internal index numbers as if they had been cre-
ated by calls to Indeterminate (66.1.1). (If the argument avoid is given it contains indeterminates
that should be avoided, in this case internal index numbers are incremented to skip these variables.)
In the third version, a list of indeterminates indets is given. This creates the function field in the
indeterminates indets . Finally, the fourth version specifies indeterminates by their index number.

To get the indeterminates of a function field use IndeterminatesOfFunctionField (66.15.2).
(Indeterminates created independently with Indeterminate (66.1.1) will usually differ, though they
might be given the same name and display identically, see Section 66.1.)

66.15.9 IsFunctionField

▷ IsFunctionField(ffield) (Category)

is the category of function fields

66.16 Univariate Polynomial Rings

66.16.1 UnivariatePolynomialRing

▷ UnivariatePolynomialRing(R[, nr]) (operation)

▷ UnivariatePolynomialRing(R[, name][, avoid]) (operation)

returns a univariate polynomial ring in the indeterminate nr over the base ring R . If nr is not
given it defaults to 1.

GAP - Reference Manual 1092

If the number is not specified a list avoid of indeterminates may be given. Then the function
will return a ring in an indeterminate that is guaranteed to be different from all the indeterminates in
avoid .

Also a string name can be prescribed as the name of the indeterminate chosen (also avoiding the
indeterminates in the list avoid if given).

66.16.2 IsUnivariatePolynomialRing

▷ IsUnivariatePolynomialRing(pring) (Category)

is the category of polynomial rings with one indeterminate.
Example

gap> r:=UnivariatePolynomialRing(Rationals,"p");

Rationals[p]

gap> r2:=PolynomialRing(Rationals,["q"]);

Rationals[q]

gap> IsUnivariatePolynomialRing(r);

true

gap> IsUnivariatePolynomialRing(r2);

true

66.17 Monomial Orderings

It is often desirable to consider the monomials within a polynomial to be arranged with respect to a
certain ordering. Such an ordering is called a monomial ordering if it is total, invariant under mul-
tiplication with other monomials and admits no infinite descending chains. For details on monomial
orderings see [CLO97].

In GAP, monomial orderings are represented by objects that provide a way to compare monomials
(as polynomials as well as –for efficiency purposes within algorithms– in the internal representation
as lists).

Normally the ordering chosen should be admissible, i.e. it must be compatible with products: If
a < b then ca < cb for all monomials a,b and c.

Each monomial ordering provides the two functions MonomialComparisonFunction (66.17.5)
and MonomialExtrepComparisonFun (66.17.6) to compare monomials. These functions work as “is
less than”, i.e. they return true if and only if the left argument is smaller.

66.17.1 IsMonomialOrdering

▷ IsMonomialOrdering(obj) (Category)

A monomial ordering is an object representing a monomial ordering. Its attributes
MonomialComparisonFunction (66.17.5) and MonomialExtrepComparisonFun (66.17.6) are ac-
tual comparison functions.

66.17.2 LeadingMonomialOfPolynomial

▷ LeadingMonomialOfPolynomial(pol, ord) (operation)

GAP - Reference Manual 1093

returns the leading monomial (with respect to the ordering ord) of the polynomial pol .
Example

gap> x:=Indeterminate(Rationals,"x");;

gap> y:=Indeterminate(Rationals,"y");;

gap> z:=Indeterminate(Rationals,"z");;

gap> lexord:=MonomialLexOrdering();grlexord:=MonomialGrlexOrdering();

MonomialLexOrdering()

MonomialGrlexOrdering()

gap> f:=2*x+3*y+4*z+5*x^2-6*z^2+7*y^3;

7*y^3+5*x^2-6*z^2+2*x+3*y+4*z

gap> LeadingMonomialOfPolynomial(f,lexord);

x^2

gap> LeadingMonomialOfPolynomial(f,grlexord);

y^3

66.17.3 LeadingTermOfPolynomial

▷ LeadingTermOfPolynomial(pol, ord) (operation)

returns the leading term (with respect to the ordering ord) of the polynomial pol , i.e. the product
of leading coefficient and leading monomial.

66.17.4 LeadingCoefficientOfPolynomial

▷ LeadingCoefficientOfPolynomial(pol, ord) (operation)

returns the leading coefficient (that is the coefficient of the leading monomial,
see LeadingMonomialOfPolynomial (66.17.2)) of the polynomial pol .

Example
gap> LeadingTermOfPolynomial(f,lexord);

5*x^2

gap> LeadingTermOfPolynomial(f,grlexord);

7*y^3

gap> LeadingCoefficientOfPolynomial(f,lexord);

5

66.17.5 MonomialComparisonFunction

▷ MonomialComparisonFunction(O) (attribute)

If O is an object representing a monomial ordering, this attribute returns a function that can be
used to compare or sort monomials (and polynomials which will be compared by their monomials in
decreasing order) in this order.

Example
gap> MonomialComparisonFunction(lexord);

function(a, b) ... end

gap> l:=[f,Derivative(f,x),Derivative(f,y),Derivative(f,z)];;

gap> Sort(l,MonomialComparisonFunction(lexord));l;

[-12*z+4, 21*y^2+3, 10*x+2, 7*y^3+5*x^2-6*z^2+2*x+3*y+4*z]

GAP - Reference Manual 1094

66.17.6 MonomialExtrepComparisonFun

▷ MonomialExtrepComparisonFun(O) (attribute)

If O is an object representing a monomial ordering, this attribute returns a function that can be
used to compare or sort monomials in their external representation (as lists). This comparison variant
is used inside algorithms that manipulate the external representation.

66.17.7 MonomialLexOrdering

▷ MonomialLexOrdering([vari]) (function)

This function creates a lexicographic ordering for monomials. Monomials are compared first by
the exponents of the largest variable, then the exponents of the second largest variable and so on.

The variables are ordered according to their (internal) index, i.e., x1 is larger than x2 and so on. If
vari is given, and is a list of variables or variable indices, instead this arrangement of variables (in
descending order; i.e. the first variable is larger than the second) is used as the underlying order of
variables.

Example
gap> l:=List(Tuples([1..3],3),i->x^(i[1]-1)*y^(i[2]-1)*z^(i[3]-1));

[1, z, z^2, y, y*z, y*z^2, y^2, y^2*z, y^2*z^2, x, x*z, x*z^2, x*y,

x*y*z, x*y*z^2, x*y^2, x*y^2*z, x*y^2*z^2, x^2, x^2*z, x^2*z^2,

x^2*y, x^2*y*z, x^2*y*z^2, x^2*y^2, x^2*y^2*z, x^2*y^2*z^2]

gap> Sort(l,MonomialComparisonFunction(MonomialLexOrdering()));l;

[1, z, z^2, y, y*z, y*z^2, y^2, y^2*z, y^2*z^2, x, x*z, x*z^2, x*y,

x*y*z, x*y*z^2, x*y^2, x*y^2*z, x*y^2*z^2, x^2, x^2*z, x^2*z^2,

x^2*y, x^2*y*z, x^2*y*z^2, x^2*y^2, x^2*y^2*z, x^2*y^2*z^2]

gap> Sort(l,MonomialComparisonFunction(MonomialLexOrdering([y,z,x])));l;

[1, x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, y, x*y, x^2*y, y*z,

x*y*z, x^2*y*z, y*z^2, x*y*z^2, x^2*y*z^2, y^2, x*y^2, x^2*y^2,

y^2*z, x*y^2*z, x^2*y^2*z, y^2*z^2, x*y^2*z^2, x^2*y^2*z^2]

gap> Sort(l,MonomialComparisonFunction(MonomialLexOrdering([z,x,y])));l;

[1, y, y^2, x, x*y, x*y^2, x^2, x^2*y, x^2*y^2, z, y*z, y^2*z, x*z,

x*y*z, x*y^2*z, x^2*z, x^2*y*z, x^2*y^2*z, z^2, y*z^2, y^2*z^2,

x*z^2, x*y*z^2, x*y^2*z^2, x^2*z^2, x^2*y*z^2, x^2*y^2*z^2]

66.17.8 MonomialGrlexOrdering

▷ MonomialGrlexOrdering([vari]) (function)

This function creates a degree/lexicographic ordering. In this ordering monomials are compared
first by their total degree, then lexicographically (see MonomialLexOrdering (66.17.7)).

The variables are ordered according to their (internal) index, i.e., x1 is larger than x2 and so on. If
vari is given, and is a list of variables or variable indices, instead this arrangement of variables (in
descending order; i.e. the first variable is larger than the second) is used as the underlying order of
variables.

GAP - Reference Manual 1095

66.17.9 MonomialGrevlexOrdering

▷ MonomialGrevlexOrdering([vari]) (function)

This function creates a “grevlex” ordering. In this ordering monomials are compared first by total
degree and then backwards lexicographically. (This is different than “grlex” ordering with variables
reversed.)

The variables are ordered according to their (internal) index, i.e., x1 is larger than x2 and so on. If
vari is given, and is a list of variables or variable indices, instead this arrangement of variables (in
descending order; i.e. the first variable is larger than the second) is used as the underlying order of
variables.

Example
gap> Sort(l,MonomialComparisonFunction(MonomialGrlexOrdering()));l;

[1, z, y, x, z^2, y*z, y^2, x*z, x*y, x^2, y*z^2, y^2*z, x*z^2,

x*y*z, x*y^2, x^2*z, x^2*y, y^2*z^2, x*y*z^2, x*y^2*z, x^2*z^2,

x^2*y*z, x^2*y^2, x*y^2*z^2, x^2*y*z^2, x^2*y^2*z, x^2*y^2*z^2]

gap> Sort(l,MonomialComparisonFunction(MonomialGrevlexOrdering()));l;

[1, z, y, x, z^2, y*z, x*z, y^2, x*y, x^2, y*z^2, x*z^2, y^2*z,

x*y*z, x^2*z, x*y^2, x^2*y, y^2*z^2, x*y*z^2, x^2*z^2, x*y^2*z,

x^2*y*z, x^2*y^2, x*y^2*z^2, x^2*y*z^2, x^2*y^2*z, x^2*y^2*z^2]

gap> Sort(l,MonomialComparisonFunction(MonomialGrlexOrdering([z,y,x])));l;

[1, x, y, z, x^2, x*y, y^2, x*z, y*z, z^2, x^2*y, x*y^2, x^2*z,

x*y*z, y^2*z, x*z^2, y*z^2, x^2*y^2, x^2*y*z, x*y^2*z, x^2*z^2,

x*y*z^2, y^2*z^2, x^2*y^2*z, x^2*y*z^2, x*y^2*z^2, x^2*y^2*z^2]

66.17.10 EliminationOrdering

▷ EliminationOrdering(elim[, rest]) (function)

This function creates an elimination ordering for eliminating the variables in elim . Two mono-
mials are compared first by the exponent vectors for the variables listed in elim (a lexicographic
comparison with respect to the ordering indicated in elim). If these submonomial are equal, the sub-
monomials given by the other variables are compared by a graded lexicographic ordering (with respect
to the variable order given in rest , if called with two parameters).

Both elim and rest may be a list of variables or a list of variable indices.

66.17.11 PolynomialReduction

▷ PolynomialReduction(poly, gens, order) (function)

reduces the polynomial poly by the ideal generated by the polynomials in gens , using the order
order of monomials. Unless gens is a Gröbner basis the result is not guaranteed to be unique.

The operation returns a list of length two, the first entry is the remainder after the reduction. The
second entry is a list of quotients corresponding to gens .

Note that the strategy used by PolynomialReduction differs from the standard textbook reduc-
tion algorithm, which is provided by PolynomialDivisionAlgorithm (66.17.13).

GAP - Reference Manual 1096

66.17.12 PolynomialReducedRemainder

▷ PolynomialReducedRemainder(poly, gens, order) (function)

this operation does the same way as PolynomialReduction (66.17.11) but does not keep track
of the actual quotients and returns only the remainder (it is therefore slightly faster).

66.17.13 PolynomialDivisionAlgorithm

▷ PolynomialDivisionAlgorithm(poly, gens, order) (function)

This function implements the division algorithm for multivariate polynomials as given in [CLO97,
Theorem 3 in Chapter 2]. (It might be slower than PolynomialReduction (66.17.11) but the remain-
ders are guaranteed to agree with the textbook.)

The operation returns a list of length two, the first entry is the remainder after the reduction. The
second entry is a list of quotients corresponding to gens .

Example
gap> bas:=[x^3*y*z,x*y^2*z,z*y*z^3+x];;

gap> pol:=x^7*z*bas[1]+y^5*bas[3]+x*z;;

gap> PolynomialReduction(pol,bas,MonomialLexOrdering());

[-y*z^5, [x^7*z, 0, y^5+z]]

gap> PolynomialReducedRemainder(pol,bas,MonomialLexOrdering());

-y*z^5

gap> PolynomialDivisionAlgorithm(pol,bas,MonomialLexOrdering());

[-y*z^5, [x^7*z, 0, y^5+z]]

66.17.14 MonomialExtGrlexLess

▷ MonomialExtGrlexLess(a, b) (function)

implements comparison of monomial in their external representation by a “grlex” order with x1 >
x2 (This is exactly the same as the ordering by MonomialGrlexOrdering (66.17.8), see 66.17). The
function takes two monomials a and b in expanded form and returns whether the first is smaller than
the second. (This ordering is also used by GAP internally for representing polynomials as a linear
combination of monomials.)

See section 66.21 for details on the expanded form of monomials.

66.18 Groebner Bases

A Groebner Basis of an ideal Ii, in a polynomial ring R, with respect to a monomial ordering, is a set
of ideal generators G such that the ideal generated by the leading monomials of all polynomials in G

is equal to the ideal generated by the leading monomials of all polynomials in I .
For more details on Groebner bases see [CLO97].

66.18.1 GroebnerBasis

▷ GroebnerBasis(L, O) (operation)

▷ GroebnerBasis(I, O) (operation)

GAP - Reference Manual 1097

▷ GroebnerBasisNC(L, O) (function)

Let O be a monomial ordering and L be a list of polynomials that generate an ideal I . This
operation returns a Groebner basis of I with respect to the ordering O .

GroebnerBasisNC works like GroebnerBasis with the only distinction that the first argument
has to be a list of polynomials and that no test is performed to check whether the ordering is defined
for all occurring variables.

Note that GAP at the moment only includes a naïve implementation of Buchberger’s algorithm
(which is mainly intended as a teaching tool). It might not be sufficient for serious problems.

Example
gap> l:=[x^2+y^2+z^2-1,x^2+z^2-y,x-y];;

gap> GroebnerBasis(l,MonomialLexOrdering());

[x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1, -z^2+2*y-1,

1/2*z^4+2*z^2-1/2]

gap> GroebnerBasis(l,MonomialLexOrdering([z,x,y]));

[x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1]

gap> GroebnerBasis(l,MonomialGrlexOrdering());

[x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1, -z^2+2*y-1]

66.18.2 ReducedGroebnerBasis

▷ ReducedGroebnerBasis(L, O) (operation)

▷ ReducedGroebnerBasis(I, O) (operation)

a Groebner basis B (see GroebnerBasis (66.18.1)) is reduced if no monomial in a polynomial
in B is divisible by the leading monomial of another polynomial in B. This operation computes a
Groebner basis with respect to the monomial ordering O and then reduces it.

Example
gap> ReducedGroebnerBasis(l,MonomialGrlexOrdering());

[x-y, z^2-2*y+1, y^2+y-1]

gap> ReducedGroebnerBasis(l,MonomialLexOrdering());

[z^4+4*z^2-1, -1/2*z^2+y-1/2, -1/2*z^2+x-1/2]

gap> ReducedGroebnerBasis(l,MonomialLexOrdering([y,z,x]));

[x^2+x-1, z^2-2*x+1, -x+y]

For performance reasons it can be advantageous to define monomial orderings once and then to
reuse them:

Example
gap> ord:=MonomialGrlexOrdering();;

gap> GroebnerBasis(l,ord);

[x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1, -z^2+2*y-1]

gap> ReducedGroebnerBasis(l,ord);

[x-y, z^2-2*y+1, y^2+y-1]

66.18.3 StoredGroebnerBasis

▷ StoredGroebnerBasis(I) (attribute)

For an ideal I in a polynomial ring, this attribute holds a list [B,O] where B is a Groebner basis
for the monomial ordering O. this can be used to test membership or canonical coset representatives.

GAP - Reference Manual 1098

66.18.4 InfoGroebner

▷ InfoGroebner (info class)

This info class gives information about Groebner basis calculations.

66.19 Rational Function Families

All rational functions defined over a ring lie in the same family, the rational functions family over this
ring.

In GAP therefore the family of a polynomial depends only on the family of the coefficients, all
polynomials whose coefficients lie in the same family are “compatible”.

66.19.1 RationalFunctionsFamily

▷ RationalFunctionsFamily(fam) (attribute)

creates a family containing rational functions with coefficients in fam . All elements of the
RationalFunctionsFamily are rational functions (see IsRationalFunction (66.4.1)).

66.19.2 IsPolynomialFunctionsFamily

▷ IsPolynomialFunctionsFamily(obj) (Category)

▷ IsRationalFunctionsFamily(obj) (Category)

IsPolynomialFunctionsFamily is the category of a family of polynomials. For families over
an UFD, the category becomes IsRationalFunctionsFamily (as rational functions and quotients
are only provided for families over an UFD.)

Example
gap> fam:=RationalFunctionsFamily(FamilyObj(1));

NewFamily("RationalFunctionsFamily(...)", [618, 620],

[82, 85, 89, 93, 97, 100, 103, 107, 111, 618, 620])

66.19.3 CoefficientsFamily

▷ CoefficientsFamily(rffam) (attribute)

If rffam has been created as RationalFunctionsFamily(cfam) this attribute holds the coeffi-
cients family cfam .

GAP does not embed the base ring in the polynomial ring. While multiplication and addition of
base ring elements to rational functions return the expected results, polynomials and rational functions
are not equal.

Example
gap> 1=Indeterminate(Rationals)^0;

false

GAP - Reference Manual 1099

66.20 The Representations of Rational Functions

GAP uses four representations of rational functions: Rational functions given by numerator and de-
nominator, polynomials, univariate rational functions (given by coefficient lists for numerator and
denominator and valuation) and Laurent polynomials (given by coefficient list and valuation).

These representations do not necessarily reflect mathematical properties: While an object in the
Laurent polynomials representation must be a Laurent polynomial it might turn out that a rational
function given by numerator and denominator is actually a Laurent polynomial and the property tests
in section 66.4 will find this out.

Each representation is associated one or several “defining attributes” that give an “external” rep-
resentation (see 66.21) of the representation in the form of lists and are the defining information that
tells a rational function what it is.

GAP also implements methods to compute these attributes for rational functions in other repre-
sentations, provided it would be possible to express an mathematically equal rational function in the
representation associated with the attribute. (That is one can always get a numerator/denominator
representation of a polynomial while an arbitrary function of course can compute a polynomial repre-
sentation only if it is a polynomial.)

Therefore these attributes can be thought of as “conceptual” representations that allow us –as far as
possible– to consider an object as a rational function, a polynomial or a Laurent polynomial, regardless
of the way it is represented in the computer.

Functions thus usually do not need to care about the representation of a rational function. Depend-
ing on its (known in the context or determined) properties, they can access the attribute representing
the rational function in the desired way.

Consequently, methods for rational functions are installed for properties and not for representa-
tions.

When creating new rational functions however they must be created in one of the three representa-
tions. In most cases this will be the representation for which the “conceptual” representation in which
the calculation was done is the defining attribute.

Iterated operations (like forming the product over a list) therefore will tend to stay in the most
suitable representation and the calculation of another conceptual representation (which may be com-
paratively expensive in certain circumstances) is not necessary.

66.21 The Defining Attributes of Rational Functions

In general, rational functions are given in terms of monomials. They are represented by lists, using
numbers (see 66.1) for the indeterminates.

A monomial is a product of powers of indeterminates. A monomial is stored as a list (we call this
the expanded form of the monomial) of the form [inum,exp,inum,exp,...] where each inum

is the number of an indeterminate and exp the corresponding exponent. The list must be sorted
according to the numbers of the indeterminates. Thus for example, if x, y and z are the first three
indeterminates, the expanded form of the monomial x5z8 = z8x5 is [1, 5, 3, 8]. The representa-
tion of a polynomials is a list of the form [mon,coeff,mon,coeff,...] where mon is a monomial
in expanded form (that is given as list) and coeff its coefficient. The monomials must be sorted
according to the total degree/lexicographic order (This is the same as given by the “grlex” mono-
mial ordering, see MonomialGrlexOrdering (66.17.8)). We call this the external representation of
a polynomial. (The reason for ordering is that addition of polynomials becomes linear in the number

GAP - Reference Manual 1100

of monomials instead of quadratic; the reason for the particular ordering chose is that it is compatible
with multiplication and thus gives acceptable performance for quotient calculations.)

The attributes that give a representation of a rational function as a
Laurent polynomial are CoefficientsOfLaurentPolynomial (66.13.2) and
IndeterminateNumberOfUnivariateRationalFunction (66.1.2).

Algorithms should use only the attributes ExtRepNumeratorRatFun (66.21.2),
ExtRepDenominatorRatFun (66.21.3), ExtRepPolynomialRatFun (66.21.6),
CoefficientsOfLaurentPolynomial (66.13.2) and –if the univariate function is not constant–
IndeterminateNumberOfUnivariateRationalFunction (66.1.2) as the low-level interface to
work with a polynomial. They should not refer to the actual representation used.

66.21.1 IsRationalFunctionDefaultRep

▷ IsRationalFunctionDefaultRep(obj) (Representation)

is the default representation of rational functions. A rational function in this representation
is defined by the attributes ExtRepNumeratorRatFun (66.21.2) and ExtRepDenominatorRatFun

(66.21.3), the values of which are external representations of polynomials.

66.21.2 ExtRepNumeratorRatFun

▷ ExtRepNumeratorRatFun(ratfun) (attribute)

returns the external representation of the numerator polynomial of the rational function ratfun .
Numerator and denominator are not guaranteed to be cancelled against each other.

66.21.3 ExtRepDenominatorRatFun

▷ ExtRepDenominatorRatFun(ratfun) (attribute)

returns the external representation of the denominator polynomial of the rational function ratfun .
Numerator and denominator are not guaranteed to be cancelled against each other.

66.21.4 ZeroCoefficientRatFun

▷ ZeroCoefficientRatFun(ratfun) (operation)

returns the zero of the coefficient ring. This might be needed to represent the zero polynomial for
which the external representation of the numerator is the empty list.

66.21.5 IsPolynomialDefaultRep

▷ IsPolynomialDefaultRep(obj) (Representation)

is the default representation of polynomials. A polynomial in this representation is defined by the
components and ExtRepNumeratorRatFun (66.21.2) where ExtRepNumeratorRatFun (66.21.2) is
the external representation of the polynomial.

GAP - Reference Manual 1101

66.21.6 ExtRepPolynomialRatFun

▷ ExtRepPolynomialRatFun(polynomial) (attribute)

returns the external representation of a polynomial. The difference to ExtRepNumeratorRatFun

(66.21.2) is that rational functions might know to be a polynomial but can still have a non-vanishing
denominator. In this case ExtRepPolynomialRatFun has to call a quotient routine.

66.21.7 IsLaurentPolynomialDefaultRep

▷ IsLaurentPolynomialDefaultRep(obj) (Representation)

This representation is used for Laurent polynomials and univariate polynomials. It repre-
sents a Laurent polynomial via the attributes CoefficientsOfLaurentPolynomial (66.13.2) and
IndeterminateNumberOfLaurentPolynomial (66.13.3).

66.22 Creation of Rational Functions

The operations LaurentPolynomialByCoefficients (66.13.1), PolynomialByExtRep (66.22.2)
and RationalFunctionByExtRep (66.22.1) are used to construct objects in the three basic represen-
tations for rational functions.

66.22.1 RationalFunctionByExtRep

▷ RationalFunctionByExtRep(rfam, num, den) (function)

▷ RationalFunctionByExtRepNC(rfam, num, den) (function)

constructs a rational function (in the representation IsRationalFunctionDefaultRep (66.21.1))
in the rational function family rfam , the rational function itself is given by the external representations
num and den for numerator and denominator. No cancellation takes place.

The variant RationalFunctionByExtRepNC does not perform any test of the arguments and thus
potentially can create illegal objects. It only should be used if speed is required and the arguments are
known to be in correct form.

66.22.2 PolynomialByExtRep

▷ PolynomialByExtRep(rfam, extrep) (function)

▷ PolynomialByExtRepNC(rfam, extrep) (function)

constructs a polynomial (in the representation IsPolynomialDefaultRep (66.21.5)) in the ratio-
nal function family rfam , the polynomial itself is given by the external representation extrep .

The variant PolynomialByExtRepNC does not perform any test of the arguments and thus poten-
tially can create invalid objects. It only should be used if speed is required and the arguments are
known to be in correct form.

Example
gap> fam:=RationalFunctionsFamily(FamilyObj(1));;

gap> p:=PolynomialByExtRep(fam,[[1,2],1,[2,1,15,7],3]);

3*y*x_15^7+x^2

GAP - Reference Manual 1102

gap> q:=p/(p+1);

(3*y*x_15^7+x^2)/(3*y*x_15^7+x^2+1)

gap> ExtRepNumeratorRatFun(q);

[[1, 2], 1, [2, 1, 15, 7], 3]

gap> ExtRepDenominatorRatFun(q);

[[], 1, [1, 2], 1, [2, 1, 15, 7], 3]

66.22.3 LaurentPolynomialByExtRep

▷ LaurentPolynomialByExtRep(fam, cofs, val, ind) (function)

▷ LaurentPolynomialByExtRepNC(fam, cofs, val, ind) (function)

creates a Laurent polynomial in the family fam with [cofs ,val] as value of
CoefficientsOfLaurentPolynomial (66.13.2). No coefficient shifting is performed. This is
the lowest level function to create a Laurent polynomial but will rely on the coefficients being
shifted properly and will not perform any tests. Unless this is guaranteed for the parameters,
LaurentPolynomialByCoefficients (66.13.1) should be used.

66.23 Arithmetic for External Representations of Polynomials

The following operations are used internally to perform the arithmetic for polynomials in their “exter-
nal” representation (see 66.21) as lists.

Functions to perform arithmetic with the coefficient lists of Laurent polynomials are described in
Section 23.4.

66.23.1 ZippedSum

▷ ZippedSum(z1, z2, czero, funcs) (operation)

computes the sum of two external representations of polynomials z1 and z2 . czero is the
appropriate coefficient zero and funcs a list [monomial_less , coefficient_sum] containing a
monomial comparison and a coefficient addition function. This list can be found in the component
fam!.zippedSum of the rational functions family.

Note that coefficient_sum must be a proper “summation” function, not a function computing
differences.

66.23.2 ZippedProduct

▷ ZippedProduct(z1, z2, czero, funcs) (operation)

computes the product of two external representations of polynomials z1 and z2 . czero is the ap-
propriate coefficient zero and funcs a list [monomial_prod , monomial_less , coefficient_sum ,
coefficient_prod] containing functions to multiply and compare monomials, to add and to mul-
tiply coefficients. This list can be found in the component fam!.zippedProduct of the rational
functions family.

GAP - Reference Manual 1103

66.23.3 QuotientPolynomialsExtRep

▷ QuotientPolynomialsExtRep(fam, a, b) (function)

Let a and b the external representations of two polynomials in the rational functions family fam .
This function computes the external representation of the quotient of both polynomials, it returns fail
if the polynomial described by b does not divide the polynomial described by a .

66.24 Cancellation Tests for Rational Functions

The operation Gcd (56.7.1) can be used to test for common factors of two polynomials. This however
would be too expensive to be done in the arithmetic, thus uses the following operations internally to
try to keep the denominators as small as possible

66.24.1 RationalFunctionByExtRepWithCancellation

▷ RationalFunctionByExtRepWithCancellation(rfam, num, den) (function)

constructs a rational function as RationalFunctionByExtRep (66.22.1) does but tries to can-
cel out common factors of numerator and denominator, calling TryGcdCancelExtRepPolynomials

(66.24.2).

66.24.2 TryGcdCancelExtRepPolynomials

▷ TryGcdCancelExtRepPolynomials(fam, a, b) (function)

Let a and b be the external representations of two polynomials. This function tries to cancel com-
mon factors between the corresponding polynomials and returns a list [a′,b′] of external representa-
tions of cancelled polynomials. As there is no proper multivariate GCD cancellation is not guaranteed
to be optimal.

66.24.3 HeuristicCancelPolynomialsExtRep

▷ HeuristicCancelPolynomialsExtRep(fam, ext1, ext2) (operation)

is called by TryGcdCancelExtRepPolynomials (66.24.2) to perform the actual work. It will
return either fail or a new list of external representations of cancelled polynomials. The cancellation
performed is not necessarily optimal.

Chapter 67

Algebraic extensions of fields

If we adjoin a root α of an irreducible polynomial f ∈K[x] to the field K we get an algebraic extension
K(α), which is again a field. We call K the base field of K(α).

By Kronecker’s construction, we may identify K(α) with the factor ring K[x]/(f), an identification
that also provides a method for computing in these extension fields.

It is important to note that different extensions of the same field are entirely different (and its
elements lie in different families), even if mathematically one could be embedded in the other one.

Currently GAP only allows extension fields of fields K, when K itself is not an extension field.

67.1 Creation of Algebraic Extensions

67.1.1 AlgebraicExtension

▷ AlgebraicExtension(K, f[, nam]) (operation)

▷ AlgebraicExtensionNC(K, f[, nam]) (operation)

constructs an extension L of the field K by one root of the irreducible polynomial f , using Kro-
necker’s construction. L is a field whose LeftActingDomain (57.1.11) value is K . The polynomial
f is the DefiningPolynomial (58.2.7) value of L and the attribute RootOfDefiningPolynomial

(58.2.8) of L holds a root of f in L . By default this root is printed as a, this string can be overwritten
with the optional argument nam .

The first version of the command checks that the polynomial f is an irreducible polynomial over
K . This check is skipped with the NC variant.

Example
gap> x:=Indeterminate(Rationals,"x");;

gap> p:=x^4+3*x^2+1;;

gap> e:=AlgebraicExtension(Rationals,p);

<algebraic extension over the Rationals of degree 4>

gap> IsField(e);

true

gap> a:=RootOfDefiningPolynomial(e);

a

gap> l := AlgebraicExtensionNC(Rationals, x^24+3*x^2+1, "alpha");;

gap> RootOfDefiningPolynomial(l)^50;

9*alpha^6+6*alpha^4+alpha^2

1104

GAP - Reference Manual 1105

67.1.2 IsAlgebraicExtension

▷ IsAlgebraicExtension(obj) (Category)

is the category of algebraic extensions of fields.
Example

gap> IsAlgebraicExtension(e);

true

gap> IsAlgebraicExtension(Rationals);

false

67.2 Elements in Algebraic Extensions

According to Kronecker’s construction, the elements of an algebraic extension are considered to be
polynomials in the primitive element. The elements of the base field are represented as polynomials
of degree zero. GAP therefore displays elements of an algebraic extension as polynomials in an
indeterminate “a”, which is a root of the defining polynomial of the extension. Polynomials of degree
zero are displayed with a leading exclamation mark to indicate that they are different from elements
of the base field.

The usual field operations are applicable to algebraic elements.
Example

gap> a^3/(a^2+a+1);

-1/2*a^3+1/2*a^2-1/2*a

gap> a*(1/a);

!1

The external representation of algebraic extension elements are the polynomial coefficients in the
primitive element a, the operations ExtRepOfObj (79.8.1) and ObjByExtRep (79.8.1) can be used for
conversion.

Example
gap> ExtRepOfObj(One(a));

[1, 0, 0, 0]

gap> ExtRepOfObj(a^3+2*a-9);

[-9, 2, 0, 1]

gap> ObjByExtRep(FamilyObj(a),[3,19,-27,433]);

433*a^3-27*a^2+19*a+3

GAP does not embed the base field in its algebraic extensions and therefore lists which contain
elements of the base field and of the extension are not homogeneous and thus cannot be used as
polynomial coefficients or to form matrices. The remedy is to multiply the list(s) with the value of the
attribute One (31.10.2) of the extension which will embed all entries in the extension.

Example
gap> m:=[[1,a],[0,1]];

[[1, a], [0, 1]]

gap> IsMatrix(m);

false

gap> m:=m*One(e);

[[!1, a], [!0, !1]]

GAP - Reference Manual 1106

gap> IsMatrix(m);

true

gap> m^2;

[[!1, 2*a], [!0, !1]]

67.2.1 IsAlgebraicElement

▷ IsAlgebraicElement(obj) (Category)

is the category for elements of an algebraic extension.

67.3 Finding Subfields

67.3.1 IdealDecompositionsOfPolynomial

▷ IdealDecompositionsOfPolynomial(pol) (function)

Let f be a univariate, rational, irreducible, polynomial. A pair g,h of polynomials of degree
strictly smaller than that of f , such that f (x)|g(h(x)) is called an ideal decomposition. In the context
of field extensions, if α is a root of f in a suitable extension and Q the field of rational numbers.
Such decompositions correspond to (proper) subfields Q < Q(β) < Q(α), where g is the minimal
polynomial of β . This function determines such decompositions up to equality of the subfields Q(β),
thus determining subfields of a given algebraic extension. It returns a list of pairs [g,h] (and an empty
list if no such decomposition exists). If the option onlyone is given it returns at most one such
decomposition (and performs faster).

Example
gap> x:=X(Rationals,"x");;pol:=x^8-24*x^6+144*x^4-288*x^2+144;;

gap> l:=IdealDecompositionsOfPolynomial(pol);

[[x^2+72*x+144, x^6-20*x^4+60*x^2-36],

[x^2-48*x+144, x^6-21*x^4+84*x^2-48],

[x^2+288*x+17280, x^6-24*x^4+132*x^2-288],

[x^4-24*x^3+144*x^2-288*x+144, x^2]]

gap> List(l,x->Value(x[1],x[2])/pol);

[x^4-16*x^2-8, x^4-18*x^2+33, x^4-24*x^2+120, 1]

gap> IdealDecompositionsOfPolynomial(pol:onlyone);

[[x^2+72*x+144, x^6-20*x^4+60*x^2-36]]

In this example the given polynomial is regular with Galois group Q8, as expected we get four proper
subfields.

Chapter 68

p-adic Numbers (preliminary)

In this chapter p is always a (fixed) prime integer.
The p-adic numbers Qp are the completion of the rational numbers with respect to the valuation

νp(pv ·a/b) = v if p divides neither a nor b. They form a field of characteristic 0 which nevertheless
shows some behaviour of the finite field with p elements.

A p-adic numbers can be represented by a “p-adic expansion” which is similar to the decimal
expansion used for the reals (but written from left to right). So for example if p = 2, the numbers 1,
2, 3, 4, 1/2, and 4/5 are represented as 1(2), 0.1(2), 1.1(2), 0.01(2), 10(2), and the infinite periodic
expansion 0.010110011001100...(2). p-adic numbers can be approximated by ignoring higher powers
of p, so for example with only 2 digits accuracy 4/5 would be approximated as 0.01(2). This is
different from the decimal approximation of real numbers in that p-adic approximation is a ring
homomorphism on the subrings of p-adic numbers whose valuation is bounded from below so that
rounding errors do not increase with repeated calculations.

In GAP, p-adic numbers are always represented by such approximations. A family of approxi-
mated p-adic numbers consists of p-adic numbers with a fixed prime p and a certain precision, and
arithmetic with these numbers is done with this precision.

68.1 Pure p-adic Numbers

Pure p-adic numbers are the p-adic numbers described so far.

68.1.1 PurePadicNumberFamily

▷ PurePadicNumberFamily(p, precision) (function)

returns the family of pure p-adic numbers over the prime p with precision “digits”. That is to
say, the approximate value will differ from the correct value by a multiple of pdigits.

68.1.2 PadicNumber (for pure padics)

▷ PadicNumber(fam, rat) (operation)

returns the element of the p-adic number family fam that approximates the rational number rat .
p-adic numbers allow the usual operations for fields.

1107

GAP - Reference Manual 1108

Example
gap> fam:=PurePadicNumberFamily(2,20);;

gap> a:=PadicNumber(fam,4/5);

0.010110011001100110011(2)

gap> fam:=PurePadicNumberFamily(2,3);;

gap> a:=PadicNumber(fam,4/5);

0.0101(2)

gap> 3*a;

0.0111(2)

gap> a/2;

0.101(2)

gap> a*10;

0.001(2)

See PadicNumber (68.2.2) for other methods for PadicNumber.

68.1.3 Valuation

▷ Valuation(obj) (operation)

The valuation is the p-part of the p-adic number. See also PValuation (15.7.1).

68.1.4 ShiftedPadicNumber

▷ ShiftedPadicNumber(padic, int) (operation)

ShiftedPadicNumber takes a p-adic number padic and an integer shift and returns the p-adic
number c, that is padic * p^shift .

68.1.5 IsPurePadicNumber

▷ IsPurePadicNumber(obj) (Category)

The category of pure p-adic numbers.

68.1.6 IsPurePadicNumberFamily

▷ IsPurePadicNumberFamily(fam) (Category)

The family of pure p-adic numbers.

68.2 Extensions of the p-adic Numbers

The usual Kronecker construction with an irreducible polynomial can be used to construct extensions
of the p-adic numbers. Let L be such an extension. Then there is a subfield K < L such that K is an
unramified extension of the p-adic numbers and L/K is purely ramified.

(For an explanation of “ramification” see for example [Neu92, Section II.7], or another book on
algebraic number theory. Essentially, an extension L of the p-adic numbers generated by a rational

GAP - Reference Manual 1109

polynomial f is unramified if f remains squarefree modulo p and is completely ramified if modulo p
the polynomial f is a power of a linear factor while remaining irreducible over the p-adic numbers.)

The representation of extensions of p-adic numbers in GAP uses the subfield K.

68.2.1 PadicExtensionNumberFamily

▷ PadicExtensionNumberFamily(p, precision, unram, ram) (function)

An extended p-adic field L is given by two polynomials h and g with coefficient lists unram (for
the unramified part) and ram (for the ramified part). Then L is isomorphic to Qp[x,y]/(h(x),g(y)).

This function takes the prime number p and the two coefficient lists unram and ram for the two
polynomials. The polynomial given by the coefficients in unram must be a cyclotomic polynomial and
the polynomial given by ram must be either an Eisenstein polynomial or 1+ x. This is not checked by
GAP.

Every number in L is represented as a coefficient list w. r. t. the basis {1,x,x2, . . . ,y,xy,x2y, . . .} of
L. The integer precision is the number of “digits” that all the coefficients have.

A general comment:
The polynomials with which PadicExtensionNumberFamily is called define an extension of Qp.

It must be ensured that both polynomials are really irreducible over Qp! For example x2 + x+1 is not
irreducible over Qp. Therefore the “extension” PadicExtensionNumberFamily(3, 4, [1,1,1],

[1,1]) contains non-invertible “pseudo-p-adic numbers”. Conversely, if an “extension” contains
noninvertible elements then one of the defining polynomials was not irreducible.

68.2.2 PadicNumber (for a p-adic extension family and a rational)

▷ PadicNumber(fam, rat) (operation)

▷ PadicNumber(purefam, list) (operation)

▷ PadicNumber(extfam, list) (operation)

(see also PadicNumber (68.1.2)).
PadicNumber creates a p-adic number in the p-adic numbers family fam . The first form returns

the p-adic number corresponding to the rational rat .
The second form takes a pure p-adic numbers family purefam and a list list of length two,

and returns the number p^list[1] * list[2]. It must be guaranteed that no entry of list[2] is
divisible by the prime p. (Otherwise precision will get lost.)

The third form creates a number in the family extfam of a p-adic extension. The second argu-
ment must be a list list of length two such that list[2] is the list of coefficients w.r.t. the basis
{1, . . . ,x f−1 · ye−1} of the extended p-adic field and list[1] is a common p-part of all these coeffi-
cients.

p-adic numbers admit the usual field operations.
Example

gap> efam:=PadicExtensionNumberFamily(3, 5, [1,1,1], [1,1]);;

gap> PadicNumber(efam,7/9);

padic(120(3),0(3))

A word of warning:
Depending on the actual representation of quotients, precision may seem to “vanish”. For example

in PadicExtensionNumberFamily(3, 5, [1,1,1], [1,1]) the number (1.2000, 0.1210)(3)

GAP - Reference Manual 1110

can be represented as [0, [1.2000, 0.1210]] or as [-1, [12.000, 1.2100]] (here
the coefficients have to be multiplied by p−1).

So there may be a number (1.2, 2.2)(3) which seems to have only two digits of precision
instead of the declared 5. But internally the number is stored as [-3, [0.0012, 0.0022]] and
so has in fact maximum precision.

68.2.3 IsPadicExtensionNumber

▷ IsPadicExtensionNumber(obj) (Category)

The category of elements of the extended p-adic field.
Example

gap> efam:=PadicExtensionNumberFamily(3, 5, [1,1,1], [1,1]);;

gap> IsPadicExtensionNumber(PadicNumber(efam,7/9));

true

68.2.4 IsPadicExtensionNumberFamily

▷ IsPadicExtensionNumberFamily(fam) (Category)

Family of elements of the extended p-adic field.
Example

gap> efam:=PadicExtensionNumberFamily(3, 5, [1,1,1], [1,1]);;

gap> IsPadicExtensionNumberFamily(efam);

true

Chapter 69

The MeatAxe

The MeatAxe [Par84] is a tool for the examination of submodules of a group algebra. It is a basic tool
for the examination of group actions on finite-dimensional modules.

GAP uses the improved MeatAxe of Derek Holt and Sarah Rees, and also incorporates further
improvements of Ivanyos and Lux.

Please note that, consistently with the convention for group actions, the action of the GAP
MeatAxe is always that of matrices on row vectors by multiplication on the right. If you want to
investigate left modules you will have to transpose the matrices.

69.1 MeatAxe Modules

69.1.1 GModuleByMats

▷ GModuleByMats(gens, field) (function)

▷ GModuleByMats(emptygens, dim, field) (function)

creates a MeatAxe module over field from a list of invertible matrices gens which reflect a
group’s action. If the list of generators is empty, the dimension must be given as second argument.

MeatAxe routines are on a level with Gaussian elimination. Therefore they do not deal with GAP
modules but essentially with lists of matrices. For the MeatAxe, a module is a record with components

generators

A list of matrices which represent a group operation on a finite dimensional row vector space.

dimension

The dimension of the vector space (this is the common length of the row vectors
(see DimensionOfVectors (61.9.6))).

field

The field over which the vector space is defined.

Once a module has been created its entries may not be changed. A MeatAxe may create a new
component NameOfMeatAxe in which it can store private information. By a MeatAxe “submodule”
or “factor module” we denote actually the induced action on the submodule, respectively factor mod-
ule. Therefore the submodules or factor modules are again MeatAxe modules. The arrangement of

1111

GAP - Reference Manual 1112

generators is guaranteed to be the same for the induced modules, but to obtain the complete relation
to the original module, the bases used are needed as well.

69.2 Module Constructions

69.2.1 NaturalGModule

▷ NaturalGModule(group[, field]) (function)

creates a MeatAxe module over field from the generators of the matrix group group . If field
is not provided then the value returned by DefaultFieldOfMatrixGroup (44.2.2) is used instead.

69.2.2 PermutationGModule

▷ PermutationGModule(G, F) (function)

Called with a permutation group G and a field F (F may be infinite), PermutationGModule re-
turns the natural permutation module M over F for the group of permutation matrices that acts on
the canonical basis of M in the same way as G acts on the points up to its largest moved point
(see LargestMovedPoint (42.3.2)).

69.2.3 TensorProductGModule

▷ TensorProductGModule(m1, m2) (function)

TensorProductGModule calculates the tensor product of the modules m1 and m2 . They are as-
sumed to be modules over the same algebra so, in particular, they should have the same number of
generators.

69.2.4 WedgeGModule

▷ WedgeGModule(module) (function)

WedgeGModule calculates the wedge product of a G-module. That is the action on antisymmetric
tensors.

69.3 Selecting a Different MeatAxe

69.3.1 MTX

▷ MTX (global variable)

All MeatAxe routines are accessed via the global variable MTX, which is a record whose compo-
nents hold the various functions. It is possible to have several implementations of a MeatAxe available.
Each MeatAxe represents its routines in an own global variable and assigning MTX to this variable se-
lects the corresponding MeatAxe.

GAP - Reference Manual 1113

69.4 Accessing a Module

Even though a MeatAxe module is a record, its components should never be accessed outside of
MeatAxe functions. Instead the following operations should be used:

69.4.1 MTX.Generators

▷ MTX.Generators(module) (function)

returns a list of matrix generators of module .

69.4.2 MTX.Dimension

▷ MTX.Dimension(module) (function)

returns the dimension in which the matrices act.

69.4.3 MTX.Field

▷ MTX.Field(module) (function)

returns the field over which module is defined.

69.5 Irreducibility Tests

69.5.1 MTX.IsIrreducible

▷ MTX.IsIrreducible(module) (function)

tests whether the module module is irreducible (i.e. contains no proper submodules.)

69.5.2 MTX.IsAbsolutelyIrreducible

▷ MTX.IsAbsolutelyIrreducible(module) (function)

A module is absolutely irreducible if it remains irreducible over the algebraic closure of the field.
(Formally: If the tensor product L⊗K M is irreducible where M is the module defined over K and L is
the algebraic closure of K.)

69.5.3 MTX.DegreeSplittingField

▷ MTX.DegreeSplittingField(module) (function)

returns the degree of the splitting field as extension of the prime field.

GAP - Reference Manual 1114

69.6 Decomposition of modules

A module is decomposable if it can be written as the direct sum of two proper submodules (and inde-
composable if not). Obviously every finite dimensional module is a direct sum of its indecomposable
parts. The homogeneous components of a module are the direct sums of isomorphic indecomposable
components. They are uniquely determined.

69.6.1 MTX.IsIndecomposable

▷ MTX.IsIndecomposable(module) (function)

returns whether module is indecomposable.

69.6.2 MTX.Indecomposition

▷ MTX.Indecomposition(module) (function)

returns a decomposition of module as a direct sum of indecomposable modules. It returns a list,
each entry is a list of form [B ,ind] where B is a list of basis vectors for the indecomposable component
and ind the induced module action on this component. (Such a decomposition is not unique.)

69.6.3 MTX.HomogeneousComponents

▷ MTX.HomogeneousComponents(module) (function)

computes the homogeneous components of module given as sums of indecomposable compo-
nents. The function returns a list, each entry of which is a record corresponding to one isomorphism
type of indecomposable components. The record has the following components.

indices

the index numbers of the indecomposable components, as given by MTX.Indecomposition

(69.6.2), that are in the homogeneous component,

component

one of the indecomposable components,

images

a list of the remaining indecomposable components, each given as a record with the compo-
nents component (the component itself) and isomorphism (an isomorphism from the defining
component to this one).

69.7 Finding Submodules

69.7.1 MTX.SubmoduleGModule

▷ MTX.SubmoduleGModule(module, subspace) (function)

▷ MTX.SubGModule(module, subspace) (function)

GAP - Reference Manual 1115

subspace should be a subspace of (or a vector in) the underlying vector space of module i.e. the
full row space of the same dimension and over the same field as module . A normalized basis of the
submodule of module generated by subspace is returned.

69.7.2 MTX.ProperSubmoduleBasis

▷ MTX.ProperSubmoduleBasis(module) (function)

returns the basis of a proper submodule of module and fail if no proper submodule exists.

69.7.3 MTX.BasesSubmodules

▷ MTX.BasesSubmodules(module) (function)

returns a list containing a basis for every submodule.

69.7.4 MTX.BasesMinimalSubmodules

▷ MTX.BasesMinimalSubmodules(module) (function)

returns a list of bases of all minimal submodules.

69.7.5 MTX.BasesMaximalSubmodules

▷ MTX.BasesMaximalSubmodules(module) (function)

returns a list of bases of all maximal submodules.

69.7.6 MTX.BasisRadical

▷ MTX.BasisRadical(module) (function)

returns a basis of the radical of module .

69.7.7 MTX.BasisSocle

▷ MTX.BasisSocle(module) (function)

returns a basis of the socle of module .

69.7.8 MTX.BasesMinimalSupermodules

▷ MTX.BasesMinimalSupermodules(module, sub) (function)

returns a list of bases of all minimal supermodules of the submodule given by the basis sub .

GAP - Reference Manual 1116

69.7.9 MTX.BasesCompositionSeries

▷ MTX.BasesCompositionSeries(module) (function)

returns a list of bases of submodules in a composition series in ascending order.

69.7.10 MTX.CompositionFactors

▷ MTX.CompositionFactors(module) (function)

returns a list of composition factors of module in ascending order.

69.7.11 MTX.CollectedFactors

▷ MTX.CollectedFactors(module) (function)

returns a list giving all irreducible composition factors with their frequencies.

69.8 Induced Actions

69.8.1 MTX.NormedBasisAndBaseChange

▷ MTX.NormedBasisAndBaseChange(sub) (function)

returns a list [bas, change] where bas is a normed basis (i.e. in echelon form with pivots
normed to 1) for sub and change is the base change from bas to sub (the basis vectors of bas
expressed in coefficients for sub).

69.8.2 MTX.InducedActionSubmodule

▷ MTX.InducedActionSubmodule(module, sub) (function)

▷ MTX.InducedActionSubmoduleNB(module, sub) (function)

creates a new module corresponding to the action of module on the non-trivial submodule sub . In
the NB version the basis sub must be normed. (That is it must be in echelon form with pivots normed
to 1, see MTX.NormedBasisAndBaseChange (69.8.1).)

69.8.3 MTX.InducedActionFactorModule

▷ MTX.InducedActionFactorModule(module, sub[, compl]) (function)

creates a new module corresponding to the action of module on the factor of the proper submodule
sub . If compl is given, it has to be a basis of a (vector space-)complement of sub . The action then
will correspond to compl .

The basis sub has to be given in normed form. (That is it must be in echelon form with pivots
normed to 1, see MTX.NormedBasisAndBaseChange (69.8.1))

GAP - Reference Manual 1117

69.8.4 MTX.InducedActionSubMatrix

▷ MTX.InducedActionSubMatrix(mat, sub) (function)

▷ MTX.InducedActionSubMatrixNB(mat, sub) (function)

▷ MTX.InducedActionFactorMatrix(mat, sub[, compl]) (function)

work the same way as the above functions for modules, but take as input only a single matrix.

69.8.5 MTX.InducedAction

▷ MTX.InducedAction(module, sub[, type]) (function)

Computes induced actions on submodules or factor modules and also returns the corresponding
bases. The action taken is binary encoded in type : 1 stands for subspace action, 2 for factor action,
and 4 for action of the full module on a subspace adapted basis. The routine returns the computed
results in a list in sequence (sub ,quot ,both ,basis) where basis is a basis for the whole space,
extending sub . (Actions which are not computed are omitted, so the returned list may be shorter.) If
no type is given, it is assumed to be 7. The basis given in sub must be normed!

All these routines return fail if sub is not a proper subspace.

69.9 Module Homomorphisms

69.9.1 MTX.BasisModuleHomomorphisms

▷ MTX.BasisModuleHomomorphisms(module1, module2) (function)

returns a basis of all module homomorphisms from module1 to module2 . Homomorphisms are
by matrices, whose rows give the images of the standard basis vectors of module1 in the standard
basis of module2 .

69.9.2 MTX.BasisModuleEndomorphisms

▷ MTX.BasisModuleEndomorphisms(module) (function)

returns a basis of all module homomorphisms from module to module .

69.9.3 MTX.IsomorphismModules

▷ MTX.IsomorphismModules(module1, module2) (function)

If module1 and module2 are isomorphic modules, this function returns an isomorphism from
module1 to module2 in form of a matrix. It returns fail if the modules are not isomorphic.

69.9.4 MTX.ModuleAutomorphisms

▷ MTX.ModuleAutomorphisms(module) (function)

GAP - Reference Manual 1118

returns the module automorphisms of module (the set of all isomorphisms from module to itself)
as a matrix group.

69.10 Module Homomorphisms for irreducible modules

The following are lower-level functions that provide homomorphism functionality for irreducible
modules. Generic code should use the functions in Section 69.9 instead.

69.10.1 MTX.IsEquivalent

▷ MTX.IsEquivalent(module1, module2) (function)

tests two irreducible modules for equivalence.

69.10.2 MTX.IsomorphismIrred

▷ MTX.IsomorphismIrred(module1, module2) (function)

returns an isomorphism from module1 to module2 (if one exists), and fail otherwise. It requires
that one of the modules is known to be irreducible. It implicitly assumes that the same group is acting,
otherwise the results are unpredictable. The isomorphism is given by a matrix M, whose rows give
the images of the standard basis vectors of module1 in the standard basis of module2 . That is,
conjugation of the generators of module2 with M yields the generators of module1 .

69.10.3 MTX.Homomorphism

▷ MTX.Homomorphism(module1, module2, mat) (function)

mat should be a dim1 × dim2 matrix defining a homomorphism from module1 to module2 .
This function verifies that mat really does define a module homomorphism, and then returns the
corresponding homomorphism between the underlying row spaces of the modules. This can be used
for computing kernels, images and pre-images.

69.10.4 MTX.Homomorphisms

▷ MTX.Homomorphisms(module1, module2) (function)

returns a basis of the space of all homomorphisms from the irreducible module module1 to
module2 .

69.10.5 MTX.Distinguish

▷ MTX.Distinguish(cf, nr) (function)

Let cf be the output of MTX.CollectedFactors (69.7.11). This routine tries to find a group
algebra element that has nullity zero on all composition factors except number nr .

GAP - Reference Manual 1119

69.11 MeatAxe Functionality for Invariant Forms

The functions in this section can only be applied to an absolutely irreducible MeatAxe module.

69.11.1 MTX.InvariantBilinearForm

▷ MTX.InvariantBilinearForm(module) (function)

returns an invariant bilinear form, which may be symmetric or anti-symmetric, of module , or
fail if no such form exists.

69.11.2 MTX.InvariantSesquilinearForm

▷ MTX.InvariantSesquilinearForm(module) (function)

returns an invariant hermitian (= self-adjoint) sesquilinear form of module , which must be defined
over a finite field whose order is a square, or fail if no such form exists.

69.11.3 MTX.InvariantQuadraticForm

▷ MTX.InvariantQuadraticForm(module) (function)

returns either the matrix of an invariant quadratic form of the absolutely irreducible module
module , or fail.

If the characteristic of module is odd then fail is returned if there is no nonzero invariant bilinear
form, otherwise a matrix of the bilinear form divided by 2 is returned; note that this matrix may be
antisymmetric and thus describe the zero quadratic form. If the characteristic of module is 2 then
fail is returned if module does not admit a nonzero quadratic form, otherwise a lower triangular
matrix describing the form is returned.

An error is signalled if module is not absolutely irreducible.
Example

gap> g:= SO(-1, 4, 2);;

gap> m:= NaturalGModule(g);;

gap> Display(MTX.InvariantQuadraticForm(m));

. . . .

1 . . .

. . 1 .

. . 1 1

gap> g:= Sp(4, 2);;

gap> m:= NaturalGModule(g);;

gap> MTX.InvariantQuadraticForm(m);

fail

gap> g:= Sp(4, 3);;

gap> m:= NaturalGModule(g);;

gap> q:= MTX.InvariantQuadraticForm(m);;

gap> q = - TransposedMat(q); # antisymmetric inv. bilinear form

true

GAP - Reference Manual 1120

69.11.4 MTX.BasisInOrbit

▷ MTX.BasisInOrbit(module) (function)

returns a basis of the underlying vector space of module which is contained in an orbit of the
action of the generators of module on that space. This is used by MTX.InvariantQuadraticForm

(69.11.3) in characteristic 2.

69.11.5 MTX.OrthogonalSign

▷ MTX.OrthogonalSign(module) (function)

Let module be an absolutely irreducible G-module. If module does not fix a nondegenerate
quadratic form see MTX.InvariantQuadraticForm (69.11.3) then fail is returned. Otherwise the
sign ε ∈ {−1,0,1} is returned such that G embeds into the general orthogonal group GOε(d,q) w.r.t.
the invariant quadratic form, see GeneralOrthogonalGroup (50.2.6). That is, 0 is returned if module
has odd dimension, and 1 or -1 is returned if the orthogonal group has plus or minus type, respectively.

An error is signalled if module is not absolutely irreducible.
The SMTX implementation uses an algorithm due to Jon Thackray.

Example
gap> mats:= GeneratorsOfGroup(GO(1,4,2));;

gap> MTX.OrthogonalSign(GModuleByMats(mats, GF(2)));

1

gap> mats:= GeneratorsOfGroup(GO(-1,4,2));;

gap> MTX.OrthogonalSign(GModuleByMats(mats, GF(2)));

-1

gap> mats:= GeneratorsOfGroup(GO(5,3));;

gap> MTX.OrthogonalSign(GModuleByMats(mats, GF(3)));

0

gap> mats:= GeneratorsOfGroup(SP(4,2));;

gap> MTX.OrthogonalSign(GModuleByMats(mats, GF(2)));

fail

69.12 The Smash MeatAxe

The standard MeatAxe provided in the GAP library is based on the MeatAxe in the GAP 3 package
Smash, originally written by Derek Holt and Sarah Rees [HR94]. It is accessible via the variable
SMTX to which MTX (69.3.1) is assigned by default. For the sake of completeness the remaining sections
document more technical functions of this MeatAxe.

69.12.1 SMTX.RandomIrreducibleSubGModule

▷ SMTX.RandomIrreducibleSubGModule(module) (function)

returns the module action on a random irreducible submodule.

GAP - Reference Manual 1121

69.12.2 SMTX.GoodElementGModule

▷ SMTX.GoodElementGModule(module) (function)

finds an element with minimal possible nullspace dimension if module is known to be irreducible.

69.12.3 SMTX.SortHomGModule

▷ SMTX.SortHomGModule(module1, module2, homs) (function)

Function to sort the output of Homomorphisms.

69.12.4 SMTX.MinimalSubGModules

▷ SMTX.MinimalSubGModules(module1, module2[, max]) (function)

returns (at most max) bases of submodules of module2 which are isomorphic to the irreducible
module module1 .

69.12.5 SMTX.Setter

▷ SMTX.Setter(string) (function)

returns a setter function for the component smashMeataxe.(string).

69.12.6 SMTX.Getter

▷ SMTX.Getter(string) (function)

returns a getter function for the component smashMeataxe.(string).

69.12.7 SMTX.IrreducibilityTest

▷ SMTX.IrreducibilityTest(module) (function)

Tests for irreducibility and sets a subbasis if reducible. It neither sets an irreducibility flag, nor
tests it. Thus the routine also can simply be called to obtain a random submodule.

69.12.8 SMTX.AbsoluteIrreducibilityTest

▷ SMTX.AbsoluteIrreducibilityTest(module) (function)

Tests for absolute irreducibility and sets splitting field degree. It neither sets an absolute irre-
ducibility flag, nor tests it.

GAP - Reference Manual 1122

69.12.9 SMTX.MinimalSubGModule

▷ SMTX.MinimalSubGModule(module, cf, nr) (function)

returns the basis of a minimal submodule of module containing the indicated composition factor.
It assumes Distinguish has been called already.

69.12.10 SMTX.MatrixSum

▷ SMTX.MatrixSum(matrices1, matrices2) (function)

creates the direct sum of two matrix lists.

69.12.11 SMTX.CompleteBasis

▷ SMTX.CompleteBasis(module, pbasis) (function)

extends the partial basis pbasis to a basis of the full space by action of module . It returns whether
it succeeded.

69.13 Smash MeatAxe Flags

The following getter routines access internal flags. For each routine, the appropriate setter’s name is
prefixed with Set.

69.13.1 SMTX.Subbasis

▷ SMTX.Subbasis(module) (function)

Basis of a submodule.

69.13.2 SMTX.AlgEl

▷ SMTX.AlgEl(module) (function)

list [newgens,coefflist] giving an algebra element used for chopping.

69.13.3 SMTX.AlgElMat

▷ SMTX.AlgElMat(module) (function)

matrix of SMTX.AlgEl (69.13.2).

69.13.4 SMTX.AlgElCharPol

▷ SMTX.AlgElCharPol(module) (function)

minimal polynomial of SMTX.AlgEl (69.13.2).

GAP - Reference Manual 1123

69.13.5 SMTX.AlgElCharPolFac

▷ SMTX.AlgElCharPolFac(module) (function)

uses factor of SMTX.AlgEl (69.13.2).

69.13.6 SMTX.AlgElNullspaceVec

▷ SMTX.AlgElNullspaceVec(module) (function)

nullspace of the matrix evaluated under this factor.

69.13.7 SMTX.AlgElNullspaceDimension

▷ SMTX.AlgElNullspaceDimension(module) (function)

dimension of the nullspace.

69.13.8 SMTX.CentMat

▷ SMTX.CentMat(module) (function)

matrix centralising all generators which is computed as a byproduct of
SMTX.AbsoluteIrreducibilityTest (69.12.8).

69.13.9 SMTX.CentMatMinPoly

▷ SMTX.CentMatMinPoly(module) (function)

minimal polynomial of SMTX.CentMat (69.13.8).

Chapter 70

Tables of Marks

The concept of a table of marks was introduced by W. Burnside in his book “Theory of Groups of
Finite Order”, see [Bur55]. Therefore a table of marks is sometimes called a Burnside matrix.

The table of marks of a finite group G is a matrix whose rows and columns are labelled by the
conjugacy classes of subgroups of G and where for two subgroups A and B the (A,B)-entry is the
number of fixed points of B in the transitive action of G on the cosets of A in G. So the table of marks
characterizes the set of all permutation representations of G.

Moreover, the table of marks gives a compact description of the subgroup lattice of G, since from
the numbers of fixed points the numbers of conjugates of a subgroup B contained in a subgroup A can
be derived.

A table of marks of a given group G can be constructed from the subgroup lattice of G (see 70.3).
For several groups, the table of marks can be restored from the GAP library of tables of marks
(see 70.13).

Given the table of marks of G, one can display it (see 70.4) and derive information about G and its
Burnside ring from it (see 70.7, 70.8, 70.9). Moreover, tables of marks in GAP provide an easy access
to the classes of subgroups of their underlying groups (see 70.10).

70.1 More about Tables of Marks

Let G be a finite group with n conjugacy classes of subgroups C1,C2, . . . ,Cn and representatives Hi ∈
Ci, 1 ≤ i ≤ n. The table of marks of G is defined to be the n×n matrix M = (mi j) where the mark mi j

is the number of fixed points of the subgroup H j in the action of G on the right cosets of Hi in G.
Since H j can only have fixed points if it is contained in a point stabilizer the matrix M is lower

triangular if the classes Ci are sorted according to the condition that if Hi is contained in a conjugate
of H j then i ≤ j.

Moreover, the diagonal entries mii are nonzero since mii equals the index of Hi in its normalizer in
G. Hence M is invertible. Since any transitive action of G is equivalent to an action on the cosets of
a subgroup of G, one sees that the table of marks completely characterizes the set of all permutation
representations of G.

The marks mi j have further meanings. If H1 is the trivial subgroup of G then each mark mi1 in
the first column of M is equal to the index of Hi in G since the trivial subgroup fixes all cosets of Hi.
If Hn = G then each mn j in the last row of M is equal to 1 since there is only one coset of G in G.
In general, mi j equals the number of conjugates of Hi containing H j, multiplied by the index of Hi in
its normalizer in G. Moreover, the number ci j of conjugates of H j which are contained in Hi can be

1124

GAP - Reference Manual 1125

derived from the marks mi j via the formula

ci j = (mi jm j1)/(mi1m j j)

.
Both the marks mi j and the numbers of subgroups ci j are needed for the functions described in this

chapter.
A brief survey of properties of tables of marks and a description of algorithms for the interactive

construction of tables of marks using GAP can be found in [Pfe97].

70.2 Table of Marks Objects in GAP

A table of marks of a group G in GAP is represented by an immutable (see 12.6) object tom in the
category IsTableOfMarks (70.6.2), with defining attributes SubsTom (70.7.1) and MarksTom (70.7.1).
These two attributes encode the matrix of marks in a compressed form. The SubsTom (70.7.1) value
of tom is a list where for each conjugacy class of subgroups the class numbers of its subgroups are
stored. These are exactly the positions in the corresponding row of the matrix of marks which have
nonzero entries. The marks themselves are stored via the MarksTom (70.7.1) value of tom , which is a
list that contains for each entry in SubsTom(tom) the corresponding nonzero value of the table of
marks.

It is possible to create table of marks objects that do not store a group, moreover one can create
a table of marks object from a matrix of marks (see TableOfMarks (70.3.1)). So it may happen that
a table of marks object in GAP is in fact not the table of marks of a group. To some extent, the
consistency of a table of marks object can be checked (see 70.9), but GAP knows no general way to
prove or disprove that a given matrix of nonnegative integers is the matrix of marks for a group. Many
functions for tables of marks work well without access to the group –this is one of the arguments why
tables of marks are so useful–, but for example normalizers (see NormalizerTom (70.9.4)) and derived
subgroups (see DerivedSubgroupTom (70.9.2)) of subgroups are in general not uniquely determined
by the matrix of marks.

GAP tables of marks are assumed to be in lower triangular form, that is, if a subgroup from the
conjugacy class corresponding to the i-th row is contained in a subgroup from the class corresponding
to the j-th row j then i ≤ j.

The MarksTom (70.7.1) information can be computed from the values of the attributes NrSubsTom
(70.7.2), LengthsTom (70.7.3), OrdersTom (70.7.2), and SubsTom (70.7.1). NrSubsTom (70.7.2)
stores a list containing for each entry in the SubsTom (70.7.1) value the corresponding number of
conjugates that are contained in a subgroup, LengthsTom (70.7.3) a list containing for each conjugacy
class of subgroups its length, and OrdersTom (70.7.2) a list containing for each class of subgroups their
order. So the MarksTom (70.7.1) value of tom may be missing provided that the values of NrSubsTom
(70.7.2), LengthsTom (70.7.3), and OrdersTom (70.7.2) are stored in tom .

Additional information about a table of marks is needed by some functions. The class numbers of
normalizers in G and the number of the derived subgroup of G can be stored via appropriate attributes
(see NormalizersTom (70.9.4), DerivedSubgroupTom (70.9.2)).

If tom stores its group G and a bijection from the rows and columns of the matrix of marks of tom
to the classes of subgroups of G then clearly normalizers, derived subgroup etc. can be computed from
this information. But in general a table of marks need not have access to G, for example tom might
have been constructed from a generic table of marks (see 70.12), or as table of marks of a factor group
from a given table of marks (see FactorGroupTom (70.9.11)). Access to the group G is provided by

GAP - Reference Manual 1126

the attribute UnderlyingGroup (70.7.7) if this value is set. Access to the relevant information about
conjugacy classes of subgroups of G –compatible with the ordering of rows and columns of the marks
in tom– is signalled by the filter IsTableOfMarksWithGens (70.10.3).

Several examples in this chapter require the GAP package TomLib (the GAP Library of Tables of
Marks) to be available. If it is not yet loaded then we load it now.

Example
gap> LoadPackage("tomlib");

true

70.3 Constructing Tables of Marks

70.3.1 TableOfMarks (for a group)

▷ TableOfMarks(G) (attribute)

▷ TableOfMarks(string) (attribute)

▷ TableOfMarks(matrix) (attribute)

In the first form, G must be a finite group, and TableOfMarks constructs the table of
marks of G . This computation requires the knowledge of the complete subgroup lattice of G

(see LatticeSubgroups (39.20.1)). If the lattice is not yet stored then it will be constructed. This
may take a while if G is large. The result has the IsTableOfMarksWithGens (70.10.3) value true.

In the second form, string must be a string, and TableOfMarks gets the table of marks with
name string from the GAP library (see 70.13). If no table of marks with this name is contained in
the library then fail is returned.

In the third form, matrix must be a matrix or a list of rows describing a lower triangular matrix
where the part above the diagonal is omitted. For such an argument matrix , TableOfMarks returns a
table of marks object (see 70.2) for which matrix is the matrix of marks. Note that not every matrix
(containing only nonnegative integers and having lower triangular shape) describes a table of marks of
a group. Necessary conditions are checked with IsInternallyConsistent (70.9.1) (see 70.9), and
fail is returned if matrix is proved not to describe a matrix of marks; but if TableOfMarks returns
a table of marks object created from a matrix then it may still happen that this object does not describe
the table of marks of a group.

For an overview of operations for table of marks objects, see the introduction to Chapter 70.
Example

gap> tom:= TableOfMarks(AlternatingGroup(5));

TableOfMarks(Alt([1 .. 5]))

gap> TableOfMarks("J5");

fail

gap> a5:= TableOfMarks("A5");

TableOfMarks("A5")

gap> mat:=

> [[60, 0, 0, 0, 0, 0, 0, 0, 0], [30, 2, 0, 0, 0, 0, 0, 0, 0],

> [20, 0, 2, 0, 0, 0, 0, 0, 0], [15, 3, 0, 3, 0, 0, 0, 0, 0],

> [12, 0, 0, 0, 2, 0, 0, 0, 0], [10, 2, 1, 0, 0, 1, 0, 0, 0],

> [6, 2, 0, 0, 1, 0, 1, 0, 0], [5, 1, 2, 1, 0, 0, 0, 1, 0],

> [1, 1, 1, 1, 1, 1, 1, 1, 1]];;

gap> TableOfMarks(mat);

TableOfMarks(<9 classes>)

GAP - Reference Manual 1127

The following TableOfMarks methods for a group are installed.

• If the group is known to be cyclic then TableOfMarks constructs the table of marks essentially
without the group, instead the knowledge about the structure of cyclic groups is used.

• If the lattice of subgroups is already stored in the group then TableOfMarks computes the table
of marks from the lattice (see TableOfMarksByLattice (70.3.2)).

• If the group is known to be solvable then TableOfMarks takes the lattice of subgroups
(see LatticeSubgroups (39.20.1)) of the group –which means that the lattice is computed if it
is not yet stored– and then computes the table of marks from it. This method is also accessible
via the global function TableOfMarksByLattice (70.3.2).

• If the group doesn’t know its lattice of subgroups or its conjugacy classes of subgroups then
the table of marks and the conjugacy classes of subgroups are computed at the same time by
the cyclic extension method. Only the table of marks is stored because the conjugacy classes
of subgroups or the lattice of subgroups can be easily read off (see LatticeSubgroupsByTom

(70.3.3)).

Conversely, the lattice of subgroups of a group with known table of marks can be computed using
the table of marks, via the function LatticeSubgroupsByTom (70.3.3). This is also installed as a
method for LatticeSubgroups (39.20.1).

70.3.2 TableOfMarksByLattice

▷ TableOfMarksByLattice(G) (function)

TableOfMarksByLattice computes the table of marks of the group G from the lattice of sub-
groups of G . This lattice is computed via LatticeSubgroups (39.20.1) if it is not yet stored in G .
The function TableOfMarksByLattice is installed as a method for TableOfMarks (70.3.1) for solv-
able groups and groups with stored subgroup lattice, and is available as a global variable only in order
to provide explicit access to this method.

70.3.3 LatticeSubgroupsByTom

▷ LatticeSubgroupsByTom(G) (function)

LatticeSubgroupsByTom computes the lattice of subgroups of G from the table of marks of G ,
using RepresentativeTom (70.10.4).

70.4 Printing Tables of Marks

70.4.1 ViewObj (for a table of marks)

▷ ViewObj(tom) (method)

The default ViewObj (6.3.5) method for tables of marks prints the string "TableOfMarks", fol-
lowed by –if known– the identifier (see Identifier (70.7.9)) or the group of the table of marks
enclosed in brackets; if neither group nor identifier are known then just the number of conjugacy
classes of subgroups is printed instead.

GAP - Reference Manual 1128

70.4.2 PrintObj (for a table of marks)

▷ PrintObj(tom) (method)

The default PrintObj (6.3.5) method for tables of marks does the same as ViewObj (6.3.5), except
that PrintObj (6.3.5) is used for the group instead of ViewObj (6.3.5).

70.4.3 Display (for a table of marks)

▷ Display(tom[, arec]) (method)

The default Display (6.3.6) method for a table of marks tom produces a formatted output of the
marks in tom . Each line of output begins with the number of the corresponding class of subgroups.
This number is repeated if the output spreads over several pages. The number of columns printed
at one time depends on the actual line length, which can be accessed and changed by the function
SizeScreen (6.12.1).

An interactive variant of Display (6.3.6) is the Browse (Browse: Browse) method for tables of
marks that is provided by the GAP package Browse, see Browse (Browse: Browse for tables of
marks).

The optional second argument arec of Display (6.3.6) can be used to change the default style
for displaying a table of marks. arec must be a record, its relevant components are the following.

classes

a list of class numbers to select only the rows and columns of the matrix that correspond to this
list for printing,

form

one of the strings "subgroups", "supergroups"; in the former case, at position (i, j) of the
matrix the number of conjugates of H j contained in Hi is printed, and in the latter case, at
position (i, j) the number of conjugates of Hi which contain H j is printed.

Example
gap> tom:= TableOfMarks("A5");;

gap> Display(tom);

1: 60

2: 30 2

3: 20 . 2

4: 15 3 . 3

5: 12 . . . 2

6: 10 2 1 . . 1

7: 6 2 . . 1 . 1

8: 5 1 2 1 . . . 1

9: 1 1 1 1 1 1 1 1 1

gap> Display(tom, rec(classes:= [1, 2, 3, 4, 8]));

1: 60

2: 30 2

3: 20 . 2

4: 15 3 . 3

8: 5 1 2 1 1

GAP - Reference Manual 1129

gap> Display(tom, rec(form:= "subgroups"));

1: 1

2: 1 1

3: 1 . 1

4: 1 3 . 1

5: 1 . . . 1

6: 1 3 1 . . 1

7: 1 5 . . 1 . 1

8: 1 3 4 1 . . . 1

9: 1 15 10 5 6 10 6 5 1

gap> Display(tom, rec(form:= "supergroups"));

1: 1

2: 15 1

3: 10 . 1

4: 5 1 . 1

5: 6 . . . 1

6: 10 2 1 . . 1

7: 6 2 . . 1 . 1

8: 5 1 2 1 . . . 1

9: 1 1 1 1 1 1 1 1 1

70.5 Sorting Tables of Marks

70.5.1 SortedTom

▷ SortedTom(tom, perm) (operation)

SortedTom returns a table of marks where the rows and columns of the table of marks tom are
reordered according to the permutation perm .

Note that in each table of marks in GAP, the matrix of marks is assumed to have lower triangular
shape (see 70.2). If the permutation perm does not have this property then the functions for tables of
marks might return wrong results when applied to the output of SortedTom.

The returned table of marks has only those attribute values stored that are known for tom and
listed in TableOfMarksComponents (70.6.4).

Example
gap> tom:= TableOfMarksCyclic(6);; Display(tom);

1: 6

2: 3 3

3: 2 . 2

4: 1 1 1 1

gap> sorted:= SortedTom(tom, (2,3));; Display(sorted);

1: 6

2: 2 2

3: 3 . 3

4: 1 1 1 1

gap> wrong:= SortedTom(tom, (1,2));; Display(wrong);

GAP - Reference Manual 1130

1: 3

2: . 6

3: . 2 2

4: 1 1 1 1

70.5.2 PermutationTom

▷ PermutationTom(tom) (attribute)

For the table of marks tom of the group G stored as UnderlyingGroup (70.7.7) value of tom ,
PermutationTom is a permutation π such that the i-th conjugacy class of subgroups of G belongs to
the iπ-th column and row of marks in tom .

This attribute value is bound only if tom was obtained from another table of marks by permuting
with SortedTom (70.5.1), and there is no default method to compute its value.

The attribute is necessary because the original and the sorted table of marks have the same iden-
tifier and the same group, and information computed from the group may depend on the ordering of
marks, for example the fusion from the ordinary character table of G into tom .

Example
gap> MarksTom(tom)[2];

[3, 3]

gap> MarksTom(sorted)[2];

[2, 2]

gap> HasPermutationTom(sorted);

true

gap> PermutationTom(sorted);

(2,3)

70.6 Technical Details about Tables of Marks

70.6.1 InfoTom

▷ InfoTom (info class)

is the info class for computations concerning tables of marks.

70.6.2 IsTableOfMarks

▷ IsTableOfMarks(obj) (Category)

Each table of marks belongs to this category.

70.6.3 TableOfMarksFamily

▷ TableOfMarksFamily (family)

Each table of marks belongs to this family.

GAP - Reference Manual 1131

70.6.4 TableOfMarksComponents

▷ TableOfMarksComponents (global variable)

The list TableOfMarksComponents is used when a table of marks object is created from a record
via ConvertToTableOfMarks (70.6.5). TableOfMarksComponents contains at position 2i − 1 a
name of an attribute and at position 2i the corresponding attribute getter function.

70.6.5 ConvertToTableOfMarks

▷ ConvertToTableOfMarks(record) (function)

ConvertToTableOfMarks converts a record with components from TableOfMarksComponents

(70.6.4) into a table of marks object with the corresponding attributes.
Example

gap> record:= rec(MarksTom:= [[4], [2, 2], [1, 1, 1]],

> SubsTom:= [[1], [1, 2], [1, 2, 3]]);;

gap> ConvertToTableOfMarks(record);;

gap> record;

TableOfMarks(<3 classes>)

70.7 Attributes of Tables of Marks

70.7.1 MarksTom

▷ MarksTom(tom) (attribute)

▷ SubsTom(tom) (attribute)

The matrix of marks (see 70.1) of the table of marks tom is stored in a compressed form where
zeros are omitted, using the attributes MarksTom and SubsTom. If M is the square matrix of marks of
tom (see MatTom (70.7.10)) then the SubsTom value of tom is a list that contains at position i the list
of all positions of nonzero entries of the i-th row of M, and the MarksTom value of tom is a list that
contains at position i the list of the corresponding marks.

MarksTom and SubsTom are defining attributes of tables of marks (see 70.2). There is no default
method for computing the SubsTom value, and the default MarksTom method needs the values of
NrSubsTom (70.7.2) and OrdersTom (70.7.2).

Example
gap> a5:= TableOfMarks("A5");

TableOfMarks("A5")

gap> MarksTom(a5);

[[60], [30, 2], [20, 2], [15, 3, 3], [12, 2],

[10, 2, 1, 1], [6, 2, 1, 1], [5, 1, 2, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 1]]

gap> SubsTom(a5);

[[1], [1, 2], [1, 3], [1, 2, 4], [1, 5], [1, 2, 3, 6],

[1, 2, 5, 7], [1, 2, 3, 4, 8], [1, 2, 3, 4, 5, 6, 7, 8, 9]]

GAP - Reference Manual 1132

70.7.2 NrSubsTom

▷ NrSubsTom(tom) (attribute)

▷ OrdersTom(tom) (attribute)

Instead of storing the marks (see MarksTom (70.7.1)) of the table of marks tom one can use a
matrix which contains at position (i, j) the number of subgroups of conjugacy class j that are contained
in one member of the conjugacy class i. These values are stored in the NrSubsTom value in the same
way as the marks in the MarksTom (70.7.1) value.

OrdersTom returns a list that contains at position i the order of a representative of the i-th conju-
gacy class of subgroups of tom .

One can compute the NrSubsTom and OrdersTom values from the MarksTom (70.7.1) value of
tom and vice versa.

Example
gap> NrSubsTom(a5);

[[1], [1, 1], [1, 1], [1, 3, 1], [1, 1], [1, 3, 1, 1],

[1, 5, 1, 1], [1, 3, 4, 1, 1], [1, 15, 10, 5, 6, 10, 6, 5, 1]

]

gap> OrdersTom(a5);

[1, 2, 3, 4, 5, 6, 10, 12, 60]

70.7.3 LengthsTom

▷ LengthsTom(tom) (attribute)

For a table of marks tom , LengthsTom returns a list of the lengths of the conjugacy classes of
subgroups.

Example
gap> LengthsTom(a5);

[1, 15, 10, 5, 6, 10, 6, 5, 1]

70.7.4 ClassTypesTom

▷ ClassTypesTom(tom) (attribute)

ClassTypesTom distinguishes isomorphism types of the classes of subgroups of the table of marks
tom as far as this is possible from the SubsTom (70.7.1) and MarksTom (70.7.1) values of tom .

Two subgroups are clearly not isomorphic if they have different orders. Moreover, isomorphic
subgroups must contain the same number of subgroups of each type.

Each type is represented by a positive integer. ClassTypesTom returns the list which contains for
each class of subgroups its corresponding type.

Example
gap> a6:= TableOfMarks("A6");;

gap> ClassTypesTom(a6);

[1, 2, 3, 3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 11, 11, 12, 13, 13, 14, 15,

15, 16]

GAP - Reference Manual 1133

70.7.5 ClassNamesTom

▷ ClassNamesTom(tom) (attribute)

ClassNamesTom constructs generic names for the conjugacy classes of subgroups of the table of
marks tom . In general, the generic name of a class of non-cyclic subgroups consists of three parts
and has the form "(o)_{t}l", where o indicates the order of the subgroup, t is a number that
distinguishes different types of subgroups of the same order, and l is a letter that distinguishes classes
of subgroups of the same type and order. The type of a subgroup is determined by the numbers of its
subgroups of other types (see ClassTypesTom (70.7.4)). This is slightly weaker than isomorphism.

The letter is omitted if there is only one class of subgroups of that order and type, and the type is
omitted if there is only one class of that order. Moreover, the braces {} around the type are omitted if
the type number has only one digit.

For classes of cyclic subgroups, the parentheses round the order and the type are omitted. Hence
the most general form of their generic names is "o,l". Again, the letter is omitted if there is only one
class of cyclic subgroups of that order.

Example
gap> ClassNamesTom(a6);

["1", "2", "3a", "3b", "5", "4", "(4)_2a", "(4)_2b", "(6)a", "(6)b",

"(8)", "(9)", "(10)", "(12)a", "(12)b", "(18)", "(24)a", "(24)b",

"(36)", "(60)a", "(60)b", "(360)"]

70.7.6 FusionsTom

▷ FusionsTom(tom) (attribute)

For a table of marks tom , FusionsTom is a list of fusions into other tables of marks. Each fusion
is a list of length two, the first entry being the Identifier (70.7.9)) value of the image table, the
second entry being the list of images of the class positions of tom in the image table.

This attribute is mainly used for tables of marks in the GAP library (see 70.13).
Example

gap> fus:= FusionsTom(a6);;

gap> fus[1];

["L3(4)",

[1, 2, 3, 3, 14, 5, 9, 7, 15, 15, 24, 26, 27, 32, 33, 50, 57, 55,

63, 73, 77, 90]]

70.7.7 UnderlyingGroup (for tables of marks)

▷ UnderlyingGroup(tom) (attribute)

UnderlyingGroup is used to access an underlying group that is stored on the table of marks tom .
There is no default method to compute an underlying group if it is not stored.

Example
gap> UnderlyingGroup(a6);

Group([(1,2)(3,4), (1,2,4,5)(3,6)])

GAP - Reference Manual 1134

70.7.8 IdempotentsTom

▷ IdempotentsTom(tom) (attribute)

▷ IdempotentsTomInfo(tom) (attribute)

IdempotentsTom encodes the idempotents of the integral Burnside ring described by the table
of marks tom . The return value is a list l of positive integers such that each row vector describing a
primitive idempotent has value 1 at all positions with the same entry in l, and 0 at all other positions.

According to A. Dress [Dre69] (see also [Pfe97]), these idempotents correspond to the classes
of perfect subgroups, and each such idempotent is the characteristic function of all those subgroups
that arise by cyclic extension from the corresponding perfect subgroup (see CyclicExtensionsTom

(70.9.7)).
IdempotentsTomInfo returns a record with components fixpointvectors and primidems,

both bound to lists. The i-th entry of the fixpointvectors list is the 0− 1-vector describing the
i-th primitive idempotent, and the i-th entry of primidems is the decomposition of this idempotent in
the rows of tom .

Example
gap> IdempotentsTom(a5);

[1, 1, 1, 1, 1, 1, 1, 1, 9]

gap> IdempotentsTomInfo(a5);

rec(

fixpointvectors := [[1, 1, 1, 1, 1, 1, 1, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 1]],

primidems := [[1, -2, -1, 0, 0, 1, 1, 1],

[-1, 2, 1, 0, 0, -1, -1, -1, 1]])

70.7.9 Identifier (for tables of marks)

▷ Identifier(tom) (attribute)

The identifier of a table of marks tom is a string. It is used for printing the table of marks (see 70.4)
and in fusions between tables of marks (see FusionsTom (70.7.6)).

If tom is a table of marks from the GAP library of tables of marks (see 70.13) then it has an
identifier, and if tom was constructed from a group with Name (12.8.2) then this name is chosen as
Identifier value. There is no default method to compute an identifier in all other cases.

Example
gap> Identifier(a5);

"A5"

70.7.10 MatTom

▷ MatTom(tom) (attribute)

MatTom returns the square matrix of marks (see 70.1) of the table of marks tom which is stored
in a compressed form using the attributes MarksTom (70.7.1) and SubsTom (70.7.1) This may need
substantially more space than the values of MarksTom (70.7.1) and SubsTom (70.7.1).

GAP - Reference Manual 1135

Example
gap> MatTom(a5);

[[60, 0, 0, 0, 0, 0, 0, 0, 0], [30, 2, 0, 0, 0, 0, 0, 0, 0],

[20, 0, 2, 0, 0, 0, 0, 0, 0], [15, 3, 0, 3, 0, 0, 0, 0, 0],

[12, 0, 0, 0, 2, 0, 0, 0, 0], [10, 2, 1, 0, 0, 1, 0, 0, 0],

[6, 2, 0, 0, 1, 0, 1, 0, 0], [5, 1, 2, 1, 0, 0, 0, 1, 0],

[1, 1, 1, 1, 1, 1, 1, 1, 1]]

70.7.11 MoebiusTom

▷ MoebiusTom(tom) (attribute)

MoebiusTom computes the Möbius values both of the subgroup lattice of the group G with table
of marks tom and of the poset of conjugacy classes of subgroups of G. It returns a record where the
component mu contains the Möbius values of the subgroup lattice, and the component nu contains the
Möbius values of the poset.

Moreover, according to an observation of Isaacs et al. (see [HIÖ89], [Pah93]), the values on
the subgroup lattice often can be derived from those of the poset of conjugacy classes. These
“expected values” are returned in the component ex, and the list of numbers of those subgroups
where the expected value does not coincide with the actual value are returned in the component
hyp. For the computation of these values, the position of the derived subgroup of G is needed
(see DerivedSubgroupTom (70.9.2)). If it is not uniquely determined then the result does not have
the components ex and hyp.

Example
gap> MoebiusTom(a5);

rec(ex := [-60, 4, 2,,, -1, -1, -1, 1], hyp := [],

mu := [-60, 4, 2,,, -1, -1, -1, 1],

nu := [-1, 2, 1,,, -1, -1, -1, 1])

gap> tom:= TableOfMarks("M12");;

gap> moebius:= MoebiusTom(tom);;

gap> moebius.hyp;

[1, 2, 4, 16, 39, 45, 105]

gap> moebius.mu[1]; moebius.ex[1];

95040

190080

70.7.12 WeightsTom

▷ WeightsTom(tom) (attribute)

WeightsTom extracts the weights from the table of marks tom , i.e., the diagonal entries of the
matrix of marks (see MarksTom (70.7.1)), indicating the index of a subgroup in its normalizer.

Example
gap> wt:= WeightsTom(a5);

[60, 2, 2, 3, 2, 1, 1, 1, 1]

This information may be used to obtain the numbers of conjugate supergroups from the marks.

GAP - Reference Manual 1136

Example
gap> marks:= MarksTom(a5);;

gap> List([1 .. 9], x -> marks[x] / wt[x]);

[[1], [15, 1], [10, 1], [5, 1, 1], [6, 1], [10, 2, 1, 1],

[6, 2, 1, 1], [5, 1, 2, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1]]

70.8 Properties of Tables of Marks

For a table of marks tom of a group G, the following properties have the same meaning as the corre-
sponding properties for G. Additionally, if a positive integer sub is given as the second argument then
the value of the corresponding property for the sub-th class of subgroups of tom is returned.

70.8.1 IsAbelianTom

▷ IsAbelianTom(tom[, sub]) (property)

▷ IsCyclicTom(tom[, sub]) (property)

▷ IsNilpotentTom(tom[, sub]) (property)

▷ IsPerfectTom(tom[, sub]) (property)

▷ IsSolvableTom(tom[, sub]) (property)

Example
gap> tom:= TableOfMarks("A5");;

gap> IsAbelianTom(tom); IsPerfectTom(tom);

false

true

gap> IsAbelianTom(tom, 3); IsNilpotentTom(tom, 7);

true

false

gap> IsPerfectTom(tom, 7); IsSolvableTom(tom, 7);

false

true

gap> for i in [1 .. 6] do

> Print(i, ": ", IsCyclicTom(a5, i), " ");

> od; Print("\n");

1: true 2: true 3: true 4: false 5: true 6: false

70.9 Other Operations for Tables of Marks

70.9.1 IsInternallyConsistent (for tables of marks)

▷ IsInternallyConsistent(tom) (method)

For a table of marks tom , IsInternallyConsistent decomposes all tensor products of rows of
tom . It returns true if all decomposition numbers are nonnegative integers, and false otherwise.
This provides a strong consistency check for a table of marks.

GAP - Reference Manual 1137

70.9.2 DerivedSubgroupTom

▷ DerivedSubgroupTom(tom, sub) (operation)

▷ DerivedSubgroupsTom(tom) (function)

For a table of marks tom and a positive integer sub , DerivedSubgroupTom returns either a pos-
itive integer i or a list l of positive integers. In the former case, the result means that the derived
subgroups of the subgroups in the sub-th class of tom lie in the i-th class. In the latter case, the class
of the derived subgroups could not be uniquely determined, and the position of the class of derived
subgroups is an entry of l.

Values computed with DerivedSubgroupTom are stored using the attribute
DerivedSubgroupsTomPossible (70.9.3).

DerivedSubgroupsTom is just the list of DerivedSubgroupTom values for all values of sub .

70.9.3 DerivedSubgroupsTomPossible

▷ DerivedSubgroupsTomPossible(tom) (attribute)

▷ DerivedSubgroupsTomUnique(tom) (attribute)

Let tom be a table of marks. The value of the attribute DerivedSubgroupsTomPossible is a list
in which the value at position i –if bound– is a positive integer or a list; the meaning of the entry is the
same as in DerivedSubgroupTom (70.9.2).

If the value of the attribute DerivedSubgroupsTomUnique is known for tom then it is a list of
positive integers, the value at position i being the position of the class of derived subgroups of the i-th
class of subgroups in tom .

The derived subgroups are in general not uniquely determined by the table of marks
if no UnderlyingGroup (70.7.7) value is stored, so there is no default method for
DerivedSubgroupsTomUnique. But in some cases the derived subgroups are explicitly set when
the table of marks is constructed. In this case, DerivedSubgroupTom (70.9.2) does not set values in
the DerivedSubgroupsTomPossible list.

The DerivedSubgroupsTomUnique value is automatically set when the last missing unique value
is entered in the DerivedSubgroupsTomPossible list by DerivedSubgroupTom (70.9.2).

70.9.4 NormalizerTom

▷ NormalizerTom(tom, sub) (operation)

▷ NormalizersTom(tom) (attribute)

Let tom be the table of marks of a group G. NormalizerTom tries to find the conjugacy class of
the normalizer N in G of a subgroup U in the sub-th class of tom . The return value is either the list of
class numbers of those subgroups that have the right size and contain the subgroup and all subgroups
that clearly contain it as a normal subgroup, or the class number of the normalizer if it is uniquely deter-
mined by these conditions. If tom knows the subgroup lattice of G (see IsTableOfMarksWithGens

(70.10.3)) then all normalizers are uniquely determined. NormalizerTom should never return an
empty list.

NormalizersTom returns the list of positions of the classes of normalizers of subgroups in tom . In
addition to the criteria for a single class of subgroup used by NormalizerTom, the approximations of

GAP - Reference Manual 1138

normalizers for several classes are used and thus NormalizersTom may return better approximations
than NormalizerTom.

Example
gap> NormalizerTom(a5, 4);

8

gap> NormalizersTom(a5);

[9, 4, 6, 8, 7, 6, 7, 8, 9]

The example shows that a subgroup with class number 4 in A5 (which is a Kleinian four group) is
normalized by a subgroup in class 8. This class contains the subgroups of A5 which are isomorphic to
A4.

70.9.5 ContainedTom

▷ ContainedTom(tom, sub1, sub2) (operation)

ContainedTom returns the number of subgroups in class sub1 of the table of marks tom that are
contained in one fixed member of the class sub2 .

Example
gap> ContainedTom(a5, 3, 5); ContainedTom(a5, 3, 8);

0

4

70.9.6 ContainingTom

▷ ContainingTom(tom, sub1, sub2) (operation)

ContainingTom returns the number of subgroups in class sub2 of the table of marks tom that
contain one fixed member of the class sub1 .

Example
gap> ContainingTom(a5, 3, 5); ContainingTom(a5, 3, 8);

0

2

70.9.7 CyclicExtensionsTom (for a prime)

▷ CyclicExtensionsTom(tom, p) (operation)

▷ CyclicExtensionsTom(tom[, list]) (attribute)

According to A. Dress [Dre69], two columns of the table of marks tom are equal modulo the prime
p if and only if the corresponding subgroups are connected by a chain of normal extensions of order
p .

Called with tom and p , CyclicExtensionsTom returns the classes of this equivalence relation.
In the second form, list must be a list of primes, and the return value is the list of classes of the

relation obtained by considering chains of normal extensions of prime order where all primes are in
list . The default value for list is the set of prime divisors of the order of the group of tom .

(This information is not used by NormalizerTom (70.9.4) although it might give additional re-
strictions in the search of normalizers.)

GAP - Reference Manual 1139

Example
gap> CyclicExtensionsTom(a5, 2);

[[1, 2, 4], [3, 6], [5, 7], [8], [9]]

70.9.8 DecomposedFixedPointVector

▷ DecomposedFixedPointVector(tom, fix) (operation)

Let tom be the table of marks of a group G and let fix be a vector of fixed point numbers w.r.t. an
action of G, i.e., a vector which contains for each class of subgroups the number of fixed points under
the given action. DecomposedFixedPointVector returns the decomposition of fix into rows of
the table of marks. This decomposition corresponds to a decomposition of the action into transitive
constituents. Trailing zeros in fix may be omitted.

Example
gap> DecomposedFixedPointVector(a5, [16, 4, 1, 0, 1, 1, 1]);

[0, 0, 0, 0, 0, 1, 1]

The vector fix may be any vector of integers. The resulting decomposition, however, will not be
integral, in general.

Example
gap> DecomposedFixedPointVector(a5, [0, 0, 0, 0, 1, 1]);

[2/5, -1, -1/2, 0, 1/2, 1]

70.9.9 EulerianFunctionByTom

▷ EulerianFunctionByTom(tom, n[, sub]) (operation)

Called with two arguments, EulerianFunctionByTom computes the Eulerian function
(see EulerianFunction (39.16.3)) of the underlying group G of the table of marks tom , that is,
the number of n-tuples of elements in G that generate G. If the optional argument sub is given then
EulerianFunctionByTom computes the Eulerian function of each subgroup in the sub-th class of
subgroups of tom .

For a group G whose table of marks is known, EulerianFunctionByTom is installed as a method
for EulerianFunction (39.16.3).

Example
gap> EulerianFunctionByTom(a5, 2);

2280

gap> EulerianFunctionByTom(a5, 3);

200160

gap> EulerianFunctionByTom(a5, 2, 3);

8

70.9.10 IntersectionsTom

▷ IntersectionsTom(tom, sub1, sub2) (operation)

GAP - Reference Manual 1140

The intersections of the groups in the sub1-th conjugacy class of subgroups of the table of marks
tom with the groups in the sub2-th conjugacy classes of subgroups of tom are determined up to
conjugacy by the decomposition of the tensor product of their rows of marks. IntersectionsTom

returns a list l that describes this decomposition. The i-th entry in l is the multiplicity of groups in the
i-th conjugacy class as an intersection.

Example
gap> IntersectionsTom(a5, 8, 8);

[0, 0, 1, 0, 0, 0, 0, 1]

Any two subgroups of class number 8 (A4) of A5 are either equal and their intersection has again class
number 8, or their intersection has class number 3, and is a cyclic subgroup of order 3.

70.9.11 FactorGroupTom

▷ FactorGroupTom(tom, n) (operation)

For a table of marks tom of a group G and the normal subgroup N of G corresponding to the n-th
class of subgroups of tom , FactorGroupTom returns the table of marks of the factor group G/N.

Example
gap> s4:= TableOfMarks(SymmetricGroup(4));

TableOfMarks(Sym([1 .. 4]))

gap> LengthsTom(s4);

[1, 3, 6, 4, 1, 3, 3, 4, 3, 1, 1]

gap> OrdersTom(s4);

[1, 2, 2, 3, 4, 4, 4, 6, 8, 12, 24]

gap> s3:= FactorGroupTom(s4, 5);

TableOfMarks(Group([f1, f2]))

gap> Display(s3);

1: 6

2: 3 1

3: 2 . 2

4: 1 1 1 1

70.9.12 MaximalSubgroupsTom

▷ MaximalSubgroupsTom(tom[, sub]) (attribute)

Called with a table of marks tom , MaximalSubgroupsTom returns a list of length two, the first
entry being the list of positions of the classes of maximal subgroups of the whole group of tom , the
second entry being the list of class lengths of these groups.

Called with a table of marks tom and a position sub , the same information for the sub-th class
of subgroups is returned.

Example
gap> MaximalSubgroupsTom(s4);

[[10, 9, 8], [1, 3, 4]]

gap> MaximalSubgroupsTom(s4, 10);

[[5, 4], [1, 4]]

GAP - Reference Manual 1141

70.9.13 MinimalSupergroupsTom

▷ MinimalSupergroupsTom(tom, sub) (operation)

For a table of marks tom , MinimalSupergroupsTom returns a list of length two, the first entry
being the list of positions of the classes containing the minimal supergroups of the groups in the
sub-th class of subgroups of tom , the second entry being the list of class lengths of these groups.

Example
gap> MinimalSupergroupsTom(s4, 5);

[[9, 10], [3, 1]]

70.10 Accessing Subgroups via Tables of Marks

Let tom be the table of marks of the group G, and assume that tom has access to G via the
UnderlyingGroup (70.7.7) value. Then it makes sense to use tom and its ordering of conjugacy
classes of subgroups of G for storing information for constructing representatives of these classes. The
group G is in general not sufficient for this, tom needs more information; this is available if and only
if the IsTableOfMarksWithGens (70.10.3) value of tom is true. In this case, RepresentativeTom
(70.10.4) can be used to get a subgroup of the i-th class, for all i.

GAP provides two different possibilities to store generators of the representatives of classes of
subgroups. The first is implemented by the attribute GeneratorsSubgroupsTom (70.10.1), which
uses explicit generators of the subgroups. The second, more general, possibility is implemented by
the attribute StraightLineProgramsTom (70.10.2), which encodes the generators as straight line
programs (see 37.8) that evaluate to the generators in question when applied to standard generators
of G. This means that on the one hand, standard generators of G must be known in order to use
StraightLineProgramsTom (70.10.2). On the other hand, the straight line programs allow one to
compute easily generators not only of a subgroup U of G but also generators of the image of U in
any representation of G, provided that one knows standard generators of the image of G under this
representation. See the manual of the package TomLib for details and an example.

70.10.1 GeneratorsSubgroupsTom

▷ GeneratorsSubgroupsTom(tom) (attribute)

Let tom be a table of marks with IsTableOfMarksWithGens (70.10.3) value true. Then
GeneratorsSubgroupsTom returns a list of length two, the first entry being a list l of elements of
the group stored as UnderlyingGroup (70.7.7) value of tom , the second entry being a list that con-
tains at position i a list of positions in l of generators of a representative of a subgroup in class i.

The GeneratorsSubgroupsTom value is known for all tables of marks that have been computed
with TableOfMarks (70.3.1) from a group, and there is a method to compute the value for a table of
marks that admits RepresentativeTom (70.10.4).

70.10.2 StraightLineProgramsTom

▷ StraightLineProgramsTom(tom) (attribute)

GAP - Reference Manual 1142

For a table of marks tom with IsTableOfMarksWithGens (70.10.3) value true,
StraightLineProgramsTom returns a list that contains at position i either a list of straight line pro-
grams or a straight line program (see 37.8), encoding the generators of a representative of the i-th
conjugacy class of subgroups of UnderlyingGroup(tom); in the former case, each straight line
program returns a generator, in the latter case, the program returns the list of generators.

There is no default method to compute the StraightLineProgramsTom value of a table of marks
if they are not yet stored. The value is known for all tables of marks that belong to the GAP library of
tables of marks (see 70.13).

70.10.3 IsTableOfMarksWithGens

▷ IsTableOfMarksWithGens(tom) (filter)

This filter shall express the union of the filters IsTableOfMarks and

HasStraightLineProgramsTom and IsTableOfMarks and HasGeneratorsSubgroupsTom.
If a table of marks tom has this filter set then tom can be asked to compute information that is in
general not uniquely determined by a table of marks, for example the positions of derived subgroups
or normalizers of subgroups (see DerivedSubgroupTom (70.9.2), NormalizerTom (70.9.4)).

Example
gap> a5:= TableOfMarks("A5");; IsTableOfMarksWithGens(a5);

true

gap> HasGeneratorsSubgroupsTom(a5); HasStraightLineProgramsTom(a5);

false

true

gap> alt5:= TableOfMarks(AlternatingGroup(5));;

gap> IsTableOfMarksWithGens(alt5);

true

gap> HasGeneratorsSubgroupsTom(alt5); HasStraightLineProgramsTom(alt5);

true

false

gap> progs:= StraightLineProgramsTom(a5);;

gap> OrdersTom(a5);

[1, 2, 3, 4, 5, 6, 10, 12, 60]

gap> IsCyclicTom(a5, 4);

false

gap> Length(progs[4]);

2

gap> progs[4][1];

<straight line program>

gap> # first generator of an el. ab group of order 4:

gap> Display(progs[4][1]);

input:

r:= [g1, g2];

program:

r[3]:= r[2]*r[1];

r[4]:= r[3]*r[2]^-1*r[1]*r[3]*r[2]^-1*r[1]*r[2];

return value:

r[4]

gap> x:= [[Z(2)^0, 0*Z(2)], [Z(2^2), Z(2)^0]];;

gap> y:= [[Z(2^2), Z(2)^0], [0*Z(2), Z(2^2)^2]];;

gap> res1:= ResultOfStraightLineProgram(progs[4][1], [x, y]);

GAP - Reference Manual 1143

[[Z(2)^0, 0*Z(2)], [Z(2^2)^2, Z(2)^0]]

gap> res2:= ResultOfStraightLineProgram(progs[4][2], [x, y]);

[[Z(2)^0, 0*Z(2)], [Z(2^2), Z(2)^0]]

gap> w:= y*x;;

gap> res1 = w*y^-1*x*w*y^-1*x*y;

true

gap> subgrp:= Group(res1, res2);; Size(subgrp); IsCyclic(subgrp);

4

false

70.10.4 RepresentativeTom

▷ RepresentativeTom(tom, sub) (operation)

▷ RepresentativeTomByGenerators(tom, sub, gens) (operation)

▷ RepresentativeTomByGeneratorsNC(tom, sub, gens) (operation)

Let tom be a table of marks with IsTableOfMarksWithGens (70.10.3) value true, and sub

a positive integer. RepresentativeTom returns a representative of the sub-th conjugacy class of
subgroups of tom .

If the attribute StraightLineProgramsTom (70.10.2) is set in tom then methods for the opera-
tions RepresentativeTomByGenerators and RepresentativeTomByGeneratorsNC are available,
which return a representative of the sub-th conjugacy class of subgroups of tom , as a subgroup of the
group generated by gens . This means that the standard generators of tom are replaced by gens .

RepresentativeTomByGenerators checks whether mapping the standard gen-
erators of tom to gens extends to a group isomorphism, and returns fail if not.
RepresentativeTomByGeneratorsNC omits all checks. So RepresentativeTomByGenerators

is thought mainly for debugging purposes; note that when several representatives are
constructed, it is cheaper to construct (and check) the isomorphism once, and to map
the groups returned by RepresentativeTom under this isomorphism. The idea behind
RepresentativeTomByGeneratorsNC, however, is to avoid the overhead of using isomor-
phisms when gens are known to be standard generators. In order to proceed like this, the attribute
StraightLineProgramsTom (70.10.2) is needed.

Example
gap> RepresentativeTom(a5, 4);

Group([(2,3)(4,5), (2,4)(3,5)])

70.11 The Interface between Tables of Marks and Character Tables

The following examples require the GAP Character Table Library to be available. If it is not yet
loaded then we load it now.

Example
gap> LoadPackage("ctbllib");

true

GAP - Reference Manual 1144

70.11.1 FusionCharTableTom

▷ FusionCharTableTom(tbl, tom) (operation)

▷ PossibleFusionsCharTableTom(tbl, tom[, options]) (operation)

Let tbl be the ordinary character table of the group G, say, and tom the table of marks of G.
FusionCharTableTom determines the fusion of the classes of elements from tbl to the classes of
cyclic subgroups on tom , that is, a list that contains at position i the position of the class of cyclic
subgroups in tom that are generated by elements in the i-th conjugacy class of elements in tbl .

Three cases are handled differently.

1. The fusion is explicitly stored on tbl . Then nothing has to be done. This happens only if both
tbl and tom are tables from the GAP library (see 70.13 and the manual of the GAP Character
Table Library).

2. The UnderlyingGroup (70.7.7) values of tbl and tom are known and equal. Then the group
is used to compute the fusion.

3. There is neither fusion nor group information available. In this case only necessary conditions
can be checked, and if they are not sufficient to determine the fusion uniquely then fail is
returned by FusionCharTableTom.

PossibleFusionsCharTableTom computes the list of possible fusions from tbl to tom , accord-
ing to the criteria that have been checked. So if FusionCharTableTom returns a unique fusion then
the list returned by PossibleFusionsCharTableTom for the same arguments contains exactly this
fusion, and if FusionCharTableTom returns fail then the length of this list is different from 1.

The optional argument options must be a record that may have the following components.

fusionmap

a parametrized map which is an approximation of the desired map,

quick

a Boolean; if true then as soon as only one possibility remains this possibility is returned
immediately; the default value is false.

Example
gap> a5c:= CharacterTable("A5");;

gap> fus:= FusionCharTableTom(a5c, a5);

[1, 2, 3, 5, 5]

70.11.2 PermCharsTom (via fusion map)

▷ PermCharsTom(fus, tom) (operation)

▷ PermCharsTom(tbl, tom) (operation)

PermCharsTom returns the list of transitive permutation characters from the table of marks tom .
In the first form, fus must be the fusion map from the ordinary character table of the group of tom
to tom (see FusionCharTableTom (70.11.1)). In the second form, tbl must be the character ta-
ble of the group of which tom is the table of marks. If the fusion map is not uniquely determined
(see FusionCharTableTom (70.11.1)) then fail is returned.

GAP - Reference Manual 1145

If the fusion map fus is given as first argument then each transitive permutation character is
represented by its values list. If the character table tbl is given then the permutation characters are
class function objects (see Chapter 72).

Example
gap> PermCharsTom(a5c, a5);

[Character(CharacterTable("A5"), [60, 0, 0, 0, 0]),

Character(CharacterTable("A5"), [30, 2, 0, 0, 0]),

Character(CharacterTable("A5"), [20, 0, 2, 0, 0]),

Character(CharacterTable("A5"), [15, 3, 0, 0, 0]),

Character(CharacterTable("A5"), [12, 0, 0, 2, 2]),

Character(CharacterTable("A5"), [10, 2, 1, 0, 0]),

Character(CharacterTable("A5"), [6, 2, 0, 1, 1]),

Character(CharacterTable("A5"), [5, 1, 2, 0, 0]),

Character(CharacterTable("A5"), [1, 1, 1, 1, 1])]

gap> PermCharsTom(fus, a5)[1];

[60, 0, 0, 0, 0]

70.12 Generic Construction of Tables of Marks

The following three operations construct a table of marks only from the data given, i.e., without
underlying group.

70.12.1 TableOfMarksCyclic

▷ TableOfMarksCyclic(n) (operation)

TableOfMarksCyclic returns the table of marks of the cyclic group of order n .
A cyclic group of order n has as its subgroups for each divisor d of n a cyclic subgroup of order

d.
Example

gap> Display(TableOfMarksCyclic(6));

1: 6

2: 3 3

3: 2 . 2

4: 1 1 1 1

70.12.2 TableOfMarksDihedral

▷ TableOfMarksDihedral(n) (operation)

TableOfMarksDihedral returns the table of marks of the dihedral group of order m .
For each divisor d of m , a dihedral group of order m = 2n contains subgroups of order d according

to the following rule. If d is odd and divides n then there is only one cyclic subgroup of order d. If d
is even and divides n then there are a cyclic subgroup of order d and two classes of dihedral subgroups
of order d (which are cyclic, too, in the case d = 2, see the example below). Otherwise (i.e., if d does
not divide n) there is just one class of dihedral subgroups of order d.

GAP - Reference Manual 1146

Example
gap> Display(TableOfMarksDihedral(12));

1: 12

2: 6 6

3: 6 . 2

4: 6 . . 2

5: 4 . . . 4

6: 3 3 1 1 . 1

7: 2 2 . . 2 . 2

8: 2 . 2 . 2 . . 2

9: 2 . . 2 2 . . . 2

10: 1 1 1 1 1 1 1 1 1 1

70.12.3 TableOfMarksFrobenius

▷ TableOfMarksFrobenius(p, q) (operation)

TableOfMarksFrobenius computes the table of marks of a Frobenius group of order pq, where
p is a prime and q divides p−1.

Example
gap> Display(TableOfMarksFrobenius(5, 4));

1: 20

2: 10 2

3: 5 1 1

4: 4 . . 4

5: 2 2 . 2 2

6: 1 1 1 1 1 1

70.13 The Library of Tables of Marks

The GAP package TomLib provides access to several hundred tables of marks of almost simple groups
and their maximal subgroups. If this package is installed then the tables from this database can be
accessed via TableOfMarks (70.3.1) with argument a string. If also the GAP Character Table Library
is installed and contains the ordinary character table of the group for which one wants to fetch the
table of marks then one can also call TableOfMarks (70.3.1) with argument the character table.

A list of all names of tables of marks that are provided by the TomLib package can be obtained
via AllLibTomNames (TomLib: AllLibTomNames).

Example
gap> names:= AllLibTomNames();;

gap> "A5" in names;

true

Chapter 71

Character Tables

This chapter describes operations for character tables of finite groups.
Operations for characters (or, more general, class functions) are described in Chapter 72.
For a description of the GAP Library of Character Tables, see the separate manual for the GAP

package CTblLib.
Several examples in this chapter require the GAP Character Table Library to be available. If it is

not yet loaded then we load it now.
Example

gap> LoadPackage("ctbllib");

true

71.1 Some Remarks about Character Theory in GAP

It seems to be necessary to state some basic facts –and maybe warnings– at the beginning of the
character theory package. This holds for people who are familiar with character theory because there
is no global reference on computational character theory, although there are many papers on this topic,
such as [NPP84] or [LP91]. It holds, however, also for people who are familiar with GAP because the
general concept of domains (see Chapter 12.4) plays no important role here –we will justify this later
in this section.

Intuitively, characters (or more generally, class functions) of a finite group G can be thought of
as certain mappings defined on G, with values in the complex number field; the set of all characters
of G forms a semiring, with both addition and multiplication defined pointwise, which is naturally
embedded into the ring of generalized (or virtual) characters in the natural way. A Z-basis of this
ring, and also a vector space basis of the complex vector space of class functions of G, is given by the
irreducible characters of G.

At this stage one could ask where there is a problem, since all these algebraic structures are sup-
ported by GAP. But in practice, these structures are of minor importance, compared to individual
characters and the character tables themselves (which are not domains in the sense of GAP).

For computations with characters of a finite group G with n conjugacy classes, we fix an ordering
of the classes, and then identify each class with its position according to this ordering. Each character
of G can be represented by a list of length n in which the character value for elements of the i-th class
is stored at the i-th position. Note that we need not know the conjugacy classes of G physically, even
our knowledge of G may be implicit in the sense that, e.g., we know how many classes of involutions
G has, and which length these classes have, but we never have seen an element of G, or a presentation

1147

GAP - Reference Manual 1148

or representation of G. This allows us to work with the character tables of very large groups, e.g., of
the so-called monster, where GAP has (currently) no chance to deal with the group.

As a consequence, also other information involving characters is given implicitly. For example,
we can talk about the kernel of a character not as a group but as a list of classes (more exactly: a list
of their positions according to the chosen ordering of classes) forming this kernel; we can deduce the
group order, the contained cyclic subgroups and so on, but we do not get the group itself.

So typical calculations with characters involve loops over lists of character values. For example,
the scalar product of two characters χ , ψ of G given by

[χ,ψ] =

(
∑
g∈G

χ(g)ψ(g−1)

)
/|G|

can be written as

Sum([1 .. n], i -> SizesConjugacyClasses(t)[i] * chi[i]

* ComplexConjugate(psi[i])) / Size(t);

where t is the character table of G, and chi, psi are the lists of values of χ , ψ , respectively.
It is one of the advantages of character theory that after one has translated a problem concerning

groups into a problem concerning only characters, the necessary calculations are mostly simple. For
example, one can often prove that a group is a Galois group over the rationals using calculations with
structure constants that can be computed from the character table, and information about (the character
tables of) maximal subgroups. When one deals with such questions, the translation back to groups is
just an interpretation by the user, it does not take place in GAP.

GAP uses character tables to store information such as class lengths, element orders, the ir-
reducible characters of G etc. in a consistent way; in the example above, we have seen that
SizesConjugacyClasses (71.9.3) returns the list of class lengths of its argument. Note that the
values of these attributes rely on the chosen ordering of conjugacy classes, a character table is not
determined by something similar to generators of groups or rings in GAP where knowledge could in
principle be recovered from the generators but is stored mainly for the sake of efficiency.

Note that the character table of a group G in GAP must not be mixed up with the list of complex
irreducible characters of G. The irreducible characters are stored in a character table via the attribute
Irr (71.8.2).

Two further important instances of information that depends on the ordering of conjugacy classes
are power maps and fusion maps. Both are represented as lists of integers in GAP. The k-th power
map maps each class to the class of k-th powers of its elements, the corresponding list contains at
each position the position of the image. A class fusion map between the classes of a subgroup H of G
and the classes of G maps each class c of H to that class of G that contains c, the corresponding list
contains again the positions of image classes; if we know only the character tables of H and G but not
the groups themselves, this means with respect to a fixed embedding of H into G. More about power
maps and fusion maps can be found in Chapter 73.

So class functions, power maps, and fusion maps are represented by lists in GAP. If they are plain
lists then they are regarded as class functions etc. of an appropriate character table when they are
passed to GAP functions that expect class functions etc. For example, a list with all entries equal to 1
is regarded as the trivial character if it is passed to a function that expects a character. Note that this
approach requires the character table as an argument for such a function.

GAP - Reference Manual 1149

One can construct class function objects that store their underlying character table and other at-
tribute values (see Chapter 72). This allows one to omit the character table argument in many func-
tions, and it allows one to use infix operations for tensoring or inducing class functions.

71.2 History of Character Theory Stuff in GAP

GAP provides functions for dealing with group characters since the version GAP 3.1, which was
released in March 1992. The reason for adding this branch of mathematics to the topics of GAP
was (apart from the usefulness of character theoretic computations in general) the insight that GAP
provides an ideal environment for developing the algorithms needed. In particular, it had been decided
at Lehrstuhl D für Mathematik that the CAS system (a standalone Fortran program together with a
database of character tables, see [NPP84]) should not be developed further and the functionality of
CAS should be made available in GAP. The background was that extending CAS (by new Fortran
code) had turned out to be much less flexible than writing analogous GAP library code.

For integrating the existing character theory algorithms, GAP’s memory management and long
integer arithmetic were useful as well as the list handling –it is an important feature of character
theoretic methods that questions about groups are translated into manipulations of lists; on the other
hand, the datatype of cyclotomics (see Chapter Cyclotomics (18.1.2)) was added to the GAP kernel
because of the character theory algorithms. For developing further code, also other areas of GAP’s
library became interesting, such as permutation groups, finite fields, and polynomials.

The development of character theory code for GAP has been supported by several DFG grants,
in particular the project “Representation Theory of Finite Groups and Finite Dimensional Algebras”
(until 1991), and the Schwerpunkt “Algorithmische Zahlentheorie und Algebra” (from 1991 until
1997). Besides that, several Diploma theses at Lehrstuhl D were concerned with the development
and/or implementation of algorithms dealing with characters in GAP.

The major contributions can be listed as follows.

• The arithmetic for the cyclotomics data type, following [Zum89], was first implemented by
Marco van Meegen; an alternative approach was studied in the diploma thesis of Michael Sch-
erner (see [Sch92]) but was not efficient enough; later Martin Schönert replaced the implemen-
tation by a better one.

• The basic routines for characters and character tables were written by Thomas Breuer and Götz
Pfeiffer.

• The lattice related functions, such as LLL (72.10.4), OrthogonalEmbeddings (25.6.1), and
DnLattice (72.10.8), were implemented by Ansgar Kaup (see [Kau92]).

• Functions for computing possible class fusions, possible power maps, and table automorphisms
were written by Thomas Breuer (see [Bre91]).

• Functions for computing possible permutation characters were written by Thomas Breuer
(see [Bre91]) and Götz Pfeiffer (see [Pfe91]).

• Functions for computing character tables from groups were written by Alexander Hulpke
(Dixon-Schneider algorithm, see [Hul93]) and Hans Ulrich Besche (Baum algorithm and Con-
lon algorithm, see [Bes92]).

• Functions for dealing with Clifford matrices were written by Ute Schiffer (see [Sch94]).

GAP - Reference Manual 1150

• Functions for monomiality questions were written by Thomas Breuer and Erzsébet Horváth.

Since then, the code has been maintained and extended further by Alexander Hulpke (code related
to his implementation of the Dixon-Schneider algorithm) and Thomas Breuer.

Currently GAP does not provide special functionality for computing Brauer character tables, but
there is an interface to the MOC system (see [HJLP]), and the GAP Character Table Library contains
many known Brauer character tables.

71.3 Creating Character Tables

There are in general five different ways to get a character table in GAP. You can

1. compute the table from a group,

2. read a file that contains the table data,

3. construct the table using generic formulae,

4. derive it from known character tables, or

5. combine partial information about conjugacy classes, power maps of the group in question, and
about (character tables of) some subgroups and supergroups.

In 1., the computation of the irreducible characters is the hardest part; the different algorithms
available for this are described in 71.14. Possibility 2. is used for the character tables in the GAP
Character Table Library, see the manual of this library. Generic character tables –as addressed by 3.–
are described in (CTblLib: Generic Character Tables). Several occurrences of 4. are described
in 71.20. The last of the above possibilities is currently not supported and will be described in a
chapter of its own when it becomes available.

The operation CharacterTable (71.3.1) can be used for the cases 1. to 3.

71.3.1 CharacterTable

▷ CharacterTable(G[, p]) (operation)

▷ CharacterTable(ordtbl, p) (operation)

▷ CharacterTable(name[, param]) (operation)

Called with a group G , CharacterTable calls the attribute OrdinaryCharacterTable (71.8.4).
Called with first argument a group G or an ordinary character table ordtbl , and second argument a
prime p , CharacterTable calls the operation BrauerTable (71.3.2).

Called with a string name and perhaps optional parameters param , CharacterTable tries to
access a character table from the GAP Character Table Library. See the manual of the GAP package
CTblLib for an overview of admissible arguments. An error is signalled if this GAP package is not
loaded in this case.

Probably the most interesting information about the character table is its list of irreducibles, which
can be accessed as the value of the attribute Irr (71.8.2). If the argument of CharacterTable is
a string name then the irreducibles are just read from the library file, therefore the returned table
stores them already. However, if CharacterTable is called with a group G or with an ordinary

GAP - Reference Manual 1151

character table ordtbl , the irreducible characters are not computed by CharacterTable. They are
only computed when the Irr (71.8.2) value is accessed for the first time, for example when Display

(6.3.6) is called for the table (see 71.13). This means for example that CharacterTable returns its
result very quickly, and the first call of Display (6.3.6) for this table may take some time because
the irreducible characters must be computed at that time before they can be displayed together with
other information stored on the character table. The value of the filter HasIrr indicates whether the
irreducible characters have been computed already.

The reason why CharacterTable does not compute the irreducible characters is that there are
situations where one only needs the “table head”, that is, the information about class lengths, power
maps etc., but not the irreducibles. For example, if one wants to inspect permutation characters of a
group then all one has to do is to induce the trivial characters of subgroups one is interested in; for
that, only class lengths and the class fusion are needed. Or if one wants to compute the Molien series
(see MolienSeries (72.12.1)) for a given complex matrix group, the irreducible characters of this
group are in general of no interest.

For details about different algorithms to compute the irreducible characters, see 71.14.
If the group G is given as an argument, CharacterTable accesses the conjugacy classes of G and

therefore causes that these classes are computed if they were not yet stored (see 71.6).

71.3.2 BrauerTable

▷ BrauerTable(ordtbl, p) (operation)

▷ BrauerTable(G, p) (operation)

▷ BrauerTableOp(ordtbl, p) (operation)

▷ ComputedBrauerTables(ordtbl) (attribute)

Called with an ordinary character table ordtbl or a group G , BrauerTable returns its p-modular
character table if GAP can compute this table, and fail otherwise.

The p-modular table can be computed in the following cases.

• The group is p-solvable (see IsPSolvable (39.15.26), apply the Fong-Swan Theorem);

• the Sylow p-subgroup of G is cyclic, and all p-modular Brauer characters of G lift to ordinary
characters (note that this situation can be detected from the ordinary character table of G);

• the table ordtbl stores information how it was constructed from other tables (as a direct prod-
uct or as an isoclinic variant, for example), and the Brauer tables of the source tables can be
computed;

• ordtbl is a table from the GAP character table library for which also the p-modular table is
contained in the table library.

The default method for a group and a prime delegates to BrauerTable for the ordinary character
table of this group. The default method for ordtbl uses the attribute ComputedBrauerTables for
storing the computed Brauer table at position p , and calls the operation BrauerTableOp for comput-
ing values that are not yet known.

So if one wants to install a new method for computing Brauer tables then it is sufficient to install
it for BrauerTableOp.

The mod operator for a character table and a prime (see 71.7) delegates to BrauerTable.

GAP - Reference Manual 1152

71.3.3 CharacterTableRegular

▷ CharacterTableRegular(tbl, p) (function)

For an ordinary character table tbl and a prime integer p , CharacterTableRegular returns the
“table head” of the p-modular Brauer character table of tbl . This is the restriction of tbl to its
p-regular classes, like the return value of BrauerTable (71.3.2), but without the irreducible Brauer
characters. (In general, these characters are hard to compute, and BrauerTable (71.3.2) may return
fail for the given arguments, for example if tbl is a table from the GAP character table library.)

The returned table head can be used to create p-modular Brauer characters, by restricting ordinary
characters, for example when one is interested in approximations of the (unknown) irreducible Brauer
characters.

Example
gap> g:= SymmetricGroup(4);

Sym([1 .. 4])

gap> tbl:= CharacterTable(g);; HasIrr(tbl);

false

gap> tblmod2:= CharacterTable(tbl, 2);

BrauerTable(Sym([1 .. 4]), 2)

gap> tblmod2 = CharacterTable(tbl, 2);

true

gap> tblmod2 = BrauerTable(tbl, 2);

true

gap> tblmod2 = BrauerTable(g, 2);

true

gap> libtbl:= CharacterTable("M");

CharacterTable("M")

gap> CharacterTableRegular(libtbl, 2);

BrauerTable("M", 2)

gap> BrauerTable(libtbl, 2);

fail

gap> CharacterTable("Symmetric", 4);

CharacterTable("Sym(4)")

gap> ComputedBrauerTables(tbl);

[, BrauerTable(Sym([1 .. 4]), 2)]

71.3.4 SupportedCharacterTableInfo

▷ SupportedCharacterTableInfo (global variable)

SupportedCharacterTableInfo is a list that contains at position 3i−2 an attribute getter func-
tion, at position 3i− 1 the name of this attribute, and at position 3i a list containing a subset of [
"character", "class", "mutable"], depending on whether the attribute value relies on the or-
dering of characters or classes, or whether the attribute value is a mutable list or record.

When (ordinary or Brauer) character table objects are created from records, using
ConvertToCharacterTable (71.3.5), SupportedCharacterTableInfo specifies those record
components that shall be used as attribute values; other record components are not be regarded as
attribute values in the conversion process.

New attributes and properties can be notified to SupportedCharacterTableInfo by
creating them with DeclareAttributeSuppCT and DeclarePropertySuppCT instead of

GAP - Reference Manual 1153

DeclareAttribute (13.5.4) and DeclareProperty (13.7.5).

71.3.5 ConvertToCharacterTable

▷ ConvertToCharacterTable(record) (function)

▷ ConvertToCharacterTableNC(record) (function)

Let record be a record. ConvertToCharacterTable converts record into a component object
(see 79.2) representing a character table. The values of those components of record whose names
occur in SupportedCharacterTableInfo (71.3.4) correspond to attribute values of the returned
character table. All other components of the record simply become components of the character table
object.

If inconsistencies in record are detected, fail is returned. record must have the component
UnderlyingCharacteristic bound (cf. UnderlyingCharacteristic (71.9.5)), since this decides
about whether the returned character table lies in IsOrdinaryTable (71.4.1) or in IsBrauerTable

(71.4.1).
ConvertToCharacterTableNC does the same except that all checks of record are omitted.
An example of a conversion from a record to a character table object can be found in Sec-

tion PrintCharacterTable (71.13.5).

71.4 Character Table Categories

71.4.1 IsNearlyCharacterTable

▷ IsNearlyCharacterTable(obj) (Category)

▷ IsCharacterTable(obj) (Category)

▷ IsOrdinaryTable(obj) (Category)

▷ IsBrauerTable(obj) (Category)

▷ IsCharacterTableInProgress(obj) (Category)

Every “character table like object” in GAP lies in the category IsNearlyCharacterTable. There
are four important subcategories, namely the ordinary tables in IsOrdinaryTable, the Brauer tables
in IsBrauerTable, the union of these two in IsCharacterTable, and the incomplete ordinary tables
in IsCharacterTableInProgress.

We want to distinguish ordinary and Brauer tables because a Brauer table may delegate
tasks to the ordinary table of the same group, for example the computation of power maps.
A Brauer table is constructed from an ordinary table and stores this table upon construction
(see OrdinaryCharacterTable (71.8.4)).

Furthermore, IsOrdinaryTable and IsBrauerTable denote character tables that provide
enough information to compute all power maps and irreducible characters (and in the case of Brauer
tables to get the ordinary table), for example because the underlying group (see UnderlyingGroup

(71.6.1)) is known or because the table is a library table (see the manual of the GAP Character Table
Library). We want to distinguish these tables from partially known ordinary tables that cannot be
asked for all power maps or all irreducible characters.

The character table objects in IsCharacterTable are always immutable (see 12.6). This means
mainly that the ordering of conjugacy classes used for the various attributes of the character table
cannot be changed; see 71.21 for how to compute a character table with a different ordering of classes.

GAP - Reference Manual 1154

The GAP objects in IsCharacterTableInProgress represent incomplete ordinary character
tables. This means that not all irreducible characters, not all power maps are known, and perhaps
even the number of classes and the centralizer orders are known. Such tables occur when the char-
acter table of a group G is constructed using character tables of related groups and information
about G but for example without explicitly computing the conjugacy classes of G. An object in
IsCharacterTableInProgress is first of all mutable, so nothing is stored automatically on such a
table, since otherwise one has no control of side-effects when a hypothesis is changed. Operations
for such tables may return more general values than for other tables, for example class functions may
contain unknowns (see Chapter 74) or lists of possible values in certain positions, the same may hap-
pen also for power maps and class fusions (see 73.5). Incomplete tables in this sense are currently
not supported and will be described in a chapter of their own when they become available. Note that
the term “incomplete table” shall express that GAP cannot compute certain values such as irreducible
characters or power maps. A table with access to its group is therefore always complete, also if its
irreducible characters are not yet stored.

Example
gap> g:= SymmetricGroup(4);;

gap> tbl:= CharacterTable(g); modtbl:= tbl mod 2;

CharacterTable(Sym([1 .. 4]))

BrauerTable(Sym([1 .. 4]), 2)

gap> IsCharacterTable(tbl); IsCharacterTable(modtbl);

true

true

gap> IsBrauerTable(modtbl); IsBrauerTable(tbl);

true

false

gap> IsOrdinaryTable(tbl); IsOrdinaryTable(modtbl);

true

false

gap> IsCharacterTable(g); IsCharacterTable(Irr(g));

false

false

71.4.2 InfoCharacterTable

▷ InfoCharacterTable (info class)

is the info class (see 7.4) for computations with character tables.

71.4.3 NearlyCharacterTablesFamily

▷ NearlyCharacterTablesFamily (family)

Every character table like object lies in this family (see 13.1).

71.5 Conventions for Character Tables

The following few conventions should be noted.

GAP - Reference Manual 1155

• The class of the identity element is expected to be the first one; thus the degree of a character is
the character value at position 1.

• The trivial character of a character table need not be the first in the list of irreducibles.

• Most functions that take a character table as an argument and work with characters expect these
characters as an argument, too. For some functions, the list of irreducible characters serves as
the default, i.e, the value of the attribute Irr (71.8.2); in these cases, the Irr (71.8.2) value is
automatically computed if it was not yet known.

• For a stored class fusion, the image table is denoted by its Identifier (71.9.8) value; each
library table has a unique identifier by which it can be accessed (see (CTblLib: Accessing
a Character Table from the Library) in the manual for the GAP Character Table Library),
tables constructed from groups get an identifier that is unique in the current GAP session.

71.6 The Interface between Character Tables and Groups

For a character table with underlying group (see UnderlyingGroup (71.6.1)), the interface between
table and group consists of three attribute values, namely the group, the conjugacy classes stored in
the table (see ConjugacyClasses (71.6.2) below) and the identification of the conjugacy classes of
table and group (see IdentificationOfConjugacyClasses (71.6.3) below).

Character tables constructed from groups know these values upon construction, and for character
tables constructed without groups, these values are usually not known and cannot be computed from
the table.

However, given a group G and a character table of a group isomorphic to G (for example a charac-
ter table from the GAP table library), one can tell GAP to compute a new instance of the given table
and to use it as the character table of G (see CharacterTableWithStoredGroup (71.6.4)).

Tasks may be delegated from a group to its character table or vice versa only if these three attribute
values are stored in the character table.

71.6.1 UnderlyingGroup (for character tables)

▷ UnderlyingGroup(ordtbl) (attribute)

For an ordinary character table ordtbl of a finite group, the group can be stored as value of
UnderlyingGroup.

Brauer tables do not store the underlying group, they access it via the ordinary table
(see OrdinaryCharacterTable (71.8.4)).

71.6.2 ConjugacyClasses (for character tables)

▷ ConjugacyClasses(tbl) (attribute)

For a character table tbl with known underlying group G, the ConjugacyClasses value of tbl
is a list of conjugacy classes of G. All those lists stored in the table that are related to the ordering
of conjugacy classes (such as sizes of centralizers and conjugacy classes, orders of representatives,
power maps, and all class functions) refer to the ordering of this list.

GAP - Reference Manual 1156

This ordering need not coincide with the ordering of conjugacy classes as stored in the underlying
group of the table (see 71.21). One reason for this is that otherwise we would not be allowed to use
a library table as the character table of a group for which the conjugacy classes are stored already.
(Another, less important reason is that we can use the same group as underlying group of character
tables that differ only w.r.t. the ordering of classes.)

The class of the identity element must be the first class (see 71.5).
If tbl was constructed from G then the conjugacy classes have been stored at the same time

when G was stored. If G and tbl have been connected later than in the construction of tbl , the
recommended way to do this is via CharacterTableWithStoredGroup (71.6.4). So there is no
method for ConjugacyClasses that computes the value for tbl if it is not yet stored.

Brauer tables do not store the (p-regular) conjugacy classes, they access them via the ordinary
table (see OrdinaryCharacterTable (71.8.4)) if necessary.

71.6.3 IdentificationOfConjugacyClasses

▷ IdentificationOfConjugacyClasses(tbl) (attribute)

For an ordinary character table tbl with known underlying group G,
IdentificationOfConjugacyClasses returns a list of positive integers that contains at posi-
tion i the position of the i-th conjugacy class of tbl in the ConjugacyClasses (71.6.2) value of
G.

Example
gap> g:= SymmetricGroup(4);;

gap> repres:= [(1,2), (1,2,3), (1,2,3,4), (1,2)(3,4), ()];;

gap> ccl:= List(repres, x -> ConjugacyClass(g, x));;

gap> SetConjugacyClasses(g, ccl);

gap> tbl:= CharacterTable(g);; # the table stores already the values

gap> HasConjugacyClasses(tbl); HasUnderlyingGroup(tbl);

true

true

gap> UnderlyingGroup(tbl) = g;

true

gap> HasIdentificationOfConjugacyClasses(tbl);

true

gap> IdentificationOfConjugacyClasses(tbl);

[5, 1, 2, 3, 4]

71.6.4 CharacterTableWithStoredGroup

▷ CharacterTableWithStoredGroup(G, tbl[, info]) (function)

Let G be a group and tbl a character table of (a group isomorphic to) G , such that G does
not store its OrdinaryCharacterTable (71.8.4) value. CharacterTableWithStoredGroup calls
CompatibleConjugacyClasses (71.6.5), trying to identify the classes of G with the columns of
tbl .

If this identification is unique up to automorphisms of tbl (see AutomorphismsOfTable (71.9.4))
then tbl is stored as CharacterTable (71.3.1) value of G , and a new character table is returned that
is equivalent to tbl , is sorted in the same way as tbl , and has the values of UnderlyingGroup
(71.6.1), ConjugacyClasses (71.6.2), and IdentificationOfConjugacyClasses (71.6.3) set.

GAP - Reference Manual 1157

Otherwise, i.e., if GAP cannot identify the classes of G up to automorphisms of tbl , fail is
returned.

If a record is present as the third argument info , its meaning is the same as the optional argument
arec for CompatibleConjugacyClasses (71.6.5).

If a list is entered as third argument info it is used as value of
IdentificationOfConjugacyClasses (71.6.3), relative to the ConjugacyClasses (71.6.2)
value of G , without further checking, and the corresponding character table is returned.

71.6.5 CompatibleConjugacyClasses

▷ CompatibleConjugacyClasses([G, ccl,]tbl[, arec]) (operation)

If the arguments G and ccl are present then ccl must be a list of the conjugacy classes of the
group G , and tbl the ordinary character table of G . Then CompatibleConjugacyClasses returns
a list l of positive integers that describes an identification of the columns of tbl with the conjugacy
classes ccl in the sense that l[i] is the position in ccl of the class corresponding to the i-th column
of tbl , if this identification is unique up to automorphisms of tbl (see AutomorphismsOfTable

(71.9.4)); if GAP cannot identify the classes, fail is returned.
If tbl is the first argument then it must be an ordinary character table, and

CompatibleConjugacyClasses checks whether the columns of tbl can be identified with the con-
jugacy classes of a group isomorphic to that for which tbl is the character table; the return value is a
list of all those sets of class positions for which the columns of tbl cannot be distinguished with the
invariants used, up to automorphisms of tbl . So the identification is unique if and only if the returned
list is empty.

The usual approach is that one first calls CompatibleConjugacyClasses in the second form for
checking quickly whether the first form will be successful, and only if this is the case the more time
consuming calculations with both group and character table are done.

The following invariants are used.

1. element orders (see OrdersClassRepresentatives (71.9.1)),

2. class lengths (see SizesConjugacyClasses (71.9.3)),

3. power maps (see PowerMap (73.1.1), ComputedPowerMaps (73.1.1)),

4. symmetries of the table (see AutomorphismsOfTable (71.9.4)).

If the optional argument arec is present then it must be a record whose components describe
additional information for the class identification. The following components are supported.

natchar

if G is a permutation group or matrix group then the value of this component is regarded as the
list of values of the natural character (see NaturalCharacter (72.7.2)) of G , w.r.t. the ordering
of classes in tbl ,

bijection

a list describing a partial bijection; the i-th entry, if bound, is the position of the i-th conjugacy
class of tbl in the list ccl .

GAP - Reference Manual 1158

Example
gap> g:= AlternatingGroup(5);

Alt([1 .. 5])

gap> tbl:= CharacterTable("A5");

CharacterTable("A5")

gap> HasUnderlyingGroup(tbl); HasOrdinaryCharacterTable(g);

false

false

gap> CompatibleConjugacyClasses(tbl); # unique identification

[]

gap> new:= CharacterTableWithStoredGroup(g, tbl);

CharacterTable(Alt([1 .. 5]))

gap> Irr(new) = Irr(tbl);

true

gap> HasConjugacyClasses(new); HasUnderlyingGroup(new);

true

true

gap> IdentificationOfConjugacyClasses(new);

[1, 2, 3, 4, 5]

gap> # Here is an example where the identification is not unique.

gap> CompatibleConjugacyClasses(CharacterTable("J2"));

[[17, 18], [9, 10]]

71.7 Operators for Character Tables

The following infix operators are defined for character tables.

tbl1 * tbl2

the direct product of two character tables (see CharacterTableDirectProduct (71.20.1)),

tbl / list

the table of the factor group modulo the normal subgroup spanned by the classes in the list list
(see CharacterTableFactorGroup (71.20.3)),

tbl mod p

the p-modular Brauer character table corresponding to the ordinary character table tbl

(see BrauerTable (71.3.2)),

tbl.name

the position of the class with name name in tbl (see ClassNames (71.9.6)).

71.8 Attributes and Properties for Groups and Character Tables

Several attributes for groups are valid also for character tables.
These are first those that have the same meaning for both the group and its character table, and

whose values can be read off or computed, respectively, from the character table, such as Size (71.8.5),
IsAbelian (71.8.5), or IsSolvable (71.8.5).

Second, there are attributes whose meaning for character tables is different from the meaning for
groups, such as ConjugacyClasses (71.6.2).

GAP - Reference Manual 1159

71.8.1 CharacterDegrees

▷ CharacterDegrees(G[, p]) (attribute)

▷ CharacterDegrees(tbl) (attribute)

In the first form, CharacterDegrees returns a collected list of the degrees of the absolutely
irreducible characters of the group G ; the optional second argument p must be either zero or a prime
integer denoting the characteristic, the default value is zero. In the second form, tbl must be an
(ordinary or Brauer) character table, and CharacterDegrees returns a collected list of the degrees of
the absolutely irreducible characters of tbl .

(The default method for the call with only argument a group is to call the operation with second
argument 0.)

For solvable groups, the default method is based on [Con90b].
Example

gap> CharacterDegrees(SymmetricGroup(4));

[[1, 2], [2, 1], [3, 2]]

gap> CharacterDegrees(SymmetricGroup(4), 2);

[[1, 1], [2, 1]]

gap> CharacterDegrees(CharacterTable("A5"));

[[1, 1], [3, 2], [4, 1], [5, 1]]

gap> CharacterDegrees(CharacterTable("A5") mod 2);

[[1, 1], [2, 2], [4, 1]]

71.8.2 Irr

▷ Irr(G[, p]) (attribute)

▷ Irr(tbl) (attribute)

Called with a group G , Irr returns the irreducible characters of the ordinary character table of G .
Called with a group G and a prime integer p , Irr returns the irreducible characters of the p-modular
Brauer table of G . Called with an (ordinary or Brauer) character table tbl , Irr returns the list of all
complex absolutely irreducible characters of tbl .

For a character table tbl with underlying group, Irr may delegate to the group. For a group G ,
Irr may delegate to its character table only if the irreducibles are already stored there.

(If G is p-solvable (see IsPSolvable (39.15.26)) then the p-modular irreducible characters can
be computed by the Fong-Swan Theorem; in all other cases, there may be no method.)

Note that the ordering of columns in the Irr matrix of the group G refers to the ordering of
conjugacy classes in the CharacterTable (71.3.1) value of G , which may differ from the ordering
of conjugacy classes in G (see 71.6). As an extreme example, for a character table obtained from
sorting the classes of the CharacterTable (71.3.1) value of G , the ordering of columns in the Irr

matrix respects the sorting of classes (see 71.21), so the irreducibles of such a table will in general
not coincide with the irreducibles stored as the Irr value of G although also the sorted table stores the
group G .

The ordering of the entries in the attribute Irr of a group need not coincide with the ordering of
its IrreducibleRepresentations (71.14.4) value.

Example
gap> Irr(SymmetricGroup(4));

[Character(CharacterTable(Sym([1 .. 4])), [1, -1, 1, 1, -1

GAP - Reference Manual 1160

]), Character(CharacterTable(Sym([1 .. 4])),

[3, -1, -1, 0, 1]),

Character(CharacterTable(Sym([1 .. 4])), [2, 0, 2, -1, 0])

, Character(CharacterTable(Sym([1 .. 4])),

[3, 1, -1, 0, -1]),

Character(CharacterTable(Sym([1 .. 4])), [1, 1, 1, 1, 1])

]

gap> Irr(SymmetricGroup(4), 2);

[Character(BrauerTable(Sym([1 .. 4]), 2), [1, 1]),

Character(BrauerTable(Sym([1 .. 4]), 2), [2, -1])]

gap> Irr(CharacterTable("A5"));

[Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),

Character(CharacterTable("A5"),

[3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3]),

Character(CharacterTable("A5"),

[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4]),

Character(CharacterTable("A5"), [4, 0, 1, -1, -1]),

Character(CharacterTable("A5"), [5, 1, -1, 0, 0])]

gap> Irr(CharacterTable("A5") mod 2);

[Character(BrauerTable("A5", 2), [1, 1, 1, 1]),

Character(BrauerTable("A5", 2),

[2, -1, E(5)+E(5)^4, E(5)^2+E(5)^3]),

Character(BrauerTable("A5", 2),

[2, -1, E(5)^2+E(5)^3, E(5)+E(5)^4]),

Character(BrauerTable("A5", 2), [4, 1, -1, -1])]

71.8.3 LinearCharacters

▷ LinearCharacters(G[, p]) (attribute)

▷ LinearCharacters(tbl) (attribute)

LinearCharacters returns the linear (i.e., degree 1) characters in the Irr (71.8.2) list of the
group G or the character table tbl , respectively. In the second form, LinearCharacters returns the
p-modular linear characters of the group G .

For a character table tbl with underlying group, LinearCharacters may delegate to the group.
For a group G , LinearCharacters may delegate to its character table only if the irreducibles are
already stored there.

The ordering of linear characters in tbl need not coincide with the ordering of linear characters
in the irreducibles of tbl (see Irr (71.8.2)).

Example
gap> LinearCharacters(SymmetricGroup(4));

[Character(CharacterTable(Sym([1 .. 4])), [1, 1, 1, 1, 1]),

Character(CharacterTable(Sym([1 .. 4])), [1, -1, 1, 1, -1

])]

71.8.4 OrdinaryCharacterTable

▷ OrdinaryCharacterTable(G) (attribute)

▷ OrdinaryCharacterTable(modtbl) (attribute)

GAP - Reference Manual 1161

OrdinaryCharacterTable returns the ordinary character table of the group G or the Brauer char-
acter table modtbl , respectively.

Since Brauer character tables are constructed from ordinary tables, the attribute value for modtbl
is already stored (cf. 71.4).

Example
gap> OrdinaryCharacterTable(SymmetricGroup(4));

CharacterTable(Sym([1 .. 4]))

gap> tbl:= CharacterTable("A5");; modtbl:= tbl mod 2;

BrauerTable("A5", 2)

gap> OrdinaryCharacterTable(modtbl) = tbl;

true

71.8.5 Group Operations Applicable to Character Tables

▷ AbelianInvariants(tbl) (attribute)

▷ CommutatorLength(tbl) (attribute)

▷ Exponent(tbl) (attribute)

▷ IsAbelian(tbl) (property)

▷ IsAlmostSimple(tbl) (property)

▷ IsCyclic(tbl) (property)

▷ IsElementaryAbelian(tbl) (property)

▷ IsFinite(tbl) (property)

▷ IsMonomial(tbl) (property)

▷ IsNilpotent(tbl) (property)

▷ IsPerfect(tbl) (property)

▷ IsQuasisimple(tbl) (property)

▷ IsSimple(tbl) (property)

▷ IsSolvable(tbl) (property)

▷ IsSporadicSimple(tbl) (property)

▷ IsSupersolvable(tbl) (property)

▷ IsomorphismTypeInfoFiniteSimpleGroup(tbl) (attribute)

▷ NrConjugacyClasses(tbl) (attribute)

▷ Size(tbl) (attribute)

These operations for groups are applicable to character tables and mean the same for a character
table as for its underlying group; see Chapter 39 for the definitions. The operations are mainly useful
for selecting character tables with certain properties, also for character tables without access to a
group.

Example
gap> tables:= [CharacterTable(CyclicGroup(3)),

> CharacterTable(SymmetricGroup(4)),

> CharacterTable(AlternatingGroup(5)),

> CharacterTable(SL(2, 5))];;

gap> List(tables, AbelianInvariants);

[[3], [2], [], []]

gap> List(tables, CommutatorLength);

[1, 1, 1, 1]

gap> List(tables, Exponent);

GAP - Reference Manual 1162

[3, 12, 30, 60]

gap> List(tables, IsAbelian);

[true, false, false, false]

gap> List(tables, IsAlmostSimple);

[false, false, true, false]

gap> List(tables, IsCyclic);

[true, false, false, false]

gap> List(tables, IsFinite);

[true, true, true, true]

gap> List(tables, IsMonomial);

[true, true, false, false]

gap> List(tables, IsNilpotent);

[true, false, false, false]

gap> List(tables, IsPerfect);

[false, false, true, true]

gap> List(tables, IsQuasisimple);

[false, false, true, true]

gap> List(tables, IsSimple);

[true, false, true, false]

gap> List(tables, IsSolvable);

[true, true, false, false]

gap> List(tables, IsSupersolvable);

[true, false, false, false]

gap> List(tables, NrConjugacyClasses);

[3, 5, 5, 9]

gap> List(tables, Size);

[3, 24, 60, 120]

gap> IsomorphismTypeInfoFiniteSimpleGroup(CharacterTable("C5"));

rec(name := "Z(5)", parameter := 5, series := "Z", shortname := "C5"

)

gap> IsomorphismTypeInfoFiniteSimpleGroup(CharacterTable("S3"));

fail

gap> IsomorphismTypeInfoFiniteSimpleGroup(CharacterTable("S6(3)"));

rec(name := "C(3,3) = S(6,3)", parameter := [3, 3], series := "C",

shortname := "S6(3)")

gap> IsomorphismTypeInfoFiniteSimpleGroup(CharacterTable("O7(3)"));

rec(name := "B(3,3) = O(7,3)", parameter := [3, 3], series := "B",

shortname := "O7(3)")

gap> IsomorphismTypeInfoFiniteSimpleGroup(CharacterTable("A8"));

rec(name := "A(8) ~ A(3,2) = L(4,2) ~ D(3,2) = O+(6,2)",

parameter := 8, series := "A", shortname := "A8")

gap> IsomorphismTypeInfoFiniteSimpleGroup(CharacterTable("L3(4)"));

rec(name := "A(2,4) = L(3,4)", parameter := [3, 4], series := "L",

shortname := "L3(4)")

71.9 Attributes and Properties only for Character Tables

The following three attributes for character tables –OrdersClassRepresentatives (71.9.1),
SizesCentralizers (71.9.2), and SizesConjugacyClasses (71.9.3)– would make sense also for
groups but are in fact not used for groups. This is because the values depend on the ordering of conju-
gacy classes stored as the value of ConjugacyClasses (71.6.2), and this value may differ for a group

GAP - Reference Manual 1163

and its character table (see 71.6). Note that for character tables, the consistency of attribute values
must be guaranteed, whereas for groups, there is no need to impose such a consistency rule.

The other attributes introduced in this section apply only to character tables, not to groups.

71.9.1 OrdersClassRepresentatives

▷ OrdersClassRepresentatives(tbl) (attribute)

is a list of orders of representatives of conjugacy classes of the character table tbl , in the same
ordering as the conjugacy classes of tbl .

Example
gap> tbl:= CharacterTable("A5");;

gap> OrdersClassRepresentatives(tbl);

[1, 2, 3, 5, 5]

71.9.2 SizesCentralizers

▷ SizesCentralizers(tbl) (attribute)

▷ SizesCentralisers(tbl) (attribute)

is a list that stores at position i the size of the centralizer of any element in the i-th conjugacy class
of the character table tbl .

Example
gap> tbl:= CharacterTable("A5");;

gap> SizesCentralizers(tbl);

[60, 4, 3, 5, 5]

71.9.3 SizesConjugacyClasses

▷ SizesConjugacyClasses(tbl) (attribute)

is a list that stores at position i the size of the i-th conjugacy class of the character table tbl .
Example

gap> tbl:= CharacterTable("A5");;

gap> SizesConjugacyClasses(tbl);

[1, 15, 20, 12, 12]

71.9.4 AutomorphismsOfTable

▷ AutomorphismsOfTable(tbl) (attribute)

is the permutation group of all column permutations of the character table tbl that leave the set
of irreducibles and each power map of tbl invariant (see also TableAutomorphisms (71.22.2)).

Example
gap> tbl:= CharacterTable("Dihedral", 8);;

gap> AutomorphismsOfTable(tbl);

Group([(4,5)])

gap> OrdersClassRepresentatives(tbl);

GAP - Reference Manual 1164

[1, 4, 2, 2, 2]

gap> SizesConjugacyClasses(tbl);

[1, 2, 1, 2, 2]

71.9.5 UnderlyingCharacteristic

▷ UnderlyingCharacteristic(tbl) (attribute)

▷ UnderlyingCharacteristic(psi) (attribute)

For an ordinary character table tbl , the result is 0, for a p-modular Brauer table tbl , it is p. The
underlying characteristic of a class function psi is equal to that of its underlying character table.

The underlying characteristic must be stored when the table is constructed, there is no method to
compute it.

We cannot use the attribute Characteristic (31.10.1) to denote this, since of course each Brauer
character is an element of characteristic zero in the sense of GAP (see Chapter 72).

Example
gap> tbl:= CharacterTable("A5");;

gap> UnderlyingCharacteristic(tbl);

0

gap> UnderlyingCharacteristic(tbl mod 17);

17

71.9.6 Class Names and Character Names

▷ ClassNames(tbl[, "ATLAS"]) (attribute)

▷ CharacterNames(tbl) (attribute)

ClassNames and CharacterNames return lists of strings, one for each conjugacy class or ir-
reducible character, respectively, of the character table tbl . These names are used when tbl is
displayed.

The default method for ClassNames computes class names consisting of the order of an element
in the class and at least one distinguishing letter.

The default method for CharacterNames returns the list ["X.1", "X.2", ...], whose
length is the number of irreducible characters of tbl .

The position of the class with name name in tbl can be accessed as tbl.name .
When ClassNames is called with two arguments, the second being the string "ATLAS", the class

names returned obey the convention used in the Atlas of Finite Groups [CCN+85, Chapter 7, Section
5]. If one is interested in “relative” class names of almost simple Atlas groups, one can use the
function AtlasClassNames (AtlasRep: AtlasClassNames).

Example
gap> tbl:= CharacterTable("A5");;

gap> ClassNames(tbl);

["1a", "2a", "3a", "5a", "5b"]

gap> tbl.2a;

2

GAP - Reference Manual 1165

71.9.7 Class Parameters and Character Parameters

▷ ClassParameters(tbl) (attribute)

▷ CharacterParameters(tbl) (attribute)

The values of these attributes are lists containing a parameter for each conjugacy class or irre-
ducible character, respectively, of the character table tbl .

It depends on tbl what these parameters are, so there is no default to compute class and character
parameters.

For example, the classes of symmetric groups can be parametrized by partitions, corresponding to
the cycle structures of permutations. Character tables constructed from generic character tables (see
the manual of the GAP Character Table Library) usually have class and character parameters stored.

If tbl is a p-modular Brauer table such that class parameters are stored in the underlying ordinary
table (see OrdinaryCharacterTable (71.8.4)) of tbl then ClassParameters returns the sublist of
class parameters of the ordinary table, for p-regular classes.

71.9.8 Identifier (for character tables)

▷ Identifier(tbl) (attribute)

is a string that identifies the character table tbl in the current GAP session. It is used mainly for
class fusions into tbl that are stored on other character tables. For character tables without group, the
identifier is also used to print the table; this is the case for library tables, but also for tables that are
constructed as direct products, factors etc. involving tables that may or may not store their groups.

The default method for ordinary tables constructs strings of the form "CTn", where n is a positive
integer. LARGEST_IDENTIFIER_NUMBER is a list containing the largest integer n used in the current
GAP session.

The default method for Brauer tables returns the concatenation of the identifier of the ordinary
table, the string "mod", and the (string of the) underlying characteristic.

Example
gap> Identifier(CharacterTable("A5"));

"A5"

gap> tbl:= CharacterTable(Group(()));;

gap> Identifier(tbl); Identifier(tbl mod 2);

"CT9"

"CT9mod2"

71.9.9 InfoText (for character tables)

▷ InfoText(tbl) (method)

is a mutable string with information about the character table tbl . There is no default method to
create an info text.

This attribute is used mainly for library tables (see the manual of the GAP Character Table Li-
brary). Usual parts of the information are the origin of the table, tests it has passed (1.o.r. for the
test of orthogonality, pow[p] for the construction of the p-th power map, DEC for the decomposition
of ordinary into Brauer characters, TENS for the decomposition of tensor products of irreducibles), and
choices made without loss of generality.

GAP - Reference Manual 1166

Example
gap> Print(InfoText(CharacterTable("A5")), "\n");

origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5]

71.9.10 InverseClasses

▷ InverseClasses(tbl) (attribute)

For a character table tbl , InverseClasses returns the list mapping each conjugacy class to its
inverse class. This list can be regarded as (−1)-st power map of tbl (see PowerMap (73.1.1)).

Example
gap> InverseClasses(CharacterTable("A5"));

[1, 2, 3, 4, 5]

gap> InverseClasses(CharacterTable("Cyclic", 3));

[1, 3, 2]

71.9.11 RealClasses

▷ RealClasses(tbl) (attribute)

For a character table tbl , RealClasses returns the strictly sorted list of positions of classes in
tbl that consist of real elements.

An element x is real iff it is conjugate to its inverse x−1 = xo(x)−1.
Example

gap> RealClasses(CharacterTable("A5"));

[1, 2, 3, 4, 5]

gap> RealClasses(CharacterTable("Cyclic", 3));

[1]

71.9.12 ClassOrbit

▷ ClassOrbit(tbl, cc) (operation)

is the list of positions of those conjugacy classes of the character table tbl that are Galois con-
jugate to the cc-th class. That is, exactly the classes at positions given by the list returned by
ClassOrbit contain generators of the cyclic group generated by an element in the cc-th class.

This information is computed from the power maps of tbl .
Example

gap> ClassOrbit(CharacterTable("A5"), 4);

[4, 5]

71.9.13 ClassRoots

▷ ClassRoots(tbl) (attribute)

GAP - Reference Manual 1167

For a character table tbl , ClassRoots returns a list containing at position i the list of positions
of the classes of all nontrivial p-th roots, where p runs over the prime divisors of the Size (71.8.5)
value of tbl .

This information is computed from the power maps of tbl .
Example

gap> ClassRoots(CharacterTable("A5"));

[[2, 3, 4, 5], [], [], [], []]

gap> ClassRoots(CharacterTable("Cyclic", 6));

[[3, 4, 5], [], [2], [2, 6], [6], []]

71.10 Normal Subgroups Represented by Lists of Class Positions

The following attributes for a character table tbl correspond to attributes for the group G of tbl . But
instead of a normal subgroup (or a list of normal subgroups) of G, they return a strictly sorted list of
positive integers (or a list of such lists) which are the positions –relative to the ConjugacyClasses

(71.6.2) value of tbl– of those classes forming the normal subgroup in question.

71.10.1 ClassPositionsOfNormalSubgroups

▷ ClassPositionsOfNormalSubgroups(ordtbl) (attribute)

▷ ClassPositionsOfMaximalNormalSubgroups(ordtbl) (attribute)

▷ ClassPositionsOfMinimalNormalSubgroups(ordtbl) (attribute)

correspond to NormalSubgroups (39.19.9), MaximalNormalSubgroups (39.19.10),
MinimalNormalSubgroups (39.19.11) for the group of the ordinary character table ordtbl .

The entries of the result lists are sorted according to increasing length. (So this total order respects
the partial order of normal subgroups given by inclusion.)

Example
gap> tbls4:= CharacterTable("Symmetric", 4);;

gap> ClassPositionsOfNormalSubgroups(tbls4);

[[1], [1, 3], [1, 3, 4], [1 .. 5]]

71.10.2 ClassPositionsOfAgemo

▷ ClassPositionsOfAgemo(ordtbl, p) (operation)

corresponds to Agemo (39.14.2) for the group of the ordinary character table ordtbl .
Example

gap> tbls4:= CharacterTable("Symmetric", 4);;

gap> ClassPositionsOfAgemo(tbls4, 2);

[1, 3, 4]

71.10.3 ClassPositionsOfCentre (for a character table)

▷ ClassPositionsOfCentre(ordtbl) (attribute)

▷ ClassPositionsOfCenter(ordtbl) (attribute)

GAP - Reference Manual 1168

corresponds to Centre (35.4.5) for the group of the ordinary character table ordtbl .
Example

gap> tbld8:= CharacterTable("Dihedral", 8);;

gap> ClassPositionsOfCentre(tbld8);

[1, 3]

71.10.4 ClassPositionsOfDirectProductDecompositions

▷ ClassPositionsOfDirectProductDecompositions(tbl[, nclasses]) (attribute)

Let tbl be the ordinary character table of the group G, say. Called with the only argument tbl ,
ClassPositionsOfDirectProductDecompositions returns the list of all those pairs [l1, l2] where
l1 and l2 are lists of class positions of normal subgroups N1, N2 of G such that G is their direct
product and |N1| ≤ |N2| holds. Called with second argument a list nclasses of class positions of
a normal subgroup N of G, ClassPositionsOfDirectProductDecompositions returns the list of
pairs describing the decomposition of N as a direct product of two normal subgroups of G.

71.10.5 ClassPositionsOfDerivedSubgroup

▷ ClassPositionsOfDerivedSubgroup(ordtbl) (attribute)

corresponds to DerivedSubgroup (39.12.3) for the group of the ordinary character table ordtbl .
Example

gap> tbld8:= CharacterTable("Dihedral", 8);;

gap> ClassPositionsOfDerivedSubgroup(tbld8);

[1, 3]

71.10.6 ClassPositionsOfElementaryAbelianSeries

▷ ClassPositionsOfElementaryAbelianSeries(ordtbl) (attribute)

corresponds to ElementaryAbelianSeries (39.17.9) for the group of the ordinary character
table ordtbl .

Example
gap> tbls4:= CharacterTable("Symmetric", 4);;

gap> tbla5:= CharacterTable("A5");;

gap> ClassPositionsOfElementaryAbelianSeries(tbls4);

[[1 .. 5], [1, 3, 4], [1, 3], [1]]

gap> ClassPositionsOfElementaryAbelianSeries(tbla5);

fail

71.10.7 ClassPositionsOfFittingSubgroup

▷ ClassPositionsOfFittingSubgroup(ordtbl) (attribute)

corresponds to FittingSubgroup (39.12.5) for the group of the ordinary character table ordtbl .

GAP - Reference Manual 1169

Example
gap> tbls4:= CharacterTable("Symmetric", 4);;

gap> ClassPositionsOfFittingSubgroup(tbls4);

[1, 3]

71.10.8 ClassPositionsOfLowerCentralSeries

▷ ClassPositionsOfLowerCentralSeries(tbl) (attribute)

corresponds to LowerCentralSeriesOfGroup (39.17.11) for the group of the ordinary character
table ordtbl .

Example
gap> tbls4:= CharacterTable("Symmetric", 4);;

gap> tbld8:= CharacterTable("Dihedral", 8);;

gap> ClassPositionsOfLowerCentralSeries(tbls4);

[[1 .. 5], [1, 3, 4]]

gap> ClassPositionsOfLowerCentralSeries(tbld8);

[[1 .. 5], [1, 3], [1]]

71.10.9 ClassPositionsOfUpperCentralSeries

▷ ClassPositionsOfUpperCentralSeries(ordtbl) (attribute)

corresponds to UpperCentralSeriesOfGroup (39.17.12) for the group of the ordinary character
table ordtbl .

Example
gap> tbls4:= CharacterTable("Symmetric", 4);;

gap> tbld8:= CharacterTable("Dihedral", 8);;

gap> ClassPositionsOfUpperCentralSeries(tbls4);

[[1]]

gap> ClassPositionsOfUpperCentralSeries(tbld8);

[[1, 3], [1, 2, 3, 4, 5]]

71.10.10 ClassPositionsOfSolvableRadical

▷ ClassPositionsOfSolvableRadical(ordtbl) (attribute)

corresponds to SolvableRadical (39.12.9) for the group of the ordinary character table ordtbl .
Example

gap> ClassPositionsOfSolvableRadical(CharacterTable("2.A5"));

[1, 2]

71.10.11 ClassPositionsOfSupersolvableResiduum

▷ ClassPositionsOfSupersolvableResiduum(ordtbl) (attribute)

corresponds to SupersolvableResiduum (39.12.11) for the group of the ordinary character table
ordtbl .

GAP - Reference Manual 1170

Example
gap> tbls4:= CharacterTable("Symmetric", 4);;

gap> ClassPositionsOfSupersolvableResiduum(tbls4);

[1, 3]

71.10.12 ClassPositionsOfPCore

▷ ClassPositionsOfPCore(ordtbl, p) (operation)

corresponds to PCore (39.11.3) for the group of the ordinary character table ordtbl .
Example

gap> tbls4:= CharacterTable("Symmetric", 4);;

gap> ClassPositionsOfPCore(tbls4, 2);

[1, 3]

gap> ClassPositionsOfPCore(tbls4, 3);

[1]

71.10.13 ClassPositionsOfNormalClosure

▷ ClassPositionsOfNormalClosure(ordtbl, classes) (operation)

is the sorted list of the positions of all conjugacy classes of the ordinary character table ordtbl

that form the normal closure (see NormalClosure (39.11.4)) of the conjugacy classes at positions in
the list classes .

Example
gap> tbls4:= CharacterTable("Symmetric", 4);;

gap> ClassPositionsOfNormalClosure(tbls4, [1, 4]);

[1, 3, 4]

71.11 Operations Concerning Blocks

71.11.1 PrimeBlocks

▷ PrimeBlocks(ordtbl, p) (operation)

▷ PrimeBlocksOp(ordtbl, p) (operation)

▷ ComputedPrimeBlockss(tbl) (attribute)

For an ordinary character table ordtbl and a prime integer p , PrimeBlocks returns a record with
the following components.

block

a list, the value j at position i means that the i-th irreducible character of ordtbl lies in the
j-th p-block of ordtbl ,

defect

a list containing at position i the defect of the i-th block,

height

a list containing at position i the height of the i-th irreducible character of ordtbl in its block,

GAP - Reference Manual 1171

relevant

a list of class positions such that only the restriction to these classes need be checked for deciding
whether two characters lie in the same block, and

centralcharacter

a list containing at position i a list whose values at the positions stored in the component
relevant are the values of a central character in the i-th block.

The components relevant and centralcharacters are used by SameBlock (71.11.2).
If InfoCharacterTable (71.4.2) has level at least 2, the defects of the blocks and the heights of

the characters are printed.
The default method uses the attribute ComputedPrimeBlockss for storing the computed value at

position p , and calls the operation PrimeBlocksOp for computing values that are not yet known.
Two ordinary irreducible characters χ,ψ of a group G are said to lie in the same p-block if the

images of their central characters ωχ ,ωψ (see CentralCharacter (72.8.17)) under the natural ring
epimorphism R → R/M are equal, where R denotes the ring of algebraic integers in the complex
number field, and M is a maximal ideal in R with pR ⊆ M. (The distribution to p-blocks is in fact
independent of the choice of M, see [Isa76].)

For |G| = pam where p does not divide m, the defect of a block is the integer d such that pa−d is
the largest power of p that divides the degrees of all characters in the block.

The height of a character χ in the block is defined as the largest exponent h for which ph divides
χ(1)/pa−d .

Example
gap> tbl:= CharacterTable("L3(2)");;

gap> pbl:= PrimeBlocks(tbl, 2);

rec(block := [1, 1, 1, 1, 1, 2],

centralcharacter := [[,, 56,, 24], [,, -7,, 3]],

defect := [3, 0], height := [0, 0, 0, 1, 0, 0],

relevant := [3, 5])

71.11.2 SameBlock

▷ SameBlock(p, omega1, omega2, relevant) (function)

Let p be a prime integer, omega1 and omega2 be two central characters (or their values lists) of
a character table, and relevant be a list of positions as is stored in the component relevant of a
record returned by PrimeBlocks (71.11.1).

SameBlock returns true if omega1 and omega2 are equal modulo any maximal ideal in the ring
of complex algebraic integers containing the ideal spanned by p , and false otherwise.

Example
gap> omega:= List(Irr(tbl), CentralCharacter);;

gap> SameBlock(2, omega[1], omega[2], pbl.relevant);

true

gap> SameBlock(2, omega[1], omega[6], pbl.relevant);

false

GAP - Reference Manual 1172

71.11.3 BlocksInfo

▷ BlocksInfo(modtbl) (attribute)

For a Brauer character table modtbl , the value of BlocksInfo is a list of (mutable) records, the
i-th entry containing information about the i-th block. Each record has the following components.

defect

the defect of the block,

ordchars

the list of positions of the ordinary characters that belong to the block, relative to Irr(

OrdinaryCharacterTable(modtbl)),

modchars

the list of positions of the Brauer characters that belong to the block, relative to IBr(modtbl

).

Optional components are

basicset

a list of positions of ordinary characters in the block whose restriction to modtbl is maximally
linearly independent, relative to Irr(OrdinaryCharacterTable(modtbl)),

decmat

the decomposition matrix of the block, it is stored automatically when DecompositionMatrix

(71.11.4) is called for the block,

decinv

inverse of the decomposition matrix of the block, restricted to the ordinary characters described
by basicset,

brauertree

a list that describes the Brauer tree of the block, in the case that the block is of defect 1.
Example

gap> BlocksInfo(CharacterTable("L3(2)") mod 2);

[rec(basicset := [1, 2, 3],

decinv := [[1, 0, 0], [0, 1, 0], [0, 0, 1]],

defect := 3, modchars := [1, 2, 3],

ordchars := [1, 2, 3, 4, 5]),

rec(basicset := [6], decinv := [[1]], defect := 0,

modchars := [4], ordchars := [6])]

71.11.4 DecompositionMatrix

▷ DecompositionMatrix(modtbl[, blocknr]) (operation)

Let modtbl be a Brauer character table.
Called with one argument, DecompositionMatrix returns the decomposition matrix of modtbl ,

where the rows and columns are indexed by the irreducible characters of the ordinary character table
of modtbl and the irreducible characters of modtbl , respectively,

GAP - Reference Manual 1173

Called with two arguments, DecompositionMatrix returns the decomposition matrix of the block
of modtbl with number blocknr ; the matrix is stored as value of the decmat component of the
blocknr-th entry of the BlocksInfo (71.11.3) list of modtbl .

An ordinary irreducible character is in block i if and only if all characters before the first character
of the same block lie in i− 1 different blocks. An irreducible Brauer character is in block i if it has
nonzero scalar product with an ordinary irreducible character in block i.

DecompositionMatrix is based on the more general function Decomposition (25.4.1).
Example

gap> modtbl:= CharacterTable("L3(2)") mod 2;

BrauerTable("L3(2)", 2)

gap> DecompositionMatrix(modtbl);

[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 1, 1, 0],

[1, 1, 1, 0], [0, 0, 0, 1]]

gap> DecompositionMatrix(modtbl, 1);

[[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1]]

gap> DecompositionMatrix(modtbl, 2);

[[1]]

71.11.5 LaTeXStringDecompositionMatrix

▷ LaTeXStringDecompositionMatrix(modtbl[, blocknr][, options]) (function)

is a string that contains LaTEX code to print a decomposition matrix (see DecompositionMatrix
(71.11.4)) nicely.

The optional argument options , if present, must be a record with components phi, chi (strings
used in each label for columns and rows), collabels, rowlabels (subscripts for the labels). The de-
faults for phi and chi are "{\\tt Y}" and "{\\tt X}", the defaults for collabels and rowlabels

are the lists of positions of the Brauer characters and ordinary characters in the respective lists of irre-
ducibles in the character tables.

The optional components nrows and ncols denote the maximal number of rows and columns per
array; if they are present then each portion of nrows rows and ncols columns forms an array of its
own which is enclosed in \[, \].

If the component decmat is bound in options then it must be the decomposition matrix in ques-
tion, in this case the matrix is not computed from the information in modtbl .

For those character tables from the GAP table library that belong to the Atlas of Finite
Groups [CCN+85], AtlasLabelsOfIrreducibles (CTblLib: AtlasLabelsOfIrreducibles) con-
structs character labels that are compatible with those used in the Atlas (see (CTblLib: Atlas Tables)
in the manual of the GAP Character Table Library).

Example
gap> modtbl:= CharacterTable("L3(2)") mod 2;;

gap> Print(LaTeXStringDecompositionMatrix(modtbl, 1));

\[

\begin{array}{r|rrr} \hline

& {\tt Y}_{1}

& {\tt Y}_{2}

& {\tt Y}_{3}

\rule[-7pt]{0pt}{20pt} \\ \hline

{\tt X}_{1} & 1 & . & . \rule[0pt]{0pt}{13pt} \\

GAP - Reference Manual 1174

{\tt X}_{2} & . & 1 & . \\

{\tt X}_{3} & . & . & 1 \\

{\tt X}_{4} & . & 1 & 1 \\

{\tt X}_{5} & 1 & 1 & 1 \rule[-7pt]{0pt}{5pt} \\

\hline

\end{array}

\]

gap> options:= rec(phi:= "\\varphi", chi:= "\\chi");;

gap> Print(LaTeXStringDecompositionMatrix(modtbl, 1, options));

\[

\begin{array}{r|rrr} \hline

& \varphi_{1}

& \varphi_{2}

& \varphi_{3}

\rule[-7pt]{0pt}{20pt} \\ \hline

\chi_{1} & 1 & . & . \rule[0pt]{0pt}{13pt} \\

\chi_{2} & . & 1 & . \\

\chi_{3} & . & . & 1 \\

\chi_{4} & . & 1 & 1 \\

\chi_{5} & 1 & 1 & 1 \rule[-7pt]{0pt}{5pt} \\

\hline

\end{array}

\]

71.12 Other Operations for Character Tables

In the following, we list operations for character tables that are not attributes.

71.12.1 Index (for two character tables)

▷ Index(tbl, subtbl) (operation)

For two character tables tbl and subtbl , Index returns the quotient of the Size (71.8.5) values
of tbl and subtbl . The containment of the underlying groups of subtbl and tbl is not checked;
so the distinction between Index (39.3.2) and IndexNC (39.3.2) is not made for character tables.

71.12.2 IsInternallyConsistent (for character tables)

▷ IsInternallyConsistent(tbl) (method)

For an ordinary character table tbl , IsInternallyConsistent (12.8.4) checks the consistency
of the following attribute values (if stored).

• Size (30.4.6), SizesCentralizers (71.9.2), and SizesConjugacyClasses (71.9.3).

• SizesCentralizers (71.9.2) and OrdersClassRepresentatives (71.9.1).

• ComputedPowerMaps (73.1.1) and OrdersClassRepresentatives (71.9.1).

• SizesCentralizers (71.9.2) and Irr (71.8.2).

GAP - Reference Manual 1175

• Irr (71.8.2) (first orthogonality relation).

For a Brauer table tbl , IsInternallyConsistent checks the consistency of the following at-
tribute values (if stored).

• Size (30.4.6), SizesCentralizers (71.9.2), and SizesConjugacyClasses (71.9.3).

• SizesCentralizers (71.9.2) and OrdersClassRepresentatives (71.9.1).

• ComputedPowerMaps (73.1.1) and OrdersClassRepresentatives (71.9.1).

• Irr (71.8.2) (closure under complex conjugation and Frobenius map).

If no inconsistency occurs, true is returned, otherwise each inconsistency is printed to the screen
if the level of InfoWarning (7.4.8) is at least 1 (see 7.4), and false is returned at the end.

71.12.3 IsPSolvableCharacterTable

▷ IsPSolvableCharacterTable(tbl, p) (operation)

▷ IsPSolubleCharacterTable(tbl, p) (operation)

▷ IsPSolvableCharacterTableOp(tbl, p) (operation)

▷ IsPSolubleCharacterTableOp(tbl, p) (operation)

▷ ComputedIsPSolvableCharacterTables(tbl) (attribute)

▷ ComputedIsPSolubleCharacterTables(tbl) (attribute)

IsPSolvableCharacterTable for the ordinary character table tbl corresponds to IsPSolvable
(39.15.26) for the group of tbl , p must be either a prime integer or 0.

The default method uses the attribute ComputedIsPSolvableCharacterTables for storing the
computed value at position p , and calls the operation IsPSolvableCharacterTableOp for comput-
ing values that are not yet known.

Example
gap> tbl:= CharacterTable("Sz(8)");;

gap> IsPSolvableCharacterTable(tbl, 2);

false

gap> IsPSolvableCharacterTable(tbl, 3);

true

71.12.4 IsClassFusionOfNormalSubgroup

▷ IsClassFusionOfNormalSubgroup(subtbl, fus, tbl) (function)

For two ordinary character tables tbl and subtbl of a group G and its subgroup U and a list fus
of positive integers that describes the class fusion of U into G, IsClassFusionOfNormalSubgroup
returns true if U is a normal subgroup of G, and false otherwise.

Example
gap> tblc2:= CharacterTable("Cyclic", 2);;

gap> tbld8:= CharacterTable("Dihedral", 8);;

gap> fus:= PossibleClassFusions(tblc2, tbld8);

[[1, 3], [1, 4], [1, 5]]

gap> List(fus, map -> IsClassFusionOfNormalSubgroup(tblc2, map, tbld8));

[true, false, false]

GAP - Reference Manual 1176

71.12.5 Indicator

▷ Indicator(tbl[, characters], n) (operation)

▷ IndicatorOp(tbl, characters, n) (operation)

▷ ComputedIndicators(tbl) (attribute)

If tbl is an ordinary character table then Indicator returns the list of n-th Frobenius-Schur
indicators of the characters in the list characters ; the default of characters is Irr(tbl).

The n-th Frobenius-Schur indicator νn(χ) of an ordinary character χ of the group G is given by
νn(χ) = (∑g∈G χ(gn))/|G|.

If tbl is a Brauer table in characteristic ̸= 2 and n = 2 then Indicator returns the second indi-
cator.

The default method uses the attribute ComputedIndicators for storing the computed value at
position n , and calls the operation IndicatorOp for computing values that are not yet known.

Example
gap> tbl:= CharacterTable("L3(2)");;

gap> Indicator(tbl, 2);

[1, 0, 0, 1, 1, 1]

In nonzero characteristic p, the Frobenius-Schur indicator is defined only for irreducible charac-
ters. For odd p, the indicator is computed using the Thompson-Willems Theorem [Tho86, theorem
on p. 227]. For p = 2, in general the indicator cannot be computed from the given character tables,
here the following necessary conditions are used.

• The trivial character has indicator 1.

• The indicator is 0 if and only if the character is not real-valued.

• Real characters outside the principal block (the 2-block that contains the trivial character, see
PrimeBlocks (71.11.1)) have indicator 1.

• By [GW95, Lemma 1.2], any real constituent with odd multiplicity in the 2-modular restriction
of an ordinary irreducible character with indicator 1 has indicator 1, provided that the trivial
character is not a constituent of the restriction.

For each 2-modular Brauer characters where these conditions are not sufficient to determine the
indicator, an unknown value (see Unknown (74.1.1)) is returned.

71.12.6 NrPolyhedralSubgroups

▷ NrPolyhedralSubgroups(tbl, c1, c2, c3) (function)

returns the number and isomorphism type of polyhedral subgroups of the group with ordinary
character table tbl which are generated by an element g of class c1 and an element h of class c2 with
the property that the product gh lies in class c3 .

According to [NPP84, p. 233], the number of polyhedral subgroups of isomorphism
type V4, D2n, A4, S4, and A5 can be derived from the class multiplication coefficient
(see ClassMultiplicationCoefficient (71.12.7)) and the number of Galois conjugates of a class
(see ClassOrbit (71.9.12)).

GAP - Reference Manual 1177

The classes c1 , c2 and c3 in the parameter list must be ordered according to the order of the
elements in these classes. If elements in class c1 and c2 do not generate a polyhedral group then
fail is returned.

Example
gap> NrPolyhedralSubgroups(tbl, 2, 2, 4);

rec(number := 21, type := "D8")

71.12.7 ClassMultiplicationCoefficient (for character tables)

▷ ClassMultiplicationCoefficient(tbl, i, j, k) (operation)

returns the class multiplication coefficient of the classes i , j , and k of the group G with ordinary
character table tbl .

The class multiplication coefficient ci, j,k of the classes i , j , k equals the number of pairs (x,y) of
elements x,y ∈ G such that x lies in class i , y lies in class j , and their product xy is a fixed element of
class k .

In the center of the group algebra of G, these numbers are found as coefficients of the decomposi-
tion of the product of two class sums Ki and K j into class sums:

KiK j = ∑
k

ci jkKk.

Given the character table of a finite group G, whose classes are C1, . . . ,Cr with representatives gi ∈Ci,
the class multiplication coefficient ci jk can be computed with the following formula:

ci jk = |Ci| · |C j|/|G| · ∑
χ∈Irr(G)

χ(gi)χ(g j)χ(g−1
k)/χ(1).

On the other hand the knowledge of the class multiplication coefficients admits the computation
of the irreducible characters of G, see IrrDixonSchneider (71.14.1).

71.12.8 ClassStructureCharTable

▷ ClassStructureCharTable(tbl, classes) (function)

returns the so-called class structure of the classes in the list classes , for the character table tbl
of the group G. The length of classes must be at least 2.

Let C =(C1,C2, . . . ,Cn) denote the n-tuple of conjugacy classes of G that are indexed by classes .
The class structure n(C) equals the number of n-tuples (g1,g2, . . . ,gn) of elements gi ∈ Ci with
g1g2 · · ·gn = 1. Note the difference to the definition of the class multiplication coefficients in
ClassMultiplicationCoefficient (71.12.7).

n(C1,C2, . . . ,Cn) is computed using the formula

n(C1,C2, . . . ,Cn) = |C1||C2| · · · |Cn|/|G| · ∑
χ∈Irr(G)

χ(g1)χ(g2) · · ·χ(gn)/χ(1)n−2.

GAP - Reference Manual 1178

71.12.9 MatClassMultCoeffsCharTable

▷ MatClassMultCoeffsCharTable(tbl, i) (function)

For an ordinary character table tbl and a class position i , MatClassMultCoeffsCharTable re-
turns the matrix [ai jk] j,k of structure constants (see ClassMultiplicationCoefficient (71.12.7)).

Example
gap> tbl:= CharacterTable("L3(2)");;

gap> ClassMultiplicationCoefficient(tbl, 2, 2, 4);

4

gap> ClassStructureCharTable(tbl, [2, 2, 4]);

168

gap> ClassStructureCharTable(tbl, [2, 2, 2, 4]);

1848

gap> MatClassMultCoeffsCharTable(tbl, 2);

[[0, 1, 0, 0, 0, 0], [21, 4, 3, 4, 0, 0], [0, 8, 6, 8, 7, 7],

[0, 8, 6, 1, 7, 7], [0, 0, 3, 4, 0, 7], [0, 0, 3, 4, 7, 0]]

71.13 Printing Character Tables

71.13.1 ViewObj (for a character table)

▷ ViewObj(tbl) (method)

The default ViewObj (6.3.5) method for ordinary character tables prints the string
"CharacterTable", followed by the identifier (see Identifier (71.9.8)) or, if known, the group
of the character table enclosed in brackets. ViewObj (6.3.5) for Brauer tables does the same, except
that the first string is replaced by "BrauerTable", and that the characteristic is also shown.

71.13.2 PrintObj (for a character table)

▷ PrintObj(tbl) (method)

The default PrintObj (6.3.5) method for character tables does the same as ViewObj (6.3.5), ex-
cept that PrintObj (6.3.5) is used for the group instead of ViewObj (6.3.5).

71.13.3 Display (for a character table)

▷ Display(tbl) (method)

There are various ways to customize the Display (6.3.6) output for character tables. First we
describe the default behaviour, alternatives are then described below.

The default Display (6.3.6) method prepares the data in tbl for a columnwise output. The
number of columns printed at one time depends on the actual line length, which can be accessed and
changed by the function SizeScreen (6.12.1).

An interesting variant of Display (6.3.6) is the function PageDisplay (GAPDoc: PageDisplay).
Convenient ways to print the Display (6.3.6) format to a file are given by the function PrintTo1

GAP - Reference Manual 1179

(GAPDoc: PrintTo1) or by using PageDisplay (GAPDoc: PageDisplay) and the facilities of the
pager used, cf. Pager (2.4.1).

An interactive variant of Display (6.3.6) is the Browse (Browse: Browse) method for character
tables that is provided by the GAP package Browse, see Browse (Browse: Browse for character
tables).

Display (6.3.6) shows certain characters (by default all irreducible characters) of tbl , to-
gether with the orders of the centralizers in factorized form and the available power maps
(see ComputedPowerMaps (73.1.1)). The n-th displayed character is given the name X.n .

The first lines of the output describe the order of the centralizer of an element of the class factorized
into its prime divisors.

The next line gives the name of each class. If no class names are stored on tbl , ClassNames
(71.9.6) is called.

Preceded by a name Pn , the next lines show the n th power maps of tbl in terms of the former
shown class names.

Every ambiguous or unknown (see Chapter 74) value of the table is displayed as a question mark
?.

Irrational character values are not printed explicitly because the lengths of their printed represen-
tation might disturb the layout. Instead of that every irrational value is indicated by a name, which is
a string of at least one capital letter.

Once a name for an irrational value is found, it is used all over the printed table. Moreover the com-
plex conjugate (see ComplexConjugate (18.5.2), GaloisCyc (18.5.1)) and the star of an irrationality
(see StarCyc (18.5.3)) are represented by that very name preceded by a / and a *, respectively.

The printed character table is then followed by a legend, a list identifying the occurring symbols
with their actual values. Occasionally this identification is supplemented by a quadratic represen-
tation of the irrationality (see Quadratic (18.5.4)) together with the corresponding Atlas notation
(see [CCN+85]).

This default style can be changed by prescribing a record arec of options, which can be given

1. as an optional argument in the call to Display (6.3.6),

2. as the value of the attribute DisplayOptions (71.13.4) if this value is stored in the table,

3. as the value of the global variable CharacterTableDisplayDefaults.User, or

4. as the value of the global variable CharacterTableDisplayDefaults.Global

(in this order of precedence).
The following components of arec are supported.

centralizers

false to suppress the printing of the orders of the centralizers, or the string "ATLAS" to force
the printing of non-factorized centralizer orders in a style similar to that used in the Atlas of
Finite Groups [CCN+85],

characterField

true to show the degrees of the character fields over the prime field, in a column with header d,

chars

an integer or a list of integers to select a sublist of the irreducible characters of tbl , or a list of

GAP - Reference Manual 1180

characters of tbl (in the latter case, the default letter "X" in the character names is replaced by
"Y"),

charnames

a list of strings of length equal to the number of characters that shall be shown; they are used as
labels for the characters,

classes

an integer or a list of integers to select a sublist of the classes of tbl ,

classnames

a list of strings of length equal to the number of classes that shall be shown; they are used as
labels for the classes,

indicator

true enables the printing of the second Frobenius Schur indicator, a list of integers enables the
printing of the corresponding indicators (see Indicator (71.12.5)),

letter

a single capital letter (e. g. "P" for permutation characters) to replace the default "X" in character
names,

powermap

an integer or a list of integers to select a subset of the available power maps, false to suppress
the printing of power maps, or the string "ATLAS" to force a printing of class names and power
maps in a style similar to that used in the Atlas of Finite Groups [CCN+85] (the "ATLAS"

variant works only if the function CambridgeMaps (CTblLib: CambridgeMaps) is available,
which belongs to the CTblLib package),

Display

the function that is actually called in order to display the table; the arguments are the table and
the optional record, whose components can be used inside the Display function,

StringEntry

a function that takes either a character value or a character value and the return value of
StringEntryData (see below), and returns the string that is actually displayed; it is called
for all character values to be displayed, and also for the displayed indicator values (see above),

StringEntryData

a unary function that is called once with argument tbl before the character values are displayed;
it returns an object that is used as second argument of the function StringEntry,

Legend

a function that takes the result of the StringEntryData call as its only argument, after the
character table has been displayed; the return value is a string that describes the symbols used
in the displayed table in a formatted way, it is printed below the displayed table.

GAP - Reference Manual 1181

71.13.4 DisplayOptions

▷ DisplayOptions(tbl) (attribute)

There is no default method to compute a value, one can set a value with SetDisplayOptions.
Example

gap> tbl:= CharacterTable("A5");;

gap> Display(tbl);

A5

2 2 2 . . .

3 1 . 1 . .

5 1 . . 1 1

1a 2a 3a 5a 5b

2P 1a 1a 3a 5b 5a

3P 1a 2a 1a 5b 5a

5P 1a 2a 3a 1a 1a

X.1 1 1 1 1 1

X.2 3 -1 . A *A

X.3 3 -1 . *A A

X.4 4 . 1 -1 -1

X.5 5 1 -1 . .

A = -E(5)-E(5)^4

= (1-Sqrt(5))/2 = -b5

gap> CharacterTableDisplayDefaults.User:= rec(

> powermap:= "ATLAS", centralizers:= "ATLAS", chars:= false);;

gap> Display(CharacterTable("A5"));

A5

60 4 3 5 5

p A A A A

p' A A A A

1A 2A 3A 5A B*

gap> options:= rec(chars:= 4, classes:= [tbl.3a .. tbl.5a],

> centralizers:= false, indicator:= true,

> powermap:= [2]);;

gap> Display(tbl, options);

A5

3a 5a

2P 3a 5b

2

X.4 + 1 -1

gap> SetDisplayOptions(tbl, options); Display(tbl);

A5

3a 5a

2P 3a 5b

GAP - Reference Manual 1182

2

X.4 + 1 -1

gap> Unbind(CharacterTableDisplayDefaults.User);

71.13.5 PrintCharacterTable

▷ PrintCharacterTable(tbl, varname) (function)

Let tbl be a nearly character table, and varname a string. PrintCharacterTable prints those
values of the supported attributes (see SupportedCharacterTableInfo (71.3.4)) that are known for
tbl .

The output of PrintCharacterTable is GAP readable; actually reading it into GAP will bind the
variable with name varname to a character table that coincides with tbl for all printed components.

This is used mainly for saving character tables to files. A more human readable form is produced
by Display (6.3.6).

Example
gap> PrintCharacterTable(CharacterTable("Cyclic", 2), "tbl");

tbl:= function()

local tbl, i;

tbl:=rec();

tbl.Irr:=

[[1, 1], [1, -1]];

tbl.IsFinite:=

true;

tbl.NrConjugacyClasses:=

2;

tbl.Size:=

2;

tbl.OrdersClassRepresentatives:=

[1, 2];

tbl.SizesCentralizers:=

[2, 2];

tbl.UnderlyingCharacteristic:=

0;

tbl.ClassParameters:=

[[1, 0], [1, 1]];

tbl.CharacterParameters:=

[[1, 0], [1, 1]];

tbl.Identifier:=

"C2";

tbl.InfoText:=

"computed using generic character table for cyclic groups";

tbl.ComputedPowerMaps:=

[, [1, 1]];

ConvertToLibraryCharacterTableNC(tbl);

return tbl;

end;

tbl:= tbl();

GAP - Reference Manual 1183

71.14 Computing the Irreducible Characters of a Group

Several algorithms are available for computing the irreducible characters of a finite group
G. The default method for arbitrary finite groups is to use the Dixon-Schneider algorithm
(see IrrDixonSchneider (71.14.1)). For supersolvable groups, Conlon’s algorithm can be used
(see IrrConlon (71.14.2)). For abelian-by-supersolvable groups, the Baum-Clausen algorithm for
computing the irreducible representations (see IrreducibleRepresentations (71.14.4)) can be
used to compute the irreducible characters (see IrrBaumClausen (71.14.3)).

These functions are installed in methods for Irr (71.8.2), but explicitly calling one of them will
not set the Irr (71.8.2) value of G.

71.14.1 IrrDixonSchneider

▷ IrrDixonSchneider(G) (attribute)

computes the irreducible characters of the finite group G , using the Dixon-Schneider method
(see 71.16). It calls DixonInit (71.17.2) and DixonSplit (71.17.4), and finally returns the list
returned by DixontinI (71.17.3). See also the sections 71.18 and 71.19.

71.14.2 IrrConlon

▷ IrrConlon(G) (attribute)

For a finite solvable group G , IrrConlon returns a list of monomial irreducible characters of G ,
among those all irreducibles that have the supersolvable residuum of G in their kernels; so if G is
supersolvable, all irreducible characters of G are returned. An error is signalled if G is not solvable.

The characters are computed using Conlon’s algorithm (see [Con90a] and [Con90b]). For each
irreducible character in the returned list, the monomiality information (see TestMonomial (75.4.1))
is stored.

71.14.3 IrrBaumClausen

▷ IrrBaumClausen(G) (attribute)

IrrBaumClausen returns the absolutely irreducible ordinary characters of the factor group of the
finite solvable group G by the derived subgroup of its supersolvable residuum.

The characters are computed using the algorithm by Baum and Clausen (see [BC94]). An error is
signalled if G is not solvable.

Example
gap> g:= SL(2,3);;

gap> irr1:= IrrDixonSchneider(g);

[Character(CharacterTable(SL(2,3)), [1, 1, 1, 1, 1, 1, 1]),

Character(CharacterTable(SL(2,3)),

[1, E(3)^2, E(3), 1, E(3), E(3)^2, 1]),

Character(CharacterTable(SL(2,3)),

[1, E(3), E(3)^2, 1, E(3)^2, E(3), 1]),

Character(CharacterTable(SL(2,3)), [2, 1, 1, -2, -1, -1, 0]),

Character(CharacterTable(SL(2,3)),

[2, E(3)^2, E(3), -2, -E(3), -E(3)^2, 0]),

GAP - Reference Manual 1184

Character(CharacterTable(SL(2,3)),

[2, E(3), E(3)^2, -2, -E(3)^2, -E(3), 0]),

Character(CharacterTable(SL(2,3)), [3, 0, 0, 3, 0, 0, -1])]

gap> irr2:= IrrConlon(g);

[Character(CharacterTable(SL(2,3)), [1, 1, 1, 1, 1, 1, 1]),

Character(CharacterTable(SL(2,3)),

[1, E(3), E(3)^2, 1, E(3)^2, E(3), 1]),

Character(CharacterTable(SL(2,3)),

[1, E(3)^2, E(3), 1, E(3), E(3)^2, 1]),

Character(CharacterTable(SL(2,3)), [3, 0, 0, 3, 0, 0, -1])]

gap> irr3:= IrrBaumClausen(g);

[Character(CharacterTable(SL(2,3)), [1, 1, 1, 1, 1, 1, 1]),

Character(CharacterTable(SL(2,3)),

[1, E(3), E(3)^2, 1, E(3)^2, E(3), 1]),

Character(CharacterTable(SL(2,3)),

[1, E(3)^2, E(3), 1, E(3), E(3)^2, 1]),

Character(CharacterTable(SL(2,3)), [3, 0, 0, 3, 0, 0, -1])]

gap> chi:= irr2[4];; HasTestMonomial(chi);

true

71.14.4 IrreducibleRepresentations

▷ IrreducibleRepresentations(G[, F]) (attribute)

Called with a finite group G and a field F , IrreducibleRepresentations returns a list of rep-
resentatives of the irreducible matrix representations of G over F , up to equivalence.

If G is the only argument then IrreducibleRepresentations returns a list of representatives of
the absolutely irreducible complex representations of G , up to equivalence.

At the moment, methods are available for the following cases: If G is abelian by supersolvable the
method of [BC94] is used.

Otherwise, if F and G are both finite, the regular module of G is split by MeatAxe methods which
can make this an expensive operation.

Finally, if F is not given (i.e. it defaults to the cyclotomic numbers) and G is a finite group, the
method of [Dix93] (see IrreducibleRepresentationsDixon (71.14.5)) is used.

For other cases no methods are implemented yet.
The representations obtained are not guaranteed to be “nice” (for example preserving a unitary

form) in any way.
See also IrreducibleModules (71.15.1), which provides efficient methods for solvable groups.

Example
gap> g:= AlternatingGroup(4);;

gap> repr:= IrreducibleRepresentations(g);

[Pcgs([(2,4,3), (1,3)(2,4), (1,2)(3,4)]) ->

[[[1]], [[1]], [[1]]],

Pcgs([(2,4,3), (1,3)(2,4), (1,2)(3,4)]) ->

[[[E(3)]], [[1]], [[1]]],

Pcgs([(2,4,3), (1,3)(2,4), (1,2)(3,4)]) ->

[[[E(3)^2]], [[1]], [[1]]],

Pcgs([(2,4,3), (1,3)(2,4), (1,2)(3,4)]) ->

[[[0, 0, 1], [1, 0, 0], [0, 1, 0]],

[[-1, 0, 0], [0, 1, 0], [0, 0, -1]],

GAP - Reference Manual 1185

[[1, 0, 0], [0, -1, 0], [0, 0, -1]]]]

gap> ForAll(repr, IsGroupHomomorphism);

true

gap> Length(repr);

4

gap> gens:= GeneratorsOfGroup(g);

[(1,2,3), (2,3,4)]

gap> List(gens, x -> x^repr[1]);

[[[1]], [[1]]]

gap> List(gens, x -> x^repr[4]);

[[[0, 0, -1], [1, 0, 0], [0, -1, 0]],

[[0, 1, 0], [0, 0, 1], [1, 0, 0]]]

71.14.5 IrreducibleRepresentationsDixon

▷ IrreducibleRepresentationsDixon(G[, chi]) (function)

Called with one argument, a group G , IrreducibleRepresentationsDixon computes (rep-
resentatives of) all irreducible complex representations for the finite group G , using the method
of [Dix93], which computes the character table and computes the representation as constituent of
an induced monomial representation of a subgroup.

This method can be quite expensive for larger groups, for example it might involve calculation of
the subgroup lattice of G .

A character chi of G can be given as the second argument, in this case only a representation
affording chi is returned.

The second argument can also be a list of characters of G , in this case only representations for
characters in this list are computed.

Note that this method might fail if for an irreducible representation there is no subgroup in which
its reduction has a linear constituent with multiplicity one.

If the option unitary is given, GAP tries, at extra cost, to find a unitary representation (and will
issue an error if it cannot do so).

Example
gap> a5:= AlternatingGroup(5);

Alt([1 .. 5])

gap> char:= First(Irr(a5), x -> x[1] = 4);

Character(CharacterTable(Alt([1 .. 5])), [4, 0, 1, -1, -1])

gap> hom:=IrreducibleRepresentationsDixon(a5, char: unitary);;

gap> Order(a5.1*a5.2) = Order(Image(hom, a5.1)*Image(hom, a5.2));

true

gap> reps:= List(ConjugacyClasses(a5), Representative);;

gap> List(reps, g -> TraceMat(Image(hom, g)));

[4, 0, 1, -1, -1]

71.15 Representations Given by Modules

This section describes functions that return certain modules of a given group. (Extensions by modules
can be formed by the command Extensions (46.8.4).)

GAP - Reference Manual 1186

71.15.1 IrreducibleModules

▷ IrreducibleModules(G, F, dim) (operation)

returns a list of length 2. The first entry is a generating system of G . The second entry is a
list of all irreducible modules of G over the field F in dimension dim , given as MeatAxe modules
(see GModuleByMats (69.1.1)).

71.15.2 AbsolutelyIrreducibleModules

▷ AbsolutelyIrreducibleModules(G, F, dim) (operation)

▷ AbsoluteIrreducibleModules(G, F, dim) (operation)

▷ AbsolutIrreducibleModules(G, F, dim) (operation)

AbsolutelyIrreducibleModules returns a list of length 2. The first entry is a generating sys-
tem of the group G . The second entry is a list of all those absolutely irreducible modules of G that
can be realized over the finite field F and have dimension at most dim , given as MeatAxe modules
(see GModuleByMats (69.1.1)).

The other two names are just synonyms.

71.15.3 RegularModule

▷ RegularModule(G, F) (operation)

returns a list of length 2. The first entry is a generating system of G . The second entry is the regular
module of G over F , given as a MeatAxe module (see GModuleByMats (69.1.1)).

71.16 The Dixon-Schneider Algorithm

The GAP library implementation of the Dixon-Schneider algorithm first computes the linear char-
acters, using the commutator factor group. If irreducible characters are missing afterwards, they are
computed using the techniques described in [Dix67], [Sch90] and [Hul93].

Called with a group G, the function CharacterTable (71.3.1) returns a character table object that
stores already information such as class lengths, but not the irreducible characters. The routines that
compute the irreducibles may use the information that is already contained in this table object. In
particular the ordering of classes in the computed characters coincides with the ordering of classes in
the character table of G (see 71.6). Thus it is possible to combine computations using the group with
character theoretic computations (see 71.17 for details), for example one can enter known characters.
Note that the user is responsible for the correctness of the characters. (There is little use in providing
the trivial character to the routine.)

The computation of irreducible characters from the group needs to identify the classes of group el-
ements very often, so it can be helpful to store a class list of all group elements. Since this is obviously
limited by the group order, it is controlled by the global function IsDxLargeGroup (71.17.8).

The routines compute in a prime field of size p, such that the exponent of the group divides
(p−1) and such that 2

√
|G|< p. Currently prime fields of size smaller than 65536 are handled more

efficiently than larger prime fields, so the runtime of the character calculation depends on how large
the chosen prime is.

GAP - Reference Manual 1187

The routine stores a Dixon record (see DixonRecord (71.17.1)) in the group that helps routines
that identify classes, for example FusionConjugacyClasses (73.3.1), to work much faster. Note
that interrupting Dixon-Schneider calculations will prevent GAP from cleaning up the Dixon record;
when the computation by IrrDixonSchneider (71.14.1) is complete, the possibly large record is
shrunk to an acceptable size.

71.17 Advanced Methods for Dixon-Schneider Calculations

The computation of irreducible characters of very large groups may take quite some time. On the
other hand, for the expert only a few irreducible characters may be needed, since the other ones can be
computed using character theoretic methods such as tensoring, induction, and restriction. Thus GAP
provides also step-by-step routines for doing the calculations. These routines allow one to compute
some characters and to stop before all are calculated. Note that there is no “safety net”: The routines
(being somehow internal) do no error checking, and assume the information given is correct.

When the info level of InfoCharacterTable (71.4.2) if positive, information about the progress
of splitting is printed. (The default value is zero.)

71.17.1 DixonRecord

▷ DixonRecord(G) (attribute)

The DixonRecord of a group contains information used by the routines to compute the irreducible
characters and related information via the Dixon-Schneider algorithm such as class arrangement and
character spaces split obtained so far. Usually this record is passed as argument to all subfunctions to
avoid a long argument list. It has a component conjugacyClasses which contains the classes of G
ordered as the algorithm needs them.

71.17.2 DixonInit

▷ DixonInit(G) (function)

This function does all the initializations for the Dixon-Schneider algorithm. This includes calcula-
tion of conjugacy classes, power maps, linear characters and character morphisms. It returns a record
(see DixonRecord (71.17.1) and Section 71.18) that can be used when calculating the irreducible
characters of G interactively.

71.17.3 DixontinI

▷ DixontinI(D) (function)

This function ends a Dixon-Schneider calculation. It sorts the characters according to the de-
gree and unbinds components in the Dixon record that are not of use any longer. It returns a list of
irreducible characters.

GAP - Reference Manual 1188

71.17.4 DixonSplit

▷ DixonSplit(D) (function)

This function performs one splitting step in the Dixon-Schneider algorithm. It selects a class,
computes the (partial) class sum matrix, uses it to split character spaces and stores all the irreducible
characters obtained that way.

The class to use for splitting is chosen via BestSplittingMatrix (71.17.5) and the options
described for this function apply here.

DixonSplit returns the number of the class that was used for splitting if a split was performed,
and fail otherwise.

71.17.5 BestSplittingMatrix

▷ BestSplittingMatrix(D) (function)

returns the number of the class sum matrix that is assumed to yield the best (cost/earning ration)
split. This matrix then will be the next one computed and used.

The global option maxclasslen (defaulting to infinity (18.2.1)) is recognized by
BestSplittingMatrix: Only classes whose length is limited by the value of this option will be
considered for splitting. If no usable class remains, fail is returned.

71.17.6 DxIncludeIrreducibles

▷ DxIncludeIrreducibles(D, new[, newmod]) (function)

This function takes a list of irreducible characters new , each given as a list of values (corresponding
to the class arrangement in D), and adds these to a partial computed list of irreducibles as maintained
by the Dixon record D . This permits one to add characters in interactive use obtained from other
sources and to continue the Dixon-Schneider calculation afterwards. If the optional argument newmod
is given, it must be a list of reduced characters, corresponding to new . (Otherwise the function has to
reduce the characters itself.)

The function closes the new characters under the action of Galois automorphisms and tensor prod-
ucts with linear characters.

71.17.7 SplitCharacters

▷ SplitCharacters(D, list) (function)

This routine decomposes the characters given in list according to the character spaces found up
to this point. By applying this routine to tensor products etc., it may result in characters with smaller
norm, even irreducible ones. Since the recalculation of characters is only possible if the degree is
small enough, the splitting process is applied only to characters of sufficiently small degree.

71.17.8 IsDxLargeGroup

▷ IsDxLargeGroup(G) (function)

GAP - Reference Manual 1189

returns true if the order of the group G is smaller than the current value of the global variable
DXLARGEGROUPORDER, and false otherwise. In Dixon-Schneider calculations, for small groups in
the above sense a class map is stored, whereas for large groups, each occurring element is identified
individually.

71.18 Components of a Dixon Record

The “Dixon record” D returned by DixonInit (71.17.2) stores all the information that is used by
the Dixon-Schneider routines while computing the irreducible characters of a group. Some entries,
however, may be useful to know about when using the algorithm interactively, see 71.19.

group

the group G of which the character table is to be computed,

conjugacyClasses

classes of G (all characters stored in the Dixon record correspond to this arrangement of classes),

irreducibles

the already known irreducible characters (given as lists of their values on the conjugacy classes),

characterTable

the CharacterTable (71.3.1) value of G (whose irreducible characters are not yet known),

ClassElement(D, el)

a function that returns the number of the class of G that contains the element el .

71.19 An Example of Advanced Dixon-Schneider Calculations

First, we set the appropriate info level higher.
Example

gap> SetInfoLevel(InfoCharacterTable, 1);

for printout of some internal results. We now define our group, which is isomorphic to PSL4(3).
Example

gap> g:= PrimitiveGroup(40,5);

PSL(4, 3)

gap> Size(g);

6065280

gap> d:= DixonInit(g);;

#I 29 classes

#I choosing prime 65521

gap> c:= d.characterTable;;

After the initialisation, one structure matrix is evaluated, yielding smaller spaces and several irre-
ducible characters.

Example
gap> DixonSplit(d);

#I Matrix 2,Representative of Order 3,Centralizer: 5832

#I Dimensions: [[1, 6], [2, 3], [4, 1], [12, 1]]

2

GAP - Reference Manual 1190

In this case spaces of the listed dimensions are a result of the splitting process. The three two
dimensional spaces are split successfully by combinatoric means.

We obtain several irreducible characters by tensor products and notify them to the Dixon record.
Example

gap> asp:= AntiSymmetricParts(c, d.irreducibles, 2);;

gap> ro:= ReducedCharacters(c, d.irreducibles, asp);;

gap> Length(ro.irreducibles);

3

gap> DxIncludeIrreducibles(d, ro.irreducibles);

Finally we calculate the characters induced from all cyclic subgroups and obtain the missing irre-
ducibles by applying the LLL-algorithm to them.

Example
gap> ic:= InducedCyclic(c, "all");;

gap> ro:= ReducedCharacters(c, d.irreducibles, ic);;

gap> Length(ro.irreducibles);

0

gap> l:= LLL(c, ro.remainders);;

gap> Length(l.irreducibles);

13

The LLL returns class function objects (see Chapter 72), and the Dixon record works with char-
acter values lists. So we convert them to a list of values before feeding them in the machinery of the
Dixon-algorithm.

Example
gap> l.irreducibles[1];

Character(CharacterTable(PSL(4, 3)),

[640, -8, -8, -8, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, E(13)^7+E(13)^8+E(13)^11, E(13)^4+E(13)^10+E(13)^12,

E(13)^2+E(13)^5+E(13)^6, E(13)+E(13)^3+E(13)^9, 0])

gap> l:=List(l.irreducibles,ValuesOfClassFunction);;

gap> DxIncludeIrreducibles(d, l);

gap> Length(d.irreducibles);

29

gap> Length(d.classes);

29

It turns out we have found all irreducible characters. As the last step, we obtain the irreducible
characters and tell them to the group. This makes them available also to the character table.

Example
gap> irrs:= DixontinI(d);;

#I Total:1 matrices,[2]

gap> SetIrr(g,irrs);

gap> Length(Irr(c));

29

gap> SetInfoLevel(InfoCharacterTable, 0);

GAP - Reference Manual 1191

71.20 Constructing Character Tables from Others

The following operations take one or more character table arguments, and return a character table.
This holds also for BrauerTable (71.3.2). Note that the return value of BrauerTable (71.3.2) will
in general not know the irreducible Brauer characters, and GAP might be unable to compute these
characters.

Note that whenever fusions between input and output tables occur in these operations, they are
stored on the concerned tables, and the NamesOfFusionSources (73.3.5) values are updated.

(The interactive construction of character tables using character theoretic methods and incomplete
tables is not described here.) Currently it is not supported and will be described in a chapter of its
own when it becomes available.

71.20.1 CharacterTableDirectProduct

▷ CharacterTableDirectProduct(tbl1, tbl2) (operation)

is the table of the direct product of the character tables tbl1 and tbl2 .
The matrix of irreducibles of this table is the Kronecker product (see KroneckerProduct (24.5.9))

of the irreducibles of tbl1 and tbl2 .
Products of ordinary and Brauer character tables are supported.
In general, the result will not know an underlying group, so missing power maps (for prime divi-

sors of the result) and irreducibles of the input tables may be computed in order to construct the table
of the direct product.

The embeddings of the input tables into the direct product are stored, they can be fetched with
GetFusionMap (73.3.3); if tbl1 is equal to tbl2 then the two embeddings are distinguished by their
specification components "1" and "2", respectively.

Analogously, the projections from the direct product onto the input tables are stored, and can be
distinguished by the specification components.

The attribute FactorsOfDirectProduct (71.20.2) is set to the lists of arguments.
The * operator for two character tables (see 71.7) delegates to CharacterTableDirectProduct.

Example
gap> c2:= CharacterTable("Cyclic", 2);;

gap> s3:= CharacterTable("Symmetric", 3);;

gap> Display(CharacterTableDirectProduct(c2, s3));

C2xSym(3)

2 2 2 1 2 2 1

3 1 . 1 1 . 1

1a 2a 3a 2b 2c 6a

2P 1a 1a 3a 1a 1a 3a

3P 1a 2a 1a 2b 2c 2b

X.1 1 -1 1 1 -1 1

X.2 2 . -1 2 . -1

X.3 1 1 1 1 1 1

X.4 1 -1 1 -1 1 -1

X.5 2 . -1 -2 . 1

X.6 1 1 1 -1 -1 -1

GAP - Reference Manual 1192

71.20.2 FactorsOfDirectProduct

▷ FactorsOfDirectProduct(tbl) (attribute)

For an ordinary character table that has been constructed via CharacterTableDirectProduct

(71.20.1), the value of FactorsOfDirectProduct is the list of arguments in the
CharacterTableDirectProduct (71.20.1) call.

Note that there is no default method for computing the value of FactorsOfDirectProduct.

71.20.3 CharacterTableFactorGroup

▷ CharacterTableFactorGroup(tbl, classes) (operation)

is the character table of the factor group of the ordinary character table tbl by the normal closure
of the classes whose positions are contained in the list classes .

The / operator for a character table and a list of class positions (see 71.7) delegates to
CharacterTableFactorGroup.

Example
gap> s4:= CharacterTable("Symmetric", 4);;

gap> ClassPositionsOfNormalSubgroups(s4);

[[1], [1, 3], [1, 3, 4], [1 .. 5]]

gap> f:= CharacterTableFactorGroup(s4, [3]);

CharacterTable("Sym(4)/[1, 3]")

gap> Display(f);

Sym(4)/[1, 3]

2 1 1 .

3 1 . 1

1a 2a 3a

2P 1a 1a 3a

3P 1a 2a 1a

X.1 1 -1 1

X.2 2 . -1

X.3 1 1 1

71.20.4 CharacterTableIsoclinic

▷ CharacterTableIsoclinic(tbl[, arec]) (operation)

▷ CharacterTableIsoclinic(tbl[, classes][, centre]) (operation)

▷ CharacterTableIsoclinic(modtbl, ordiso) (operation)

▷ SourceOfIsoclinicTable(tbl) (attribute)

Let tbl be the (ordinary or modular) character table of a group H with the structure p.G.p for
some prime p, that is, H/Z has a normal subgroup N of index p and a central subgroup Z of order p
contained in N.

Then CharacterTableIsoclinic returns the table of an isoclinic group in the sense of the Atlas
of Finite Groups [CCN+85, Chapter 6, Section 7].

GAP - Reference Manual 1193

If p = 2 then also the case H = 4.G.2 is supported, that is, Z has order four and N has index two
in H.

The optional arguments are needed if tbl does not determine the class positions of N or Z
uniquely, and in the case p > 2 if one wants to specify a “variant number” for the result.

• In general, the values can be specified via a record arec . If N is not uniquely determined
then the positions of the classes forming N must be entered as the value of the component
normalSubgroup. If Z is not unique inside N then the class position of a generator of Z must
be entered as the value of the component centralElement.

• If p = 2 then one may specify the positions of the classes forming N via a list classes , and
the positions of the classes in Z as a list centre ; if Z has order 2 then centre can be also the
position of the involution in Z.

Note that also if tbl is a Brauer table then normalSubgroup and centralElement,
resp. classes and centre , denote class numbers w.r.t. the ordinary character table.

If p is odd then the Atlas construction describes p isoclinic variants that arise from p.G.p. (These
groups need not be pairwise nonisomorphic.) Entering an integer k ∈ {1,2, . . . , p−1} as the value of
the component k of arec yields the k-th of the corresponding character tables; the default for k is 1.

Example
gap> d8:= CharacterTable("Dihedral", 8);

CharacterTable("Dihedral(8)")

gap> nsg:= ClassPositionsOfNormalSubgroups(d8);

[[1], [1, 3], [1 .. 3], [1, 3, 4], [1, 3 .. 5], [1 .. 5]

]

gap> isod8:= CharacterTableIsoclinic(d8, nsg[3]);;

gap> Display(isod8);

Isoclinic(Dihedral(8))

2 3 2 3 2 2

1a 4a 2a 4b 4c

2P 1a 2a 1a 2a 2a

X.1 1 1 1 1 1

X.2 1 1 1 -1 -1

X.3 1 -1 1 1 -1

X.4 1 -1 1 -1 1

X.5 2 . -2 . .

gap> t1:= CharacterTable(SmallGroup(27, 3));;

gap> t2:= CharacterTable(SmallGroup(27, 4));;

gap> nsg:= ClassPositionsOfNormalSubgroups(t1);

[[1], [1, 4, 8], [1, 2, 4, 5, 8], [1, 3, 4, 7, 8],

[1, 4, 6, 8, 11], [1, 4, 8, 9, 10], [1 .. 11]]

gap> iso1:= CharacterTableIsoclinic(t1, rec(k:= 1,

> normalSubgroup:= nsg[3]));;

gap> iso2:= CharacterTableIsoclinic(t1, rec(k:= 2,

> normalSubgroup:= nsg[3]));;

gap> TransformingPermutationsCharacterTables(iso1, t1) <> fail;

false

gap> TransformingPermutationsCharacterTables(iso1, t2) <> fail;

GAP - Reference Manual 1194

true

gap> TransformingPermutationsCharacterTables(iso2, t2) <> fail;

true

For an ordinary character table that has been constructed via CharacterTableIsoclinic, the
value of SourceOfIsoclinicTable encodes this construction, and is defined as follows. If p = 2
then the value is the list with entries tbl , classes , the list of class positions of the nonidentity
elements in Z, and the class position of a generator of Z. If p is an odd prime then the value is a record
with the following components.

table

the character table tbl ,

p the prime p,

k the variant number k,

outerClasses

the list of length p−1 that contains at position i the sorted list of class positions of the i-th coset
of the normal subgroup N

centralElement

the class position of a generator of the central subgroup Z.

There is no default method for computing the value of SourceOfIsoclinicTable.
Example

gap> SourceOfIsoclinicTable(isod8);

[CharacterTable("Dihedral(8)"), [1 .. 3], [3], 3]

gap> SourceOfIsoclinicTable(iso1);

rec(centralElement := 4, k := 1,

outerClasses := [[3, 6, 9], [7, 10, 11]], p := 3,

table := CharacterTable(<pc group of size 27 with 3 generators>))

If the arguments of CharacterTableIsoclinic are a Brauer table modtbl and an ordinary table
ordiso then the SourceOfIsoclinicTable value of ordiso is assumed to be identical with the
OrdinaryCharacterTable (71.8.4) value of modtbl , and the specified isoclinic table of modtbl is
returned. This variant is useful if one has already constructed ordiso in advance.

Example
gap> g:= GL(2,3);;

gap> t:= CharacterTable(g);;

gap> iso:= CharacterTableIsoclinic(t);;

gap> t3:= t mod 3;;

gap> iso3:= CharacterTableIsoclinic(t3, iso);;

gap> TransformingPermutationsCharacterTables(iso3,

> CharacterTableIsoclinic(t3)) <> fail;

true

Theoretical background: Consider the central product K of H with a cyclic group C of order p2.
That is, K = HC, C ≤ Z(K), and the central subgroup Z of order p in H lies in C. There are p+ 1

GAP - Reference Manual 1195

subgroups of K that contain the normal subgroup N of index p in H. One of them is the central product
of C with N, the others are H0 = H and its isoclinic variants H1,H2, . . . ,Hp−1. We fix g ∈ H \N and
a generator z of C, and get H = N ∪Ng∪Ng2 ∪ ·· · ∪Ngp−1. Then Hk, 0 ≤ k ≤ p− 1, is given by
N ∪Ngzk ∪N(gzk)2 ∪·· ·∪N(gzk)p−1. The conjugacy classes of all Hk are in bijection via multiplying
the elements with suitable powers of z, and the irreducible characters of all Hk extend to K and are in
bijection via multiplying the character values with suitable p2-th roots of unity.

71.20.5 CharacterTableOfNormalSubgroup

▷ CharacterTableOfNormalSubgroup(ordtbl, classes) (function)

Let ordtbl be the ordinary character table of a group G, say, and classes be a list of class
positions for this table. If the classes given by classes form a normal subgroup N, say, of G and if
these classes are conjugacy classes of N then this function returns the character table of N. In all other
cases, the function returns fail.

Example
gap> t:= CharacterTable("Symmetric", 4);

CharacterTable("Sym(4)")

gap> nsg:= ClassPositionsOfNormalSubgroups(t);

[[1], [1, 3], [1, 3, 4], [1 .. 5]]

gap> rest:= List(nsg, c -> CharacterTableOfNormalSubgroup(t, c));

[CharacterTable("Rest(Sym(4),[1])"), fail, fail,

CharacterTable("Rest(Sym(4),[1 .. 5])")]

Here is a nontrivial example. We use CharacterTableOfNormalSubgroup for computing the
two isoclinic variants of 2.A5.2.

Example
gap> g:= SchurCoverOfSymmetricGroup(5, 3, 1);;

gap> c:= CyclicGroup(4);;

gap> dp:= DirectProduct(g, c);;

gap> diag:= First(Elements(Centre(dp)),

> x -> Order(x) = 2 and

> not x in Image(Embedding(dp, 1)) and

> not x in Image(Embedding(dp, 2)));;

gap> fact:= Image(NaturalHomomorphismByNormalSubgroup(dp,

> Subgroup(dp, [diag])));;

gap> t:= CharacterTable(fact);;

gap> Size(t);

480

gap> nsg:= ClassPositionsOfNormalSubgroups(t);;

gap> rest:= List(nsg, c -> CharacterTableOfNormalSubgroup(t, c));;

gap> index2:= Filtered(rest, x -> x <> fail and Size(x) = 240);;

gap> Length(index2);

2

gap> tg:= CharacterTable(g);;

gap> SortedList(List(index2,x->IsRecord(

> TransformingPermutationsCharacterTables(x,tg))));

[true, false]

Alternatively, we could construct the character table of the central product with character theoretic
methods. Or we could use CharacterTableIsoclinic (71.20.4).

GAP - Reference Manual 1196

71.20.6 CharacterTableWreathSymmetric

▷ CharacterTableWreathSymmetric(tbl, n) (function)

returns the character table of the wreath product of a group G with the full symmetric group on n

points, where tbl is the character table of G.
The result has values for ClassParameters (71.9.7) and CharacterParameters (71.9.7) stored,

the entries in these lists are sequences of partitions. Note that this parametrization prevents the princi-
pal character from being the first one in the list of irreducibles.

Example
gap> c3:= CharacterTable("Cyclic", 3);;

gap> wr:= CharacterTableWreathSymmetric(c3, 2);;

gap> Display(wr);

C3wrS2

2 1 . . 1 . 1 1 1 1

3 2 2 2 2 2 2 1 1 1

1a 3a 3b 3c 3d 3e 2a 6a 6b

2P 1a 3b 3a 3e 3d 3c 1a 3c 3e

3P 1a 1a 1a 1a 1a 1a 2a 2a 2a

X.1 1 1 1 1 1 1 -1 -1 -1

X.2 2 A /A B -1 /B . . .

X.3 2 /A A /B -1 B . . .

X.4 1 -/A -A -A 1 -/A -1 /A A

X.5 2 -1 -1 2 -1 2 . . .

X.6 1 -A -/A -/A 1 -A -1 A /A

X.7 1 1 1 1 1 1 1 1 1

X.8 1 -/A -A -A 1 -/A 1 -/A -A

X.9 1 -A -/A -/A 1 -A 1 -A -/A

A = -E(3)^2

= (1+Sqrt(-3))/2 = 1+b3

B = 2*E(3)

= -1+Sqrt(-3) = 2b3

gap> CharacterParameters(wr)[1];

[[1, 1], [], []]

71.20.7 CharacterValueWreathSymmetric

▷ CharacterValueWreathSymmetric(tbl, n, beta, pi) (function)

Let tbl be the ordinary character table of a group G. The aim of this function is to compute a
single character value from the character table of the wreath product of G with the full symmetric
group on n points.

The conjugacy classes and the irreducible characters of this wreath product are parametrized by
r-tuples of partitions which together form a partition of n (see PartitionTuples (16.2.31)), where
r is the number of conjugacy classes of G.

GAP - Reference Manual 1197

We describe the conjugacy class for which we want to compute the value by the r-tuple pi of
partitions in question, and describe the character for which we want to compute the value by the
r-tuple beta of BetaSet (16.2.33) values of the r-tuple of partitions in question.

Example
gap> n:= 4;;

gap> classpara:= [[], [2, 1, 1]];;

gap> charpara:= [[2, 1], [1]];;

gap> betas:= List(charpara, BetaSet);;

gap> c2:= CharacterTable("Cyclic", 2);;

gap> CharacterValueWreathSymmetric(c2, n, betas, classpara);

0

gap> wr:= CharacterTableWreathSymmetric(c2, n);;

gap> classpos:= Position(ClassParameters(wr), classpara);;

gap> charpos:= Position(CharacterParameters(wr), charpara);;

gap> Irr(wr)[charpos, classpos];

0

This function can be useful if one is interested in only a few character values. If many character
values are needed then it is probably faster to compute the whole character table of the wreath product
using CharacterTableWreathSymmetric (71.20.6), which uses intermediate results of recursive
computations and therefore can avoid repetitions.

71.21 Sorted Character Tables

71.21.1 CharacterTableWithSortedCharacters

▷ CharacterTableWithSortedCharacters(tbl[, perm]) (operation)

is a character table that differs from tbl only by the succession of its irreducible characters. This
affects the values of the attributes Irr (71.8.2) and CharacterParameters (71.9.7). Namely, these
lists are permuted by the permutation perm .

If no second argument is given then a permutation is used that yields irreducible characters of
increasing degree for the result. For the succession of characters in the result, see SortedCharacters
(71.21.2).

The result has all those attributes and properties of tbl that are stored in
SupportedCharacterTableInfo (71.3.4) and do not depend on the ordering of characters.

71.21.2 SortedCharacters

▷ SortedCharacters(tbl, chars[, flag]) (operation)

is a list containing the characters chars , ordered as specified by the other arguments.
There are three possibilities to sort characters: They can be sorted according to ascending norms

(flag is the string "norm"), to ascending degree (flag is the string "degree"), or both (no third
argument is given), i.e., characters with same norm are sorted according to ascending degree, and
characters with smaller norm precede those with bigger norm.

Rational characters in the result precede other ones with same norm and/or same degree.
The trivial character, if contained in chars , will always be sorted to the first position.

GAP - Reference Manual 1198

71.21.3 CharacterTableWithSortedClasses

▷ CharacterTableWithSortedClasses(tbl[, flag]) (operation)

is a character table obtained by permutation of the classes of tbl . If the second argument flag is
the string "centralizers" then the classes of the result are sorted according to descending centralizer
orders. If the second argument is the string "representatives" then the classes of the result are
sorted according to ascending representative orders. If no second argument is given then the classes of
the result are sorted according to ascending representative orders, and classes with equal representative
orders are sorted according to descending centralizer orders.

If the second argument is a permutation then the classes of the result are sorted by application of
this permutation.

The result has all those attributes and properties of tbl that are stored in
SupportedCharacterTableInfo (71.3.4) and do not depend on the ordering of classes.

71.21.4 SortedCharacterTable (w.r.t. a normal subgroup)

▷ SortedCharacterTable(tbl, kernel) (function)

▷ SortedCharacterTable(tbl, normalseries) (function)

▷ SortedCharacterTable(tbl, facttbl, kernel) (function)

is a character table obtained on permutation of the classes and the irreducibles characters of tbl .
The first form sorts the classes at positions contained in the list kernel to the beginning, and

sorts all characters in Irr(tbl) such that the first characters are those that contain kernel in their
kernel.

The second form does the same successively for all kernels ki in the list normalseries =
[k1,k2, . . . ,kn] where ki must be a sublist of ki+1 for 1 ≤ i ≤ n−1.

The third form computes the table F of the factor group of tbl modulo the normal subgroup
formed by the classes whose positions are contained in the list kernel ; F must be permutation equiva-
lent to the table facttbl , in the sense of TransformingPermutationsCharacterTables (71.22.4),
otherwise fail is returned. The classes of tbl are sorted such that the preimages of a class of F are
consecutive, and that the succession of preimages is that of facttbl . The Irr (71.8.2) value of tbl
is sorted as with SortCharTable(tbl, kernel).

(Note that the transformation is only unique up to table automorphisms of F , and this need not be
unique up to table automorphisms of tbl .)

All rearrangements of classes and characters are stable, i.e., the relative positions of classes and
characters that are not distinguished by any relevant property is not changed.

The result has all those attributes and properties of tbl that are stored in
SupportedCharacterTableInfo (71.3.4) and do not depend on the ordering of classes and
characters.

The ClassPermutation (71.21.5) value of tbl is changed if necessary, see 71.5.
SortedCharacterTable uses CharacterTableWithSortedClasses (71.21.3) and

CharacterTableWithSortedCharacters (71.21.1).

GAP - Reference Manual 1199

71.21.5 ClassPermutation

▷ ClassPermutation(tbl) (attribute)

is a permutation π of classes of the character table tbl . If it is stored then class fusions into tbl

that are stored on other tables must be followed by π in order to describe the correct fusion.
This attribute value is bound only if tbl was obtained from another table by permuting the classes,

using CharacterTableWithSortedClasses (71.21.3) or SortedCharacterTable (71.21.4).
It is necessary because the original table and the sorted table have the same identifier (and the

same group if known), and hence the same fusions are valid for the two tables.
Example

gap> tbl:= CharacterTable("Symmetric", 4);

CharacterTable("Sym(4)")

gap> Display(tbl);

Sym(4)

2 3 2 3 . 2

3 1 . . 1 .

1a 2a 2b 3a 4a

2P 1a 1a 1a 3a 2b

3P 1a 2a 2b 1a 4a

X.1 1 -1 1 1 -1

X.2 3 -1 -1 . 1

X.3 2 . 2 -1 .

X.4 3 1 -1 . -1

X.5 1 1 1 1 1

gap> srt1:= CharacterTableWithSortedCharacters(tbl);

CharacterTable("Sym(4)")

gap> List(Irr(srt1), Degree);

[1, 1, 2, 3, 3]

gap> srt2:= CharacterTableWithSortedClasses(tbl);

CharacterTable("Sym(4)")

gap> SizesCentralizers(tbl);

[24, 4, 8, 3, 4]

gap> SizesCentralizers(srt2);

[24, 8, 4, 3, 4]

gap> nsg:= ClassPositionsOfNormalSubgroups(tbl);

[[1], [1, 3], [1, 3, 4], [1 .. 5]]

gap> srt3:= SortedCharacterTable(tbl, nsg);

CharacterTable("Sym(4)")

gap> nsg:= ClassPositionsOfNormalSubgroups(srt3);

[[1], [1, 2], [1 .. 3], [1 .. 5]]

gap> Display(srt3);

Sym(4)

2 3 3 . 2 2

3 1 . 1 . .

1a 2a 3a 2b 4a

2P 1a 1a 3a 1a 2a

GAP - Reference Manual 1200

3P 1a 2a 1a 2b 4a

X.1 1 1 1 1 1

X.2 1 1 1 -1 -1

X.3 2 2 -1 . .

X.4 3 -1 . -1 1

X.5 3 -1 . 1 -1

gap> ClassPermutation(srt3);

(2,4,3)

71.22 Automorphisms and Equivalence of Character Tables

71.22.1 MatrixAutomorphisms

▷ MatrixAutomorphisms(mat[, maps, subgroup]) (operation)

For a matrix mat , MatrixAutomorphisms returns the group of those permutations of the columns
of mat that leave the set of rows of mat invariant.

If the arguments maps and subgroup are given, only the group of those permutations is con-
structed that additionally fix each list in the list maps under pointwise action OnTuples (41.2.5), and
subgroup is a permutation group that is known to be a subgroup of this group of automorphisms.

Each entry in maps must be a list of same length as the rows of mat . For example, if mat is
a list of irreducible characters of a group then the list of element orders of the conjugacy classes
(see OrdersClassRepresentatives (71.9.1)) may be an entry in maps .

71.22.2 TableAutomorphisms

▷ TableAutomorphisms(tbl, characters[, info]) (operation)

TableAutomorphisms returns the permutation group of those matrix automorphisms
(see MatrixAutomorphisms (71.22.1)) of the list characters that leave the element orders
(see OrdersClassRepresentatives (71.9.1)) and all stored power maps (see ComputedPowerMaps
(73.1.1)) of the character table tbl invariant.

If characters is closed under Galois conjugacy –this is always fulfilled for the list of all ir-
reducible characters of ordinary character tables– the string "closed" may be entered as the third
argument info . Alternatively, a known subgroup of the table automorphisms can be entered as the
third argument info .

The attribute AutomorphismsOfTable (71.9.4) can be used to compute and store the table auto-
morphisms for the case that characters equals the Irr (71.8.2) value of tbl .

Example
gap> tbld8:= CharacterTable("Dihedral", 8);;

gap> irrd8:= Irr(tbld8);

[Character(CharacterTable("Dihedral(8)"), [1, 1, 1, 1, 1]),

Character(CharacterTable("Dihedral(8)"), [1, 1, 1, -1, -1]),

Character(CharacterTable("Dihedral(8)"), [1, -1, 1, 1, -1]),

Character(CharacterTable("Dihedral(8)"), [1, -1, 1, -1, 1]),

Character(CharacterTable("Dihedral(8)"), [2, 0, -2, 0, 0])]

gap> orders:= OrdersClassRepresentatives(tbld8);

GAP - Reference Manual 1201

[1, 4, 2, 2, 2]

gap> MatrixAutomorphisms(irrd8);

Group([(4,5), (2,4)])

gap> MatrixAutomorphisms(irrd8, [orders], Group(()));

Group([(4,5)])

gap> TableAutomorphisms(tbld8, irrd8);

Group([(4,5)])

71.22.3 TransformingPermutations

▷ TransformingPermutations(mat1, mat2) (operation)

Let mat1 and mat2 be matrices. TransformingPermutations tries to construct a permutation π

that transforms the set of rows of the matrix mat1 to the set of rows of the matrix mat2 by permuting
the columns.

If such a permutation exists, a record with the components columns, rows, and group is returned,
otherwise fail. For TransformingPermutations(mat1, mat2) = r ̸= fail, we have mat2

= Permuted(List(mat1, x -> Permuted(x, r.columns)), r.rows).
r.group is the group of matrix automorphisms of mat2 (see MatrixAutomorphisms (71.22.1)).

This group stabilizes the transformation in the sense that applying any of its elements to the columns
of mat2 preserves the set of rows of mat2 .

71.22.4 TransformingPermutationsCharacterTables

▷ TransformingPermutationsCharacterTables(tbl1, tbl2) (operation)

Let tbl1 and tbl2 be character tables. TransformingPermutationsCharacterTables tries
to construct a permutation π that transforms the set of rows of the matrix Irr(tbl1) to the set
of rows of the matrix Irr(tbl2) by permuting the columns (see TransformingPermutations

(71.22.3)), such that π transforms also the power maps and the element orders.
If such a permutation π exists then a record with the components columns (π), rows (the permuta-

tion of Irr(tbl1) corresponding to π), and group (the permutation group of table automorphisms
of tbl2 , see AutomorphismsOfTable (71.9.4)) is returned. If no such permutation exists, fail is
returned.

Example
gap> tblq8:= CharacterTable("Quaternionic", 8);;

gap> irrq8:= Irr(tblq8);

[Character(CharacterTable("Q8"), [1, 1, 1, 1, 1]),

Character(CharacterTable("Q8"), [1, 1, 1, -1, -1]),

Character(CharacterTable("Q8"), [1, -1, 1, 1, -1]),

Character(CharacterTable("Q8"), [1, -1, 1, -1, 1]),

Character(CharacterTable("Q8"), [2, 0, -2, 0, 0])]

gap> OrdersClassRepresentatives(tblq8);

[1, 4, 2, 4, 4]

gap> TransformingPermutations(irrd8, irrq8);

rec(columns := (), group := Group([(4,5), (2,4)]), rows := ())

gap> TransformingPermutationsCharacterTables(tbld8, tblq8);

fail

gap> tbld6:= CharacterTable("Dihedral", 6);;

GAP - Reference Manual 1202

gap> tbls3:= CharacterTable("Symmetric", 3);;

gap> TransformingPermutationsCharacterTables(tbld6, tbls3);

rec(columns := (2,3), group := Group(()), rows := (1,3,2))

71.22.5 FamiliesOfRows

▷ FamiliesOfRows(mat, maps) (function)

distributes the rows of the matrix mat into families, as follows. Two rows of mat belong to the
same family if there is a permutation of columns that maps one row to the other row. Each entry in the
list maps is regarded to form a family of length 1.

FamiliesOfRows returns a record with the components

famreps

the list of representatives for each family,

permutations

the list that contains at position i a list of permutations that map the members of the family with
representative famreps[i] to that representative,

families

the list that contains at position i the list of positions of members of the family of representa-
tive famreps[i]; (for the element maps [i] the only member of the family will get the number
Length(mat) + i).

71.23 Storing Normal Subgroup Information

71.23.1 NormalSubgroupClassesInfo

▷ NormalSubgroupClassesInfo(tbl) (attribute)

Let tbl be the ordinary character table of the group G. Many computations for group characters
of G involve computations in normal subgroups or factor groups of G.

In some cases the character table tbl is sufficient; for example questions about a normal subgroup
N of G can be answered if one knows the conjugacy classes that form N, e.g., the question whether
a character of G restricts irreducibly to N. But other questions require the computation of N or even
more information, like the character table of N.

In order to do these computations only once, one stores in the group a record with components
to store normal subgroups, the corresponding lists of conjugacy classes, and (if necessary) the factor
groups, namely

nsg list of normal subgroups of G, may be incomplete,

nsgclasses

at position i, the list of positions of conjugacy classes of tbl forming the i-th entry of the nsg

component,

nsgfactors

at position i, if bound, the factor group modulo the i-th entry of the nsg component.

GAP - Reference Manual 1203

NormalSubgroupClasses (71.23.3), FactorGroupNormalSubgroupClasses (71.23.4), and
ClassPositionsOfNormalSubgroup (71.23.2) each use these components, and they are the only
functions to do so.

So if you need information about a normal subgroup for that you know the conjugacy classes, you
should get it using NormalSubgroupClasses (71.23.3). If the normal subgroup was already used it is
just returned, with all the knowledge it contains. Otherwise the normal subgroup is added to the lists,
and will be available for the next call.

For example, if you are dealing with kernels of characters using the KernelOfCharacter

(72.8.9) function you make use of this feature because KernelOfCharacter (72.8.9) calls
NormalSubgroupClasses (71.23.3).

71.23.2 ClassPositionsOfNormalSubgroup

▷ ClassPositionsOfNormalSubgroup(tbl, N) (function)

is the list of positions of conjugacy classes of the character table tbl that are contained in the
normal subgroup N of the underlying group of tbl .

71.23.3 NormalSubgroupClasses

▷ NormalSubgroupClasses(tbl, classes) (function)

returns the normal subgroup of the underlying group G of the ordinary character table tbl that
consists of those conjugacy classes of tbl whose positions are in the list classes .

If NormalSubgroupClassesInfo(tbl).nsg does not yet contain the required normal sub-
group, and if NormalSubgroupClassesInfo(tbl).normalSubgroups is bound then the result
will be identical to the group in NormalSubgroupClassesInfo(tbl).normalSubgroups.

71.23.4 FactorGroupNormalSubgroupClasses

▷ FactorGroupNormalSubgroupClasses(tbl, classes) (function)

is the factor group of the underlying group G of the ordinary character table tbl modulo the
normal subgroup of G that consists of those conjugacy classes of tbl whose positions are in the list
classes .

Example
gap> g:= SymmetricGroup(4);

Sym([1 .. 4])

gap> SetName(g, "S4");

gap> tbl:= CharacterTable(g);

CharacterTable(S4)

gap> irr:= Irr(g);

[Character(CharacterTable(S4), [1, -1, 1, 1, -1]),

Character(CharacterTable(S4), [3, -1, -1, 0, 1]),

Character(CharacterTable(S4), [2, 0, 2, -1, 0]),

Character(CharacterTable(S4), [3, 1, -1, 0, -1]),

Character(CharacterTable(S4), [1, 1, 1, 1, 1])]

gap> kernel:= KernelOfCharacter(irr[3]);;

gap> AsSet(kernel);

GAP - Reference Manual 1204

[(), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)]

gap> SetName(kernel,"V4");

gap> HasNormalSubgroupClassesInfo(tbl);

true

gap> NormalSubgroupClassesInfo(tbl);

rec(nsg := [V4], nsgclasses := [[1, 3]], nsgfactors := [])

gap> ClassPositionsOfNormalSubgroup(tbl, kernel);

[1, 3]

gap> G := FactorGroupNormalSubgroupClasses(tbl, [1, 3]);;

gap> NormalSubgroupClassesInfo(tbl).nsgfactors[1] = G;

true

Chapter 72

Class Functions

This chapter describes operations for class functions of finite groups. For operations concerning char-
acter tables, see Chapter 71.

Several examples in this chapter require the GAP Character Table Library to be available. If it is
not yet loaded then we load it now.

Example
gap> LoadPackage("ctbllib");

true

72.1 Why Class Functions?

In principle it is possible to represent group characters or more general class functions by the plain lists
of their values, and in fact many operations for class functions work with plain lists of class function
values. But this has two disadvantages.

First, it is then necessary to regard a values list explicitly as a class function of a particular character
table, by supplying this character table as an argument. In practice this means that with this setup, the
user has the task to put the objects into the right context. For example, forming the scalar product or
the tensor product of two class functions or forming an induced class function or a conjugate class
function then needs three arguments in this case; this is particularly inconvenient in cases where infix
operations cannot be used because of the additional argument, as for tensor products and induced class
functions.

Second, when one says that “χ is a character of a group G” then this object χ carries a lot of
information. χ has certain properties such as being irreducible or not. Several subgroups of G are
related to χ , such as the kernel and the centre of χ . Other attributes of characters are the determinant
and the central character. This knowledge cannot be stored in a plain list.

For dealing with a group together with its characters, and maybe also subgroups and their char-
acters, it is desirable that GAP keeps track of the interpretation of characters. On the other hand,
for using characters without accessing their groups, such as characters of tables from the GAP table
library, dealing just with values lists is often sufficient. In particular, if one deals with incomplete
character tables then it is often necessary to specify the arguments explicitly, for example one has to
choose a fusion map or power map from a set of possibilities.

The main idea behind class function objects is that a class function object is equal to its values
list in the sense of \= (31.11.1), so class function objects can be used wherever their values lists can
be used, but there are operations for class function objects that do not work just with values lists.

1205

GAP - Reference Manual 1206

GAP library functions prefer to return class function objects rather than returning just values lists, for
example Irr (71.8.2) lists consist of class function objects, and TrivialCharacter (72.7.1) returns
a class function object.

Here is an example that shows both approaches. First we define some groups.
Example

gap> S4:= SymmetricGroup(4);; SetName(S4, "S4");

gap> D8:= SylowSubgroup(S4, 2);; SetName(D8, "D8");

We do some computations using the functions described later in this Chapter, first with class
function objects.

Example
gap> irrS4:= Irr(S4);;

gap> irrD8:= Irr(D8);;

gap> chi:= irrD8[4];

Character(CharacterTable(D8), [1, -1, 1, -1, 1])

gap> chi * chi;

Character(CharacterTable(D8), [1, 1, 1, 1, 1])

gap> ind:= chi ^ S4;

Character(CharacterTable(S4), [3, -1, -1, 0, 1])

gap> List(irrS4, x -> ScalarProduct(x, ind));

[0, 1, 0, 0, 0]

gap> det:= Determinant(ind);

Character(CharacterTable(S4), [1, 1, 1, 1, 1])

gap> cent:= CentralCharacter(ind);

ClassFunction(CharacterTable(S4), [1, -2, -1, 0, 2])

gap> rest:= Restricted(cent, D8);

ClassFunction(CharacterTable(D8), [1, -2, -1, -1, 2])

Now we repeat these calculations with plain lists of character values. Here we need the character
tables in some places.

Example
gap> tS4:= CharacterTable(S4);;

gap> tD8:= CharacterTable(D8);;

gap> chi:= ValuesOfClassFunction(irrD8[4]);

[1, -1, 1, -1, 1]

gap> Tensored([chi], [chi])[1];

[1, 1, 1, 1, 1]

gap> ind:= InducedClassFunction(tD8, chi, tS4);

ClassFunction(CharacterTable(S4), [3, -1, -1, 0, 1])

gap> List(Irr(tS4), x -> ScalarProduct(tS4, x, ind));

[0, 1, 0, 0, 0]

gap> det:= DeterminantOfCharacter(tS4, ind);

ClassFunction(CharacterTable(S4), [1, 1, 1, 1, 1])

gap> cent:= CentralCharacter(tS4, ind);

ClassFunction(CharacterTable(S4), [1, -2, -1, 0, 2])

gap> rest:= Restricted(tS4, cent, tD8);

ClassFunction(CharacterTable(D8), [1, -2, -1, -1, 2])

If one deals with character tables from the GAP table library then one has no access to their groups,
but often the tables provide enough information for computing induced or restricted class functions,

GAP - Reference Manual 1207

symmetrizations etc., because the relevant class fusions and power maps are often stored on library
tables. In these cases it is possible to use the tables instead of the groups as arguments. (If necessary
information is not uniquely determined by the tables then an error is signalled.)

Example
gap> s5 := CharacterTable("A5.2");; irrs5 := Irr(s5);;

gap> m11:= CharacterTable("M11");; irrm11:= Irr(m11);;

gap> chi:= TrivialCharacter(s5);

Character(CharacterTable("A5.2"), [1, 1, 1, 1, 1, 1, 1])

gap> chi ^ m11;

Character(CharacterTable("M11"), [66, 10, 3, 2, 1, 1, 0, 0, 0, 0

])

gap> Determinant(irrs5[4]);

Character(CharacterTable("A5.2"), [1, 1, 1, 1, -1, -1, -1])

Functions that compute normal subgroups related to characters have counterparts that return the
list of class positions corresponding to these groups.

Example
gap> ClassPositionsOfKernel(irrs5[2]);

[1, 2, 3, 4]

gap> ClassPositionsOfCentre(irrs5[2]);

[1, 2, 3, 4, 5, 6, 7]

Non-normal subgroups cannot be described this way, so for example inertia subgroups
(see InertiaSubgroup (72.8.13)) can in general not be computed from character tables without ac-
cess to their groups.

72.1.1 IsClassFunction

▷ IsClassFunction(obj) (Category)

A class function (in characteristic p) of a finite group G is a map from the set of (p-regular)
elements in G to the field of cyclotomics that is constant on conjugacy classes of G.

Each class function in GAP is represented by an immutable list, where at the i-th position the
value on the i-th conjugacy class of the character table of G is stored. The ordering of the conjugacy
classes is the one used in the underlying character table. Note that if the character table has access to
its underlying group then the ordering of conjugacy classes in the group and in the character table may
differ (see 71.6); class functions always refer to the ordering of classes in the character table.

Class function objects in GAP are not just plain lists, they store the character table of the group G
as value of the attribute UnderlyingCharacterTable (72.2.1). The group G itself is accessible only
via the character table and thus only if the character table stores its group, as value of the attribute
UnderlyingGroup (71.6.1). The reason for this is that many computations with class functions are
possible without using their groups, for example class functions of character tables in the GAP char-
acter table library do in general not have access to their underlying groups.

There are (at least) two reasons why class functions in GAP are not implemented as mappings.
First, we want to distinguish class functions in different characteristics, for example to be able to
define the Frobenius character of a given Brauer character; viewed as mappings, the trivial characters
in all characteristics coprime to the order of G are equal. Second, the product of two class functions
shall be again a class function, whereas the product of general mappings is defined as composition.

GAP - Reference Manual 1208

A further argument is that the typical operations for mappings such as Image (32.4.6) and
PreImage (32.5.6) play no important role for class functions.

72.2 Basic Operations for Class Functions

Basic operations for class functions are UnderlyingCharacterTable (72.2.1),
ValuesOfClassFunction (72.2.2), and the basic operations for lists (see 21.2).

72.2.1 UnderlyingCharacterTable

▷ UnderlyingCharacterTable(psi) (attribute)

For a class function psi of a group G the character table of G is stored as value of
UnderlyingCharacterTable. The ordering of entries in the list psi (see ValuesOfClassFunction
(72.2.2)) refers to the ordering of conjugacy classes in this character table.

If psi is an ordinary class function then the underlying character table is the ordinary character
table of G (see OrdinaryCharacterTable (71.8.4)), if psi is a class function in characteristic p ̸= 0
then the underlying character table is the p-modular Brauer table of G (see BrauerTable (71.3.2)).
So the underlying characteristic of psi can be read off from the underlying character table.

72.2.2 ValuesOfClassFunction

▷ ValuesOfClassFunction(psi) (attribute)

is the list of values of the class function psi , the i-th entry being the value on the i-th conjugacy
class of the underlying character table (see UnderlyingCharacterTable (72.2.1)).

Example
gap> g:= SymmetricGroup(4);

Sym([1 .. 4])

gap> psi:= TrivialCharacter(g);

Character(CharacterTable(Sym([1 .. 4])), [1, 1, 1, 1, 1])

gap> UnderlyingCharacterTable(psi);

CharacterTable(Sym([1 .. 4]))

gap> ValuesOfClassFunction(psi);

[1, 1, 1, 1, 1]

gap> IsList(psi);

true

gap> psi[1];

1

gap> Length(psi);

5

gap> IsBound(psi[6]);

false

gap> Concatenation(psi, [2, 3]);

[1, 1, 1, 1, 1, 2, 3]

GAP - Reference Manual 1209

72.3 Comparison of Class Functions

With respect to \= (31.11.1) and \< (31.11.1), class functions behave equally to their lists of values
(see ValuesOfClassFunction (72.2.2)). So two class functions are equal if and only if their lists of
values are equal, no matter whether they are class functions of the same character table, of the same
group but w.r.t. different class ordering, or of different groups.

Example
gap> grps:= Filtered(AllSmallGroups(8), g -> not IsAbelian(g));

[<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>]

gap> t1:= CharacterTable(grps[1]); SetName(t1, "t1");

CharacterTable(<pc group of size 8 with 3 generators>)

gap> t2:= CharacterTable(grps[2]); SetName(t2, "t2");

CharacterTable(<pc group of size 8 with 3 generators>)

gap> irr1:= Irr(grps[1]);

[Character(t1, [1, 1, 1, 1, 1]),

Character(t1, [1, -1, -1, 1, 1]),

Character(t1, [1, -1, 1, 1, -1]),

Character(t1, [1, 1, -1, 1, -1]),

Character(t1, [2, 0, 0, -2, 0])]

gap> irr2:= Irr(grps[2]);

[Character(t2, [1, 1, 1, 1, 1]),

Character(t2, [1, -1, -1, 1, 1]),

Character(t2, [1, -1, 1, 1, -1]),

Character(t2, [1, 1, -1, 1, -1]),

Character(t2, [2, 0, 0, -2, 0])]

gap> irr1 = irr2;

true

gap> IsSSortedList(irr1);

false

gap> irr1[1] < irr1[2];

false

gap> irr1[2] < irr1[3];

true

72.4 Arithmetic Operations for Class Functions

Class functions are row vectors of cyclotomics. The additive behaviour of class functions is defined
such that they are equal to the plain lists of class function values except that the results are repre-
sented again as class functions whenever this makes sense. The multiplicative behaviour, however,
is different. This is motivated by the fact that the tensor product of class functions is a more in-
teresting operation than the vector product of plain lists. (Another candidate for a multiplication of
compatible class functions would have been the inner product, which is implemented via the function
ScalarProduct (72.8.5). In terms of filters, the arithmetic of class functions is based on the decision
that they lie in IsGeneralizedRowVector (21.12.1), with additive nesting depth 1, but they do not
lie in IsMultiplicativeGeneralizedRowVector (21.12.2).

More specifically, the scalar multiple of a class function with a cyclotomic is a class func-
tion, and the sum and the difference of two class functions of the same underlying character table
(see UnderlyingCharacterTable (72.2.1)) are again class functions of this table. The sum and the

GAP - Reference Manual 1210

difference of a class function and a list that is not a class function are plain lists, as well as the sum
and the difference of two class functions of different character tables.

Example
gap> g:= SymmetricGroup(4);; tbl:= CharacterTable(g);;

gap> SetName(tbl, "S4"); irr:= Irr(g);

[Character(S4, [1, -1, 1, 1, -1]),

Character(S4, [3, -1, -1, 0, 1]),

Character(S4, [2, 0, 2, -1, 0]),

Character(S4, [3, 1, -1, 0, -1]),

Character(S4, [1, 1, 1, 1, 1])]

gap> 2 * irr[5];

Character(S4, [2, 2, 2, 2, 2])

gap> irr[1] / 7;

ClassFunction(S4, [1/7, -1/7, 1/7, 1/7, -1/7])

gap> lincomb:= irr[3] + irr[1] - irr[5];

VirtualCharacter(S4, [2, -2, 2, -1, -2])

gap> lincomb:= lincomb + 2 * irr[5];

VirtualCharacter(S4, [4, 0, 4, 1, 0])

gap> IsCharacter(lincomb);

true

gap> lincomb;

Character(S4, [4, 0, 4, 1, 0])

gap> irr[5] + 2;

[3, 3, 3, 3, 3]

gap> irr[5] + [1, 2, 3, 4, 5];

[2, 3, 4, 5, 6]

gap> zero:= 0 * irr[1];

VirtualCharacter(S4, [0, 0, 0, 0, 0])

gap> zero + Z(3);

[Z(3), Z(3), Z(3), Z(3), Z(3)]

gap> irr[5] + TrivialCharacter(DihedralGroup(8));

[2, 2, 2, 2, 2]

The product of two class functions of the same character table is the tensor product (pointwise
product) of these class functions. Thus the set of all class functions of a fixed group forms a ring, and
for any field F of cyclotomics, the F-span of a given set of class functions forms an algebra.

The product of two class functions of different tables and the product of a class function and a
list that is not a class function are not defined, an error is signalled in these cases. Note that in this
respect, class functions behave differently from their values lists, for which the product is defined as
the standard scalar product.

Example
gap> tens:= irr[3] * irr[4];

Character(S4, [6, 0, -2, 0, 0])

gap> ValuesOfClassFunction(irr[3]) * ValuesOfClassFunction(irr[4]);

4

Class functions without zero values are invertible, the inverse is defined pointwise. As a conse-
quence, for example groups of linear characters can be formed.

Example
gap> tens / irr[1];

Character(S4, [6, 0, -2, 0, 0])

GAP - Reference Manual 1211

Other (somewhat strange) implications of the definition of arithmetic operations for class func-
tions, together with the general rules of list arithmetic (see 21.11), apply to the case of products
involving lists of class functions. No inverse of the list of irreducible characters as a matrix is defined;
if one is interested in the inverse matrix then one can compute it from the matrix of class function
values.

Example
gap> Inverse(List(irr, ValuesOfClassFunction));

[[1/24, 1/8, 1/12, 1/8, 1/24], [-1/4, -1/4, 0, 1/4, 1/4],

[1/8, -1/8, 1/4, -1/8, 1/8], [1/3, 0, -1/3, 0, 1/3],

[-1/4, 1/4, 0, -1/4, 1/4]]

Also the product of a class function with a list of class functions is not a vector-matrix product
but the list of pointwise products.

Example
gap> irr[1] * irr{ [1 .. 3] };

[Character(S4, [1, 1, 1, 1, 1]),

Character(S4, [3, 1, -1, 0, -1]),

Character(S4, [2, 0, 2, -1, 0])]

And the product of two lists of class functions is not the matrix product but the sum of the point-
wise products.

Example
gap> irr * irr;

Character(S4, [24, 4, 8, 3, 4])

The powering operator \^ (31.12.1) has several meanings for class functions. The power of a
class function by a nonnegative integer is clearly the tensor power. The power of a class function by
an element that normalizes the underlying group or by a Galois automorphism is the conjugate class
function. (As a consequence, the application of the permutation induced by such an action cannot be
denoted by \^ (31.12.1); instead one can use Permuted (21.20.17).) The power of a class function
by a group or a character table is the induced class function (see InducedClassFunction (72.9.3)).
The power of a group element by a class function is the class function value at (the conjugacy class
containing) this element.

Example
gap> irr[3] ^ 3;

Character(S4, [8, 0, 8, -1, 0])

gap> lin:= LinearCharacters(DerivedSubgroup(g));

[Character(CharacterTable(Alt([1 .. 4])), [1, 1, 1, 1]),

Character(CharacterTable(Alt([1 .. 4])),

[1, 1, E(3), E(3)^2]),

Character(CharacterTable(Alt([1 .. 4])),

[1, 1, E(3)^2, E(3)])]

gap> List(lin, chi -> chi ^ (1,2));

[Character(CharacterTable(Alt([1 .. 4])), [1, 1, 1, 1]),

Character(CharacterTable(Alt([1 .. 4])),

[1, 1, E(3)^2, E(3)]),

Character(CharacterTable(Alt([1 .. 4])),

[1, 1, E(3), E(3)^2])]

gap> Orbit(GaloisGroup(CF(3)), lin[2]);

GAP - Reference Manual 1212

[Character(CharacterTable(Alt([1 .. 4])),

[1, 1, E(3), E(3)^2]),

Character(CharacterTable(Alt([1 .. 4])),

[1, 1, E(3)^2, E(3)])]

gap> lin[1]^g;

Character(S4, [2, 0, 2, 2, 0])

gap> (1,2,3)^lin[2];

E(3)

72.4.1 Characteristic (for a class function)

▷ Characteristic(chi) (attribute)

The characteristic of class functions is zero, as for all list of cyclotomics. For class func-
tions of a p-modular character table, such as Brauer characters, the prime p is given by the
UnderlyingCharacteristic (71.9.5) value of the character table.

Example
gap> Characteristic(irr[1]);

0

gap> irrmod2:= Irr(g, 2);

[Character(BrauerTable(Sym([1 .. 4]), 2), [1, 1]),

Character(BrauerTable(Sym([1 .. 4]), 2), [2, -1])]

gap> Characteristic(irrmod2[1]);

0

gap> UnderlyingCharacteristic(UnderlyingCharacterTable(irrmod2[1]));

2

72.4.2 ComplexConjugate (for a class function)

▷ ComplexConjugate(chi) (attribute)

▷ GaloisCyc(chi, k) (operation)

▷ Permuted(chi, pi) (method)

The operations ComplexConjugate, GaloisCyc, and Permuted return a class function when
they are called with a class function; The complex conjugate of a class function that is known to
be a (virtual) character is again known to be a (virtual) character, and applying an arbitrary Galois
automorphism to an ordinary (virtual) character yields a (virtual) character.

Example
gap> ComplexConjugate(lin[2]);

Character(CharacterTable(Alt([1 .. 4])),

[1, 1, E(3)^2, E(3)])

gap> GaloisCyc(lin[2], 5);

Character(CharacterTable(Alt([1 .. 4])),

[1, 1, E(3)^2, E(3)])

gap> Permuted(lin[2], (2,3,4));

ClassFunction(CharacterTable(Alt([1 .. 4])),

[1, E(3)^2, 1, E(3)])

GAP - Reference Manual 1213

72.4.3 Order (for a class function)

▷ Order(chi) (attribute)

By definition of Order (31.10.10) for arbitrary monoid elements, the return value of
Order (31.10.10) for a character must be its multiplicative order. The determinantal order
(see DeterminantOfCharacter (72.8.18)) of a character chi can be computed as Order(

Determinant(chi)).
Example

gap> det:= Determinant(irr[3]);

Character(S4, [1, -1, 1, 1, -1])

gap> Order(det);

2

72.5 Printing Class Functions

72.5.1 ViewObj (for class functions)

▷ ViewObj(chi) (method)

The default ViewObj (6.3.5) methods for class functions print one of the strings
"ClassFunction", "VirtualCharacter", "Character" (depending on whether the class function
is known to be a character or virtual character, see IsCharacter (72.8.1), IsVirtualCharacter
(72.8.2)), followed by the ViewObj (6.3.5) output for the underlying character table (see 71.13), and
the list of values. The table is chosen (and not the group) in order to distinguish class functions of
different underlying characteristic (see UnderlyingCharacteristic (71.9.5)).

72.5.2 PrintObj (for class functions)

▷ PrintObj(chi) (method)

The default PrintObj (6.3.5) method for class functions does the same as ViewObj (6.3.5), except
that the character table is Print (6.3.4)-ed instead of View (6.3.3)-ed.

Note that if a class function is shown only with one of the strings "ClassFunction",
"VirtualCharacter", it may still be that it is in fact a character; just this was not known at the
time when the class function was printed.

In order to reduce the space that is needed to print a class function, it may be useful to give a name
(see Name (12.8.2)) to the underlying character table.

72.5.3 Display (for class functions)

▷ Display(chi) (method)

The default Display (6.3.6) method for a class function chi calls Display (6.3.6) for its under-
lying character table (see 71.13), with chi as the only entry in the chars list of the options record.

Example
gap> chi:= TrivialCharacter(CharacterTable("A5"));

Character(CharacterTable("A5"), [1, 1, 1, 1, 1])

GAP - Reference Manual 1214

gap> Display(chi);

A5

2 2 2 . . .

3 1 . 1 . .

5 1 . . 1 1

1a 2a 3a 5a 5b

2P 1a 1a 3a 5b 5a

3P 1a 2a 1a 5b 5a

5P 1a 2a 3a 1a 1a

Y.1 1 1 1 1 1

72.6 Creating Class Functions from Values Lists

72.6.1 ClassFunction (for a character table and a list)

▷ ClassFunction(tbl, values) (operation)

▷ ClassFunction(G, values) (operation)

In the first form, ClassFunction returns the class function of the character table tbl with values
given by the list values of cyclotomics. In the second form, G must be a group, and the class function
of its ordinary character table is returned.

Note that tbl determines the underlying characteristic of the returned class function
(see UnderlyingCharacteristic (71.9.5)).

72.6.2 VirtualCharacter (for a character table and a list)

▷ VirtualCharacter(tbl, values) (operation)

▷ VirtualCharacter(G, values) (operation)

VirtualCharacter returns the virtual character (see IsVirtualCharacter (72.8.2)) of the char-
acter table tbl or the group G , respectively, with values given by the list values .

It is not checked whether the given values really describe a virtual character.

72.6.3 Character (for a character table and a list)

▷ Character(tbl, values) (operation)

▷ Character(G, values) (operation)

Character returns the character (see IsCharacter (72.8.1)) of the character table tbl or the
group G , respectively, with values given by the list values .

It is not checked whether the given values really describe a character.
Example

gap> g:= DihedralGroup(8); tbl:= CharacterTable(g);

<pc group of size 8 with 3 generators>

CharacterTable(<pc group of size 8 with 3 generators>)

gap> SetName(tbl, "D8");

GAP - Reference Manual 1215

gap> phi:= ClassFunction(g, [1, -1, 0, 2, -2]);

ClassFunction(D8, [1, -1, 0, 2, -2])

gap> psi:= ClassFunction(tbl,

> List(Irr(g), chi -> ScalarProduct(chi, phi)));

ClassFunction(D8, [-3/8, 9/8, 5/8, 1/8, -1/4])

gap> chi:= VirtualCharacter(g, [0, 0, 8, 0, 0]);

VirtualCharacter(D8, [0, 0, 8, 0, 0])

gap> reg:= Character(tbl, [8, 0, 0, 0, 0]);

Character(D8, [8, 0, 0, 0, 0])

72.6.4 ClassFunctionSameType

▷ ClassFunctionSameType(tbl, chi, values) (function)

Let tbl be a character table, chi a class function object (not necessarily a class function of tbl),
and values a list of cyclotomics. ClassFunctionSameType returns the class function ψ of tbl with
values list values , constructed with ClassFunction (72.6.1).

If chi is known to be a (virtual) character then ψ is also known to be a (virtual) character.
Example

gap> h:= Centre(g);;

gap> centbl:= CharacterTable(h);; SetName(centbl, "C2");

gap> ClassFunctionSameType(centbl, phi, [1, 1]);

ClassFunction(C2, [1, 1])

gap> ClassFunctionSameType(centbl, chi, [1, 1]);

VirtualCharacter(C2, [1, 1])

gap> ClassFunctionSameType(centbl, reg, [1, 1]);

Character(C2, [1, 1])

72.7 Creating Class Functions using Groups

72.7.1 TrivialCharacter

▷ TrivialCharacter(tbl) (attribute)

▷ TrivialCharacter(G) (attribute)

is the trivial character of the group G or its character table tbl , respectively. This is the class
function with value equal to 1 for each class.

Example
gap> TrivialCharacter(CharacterTable("A5"));

Character(CharacterTable("A5"), [1, 1, 1, 1, 1])

gap> TrivialCharacter(SymmetricGroup(3));

Character(CharacterTable(Sym([1 .. 3])), [1, 1, 1])

72.7.2 NaturalCharacter (for a group)

▷ NaturalCharacter(G) (attribute)

▷ NaturalCharacter(hom) (attribute)

GAP - Reference Manual 1216

If the argument is a permutation group G then NaturalCharacter returns the (ordinary) character
of the natural permutation representation of G on the set of moved points (see MovedPoints (42.3.3)),
that is, the value on each class is the number of points among the moved points of G that are fixed by
any permutation in that class.

If the argument is a matrix group G in characteristic zero then NaturalCharacter returns the
(ordinary) character of the natural matrix representation of G , that is, the value on each class is the
trace of any matrix in that class.

If the argument is a group homomorphism hom whose image is a permutation group or a matrix
group then NaturalCharacter returns the restriction of the natural character of the image of hom to
the preimage of hom .

Example
gap> NaturalCharacter(SymmetricGroup(3));

Character(CharacterTable(Sym([1 .. 3])), [3, 1, 0])

gap> NaturalCharacter(Group([[0, -1], [1, -1]]));

Character(CharacterTable(Group([[[0, -1], [1, -1]]])),

[2, -1, -1])

gap> d8:= DihedralGroup(8);; hom:= RegularActionHomomorphism(d8);;

gap> NaturalCharacter(hom);

Character(CharacterTable(<pc group of size 8 with 3 generators>),

[8, 0, 0, 0, 0])

72.7.3 PermutationCharacter

▷ PermutationCharacter(G, D, opr) (operation)

▷ PermutationCharacter(G, U) (operation)

Called with a group G , an action domain or proper set D , and an action function opr (see Chap-
ter 41), PermutationCharacter returns the permutation character of the action of G on D via opr ,
that is, the value on each class is the number of points in D that are fixed by an element in this class
under the action opr .

If the arguments are a group G and a subgroup U of G then PermutationCharacter returns the
permutation character of the action of G on the right cosets of U via right multiplication.

To compute the permutation character of a transitive permutation group G on the cosets
of a point stabilizer U , the attribute NaturalCharacter (72.7.2) of G can be used instead of
PermutationCharacter(G, U).

More facilities concerning permutation characters are the transitivity test (see Section 72.8) and
several tools for computing possible permutation characters (see 72.13, 72.14).

Example
gap> PermutationCharacter(GL(2,2), AsSSortedList(GF(2)^2), OnRight);

Character(CharacterTable(SL(2,2)), [4, 2, 1])

gap> s3:= SymmetricGroup(3);; a3:= DerivedSubgroup(s3);;

gap> PermutationCharacter(s3, a3);

Character(CharacterTable(Sym([1 .. 3])), [2, 0, 2])

72.8 Operations for Class Functions

In the description of the following operations, the optional first argument tbl is needed only if the
argument chi is a plain list and not a class function object. In this case, tbl must always be the

GAP - Reference Manual 1217

character table of which chi shall be regarded as a class function.

72.8.1 IsCharacter

▷ IsCharacter([tbl,]chi) (property)

An ordinary character of a group G is a class function of G whose values are the traces of a
complex matrix representation of G.

A Brauer character of G in characteristic p is a class function of G whose values are the complex
lifts of a matrix representation of G with image a finite field of characteristic p.

72.8.2 IsVirtualCharacter

▷ IsVirtualCharacter([tbl,]chi) (property)

A virtual character is a class function that can be written as the difference of two proper characters
(see IsCharacter (72.8.1)).

72.8.3 IsIrreducibleCharacter

▷ IsIrreducibleCharacter([tbl,]chi) (property)

A character is irreducible if it cannot be written as the sum of two characters. For ordinary char-
acters this can be checked using the scalar product of class functions (see ScalarProduct (72.8.5)).
For Brauer characters there is no generic method for checking irreducibility.

Example
gap> S4:= SymmetricGroup(4);; SetName(S4, "S4");

gap> psi:= ClassFunction(S4, [1, 1, 1, -2, 1]);

ClassFunction(CharacterTable(S4), [1, 1, 1, -2, 1])

gap> IsVirtualCharacter(psi);

true

gap> IsCharacter(psi);

false

gap> chi:= ClassFunction(S4, SizesCentralizers(CharacterTable(S4)));

ClassFunction(CharacterTable(S4), [24, 4, 8, 3, 4])

gap> IsCharacter(chi);

true

gap> IsIrreducibleCharacter(chi);

false

gap> IsIrreducibleCharacter(TrivialCharacter(S4));

true

72.8.4 DegreeOfCharacter

▷ DegreeOfCharacter(chi) (attribute)

is the value of the character chi on the identity element. This can also be obtained as chi[1].

GAP - Reference Manual 1218

Example
gap> List(Irr(S4), DegreeOfCharacter);

[1, 3, 2, 3, 1]

gap> nat:= NaturalCharacter(S4);

Character(CharacterTable(S4), [4, 2, 0, 1, 0])

gap> nat[1];

4

72.8.5 ScalarProduct (for characters)

▷ ScalarProduct([tbl,]chi, psi) (operation)

Returns: the scalar product of the class functions chi and psi , which belong to the same
character table tbl .

If chi and psi are class function objects, the argument tbl is not needed, but tbl is necessary
if at least one of chi , psi is just a plain list.

The scalar product of two ordinary class functions χ , ψ of a group G is defined as
(∑g∈G χ(g)ψ(g−1))/|G|.
For two p-modular class functions, the scalar product is defined as (∑g∈S χ(g)ψ(g−1))/|G|, where

S is the set of p-regular elements in G.

72.8.6 MatScalarProducts

▷ MatScalarProducts([tbl,]list[, list2]) (operation)

Called with two lists list , list2 of class functions of the same character table (which may
be given as the argument tbl), MatScalarProducts returns the matrix of scalar products (see
ScalarProduct (72.8.5)) More precisely, this matrix contains in the i-th row the list of scalar prod-
ucts of list2 [i] with the entries of list .

If only one list list of class functions is given then a lower triangular matrix of
scalar products is returned, containing (for j ≤ i) in the i-th row in column j the value
ScalarProduct(tbl ,list [j],list [i]).

72.8.7 Norm (for a class function)

▷ Norm([tbl,]chi) (attribute)

For an ordinary class function chi of a group G we have chi = ∑χ∈Irr(G) aχ χ , with complex
coefficients aχ . The norm of chi is defined as ∑χ∈Irr(G) aχaχ .

Example
gap> tbl:= CharacterTable("A5");;

gap> ScalarProduct(TrivialCharacter(tbl), Sum(Irr(tbl)));

1

gap> ScalarProduct(tbl, [1, 1, 1, 1, 1], Sum(Irr(tbl)));

1

gap> tbl2:= tbl mod 2;

BrauerTable("A5", 2)

gap> chi:= Irr(tbl2)[1];

Character(BrauerTable("A5", 2), [1, 1, 1, 1])

gap> ScalarProduct(chi, chi);

GAP - Reference Manual 1219

3/4

gap> ScalarProduct(tbl2, [1, 1, 1, 1], [1, 1, 1, 1]);

3/4

gap> chars:= Irr(tbl){ [2 .. 4] };;

gap> chars:= Set(Tensored(chars, chars));;

gap> MatScalarProducts(Irr(tbl), chars);

[[0, 0, 0, 1, 1], [1, 1, 0, 0, 1], [1, 0, 1, 0, 1],

[0, 1, 0, 1, 1], [0, 0, 1, 1, 1], [1, 1, 1, 1, 1]]

gap> MatScalarProducts(tbl, chars);

[[2], [1, 3], [1, 2, 3], [2, 2, 1, 3], [2, 1, 2, 2, 3],

[2, 3, 3, 3, 3, 5]]

gap> List(chars, Norm);

[2, 3, 3, 3, 3, 5]

72.8.8 ConstituentsOfCharacter

▷ ConstituentsOfCharacter([tbl,]chi) (attribute)

Let chi be an ordinary or modular (virtual) character. If an ordinary or modular character table
tbl is given then chi may also be a list of character values.

ConstituentsOfCharacter returns the set of those irreducible characters that occur in the de-
composition of chi with nonzero coefficient.

Example
gap> nat:= NaturalCharacter(S4);

Character(CharacterTable(S4), [4, 2, 0, 1, 0])

gap> ConstituentsOfCharacter(nat);

[Character(CharacterTable(S4), [1, 1, 1, 1, 1]),

Character(CharacterTable(S4), [3, 1, -1, 0, -1])]

72.8.9 KernelOfCharacter

▷ KernelOfCharacter([tbl,]chi) (attribute)

For a class function chi of a group G, KernelOfCharacter returns the normal subgroup of
G that is formed by those conjugacy classes for which the value of chi equals the degree of chi .
If the underlying character table of chi does not store the group G then an error is signalled.
(See ClassPositionsOfKernel (72.8.10) for a way to handle the kernel implicitly, by listing the
positions of conjugacy classes in the kernel.)

The returned group is the kernel of any representation of G that affords chi .
Example

gap> List(Irr(S4), KernelOfCharacter);

[Alt([1 .. 4]), Group(()), Group([(1,2)(3,4), (1,3)(2,4)]),

Group(()), Group([(), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4)])]

72.8.10 ClassPositionsOfKernel

▷ ClassPositionsOfKernel(chi) (attribute)

GAP - Reference Manual 1220

is the list of positions of those conjugacy classes that form the kernel of the character chi , that is,
those positions with character value equal to the character degree.

Example
gap> List(Irr(S4), ClassPositionsOfKernel);

[[1, 3, 4], [1], [1, 3], [1], [1, 2, 3, 4, 5]]

72.8.11 CentreOfCharacter

▷ CentreOfCharacter([tbl,]chi) (attribute)

For a character chi of a group G, CentreOfCharacter returns the centre of chi , that is, the
normal subgroup of all those elements of G for which the quotient of the value of chi by the degree
of chi is a root of unity.

If the underlying character table of psi does not store the group G then an error is signalled.
(See ClassPositionsOfCentre (72.8.12) for a way to handle the centre implicitly, by listing the
positions of conjugacy classes in the centre.)

Example
gap> List(Irr(S4), CentreOfCharacter);

[Group([(), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4)]), Group(()),

Group([(1,2)(3,4), (1,3)(2,4)]), Group(()),

Group([(), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4)])]

72.8.12 ClassPositionsOfCentre (for a character)

▷ ClassPositionsOfCentre(chi) (attribute)

is the list of positions of classes forming the centre of the character chi (see CentreOfCharacter
(72.8.11)).

Example
gap> List(Irr(S4), ClassPositionsOfCentre);

[[1, 2, 3, 4, 5], [1], [1, 3], [1], [1, 2, 3, 4, 5]]

72.8.13 InertiaSubgroup

▷ InertiaSubgroup([tbl,]G, chi) (operation)

Let chi be a character of a group H and tbl the character table of H; if the argument tbl is not
given then the underlying character table of chi (see UnderlyingCharacterTable (72.2.1)) is used
instead. Furthermore, let G be a group that contains H as a normal subgroup.

InertiaSubgroup returns the stabilizer in G of chi , w.r.t. the action of G on the classes of H
via conjugation. In other words, InertiaSubgroup returns the group of all those elements g ∈ G that
satisfy chi g = chi .

Example
gap> der:= DerivedSubgroup(S4);

Alt([1 .. 4])

gap> List(Irr(der), chi -> InertiaSubgroup(S4, chi));

[S4, Alt([1 .. 4]), Alt([1 .. 4]), S4]

GAP - Reference Manual 1221

72.8.14 CycleStructureClass

▷ CycleStructureClass([tbl,]chi, class) (operation)

Let permchar be a permutation character, and class be the position of a conjugacy class of the
character table of permchar . CycleStructureClass returns a list describing the cycle structure of
each element in class class in the underlying permutation representation, in the same format as the
result of CycleStructurePerm (42.4.2).

Example
gap> nat:= NaturalCharacter(S4);

Character(CharacterTable(S4), [4, 2, 0, 1, 0])

gap> List([1 .. 5], i -> CycleStructureClass(nat, i));

[[], [1], [2], [, 1], [,, 1]]

72.8.15 IsTransitive (for a character)

▷ IsTransitive([tbl,]chi) (property)

For a permutation character chi of the group G that corresponds to an action on the G-set Ω

(see PermutationCharacter (72.7.3)), IsTransitive (41.10.1) returns true if the action of G on
Ω is transitive, and false otherwise.

72.8.16 Transitivity (for a character)

▷ Transitivity([tbl,]chi) (attribute)

For a permutation character chi of the group G that corresponds to an action on the G-set Ω

(see PermutationCharacter (72.7.3)), Transitivity returns the maximal nonnegative integer k
such that the action of G on Ω is k-transitive.

Example
gap> IsTransitive(nat); Transitivity(nat);

true

4

gap> Transitivity(2 * TrivialCharacter(S4));

0

72.8.17 CentralCharacter

▷ CentralCharacter([tbl,]chi) (attribute)

For a character chi of a group G, CentralCharacter returns the central character of chi .
The central character of χ is the class function ωχ defined by ωχ(g) = |gG| · χ(g)/χ(1) for each

g ∈ G.

72.8.18 DeterminantOfCharacter

▷ DeterminantOfCharacter([tbl,]chi) (attribute)

GAP - Reference Manual 1222

DeterminantOfCharacter returns the determinant character of the character chi . This is de-
fined to be the character obtained by taking the determinant of representing matrices of any represen-
tation affording chi ; the determinant can be computed using EigenvaluesChar (72.8.19).

It is also possible to call Determinant (24.4.4) instead of DeterminantOfCharacter.
Note that the determinant character is well-defined for virtual characters.

Example
gap> CentralCharacter(TrivialCharacter(S4));

ClassFunction(CharacterTable(S4), [1, 6, 3, 8, 6])

gap> DeterminantOfCharacter(Irr(S4)[3]);

Character(CharacterTable(S4), [1, -1, 1, 1, -1])

72.8.19 EigenvaluesChar

▷ EigenvaluesChar([tbl,]chi, class) (operation)

Let chi be a character of a group G. For an element g ∈ G in the class-th conjugacy class, of
order n, let M be a matrix of a representation affording chi .

EigenvaluesChar returns the list of length n where at position k the multiplicity of E(n)k =
exp(2πik/n) as an eigenvalue of M is stored.

We have chi[class] = List([1 .. n], k -> E(n)^k) * EigenvaluesChar(

tbl, chi, class).
It is also possible to call Eigenvalues (24.8.3) instead of EigenvaluesChar.

Example
gap> chi:= Irr(CharacterTable("A5"))[2];

Character(CharacterTable("A5"),

[3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3])

gap> List([1 .. 5], i -> Eigenvalues(chi, i));

[[3], [2, 1], [1, 1, 1], [0, 1, 1, 0, 1], [1, 0, 0, 1, 1]]

72.8.20 Tensored

▷ Tensored(chars1, chars2) (operation)

Let chars1 and chars2 be lists of (values lists of) class functions of the same character table.
Tensored returns the list of tensor products of all entries in chars1 with all entries in chars2 .

Example
gap> irra5:= Irr(CharacterTable("A5"));;

gap> chars1:= irra5{ [1 .. 3] };; chars2:= irra5{ [2, 3] };;

gap> Tensored(chars1, chars2);

[Character(CharacterTable("A5"),

[3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3]),

Character(CharacterTable("A5"),

[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4]),

Character(CharacterTable("A5"),

[9, 1, 0, -2*E(5)-E(5)^2-E(5)^3-2*E(5)^4,

-E(5)-2*E(5)^2-2*E(5)^3-E(5)^4]),

Character(CharacterTable("A5"), [9, 1, 0, -1, -1]),

Character(CharacterTable("A5"), [9, 1, 0, -1, -1]),

Character(CharacterTable("A5"),

GAP - Reference Manual 1223

[9, 1, 0, -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4,

-2*E(5)-E(5)^2-E(5)^3-2*E(5)^4])]

72.8.21 TensorProduct (for characters)

▷ TensorProduct(chi, psi) (operation)

For two characters chi and psi afforded by the modules V and W , TensorProduct returns the
character that is afforded by the tensor product of V and W .

The result can also be computed as chi*psi , see also Tensored (72.8.20).
Example

gap> t:= CharacterTable("A5");;

gap> chi:= Irr(t)[2];

Character(CharacterTable("A5"),

[3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3])

gap> psi:= Irr(t)[3];

Character(CharacterTable("A5"),

[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4])

gap> TensorProduct(chi, psi);

Character(CharacterTable("A5"), [9, 1, 0, -1, -1])

72.9 Restricted and Induced Class Functions

For restricting a class function of a group G to a subgroup H and for inducing a class function of H to
G, the class fusion from H to G must be known (see 73.3).

If F is the factor group of G by the normal subgroup N then each class function of F can be
naturally regarded as a class function of G, with N in its kernel. For a class function of F , the cor-
responding class function of G is called the inflated class function. Restriction and inflation are in
principle the same, namely indirection of a class function by the appropriate fusion map, and thus no
extra operation is needed for this process. But note that contrary to the case of a subgroup fusion, the
factor fusion can in general not be computed from the groups G and F ; either one needs the natural
homomorphism, or the factor fusion to the character table of F must be stored on the table of G. This
explains the different syntax for computing restricted and inflated class functions.

In the following, the meaning of the optional first argument tbl is the same as in Section 72.8.

72.9.1 RestrictedClassFunction

▷ RestrictedClassFunction([tbl,]chi, target) (operation)

Let chi be a class function of a group G and let target be either a subgroup H of G or an
injective homomorphism from H to G or the character table of H . Then RestrictedClassFunction

returns the class function of H obtained by restricting chi to H.
If chi is a class function of a factor group Gof H, where target is either the group H or a

homomorphism from H to G or the character table of H then the restriction can be computed in the
case of the homomorphism; in the other cases, this is possible only if the factor fusion from H to G is
stored on the character table of H.

GAP - Reference Manual 1224

72.9.2 RestrictedClassFunctions

▷ RestrictedClassFunctions([tbl,]chars, target) (operation)

RestrictedClassFunctions is similar to RestrictedClassFunction (72.9.1), the only dif-
ference is that it takes a list chars of class functions instead of one class function, and returns the list
of restricted class functions.

Example
gap> a5:= CharacterTable("A5");; s5:= CharacterTable("S5");;

gap> RestrictedClassFunction(Irr(s5)[2], a5);

Character(CharacterTable("A5"), [1, 1, 1, 1, 1])

gap> RestrictedClassFunctions(Irr(s5), a5);

[Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),

Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),

Character(CharacterTable("A5"), [6, -2, 0, 1, 1]),

Character(CharacterTable("A5"), [4, 0, 1, -1, -1]),

Character(CharacterTable("A5"), [4, 0, 1, -1, -1]),

Character(CharacterTable("A5"), [5, 1, -1, 0, 0]),

Character(CharacterTable("A5"), [5, 1, -1, 0, 0])]

gap> hom:= NaturalHomomorphismByNormalSubgroup(S4, der);;

gap> RestrictedClassFunctions(Irr(Image(hom)), hom);

[Character(CharacterTable(S4), [1, 1, 1, 1, 1]),

Character(CharacterTable(S4), [1, -1, 1, 1, -1])]

72.9.3 InducedClassFunction

▷ InducedClassFunction([tbl,]chi, H) (operation)

▷ InducedClassFunction([tbl,]chi, hom) (operation)

▷ InducedClassFunction([tbl,]chi, suptbl) (operation)

Let chi be a class function of a group G and let target be either a supergroup H of G or an
injective homomorphism from H to G or the character table of H . Then InducedClassFunction

returns the class function of H obtained by inducing chi to H.

72.9.4 InducedClassFunctions

▷ InducedClassFunctions([tbl,]chars, target) (operation)

InducedClassFunctions is similar to InducedClassFunction (72.9.3), the only difference is
that it takes a list chars of class functions instead of one class function, and returns the list of induced
class functions.

Example
gap> InducedClassFunctions(Irr(a5), s5);

[Character(CharacterTable("A5.2"), [2, 2, 2, 2, 0, 0, 0]),

Character(CharacterTable("A5.2"), [6, -2, 0, 1, 0, 0, 0]),

Character(CharacterTable("A5.2"), [6, -2, 0, 1, 0, 0, 0]),

Character(CharacterTable("A5.2"), [8, 0, 2, -2, 0, 0, 0]),

Character(CharacterTable("A5.2"), [10, 2, -2, 0, 0, 0, 0])]

GAP - Reference Manual 1225

72.9.5 InducedClassFunctionsByFusionMap

▷ InducedClassFunctionsByFusionMap(subtbl, tbl, chars, fusionmap) (function)

Let subtbl and tbl be two character tables of groups H and G, such that H is a subgroup of G,
let chars be a list of class functions of subtbl , and let fusionmap be a fusion map from subtbl to
tbl . The function returns the list of induced class functions of tbl that correspond to chars , w.r.t.
the given fusion map.

InducedClassFunctionsByFusionMap is the function that does the work for
InducedClassFunction (72.9.3) and InducedClassFunctions (72.9.4).

Example
gap> fus:= PossibleClassFusions(a5, s5);

[[1, 2, 3, 4, 4]]

gap> InducedClassFunctionsByFusionMap(a5, s5, Irr(a5), fus[1]);

[Character(CharacterTable("A5.2"), [2, 2, 2, 2, 0, 0, 0]),

Character(CharacterTable("A5.2"), [6, -2, 0, 1, 0, 0, 0]),

Character(CharacterTable("A5.2"), [6, -2, 0, 1, 0, 0, 0]),

Character(CharacterTable("A5.2"), [8, 0, 2, -2, 0, 0, 0]),

Character(CharacterTable("A5.2"), [10, 2, -2, 0, 0, 0, 0])]

72.9.6 InducedCyclic

▷ InducedCyclic(tbl[, classes][, "all"]) (operation)

InducedCyclic calculates characters induced up from cyclic subgroups of the ordinary character
table tbl to tbl , and returns the strictly sorted list of the induced characters.

If the string "all" is specified then all irreducible characters of these subgroups are induced,
otherwise only the permutation characters are calculated.

If a list classes is specified then only those cyclic subgroups generated by these classes are
considered, otherwise all classes of tbl are considered.

Example
gap> InducedCyclic(a5, "all");

[Character(CharacterTable("A5"), [12, 0, 0, 2, 2]),

Character(CharacterTable("A5"),

[12, 0, 0, E(5)^2+E(5)^3, E(5)+E(5)^4]),

Character(CharacterTable("A5"),

[12, 0, 0, E(5)+E(5)^4, E(5)^2+E(5)^3]),

Character(CharacterTable("A5"), [20, 0, -1, 0, 0]),

Character(CharacterTable("A5"), [20, 0, 2, 0, 0]),

Character(CharacterTable("A5"), [30, -2, 0, 0, 0]),

Character(CharacterTable("A5"), [30, 2, 0, 0, 0]),

Character(CharacterTable("A5"), [60, 0, 0, 0, 0])]

72.10 Reducing Virtual Characters

The following operations are intended for the situation that one is given a list of virtual characters of
a character table and is interested in the irreducible characters of this table. The idea is to compute
virtual characters of small norm from the given ones, hoping to get eventually virtual characters of
norm 1.

GAP - Reference Manual 1226

72.10.1 ReducedClassFunctions

▷ ReducedClassFunctions([tbl,][constituents,]reducibles) (operation)

Let reducibles be a list of ordinary virtual characters of a group G. If constituents is given
then it must also be a list of ordinary virtual characters of G, otherwise we have constituents equal
to reducibles in the following.

ReducedClassFunctions returns a record with the components remainders and
irreducibles, both lists of virtual characters of G. These virtual characters are computed as
follows.

Let rems be the set of nonzero class functions obtained by subtraction of

∑
χ

([reducibles [i],χ]/[χ,χ]) ·χ

from reducibles [i], where the summation runs over constituents and [χ,ψ] denotes the scalar
product of G-class functions. Let irrs be the list of irreducible characters in rems.

We project rems into the orthogonal space of irrs and all those irreducibles found this way until
no new irreducibles arise. Then the irreducibles list is the set of all found irreducible characters,
and the remainders list is the set of all nonzero remainders.

72.10.2 ReducedCharacters

▷ ReducedCharacters([tbl,]constituents, reducibles) (operation)

ReducedCharacters is similar to ReducedClassFunctions (72.10.1), the only difference is that
constituents and reducibles are assumed to be lists of characters. This means that only those
scalar products must be formed where the degree of the character in constituents does not exceed
the degree of the character in reducibles .

Example
gap> tbl:= CharacterTable("A5");;

gap> chars:= Irr(tbl){ [2 .. 4] };;

gap> chars:= Set(Tensored(chars, chars));;

gap> red:= ReducedClassFunctions(chars);

rec(

irreducibles :=

[Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),

Character(CharacterTable("A5"),

[3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3]),

Character(CharacterTable("A5"),

[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4]),

Character(CharacterTable("A5"), [4, 0, 1, -1, -1]),

Character(CharacterTable("A5"), [5, 1, -1, 0, 0])],

remainders := [])

72.10.3 IrreducibleDifferences

▷ IrreducibleDifferences(tbl, reducibles, reducibles2[, scprmat]) (function)

GAP - Reference Manual 1227

IrreducibleDifferences returns the list of irreducible characters which occur as difference of
an element of reducibles and an element of reducibles2 , where these two arguments are lists of
class functions of the character table tbl .

If reducibles2 is the string "triangle" then the differences of elements in reducibles are
considered.

If scprmat is not specified then it will be calculated, otherwise we must have
scprmat = MatScalarProducts(tbl, reducibles, reducibles2) or scprmat =

MatScalarProducts(tbl, reducibles), respectively.
Example

gap> IrreducibleDifferences(a5, chars, "triangle");

[Character(CharacterTable("A5"),

[3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3]),

Character(CharacterTable("A5"),

[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4])]

72.10.4 LLL

▷ LLL(tbl, characters[, y][, "sort"][, "linearcomb"]) (function)

LLL calls the LLL algorithm (see LLLReducedBasis (25.5.1)) in the case of lattices spanned by the
virtual characters characters of the ordinary character table tbl (see ScalarProduct (72.8.5)). By
finding shorter vectors in the lattice spanned by characters , i.e., virtual characters of smaller norm,
in some cases LLL is able to find irreducible characters.

LLL returns a record with at least components irreducibles (the list of found irreducible char-
acters), remainders (a list of reducible virtual characters), and norms (the list of norms of the vectors
in remainders). irreducibles together with remainders form a basis of the Z-lattice spanned by
characters .

Note that the vectors in the remainders list are in general not orthogonal
(see ReducedClassFunctions (72.10.1)) to the irreducible characters in irreducibles.

Optional arguments of LLL are

y controls the sensitivity of the algorithm, see LLLReducedBasis (25.5.1),

"sort"

LLL sorts characters and the remainders component of the result according to the degrees,

"linearcomb"

the returned record contains components irreddecomp and reddecomp, which are decomposi-
tion matrices of irreducibles and remainders, with respect to characters .

Example
gap> s4:= CharacterTable("Symmetric", 4);;

gap> chars:= [[8, 0, 0, -1, 0], [6, 0, 2, 0, 2],

> [12, 0, -4, 0, 0], [6, 0, -2, 0, 0], [24, 0, 0, 0, 0],

> [12, 0, 4, 0, 0], [6, 0, 2, 0, -2], [12, -2, 0, 0, 0],

> [8, 0, 0, 2, 0], [12, 2, 0, 0, 0], [1, 1, 1, 1, 1]];;

gap> LLL(s4, chars);

rec(

irreducibles :=

[Character(CharacterTable("Sym(4)"), [2, 0, 2, -1, 0]),

GAP - Reference Manual 1228

Character(CharacterTable("Sym(4)"), [1, 1, 1, 1, 1]),

Character(CharacterTable("Sym(4)"), [3, 1, -1, 0, -1]),

Character(CharacterTable("Sym(4)"), [3, -1, -1, 0, 1]),

Character(CharacterTable("Sym(4)"), [1, -1, 1, 1, -1])],

norms := [], remainders := [])

72.10.5 Extract

▷ Extract(tbl, reducibles, grammat[, missing]) (function)

Let tbl be an ordinary character table, reducibles a list of characters of tbl , and grammat

the matrix of scalar products of reducibles (see MatScalarProducts (72.8.6)). Extract tries to
find irreducible characters by drawing conclusions out of the scalar products, using combinatorial and
backtrack means.

The optional argument missing is the maximal number of irreducible characters that occur as
constituents of reducibles . Specification of missing may accelerate Extract.

Extract returns a record ext with the components solution and choice, where the value of
solution is a list [M1, . . . ,Mn] of decomposition matrices Mi (up to permutations of rows) with the
property that Mtr

i ·X is equal to the sublist at the positions ext.choice[i] of reducibles , for a
matrix X of irreducible characters; the value of choice is a list of length n whose entries are lists of
indices.

So the j-th column in each matrix Mi corresponds to reducibles [j], and each row in Mi cor-
responds to an irreducible character. Decreased (72.10.7) can be used to examine the solution for
computable irreducibles.

Example
gap> s4:= CharacterTable("Symmetric", 4);;

gap> red:= [[5, 1, 5, 2, 1], [2, 0, 2, 2, 0], [3, -1, 3, 0, -1],

> [6, 0, -2, 0, 0], [4, 0, 0, 1, 2]];;

gap> gram:= MatScalarProducts(s4, red, red);

[[6, 3, 2, 0, 2], [3, 2, 1, 0, 1], [2, 1, 2, 0, 0],

[0, 0, 0, 2, 1], [2, 1, 0, 1, 2]]

gap> ext:= Extract(s4, red, gram, 5);

rec(choice := [[2, 5, 3, 4, 1]],

solution :=

[

[[1, 1, 0, 0, 2], [1, 0, 1, 0, 1], [0, 1, 0, 1, 0],

[0, 0, 1, 0, 1], [0, 0, 0, 1, 0]]])

gap> dec:= Decreased(s4, red, ext.solution[1], ext.choice[1]);

rec(

irreducibles :=

[Character(CharacterTable("Sym(4)"), [1, 1, 1, 1, 1]),

Character(CharacterTable("Sym(4)"), [3, -1, -1, 0, 1]),

Character(CharacterTable("Sym(4)"), [1, -1, 1, 1, -1]),

Character(CharacterTable("Sym(4)"), [3, 1, -1, 0, -1]),

Character(CharacterTable("Sym(4)"), [2, 0, 2, -1, 0])],

matrix := [], remainders := [])

GAP - Reference Manual 1229

72.10.6 OrthogonalEmbeddingsSpecialDimension

▷ OrthogonalEmbeddingsSpecialDimension(tbl, reducibles, grammat[, "positive"],

dim) (function)

OrthogonalEmbeddingsSpecialDimension is a variant of OrthogonalEmbeddings (25.6.1)
for the situation that tbl is an ordinary character table, reducibles is a list of virtual characters
of tbl , grammat is the matrix of scalar products (see MatScalarProducts (72.8.6)), and dim is an
upper bound for the number of irreducible characters of tbl that occur as constituents of reducibles ;
if the vectors in reducibles are known to be proper characters then the string "positive" may be
entered as fourth argument. (See OrthogonalEmbeddings (25.6.1) for information why this may
help.)

OrthogonalEmbeddingsSpecialDimension first uses OrthogonalEmbeddings (25.6.1) to
compute all orthogonal embeddings of grammat into a standard lattice of dimension up to dim , and
then calls Decreased (72.10.7) in order to find irreducible characters of tbl .

OrthogonalEmbeddingsSpecialDimension returns a record with the following components.

irreducibles

a list of found irreducibles, the intersection of all lists of irreducibles found by Decreased

(72.10.7), for all possible embeddings, and

remainders

a list of remaining reducible virtual characters.
Example

gap> s6:= CharacterTable("S6");;

gap> red:= InducedCyclic(s6, "all");;

gap> Add(red, TrivialCharacter(s6));

gap> lll:= LLL(s6, red);;

gap> irred:= lll.irreducibles;

[Character(CharacterTable("A6.2_1"),

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),

Character(CharacterTable("A6.2_1"),

[9, 1, 0, 0, 1, -1, -3, -3, 1, 0, 0]),

Character(CharacterTable("A6.2_1"),

[16, 0, -2, -2, 0, 1, 0, 0, 0, 0, 0])]

gap> Set(Flat(MatScalarProducts(s6, irred, lll.remainders)));

[0]

gap> dim:= NrConjugacyClasses(s6) - Length(lll.irreducibles);

8

gap> rem:= lll.remainders;; Length(rem);

8

gap> gram:= MatScalarProducts(s6, rem, rem);; RankMat(gram);

8

gap> emb1:= OrthogonalEmbeddings(gram, 8);

rec(norms := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

solutions := [[1, 2, 3, 7, 11, 12, 13, 15],

[1, 2, 4, 8, 10, 12, 13, 14], [1, 2, 5, 6, 9, 12, 13, 16]],

vectors :=

[[-1, 0, 1, 0, 1, 0, 1, 0], [1, 0, 0, 1, 0, 1, 0, 0],

[0, 1, 1, 0, 0, 0, 1, 1], [0, 1, 1, 0, 0, 0, 1, 0],

[0, 1, 1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 1, 0],

GAP - Reference Manual 1230

[0, -1, 0, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 1, 1], [0, 0, 1, 0, 0, 0, 0, 1],

[0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1],

[0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1]])

gap> emb2:= OrthogonalEmbeddingsSpecialDimension(s6, rem, gram, 8);

rec(

irreducibles :=

[Character(CharacterTable("A6.2_1"),

[5, 1, -1, 2, -1, 0, 1, -3, -1, 1, 0]),

Character(CharacterTable("A6.2_1"),

[5, 1, 2, -1, -1, 0, -3, 1, -1, 0, 1]),

Character(CharacterTable("A6.2_1"),

[10, -2, 1, 1, 0, 0, -2, 2, 0, 1, -1]),

Character(CharacterTable("A6.2_1"),

[10, -2, 1, 1, 0, 0, 2, -2, 0, -1, 1])],

remainders :=

[VirtualCharacter(CharacterTable("A6.2_1"),

[0, 0, 3, -3, 0, 0, 4, -4, 0, 1, -1]),

VirtualCharacter(CharacterTable("A6.2_1"),

[6, 2, 3, 0, 0, 1, 2, -2, 0, -1, -2]),

VirtualCharacter(CharacterTable("A6.2_1"),

[10, 2, 1, 1, 2, 0, 2, 2, -2, -1, -1]),

VirtualCharacter(CharacterTable("A6.2_1"),

[14, 2, 2, -1, 0, -1, 6, 2, 0, 0, -1])])

72.10.7 Decreased

▷ Decreased(tbl, chars, decompmat[, choice]) (function)

Let tbl be an ordinary character table, chars a list of virtual characters of tbl , and decompmat

a decomposition matrix, that is, a matrix M with the property that Mtr ·X = chars holds, where X is
a list of irreducible characters of tbl . Decreased tries to compute the irreducibles in X or at least
some of them.

Usually Decreased is applied to the output of Extract (72.10.5) or OrthogonalEmbeddings
(25.6.1) or OrthogonalEmbeddingsSpecialDimension (72.10.6). In the case of Extract (72.10.5),
the choice component corresponding to the decomposition matrix must be entered as argument
choice of Decreased.

Decreased returns fail if it can prove that no list X of irreducible characters corresponding to
the arguments exists; otherwise Decreased returns a record with the following components.

irreducibles

the list of found irreducible characters,

remainders

the remaining reducible characters, and

matrix

the decomposition matrix of the characters in the remainders component.

GAP - Reference Manual 1231

Example
gap> s4:= CharacterTable("Symmetric", 4);;

gap> x:= Irr(s4);;

gap> red:= [x[1]+x[2], -x[1]-x[3], -x[1]+x[3], -x[2]-x[4]];;

gap> mat:= MatScalarProducts(s4, red, red);

[[2, -1, -1, -1], [-1, 2, 0, 0], [-1, 0, 2, 0],

[-1, 0, 0, 2]]

gap> emb:= OrthogonalEmbeddings(mat);

rec(norms := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

solutions := [[1, 6, 7, 12], [2, 5, 8, 11], [3, 4, 9, 10]],

vectors := [[-1, 1, 1, 0], [-1, 1, 0, 1], [1, -1, 0, 0],

[-1, 0, 1, 1], [-1, 0, 1, 0], [-1, 0, 0, 1],

[0, -1, 1, 0], [0, -1, 0, 1], [0, 1, 0, 0],

[0, 0, -1, 1], [0, 0, 1, 0], [0, 0, 0, 1]])

gap> dec:= Decreased(s4, red, emb.vectors{ emb.solutions[1] });

rec(

irreducibles :=

[Character(CharacterTable("Sym(4)"), [3, -1, -1, 0, 1]),

Character(CharacterTable("Sym(4)"), [1, -1, 1, 1, -1]),

Character(CharacterTable("Sym(4)"), [2, 0, 2, -1, 0]),

Character(CharacterTable("Sym(4)"), [3, 1, -1, 0, -1])],

matrix := [], remainders := [])

gap> Decreased(s4, red, emb.vectors{ emb.solutions[2] });

fail

gap> Decreased(s4, red, emb.vectors{ emb.solutions[3] });

fail

72.10.8 DnLattice

▷ DnLattice(tbl, grammat, reducibles) (function)

Let tbl be an ordinary character table, and reducibles a list of virtual characters of tbl .
DnLattice searches for sublattices isomorphic to root lattices of type Dn, for n ≥ 4, in the lattice

that is generated by reducibles ; each vector in reducibles must have norm 2, and the matrix
of scalar products (see MatScalarProducts (72.8.6)) of reducibles must be entered as argument
grammat .

DnLattice is able to find irreducible characters if there is a lattice of type Dn with n > 4. In the
case n = 4, DnLattice may fail to determine irreducibles.

DnLattice returns a record with components

irreducibles

the list of found irreducible characters,

remainders

the list of remaining reducible virtual characters, and

gram

the Gram matrix of the vectors in remainders.

The remainders list is transformed in such a way that the gram matrix is a block diagonal matrix
that exhibits the structure of the lattice generated by the vectors in remainders. So DnLattice might
be useful even if it fails to find irreducible characters.

GAP - Reference Manual 1232

Example
gap> s4:= CharacterTable("Symmetric", 4);;

gap> red:= [[2, 0, 2, 2, 0], [4, 0, 0, 1, 2],

> [5, -1, 1, -1, 1], [-1, 1, 3, -1, -1]];;

gap> gram:= MatScalarProducts(s4, red, red);

[[2, 1, 0, 0], [1, 2, 1, -1], [0, 1, 2, 0], [0, -1, 0, 2]]

gap> dn:= DnLattice(s4, gram, red);

rec(gram := [],

irreducibles :=

[Character(CharacterTable("Sym(4)"), [2, 0, 2, -1, 0]),

Character(CharacterTable("Sym(4)"), [1, -1, 1, 1, -1]),

Character(CharacterTable("Sym(4)"), [1, 1, 1, 1, 1]),

Character(CharacterTable("Sym(4)"), [3, -1, -1, 0, 1])],

remainders := [])

72.10.9 DnLatticeIterative

▷ DnLatticeIterative(tbl, reducibles) (function)

Let tbl be an ordinary character table, and reducibles either a list of virtual characters of tbl
or a record with components remainders and norms, for example a record returned by LLL (72.10.4).

DnLatticeIterative was designed for iterative use of DnLattice (72.10.8).
DnLatticeIterative selects the vectors of norm 2 among the given virtual character, calls
DnLattice (72.10.8) for them, reduces the virtual characters with found irreducibles, calls
DnLattice (72.10.8) again for the remaining virtual characters, and so on, until no new irreducibles
are found.

DnLatticeIterative returns a record with the same components and meaning of components
as LLL (72.10.4).

Example
gap> s4:= CharacterTable("Symmetric", 4);;

gap> red:= [[2, 0, 2, 2, 0], [4, 0, 0, 1, 2],

> [5, -1, 1, -1, 1], [-1, 1, 3, -1, -1]];;

gap> dn:= DnLatticeIterative(s4, red);

rec(

irreducibles :=

[Character(CharacterTable("Sym(4)"), [2, 0, 2, -1, 0]),

Character(CharacterTable("Sym(4)"), [1, -1, 1, 1, -1]),

Character(CharacterTable("Sym(4)"), [1, 1, 1, 1, 1]),

Character(CharacterTable("Sym(4)"), [3, -1, -1, 0, 1])],

norms := [], remainders := [])

72.11 Symmetrizations of Class Functions

72.11.1 Symmetrizations

▷ Symmetrizations([tbl,]characters, n) (operation)

GAP - Reference Manual 1233

Symmetrizations returns the list of symmetrizations of the characters characters of the ordi-
nary character table tbl with the ordinary irreducible characters of the symmetric group of degree n ;
instead of the integer n , the character table of the symmetric group can be entered.

The symmetrization χ [λ] of the character χ of tbl with the character λ of the symmetric group
Sn of degree n is defined by

χ
[λ](g) =

(
∑

ρ∈Sn

λ (ρ)
n

∏
k=1

χ(gk)ak(ρ)

)
/n!,

where ak(ρ) is the number of cycles of length k in ρ .
Note that the returned list may contain zero class functions, and duplicates are not deleted.
For special kinds of symmetrizations, see SymmetricParts (72.11.2), AntiSymmetricParts

(72.11.3), MinusCharacter (73.6.5) and OrthogonalComponents (72.11.6),
SymplecticComponents (72.11.7), ExteriorPower (72.11.4), SymmetricPower (72.11.5).

Example
gap> tbl:= CharacterTable("A5");;

gap> Symmetrizations(Irr(tbl){ [1 .. 3] }, 3);

[VirtualCharacter(CharacterTable("A5"), [0, 0, 0, 0, 0]),

VirtualCharacter(CharacterTable("A5"), [0, 0, 0, 0, 0]),

Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),

Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),

Character(CharacterTable("A5"),

[8, 0, -1, -E(5)-E(5)^4, -E(5)^2-E(5)^3]),

Character(CharacterTable("A5"), [10, -2, 1, 0, 0]),

Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),

Character(CharacterTable("A5"),

[8, 0, -1, -E(5)^2-E(5)^3, -E(5)-E(5)^4]),

Character(CharacterTable("A5"), [10, -2, 1, 0, 0])]

72.11.2 SymmetricParts

▷ SymmetricParts(tbl, characters, n) (function)

is the list of symmetrizations of the characters characters of the character table tbl with the
trivial character of the symmetric group of degree n (see Symmetrizations (72.11.1)).

Example
gap> tbl:= CharacterTable("A5");;

gap> SymmetricParts(tbl, Irr(tbl), 3);

[Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),

Character(CharacterTable("A5"), [10, -2, 1, 0, 0]),

Character(CharacterTable("A5"), [10, -2, 1, 0, 0]),

Character(CharacterTable("A5"), [20, 0, 2, 0, 0]),

Character(CharacterTable("A5"), [35, 3, 2, 0, 0])]

72.11.3 AntiSymmetricParts

▷ AntiSymmetricParts(tbl, characters, n) (function)

is the list of symmetrizations of the characters characters of the character table tbl with the
sign character of the symmetric group of degree n (see Symmetrizations (72.11.1)).

GAP - Reference Manual 1234

Example
gap> tbl:= CharacterTable("A5");;

gap> AntiSymmetricParts(tbl, Irr(tbl), 3);

[VirtualCharacter(CharacterTable("A5"), [0, 0, 0, 0, 0]),

Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),

Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),

Character(CharacterTable("A5"), [4, 0, 1, -1, -1]),

Character(CharacterTable("A5"), [10, -2, 1, 0, 0])]

72.11.4 ExteriorPower (for a character)

▷ ExteriorPower(chi, n) (operation)

For a character chi afforded by the module V and a positive integer n , ExteriorPower returns
the class function that is afforded by the n-th exterior power of V .

This exterior power is the symmetrization of chi with the sign character of the symmetric group
of degree n , see also Symmetrizations (72.11.1) and AntiSymmetricParts (72.11.3).

Example
gap> t:= CharacterTable("A5");;

gap> List(Irr(t), chi -> ExteriorPower(chi, 3));

[VirtualCharacter(CharacterTable("A5"), [0, 0, 0, 0, 0]),

Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),

Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),

Character(CharacterTable("A5"), [4, 0, 1, -1, -1]),

Character(CharacterTable("A5"), [10, -2, 1, 0, 0])]

72.11.5 SymmetricPower (for a character)

▷ SymmetricPower(chi, n) (operation)

For a character chi afforded by the module V and a positive integer n , SymmetricPower returns
the class function that is afforded by the n-th symmetric power of V .

This symmetric power is the symmetrization of chi with the trivial character of the symmetric
group of degree n , see also Symmetrizations (72.11.1) and SymmetricParts (72.11.2).

Example
gap> t:= CharacterTable("A5");;

gap> List(Irr(t), chi -> SymmetricPower(chi, 3));

[Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),

Character(CharacterTable("A5"), [10, -2, 1, 0, 0]),

Character(CharacterTable("A5"), [10, -2, 1, 0, 0]),

Character(CharacterTable("A5"), [20, 0, 2, 0, 0]),

Character(CharacterTable("A5"), [35, 3, 2, 0, 0])]

72.11.6 OrthogonalComponents

▷ OrthogonalComponents(tbl, chars, m) (function)

If χ is a nonlinear character with indicator +1, a splitting of the tensor power χm is given by the
so-called Murnaghan functions (see [Mur58]). These components in general have fewer irreducible

GAP - Reference Manual 1235

constituents than the symmetrizations with the symmetric group of degree m (see Symmetrizations
(72.11.1)).

OrthogonalComponents returns the Murnaghan components of the nonlinear characters of the
character table tbl in the list chars up to the power m , where m is an integer between 2 and 6.

The Murnaghan functions are implemented as in [Fra82].
Note: If chars is a list of character objects (see IsCharacter (72.8.1)) then also the result

consists of class function objects. It is not checked whether all characters in chars do really have
indicator +1; if there are characters with indicator 0 or −1, the result might contain virtual characters
(see also SymplecticComponents (72.11.7)), therefore the entries of the result do in general not
know that they are characters.

Example
gap> tbl:= CharacterTable("A8");; chi:= Irr(tbl)[2];

Character(CharacterTable("A8"), [7, -1, 3, 4, 1, -1, 1, 2, 0, -1,

0, 0, -1, -1])

gap> OrthogonalComponents(tbl, [chi], 3);

[ClassFunction(CharacterTable("A8"),

[21, -3, 1, 6, 0, 1, -1, 1, -2, 0, 0, 0, 1, 1]),

ClassFunction(CharacterTable("A8"),

[27, 3, 7, 9, 0, -1, 1, 2, 1, 0, -1, -1, -1, -1]),

ClassFunction(CharacterTable("A8"),

[105, 1, 5, 15, -3, 1, -1, 0, -1, 1, 0, 0, 0, 0]),

ClassFunction(CharacterTable("A8"),

[35, 3, -5, 5, 2, -1, -1, 0, 1, 0, 0, 0, 0, 0]),

ClassFunction(CharacterTable("A8"),

[77, -3, 13, 17, 2, 1, 1, 2, 1, 0, 0, 0, 2, 2])]

72.11.7 SymplecticComponents

▷ SymplecticComponents(tbl, chars, m) (function)

If χ is a (nonlinear) character with indicator −1, a splitting of the tensor power χm is given
in terms of the so-called Murnaghan functions (see [Mur58]). These components in general have
fewer irreducible constituents than the symmetrizations with the symmetric group of degree m

(see Symmetrizations (72.11.1)).
SymplecticComponents returns the symplectic symmetrizations of the nonlinear characters of

the character table tbl in the list chars up to the power m , where m is an integer between 2 and 5.
Note: If chars is a list of character objects (see IsCharacter (72.8.1)) then also the result

consists of class function objects. It is not checked whether all characters in chars do really have
indicator −1; if there are characters with indicator 0 or +1, the result might contain virtual characters
(see also OrthogonalComponents (72.11.6)), therefore the entries of the result do in general not
know that they are characters.

Example
gap> tbl:= CharacterTable("U3(3)");; chi:= Irr(tbl)[2];

Character(CharacterTable("U3(3)"),

[6, -2, -3, 0, -2, -2, 2, 1, -1, -1, 0, 0, 1, 1])

gap> SymplecticComponents(tbl, [chi], 3);

[ClassFunction(CharacterTable("U3(3)"),

[14, -2, 5, -1, 2, 2, 2, 1, 0, 0, 0, 0, -1, -1]),

ClassFunction(CharacterTable("U3(3)"),

GAP - Reference Manual 1236

[21, 5, 3, 0, 1, 1, 1, -1, 0, 0, -1, -1, 1, 1]),

ClassFunction(CharacterTable("U3(3)"),

[64, 0, -8, -2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0]),

ClassFunction(CharacterTable("U3(3)"),

[14, 6, -4, 2, -2, -2, 2, 0, 0, 0, 0, 0, -2, -2]),

ClassFunction(CharacterTable("U3(3)"),

[56, -8, 2, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0])]

72.12 Molien Series

72.12.1 MolienSeries

▷ MolienSeries([tbl,]psi[, chi]) (function)

The Molien series of the character ψ , relative to the character χ , is the rational function given
by the series Mψ,χ(z) = ∑

∞
d=0[χ,ψ

[d]]zd , where ψ [d] denotes the symmetrization of ψ with the trivial
character of the symmetric group Sd (see SymmetricParts (72.11.2)).

MolienSeries returns the Molien series of psi , relative to chi , where psi and chi must be
characters of the same character table; this table must be entered as tbl if chi and psi are only lists
of character values. The default for chi is the trivial character of tbl .

The return value of MolienSeries stores a value for the attribute MolienSeriesInfo (72.12.2).
This admits the computation of coefficients of the series with ValueMolienSeries (72.12.3). Fur-
thermore, this attribute gives access to numerator and denominator of the Molien series viewed as
rational function, where the denominator is a product of polynomials of the form (1− zr)k; the Molien
series is also displayed in this form. Note that such a representation is not unique, one can use
MolienSeriesWithGivenDenominator (72.12.4) to obtain the series with a prescribed denominator.

For more information about Molien series, see [NPP84].
Example

gap> t:= CharacterTable(AlternatingGroup(5));;

gap> psi:= First(Irr(t), x -> Degree(x) = 3);;

gap> mol:= MolienSeries(psi);

(1-z^2-z^3+z^6+z^7-z^9) / ((1-z^5)*(1-z^3)*(1-z^2)^2)

72.12.2 MolienSeriesInfo

▷ MolienSeriesInfo(ratfun) (attribute)

If the rational function ratfun was constructed by MolienSeries (72.12.1), a representation
as quotient of polynomials is known such that the denominator is a product of terms of the form
(1−zr)k. This information is encoded as value of MolienSeriesInfo. Additionally, there is a special
PrintObj (6.3.5) method for Molien series based on this.

MolienSeriesInfo returns a record that describes the rational function ratfun as a Molien
series. The components of this record are

numer

numerator of ratfun (in general a multiple of the numerator one gets by
NumeratorOfRationalFunction (66.4.2)),

GAP - Reference Manual 1237

denom

denominator of ratfun (in general a multiple of the denominator one gets by
NumeratorOfRationalFunction (66.4.2)),

ratfun

the rational function ratfun itself,

numerstring

string corresponding to the polynomial numer, expressed in terms of z,

denomstring

string corresponding to the polynomial denom, expressed in terms of z,

denominfo

a list of the form [[r1,k1], . . . , [rn,kn]] such that denom is ∏
n
i=1(1− zri)ki .

summands

a list of records, each with the components numer, r, and k, describing the summand
numer/(1− zr)k,

pol a list of coefficients, describing a final polynomial which is added to those described by
summands,

size

the order of the underlying matrix group,

degree

the degree of the underlying matrix representation.
Example

gap> HasMolienSeriesInfo(mol);

true

gap> MolienSeriesInfo(mol);

rec(degree := 3,

denom := x_1^12-2*x_1^10-x_1^9+x_1^8+x_1^7+x_1^5+x_1^4-x_1^3-2*x_1^2\

+1, denominfo := [5, 1, 3, 1, 2, 2],

denomstring := "(1-z^5)*(1-z^3)*(1-z^2)^2",

numer := -x_1^9+x_1^7+x_1^6-x_1^3-x_1^2+1,

numerstring := "1-z^2-z^3+z^6+z^7-z^9", pol := [],

ratfun := (1-z^2-z^3+z^6+z^7-z^9) / ((1-z^5)*(1-z^3)*(1-z^2)^2),

size := 60,

summands := [rec(k := 1, numer := [-24, -12, -24], r := 5),

rec(k := 1, numer := [-20], r := 3),

rec(k := 2, numer := [-45/4, 75/4, -15/4, -15/4], r := 2),

rec(k := 3, numer := [-1], r := 1),

rec(k := 1, numer := [-15/4], r := 1)])

72.12.3 ValueMolienSeries

▷ ValueMolienSeries(molser, i) (function)

is the i-th coefficient of the Molien series series computed by MolienSeries (72.12.1).

GAP - Reference Manual 1238

Example
gap> List([0 .. 20], i -> ValueMolienSeries(mol, i));

[1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 4, 1, 5, 1, 6, 1, 7]

72.12.4 MolienSeriesWithGivenDenominator

▷ MolienSeriesWithGivenDenominator(molser, list) (function)

is a Molien series equal to molser as rational function, but viewed as quotient with denomina-
tor ∏

n
i=1(1− zri), where list = [r1,r2, . . . ,rn]. If molser cannot be represented this way, fail is

returned.
Example

gap> MolienSeriesWithGivenDenominator(mol, [2, 6, 10]);

(1+z^15) / ((1-z^10)*(1-z^6)*(1-z^2))

72.13 Possible Permutation Characters

For groups H and G with H ≤ G, the induced character (1G)
H is called the permutation character of

the operation of G on the right cosets of H. If only the character table of G is available and not the
group G itself, one can try to get information about possible subgroups of G by inspection of those
G-class functions that might be permutation characters, using that such a class function π must have
at least the following properties. (For details, see [Isa76, Theorem 5.18.]),

(a) π is a character of G,

(b) π(g) is a nonnegative integer for all g ∈ G,

(c) π(1) divides |G|,

(d) π(gn)≥ π(g) for g ∈ G and integers n,

(e) [π,1G] = 1,

(f) the multiplicity of any rational irreducible G-character ψ as a constituent of π is at most
ψ(1)/[ψ,ψ],

(g) π(g) = 0 if the order of g does not divide |G|/π(1),

(h) π(1)|NG(g)| divides π(g)|G| for all g ∈ G,

(i) π(g) ≤ (|G| − π(1))/(|gG||GalG(g)|) for all nonidentity g ∈ G, where |GalG(g)| denotes the
number of conjugacy classes of G that contain generators of the group ⟨g⟩,

(j) if p is a prime that divides |G|/π(1) only once then s/(p−1) divides |G|/π(1) and is congruent
to 1 modulo p, where s is the number of elements of order p in the (hypothetical) subgroup H
for which π = (1H)

G holds. (Note that s/(p− 1) equals the number of Sylow p subgroups in
H.)

GAP - Reference Manual 1239

Any G-class function with these properties is called a possible permutation character in GAP.
(Condition (d) is checked only for those power maps that are stored in the character table of G;

clearly (d) holds for all integers if it holds for all prime divisors of the group order |G|.)
GAP provides some algorithms to compute possible permutation characters (see PermChars

(72.14.1)), and also provides functions to check a few more criteria whether a given character can
be a transitive permutation character (see TestPerm1 (72.14.2)).

Some information about the subgroup U can be computed from the permutation character (1U)
G

using PermCharInfo (72.13.1).

72.13.1 PermCharInfo

▷ PermCharInfo(tbl, permchars[, format]) (function)

Let tbl be the ordinary character table of the group G, and permchars either the permutation
character (1U)

G, for a subgroup U of G, or a list of such permutation characters. PermCharInfo

returns a record with the following components.

contained:
a list containing, for each character ψ = (1U)

G in permchars , a list containing at position i the
number ψ[i]|U |/ SizesCentralizers(tbl)[i], which equals the number of those elements
of U that are contained in class i of tbl ,

bound:
a list containing, for each character ψ = (1U)

G in permchars , a list containing at position i the
number |U |/gcd(|U |, SizesCentralizers(tbl)[i]), which divides the class length in U of
an element in class i of tbl ,

display:
a record that can be used as second argument of Display (6.3.6) to display each permutation
character in permchars and the corresponding components contained and bound, for those
classes where at least one character of permchars is nonzero,

ATLAS:
a list of strings describing the decomposition of the permutation characters in permchars into
the irreducible characters of tbl , given in an Atlas-like notation. This means that the irre-
ducible constituents are indicated by their degrees followed by lower case letters a, b, c, . . .,
which indicate the successive irreducible characters of tbl of that degree, in the order in which
they appear in Irr(tbl). A sequence of small letters (not necessarily distinct) after a single
number indicates a sum of irreducible constituents all of the same degree, an exponent n for
the letter lett means that lett is repeated n times. The default notation for exponentiation is
lett^{n}, this is also chosen if the optional third argument format is the string "LaTeX"; if
the third argument is the string "HTML" then exponentiation is denoted by lettⁿ.

Example
gap> t:= CharacterTable("A6");;

gap> psi:= Sum(Irr(t){ [1, 3, 6] });

Character(CharacterTable("A6"), [15, 3, 0, 3, 1, 0, 0])

gap> info:= PermCharInfo(t, psi);

rec(ATLAS := ["1a+5b+9a"], bound := [[1, 3, 8, 8, 6, 24, 24]],

contained := [[1, 9, 0, 8, 6, 0, 0]],

GAP - Reference Manual 1240

display :=

rec(

chars := [[15, 3, 0, 3, 1, 0, 0], [1, 9, 0, 8, 6, 0, 0],

[1, 3, 8, 8, 6, 24, 24]], classes := [1, 2, 4, 5],

letter := "I"))

gap> Display(t, info.display);

A6

2 3 3 . 2

3 2 . 2 .

5 1 . . .

1a 2a 3b 4a

2P 1a 1a 3b 2a

3P 1a 2a 1a 4a

5P 1a 2a 3b 4a

I.1 15 3 3 1

I.2 1 9 8 6

I.3 1 3 8 6

gap> j1:= CharacterTable("J1");;

gap> psi:= TrivialCharacter(CharacterTable("7:6"))^j1;

Character(CharacterTable("J1"), [4180, 20, 10, 0, 0, 2, 1, 0, 0,

0, 0, 0, 0, 0, 0])

gap> PermCharInfo(j1, psi).ATLAS;

["1a+56aabb+76aaab+77aabbcc+120aaabbbccc+133a^{4}bbcc+209a^{5}"]

72.13.2 PermCharInfoRelative

▷ PermCharInfoRelative(tbl, tbl2, permchars) (function)

Let tbl and tbl2 be the ordinary character tables of two groups H and G, respectively, where
H is of index two in G, and permchars either the permutation character (1U)

G, for a subgroup U
of G, or a list of such permutation characters. PermCharInfoRelative returns a record with the
same components as PermCharInfo (72.13.1), the only exception is that the entries of the ATLAS

component are names relative to tbl .
More precisely, the i-th entry of the ATLAS component is a string describing the decomposition

of the i-th entry in permchars . The degrees and distinguishing letters of the constituents refer to the
irreducibles of tbl , as follows. The two irreducible characters of tbl2 of degree N that extend the
irreducible character N a of tbl are denoted by N a+ and Na−. The irreducible character of tbl2 of
degree 2N whose restriction to tbl is the sum of the irreducible characters N a and N b is denoted as
N ab. Multiplicities larger than 1 of constituents are denoted by exponents.

(This format is useful mainly for multiplicity free permutation characters.)
Example

gap> t:= CharacterTable("A5");;

gap> t2:= CharacterTable("A5.2");;

gap> List(Irr(t2), x -> x[1]);

[1, 1, 6, 4, 4, 5, 5]

gap> List(Irr(t), x -> x[1]);

[1, 3, 3, 4, 5]

GAP - Reference Manual 1241

gap> permchars:= List([[1], [1,2], [1,7], [1,3,4,4,6,6,7]],

> l -> Sum(Irr(t2){ l }));

[Character(CharacterTable("A5.2"), [1, 1, 1, 1, 1, 1, 1]),

Character(CharacterTable("A5.2"), [2, 2, 2, 2, 0, 0, 0]),

Character(CharacterTable("A5.2"), [6, 2, 0, 1, 0, 2, 0]),

Character(CharacterTable("A5.2"), [30, 2, 0, 0, 6, 0, 0])]

gap> info:= PermCharInfoRelative(t, t2, permchars);;

gap> info.ATLAS;

["1a^+", "1a^{\\pm}", "1a^++5a^-",

"1a^++3ab+4(a^+)^{2}+5a^+a^{\\pm}"]

72.14 Computing Possible Permutation Characters

72.14.1 PermChars

▷ PermChars(tbl[, cond]) (function)

GAP provides several algorithms to determine possible permutation characters from a given char-
acter table. They are described in detail in [BP98]. The algorithm is selected from the choice of the
optional argument cond . The user is encouraged to try different approaches, especially if one choice
fails to come to an end.

Regardless of the algorithm used in a specific case, PermChars returns a list of all possible per-
mutation characters with the properties described by cond . There is no guarantee that a character of
this list is in fact a permutation character. But an empty list always means there is no permutation
character with these properties (e.g., of a certain degree).

Called with only one argument, a character table tbl , PermChars returns the list of all possible
permutation characters of the group with this character table. This list might be rather long for big
groups, and its computation might take much time. The algorithm is described in [BP98, Section 3.2];
it depends on a preprocessing step, where the inequalities arising from the condition π(g) ≥ 0 are
transformed into a system of inequalities that guides the search (see Inequalities (72.14.5)). So
the following commands compute the list of 39 possible permutation characters of the Mathieu group
M11.

Example
gap> m11:= CharacterTable("M11");;

gap> SetName(m11, "m11");

gap> perms:= PermChars(m11);;

gap> Length(perms);

39

There are two different search strategies for this algorithm. The default strategy simply constructs
all characters with nonnegative values and then tests for each such character whether its degree is a
divisor of the order of the group. The other strategy uses the inequalities to predict whether a character
of a certain degree can lie in the currently searched part of the search tree. To choose this strategy,
enter a record as the second argument of PermChars, and set its component degree to the range of
degrees (which might also be a range containing all divisors of the group order) you want to look
for; additionally, the record component ineq can take the inequalities computed by Inequalities

(72.14.5) if they are needed more than once.

GAP - Reference Manual 1242

If a positive integer is given as the second argument cond , PermChars returns the list of all pos-
sible permutation characters of tbl that have degree cond . For that purpose, a preprocessing step
is performed where essentially the rational character table is inverted in order to determine bound-
ary points for the simplex in which the possible permutation characters of the given degree must lie
(see PermBounds (72.14.3)). The algorithm is described at the end of [BP98, Section 3.2]. Note that
inverting big integer matrices needs a lot of time and space. So this preprocessing is restricted to
groups with less than 100 classes, say.

Example
gap> deg220:= PermChars(m11, 220);

[Character(m11, [220, 4, 4, 0, 0, 4, 0, 0, 0, 0]),

Character(m11, [220, 12, 4, 4, 0, 0, 0, 0, 0, 0]),

Character(m11, [220, 20, 4, 0, 0, 2, 0, 0, 0, 0])]

If a record is given as the second argument cond , PermChars returns the list of all possible per-
mutation characters that have the properties described by the components of this record. One such
situation has been mentioned above. If cond contains a degree as value of the record component
degree then PermChars will behave exactly as if this degree was entered as cond .

Example
gap> deg220 = PermChars(m11, rec(degree:= 220));

true

For the meaning of additional components of cond besides degree, see PermComb (72.14.4).
Instead of degree, cond may have the component torso bound to a list that contains some known

values of the required characters at the right positions; at least the degree cond.torso[1] must be an
integer. In this case, the algorithm described in [BP98, Section 3.3] is chosen. The component chars,
if present, holds a list of all those rational irreducible characters of tbl that might be constituents of
the required characters.

(Note: If cond.chars is bound and does not contain all rational irreducible characters of tbl ,
GAP checks whether the scalar products of all class functions in the result list with the omitted rational
irreducible characters of tbl are nonnegative; so there should be nontrivial reasons for excluding a
character that is known to be not a constituent of the desired possible permutation characters.)

Example
gap> PermChars(m11, rec(torso:= [220]));

[Character(m11, [220, 4, 4, 0, 0, 4, 0, 0, 0, 0]),

Character(m11, [220, 20, 4, 0, 0, 2, 0, 0, 0, 0]),

Character(m11, [220, 12, 4, 4, 0, 0, 0, 0, 0, 0])]

gap> PermChars(m11, rec(torso:= [220,,,,, 2]));

[Character(m11, [220, 20, 4, 0, 0, 2, 0, 0, 0, 0])]

An additional restriction on the possible permutation characters computed can be forced if con
contains, in addition to torso, the components normalsubgroup and nonfaithful, with values a
list of class positions of a normal subgroup N of the group G of tbl and a possible permutation
character π of G, respectively, such that N is contained in the kernel of π . In this case, PermChars
returns the list of those possible permutation characters ψ of tbl coinciding with torso wherever its
values are bound and having the property that no irreducible constituent of ψ −π has N in its kernel.
If the component chars is bound in cond then the above statements apply. An interpretation of the
computed characters is the following. Suppose there exists a subgroup V of G such that π = (1V)

G;
Then N ≤V , and if a computed character is of the form (1U)

G, for a subgroup U of G, then V =UN.

GAP - Reference Manual 1243

Example
gap> s4:= CharacterTable("Symmetric", 4);;

gap> nsg:= ClassPositionsOfDerivedSubgroup(s4);;

gap> pi:= TrivialCharacter(s4);;

gap> PermChars(s4, rec(torso:= [12], normalsubgroup:= nsg,

> nonfaithful:= pi));

[Character(CharacterTable("Sym(4)"), [12, 2, 0, 0, 0])]

gap> pi:= Sum(Filtered(Irr(s4),

> chi -> IsSubset(ClassPositionsOfKernel(chi), nsg)));

Character(CharacterTable("Sym(4)"), [2, 0, 2, 2, 0])

gap> PermChars(s4, rec(torso:= [12], normalsubgroup:= nsg,

> nonfaithful:= pi));

[Character(CharacterTable("Sym(4)"), [12, 0, 4, 0, 0])]

The class functions returned by PermChars have the properties tested by TestPerm1 (72.14.2),
TestPerm2 (72.14.2), and TestPerm3 (72.14.2). So they are possible permutation characters.
See TestPerm1 (72.14.2) for criteria whether a possible permutation character can in fact be a permu-
tation character.

72.14.2 TestPerm1, ..., TestPerm5

▷ TestPerm1(tbl, char) (function)

▷ TestPerm2(tbl, char) (function)

▷ TestPerm3(tbl, chars) (function)

▷ TestPerm4(tbl, chars) (function)

▷ TestPerm5(tbl, chars, modtbl) (function)

The first three of these functions implement tests of the properties of possible permutation char-
acters listed in Section 72.13, The other two implement test of additional properties. Let tbl be the
ordinary character table of a group G, char a rational character of tbl , and chars a list of rational
characters of tbl . For applying TestPerm5, the knowledge of a p-modular Brauer table modtbl of
G is required. TestPerm4 and TestPerm5 expect the characters in chars to satisfy the conditions
checked by TestPerm1 and TestPerm2 (see below).

The return values of the functions were chosen parallel to the tests listed in [NPP84].
TestPerm1 return 1 or 2 if char fails because of (T1) or (T2), respectively; this corresponds to

the criteria (b) and (d). Note that only those power maps are considered that are stored on tbl . If
char satisfies the conditions, 0 is returned.

TestPerm2 returns 1 if char fails because of the criterion (c), it returns 3, 4, or 5 if char fails
because of (T3), (T4), or (T5), respectively; these tests correspond to (g), a weaker form of (h), and
(j). If char satisfies the conditions, 0 is returned.

TestPerm3 returns the list of all those class functions in the list chars that satisfy criterion (h);
this is a stronger version of (T6).

TestPerm4 returns the list of all those class functions in the list chars that satisfy (T8) and (T9)
for each prime divisor p of the order of G; these tests use modular representation theory but do not
require the knowledge of decomposition matrices (cf. TestPerm5 below).

(T8) implements the test of the fact that in the case that p divides |G| and the degree of a transitive
permutation character π exactly once, the projective cover of the trivial character is a summand of π .
(This test is omitted if the projective cover cannot be identified.)

GAP - Reference Manual 1244

Given a permutation character π of a group G and a prime integer p, the restriction πB to a p-block
B of G has the following property, which is checked by (T9). For each g ∈ G such that gn is a
p-element of G, πB(gn) is a nonnegative integer that satisfies |πB(g)| ≤ πB(gn) ≤ π(gn). (This is
[Sco73, Corollary A on p. 113].)

TestPerm5 requires the p-modular Brauer table modtbl of G, for some prime p dividing the
order of G, and checks whether those characters in the list chars whose degree is divisible by the
p-part of the order of G can be decomposed into projective indecomposable characters; TestPerm5
returns the sublist of all those characters in chars that either satisfy this condition or to which the test
does not apply.

Example
gap> tbl:= CharacterTable("A5");;

gap> rat:= RationalizedMat(Irr(tbl));

[Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),

Character(CharacterTable("A5"), [6, -2, 0, 1, 1]),

Character(CharacterTable("A5"), [4, 0, 1, -1, -1]),

Character(CharacterTable("A5"), [5, 1, -1, 0, 0])]

gap> tup:= Filtered(Tuples([0, 1], 4), x -> not IsZero(x));

[[0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 1], [0, 1, 0, 0],

[0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1], [1, 0, 0, 0],

[1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1], [1, 1, 0, 0],

[1, 1, 0, 1], [1, 1, 1, 0], [1, 1, 1, 1]]

gap> lincomb:= List(tup, coeff -> coeff * rat);;

gap> List(lincomb, psi -> TestPerm1(tbl, psi));

[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0]

gap> List(lincomb, psi -> TestPerm2(tbl, psi));

[0, 5, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1]

gap> Set(TestPerm3(tbl, lincomb), x -> Position(lincomb, x));

[1, 4, 6, 7, 8, 9, 10, 11, 13]

gap> tbl:= CharacterTable("A7");

CharacterTable("A7")

gap> perms:= PermChars(tbl, rec(degree:= 315));

[Character(CharacterTable("A7"), [315, 3, 0, 0, 3, 0, 0, 0, 0])

, Character(CharacterTable("A7"),

[315, 15, 0, 0, 1, 0, 0, 0, 0])]

gap> TestPerm4(tbl, perms);

[Character(CharacterTable("A7"), [315, 15, 0, 0, 1, 0, 0, 0, 0

])]

gap> perms:= PermChars(tbl, rec(degree:= 15));

[Character(CharacterTable("A7"), [15, 3, 0, 3, 1, 0, 0, 1, 1]),

Character(CharacterTable("A7"), [15, 3, 3, 0, 1, 0, 3, 1, 1])

]

gap> TestPerm5(tbl, perms, tbl mod 5);

[Character(CharacterTable("A7"), [15, 3, 0, 3, 1, 0, 0, 1, 1])

]

72.14.3 PermBounds

▷ PermBounds(tbl, d) (function)

Let tbl be the ordinary character table of the group G. All G-characters π satisfying π(g)> 0 and
π(1) = d , for a given degree d , lie in a simplex described by these conditions. PermBounds computes

GAP - Reference Manual 1245

the boundary points of this simplex for d = 0, from which the boundary points for any other d are
easily derived. (Some conditions from the power maps of tbl are also involved.) For this purpose, a
matrix similar to the rational character table of G has to be inverted. These boundary points are used
by PermChars (72.14.1) to construct all possible permutation characters (see 72.13) of a given degree.
PermChars (72.14.1) either calls PermBounds or takes this information from the bounds component
of its argument record.

72.14.4 PermComb

▷ PermComb(tbl, arec) (function)

PermComb computes possible permutation characters of the character table tbl by the improved
combinatorial approach described at the end of [BP98, Section 3.2].

For computing the possible linear combinations without prescribing better bounds (i.e., when the
computation of bounds shall be suppressed), enter

arec:= rec(degree := degree, bounds := false),
where degree is the character degree; this is useful if the multiplicities are expected to be small,

and if this is forced by high irreducible degrees.
A list of upper bounds on the multiplicities of the rational irreducibles characters can be explicitly

prescribed as a maxmult component in arec .

72.14.5 Inequalities

▷ Inequalities(tbl, chars[, option]) (operation)

Let tbl be the ordinary character table of a group G. The condition π(g) ≥ 0 for every possible
permutation character π of G places restrictions on the multiplicities ai of the irreducible constituents
χi of π = ∑

r
i=1 aiχi. For every element g ∈ G, we have ∑

r
i=1 aiχi(g) ≥ 0. The power maps provide

even stronger conditions.
This system of inequalities is kind of diagonalized, resulting in a system of inequalities restricting

ai in terms of a j, j < i. These inequalities are used to construct characters with nonnegative values
(see PermChars (72.14.1)). PermChars (72.14.1) either calls Inequalities or takes this information
from the ineq component of its argument record.

The number of inequalities arising in the process of diagonalization may grow very strongly.
There are two ways to organize the projection. The first, which is chosen if no option argument

is present, is the straight approach which takes the rational irreducible characters in their original order
and by this guarantees the character with the smallest degree to be considered first. The other way,
which is chosen if the string "small" is entered as third argument option , tries to keep the number
of intermediate inequalities small by eventually changing the order of characters.

Example
gap> tbl:= CharacterTable("M11");;

gap> PermComb(tbl, rec(degree:= 110));

[Character(CharacterTable("M11"),

[110, 6, 2, 2, 0, 0, 2, 2, 0, 0]),

Character(CharacterTable("M11"),

[110, 6, 2, 6, 0, 0, 0, 0, 0, 0]),

Character(CharacterTable("M11"), [110, 14, 2, 2, 0, 2, 0, 0, 0,

0])]

GAP - Reference Manual 1246

gap> # Now compute only multiplicity free permutation characters.

gap> bounds:= List(RationalizedMat(Irr(tbl)), x -> 1);;

gap> PermComb(tbl, rec(degree:= 110, maxmult:= bounds));

[Character(CharacterTable("M11"),

[110, 6, 2, 2, 0, 0, 2, 2, 0, 0])]

72.15 Operations for Brauer Characters

72.15.1 FrobeniusCharacterValue

▷ FrobeniusCharacterValue(value, p) (function)

Let value be a cyclotomic whose coefficients over the rationals are in the ring Zp of p-local
numbers, where p is a prime integer. Assume that value lies in Zp [ζ] for ζ = exp(p n −1), for some
positive integer n.

FrobeniusCharacterValue returns the image of value under the ring homomorphism from
Zp [ζ] to the field with p n elements that is defined with the help of Conway polynomials
(see ConwayPolynomial (59.5.1)), more information can be found in [JLPW95, Sections 2-5].

If value is a Brauer character value in characteristic p then the result can be described as the
corresponding value of the Frobenius character, that is, as the trace of a representing matrix with the
given Brauer character value.

If the result of FrobeniusCharacterValue cannot be expressed as an element of a finite field in
GAP (see Chapter 59) then FrobeniusCharacterValue returns fail.

If the Conway polynomial of degree n is required for the computation then it is computed only if
IsCheapConwayPolynomial (59.5.2) returns true when it is called with p and n, otherwise fail is
returned.

72.15.2 BrauerCharacterValue

▷ BrauerCharacterValue(mat) (attribute)

For an invertible matrix mat over a finite field F , BrauerCharacterValue returns the Brauer
character value of mat if the order of mat is coprime to the characteristic of F , and fail otherwise.

The Brauer character value of a matrix is the sum of complex lifts of its eigenvalues.
Example

gap> g:= SL(2,4);; # 2-dim. irreducible representation of A5

gap> ccl:= ConjugacyClasses(g);;

gap> rep:= List(ccl, Representative);;

gap> List(rep, Order);

[1, 2, 5, 5, 3]

gap> phi:= List(rep, BrauerCharacterValue);

[2, fail, E(5)^2+E(5)^3, E(5)+E(5)^4, -1]

gap> List(phi{ [1, 3, 4, 5] }, x -> FrobeniusCharacterValue(x, 2));

[0*Z(2), Z(2^2), Z(2^2)^2, Z(2)^0]

gap> List(rep{ [1, 3, 4, 5] }, TraceMat);

[0*Z(2), Z(2^2), Z(2^2)^2, Z(2)^0]

GAP - Reference Manual 1247

72.15.3 SizeOfFieldOfDefinition

▷ SizeOfFieldOfDefinition(val, p) (function)

For a cyclotomic or a list of cyclotomics val , and a prime integer p , SizeOfFieldOfDefinition
returns the size of the smallest finite field in characteristic p that contains the p-modular reduction of
val if this can be determined, and fail otherwise.

The latter happens if val is not closed under Galois conjugacy and if the p-modular reduction
of some value cannot be determined via the function FrobeniusCharacterValue (72.15.1). Note
that the reduction map is defined as in [JLPW95], that is, the complex (p d − 1)-th root of unity
exp(p d − 1) is mapped to the residue class of the indeterminate, modulo the ideal spanned by the
Conway polynomial (see ConwayPolynomial (59.5.1)) of degree d over the field with p elements.

If val is closed under Galois conjugacy then the result can be determined without explicitly com-
puting the p-modular reduction of val . This happens for example if val is a Brauer character.

If val is an irreducible Brauer character then the value returned is the size of the smallest finite
field in characteristic p over which the corresponding representation lives.

72.15.4 RealizableBrauerCharacters

▷ RealizableBrauerCharacters(matrix, q) (function)

For a list matrix of absolutely irreducible Brauer characters in characteristic p, and a power q of
p, RealizableBrauerCharacters returns a duplicate-free list of sums of Frobenius conjugates of
the rows of matrix , each irreducible over the field with q elements.

Example
gap> irr:= Irr(CharacterTable("A5") mod 2);

[Character(BrauerTable("A5", 2), [1, 1, 1, 1]),

Character(BrauerTable("A5", 2),

[2, -1, E(5)+E(5)^4, E(5)^2+E(5)^3]),

Character(BrauerTable("A5", 2),

[2, -1, E(5)^2+E(5)^3, E(5)+E(5)^4]),

Character(BrauerTable("A5", 2), [4, 1, -1, -1])]

gap> List(irr, phi -> SizeOfFieldOfDefinition(phi, 2));

[2, 4, 4, 2]

gap> RealizableBrauerCharacters(irr, 2);

[Character(BrauerTable("A5", 2), [1, 1, 1, 1]),

ClassFunction(BrauerTable("A5", 2), [4, -2, -1, -1]),

Character(BrauerTable("A5", 2), [4, 1, -1, -1])]

72.16 Domains Generated by Class Functions

GAP supports groups, vector spaces, and algebras generated by class functions.

Chapter 73

Maps Concerning Character Tables

Besides the characters, power maps are an important part of a character table, see Section 73.1. Often
their computation is not easy, and if the table has no access to the underlying group then in general
they cannot be obtained from the matrix of irreducible characters; so it is useful to store them on the
table.

If not only a single table is considered but different tables of a group and a subgroup or of a
group and a factor group are used, also class fusion maps (see Section 73.3) must be known to get
information about the embedding or simply to induce or restrict characters, see Section 72.9).

These are examples of functions from conjugacy classes which will be called maps in the fol-
lowing. (This should not be confused with the term mapping, cf. Chapter 32.) In GAP, maps are
represented by lists. Also each character, each list of element orders, of centralizer orders, or of class
lengths are maps, and the list returned by ListPerm (42.5.1), when this function is called with a
permutation of classes, is a map.

When maps are constructed without access to a group, often one only knows that the image of a
given class is contained in a set of possible images, e. g., that the image of a class under a subgroup
fusion is in the set of all classes with the same element order. Using further information, such as
centralizer orders, power maps and the restriction of characters, the sets of possible images can be
restricted further. In many cases, at the end the images are uniquely determined.

Because of this approach, many functions in this chapter work not only with maps but with
parametrized maps (or paramaps for short). More about parametrized maps can be found in Sec-
tion 73.5.

The implementation follows [Bre91], a description of the main ideas together with several exam-
ples can be found in [Bre99].

Several examples in this chapter require the GAP Character Table Library to be available. If it is
not yet loaded then we load it now.

Example
gap> LoadPackage("ctbllib");

true

73.1 Power Maps

The n-th power map of a character table is represented by a list that stores at position i the position
of the class containing the n-th powers of the elements in the i-th class. The n-th power map can be

1248

GAP - Reference Manual 1249

composed from the power maps of the prime divisors of n, so usually only power maps for primes are
actually stored in the character table.

For an ordinary character table tbl with access to its underlying group G, the p-th power map of
tbl can be computed using the identification of the conjugacy classes of G with the classes of tbl .
For an ordinary character table without access to a group, in general the p-th power maps (and hence
also the element orders) for prime divisors p of the group order are not uniquely determined by the
matrix of irreducible characters. So only necessary conditions can be checked in this case, which in
general yields only a list of several possibilities for the desired power map. Character tables of the
GAP character table library store all p-th power maps for prime divisors p of the group order.

Power maps of Brauer tables can be derived from the power maps of the underlying ordinary
tables.

For (computing and) accessing the n-th power map of a character table, PowerMap (73.1.1) can be
used; if the n-th power map cannot be uniquely determined then PowerMap (73.1.1) returns fail.

The list of all possible p-th power maps of a table in the sense that certain necessary conditions
are satisfied can be computed with PossiblePowerMaps (73.1.2). This provides a default strategy,
the subroutines are listed in Section 73.6.

73.1.1 PowerMap

▷ PowerMap(tbl, n[, class]) (operation)

▷ PowerMapOp(tbl, n[, class]) (operation)

▷ ComputedPowerMaps(tbl) (attribute)

Called with first argument a character table tbl and second argument an integer n , PowerMap
returns the n-th power map of tbl . This is a list containing at position i the position of the class of
n-th powers of the elements in the i-th class of tbl .

If the additional third argument class is present then the position of n-th powers of the class-th
class is returned.

If the n-th power map is not uniquely determined by tbl then fail is returned. This can happen
only if tbl has no access to its underlying group.

The power maps of tbl that were computed already by PowerMap are stored in tbl as value
of the attribute ComputedPowerMaps, the n-th power map at position n. PowerMap checks whether
the desired power map is already stored, computes it using the operation PowerMapOp if it is not yet
known, and stores it. So methods for the computation of power maps can be installed for the operation
PowerMapOp.

Example
gap> tbl:= CharacterTable("L3(2)");;

gap> ComputedPowerMaps(tbl);

[, [1, 1, 3, 2, 5, 6], [1, 2, 1, 4, 6, 5],,,,

[1, 2, 3, 4, 1, 1]]

gap> PowerMap(tbl, 5);

[1, 2, 3, 4, 6, 5]

gap> ComputedPowerMaps(tbl);

[, [1, 1, 3, 2, 5, 6], [1, 2, 1, 4, 6, 5],, [1, 2, 3, 4, 6, 5],

, [1, 2, 3, 4, 1, 1]]

gap> PowerMap(tbl, 137, 2);

2

GAP - Reference Manual 1250

73.1.2 PossiblePowerMaps

▷ PossiblePowerMaps(tbl, p[, options]) (operation)

For the ordinary character table tbl of a group G and a prime integer p , PossiblePowerMaps
returns the list of all maps that have the following properties of the p-th power map of tbl . (Repre-
sentative orders are used only if the OrdersClassRepresentatives (71.9.1) value of tbl is known.

1. For class i, the centralizer order of the image is a multiple of the i-th centralizer order; if the
elements in the i-th class have order coprime to p then the centralizer orders of class i and its
image are equal.

2. Let n be the order of elements in class i. If prime divides n then the images have order n/p;
otherwise the images have order n. These criteria are checked in InitPowerMap (73.6.1).

3. For each character χ of G and each element g in G, the values χ(gp) and GaloisCyc(χ(g), p)
are algebraic integers that are congruent modulo p; if p does not divide the element order of g
then the two values are equal. This congruence is checked for the characters specified below in
the discussion of the options argument; For linear characters λ among these characters, the
condition χ(g)p = χ(gp) is checked. The corresponding function is Congruences (73.6.2).

4. For each character χ of G, the kernel is a normal subgroup N, and gp ∈N for all g∈N; moreover,
if N has index p in G then gp ∈ N for all g ∈ G, and if the index of N in G is coprime to p then
gp ̸∈ N for each g ̸∈ N. These conditions are checked for the kernels of all characters χ specified
below, the corresponding function is ConsiderKernels (73.6.3).

5. If p is larger than the order m of an element g ∈ G then the class of gp is determined by the
power maps for primes dividing the residue of p modulo m. If these power maps are stored in
the ComputedPowerMaps (73.1.1) value of tbl then this information is used. This criterion is
checked in ConsiderSmallerPowerMaps (73.6.4).

6. For each character χ of G, the symmetrization ψ defined by ψ(g) = (χ(g)p − χ(gp))/p is a
character. This condition is checked for the kernels of all characters χ specified below, the
corresponding function is PowerMapsAllowedBySymmetrizations (73.6.6).

If tbl is a Brauer table, the possibilities are computed from those for the underlying ordinary
table.

The optional argument options , if given, must be a record that may have the following compo-
nents:

chars:
a list of characters which are used for the check of the criteria 3., 4., and 6.; the default is Irr(
tbl),

powermap:
a parametrized map which is an approximation of the desired map

decompose:
a Boolean; a true value indicates that all constituents of the symmetrizations of chars com-
puted for criterion 6. lie in chars, so the symmetrizations can be decomposed into elements
of chars; the default value of decompose is true if chars is not bound and Irr(tbl) is
known, otherwise false,

GAP - Reference Manual 1251

quick:
a Boolean; if true then the subroutines are called with value true for the argument quick ;
especially, as soon as only one candidate remains this candidate is returned immediately; the
default value is false,

parameters:
a record with components maxamb, minamb and maxlen which control the subroutine
PowerMapsAllowedBySymmetrizations (73.6.6); it only uses characters with current inde-
terminateness up to maxamb, tests decomposability only for characters with current indetermi-
nateness at least minamb, and admits a branch according to a character only if there is one with
at most maxlen possible symmetrizations.

Example
gap> tbl:= CharacterTable("U4(3).4");;

gap> PossiblePowerMaps(tbl, 2);

[[1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, 6, 14, 9, 1, 1, 2, 2, 3, 4,

5, 6, 8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18, 18, 18,

18, 20, 20, 20, 20, 22, 22, 24, 24, 25, 26, 28, 28, 29, 29]]

73.1.3 ElementOrdersPowerMap

▷ ElementOrdersPowerMap(powermap) (function)

Let powermap be a nonempty list containing at position p, if bound, the p-th power map of a
character table or group. ElementOrdersPowerMap returns a list of the same length as each entry in
powermap , with entry at position i equal to the order of elements in class i if this order is uniquely
determined by powermap , and equal to an unknown (see Chapter 74) otherwise.

Example
gap> tbl:= CharacterTable("U4(3).4");;

gap> known:= ComputedPowerMaps(tbl);;

gap> Length(known);

7

gap> sub:= ShallowCopy(known);; Unbind(sub[7]);

gap> ElementOrdersPowerMap(sub);

[1, 2, 3, 3, 3, 4, 4, 5, 6, 6, Unknown(1), Unknown(2), 8, 9, 12, 2,

2, 4, 4, 6, 6, 6, 8, 10, 12, 12, 12, Unknown(3), Unknown(4), 4, 4,

4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 12, 12, 20, 20, 24, 24,

Unknown(5), Unknown(6), Unknown(7), Unknown(8)]

gap> ord:= ElementOrdersPowerMap(known);

[1, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 12, 2, 2, 4, 4, 6, 6, 6,

8, 10, 12, 12, 12, 14, 14, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12,

12, 12, 12, 12, 20, 20, 24, 24, 28, 28, 28, 28]

gap> ord = OrdersClassRepresentatives(tbl);

true

73.1.4 PowerMapByComposition

▷ PowerMapByComposition(tbl, n) (function)

GAP - Reference Manual 1252

tbl must be a nearly character table, and n a positive integer. If the power maps for all prime divi-
sors of n are stored in the ComputedPowerMaps (73.1.1) list of tbl then PowerMapByComposition

returns the n-th power map of tbl . Otherwise fail is returned.
Example

gap> tbl:= CharacterTable("U4(3).4");; exp:= Exponent(tbl);

2520

gap> PowerMapByComposition(tbl, exp);

[1,

1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1]

gap> Length(ComputedPowerMaps(tbl));

7

gap> PowerMapByComposition(tbl, 11);

fail

gap> PowerMap(tbl, 11);;

gap> PowerMapByComposition(tbl, 11);

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 26, 25, 27, 28, 29, 31, 30, 33, 32, 35, 34, 37,

36, 39, 38, 41, 40, 43, 42, 45, 44, 47, 46, 49, 48, 51, 50, 53, 52]

73.2 Orbits on Sets of Possible Power Maps

The permutation group of matrix automorphisms (see MatrixAutomorphisms (71.22.1)) acts on the
possible power maps returned by PossiblePowerMaps (73.1.2) by permuting a list via Permuted

(21.20.17) and then mapping the images via OnPoints (41.2.1). Note that by definition, the group of
table automorphisms acts trivially.

73.2.1 OrbitPowerMaps

▷ OrbitPowerMaps(map, permgrp) (function)

returns the orbit of the power map map under the action of the permutation group permgrp via a
combination of Permuted (21.20.17) and OnPoints (41.2.1).

73.2.2 RepresentativesPowerMaps

▷ RepresentativesPowerMaps(listofmaps, permgrp) (function)

returns a list of orbit representatives of the power maps in the list listofmaps under the action of
the permutation group permgrp via a combination of Permuted (21.20.17) and OnPoints (41.2.1).

Example
gap> tbl:= CharacterTable("3.McL");;

gap> grp:= MatrixAutomorphisms(Irr(tbl)); Size(grp);

<permutation group with 5 generators>

32

gap> poss:= PossiblePowerMaps(CharacterTable("3.McL"), 3);

[[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,

4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 9, 8, 37,

37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49,

GAP - Reference Manual 1253

49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37],

[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,

4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 8, 9, 37,

37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49,

49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37]]

gap> reps:= RepresentativesPowerMaps(poss, grp);

[[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,

4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 8, 9, 37,

37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49,

49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37]]

gap> orb:= OrbitPowerMaps(reps[1], grp);

[[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,

4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 8, 9, 37,

37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49,

49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37],

[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,

4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 9, 8, 37,

37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49,

49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37]]

gap> Parametrized(orb);

[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,

4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, [8, 9],

[8, 9], 37, 37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52,

52, 49, 49, 49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37]

73.3 Class Fusions between Character Tables

For a group G and a subgroup H of G, the fusion map between the character table of H and the
character table of G is represented by a list that stores at position i the position of the i-th class of the
table of H in the classes list of the table of G.

For ordinary character tables tbl1 and tbl2 of H and G, with access to the groups H and G,
the class fusion between tbl1 and tbl2 can be computed using the identifications of the conjugacy
classes of H with the classes of tbl1 and the conjugacy classes of G with the classes of tbl2 . For two
ordinary character tables without access to an underlying group, or in the situation that the group stored
in tbl1 is not physically a subgroup of the group stored in tbl2 but an isomorphic copy, in general
the class fusion is not uniquely determined by the information stored on the tables such as irreducible
characters and power maps. So only necessary conditions can be checked in this case, which in general
yields only a list of several possibilities for the desired class fusion. Character tables of the GAP
character table library store various class fusions that are regarded as important, for example fusions
from maximal subgroups (see ComputedClassFusions (73.3.2) and Maxes (CTblLib: Maxes) in
the manual for the GAP Character Table Library).

Class fusions between Brauer tables can be derived from the class fusions between the underlying
ordinary tables. The class fusion from a Brauer table to the underlying ordinary table is stored when
the Brauer table is constructed from the ordinary table, so no method is needed to compute such a
fusion.

For (computing and) accessing the class fusion between two character tables,
FusionConjugacyClasses (73.3.1) can be used; if the class fusion cannot be uniquely deter-
mined then FusionConjugacyClasses (73.3.1) returns fail.

GAP - Reference Manual 1254

The list of all possible class fusion between two tables in the sense that certain necessary conditions
are satisfied can be computed with PossibleClassFusions (73.3.6). This provides a default strategy,
the subroutines are listed in Section 73.7.

It should be noted that all the following functions except FusionConjugacyClasses (73.3.1)
deal only with the situation of class fusions from subgroups. The computation of factor fusions from a
character table to the table of a factor group is not dealt with here. Since the ordinary character table of
a group G determines the character tables of all factor groups of G, the factor fusion to a given character
table of a factor group of G is determined up to table automorphisms (see AutomorphismsOfTable

(71.9.4)) once the class positions of the kernel of the natural epimorphism have been fixed.

73.3.1 FusionConjugacyClasses

▷ FusionConjugacyClasses(tbl1, tbl2) (operation)

▷ FusionConjugacyClasses(H, G) (operation)

▷ FusionConjugacyClasses(hom[, tbl1, tbl2]) (operation)

▷ FusionConjugacyClassesOp(tbl1, tbl2) (operation)

▷ FusionConjugacyClassesOp(hom) (attribute)

Called with two character tables tbl1 and tbl2 , FusionConjugacyClasses returns the fusion
of conjugacy classes between tbl1 and tbl2 . (If one of the tables is a Brauer table, it will delegate
this task to the underlying ordinary table.)

Called with two groups H and G where H is a subgroup of G , FusionConjugacyClasses returns
the fusion of conjugacy classes between H and G . This is done by delegating to the ordinary character
tables of H and G , since class fusions are stored only for character tables and not for groups.

Note that the returned class fusion refers to the ordering of conjugacy classes in the character
tables if the arguments are character tables and to the ordering of conjugacy classes in the groups if
the arguments are groups (see ConjugacyClasses (71.6.2)).

Called with a group homomorphism hom , FusionConjugacyClasses returns the fusion of conju-
gacy classes between the preimage and the image of hom ; contrary to the two cases above, also factor
fusions can be handled by this variant. If hom is the only argument then the class fusion refers to the
ordering of conjugacy classes in the groups. If the character tables of preimage and image are given as
tbl1 and tbl2 , respectively (each table with its group stored), then the fusion refers to the ordering
of classes in these tables.

If no class fusion exists or if the class fusion is not uniquely determined, fail is returned; this
may happen when FusionConjugacyClasses is called with two character tables that do not know
compatible underlying groups.

Methods for the computation of class fusions can be installed for the operation
FusionConjugacyClassesOp.

Example
gap> s4:= SymmetricGroup(4);

Sym([1 .. 4])

gap> tbls4:= CharacterTable(s4);;

gap> d8:= SylowSubgroup(s4, 2);

Group([(1,2), (3,4), (1,3)(2,4)])

gap> FusionConjugacyClasses(d8, s4);

[1, 2, 3, 3, 5]

gap> tbls5:= CharacterTable("S5");;

gap> FusionConjugacyClasses(CharacterTable("A5"), tbls5);

GAP - Reference Manual 1255

[1, 2, 3, 4, 4]

gap> FusionConjugacyClasses(CharacterTable("A5"), CharacterTable("J1"));

fail

gap> PossibleClassFusions(CharacterTable("A5"), CharacterTable("J1"));

[[1, 2, 3, 4, 5], [1, 2, 3, 5, 4]]

73.3.2 ComputedClassFusions

▷ ComputedClassFusions(tbl) (attribute)

The class fusions from the character table tbl that have been computed already by
FusionConjugacyClasses (73.3.1) or explicitly stored by StoreFusion (73.3.4) are stored in the
ComputedClassFusions list of tbl1 . Each entry of this list is a record with the following compo-
nents.

name

the Identifier (71.9.8) value of the character table to which the fusion maps,

map the list of positions of image classes,

text (optional)
a string giving additional information about the fusion map, for example whether the map is
uniquely determined by the character tables,

specification (optional, rarely used)
a value that distinguishes different fusions between the same tables.

Note that stored fusion maps may differ from the maps returned by GetFusionMap (73.3.3)
and the maps entered by StoreFusion (73.3.4) if the table destination has a nonidentity
ClassPermutation (71.21.5) value. So if one fetches a fusion map from a table tbl1 to a table
tbl2 via access to the data in the ComputedClassFusions list of tbl1 then the stored value must be
composed with the ClassPermutation (71.21.5) value of tbl2 in order to obtain the correct class
fusion. (If one handles fusions only via GetFusionMap (73.3.3) and StoreFusion (73.3.4) then this
adjustment is made automatically.)

Fusions are identified via the Identifier (71.9.8) value of the destination table and not by this
table itself because many fusions between character tables in the GAP character table library are stored
on library tables, and it is not desirable to load together with a library table also all those character
tables that occur as destinations of fusions from this table.

For storing fusions and accessing stored fusions, see also GetFusionMap (73.3.3), StoreFusion
(73.3.4). For accessing the identifiers of tables that store a fusion into a given character table,
see NamesOfFusionSources (73.3.5).

73.3.3 GetFusionMap

▷ GetFusionMap(source, destination[, specification]) (function)

For two ordinary character tables source and destination , GetFusionMap checks whether
the ComputedClassFusions (73.3.2) list of source contains a record with name compo-
nent Identifier(destination), and returns the map component of the first such record.

GAP - Reference Manual 1256

GetFusionMap(source, destination, specification) fetches that fusion map for which
the record additionally has the specification component specification .

If both source and destination are Brauer tables, first the same is done, and if no fusion map
was found then GetFusionMap looks whether a fusion map between the ordinary tables is stored; if
so then the fusion map between source and destination is stored on source , and then returned.

If no appropriate fusion is found, GetFusionMap returns fail. For the computation of class
fusions, see FusionConjugacyClasses (73.3.1).

73.3.4 StoreFusion

▷ StoreFusion(source, fusion, destination) (function)

For two character tables source and destination , StoreFusion stores the fusion fusion

from source to destination in the ComputedClassFusions (73.3.2) list of source , and adds
the Identifier (71.9.8) string of destination to the NamesOfFusionSources (73.3.5) list of
destination .

fusion can either be a fusion map (that is, the list of positions of the image classes) or a record
as described in ComputedClassFusions (73.3.2).

If fusions to destination are already stored on source then another fusion can be stored only
if it has a record component specification that distinguishes it from the stored fusions. In the case
of such an ambiguity, StoreFusion raises an error.

Example
gap> tbld8:= CharacterTable(d8);;

gap> ComputedClassFusions(tbld8);

[rec(map := [1, 2, 3, 3, 5], name := "CT1")]

gap> Identifier(tbls4);

"CT1"

gap> GetFusionMap(tbld8, tbls4);

[1, 2, 3, 3, 5]

gap> GetFusionMap(tbls4, tbls5);

fail

gap> poss:= PossibleClassFusions(tbls4, tbls5);

[[1, 5, 2, 3, 6]]

gap> StoreFusion(tbls4, poss[1], tbls5);

gap> GetFusionMap(tbls4, tbls5);

[1, 5, 2, 3, 6]

73.3.5 NamesOfFusionSources

▷ NamesOfFusionSources(tbl) (attribute)

For a character table tbl , NamesOfFusionSources returns the list of identifiers of all those char-
acter tables that are known to have fusions to tbl stored. The NamesOfFusionSources value is
updated whenever a fusion to tbl is stored using StoreFusion (73.3.4).

Example
gap> NamesOfFusionSources(tbls4);

["CT2"]

gap> Identifier(CharacterTable(d8));

"CT2"

GAP - Reference Manual 1257

73.3.6 PossibleClassFusions

▷ PossibleClassFusions(subtbl, tbl[, options]) (operation)

For two ordinary character tables subtbl and tbl of the groups H and G,
PossibleClassFusions returns the list of all maps that have the following properties of class
fusions from subtbl to tbl .

1. For class i, the centralizer order of the image in G is a multiple of the i-th centralizer order in
H, and the element orders in the i-th class and its image are equal. These criteria are checked
in InitFusion (73.7.1).

2. The class fusion commutes with power maps. This is checked using TestConsistencyMaps

(73.5.12).

3. If the permutation character of G corresponding to the action of G on the cosets of H is specified
(see the discussion of the options argument below) then it prescribes for each class C of G the
number of elements of H fusing into C. The corresponding function is CheckPermChar (73.7.2).

4. The table automorphisms of tbl (see AutomorphismsOfTable (71.9.4)) are used in order to
compute only orbit representatives. (But note that the list returned by PossibleClassFusions

contains the full orbits.)

5. For each character χ of G, the restriction to H via the class fusion is a character of H.
This condition is checked for all characters specified below, the corresponding function is
FusionsAllowedByRestrictions (73.7.4).

6. The class multiplication coefficients in subtbl do not exceed the corresponding coefficients in
tbl . This is checked in ConsiderStructureConstants (73.3.7), see also the comment on the
parameter verify below.

If subtbl and tbl are Brauer tables then the possibilities are computed from those for the under-
lying ordinary tables.

The optional argument options must be a record that may have the following components:

chars

a list of characters of tbl which are used for the check of 5.; the default is Irr(tbl),

subchars

a list of characters of subtbl which are constituents of the restrictions of chars, the default is
Irr(subtbl),

fusionmap

a parametrized map which is an approximation of the desired map,

decompose

a Boolean; a true value indicates that all constituents of the restrictions of chars computed for
criterion 5. lie in subchars, so the restrictions can be decomposed into elements of subchars;
the default value of decompose is true if subchars is not bound and Irr(subtbl) is
known, otherwise false,

GAP - Reference Manual 1258

permchar

(a values list of) a permutation character; only those fusions affording that permutation character
are computed,

quick

a Boolean; if true then the subroutines are called with value true for the argument quick ;
especially, as soon as only one possibility remains then this possibility is returned imme-
diately; the default value is false (note that in situations where the group of tbl has no
subgroups with character table subtbl , it may happen that setting quick to true causes
PossibleClassFusions to return solutions, whereas the value false yields an empty list),

verify

a Boolean; if false then ConsiderStructureConstants (73.3.7) is called only if more than
one orbit of possible class fusions exists, under the action of the groups of table automorphisms;
the default value is false (because the computation of the structure constants is usually very
time consuming, compared with checking the other criteria),

parameters

a record with components maxamb, minamb and maxlen (and perhaps some optional compo-
nents) which control the subroutine FusionsAllowedByRestrictions (73.7.4); it only uses
characters with current indeterminateness up to maxamb, tests decomposability only for charac-
ters with current indeterminateness at least minamb, and admits a branch according to a character
only if there is one with at most maxlen possible restrictions.

Example
gap> subtbl:= CharacterTable("U3(3)");; tbl:= CharacterTable("J4");;

gap> PossibleClassFusions(subtbl, tbl);

[[1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21],

[1, 2, 4, 4, 5, 5, 6, 10, 13, 12, 14, 14, 21, 21],

[1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 15, 15, 22, 22],

[1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 16, 16, 22, 22],

[1, 2, 4, 4, 6, 6, 6, 10, 13, 12, 15, 15, 22, 22],

[1, 2, 4, 4, 6, 6, 6, 10, 13, 12, 16, 16, 22, 22]]

73.3.7 ConsiderStructureConstants

▷ ConsiderStructureConstants(subtbl, tbl, fusions, quick) (function)

Let subtbl and tbl be ordinary character tables and fusions be a list of
possible class fusions from subtbl to tbl . ConsiderStructureConstants re-
turns the list of those maps σ in fusions with the property that for all triples
(i, j,k) of class positions, ClassMultiplicationCoefficient(subtbl , i, j,k)
is not bigger than ClassMultiplicationCoefficient(tbl ,σ [i],σ [j],σ [k]);
see ClassMultiplicationCoefficient (71.12.7) for the definition of class multiplication
coefficients/structure constants.

The argument quick must be a Boolean; if it is true then only those triples are checked for which
at least two entries in fusions have different images.

GAP - Reference Manual 1259

73.4 Orbits on Sets of Possible Class Fusions

The permutation groups of table automorphisms (see AutomorphismsOfTable (71.9.4)) of the sub-
group table subtbl and the supergroup table tbl act on the possible class fusions from subtbl

to tbl that are returned by PossibleClassFusions (73.3.6), the former by permuting a list via
Permuted (21.20.17), the latter by mapping the images via OnPoints (41.2.1).

If a set of possible fusions with certain properties was computed that are not invariant under the
full groups of table automorphisms then only a smaller group acts on this set. This may happen for
example if a permutation character or if an explicit approximation of the fusion map was prescribed
in the call of PossibleClassFusions (73.3.6).

73.4.1 OrbitFusions

▷ OrbitFusions(subtblautomorphisms, fusionmap, tblautomorphisms) (function)

returns the orbit of the class fusion map fusionmap under the actions of the permutation groups
subtblautomorphisms and tblautomorphisms of automorphisms of the character table of the sub-
group and the supergroup, respectively.

73.4.2 RepresentativesFusions

▷ RepresentativesFusions(subtbl, listofmaps, tbl) (function)

Let listofmaps be a list of class fusions from the character table subtbl to the character table
tbl . RepresentativesFusions returns a list of orbit representatives of the class fusions under the
action of maximal admissible subgroups of the table automorphism groups of these character tables.

Instead of the character tables subtbl and tbl , also the permutation groups of their table auto-
morphisms (see AutomorphismsOfTable (71.9.4)) may be entered.

Example
gap> fus:= GetFusionMap(subtbl, tbl);

[1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21]

gap> orb:= OrbitFusions(AutomorphismsOfTable(subtbl), fus,

> AutomorphismsOfTable(tbl));

[[1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21],

[1, 2, 4, 4, 5, 5, 6, 10, 13, 12, 14, 14, 21, 21]]

gap> rep:= RepresentativesFusions(subtbl, orb, tbl);

[[1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21]]

73.5 Parametrized Maps

A parametrized map is a list whose i-th entry is either unbound (which means that nothing is known
about the image(s) of the i-th class) or the image of the i-th class (i.e., an integer for fusion maps,
power maps, element orders etc., and a cyclotomic for characters), or a list of possible images of
the i-th class. In this sense, maps are special parametrized maps. We often identify a parametrized
map paramap with the set of all maps map with the property that either map[i] = paramap[i] or
map[i] is contained in the list paramap[i]; we say then that map is contained in paramap .

GAP - Reference Manual 1260

This definition implies that parametrized maps cannot be used to describe sets of maps where lists
are possible images. An exception are strings which naturally arise as images when class names are
considered. So strings and lists of strings are allowed in parametrized maps, and character constants
(see Chapter 27) are not allowed in maps.

73.5.1 CompositionMaps

▷ CompositionMaps(paramap2, paramap1[, class]) (function)

The composition of two parametrized maps paramap1 , paramap2 is defined as the parametrized
map comp that contains all compositions f2 ◦ f1 of elements f1 of paramap1 and f2 of paramap2 .
For example, the composition of a character χ of a group G by a parametrized class fusion map from
a subgroup H to G is the parametrized map that contains all restrictions of χ by elements of the
parametrized fusion map.

CompositionMaps(paramap2, paramap1) is a parametrized map with entry
CompositionMaps(paramap2, paramap1, class) at position class . If paramap1[class]

is an integer then CompositionMaps(paramap2, paramap1, class) is equal to paramap2[

paramap1[class]]. Otherwise it is the union of paramap2[i] for i in paramap1[class].
Example

gap> map1:= [1, [2 .. 4], [4, 5], 1];;

gap> map2:= [[1, 2], 2, 2, 3, 3];;

gap> CompositionMaps(map2, map1);

[[1, 2], [2, 3], 3, [1, 2]]

gap> CompositionMaps(map1, map2);

[[1, 2, 3, 4], [2 .. 4], [2 .. 4], [4, 5], [4, 5]]

73.5.2 InverseMap

▷ InverseMap(paramap) (function)

For a parametrized map paramap , InverseMap returns a mutable parametrized map whose i-th
entry is unbound if i is not in the image of paramap , equal to j if i is (in) the image of paramap[j]
exactly for j, and equal to the set of all preimages of i under paramap otherwise.

We have CompositionMaps(paramap, InverseMap(paramap)) the identity map.
Example

gap> tbl:= CharacterTable("2.A5");; f:= CharacterTable("A5");;

gap> fus:= GetFusionMap(tbl, f);

[1, 1, 2, 3, 3, 4, 4, 5, 5]

gap> inv:= InverseMap(fus);

[[1, 2], 3, [4, 5], [6, 7], [8, 9]]

gap> CompositionMaps(fus, inv);

[1, 2, 3, 4, 5]

gap> # transfer a power map ``up'' to the factor group

gap> pow:= PowerMap(tbl, 2);

[1, 1, 2, 4, 4, 8, 8, 6, 6]

gap> CompositionMaps(fus, CompositionMaps(pow, inv));

[1, 1, 3, 5, 4]

gap> last = PowerMap(f, 2);

true

GAP - Reference Manual 1261

gap> # transfer a power map of the factor group ``down'' to the group

gap> CompositionMaps(inv, CompositionMaps(PowerMap(f, 2), fus));

[[1, 2], [1, 2], [1, 2], [4, 5], [4, 5], [8, 9],

[8, 9], [6, 7], [6, 7]]

73.5.3 ProjectionMap

▷ ProjectionMap(fusionmap) (function)

For a map fusionmap , ProjectionMap returns a parametrized map whose i-th entry is unbound
if i is not in the image of fusionmap , and equal to j if j is the smallest position such that i is the
image of fusionmap[j].

We have CompositionMaps(fusionmap, ProjectionMap(fusionmap)) the identity
map, i.e., first projecting and then fusing yields the identity. Note that fusionmap must not be a
parametrized map.

Example
gap> ProjectionMap([1, 1, 1, 2, 2, 2, 3, 4, 5, 5, 5, 6, 6, 6]);

[1, 4, 7, 8, 9, 12]

73.5.4 Indirected

▷ Indirected(character, paramap) (function)

For a map character and a parametrized map paramap , Indirected returns a parametrized
map whose entry at position i is character[paramap[i]] if paramap[i] is an integer, and an
unknown (see Chapter 74) otherwise.

Example
gap> tbl:= CharacterTable("M12");;

gap> fus:= [1, 3, 4, [6, 7], 8, 10, [11, 12], [11, 12],

> [14, 15], [14, 15]];;

gap> List(Irr(tbl){ [1 .. 6] }, x -> Indirected(x, fus));

[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[11, 3, 2, Unknown(9), 1, 0, Unknown(10), Unknown(11), 0, 0],

[11, 3, 2, Unknown(12), 1, 0, Unknown(13), Unknown(14), 0, 0],

[16, 0, -2, 0, 1, 0, 0, 0, Unknown(15), Unknown(16)],

[16, 0, -2, 0, 1, 0, 0, 0, Unknown(17), Unknown(18)],

[45, -3, 0, 1, 0, 0, -1, -1, 1, 1]]

73.5.5 Parametrized

▷ Parametrized(list) (function)

For a list list of (parametrized) maps of the same length, Parametrized returns the smallest
parametrized map containing all elements of list .

Parametrized is the inverse function to ContainedMaps (73.5.6).
Example

gap> Parametrized([[1, 2, 3, 4, 5], [1, 3, 2, 4, 5],

> [1, 2, 3, 4, 6]]);

[1, [2, 3], [2, 3], 4, [5, 6]]

GAP - Reference Manual 1262

73.5.6 ContainedMaps

▷ ContainedMaps(paramap) (function)

For a parametrized map paramap , ContainedMaps returns the set of all maps contained in
paramap .

ContainedMaps is the inverse function to Parametrized (73.5.5) in the sense that
Parametrized(ContainedMaps(paramap)) is equal to paramap .

Example
gap> ContainedMaps([1, [2, 3], [2, 3], 4, [5, 6]]);

[[1, 2, 2, 4, 5], [1, 2, 2, 4, 6], [1, 2, 3, 4, 5],

[1, 2, 3, 4, 6], [1, 3, 2, 4, 5], [1, 3, 2, 4, 6],

[1, 3, 3, 4, 5], [1, 3, 3, 4, 6]]

73.5.7 UpdateMap

▷ UpdateMap(character, paramap, indirected) (function)

Let character be a map, paramap a parametrized map, and indirected a parametrized map
that is contained in CompositionMaps(character, paramap).

Then UpdateMap changes paramap to the parametrized map containing exactly the maps whose
composition with character is equal to indirected .

If a contradiction is detected then false is returned immediately, otherwise true.
Example

gap> subtbl:= CharacterTable("S4(4).2");; tbl:= CharacterTable("He");;

gap> fus:= InitFusion(subtbl, tbl);;

gap> fus;

[1, 2, 2, [2, 3], 4, 4, [7, 8], [7, 8], 9, 9, 9, [10, 11],

[10, 11], 18, 18, 25, 25, [26, 27], [26, 27], 2, [6, 7],

[6, 7], [6, 7, 8], 10, 10, 17, 17, 18, [19, 20], [19, 20]]

gap> chi:= Irr(tbl)[2];

Character(CharacterTable("He"), [51, 11, 3, 6, 0, 3, 3, -1, 1, 2,

0, 3*E(7)+3*E(7)^2+3*E(7)^4, 3*E(7)^3+3*E(7)^5+3*E(7)^6, 2,

E(7)+E(7)^2+2*E(7)^3+E(7)^4+2*E(7)^5+2*E(7)^6,

2*E(7)+2*E(7)^2+E(7)^3+2*E(7)^4+E(7)^5+E(7)^6, 1, 1, 0, 0,

-E(7)-E(7)^2-E(7)^4, -E(7)^3-E(7)^5-E(7)^6, E(7)+E(7)^2+E(7)^4,

E(7)^3+E(7)^5+E(7)^6, 1, 0, 0, -1, -1, 0, 0, E(7)+E(7)^2+E(7)^4,

E(7)^3+E(7)^5+E(7)^6])

gap> filt:= Filtered(Irr(subtbl), x -> x[1] = 50);

[Character(CharacterTable("S4(4).2"),

[50, 10, 10, 2, 5, 5, -2, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, -1,

10, 2, 2, 2, 1, 1, 0, 0, 0, -1, -1]),

Character(CharacterTable("S4(4).2"),

[50, 10, 10, 2, 5, 5, -2, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, -1,

-10, -2, -2, -2, -1, -1, 0, 0, 0, 1, 1])]

gap> UpdateMap(chi, fus, filt[1] + TrivialCharacter(subtbl));

true

gap> fus;

[1, 2, 2, 3, 4, 4, 8, 7, 9, 9, 9, 10, 10, 18, 18, 25, 25,

[26, 27], [26, 27], 2, [6, 7], [6, 7], [6, 7], 10, 10,

17, 17, 18, [19, 20], [19, 20]]

GAP - Reference Manual 1263

73.5.8 MeetMaps

▷ MeetMaps(paramap1, paramap2) (function)

For two parametrized maps paramap1 and paramap2 , MeetMaps changes paramap1 such that
the image of class i is the intersection of paramap1[i] and paramap2[i].

If this implies that no images remain for a class, the position of such a class is returned. If no such
inconsistency occurs, MeetMaps returns true.

Example
gap> map1:= [[1, 2], [3, 4], 5, 6, [7, 8, 9]];;

gap> map2:= [[1, 3], [3, 4], [5, 6], 6, [8, 9, 10]];;

gap> MeetMaps(map1, map2); map1;

true

[1, [3, 4], 5, 6, [8, 9]]

73.5.9 CommutativeDiagram

▷ CommutativeDiagram(paramap1, paramap2, paramap3, paramap4[, improvements])

(function)

Let paramap1 , paramap2 , paramap3 , paramap4 be parametrized maps covering
parametrized maps f1, f2, f3, f4 with the property that CompositionMaps(f2, f1) is equal to
CompositionMaps(f4, f3).

CommutativeDiagram checks this consistency, and changes the arguments such that all possible
images are removed that cannot occur in the parametrized maps fi.

The return value is fail if an inconsistency was found. Otherwise a record with the components
imp1, imp2, imp3, imp4 is returned, each bound to the list of positions where the corresponding
parametrized map was changed,

The optional argument improvements must be a record with components imp1, imp2, imp3,
imp4. If such a record is specified then only diagrams are considered where entries of the i-th com-
ponent occur as preimages of the i-th parametrized map.

When an inconsistency is detected, CommutativeDiagram immediately returns fail. Otherwise
a record is returned that contains four lists imp1, . . ., imp4: The i-th component is the list of classes
where the i-th argument was changed.

Example
gap> map1:= [[1, 2, 3], [1, 3]];; map2:= [[1, 2], 1, [1, 3]];;

gap> map3:= [[2, 3], 3];; map4:= [, 1, 2, [1, 2]];;

gap> imp:= CommutativeDiagram(map1, map2, map3, map4);

rec(imp1 := [2], imp2 := [1], imp3 := [], imp4 := [])

gap> map1; map2; map3; map4;

[[1, 2, 3], 1]

[2, 1, [1, 3]]

[[2, 3], 3]

[, 1, 2, [1, 2]]

gap> imp2:= CommutativeDiagram(map1, map2, map3, map4, imp);

rec(imp1 := [], imp2 := [], imp3 := [], imp4 := [])

GAP - Reference Manual 1264

73.5.10 CheckFixedPoints

▷ CheckFixedPoints(inside1, between, inside2) (function)

Let inside1 , between , inside2 be parametrized maps, where between is assumed to map each
fixed point of inside1 (that is, inside1[i] = i) to a fixed point of inside2 (that is, between[i]
is either an integer that is fixed by inside2 or a list that has nonempty intersection with the union
of its images under inside2). CheckFixedPoints changes between and inside2 by removing all
those entries violate this condition.

When an inconsistency is detected, CheckFixedPoints immediately returns fail. Otherwise the
list of positions is returned where changes occurred.

Example
gap> subtbl:= CharacterTable("L4(3).2_2");;

gap> tbl:= CharacterTable("O7(3)");;

gap> fus:= InitFusion(subtbl, tbl);; fus{ [48, 49] };

[[54, 55, 56, 57], [54, 55, 56, 57]]

gap> CheckFixedPoints(ComputedPowerMaps(subtbl)[5], fus,

> ComputedPowerMaps(tbl)[5]);

[48, 49]

gap> fus{ [48, 49] };

[[56, 57], [56, 57]]

73.5.11 TransferDiagram

▷ TransferDiagram(inside1, between, inside2[, improvements]) (function)

Let inside1 , between , inside2 be parametrized maps covering parametrized maps m1, f , m2
with the property that CompositionMaps(m2, f) is equal to CompositionMaps(f ,m1).

TransferDiagram checks this consistency, and changes the arguments such that all possible im-
ages are removed that cannot occur in the parametrized maps mi and f .

So TransferDiagram is similar to CommutativeDiagram (73.5.9), but between occurs twice in
each diagram checked.

If a record improvements with fields impinside1, impbetween, and impinside2 is spec-
ified, only those diagrams with elements of impinside1 as preimages of inside1 , elements of
impbetween as preimages of between or elements of impinside2 as preimages of inside2 are
considered.

When an inconsistency is detected, TransferDiagram immediately returns fail. Otherwise a
record is returned that contains three lists impinside1, impbetween, and impinside2 of positions
where the arguments were changed.

Example
gap> subtbl:= CharacterTable("2F4(2)");; tbl:= CharacterTable("Ru");;

gap> fus:= InitFusion(subtbl, tbl);;

gap> permchar:= Sum(Irr(tbl){ [1, 5, 6] });;

gap> CheckPermChar(subtbl, tbl, fus, permchar);; fus;

[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [13, 15], 16, [18, 19], 20,

[25, 26], [25, 26], 5, 5, 6, 8, 14, [13, 15], [18, 19],

[18, 19], [25, 26], [25, 26], 27, 27]

gap> tr:= TransferDiagram(PowerMap(subtbl, 2), fus, PowerMap(tbl, 2));

rec(impbetween := [12, 23], impinside1 := [], impinside2 := []

GAP - Reference Manual 1265

)

gap> tr:= TransferDiagram(PowerMap(subtbl, 3), fus, PowerMap(tbl, 3));

rec(impbetween := [14, 24, 25], impinside1 := [],

impinside2 := [])

gap> tr:= TransferDiagram(PowerMap(subtbl, 3), fus, PowerMap(tbl, 3),

> tr);

rec(impbetween := [], impinside1 := [], impinside2 := [])

gap> fus;

[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, 15, 16, 18, 20, [25, 26],

[25, 26], 5, 5, 6, 8, 14, 13, 19, 19, [25, 26], [25, 26], 27,

27]

73.5.12 TestConsistencyMaps

▷ TestConsistencyMaps(powermap1, fusionmap, powermap2[, fusimp]) (function)

Let powermap1 and powermap2 be lists of parametrized maps, and fusionmap a parametrized
map, such that for each i, the i-th entry in powermap1 , fusionmap , and the i-th entry in powermap2

(if bound) are valid arguments for TransferDiagram (73.5.11). So a typical situation for applying
TestConsistencyMaps is that fusionmap is an approximation of a class fusion, and powermap1 ,
powermap2 are the lists of power maps of the subgroup and the group.

TestConsistencyMaps repeatedly applies TransferDiagram (73.5.11) to these arguments for
all i until no more changes occur.

If a list fusimp is specified then only those diagrams with elements of fusimp as preimages of
fusionmap are considered.

When an inconsistency is detected, TestConsistencyMaps immediately returns false. Other-
wise true is returned.

Example
gap> subtbl:= CharacterTable("2F4(2)");; tbl:= CharacterTable("Ru");;

gap> fus:= InitFusion(subtbl, tbl);;

gap> permchar:= Sum(Irr(tbl){ [1, 5, 6] });;

gap> CheckPermChar(subtbl, tbl, fus, permchar);; fus;

[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [13, 15], 16, [18, 19], 20,

[25, 26], [25, 26], 5, 5, 6, 8, 14, [13, 15], [18, 19],

[18, 19], [25, 26], [25, 26], 27, 27]

gap> TestConsistencyMaps(ComputedPowerMaps(subtbl), fus,

> ComputedPowerMaps(tbl));

true

gap> fus;

[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, 15, 16, 18, 20, [25, 26],

[25, 26], 5, 5, 6, 8, 14, 13, 19, 19, [25, 26], [25, 26], 27,

27]

gap> Indeterminateness(fus);

16

73.5.13 Indeterminateness

▷ Indeterminateness(paramap) (function)

GAP - Reference Manual 1266

For a parametrized map paramap , Indeterminateness returns the number of maps contained in
paramap , that is, the product of lengths of lists in paramap denoting lists of several images.

Example
gap> Indeterminateness([1, [2, 3], [4, 5], [6, 7, 8, 9, 10], 11]);

20

73.5.14 PrintAmbiguity

▷ PrintAmbiguity(list, paramap) (function)

For each map in the list list , PrintAmbiguity prints its position in list , the indeterminateness
(see Indeterminateness (73.5.13)) of the composition with the parametrized map paramap , and the
list of positions where a list of images occurs in this composition.

Example
gap> paramap:= [1, [2, 3], [3, 4], [2, 3, 4], 5];;

gap> list:= [[1, 1, 1, 1, 1], [1, 1, 2, 2, 3], [1, 2, 3, 4, 5]];;

gap> PrintAmbiguity(list, paramap);

1 1 []

2 4 [2, 4]

3 12 [2, 3, 4]

73.5.15 ContainedSpecialVectors

▷ ContainedSpecialVectors(tbl, chars, paracharacter, func) (function)

▷ IntScalarProducts(tbl, chars, candidate) (function)

▷ NonnegIntScalarProducts(tbl, chars, candidate) (function)

▷ ContainedPossibleVirtualCharacters(tbl, chars, paracharacter) (function)

▷ ContainedPossibleCharacters(tbl, chars, paracharacter) (function)

Let tbl be an ordinary character table, chars a list of class functions (or values lists),
paracharacter a parametrized class function of tbl , and func a function that expects the three
arguments tbl , chars , and a values list of a class function, and that returns either true or false.

ContainedSpecialVectors returns the list of all those elements vec of paracharacter that
have integral norm, have integral scalar product with the principal character of tbl , and that satisfy
func(tbl , chars , vec) = true.

Two special cases of func are the check whether the scalar products in tbl between the vec-
tor vec and all lists in chars are integers or nonnegative integers, respectively. These func-
tions are accessible as global variables IntScalarProducts and NonnegIntScalarProducts, and
ContainedPossibleVirtualCharacters and ContainedPossibleCharacters provide access to
these special cases of ContainedSpecialVectors.

Example
gap> subtbl:= CharacterTable("HSM12");; tbl:= CharacterTable("HS");;

gap> fus:= InitFusion(subtbl, tbl);;

gap> rest:= CompositionMaps(Irr(tbl)[8], fus);

[231, [-9, 7], [-9, 7], [-9, 7], 6, 15, 15, [-1, 15],

[-1, 15], 1, [1, 6], [1, 6], [1, 6], [1, 6], [-2, 0],

[1, 2], [1, 2], [1, 2], 0, 0, 1, 0, 0, 0, 0]

gap> irr:= Irr(subtbl);;

GAP - Reference Manual 1267

gap> # no further condition

gap> cont1:= ContainedSpecialVectors(subtbl, irr, rest,

> function(tbl, chars, vec) return true; end);;

gap> Length(cont1);

24

gap> # require scalar products to be integral

gap> cont2:= ContainedSpecialVectors(subtbl, irr, rest,

> IntScalarProducts);

[[231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],

[231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],

[231, 7, -9, -9, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],

[231, 7, -9, 7, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0]]

gap> # additionally require scalar products to be nonnegative

gap> cont3:= ContainedSpecialVectors(subtbl, irr, rest,

> NonnegIntScalarProducts);

[[231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],

[231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0]]

gap> cont2 = ContainedPossibleVirtualCharacters(subtbl, irr, rest);

true

gap> cont3 = ContainedPossibleCharacters(subtbl, irr, rest);

true

73.5.16 CollapsedMat

▷ CollapsedMat(mat, maps) (function)

is a record with the components

fusion

fusion that collapses those columns of mat that are equal in mat and also for all maps in the list
maps ,

mat the image of mat under that fusion.
Example

gap> mat:= [[1, 1, 1, 1], [2, -1, 0, 0], [4, 4, 1, 1]];;

gap> coll:= CollapsedMat(mat, []);

rec(fusion := [1, 2, 3, 3],

mat := [[1, 1, 1], [2, -1, 0], [4, 4, 1]])

gap> List(last.mat, x -> x{ last.fusion }) = mat;

true

gap> coll:= CollapsedMat(mat, [[1, 1, 1, 2]]);

rec(fusion := [1, 2, 3, 4],

mat := [[1, 1, 1, 1], [2, -1, 0, 0], [4, 4, 1, 1]])

GAP - Reference Manual 1268

73.5.17 ContainedDecomposables

▷ ContainedDecomposables(constituents, moduls, parachar, func) (function)

▷ ContainedCharacters(tbl, constituents, parachar) (function)

For these functions, let constituents be a list of rational class functions, moduls a list of
positive integers, parachar a parametrized rational class function, func a function that returns either
true or false when called with (a values list of) a class function, and tbl a character table.

ContainedDecomposables returns the set of all elements χ of parachar that satisfy func(χ) =
true and that lie in the Z-lattice spanned by constituents , modulo moduls . The latter means they
lie in the Z-lattice spanned by constituents and the set {moduls [i] · ei;1 ≤ i ≤ n} where n is the
length of parachar and ei is the i-th standard basis vector.

One application of ContainedDecomposables is the following. constituents is a list of (val-
ues lists of) rational characters of an ordinary character table tbl , moduls is the list of centralizer
orders of tbl (see SizesCentralizers (71.9.2)), and func checks whether a vector in the lattice
mentioned above has nonnegative integral scalar product in tbl with all entries of constituents .
This situation is handled by ContainedCharacters. Note that the entries of the result list are not
necessary linear combinations of constituents , and they are not necessarily characters of tbl .

Example
gap> subtbl:= CharacterTable("HSM12");; tbl:= CharacterTable("HS");;

gap> rat:= RationalizedMat(Irr(subtbl));;

gap> fus:= InitFusion(subtbl, tbl);;

gap> rest:= CompositionMaps(Irr(tbl)[8], fus);

[231, [-9, 7], [-9, 7], [-9, 7], 6, 15, 15, [-1, 15],

[-1, 15], 1, [1, 6], [1, 6], [1, 6], [1, 6], [-2, 0],

[1, 2], [1, 2], [1, 2], 0, 0, 1, 0, 0, 0, 0]

gap> # compute all vectors in the lattice

gap> ContainedDecomposables(rat, SizesCentralizers(subtbl), rest,

> ReturnTrue);

[[231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],

[231, 7, -9, -9, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],

[231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],

[231, 7, -9, 7, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0]]

gap> # compute only those vectors that are characters

gap> ContainedDecomposables(rat, SizesCentralizers(subtbl), rest,

> x -> NonnegIntScalarProducts(subtbl, Irr(subtbl), x));

[[231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],

[231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0]]

73.6 Subroutines for the Construction of Power Maps

In the argument lists of the functions Congruences (73.6.2), ConsiderKernels (73.6.3), and
ConsiderSmallerPowerMaps (73.6.4), tbl is an ordinary character table, chars a list of (values

GAP - Reference Manual 1269

lists of) characters of tbl , prime a prime integer, approxmap a parametrized map that is an approx-
imation for the prime-th power map of tbl (e.g., a list returned by InitPowerMap (73.6.1), and
quick a Boolean.

The quick value true means that only those classes are considered for which approxmap lists
more than one possible image.

73.6.1 InitPowerMap

▷ InitPowerMap(tbl, prime) (function)

For an ordinary character table tbl and a prime prime , InitPowerMap returns a parametrized
map that is a first approximation of the prime-th powermap of tbl , using the conditions 1. and
2. listed in the description of PossiblePowerMaps (73.1.2).

If there are classes for which no images are possible, according to these criteria, then fail is
returned.

Example
gap> t:= CharacterTable("U4(3).4");;

gap> pow:= InitPowerMap(t, 2);

[1, 1, 3, 4, 5, [2, 16], [2, 16, 17], 8, 3, [3, 4],

[11, 12], [11, 12], [6, 7, 18, 19, 30, 31, 32, 33], 14,

[9, 20], 1, 1, 2, 2, 3, [3, 4, 5], [3, 4, 5],

[6, 7, 18, 19, 30, 31, 32, 33], 8, 9, 9, [9, 10, 20, 21, 22],

[11, 12], [11, 12], 16, 16, [2, 16], [2, 16], 17, 17,

[6, 18, 30, 31, 32, 33], [6, 18, 30, 31, 32, 33],

[6, 7, 18, 19, 30, 31, 32, 33], [6, 7, 18, 19, 30, 31, 32, 33],

20, 20, [9, 20], [9, 20], [9, 10, 20, 21, 22],

[9, 10, 20, 21, 22], 24, 24, [15, 25, 26, 40, 41, 42, 43],

[15, 25, 26, 40, 41, 42, 43], [28, 29], [28, 29], [28, 29],

[28, 29]]

73.6.2 Congruences (for character tables)

▷ Congruences(tbl, chars, approxmap, prime, quick) (function)

Congruences replaces the entries of approxmap by improved values, according to condition
3. listed in the description of PossiblePowerMaps (73.1.2).

For each class for which no images are possible according to the tests, the new value of approxmap
is an empty list. Congruences returns true if no such inconsistencies occur, and false otherwise.

Example
gap> Congruences(t, Irr(t), pow, 2, false); pow;

true

[1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, [6, 7], 14, 9, 1, 1, 2, 2,

3, 4, 5, [6, 7], 8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18,

18, [18, 19], [18, 19], 20, 20, 20, 20, 22, 22, 24, 24,

[25, 26], [25, 26], 28, 28, 29, 29]

GAP - Reference Manual 1270

73.6.3 ConsiderKernels

▷ ConsiderKernels(tbl, chars, approxmap, prime, quick) (function)

ConsiderKernels replaces the entries of approxmap by improved values, according to condition
4. listed in the description of PossiblePowerMaps (73.1.2).

Congruences (73.6.2) returns true if the orders of the kernels of all characters in chars divide
the order of the group of tbl , and false otherwise.

Example
gap> t:= CharacterTable("A7.2");; init:= InitPowerMap(t, 2);

[1, 1, 3, 4, [2, 9, 10], 6, 3, 8, 1, 1, [2, 9, 10], 3, [3, 4],

6, [7, 12]]

gap> ConsiderKernels(t, Irr(t), init, 2, false);

true

gap> init;

[1, 1, 3, 4, 2, 6, 3, 8, 1, 1, 2, 3, [3, 4], 6, 7]

73.6.4 ConsiderSmallerPowerMaps

▷ ConsiderSmallerPowerMaps(tbl, approxmap, prime, quick) (function)

ConsiderSmallerPowerMaps replaces the entries of approxmap by improved values, according
to condition 5. listed in the description of PossiblePowerMaps (73.1.2).

ConsiderSmallerPowerMaps returns true if each class admits at least one image af-
ter the checks, otherwise false is returned. If no element orders of tbl are stored
(see OrdersClassRepresentatives (71.9.1)) then true is returned without any tests.

Example
gap> t:= CharacterTable("3.A6");; init:= InitPowerMap(t, 5);

[1, [2, 3], [2, 3], 4, [5, 6], [5, 6], [7, 8], [7, 8],

9, [10, 11], [10, 11], 1, [2, 3], [2, 3], 1, [2, 3],

[2, 3]]

gap> Indeterminateness(init);

4096

gap> ConsiderSmallerPowerMaps(t, init, 5, false);

true

gap> Indeterminateness(init);

256

73.6.5 MinusCharacter

▷ MinusCharacter(character, primepowermap, prime) (function)

Let character be (the list of values of) a class function χ , prime a prime integer p, and
primepowermap a parametrized map that is an approximation of the p-th power map for the charac-
ter table of χ . MinusCharacter returns the parametrized map of values of χ p−, which is defined by
χ p−(g) = (χ(g)p −χ(gp))/p.

Example
gap> tbl:= CharacterTable("S7");; pow:= InitPowerMap(tbl, 2);;

gap> pow;

GAP - Reference Manual 1271

[1, 1, 3, 4, [2, 9, 10], 6, 3, 8, 1, 1, [2, 9, 10], 3, [3, 4],

6, [7, 12]]

gap> chars:= Irr(tbl){ [2 .. 5] };;

gap> List(chars, x -> MinusCharacter(x, pow, 2));

[[0, 0, 0, 0, [0, 1], 0, 0, 0, 0, 0, [0, 1], 0, 0, 0, [0, 1]]

,

[15, -1, 3, 0, [-2, -1, 0], 0, -1, 1, 5, -3, [0, 1, 2], -1, 0,

0, [0, 1]],

[15, -1, 3, 0, [-1, 0, 2], 0, -1, 1, 5, -3, [1, 2, 4], -1, 0,

0, 1],

[190, -2, 1, 1, [0, 2], 0, 1, 1, -10, -10, [0, 2], -1, -1, 0,

[-1, 0]]]

73.6.6 PowerMapsAllowedBySymmetrizations

▷ PowerMapsAllowedBySymmetrizations(tbl, subchars, chars, approxmap, prime,

parameters) (function)

Let tbl be an ordinary character table, prime a prime integer, approxmap a parametrized map
that is an approximation of the prime-th power map of tbl (e.g., a list returned by InitPowerMap

(73.6.1), chars and subchars two lists of (values lists of) characters of tbl , and parameters

a record with components maxlen, minamb, maxamb (three integers), quick (a Boolean), and
contained (a function). Usual values of contained are ContainedCharacters (73.5.17) or
ContainedPossibleCharacters (73.5.15).

PowerMapsAllowedBySymmetrizations replaces the entries of approxmap by improved values,
according to condition 6. listed in the description of PossiblePowerMaps (73.1.2).

More precisely, the strategy used is as follows.
First, for each χ ∈ chars , let minus:= MinusCharacter(χ, approxmap, prime).

• If Indeterminateness(minus)= 1 and parameters.quick = false then the scalar
products of minus with subchars are checked; if not all scalar products are nonnegative inte-
gers then an empty list is returned, otherwise χ is deleted from the list of characters to inspect.

• Otherwise if Indeterminateness(minus) is smaller than parameters.minamb then χ is
deleted from the list of characters.

• If parameters.minamb ≤ Indeterminateness(minus) ≤ parameters.maxamb then
construct the list of contained class functions poss:= parameters.contained(tbl,

subchars, minus) and Parametrized(poss), and improve the approximation of the
power map using UpdateMap (73.5.7).

If this yields no further immediate improvements then we branch. If there is a character from
chars left with less or equal parameters.maxlen possible symmetrizations, compute the union of
power maps allowed by these possibilities. Otherwise we choose a class C such that the possible
symmetrizations of a character in chars differ at C, and compute recursively the union of all allowed
power maps with image at C fixed in the set given by the current approximation of the power map.

Example
gap> tbl:= CharacterTable("U4(3).4");;

gap> pow:= InitPowerMap(tbl, 2);;

GAP - Reference Manual 1272

gap> Congruences(tbl, Irr(tbl), pow, 2);; pow;

[1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, [6, 7], 14, 9, 1, 1, 2, 2,

3, 4, 5, [6, 7], 8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18,

18, [18, 19], [18, 19], 20, 20, 20, 20, 22, 22, 24, 24,

[25, 26], [25, 26], 28, 28, 29, 29]

gap> PowerMapsAllowedBySymmetrizations(tbl, Irr(tbl), Irr(tbl),

> pow, 2, rec(maxlen:= 10, contained:= ContainedPossibleCharacters,

> minamb:= 2, maxamb:= infinity, quick:= false));

[[1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, 6, 14, 9, 1, 1, 2, 2, 3, 4,

5, 6, 8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18, 18, 18,

18, 20, 20, 20, 20, 22, 22, 24, 24, 25, 26, 28, 28, 29, 29]]

73.7 Subroutines for the Construction of Class Fusions

73.7.1 InitFusion

▷ InitFusion(subtbl, tbl) (function)

For two ordinary character tables subtbl and tbl , InitFusion returns a parametrized map that
is a first approximation of the class fusion from subtbl to tbl , using condition 1. listed in the
description of PossibleClassFusions (73.3.6).

If there are classes for which no images are possible, according to this criterion, then fail is
returned.

Example
gap> subtbl:= CharacterTable("2F4(2)");; tbl:= CharacterTable("Ru");;

gap> fus:= InitFusion(subtbl, tbl);

[1, 2, 2, 4, [5, 6], [5, 6, 7, 8], [5, 6, 7, 8], [9, 10],

11, 14, 14, [13, 14, 15], [16, 17], [18, 19], 20, [25, 26],

[25, 26], [5, 6], [5, 6], [5, 6], [5, 6, 7, 8],

[13, 14, 15], [13, 14, 15], [18, 19], [18, 19], [25, 26],

[25, 26], [27, 28, 29], [27, 28, 29]]

73.7.2 CheckPermChar

▷ CheckPermChar(subtbl, tbl, approxmap, permchar) (function)

CheckPermChar replaces the entries of the parametrized map approxmap by improved values,
according to condition 3. listed in the description of PossibleClassFusions (73.3.6).

CheckPermChar returns true if no inconsistency occurred, and false otherwise.
Example

gap> permchar:= Sum(Irr(tbl){ [1, 5, 6] });;

gap> CheckPermChar(subtbl, tbl, fus, permchar); fus;

true

[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [13, 15], 16, [18, 19], 20,

[25, 26], [25, 26], 5, 5, 6, 8, 14, [13, 15], [18, 19],

[18, 19], [25, 26], [25, 26], 27, 27]

GAP - Reference Manual 1273

73.7.3 ConsiderTableAutomorphisms

▷ ConsiderTableAutomorphisms(approxmap, grp) (function)

ConsiderTableAutomorphisms replaces the entries of the parametrized map approxmap by im-
proved values, according to condition 4. listed in the description of PossibleClassFusions (73.3.6).

Afterwards exactly one representative of fusion maps (contained in approxmap) in each orbit
under the action of the permutation group grp is contained in the modified parametrized map.

ConsiderTableAutomorphisms returns the list of positions where approxmap was changed.
Example

gap> ConsiderTableAutomorphisms(fus, AutomorphismsOfTable(tbl));

[16]

gap> fus;

[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [13, 15], 16, [18, 19], 20,

25, [25, 26], 5, 5, 6, 8, 14, [13, 15], [18, 19], [18, 19],

[25, 26], [25, 26], 27, 27]

73.7.4 FusionsAllowedByRestrictions

▷ FusionsAllowedByRestrictions(subtbl, tbl, subchars, chars, approxmap,

parameters) (function)

Let subtbl and tbl be ordinary character tables, subchars and chars two lists of (values lists
of) characters of subtbl and tbl , respectively, approxmap a parametrized map that is an approx-
imation of the class fusion of subtbl in tbl , and parameters a record with the mandatory com-
ponents maxlen, minamb, maxamb (three integers), quick (a Boolean), and contained (a function,
usual values are ContainedCharacters (73.5.17) or ContainedPossibleCharacters (73.5.15));
optional components of the parameters record are testdec (the function that tests the decompos-
ability, the default is NonnegIntScalarProducts (73.5.15)), powermaps (the power paps of subtbl
that shall be used for compatibility checks, the default is the ComputedPowerMaps (73.1.1) value),
subpowermaps (the power paps of tbl that shall be used for compatibility checks, the default is the
ComputedPowerMaps (73.1.1) value).

FusionsAllowedByRestrictions replaces the entries of approxmap by improved values, ac-
cording to condition 5. listed in the description of PossibleClassFusions (73.3.6).

More precisely, the strategy used is as follows.
First, for each χ ∈ chars , let restricted:= CompositionMaps(χ, approxmap).

• If Indeterminateness(restricted)= 1 and parameters.quick = false then the
scalar products of restricted with subchars are checked; if not all scalar products are non-
negative integers then an empty list is returned, otherwise χ is deleted from the list of characters
to inspect.

• Otherwise if Indeterminateness(minus) is smaller than parameters.minamb then χ is
deleted from the list of characters.

• If parameters.minamb ≤ Indeterminateness(restricted) ≤ parameters.maxamb

then construct poss:= parameters.contained(subtbl, subchars, restricted)

and Parametrized(poss), and improve the approximation of the fusion map using
UpdateMap (73.5.7).

GAP - Reference Manual 1274

If this yields no further immediate improvements then we branch. If there is a character from
chars left with less or equal parameters.maxlen possible restrictions, compute the union of fusion
maps allowed by these possibilities. Otherwise we choose a class C such that the possible restrictions
of a character in chars differ at C, and compute recursively the union of all allowed fusion maps with
image at C fixed in the set given by the current approximation of the fusion map.

Example
gap> subtbl:= CharacterTable("U3(3)");; tbl:= CharacterTable("J4");;

gap> fus:= InitFusion(subtbl, tbl);;

gap> TestConsistencyMaps(ComputedPowerMaps(subtbl), fus,

> ComputedPowerMaps(tbl));

true

gap> fus;

[1, 2, 4, 4, [5, 6], [5, 6], [5, 6], 10, [12, 13],

[12, 13], [14, 15, 16], [14, 15, 16], [21, 22], [21, 22]]

gap> ConsiderTableAutomorphisms(fus, AutomorphismsOfTable(tbl));

[9]

gap> fus;

[1, 2, 4, 4, [5, 6], [5, 6], [5, 6], 10, 12, [12, 13],

[14, 15, 16], [14, 15, 16], [21, 22], [21, 22]]

gap> FusionsAllowedByRestrictions(subtbl, tbl, Irr(subtbl),

> Irr(tbl), fus, rec(maxlen:= 10,

> contained:= ContainedPossibleCharacters, minamb:= 2,

> maxamb:= infinity, quick:= false));

[[1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21],

[1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 15, 15, 22, 22],

[1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 16, 16, 22, 22]]

Chapter 74

Unknowns

Sometimes the result of an operation does not allow further computations with it. In many cases, then
an error is signalled, and the computation is stopped.

This is not appropriate for some applications in character theory. For example, if one wants to
induce a character of a group to a supergroup (see InducedClassFunction (72.9.3)) but the class
fusion is only a parametrized map (see Chapter 73), there may be values of the induced character
which are determined by the fusion map, whereas other values are not known.

For this and other situations, GAP provides the data type unknown. An object of this type, further
on called an unknown, may stand for any cyclotomic (see Chapter 18), in particular its family (see 13.1)
is CyclotomicsFamily.

Unknowns are parametrized by positive integers. When a GAP session is started, no unknowns
exist.

The only ways to create unknowns are to call the function Unknown (74.1.1) or a function that calls
it, or to do arithmetical operations with unknowns.

GAP objects containing unknowns will contain fixed unknowns when they are printed to files, i.e.,
function calls Unknown(n) instead of Unknown(). So be careful to read files printed in different GAP
sessions, since there may be the same unknown at different places.

The rest of this chapter contains information about the unknown constructor, the category, and
comparison of and arithmetical operations for unknowns. More is not known about unknowns in
GAP.

74.1 More about Unknowns

74.1.1 Unknown

▷ Unknown([n]) (operation)

Called without argument, Unknown returns a new unknown value, i.e., the first one that is larger
than all unknowns which exist in the current GAP session.

Called with a positive integer n , Unknown returns the n-th unknown; if this did not exist yet, it is
created.

1275

GAP - Reference Manual 1276

74.1.2 LargestUnknown

▷ LargestUnknown (global variable)

LargestUnknown is the largest n that is used in any Unknown(n) in the current GAP session.
This is used in Unknown (74.1.1) which increments this value when asked to make a new unknown.

74.1.3 IsUnknown

▷ IsUnknown(obj) (Category)

is the category of unknowns in GAP.
Example

gap> Unknown(); List([1 .. 20], i -> Unknown());;

Unknown(1)

gap> Unknown(); # note that we have already created 21 unknowns.

Unknown(22)

gap> Unknown(2000); Unknown();

Unknown(2000)

Unknown(2001)

gap> LargestUnknown;

2001

gap> IsUnknown(Unknown); IsUnknown(Unknown());

false

true

74.1.4 Comparison of Unknowns

Unknowns can be compared via = and < with all cyclotomics and with certain other GAP objects
(see 4.13). We have Unknown(n) >= Unknown(m) if and only if n >= m holds, unknowns are
larger than all cyclotomics that are not unknowns.

Example
gap> Unknown() >= Unknown(); Unknown(2) < Unknown(3);

false

true

gap> Unknown() > 3; Unknown() > E(3);

true

true

gap> Unknown() > Z(8); Unknown() > [];

false

false

74.1.5 Arithmetical Operations for Unknowns

The usual arithmetic operations +, -, * and / are defined for addition, subtraction, multiplication
and division of unknowns and cyclotomics. The result will be a new unknown except in one of the
following cases.

Multiplication with zero yields zero, and multiplication with one or addition of zero yields the old
unknown. Note that division by an unknown causes an error, since an unknown might stand for zero.

GAP - Reference Manual 1277

As unknowns are cyclotomics, dense lists of unknowns and other cyclotomics are row vectors and
they can be added and multiplied in the usual way. Consequently, lists of such row vectors of equal
length are (ordinary) matrices (see IsOrdinaryMatrix (24.2.2)).

Chapter 75

Monomiality Questions

This chapter describes functions dealing with the monomiality of finite (solvable) groups and their
characters.

All these functions assume characters to be class function objects as described in Chapter 72, lists
of character values are not allowed.

The usual property tests of GAP that return either true or false are not sufficient for us. When
we ask whether a group character χ has a certain property, such as quasiprimitivity, we usually want
more information than just yes or no. Often we are interested in the reason why a group character χ

was proved to have a certain property, e.g., whether monomiality of χ was proved by the observation
that the underlying group is nilpotent, or whether it was necessary to construct a linear character of
a subgroup from which χ can be induced. In the latter case we also may be interested in this linear
character. Therefore we need test functions that return a record containing such useful information.
For example, the record returned by the function TestQuasiPrimitive (75.3.3) contains the compo-
nent isQuasiPrimitive (which is the known boolean property flag), and additionally the component
comment, a string telling the reason for the value of the isQuasiPrimitive component, and in the
case that the argument χ was not quasiprimitive also the component character, which is an irre-
ducible constituent of a nonhomogeneous restriction of χ to a normal subgroup. Besides these test
functions there are also the known properties, e.g., the property IsQuasiPrimitive (75.3.3) which
will call the attribute TestQuasiPrimitive (75.3.3), and return the value of the isQuasiPrimitive
component of the result.

A few words about how to use the monomiality functions seem to be necessary. Monomiality
questions usually involve computations in many subgroups and factor groups of a given group, and
for these groups often expensive calculations such as that of the character table are necessary. So one
should be careful not to construct the same group over and over again, instead the same group object
should be reused, such that its character table need to be computed only once. For example, suppose
you want to restrict a character to a normal subgroup N that was constructed as a normal closure of
some group elements, and suppose that you have already computed with normal subgroups (by calls
to NormalSubgroups (39.19.9) or MaximalNormalSubgroups (39.19.10)) and their character tables.
Then you should look in the lists of known normal subgroups whether N is contained, and if so you
can use the known character table. A mechanism that supports this for normal subgroups is described
in 71.23.

Also the following hint may be useful in this context. If you know that sooner or later you will
compute the character table of a group G then it may be advisable to compute it as soon as possible.
For example, if you need the normal subgroups of G then they can be computed more efficiently if

1278

GAP - Reference Manual 1279

the character table of G is known, and they can be stored compatibly to the contained G-conjugacy
classes. This correspondence of classes list and normal subgroup can be used very often.

Several examples in this chapter use the symmetric group S4 and the special linear group SL(2,3).
For running the examples, you must first define the groups, for example as follows.

Example
gap> S4:= SymmetricGroup(4);; SetName(S4, "S4");

gap> Sl23:= SL(2, 3);;

75.1 InfoMonomial (Info Class)

75.1.1 InfoMonomial

▷ InfoMonomial (info class)

Most of the functions described in this chapter print some (hopefully useful) information if the
info level of the info class InfoMonomial is at least 1, see 7.4 for details.

75.2 Character Degrees and Derived Length

75.2.1 Alpha

▷ Alpha(G) (attribute)

For a group G , Alpha returns a list whose i-th entry is the maximal derived length of groups
G/ker(χ) for χ ∈ Irr(G) with χ(1) at most the i-th irreducible degree of G .

75.2.2 Delta

▷ Delta(G) (attribute)

For a group G , Delta returns the list [1,al p[2] − al p[1], . . . ,al p[n] − al p[n − 1]], where
al p =Alpha(G) (see Alpha (75.2.1)).

75.2.3 IsBergerCondition

▷ IsBergerCondition(G) (property)

▷ IsBergerCondition(chi) (property)

Called with an irreducible character chi of a group G, IsBergerCondition returns true if chi
satisfies M′ ≤ ker(χ) for every normal subgroup M of G with the property that M ≤ ker(ψ) holds for
all ψ ∈ Irr(G) with ψ(1)< χ(1), and false otherwise.

Called with a group G , IsBergerCondition returns true if all irreducible characters of G satisfy
the inequality above, and false otherwise.

For groups of odd order the result is always true by a theorem of T. R. Berger (see [Ber76, Thm.
2.2]).

In the case that false is returned, InfoMonomial (75.1.1) tells about a degree for which the
inequality is violated.

GAP - Reference Manual 1280

Example
gap> Alpha(Sl23);

[1, 3, 3]

gap> Alpha(S4);

[1, 2, 3]

gap> Delta(Sl23);

[1, 2, 0]

gap> Delta(S4);

[1, 1, 1]

gap> IsBergerCondition(S4);

true

gap> IsBergerCondition(Sl23);

false

gap> List(Irr(Sl23), IsBergerCondition);

[true, true, true, false, false, false, true]

gap> List(Irr(Sl23), Degree);

[1, 1, 1, 2, 2, 2, 3]

75.3 Primitivity of Characters

75.3.1 TestHomogeneous

▷ TestHomogeneous(chi, N) (function)

For a group character chi of a group G and a normal subgroup N of G, TestHomogeneous returns
a record with information whether the restriction of chi to N is homogeneous, i.e., is a multiple of an
irreducible character.

N may be given also as list of conjugacy class positions w.r.t. the character table of G.
The components of the result are

isHomogeneous

true or false,

comment

a string telling a reason for the value of the isHomogeneous component,

character

irreducible constituent of the restriction, only bound if the restriction had to be checked,

multiplicity

multiplicity of the character component in the restriction of chi .
Example

gap> n:= DerivedSubgroup(Sl23);;

gap> chi:= Irr(Sl23)[7];

Character(CharacterTable(SL(2,3)), [3, 0, 0, 3, 0, 0, -1])

gap> TestHomogeneous(chi, n);

rec(character := Character(CharacterTable(Group(

[[[0*Z(3), Z(3)], [Z(3)^0, 0*Z(3)]],

[[Z(3), 0*Z(3)], [0*Z(3), Z(3)]],

[[Z(3)^0, Z(3)], [Z(3), Z(3)]]])),

GAP - Reference Manual 1281

[1, -1, 1, -1, 1]), comment := "restriction checked",

isHomogeneous := false, multiplicity := 1)

gap> chi:= Irr(Sl23)[4];

Character(CharacterTable(SL(2,3)), [2, 1, 1, -2, -1, -1, 0])

gap> cln:= ClassPositionsOfNormalSubgroup(CharacterTable(Sl23), n);

[1, 4, 7]

gap> TestHomogeneous(chi, cln);

rec(comment := "restricts irreducibly", isHomogeneous := true)

75.3.2 IsPrimitiveCharacter

▷ IsPrimitiveCharacter(chi) (property)

For a character chi of a group G, IsPrimitiveCharacter returns true if chi is not induced
from any proper subgroup, and false otherwise. This currently only works for characters of soluble
groups.

Example
gap> IsPrimitiveCharacter(Irr(Sl23)[4]);

true

gap> IsPrimitiveCharacter(Irr(Sl23)[7]);

false

75.3.3 TestQuasiPrimitive

▷ TestQuasiPrimitive(chi) (attribute)

▷ IsQuasiPrimitive(chi) (property)

TestQuasiPrimitive returns a record with information about quasiprimitivity of the group char-
acter chi , i.e., whether chi restricts homogeneously to every normal subgroup of its group. The result
record contains at least the components isQuasiPrimitive (with value either true or false) and
comment (a string telling a reason for the value of the component isQuasiPrimitive). If chi is
not quasiprimitive then there is additionally a component character, with value an irreducible con-
stituent of a nonhomogeneous restriction of chi .

IsQuasiPrimitive returns true or false, depending on whether the character chi is
quasiprimitive.

Note that for solvable groups, quasiprimitivity is the same as primitivity
(see IsPrimitiveCharacter (75.3.2)).

Example
gap> chi:= Irr(Sl23)[4];

Character(CharacterTable(SL(2,3)), [2, 1, 1, -2, -1, -1, 0])

gap> TestQuasiPrimitive(chi);

rec(comment := "all restrictions checked", isQuasiPrimitive := true)

gap> chi:= Irr(Sl23)[7];

Character(CharacterTable(SL(2,3)), [3, 0, 0, 3, 0, 0, -1])

gap> TestQuasiPrimitive(chi);

rec(character := Character(CharacterTable(Group(

[[[0*Z(3), Z(3)], [Z(3)^0, 0*Z(3)]],

[[Z(3), 0*Z(3)], [0*Z(3), Z(3)]],

[[Z(3)^0, Z(3)], [Z(3), Z(3)]]])),

GAP - Reference Manual 1282

[1, -1, 1, -1, 1]), comment := "restriction checked",

isQuasiPrimitive := false)

75.3.4 TestInducedFromNormalSubgroup

▷ TestInducedFromNormalSubgroup(chi[, N]) (function)

▷ IsInducedFromNormalSubgroup(chi) (property)

TestInducedFromNormalSubgroup returns a record with information whether the irreducible
character chi of the group G is induced from a proper normal subgroup of G. If the second argument
N is present, which must be a normal subgroup of G or the list of class positions of a normal subgroup
of G, it is checked whether chi is induced from N .

The result contains always the components isInduced (either true or false) and comment (a
string telling a reason for the value of the component isInduced). In the true case there is a com-
ponent character which contains a character of a maximal normal subgroup from which chi is
induced.

IsInducedFromNormalSubgroup returns true if chi is induced from a proper normal subgroup
of G, and false otherwise.

Example
gap> List(Irr(Sl23), IsInducedFromNormalSubgroup);

[false, false, false, false, false, false, true]

gap> List(Irr(S4){ [1, 3, 4] },

> TestInducedFromNormalSubgroup);

[rec(comment := "linear character", isInduced := false),

rec(character := Character(CharacterTable(Alt([1 .. 4])),

[1, 1, E(3)^2, E(3)]),

comment := "induced from component '.character'",

isInduced := true),

rec(comment := "all maximal normal subgroups checked",

isInduced := false)]

75.4 Testing Monomiality

A character χ of a finite group G is called monomial if χ is induced from a linear character of a sub-
group of G. A finite group G is called monomial (or M-group) if each ordinary irreducible character
of G is monomial.

75.4.1 TestMonomial

▷ TestMonomial(chi) (attribute)

▷ TestMonomial(G) (attribute)

▷ TestMonomial(chi, uselattice) (operation)

▷ TestMonomial(G, uselattice) (operation)

Called with a group character chi of a group G , TestMonomial returns a record containing infor-
mation about monomiality of the group G or the group character chi , respectively.

GAP - Reference Manual 1283

If TestMonomial proves the character chi to be monomial then the result contains components
isMonomial (with value true), comment (a string telling a reason for monomiality), and if it was
necessary to compute a linear character from which chi is induced, also a component character.

If TestMonomial proves chi or G to be nonmonomial then the value of the component
isMonomial is false, and in the case of G a nonmonomial character is the value of the component
character if it had been necessary to compute it.

A Boolean can be entered as the second argument uselattice ; if the value is true then the
subgroup lattice of the underlying group is used if necessary, if the value is false then the subgroup
lattice is used only for groups of order at most TestMonomialUseLattice (75.4.2). The default value
of uselattice is false.

For a group whose lattice must not be used, it may happen that TestMonomial cannot prove or
disprove monomiality; then the result record contains the component isMonomial with value "?".
This case occurs in the call for a character chi if and only if chi is not induced from the inertia
subgroup of a component of any reducible restriction to a normal subgroup. It can happen that chi is
monomial in this situation. For a group, this case occurs if no irreducible character can be proved to
be nonmonomial, and if no decision is possible for at least one irreducible character.

Example
gap> TestMonomial(S4);

rec(comment := "abelian by supersolvable group", isMonomial := true)

gap> TestMonomial(Sl23);

rec(comment := "list Delta(G) contains entry > 1",

isMonomial := false)

75.4.2 TestMonomialUseLattice

▷ TestMonomialUseLattice (global variable)

This global variable controls for which groups the operation TestMonomial (75.4.1) may compute
the subgroup lattice. The value can be set to a positive integer or infinity (18.2.1), the default is
1000.

75.4.3 IsMonomialNumber

▷ IsMonomialNumber(n) (property)

For a positive integer n , IsMonomialNumber returns true if every solvable group of order n is
monomial, and false otherwise. One can also use IsMonomial instead.

Let νp(n) denote the multiplicity of the prime p as factor of n, and ord(p,q) the multiplicative
order of p (mod q).

Then there exists a solvable nonmonomial group of order n if and only if one of the following
conditions is satisfied.

1. ν2(n)≥ 2 and there is a p such that νp(n)≥ 3 and p ≡−1 (mod 4),

2. ν2(n)≥ 3 and there is a p such that νp(n)≥ 3 and p ≡ 1 (mod 4),

3. there are odd prime divisors p and q of n such that ord(p,q) is even and ord(p,q) < νp(n)
(especially νp(n)≥ 3),

GAP - Reference Manual 1284

4. there is a prime divisor q of n such that ν2(n)≥ 2ord(2,q)+2 (especially ν2(n)≥ 4),

5. ν2(n) ≥ 2 and there is a p such that p ≡ 1 (mod 4), ord(p,q) is odd, and 2ord(p,q) < νp(n)
(especially νp(n)≥ 3).

These five possibilities correspond to the five types of solvable minimal nonmonomial groups
(see MinimalNonmonomialGroup (75.5.2)) that can occur as subgroups and factor groups of groups
of order n .

Example
gap> Filtered([1 .. 111], x -> not IsMonomial(x));

[24, 48, 72, 96, 108]

75.4.4 TestMonomialQuick

▷ TestMonomialQuick(chi) (attribute)

▷ TestMonomialQuick(G) (attribute)

TestMonomialQuick does some cheap tests whether the irreducible character chi or the group G ,
respectively, is monomial. Here “cheap” means in particular that no computations of character tables
are involved, and it is not checked whether chi is a character and irreducible. The return value is a
record with components

isMonomial

either true or false or the string "?", depending on whether (non)monomiality could be
proved, and

comment

a string telling the reason for the value of the isMonomial component.

A group G is proved to be monomial by TestMonomialQuick if G is nilpotent or Sylow abelian
by supersolvable, or if G is solvable and its order is not divisible by the third power of a prime,
Nonsolvable groups are proved to be nonmonomial by TestMonomialQuick.

An irreducible character chi is proved to be monomial if it is linear, or if its codegree is a prime
power, or if its group knows to be monomial, or if the factor group modulo the kernel can be proved
to be monomial by TestMonomialQuick.

Example
gap> TestMonomialQuick(Irr(S4)[3]);

rec(comment := "whole group is monomial", isMonomial := true)

gap> TestMonomialQuick(S4);

rec(comment := "abelian by supersolvable group", isMonomial := true)

gap> TestMonomialQuick(Sl23);

rec(comment := "no decision by cheap tests", isMonomial := "?")

75.4.5 TestSubnormallyMonomial

▷ TestSubnormallyMonomial(G) (attribute)

▷ TestSubnormallyMonomial(chi) (attribute)

▷ IsSubnormallyMonomial(G) (property)

GAP - Reference Manual 1285

▷ IsSubnormallyMonomial(chi) (property)

An irreducible character of the group G is called subnormally monomial (SM for short) if it is
induced from a linear character of a subnormal subgroup of G. A group G is called SM if all its
irreducible characters are SM.

TestSubnormallyMonomial returns a record with information whether the group G or the irre-
ducible character chi of G is SM.

The result has the components isSubnormallyMonomial (either true or false) and comment (a
string telling a reason for the value of the component isSubnormallyMonomial); in the case that the
isSubnormallyMonomial component has value false there is also a component character, with
value an irreducible character of G that is not SM.

IsSubnormallyMonomial returns true if the group G or the group character chi is subnormally
monomial, and false otherwise.

Example
gap> TestSubnormallyMonomial(S4);

rec(character := Character(CharacterTable(S4), [3, -1, -1, 0, 1

]), comment := "found non-SM character",

isSubnormallyMonomial := false)

gap> TestSubnormallyMonomial(Irr(S4)[4]);

rec(comment := "all subnormal subgroups checked",

isSubnormallyMonomial := false)

gap> TestSubnormallyMonomial(DerivedSubgroup(S4));

rec(comment := "all irreducibles checked",

isSubnormallyMonomial := true)

75.4.6 TestRelativelySM

▷ TestRelativelySM(G) (attribute)

▷ TestRelativelySM(chi) (attribute)

▷ TestRelativelySM(G, N) (operation)

▷ TestRelativelySM(chi, N) (operation)

▷ IsRelativelySM(G) (property)

▷ IsRelativelySM(chi) (property)

In the first two cases, TestRelativelySM returns a record with information whether the argument,
which must be a SM group G or an irreducible character chi of a SM group G, is relatively SM with
respect to every normal subgroup of G .

In the second two cases, a normal subgroup N of G is the second argument. Here
TestRelativelySM returns a record with information whether the first argument is relatively SM
with respect to N , i.e, whether there is a subnormal subgroup H of G that contains N such that the
character chi resp. every irreducible character of G is induced from a character ψ of H such that the
restriction of ψ to N is irreducible.

The result record has the components isRelativelySM (with value either true or false) and
comment (a string that describes a reason). If the argument is a group G that is not relatively SM with
respect to a normal subgroup then additionally the component character is bound, with value a not
relatively SM character of such a normal subgroup.

IsRelativelySM returns true if the SM group G or the irreducible character chi of the SM
group G is relatively SM with respect to every normal subgroup of G , and false otherwise.

GAP - Reference Manual 1286

Note that it is not checked whether G is SM.
Example

gap> IsSubnormallyMonomial(DerivedSubgroup(S4));

true

gap> TestRelativelySM(DerivedSubgroup(S4));

rec(

comment := "normal subgroups are abelian or have nilpotent factor gr\

oup", isRelativelySM := true)

75.5 Minimal Nonmonomial Groups

75.5.1 IsMinimalNonmonomial

▷ IsMinimalNonmonomial(G) (property)

A group G is called minimal nonmonomial if it is nonmonomial, and all proper subgroups and
factor groups are monomial.

Example
gap> IsMinimalNonmonomial(Sl23); IsMinimalNonmonomial(S4);

true

false

75.5.2 MinimalNonmonomialGroup

▷ MinimalNonmonomialGroup(p, factsize) (function)

is a solvable minimal nonmonomial group described by the parameters factsize and p if such a
group exists, and false otherwise.

Suppose that the required group K exists. Then factsize is the size of the Fitting factor K/F(K),
and this value is 4, 8, an odd prime, twice an odd prime, or four times an odd prime. In the case that
factsize is twice an odd prime, the centre Z(K) is cyclic of order 2p+1. In all other cases p is the
(unique) prime that divides the order of F(K).

The solvable minimal nonmonomial groups were classified by van der Waall, see [vdW76].
Example

gap> MinimalNonmonomialGroup(2, 3); # the group SL(2,3)

2^(1+2):3

gap> MinimalNonmonomialGroup(3, 4);

3^(1+2):4

gap> MinimalNonmonomialGroup(5, 8);

5^(1+2):Q8

gap> MinimalNonmonomialGroup(13, 12);

13^(1+2):2.D6

gap> MinimalNonmonomialGroup(1, 14);

2^(1+6):D14

gap> MinimalNonmonomialGroup(2, 14);

(2^(1+6)Y4):D14

Chapter 76

Using and Developing GAP Packages

The functionality of GAP can be extended by loading GAP packages. The GAP distribution already
contains all currently redistributed GAP packages in the gap-4.14.0-beta1/pkg directory.

GAP packages are written by (groups of) GAP users who may not necessarily be members of the
GAP developer team. The responsibility and copyright of a GAP package remains with the original
author(s).

GAP packages have their own documentation which is smoothly integrated into the GAP help
system. (When GAP is started, LoadPackageDocumentation is called for all packages.)

All GAP users who develop new code are invited to share the results of their efforts with other
GAP users by making the code and its documentation available in form of a package. Guidance on
how to do this is available from the GAP website (https://www.gap-system.org) and in the GAP
package Example (see https://www.gap-system.org/Packages/example.html).

The GAP development team will assist in making any new package suitable for distribution with
GAP. It is also possible to submit a package to a formal refereeing process.

In this chapter we first describe how to use existing packages, and then provide guidelines for
writing a GAP package.

76.1 Installing a GAP Package

Before a package can be used it must be installed. A standard distribution of GAP already contains
all the packages currently redistributed with GAP. This set of packages has been checked for compat-
ibility with the system and with each other during release preparation. Most of the packages can be
used immediately, but some of them may require further installation steps (see below).

Also, since GAP packages are released independently of the main GAP system, it may sometimes
be useful to upgrade or install new packages between upgrades of your GAP installation, e.g. if a new
version of a package adds new capabilities or bug fixes that you need.

A package consists of a collection of files within a single directory that must be a subdirectory of
the pkg directory in one of the GAP root directories (see 9.2). If you don’t have access to the pkg

directory in your main GAP installation you can add private root directories as explained in section
9.2.

Whenever you download or clone an archive of a GAP package, it will contain a README file (or
README.md etc.) that explains how it should be installed. Some packages just consist of GAP code
and the installation is done by unpacking the archive in one of the places described above. There are
also packages that need further installation steps, such as compilation or installing additional software

1287

https://www.gap-system.org
https://www.gap-system.org/Packages/example.html

GAP - Reference Manual 1288

to satisfy their dependencies. If there are some external programs which have to be compiled, this is
often done by executing ./configure; make inside the unpacked package directory (but check the
individual README files).

Most of the packages that require compilation can be compiled in a single step by changing to the
pkg directory of your GAP installation and calling the ../bin/BuildPackages.sh script.

Note that if you use Windows you may not be able to use some or all external binaries.

76.2 Loading a GAP Package

If a package is not already loaded, it may be loaded using the function LoadPackage (76.2.1).
Some GAP packages are prepared for automatic loading, that is they will be loaded automatically

when GAP starts (see 76.2.2).

76.2.1 LoadPackage

▷ LoadPackage(name[, version][, banner]) (function)

loads the GAP package with name name .
As an example, the following loads the GAP package SONATA (case insensitive) which provides

methods for the construction and analysis of finite nearrings:
Example

gap> LoadPackage("sonata");

... some more lines with package banner(s) ...

true

The package name is case insensitive and may be appropriately abbreviated. At the time
of writing, for example, LoadPackage("semi"); will load the Semigroups package, and
LoadPackage("js"); will load the json package. If the abbreviation cannot be uniquely completed,
a list of available completions will be offered, and LoadPackage returns fail. Thus the names of all
installed packages can be shown by calling LoadPackage("");.

When the optional argument string version is present, the package will only be loaded in a
version number equal to or greater than version (see CompareVersionNumbers (76.3.9)). If the
first character of version is = then only that version will be loaded.

LoadPackage will return true if the package has been successfully loaded, and will return fail

if the package could not be loaded. The latter may be the case if the package is not installed,
if necessary binaries have not been compiled, or if the version number of the available version is
too small. If the package cannot be loaded, TestPackageAvailability (76.3.2) can be used to
find the reasons. Also, DisplayPackageLoadingLog (76.2.5) can be used to find out more about
the failure. To see the problems directly, one can change the verbosity using the user preference
InfoPackageLoadingLevel, see InfoPackageLoading (76.2.5) for details.

If the package name has already been loaded in a version number equal to or greater than version ,
LoadPackage returns true without doing anything else.

If the optional argument banner is present then it must be either true or false; in the latter case,
the effect is that no package banner is printed.

After a package has been loaded, all its code becomes available to use with the rest of the GAP
library.

GAP - Reference Manual 1289

76.2.2 Automatic loading of GAP packages

When GAP is started some packages are loaded automatically, and these belong to two categories. The
first are those packages which are needed to start GAP (at the present time, the only such package is
GAPDoc). Their list is contained in GAPInfo.Dependencies.NeededOtherPackages. The second
are packages which are loaded during GAP startup by default. The latter list may be obtained by call-
ing UserPreference("PackagesToLoad") and is customisable as described in Section (Reference:
Configuring User preferences).

While GAP will not start if any of the packages from the former group is missing, loading of the
packages from the latter group may be suppressed by using the -A command line option (see 3.1).

If for some reason you don’t want certain packages to be automatically loaded, GAP provides
three levels for disabling autoloading.

The autoloading of specific packages can be overwritten for the whole GAP installation by putting
a file NOAUTO into a pkg directory that contains lines with the names of packages which should not be
automatically loaded.

Furthermore, individual users can disable the autoloading of specific packages by putting the
names of these packages into the list that is assigned to the user preference “ExcludeFromAutoload”,
for example in the user’s gap.ini file (see 3.2.1).

Using the -A command line option when starting GAP (see 3.1), automatic loading of packages is
switched off for this GAP session.

In any of the above three cases, the packages listed in
GAPInfo.Dependencies.NeededOtherPackages are still loaded automatically, and an error
is signalled if any of these packages is unavailable.

See SetPackagePath (76.2.3) for a way to force the loading of a prescribed package version. See
also ExtendRootDirectories (76.2.4) for a method of adding directories containing packages after
GAP has been started.

76.2.3 SetPackagePath

▷ SetPackagePath(pkgname, pkgpath) (function)

This function can be used to force GAP to load a particular version of a package, even though
newer versions of the package are available.

Let pkgname and pkgpath be strings denoting the name of a GAP package and the path to a
directory where a version of this package can be found (i. e., calling Directory (9.3.2) with the
argument pkgpath will yield a directory that contains the file PackageInfo.g of the package).

If the package pkgname is already loaded with an installation path different from pkgpath then
SetPackagePath signals an error. If the package pkgname is not yet loaded then SetPackagePath

erases the information about available versions of the package pkgname , and stores the record that
is contained in the PackageInfo.g file at pkgpath instead, such that only the version installed at
pkgpath can be loaded with LoadPackage (76.2.1).

76.2.4 ExtendRootDirectories

▷ ExtendRootDirectories(paths) (function)

GAP - Reference Manual 1290

Let paths be a list of strings that denote paths to intended GAP root directories (see 9.2). The
function ExtendRootDirectories adds these paths to the global list GAPInfo.RootPaths and calls
the initialization of available GAP packages, such that later calls to LoadPackage (76.2.1) will find
the GAP packages that are contained in pkg subdirectories of the directories given by paths .

Note that the purpose of this function is to make GAP packages in the given directories avail-
able. It cannot be used to influence the start of GAP, because the GAP library is loaded before
ExtendRootDirectories can be called (and because GAPInfo.RootPaths is not used for reading
the GAP library).

76.2.5 DisplayPackageLoadingLog

▷ DisplayPackageLoadingLog([severity]) (function)

▷ InfoPackageLoading (info class)

▷ PACKAGE_ERROR (global variable)

▷ PACKAGE_WARNING (global variable)

▷ PACKAGE_INFO (global variable)

▷ PACKAGE_DEBUG (global variable)

▷ LogPackageLoadingMessage(severity, message[, name]) (function)

Whenever GAP considers loading a package, log messages are collected in a global list. The mes-
sages for the current GAP session can be displayed with DisplayPackageLoadingLog. To each
message, a “severity” is assigned, which is one of PACKAGE_ERROR (76.2.5), PACKAGE_WARNING

(76.2.5), PACKAGE_INFO (76.2.5), PACKAGE_DEBUG (76.2.5), in increasing order. The function
DisplayPackageLoadingLog shows only the messages whose severity is at most severity , the
default for severity is PACKAGE_WARNING (76.2.5).

The intended meaning of the severity levels is as follows.

PACKAGE_ERROR
should be used whenever GAP will run into an error during package loading, where the reason
of the error shall be documented in the global list.

PACKAGE_WARNING
should be used whenever GAP has detected a reason why a package cannot be loaded, and
where the message describes how to solve this problem, for example if a package binary is
missing.

PACKAGE_INFO
should be used whenever GAP has detected a reason why a package cannot be loaded, and
where it is not clear how to solve this problem, for example if the package is not compatible
with other installed packages.

PACKAGE_DEBUG
should be used for other messages reporting what GAP does when it loads packages (checking
dependencies, reading files, etc.). One purpose is to record in which order packages have been
considered for loading or have actually been loaded.

The log messages are created either by the functions of GAP’s package loading mechanism
or in the code of your package, for example in the AvailabilityTest function of the package’s

GAP - Reference Manual 1291

PackageInfo.g file (see 76.3.15), using LogPackageLoadingMessage. The arguments of this func-
tion are severity (which must be one of the above severity levels), message (which must be ei-
ther a string or a list of strings), and optionally name (which must be the name of the package
to which the message belongs). The argument name is not needed if the function is called from
a call of a package’s AvailabilityTest function (see 76.3.15) or is called from a package file
that is read from init.g or read.g; in these cases, the name of the current package (stored in
the record GAPInfo.PackageCurrent) is taken. According to the above list, the severity argu-
ment of LogPackageLoadingMessage calls in a package’s AvailabilityTest function is either
PACKAGE_WARNING (76.2.5) or PACKAGE_INFO (76.2.5).

If you want to see the log messages already during the package loading process, you
can set the level of the info class InfoPackageLoading to one of the severity values listed
above; afterwards the messages with at most this severity are shown immediately when
they arise. In order to make this work already for autoloaded packages, you can call
SetUserPreference("InfoPackageLoadingLevel", lev); to set the desired severity level lev .
This can for example be done in your gap.ini file, see Section 3.2.1.

76.3 Functions for GAP Packages

The following functions are mainly used in files contained in a package and not by users of a package.
They are needed to organise reading package files into GAP in the right order, performing maintenance
tasks like building documentation and running package tests, checking package dependencies, etc.
You will find further information about their use in Section 76.4 and subsequent sections.

76.3.1 ReadPackage

▷ ReadPackage([name,]file) (function)

▷ RereadPackage([name,]file) (function)

Called with two strings name and file , ReadPackage reads the file file of the GAP package
name , where file is given as a path relative to the home directory of name . Note that file is read in
the namespace of the package, see Section 4.10 for details.

If only one argument file is given, this should be the path of a file relative to the pkg subdirectory
of GAP root paths (see 9.2). Note that in this case, the package name is assumed to be equal to the
first part of file , so the one argument form is not recommended.

The absolute path is determined as follows. If the package in question has already been loaded
then the file in the directory of the loaded version is read. If the package is available but not yet loaded
then the directory given by TestPackageAvailability (76.3.2) is used, without prescribed version
number. (Note that the ReadPackage call does not force the package to be loaded.)

If the file is readable then true is returned, otherwise a warning is displayed (for ReadPackage)
or false is returned (for RereadPackage).

Each of name and file should be a string. The name argument is case insensitive.
RereadPackage does the same as ReadPackage, except that also read-only global variables are

overwritten (cf. Reread (9.7.10)).

GAP - Reference Manual 1292

76.3.2 TestPackageAvailability

▷ TestPackageAvailability(name[, version][, checkall]) (function)

For strings name and version , this function tests whether the GAP package name is available for
loading in a version that is at least version , or equal to version if the first character of version is
= (see CompareVersionNumbers (76.3.9) for further details about version numbers).

The result is true if the package is already loaded, fail if it is not available, and the string
denoting the GAP root path where the package resides if it is available, but not yet loaded. So the
package name is available if the result of TestPackageAvailability is not equal to fail.

If the optional argument checkall is true then all dependencies are checked, even if some have
turned out to be not satisfied. This is useful when one is interested in the reasons why the pack-
age name cannot be loaded. In this situation, calling first TestPackageAvailability and then
DisplayPackageLoadingLog (76.2.5) with argument PACKAGE_INFO (76.2.5) will give an overview
of these reasons.

You should not call TestPackageAvailability in the test function of a package (the value of
the component AvailabilityTest in the PackageInfo.g file of the package, see 76.3.15), because
TestPackageAvailability calls this test function.

The argument name is case insensitive.

76.3.3 IsPackageLoaded

▷ IsPackageLoaded(name[, version]) (function)

For strings name and version , this function tests whether the GAP package name is already
loaded in a version that is at least version , or equal to version if the first character of version is
= (see CompareVersionNumbers (76.3.9) for further details about version numbers).

The result is true if the package is already loaded, false otherwise.

76.3.4 IsPackageMarkedForLoading

▷ IsPackageMarkedForLoading(name, version) (function)

This function can be used in the code of a package A for testing whether the package name in
version version will be loaded after the LoadPackage (76.2.1) call for the package A has been exe-
cuted. This means that the package name had been loaded before, or has been (directly or indirectly)
requested as a needed or suggested package of the package A or of a package whose loading requested
that A was loaded.

76.3.5 TestPackage

▷ TestPackage(pkgname) (function)

It is recommended that a GAP package specifies a standard test in its PackageInfo.g file. If
pkgname is a string with the name of a GAP package, then TestPackage(pkgname) will check if
this package is loadable and has the standard test, and will run this test in the current GAP session.

The output of the test depends on the particular package, and it also may depend on the current
GAP session (loaded packages, state of the random sources, defined global variables etc.).

GAP - Reference Manual 1293

76.3.6 InstalledPackageVersion

▷ InstalledPackageVersion(name) (function)

If the GAP package with name name has already been loaded then InstalledPackageVersion

returns the string denoting the version number of this version of the package. If the package is available
but has not yet been loaded then the version number string for that version of the package that currently
would be loaded. (Note that loading another package might force loading another version of the
package name , so the result of InstalledPackageVersion will be different afterwards.) If the
package is not available then fail is returned.

The argument name is case insensitive.

76.3.7 DirectoriesPackageLibrary

▷ DirectoriesPackageLibrary(name[, path]) (function)

takes the string name , a name of a GAP package, and returns a list that is either empty or contains
one directory object dir that describes the place where the library functions of this GAP package
should be located.

In the latter case, dir is the path subdirectory of a directory where the package name is installed,
where the default for path is "lib", and where the package directory belongs to the version of name
that is already loaded or is currently going to be loaded or would be the first version GAP would try to
load if no other version is explicitly prescribed. (If the package name is not yet loaded then we cannot
guarantee that the directory belongs to a version that really can be loaded.)

Note that DirectoriesPackageLibrary is likely to be called in the AvailabilityTest func-
tion in the package’s PackageInfo.g file (see 76.3.15).

As an example, the following returns a directory object for the library functions of the GAP
package Example:

Example
gap> DirectoriesPackageLibrary("Example", "gap");

[dir("/home/werner/gap/4.0/pkg/example/gap/")]

Observe that we needed the second argument "gap" here, since Example’s library functions are
in the subdirectory gap rather than lib.

In order to find a subdirectory deeper than one level in a package directory, the second argument is
again necessary whether or not the desired subdirectory relative to the package’s directory begins with
lib. The directories in path should be separated by / (even on systems, like Windows, which use \

as the directory separator). For example, suppose there is a package somepackage with a subdirectory
m11 in the directory data, then we might expect the following:

Example
gap> DirectoriesPackageLibrary("somepackage", "data/m11");

[dir("/home/werner/gap/4.0/pkg/somepackage/data/m11")]

76.3.8 DirectoriesPackagePrograms

▷ DirectoriesPackagePrograms(name) (function)

GAP - Reference Manual 1294

returns a list that is either empty or contains one directory object dir that describes the place
where external binaries of the GAP package name should be located.

In the latter case, dir is the bin/architecture subdirectory of a directory where the package
name is installed, where architecture is the architecture on which GAP has been compiled (this
can be accessed as GAPInfo.Architecture, see GAPInfo (3.5.1)), and where the package directory
belongs to the version of name that is already loaded or is currently going to be loaded or would be
the first version GAP would try to load if no other version is explicitly prescribed. (If the package
name is not yet loaded then we cannot guarantee that the directory belongs to a version that really can
be loaded.)

Note that DirectoriesPackagePrograms is likely to be called in the AvailabilityTest func-
tion in the package’s PackageInfo.g file (see 76.3.15).

Example
gap> DirectoriesPackagePrograms("nq");

[dir("/home/gap/4.0/pkg/nq/bin/x86_64-pc-linux-gnu-default64-kv3/")]

76.3.9 CompareVersionNumbers

▷ CompareVersionNumbers(supplied, required[, "equal"]) (function)

A version number is a string which contains nonnegative integers separated by non-numeric char-
acters. Examples of valid version numbers are for example:

Example
"1.0" "3.141.59" "2-7-8.3" "5 release 2 patchlevel 666"

CompareVersionNumbers compares two version numbers, given as strings. They are split at
non-digit characters, the resulting integer lists are compared lexicographically. The routine tests
whether supplied is at least as large as required , and returns true or false accordingly. A
version number ending in dev is considered to be infinite.

76.3.10 DeclareAutoreadableVariables

▷ DeclareAutoreadableVariables(pkgname, filename, varlist) (function)

Let pkgname be the name of a package, let filename be the name of a file relative to the home
directory of this package, and let varlist be a list of strings that are the names of global variables
which get bound when the file is read. DeclareAutoreadableVariables notifies the names in
varlist such that the first attempt to access one of the variables causes the file to be read.

76.3.11 Kernel modules in GAP packages

If the package has a kernel module, then it can be compiled using the gac script. A kernel module is
implemented in C and follows certain conventions to comply with the GAP kernel interface, which
we plan to document later. In the meantime, we advice to get in touch with GAP developers if you
plan to develop such a package.

To use the gac script to produce dynamically loadable modules, call it with the -d option, for
example:

GAP - Reference Manual 1295

Example
$ gap4/gac -d test.c

This will produce a file test.so, which then can be loaded into GAP with
LoadKernelExtension (76.3.13). If the kernel module is required for the package to work, then its
PackageInfo.g should define a AvailabilityTest which calls IsKernelExtensionAvailable

(76.3.12), see 76.15.2 for details.
Note that before GAP 4.12, LoadDynamicModule (76.3.14) was used for this. It is still available

and in fact LoadKernelExtension (76.3.13) call it; but the latter provides a higher level abstraction
and is more convenient to use.

76.3.12 IsKernelExtensionAvailable

▷ IsKernelExtensionAvailable(pkgname[, modname]) (function)

For use by packages: Search for a loadable kernel module inside package pkgname with name
modname and return true if found, otherwise false. If modname is omitted, then pkgname is used
instead. Note that package names are case insensitive, but modname is not.

This function first appeared in GAP 4.12. It is typically called in the AvailabilityTest function
of a package (see 76.15.2).

Example
gap> IsKernelExtensionAvailable("myPackageWithKernelExtension");

true

76.3.13 LoadKernelExtension

▷ LoadKernelExtension(pkgname[, modname]) (function)

For use by packages: Search for a loadable kernel module inside package pkgname with name
modname , and load it if found. If modname is omitted, then pkgname is used instead. Note that
package names are case insensitive, but modname is not.

This function first appeared in GAP 4.12. It is typically called in the init.g file of a package.
Previously, packages with a kernel module typically used code like this:

path := Filename(DirectoriesPackagePrograms("SomePackage"), "SomePackage.so");

if path <> fail then

LoadDynamicModule(path);

fi;

That can now be replaced by the following, which also produces more helpful error messages for the
user:

LoadKernelExtension("SomePackage");

For packages where the name of the kernel extension is not identical to that of the package, you can
either rename the kernel extension to have a matching name (recommended if you only have a single
kernel extension in your package, which is how we recommend to set up things anyway), or else use
the two argument version:

Example
LoadKernelExtension("SomePackage", "kext"); # this will look for kext.so

GAP - Reference Manual 1296

76.3.14 LoadDynamicModule

▷ LoadDynamicModule(filename) (function)

To load a compiled file, the command LoadDynamicModule is used. This command loads
filename as module.

Example
gap> LoadDynamicModule("./test.so");

On some operating systems, once you have loaded a dynamic module with a certain filename,
loading another with the same filename will have no effect, even if the file on disk has changed.

76.3.15 The PackageInfo.g File

Each package has the file PackageInfo.g which contains meta-information about the package (pack-
age name, version, author(s), relations to other packages, homepage, download archives, etc.). This
file is used by the package loading mechanism, by the GAP webpages about packages, and also for
the redistribution of a package with GAP.

A PackageInfo.g file contains a call to the function SetPackageInfo, with argument a record.
The following components of this record are mandatory.

PackageName

a nonempty string denoting the name of the package,

Subtitle

a string that describes the package’s contents, may be used by a default banner or on a web page,
should fit on one line,

Version

a nonempty string that does not start with =, denoting the version number of the package (see
Section 76.18),

Date

a string of the form yyyy-mm-dd denoting the release date of the current version of the package
(a date since 1999, when GAP 4 appeared),

License

a nonempty string containing an SPDX ID (see Section 76.22),

ArchiveURL

a string started with http://, https://, or ftp://, denoting an URL from where the cur-
rent package archive can be downloaded, but without the suffix describing the format (see the
ArchiveFormats component),

ArchiveFormats

a string that lists the supported formats (among .tar.gz, .tar.bz2, -win.zip), separated by
whitespace or commas,

README_URL

a string started with http://, https://, or ftp://, denoting an URL from where the current
README.md or README file of the package can be downloaded,

GAP - Reference Manual 1297

PackageInfoURL

a string started with http://, https://, or ftp://, denoting an URL from where the current
PackageInfo.g file of the package can be downloaded,

AbstractHTML

a string that describes the package’s contents in a few lines, in HTML format; this text will be
displayed on the package overview web page of GAP,

PackageWWWHome

a string started with http://, https://, or ftp://, denoting the address of the package’s
home page,

PackageDoc

a record or a list of records; each record describes a book of the package documentation, with
the following components

BookName

a string, the name of the book,

LongTitle

a string shown by ?books,

SixFile

a string denoting a relative path to the manual.six file of the book,

HTMLStart

a string denoting a relative path to the start file of the HTML version of the book,

PDFFile

a string denoting a relative path to the .pdf file of the book,

ArchiveURLSubset

a list of strings denoting relative paths to those files and directories from the archive that
are needed for the online manual; typically, ["doc"] suffices,

The following components of the record are optional.

TextFiles or BinaryFiles or TextBinaryFilesPatterns
a list of strings that specify which files in the archive are text files or binary files (at most one of
the three components can be available, each string in TextBinaryFilesPatterns must start
with T for text files and by B for binary files),

Persons

a list of records, each with the mandatory components

LastName

a string,

at least one of IsAuthor or IsMaintainer
true or false,

and optional components

FirstNames

a string (was mandatory before GAP 4.14),

GAP - Reference Manual 1298

PostalAddress

a string,

Place

a string,

Institution

a string,

If the IsMaintainer value is true then also one of the following components is mandatory.

Email

a string,

WWWHome

a string denoting an URL, or

PostalAddress

a string.

SourceRepository

a record with the components Type (the version control system, e.g. "git" or "hg") and URL

(the URL of the repository), both strings,

IssueTrackerURL

a string started with http://, https://, or ftp://,

SupportEmail

a string denoting an e-mail address,

Dependencies

a record describing the dependencies of the package (see Section 76.11), with the following
optional components

GAP a string denoting the needed version of GAP,

NeededOtherPackages

a list of pairs [pkgname, pkgversion] of strings, denoting the other packages which
must be available if the current package shall be loadable,

SuggestedOtherPackages

a list of pairs [pkgname, pkgversion] of strings, denoting the other packages which
shall be loaded together with the current package if they are available,

ExternalConditions

a list of strings or of pairs [text, URL] of strings, denoting conditions on external
programs,

AvailabilityTest

a function with no arguments that returns true if the package is available, and false otherwise
(can be ReturnTrue (5.4.1) if the package consists only of GAP code; this is also the default
value),

BannerString or BannerFunction
a string or a function, respectively, that is used to create a package banner different from the
default banner (see Section 76.17),

GAP - Reference Manual 1299

TestFile

a string denoting a relative path to a readable file which contains tests of the package’s function-
ality (see Section 76.19),

Keywords

a list of strings that are keywords related to the topic of the package,

Extensions

a list of records that describe conditional extensions of the package (see Section 76.12).

Other components of the record can be supported; for example, AutoDoc is used by the AutoDoc
package if applicable.

76.3.16 ValidatePackageInfo

▷ ValidatePackageInfo(info) (function)

This function is intended to support package authors who create or modify PackageInfo.g files.
(It is not called when these files are read during the startup of GAP or when packages are actually
loaded.)

The argument info must be either a record as is contained in a PackageInfo.g file or a string
which describes the path to such a file. The result is true if the record or the contents of the file,
respectively, has correct format, and false otherwise; in the latter case information about the incorrect
components is printed. These diagnostic messages can be suppressed by setting the global option
quiet to true.

Note that the components used for package loading are checked as well as the components that
are needed for composing the package overview web page or for updating the package archives.

If info is a string then ValidatePackageInfo checks additionally whether those package files
exist that are mentioned in the file info, for example the manual.six file of the package documenta-
tion.

76.3.17 ShowPackageVariables

▷ ShowPackageVariables(pkgname[, version][, arec]) (function)

▷ PackageVariablesInfo(pkgname, version) (function)

Let pkgname be the name of a GAP package. If the package pkgname is available but not yet
loaded then ShowPackageVariables prints a list of global variables that become bound and of meth-
ods that become installed when the package is loaded. (For that, GAP actually loads the package.)

If a version number version is given (see Section (Reference: Version Numbers)) then this
version of the package is considered.

An error message is printed if (the given version of) the package is not available or already loaded.
Information is printed about new and redeclared global variables, and about names of global vari-

ables introduced in the package that differ from existing globals only by case; note that the GAP help
system is case insensitive, so it is difficult to document identifiers that differ only by case.

Info lines for undocumented variables are marked with an asterisk *.
The following entries are omitted from the list: default setter methods for attributes and properties

that are declared in the package, and Setattr and Hasattr type variables where attr is an attribute
or property.

GAP - Reference Manual 1300

The output can be customized using the optional record arec , the following components of this
record are supported.

show

a list of strings describing those kinds of variables which shall be shown, such as "new global

functions"; the default are all kinds that appear in the package,

showDocumented

true (the default) if documented variables shall be shown, and false otherwise,

showUndocumented

true (the default) if undocumented variables shall be shown, and false otherwise,

showPrivate

true (the default) if variables from the package’s name space (see Section 4.10) shall be shown,
and false otherwise,

Display

a function that takes a string and shows it on the screen; the default is Print (6.3.4), another
useful value is Pager (2.4.1).

An interactive variant of ShowPackageVariables is the function BrowsePackageVariables

(Browse: BrowsePackageVariables) that is provided by the GAP package Browse. For this func-
tion, it is not sensible to assume that the package pkgname is not yet loaded before the function call, be-
cause one might be interested in packages that must be loaded before Browse itself can be loaded. The
solution is that BrowsePackageVariables (Browse: BrowsePackageVariables) takes the output of
PackageVariablesInfo as its second argument. The function PackageVariablesInfo is used
by both ShowPackageVariables and BrowsePackageVariables (Browse: BrowsePackageVari-
ables) for collecting the information about the package in question, and can be called before the
package Browse is loaded.

76.3.18 BibEntry

▷ BibEntry(pkgname[, key]) (function)

Returns: a string in BibXMLext format (see (GAPDoc: The BibXMLext Format)) that can be
used for referencing the GAP system or a GAP package.

If the argument pkgname is the string "GAP", the function returns an entry for the current version
of GAP.

Otherwise, if a string pkgname is given, which is the name of a GAP package, an entry for this
package is returned; this entry is computed from the PackageInfo.g file of the current version of the
package, see InstalledPackageVersion (76.3.6). If no package with name pkgname is installed
then the empty string is returned.

A string for a different version of GAP or a package can be computed by entering, as the argument
pkgname , the desired record from the PackageInfo.g file. (One can access these records using the
function PackageInfo.)

In each of the above cases, an optional argument key can be given, a string which is then used as
the key of the BibTEX entry instead of the default key that is generated from the system/package name
and the version number.

GAP - Reference Manual 1301

BibEntry requires the functions FormatParagraph (GAPDoc: FormatParagraph) and
NormalizedNameAndKey (GAPDoc: NormalizedNameAndKey) from the GAP package GAPDoc.

The functions ParseBibXMLextString (GAPDoc: ParseBibXMLextString) and
StringBibXMLEntry (GAPDoc: StringBibXMLEntry) can be used to create for example a
BibTEX entry from the return value, as follows.

Example
gap> bib:= BibEntry("GAP", "GAP4.5");;

gap> Print(bib, "\n");

<entry id="GAP4.5"><misc>

<title><C>GAP</C> – <C>G</C>roups, <C>A</C>lgorithms,

and <C>P</C>rogramming, <C>V</C>ersion 4.5.1</title>

<howpublished><URL>https://www.gap-system.org</URL></howpublished>

<key>GAP</key>

<keywords>groups; *; gap; manual</keywords>

<other type="organization">The GAP <C>G</C>roup</other>

</misc></entry>

gap> parse:= ParseBibXMLextString(bib);;

gap> Print(StringBibXMLEntry(parse.entries[1], "BibTeX"));

@misc{ GAP4.5,

title = {{GAP} {\textendash} {G}roups, {A}lgorithms, and

{P}rogramming, {V}ersion 4.5.1},

organization = {The GAP {G}roup},

howpublished = {\href {https://www.gap-system.org}

{\texttt{https://www.gap-system.org}}},

key = {GAP},

keywords = {groups; *; gap; manual}

}

76.3.19 Cite

▷ Cite([pkgname[, key]]) (function)

Used with no arguments or with argument "GAP" (case-insensitive), Cite displays instructions
on citing the version of GAP that is being used. Suggestions are given in plain text, HTML, BibXML
and BibTeX formats. The same instructions are also contained in the CITATION file in the GAP root
directory.

If pkgname is the name of a GAP package, instructions on citing this package will be displayed.
They will be produced from the PackageInfo.g file of the working version of this package that must
be available in the GAP installation being used. Otherwise, one will get a warning that no working
version of the package is available.

The optional 2nd argument key has the same meaning as in BibEntry (76.3.18).

76.4 Guidelines for Writing a GAP Package

The remaining part of this chapter explains the basics of how to write a GAP package so that it
integrates properly into GAP.

There are two basic aspects of creating a GAP package.

GAP - Reference Manual 1302

First, it is a convenient possibility to load additional functionality into GAP including a smooth
integration of the package documentation. Second, a package is a way to make your code available to
other GAP users.

Moreover, the GAP Group may provide some help with redistributing your package via the GAP
website after checking if the package provides some new or improved functionality which looks inter-
esting for other users, if it contains reasonable documentation, and if it seems to work smoothly with
the GAP library and other distributed packages. In this case the package can take part in the GAP
distribution update mechanism and becomes a deposited package.

Furthermore, package authors are encouraged to check if the package would be appropriate for the
refereeing process and submit it. If the refereeing has been successful, the package becomes an ac-
cepted package. Check out https://www.gap-system.org/Packages/Authors/authors.html
on the GAP website for more details.

Below we start with a description how the directory structure of a GAP package should be con-
structed and then add remarks on certain aspects of creating a package, some of these only apply to
some packages. Finally, we provide guidelines for the release preparation and its distribution.

76.5 Structure of a GAP Package

A GAP package should have an alphanumeric name; mixed case is fine, but there should be no whites-
pace characters. All files of a GAP package packagename must be collected in a single directory
packagedir , where packagedir should be just packagename optionally converted to lowercase
and optionally followed by the package version (with or without hyphen to separate the version from
packagename). Let us call this directory the home directory of the package.

To use the package with GAP, the directory packagedir must be a subdirectory of a pkg directory
in (one of) the GAP root directories (see 9.2). For example, if GAP is installed in /usr/local/gap4

then the files of the package MyPack may be placed in the directory /usr/local/gap4/pkg/mypack.
The directory packagedir preferably should have the following structure (below, a trailing / distin-
guishes directories from ordinary files):

https://www.gap-system.org/Packages/Authors/authors.html

GAP - Reference Manual 1303

Example
packagedir/

doc/

lib/

tst/

CHANGES

LICENSE

README

PackageInfo.g

init.g

read.g

This layout of directories and files may be created manually, or automatically using the tool called
PackageMaker, available at https://github.com/gap-system/PackageMaker. The Package-
Maker asks several questions about the intended package and then creates a new directory for it and
populates it with all the files needed for a basic package.

Packages that contain some code that requires compilation will usually have it in the src subdi-
rectory. They may also have extra files such as configure, Makefile.in etc. that automate the build
procedure. There are three file names with a special meaning in the home directory of a package:
PackageInfo.g and init.g which must be present, and read.g which is optional.

On the other hand, the names of CHANGES, LICENSE and README files are not strictly fixed. They
may have extensions .txt or .md, and instead of LICENSE one could use e.g. COPYING or GPL for
packages distributed under the GNU General Public License, or use HISTORY instead of CHANGES.

We now describe the above files and directories in more details:

README

The filename may optionally have an extension, e.g. .txt or .md.

This should contain “how to get it” instructions (covering the way of getting it with the GAP
distribution and from the GAP website, if applicable), as well as installation instructions and
names of the package authors and their email addresses. These installation instructions should
be repeated or referenced from the package’s documentation, which should be in the doc di-
rectory (see 76.6). Authors’ names and addresses should be repeated both in the package’s
documentation and in the PackageInfo.g (see below).

CHANGES

For further versions of the package, it will be also useful to have a CHANGES file that records the
main changes between versions of the package.

The filename may optionally have an extension, e.g. .txt or .md.

LICENSE

The file which explains conditions on which the package is distributed.

We advise all package authors to make clear in the documentation of their package the basis
on which it is being distributed to users. Technically, this is the terms of the license which you
give the users to copy, modify and redistribute your software (of which you presumably own the
copyright) for their purposes.

GAP itself is distributed under the GNU General Public License version 2, a popular “free soft-
ware” license which allows users to redistribute it freely under the same terms, and requires that

https://github.com/gap-system/PackageMaker

GAP - Reference Manual 1304

any software which incorporates GAP (technically, any “derived work”) also be distributed un-
der those terms. We would encourage you to consider the GPL for your packages, but you might
wish to be more restrictive (for instance forbidding redistribution for profit) or less restrictive
(allowing your software to be incorporated into commercial software).

The filename may optionally have an extension, e.g. .txt or .md. Some packages also use
different filenames, like COPYING.

configure, Makefile.in
These files are typically only used by packages which have a non-GAP component, e.g. some C
code (the files of which should be in the src directory). The configure and Makefile.in files
of the Example package provide prototypes (or they may be created using the PackageMaker
mentioned above). The configure file typically takes a path path to the GAP root directory
as argument and uses the value assigned to GAParch in the file sysinfo.gap, created when
GAP was compiled to determine the compilation architecture, inserts this in place of the string
@GAPARCH@ in Makefile.in and creates a file Makefile. When make is run (which, of course,
reads the constructed Makefile), a directory bin (if necessary) and subdirectories of bin with
the path equal to the string assigned to GAParch in the file sysinfo.gap should be created; any
binaries constructed by compiling the code in src should end up in this subdirectory of bin.

PackageInfo.g

Every GAP package must have a PackageInfo.g file which contains meta-information about
the package (package name, version, author(s), relations to other packages, homepage, down-
load archives, etc.). This information is used by the package loading mechanism and also for
the redistribution of a package with GAP. The Example package’s PackageInfo.g file is
well-commented and can be used as a prototype (see also 76.3.15 for further details). It may
also be created using the PackageMaker mentioned above.

init.g, read.g
A GAP package must have a file init.g. Typical init.g and read.g files should normally
consist entirely of ReadPackage (76.3.1) commands (and possibly also Read (9.7.1) com-
mands) for reading further files of the package. If the “declaration” and “implementation” parts
of the package are separated (and this is recommended), there should be a read.g file. The
“declaration” part of a package consists of function and variable name declarations and these go
in files with .gd extensions; these files are read in via ReadPackage commands in the init.g

file. The “implementation” part of a package consists of the actual definitions of the functions
and variables whose names were declared in the “declaration” part, and these go in files with
.gi extensions; these files are read in via ReadPackage commands in the read.g file. The
reason for following the above dichotomy is that the read.g file is read after the init.g file,
thus enabling the possibility of a function’s implementation to refer to another function whose
name is known but is not actually defined yet (see 76.13 below for more details).

The GAP code (whether or not it is split into “declaration” and “implementation” parts) should
go in the package’s lib directory (see below).

doc This directory should contain the package’s documentation, written in an XML-based docu-
mentation format supported by the GAP package GAPDoc (see (GAPDoc: Introduction and
Example)) which is used for the GAP documentation itself.

The Example package’s documentation (see its doc directory) may be used as a prototype. It
consists of the master file main.xml, further .xml files for manual chapters (included in the

GAP - Reference Manual 1305

manual via Include directives in the master file) and the GAP input file ../makedocrel.g

which generates the manuals. Generally, one should also provide a manual.bib BibTEX
database file or an xml file in the BibXMLext format (see (GAPDoc: The BibXMLext For-
mat)).

One could also use the AutoDoc which simplifies writing documentation by generating most of
the GAPDoc code automatically.

lib This is the preferred place for the GAP code of the package, i.e. the .g, .gd and .gi files
(other than PackageInfo.g, init.g and read.g). For some packages, the directory gap has
been used instead of lib; lib has the advantage that it is the default subdirectory of a package
directory searched for by the DirectoriesPackageLibrary (76.3.7) command.

src If the package contains non-GAP code, e.g. C code, then this source code should go in the
src directory. If there are .h “include” files you may prefer to put these all together in a
separate include directory. There is one further rule for the location of kernel library modules
or external programs which is explained in 76.15.1 below.

tst It is highly recommended that a package should have test files, which then should go in the tst
directory. For a deposited package, a test file with a basic test of the package (for example, to
check that it works as expected and/or that the manual examples are correct) may be specified in
the PackageInfo.g to be included in the GAP standard test suite and run as a part of the GAP
release preparation. More specific and time consuming tests are not supposed to be a part of
the GAP standard test suite but may be placed in the tst directory with further instructions on
how to run them. See Section 76.19 about the requirements to the test files formats and further
recommendations.

All other files can be organised as you like. But we suggest that you have a look at existing packages
and use a similar scheme, for example, put examples in the examples subdirectory, data libraries in
extra subdirectories, and so on.

Sometimes there may be a need to include an empty directory in the package distribution (for
example, as a place to store some data that may appear at runtime). In this case package authors are
advised to put in this directory a short README file describing its purpose to ensure that such directory
will be included in the redistribution.

Concerning the GAP code in packages, it is recommended to use only documented GAP func-
tions, see 83.3. In particular if you want to make your package available to other GAP users it is
advisable to avoid using “obsolete” variables (see 77). To test that the package does not use obsolete
variables you can set the ReadObsolete component in your gap.ini file to false (see 3.2) or start
GAP with -A -O command line options (note that this may also cause problems with loading other
packages that use “obsolete” variables).

76.6 Writing Documentation and Tools Needed

If you intend to make your package available to other users it is essential to include documentation
explaining how to install and use your programs.

Concerning the installation you should produce a README file which gives a short description of
the purpose of the package and contains proper instructions how to install your package. Again, check
out some existing packages to get an idea how this could look like.

GAP - Reference Manual 1306

Documentation for GAP package should be prepared in an XML-based documentation format
that is defined in and can be used with the GAPDoc package (see (GAPDoc: Introduction and
Example)).

There should be at least a text version of your documentation provided for use in the terminal
running GAP and some nicely printable version in .pdf format. Many GAP users like to browse the
documentation in HTML format via their Web browser. As a package author, you are not obliged to
provide an HTML version of your package manual, but if you use the GAPDoc package you should
have no trouble in producing one.

Moreover, using the GAPDoc package, it is also possible to produce HTML version of the doc-
umentation supporting MathJax (https://www.mathjax.org/) for the high quality rendering of
mathematical symbols while viewing it online. For example, if you are viewing the HTML version of
the manual, compare how this formula will look with MathJax turned on/off:

[χ,ψ] =

(
∑
g∈G

χ(g)ψ(g−1)

)
/|G|.

The manual of the Example package is written in the GAPDoc format, and commands needed
to build it are contained in the file makedocrel.g (you don’t need to re-build the manual since it is
already included in the package). You will also need to have certain TEX tools installed: to produce
manuals in the .pdf format, you need pdflatex.

In principle it is also possible to use alternative documentation systems. Historically, there is
one such TEX-based system, which predates GAPDoc, and which is still in use by several packages.
However, we do not recommend using it for new packages.

76.7 An Example of a GAP Package

We illustrate the creation of a GAP package by an example of a very basic package.
Create the following directories in your home directory: .gap, .gap/pkg and .gap/pkg/test.

Then inside the directory .gap/pkg/test create an empty file init.g, and a file PackageInfo.g

with the following contents:
Example

SetPackageInfo(rec(

PackageName := "test",

Version := "1.0",

PackageDoc := rec(

BookName := "test",

SixFile := "doc/manual.six",

),

Dependencies := rec(

GAP := "4.9",

NeededOtherPackages := [["GAPDoc", "1.6"]],

SuggestedOtherPackages := []),

AvailabilityTest := ReturnTrue));

This file declares the GAP package with name “test” in version 1.0. The package documentation
consists of one autoloaded book; the SixFile component is needed by the GAP help system. Pack-
age dependencies (picked for the purposes of this example) require at least GAP 4.9 and GAPDoc

https://www.mathjax.org/

GAP - Reference Manual 1307

package at version at least 1.6, and these conditions will be checked when the package will be loaded
(see 76.18). Since there are no requirements that have to be tested, AvailabilityTest just uses
ReturnTrue (5.4.1).

Now start GAP (without using the -r option) and the .gap directory will be added to the GAP
root directory to allow GAP to find the packages installed there (see 9.2).

Example
gap> LoadPackage("test");

true

This GAP package is too simple to be useful, but we have succeeded in loading it via
LoadPackage (76.2.1), satisfying all specified dependencies.

76.8 File Structure

Package files may follow the style used for the GAP library. Every file in the GAP library starts
with a header that lists the filename, copyright, a short description of the file contents and the original
authors of this file, and ends with a comment line #E. Indentation in functions and the use of decorative
spaces in the code are left to the decision of the authors of each file. Global (i.e. re-used elsewhere)
comments usually are indented by two hash marks and two blanks, in particular, every declaration or
method or function installation which is not only of local scope is separated by a header.

Facilities to distribute a document over several files to allow the documentation for parts of
some code to be stored in the same file as the code itself are provided by the GAPDoc package
(see (GAPDoc: Distributing a Document into Several Files)). The same approach is demon-
strated by the Example package. E.g. example/doc/example.xml has the statement <#Include
Label="ListDirectory"> and example/lib/files.gd contains

Example
<#GAPDoc Label="ListDirectory">

<ManSection>

<Func Name="ListDirectory" Arg="[dir]"/>

##

<Description>

lists the files in directory <A>dir (a string)

or the current directory if called with no arguments.

</Description>

</ManSection>

<#/GAPDoc>

DeclareGlobalFunction("ListDirectory");

This is all put together in the file example/makedocrel.g which builds the package documentation,
calling MakeGAPDocDoc (GAPDoc: MakeGAPDocDoc) with locations of library files containing
parts of the documentation.

Alternatively, one could use the AutoDoc, which simplifies writing documentation by generating
most of the GAPDoc code automatically. The equivalent of the fragment of the code above for
AutoDoc would look like

Example
#! @Arguments [dir]

#! @Description

#! lists the files in directory <A>dir (a string)

GAP - Reference Manual 1308

#! or the current directory if called with no arguments.

DeclareGlobalFunction("ListDirectory");

76.9 Creating the PackageInfo.g File

While the minimalistic PackageInfo.g file described in 76.7 is enough to let GAP load the package,
and check all specified dependencies, it is actually missing many extra fields which become relevant if
you want to distribute your package: they contain lists of authors and/or maintainers including contact
information, URLs of the package archives and README files, status information, text for a package
overview webpage, and so on. All these details are required for a package to be redistributed with
GAP.

The command ValidatePackageInfo (76.3.16) can be used to get a quick idea about which
fields are missing:

Example
gap> ValidatePackageInfo("PackageInfo.g");

#E component `Subtitle' must be bound to a string

#E component `Date' must be bound to a string of the form `dd/mm/yyyy'

#E component `ArchiveURL' must be bound to a string started with http://, https:// or ftp://

#E component `ArchiveFormats' must be bound to a string

#E component `README_URL' must be bound to a string started with http://, https:// or ftp://

#E component `PackageInfoURL' must be bound to a string started with http://, https:// or ftp://

#E component `AbstractHTML' must be bound to a string

#E component `PackageWWWHome' must be bound to a string started with http://, https:// or ftp://

#E component `ArchiveURLSubset' must be bound to a list of strings denoting relative paths to readable files or directories

#E component `HTMLStart' must be bound to a string denoting a relative path to a readable file

#E component `PDFFile' must be bound to a string denoting a relative path to a readable file

#E component `SixFile' must be bound to a string denoting a relative path to a readable file

#E component `LongTitle' must be bound to a string

false

We suggest to create a PackageInfo.g file for your package by copying the
one in the Example package, distributed with GAP, or using the PackageMaker
(https://github.com/gap-system/PackageMaker), and then adjusting it for your package.
Within GAP you can look at this template file for a list and explanation of all recognised entries by

Example
Pager(StringFile(Filename(DirectoriesLibrary(),

"../pkg/example/PackageInfo.g")));

Instead of populating the rest of the PackageInfo.g by hands, you can also cre-
ate a basic GAP package with the help of the tool called PackageMaker, available at
https://github.com/gap-system/PackageMaker. The PackageMaker asks several questions
about the intended package and then creates a new directory for it and populates it with all the files
needed for a basic package.

76.10 Functions and Variables and Choices of Their Names

In writing the GAP code for your package you need to be a little careful on just how you define your
functions and variables.

https://github.com/gap-system/PackageMaker
https://github.com/gap-system/PackageMaker

GAP - Reference Manual 1309

Firstly, in general one should avoid defining functions and variables via assignment statements in
the way you would interactively, e.g.

Example
gap> Squared := x -> x^2;;

gap> Cubed := function(x) return x^3; end;;

The reason for this is that such functions and variables are easily overwritten and what’s more you
are not warned about it when it happens.

To protect a function or variable against overwriting there is the function BindGlobal

(4.9.8), or alternatively (and equivalently) you may define a global function via a
DeclareGlobalFunction (79.10.5) and InstallGlobalFunction (79.10.5) pair or a global
variable via a DeclareGlobalVariable (79.10.2) and InstallValue (79.10.3) pair. There are
also operations and their methods, and related objects like attributes and filters which also have
Declare... and Install... pairs.

Secondly, it is a good idea to reduce the chance of accidental overwriting by choosing names for
your functions and variables that begin with a string that identifies it with the package, e.g. some
of the undocumented functions in the Example package begin with Eg. This is especially im-
portant in cases where you actually want the user to be able to change the value of a function
or variable defined by your package, for which you have used direct assignments (for which the
user will receive no warning if she accidentally overwrites them). It is also important for func-
tions and variables defined via BindGlobal, DeclareGlobalFunction/InstallGlobalFunction
and DeclareGlobalVariable/InstallValue, in order to avoid name clashes that may occur with
(extensions of) the GAP library and other packages.

Additionally, since GAP 4.5 a package may place global variables into a local namespace as
explained in 4.10 in order to avoid name clashes and preserve compatibility. This new feature allows
you to define in your package global variables with the identifier ending with the @ symbol, e.g. xYz@.
Such variables may be used in your package code safely, as they may be accessed from outside the
package only by their full name, i.e. xYz@YourPackageName. This helps to prevent clashes between
different packages or between a package and the GAP library because of the same variable names.

On the other hand, operations and their methods (defined via DeclareOperation (78.1.5),
InstallMethod (78.3.1) etc. pairs) and their relatives do not need this consideration, as they avoid
name clashes by allowing for more than one “method” for the same-named object.

To demonstrate the definition of a function via a DeclareOperation/InstallMethod pair, the
method Recipe (Example: Recipe) was included in the Example package; Recipe(FruitCake

); gives a “method” for making a fruit cake (forgive the pun).
Thirdly, functions or variables with SetXXX or HasXXX names (even if they are defined as opera-

tions) should be avoided as these may clash with objects associated with attributes or properties (at-
tributes and properties XXX declared via the DeclareAttribute and DeclareProperty commands
have associated with them testers of form HasXXX and setters of form SetXXX).

Fourthly, it is a good idea to have some convention for internal functions and variables (i.e. the
functions and variables you don’t intend for the user to use). For example, they might be entirely
CAPITALISED.

Additionally, there is a recommended naming convention that the GAP core system and GAP
packages should not use global variables starting in the lowercase. This allows to reserve variables
with names starting in lowercase to the GAP user so they will never clash with the system. It is
extremely important to avoid using for package global variables very short names started in lowercase.
For example, such names like cs, exp, ngens, pc, pow which are perfectly fine for local variables,

GAP - Reference Manual 1310

should never be used for globals. Additionally, the package must not have writable global variables
with very short names even if they are starting in uppercase, for example, C1 or ORB, since they also
could be easily overwritten by the user.

It is a good practice to follow naming conventions used in GAP as explained in 5.6 and (Tutorial:
Changing the Structure), which might help users to memorize or even guess names of functions
provided by the package.

Finally, note the advantage of using DeclareGlobalFunction/InstallGlobalFunction,
DeclareGlobalVariable/InstallValue, etc. pairs (rather than BindGlobal) to define functions
and variables, which allow the package author to organise her function- and variable- definitions in
any order without worrying about any interdependence. The Declare... statements should go in
files with .gd extensions and be loaded by ReadPackage statements in the package init.g file, and
the Install... definitions should go in files with .gi extensions and be loaded by ReadPackage

statements in the package read.g file; this ensures that the .gi files are read after the .gd files. All
other package code should go in .g files (other than the init.g and read.g files themselves) and be
loaded via ReadPackage statements in the init.g file.

In conclusion, here is some practical advice on how to check which variables are used by the
package.

Firstly, there is a function ShowPackageVariables (76.3.17). If the package pkgname is avail-
able but not yet loaded then ShowPackageVariables(pkgname) prints a list of global variables
that become bound and of methods that become installed when the package is loaded (for that, the
package will be actually loaded, so ShowPackageVariables can be called only once for the same
package in the same GAP session.) The second optional argument version may specify a particular
package version to be loaded. An error message will be printed if (the given version of) the package
is not available or already loaded.

Info lines for undocumented variables will be marked with an asterisk *. Note that the GAP help
system is case insensitive, so it is difficult to document identifiers that differ only by case.

The following entries are omitted from the list: default setter methods for attributes and properties
that are declared in the package, and Setattr and Hasattr type variables where attr is an attribute
or property.

For example, for the Example package it may produce the output looking like this:
Example

gap> ShowPackageVariables("example");

--

Loading Example 3.3 (Example/Template of a GAP Package)

by Werner Nickel (http://www.mathematik.tu-darmstadt.de/~nickel),

Greg Gamble (http://www.math.rwth-aachen.de/~Greg.Gamble), and

Alexander Konovalov (http://www.cs.st-andrews.ac.uk/~alexk/).

--

new global functions:

EgSeparatedString(str, c)*

FindFile(dir, file)

HelloWorld()

ListDirectory(arg)

LoadedPackages()

WhereIsPkgProgram(prg)

Which(prg)

new global variables:

FruitCake

GAP - Reference Manual 1311

new operations:

Recipe(arg)

new methods:

Recipe(cake)

Another trick is to start GAP with -r -A options, immediately load your package and then call
NamesUserGVars (4.9.11) which returns a list of the global variable names created since the library
was read, to which a value is currently bound. For example, for the Example it produces

Example
gap> NamesUserGVars();

["EgSeparatedString", "FindFile", "FruitCake", "HelloWorld", "ListDirectory",

"LoadedPackages", "Recipe", "WhereIsPkgProgram", "Which"]

but for packages with dependencies it will also contain variables created by other packages. Never-
theless, it may be a useful check to search for unwanted variables appearing after package loading. A
potentially dangerous situation which should be avoided is when the package uses some simply named
temporary variables at the loading stage. Such “phantom” variables may then remain unnoticed and,
as a result, there will be no warnings if the user occasionally uses the same name as a local variable
name in a function. Even more dangerous is the case when the user variable with the same name
already exists before the package is loaded so it will be silently overwritten.

76.11 Package Dependencies (Requesting one GAP Package from
within Another)

It is possible for one GAP package A to require another package B. For that, one simply adds the
name and the (least) version number of the package B to the NeededOtherPackages component of
the Dependencies component of the PackageInfo.g file of the package A. In this situation, loading
the package A forces that also the package B is loaded, and that A cannot be loaded if B is not available.

If B is not essential for A but should be loaded if it is available (for example because B provides
some improvements of the main system that are useful for A) then the name and the (least) version
number of B should be added to the SuggestedOtherPackages component of the Dependencies

component of the PackageInfo.g file of A. In this situation, loading A forces an attempt to load also
B, but A is loaded even if B is not available.

All package dependencies must be documented explicitly in the PackageInfo.g file. It is impor-
tant to properly identify package dependencies and make the right decision whether the other package
should be “needed” or “suggested”. For example, declaring package as “needed” when “suggested”
might be sufficient may prevent loading of packages under Windows for no good reason.

It is not appropriate to explicitly call LoadPackage (76.2.1) when the package is loaded, since
this may distort the order of package loading and result in warning messages. It is recommended to
turn such dependencies into needed or suggested packages. For example, a package can be designed
in such a way that it can be loaded with restricted functionality if another package (or standalone
program) is missing, and in this case the missing package (or binary) is suggested. Alternatively, if
the package author decides that loading the package in this situation makes no sense, then the missing
component is needed.

GAP - Reference Manual 1312

On the other hand, if LoadPackage (76.2.1) is called inside functions of the package then there is
no such problem, provided that these functions are called only after the package has been loaded, so it
is not necessary to specify the other package as suggested. The same applies to test files and manual
examples, which may be simply extended by calls to LoadPackage (76.2.1).

It may happen that a package B that is listed as a suggested package of package A is actually
needed by A. If no explicit LoadPackage (76.2.1) calls for B occur in A at loading time, this can now
be detected using the new possibility to load a package without loading its suggested packages using
the global option OnlyNeeded which can be used to (recursively) suppress loading the suggested
packages of the package in question. Using this option, one can check whether errors or warnings
appear when B is not available (note that this option should be used only for such checks to simulate
the situation when package B is not available; it is not supposed to be used in an actual GAP session
when package B will be loaded later, since this may cause problems). In case of any errors or warnings,
their consequence can then be either turning B into a needed package or (since apparently B was
not intended to become a needed package) changing the code accordingly. Only if package A calls
LoadPackage (76.2.1) for B at loading time (see above) then package B needs to be deinstalled (i.e.
removed) to test loading of A without B.

76.12 Extensions Provided by a Package

Sometimes a package A can provide additional functionality, such as better methods or additional data,
if some other packages B, C, etc. are loaded. However, one would like package A to still be usable
without these additional packages, and therefore B, C, etc. shall not be regarded as needed packages
(see Section 76.11) of A.

One way to deal with this situation is to put those parts of code of A that depend on B, C, etc., into
files that get read only in the situation that the packages in question have actually been loaded into the
current GAP session.

However, this leaves the question when to load these files of a conditional extension of A. In the
past, the only option for A was to check for the presence of B, C, etc., while it itself was being loaded.
With this setup, it depends on the order in which packages get loaded whether some feature is available
or not: If B is loaded before A, the extension might be loaded as well; if B is loaded only after A, then
the extension is not loaded.

To deal with this issue of conditional extensions of packages, GAP offers a dedicated mechanism:
The Extensions component of the PackageInfo.g file of A is a list of declarations of conditional
extension of A, each being a record with the following components.

needed

a list of the form [[pkgname1, version1], [pkgname2, version2], . . .], mean-
ing that the extension shall be loaded as soon as all packages pkgname1, pkgname2, . . ., with
versions (at least) version1, version2, . . ., have been loaded, and

filename

the path, relative to the package directory of A, of a file such that reading this file will load the
code of the extension.

As an example suppose the following is part of the PackageInfo.g. Then GAP will load the
file fileForB.gd as soon as package B is loaded in version 0.6 or newer, and fileForCD.gi once
package C and D are loaded in version 1.2 and 0.1 or newer respectively.

GAP - Reference Manual 1313

Example
Extensions := [

rec(

needed := [["B", "0.6"]],

filename := "gap/fileForB.gd",

),

rec(

needed := [["C", "1.2"] , ["D", "0.1"]],

filename := "gap/fileForCD.gi",

)

],

Whenever LoadPackage (76.2.1) is called, GAP checks for package extensions whose conditions
now are satisfied, and loads them.

For example, package A can be loaded early in a GAP session, and declare in its PackageInfo.g
the availability of an extension that requires package B. If B has not yet been loaded then this extension
will not be loaded together with A. However, as soon as B gets (installed and) loaded later in the session,
also the extension of A will automatically get loaded.

The contents of Extensions in a PackageInfo.g file does not affect the lists of needed or sug-
gested packages. If an extension of A is beneficial for the functions of A then it makes sense to list the
packages needed for the extension among the suggested packages of A, but this may not be the case if
the extension is beneficial only for the functions of its needed packages.

76.13 Declaration and Implementation Part of a Package

When GAP packages require each other in a circular way, a “bootstrapping” problem arises of defining
functions before they are called. The same problem occurs in the GAP library, and it is resolved
there by separating declarations (which define global variables such as filters and operations) and
implementations (which install global functions and methods) in different files. Any implementation
file may use global variables defined in any declaration file. GAP initially reads all declaration files
(in the library they have a .gd suffix) and afterwards reads all implementation files (which have a .gi
suffix).

Something similar is possible for GAP packages: if a file read.g exists in the home directory of
the package, this file is read only after all the init.g files of all (implicitly) required GAP packages
are read. Thus one can separate declaration and implementation for a GAP package in the same
way as is done for the GAP library, by creating a file read.g, restricting the ReadPackage (76.3.1)
statements in init.g to only read those files of the package that provide declarations, and to read the
implementation files from read.g.

Examples:
Suppose that there are two packages A and B, each with files init.g and read.g.

• If package A suggests or needs package B and package B does not need or suggest any other
package then first init.g of B is read, then read.g of B, then init.g of A, then read.g of A.

• If package A suggests or needs package B and package B (or a package that is suggested or
needed by B) suggests or needs package A then first the files init.g of A and B are read (in an
unspecified order) and then the files read.g of A and B (in the same order).

GAP - Reference Manual 1314

In general, when GAP is asked to load a package then first the dependencies between this pack-
ages and its needed and suggested packages are inspected (recursively), and a list of package sets is
computed such that no cyclic dependencies occur between different package sets and such that no
package in any of the package sets needs any package in later package sets. Then GAP runs through
the package sets and reads for each set first all init.g files and then all read.g files of the packages
in the set. (There is one exception from this rule: Whenever packages are autoloaded before the im-
plementation part of the GAP library is read, only the init.g files of the packages are read; as soon
as the GAP library has been read, the read.g files of these packages are also read, and afterwards the
above rule holds.)

It can happen that some code of a package depends on the availability of suggested packages, i.e.,
different initialisations are performed depending on whether a suggested package will eventually be
loaded or not. One can test this condition with the function IsPackageMarkedForLoading (76.3.4).
In particular, one should not call (and use the value returned by this call) the function LoadPackage

(76.2.1) inside package code that is read during package loading. Note that for debugging purposes
loading suggested packages may have been deliberately disabled via the global option OnlyNeeded.

Note that the separation of the GAP code of packages into declaration part and implementation
part does in general not allow one to actually call functions from a package when the implementation
part is read. For example, in the case of a “cyclic dependency” as in the second example above,
suppose that B provides a new function f or a new global record r which are declared in the declaration
part of B. Then the code in the implementation part of A may contain calls to the functions defined in the
declaration part of B. However, the implementation part of A may be read before the implementation
part of B. So one can in general not assume that during the loading of A, the function f can be called,
or that one can access components of the record r.

If one wants to call the function f or to access components of the record r in the code of the
package A then the problem is that it may be not possible to determine a cyclic dependency between
A and B from the packages A and B alone. A safe solution is then to design A in such a way that the
code that calls f or accesses r belongs to package extensions of A that get loaded only after B has been
loaded; see Section 76.12 for details.

In the case of cyclic dependencies, one solution for the above problem might be to delay those
computations (typically initialisations) in package A that require package B to be loaded until all
required packages are completely loaded. This can be done by moving the declaration and imple-
mentation of the variables that are created in the initialisation into a separate file and to declare these
variables in the init.g file of the package, via a call to DeclareAutoreadableVariables (76.3.10)
(see also 76.14).

76.14 Autoreadable Variables

Package files containing method installations must be read when the package is loaded. For package
files not containing method installations (this applies, for example, to many data files) another mecha-
nism allows one to delay reading such files until the data are actually accessed. See 76.3.10 for further
details.

76.15 Standalone Programs in a GAP Package

GAP packages that involve stand-alone programs are fundamentally different from GAP packages
that consist entirely of GAP code.

GAP - Reference Manual 1315

This difference is threefold: A user who installs the GAP package must also compile (or install)
the package’s binaries, the package must check whether the binaries are indeed available, and finally
the GAP code of the package has to start the external binary and to communicate with it. We will
cover these three points in the following sections.

If the package does not solely consist of an interface to an external binary and if the external
program called is not just special-purpose code, but a generally available program, chances are high
that sooner or later other GAP packages might also require this program. We therefore strongly
recommend the provision of a documented GAP function that will call the external binary. We also
suggest to create actually two GAP packages; the first providing only the binary and the interface and
the second (requiring the first, see 76.11) being the actual GAP package.

76.15.1 Installation of GAP Package Binaries

The scheme for the installation of package binaries which is described further on is intended to permit
the installation on different architectures which share a common file system (and share the architecture
independent file).

A GAP package which includes external binaries contains a bin subdirectory. This subdirectory
in turn contains subdirectories for the different architectures on which the GAP package binaries are
installed. The names of these directories must be the same as the names of the architecture dependent
subdirectories of the main bin directory. Unless you use a tool like autoconf yourself, you must
obtain the correct name of the binary directory from the main GAP branch. To help with this, the
main GAP directory contains a file sysinfo.gap which assigns the shell variable GAParch to the
proper name as determined by GAP’s configure process. For example on a Linux system, the file
sysinfo.gap may look like this:

Example
GAParch=i586-unknown-linux2.0.31-gcc

We suggest that your GAP package contains a file configure which is called with the path of
the GAP root directory as parameter. This file then will read sysinfo.gap and set up everything for
compiling under the given architecture (for example creating a Makefile from Makefile.in). As
initial templates, you may use installation scripts of the Example package or files generated with the
help of PackageMaker.

76.15.2 Test for the Existence of GAP Package Binaries

If an external binary is essential for the workings of a GAP package, the function stored in the compo-
nent AvailabilityTest of the PackageInfo.g file of the package should test whether the program
has been compiled on the architecture (and inhibit package loading if this is not the case). This is
especially important if the package is loaded automatically.

The easiest way to accomplish this is to use Filename (9.4.1) for checking for the actual binaries in
the path given by DirectoriesPackagePrograms (76.3.8) for the respective package. For example
the example GAP package could use the following function to test whether the binary hello has
been compiled; it will issue a warning if not, and will only load the package if the binary is indeed
available:

Example
...

AvailabilityTest := function()

GAP - Reference Manual 1316

local path,file;

test for existence of the compiled binary

path:= DirectoriesPackagePrograms("example");

file:= Filename(path, "hello");

if file = fail then

LogPackageLoadingMessage(PACKAGE_WARNING,

["The program `hello' is not compiled,",

"`HelloWorld()' is thus unavailable.",

"See the installation instructions;",

"type: ?Installing the Example package"]);

fi;

return file <> fail;

end,

...

However, if you look at the actual PackageInfo.g file of the example package, you will see that
its AvailabilityTest function always returns true, and just logs the warning if the binary is not
available (which may be later viewed with DisplayPackageLoadingLog (76.2.5)). This means that
the binary is not regarded as essential for this package.

You might also have to cope with the situation that external binaries will only run under UNIX
(and not e.g. under Windows), or may not compile with some compilers or default compiler options.
See 3.4 for information on how to test for the architecture.

Package using a kernel module (see 76.3.11), one may use a test like this:

...

AvailabilityTest := function()

see if example.so exists and is a loadable kernel extension

if not IsKernelExtensionAvailable("example") then

LogPackageLoadingMessage(PACKAGE_WARNING,

["The kernel extension `example' is unavailable,",

"perhaps it needs to be recompiled?",

"See the installation instructions;",

"type: ?Installing the Example package"]);

return false;

fi;

return true;

end,

...

Last but not least: do not print anything in the AvailabilityTest function of the package via
Print or Info. Instead one should call LogPackageLoadingMessage (76.2.5) to store a message
which may be viewed later with DisplayPackageLoadingLog (76.2.5) (the latter two functions have
been introduced in GAP 4.5)

76.15.3 Calling of and Communication with External Binaries

There are two reasons for this: the input data has to be passed on to the stand-alone program and the
stand-alone program has to be started from within GAP.

There are two principal ways of doing this.

GAP - Reference Manual 1317

The first possibility is to write all the data for the stand-alone to one or several files, then start
the stand-alone with Process (11.1.1) or Exec (11.1.2) which then writes the output data to file, and
finally read in the standalone’s output file.

The second way is interfacing via input-output streams, see Section 10.8.
Some GAP packages use kernel modules (see 76.3.11) instead of external binaries. A kernel

module is implemented in C and follows certain conventions to comply with the GAP kernel interface,
which we plan to document later. In the meantime, we advise you to look at existing examples of such
packages and get in touch with GAP developers if you plan to develop such a package.

76.16 Having an InfoClass

It is a good idea to declare an InfoClass for your package. This gives the package user the op-
portunity to control the verbosity of output and/or the possibility of receiving debugging information
(see 7.4). Below, we give a quick overview of its utility.

An InfoClass is defined with a DeclareInfoClass(InfoPkgname); statement and may
be set to have an initial InfoLevel other than the zero default (which means no Info statement
is to output information) via a SetInfoLevel(InfoPkgname, level); statement. An initial
InfoLevel of 1 is typical.

Info statements have the form: Info(InfoPkgname, level, expr1, expr2, ...);

where the expression list expr1, expr2, ... appears just like it would in a Print statement.
The only difference is that the expression list is only printed (or even executed) if the InfoLevel of
InfoPkgname is at least level .

76.17 The Banner

When the package is loaded, GAP will display a default package banner, constructed from the package
metadata provided in the PackageInfo.g file.

Alternatively, the package may establish its own banner by assigning either a string to the
BannerString field of the record argument of SetPackageInfo in the PackageInfo.g file or a
function to the BannerFunction field, which takes this record as its unique argument. The latter
possibility can be useful if the banner shall show information that is available only at runtime.

If you will be designing a banner for your package, it is a good idea to suggest there how to access
package documentation. For example, the banner of the Example package says:

Example
For help, type: ?Example package

In order for this to display the introduction of the Example package the index-entry
<Index>Example package</Index> was added just before the first paragraph of the introductory
section in the file doc/example.xml of the Example package.

76.18 Version Numbers

Version numbers are strings containing nonnegative integers separated by non-numeric characters.
They are compared by CompareVersionNumbers (76.3.9) which first splits them at non-digit charac-
ters and then lexicographically compares the resulting integer lists. Thus version "2-3" is larger than
version "2-2-5" but smaller than "4r2p3" or "11.0".

GAP - Reference Manual 1318

It is possible for code to require GAP packages in certain versions. In this case, all versions, whose
number is equal or larger than the requested number are acceptable. It is the task of the package author
to provide upwards compatibility.

Loading a specific version of a package (that is, not one with a larger version number) can be
achieved by prepending = to the desired version number. For example, LoadPackage("example",

"=1.0") will load version "1.0" of the package "example", even if version "1.1" is available. As
a consequence, version numbers must not start with =, so "=1.0" is not a valid version number.

Package authors should choose a version numbering scheme that admits a new version number
even after tiny changes to the package, and ensure that version numbers of successive package versions
increase. The automatic update of package archives in the GAP distribution will only work if a
package has a new version number.

It is a well-established custom to name package archives like name-version.tar.gz,
name-version.tar.bz2 etc., where name is the lower case name, and version is the version
(another custom is that the archive then should extract to a directory that has exactly the name
name-version).

It is very important that there should not ever be, for a given GAP package, two different archives
with the same package version number. If you make changes to your package and place a new archive
of the package onto the public server, please ensure that a new archive has a new version number. This
should be done even for very minor changes.

For most of the packages it will be inappropriate to re-use the date of the release as a version
number. It is much more obvious how big are the changes between versions "4.4.12", "4.5.1" and
"4.5.2" than between versions "2008.12.17", "2011.04.15" and "2011.09.14". The concept of using
version numbers to convey the meaning of the status of the code and the way it has been modified
is known as “Semantic Versioning”, see https://semver.org/ for further recommendations on its
use.

Since version information is duplicated in several places throughout the package documentation,
for GAPDoc-based manuals you may define the version and the release manual in the comments in
PackageInfo.g file close to the place where you specified its Version and Date components, for
example

Example
<#GAPDoc Label="PKGVERSIONDATA">

<!ENTITY VERSION "3.3">

<!ENTITY RELEASEDATE "12/09/2017">

<!ENTITY RELEASEYEAR "2017">

<#/GAPDoc>

notify MakeGAPDocDoc (GAPDoc: MakeGAPDocDoc) that a part of the document is stored in
PackageInfo.g (see example/makedocrel.g), read this data into the header of the main docu-
ment via <#Include Label="PKGVERSIONDATA"> directive and then use them via &VERSION; and
&RELEASEDATE; entities almost everywhere where you need to refer to them (most commonly, in
the title page and installation instructions).

76.19 Testing a GAP package

There are several aspects of testing a GAP package.
First, one should ensure that the package functionality works as expected. Below we give an advice

on creating test files for automated tests that may be run by package authors, by GAP developers as

https://semver.org/

GAP - Reference Manual 1319

part of the release preparation, and by package users interested in checking that the package works.
Such tests should be included in the package distribution, and the responsibility for ensuring that they
pass stays with package authors.

Second, the package should cleanly integrate into the GAP system and other packages, and should
not break their functionality. In particular, all tests from the standard GAP testing suite should pass if
the package is loaded. This is more comprehensive and time consuming test, which GAP developers
regularly run using special tools. They will report to you any detected issues. Below we explain how
to do several simple and less time consuming checks which package authors are recommended to
perform themselves.

76.19.1 Tests files for a GAP package

The (optional) tst directory of your package may contain as many tests of the package functionality
as appears appropriate. These tests should be organised into test files similarly to those in the tst

directory of the GAP distribution as documented in 7.10.
For a deposited package, a test file with a basic test of the package (for example, to check that it

works as expected and/or that the manual examples are correct) may be specified in the component
TestFile in the PackageInfo.g to be included in the GAP standard test suite. This file can either
consist of calls of TestDirectory (7.10.3) or Test (7.10.2) (in this case, it is common to call it
testall.g) or be itself a test file having an extension .tst and supposed to be read via Test (7.10.2).
It is assumed that the latter case occurs if and only if the file contains the substring

"gap> START_TEST("

(with exactly one space after the GAP prompt).
For deposited packages, these tests are run by the GAP Group regularly, as a part of the standard

GAP test suite. For the efficient testing it is important that the test specified in the PackageInfo.g

file does not display any output (e.g. no test progress indicators) except reporting discrepancies if such
occur and the completion report as in the example below:

Example
gap> Test("tst/testall.tst");

Example package: testall.tst

true

Tests which produce extended output and/or require substantial runtime are not supposed to be a part
of the GAP standard test suite but may be placed in the tst directory of the packages with further
instructions on how to run them elsewhere.

Because of different approaches to testing, used by different packages, it is not always easy to
identify whether an automated test passed or failed. Presently, automated detection works fine if a
package uses a single .tst file or uses TestDirectory (7.10.3) with the exitGAP option set to true

to run a collection of tests and then exits GAP in a way that allows an automated test setup to determine
whether the test passed or failed:

Example
TestDirectory(DirectoriesPackageLibrary("packagename", "tst"), rec(exitGAP := true));

If one needs a more sophisticated test file, then it should end with an invocation of ForceQuitGap
(6.7.4) with an argument that indicates whether the tests overall passed (true) or failed (false or
fail). For example, if the test result is stored in a variable testresult then you can do this:

Example
ForceQuitGap(testresult);

GAP - Reference Manual 1320

76.19.2 Testing GAP package loading

To test that your package may be loaded into GAP without any problems and conflicts with other
packages, test that it may be loaded in various configurations:

• starting GAP with no packages (except needed for GAP) using -r -A options and calling
LoadPackage("packagename");

• starting GAP with no packages (except needed for GAP) using -r -A options and calling
LoadPackage("packagename" : OnlyNeeded);

• starting GAP in the default configuration (with no options) and calling
LoadPackage("packagename");

• starting GAP in the default configuration (with no options) and calling
LoadPackage("packagename" : OnlyNeeded);

• finally, together with all other packages using LoadAllPackages (76.19.3) (see below)
in four possible combinations of starting GAP with/without -r -A options and calling
LoadAllPackages (76.19.3) with/without reversed option.

The test of loading all packages is the most subtle one. Quite often it reveals problems which do not
occur in the default configuration but may cause difficulties to the users of specialised packages.

Additionally, we recommend using ShowPackageVariables (76.3.17) to see information about
variables created by your package to check if any have either short names (no more than three charac-
ters) or names breaking a recommended naming convention that the GAP core system. GAP packages
also should not use global variables starting in the lowercase (see Section 76.10).

76.19.3 LoadAllPackages

▷ LoadAllPackages(: reversed) (function)

loads all GAP packages from their list sorted in alphabetical order (needed and suggested packages
will be loaded when required). This is a technical function to check packages compatibility, so it
should NOT be used to run anything except tests; it is known that GAP performance is slower if all
packages are loaded. To introduce some variations of the order in which packages will be loaded for
testing purposes, LoadAllPackages accepts option reversed to load packages from their list sorted
in the reverse alphabetical order.

76.19.4 Testing a GAP package with the GAP standard test suite

The tst directory of the GAP installation contains a selection of test files and scripts such as
testinstall.g and teststandard.g which are a part of the GAP standard test suite.

It is important to check that your package does not break GAP standard tests. To perform a clean
test and avoid interfering with other packages, first you must start a new GAP session and then read
either testinstall.g or teststandard.g as demonstrated below.

The quicker test, testinstall.g, should run in about a minute depending on your hardware
speed. It may be started with the command

Example
gap> Read(Filename(DirectoriesLibrary("tst"), "testinstall.g"));

GAP - Reference Manual 1321

You will get a large number of lines with output about the progress of the tests, for example:
Example

You should start GAP4 using `gap -A -x 80 -r'.

Architecture: SOMETHING-SOMETHING-gcc-default64

testing:/gap-4.X.Y/tst/testinstall/alghom.tst

84 ms (55 ms GC) and 2.90MB allocated for alghom.tst

testing:/gap-4.X.Y/tst/testinstall/algmat.tst

839 ms (114 ms GC) and 219MB allocated for algmat.tst

[further lines deleted]

testing:/gap-4.X.Y/tst/testinstall/zmodnze.tst

127 ms (119 ms GC) and 1.29MB allocated for zmodnze.tst

total 62829 ms (24136 ms GC) and 8.61GB allocated

0 failures in 252 files

#I No errors detected while testing

(optionally, you may start GAP with the command line options which you will see in the test
output, to run it in a more conservative settings).

The more thorough test is teststandard.g which exercises more of GAP’s capabilities, also
including all test files from teststandard.g. It runs quite a bit longer, maybe 10-20 minutes, and
produces an output similar to the testinstall.g test. To run it, also start a new GAP session and then
call

Example
gap> Read(Filename(DirectoriesLibrary("tst"), "testall.g"));

You may repeat the same check loading your package with OnlyNeeded option. Remember to perform
each subsequent test in a new GAP session.

Also you may perform individual tests from the tst directory of the GAP installation loading
them with Test (7.10.2).

76.20 Access to the GAP Development Version

We are aiming at providing a stable platform for package development and testing with official GAP
releases. We also invite everyone to contribute by submitting patches, pull requests, and bug reports.
We would like to make the contributing process as easy as possible.

The main GAP development repository is hosted on GitHub at
https://github.com/gap-system/gap. Many GAP packages also have public repositories and
issue trackers, and we are keeping a list of such packages at https://gap-packages.github.io/.

For further information about contributing to the GAP development, please see
https://github.com/gap-system/gap/blob/master/CONTRIBUTING.md.

76.21 Version control and continuous integration for GAP packages

As we have mentioned above, many GAP packages have public repositories and issue trackers on
GitHub, and we are keeping a list of such packages at https://gap-packages.github.io/. We

https://github.com/gap-system/gap
https://gap-packages.github.io/
https://github.com/gap-system/gap/blob/master/CONTRIBUTING.md
https://gap-packages.github.io/

GAP - Reference Manual 1322

welcome establishing public repositories for new packages and migrating existing package repos-
itories there as well. Such repositories may be hosted under their authors’ accounts or under the
gap-packages organisation (https://github.com/gap-packages/). The latter has the benefit that
while the authors will preserve their deciding role on all aspects of the package development, the
package will become more visible for potential collaborators and GAP developers may help to set up
continuous integration for your package so that every commit to the repository will trigger automated
running of package tests and reporting any failures to package maintainers.

76.22 Selecting a license for a GAP Package

As it was mentioned in the description of the LICENSE file in Section 76.5, it is advised to make
clear in the documentation of the package the basis on which it is being distributed to users. GAP
itself is distributed under the GNU Public License version 2 (version 2 or later). We would en-
courage you to consider the GPL license for your packages, but you might wish to be more re-
strictive (for instance forbidding redistribution for profit) or less restrictive (allowing your soft-
ware to be incorporated into commercial software). See “Choosing a License for the Distribution
of Your Package” from https://www.gap-system.org/Packages/Authors/authors.html and
also https://choosealicense.com/ for further details.

In the past many GAP packages used the text “We adopt the copyright regulations of GAP as
detailed in the copyright notice in the GAP manual” or a similar statement. We now advise to be more
explicit by making the exact reference to the GPL license, for example:

packagename is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. and also including a copy of the full text of the license.

76.23 Releasing a GAP Package

The GAP distribution provides archives in several different formats.

.tar.gz

a standard UNIX tar archive, compressed with gzip

.tar.bz2

a standard UNIX tar archive, compressed with bzip2

.zip

an archive in zip format, where text files should have UNIX style line breaks

For convenience of possible users it is sensible that you provide an archive of your package in at
least one of these formats.

For example, if you wish to supply a .tar.gz archive, you may create it with the command
tar -cvzf packagename-version.tar.gz packagename

Because the release of the GAP package is independent of the version of GAP, a GAP package should
be wrapped up in separate file that can be installed onto any version of GAP. In this way, a package
can be upgraded any time without the need to wait for new GAP releases. To ensure this, the package
should be archived from the GAP pkg directory, that is all files are archived with the path starting at
the package’s name.

https://github.com/gap-packages/
https://www.gap-system.org/Packages/Authors/authors.html
https://choosealicense.com/
https://www.fsf.org/licenses/gpl.html

GAP - Reference Manual 1323

The archive of a GAP package should contain all files necessary for the package to work. In
particular there should be a compiled documentation, which includes the manual.six, manual.toc
and manual.lab file in the documentation subdirectory which are created by GAPDoc while TEXing
the documentation. (The first two files are needed by the GAP help system, and the manual.lab file
is needed if the main manuals or another package is referring to your package. Use the command
GAPDocManualLab(packagename); to create this file for your help books if you use GAPDoc.)

Note that wrapping the GAP distribution as a single archive containing the core system and all
currently redistributed packages, will change file timestamps, so one should not rely on them anywhere
in the package.

For packages hosted on GitHub publishing package release and establish-
ing its website can be very efficiently automated using two tools: Release-
Tools (https://github.com/gap-system/ReleaseTools) and GitHubPagesForGAP
(https://github.com/gap-system/GitHubPagesForGAP).

76.24 The homepage of a Package

If you want to distribute your package you should create its homepage containing some basic informa-
tion, archives for download, the README file with installation instructions, and a copy of the package’s
PackageInfo.g file.

The responsibility to maintain this homepage is with the package authors/maintainers.
If you tell the GAP Group about your package (say, by mail to support@gap-system.org) we

may consider either

• adding a link to your package homepage from the GAP website (thus, the package will be an
undeposited contribution);

• or redistributing the current version of your package as a part of the GAP distribution (this, the
package will be deposited), also ;

Please also consider submitting your package to the GAP package refereeing process (see
https://www.gap-system.org/Contacts/submit.html for further information).

For packages hosted on GitHub publishing package release and establishing
its website can be very efficiently automated using two tools: GitHubPagesFor-
GAP (https://github.com/gap-system/GitHubPagesForGAP) and ReleaseTools
(https://github.com/gap-system/ReleaseTools).

76.25 Some things to keep in mind

• Some packages still use for their manuals the old “gapmacro” format, support for which may be
discontinued in the future. We encourage authors of those packages to eventually convert their
documentation GAPDoc. New packages are recommended to use GAPDoc, which, for exam-
ple, is capable of creating HTML documentation with MathJax support, allows easy extraction
of examples from documentation for testing, etc. One could also use the AutoDoc which sim-
plifies writing documentation by generating most of the GAPDoc code automatically.

• The concept of an autoloaded package, which existed before GAP 4.5, has been integrated with
the needed and suggested mechanism that exists between packages. GAP itself now “needs”

https://github.com/gap-system/ReleaseTools
https://github.com/gap-system/GitHubPagesForGAP
mailto://support@gap-system.org
https://www.gap-system.org/Contacts/submit.html
https://github.com/gap-system/GitHubPagesForGAP
https://github.com/gap-system/ReleaseTools

GAP - Reference Manual 1324

certain packages (for instance GAPDoc) and “suggests” others (typically the packages that
were autoloaded). The decisions which packages GAP should need or suggest are made by
developers based on technical criteria. They can be easily overridden by a user using the new
gap.ini (see 3.2). The default file ensures that all formerly autoloaded packages are still loaded
if present.

• Optional ~/.gap directory for user’s customisations which may contain e.g. locally installed
packages (see 9.2). If package installation instructions explain how to install the package in a
non-standard location, they should mention this.

• Packages loading mechanism allows to make loading packages more informative, while avoid-
ing confusing the user with warning and error messages for packages they didn’t know they
were loading. For example, many messages are stored but not displayed using the function
LogPackageLoadingMessage (76.2.5) and there is a function DisplayPackageLoadingLog

(76.2.5) to show log messages that occur during package loading. Packages are encouraged to
use these mechanisms to report problems in loading (e.g. binaries not compiled), rather than
printing messages directly.

76.26 Package release checklists

The following checklists should be useful to package authors and maintainers, as well as to everyone
involved in the depositing and refereeing of GAP packages.

76.26.1 Checklist for releasing a new package

• Test that the package:

– does not break testinstall.g and teststandard.g, and does not slow them down
noticeably (see 76.19.4);

– may be loaded in various configurations (see 76.19.2);

– follows the guidelines of Section 76.10 about names of functions and variables;

• PackageInfo.g file:

– correctly specifies package version, release date, and package authors;

– passes validation using ValidatePackageInfo (76.3.16);

– besides mandatory components, which are required to pass validation, also has relevant
optional components (such as, for example, URLs of public source code repository and
issue tracker; hints to distinguish binary and text files in case of non-standard file names
and extensions, etc.);

• Package documentation:

– is built and included in the package archive together with its source files;

– states the same version, release date and package authors as specified in the
PackageInfo.g file;

– has the same version, release date and package authors details as stated in the
PackageInfo.g file;

GAP - Reference Manual 1325

– is searchable using the GAP help system in all formats (text, HTML and PDF);
– is clear about the license under which the package is distributed, and refers to the LICENSE

file which should be included in the package;

• Package archive(s):

– have correct permissions for all files and directories after their unpacking (755 for direc-
tories and executables, if any; 644 for other files);

– contain files with correct line breaks for the given format (see Section 76.23);
– contain no hidden system files and directories that are not supposed to be included in the

package, e.g. .gitignore, .git etc.;

• Package availability:

– not only the package archive(s), but also the PackageInfo.g and README files are avail-
able online;

76.26.2 Checklist for upgrading the package for the next major release of GAP

GAP ecosystem is not static: both the core GAP system and packages redistributed with GAP are in
constant development. GAP has a policy that changes that may have a disruptive effect on packages
redistributed with GAP should only be introduced in major GAP releases. When the next GAP major
release is prepared, a beta version for package authors will be made available in order to give them an
opportunity to check and update, if necessary, their packages for the public release of the next major
version of GAP.

The following checklist will help you to check how well your package is ready to work with the
next major release of GAP

• Check that the package functionality works as expected, package tests run with no discrepancies,
and manual examples correspond to new version of GAP. This is a convenient opportunity to
polish existing and add new tests, and improve manual examples.

• Revise package dependencies: check that the PackageInfo.g file has correct list of needed and
suggested packages (see Section 76.11).

• Revise licensing information: check that the package states clearly under which conditions it is
distributed and includes a LICENSING file with the text of a license (see Section 76.22).

• Rebuild the package documentation to update cross-references to main GAP manuals and, if
relevant, to the documentation of other GAP packages. This will ensure that cross-references
from the package manual to the main GAP manuals are correct and that the GAP help system
will be able to navigate to the more precise location in the package manual. This will also
improve the layout of the package documentation by picking up the changes in documenting
tools.

• Check if the package still relies on some obsolete variables (see Chapter 77) and replace their
usage by the new commands. To perform such check, start GAP with ‘-O‘ command line option
to disable loading obsoletes, and then load your package.

• Check for any specific advice in release notes for the beta release for package authors.

Chapter 77

Replaced and Removed Command Names

In general we try to keep GAP 4 compatible with former releases as much as possible. Nevertheless,
from time to time it seems appropriate to remove some commands or to change the names of some
commands or variables. There are various reasons for that: Some functionality was improved and
got another (hopefully better) interface, names turned out to be too special or too general for the
underlying functionality, or names are found to be unintuitive or inconsistent with other names.

In this chapter we collect such old names while pointing to the sections which explain how to
substitute them. Usually, old names will be available for several releases; they may be removed when
they don’t seem to be used any more.

Information about obsolete names is printed by Info (7.4.6) using the InfoObsolete (77.4.1)
Info class. By default InfoObsolete (77.4.1) is set to 1. Newly obsoleted identifiers should at first be
outputted at info level 2. Once they have been removed from all packages, they should then be moved
to info level 1, so they are visible to normal users, for at least one major release before being removed.

The functions DeclareObsoleteSynonym and DeclareObsoleteSynonymAttr take an optional
final parameter, specifying the info level at which the given obsolete symbol should be reported. It
defaults to 2 and 1, respectively.

The obsolete GAP code is collected in two library files, lib/obsolete.gd and
lib/obsolete.gi. By default, these files are read when GAP is started. It may be useful to omit
reading these files, for example in order to make sure that one’s own GAP code does not rely on the
obsolete variables. For that, one can use the -O command line option (see 3.1) or set the component
ReadObsolete in the file gap.ini to false (see 3.2). Note that -O command line option overrides
ReadObsolete.

(Note that the condition whether the library files with the obsolete GAP code shall be read has
changed. In GAP 4.3 and 4.4, the global variables GAP_OBSOLESCENT and GAPInfo.ReadObsolete

–to be set in the user’s .gaprc file– were used to control this behaviour.)

77.1 Group Actions – Name Changes

The concept of a group action is sometimes referred to as a “group operation”. In GAP 3 as well
as in older versions of GAP 4 the term Operation was used instead of Action. We decided to
change the names to avoid confusion with the term “operation” as in DeclareOperation (78.1.5)
and “operations for Xyz”.

Here are some examples of such name changes.

1326

GAP - Reference Manual 1327

OLD NOW USE
Operation Action (41.7.2)
RepresentativeOperation RepresentativeAction (41.6.1)
OperationHomomorphism ActionHomomorphism (41.7.1)
FunctionOperation FunctionAction (41.12.4)
IsLexicographicallyLess \< (31.11.1)

77.2 Package Interface – Obsolete Functions and Name Changes

With GAP 4.4 the package interface was changed. Thereby some functions became obsolete and the
names of some others were made more consistent.

The following functions are no longer needed: DeclarePackage, DeclareAutoPackage,
DeclarePackageDocumentation and DeclarePackageAutoDocumentation. They are substituted
by entries in the packages’ PackageInfo.g files, see 76.3.15.

Furthermore, the global variable PACKAGES_VERSIONS is no longer needed, since this information
is now contained in the GAPInfo.PackagesInfo record (see 3.5.1). The global variable Revisions

is also no longer needed, since the function DisplayRevision was made obsolete in GAP 4.5 and
removed in GAP 4.7.

The following function names were changed.

OLD NOW USE
RequirePackage LoadPackage (76.2.1)
ReadPkg ReadPackage (76.3.1)
RereadPkg RereadPackage (76.3.1)

77.3 Normal Forms of Integer Matrices – Name Changes

Former versions of GAP 4 documented several functions for computing the Smith or Hermite normal
form of integer matrices. Some of them were never implemented and it was unclear which commands
to use. The functionality of all of these commands is now available with NormalFormIntMat (25.2.9)
and a few interface functions.

77.4 Miscellaneous Name Changes or Removed Names

In former releases of GAP 4 there were some global variable names bound to general information
about the running GAP, such as path names or command line options. Although they were not offi-
cially documented they were used by several users and in some packages. We mention here BANNER

and QUIET. This type of information is now collected in the global record GAPInfo (3.5.1).
Here are some further name changes.

GAP - Reference Manual 1328

OLD NOW USE
MonomialTotalDegreeLess MonomialExtGrlexLess (66.17.14)
MultRowVector MultVectorLeft (23.4.3)
MutableCopyMat MutableCopyMatrix (26.11.4)
MutableIdentityMat IdentityMat (24.5.1)
MutableNullMat NullMat (24.5.2)
NormedVectors NormedRowVectors (61.9.11)
RadicalGroup SolvableRadical (39.12.9)

• The operation PositionFirstComponent has been deprecated in GAP 4.8 due to issues
with its documentation and implementation, and was removed in GAP 4.10. Instead of
PositionFirstComponent(list,obj), you may use PositionSorted(list,[obj]) or
PositionProperty(list,x->x[1]=obj) as a replacement, depending on your specific use
case.

• The five argument version of the operation MultRowVector has been deprecated in GAP 4.10
since it was unused and only available for coefficient lists. Note that MultRowVector was also
renamed to MultVectorLeft.

• The function TemporaryGlobalVarName has been deprecated in GAP 4.11. Code using it
typically can be restructured to not need it, e.g. by using EvalString (27.9.5).

• A bunch of synonyms have been deprecated in GAP 4.13. The alternative names have always
existed and so are safe to use even in code which is meant to run in older GAP versions.

Deprecated Recommended alternative
OneSM OneSameMutability (31.10.2)
InverseSM InverseSameMutability (31.10.8)
ZeroSM ZeroSameMutability (31.10.3)
AdditiveInverseSM AdditiveInverseSameMutability (31.10.9)
OneAttr One (31.10.2), OneImmutable (31.10.2)
InverseAttr Inverse (31.10.8), InverseImmutable (31.10.8)
ZeroAttr Zero (31.10.3), ZeroImmutable (31.10.3)
AdditiveInverseAttr AdditiveInverse (31.10.9), AdditiveInverseImmutable (31.10.9)

77.4.1 InfoObsolete

▷ InfoObsolete (info class)

is an info class to display warnings when an obsolete variable is used. By default, the info level for
this class is set to 1, which will only show variables which will be removed in the next major version
of GAP. Setting it to 2 will trigger further warnings, for variables which have alternative names, or
may be removed in future. This class can be set to 0 to disable all obsolete warnings.

To check that the GAP code does not use any obsolete variables at parsing time, and not at a
runtime, use the -O command line option, see 3.1.

GAP - Reference Manual 1329

77.5 The former .gaprc file

Up to GAP 4.4, a file .gaprc in the user’s home directory (if available, and GAP was started without
-r option) was read automatically during startup, early enough for influencing the autoloading of
packages and late enough for being allowed to execute any GAP code. On Windows machines this
file was called gap.rc.

In GAP 4.5 the startup mechanism has changed, see 3.2 for details. These new configuration files
are now contained in a directory GAPInfo.UserGapRoot.

For the sake of partial backwards compatibility, also the former file ~/.gaprc is still supported for
such initializations, but this file is read only if the directory GAPInfo.UserGapRoot does not exist. In
that case the ~/.gaprc is read at the same time as gaprc would be read, i. e., too late for influencing
the startup of GAP.

As before, the command line option -r disables reading ~/.gaprc, see 3.1.
To migrate from the old setup to the new one introduced with GAP 4.5, first have a look at the

function WriteGapIniFile (3.2.3). Many users will find that all or most of what was set in the old
~/.gaprc file can now be done via the user preferences in a gap.ini file. If you had code for new
functions or abbreviations in your old ~/.gaprc file or you were reading additional files, then move
this into the file gaprc (without the leading dot, same name for all operating systems) in the directory
GAPInfo.UserGapRoot.

77.6 Semigroup properties

Until Version 4.8 of GAP there was inconsistent use of the following properties of semi-
groups: IsGroupAsSemigroup, IsMonoidAsSemigroup, and IsSemilatticeAsSemigroup.
IsGroupAsSemigroup was true for semigroups that mathematically defined a group, and for
semigroups in the category IsGroup (39.2.7); IsMonoidAsSemigroup was true for semigroups
that mathematically defined monoids, but did not belong to the category IsMonoid (51.2.1);
and IsSemilatticeAsSemigroup was simply a property of semigroups, there is no category
IsSemilattice.

From Version 4.8 onwards, IsMonoidAsSemigroup returns true for semigroups in the category
IsMonoid (51.2.1), and IsSemilatticeAsSemigroup has been moved to the Semigroups under the
new name IsSemilattice (Semigroups: IsSemilattice).

Chapter 78

Method Selection

This chapter explains how GAP decides which function to call for which types of objects. It assumes
that you have read the chapters about objects (Chapter 12) and types (Chapter 13).

An operation is a special GAP function that bundles a set of functions, its methods.
All methods of an operation compute the same result. But each method is installed for specific

types of arguments.
If an operation is called with a tuple of arguments, one of the applicable methods is selected and

called.
Special cases of methods are partial methods, immediate methods, and logical implications.

78.1 Operations and Methods

Operations are functions in the category IsOperation (78.1.1).
So on the one hand, operations are GAP functions, that is, they can be applied to arguments and

return a result or cause a side-effect.
On the other hand, operations are more. Namely, an operation corresponds to a set of GAP

functions, called the methods of the operation.
Each call of an operation causes a suitable method to be selected and then called. The choice of

which method to select is made according to the types of the arguments, the underlying mechanism is
described in the following sections.

Examples of operations are the binary infix operators =, + etc., and PrintObj (6.3.5) is the opera-
tion that is called for each argument of Print (6.3.4).

Also all attributes and properties are operations. Each attribute has a special method which is
called if the attribute value is already stored; this method of course simply returns this value.

The setter of an attribute is called automatically if an attribute value has been computed. Attribute
setters are operations, too. They have a default method that ignores the request to store the value.
Depending on the type of the object, there may be another method to store the value in a suitable way,
and then set the attribute tester for the object to true.

78.1.1 IsOperation

▷ IsOperation(obj) (Category)

is the category of operations. Every operation is a function, but not vice versa.

1330

GAP - Reference Manual 1331

Example
gap> MinimalPolynomial;

<Operation "MinimalPolynomial">

gap> IsOperation(MinimalPolynomial);

true

gap> IsFunction(MinimalPolynomial);

true

gap> Factorial;

function(n) ... end

gap> IsOperation(Factorial);

false

78.1.2 TypeOfOperation

▷ TypeOfOperation(object) (function)

returns a string from the list ["Attribute", "Operation", "Property", "Category",

"Representation", "Filter", "Setter"] reflecting which type of operation op is.
(see 13.3, 13.4, 13.5, 13.6, 13.7, 13.8)

78.1.3 ShowDeclarationsOfOperation

▷ ShowDeclarationsOfOperation(oper) (function)

Displays information about all declarations of the operation oper , including the location of each
declaration and the argument filters.

Example
gap> ShowDeclarationsOfOperation(IsFinite);

Available declarations for operation <Property "IsFinite">:

1: GAPROOT/lib/coll.gd:1451 with 1 argument, and filters [IsListOrCollection]

2: GAPROOT/lib/float.gd:212 with 1 argument, and filters [IsFloat]

3: GAPROOT/lib/ctbl.gd:1195 with 1 argument, and filters [IsNearlyCharacterTable]

78.1.4 NewOperation

▷ NewOperation(name, args-filts) (function)

NewOperation returns an operation opr with name name . The list args-filts describes re-
quirements about the arguments of opr , namely the number of arguments must be equal to the length
of args-filts , and the i-th argument must lie in the filter args-filts [i].

Each method that is installed for opr via InstallMethod (78.3.1) must require that the i-th
argument lies in the filter args-filts [i].

One can install methods for other argument tuples via InstallOtherMethod (78.3.2), this way it
is also possible to install methods for a different number of arguments than the length of args-filts .

78.1.5 DeclareOperation

▷ DeclareOperation(name, filters) (function)

GAP - Reference Manual 1332

does the same as NewOperation (78.1.4) and then binds the new operation to the global variable
name . The variable must previously be writable, and is made read-only by this function.

78.1.6 Tag Based Operations

▷ NewTagBasedOperation(name, requirements) (function)

▷ DeclareTagBasedOperation(name, requirements) (function)

▷ InstallTagBasedMethod(oper[, tag], meth) (function)

NewTagBasedOperation returns an operation with name name that is declared as tag based w.r.t.
the list requirements of filters for its arguments. If an operation with name name exists already
before the call then this operation is returned, otherwise a new operation gets created.

DeclareTagBasedOperation does the same and additionally binds the returned operation to the
global variable name if the operation is new.

Declaring the operation oper as tag based w.r.t. requirements means that
InstallTagBasedMethod can be used to install the method meth for oper , a function whose
arguments satisfy requirements , with the following meaning.

• The method meth is applicable if the first argument of the call to oper is identical (in
the sense of IsIdenticalObj (12.5.1)) with the tag tag that has been specified in the
InstallTagBasedMethod call.

• If none of the tag based methods for oper has a tag that is identical with the first argument of
the call to oper and if there is a tag based method for oper for which no tag was specified
then this method is applicable.

Thus at most one tag based method for oper is applicable, and if a method without tag has been
installed then it serves as the default method. This is in contrast to the situation with constructors (see
78.2) where the first argument is a filter that is used as a tag, but several methods can be applicable in
a call to a constructor and one cannot define a default method for it.

Typical use cases for tag based operations are operations that shall create objects in particular
internal representations; the filters that define these representations are then used as the first argument,
and one wants that either the unique method that belongs to this filter or a default method is called.

Currently it is possible to declare an operation as tag based only for one list of requirements.
Installing methods with InstallMethod (78.3.1) for a tag based operation is possible. However,

installing such methods with the same requirements as the ones for the tag based methods will have no
effect because the handling of tag based methods gets installed with InstallEarlyMethod (78.3.3)
and thus has higher priority.

78.2 Constructors

Constructors are a special type of operation used to make new objects. The key difference compared
to regular operations is that method selection works slightly differently for them: The first argument
in a call to a constructor must always be a filter 13.2. The result of a method is expected to lie in
that filter. Moreover, while normally method selection matches on the type of each argument, for a
constructor the first argument is treated differently: instead of matching its type, the argument itself

GAP - Reference Manual 1333

(which is a filter) must be a subset of the filter specified by the method which is being tested for match.
In other words, the argument filter must imply the method filter.

Also, method ranking works differently: instead of the sum of the ranks of the types of all argu-
ments, only the rank of the filter given as first argument is considered; and for it, the normal ranking
order is reversed. This ensures that if multiple constructor methods match, the “most general” method
is selected.

Example
gap> DeclareConstructor("XCons",[IsMagma,IsInt]);

gap> InstallMethod(XCons, [IsGroup, IsInt], function(t,x) return CyclicGroup(x); end);

gap> InstallMethod(XCons, [IsPermGroup, IsInt], function(t,x) return SymmetricGroup(x); end);

gap> InstallMethod(XCons, [IsSemigroup, IsInt], function(t,x) return FullTransformationMonoid(x); end);

gap> XCons(IsGroup,3);

<pc group of size 3 with 1 generator>

gap> XCons(IsPermGroup,3);

Sym([1 .. 3])

gap> XCons(IsSemigroup,4);

<full transformation monoid of degree 4>

gap> # if multiple methods match, the most general is selected:

gap> XCons(IsMagma,3);

<full transformation monoid of degree 3>

The example above shows some basic examples (usually a constructor will produce isomorphic objects
in different representations, not different objects as in this case).

If no method has been installed which guarantees to produce a suitable objecty, a "No Method
Found" error will be returned.

Example
gap> XCons(IsFullTransformationMonoid,4);

Error, no method found! For debugging hints type ?Recovery from NoMethodFound

Error, no 1st choice method found for `XCons' on 2 arguments called from

<function "HANDLE_METHOD_NOT_FOUND">(<arguments>)

called from read-eval loop at line 8 of *stdin*

you can 'quit;' to quit to outer loop, or

you can 'return;' to continue

brk> quit;

gap> XCons(IsNilpotentGroup,4);

Error, no method found! For debugging hints type ?Recovery from NoMethodFound

Error, no 1st choice method found for `XCons' on 2 arguments called from

<function "HANDLE_METHOD_NOT_FOUND">(<arguments>)

called from read-eval loop at line 9 of *stdin*

you can 'quit;' to quit to outer loop, or

you can 'return;' to continue

brk>

Note that in both these cases there are methods that actually produce results of the required types, but
they have not been installed with this information, so are not selected.

78.2.1 NewConstructor

▷ NewConstructor(name, args-filts) (function)

GAP - Reference Manual 1334

NewConstructor returns a constructor cons with name name . The list args-filts describes
requirements about the arguments of cons . Namely the number of arguments must be equal to the
length of args-filts , and the i-th argument must lie in the filter args-filts [i] for i ̸= 1. A con-
structor expects the first argument to be a filter instead of an object and it must be a subset of the filter
args-filts [1].

Each method that is installed for cons via InstallMethod (78.3.1) must require that the i-th
argument lies in the filter args-filts [i] for i ̸= 1. Its first argument is a filter and must be a subset of
the filter args-filts [1].

One can install methods for other argument tuples via InstallOtherMethod (78.3.2), this way it
is also possible to install methods for a different number of arguments than the length of args-filts .

Note that the method selection for constructors works slightly differently than for usual opera-
tions. As stated above, applicabilty to the first argument in an argument tuple is tested by determining
whether the argument-filter is a subset of args-filts [1].

The rank of a method installed for a constructor is determined solely by args-filts [1] of the
method. Instead of taking the sum of the ranks of filters involved in its args-filts [1], the sum of −1
times these values is taken. The result is added to the number val used in the call of InstallMethod
(78.3.1).

This has the following effects on the method selection for constructors. If cons is called with
an argument tuple whose first argument is the filter filt , any method whose first argument is more
specific than filt is applicable (if its other args-filts also match). Then the method with the
“most general” filter args-filts [1] is chosen, since the rank is computed by taking −1 times the
ranks of the involved filters. Thus, a constructor is chosen which returns an object in filt using as
few extra filters as possible, which presumably is both more flexible to use and easier to construct.

The following example showcases this behaviour. Note that the argument filter is only used for
method dispatch.

Example
DeclareFilter("IsMyObj");

DeclareFilter("IsMyFilter");

DeclareFilter("IsMyOtherFilter");

BindGlobal("MyFamily", NewFamily("MyFamily"));

DeclareConstructor("NewMyObj", [IsMyObj]);

InstallMethod(NewMyObj,

[IsMyObj],

function(filter)

local type;

Print("General constructor\n");

type := NewType(MyFamily, IsMyObj);

return Objectify(type, []);

end);

InstallMethod(NewMyObj,

[IsMyObj and IsMyFilter and IsMyOtherFilter],

function(filter)

local type;

Print("Special constructor\n");

type := NewType(MyFamily, IsMyObj and IsMyFilter and IsMyOtherFilter);

return Objectify(type, []);

end);

GAP - Reference Manual 1335

If only IsMyObj is given, both methods are applicable and the general constructor is called. If also
IsMyFilter is given, only the special constructor is applicable.

Example
gap> a := NewMyObj(IsMyObj);;

General constructor

gap> IsMyOtherFilter(a);

false

gap> b := NewMyObj(IsMyObj and IsMyFilter);;

Special constructor

gap> IsMyOtherFilter(b);

true

gap> c := NewMyObj(IsMyObj and IsMyFilter and IsMyOtherFilter);;

Special constructor

gap> IsMyOtherFilter(c);

true

78.2.2 DeclareConstructor

▷ DeclareConstructor(name, filters) (function)

does the same as NewConstructor (78.2.1) and then binds the result to the global variable name .
The variable must previously be writable, and is made read-only by this function.

Note that for operations which are constructors special rules with respect to applicability and rank
of the corresponding methods apply (see section NewConstructor (78.2.1)).

78.3 Method Installation

In order to describe what it means to select a method of an operation, we must describe how the
methods are connected to their operations.

For attributes and properties there is InstallImmediateMethod (78.7.1).
For declaring that a filter is implied by other filters there is InstallTrueMethod (78.8.1).

78.3.1 InstallMethod

▷ InstallMethod(opr[, info][, famp], args-filts[, val], method) (function)

installs a function method method for the operation opr ; args-filts should be a list of require-
ments for the arguments, each entry being a filter; if supplied info should be a short but informative
string that describes for what situation the method is installed, famp should be a function to be applied
to the families of the arguments. val should be an integer that measures the priority of the method, or
a function of no arguments which should return such an integer and will be called each time method
order is being recalculated (see InstallTrueMethod (78.8.1)).

The default values for info , famp , and val are the empty string, the function ReturnTrue

(5.4.1), and the integer zero, respectively.
The exact meaning of the arguments famp , args-filts , and val is explained in Section 78.4.
opr expects its methods to require certain filters for their arguments. For example, the argument

of a method for the operation Zero (31.10.3) must be in the category IsAdditiveElementWithZero

(31.14.5). It is not possible to use InstallMethod to install a method for which the entries of

GAP - Reference Manual 1336

args-filts do not imply the respective requirements of the operation opr . If one wants to over-
ride this restriction, one has to use InstallOtherMethod (78.3.2) instead.

78.3.2 InstallOtherMethod

▷ InstallOtherMethod(opr[, info][, famp], args-filts[, val], method) (function)

installs a function method method for the operation opr , in the same way as for InstallMethod
(78.3.1), but without the restriction that the number of arguments must match a declaration of opr and
without the restriction that args-filts imply the respective requirements of the operation opr .

78.3.3 InstallEarlyMethod

▷ InstallEarlyMethod(opr, method) (function)

installs a special "early" function method method for the operation opr . An early method is
special in that it bypasses method dispatch, and is always the first method to be called when invoking
the operation.

This can be used to avoid method selection overhead for certain special cases, i.e., as an optimiza-
tion. Overall, we recommend to use this feature very sparingly, as it is tool with sharp edges: for
example, any inputs that are handled by an early method can not be intercepted by a regular method,
no matter how high its rank is; this can preclude other kinds of optimizations.

Also, unlike regular methods, no checks are performed on the arguments. Not even the required
filters for the operation are tested, so early methods must be careful in validating their inputs. This
also means that any operation can have at most one such early method for each arity (i.e., one early
method taking 1 argument, one early method taking 2 arguments, etc.).

If an early method determines that it is not applicable, it can resume regular method dispatch by
invoking TryNextMethod (78.5.1).

For an example application of early methods, they are used by First (21.20.21) to deal with
internal lists, for which computing the exact type (needed for method selection) can be very expensive.

78.3.4 InstallMethodWithRandomSource

▷ InstallMethodWithRandomSource(opr, info[, famp], args-filts[, val], method)

(function)

▷ InstallOtherMethodWithRandomSource(opr, info[, famp], args-filts[, val],

method) (function)

These functions are designed to simplify adding new methods for Random (30.7.1), PseudoRandom
(30.7.2), and Randomize (26.6.4) to GAP which can be called both with, and without, a random
source.

They accept the same arguments as InstallMethod (78.3.1) and InstallOtherMethod (78.3.2),
with the extra requirement that the first member of args-filts must be IsRandomSource (14.7.1),
and the info argument is compulsory and must begin ’for a random source and’.

This function then installs two methods: first it calls InstallMethod (78.3.1) (or
InstallOtherMethod (78.3.2)) with unchanged arguments. Then it calls InstallMethod (78.3.1)

GAP - Reference Manual 1337

(or InstallOtherMethod (78.3.2)) a second time to install another method which lacks the ini-
tial random source argument; this additional method simply invokes the original method, with
GlobalMersenneTwister (14.7.4) added as first argument.

78.4 Applicable Methods and Method Selection

A method installed as above is applicable for an arguments tuple if the following conditions are
satisfied.

The number of arguments equals the length of the list args-filts , the i-th argument lies in the
filter args-filts [i], and famp returns true when applied to the families of the arguments. The
maximal number of arguments supported for methods is six, one gets an error message if one tries to
install a method with at least seven arguments.

So args-filt describes conditions for each argument, and famp describes a relation between the
arguments.

For unary operations such as attributes and properties, there is no such relation to postulate, famp
is ReturnTrue (5.4.1) for these operations, a function that always returns true. For binary operations,
the usual value of famp is IsIdenticalObj (12.5.1), which means that both arguments must lie in
the same family.

Note that any properties which occur among the filters in the filter list will not be tested by the
method selection if they are not yet known. (More exact: if prop is a property then the filter implicitly
uses not prop but Hasprop and prop .) If this is desired you must explicitly enforce a test (see
section 78.6) below.

If no method is applicable, the error message “no method found” is signaled.
Otherwise, the applicable method with highest rank is selected and then called. This rank is given

by the sum of the ranks of the filters in the list args-filt , including involved filters, plus the number
val used in the call of InstallMethod (78.3.1). So the argument val can be used to raise the priority
of a method relative to other methods for opr .

Note that for operations which are constructors special rules with respect to applicability and rank
of the corresponding methods apply (see NewConstructor (78.2.1)).

Note that from the applicable methods an efficient one shall be selected. This is a method that
needs only little time and storage for the computations.

It seems to be impossible for GAP to select an optimal method in all cases. The present ranking
of methods is based on the assumption that a method installed for a special situation shall be preferred
to a method installed for a more general situation.

For example, a method for computing a Sylow subgroup of a nilpotent group is expected to be
more efficient than a method for arbitrary groups. So the more specific method will be selected if
GAP knows that the group given as argument is nilpotent.

Of course there is no obvious way to decide between the efficiency of incommensurable methods.
For example, take an operation with one method for permutation groups, another method for nilpotent
groups, but no method for nilpotent permutation groups, and call this operation with a permutation
group known to be nilpotent.

GAP - Reference Manual 1338

78.5 Partial Methods

78.5.1 TryNextMethod

▷ TryNextMethod() (function)

After a method has been selected and called, the method may recognize that it cannot compute the
desired result, and give up by calling TryNextMethod().

In effect, the execution of the method is terminated, and the method selection calls the next method
that is applicable w.r.t. the original arguments. In other words, the applicable method is called that is
subsequent to the one that called TryNextMethod, according to decreasing rank of the methods.

For example, since every finite group of odd order is solvable, one may install a method for the
property IsSolvableGroup (39.15.6) that checks whether the size of the argument is an odd integer,
returns true if so, and gives up otherwise.

Care is needed if a partial method might modify the type of one of its arguments, for example by
computing an attribute or property. If this happens, and the type has really changed, then the method
should not exit using TryNextMethod() but should call the operation again, as the new information in
the type may cause some methods previously judged inapplicable to be applicable. For example, if the
above method for IsSolvableGroup (39.15.6) actually computes the size, (rather than just examining
a stored size), then it must take care to check whether the type of the group has changed.

78.6 Redispatching

As mentioned above the method selection will not test unknown properties. In situations, in which
algorithms are only known (or implemented) under certain conditions, however such a test might be
actually desired.

One way to achieve this would be to install the method under weaker conditions and explicitly test
the properties first, exiting via TryNextMethod (78.5.1) if some of them are not fulfilled. A problem
of this approach however is that such methods then automatically are ranked lower and that the code
does not look nice.

A much better way is to use redispatching: Before deciding that no method has been found one
tests these properties and if they turn out to be true the method selection is started anew (and will then
find a method).

This can be achieved via the following function:

78.6.1 RedispatchOnCondition

▷ RedispatchOnCondition(oper[, info], fampred, reqs, cond, val) (function)

This function installs a method for the operation oper under the conditions fampred and reqs

which has absolute value val ; that is, the value of the filters reqs is disregarded. cond is a list of
filters. If not all the values of properties involved in these filters are already known for actual arguments
of the method, they are explicitly tested and if they are fulfilled and stored after this test, the operation
is dispatched again. Otherwise the method exits with TryNextMethod (78.5.1). If supplied, info
should be a short but informative string that describes these conditions. This can be used to enforce
tests like IsFinite (30.4.2) in situations when all existing methods require this property. The list

GAP - Reference Manual 1339

cond may have unbound entries in which case the corresponding argument is ignored for further
tests.

78.7 Immediate Methods

Usually a method is called only if its operation has been called and if this method has been selected,
see InstallMethod (78.3.1).

For attributes and properties, one can install also immediate methods.

78.7.1 InstallImmediateMethod

▷ InstallImmediateMethod(opr[, info], filter, rank, method) (function)

InstallImmediateMethod installs method as an immediate method for opr , which must be an
attribute or a property, with requirement filter and rank rank (the rank can be omitted, in which
case 0 is used as rank). The rank must be an integer value that measures the priority of method
among the immediate methods for opr . If supplied, info should be a short but informative string that
describes the situation in which the method is called.

An immediate method is called automatically as soon as the object lies in filter , provided that
the value is not yet known. Afterwards the attribute setter is called in order to store the value, unless
the method exits via TryNextMethod (78.5.1).

Note the difference to InstallMethod (78.3.1) that no family predicate occurs because opr ex-
pects only one argument, and that filter is not a list of requirements but the argument requirement
itself.

Immediate methods are thought of as a possibility for objects to gain useful knowledge. They
must not be used to force the storing of “defining information” in an object. In other words,
GAP should work even if all immediate methods are completely disabled. Therefore, the call to
InstallImmediateMethod installs method also as an ordinary method for opr with requirement
filter .

Note that in such a case GAP executes a computation for which it was not explicitly asked by the
user. So one should install only those methods as immediate methods that are extremely cheap. To
emphasize this, immediate methods are also called zero cost methods. The time for their execution
should really be approximately zero.

For example, the size of a permutation group can be computed very cheaply if a stabilizer chain of
the group is known. So it is reasonable to install an immediate method for Size (30.4.6) with require-
ment IsGroup and Tester(stab), where stab is the attribute corresponding to the stabilizer
chain.

Another example would be the implementation of the conclusion that every finite group of prime
power order is nilpotent. This could be done by installing an immediate method for the attribute
IsNilpotentGroup (39.15.3) with requirement IsGroup and Tester(Size). This method
would then check whether the size is a finite prime power, return true in this case and otherwise
call TryNextMethod (78.5.1). But this requires factoring of an integer, which cannot be guaranteed
to be very cheap, so one should not install this method as an immediate method.

GAP - Reference Manual 1340

78.7.2 IsNoImmediateMethodsObject

▷ IsNoImmediateMethodsObject(obj) (filter)

If this filter is set immediate methods will be ignored for obj . This can be crucial for performance
for objects like pcgs (see Section 45.1), of which many are created, which are collections, but for
which all those immediate methods for IsTrivial (30.4.3) et cetera do not really make sense. Other
examples of objects in IsNoImmediateMethodsObject are compressed vectors and matrices over
small finite fields, see the sections 23.3 and 24.14.

78.8 Logical Implications

78.8.1 InstallTrueMethod

▷ InstallTrueMethod(newfil, filt) (function)

It may happen that a filter newfil shall be implied by another filter filt , which is usually a meet
of other properties, or the meet of some properties and some categories. Such a logical implication can
be installed as an “immediate method” for newfil that requires filt and that always returns true.
(This should not be mixed up with the methods installed via InstallImmediateMethod (78.7.1),
which have to be called at runtime for the actual objects.)

InstallTrueMethod has the effect that newfil becomes an implied filter of filt , see 13.2.
For example, each cyclic group is abelian, each finite vector space is finite dimensional, and each

division ring is integral. The first of these implications is installed as follows.
Example

InstallTrueMethod(IsCommutative, IsGroup and IsCyclic);

Contrary to the immediate methods installed with InstallImmediateMethod (78.7.1), logical
implications cannot be switched off. This means that after the above implication has been installed,
one can rely on the fact that every object in the filter IsGroup and IsCyclic whose type gets cre-
ated after the installation of the implication will also be in the filter IsCommutative (35.4.9). In
particular, it may happen that an object which existed already before the installation of the implication
lies in IsGroup and IsCyclic but not in IsCommutative (35.4.9). Thus it is advisable to install all
implications between filters before one starts creating (types of) objects lying in these filters.

Adding logical implications can change the rank of filters (see RankFilter (13.2.1)) and
consequently the rank, and so choice of methods for operations (see 78.4). By default
InstallTrueMethod adjusts the method selection data structures to take care of this, but
this process can be time-consuming, so functions SuspendMethodReordering (78.8.2) and
ResumeMethodReordering (78.8.2) are provided to allow control of this process.

78.8.2 SuspendMethodReordering

▷ SuspendMethodReordering() (function)

▷ ResumeMethodReordering() (function)

▷ ResetMethodReordering() (function)

GAP - Reference Manual 1341

These functions control whether the method reordering process described in InstallTrueMethod
(78.8.1) is invoked or not. Since this process can be comparatively time-consuming, it is usually
suspended when a lot of implications are due to be installed, for instance when loading the library,
or a package. This is done by calling SuspendMethodReordering once the installations are done,
ResumeMethodReordering should be called. These pairs of calls can be nested. When the outer-
most pair is complete, method reordering takes place and is enabled in InstallTrueMethod (78.8.1)
thereafter. ResetMethodReordering effectively exits all nested suspensions, resuming reordering
immediately. This function is mainly provided for error recovery and similar purposes and is called
on quitting from a break loop.

78.9 Operations and Mathematical Terms

Usually an operation stands for a mathematical concept, and the name of the operation describes this
uniquely. Examples are the property IsFinite (30.4.2) and the attribute Size (30.4.6). But there are
cases where the same mathematical term is used to denote different concepts, for example Degree is
defined for polynomials, group characters, and permutation actions, and Rank is defined for matrices,
free modules, p-groups, and transitive permutation actions.

It is in principle possible to install methods for the operation Rank that are applicable to the
different types of arguments, corresponding to the different contexts. But this is not the approach
taken in the GAP library. Instead there are operations such as RankMat (24.7.1) for matrices and
DegreeOfCharacter (72.8.4) (in fact these are attributes) which are installed as methods of the “am-
biguous” operations Rank and Degree.

The idea is to distinguish between on the one hand different ways to compute the same thing
(e.g. different methods for \= (31.11.1), Size (30.4.6), etc.), and on the other hand genuinely different
things (such as the degree of a polynomial and a permutation action).

The former is the basic purpose of operations and attributes. The latter is provided as a user
convenience where mathematical usage forces it on us and where no conflicts arise. In programming
the library, we use the underlying mathematically precise operations or attributes, such as RankMat
(24.7.1) and RankAction (41.10.3). These should be attributes if appropriate, and the only role of the
operation Rank is to decide which attribute the user meant. That way, stored information is stored with
“full mathematical precision” and is less likely to be retrieved for a wrong purpose later.

One word about possible conflicts. A typical example is the mathematical term “centre”, which
is defined as {x ∈ M|a ∗ x = x ∗ a∀a ∈ M} for a magma M, and as {x ∈ L|l ∗ x = 0∀l ∈ L} for a Lie
algebra L. Here it is not possible to introduce an operation Centre (35.4.5) that delegates to attributes
CentreOfMagma and CentreOfLieAlgebra, depending on the type of the argument. This is because
any Lie algebra in GAP is also a magma, so both CentreOfMagma and CentreOfLieAlgebra would
be defined for a Lie algebra, with different meaning if the characteristic is two. So we cannot achieve
that one operation in GAP corresponds to the mathematical term “centre”.

“Ambiguous” operations such as Rank are declared in the library file lib/overload.g.

Chapter 79

Creating New Objects

This chapter is divided into three parts.
In the first part, it is explained how to create objects with given type (see 79.1).
In the second part, first a few small examples are given, for dealing with the usual cases of com-

ponent objects (see 79.2) and positional objects (see 79.3), and for the implementation of new kinds
of lists (see 79.4 and 79.7). Finally, the external representation of objects is introduced (see 79.8), as
a tool for representation independent access to an object.

The third part deals with some rules concerning the organization of the GAP library; namely,
some commands for creating global variables are explained (see 79.10) that correspond to the ones
discussed in the first part of the chapter, and the idea of distinguishing declaration and implementation
part of GAP packages is outlined (see 79.11).

See also Chapter 81 for examples how the functions from the first part are used, and why it is
useful to have a declaration part and an implementation part.

79.1 Creating Objects

79.1.1 Objectify

▷ Objectify(type, data) (function)

New objects are created by Objectify. data must be a plain list or a plain record, and type is
the type that the desired object shall have. Objectify turns data into an object with type type . That
is, data is changed, and afterwards it will not be a list or a record unless type is of type list resp.
record.

If data is a list then Objectify turns it into a positional object, if data is a record then
Objectify turns it into a component object (for examples, see 79.2 and 79.3).

Objectify does also return the object that it made out of data .
For examples where Objectify is used, see 79.2, 79.3, and the example in Chapter 81.

79.1.2 ObjectifyWithAttributes

▷ ObjectifyWithAttributes(obj, type, attr1, val1, attr2, val2, ...) (function)

Attribute assignments will change the type of an object. If you create many objects, code of the
form

1342

GAP - Reference Manual 1343

Example
o:=Objectify(type,rec());

SetMyAttribute(o,value);

will take a lot of time for type changes. You can avoid this by setting the attributes immediately
while the object is created, as follows. ObjectifyWithAttributes takes a plain list or record obj

and turns it an object just like Objectify (79.1.1) and sets attribute attr1 to val1 , sets attribute
attr2 to val2 and so forth.

If the filter list of type includes that these attributes are set (and the properties also include values
of the properties) and if no special setter methods are installed for any of the involved attributes then
they are set simultaneously without type changes. This can produce a substantial speedup.

If the conditions of the last sentence are not fulfilled, an ordinary Objectify (79.1.1) with subse-
quent setter calls for the attributes is performed instead.

79.2 Component Objects

A component object is an object in the representation IsComponentObjectRep (13.4.1) or a subrep-
resentation of it. Such an object cobj is built from subobjects that can be accessed via cobj!.name ,
similar to components of a record. Also analogously to records, values can be assigned to components
of cobj via cobj!.name:= val . For the creation of component objects, see 79.1. One must be very
careful when using the !. operator, in order to interpret the component in the right way, and even
more careful when using the assignment to components using !., in order to keep the information
stored in cobj consistent.

First of all, in the access or assignment to a component as shown above, name must be among
the admissible component names for the representation of cobj , see NewRepresentation (13.4.4).
Second, preferably only few low level functions should use !., whereas this operator should not occur
in “user interactions”.

Note that even if cobj claims that it is immutable, i.e., if cobj is not in the category IsMutable

(12.6.2), access and assignment via !. and !.:= work. This is necessary for being able to store newly
discovered information in immutable objects.

The following example shows the implementation of an iterator (see 30.8) for the domain of inte-
gers, which is represented as component object. See 79.3 for an implementation using positional ob-
jects. (In practice, such an iterator can be implemented more elegantly using IteratorByFunctions

(30.8.8), see 79.6.)
The used succession of integers is 0,1,−1,2,−2,3,−3, . . ., that is, an = n/2 if n is even, and

an = (1−n)/2 otherwise.
Example

DeclareRepresentation("IsIntegersIteratorCompRep",

IsComponentObjectRep, ["counter"]);

The above command creates a new representation (see NewRepresentation (13.4.4))
IsIntegersIteratorCompRep, as a subrepresentation of IsComponentObjectRep (13.4.1), and
with one admissible component counter. So no other components than counter will be needed.

Example
InstallMethod(Iterator,

"method for `Integers'",

GAP - Reference Manual 1344

[IsIntegers],

function(Integers)

return Objectify(NewType(IteratorsFamily,

IsIterator

and IsIntegersIteratorCompRep),

rec(counter := 0));

end);

After the above method installation, one can already ask for Iterator(Integers). Note that
exactly the domain of integers is described by the filter IsIntegers (14.1.2).

By the call to NewType (13.9.3), the returned object lies in the family containing all iterators,
which is IteratorsFamily, it lies in the category IsIterator (30.8.3) and in the representation
IsIntegersIteratorCompRep; furthermore, it has the component counter with value 0.

What is missing now are methods for the two basic operations of iterators, namely
IsDoneIterator (30.8.4) and NextIterator (30.8.5). The former must always return false, since
there are infinitely many integers. The latter must return the next integer in the iteration, and update
the information stored in the iterator, that is, increase the value of the component counter.

Example
InstallMethod(IsDoneIterator,

"method for iterator of `Integers'",

[IsIterator and IsIntegersIteratorCompRep],

ReturnFalse);

InstallMethod(NextIterator,

"method for iterator of `Integers'",

[IsIntegersIteratorCompRep],

function(iter)

iter!.counter:= iter!.counter + 1;

if iter!.counter mod 2 = 0 then

return iter!.counter / 2;

else

return (1 - iter!.counter) / 2;

fi;

end);

79.2.1 NamesOfComponents

▷ NamesOfComponents(comobj) (function)

For a component object comobj , NamesOfComponents returns a list of strings, which are the
names of components currently bound in comobj .

For a record comobj in internal representation, NamesOfComponents returns the result of
RecNames (29.1.2).

79.3 Positional Objects

A positional object is an object in the representation IsPositionalObjectRep (13.4.1) or a subrep-
resentation of it. Such an object pobj is built from subobjects that can be accessed via pobj![pos],

GAP - Reference Manual 1345

similar to positions in a list. Also analogously to lists, values can be assigned to positions of pobj via
pobj![pos]:= val . For the creation of positional objects, see 79.1.

One must be very careful when using the ![] operator, in order to interpret the position in the
right way, and even more careful when using the assignment to positions using ![], in order to keep
the information stored in pobj consistent.

First of all, in the access or assignment to a position as shown above, pos must be among the ad-
missible positions for the representation of pobj , see NewRepresentation (13.4.4). Second, prefer-
ably only few low level functions should use ![], whereas this operator should not occur in “user
interactions”.

Note that even if pobj claims that it is immutable, i.e., if pobj is not in the category IsMutable

(12.6.2), access and assignment via ![] work. This is necessary for being able to store newly discov-
ered information in immutable objects.

The following example shows the implementation of an iterator (see 30.8) for the domain of in-
tegers, which is represented as positional object. See 79.2 for an implementation using component
objects, and more details.

Example
DeclareRepresentation("IsIntegersIteratorPosRep",

IsPositionalObjectRep, [1]);

The above command creates a new representation (see NewRepresentation (13.4.4))
IsIntegersIteratorPosRep, as a subrepresentation of IsPositionalObjectRep (13.4.1), and
with only the first position being admissible for storing data.

Example
InstallMethod(Iterator,

"method for `Integers'",

[IsIntegers],

function(Integers)

return Objectify(NewType(IteratorsFamily,

IsIterator

and IsIntegersIteratorPosRep),

[0]);

end);

After the above method installation, one can already ask for Iterator(Integers). Note that
exactly the domain of integers is described by the filter IsIntegers (14.1.2).

By the call to NewType (13.9.3), the returned object lies in the family containing all iterators,
which is IteratorsFamily, it lies in the category IsIterator (30.8.3) and in the representation
IsIntegersIteratorPosRep; furthermore, the first position has value 0.

What is missing now are methods for the two basic operations of iterators, namely
IsDoneIterator (30.8.4) and NextIterator (30.8.5). The former must always return false, since
there are infinitely many integers. The latter must return the next integer in the iteration, and update
the information stored in the iterator, that is, increase the value stored in the first position.

Example
InstallMethod(IsDoneIterator,

"method for iterator of `Integers'",

[IsIterator and IsIntegersIteratorPosRep],

ReturnFalse);

GAP - Reference Manual 1346

InstallMethod(NextIterator,

"method for iterator of `Integers'",

[IsIntegersIteratorPosRep],

function(iter)

iter![1]:= iter![1] + 1;

if iter![1] mod 2 = 0 then

return iter![1] / 2;

else

return (1 - iter![1]) / 2;

fi;

end);

It should be noted that one can of course install both the methods shown in Section 79.2 and 79.3.
The call Iterator(Integers) will cause one of the methods to be selected, and for the returned
iterator, which will have one of the representations we constructed, the right NextIterator (30.8.5)
method will be chosen.

79.4 Implementing New List Objects

This section gives some hints for the quite usual situation that one wants to implement new objects
that are lists. More precisely, one either wants to deal with lists that have additional features, or one
wants that some objects also behave as lists. An example can be found in 79.5.

A list in GAP is an object in the category IsList (21.1.1). Basic operations for lists are Length

(21.17.5), \[\] (21.2.1), and IsBound\[\] (21.2.1) (see 21.2).
Note that the access to the position pos in the list list via list[pos] is handled by the call

\[\](list, pos) to the operation \[\] (21.2.1). To explain the somewhat strange name \[\] of
this operation, note that non-alphanumeric characters like [and] may occur in GAP variable names
only if they are escaped by a \ character.

Analogously, the check IsBound(list[pos]) whether the position pos of the list list is
bound is handled by the call IsBound\[\](list, pos) to the operation IsBound\[\] (21.2.1).

For mutable lists, also assignment to positions and unbinding of positions via the operations
\[\]\:\= (21.2.1) and Unbind\[\] (21.2.1) are basic operations. The assignment list[pos]:=
val is handled by the call \[\]\:\=(list, pos, val), and Unbind(list[pos]) is han-
dled by the call Unbind\[\](list, pos).

All other operations for lists, e.g., Add (21.4.2), Append (21.4.5), Sum (21.20.26), are based on
these operations. This means that it is sufficient to install methods for the new list objects only for the
basic operations.

So if one wants to implement new list objects then one creates them as objects in the cate-
gory IsList (21.1.1), and installs methods for Length (21.17.5), \[\] (21.2.1), and IsBound\[\]

(21.2.1). If the new lists shall be mutable, one needs to install also methods for \[\]\:\= (21.2.1)
and Unbind\[\] (21.2.1).

One application for this is the implementation of enumerators for domains. An enumerator for the
domain D is a dense list whose entries are in bijection with the elements of D. If D is large then it
is not useful to write down all elements. Instead one can implement such a bijection implicitly. This
works also for infinite domains.

In this situation, one implements a new representation of the lists that are already available in
GAP, in particular the family of such a list is the same as the family of the domain D.

GAP - Reference Manual 1347

But it is also possible to implement new kinds of lists that lie in new families, and thus are not
equal to lists that were available in GAP before. An example for this is the implementation of matrices
whose multiplication via “*” is the Lie product of matrices.

In this situation, it makes no sense to put the new matrices into the same family as the original
matrices. Note that the product of two Lie matrices shall be defined but not the product of an ordinary
matrix and a Lie matrix. So it is possible to have two lists that have the same entries but that are not
equal w.r.t. “=” because they lie in different families.

79.5 Example – Constructing Enumerators

When dealing with countable sets, a usual task is to define enumerations, i.e., bijections to the positive
integers. In GAP, this can be implemented via enumerators (see 21.23). These are lists containing
the elements in a specified ordering, and the operations Position (21.16.1) and list access via \[\]

(21.2.1) define the desired bijection. For implementing such an enumerator, one mainly needs to install
the appropriate functions for these operations.

A general setup for creating such lists is given by EnumeratorByFunctions (30.3.4).
If the set in question is a domain D for which a Size (30.4.6) method is available then all one

has to do is to write down the functions for computing the n-th element of the list and for computing
the position of a given GAP object in the list, to put them into the components ElementNumber and
NumberElement of a record, and to call EnumeratorByFunctions (30.3.4) with the domain D and
this record as arguments. For example, the following lines of code install an Enumerator (30.3.2)
method for the case that D is the domain of rational integers. (Note that IsIntegers (14.1.2) is a
filter that describes exactly the domain of rational integers.)

Example
InstallMethod(Enumerator,

"for integers",

[IsIntegers],

Integers -> EnumeratorByFunctions(Integers, rec(

ElementNumber := function(e, n) ... end,

NumberElement := function(e, x) ... end)));

The bodies of the functions have been omitted above; here is the code that is actually used in GAP.
(The ordering coincides with that for the iterators for the domain of rational integers that have been
discussed in 79.2 and 79.3.)

Example
gap> enum:= Enumerator(Integers);

<enumerator of Integers>

gap> Print(enum!.NumberElement, "\n");

function (e, x)

local pos;

if not IsInt(x) then

return fail;

elif 0 < x then

pos := 2 * x;

else

pos := -2 * x + 1;

fi;

return pos;

GAP - Reference Manual 1348

end

gap> Print(enum!.ElementNumber, "\n");

function (e, n)

if n mod 2 = 0 then

return n / 2;

else

return (1 - n) / 2;

fi;

return;

end

The situation becomes slightly more complicated if the set S in question is not a domain. This is
because one must provide also at least a method for computing the length of the list, and because one
has to determine the family in which it lies (see 79.1). The latter should usually not be a problem since
either S is nonempty and all its elements lie in the same family –in this case one takes the collections
family of any element in S– or the family of the enumerator must be ListsFamily.

An example in the GAP library is an enumerator for the set of k-tuples over a finite set; the
function is called EnumeratorOfTuples (16.2.9).

Example
gap> Print(EnumeratorOfTuples, "\n");

function (set, k)

local enum;

if k = 0 then

return Immutable([[]]);

elif IsEmpty(set) then

return Immutable([]);

fi;

enum

:= EnumeratorByFunctions(CollectionsFamily(FamilyObj(set)),

rec(

ElementNumber := function (enum, n)

local nn, t, i;

nn := n - 1;

t := [];

for i in [1 .. enum!.k] do

t[i] := RemInt(nn, Length(enum!.set)) + 1;

nn := QuoInt(nn, Length(enum!.set));

od;

if nn <> 0 then

Error("<enum>[", n,

"] must have an assigned value");

fi;

nn := enum!.set{Reversed(t)};

MakeImmutable(nn);

return nn;

end,

NumberElement := function (enum, elm)

local n, i;

if not IsList(elm) then

return fail;

fi;

GAP - Reference Manual 1349

elm := List(elm, function (x)

return Position(enum!.set, x);

end);

if fail in elm or Length(elm) <> enum!.k then

return fail;

fi;

n := 0;

for i in [1 .. enum!.k] do

n := Length(enum!.set) * n + elm[i] - 1;

od;

return n + 1;

end,

Length := function (enum)

return Length(enum!.set) ^ enum!.k;

end,

PrintObj := function (enum)

Print("EnumeratorOfTuples(", enum!.set, ", ",

enum!.k, ")");

return;

end,

set := Set(set),

k := k));

SetIsSSortedList(enum, true);

return enum;

end

We see that the enumerator is a homogeneous list that stores individual functions ElementNumber,
NumberElement, Length, and PrintObj; besides that, the data components S and k are contained.

79.6 Example – Constructing Iterators

Iterators are a kind of objects that is implemented for several collections in the GAP library and which
might be interesting also in other cases, see 30.8. A general setup for implementing new iterators is
provided by IteratorByFunctions (30.8.8).

All one has to do is to write down the functions for NextIterator (30.8.5), IsDoneIterator
(30.8.4), and ShallowCopy (12.7.1), and to call IteratorByFunctions (30.8.8) with this record as
argument. For example, the following lines of code install an Iterator (30.8.1) method for the case
that the argument is the domain of rational integers.

(Note that IsIntegers (14.1.2) is a filter that describes exactly the domain of rational integers.)
Example

InstallMethod(Iterator,

"for integers",

[IsIntegers],

Integers -> IteratorByFunctions(rec(

NextIterator:= function(iter) ... end,

IsDoneIterator := ReturnFalse,

ShallowCopy := function(iter) ... end)));

The bodies of two of the functions have been omitted above; here is the code that is actually used

GAP - Reference Manual 1350

in GAP. (The ordering coincides with that for the iterators for the domain of rational integers that have
been discussed in 79.2 and 79.3.)

Example
gap> iter:= Iterator(Integers);

<iterator of Integers at 0>

gap> Print(iter!.NextIterator, "\n");

function (iter)

iter!.counter := iter!.counter + 1;

if iter!.counter mod 2 = 0 then

return iter!.counter / 2;

else

return (1 - iter!.counter) / 2;

fi;

return;

end

gap> Print(iter!.ShallowCopy, "\n");

function (iter)

return rec(

counter := iter!.counter);

end

Note that the ShallowCopy component of the record must be a function that does not return an
iterator but a record that can be used as the argument of IteratorByFunctions (30.8.8) in order to
create the desired shallow copy.

79.7 Arithmetic Issues in the Implementation of New Kinds of Lists

When designing a new kind of list objects in GAP, defining the arithmetic behaviour of these objects
is an issue.

There are situations where arithmetic operations of list objects are unimportant in the sense that
adding two such lists need not be represented in a special way. In such cases it might be useful
either to support no arithmetics at all for the new lists, or to enable the default arithmetic meth-
ods. The former can be achieved by not setting the filters IsGeneralizedRowVector (21.12.1)
and IsMultiplicativeGeneralizedRowVector (21.12.2) in the types of the lists, the latter can
be achieved by setting the filter IsListDefault (21.12.3). (for details, see 21.12). An example for
“wrapped lists” with default behaviour are vector space bases; they are lists with additional properties
concerning the computation of coefficients, but arithmetic properties are not important. So it is no loss
to enable the default methods for these lists.

However, often the arithmetic behaviour of new list objects is important, and one wants to keep
these lists away from default methods for addition, multiplication etc. For example, the sum and the
product of (compatible) block matrices shall be represented as a block matrix, so the default methods
for sum and product of matrices shall not be applicable, although the results will be equal to those of
the default methods in the sense that their entries at corresponding positions are equal.

So one does not set the filter IsListDefault (21.12.3) in such cases, and thus one can implement
one’s own methods for arithmetic operations. (Of course “can” means on the other hand that one must
implement such methods if one is interested in arithmetics of the new lists.)

The specific binary arithmetic methods for the new lists will usually cover the case that both
arguments are of the new kind, and perhaps also the interaction between a list of the new kind and

GAP - Reference Manual 1351

certain other kinds of lists may be handled if this appears to be useful.
For the last situation, interaction between a new kind of lists and other kinds of lists, GAP pro-

vides already a setup. Namely, there are the categories IsGeneralizedRowVector (21.12.1) and
IsMultiplicativeGeneralizedRowVector (21.12.2), which are concerned with the additive and
the multiplicative behaviour, respectively, of lists. For lists in these filters, the structure of the results
of arithmetic operations is prescribed (see 21.13 and 21.14).

For example, if one implements block matrices in IsMultiplicativeGeneralizedRowVector

(21.12.2) then automatically the product of such a block matrix and a (plain) list of such block matrices
will be defined as the obvious list of matrix products, and a default method for plain lists will handle
this multiplication. (Note that this method will rely on a method for computing the product of the block
matrices, and of course no default method is available for that.) Conversely, if the block matrices are
not in IsMultiplicativeGeneralizedRowVector (21.12.2) then the product of a block matrix and
a (plain) list of block matrices is not defined. (There is no default method for it, and one can define
the result and provide a method for computing it.)

Thus if one decides to set the filters IsGeneralizedRowVector (21.12.1) and
IsMultiplicativeGeneralizedRowVector (21.12.2) for the new lists, on the one hand one
loses freedom in defining arithmetic behaviour, but on the other hand one gains several default
methods for a more or less natural behaviour.

If a list in the filter IsGeneralizedRowVector (21.12.1)
(IsMultiplicativeGeneralizedRowVector (21.12.2)) lies in IsAttributeStoringRep (13.5.5),
the values of additive (multiplicative) nesting depth is stored in the list and need not be calculated
for each arithmetic operation. One can then store the value(s) already upon creation of the lists,
with the effect that the default arithmetic operations will access elements of these lists only if this
is unavoidable. For example, the sum of two plain lists of “wrapped matrices” with stored nesting
depths are computed via the method for adding two such wrapped lists, and without accessing any of
their rows (which might be expensive). In this sense, the wrapped lists are treated as black boxes.

79.8 External Representation

An operation is defined for elements rather than for objects in the sense that if the arguments are
replaced by objects that are equal to the old arguments w.r.t. the equivalence relation “=” then the
result must be equal to the old result w.r.t. “=”.

But the implementation of many methods is representation dependent in the sense that certain
representation dependent subobjects are accessed.

For example, a method that implements the addition of univariate polynomials may access coef-
ficients lists of its arguments only if they are really stored, while in the case of sparsely represented
polynomials a different approach is needed.

In spite of this, for many operations one does not want to write an own method for each possible
representations of each argument, for example because none of the methods could in fact take advan-
tage of the actually given representations of the objects. Another reason could be that one wants to
install first a representation independent method, and then add specific methods as they are needed to
gain more efficiency, by really exploiting the fact that the arguments have certain representations.

For the purpose of admitting representation independent code, one can define an external repre-
sentation of objects in a given family, install methods to compute this external representation for each
representation of the objects, and then use this external representation of the objects whenever they
occur.

GAP - Reference Manual 1352

We cannot provide conversion functions that allow us to first convert any object in question to one
particular “standard representation”, and then access the data in the way defined for this representation,
simply because it may be impossible to choose such a “standard representation” uniformly for all
objects in the given family.

So the aim of an external representation of an object obj is a different one, namely to describe the
data from which obj is composed. In particular, the external representation of obj is not one possible
(“standard”) representation of obj , in fact the external representation of obj is in general different
from obj w.r.t. “=”, first of all because the external representation of obj does in general not lie in the
same family as obj .

For example the external representation of a rational function is a list of length two or three, the
first entry being the zero coefficient, the second being a list describing the coefficients and monomials
of the numerator, and the third, if bound, being a list describing the coefficients and monomials of the
denominator. In particular, the external representation of a polynomial is a list and not a polynomial.

The other way round, the external representation of obj encodes obj in such a way that from
this data and the family of obj , one can create an object that is equal to obj . Usually the external
representation of an object is a list or a record.

Although the external representation of obj is by definition independent of the actually available
representations for obj , it is usual that a representation of obj exists for which the computation of
the external representation is obtained by just “unpacking” obj , in the sense that the desired data is
stored in a component or a position of obj , if obj is a component object (see 79.2) or a positional
object (see 79.3).

To implement an external representation means to install methods for the following two operations.

79.8.1 ExtRepOfObj

▷ ExtRepOfObj(obj) (operation)

▷ ObjByExtRep(fam, data) (operation)

ExtRepOfObj returns the external representation of its argument, and ObjByExtRep returns an
object in the family fam that has external representation data .

Of course, ObjByExtRep(FamilyObj(obj), ExtRepOfObj(obj)) must be equal to
obj w.r.t. the operation \= (31.11.1). But it is not required that equal objects have equal external
representations.

Note that if one defines a new representation of objects for which an external representation does
already exist then one must install a method to compute this external representation for the objects in
the new representation.

79.9 Mutability and Copying

Any GAP object is either mutable or immutable. This can be tested with the function IsMutable

(12.6.2). The intended meaning of (im)mutability is a mathematical one: an immutable object should
never change in such a way that it represents a different Element. Objects may change in other ways,
for instance to store more information, or represent an element in a different way.

Immutability is enforced in different ways for built-in objects (like records, or lists) and for exter-
nal objects (made using Objectify (79.1.1)).

For built-in objects which are immutable, the kernel will prevent you from changing them. Thus

GAP - Reference Manual 1353

Example
gap> l := [1,2,4];

[1, 2, 4]

gap> MakeImmutable(l);

[1, 2, 4]

gap> l[3] := 5;

Error, List Assignment: <list> must be a mutable list

For external objects, the situation is different. An external object which claims to be immutable
(i.e. its type does not contain IsMutable (12.6.2)) should not admit any methods which change the
element it represents. The kernel does not prevent the use of !. and ![to change the underlying
data structure. This is used for instance by the code that stores attribute values for reuse. In gen-
eral, these ! operations should only be used in methods which depend on the representation of the
object. Furthermore, we would not recommend users to install methods which depend on the repre-
sentations of objects created by the library or by GAP packages, as there is certainly no guarantee of
the representations being the same in future versions of GAP.

Here we see an immutable object (the group S4), in which we improperly install a new component.
Example

gap> g := SymmetricGroup(IsPermGroup,4);

Sym([1 .. 4])

gap> IsMutable(g);

false

gap> NamesOfComponents(g);

["Size", "NrMovedPoints", "MovedPoints",

"GeneratorsOfMagmaWithInverses"]

gap> g!.silly := "rubbish";

"rubbish"

gap> NamesOfComponents(g);

["Size", "NrMovedPoints", "MovedPoints",

"GeneratorsOfMagmaWithInverses", "silly"]

gap> g!.silly;

"rubbish"

On the other hand, if we form an immutable externally represented list, we find that GAP will not
let us change the object.

Example
gap> e := Enumerator(g);

<enumerator of perm group>

gap> IsMutable(e);

false

gap> IsList(e);

true

gap> e[3];

(1,2,4)

gap> e[3] := false;

Error, The list you are trying to assign to is immutable

When we consider copying objects, another filter IsCopyable (12.6.1), enters the game and we
find that ShallowCopy (12.7.1) and StructuralCopy (12.7.2) behave quite differently. Objects

GAP - Reference Manual 1354

can be divided for this purpose into three: mutable objects, immutable but copyable objects, and
non-copyable objects (called constants).

A mutable or copyable object should have a method for the operation ShallowCopy (12.7.1),
which should make a new mutable object, sharing its top-level subobjects with the original. The exact
definition of top-level subobject may be defined by the implementor for new kinds of object.

ShallowCopy (12.7.1) applied to a constant simply returns the constant.
StructuralCopy (12.7.2) is expected to be much less used than ShallowCopy (12.7.1). Applied

to a mutable object, it returns a new mutable object which shares no mutable sub-objects with the
input. Applied to an immutable object (even a copyable one), it just returns the object. It is not an
operation (indeed, it’s a rather special kernel function).

Example
gap> e1 := StructuralCopy(e);

<enumerator of perm group>

gap> IsMutable(e1);

false

gap> e2 := ShallowCopy(e);

[(), (1,4), (1,2,4), (1,3,4), (2,4), (1,4,2), (1,2), (1,3,4,2),

(2,3,4), (1,4,2,3), (1,2,3), (1,3)(2,4), (3,4), (1,4,3), (1,2,4,3),

(1,3), (2,4,3), (1,4,3,2), (1,2)(3,4), (1,3,2), (2,3), (1,4)(2,3),

(1,2,3,4), (1,3,2,4)]

There are two other related functions: Immutable (12.6.3), which makes a new immutable object
which shares no mutable subobjects with its input and MakeImmutable (12.6.4) which changes an
object and its mutable subobjects in place to be immutable. It should only be used on “new” objects
that you have just created, and which cannot share mutable subobjects with anything else.

Both Immutable (12.6.3) and MakeImmutable (12.6.4) work on external objects by just resetting
the IsMutable (12.6.2) filter in the object’s type. This should make ineligible any methods that might
change the object. As a consequence, you must allow for the possibility of immutable versions of any
objects you create.

So, if you are implementing your own external objects. The rules amount to the following:

1. You decide if your objects should be mutable or copyable or constants, by fixing whether their
type includes IsMutable (12.6.2) or IsCopyable (12.6.1).

2. You install methods for your objects respecting that decision:

for constants:
no methods change the underlying elements;

for copyables:
you provide a method for ShallowCopy (12.7.1);

for mutables:
you may have methods that change the underlying elements and these should explicitly
require IsMutable (12.6.2).

79.10 Global Variables in the Library

Global variables in the GAP library are usually read-only in order to prevent them from being over-
written accidentally. See also Section 4.9.

GAP - Reference Manual 1355

79.10.1 DeclareGlobalName

▷ DeclareGlobalName(name) (function)

For global variables, sometimes code needs to reference them before a value can sensibly be
assigned to them. For example, consider the following definition of a recursive function:

Example
BindGlobal("fun", function(n)

if n > 0 then

return 2*fun(n-1);

fi;

return 1;

end);

The problem with that code is that it triggers a syntax warning about access to an unbound global
variable, as fun only gets assigned after the complete statement has been parsed, yet that statement
references fun.

To resolve this, one can declare the variable with DeclareGlobalName before assigning it via
BindGlobal (4.9.8). This informs GAP that a global variable with the specified name will eventually
be defined, and that thus no syntax warnings pertaining to its use should be printed.

We recommend using DeclareGlobalName instead of DeclareGlobalVariable (79.10.2) or
DeclareGlobalFunction (79.10.5) whenever possible.

DeclareGlobalName shall be used in the declaration part of the respective package (see 79.11),
values can then be assigned to the new variable as usual, preferably via BindGlobal (4.9.8), in the
implementation part (again, see 79.11).

79.10.2 DeclareGlobalVariable

▷ DeclareGlobalVariable(name[, description]) (function)

For global variables that are not functions, instead of using BindGlobal (4.9.8) one can also
declare the variable with DeclareGlobalVariable which creates a new global variable named by
the string name .

In the past the main application of this was to allow access to variables before they were assigned.
Starting with GAP 4.12 we recommend to instead use DeclareGlobalName (79.10.1) for this kind of
problem. The main remaining application for DeclareGlobalVariable is when one needs flushable
values.

If used at all, then DeclareGlobalVariable shall be used in the declaration part of the respective
package (see 79.11), values can then be assigned to the new variable with InstallValue (79.10.3),
InstallFlushableValue (79.10.3) or InstallFlushableValueFromFunction (79.10.3), in the
implementation part (again, see 79.11).

79.10.3 InstallValue

▷ InstallValue(gvar, value) (function)

▷ InstallFlushableValue(gvar, value) (function)

▷ InstallFlushableValueFromFunction(gvar, func) (function)

GAP - Reference Manual 1356

InstallValue assigns the value value to the global variable gvar if it was previously de-
clared via DeclareGlobalVariable (79.10.2). InstallFlushableValue does the same but ad-
ditionally provides that each call of FlushCaches (79.10.4) will assign a structural copy of value to
gvar . InstallFlushableValueFromFunction instead assigns the result of func to gvar (func is
re-evaluated for each invocation of FlushCaches (79.10.4)

InstallValue does not work if value is an “immediate object”, i.e., an internally represented
small integer or finite field element. It also fails for booleans. Furthermore, InstallFlushableValue
works only if value is a list or a record. (Note that InstallFlushableValue makes sense only for
mutable global variables.)

79.10.4 FlushCaches

▷ FlushCaches() (operation)

FlushCaches resets the value of each global variable that has been declared with
DeclareGlobalVariable (79.10.2) and for which the initial value has been set with
InstallFlushableValue (79.10.3) or InstallFlushableValueFromFunction (79.10.3) to this
initial value.

FlushCaches should be used only for debugging purposes, since the involved global variables
include for example lists that store finite fields and cyclotomic fields used in the current GAP session,
in order to avoid that these fields are constructed anew in each call to GF (59.3.2) and CF (60.1.1).

79.10.5 DeclareGlobalFunction

▷ DeclareGlobalFunction(name) (function)

▷ InstallGlobalFunction(oper, func) (function)

GAP functions that are not operations and that are intended to be called by users should be notified
to GAP via DeclareGlobalFunction. DeclareGlobalFunction returns a function that serves as a
placeholder for the function that will be installed later. The placeholder will print an error message if
it is called. See also DeclareSynonym (79.10.6).

In the past the main application of this was to allow access to variables before they were assigned.
Starting with GAP 4.12 we recommend to use DeclareGlobalName (79.10.1)/BindGlobal (4.9.8)
instead of DeclareGlobalVariable (79.10.2)/InstallGlobalFunction whenever possible.

If used at all, then DeclareGlobalVariable (79.10.2) shall be used in the declaration part of the
respective package (see 79.11).

A global function declared with DeclareGlobalFunction can be given its value func via
InstallGlobalFunction; gvar is the global variable (or a string denoting its name) named with
the name argument of the call to DeclareGlobalFunction. For example, a declaration like

Example
DeclareGlobalFunction("SumOfTwoCubes");

in the “declaration part” (see Section 79.11) might have a corresponding “implementation part”
of:

Example
InstallGlobalFunction(SumOfTwoCubes, function(x, y) return x^3 + y^3; end);

GAP - Reference Manual 1357

79.10.6 DeclareSynonym

▷ DeclareSynonym(name, value) (function)

▷ DeclareSynonymAttr(name, value) (function)

DeclareSynonym assigns the string name to a global variable as a synonym for value . Two
typical intended usages are to declare an “and-filter”, e.g.

Example
DeclareSynonym("IsGroup", IsMagmaWithInverses and IsAssociative);

and to provide a previously declared global function with an alternative name, e.g.
Example

DeclareGlobalFunction("SizeOfSomething");

DeclareSynonym("OrderOfSomething", SizeOfSomething);

Note: Before using DeclareSynonym in the way of this second example, one should determine
whether the synonym is really needed. Perhaps an extra index entry in the documentation would be
sufficient.

When value is actually an attribute then DeclareSynonymAttr should be used; this binds also
globals variables Setname and Hasname for its setter and tester, respectively.

Example
DeclareSynonymAttr("IsField", IsDivisionRing and IsCommutative);

DeclareAttribute("GeneratorsOfDivisionRing", IsDivisionRing);

DeclareSynonymAttr("GeneratorsOfField", GeneratorsOfDivisionRing);

79.11 Declaration and Implementation Part

Each package of GAP code consists of two parts, the declaration part that defines the new cate-
gories and operations for the objects the package deals with, and the implementation part where the
corresponding methods are installed. The declaration part should be representation independent, rep-
resentation dependent information should be dealt with in the implementation part.

GAP functions that are not operations and that are intended to be called by users should be notified
to GAP in the declaration part via DeclareGlobalFunction (79.10.5). Values for these functions
can be installed in the implementation part via InstallGlobalFunction (79.10.5).

Calls to the following functions belong to the declaration part.

• DeclareAttribute (13.5.4),

• DeclareCategory (13.3.5),

• DeclareFilter (13.8.2),

• DeclareOperation (78.1.5),

• DeclareGlobalFunction (79.10.5),

• DeclareGlobalName (79.10.1),

• DeclareGlobalVariable (79.10.2),

GAP - Reference Manual 1358

• DeclareSynonym (79.10.6),

• DeclareSynonymAttr (79.10.6),

• DeclareProperty (13.7.5),

• InstallTrueMethod (78.8.1).

Calls to the following functions belong to the implementation part.

• DeclareRepresentation (13.4.5),

• InstallGlobalFunction (79.10.5),

• InstallValue (79.10.3),

• InstallMethod (78.3.1),

• InstallImmediateMethod (78.7.1),

• InstallOtherMethod (78.3.2),

• NewFamily (13.1.2),

• NewType (13.9.3),

• Objectify (79.1.1).

Whenever both a NewSomething and a DeclareSomething variant of a function exist (see 79.10),
the use of DeclareSomething is recommended because this protects the variables in question from
being overwritten. Note that there are no functions DeclareFamily and DeclareType since families
and types are created dynamically, hence usually no global variables are associated to them. Further
note that DeclareRepresentation (13.4.5) is regarded as belonging to the implementation part,
because usually representations of objects are accessed only in very few places, and all code that
involves a particular representation is contained in one file; additionally, representations of objects are
often not interesting for the user, so there is no need to provide a user interface or documentation about
representations.

It should be emphasized that “declaration” means only an explicit notification of mathematical
or technical terms or of concepts to GAP. For example, declaring a category or property with name
IsInteresting does of course not tell GAP what this shall mean, and it is necessary to implement
possibilities to create objects that know already that they lie in IsInteresting in the case that it
is a category, or to install implications or methods in order to compute for a given object whether
IsInteresting is true or false for it in the case that IsInteresting is a property.

Chapter 80

Examples of Extending the System

This chapter gives a few examples of how one can extend the functionality of GAP.
They are arranged in ascending difficulty. We show how to install new methods, add new opera-

tions and attributes and how to implement new features using categories and representations. (As we
do not introduce completely new kinds of objects in these example it will not be necessary to declare
any families.) Finally we show a simple way how to create new objects with an own arithmetic.

The examples given are all very rudimentary – no particular error checks are performed and the
user interface sometimes is quite clumsy. These examples may be constructed for presentation pur-
poses only and they do not necessarily constitute parts of the GAP library.

Even more complex examples that create whole classes of objects anew will be given in the fol-
lowing two chapters 81 and 82.

80.1 Addition of a Method

The easiest case is the addition of a new algorithm as a method for an existing operation for the existing
structures.

For example, assume we wanted to implement a better method for computing the exponent of a
nilpotent group (it is the product of the exponents of the Sylow subgroups).

The first task is to find which operation is used by GAP (it is Exponent (39.16.2)) and how it
is declared. We can find this in the Reference Manual (in our particular case in section 39.16) and
the declaration in the library file lib/grp.gd. The easiest way to find the place of the declaration is
usually to grep over all .gd and .g files, see section 83.

In our example the declaration in the library is:
Example

DeclareAttribute("Exponent",IsGroup);

Similarly we find that the filter IsNilpotentGroup (39.15.3) represents the concept of being
nilpotent.

We then write a function that implements the new algorithm which takes the right set of arguments
and install it as a method. In our example this installation would be:

Example
InstallMethod(Exponent,"for nilpotent groups",

[IsGroup and IsNilpotent],

function(G)

1359

GAP - Reference Manual 1360

[function body omitted]

end);

We have left out the optional rank argument of InstallMethod (78.3.1), which normally is a
wise choice –GAP automatically uses an internal ranking based on the filters that is only offset by the
given rank. So our method will certainly be regarded as “better” than a method that has been installed
for mere groups or for solvable groups but will be ranked lower than the library method for abelian
groups.

That’s all. Using 7.2.1 we can check for a nilpotent group that indeed our new method will be
used.

When testing, remember that the method selection will not check for properties that are not known.
(This is done internally by checking the property tester first.) Therefore the method would not be
applicable for the group g in the following definition but only for the –mathematically identical but
endowed with more knowledge by GAP– group h. (Section 80.3 shows a way around this.)

Example
gap> g:=Group((1,2),(1,3)(2,4));;

gap> h:=Group((1,2),(1,3)(2,4));;

gap> IsNilpotentGroup(h); # enforce test

true

gap> HasIsNilpotentGroup(g);

false

gap> HasIsNilpotentGroup(h);

true

Let’s now look at a slightly more complicated example: We want to implement a better method
for computing normalizers in a nilpotent permutation group. (Such an algorithm can be found for
example in [LRW97].)

We already know IsNilpotentGroup (39.15.3), the filter IsPermGroup (43.1.1) represents the
concept of being a group of permutations.

GAP uses Normalizer (39.11.1) to compute normalizers, however the declaration is a bit more
complicated. In the library we find

Example
InParentFOA("Normalizer", IsGroup, IsObject, NewAttribute);

The full mechanism of InParentFOA (85.2.1) is described in chapter 85, however for our purposes
it is sufficient to know that for such a function the actual work is done by an operation NormalizerOp,
an underlying operation for Normalizer (39.11.1) (and all the complications are just there to be able
to remember certain results) and that the declaration of this operation is given by the first arguments,
it would be:

Example
DeclareOperation("NormalizerOp", [IsGroup, IsObject]);

This time we decide to enter a non-default family predicate in the call to InstallMethod (78.3.1).
We could just leave it out as in the previous call; this would yield the default value, the function
ReturnTrue (5.4.1) of arbitrary many arguments which always returns true. However, then the
method might be called in some cases of inconsistent input (for example matrix groups in different
characteristics) that ought to fall through the method selection to raise an error.

GAP - Reference Manual 1361

In our situation, we want the second group to be a subgroup of the first, so necessarily both must
have the same family and we can use IsIdenticalObj (12.5.1) as family predicate.

Now we can install the method. Again this manual is lazy and does not show you the actual code:
Example

InstallMethod(NormalizerOp,"for nilpotent permutation groups",IsIdenticalObj,

[IsPermGroup and IsNilpotentGroup,

IsPermGroup and IsNilpotentGroup],

function(G,U)

[function body omitted]

end);

80.2 Extending the Range of Definition of an Existing Operation

It might be that the operation has been defined so far only for a set of objects that is too restrictive
for our purposes (or we want to install a method that takes another number of arguments). If this is
the case, the call to InstallMethod (78.3.1) causes an error message. We can avoid this by using
InstallOtherMethod (78.3.2) instead. It is also possible to re-declare an operation with another
number of arguments and/or different filters for its arguments.

80.3 Enforcing Property Tests

As mentioned in Section 78.4, GAP does not check unknown properties to test whether a method
might be applicable. In some cases one wants to enforce this, however, because the gain from knowing
the property outweighs the cost of its determination.

In this situation one has to install a method without the additional property (so it can be tried even
if the property is not yet known) and at high rank (so it will be used before other methods). The first
thing to do in the actual function then is to test the property and to bail out with TryNextMethod

(78.5.1) if it turns out to be false.
The above Exponent (39.16.2) example thus would become:

Example
InstallMethod(Exponent,"test abelianity", [IsGroup],

50,# enforced high rank

function(G)

if not IsAbelian(G) then

TryNextMethod();

fi;

[remaining function body omitted]

end);

The value “50” used in this example is quite arbitrary. A better way is to use values that are given
by the system inherently: We want this method still to be ranked as high, as if it had the IsAbelian

(35.4.9) requirement. So we have GAP compute the extra rank of this:
Example

InstallMethod(Exponent,"test abelianity", [IsGroup],

enforced absolute rank of `IsGroup and IsAbelian' installation: Subtract

the rank of `IsGroup' and add the rank of `IsGroup and IsAbelian':

RankFilter(IsGroup and IsAbelian)

-RankFilter(IsGroup),

function(G)

GAP - Reference Manual 1362

the slightly complicated construction of addition and subtraction is necessary because IsGroup

(39.2.7) and IsAbelian (35.4.9) might imply the same elementary filters which we otherwise would
count twice.

A somehow similar situation occurs with matrix groups. Most methods for matrix groups are only
applicable if the group is known to be finite.

However we should not enforce a finiteness test early (someone else later might install good meth-
ods for infinite groups while the finiteness test would be too expensive) but just before GAP would
give a “no method found” error. This is done by redispatching, see 78.6. For example to enforce such
a final finiteness test for normalizer calculations could be done by:

Example
RedispatchOnCondition(NormalizerOp,IsIdenticalObj,

[IsMatrixGroup,IsMatrixGroup],[IsFinite,IsFinite],0);

80.4 Adding a new Operation

Next, we will consider how to add own operations. As an example we take the Sylow normalizer in
a group of a given prime. This operation gets two arguments, the first has to be a group, the second a
prime number.

There is a function IsPrimeInt (14.4.2), but no property for being prime (which would be point-
less as integers cannot store property values anyhow). So the second argument gets specified only as
positive integer:

Example
SylowNormalizer:=NewOperation("SylowNormalizer",[IsGroup,IsPosInt]);

(Note that we are using NewOperation (78.1.4) instead of DeclareOperation (78.1.5) as used in
the library. The only difference other than that DeclareOperation (78.1.5) saves some typing, is
that it also protects the variables against overwriting. When testing code (when one probably wants to
change things) this might be restricting. If this does not bother you, you can use

Example
DeclareOperation("SylowNormalizer",[IsGroup,IsPosInt]);

as well.)
The filters IsGroup (39.2.7) and IsPosInt (14.2.2) given are only used to test that

InstallMethod (78.3.1) installs methods with suitable arguments and will be completely ignored
when using InstallOtherMethod (78.3.2). Technically one could therefore simply use IsObject

(12.1.1) for all arguments in the declaration. The main point of using more specific filters here
is to help documenting with which arguments the function is to be used (so for example a call
SylowNormalizer(5,G) would be invalid).

Of course initially there are no useful methods for newly declared operations; you will have to
write and install them yourself.

If the operation only takes one argument and has reproducible results without side effects, it might
be worth declaring it as an attribute instead; see Section 80.5.

80.5 Adding a new Attribute

Now we look at an example of how to add a new attribute. As example we consider the set of all
primes that divide the size of a group.

GAP - Reference Manual 1363

First we have to declare the attribute:
Example

PrimesDividingSize:=NewAttribute("PrimesDividingSize",IsGroup);

(See NewAttribute (13.5.3)). This implicitly declares attribute tester and setter, it is convenient
however to assign these to variables as well:

Example
HasPrimesDividingSize:=Tester(PrimesDividingSize);

SetPrimesDividingSize:=Setter(PrimesDividingSize);

Alternatively, there is a declaration command DeclareAttribute (13.5.4) that executes all three
assignments simultaneously and protects the variables against overwriting:

Example
DeclareAttribute("PrimesDividingSize",IsGroup);

Next we have to install method(s) for the attribute that compute its value. (This is not strictly
necessary. We could use the attribute also without methods only for storing and retrieving information,
but calling it for objects for which the value is not known would produce a “no method found” error.)
For this purpose we can imagine the attribute simply as an one-argument operation:

Example
InstallMethod(PrimesDividingSize,"for finite groups",

[IsGroup and IsFinite],

function(G)

return PrimeDivisors(Size(G));

end);

The function installed must always return a value (or call TryNextMethod (78.5.1)). If the object
is in the representation IsAttributeStoringRep (13.5.5) this return value once computed will be
automatically stored and retrieved if the attribute is called a second time. We don’t have to call
setter or tester ourselves. (This storage happens by GAP internally calling the attribute setter with
the return value of the function. Retrieval is by a high-ranking method which is installed under the
condition HasPrimesDividingSize. This method was installed automatically when the attribute was
declared.)

80.6 Adding a new Representation

Next, we look at the implementation of a new representation of existing objects. In most cases we want
to implement this representation only for efficiency reasons while keeping all the existing functionality.

For example, assume we wanted (following [Wie69]) to implement permutation groups defined
by relations.

Next, we have to decide a few basics about the representation. All existing permutation
groups in the library are attribute storing and we probably want to keep this for our new ob-
jects. Thus the representation must be a subrepresentation of IsComponentObjectRep (13.4.1) and
IsAttributeStoringRep (13.5.5). Furthermore we want each object to be a permutation group and
we can imply this directly in the representation.

GAP - Reference Manual 1364

We also decide that we store the degree (the largest point that might be moved) in a component
degree and the defining relations in a component relations (we do not specify the format of rela-
tions here. In an actual implementation one would have to design this as well, but it does not affect
the declarations this chapter is about).

Example
DeclareRepresentation(

"IsPermutationGroupByRelations",

IsComponentObjectRep and IsAttributeStoringRep and IsPermGroup,

["degree","relations"]);

(If we wanted to implement sparse matrices we might for example rather settle for a positional
object in which we store a list of the nonzero entries.)

We can make the new representation a subrepresentation of an existing one. In such a case of
course we have to provide all structure of this “parent” representation as well.

Next we need to check in which family our new objects will be. This will be the same family as
of every other permutation group, namely the CollectionsFamily(PermutationsFamily) (where
the family PermutationsFamily = FamilyObj((1,2,3)) has been defined already in the library).

Now we can write a function to create our new objects. Usually it is helpful to look at functions
from the library that are used in similar situations (for example GroupByGenerators (39.2.2) in our
case) to make sure we have not forgotten any further requirements in the declaration we might have to
add here. However in most cases the function is straightforward:

Example
PermutationGroupByRelations:=function(degree,relations)

local g

g:=Objectify(NewType(CollectionsFamily(PermutationsFamily),

IsPermutationGroupByRelations),

rec(degree:=degree,relations:=relations));

return g;

end;

It also is a good idea to install a PrintObj (6.3.5) and possibly also a ViewObj (6.3.5) method
–otherwise testing becomes quite hard:

Example
InstallMethod(PrintObj,"for perm grps. given by relations",

[IsPermutationGroupByRelations],

function(G)

Print("PermutationGroupByRelations(", G!.degree,",",G!.relations,")");

end);

Next we have to write enough methods for the new representation so that the existing algorithms
can be used. In particular we will have to implement methods for all operations for which library or
kernel provides methods for the existing (alternative) representations. In our particular case there are
no such methods. (If we would have implemented sparse matrices we would have had to implement
methods for the list access and assignment functions, see 21.2.) However the existing way permutation
groups are represented is by generators. To be able to use the existing machinery we want to be able to
obtain a generating set also for groups in our new representation. This can be done (albeit not very ef-
fectively) by a stabilizer calculation in the symmetric group given by the degree component. The op-
eration function to use is probably a bit complicated and will depend on the format of the relations

GAP - Reference Manual 1365

(we have not specified in this example). In the following method we use operationfunction as a
placeholder;

Example
InstallMethod(GeneratorsOfGroup,"for perm grps. given by relations",

[IsPermutationGroupByRelations],

function(G)

local S,U;

S:=SymmetricGroup(G!.degree);

U:=Stabilizer(S,G!.relations, operationfunction);

return GeneratorsOfGroup(U);

end);

This is all we must do. Of course for performance reasons one might want to install methods for
further operations as well.

80.7 Components versus Attributes

In the last section we introduced two new components, G!.degree and G!.relations. Technically,
we could have used attributes instead. There is no clear distinction which variant is to be preferred: An
attribute expresses part of the functionality available to certain objects (and thus could be computed
later and probably even for a wider class of objects), a component is just part of the internal definition
of an object.

So if the data is “of general interest”, if we want the user to have access to it, attributes are
preferable. Moreover, attributes can be used by the method selection (by specifying the filter HasAttr
for an attribute Attr). They provide a clean interface and their immutability makes it safe to hand the
data to a user who potentially could corrupt a components entries.

On the other hand more “technical” data (say the encoding of a sparse matrix) is better hidden
from the user in a component, as declaring it as an attribute would not give any advantage.

Resource-wise, attributes need more memory (the attribute setter and tester are implicitly de-
clared, and one filter bit is required), the attribute access is one further function call in the kernel, thus
components might be an immeasurable bit faster.

80.8 Adding new Concepts

Now we look how to implement a new concept for existing objects and fit this in the method selection.
Three examples that will be made more explicit below would be groups for which a “length” of
elements (as a word in certain generators) is defined, groups that can be decomposed as a semidirect
product and M-groups.

In each case we have two possibilities for the declaration. We can either declare it as a property or
as a category. Both are eventually filter(s) and in this way indistinguishable for the method selection.
However, the value of a property for a particular object can be unknown at first and later in the session
be computed (to be true or false). This is implemented by reserving two filters for each property,
one indicating whether the property value is known, and one, provided the value is known, to indicate
the actual boolean value. Contrary to this, the decision whether or not an object lies in a category is
taken at creation time and this is implemented using a single filter.

GAP - Reference Manual 1366

Property:
Properties also are attributes: If a property value is not known for an object, GAP tries to find a
method to compute the property value. If no suitable method is found, an error is raised.

Category:
An object is in a category if it has been created in it. Testing the category for an object simply
returns this value. Existing objects cannot enter a new category later in life. This means that in
most cases one has to write own code to create objects in a new category.

If we want to implement a completely new concept so that new operations are defined only for
the new objects –for example bialgebras for which a second scalar multiplication is defined–
usually a category is chosen.

Technically, the behaviour of the category IsXYZ, declared as subcategory of IsABC is there-
fore exactly the same as if we would declare IsXYZ to be a property for IsABC and install the
following method:

Example
InstallMethod(IsXYZ,"return false if not known",[IsABC],ReturnFalse);

(The word category also has a well-defined mathematical meaning, but this does not need to
concern us at this point. The set of objects which is defined to be a (GAP) category does not
need to be a category in the mathematical sense, vice versa not every mathematical category is
declared as a (GAP) category.)

Eventually the choice between category and property often becomes a matter of taste or style.
Sometimes there is even a third possibility (if you have GAP 3 experience this might reflect most

closely “an object whose operations record is XYOps”): We might want to indicate this new concept
simply by the fact that certain attributes are set. In this case we could simply use the respective
attribute tester(s).

The examples given below each give a short argument why the respective solution was chosen, but
one could argue as well for other choices.

80.8.1 Example: M-groups

M-groups are finite groups for which all irreducible complex representations are induced from linear
representations of subgroups, it turns out that they are all solvable and that every supersolvable group
is an M-group. See [Isa76] for further details.

Solvability and supersolvability both are testable properties. We therefore declare IsMGroup as a
property for solvable groups:

Example
IsMGroup:=NewProperty("IsMGroup",IsSolvableGroup);

The filter IsSolvableGroup (39.15.6) in this declaration only means that methods for IsMGroup by
default can only be installed for groups that are (and know to be) solvable (though they could be
installed for more general situations using InstallOtherMethod (78.3.2)). It does not yet imply that
M-groups are solvable. We must do this deliberately via an implication and we use the same technique
to imply that every supersolvable group is an M-group.

Example
InstallTrueMethod(IsSolvableGroup,IsMGroup);

InstallTrueMethod(IsMGroup,IsSupersolvableGroup);

GAP - Reference Manual 1367

Now we might install a method that tests for solvable groups whether they are M-groups:
Example

InstallMethod(IsMGroup,"for solvable groups",[IsSolvableGroup],

function(G)

[... code omitted. The function must return `true' or `false' ...]

end);

Note that this example of declaring the IsMGroup property for solvable groups is not a part of the
GAP library, which uses a similar but different filter IsMonomialGroup (39.15.9).

80.8.2 Example: Groups with a word length

Our second example is that of groups for whose elements a word length is defined. (We assume that
the word length is only defined in the context of the group with respect to a preselected generating set
but not for single elements alone. However we will not delve into any details of how this length is
defined and how it could be computed.)

Having a word length is a feature which enables other operations (for example a “word length”
function). This is exactly what categories are intended for and therefore we use one.

First, we declare the category. All objects in this category are groups and so we inherit the super-
category IsGroup (39.2.7):

Example
DeclareCategory("IsGroupWithWordLength",IsGroup);

We also define the operation which is “enabled” by this category, the word length of a group
element, which is defined for a group and an element (remember that group elements are described by
the category IsMultiplicativeElementWithInverse (31.14.13)):

Example
DeclareOperation("WordLengthOfElement",[IsGroupWithWordLength,

IsMultiplicativeElementWithInverse]);

We then would proceed by installing methods to compute the word length in concrete cases and
might for example add further operations to get shortest words in cosets.

80.8.3 Example: Groups with a decomposition as semidirect product

The third example is groups which have a (nontrivial) decomposition as a semidirect product. If this
information has been found out, we want to be able to use it in algorithms. (Thus we do not only need
the fact that there is a decomposition, but also the decomposition itself.)

We also want this to be applicable to every group and not only for groups which have been explic-
itly constructed via SemidirectProduct (49.2.1).

Instead we simply declare an attribute SemidirectProductDecomposition for groups. (Again,
in this manual we don’t go in the details of how such an decomposition would look like).

Example
DeclareAttribute("SemidirectProductDecomposition",IsGroup);

If a decomposition has been found, it can be stored in a group using
SetSemidirectProductDecomposition. (At the moment all groups in GAP are attribute
storing.)

Methods that rely on the existence of such a decomposition then get installed for the tester filter
HasSemidirectProductDecomposition.

GAP - Reference Manual 1368

80.9 Creating Own Arithmetic Objects

Finally let’s look at a way to create new objects with a user-defined arithmetic such that one can form
for example groups, rings or vector spaces of these elements. This topic is discussed in much more
detail in chapter 82, in this section we present a simple approach that may be useful to get started but
does not permit you to exploit all potential features.

The basic design is that the user designs some way to represent her objects in terms of GAPs
built-in types, for example as a list or a record. We call this the “defining data” of the new ob-
jects. Also provided are functions that perform arithmetic on this “defining data”, that is they take
objects of this form and return objects that represent the result of the operation. The function
ArithmeticElementCreator (80.9.1) then is called to provide a wrapping such that proper new
GAP-objects are created which can be multiplied etc. with the default infix operations such as *.

80.9.1 ArithmeticElementCreator

▷ ArithmeticElementCreator(spec) (function)

offers a simple interface to create new arithmetic elements by providing functions
that perform addition, multiplication and so forth, conforming to the specification spec .
ArithmeticElementCreator creates a new category, representation and family for the new arith-
metic elements being defined, and returns a function which takes the “defining data” of an element
and returns the corresponding new arithmetic element.

spec is a record with one or more of the following components:

ElementName

string used to identify the new type of object. A global identifier IsElementName will be
defined to indicate a category for these now objects. (Therefore it is not clever to have blanks in
the name). Also a collections category is defined. (You will get an error message if the identifier
IsElementName is already defined.)

Equality, LessThan, One, Zero, Multiplication, Inverse, Addition, AdditiveInverse
functions defining the arithmetic operations. The functions interface on the level of “defining
data”, the actual methods installed will perform the unwrapping and wrapping as objects. Com-
ponents are optional, but of course if no multiplication is defined elements cannot be multiplied
and so forth.

There are default methods for Equality and LessThan which simply calculate on the defining
data. If one is defined, it must be ensured that the other is compatible (so that a < b implies not
(a = b))

Print

a function which prints the object. By default, just the defining data is printed.

MathInfo

filters determining the mathematical properties of the elements created. A typical value is for
example IsMultiplicativeElementWithInverse for group elements.

RepInfo

filters determining the representational properties of the elements created. The objects

GAP - Reference Manual 1369

created are always component objects, so in most cases the only reasonable option is
IsAttributeStoringRep to permit the storing of attributes.

All components are optional and will be filled in with default values (though of course an empty
record will not result in useful objects).

Note that the resulting objects are not equal to their defining data (even though by default they print
as only the defining data). The operation UnderlyingElement can be used to obtain the defining data
of such an element.

80.9.2 Example: ArithmeticElementCreator

As the first example we look at subsets of {1, . . . ,4} and define an “addition” as union and “multipli-
cation” as intersection. These operations are both commutative and we want the resulting elements to
know this.

We therefore use the following specification:
Example

gap> # the whole set

gap> w := [1,2,3,4];

[1, 2, 3, 4]

gap> PosetElementSpec :=rec(

> # name of the new elements

> ElementName := "PosetOn4",

> # arithmetic operations

> One := a -> w,

> Zero := a -> [],

> Multiplication := function(a, b) return Intersection(a, b); end,

> Addition := function(a, b) return Union(a, b); end,

> # Mathematical properties of the elements

> MathInfo := IsCommutativeElement and

> IsAssociativeElement and

> IsAdditivelyCommutativeElement

>);;

gap> mkposet := ArithmeticElementCreator(PosetElementSpec);

function(x) ... end

Now we can create new elements, perform arithmetic on them and form domains:
Example

gap> a := mkposet([1,2,3]);

[1, 2, 3]

gap> CategoriesOfObject(a);

["IsExtAElement", "IsNearAdditiveElement",

"IsNearAdditiveElementWithZero", "IsAdditiveElement",

"IsExtLElement", "IsExtRElement", "IsMultiplicativeElement",

"IsMultiplicativeElementWithOne", "IsAssociativeElement",

"IsAdditivelyCommutativeElement", "IsCommutativeElement",

"IsPosetOn4"]

gap> a=[1,2,3];

false

gap> UnderlyingElement(a)=[1,2,3];

true

gap> b:=mkposet([2,3,4]);

GAP - Reference Manual 1370

[2, 3, 4]

gap> a+b;

[1 .. 4]

gap> a*b;

[2, 3]

gap> s:=Semigroup(a,b);

<commutative semigroup with 2 generators>

gap> Size(s);

3

The categories IsPosetOn4 and IsPosetOn4Collection can be used to install methods specific
to the new objects.

Example
gap> IsPosetOn4Collection(s);

true

Chapter 81

An Example – Residue Class Rings

In this chapter, we give an example how GAP can be extended by new data structures and new func-
tionality. In order to focus on the issues of the implementation, the mathematics in the example chosen
is trivial. Namely, we will discuss computations with elements of residue class rings Z/nZ.

The first attempt is straightforward (see Section 81.1), it deals with the implementation of the
necessary arithmetic operations. Section 81.2 deals with the question why it might be useful to use
an approach that involves creating a new data structure and integrating the algorithms dealing with
these new GAP objects into the system. Section 81.3 shows how this can be done in our example,
and Section 81.4, the question of further compatibility of the new objects with known GAP objects
is discussed. Finally, Section 81.5 gives some hints how to improve the implementation presented
before.

81.1 A First Attempt to Implement Elements of Residue Class Rings

Suppose we want to do computations with elements of a ring Z/nZ, where n is a positive integer.
First we have to decide how to represent the element k+ nZ in GAP. If the modulus n is fixed

then we can use the integer k. More precisely, we can use any integer k′ such that k− k′ is a multiple
of n. If different moduli are likely to occur then using a list of the form [k,n], or a record of the form
rec(residue := k, modulus := n) is more appropriate. In the following, let us assume the
list representation [k,n] is chosen. Moreover, we decide that the residue k in all such lists satisfies
0 ≤ k < n, i.e., the result of adding two residue classes represented by [k1,n] and [k2,n] (of course with
same modulus n) will be [k,n] with k1 + k2 congruent to k modulo n and 0 ≤ k < n.

Now we can implement the arithmetic operations for residue classes. Note that the result of the
mod operator is normalized as required. The division by a noninvertible residue class results in fail.

Example
gap> resclass_sum := function(c1, c2)

> if c1[2] <> c2[2] then Error("different moduli"); fi;

> return [(c1[1] + c2[1]) mod c1[2], c1[2]];

> end;;

gap>

gap> resclass_diff := function(c1, c2)

> if c1[2] <> c2[2] then Error("different moduli"); fi;

> return [(c1[1] - c2[1]) mod c1[2], c1[2]];

> end;;

gap>

1371

GAP - Reference Manual 1372

gap> resclass_prod := function(c1, c2)

> if c1[2] <> c2[2] then Error("different moduli"); fi;

> return [(c1[1] * c2[1]) mod c1[2], c1[2]];

> end;;

gap>

gap> resclass_quo := function(c1, c2)

> local quo;

> if c1[2] <> c2[2] then Error("different moduli"); fi;

> quo:= QuotientMod(c1[1], c2[1], c1[2]);

> if quo <> fail then

> quo:= [quo, c1[2]];

> fi;

> return quo;

> end;;

With these functions, we can in principle compute with residue classes.
Example

gap> list:= List([0 .. 3], k -> [k, 4]);

[[0, 4], [1, 4], [2, 4], [3, 4]]

gap> resclass_sum(list[2], list[4]);

[0, 4]

gap> resclass_diff(list[1], list[2]);

[3, 4]

gap> resclass_prod(list[2], list[4]);

[3, 4]

gap> resclass_prod(list[3], list[4]);

[2, 4]

gap> List(list, x -> resclass_quo(list[2], x));

[fail, [1, 4], fail, [3, 4]]

81.2 Why Proceed in a Different Way?

It depends on the computations we intended to do with residue classes whether or not the implemen-
tation described in the previous section is satisfactory for us.

Probably we are mainly interested in more complex data structures than the residue classes them-
selves, for example in matrix algebras or matrix groups over a ring such as Z/4Z. For this, we need
functions to add, multiply, invert etc. matrices of residue classes. Of course this is not a difficult task,
but it requires to write additional GAP code.

And when we have implemented the arithmetic operations for matrices of residue classes, we
might be interested in domain operations such as computing the order of a matrix group over Z/4Z,
a Sylow 2 subgroup, and so on. The problem is that a residue class represented as a pair [k,n] is not
regarded as a group element by GAP. We have not yet discussed how a matrix of residue classes shall
be represented, but if we choose the obvious representation of a list of lists of our residue classes then
also this is not a valid group element in GAP. Hence we cannot apply the function Group (39.2.1)
to create a group of residue classes or a group of matrices of residue classes. This is because GAP
assumes that group elements can be multiplied via the infix operator * (equivalently, via the operation
* (31.12.1)). Note that in fact the multiplication of two lists [k1,n], [k2,n] is defined, but we have
[k1,n] ∗ [k2,n] = k1 ∗ k2 + n ∗ n, the standard scalar product of two row vectors of same length. That

GAP - Reference Manual 1373

is, the multiplication with * is not compatible with the function resclass_prod introduced in the
previous section. Similarly, ring elements are assumed to be added via the infix operator +; the addition
of residue classes is not compatible with the available addition of row vectors.

What we have done in the previous section can be described as implementation of a “standalone”
arithmetic for residue classes. In order to use the machinery of the GAP library for creating higher
level objects such as matrices, polynomials, or domains over residue class rings, we have to “integrate”
this implementation into the GAP library. The key step will be to create a new kind of GAP objects.
This will be done in the following sections; there we assume that residue classes and residue class
rings are not yet available in GAP; in fact they are available, and their implementation is very close to
what is described here.

81.3 A Second Attempt to Implement Elements of Residue Class Rings

Faced with the problem to implement elements of the rings Z/nZ, we must define the types of these
elements as far as is necessary to distinguish them from other GAP objects.

As is described in Chapter 13, the type of an object comprises several aspects of information about
this object; the family determines the relation of the object to other objects, the categories determine
what operations the object admits, the representation determines how an object is actually represented,
and the attributes describe knowledge about the object.

First of all, we must decide about the family of each residue class. A natural way to do this is to put
the elements of each ring Z/nZ into a family of their own. This means that for example elements of
Z/3Z and Z/9Z lie in different families. So the only interesting relation between the families of two
residue classes is equality; binary arithmetic operations with two residue classes will be admissible
only if their families are equal. Note that in the naive approach in Section 81.1, we had to take care of
different moduli by a check in each function; these checks may disappear in the new approach because
of our choice of families.

Note that we do not need to tell GAP anything about the above decision concerning the families of
the objects that we are going to implement, that is, the declaration part (see 79.11) of the little GAP
package we are writing contains nothing about the distribution of the new objects into families. (The
actual construction of a family happens in the function MyZmodnZ shown below.)

Second, we want to describe methods to add or multiply two elements in Z/nZ, and these methods
shall be not applicable to other GAP objects. The natural way to do this is to create a new category in
which all elements of all rings Z/nZ lie. This is done as follows.

Example
gap> DeclareCategory("IsMyZmodnZObj", IsScalar);

gap> cat:= CategoryCollections(IsMyZmodnZObj);;

gap> cat:= CategoryCollections(cat);;

gap> cat:= CategoryCollections(cat);;

So all elements in the rings Z/nZ will lie in the category IsMyZmodnZObj, which is a subcategory
of IsScalar (31.14.20). The latter means that one can add, subtract, multiply and divide two such
elements that lie in the same family, with the obvious restriction that the second operand of a division
must be invertible. (The name IsMyZmodnZObj is chosen because IsZmodnZObj (14.5.4) is already
defined in GAP, for an implementation of residue classes that is very similar to the one developed in
this manual chapter. Using this different name, one can simply enter the GAP code of this chapter
into a GAP session, either interactively or by reading a file with this code, and experiment after each
step whether the expected behaviour has been achieved, and what is still missing.)

GAP - Reference Manual 1374

The next lines of GAP code above create the categories CategoryCollections(

IsMyZmodnZObj) and two higher levels of collections categories of this, which will be needed later;
it is important to create these categories before collections of the objects in IsMyZmodnZObj actually
arise.

Note that the only difference between DeclareCategory (13.3.5) and NewCategory (13.3.4) is
that in a call to DeclareCategory (13.3.5), a variable corresponding to the first argument is set to the
new category, and this variable is read-only. The same holds for DeclareRepresentation (13.4.5)
and NewRepresentation (13.4.4) etc.

There is no analogue of categories in the implementation in Section 81.1, since there it was not
necessary to distinguish residue classes from other GAP objects. Note that the functions there assumed
that their arguments were residue classes, and the user was responsible not to call them with other
arguments. Thus an important aspect of types is to describe arguments of functions explicitly.

Third, we must decide about the representation of our objects. This is something we know already
from Section 81.1, where we chose a list of length two. Here we may choose between two essentially
different representations for the new GAP objects, namely as “component object” (record-like) or
“positional object” (list-like). We decide to store the modulus of each residue class in its family, and
to encode the element k+nZ by the unique residue in the range [0..n−1] that is congruent to k modulo
n, and the object itself is chosen to be a positional object with this residue at the first and only position
(see 79.3).

Example
gap> DeclareRepresentation("IsMyModulusRep", IsPositionalObjectRep, [1]);

The fourth ingredients of a type, attributes, are usually of minor importance for element objects.
In particular, we do not need to introduce special attributes for residue classes.

Having defined what the new objects shall look like, we now declare a global function (see 79.11),
to create an element when family and residue are given.

Example
gap> DeclareGlobalFunction("MyZmodnZObj");

Now we have declared what we need, and we can start to implement the missing methods resp.
functions; so the following command belongs to the implementation part of our package (see 79.11).

The probably most interesting function is the one to construct a residue class.
Example

gap> InstallGlobalFunction(MyZmodnZObj, function(Fam, residue)

> return Objectify(NewType(Fam, IsMyZmodnZObj and IsMyModulusRep),

> [residue mod Fam!.modulus]);

> end);

Note that we normalize residue explicitly using mod; we assumed that the modulus is stored in
Fam, so we must take care of this below. If Fam is a family of residue classes, and residue is an
integer, MyZmodnZObj returns the corresponding object in the family Fam, which lies in the category
IsMyZmodnZObj and in the representation IsMyModulusRep.

MyZmodnZObj needs an appropriate family as first argument, so let us see how to get our hands
on this. Of course we could write a handy function to create such a family for given modulus, but we
choose another way. In fact we do not really want to call MyZmodnZObj explicitly when we want to
create residue classes. For example, if we want to enter a matrix of residues then usually we start with a

GAP - Reference Manual 1375

matrix of corresponding integers, and it is more elegant to do the conversion via multiplying the matrix
with the identity of the required ring Z/nZ; this is also done for the conversion of integral matrices
to finite field matrices. (Note that we will have to install a method for this.) So it is often sufficient
to access this identity, for example via One(MyZmodnZ(n)), where MyZmodnZ returns a domain
representing the ring Z/nZ when called with the argument n. We decide that constructing this ring is
a natural place where the creation of the family can be hidden, and implement the function. (Note that
the declaration belongs to the declaration part, and the installation belongs to the implementation part,
see 79.11).

Example
gap> DeclareGlobalFunction("MyZmodnZ");

gap>

gap> InstallGlobalFunction(MyZmodnZ, function(n)

> local F, R;

>

> if not IsPosInt(n) then

> Error("<n> must be a positive integer");

> fi;

>

> # Construct the family of element objects of our ring.

> F:= NewFamily(Concatenation("MyZmod", String(n), "Z"),

> IsMyZmodnZObj);

>

> # Install the data.

> F!.modulus:= n;

>

> # Make the domain.

> R:= RingWithOneByGenerators([MyZmodnZObj(F, 1)]);

> SetIsWholeFamily(R, true);

> SetName(R, Concatenation("(Integers mod ", String(n), ")"));

>

> # Return the ring.

> return R;

> end);

Note that the modulus n is stored in the component modulus of the family, as is assumed by
MyZmodnZ. Thus it is not necessary to store the modulus in each element. When storing n with the
!. operator as value of the component modulus, we used that all families are in fact represented as
component objects (see 79.2).

We see that we can use RingWithOneByGenerators (56.3.3) to construct a ring with one if we
have the appropriate generators. The construction via RingWithOneByGenerators (56.3.3) makes
sure that IsRingWithOne (56.3.1) (and IsRing (56.1.1)) is true for each output of MyZmodnZ. So the
main problem is to create the identity element of the ring, which in our case suffices to generate the
ring. In order to create this element via MyZmodnZObj, we have to construct its family first, at each
call of MyZmodnZ.

Also note that we may enter known information about the ring. Here we store that it contains the
whole family of elements; this is useful for example when we want to check the membership of an
element in the ring, which can be decided from the type of the element if the ring contains its whole
elements family. Giving a name to the ring causes that it will be printed via printing the name. (By the
way: This name (Integers mod n) looks like a call to \mod (31.12.1) with the arguments Integers

GAP - Reference Manual 1376

(14) and n ; a construction of the ring via this call seems to be more natural than by calling MyZmodnZ;
later we shall install a \mod (31.12.1) method in order to admit this construction.)

Now we can read the above code into GAP, and the following works already.
Example

gap> R:= MyZmodnZ(4);

(Integers mod 4)

gap> IsRing(R);

true

gap> gens:= GeneratorsOfRingWithOne(R);

[<object>]

But of course this means just to ask for the information we have explicitly stored in the ring.
Already the questions whether the ring is finite and how many elements it has, cannot be answered by
GAP. Clearly we know the answers, and we could store them in the ring, by setting the value of the
property IsFinite (30.4.2) to true and the value of the attribute Size (30.4.6) to n (the argument of
the call to MyZmodnZ). If we do not want to do so then GAP could only try to find out the number of
elements of the ring via forming the closure of the generators under addition and multiplication, but
up to now, GAP does not know how to add or multiply two elements of our ring.

So we must install some methods for arithmetic and other operations if the elements are to behave
as we want.

We start with a method for showing elements nicely on the screen. There are different operations
for this purpose. One of them is PrintObj (6.3.5), which is called for each argument in an explicit call
to Print (6.3.4). Another one is ViewObj (6.3.5), which is called in the read-eval-print loop for each
object. ViewObj (6.3.5) shall produce short and human readable information about the object in ques-
tion, whereas PrintObj (6.3.5) shall produce information that may be longer and is (if reasonable)
readable by GAP. We cannot satisfy the latter requirement for a PrintObj (6.3.5) method because
there is no way to make a family GAP readable. So we decide to display the expression (k mod n

) for an object that is given by the residue k and the modulus n, which would be fine as a ViewObj

(6.3.5) method. Since the default for ViewObj (6.3.5) is to call PrintObj (6.3.5), and since no other
ViewObj (6.3.5) method is applicable to our elements, we need only a PrintObj (6.3.5) method.

Example
gap> InstallMethod(PrintObj,

> "for element in Z/nZ (ModulusRep)",

> [IsMyZmodnZObj and IsMyModulusRep],

> function(x)

> Print("(", x![1], " mod ", FamilyObj(x)!.modulus, ")");

> end);

So we installed a method for the operation PrintObj (6.3.5) (first argument), and we gave it a
suitable information message (second argument), see 7.2.1 and 7.3 for applications of this information
string. The third argument tells GAP that the method is applicable for objects that lie in the category
IsMyZmodnZObj and in the representation IsMyModulusRep. and the fourth argument is the method
itself. More details about InstallMethod (78.3.1) can be found in 78.3.

Note that the requirement IsMyModulusRep for the argument x allows us to access the residue as
x![1]. Since the family of x has the component modulus bound if it is constructed by MyZmodnZ, we
may access this component. We check whether the method installation has some effect.

GAP - Reference Manual 1377

Example
gap> gens;

[(1 mod 4)]

Next we install methods for the comparison operations. Note that we can assume that the residues
in the representation chosen are normalized.

Example
gap> InstallMethod(\=,

> "for two elements in Z/nZ (ModulusRep)",

> IsIdenticalObj,

> [IsMyZmodnZObj and IsMyModulusRep, IsMyZmodnZObj and IsMyModulusRep],

> function(x, y) return x![1] = y![1]; end);

gap>

gap> InstallMethod(\<,

> "for two elements in Z/nZ (ModulusRep)",

> IsIdenticalObj,

> [IsMyZmodnZObj and IsMyModulusRep, IsMyZmodnZObj and IsMyModulusRep],

> function(x, y) return x![1] < y![1]; end);

The third argument used in these installations specifies the required relation between the families
of the arguments (see 13.1). This argument of a method installation, if present, is a function that shall
be applied to the families of the arguments. IsIdenticalObj (12.5.1) means that the methods are
applicable only if both arguments lie in the same family. (In installations for unary methods, obviously
no relation is required, so this argument is left out there.)

Up to now, we see no advantage of the new approach over the one in Section 81.1. For a residue
class represented as [k, n], the way it is printed on the screen is sufficient, and equality and
comparison of lists are good enough to define equality and comparison of residue classes if needed.
But this is not the case in other situations. For example, if we would have decided that the residue k

need not be normalized then we would have needed functions in Section 81.1 that compute whether
two residue classes are equal, and which of two residue classes is regarded as larger than another. Note
that we are free to define what “larger” means for objects that are newly introduced.

Next we install methods for the arithmetic operations, first for the additive structure.
Example

gap> InstallMethod(\+,

> "for two elements in Z/nZ (ModulusRep)",

> IsIdenticalObj,

> [IsMyZmodnZObj and IsMyModulusRep, IsMyZmodnZObj and IsMyModulusRep],

> function(x, y)

> return MyZmodnZObj(FamilyObj(x), x![1] + y![1]);

> end);

gap>

gap> InstallMethod(ZeroOp,

> "for element in Z/nZ (ModulusRep)",

> [IsMyZmodnZObj],

> x -> MyZmodnZObj(FamilyObj(x), 0));

gap>

gap> InstallMethod(AdditiveInverseOp,

> "for element in Z/nZ (ModulusRep)",

> [IsMyZmodnZObj and IsMyModulusRep],

> x -> MyZmodnZObj(FamilyObj(x), AdditiveInverse(x![1])));

GAP - Reference Manual 1378

Here the new approach starts to pay off. The method for the operation \+ (31.12.1) allows us to
use the infix operator + for residue classes. The method for ZeroOp (31.10.3) is used when we call
this operation or the attribute Zero (31.10.3) explicitly, and ZeroOp (31.10.3) it is also used when we
ask for 0 * rescl , where rescl is a residue class.

(Note that Zero (31.10.3) and ZeroOp (31.10.3) are distinguished because 0 * obj is guaranteed
to return a mutable result whenever a mutable version of this result exists in GAP –for example if obj
is a matrix– whereas Zero (31.10.3) is an attribute and therefore returns immutable results; for our
example there is no difference since the residue classes are always immutable, nevertheless we have
to install the method for ZeroOp (31.10.3). The same holds for AdditiveInverse (31.10.9), One
(31.10.2), and Inverse (31.10.8).)

Similarly, AdditiveInverseOp (31.10.9) can be either called directly or via the unary - operator;
so we can compute the additive inverse of the residue class rescl as -rescl .

It is not necessary to install methods for subtraction, since this is handled via addition of the
additive inverse of the second argument if no other method is installed.

Let us try what we can do with the methods that are available now.
Example

gap> x:= gens[1]; y:= x + x;

(1 mod 4)

(2 mod 4)

gap> 0 * x; -x;

(0 mod 4)

(3 mod 4)

gap> y = -y; x = y; x < y; -x < y;

true

false

true

false

We might want to admit the addition of integers and elements in rings Z/nZ, where an integer is
implicitly identified with its residue modulo n. To achieve this, we install methods to add an integer
to an object in IsMyZmodnZObj from the left and from the right.

Example
gap> InstallMethod(\+,

> "for element in Z/nZ (ModulusRep) and integer",

> [IsMyZmodnZObj and IsMyModulusRep, IsInt],

> function(x, y)

> return MyZmodnZObj(FamilyObj(x), x![1] + y);

> end);

gap>

gap> InstallMethod(\+,

> "for integer and element in Z/nZ (ModulusRep)",

> [IsInt, IsMyZmodnZObj and IsMyModulusRep],

> function(x, y)

> return MyZmodnZObj(FamilyObj(y), x + y![1]);

> end);

Now we can do also the following.
Example

gap> 2 + x; 7 - x; y - 2;

(3 mod 4)

GAP - Reference Manual 1379

(2 mod 4)

(0 mod 4)

Similarly we install the methods dealing with the multiplicative structure. We need methods to
multiply two of our objects, and to compute identity and inverse. The operation OneOp (31.10.2) is
called when we ask for rescl^0, and InverseOp (31.10.8) is called when we ask for rescl^-1.
Note that the method for InverseOp (31.10.8) returns fail if the argument is not invertible.

Example
gap> InstallMethod(*,

> "for two elements in Z/nZ (ModulusRep)",

> IsIdenticalObj,

> [IsMyZmodnZObj and IsMyModulusRep, IsMyZmodnZObj and IsMyModulusRep],

> function(x, y)

> return MyZmodnZObj(FamilyObj(x), x![1] * y![1]);

> end);

gap>

gap> InstallMethod(OneOp,

> "for element in Z/nZ (ModulusRep)",

> [IsMyZmodnZObj],

> elm -> MyZmodnZObj(FamilyObj(elm), 1));

gap>

gap> InstallMethod(InverseOp,

> "for element in Z/nZ (ModulusRep)",

> [IsMyZmodnZObj and IsMyModulusRep],

> function(elm)

> local residue;

> residue:= QuotientMod(1, elm![1], FamilyObj(elm)!.modulus);

> if residue <> fail then

> residue:= MyZmodnZObj(FamilyObj(elm), residue);

> fi;

> return residue;

> end);

To be able to multiply our objects with integers, we need not (but we may, and we should if
we are going for efficiency) install special methods. This is because in general, GAP interprets the
multiplication of an integer and an additive object as abbreviation of successive additions, and there
is one generic method for such a multiplication that uses only additions and –in the case of a negative
integer– taking the additive inverse. Analogously, there is a generic method for powering by integers
that uses only multiplications and taking the multiplicative inverse.

Note that we could also interpret the multiplication with an integer as a shorthand for the multipli-
cation with the corresponding residue class. We are lucky that this interpretation is compatible with
the one that is already available. If this would not be the case then of course we would get into trouble
by installing a concurrent multiplication that computes something different from the multiplication
that is already defined, since GAP does not guarantee which of the applicable methods is actually
chosen (see 78.4).

Now we have implemented methods for the arithmetic operations for our elements, and the fol-
lowing calculations work.

Example
gap> y:= 2 * x; z:= (-5) * x;

(2 mod 4)

GAP - Reference Manual 1380

(3 mod 4)

gap> y * z; y * y;

(2 mod 4)

(0 mod 4)

gap> y^-1; y^0;

fail

(1 mod 4)

gap> z^-1;

(3 mod 4)

There are some other operations in GAP that we may want to accept our elements as arguments.
An example is the operation Int (14.2.3) that returns, e.g., the integral part of a rational number or the
integer corresponding to an element in a finite prime field. For our objects, we may define that Int
(14.2.3) returns the normalized residue.

Note that we define this behaviour for elements but we implement it for objects in the represen-
tation IsMyModulusRep. This means that if someone implements another representation of residue
classes then this person must be careful to implement Int (14.2.3) methods for objects in this new
representation compatibly with our definition, i.e., such that the result is independent of the represen-
tation.

Example
gap> InstallMethod(Int,

> "for element in Z/nZ (ModulusRep)",

> [IsMyZmodnZObj and IsMyModulusRep],

> z -> z![1]);

Another example of an operation for which we might want to install a method is \mod (31.12.1).
We make the ring print itself as Integers (14) mod the modulus, and then it is reasonable to allow a
construction this way, which makes the PrintObj (6.3.5) output of the ring GAP readable.

Example
gap> InstallMethod(PrintObj,

> "for full collection Z/nZ",

> [CategoryCollections(IsMyZmodnZObj) and IsWholeFamily],

> function(R)

> Print("(Integers mod ",

> ElementsFamily(FamilyObj(R))!.modulus, ")");

> end);

gap>

gap> InstallMethod(\mod,

> "for `Integers', and a positive integer",

> [IsIntegers, IsPosRat and IsInt],

> function(Integers, n) return MyZmodnZ(n); end);

Let us try this.
Example

gap> Int(y);

2

gap> Integers mod 1789;

(Integers mod 1789)

GAP - Reference Manual 1381

Probably it is not necessary to emphasize that with the approach of Section 81.1, installing methods
for existing operations is usually not possible or at least not recommended. For example, installing
the function resclass_sum defined in Section 81.1 as a \+ (31.12.1) method for adding two lists of
length two (with integer entries) would not be compatible with the general definition of the addition
of two lists of same length. Installing a method for the operation Int (14.2.3) that takes a list [k, n

] and returns k would in principle be possible, since there is no Int (14.2.3) method for lists yet, but
it is not sensible to do so because one can think of other interpretations of such a list where different
Int (14.2.3) methods could be installed with the same right.

As mentioned in Section 81.2, one advantage of the new approach is that with the implementation
we have up to now, automatically also matrices of residue classes can be treated.

Example
gap> r:= Integers mod 16;

(Integers mod 16)

gap> x:= One(r);

(1 mod 16)

gap> mat:= IdentityMat(2) * x;

[[(1 mod 16), (0 mod 16)], [(0 mod 16), (1 mod 16)]]

gap> mat[1][2]:= x;;

gap> mat;

[[(1 mod 16), (1 mod 16)], [(0 mod 16), (1 mod 16)]]

gap> Order(mat);

16

gap> mat + mat;

[[(2 mod 16), (2 mod 16)], [(0 mod 16), (2 mod 16)]]

gap> last^4;

[[(0 mod 16), (0 mod 16)], [(0 mod 16), (0 mod 16)]]

Such matrices, if they are invertible, are valid as group elements. One technical problem is that the
default algorithm for inverting matrices may give up since Gaussian elimination need not be successful
over rings containing zero divisors. Therefore we install a simpleminded inversion method that inverts
an integer matrix.

Example
gap> InstallMethod(InverseOp,

> "for an ordinary matrix over a ring Z/nZ",

> [IsMatrix and IsOrdinaryMatrix

> and CategoryCollections(CategoryCollections(IsMyZmodnZObj))],

> function(mat)

> local one, modulus;

>

> one:= One(mat[1][1]);

> modulus:= FamilyObj(one)!.modulus;

> mat:= InverseOp(List(mat, row -> List(row, Int)));

> if mat <> fail then

> mat:= (mat mod modulus) * one;

> fi;

> if not IsMatrix(mat) then

> mat:= fail;

> fi;

> return mat;

> end);

GAP - Reference Manual 1382

Additionally we install a method for finding a domain that contains the matrix entries; this is used
by some GAP library functions.

Example
gap> InstallMethod(DefaultFieldOfMatrixGroup,

> "for a matrix group over a ring Z/nZ",

> [IsMatrixGroup and CategoryCollections(CategoryCollections(

> CategoryCollections(IsMyZmodnZObj)))],

> G -> RingWithOneByGenerators([One(Representative(G)[1][1])]));

Now we can deal with matrix groups over residue class rings.
Example

gap> mat2:= IdentityMat(2) * x;;

gap> mat2[2][1]:= x;;

gap> g:= Group(mat, mat2);;

gap> Size(g);

3072

gap> Factors(last);

[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3]

gap> syl3:= SylowSubgroup(g, 3);;

gap> gens:= GeneratorsOfGroup(syl3);

[[[(1 mod 16), (7 mod 16)], [(11 mod 16), (14 mod 16)]

]]

gap> Order(gens[1]);

3

It should be noted that this way more involved methods for matrix groups may not be avail-
able. For example, many questions about a finite matrix group can be delegated to an isomor-
phic permutation group via a so-called “nice monomorphism”; this can be controlled by the filter
IsHandledByNiceMonomorphism (40.5.1).

By the way, also groups of (invertible) residue classes can be formed, but this may be of minor
interest.

Example
gap> g:= Group(x);; Size(g);

#I default `IsGeneratorsOfMagmaWithInverses' method returns `true' for

[(1 mod 16)]

1

gap> g:= Group(3*x);; Size(g);

#I default `IsGeneratorsOfMagmaWithInverses' method returns `true' for

[(3 mod 16)]

4

(The messages above tell that GAP does not know a method for deciding whether the given ele-
ments are valid group elements. We could add an appropriate IsGeneratorsOfMagmaWithInverses
method if we would want.)

Having done enough for the elements, we may install some more methods for the rings if we want
to use them as arguments. These rings are finite, and there are many generic methods that will work if
they are able to compute the list of elements of the ring, so we install a method for this.

Example
gap> InstallMethod(Enumerator,

> "for full collection Z/nZ",

GAP - Reference Manual 1383

> [CategoryCollections(IsMyZmodnZObj) and IsWholeFamily],

> function(R)

> local F;

> F:= ElementsFamily(FamilyObj(R));

> return List([0 .. Size(R) - 1], x -> MyZmodnZObj(F, x));

> end);

Note that this method is applicable only to full rings Z/nZ, for proper subrings it would return
a wrong result. Furthermore, it is not required that the argument is a ring; in fact this method is
applicable also to the additive group formed by all elements in the family, provided that it knows to
contain the whole family.

Analogously, we install methods to compute the size, a random element, and the units of full rings
Z/nZ.

Example
gap> InstallMethod(Random,

> "for full collection Z/nZ",

> [CategoryCollections(IsMyZmodnZObj) and IsWholeFamily],

> R -> MyZmodnZObj(ElementsFamily(FamilyObj(R)),

> Random(0, Size(R) - 1)));

gap>

gap> InstallMethod(Size,

> "for full ring Z/nZ",

> [CategoryCollections(IsMyZmodnZObj) and IsWholeFamily],

> R -> ElementsFamily(FamilyObj(R))!.modulus);

gap>

gap> InstallMethod(Units,

> "for full ring Z/nZ",

> [CategoryCollections(IsMyZmodnZObj)

> and IsWholeFamily and IsRing],

> function(R)

> local F;

> F:= ElementsFamily(FamilyObj(R));

> return List(PrimeResidues(Size(R)), x -> MyZmodnZObj(F, x));

> end);

The Units (56.5.2) method has the disadvantage that the result is returned as a list (in fact
this list is also strictly sorted). We could improve the implementation by returning the units as a
group; if we do not want to take the full list of elements as generators, we can use the function
GeneratorsPrimeResidues (15.2.4).

Example
gap> InstallMethod(Units,

> "for full ring Z/nZ",

> [CategoryCollections(IsMyZmodnZObj)

> and IsWholeFamily and IsRing],

> function(R)

> local G, gens;

>

> gens:= GeneratorsPrimeResidues(Size(R)).generators;

> if not IsEmpty(gens) and gens[1] = 1 then

> gens:= gens{ [2 .. Length(gens)] };

GAP - Reference Manual 1384

> fi;

> gens:= Flat(gens) * One(R);

> return GroupByGenerators(gens, One(R));

> end);

Each ring Z/nZ is finite, and we could install a method that returns true when IsFinite (30.4.2)
is called with Z/nZ as argument. But we can do this more elegantly via installing a logical implication.

Example
gap> InstallTrueMethod(IsFinite,

> CategoryCollections(IsMyZmodnZObj) and IsDomain);

In effect, every domain that consists of elements in IsMyZmodnZObj will automatically store that
it is finite, even if IsFinite (30.4.2) is not called for it.

81.4 Compatibility of Residue Class Rings with Prime Fields

The above implementation of residue classes and residue class rings has at least two disadvantages.
First, if p is a prime then the ring Z/pZ is in fact a field, but the return values of MyZmodnZ are never
regarded as fields because they are not in the category IsMagmaWithInversesIfNonzero (35.1.3).
Second, and this makes the example really interesting, there are already elements of finite prime fields
implemented in GAP, and we may want to identify them with elements in Z/pZ.

To be more precise, elements of finite fields in GAP lie in the category IsFFE (59.1.1), and there is
already a representation, IsInternalRep (13.4.1), of these elements via discrete logarithms. The aim
of this section is to make IsMyModulusRep an alternative representation of elements in finite prime
fields.

Note that this is only one step towards the desired compatibility. Namely, after having a second
representation of elements in finite prime fields, we may wish that the function GF (59.3.2) (which is
the usual function to create finite fields in GAP) is able to return MyZmodnZ(p) when GF(p) is
called for a prime p . Moreover, then we have to decide about a default representation of elements in
GF(p) for primes p for which both representations are available. Of course we can force the new
representation by explicitly calling MyZmodnZ and MyZmodnZObj whenever we want, but it is not a
priori clear in which situation which representation is preferable.

The same questions will occur when we want to implement a new representation for non-prime
fields. The steps of this implementation will be the same as described in this chapter, and we will have
to achieve compatibility with both the internal representation of elements in small finite fields and the
representation IsMyModulusRep of elements in arbitrary prime fields.

But let us now turn back to the task of this section. We first adjust the setup of the declaration part
of the previous section, and then repeat the installations with suitable modifications.

(We should start a new GAP session for that, otherwise GAP will complain that the objects to be
declared are already bound; additionally, the methods installed above may be not compatible with the
ones we want.)

Example
gap> DeclareCategory("IsMyZmodnZObj", IsScalar);

gap>

gap> DeclareCategory("IsMyZmodnZObjNonprime", IsMyZmodnZObj);

gap>

gap> DeclareSynonym("IsMyZmodpZObj", IsMyZmodnZObj and IsFFE);

GAP - Reference Manual 1385

gap>

gap> DeclareRepresentation("IsMyModulusRep", IsPositionalObjectRep, [1]);

gap>

gap> DeclareGlobalFunction("MyZmodnZObj");

gap>

gap> DeclareGlobalFunction("MyZmodnZ");

As in the previous section, all (newly introduced) elements of rings Z/nZ lie in the category
IsMyZmodnZObj. But now we introduce two subcategories, namely IsMyZmodnZObjNonprime for
all elements in rings Z/nZ where n is not a prime, and IsMyZmodpZObj for elements in finite prime
fields. All objects in the latter are automatically known to lie in the category IsFFE (59.1.1) of finite
field elements.

It would be reasonable if also those internally represented elements in the category IsFFE (59.1.1)
that do in fact lie in a prime field would also lie in the category IsMyZmodnZObj (and thus in fact in
IsMyZmodpZObj). But this cannot be achieved because internally represented finite field elements do
in general not store whether they lie in a prime field.

As for the implementation part, again let us start with the definitions of MyZmodnZObj and
MyZmodnZ.

Example
gap> InstallGlobalFunction(MyZmodnZObj, function(Fam, residue)

> if IsFFEFamily(Fam) then

> return Objectify(NewType(Fam, IsMyZmodpZObj

> and IsMyModulusRep),

> [residue mod Characteristic(Fam)]);

> else

> return Objectify(NewType(Fam, IsMyZmodnZObjNonprime

> and IsMyModulusRep),

> [residue mod Fam!.modulus]);

> fi;

> end);

gap> InstallGlobalFunction(MyZmodnZ, function(n)

> local F, R;

>

> if not (IsInt(n) and IsPosRat(n)) then

> Error("<n> must be a positive integer");

> elif IsPrimeInt(n) then

> # Construct the family of element objects of our field.

> F:= FFEFamily(n);

> # Make the domain.

> R:= FieldOverItselfByGenerators([MyZmodnZObj(F, 1)]);

> SetIsPrimeField(R, true);

> else

> # Construct the family of element objects of our ring.

> F:= NewFamily(Concatenation("MyZmod", String(n), "Z"),

> IsMyZmodnZObjNonprime);

> # Install the data.

> F!.modulus:= n;

> # Make the domain.

> R:= RingWithOneByGenerators([MyZmodnZObj(F, 1)]);

> SetIsWholeFamily(R, true);

GAP - Reference Manual 1386

> SetName(R, Concatenation("(Integers mod ",String(n),")"));

> fi;

>

> # Return the ring resp. field.

> return R;

> end);

Note that the result of MyZmodnZ with a prime as argument is a field that does not contain the whole
family of its elements, since all finite field elements of a fixed characteristic lie in the same family.
Further note that we cannot expect a family of finite field elements to have a component modulus, so
we use Characteristic (31.10.1) to get the modulus. Requiring that Fam!.modulus works also if
Fam is a family of finite field elements would violate the rule that an extension of GAP should not
force changes in existing code, in this case code dealing with families of finite field elements.

Example
gap> InstallMethod(PrintObj,

> "for element in Z/nZ (ModulusRep)",

> [IsMyZmodnZObjNonprime and IsMyModulusRep],

> function(x)

> Print("(", x![1], " mod ", FamilyObj(x)!.modulus, ")");

> end);

gap>

gap> InstallMethod(PrintObj,

> "for element in Z/pZ (ModulusRep)",

> [IsMyZmodpZObj and IsMyModulusRep],

> function(x)

> Print("(", x![1], " mod ", Characteristic(x), ")");

> end);

gap>

gap> InstallMethod(\=,

> "for two elements in Z/nZ (ModulusRep)",

> IsIdenticalObj,

> [IsMyZmodnZObj and IsMyModulusRep,

> IsMyZmodnZObj and IsMyModulusRep],

> function(x, y) return x![1] = y![1]; end);

The above method to check equality is independent of whether the arguments have a prime or
nonprime modulus, so we installed it for arguments in IsMyZmodnZObj. Now we install also methods
to compare objects in IsMyZmodpZObj with the “old” finite field elements.

Example
gap> InstallMethod(\=,

> "for element in Z/pZ (ModulusRep) and internal FFE",

> IsIdenticalObj,

> [IsMyZmodpZObj and IsMyModulusRep, IsFFE and IsInternalRep],

> function(x, y)

> return DegreeFFE(y) = 1 and x![1] = IntFFE(y);

> end);

gap>

gap> InstallMethod(\=,

> "for internal FFE and element in Z/pZ (ModulusRep)",

> IsIdenticalObj,

GAP - Reference Manual 1387

> [IsFFE and IsInternalRep, IsMyZmodpZObj and IsMyModulusRep],

> function(x, y)

> return DegreeFFE(x) = 1 and IntFFE(x) = y![1];

> end);

The situation with the operation < is more difficult. Of course we are free to define the comparison
of objects in IsMyZmodnZObjNonprime, but for the finite field elements, the comparison must be
compatible with the predefined comparison of the “old” finite field elements. The definition of the <

comparison of internally represented finite field elements can be found in Chapter 59. In situations
where the documentation does not provide the required information, one has to look it up in the GAP
code; for example, the comparison in our case can be found in the appropriate source code file of the
GAP kernel.

Example
gap> InstallMethod(\<,

> "for two elements in Z/nZ (ModulusRep, nonprime)",

> IsIdenticalObj,

> [IsMyZmodnZObjNonprime and IsMyModulusRep,

> IsMyZmodnZObjNonprime and IsMyModulusRep],

> function(x, y) return x![1] < y![1]; end);

gap>

gap> InstallMethod(\<,

> "for two elements in Z/pZ (ModulusRep)",

> IsIdenticalObj,

> [IsMyZmodpZObj and IsMyModulusRep,

> IsMyZmodpZObj and IsMyModulusRep],

> function(x, y)

> local p, r; # characteristic and primitive root

> if x![1] = 0 then

> return y![1] <> 0;

> elif y![1] = 0 then

> return false;

> else

> p:= Characteristic(x);

> r:= PrimitiveRootMod(p);

> return LogMod(x![1], r, p) < LogMod(y![1], r, p);

> fi;

> end);

gap>

gap> InstallMethod(\<,

> "for element in Z/pZ (ModulusRep) and internal FFE",

> IsIdenticalObj,

> [IsMyZmodpZObj and IsMyModulusRep, IsFFE and IsInternalRep],

> function(x, y)

> return x![1] * One(y) < y;

> end);

gap>

gap> InstallMethod(\<,

> "for internal FFE and element in Z/pZ (ModulusRep)",

> IsIdenticalObj,

> [IsFFE and IsInternalRep, IsMyZmodpZObj and IsMyModulusRep],

> function(x, y)

GAP - Reference Manual 1388

> return x < y![1] * One(x);

> end);

Now we install the same methods for the arithmetic operations \+ (31.12.1), ZeroOp (31.10.3),
AdditiveInverseOp (31.10.9), \-, * (31.12.1), and OneOp (31.10.2) as in the previous sec-
tion, without listing them below. Also the same Int (14.2.3) method is installed for objects in
IsMyZmodnZObj. Note that it is compatible with the definition of Int (14.2.3) for finite field ele-
ments. And of course the same method for \mod (31.12.1) is installed.

We have to be careful, however, with the methods for InverseOp (31.10.8), \/ (31.12.1), and \^

(31.12.1). These methods and the missing methods for arithmetic operations with one argument in
IsMyModulusRep and the other in IsInternalRep (13.4.1) are given below.

Example
gap> InstallMethod(\+,

> "for element in Z/pZ (ModulusRep) and internal FFE",

> IsIdenticalObj,

> [IsMyZmodpZObj and IsMyModulusRep, IsFFE and IsInternalRep],

> function(x, y) return x![1] + y; end);

gap>

gap> InstallMethod(\+,

> "for internal FFE and element in Z/pZ (ModulusRep)",

> IsIdenticalObj,

> [IsFFE and IsInternalRep, IsMyZmodpZObj and IsMyModulusRep],

> function(x, y) return x + y![1]; end);

gap>

gap> InstallMethod(*,

> "for element in Z/pZ (ModulusRep) and internal FFE",

> IsIdenticalObj,

> [IsMyZmodpZObj and IsMyModulusRep, IsFFE and IsInternalRep],

> function(x, y) return x![1] * y; end);

gap>

gap> InstallMethod(*,

> "for internal FFE and element in Z/pZ (ModulusRep)",

> IsIdenticalObj,

> [IsFFE and IsInternalRep, IsMyZmodpZObj and IsMyModulusRep],

> function(x, y) return x * y![1]; end);

gap>

gap> InstallMethod(InverseOp,

> "for element in Z/nZ (ModulusRep, nonprime)",

> [IsMyZmodnZObjNonprime and IsMyModulusRep],

> function(x)

> local residue;

> residue:= QuotientMod(1, x![1], FamilyObj(x)!.modulus);

> if residue <> fail then

> residue:= MyZmodnZObj(FamilyObj(x), residue);

> fi;

> return residue;

> end);

gap>

gap> InstallMethod(InverseOp,

> "for element in Z/pZ (ModulusRep)",

> [IsMyZmodpZObj and IsMyModulusRep],

GAP - Reference Manual 1389

> function(x)

> local residue;

> residue:= QuotientMod(1, x![1], Characteristic(FamilyObj(x)));

> if residue <> fail then

> residue:= MyZmodnZObj(FamilyObj(x), residue);

> fi;

> return residue;

> end);

The operation DegreeFFE (59.2.1) is defined for finite field elements, we need a method for objects
in IsMyZmodpZObj. Note that we need not require IsMyModulusRep since no access to representation
dependent data occurs.

Example
gap> InstallMethod(DegreeFFE,

> "for element in Z/pZ",

> [IsMyZmodpZObj],

> z -> 1);

The methods for Enumerator (30.3.2), Random (30.7.1), Size (30.4.6), and Units (56.5.2), that
we had installed in the previous section had all assumed that their argument contains the whole family
of its elements. So these methods make sense only for the nonprime case. For the prime case, there
are already methods for these operations with argument a field.

Example
gap> InstallMethod(Enumerator,

> "for full ring Z/nZ",

> [CategoryCollections(IsMyZmodnZObjNonprime) and IsWholeFamily],

> function(R)

> local F;

> F:= ElementsFamily(FamilyObj(R));

> return List([0 .. Size(R) - 1], x -> MyZmodnZObj(F, x));

> end);

gap>

gap> InstallMethod(Random,

> "for full ring Z/nZ",

> [CategoryCollections(IsMyZmodnZObjNonprime) and IsWholeFamily],

> R -> MyZmodnZObj(ElementsFamily(FamilyObj(R)),

> Random(0, Size(R) - 1)));

gap>

gap> InstallMethod(Size,

> "for full ring Z/nZ",

> [CategoryCollections(IsMyZmodnZObjNonprime) and IsWholeFamily],

> R -> ElementsFamily(FamilyObj(R))!.modulus);

gap>

gap> InstallMethod(Units,

> "for full ring Z/nZ",

> [CategoryCollections(IsMyZmodnZObjNonprime)

> and IsWholeFamily and IsRing],

> function(R)

> local G, gens;

>

> gens:= GeneratorsPrimeResidues(Size(R)).generators;

GAP - Reference Manual 1390

> if not IsEmpty(gens) and gens[1] = 1 then

> gens:= gens{ [2 .. Length(gens)] };

> fi;

> gens:= Flat(gens) * One(R);

> return GroupByGenerators(gens, One(R));

> end);

gap>

gap> InstallTrueMethod(IsFinite,

> CategoryCollections(IsMyZmodnZObjNonprime) and IsDomain);

81.5 Further Improvements in Implementing Residue Class Rings

There are of course many possibilities to improve the implementation.
With the setup as described above, subsequent calls MyZmodnZ(n) with the same n yield incom-

patible rings in the sense that elements of one ring cannot be added to elements of an other one. The
solution for this problem is to keep a global list of all results of MyZmodnZ in the current GAP session,
and to return the stored values whenever possible. Note that this approach would admit PrintObj
(6.3.5) methods that produce GAP readable output.

One can improve the Units (56.5.2) method for the full ring in such a way that a group is returned
and not only a list of its elements; then the result of Units (56.5.2) can be used, e. g., as input for the
operation SylowSubgroup (39.13.1).

To make computations more efficient, one can install methods for \-, \/ (31.12.1), and \^

(31.12.1); one reason for doing so may be that this avoids the unnecessary construction of the ad-
ditive or multiplicative inverse, or of intermediate powers.

Example
InstallMethod(\-, "two elements in Z/nZ (ModulusRep)", ...);

InstallMethod(\-, "Z/nZ-obj. (ModulusRep) and integer", ...);

InstallMethod(\-, "integer and Z/nZ-obj. (ModulusRep)", ...);

InstallMethod(\-, "Z/pZ-obj. (ModulusRep) and internal FFE", ...);

InstallMethod(\-, "internal FFE and Z/pZ-obj. (ModulusRep)", ...);

InstallMethod(*, "Z/nZ-obj. (ModulusRep) and integer", ...);

InstallMethod(*, "integer and Z/nZ-obj. (ModulusRep)", ...);

InstallMethod(\/, "two Z/nZ-objs. (ModulusRep, nonprime)", ...);

InstallMethod(\/, "two Z/pZ-objs. (ModulusRep)", ...);

InstallMethod(\/, "Z/nZ-obj. (ModulusRep) and integer", ...);

InstallMethod(\/, "integer and Z/nZ-obj. (ModulusRep)", ...);

InstallMethod(\/, "Z/pZ-obj. (ModulusRep) and internal FFE", ...);

InstallMethod(\/, "internal FFE and Z/pZ-obj. (ModulusRep)", ...);

InstallMethod(\^, "Z/nZ-obj. (ModulusRep, nonprime) & int.", ...);

InstallMethod(\^, "Z/pZ-obj. (ModulusRep), and integer", ...);

The call to NewType (13.9.3) in MyZmodnZObj can be avoided by storing the required type, e.g., in
the family. But note that it is not admissible to take the type of an existing object as first argument of
Objectify (79.1.1). For example, suppose two objects in IsMyZmodnZObj shall be added. Then we
must not use the type of one of the arguments in a call of Objectify (79.1.1), because the argument
may have knowledge that is not correct for the result of the addition. One may think of the property
IsOne (31.10.5) that may hold for both arguments but certainly not for their sum.

GAP - Reference Manual 1391

For comparing two objects in IsMyZmodpZObj via “<”, we had to install a quite expensive method
because of the compatibility with the comparison of finite field elements that did already exist. In fact
GAP supports finite fields with elements represented via discrete logarithms only up to a given size. So
in principle we have the freedom to define a cheaper comparison via “<” for objects in IsMyZmodpZObj
if the modulus is large enough. This is possible by introducing two categories IsMyZmodpZObjSmall
and IsMyZmodpZObjLarge, which are subcategories of IsMyZmodpZObj, and to install different \<
(31.11.1) methods for pairs of objects in these categories.

Chapter 82

An Example – Designing Arithmetic
Operations

In this chapter, we give a –hopefully typical– example of extending GAP by new objects with pre-
scribed arithmetic operations (for a simple approach that may be useful to get started though does not
permit to exploit all potential features, see also ArithmeticElementCreator (80.9.1)).

82.1 New Arithmetic Operations vs. New Objects

A usual procedure in mathematics is the definition of new operations for given objects; here are a
few typical examples. The Lie bracket defines an interesting new multiplicative structure on a given
(associative) algebra. Forming a group ring can be viewed as defining a new addition for the elements
of the given group, and extending the multiplication to sums of group elements in a natural way.
Forming the exterior algebra of a given vector space can be viewed as defining a new multiplication
for the vectors in a natural way.

GAP does not support such a procedure. The main reason for this is that in GAP, the multipli-
cation in a group, a ring etc. is always written as *, and the addition in a vector space, a ring etc. is
always written as +. Therefore it is not possible to define the Lie bracket as a “second multiplication”
for the elements of a given algebra; in fact, the multiplication in Lie algebras in GAP is denoted by
*. Analogously, constructing the group ring as sketched above is impossible if an addition is already
defined for the elements; note the difference between the usual addition of matrices and the addition
in the group ring of a matrix group! (See Chapter 65 for an example.) Similarly, there is already
a multiplication defined for row vectors (yielding the standard scalar product), hence these vectors
cannot be regarded as elements of the exterior algebra of the space.

In situations such as the ones mentioned above, GAP’s way to deal with the structures in question
is the following. Instead of defining new operations for the given objects, new objects are created to
which the given arithmetic operations * and + are then made applicable.

With this construction, matrix Lie algebras consist of matrices that are different from the matrices
with associative multiplication; technically, the type of a matrix determines how it is multiplied with
other matrices (see IsMatrix (24.2.1)). A matrix with the Lie bracket as its multiplication can be
created with the function LieObject (64.1.1) from a matrix with the usual associative multiplication.

Group rings (more general: magma rings, see Chapter 65) can be constructed with
FreeMagmaRing (65.1.1) from a coefficient ring and a group. The elements of the group are not

1392

GAP - Reference Manual 1393

contained in such a group ring, one has to use an embedding map for creating a group ring element
that corresponds to a given group element.

It should be noted that the GAP approach to the construction of Lie algebras from associative
algebras is generic in the sense that all objects in the filter IsLieObject (64.1.2) use the same methods
for their addition, multiplication etc., by delegating to the “underlying” objects of the associative
algebra, no matter what these objects actually are. Analogously, also the construction of group rings
is generic.

82.2 Designing new Multiplicative Objects

The goal of this section is to implement objects with a prescribed multiplication. Let us assume
that we are given a field F , and that we want to define a new multiplication ∗ on F that is given by
a∗b = ab−a−b+2; here ab denotes the ordinary product in F .

By the discussion in Section 82.1, we know that we cannot define a new multiplication on F itself
but have to create new objects.

We want to distinguish these new objects from all other GAP objects, in order to describe for
example the situation that two of our objects shall be multiplied. This distinction is made via the type
of the objects. More precisely, we declare a new filter, a function that will return true for our new
objects, and false for all other GAP objects. This can be done by calling DeclareFilter (13.8.2),
but since our objects will know about the value already when they are constructed, the filter can be
created with DeclareCategory (13.3.5) or NewCategory (13.3.4).

Example
DeclareCategory("IsMyObject", IsObject);

The idea is that the new multiplication will be installed only for objects that “lie in the category
IsMyObject”.

The next question is what internal data our new objects store, and how they are accessed. The
easiest solution is to store the “underlying” object from the field F . GAP provides two general possi-
bilities how to store this, namely record-like and list-like structures (for examples, see 79.2 and 79.3).
We decide to store the data in a list-like structure, at position 1. This representation is declared as
follows.

Example
DeclareRepresentation("IsMyObjectListRep", IsPositionalObjectRep, [1]);

Of course we can argue that this declaration is superfluous because all objects in the category
IsMyObject will be represented this way; it is possible to proceed like that, but often (in more com-
plicated situations) it turns out to be useful that several representations are available for “the same
element”.

For creating the type of our objects, we need to specify to which family (see 13.1) the objects shall
belong. For the moment, we need not say anything about relations to other GAP objects, thus the only
requirement is that all new objects lie in the same family; therefore we create a new family. Also we
are not interested in properties that some of our objects have and others do not have, thus we need
only one type, and store it in a global variable.

Example
MyType:= NewType(NewFamily("MyFamily"),

IsMyObject and IsMyObjectListRep);

GAP - Reference Manual 1394

The next step is to write a function that creates a new object. It may look as follows.
Example

MyObject:= val -> Objectify(MyType, [Immutable(val)]);

Note that we store an immutable copy of the argument in the returned object; without doing so, for
example if the argument would be a mutable matrix then the corresponding new object would be
changed whenever the matrix is changed (see 12.6 for more details about mutability).

Having entered the above GAP code, we can create some of our objects.
Example

gap> a:= MyObject(3); b:= MyObject(5);

<object>

<object>

gap> a![1]; b![1];

3

5

But clearly a lot is missing. Besides the fact that the desired multiplication is not yet installed, we see
that also the way how the objects are printed is not satisfactory.

Let us improve the latter first. There are two GAP functions View (6.3.3) and Print (6.3.4) for
showing objects on the screen. View (6.3.3) is thought to show a short and human readable form of
the object, and Print (6.3.4) is thought to show a not necessarily short form that is GAP readable
whenever this makes sense. We decide to show a as 3 by View (6.3.3), and to show the construction
MyObject(3) by Print (6.3.4); the methods are installed for the underlying operations ViewObj
(6.3.5) and PrintObj (6.3.5).

Example
InstallMethod(ViewObj,

"for object in `IsMyObject'",

[IsMyObject and IsMyObjectListRep],

function(obj)

Print("<", obj![1], ">");

end);

InstallMethod(PrintObj,

"for object in `IsMyObject'",

[IsMyObject and IsMyObjectListRep],

function(obj)

Print("MyObject(", obj![1], ")");

end);

This is the result of the above installations.
Example

gap> a; Print(a, "\n");

<3>

MyObject(3)

And now we try to install the multiplication.
Example

InstallMethod(*,

"for two objects in `IsMyObject'",

[IsMyObject and IsMyObjectListRep,

GAP - Reference Manual 1395

IsMyObject and IsMyObjectListRep],

function(a, b)

return MyObject(a![1] * b![1] - a![1] - b![1] + 2);

end);

When we enter the above code, GAP runs into an error. This is due to the fact that the opera-
tion * (31.12.1) is declared for two arguments that lie in the category IsMultiplicativeElement

(31.14.10). One could circumvent the check whether the method matches the declaration of the
operation, by calling InstallOtherMethod (78.3.2) instead of InstallMethod (78.3.1). But it
would make sense if our objects would lie in IsMultiplicativeElement (31.14.10), for exam-
ple because some generic methods for objects with multiplication would be available then, such
as powering by positive integers via repeated squaring. So we want that IsMyObject implies
IsMultiplicativeElement (31.14.10). The easiest way to achieve such implications is to use the
implied filter as second argument of the DeclareCategory (13.3.5) call; but since we do not want to
start anew, we can also install the implication afterwards.

Example
InstallTrueMethod(IsMultiplicativeElement, IsMyObject);

Afterwards, installing the multiplication works without problems. Note that MyType and therefore
also a and b are not affected by this implication, so we construct them anew.

Example
gap> MyType:= NewType(NewFamily("MyFamily"),

> IsMyObject and IsMyObjectListRep);;

gap> a:= MyObject(3);; b:= MyObject(5);;

gap> a*b; a^27;

<9>

<134217729>

Powering the new objects by negative integers is not possible yet, because GAP does not know
how to compute the inverse of an element a, say, which is defined as the unique element a′ such that
both aa′ and a′a are “the unique multiplicative neutral element that belongs to a”.

And also this neutral element, if it exists, cannot be computed by GAP in our current situation.
It does, however, make sense to ask for the multiplicative neutral element of a given magma, and for
inverses of elements in the magma.

But before we can form domains of our objects, we must define when two objects are regarded
as equal; note that this is necessary in order to decide about the uniqueness of neutral and inverse
elements. In our situation, equality is defined in the obvious way. For being able to form sets of our
objects, also an ordering via \< (31.11.1) is defined for them.

Example
InstallMethod(\=,

"for two objects in `IsMyObject'",

[IsMyObject and IsMyObjectListRep,

IsMyObject and IsMyObjectListRep],

function(a, b)

return a![1] = b![1];

end);

InstallMethod(\<,

GAP - Reference Manual 1396

"for two objects in `IsMyObject'",

[IsMyObject and IsMyObjectListRep,

IsMyObject and IsMyObjectListRep],

function(a, b)

return a![1] < b![1];

end);

Let us look at an example. We start with finite field elements because then the domains are finite,
hence the generic methods for such domains will have a chance to succeed.

Example
gap> a:= MyObject(Z(7));

<Z(7)>

gap> m:= Magma(a);

<magma with 1 generator>

gap> e:= MultiplicativeNeutralElement(m);

<Z(7)^2>

gap> elms:= AsList(m);

[<Z(7)>, <Z(7)^2>, <Z(7)^5>]

gap> ForAll(elms, x -> ForAny(elms, y -> x*y = e and y*x = e));

true

gap> List(elms, x -> First(elms, y -> x*y = e and y*x = e));

[<Z(7)^5>, <Z(7)^2>, <Z(7)>]

So a multiplicative neutral element exists, in fact all elements in the magma m are invertible. But
what about the following.

Example
gap> b:= MyObject(Z(7)^0); m:= Magma(a, b);

<Z(7)^0>

<magma with 2 generators>

gap> elms:= AsList(m);

[<Z(7)^0>, <Z(7)>, <Z(7)^2>, <Z(7)^5>]

gap> e:= MultiplicativeNeutralElement(m);

<Z(7)^2>

gap> ForAll(elms, x -> ForAny(elms, y -> x*y = e and y*x = e));

false

gap> List(elms, x -> b * x);

[<Z(7)^0>, <Z(7)^0>, <Z(7)^0>, <Z(7)^0>]

Here we found a multiplicative neutral element, but the element b does not have an inverse. If an
addition would be defined for our elements then we would say that b behaves like a zero element.

When we started to implement the new objects, we said that we wanted to define the new multi-
plication for elements of a given field F . In principle, the current implementation would admit also
something like MyObject(2) * MyObject(Z(7)). But if we decide that our initial assumption
holds, we may define the identity and the inverse of the object <a> as <2*e> and <a/(a-e)>, respec-
tively, where e is the identity element in F and / denotes the division in F ; note that the element
<e> is not invertible, and that the above definitions are determined by the multiplication defined for
our objects. Further note that after the installations shown below, also One(MyObject(1)) is
defined.

GAP - Reference Manual 1397

(For technical reasons, we do not install the intended methods for the attributes One (31.10.2) and
Inverse (31.10.8) but for the operations OneOp (31.10.2) and InverseOp (31.10.8). This is because
for certain kinds of objects –mainly matrices– one wants to support a method to compute a mutable
identity or inverse, and the attribute needs only a method that takes this object, makes it immutable,
and then returns this object. As stated above, we only want to deal with immutable objects, so this
distinction is not really interesting for us.)

A more interesting point to note is that we should mark our objects as likely to be invertible,
since we add the possibility to invert them. Again, this could have been part of the declaration of
IsMyObject, but we may also formulate an implication for the existing category.

Example
InstallTrueMethod(IsMultiplicativeElementWithInverse, IsMyObject);

InstallMethod(OneOp,

"for an object in `IsMyObject'",

[IsMyObject and IsMyObjectListRep],

a -> MyObject(2 * One(a![1])));

InstallMethod(InverseOp,

"for an object in `IsMyObject'",

[IsMyObject and IsMyObjectListRep],

a -> MyObject(a![1] / (a![1] - One(a![1]))));

Now we can form groups of our (nonzero) elements.
Example

gap> MyType:= NewType(NewFamily("MyFamily"),

> IsMyObject and IsMyObjectListRep);;

gap>

gap> a:= MyObject(Z(7));

<Z(7)>

gap> b:= MyObject(0*Z(7)); g:= Group(a, b);

<0*Z(7)>

<group with 2 generators>

gap> Size(g);

6

We are completely free to define an addition for our elements, a natural one is given by <a> +

 = <a+b-1>. As we did for the multiplication, we first change IsMyObject such that the additive
structure is also known.

Example
InstallTrueMethod(IsAdditiveElementWithInverse, IsMyObject);

Next we install the methods for the addition, and those to compute the additive neutral element and
the additive inverse.

Example
InstallMethod(\+,

"for two objects in `IsMyObject'",

[IsMyObject and IsMyObjectListRep,

IsMyObject and IsMyObjectListRep],

function(a, b)

return MyObject(a![1] + b![1] - 1);

GAP - Reference Manual 1398

end);

InstallMethod(ZeroOp,

"for an object in `IsMyObject'",

[IsMyObject and IsMyObjectListRep],

a -> MyObject(One(a![1])));

InstallMethod(AdditiveInverseOp,

"for an object in `IsMyObject'",

[IsMyObject and IsMyObjectListRep],

a -> MyObject(a![1] / (a![1] - One(a![1]))));

Let us try whether the addition works.
Example

gap> MyType:= NewType(NewFamily("MyFamily"),

> IsMyObject and IsMyObjectListRep);;

gap> a:= MyObject(Z(7));; b:= MyObject(0*Z(7));;

gap> m:= AdditiveMagma(a, b);

<additive magma with 2 generators>

gap> Size(m);

7

Similar as installing a multiplication automatically makes powering by integers available, multi-
plication with integers becomes available with the addition.

Example
gap> 2 * a;

<Z(7)^5>

gap> a+a;

<Z(7)^5>

gap> MyObject(2*Z(7)^0) * a;

<Z(7)>

In particular we see that this multiplication does not coincide with the multiplication of two of our
objects, that is, an integer cannot be used as a shorthand for one of the new objects in a multiplication.

(It should be possible to create a field with the new multiplication and addition. Currently this
fails, due to missing methods for computing several kinds of generators from field generators, for
computing the characteristic in the case that the family does not know this in advance, for checking
with AsField (58.1.9) whether a domain is in fact a field, for computing the closure as a field.)

It should be emphasized that the mechanism described above may be not suitable for the situation
that one wants to consider many different multiplications “on the same set of objects”, since the
installation of a new multiplication requires the declaration of at least one new filter and the installation
of several methods. But the design of GAP is not suitable for such dynamic method installations.

Turning this argument the other way round, the implementation of the new arithmetics defined by
the above multiplication and addition is available for any field F , one need not repeat it for each field
one is interested in.

Similar to the above situation, the construction of a magma ring RM from a coefficient ring R and a
magma M is implemented only once, since the definition of the arithmetic operations depends only on
the given multiplication of M and not on M itself. So the addition is not implemented for the elements

GAP - Reference Manual 1399

in M or –more precisely– for an isomorphic copy. In some sense, the addition is installed “for the
multiplication”, and as mentioned in Section 82.1, there is only one multiplication * (31.12.1) in
GAP.

Chapter 83

Library Files

This chapter describes some of the conventions used in the GAP library files. These conventions are
intended as a help on how to read library files and how to find information in them. So everybody is
recommended to follow these conventions, although they do not prescribe a compulsory programming
style –GAP itself will not bother with the formatting of files.

Filenames have traditionally GAP adhered to the 8+3 convention (to make it possible to use the
same filenames even on a MS-DOS file system) and been in lower case (systems that do not recognize
lower case in file names will convert them automatically to upper case). It is no longer so important to
adhere to these conventions, but at the very least filenames should adhere to a 16+5 convention, and
be distinct even after identifying upper and lower case. Directory names of packages, however, must
be in lower case (the LoadPackage (76.2.1) command assumes this).

83.1 File Types

The GAP library consists of the following types of files, distinguished by their suffixes:

.g Files which contain parts of the “inner workings” of GAP. These files usually do not contain
mathematical functionality, except for providing links to kernel functions.

.gd Declaration files. These files contain declarations of all categories, attributes, operations, and
global functions. These files also contain the operation definitions in comments.

.gi Implementation files. These files contain all installations of methods and global functions. Usu-
ally declarations of representations are also considered to be part of the implementation and are
therefore found in the .gi files.

As a rule of thumb, all .gd files are read in before the .gi files are read. Therefore a .gi file
usually may use any operation or global function (it has been declared before), and no care has to be
taken towards the order in which the .gi files are read.

83.2 Finding Implementations in the Library

For a concretely given function, you can use FilenameFunc (5.1.4) and StartlineFunc (5.1.5) for
finding the file where this function is defined, and the line in this file where the definition of this

1400

GAP - Reference Manual 1401

function starts. This does not work for arbitrary functions, see Section FilenameFunc (5.1.4) for the
restrictions.

If you are interested in getting the function which implements a method for specific arguments,
you can use 7.2.1. If FilenameFunc (5.1.4) does not work for this method then setting the print level
of 7.2.1 higher will give you the installation string for this method, which can be used for searching in
library files.

To find the occurrence of functions, methods, function names, and installation strings in the library,
one can use the grep tool under UNIX. To find a function, search for the function name in the .gd

files; as global variables are usually declared only once, only few files will show up. The function
installation is likely to occur in the corresponding .gi file.

To find a method from the known operation name and the installation string, search for the string
“Method(” (this catches both InstallMethod (78.3.1) and InstallOtherMethod (78.3.2)) and the
installation string or the operation name.

The following tools from the GAP package Browse can be used for accessing the code of func-
tions.

• BrowseGapMethods (Browse: BrowseGapMethods see BrowseGapData) shows an overview
of GAP’s operations and methods, and allows one to navigate through the files that contain the
implementations of the methods, using a pager.

• BrowseProfile (Browse: BrowseProfile) shows profiling results (similar to
DisplayProfile (7.8.9)) and allows one to navigate through the files that contain the
implementations of the functions that were actually used, using a pager.

83.3 Undocumented Variables

For several global variables in GAP, no information is available via the help system (see Sec-
tion (Tutorial: Help), for a quick overview of the help system, or Chapter 2, for details). There
are various reasons for “hiding” a variable from the user; namely, the variable may be regarded as of
minor importance (for example, it may be a function called by documented GAP functions that first
compute many input parameters for the undocumented function), or it belongs to a part of GAP that
is still experimental in the sense that the meaning of the variable has not yet been fixed or even that it
is not clear whether the variable will vanish in a more developed version.

As a consequence, it is dangerous to use undocumented variables because they are not guaranteed
to exist or to behave the same in future versions of GAP.

Conversely, for documented variables, the definitions in the GAP manual can be relied on for
future GAP versions (unless they turn out to be erroneous); if the GAP developers find that some piece
of minor, but documented functionality is an insurmountable obstacle to important developments, they
may make the smallest possible incompatible change to the functionality at the time of a major release.
However, in any such case it will be announced clearly in the GAP Forum what has been changed and
why.

So on the one hand, the developers of GAP want to keep the freedom of changing undocumented
GAP code. On the other hand, users may be interested in using undocumented variables.

In this case, whenever you write GAP code involving undocumented variables, and want to make
sure that this code will work in future versions of GAP, you may ask at support@gap-system.org
for documentation about the variables in question. The GAP developers then decide whether these
variables shall be documented or not, and if yes, what the definitions shall be.

mailto://support@gap-system.org

GAP - Reference Manual 1402

In the former case, the new documentation is added to the GAP manual, this means that from then
on, this definition is protected against changes.

In the latter case (which may occur for example if the variables in question are still experimental),
you may add the current values of these variables to your private code if you want to be sure that
nothing will be broken later due to changes in GAP.

Chapter 84

Interface to the GAP Help System

In this chapter we describe which information the help system needs about a manual book and how to
tell it this information. The code which implements this interface can be found in lib/helpbase.gi.

If you are intending to use a documentation format that is already used by some other help book
you probably don’t need to know anything from this chapter. However, if you want to create a new
format and make it available to GAP then hopefully you will find the necessary information here.

The basic idea of the help system is as follows: One tells GAP a directory which contains a file
manual.six, see 84.1. When the GAP help is asked something about this book it reads in some basic
information from the file manual.six: strings like section headers, function names, and index entries
to be searched by the online help; information about the available formats of this book like text, html,
dvi, and pdf; the actual files containing the documentation, corresponding section numbers, and page
numbers: and so on. See 84.2 for a description of the format of the manual.six file.

It turns out that there is almost no restriction on the format of the manual.six file, except that
it must provide a string, say "myownformat" which identifies the format of the help book. Then the
basic actions on a help book are delegated by the help system to handler functions stored in a record
HELP_BOOK_HANDLER.myownformat. See 84.3 for information which functions must be provided by
the handler and what they are supposed to do. The main work to teach GAP to use a new document
format is to write these handler functions and to produce an appropriate manual.six file.

84.1 Installing and Removing a Help Book

84.1.1 HELP_ADD_BOOK

▷ HELP_ADD_BOOK(short, long, dir) (function)

This command tells GAP that in directory dir (given as either a string describing the path relative
to the GAP root directory GAPInfo.RootPaths[1] or as directory object) contains the basic infor-
mation about a help book. The string short is used as an identifying name for that book by the online
help. The string long should be a short explanation of the content of the book. Both strings together
should easily fit on a line, since they are displayed with ?books.

It is possible to reinstall a book with different strings short , long ; (for example, documentation
of a not-loaded GAP package indicates this in the string short and if you later load the package,
GAP quietly changes the string short as it reinstalls its documentation).

1403

GAP - Reference Manual 1404

The only condition necessary to make the installation of a book valid is that the directory dir

must contain a file manual.six. The next section explains how this file must look.

84.1.2 HELP_REMOVE_BOOK

▷ HELP_REMOVE_BOOK(short) (function)

This command tells GAP not to use the help book with identifying name short any more. The
book can be re-installed using HELP_ADD_BOOK (84.1.1).

84.2 The manual.six File

The first non-empty line of manual.six should be of the form
#SIXFORMAT myownformat

where myownformat is an identifying string for this format. The reading of the (remainder of
the) file is then delegated to the function HELP_BOOK_HANDLER.myownformat.ReadSix which must
exist. Thus there are no further regulations for the format of the manual.six file, other that what you
yourself impose. If such a line is missing then it is assumed that the manual.six file complies with the
gapmacro.tex documentation format, which internally is referred to as the default format for his-
torical reasons. In that case reading the file is delegated to HELP_BOOK_HANDLER.default.ReadSix.

Section 84.3 explains how the return value of HELP_BOOK_HANDLER.myownformat.ReadSix

should look like and which further function should be contained in
HELP_BOOK_HANDLER.myownformat .

84.3 The Help Book Handler

For each document format myownformat there must be a record HELP_BOOK_HANDLER.myownformat
of functions with the following names and functionality.

An implementation example of such a set of handler functions is the default format, which is
the format name used for the gapmacro.tex documentation format, and this is contained in the file
lib/helpdef.gi.

The package GAPDoc (see Chapter (GAPDoc: Introduction and Example)) also defines a
format (as it should) which is called: GapDocGAP (the case is significant).

As you can see by the above two examples, the name for a document format can be anything, but
it should be in some way meaningful.

ReadSix(stream)

For an input text stream stream to a manual.six file, this must return a record info which
has at least the following two components: bookname which is the short identifying name of
the help book, and entries. Here info.entries must be a list with one entry per search
string (which can be a section header, function name, index entry, or whatever seems sensible
to be searched for matching a help query). A match for the GAP help is a pair (info , i) where
i refers to an index for the list info.entries and this corresponds to a certain position in
the document. There is one further regulation for the format of the entries of info.entries.
They must be lists and the first element of such a list must be a string which is printed by GAP
for example when several matches are found for a query (so it should essentially be the string

GAP - Reference Manual 1405

which is searched for the match, except that it may contain upper and lower case letters or some
markup). There may be other components in info which are needed by the functions below,
but their names and formats are not prescribed. The stream argument is typically generated
using InputTextFile (10.5.1), e.g.

Example
gap> dirs := DirectoriesLibrary("doc/ref");;

gap> file := Filename(dirs, "manual.six");;

gap> stream := InputTextFile(file);;

ShowChapters(info)

This must return a text string or list of text lines which contains the chapter headers of the book
info.bookname.

ShowSection(info)

This must return a text string or list of text lines which contains the section (and chapter) headers
of the book info.bookname.

SearchMatches(info, topic, frombegin)

This function must return a list of indices of info.entries for entries which match the search
string topic . If frombegin is true then those parts of topic which are separated by spaces
should be considered as the beginnings of words to decide the matching. It frombegin is
false, a substring search should be performed. The string topic can be assumed to be already
normalized (transformed to lower case, and whitespace normalized). The function must return a
list with two entries [exact, match] where exact is the list of indices for exact matches and
match a list of indices of the remaining matches.

MatchPrevChap(info, i)

This should return the match [info , j] which points to the beginning of the chapter containing
match [info , i], respectively to the beginning of the previous chapter if [info , i] is already
the beginning of a chapter. (Corresponds to ?<<.)

MatchNextChap(info, i)

Like the previous function except that it should return the match for the beginning of the next
chapter. (Corresponds to ?>>.)

MatchPrev(info, i)

This should return the previous section (or appropriate portion of the document). (Corresponds
to ?<.)

MatchNext(info, i)

Like the previous function except that it should return the next section (or appropriate portion
of the document). (Corresponds to ?>.)

HelpData(info, i, type)

This returns for match [info , i] some data whose format depends on the string type , or fail
if these data are not available. The values of type which currently must be handled and the
corresponding result format are described in the list below.

GAP - Reference Manual 1406

SubsectionNumber(info, i)

This returns some GAP object that identifies the position in the book where the display of this
entry is started. This can be useful to detect if several help book entries actually point to the
same place.

The HELP_BOOK_HANDLER.myownformat.HelpData function must recognize the following val-
ues of the type argument.

"text"

This must return a corresponding text string in a format which can be fed into the Pager,
see Pager (2.4.1).

"url"

If the help book is available in HTML format this must return an URL as a string (Probably a
file:// URL containing a label for the exact start position in that file). Otherwise it returns
fail.

"dvi"

If the help book is available in dvi-format this must return a record of form rec(file :=

filename, page := pagenumber). Otherwise it returns fail.

"pdf"

Same as case "dvi", but for the corresponding pdf-file.

"secnr"

This must return a pair like [[3,3,1], "3.3.1"] which gives the section number as chapter
number, section number, subsection number triple and a corresponding string (a chapter itself is
encoded like [[4,0,0], "4."]). Useful for cross-referencing between help books.

84.4 Introducing new Viewer for the Online Help

To introduce a new viewer for the online help, one should extend the global record
HELP_VIEWER_INFO (84.4.1), the structure of which is explained below.

84.4.1 HELP_VIEWER_INFO

▷ HELP_VIEWER_INFO (global variable)

The record HELP_VIEWER_INFO (84.4.1) contains one component for each help viewer. Each such
component is a record with two components: .type and .show.

The component .type refers to one of the types recognized by the HelpData handler function
explained in the previous section (currently one of "text", "url", "dvi", or "pdf").

The component .show is a function which gets as input the result of a corresponding HelpData

handler call, if it was not fail. This function has to perform the actual display of the data. (E.g., by
calling a function like Pager (2.4.1) or by starting up an external viewer program.)

Chapter 85

Function-Operation-Attribute Triples

GAP is eager to maintain information that it has gathered about an object, possibly by lengthy cal-
culations. The most important mechanism for information maintenance is the automatic storage and
look-up that takes place for attributes; and this was already mentioned in section (Tutorial: At-
tributes). In this chapter we will describe further mechanisms that allow storage of results that are not
values of attributes.

The idea which is common to all sections is that certain operations, which are not themselves
attributes, have an attribute associated with them. To automatically delegate tasks to the attribute,
GAP knows, in addition to the operation and the attributes also a function, which is “wrapped around”
the other two. This “wrapper function” is called by the user and decides whether to call the operation
or the attribute or possibly both. The whole f unction-operation-attribute triple (or FOA triple) is set
up by a single GAP command which writes the wrapper function and already installs some methods,
e.g., for the attribute to fall back on the operation. The idea is then that subsequent methods, which
perform the actual computation, are installed only for the operation, whereas the wrapper function
remains unaltered, and in general no additional methods for the attribute are required either.

85.1 Key Dependent Operations

85.1.1 KeyDependentOperation

▷ KeyDependentOperation(name, dom-req, key-req, key-test) (function)

There are several functions that require as first argument a domain, e.g., a group, and as second
argument something much simpler, e.g., a prime. SylowSubgroup (39.13.1) is an example. Since
its value depends on two arguments, it cannot be an attribute, yet one would like to store the Sylow
subgroups once they have been computed.

The idea is to provide an attribute of the group, called ComputedSylowSubgroups, and to store the
groups in this list. The name implies that the value of this attribute may change in the course of a GAP
session, whenever a newly-computed Sylow subgroup is put into the list. Therefore, this is a mutable
attribute (see 13.5). The list contains primes in each bound odd position and a corresponding Sylow
subgroup in the following even position. More precisely, if p = ComputedSylowSubgroups(G)[

even - 1] then ComputedSylowSubgroups(G)[even] holds the value of SylowSubgroup(
G, p). The pairs are sorted in increasing order of p , in particular at most one Sylow p subgroup
of G is stored for each prime p . This attribute value is maintained by the function SylowSubgroup

1407

GAP - Reference Manual 1408

(39.13.1), which calls the operation SylowSubgroupOp(G, p) to do the real work, if the prime p
cannot be found in the list. So methods that do the real work should be installed for SylowSubgroupOp
and not for SylowSubgroup (39.13.1).

The same mechanism works for other functions as well, e.g., for PCore (39.11.3), but also for
HallSubgroup (39.13.3), where the second argument is not a prime but a set of primes.

KeyDependentOperation declares the two operations and the attribute as described above, with
names name , nameOp, and Computednames, as well as tester and setter operations Hasname and
Setname , respectively. Note, however, that the tester is not a filter. dom-req and key-req specify
the required filters for the first and second argument of the operation nameOp, which are needed to
create this operation with DeclareOperation (78.1.5). dom-req is also the required filter for the
corresponding attribute Computednames. The fourth argument key-test is in general a function to
which the second argument info of name(D, info) will be passed. This function can perform
tests on info , and raise an error if appropriate.

For example, to set up the three objects SylowSubgroup (39.13.1), SylowSubgroupOp,
ComputedSylowSubgroups together, the declaration file lib/grp.gd contains the following line of
code.

Example
KeyDependentOperation("SylowSubgroup", IsGroup, IsPosInt, "prime");

In this example, key-test has the value "prime", which is silently replaced by a function that tests
whether its argument is a prime.

Example
gap> s4 := Group((1,2,3,4),(1,2));;

gap> SylowSubgroup(s4, 7);; ComputedSylowSubgroups(s4);

[7, Group(())]

gap> SylowSubgroup(s4, 2);; ComputedSylowSubgroups(s4);

[2, Group([(3,4), (1,4)(2,3), (1,3)(2,4)]), 7, Group(())]

gap> HasSylowSubgroup(s4, 5);

false

gap> SetSylowSubgroup(s4, 5, Group(()));; ComputedSylowSubgroups(s4);

[2, Group([(3,4), (1,4)(2,3), (1,3)(2,4)]), 5, Group(()), 7, Group(())]

Example
gap> SylowSubgroup(s4, 6);

Error, SylowSubgroup: <p> must be a prime called from

<compiled or corrupted call value> called from

<function>(<arguments>) called from read-eval-loop

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can 'return;' to continue

brk> quit;

Thus the prime test need not be repeated in the methods for the operation SylowSubgroupOp

(which are installed to do the real work). Note that no methods need be installed for SylowSubgroup
(39.13.1) and ComputedSylowSubgroups. If a method is installed with InstallMethod (78.3.1)
for a wrapper operation such as SylowSubgroup (39.13.1) then a warning is signalled provided the
InfoWarning (7.4.8) level is at least 1. (Use InstallMethod (78.3.1) in order to suppress the warn-
ing.)

GAP - Reference Manual 1409

85.2 In Parent Attributes

85.2.1 InParentFOA

▷ InParentFOA(name, super, sub, AorP) (function)

This section describes how you can add new “in parent attributes” (see 31.8 and 31.7). As an
example, we describe how Index (39.3.2) and its related functions are implemented.

There are two operations Index (39.3.2) and IndexOp, and an attribute IndexInParent. They
are created together as shown below, and after they have been created, methods need be installed only
for IndexOp. In the creation process, IndexInParent already gets one default method installed (in
addition to the usual system getter of each attribute, see 13.5), namely D -> IndexOp(Parent(D

), D).
The operation Index (39.3.2) proceeds as follows.

• If it is called with the two arguments super and sub , and if HasParent(sub) and
IsIdenticalObj(super, Parent(sub)) are true, IndexInParent is called with ar-
gument sub , and the result is returned.

• Otherwise, IndexOp is called with the same arguments that Index (39.3.2) was called with, and
the result is returned.

(Note that it is in principle possible to install even Index (39.3.2) and IndexOp methods for a number
of arguments different from two, with InstallOtherMethod (78.3.2), see 13.5).

The call of InParentFOA declares the operations and the attribute as described above, with names
name , nameOp, and nameInParent. super-req and sub-req specify the required filters for the
first and second argument of the operation nameOp, which are needed to create this operation with
DeclareOperation (78.1.5). sub-req is also the required filter for the corresponding attribute
nameInParent; note that HasParent (31.7.1) is not required for the argument U of nameInParent,
because even without a parent stored, Parent(U) is legal, meaning U itself (see 31.7). The fourth
argument must be DeclareProperty (13.7.5) if nameInParent takes only boolean values (for ex-
ample in the case IsNormalInParent), and DeclareAttribute (13.5.4) otherwise.

For example, to set up the three objects Index (39.3.2), IndexOp, and IndexInParent together,
the declaration file lib/domain.gd contains the following line of code.

Example
InParentFOA("Index", IsGroup, IsGroup, DeclareAttribute);

Note that no methods need be installed for Index (39.3.2) and IndexInParent.

85.3 Operation Functions

Chapter 41 and, in particular, the Section 41.1 explain that certain operations such as 41.4), besides
their usual usage with arguments G , D , and opr , can also be applied to an external set (G-set), in
which case they can be interpreted as attributes. Moreover, they can also be interpreted as attributes
for permutation groups, meaning the natural action on the set of its moved points.

The definition of 41.4 says that a method should be a function with arguments G , D , gens , oprs ,
and opr , as in the case of the operation ExternalSet (41.12.2) when specified via gens and oprs

GAP - Reference Manual 1410

(see 41.12). All other syntax variants allowed for 41.4 (e.g., leaving out gens and oprs) are handled
by default methods.

The default methods for 41.4 support the following behaviour.

1. If the only argument is an external set xset and the attribute tester HasOrbits(xset) returns
true, the stored value of that attribute is returned.

2. If the only argument is an external set xset and the attribute value is not known, the default
arguments are obtained from the data of xset .

3. If gens and oprs are not specified, gens is set to Pcgs(G) if CanEasilyComputePcgs(G

) is true, and to GeneratorsOfGroup(G) otherwise; oprs is set to gens .

4. The default value of opr is OnPoints (41.2.1).

5. In the case of an operation of a permutation group G on MovedPoints(G) via OnPoints

(41.2.1), if the attribute tester HasOrbits(G) returns true, the stored attribute value is re-
turned.

6. The operation is called as result:= Orbits(G, D, gens, oprs, opr).

7. In the case of an external set xset or a permutation group G in its natural action, the attribute
setter is called to store result .

8. result is returned.

The declaration of operations that match the above pattern is done as follows.

85.3.1 OrbitsishOperation

▷ OrbitsishOperation(name, reqs, usetype, AorP) (function)

declares an attribute op, with name name . The second argument reqs specifies the list of required
filters for the usual (five-argument) methods that do the real work.

If the third argument usetype is true, the function call op(xset) will –if the value of op for
xset is not yet known– delegate to the five-argument call of op with second argument xset rather than
with D. This allows certain methods for op to make use of the type of xset, in which the types of the
external subsets of xset and of the external orbits in xset are stored. (This is used to avoid repeated
calls of NewType (13.9.3) in functions like ExternalOrbits(xset), which call ExternalOrbit(
xset, pnt) for several values of pnt.)

For property testing functions such as IsTransitive (41.10.1), the fourth argument AorP must
be NewProperty (13.7.4), otherwise it must be NewAttribute (13.5.3); in the former case, a property
is returned, in the latter case an attribute that is not a property.

For example, to set up the operation Orbits (41.4.2), the declaration file lib/oprt.gd contains
the following line of code:

Example
OrbitsishOperation("Orbits", OrbitsishReq, false, NewAttribute);

The global variable OrbitsishReq contains the standard requirements

GAP - Reference Manual 1411

Example
OrbitsishReq := [IsGroup, IsList,

IsList,

IsList,

IsFunction];

which are usually entered in calls to OrbitsishOperation.
The new operation, e.g., Orbits (41.4.2), can be called either as Orbits(xset) for an external

set xset , or as Orbits(G) for a permutation group G , meaning the orbits on the moved points of
G via OnPoints (41.2.1), or as

Orbits(G, Omega[, gens, acts][, act]),
with a group G , a domain or list Omega , generators gens of G , and corresponding elements acts

that act on Omega via the function act ; the default of gens and acts is a list of group generators of
G , the default of act is OnPoints (41.2.1).

Only methods for the five-argument version need to be installed for doing the real work. (And of
course methods for one argument in case one wants to define a new meaning of the attribute.)

85.3.2 OrbitishFO

▷ OrbitishFO(name, reqs, famrel, usetype, realenum) (function)

is used to create operations like Orbit (41.4.1). This function is analogous to
OrbitsishOperation (85.3.1), but for operations orbish like Orbit(G, Omega, pnt). Since
the return values of these operations depend on the additional argument pnt , there is no associated
attribute.

The call of OrbitishFO declares a wrapper function and its operation, with names name and
nameOp.

The second argument reqs specifies the list of required filters for the operation nameOp.
The third argument famrel is used to test the family relation between the second and third argu-

ment of name(G, D, pnt). For example, famrel is IsCollsElms in the case of Orbit (41.4.1)
because pnt must be an element of D . Similarly, in the call Blocks(G, D, seed), seed must be
a subset of D , and the family relation must be IsIdenticalObj (12.5.1).

The fourth argument usetype serves the same purpose as in the case of OrbitsishOperation
(85.3.1). usetype can also be an attribute, such as BlocksAttr or MaximalBlocksAttr. In this
case, if only one of the two arguments Omega and pnt is given, blocks with no seed are computed,
they are stored as attribute values according to the rules of OrbitsishOperation (85.3.1).

If the 5th argument is set to true, the action for an external set should use the enumerator, other-
wise it uses the HomeEnumerator (41.12.5) value. This will make a difference for external orbits as
part of a larger domain.

85.3.3 Example: Orbit and OrbitOp

For example, to setup the function Orbit (41.4.1) and its operation OrbitOp, the declaration file
lib/oprt.gd contains the following line of code:

Example
OrbitishFO("Orbit", OrbitishReq, IsCollsElms, false, false);

The variable OrbitishReq contains the standard requirements

GAP - Reference Manual 1412

Example
OrbitishReq := [IsGroup, IsList, IsObject,

IsList,

IsList,

IsFunction];

which are usually entered in calls to OrbitishFO (85.3.2).
The relation test via famrel is used to provide a uniform construction of the wrapper functions

created by OrbitishFO (85.3.2), in spite of the different syntax of the specific functions. For example,
Orbit (41.4.1) admits the calls Orbit(G, D, pnt, opr) and Orbit(G, pnt, opr), i.e.,
the second argument D may be omitted; Blocks (41.11.1) admits the calls Blocks(G, D, seed,

opr) and Blocks(G, D, opr), i.e., the third argument may be omitted. The translation to the
appropriate call of OrbitOp or BlocksOp, for either operation with five or six arguments, is handled
via famrel .

As a consequence, there must not only be methods for OrbitOp with the six arguments corre-
sponding to OrbitishReq, but also methods for only five arguments (i.e., without D). Plenty of
examples are contained in the implementation file lib/oprt.gi.

In order to handle a few special cases (currently Blocks (41.11.1) and MaximalBlocks (41.11.2)),
also the following form of OrbitishFO (85.3.2) is supported.

OrbitishFO(name, reqs, famrel, attr)

The functions in question depend upon an argument seed , so they cannot be regarded as attributes.
However, they are most often called without giving seed , meaning “choose any minimal resp. max-
imal block system”. In this case, the result can be stored as the value of the attribute attr that was
entered as fourth argument of OrbitishFO (85.3.2). This attribute is considered by a call Blocks(
G, D, opr) (i.e., without seed) in the same way as Orbits (41.4.2) considers OrbitsAttr.

To set this up, the declaration file lib/oprt.gd contains the following lines:
Example

DeclareAttribute("BlocksAttr", IsExternalSet);

OrbitishFO("Blocks",

[IsGroup, IsList, IsList,

IsList,

IsList,

IsFunction], IsIdenticalObj, BlocksAttr, true);

And this extraordinary FOA triple works as follows:
Example

gap> s4 := Group((1,2,3,4),(1,2));;

gap> Blocks(s4, MovedPoints(s4), [1,2]);

[[1, 2, 3, 4]]

gap> Tester(BlocksAttr)(s4);

false

gap> Blocks(s4, MovedPoints(s4));

[[1, 2, 3, 4]]

gap> Tester(BlocksAttr)(s4); BlocksAttr(s4);

true

[[1, 2, 3, 4]]

Chapter 86

Weak Pointers

This chapter describes the use of the kernel feature of weak pointers. This feature is primarily intended
for use only in GAP internals, and should be used extremely carefully otherwise.

The garbage collector (see Section 7.12.1) is the part of the kernel that manages memory in the
user’s workspace. It will normally only reclaim the storage used by an object when the object cannot
be reached as a subobject of any GAP variable, or from any reference in the kernel. We say that any
link to object a from object b “keeps object a alive”, as long as b is alive. It is occasionally convenient,
however, to have a link to an object which does not keep it alive, and this is a weak pointer. The most
common use is in caches, and similar structures, where it is only necessary to remember how to solve
problem x as long as some other link to x exists.

The following section 86.1 describes the semantics of the objects that contain weak pointers.
Following sections describe the functions available to manipulate them.

86.1 Weak Pointer Objects

A weak pointer object is similar to a mutable plain list, except that it does not keep its subobjects alive
during a garbage collection. From the GAP viewpoint this means that its entries may become unbound,
apparently spontaneously, at any time. Considerable care is therefore needed in programming with
such an object.

86.1.1 WeakPointerObj

▷ WeakPointerObj(list) (function)

WeakPointerObj returns a weak pointer object which contains the same subobjects as the list
list , that is it returns a shallow weak copy of list .

Example
gap> w := WeakPointerObj([1, , [2,3], fail, rec(a := 1)]);

WeakPointerObj([1, , [2, 3], fail, rec(a := 1)])

After some computations involving garbage collections (but not necessarily in the first garbage
collection after the above assignment), GAP will notice that the list and the record stored in w are not
referenced by other objects than w, and that therefore these entries may disappear.

1413

GAP - Reference Manual 1414

Example
gap> CollectGarbage(true);

... (perhaps more computations and garbage collections) ...

gap> CollectGarbage(true);

gap> w;

WeakPointerObj([1, , , fail])

Note that w has failed to keep its list and record subobjects alive during the garbage collections.
Certain subobjects, such as small integers and elements of small finite fields, are not stored in the
workspace, and so are not subject to garbage collection, while certain other objects, such as the boolean
values, are always reachable from global variables or the kernel and so are never garbage collected.

Subobjects reachable without going through a weak pointer object do not evaporate, as in:
Example

gap> w := WeakPointerObj([1, , , fail]);

WeakPointerObj([1, , , fail])

gap> l := [1,2,3];;

gap> w[1] := l;;

gap> w;

WeakPointerObj([[1, 2, 3], , , fail])

gap> CollectGarbage(true);

gap> w;

WeakPointerObj([[1, 2, 3], , , fail])

Note also that the global variables last, last2 and last3 will keep things alive –this can be
confusing when debugging.

86.2 Low Level Access Functions for Weak Pointer Objects

86.2.1 SetElmWPObj

▷ SetElmWPObj(wp, pos, val) (function)

▷ UnbindElmWPObj(wp, pos) (function)

▷ ElmWPObj(wp, pos) (function)

▷ IsBoundElmWPObj(wp, pos) (function)

▷ LengthWPObj(wp) (function)

The functions SetElmWPObj and UnbindElmWPObj set and unbind entries in a weak pointer object.
The function ElmWPObj returns the element at position pos of the weak pointer object wp , if there

is one, and fail otherwise. A return value of fail can thus arise either because (a) the value fail is
stored at position pos , or (b) no value is stored at position pos . Since fail cannot vanish in a garbage
collection, these two cases can safely be distinguished by a subsequent call to IsBoundElmWPObj,
which returns true if there is currently a value bound at position pos of wp and false otherwise.

Note that it is not safe to write:
if IsBoundElmWPObj(w,i) then x:= ElmWPObj(w,i); fi;

and treat x as reliably containing a value taken from w, as a badly timed garbage collection could
leave x containing fail. Instead use

GAP - Reference Manual 1415

x := ElmWPObj(w,i); if x <> fail or IsBoundElmWPObj(w,i) then
Here is an example.

Example
gap> w := WeakPointerObj([1, , [2,3], fail, rec()]);

WeakPointerObj([1, , [2, 3], fail, rec()])

gap> SetElmWPObj(w,5,[]);

gap> w;

WeakPointerObj([1, , [2, 3], fail, []])

gap> UnbindElmWPObj(w,1);

gap> w;

WeakPointerObj([, , [2, 3], fail, []])

gap> ElmWPObj(w,3);

[2, 3]

gap> ElmWPObj(w,1);

fail

Now after some computations and garbage collections . . .
Example

gap> 2;; 3;; 4;; CollectGarbage(true); # clear last, last2, last3

. . . we get the following.
Example

gap> ElmWPObj(w,3);

fail

gap> w;

WeakPointerObj([, , , fail])

gap> ElmWPObj(w,4);

fail

gap> IsBoundElmWPObj(w,3);

false

gap> IsBoundElmWPObj(w,4);

true

86.3 Accessing Weak Pointer Objects as Lists

Weak pointer objects are members of ListsFamily and the categories IsList (21.1.1) and
IsMutable (12.6.2). Methods based on the low-level functions in the previous section, are installed
for the list access operations, enabling them to be used as lists. However, it is not recommended that
these be used in programming. They are supplied mainly as a convenience for interactive working,
and may not be safe, since functions and methods for lists may assume that after IsBound(w[i])
returns true, access to w[i] is safe.

86.4 Copying Weak Pointer Objects

A ShallowCopy (12.7.1) method is installed, which makes a new weak pointer object containing the
same objects as the original.

GAP - Reference Manual 1416

It is possible to apply StructuralCopy (12.7.2) to a weak pointer object, obtaining a new weak
pointer object containing copies of the objects in the original. This may not be safe if a badly timed
garbage collection occurs during copying.

Applying Immutable (12.6.3) to a weak pointer object produces an immutable plain list containing
immutable copies of the objects contained in the weak pointer object. An immutable weak pointer
object is a contradiction in terms.

Chapter 87

More about Stabilizer Chains

This chapter contains some rather technical complements to the material handled in the chapters 42
and 43.

87.1 Generalized Conjugation Technique

The command ConjugateGroup(G, p) (see ConjugateGroup (39.2.6)) for a permutation group
G with stabilizer chain equips its result also with a stabilizer chain, namely with the chain of G con-
jugate by p . Conjugating a stabilizer chain by a permutation p means replacing all the points which
appear in the orbit components by their images under p and replacing every permutation g which
appears in a labels or transversal component by its conjugate gp. The conjugate gp acts on the
mapped points exactly as g did on the original points, i.e., (pnt.p).gp = (pnt.g).p. Since the entries in
the translabels components are integers pointing to positions of the labels list, the translabels
lists just have to be permuted by p for the conjugated stabilizer. Then generators is reconstructed
as labels{ genlabels } and transversal{ orbit } as labels{ translabels{ orbit } }.

This conjugation technique can be generalized. Instead of mapping points and permutations under
the same permutation p , it is sometimes desirable (e.g., in the context of permutation group homomor-
phisms) to map the points with an arbitrary mapping map and the permutations with a homomorphism
hom such that the compatibility of the actions is still valid: map(pnt).hom(g) = map(pnt.g). (Of
course the ordinary conjugation is a special case of this, with map(pnt) = pnt.p and hom(g) = gp.)

In the generalized case, the “conjugated” chain need not be a stabilizer chain for the image of hom,
since the “preimage” of the stabilizer of map(b) (where b is a base point) need not fix b, but only fixes
the preimage map−1(map(b)) setwise. Therefore the method can be applied only to one level and the
next stabilizer must be computed explicitly. But if map is injective, we have map(b).hom(g)=map(b)
if and only if b.g = b, and if this holds, then g = w(g1, . . . ,gn) is a word in the generators g1, . . . ,gn

of the stabilizer of b and hom(g) =∗ w(hom(g1), . . . ,hom(gn)) is in the “conjugated” stabilizer. If,
more generally, hom is a right inverse to a homomorphism ϕ (i.e., ϕ(hom(g)) = g for all g), equality
∗ holds modulo the kernel of ϕ; in this case the “conjugated” chain can be made into a real stabilizer
chain by extending each level with the generators of the kernel and appending a proper stabilizer
chain of the kernel at the end. These special cases will occur in the algorithms for permutation group
homomorphisms (see 40).

To “conjugate” the points (i.e., orbit) and permutations (i.e., labels) of the Schreier tree, a loop
is set up over the orbit list constructed during the orbit algorithm, and for each vertex b with unique
edge a(l)b ending at b, the label l is mapped with hom and b with map. We assume that the orbit

1417

GAP - Reference Manual 1418

list was built w.r.t. a certain ordering < of the labels, where l′ < l means that every point in the orbit
was mapped with l′ before it was mapped with l. This shape of the orbit list is guaranteed if the
Schreier tree is extended only by AddGeneratorsExtendSchreierTree (43.11.10), and it is then
also guaranteed for the “conjugated” Schreier tree. (The ordering of the labels cannot be read from
the Schreier tree, however.)

In the generalized case, it can happen that the edge a(l)b bears a label l whose image is “old”,
i.e., equal to the image of an earlier label l′ < l. Because of the compatibility of the actions we then
have map(b) = map(a).hom(l)−1 = map(a).hom(l′)−1 = map(al′−1), so map(b) is already equal to
the image of the vertex al′−1. This vertex must have been encountered before b = al−1 because l′ < l.
We conclude that the image of a label can be “old” only if the vertex at the end of the corresponding
edge has an “old” image, too, but then it need not be “conjugated” at all. A similar remark applies to
labels which map under hom to the identity.

87.2 The General Backtrack Algorithm with Ordered Partitions

Section 43.12 describes the basic functions for a backtrack search. The purpose of this section is to
document how the general backtrack algorithm is implemented in GAP and which parts you have to
modify if you want to write your own backtrack routines.

87.2.1 Internal representation of ordered partitions

GAP represents an ordered partition as a record with the following components.

points

a list of all points contained in the partition, such that the points of each cell from lie consecu-
tively,

cellno

a list whose i th entry is the number of the cell which contains the point i ,

firsts

a list such that points[firsts[j]] is the first point in points which is in cell j ,

lengths

a list of the cell lengths.

Some of the information is redundant, e.g., the lengths could also be read off the firsts list, but
since this need not be increasing, it would require some searching. Similar for cellno, which could
be replaced by a systematic search of points, keeping track of what cell is currently being traversed.
With the above components, the m th cell of a partition P is expressed as P.points{ [P.firsts[m]

.. P.firsts[m] + P.lengths[m] - 1] }. The most important operations, however, to be
performed upon P are the splitting of a cell and the reuniting of the two parts. Following the strategy
of J. Leon, this is done as follows:

(1) The points which make up the cell that is to be split are sorted so that the ones that remain inside
occupy positions [P.firsts[m] .. last] in the list P.points (for a suitable value of
last).

GAP - Reference Manual 1419

(2) The points at positions [last + 1 .. P.firsts[m] + P.lengths[m] - 1] will form
the additional cell. For this new cell requires additional entries are added to the lists P.firsts
(namely, last+1) and P.lengths (namely, P.firsts[m] + P.lengths[m] - last - 1).

(3) The entries of the sublist P.cellno{ [last+1 .. P.firsts[m] + P.lengths[m]-1]

} must be set to the number of the new cell.

(4) The entry P.lengths[m] must be reduced to last - P.firsts[m] + 1.

Then reuniting the two cells requires only the reversal of steps 2 to 4 above. The list P.points
need not be rearranged.

87.2.2 Functions for setting up an R-base

This subsection explains some GAP functions which are local to the library file lib/stbcbckt.gi

which contains the code for backtracking in permutation groups. They are mentioned here because
you might find them helpful when you want to implement you own backtracking function based on
the partition concept. An important argument to most of the functions is the R-base R, which you
should regard as a black box. We will tell you how to set it up, how to maintain it and where to pass it
as argument, but it is not necessary for you to know its internal representation. However, if you insist
to learn the whole story: Here are the record components from which an R-base is made up:

domain

the set Ω on which the group G operates

base

the sequence (a1, . . . ,ar) of base points

partition

an ordered partition, initially Π0, this will be refined to Π1, . . . ,Πr during the backtrack algo-
rithm

where

a list such that ai lies in cell number where[i] of Πi

rfm a list whose ith entry is a list of refinements which take Σi to Σi+1; the structure of a refinement
is described below

chain

a (copy of a) stabilizer chain for G (not if G is a symmetric group)

fix only if G is a symmetric group: a list whose i entry contains Fixcells(Πi)

level

initially equal to chain, this will be changed to chains for the stabilizers Ga1...ai for i = 1, . . . ,r
during the backtrack algorithm; if G is a symmetric group, only the number of moved points is
stored for each stabilizer

lev a list whose ith entry remembers the level entry for Ga1...ai−1

GAP - Reference Manual 1420

level2, lev2
a similar construction for a second group (used in intersection calculations), false otherwise.
This second group H activated if the R-base is constructed as EmptyRBase([G,H],Ω,Π0)

(if G = H, GAP sets level2 = true instead).

nextLevel

this is described below

As our guiding example, we present code for the function Centralizer (35.4.4) which calculates
the centralizer of an element g in the group G. (The real code is more general and has a few more
subtleties.)

Pi_0 := TrivialPartition(omega);

R := EmptyRBase(G, omega, Pi_0);

R.nextLevel := function(Pi, rbase)

local fix, p, q, where;

NextRBasePoint(Pi, rbase);

fix := Fixcells(Pi);

for p in fix do

q := p ^ g;

where := IsolatePoint(Pi, q);

if where <> false then

Add(fix, q);

ProcessFixpoint(R, q);

AddRefinement(R, "Centralizer", [Pi.cellno[p], q, where]);

if Pi.lengths[where] = 1 then

p := FixpointCellNo(Pi, where);

ProcessFixpoint(R, p);

AddRefinement(R, "ProcessFixpoint", [p, where]);

fi;

fi;

od;

end;

return PartitionBacktrack(

G,

c -> g ^ c = g,

false,

R,

[Pi_0, g],

L, R);

The list numbers below refer to the line numbers of the code above.

1. omega is the set on which G acts and Pi_0 is the first member of the decreasing sequence of parti-
tions mentioned in 43.12. We set Pi_0 = omega, which is constructed as TrivialPartition(
omega), but we could have started with a finer partition, e.g., into unions of g-cycles of the
same length.

2. This statement sets up the R-base in the variable R.

GAP - Reference Manual 1421

3.-21.
These lines define a function R.nextLevel which is called whenever an additional member
in the sequence Pi_0 ≥ Π1 ≥ . . . of partitions is needed. If Πi does not yet contain enough
base points in one-point cells, GAP will call R.nextLevel(Πi, R), and this function will
choose a new base point ai+1, refine Πi to Πi+1 (thereby changing the first argument) and store
all necessary information in R.

5. This statement selects a new base point ai+1, which is not yet in a one-point cell of Π and still
moved by the stabilizer Ga1...ai of the earlier base points. If certain points of omega should be
preferred as base point (e.g., because they belong to long cycles of g), a list of points starting
with the most wanted ones, can be given as an optional third argument to NextRBasePoint

(actually, this is done in the real code for Centralizer (35.4.4)).

6. Fixcells(Π) returns the list of points in one-point cells of Π (ordered as the cells are
ordered in Π).

7. For every point p ∈ f ix, if we know the image p^g under c ∈CG(e), we also know (p^g)^c =
(p^c)^g. We therefore want to isolate these extra points in Π.

9. This statement puts point q in a cell of its own, returning in where the number of the cell of Π

from which q was taken. If q was already the only point in its cell, where = false instead.

12. This command does the necessary bookkeeping for the extra base point q: It prescribes q as next
base in the stabilizer chain for G (needed, e.g., in line 5) and returns false if q was already fixed
the stabilizer of the earlier base points (and true otherwise; this is not used here). Another call
to ProcessFixpoint like this was implicitly made by the function NextRBasePoint to register
the chosen base point. By contrast, the point q was not chosen this way, so ProcessFixpoint

must be called explicitly for q.

13. This statement registers the function which will be used during the backtrack search to perform
the corresponding refinements on the “image partition” Σi (to yield the refined Σi+1). After
choosing an image bi+1 for the base point ai+1, GAP will compute Σi∧({bi+1},Ω\{bi+1}) and
store this partition in I.partition, where I is a black box similar to R, but corresponding to
the current “image partition” (hence it is an “R-image” in analogy to the R-base). Then GAP
will call the function Refinements.Centralizer(R, I, Pi.cellno[p], p, where),
with the then current values of R and I, but where Π.cellno[p], p, where still have the values
they have at the time of this AddRefinement command. This function call will further refine
I.partition to yield Σi+1 as it is programmed in the function Refinements.Centralizer,
which is described below. (The global variable Refinements is a record which contains all
refinement functions for all backtracking procedures.)

14.-19.
If the cell from which q was taken out had only two points, we now have an additional one-point
cell. This condition is checked in line 13 and if it is true, this extra fixpoint p is taken (line 15),
processed like q before (line 16) and is then (line 17) passed to another refinement function
Refinements.ProcessFixpoint(R, I, p, where), which is also described below.

23.-29.
This command starts the backtrack search. Its result will be the centralizer as a subgroup of G.
Its arguments are

GAP - Reference Manual 1422

24. the group we want to run through,

25. the property we want to test, as a GAP function,

26. false if we are looking for a subgroup, true in the case of a representative search (when the
result would be one representative),

27. the R-base,

28. a list of data, to be stored in I.data, which has in position 1 the first member Σ0 of the decreas-
ing sequence of “image partitions” mentioned in 43.12. In the centralizer example, position 2
contains the element that is to be centralized. In the case of a representative search, i.e., a con-
jugacy test g^c ?= h, we would have h instead of g here, and possibly a Σ0 different from Π0
(e.g., a partition into unions of h-cycles of same length).

29. two subgroups L ≤ CG(g) and R ≤ CG(h) known in advance (we have L = R in the centralizer
case).

87.2.3 Refinement functions for the backtrack search

The last subsection showed how the refinement process leading from Πi to Πi+1 is coded in the func-
tion R.nextLevel, this has to be executed once the base point ai+1. The analogous refinement step
from Σi to Σi+1 must be performed for each choice of an image bi+1 for ai+1, and it will depend on the
corresponding value of Σi∧ ({bi+1},Ω\{bi+1}). But before we can continue our centralizer example,
we must, for the interested reader, document the record components of the other black box I, as we
did above for the R-base black box R. Most of the components change as GAP walks up and down
the levels of the search tree.

data

this will be mentioned below

depth

the level i in the search tree of the current node Σi

bimg

a list of images of the points in R.base

partition

the partition Σi of the current node

level

the stabilizer chain R.lev[i] at the current level

perm

a permutation mapping Fixcells(Πi) to Fixcells(Σi); this implies mapping (a1, . . . ,ai) to
(b1, . . . ,bi)

level2, perm2
a similar construction for the second stabilizer chain, false otherwise (and true if R.level2
= true)

GAP - Reference Manual 1423

As declared in the above code for Centralizer (35.4.4), the refinement is performed by
the function Refinement.Centralizer(R, I,Π.cellno[p], p,where). The functions in the record
Refinement always take two additional arguments before the ones specified in the AddRefinement

call (in line 13 above), namely the R-base R and the current value I of the “R-image”. In our example,
p is a fixpoint of Π = Πi ∧ ({ai+1},Ω\{ai+1}) such that where = Π.cellno[pg]. The Refinement

functions must return false if the refinement is unsuccessful (e.g., because it leads to Σi+1 having
different cell sizes from Πi+1) and true otherwise. Our particular function looks like this.

Refinements.Centralizer := function(R, I, cellno, p, where)

local Sigma, q;

Sigma := I.partition;

q := FixpointCellNo(Sigma, cellno) ^ I.data[2];

return IsolatePoint(Sigma, q) = where and ProcessFixpoint(I, p, q);

end;

The list numbers below refer to the line numbers of the code immediately above.

3. The current value of Σi ∧ ({bi+1},Ω\{bi+1}) is always found in I.partition.

4. The image of the only point in cell number cellno = Πi.cellno[p] in Σ under g = I.data[2] is
calculated.

5. The function returns true only if the image q has the same cell number in Σ as p had in
Π (i.e., where) and if q can be prescribed as an image for p under the coset of the stabi-
lizer Ga1...ai+1 .c where c ∈ G is an (already constructed) element mapping the earlier base
points a1, . . . ,ai+1 to the already chosen images b1, . . . ,bi+1. This latter condition is tested
by ProcessFixpoint(I, p,q) which, if successful, also does the necessary bookkeeping in I.
In analogy to the remark about line 12 in the program above, the chosen image bi+1 for the
base point ai+1 has already been processed implicitly by the function PartitionBacktrack,
and this processing includes the construction of an element c ∈ G which maps Fixcells(Πi) to
Fixcells(Σi) and ai+1 to bi+1. By contrast, the extra fixpoints p and q in Πi+1 and Σi+1 were
not chosen automatically, so they require an explicit call of ProcessFixpoint, which replaces
the element c by some c′.c (with c′ ∈ Ga1...ai+1) which in addition maps p to q, or returns false
if this is impossible.

You should now be able to guess what Refinements.ProcessFixpoint(R, I, p,where) does: it
simply returns ProcessFixpoint(I, p,FixpointCellNo(I.partition,where)).

Summary.
When you write your own backtrack functions using the partition technique, you have to supply

an R-base, including a component nextLevel, and the functions in the Refinements record which
you need. Then you can start the backtrack by passing the R-base and the additional data (for the
data component of the “R-image”) to PartitionBacktrack.

87.2.4 Functions for meeting ordered partitions

A kind of refinement that occurs in particular in the normalizer calculation involves computing the
meet of Π (cf. lines 6ff. above) with an arbitrary other partition Λ, not just with one point. To do this
efficiently, GAP uses the following two functions.

GAP - Reference Manual 1424

StratMeetPartition(R, Π, Λ [, g])

MeetPartitionStrat(R, I{, Λ′}[, {g′}], strat)
Such a StratMeetPartition command would typically appear in the function call

R.nextLevel(Π,R) (during the refinement of Πi to Πi+1). This command replaces Π by Π ∧ Λ

(thereby changing the second argument) and returns a “meet strategy” strat. This is (for us) a black
box which serves two purposes: First, it allows GAP to calculate faster the corresponding meet Σ∧Λ′,
which must then appear in a Refinements function (during the refinement of Σi to Σi+1). It is faster
to compute Σ∧Λ′ with the “meet strategy” of Π∧Λ because if the refinement of Σ is successful at all,
the intersection of a cell from the left hand side of the ∧ sign with a cell from the right hand side must
have the same size in both cases (and strat records these sizes, so that only non-empty intersections
must be calculated for Σ∧Λ′). Second, if there is a discrepancy between the behaviour prescribed by
strat and the behaviour observed when refining Σ, the refinement can immediately be abandoned.

On the other hand, if you only want to meet a partition Π with Λ for a one-time use, without
recording a strategy, you can simply type StratMeetPartition(Π,Λ) as in the following example,
which also demonstrates some other partition-related commands.

Example
gap> P := Partition([[1,2],[3,4,5],[6]]);; Cells(P);

[[1, 2], [3, 4, 5], [6]]

gap> Q := Partition(OnTuplesTuples(last, (1,3,6)));; Cells(Q);

[[3, 2], [6, 4, 5], [1]]

gap> StratMeetPartition(P, Q);

[]

gap> # The ``meet strategy'' was not recorded, ignore this result.

gap> Cells(P);

[[1], [5, 4], [6], [2], [3]]

You can even say StratMeetPartition(Π,∆) where ∆ is simply a subset of Ω, it will then be
interpreted as the partition (∆,Ω\∆).

GAP makes use of the advantages of a “meet strategy” if the refinement function in Refinements

contains a MeetPartitionStrat command where strat is the “meet strategy” calculated by
StratMeetPartition before. Such a command replaces I.partition by its meet with Λ′, again
changing the argument I. The necessary reversal of these changes when backtracking from a node
(and prescribing the next possible image for a base point) is automatically done by the function
PartitionBacktrack.

In all cases, an additional argument g means that the meet is to be taken not with Λ, but instead
with Λ.g−1, where operation on ordered partitions is meant cellwise (and setwise on each cell). (Anal-
ogously for the primed arguments.)

Example
gap> P := Partition([[1,2],[3,4,5],[6]]);;

gap> StratMeetPartition(P, P, (1,6,3));; Cells(P);

[[1], [5, 4], [6], [2], [3]]

Note that P.(1,3,6) = Q.

87.3 Stabilizer Chains for Automorphisms Acting on Enumerators

This section describes a way of representing the automorphism group of a group as permutation group,
following [Sim97]. The code however is not yet included in the GAP library.

GAP - Reference Manual 1425

In this section we present an example in which objects we already know (namely, automorphisms
of solvable groups) are equipped with the permutation-like operations ^ and / for action on positive
integers. To achieve this, we must define a new type of objects which behave like permutations but are
represented as automorphisms acting on an enumerator. Our goal is to generalize the Schreier-Sims
algorithm for construction of a stabilizer chain to groups of such new automorphisms.

87.3.1 An operation domain for automorphisms

The idea we describe here is due to C. Sims. We consider a group A of automorphisms of a group
G, given by generators, and we would like to know its order. Of course we could follow the strat-
egy of the Schreier-Sims algorithm (described in 43.6) for A acting on G. This would involve
a call of StabChainStrong(EmptyStabChain([], One(A)), GroupGenerators(A))

where StabChainStrong is a function as the one described in the pseudo-code below:

StabChainStrong := function(S, newgens)

Extend the Schreier tree of S with newgens.

for sch in Schreier generators do

if not sch in S.stabilizer then

StabChainStrong(S.stabilizer, [sch]);

fi;

od;

end;

The membership test sch /∈ S.stabilizer can be performed because the stabilizer chain of
S.stabilizer is already correct at that moment. We even know a base in advance, namely any
generating set for G. Fix such a generating set (g1, . . . ,gd) and observe that this base is generally very
short compared to the degree |G| of the operation. The problem with the Schreier-Sims algorithm,
however, is then that the length of the first basic orbit g1.A would already have the magnitude of |G|,
and the basic orbits at deeper levels would not be much shorter. For the advantage of a short base we
pay the high price of long basic orbits, since the product of the (few) basic orbit lengths must equal
|A|. Such long orbits make the Schreier-Sims algorithm infeasible, so we have to look for a longer
base with shorter basic orbits.

Assume that G is solvable and choose a characteristic series with elementary abelian factors. For
the sake of simplicity we assume that N < G is an elementary abelian characteristic subgroup with
elementary abelian factor group G/N. Since N is characteristic, A also acts as a group of automor-
phisms on the factor group G/N, but of course not necessarily faithfully. To retain a faithful action,
we let A act on the disjoint union G/N with G, and choose as base (g1N, . . . ,gdN,g1, . . . ,gd). Now
the first d basic orbits lie inside G/N and can have length at most [G : N]. Since the base points
g1N, . . . ,gdN form a generating set for G/N, their iterated stabilizer A(d+1) acts trivially on the factor
group G/N, i.e., it leaves the cosets giN invariant. Accordingly, the next d basic orbits lie inside giN
(for i = 1, . . . ,d) and can have length at most |N|.

Generalizing this method to a characteristic series G = N0 > N1 > .. . > Nl = {1} of length l >
2, we can always find a base of length l.d such that each basic orbit is contained in a coset of a
characteristic factor, i.e. in a set of the form giN j−1/N j (where gi is one of the generators of G and
1 ≤ j ≤ l). In particular, the length of the basic orbits is bounded by the size of the corresponding
characteristic factors. To implement a Schreier-Sims algorithm for such a base, we must be able to let
automorphisms act on cosets of characteristic factors giN j−1/N j, for varying i and j. We would like to

GAP - Reference Manual 1426

translate each such action into an action on {1, . . . , [N j−1 : N j]}, because then we need not enumerate
the operation domain, which is the disjoint union of G/N1, G/N2 . . .G/Nl , as a whole. Enumerating it
as a whole would result in basic orbits like orbit⊆ {1001, . . . ,1100} with a transversal list whose
first 1000 entries would be unbound, but still require 4 bytes of memory each (see 43.9).

Identifying each coset giN j−1/N j into {1, . . . , [N j−1 : N j]} of course means that we have to change
the action of the automorphisms on every level of the stabilizer chain. Such flexibility is not possible
with permutations because their effect on positive integers is “hardwired” into them, but we can install
new operations for automorphisms.

87.3.2 Enumerators for cosets of characteristic factors

So far we have not used the fact that the characteristic factors are elementary abelian, but we will do
so from here on. Our first task is to implement an enumerator (see AsList (30.3.8) and 21.23) for a
coset of a characteristic factor in a solvable group G. We assume that such a coset gN/M is given by

(1) a pcgs for the group G (see Pcgs (45.2.1)), let n =Length(pcgs);

(2) a range range = [start..stop] indicating that N = ⟨pcgs{[start..n]}⟩ and M = ⟨pcgs{[stop+
1..n]}⟩, i.e., the cosets of pcgs{range} form a base for the vector space N/M;

(3) the representative g.

We first define a new representation for such enumerators and then construct them by simply
putting these three pieces of data into a record object. The enumerator should behave as a list of group
elements (representing cosets modulo M), consequently, its family will be the family of the pcgs itself.

Example
DeclareRepresentation("IsCosetSolvableFactorEnumeratorRep", IsEnumerator,

["pcgs", "range", "representative"]);

EnumeratorCosetSolvableFactor := function(pcgs, range, g)

return Objectify(NewType(FamilyObj(pcgs),

IsCosetSolvableFactorEnumeratorRep),

rec(pcgs := pcgs,

range := range,

representative := g));

end;

The definition of the operations Length (21.17.5), \[\] (21.2.1) and Position (21.16.1) is now
straightforward. The code has sometimes been abbreviated and is meant “cum grano salis”, e.g., the
declaration of the local variables has been left out.

Example
InstallMethod(Length, [IsCosetSolvableFactorEnumeratorRep],

enum -> Product(RelativeOrdersPcgs(enum!.pcgs){ enum!.range }));

InstallMethod(\[\], [IsCosetSolvableFactorEnumeratorRep,

IsPosRat and IsInt],

function(enum, pos)

elm := ();

pos := pos - 1;

for i in Reversed(enum!.range) do

GAP - Reference Manual 1427

p := RelativeOrderOfPcElement(enum!.pcgs, i);

elm := enum!.pcgs[i] ^ (pos mod p) * elm;

pos := QuoInt(pos, p);

od;

return enum!.representative * elm;

end);

InstallMethod(Position, [IsCosetSolvableFactorEnumeratorRep,

IsObject, IsZeroCyc],

function(enum, elm, zero)

exp := ExponentsOfPcElement(enum!.pcgs,

LeftQuotient(enum!.representative, elm));

pos := 0;

for i in enum!.range do

pos := pos * RelativeOrderOfPcElement(pcgs, i) + exp[i];

od;

return pos + 1;

end);

87.3.3 Making automorphisms act on such enumerators

Our next task is to make automorphisms of the solvable group pcgs!.group act on [1..Length(enum)]
for such an enumerator enum. We achieve this by introducing a new representation of automorphisms
on enumerators and by putting the enumerator together with the automorphism into an object which
behaves like a permutation. Turning an ordinary automorphism into such a special automorphism
requires then the construction of a new object which has the new type. We provide an operation
PermOnEnumerator(model, aut) which constructs such a new object having the same type as
model , but representing the automorphism aut . So aut can be either an ordinary automorphism or
one which already has an enumerator in its type, but perhaps different from the one we want (i.e. from
the one in model).

Example
DeclareCategory("IsPermOnEnumerator",

IsMultiplicativeElementWithInverse and IsPerm);

DeclareRepresentation("IsPermOnEnumeratorDefaultRep",

IsPermOnEnumerator and IsAttributeStoringRep,

["perm"]);

DeclareOperation("PermOnEnumerator",

[IsEnumerator, IsObject]);

InstallMethod(PermOnEnumerator,

[IsEnumerator, IsObject],

function(enum, a)

SetFilterObj(a, IsMultiplicativeElementWithInverse);

a := Objectify(NewKind(PermutationsOnEnumeratorsFamily,

IsPermOnEnumeratorDefaultRep),

rec(perm := a));

SetEnumerator(a, enum);

return a;

end);

GAP - Reference Manual 1428

InstallMethod(PermOnEnumerator,

[IsEnumerator, IsPermOnEnumeratorDefaultRep],

function(enum, a)

a := Objectify(TypeObj(a), rec(perm := a!.perm));

SetEnumerator(a, enum);

return a;

end);

Next we have to install new methods for the operations which calculate the product of two au-
tomorphisms, because this product must again have the right type. We also have to write a function
which uses the enumerators to apply such an automorphism to positive integers.

Example
InstallMethod(*, IsIdenticalObj,

[IsPermOnEnumeratorDefaultRep, IsPermOnEnumeratorDefaultRep],

function(a, b)

perm := a!.perm * b!.perm;

SetIsBijective(perm, true);

return PermOnEnumerator(Enumerator(a), perm);

end);

InstallMethod(\^,

[IsPosRat and IsInt, IsPermOnEnumeratorDefaultRep],

function(p, a)

return PositionCanonical(Enumerator(a),

Enumerator(a)[p] ^ a!.perm);

end);

How the corresponding methods for p / aut and aut ^ n look like is obvious.
Now we can formulate the recursive procedure StabChainStrong which extends the stabilizer

chain by adding in new generators newgens. We content ourselves again with pseudo-code, empha-
sizing only the lines which set the EnumeratorDomainPermutation. We assume that initially S is a
stabilizer chain for the trivial subgroup with a level for each pair (range,g) characterizing an enumer-
ator (as described above). We also assume that the identity element at each level already has the
type corresponding to that level.

StabChainStrong := function(S, newgens)

for i in [1 .. Length(newgens)] do

newgens[i] := AutomorphismOnEnumerator(S.identity, newgens[i]);

od;

Extend the Schreier tree of S with newgens.

for sch in Schreier generators do

if not sch in S.stabilizer then

StabChainStrong(S.stabilizer, [sch]);

fi;

od;

end;

References

[ACM98] ACM. ISSAC ’98: Proceedings of the 1998 international symposium on Symbolic and
algebraic computation, New York, NY, USA, 1998. ACM Press. Chairman: Volker
Weispfenning and Barry Trager. 1430, 1433

[AMW82] D. G. Arrell, S. Manrai, and M. F. Worboys. A procedure for obtaining simplified defining
relations for a subgroup. In Campbell and Robertson [CR82], page 155–159. 787

[AR84] D. G. Arrell and E. F. Robertson. A modified Todd-Coxeter algorithm. In Atkinson
[Atk84], page 27–32. 787

[Art73] E. Artin. Galoissche Theorie. Verlag Harri Deutsch, Zurich, 1973. Übersetzung nach
der zweiten englischen Auflage besorgt von Viktor Ziegler, Mit einem Anhang von N. A.
Milgram, Zweite, unveränderte Auflage, Deutsch-Taschenbücher, No. 21. 955

[Atk84] M. D. Atkinson, editor. Computational group theory, London, 1984. Academic Press Inc.
[Harcourt Brace Jovanovich Publishers]. 1429, 1432, 1434, 1435

[Bak84] A. Baker. A concise introduction to the theory of numbers. Cambridge University Press,
Cambridge, 1984. 222

[BC76] M. J. Beetham and C. M. Campbell. A note on the Todd-Coxeter coset enumeration
algorithm. Proc. Edinburgh Math. Soc. (2), 20(1):73–79, 1976. 770

[BC89] R. P. Brent and G. L. Cohen. A new lower bound for odd perfect numbers. Math. Comp.,
53(187):431–437, S7–S24, 1989. 224

[BC94] U. Baum and M. Clausen. Computing irreducible representations of supersolvable groups.
Math. Comp., 63(207):351–359, 1994. 1183, 1184

[BCFS91] L. Babai, G. Cooperman, L. Finkelstein, and Á. Seress. Nearly linear time algorithms for
permutation groups with a small base. In Proceedings of the International Symposium
on Symbolic and Algebraic Computation (ISSAC’91), Bonn 1991, page 200–209. ACM
Press, 1991. 680

[BE99] H. U. Besche and B. Eick. Construction of finite groups. J. Symbolic Comput.,
27(4):387–404, 1999. 737

[Ber76] T. R. Berger. Characters and derived length in groups of odd order. J. Algebra,
39(1):199–207, 1976. 1279

1429

GAP - Reference Manual 1430

[Bes92] H. U. Besche. Die Berechnung von Charaktergraden und Charakteren endlicher auflös-
barer Gruppen im Computeralgebrasystem GAP. Diplomarbeit, Lehrstuhl D für Mathe-
matik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1992. 1149

[BFS79] F. R. Beyl, U. Felgner, and P. Schmid. On groups occurring as center factor groups. J.
Algebra, 61(1):161–177, 1979. 618

[BJR87] R. Brown, D. L. Johnson, and E. F. Robertson. Some computations of nonabelian tensor
products of groups. J. Algebra, 111(1):177–202, 1987. 616, 617

[BL98] T. Breuer and S. Linton. The GAP 4 type system. organizing algebraic algorithms. In
ISSAC ’98: Proceedings of the 1998 international symposium on Symbolic and algebraic
computation [ACM98], page 38–45. Chairman: Volker Weispfenning and Barry Trager.
176

[BLS75] J. Brillhart, D. Lehmer, and J. Selfridge. New primality criteria and factorizations of
2m ±1. Mathematics of Computation, 29:620–647, 1975. 205

[Bou70] N. Bourbaki. Éléments de mathématique. Algèbre. Chapitres 1 à 3. Hermann, Paris, 1970.
516

[BP98] T. Breuer and G. Pfeiffer. Finding possible permutation characters. J. Symbolic Comput.,
26(3):343–354, 1998. 1241, 1242, 1245

[Bre91] T. Breuer. Potenzabbildungen, Untergruppenfusionen, Tafel-Automorphismen. Diplo-
marbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule,
Aachen, Germany, 1991. 1149, 1248

[Bre97] T. Breuer. Integral bases for subfields of cyclotomic fields. Appl. Algebra Engrg. Comm.
Comput., 8(4):279–289, 1997. 972

[Bre99] T. Breuer. Computing possible class fusions from character tables. Comm. Algebra,
27(6):2733–2748, 1999. 1248

[BTW93] B. Beauzamy, V. Trevisan, and P. S. Wang. Polynomial factorization: sharp bounds,
efficient algorithms. J. Symbolic Comput., 15(4):393–413, 1993. 1086

[Bur55] W. Burnside. Theory of groups of finite order. Dover Publications Inc., New York, 1955.
Unabridged republication of the second edition, published in 1911. 1124

[Can73] J. J. Cannon. Construction of defining relators for finite groups. Discrete Math.,
5:105–129, 1973. 754, 766

[Car72] R. W. Carter. Simple groups of Lie type. John Wiley & Sons, London-New York-Sydney,
1972. Pure and Applied Mathematics, Vol. 28. 806

[CCN+85] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. Atlas of finite
groups. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary
characters for simple groups, With computational assistance from J. G. Thackray. 251,
254, 587, 697, 821, 1164, 1173, 1179, 1180, 1192

GAP - Reference Manual 1431

[CLO97] D. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms. Undergraduate Texts
in Mathematics. Springer-Verlag, New York, second edition, 1997. An introduction to
computational algebraic geometry and commutative algebra. 1092, 1096

[Coh93] H. Cohen. A course in computational algebraic number theory, volume 138 of Graduate
Texts in Mathematics. Springer-Verlag, Berlin, 1993. 219, 377, 378

[Con90a] S. B. Conlon. Calculating characters of p-groups. J. Symbolic Comput., 9(5-6):535–550,
1990. Computational group theory, Part 1. 1183

[Con90b] S. B. Conlon. Computing modular and projective character degrees of soluble groups. J.
Symbolic Comput., 9(5-6):551–570, 1990. Computational group theory, Part 1. 1159,
1183

[CR82] C. M. Campbell and E. F. Robertson, editors. Groups–St. Andrews 1981, volume 71 of
London Mathematical Society Lecture Note Series, Cambridge, 1982. Cambridge Univer-
sity Press. 1429, 1435

[Dix67] J. D. Dixon. High speed computation of group characters. Numer. Math., 10:446–450,
1967. 1186

[Dix93] J. D. Dixon. Constructing representations of finite groups. In L. Finkelstein and W. M.
Kantor, editors, Groups and computation (New Brunswick, NJ, 1991), volume 11 of DI-
MACS Ser. Discrete Math. Theoret. Comput. Sci., page 105–112. Amer. Math. Soc., Prov-
idence, RI, 1993. 1184, 1185

[Dre69] A. Dress. A characterisation of solvable groups. Math. Z., 110:213–217, 1969. 1134,
1138

[EH01] B. Eick and A. Hulpke. Computing the maximal subgroups of a permutation group I. In
W. M. Kantor and Á. Seress, editors, Proceedings of the 3rd International Conference held
at The Ohio State University, Columbus, OH, June 15–19, 1999, Ohio State University
Mathematical Research Institute Publications, 8, page 155–168, Berlin, 2001. Walter de
Gruyter & Co. 678

[Eic97] B. Eick. Special presentations for finite soluble groups and computing (pre-)Frattini
subgroups. In L. Finkelstein and W. M. Kantor, editors, Groups and computation, II (New
Brunswick, NJ, 1995), volume 28 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci.,
page 101–112. Amer. Math. Soc., Providence, RI, 1997. 719

[Ell98] G. Ellis. On the capability of groups. Proc. Edinburgh Math. Soc. (2), 41(3):487–495,
1998. 617

[FJNT95] V. Felsch, D. L. Johnson, J. Neubüser, and S. V. Tsaranov. The structure of certain Coxeter
groups. In Groups ’93 Galway/St Andrews, Vol. 1 (Galway, 1993), volume 211 of London
Math. Soc. Lecture Note Ser., page 177–190. Cambridge Univ. Press, Cambridge, 1995.
762

[FN79] V. Felsch and J. Neubüser. An algorithm for the computation of conjugacy classes and
centralizers in p-groups. In E. W. Ng, editor, Symbolic and algebraic computation (EU-
ROSAM ’79, Internat. Sympos., Marseille, 1979), volume 72 of Lecture Notes in Comput.

GAP - Reference Manual 1432

Sci., page 452–465. Springer, Berlin, 1979. EUROSAM ’79, an International Symposium
held in Marseille, June 1979. 723

[Fra82] J. S. Frame. Recursive computation of tensor power components. Bayreuth. Math. Schr.,
10:153–159, 1982. 1235

[GW95] R. Gow and W. Willems. Methods to decide if simple self-dual modules over fields of
characteristic 2 are of quadratic type. J. Algebra, 175(3):1067–1081, 1995. 1176

[Hal34] P. Hall. A contribution to the theory of groups of prime-power order. Proceedings of the
London Mathematical Society, s2-36(1):29–95, 1934. 591

[Hal36] P. Hall. On a theorem of frobenius. Proceedings of the London Mathematical Society,
s2-40(1):468–501, 1936. 593

[Hav69] G. Havas. Symbolic and algebraic calculation. Basser Computing Dept., Technical Re-
port 89, Basser Department of Computer Science, University of Sydney, Sydney, Aus-
tralia, 1969. 776

[Hav74] G. Havas. A Reidemeister-Schreier program. In M. F. Newman, editor, Proceedings
of the Second International Conference on the Theory of Groups (Australian Nat. Univ.,
Canberra, 1973), volume 372 of Lecture Notes in Math., pages 347–356. Lecture Notes
in Math., Vol. 372, Berlin, 1974. Springer. Held at the Australian National University,
Canberra, August 13–24, 1973, With an introduction by B. H. Neumann, Lecture Notes
in Mathematics, Vol. 372. 769

[HB82] B. Huppert and N. Blackburn. Finite groups. II, volume 242 of Grundlehren Math. Wiss.
Springer-Verlag, Berlin, 1982. 597

[HIÖ89] T. Hawkes, I. M. Isaacs, and M. Özaydin. On the Möbius function of a finite group. Rocky
Mountain J. Math., 19(4):1003–1034, 1989. 1135

[HJ59] M. Hall Jr. The theory of groups. The Macmillan Co., New York, N.Y., 1959. 679

[HJLP] G. Hiss, C. Jansen, K. Lux, and R. A. Parker. Computational Modular Character Theory.
http://www.math.rwth-aachen.de/~MOC/CoMoChaT/. 1150

[HKRR84] G. Havas, P. E. Kenne, J. S. Richardson, and E. F. Robertson. A Tietze transformation
program. In Atkinson [Atk84], page 69–73. 776

[How76] J. M. Howie. An introduction to semigroup theory. Academic Press [Harcourt Brace
Jovanovich Publishers], London, 1976. L.M.S. Monographs, No. 7. 848

[HP89] D. F. Holt and W. Plesken. Perfect groups. Oxford Mathematical Monographs. The
Clarendon Press Oxford University Press, New York, 1989. With an appendix by W.
Hanrath, Oxford Science Publications. 817, 818, 819, 820, 821

[HR94] D. F. Holt and S. Rees. Testing modules for irreducibility. J. Austral. Math. Soc. Ser. A,
57(1):1–16, 1994. 1120

[Hul93] A. Hulpke. Zur Berechnung von Charaktertafeln. Diplomarbeit, Lehrstuhl D für Mathe-
matik, Rheinisch Westfälische Technische Hochschule, 1993. 1149, 1186

http://www.math.rwth-aachen.de/~MOC/CoMoChaT/

GAP - Reference Manual 1433

[Hul96] A. Hulpke. Konstruktion transitiver Permutationsgruppen. Dissertation, Rheinisch West-
fälische Technische Hochschule, Aachen, Germany, 1996. 639

[Hul98] A. Hulpke. Computing normal subgroups. In Proceedings of the 1998 International
Symposium on Symbolic and Algebraic Computation (Rostock) [ACM98], page 194–198
(electronic). Chairman: Volker Weispfenning and Barry Trager. 602

[Hul99] A. Hulpke. Computing subgroups invariant under a set of automorphisms. J. Symbolic
Comput., 27(4):415–427, 1999. 609

[Hul00] A. Hulpke. Conjugacy classes in finite permutation groups via homomorphic images.
Math. Comp., 69(232):1633–1651, 2000. 574

[Hul01] A. Hulpke. Representing subgroups of finitely presented groups by quotient subgroups.
Experiment. Math., 10(3):369–381, 2001. 757

[Hum72] J. E. Humphreys. Introduction to Lie algebras and representation theory.
Springer-Verlag, New York, 1972. Graduate Texts in Mathematics, Vol. 9. 1060

[Hum78] J. E. Humphreys. Introduction to Lie algebras and representation theory, volume 9 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 1978. Second printing,
revised. 1060

[Hup67] B. Huppert. Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften,
Band 134. Springer-Verlag, Berlin, 1967. 806

[IE94] H. Ishibashi and A. G. Earnest. Two-element generation of orthogonal groups over finite
fields. J. Algebra, 165(1):164–171, 1994. 806

[Isa76] I. M. Isaacs. Character theory of finite groups. Academic Press [Harcourt Brace Jo-
vanovich Publishers], New York, 1976. Pure and Applied Mathematics, No. 69. 1171,
1238, 1366

[JK81] G. James and A. Kerber. The representation theory of the symmetric group, volume 16
of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Co.,
Reading, Mass., 1981. With a foreword by P. M. Cohn, With an introduction by Gilbert
de B. Robinson. 239

[JLPW95] C. Jansen, K. Lux, R. Parker, and R. Wilson. An atlas of Brauer characters, volume 11
of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford
University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton, Oxford
Science Publications. 1246, 1247

[Joh97] D. L. Johnson. Presentations of groups, volume 15 of London Mathematical Society
Student Texts. Cambridge University Press, Cambridge, second edition, 1997. 764

[Kau92] A. Kaup. Gitterbasen und Charaktere endlicher Gruppen. Diplomarbeit, Lehrstuhl D für
Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1992.
1149

GAP - Reference Manual 1434

[KL90] P. Kleidman and M. Liebeck. The subgroup structure of the finite classical groups, volume
129 of London Mathematical Society Lecture Note Series. Cambridge University Press,
Cambridge, 1990. 806, 810

[Kli66] A. U. Klimyk. Decomposition of the direct product of irreducible representations of
semisimple Lie algebras into irreducible representations. Ukrain. Mat. Ž., 18(5):19–27,
1966. 1059

[Kli68] A. U. Klimyk. Decomposition of a direct product of irreducible representations of a
semisimple Lie algebra into irreducible representations. In American Mathematical So-
ciety Translations. Series 2, volume 76, page 63–73. American Mathematical Society,
Providence, R.I., 1968. 1059

[KLM01] G. Kemper, F. Lübeck, and K. Magaard. Matrix generators for the Ree groups 2G2(q).
Comm. Algebra, 29(1):407–413, 2001. 805

[Knu98] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms.
Addison-Wesley, third edition, 1998. 213

[Leo91] J. S. Leon. Permutation group algorithms based on partitions. I. Theory and algorithms.
J. Symbolic Comput., 12(4-5):533–583, 1991. Computational group theory, Part 2. 690

[LLJL82] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261(4):515–534, 1982. 377, 378

[LNS84] R. Laue, J. Neubüser, and U. Schoenwaelder. Algorithms for finite soluble groups and the
SOGOS system. In Atkinson [Atk84], page 105–135. 651, 709, 711

[LP91] K. Lux and H. Pahlings. Computational aspects of representation theory of finite groups.
In G. O. Michler and C. M. Ringel, editors, Representation theory of finite groups and
finite-dimensional algebras (Bielefeld, 1991), volume 95 of Progr. Math., page 37–64,
Basel, 1991. Birkhäuser. 1147

[LRW97] E. M. Luks, F. Rákóczi, and C. R. B. Wright. Some algorithms for nilpotent permutation
groups. J. Symbolic Comput., 23(4):335–354, 1997. 1360

[Lüb03] F. Lübeck. Conway polynomials for finite fields.
http://www.math.rwth-aachen.de:8001/~Frank.Luebeck/data/ConwayPol,
2003. 963

[Maa10] L. Maas. On a construction of the basic spin representations of symmetric groups. Com-
munications in Algebra, 38:4545–4552, 2010. 618

[Mac81] I. G. Macdonald. Numbers of conjugacy classes in some finite classical groups. Bull.
Austral. Math. Soc., 23(1):23–48, 1981. 815

[MN89] M. Mecky and J. Neubüser. Some remarks on the computation of conjugacy classes of
soluble groups. Bull. Austral. Math. Soc., 40(2):281–292, 1989. 721, 723

[Mur58] F. D. Murnaghan. The orthogonal and symplectic groups. Comm. Dublin Inst. Adv.
Studies. Ser. A, no., 13:146, 1958. 1234, 1235

http://www.math.rwth-aachen.de:8001/~Frank.Luebeck/data/ConwayPol

GAP - Reference Manual 1435

[MV97] M. Mahajan and V. Vinay. Determinant: combinatorics, algorithms, and complexity.
Chicago J. Theoret. Comput. Sci., pages Article 5, 26 pp. (electronic), 1997. 346

[MY79] J. McKay and K. C. Young. The nonabelian simple groups G, |G|< 106–minimal gener-
ating pairs. Math. Comp., 33(146):812–814, 1979. 612

[Neb95] G. Nebe. Endliche rationale Matrixgruppen vom Grad 24. Dissertation, Rheinisch West-
fälische Technische Hochschule, Aachen, Germany, 1995. 823

[Neb96] G. Nebe. Finite subgroups of GLn(Q) for 25≤ n≤ 31. Comm. Algebra, 24(7):2341–2397,
1996. 823

[Neu82] J. Neubüser. An elementary introduction to coset table methods in computational group
theory. In Campbell and Robertson [CR82], page 1–45. 745, 754, 766, 770

[Neu92] J. Neukirch. Algebraische Zahlentheorie. Springer, Berlin, Heidelberg and New York,
1992. 1108

[New90] M. F. Newman. Proving a group infinite. Arch. Math. (Basel), 54(3):209–211, 1990. 764

[NP95a] G. Nebe and W. Plesken. Finite rational matrix groups. Number 556 in Mem. Amer.
Math. Soc. AMS, 1995. vol. 116. 1435

[NP95b] G. Nebe and W. Plesken. Finite rational matrix groups of degree 16, page 74–144. Volume
116 of Mem. Amer. Math. Soc. [NP95a], 1995. vol. 116. 823

[NPP84] J. Neubüser, H. Pahlings, and W. Plesken. CAS; design and use of a system for the
handling of characters of finite groups. In Atkinson [Atk84], page 195–247. 1147, 1149,
1176, 1236, 1243

[Pah93] H. Pahlings. On the Möbius function of a finite group. Arch. Math. (Basel), 60(1):7–14,
1993. 1135

[Par84] R. A. Parker. The computer calculation of modular characters (the meat-axe). In Atkinson
[Atk84], page 267–274. 1111

[Pfe91] G. Pfeiffer. Von Permutationscharakteren und Markentafeln. Diplomarbeit, Lehrstuhl
D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany,
1991. 1149

[Pfe97] G. Pfeiffer. The subgroups of M24, or how to compute the table of marks of a finite group.
Experiment. Math., 6(3):247–270, 1997. 1125, 1134

[Ple85] W. Plesken. Finite unimodular groups of prime degree and circulants. J. Algebra,
97(1):286–312, 1985. 823

[Ple95] W. Plesken. Solving XX tr = A over the integers. Linear Algebra Appl.,
226/228:331--344, 1995. 379

[PN95] W. Plesken and G. Nebe. Finite rational matrix groups, page 1–73. Volume 116 of Mem.
Amer. Math. Soc. [NP95a], 1995. vol. 116. 823, 824

GAP - Reference Manual 1436

[Poh87] M. Pohst. A modification of the LLL reduction algorithm. J. Symbolic Comput.,
4(1):123–127, 1987. 377, 378

[PP77] W. Plesken and M. Pohst. On maximal finite irreducible subgroups of GL(n,Z). I. the five
and seven dimensional cases, II. the six dimensional case. Math. Comp., 31:536–576,
1977. 823

[PP80] W. Plesken and M. Pohst. On maximal finite irreducible subgroups of GL(n,Z). III. the
nine dimensional case, IV. remarks on even dimensions with application to n = 8, V. the
eight dimensional case and a complete description of dimensions less than ten. Math.
Comp., 34:245–301, 1980. 823

[Rin93] M. Ringe. The C MeatAxe, Release 1.5. Lehrstuhl D für Mathematik, Rheinisch West-
fälische Technische Hochschule, Aachen, Germany, 1993. 333

[Rob88] E. F. Robertson. Tietze transformations with weighted substring search. J. Symbolic
Comput., 6(1):59–64, 1988. 776

[RT98] L. J. Rylands and D. E. Taylor. Matrix generators for the orthogonal groups. J. Symbolic
Comput., 25(3):351–360, 1998. 806

[Sch11] J. Schur. Über die darstellung der symmetrischen und der alternierenden gruppe durch
gebrochene lineare substitutionen. Journal für die reine und angewandte Mathematik,
139:155–250, 1911. 618

[Sch90] G. J. A. Schneider. Dixon’s character table algorithm revisited. J. Symbolic Comput.,
9(5-6):601–606, 1990. Computational group theory, Part 1. 1186

[Sch92] M. Scherner. Erweiterung einer Arithmetik von Kreisteilungskörpern auf deren Teilkörper
und deren Implementation in GAP. Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch
Westfälische Technische Hochschule, Aachen, Germany, 1992. 1149

[Sch94] U. Schiffer. Cliffordmatrizen. Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch
Westfälische Technische Hochschule, Aachen, Germany, 1994. 1149

[Sco73] L. L. Scott. Modular permutation representations. Trans. Amer. Math. Soc., 175:101–121,
1973. 1244

[Ser03] Á. Seress. Permutation Group Algorithms. Cambridge University Press, 2003. 679

[Sim70] C. C. Sims. Computational methods in the study of permutation groups. In J. Leech, edi-
tor, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), volume 29
of Proceedings of a Conference held at Oxford under the auspices of the Science Research
Council, Atlas Computer Laboratory, page 169–183, Oxford, 1970. Pergamon. 679

[Sim90] C. C. Sims. Computing the order of a solvable permutation group. J. Symbolic Comput.,
9(5-6):699–705, 1990. Computational group theory, Part 1. 691

[Sim94] C. C. Sims. Computation with finitely presented groups, volume 48 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, 1994. 512,
728, 750, 863, 864

GAP - Reference Manual 1437

[Sim97] C. C. Sims. Computing with subgroups of automorphism groups of finite groups. In
W. Küchlin, editor, Proceedings of the 1997 International Symposium on Symbolic and
Algebraic Computation (Kihei, HI), page 400–403 (electronic), New York, 1997. The
Association for Computing Machinery, ACM. Held in Kihei, HI, July 21–23, 1997. 635,
1424

[SM85] L. Soicher and J. McKay. Computing Galois groups over the rationals. J. Number Theory,
20(3):273–281, 1985. 1086

[Sou94] B. Souvignier. Irreducible finite integral matrix groups of degree 8 and 10. Math. Comp.,
63(207):335–350, 1994. With microfiche supplement. 823

[SPA89] Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen,
Germany. SPAS - Subgroup Presentation Algorithms System, version 2.5, User’s refer-
ence manual, 1989. 769

[Tay87] D. E. Taylor. Pairs of generators for matrix groups. I. The Cayley Bulletin, 3, 1987. 806

[The93] H. Theißen. Methoden zur Bestimmung der rationalen Konjugiertheit in endlichen Grup-
pen. Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische
Hochschule, Aachen, Germany, 1993. 723

[The97] H. Theißen. Eine Methode zur Normalisatorberechnung in Permutationsgruppen mit An-
wendungen in der Konstruktion primitiver Gruppen. Dissertation, Rheinisch Westfälische
Technische Hochschule, Aachen, Germany, 1997. 690

[Tho86] J. G. Thompson. Some finite groups which appear as GalL/K, where K ⊆ Q(µn). In
H.-F. Tuan, editor, Group theory, Beijing 1984, volume 1185 of Lecture Notes in Math.,
page 210–230. Springer, Berlin, 1986. 1176

[vdW76] R. W. van der Waall. On symplectic primitive modules and monomial groups. Nederl.
Akad. Wetensch. Proc. Ser. A 79, Indag. Math., 38(4):362–375, 1976. 1286

[Wag90] S. Wagon. Editor’s corner: the Euclidean algorithm strikes again. Amer. Math. Monthly,
97(2):125–129, 1990. 226

[Wie69] H. Wielandt. Permutation groups through invariant relations and invariant functions. Lec-
ture notes, Department of Mathematics, The Ohio State University, 1969. 1363

[Zag90] D. Zagier. A one-sentence proof that every prime p ≡ 1 (mod 4) is a sum of two
squares. Amer. Math. Monthly, 97(2):144, 1990. 226

[Zum89] M. Zumbroich. Grundlagen einer Arithmetik in Kreisteilungskörpern und ihre Imple-
mentation in CAS. Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische
Technische Hochschule, Aachen, Germany, 1989. 971, 1149

Index

!., 1343
![], 1344
*, 65

for character tables, 1158
+, 65
-, 65
-A, 33
-C, 37
-D, 34
-E, 34
-K, 35
-L, 35
-M, 36
-O, 36
-P, 37
-R, 36
-T, 37
-b, 33
-c, 33
-e, 34
-f, 34
-g, 34
-g -g, 35
-h, 35
-l, 35
-m, 36
-n, 36
-o, 36
-p, 37
-q, 36
-r, 36
-s, 36
-x, 37
-y, 37
/, 65

for character tables, 1158
@̈\", 408
#, 50

#%, 83
\', 408
\\, 408
\0xYZ, 408
\XYZ, 408
\n, 408
\b, 408
\c, 408
\r, 408
-infinity, 250
*, 471

for Matrix object and scalar, 395
for pcwords, 727
for permutations and partial permutations,

906
for scalar and matrix object, 395
for scalar and vector object, 392
for transformations, 874
for two matrix objects, 395
for two vector objects, 392
for vector object and scalar, 392

\+, 471
for two matrix objects, 395
for two vector objects, 392

\., 439
\.\:\=, 440
\/, 471

for a free group and a list of elements, 741
for a free group and a list of pairs of elements,

741
for a free semigroup or monoid and a list of

pairs of elements, 860
for a partial permutation and permutation or

partial permutation, 906
for a positive integer and a partial permuta-

tion, 906
for a transformation and a permutation, 874
for matrix object and scalar, 395

1438

GAP - Reference Manual 1439

for vector object and scalar, 392
\=, 470

for associative words, 537
for nonassociative words, 528
for partial permutations, 907
for pcwords, 727
for permutations, 669
for transformations, 874
for two elements in a f.p. group, 742
for two elements in a f.p. semigroup, 861
for two matrix objects, 389
for two strings, 411
for two vector objects, 389

\[\], 274
for a row list matrix, 398
for a vector object and an integer, 391

\[\]\:\=, 274
for a row list matrix and a vector object, 398
for a vector object and an integer, 391

\{\}, 276
for a row list matrix, 398
for a vector object and a list, 391

\{\}\:\=, 278
for row list matrices, 398

\-

for two matrix objects, 395
for two vector objects, 392

\^, 471
for a field and a pair of integers, 987
for a field and an integer, 986
for a partial permutation and a permutation or

partial permutation, 906
for a positive integer and a partial permuta-

tion, 906
for a positive integer and a transformation,

873
for a transformation and a permutation, 873
for matrix object and integer, 395

\in

element test for lists, 284
for a collection, 453
for strictly sorted lists, 305

\mod, 471
for residue class rings, 209
for two pcgs, 712

\<, 470

for associative words, 537
for nonassociative words, 528
for partial permutations, 907
for pcwords, 727
for permutations, 669
for transformations, 874
for two elements in a f.p. group, 743
for two matrix objects, 389
for two strings, 412
for two vector objects, 389

^, 65
for class functions, 1211
for two group elements, 66

abelian number field, 969
abelian number fields

CanonicalBasis, 970
Galois group, 972

AbelianGroup, 802
AbelianInvariants, 593

for a character table, 1161
AbelianInvariants

for groups, 593
AbelianInvariantsMultiplier, 617
AbelianInvariantsNormalClosureFpGroup,

762
AbelianInvariantsNormalClosureFp-

GroupRrs, 762
AbelianInvariantsOfList, 375
AbelianInvariantsSubgroupFpGroup, 762
AbelianInvariantsSubgroupFpGroupMtc,

762
AbelianInvariantsSubgroupFpGroupRrs

for a group and a coset table, 762
for two groups, 762

AbelianNumberField, 968
AbelianSubfactorAction, 655
About GAP manual, 23
AbsInt, 198
absolute value of an integer, 198
AbsoluteDiameter, 267
AbsoluteIrreducibleModules, 1186
AbsolutelyIrreducibleModules, 1186
AbsoluteValue, 248

for floats, 265
AbsolutIrreducibleModules, 1186
abstract word, 526

GAP - Reference Manual 1440

AbstractWordTietzeWord, 772
accessing

list elements, 275
record elements, 434

AClosestVectorCombinationsMatFFE-
VecFFE, 338

AClosestVectorCombinationsMatFFEVecFF-
ECoords, 338

Acos, 264
Acosh, 265
ActingAlgebra, 1027
ActingDomain, 663
Action

for a group, an action domain, etc., 654
for an external set, 654

action
by conjugation, 643
on blocks, 644
on sets, 644

ActionHomomorphism

for a group, an action domain, etc., 653
for an action image, 653
for an external set, 653

actions, 643
ActorOfExternalSet, 665
Add, 278

for a row list matrix and a vector object, 399
add

an element to a set, 306
AddCoeffs, 336
AddDictionary, 430
AddGenerator, 775
AddGeneratorsExtendSchreierTree, 690
addition, 65

list and non-list, 289
matrices, 343
matrix and scalar, 343
operation, 471
rational functions, 1074
scalar and matrix, 343
scalar and matrix list, 344
vector and scalar, 332
vectors, 332

AdditiveInverse, 469
AdditiveInverseAttr, 1328
AdditiveInverseImmutable, 469

AdditiveInverseMutable, 469
for matrix object, 394
for vector object, 391

AdditiveInverseOp, 469
AdditiveInverseSameMutability, 469

for matrix object, 394
for vector object, 391

AdditiveInverseSM, 1328
AdditiveNeutralElement, 920
AddMatrixColumns, 401
AddMatrixColumnsLeft, 401
AddMatrixColumnsRight, 401
AddMatrixRows, 400
AddMatrixRowsLeft, 400
AddMatrixRowsRight, 401
AddRelator, 776
AddRowVector, 336
AddRule, 554
AddRuleReduced, 554
AddSet, 306
AddVector, 336

for two vector objects, 392
for two vector objects and a scalar, 392

AdjointAssociativeAlgebra, 1052
AdjointBasis, 1011
AdjointMatrix, 1051
AdjointModule, 1029
AffineAction, 722
AffineActionLayer, 722
Agemo, 584
Algebra, 998
AlgebraByStructureConstants, 1000
AlgebraGeneralMappingByImages, 1018
AlgebraHomomorphismByFunction, 1021
AlgebraHomomorphismByImages, 1019
AlgebraHomomorphismByImagesNC, 1019
AlgebraicExtension, 1104
AlgebraicExtensionNC, 1104
AlgebraWithOne, 999
AlgebraWithOneByStructureConstants,

1001
AlgebraWithOneGeneralMappingByImages,

1019
AlgebraWithOneHomomorphismByFunction,

1021
AlgebraWithOneHomomorphismByImages,

GAP - Reference Manual 1441

1020
AlgebraWithOneHomomorphismByImagesNC,

1020
AllAutomorphisms, 636
AllBlocks, 661
AllEndomorphisms, 636
AllHomomorphismClasses, 636
AllHomomorphisms, 636
AllLibraryGroups, 816
AllPrimitiveGroups, 816
AllSmallNonabelianSimpleGroups, 590
AllSubgroups, 602
AllTransitiveGroups, 816
Alpha, 1279
AlternatingGroup

for a degree, 804
for a domain, 804

and, 270
for filters, 179, 270

ANFAutomorphism, 974
AntiIsomorphismTransformation-

Semigroup, 889
antisymmetric relation, 502
AntiSymmetricParts, 1233
Append, 279

for two row list matrices, 399
AppendTo, 147

for streams, 156
ApplicableMethod, 110
ApplicableMethodTypes, 110
Apply, 310
ApplySimpleReflection, 1047
ApproximateSuborbitsStabilizerPerm-

Group, 688
ARCH_IS_MAC_OS_X, 45
ARCH_IS_UNIX, 45
ARCH_IS_WINDOWS, 45
ARCH_IS_WSL, 45
arg

special function argument, 60
special function argument, calling with, 63

Argument

for complex floats, 266
arithmetic operators

precedence, 66
ArithmeticElementCreator, 1368

Arrangements, 231
arrow notation for functions, 61
AsAlgebra, 1012
AsAlgebraWithOne, 1012
AsBinaryRelationOnPoints

for a binary relation, 504
for a permutation, 504
for a transformation, 504

AsBlockMatrix, 368
AscendingChain, 597
AsDivisionRing, 950
AsDuplicateFreeList, 309
AsField, 950
AsGroup, 560
AsGroupGeneralMappingByImages, 626
Asin, 264
Asinh, 265
AsInternalFFE, 961
AsLeftIdeal, 928
AsLeftModule, 943
AsList, 447
AsMagma, 519
AsMonoid, 837
AsPartialPerm

for a permutation, 904
for a permutation and a positive integer, 904
for a permutation and a set of positive inte-

gers, 904
for a transformation and a positive integer,

905
for a transformation and a set of positive in-

teger, 905
AsPermutation, 673
AsPolynomial, 1077
AsRightIdeal, 928
AsSemigroup, 833
Assert, 117
AssertionLevel, 116
AsSet, 448
AssignGeneratorVariables, 536
assignment

to a list, 276
to a record, 435
variable, 67

AssignNiceMonomorphismAutomorphism-
Group, 635

GAP - Reference Manual 1442

AssociatedPartition, 238
AssociatedReesMatrixSemigroupOfDClass,

855
Associates, 932
associativity, 53, 65
AssocWordByLetterRep, 543
AsSortedList, 447
AsSSortedList, 448
AsStruct , 462
AsSubalgebra, 1012
AsSubalgebraWithOne, 1013
AsSubgroup, 562
AsSubgroupOfWholeGroupByQuotient, 758
AsSubmagma, 519
AsSubmonoid, 837
AsSubsemigroup, 833
AsSubspace, 976
AsSubstruct , 465
AsTransformation, 871
AsTwoSidedIdeal, 928
AsVectorSpace, 976
at exit functions, 98
Atan, 264
Atan2, 264
Atanh, 265
AtlasIrrationality, 254
atomic irrationalities, 251
AttributeValueNotSet, 189
AugmentationIdeal, 1066
AugmentedCosetTableInWholeGroup, 751
AugmentedCosetTableMtc, 751
AugmentedCosetTableRrs, 752
Autocompleter, 41
automatic loading of GAP packages, 1288
automorphism group

of number fields, 972
AutomorphismDomain, 633
AutomorphismGroup, 633
AutomorphismGroup

for groups with pcgs, 723
AutomorphismsOfTable, 1163
autoreadable variables, 1314

bN (irrational value), 251
backslash character, 408
backspace character, 408
Backtrace

GAP3 name for Where, 95
BANNER, 1327
banner

for a GAP package, 1317
BaseDomain

for a matrix object, 385
for a vector object, 385

BaseFixedSpace, 354
BaseIntersectionIntMats, 371
BaseIntMat, 371
BaseMat, 359
BaseMatDestructive, 359
BaseOfGroup, 686
BaseOrthogonalSpaceMat, 359
BaseStabChain, 685
BaseSteinitzVectors, 359
BasicSpinRepresentationOfSymmetric-

Group, 618
BasicWreathProductOrdering, 514
Basis, 979
BasisNC, 979
BasisNullspaceModN, 367
BasisVectors, 980
Bell, 228
Bernoulli, 228
BestQuoInt, 201
BestSplittingMatrix, 1188
BetaSet, 239
BiAlgebraModule, 1025
BiAlgebraModuleByGenerators, 1024
BibEntry, 1300
bicoset, 571
BilinearFormMat, 1045
binary relation, 500
BinaryRelationByElements, 500
BinaryRelationOnPoints, 504
BinaryRelationOnPointsNC, 504
BindConstant, 57
BindGlobal, 57
Binomial, 227
BisectInterval, 267
blank, 50
BlistList, 325
BlockMatrix, 368
Blocks

for a group, an action domain, etc., 660

GAP - Reference Manual 1443

for an external set, 660
BlocksInfo, 1172
BlownUpMat, 362
BlownUpVector, 362
BlowupInterval, 267
BlowUpIsomorphism, 695
body, 59
BombieriNorm, 1086
bound, 53
Brauer character, 1217
BrauerCharacterValue, 1246
BrauerTable

for a character table, and a prime integer,
1151

for a group, and a prime integer, 1151
BrauerTableOp, 1151
BravaisGroup, 700
BravaisSubgroups, 700
BravaisSupergroups, 701
Break loop message, 94
break statement, 73
browsing backwards, 28
browsing backwards one chapter, 29
browsing forward, 28
browsing forward one chapter, 29
browsing the next section browsed, 29
browsing the previous section browsed, 29
BuildBitfields, 216

cN (irrational value), 251
CallFuncList, 78
CallFuncListWrap, 78
CanComputeIndex, 622
CanComputeIsSubset, 622
CanComputeSize, 622
CanComputeSizeAnySubgroup, 622
candidates

for permutation characters, 1238
CanEasilyCompareElements, 470
CanEasilyCompareElementsFamily, 470
CanEasilyComputePcgs, 703
CanEasilyComputeWithIndependentGens-

AbelianGroup, 621
CanEasilySortElements, 470
CanEasilySortElementsFamily, 470
CanEasilyTestMembership, 621
canonical basis

for matrix spaces, 988
for row spaces, 988

CanonicalBasis, 980
CanonicalGenerators, 1046
CanonicalPcElement, 707
CanonicalPcgs, 711
CanonicalPcgsByGeneratorsWithImages,

713
CanonicalRepresentativeDeterminatorOf-

ExternalSet, 665
CanonicalRepresentativeOfExternalSet,

665
CanonicalRightCosetElement, 570
Carmichael’s lambda function, 218
carriage return character, 408
CartanMatrix, 1045
CartanSubalgebra, 1041
Cartesian

for a list, 312
for various objects, 312

CategoriesOfObject, 183
CategoryByName, 183
CategoryCollections, 442
CategoryFamily, 184
Ceil, 265
Center, 523
center, 523
central character, 1221
CentralCharacter, 1221
CentralIdempotentsOfAlgebra, 1016
centraliser, 523
Centralizer

for a class of objects in a magma, 523
for a magma and a submagma, 523
for a magma and an element, 523

Centralizer

for groups with pcgs, 723
CentralizerInGLnZ, 700
CentralizerModulo, 600
CentralizerSizeLimitConsiderFunction,

724
CentralNormalSeriesByPcgs, 716
Centre, 523
Centre

for groups with pcgs, 723
centre

GAP - Reference Manual 1444

of a character, 1220
CentreOfCharacter, 1220
CF

for (subfield and) conductor, 967
for (subfield and) generators, 967

ChangedBaseDomain

for a matrix object, 390
for a vector object, 390

ChangeDirectoryCurrent, 142
ChangeStabChain, 688
Character

for a character table and a list, 1214
for a group and a list, 1214

character tables, 1150
access to, 1150
calculate, 1150
infix operators, 1158
of groups, 1150

character value
of group element using powering operator,

1211
CharacterDegrees

for a character table, 1159
for a group, 1159

Characteristic, 466
for a class function, 1212
for matrix object, 394
for vector object, 392

characteristic polynomial
for field elements, 953

CharacteristicPolynomial, 361
CharacteristicSubgroups, 603
CharacterNames, 1164
CharacterParameters, 1165
characters, 1205

permutation, 1238
symmetrizations of, 1232

CharacterTable

for a group, 1150
for a string, 1150
for an ordinary character table, 1150

CharacterTableDirectProduct, 1191
CharacterTableFactorGroup, 1192
CharacterTableIsoclinic, 1192

for a Brauer table and an ordinary table, 1192
for a character table and one or two lists,

1192
CharacterTableOfNormalSubgroup, 1195
CharacterTableRegular, 1152
CharacterTableWithSortedCharacters,

1197
CharacterTableWithSortedClasses, 1198
CharacterTableWithStoredGroup, 1156
CharacterTableWreathSymmetric, 1196
CharacterValueWreathSymmetric, 1196
CharInt, 420
CharsFamily, 410
CharSInt, 420
CheckDigitISBN, 210
CheckDigitISBN13, 210
CheckDigitPostalMoneyOrder, 210
CheckDigitTestFunction, 211
CheckDigitUPC, 210
CheckFixedPoints, 1264
CheckForHandlingByNiceBasis, 995
CheckPermChar, 1272
checksum, 148, 423
ChevalleyBasis, 1044
ChiefNormalSeriesByPcgs, 717
ChiefSeries, 594
ChiefSeriesThrough, 594
ChiefSeriesUnderAction, 594
Chinese remainder, 203
ChineseRem, 203
Chomp, 417
Cite, 1301
CIUnivPols, 1074
class function, 1207
class function objects, 1207
class functions, 1259

as ring elements, 1210
class multiplication coefficient, 1177, 1178
ClassElementLattice, 604
classes

real, 1166
ClassesSolvableGroup, 724
ClassFunction

for a character table and a list, 1214
for a group and a list, 1214

ClassFunctionSameType, 1215
ClassMultiplicationCoefficient

for character tables, 1177

GAP - Reference Manual 1445

ClassMultiplicationCoefficient

for character tables, 1177
ClassNames, 1164
ClassNamesTom, 1133
ClassOrbit, 1166
ClassParameters, 1165
ClassPermutation, 1199
ClassPositionsOfAgemo, 1167
ClassPositionsOfCenter

for a character table, 1167
ClassPositionsOfCentre

for a character, 1220
for a character table, 1167

ClassPositionsOfDerivedSubgroup, 1168
ClassPositionsOfDirectProduct-

Decompositions, 1168
ClassPositionsOfElementaryAbelian-

Series, 1168
ClassPositionsOfFittingSubgroup, 1168
ClassPositionsOfKernel, 1219
ClassPositionsOfLowerCentralSeries,

1169
ClassPositionsOfMaximalNormal-

Subgroups, 1167
ClassPositionsOfMinimalNormal-

Subgroups, 1167
ClassPositionsOfNormalClosure, 1170
ClassPositionsOfNormalSubgroup, 1203
ClassPositionsOfNormalSubgroups, 1167
ClassPositionsOfPCore, 1170
ClassPositionsOfSolvableRadical, 1169
ClassPositionsOfSupersolvableResiduum,

1169
ClassPositionsOfUpperCentralSeries,

1169
ClassRoots, 1166
ClassStructureCharTable, 1177
ClassTypesTom, 1132
CleanedTailPcElement, 707
ClearAllBlist, 329
ClearCacheStats, 127
ClearProfile, 122
ClearTraceInternalMethodsCounts, 112
clone

an object, 173
CloseMutableBasis, 985

CloseStream, 152
ClosureGroup, 564
ClosureGroupAddElm, 564
ClosureGroupCompare, 564
ClosureGroupDefault, 564
ClosureGroupIntest, 564
ClosureLeftModule, 944
ClosureNearAdditiveGroup

for a near-additive group and an element, 921
for two near-additive groups, 921

ClosureRing

for a ring and a ring element, 924
for two rings, 924

ClosureStruct , 461
ClosureSubgroup, 565
ClosureSubgroupNC, 565
Coboundaries, 1057
Cochain, 1056
CochainSpace, 1056
Cocycles

for Lie algebra module, 1057
cocycles, 613
Code annotations, 83
CodegreeOfPartialPerm, 897
CodegreeOfPartialPermCollection, 897
CodegreeOfPartialPermSemigroup, 912
CodePcGroup, 737
CodePcgs, 737
coefficient

binomial, 227
Coefficients, 981
coefficients

for cyclotomics, 248
CoefficientsAndMagmaElements, 1067
CoefficientsFamily, 1098
CoefficientsMultiadic, 203
CoefficientsOfLaurentPolynomial, 1087
CoefficientsOfUnivariatePolynomial,

1078
CoefficientsOfUnivariateRational-

Function, 1077
CoefficientsQadic, 202
CoefficientsRing, 1090
CoeffsCyc, 248
CoeffsMod, 336
cohomology, 613

GAP - Reference Manual 1446

CoKernelOfAdditiveGeneralMapping, 495
CoKernelOfMultiplicativeGeneral-

Mapping, 494
CollapsedMat, 1267
Collected, 308
CollectGarbage, 135
CollectionsFamily, 441
ColorPrompt, 46
Columns, 854
Combinations, 230
CombinatorialCollector, 729
Comm, 472
Comm

for words, 538
comments, 50
CommutativeDiagram, 1263
CommutatorFactorGroup, 599
CommutatorLength, 580

for a character table, 1161
CommutatorSubgroup, 579
Compacted, 308
CompanionMat, 363
CompanionMatrix, 363

for filter, polynomial, and semiring, 397
for polynomial and matrix object, 397
for polynomial and semiring, 397

CompareVersionNumbers, 1294
comparison

fp semigroup elements, 861
operation, 470
rational functions, 1075

comparisons
of booleans, 269
of lists, 285

CompatibleConjugacyClasses, 1157
CompatiblePairs, 735
CompatibleVector

for a matrix object, 396
CompatibleVectorFilter

for a matrix object, 385
ComplementClassesRepresentatives, 578
ComplementClassesRepresentativesEA, 615
ComplementIntMat, 371
ComplementSystem, 583
ComplexConjugate, 255

for a class function, 1212

ComplexificationQuat

for a matrix, 1004
for a vector, 1004

ComponentPartialPermInt, 908
ComponentRepsOfPartialPerm, 903
ComponentRepsOfTransformation, 883
ComponentsOfPartialPerm, 902
ComponentsOfTransformation, 882
ComponentTransformationInt, 875
CompositionMapping, 484
CompositionMapping

for Frobenius automorphisms, 962
CompositionMapping2, 484
CompositionMapping2General, 484
CompositionMaps, 1260
CompositionOfStraightLinePrograms, 547
CompositionSeries, 595
CompositionSeries

for groups with pcgs, 723
CompositionSeriesThrough, 595
ComputedBrauerTables, 1151
ComputedClassFusions, 1255
ComputedIndicators, 1176
ComputedIsPSolubleCharacterTables, 1175
ComputedIsPSolvableCharacterTables,

1175
ComputedPowerMaps, 1249
ComputedPrimeBlockss, 1170
Concatenation

for a list of lists, 307
for several lists, 307

concatenation
of lists, 307

ConcatenationOfVectors

for a list of vector objects, 393
for arbitrary many vector objects, 393

Conductor

for a collection of cyclotomics, 247
for a cyclotomic, 247

ConfluentRws, 553
Congruences

for character tables, 1269
ConjugacyClass, 574
ConjugacyClasses

attribute, 574
for character tables, 1155

GAP - Reference Manual 1447

ConjugacyClasses

for groups with pcgs, 723
for linear groups, 814

ConjugacyClassesByOrbits, 575
ConjugacyClassesByRandomSearch, 575
ConjugacyClassesMaximalSubgroups, 601
ConjugacyClassesPerfectSubgroups, 607
ConjugacyClassesSubgroups, 601
ConjugacyClassSubgroups, 600
conjugate

matrix, 344
of a word, 538

ConjugateDominantWeight, 1048
ConjugateDominantWeightWithWord, 1048
ConjugateGroup, 560
Conjugates, 954
ConjugateSubgroup, 563
ConjugateSubgroups, 563
conjugation, 643

with a group element, 66
ConjugatorAutomorphism, 631
ConjugatorAutomorphismNC, 631
ConjugatorIsomorphism, 631
ConjugatorOfConjugatorIsomorphism, 632
ConsiderKernels, 1270
ConsiderSmallerPowerMaps, 1270
ConsiderStructureConstants, 1258
ConsiderTableAutomorphisms, 1273
ConstantTimeAccessList, 302
ConstantTransformation, 871
constituent

of a group character, 1218
ConstituentsCompositionMapping, 485
ConstituentsOfCharacter, 1219
ConstructingFilter

for a matrix object, 385
for a vector object, 385

ContainedCharacters, 1268
ContainedConjugates, 606
ContainedDecomposables, 1268
ContainedMaps, 1262
ContainedPossibleCharacters, 1266
ContainedPossibleVirtualCharacters,

1266
ContainedSpecialVectors, 1266
ContainedTom, 1138

ContainingConjugates, 606
ContainingTom, 1138
continue statement, 73
ContinuedFractionApproximationOfRoot,

225
ContinuedFractionExpansionOfRoot, 225
convert

to a string, 409
ConvertToBlistRep, 330
ConvertToCharacterTable, 1153
ConvertToCharacterTableNC, 1153
ConvertToMatrixRep

for a list (and a field), 365
for a list (and a prime power), 365

ConvertToMatrixRepNC

for a list (and a field), 365
for a list (and a prime power), 365

ConvertToRangeRep, 322
ConvertToStringRep, 409
ConvertToTableOfMarks, 1131
ConvertToVectorRep

for a list (and a field), 334
for a list (and a prime power), 334

ConvertToVectorRepNC

for a list (and a field), 334
for a list (and a prime power), 334

ConwayPolynomial, 963
coprime, 66
Copy, 173
copy

an object, 173
CopyListEntries, 279
CopyOptionsDefaults, 688
CopyStabChain, 688
CopySubMatrix, 396
CopySubVector, 393
CopyToStringRep, 409
Core, 577
CorrespondingGeneratorsByModuloPcgs,

713
Cos, 264
coset, 569
CosetDecomposition, 571
CosetLeadersMatFFE, 338
CosetTable, 746
CosetTableBySubgroup, 747

GAP - Reference Manual 1448

CosetTableDefaultLimit, 749
CosetTableDefaultMaxLimit, 748
CosetTableFromGensAndRels, 747
CosetTableInWholeGroup, 751
CosetTableOfFpSemigroup, 865
CosetTableStandard, 750
Cosh, 265
Cot, 264
Coth, 265
CoverageLineByLine, 126
CrcFile, 148
CrcString, 423
CrystGroupDefaultAction, 701
Csc, 264
Csch, 265
CubeRoot, 265
Cyc

for floats, 262
Cycle, 657
CycleFromList, 672
CycleIndex

for a permutation and an action domain, 657
for a permutation group and an action do-

main, 657
CycleLength, 657
CycleLengths, 657
Cycles, 657
CyclesOfTransformation, 883
CycleStructureClass, 1221
CycleStructurePerm, 671
CycleTransformationInt, 883
CyclicExtensionsTom

for a list of primes, 1138
for a prime, 1138

CyclicGroup, 801
cyclotomic field elements, 245
cyclotomic fields

CanonicalBasis, 970
CyclotomicField

for (subfield and) conductor, 967
for (subfield and) generators, 967

CyclotomicPolynomial, 1084
Cyclotomics, 245
CyclotomicsFamily, 246

dN (irrational value), 251
Darstellungsgruppe

see EpimorphismSchurCover, 616
data type

unknown, 1275
DataType, 195
DayDMY, 424
DaysInMonth, 424
DaysInYear, 424
DEC, 375
DeclareAttribute, 187
DeclareAttribute

example, 1362
DeclareAttribute!example, 1367
DeclareAutoPackage, 1327
DeclareAutoreadableVariables, 1294
DeclareCategory, 183
DeclareCategoryCollections, 442
DeclareConstructor, 1335
DeclareFilter, 194
DeclareGlobalFunction, 1356
DeclareGlobalName, 1355
DeclareGlobalVariable, 1355
DeclareHandlingByNiceBasis, 994
DeclareInfoClass, 114
DeclareOperation, 1331
DeclarePackage, 1327
DeclarePackageAutoDocumentation, 1327
DeclarePackageDocumentation, 1327
DeclareProperty, 193
DeclareRepresentation, 186
DeclareRepresentation

belongs to implementation part, 1358
example, 1363

DeclareSynonym, 1357
DeclareSynonymAttr, 1357
DeclareTagBasedOperation, 1332
DeclareUserPreference, 40
DecodeTree, 786
decompose

a group character, 1218
DecomposedFixedPointVector, 1139
DecomposeTensorProduct, 1058
Decomposition, 376
decomposition matrix, 375
DecompositionInt, 377
DecompositionMatrix, 1172
Decreased, 1230

GAP - Reference Manual 1449

DEFAULTDISPLAYSTRING, 412
DefaultField

for a list of generators, 949
for cyclotomics, 250
for finite field elements, 961
for several generators, 949

DefaultFieldByGenerators, 949
DefaultFieldOfMatrix, 345
DefaultFieldOfMatrixGroup, 694
DefaultInfoHandler, 116
DefaultRing

for a collection, 923
for finite field elements, 961
for ring elements, 923

DefaultRingByGenerators, 923
DefaultStabChainOptions, 683
DEFAULTVIEWSTRING, 413
DefiningPolynomial, 951
DefiningQuotientHomomorphism, 758
DegreeFFE

for a FFE, 959
for a matrix of FFEs, 959
for a vector of FFEs, 959

DegreeIndeterminate, 1081
DegreeOfBinaryRelation, 503
DegreeOfCharacter, 1217
DegreeOfLaurentPolynomial, 1079
DegreeOfPartialPerm, 896
DegreeOfPartialPermCollection, 896
DegreeOfPartialPermSemigroup, 912
DegreeOfTransformation, 876
DegreeOfTransformationCollection, 876
DegreeOfTransformationSemigroup, 887
DegreeOverPrimeField, 951
Delta, 1279
denominator

of a rational, 244
DenominatorCyc, 249
DenominatorOfModuloPcgs, 712
DenominatorOfRationalFunction, 1076
DenominatorRat, 244
DenseHashTable, 431
DenseIntKey, 431
dependencies

for a GAP package, 1311
deprecated, 1326

DepthOfPcElement, 706
DepthOfUpperTriangularMatrix, 361
Derangements, 234
Derivations, 1038
Derivative, 1082
DerivedLength, 595
DerivedSeriesOfGroup, 595
DerivedSubgroup, 579
DerivedSubgroupsTom, 1137
DerivedSubgroupsTomPossible, 1137
DerivedSubgroupsTomUnique, 1137
DerivedSubgroupTom, 1137
DescriptionOfRootOfUnity, 249
Determinant, 346
determinant

integer matrix, 375
determinant character, 1221
DeterminantIntMat, 375
DeterminantMat, 346
DeterminantMatDestructive, 346
DeterminantMatDivFree, 346
DeterminantMatrix, 346
DeterminantMatrixDestructive, 346
DeterminantMatrixDivFree, 346
DeterminantOfCharacter, 1221
DiagonalizeIntMat, 374
DiagonalizeMat, 357
DiagonalMat, 348
DiagonalMatrix

with base domain, 349
with example matrix, 349

DiagonalOfMat, 360
DiagonalOfMatrix, 360
Diameter, 267
DictionaryByPosition, 429
DicyclicGroup, 803
Difference, 453
DifferenceBlist, 326
DihedralGenerators, 803
DihedralGroup, 802
Dimension, 946
DimensionOfHighestWeightModule, 1059
DimensionOfMatrixGroup, 694
DimensionOfVectors, 987
DimensionsLoewyFactors, 597
DimensionsMat, 345

GAP - Reference Manual 1450

DirectoriesLibrary, 142
DirectoriesPackageLibrary, 1293
DirectoriesPackagePrograms, 1293
DirectoriesSystemPrograms, 142
Directory, 141
DirectoryContents, 142
DirectoryCurrent, 142
DirectoryDesktop, 143
DirectoryHome, 143
DirectoryTemporary, 141
DirectProduct, 792
DirectProductFamily, 482
DirectProductOp, 792
DirectSum, 940
DirectSumDecomposition

for Lie algebras, 1016
DirectSumOfAlgebraModules

for a list of Lie algebra modules, 1031
for two Lie algebra modules, 1031

DirectSumOfAlgebras

for a list of algebras, 1015
for two algebras, 1015

DirectSumOp, 940
disable automatic loading, 1288
DisableAttributeValueStoring, 190
Discriminant, 1082
Display, 90

for a character table, 1178
for a ffe, 964
for a table of marks, 1128
for class functions, 1213

DisplayCacheStats, 127
DisplayCompositionSeries, 595
DisplayEggBoxOfDClass, 847
DisplayImfInvariants, 825
DisplayInformationPerfectGroups

for a pair [order, index], 820
for group order (and index), 820

DisplayOptions, 1181
DisplayOptionsStack, 138
DisplayPackageLoadingLog, 1290
DisplayProfile, 121
DisplaySemigroup, 848
DisplayString, 412
DistanceOfVectors

for two vector objects, 394

DistancePerms, 669
DistancesDistributionMatFFEVecFFE, 338
DistancesDistributionVecFFEsVecFFE, 338
DistanceVecFFE, 338
division, 65

operation, 471
division rings, 948
DivisionRingByGenerators, 950
divisors

of an integer, 208
DivisorsInt, 208
Dixon-Schneider algorithm, 1186
DixonInit, 1187
DixonRecord, 1187
DixonSplit, 1188
DixontinI, 1187
DLog, 220
DMYDay, 424
DMYhmsSeconds, 426
DnLattice, 1231
DnLatticeIterative, 1232
do, 71
document formats

for help books, 1404
document formats (text, dvi, ps, pdf, HTML), 29
Domain, 466
DomainByGenerators, 466
DomainOfPartialPerm, 897
DomainOfPartialPermCollection, 897
DominantCharacter

for a root system and a highest weight, 1058
for a semisimple Lie algebra and a highest

weight, 1058
DominantWeights, 1058
dot-file, 604
DotFileLatticeSubgroups, 604
DoubleCoset, 572
DoubleCosetRepsAndSizes, 573
DoubleCosets, 573
DoubleCosetsNC, 573
DoubleCoverOfAlternatingGroup, 619
DoubleHashArraySize, 432
doublequote character, 408
doublequotes, 405
DownEnv, 96
duplicate free, 301

GAP - Reference Manual 1451

DuplicateFreeList, 308
DxIncludeIrreducibles, 1188

E, 245
eN (irrational value), 251
EANormalSeriesByPcgs, 715
Earns

for a group, an action domain, etc., 660
for an external set, 660

EB, 251
EC, 251
ED, 251
Edit, 105
Editor, 41
EditorOptions, 41
EE, 251
EF, 251
EG, 251
EggBoxOfDClass, 846
EH, 251
EI, 252
Eigenspaces, 355
Eigenvalues, 355
EigenvaluesChar, 1222
Eigenvectors, 355
EJ, 253
EK, 253
EL, 253
element test

for lists, 284
ElementaryAbelianGroup, 802
ElementaryAbelianSeries

for a group, 596
for a list, 596

ElementaryAbelianSeriesLargeSteps, 596
ElementaryDivisorsMat, 355
ElementaryDivisorsMatDestructive, 355
ElementaryDivisorsTransformationsMat,

356
ElementaryDivisorsTransformationsMat-

Destructive, 356
ElementOfFpGroup, 744
ElementOfFpMonoid, 862
ElementOfFpSemigroup, 862
ElementOfMagmaRing, 1067
ElementOrdersPowerMap, 1251
ElementProperty, 690

Elements, 448
elements

definition, 168
of a list or collection, 448

ElementsFamily, 442
ElementsStabChain, 687
elif, 69
EliminatedWord, 540
EliminationOrdering, 1095
ElmWPObj, 1414
ElmWPObj, 1414
else, 69
EM, 253
emacs, 105
email addresses, 27
Embedding

for a domain and a positive integer, 485
for group products, 799
for two domains, 485

Embedding

example for direct products, 793
example for semidirect products, 794
example for wreath products, 796
for Lie algebras, 1036
for magma rings, 1067

embeddings
find all, 637

EmptyBinaryRelation

for a degree, 501
for a domain, 501

EmptyMatrix, 348
EmptyPartialPerm, 895
EmptyPlist, 285
EmptySCTable, 1002
EmptyStabChain, 689
EmptyString, 410
EnableAttributeValueStoring, 190
End, 991
end, 59
EndlineFunc, 77
EndsWith, 418
Enumerator, 443
EnumeratorByBasis, 982
EnumeratorByFunctions

for a domain and a record, 444
for a family and a record, 444

GAP - Reference Manual 1452

EnumeratorOfCombinations, 230
EnumeratorOfTuples, 233
EnumeratorSorted, 443
environment, 59
Epicentre, 617
EpimorphismFromFreeGroup, 565
EpimorphismNilpotentQuotient, 760
EpimorphismNonabelianExteriorSquare,

617
EpimorphismPGroup, 759
EpimorphismQuotientSystem, 759
epimorphisms

find all, 637
EpimorphismSchurCover, 616
EpimorphismSolvableQuotient, 761
EqFloat, 263
equality

associative words, 537
elements of finitely presented groups, 742
for pcwords, 727
for transformations, 874
nonassociative words, 528
of booleans, 269
of records, 437
operation, 470

equality test, 64
for permutations, 669

equivalence class, 507
equivalence relation, 503, 505
EquivalenceClasses

attribute, 508
EquivalenceClassOfElement, 508
EquivalenceClassOfElementNC, 508
EquivalenceClassRelation, 507
EquivalenceRelationByPairs, 506
EquivalenceRelationByPairsNC, 506
EquivalenceRelationByPartition, 506
EquivalenceRelationByPartitionNC, 506
EquivalenceRelationByProperty, 506
EquivalenceRelationByRelation, 506
EquivalenceRelationPartition, 507
ER, 252
Erf, 264
Error, 97
ErrorCount, 98
ErrorNoReturn, 98

ErrorNoTraceBack, 93
errors

syntax, 85
ES, 252
escaped characters, 407
escaping non-special characters, 408
ET, 252
EU, 252
EuclideanDegree, 934
EuclideanQuotient, 935
EuclideanRemainder, 935
Euler’s totient function, 218
EulerianFunction, 593
EulerianFunctionByTom, 1139
EV, 252
EvalStraightLineProgElm, 551
EvalString, 422
evaluation, 52

strings, 421
EW, 252
EX, 252
ExactSizeConsiderFunction, 611
Excel, 163
ExcludeFromAutoload, 41
Exec, 167
execution, 66
exit, 98
Exp, 265
Exp10, 265
Exp2, 265
Expanded form of monomials, 1099
Expm1, 264
Exponent, 593

for a character table, 1161
exponent

of the prime residue group, 218
exponentiation

operation, 471
ExponentOfPcElement, 705
ExponentsConjugateLayer, 708
ExponentsOfCommutator, 708
ExponentsOfConjugate, 708
ExponentsOfPcElement, 705
ExponentsOfRelativePower, 708
ExponentSumWord, 539
ExponentSyllable, 541

GAP - Reference Manual 1453

ExtendedPcgs, 710
ExtendRootDirectories, 1289
ExtendStabChain, 689
Extension, 734
ExtensionNC, 734
ExtensionRepresentatives, 735
Extensions, 734
exterior power, 1233
ExteriorCentre, 617
ExteriorPower, 996

for a character, 1234
ExteriorPowerOfAlgebraModule, 1062
external binaries

for a GAP package, 1315
External representation of polynomials, 1099
ExternalOrbit, 664
ExternalOrbits

for a group, an action domain, etc., 664
for an external set, 664

ExternalOrbitsStabilizers

for a group, an action domain, etc., 665
for an external set, 665

ExternalSet, 662
ExternalSet

computing orbits, 1409
ExternalSubset, 664
Extract, 1228
ExtractSubMatrix, 396
ExtractSubVector, 393
ExtraspecialGroup, 804
ExtRepDenominatorRatFun, 1100
ExtRepNumeratorRatFun, 1100
ExtRepOfObj, 1352

for a cyclotomic, 249
ExtRepPolynomialRatFun, 1101
EY, 252

fN (irrational value), 251
FactorCosetAction

for a group and list of subgroups, 655
for a group and subgroup, 655
for fp groups, 747

FactorFreeMonoidByRelations, 860
FactorFreeSemigroupByRelations, 860
FactorGroup, 599
FactorGroupFpGroupByRels, 741
FactorGroupNC, 599

FactorGroupNormalSubgroupClasses, 1203
FactorGroupTom, 1140
Factorial, 227
Factorization, 566
factorization, 565
Factors, 933

for polynomials over abelian number fields,
969

of polynomial, 1084
FactorsInt, 206

using Pollard’s Rho, 206
FactorsOfDirectProduct, 1192
FactorsSquarefree, 1085
fail, 268
FaithfulModule

for Lie algebras, 1030
FamiliesOfGeneralMappingsAndRanges, 499
FamiliesOfRows, 1202
FamilyForOrdering, 511
FamilyObj, 178
FamilyPcgs, 726
FamilyRange, 498
FamilySource, 499
features

under UNIX, 33
fi, 69
Fibonacci, 240
Field

for (a field and) a list of generators, 949
for several generators, 949

field homomorphisms
Frobenius, 962

FieldByGenerators, 950
FieldExtension, 952
FieldOfMatrixGroup, 694
FieldOverItselfByGenerators, 951
fields, 948
FileDescriptorOfStream, 152
Filename

for a directory and a string, 143
for a list of directories and a string, 143

FilenameFunc, 76
FilterByName, 180
Filtered, 313
FilteredOp, 314
FiltersObj, 181

GAP - Reference Manual 1454

FiltersType, 181
FindSl2, 1053
finiteness test

for a list or collection, 449
First, 315
FittingSubgroup, 580
FixedPointsOfPartialPerm

for a partial perm, 898
for a partial perm coll, 898

Flat, 309
FlatKernelOfTransformation, 880
FlipBlist, 328
FLOAT

constants, 262
Float, 261
Floor, 265
flush character, 408
FlushCaches, 1356
FOA triples, 1407
for loop, 71
ForAll, 316
ForAllOp, 316
ForAny, 316
ForAnyOp, 316
ForceQuitGap, 99
FpElmComparisonMethod, 743
FpGroupCocycle, 620
FpGroupPresentation, 766
FpGrpMonSmgOfFpGrpMonSmgElement, 860
FpLieAlgebraByCartanMatrix, 1054
Frac, 265
Frame, 1234
FrattiniSubgroup, 580
FrattiniSubgroup

for groups with pcgs, 723
FreeAbelianGroup, 802
FreeAlgebra

for ring and several names, 999
for ring, rank (and name), 999

FreeAlgebraWithOne

for ring and several names, 999
for ring, rank (and name), 999

FreeAssociativeAlgebra

for ring and several names, 1000
for ring, rank (and name), 1000

FreeAssociativeAlgebraWithOne

for ring and several names, 1000
for ring, rank (and name), 1000

FreeGeneratorsOfFpGroup, 743
FreeGeneratorsOfFpMonoid, 862
FreeGeneratorsOfFpSemigroup, 862
FreeGeneratorsOfWholeGroup, 743
FreeGroup

for a list of names, 535
for given rank, 535
for infinitely many generators, 535
for various names, 535

FreeGroupOfFpGroup, 743
FreeLeftModule, 945
FreeLieAlgebra

for ring and several names, 1038
for ring, rank (and name), 1038

FreeMagma

for a list of names, 530
for given rank, 530
for infinitely many generators, 530
for various names, 530

FreeMagmaRing, 1065
FreeMagmaWithOne

for a list of names, 531
for given rank, 531
for infinitely many generators, 531
for various names, 531

FreeMonoid

for a list of names, 838
for given rank, 838
for infinitely many generators, 838
for various names, 838

FreeMonoidOfFpMonoid, 862
FreeMonoidOfRewritingSystem, 865
FreeProduct

for a list, 798
for several groups, 798

FreeSemigroup

for a list of names, 834
for given rank, 834
for infinitely many generators, 834
for various names, 834

FreeSemigroupOfFpSemigroup, 862
FreeSemigroupOfRewritingSystem, 865
FrExp, 265
Frobenius automorphism, 962

GAP - Reference Manual 1455

Frobenius Normal Form, 362
FrobeniusAutomorphism, 962
FrobeniusCharacterValue, 1246
FullMatrixAlgebra, 1005
FullMatrixAlgebraCentralizer, 1015
FullMatrixLieAlgebra, 1038
FullMatrixModule, 947
FullMatrixSpace, 987
FullRowModule, 947
FullRowSpace, 986
FullTransformationMonoid, 887
FullTransformationSemigroup, 887
FunctionAction, 663
FunctionField

for an integral ring and a list of indeterminate
numbers, 1091

for an integral ring and a list of indetermi-
nates, 1091

for an integral ring and a list of names (and
an exclusion list), 1091

for an integral ring and a rank (and an exclu-
sion list), 1091

FunctionOperation, 1327
functions

as in mathematics, 481
as in programming language, 75
definition by arrow notation, 61
definition of, 59
recursive, 59
with a variable number of arguments, 60
with a variable number of arguments, calling,

63
FunctionsFamily, 82
FusionCharTableTom, 1144
FusionConjugacyClasses

for a homomorphism, 1254
for two character tables, 1254
for two groups, 1254

FusionConjugacyClassesOp

for a homomorphism, 1254
for two character tables, 1254

fusions, 1253
FusionsAllowedByRestrictions, 1273
FusionsTom, 1133

G-sets, 662
computing orbits, 1409

gN (irrational value), 251
gac, 1294
GaloisCyc

for a class function, 1212
for a cyclotomic, 254
for a list of cyclotomics, 254

GaloisField

for characteristic and degree, 961
for characteristic and polynomial, 961
for field size, 961
for subfield and degree, 961
for subfield and polynomial, 961

GaloisGroup

for abelian number fields, 973
of field, 953
of rational class of a group, 576

GaloisMat, 256
GaloisStabilizer, 970
GaloisType, 1086
Gamma, 265
GammaL, 812
gap.ini, 38
GAPDoc format

for writing package documentation, 1304
GAPDocManualLab, 1322
GapExitCode, 98
GAPInfo, 45
GAPInfo.Architecture, 1293
GAPInfo.CommandLineOptions, 33
GAPInfo.Keywords, 51
GAPInfo.ProfileThreshold, 121
GAPInfo.RootPaths, 140
GAPInfo.UserGapRoot, 140
GAPInfo.Version, 127
GapInputPcGroup, 732
GapInputSCTable, 1003
GAPKB_REW, 864
GAPTCENUM, 747
GASMAN, 135
GasmanLimits, 136
GasmanMessageStatus, 136
GasmanStatistics, 135
Gaussian algorithm, 352
GaussianIntegers, 974
GaussianRationals, 968
Gcd

GAP - Reference Manual 1456

for (a ring and) a list of elements, 935
for (a ring and) several elements, 935

Gcdex, 202
GcdInt, 201
GcdOp, 936
GcdRepresentation

for (a ring and) a list of elements, 936
for (a ring and) several elements, 936

GcdRepresentationOp, 936
GeneralisedEigenspaces, 354
GeneralisedEigenvalues, 354
GeneralisedQuaternionGenerators, 803
generalized characters, 1205
generalized conjugation technique, 1417
GeneralizedEigenspaces, 354
GeneralizedEigenvalues, 354
GeneralLinearGroup

for dimension and a ring, 806
for dimension and field size, 807

GeneralMappingByElements, 483
GeneralMappingsFamily, 499
GeneralOrthogonalGroup, 810

for a form, 810
GeneralSemilinearGroup, 812
GeneralUnitaryGroup, 808

for a form, 808
generator

of the prime residue group, 220, 221
GeneratorsOfAdditiveGroup, 920
GeneratorsOfAdditiveMagma, 920
GeneratorsOfAdditiveMagmaWithZero, 920
GeneratorsOfAlgebra, 1010
GeneratorsOfAlgebraModule, 1025
GeneratorsOfAlgebraWithOne, 1010
GeneratorsOfDivisionRing, 950
GeneratorsOfDomain, 465
GeneratorsOfEquivalenceRelation-

Partition, 507
GeneratorsOfField, 950
GeneratorsOfGroup, 559
GeneratorsOfIdeal, 927
GeneratorsOfInverseMonoid, 841
GeneratorsOfInverseSemigroup, 840
GeneratorsOfLeftIdeal, 927
GeneratorsOfLeftModule, 942
GeneratorsOfLeftOperatorAdditiveGroup,

942
GeneratorsOfLeftVectorSpace, 977
GeneratorsOfMagma, 522
GeneratorsOfMagmaWithInverses, 523
GeneratorsOfMagmaWithOne, 522
GeneratorsOfMonoid, 837
GeneratorsOfNearAdditiveGroup, 920
GeneratorsOfNearAdditiveMagma, 920
GeneratorsOfNearAdditiveMagmaWithZero,

920
GeneratorsOfPresentation, 766
GeneratorsOfRightIdeal, 928
GeneratorsOfRightModule, 943
GeneratorsOfRightOperatorAdditive-

Group, 943
GeneratorsOfRing, 924
GeneratorsOfRingWithOne, 929
GeneratorsOfRws, 554
GeneratorsOfSemigroup, 834
GeneratorsOfStruct , 461
GeneratorsOfTwoSidedIdeal, 927
GeneratorsOfVectorSpace, 977
GeneratorsPrimeResidues, 218
GeneratorsSmallest, 611
GeneratorsSubgroupsTom, 1141
GeneratorSyllable, 541
GetCyclotomicsLimit, 258
GetFusionMap, 1255
GetRecursionDepth, 133
getting help, 28
GetTraceInternalMethodsCounts, 112
GetWithDefault, 280
GF

for characteristic and degree, 961
for characteristic and polynomial, 961
for field size, 961
for subfield and degree, 961
for subfield and polynomial, 961

GL

for dimension and a ring, 806
for dimension and field size, 807

GlobalMersenneTwister, 213
GlobalRandomSource, 213
GModuleByMats

for empty list, the dimension, and a field,
1111

GAP - Reference Manual 1457

for generators and a field, 1111
GO, 810

for a form, 810
GQuotients, 637
Grading, 1017
graphviz, 604
GreensDClasses, 847
GreensDClassOfElement, 847
GreensDRelation, 845
GreensHClasses, 847
GreensHClassOfElement, 847
GreensHRelation, 846
GreensJClasses, 847
GreensJClassOfElement, 847
GreensJRelation, 845
GreensLClasses, 847
GreensLClassOfElement, 847
GreensLRelation, 845
GreensRClasses, 847
GreensRClassOfElement, 847
GreensRRelation, 845
GroebnerBasis

for a list and a monomial ordering, 1096
for an ideal and a monomial ordering, 1096

GroebnerBasisNC, 1097
Group

for a list of generators (and an identity ele-
ment), 559

for several generators, 559
group actions, 642, 643

operations syntax, 642
group algebra, 1064
group characters, 1205
group operations, 643, 1326
group ring, 1064
GroupByGenerators, 559

with explicitly specified identity element,
559

GroupByRws, 730
GroupByRwsNC, 730
GroupGeneralMappingByImages, 625

from group to itself, 625
GroupGeneralMappingByImagesNC, 625

from group to itself, 625
GroupHClassOfGreensDClass, 847
GroupHomomorphismByFunction

by function (and inverse function) between
two domains, 626

by function and function that computes one
preimage, 626

GroupHomomorphismByImages, 624
GroupHomomorphismByImagesNC, 625
GroupOfPcgs, 705
GroupRing, 1065
GroupStabChain, 686
GroupWithGenerators, 559
GrowthFunctionOfGroup, 566

with word length limit, 566
GU, 808

for a form, 808

hN (irrational value), 251
HallSubgroup, 583
HallSystem, 584
HallSystem

for groups with pcgs, 723
HasAbelianFactorGroup, 599
HasElementaryAbelianFactorGroup, 600
hash function, 148, 423
HasIndeterminateName, 1073
HasParent, 464
HasseDiagramBinaryRelation, 505
HeadPcElementByNumber, 707
HelpViewers, 42
HELP_ADD_BOOK, 1403
HELP_REMOVE_BOOK, 1404
HELP_VIEWER_INFO, 1406
HenselBound, 1087
Hermite normal form, 1327
HermiteNormalFormIntegerMat, 373
HermiteNormalFormIntegerMatTransform,

373
HeuristicCancelPolynomialsExtRep, 1103
hexadecimal character codes, 408
HexSHA256, 423

for a stream, 423
HexStringInt, 414
HighestWeightModule, 1061
HistoryBackwardSearchSkipIdenticalEntries,

42
HistoryMaxLines, 42
HMSMSec, 425
Hom, 991

GAP - Reference Manual 1458

home directory
for a GAP package, 1302

HomeEnumerator, 663
HomomorphismQuotientSemigroup, 845
homomorphisms

find all, 636
Frobenius, field, 962

Hypothenuse, 265

iN (irrational value), 252
Ideal, 925
IdealByGenerators, 927
IdealDecompositionsOfPolynomial, 1106
IdealNC, 926
Ideals, 940
Idempotent, 869
Idempotents, 523
IdempotentsTom, 1134
IdempotentsTomInfo, 1134
IdentificationOfConjugacyClasses, 1156
Identifier

for character tables, 1165
for tables of marks, 1134

Identity, 467
IdentityBinaryRelation

for a degree, 500
for a domain, 500

IdentityFromSCTable, 1003
IdentityMapping, 485
IdentityMat, 348
IdentityMatrix

for base domain and dimension, 389
for dimension and matrix object, 389
for filter, base domain, and dimension, 389

IdentityTransformation, 871
IdFunc, 81
if statement, 69
Image

set of images of a collection under a map-
ping, 488

set of images of the source of a general map-
ping, 488

unique image of an element under a mapping,
488

Image

for Frobenius automorphisms, 963
image

vector under matrix, 344
ImageElm, 488
ImageListOfPartialPerm, 898
ImageListOfTransformation, 876
ImageOfPartialPermCollection, 897
Images

set of images of a collection under a map-
ping, 489

set of images of an element under a mapping,
489

set of images of the source of a general map-
ping, 489

ImagesElm, 488
ImageSetOfPartialPerm, 898
ImageSetOfTransformation, 877
ImagesRepresentative, 488
ImagesSet, 488
ImagesSmallestGenerators, 629
ImagesSource, 487
ImaginaryPart, 255
ImfInvariants, 827
ImfMatrixGroup, 828
ImfNumberQClasses, 824
ImfNumberQQClasses, 824
ImfNumberZClasses, 824
immediate integer, 196
Immutable, 172
ImmutableBasis, 984
ImmutableMatrix, 365
ImmutableVector, 335
\in

operation for testing membership, 453
in

for lists, 284
operation for, 453

IncreaseInterval, 267
IndependentGeneratorExponents, 613
IndependentGeneratorsOfAbelianGroup,

612
Indeterminate

for a family and a number, 1072
for a ring (and a name, and an exclusion list),

1072
for a ring (and a number), 1072

IndeterminateName, 1073
Indeterminateness, 1265

GAP - Reference Manual 1459

IndeterminateNumberOfLaurent-
Polynomial, 1088

IndeterminateNumberOfUnivariate-
RationalFunction, 1073

IndeterminateOfUnivariateRational-
Function, 1073

IndeterminatesOfFunctionField, 1090
IndeterminatesOfPolynomialRing, 1090
Index

for a group and its subgroup, 561
for two character tables, 1174

IndexInWholeGroup, 561
IndexNC

for a group and its subgroup, 561
IndexPeriodOfPartialPerm, 901
IndexPeriodOfTransformation, 881
Indicator, 1176
IndicatorOp, 1176
IndicesCentralNormalSteps, 715
IndicesChiefNormalSteps, 717
IndicesEANormalSteps, 714
IndicesEANormalStepsBounded, 714
IndicesInvolutaryGenerators, 749
IndicesNormalSteps, 718
IndicesOfAdjointBasis, 1012
IndicesPCentralNormalStepsPGroup, 716
IndicesStabChain, 686
Indirected, 1261
InducedAutomorphism, 634
InducedClassFunction

for a given monomorphism, 1224
for a supergroup, 1224
for the character table of a supergroup, 1224

InducedClassFunctions, 1224
InducedClassFunctionsByFusionMap, 1225
InducedCyclic, 1225
InducedPcgs, 709
InducedPcgsByGenerators, 710
InducedPcgsByGeneratorsNC, 710
InducedPcgsByPcSequence, 709
InducedPcgsByPcSequenceAndGenerators,

710
InducedPcgsByPcSequenceNC, 709
InducedPcgsWrtFamilyPcgs, 726
InducedPcgsWrtSpecialPcgs, 721
Inequalities, 1245

inequality
of booleans, 269
of records, 437

inequality test, 64
InertiaSubgroup, 1220
Inf, 266
infinity, 250
inflated class functions, 1223
Info, 115
InfoAlgebra, 998
InfoAttributes, 190
InfoBckt, 691
InfoCharacterTable, 1154
InfoClass

for a GAP package, 1317
InfoCoh, 616
InfoComplement, 579
InfoCoset, 573
InfoFpGroup, 741
InfoGroebner, 1098
InfoGroup, 561
InfoLattice, 608
InfoLevel, 114
InfoMatrix, 341
InfoMonomial, 1279
InfoNumtheor, 217
InfoObsolete, 1328
InfoOptions, 138
InfoOutput, 115
InfoPackageLoading, 1290
InfoPackageLoadingLevel, 42
InfoPcSubgroup, 611
InfoPoly, 1081
InfoText, 175

for character tables, 1165
InfoText

(for Conway polynomials), 963
InfoTom, 1130
InfoWarning, 116
Init (initialize a random source object), 214
init.g

for a GAP package, 1304
InitFusion, 1272
InitPowerMap, 1269
InjectionZeroMagma, 519
inner product

GAP - Reference Manual 1460

of group characters, 1218
InnerAutomorphism, 632
InnerAutomorphismGroup, 634
InnerAutomorphismNC, 632
InnerAutomorphismsAutomorphismGroup,

634
InParentFOA, 1409
InputFromUser, 159
InputLogTo

for a filename, 147
for streams, 156
stop logging input, 147

InputOutputLocalProcess, 161
InputTextFile, 158
InputTextNone, 162
InputTextString, 160
InputTextUser, 159
InsertTrivialStabilizer, 689
InstallAtExit, 99
InstallCharReadHookFunc, 163
InstallEarlyMethod, 1336
InstalledPackageVersion, 1293
InstallFactorMaintenance, 474
InstallFlushableValue, 1355
InstallFlushableValueFromFunction, 1355
InstallGlobalFunction, 1356
InstallHandlingByNiceBasis, 994
InstallImmediateMethod, 1339
InstallIsomorphismMaintenance, 475
InstallMethod, 1335
InstallMethodWithRandomSource, 1336
InstallOtherMethod, 1336
InstallOtherMethodWithRandomSource,

1336
InstallReadlineMacro, 104
InstallSubsetMaintenance, 474
InstallTagBasedMethod, 1332
InstallTrueMethod, 1340
InstallValue, 1355
Int, 197

for a cyclotomic, 247
for a FFE, 959
for strings, 421

IntChar, 420
integer part of a quotient, 200
Integers

global variable, 196
IntegralizedMat, 377
IntegratedStraightLineProgram, 548
IntermediateGroup, 598
IntermediateResultOfSLP, 549
IntermediateResultOfSLPWithout-

Overwrite, 549
IntermediateResultsOfSLPWithout-

Overwrite, 549
IntermediateSubgroups, 598
InterpolatedPolynomial, 938
IntersectBlist, 327
Intersection

for a list, 451
for various collections, 451

Intersection

for groups with pcgs, 723
intersection

of collections, 451
of sets, 307

Intersection2, 451
IntersectionBlist

for a list, 326
for various boolean lists, 326

IntersectionsTom, 1139
IntersectSet, 307
IntFFE, 959
IntFFESymm

for a FFE, 960
for a vector of FFEs, 960

IntHexString, 421
INTOBJ_MAX, 196
INTOBJ_MIN, 196
IntScalarProducts, 1266
IntVecFFE, 960
InvariantBilinearForm, 697
InvariantElementaryAbelianSeries, 596
InvariantLattice, 699
InvariantQuadraticForm, 697
InvariantSesquilinearForm, 697
InvariantSubgroupsElementaryAbelian-

Group, 609
Inverse

group homomorphism, 627
Inverse, 469

for a partial permutation, 905

GAP - Reference Manual 1461

for a pcword, 727
for a transformation, 881

inverse
matrix, 344
of class function, 1210

InverseAttr, 1328
InverseClasses, 1166
InverseGeneralMapping, 483
InverseImmutable, 469
InverseMap, 1260
InverseMatMod, 366
InverseMonoid, 840
InverseMutable, 469

for matrix object, 394
InverseOfTransformation, 881
InverseOp, 469
InverseRepresentative, 687
InverseSameMutability, 469

for matrix object, 394
InverseSemigroup, 839
InverseSM, 1328
InversesOfSemigroupElement, 842
InvocationReadlineMacro, 104
Irr

for a character table, 1159
for a group, 1159

irrationalities, 245
IrrBaumClausen, 1183
IrrConlon, 1183
IrrDixonSchneider, 1183
irreducible character, 1217
irreducible characters

computation, 1187
IrreducibleDifferences, 1226
IrreducibleModules, 1186
IrreducibleModules

for groups with pcgs, 723
IrreducibleRepresentations, 1184
IrreducibleRepresentationsDixon, 1185
Is16BitsFamily, 543
Is32BitsFamily, 543
Is8BitMatrixRep, 404
Is8BitVectorRep, 403
IsAbelian, 524

for a character table, 1161
IsAbelianNumberField, 969

IsAbelianNumberFieldPolynomialRing,
1090

IsAbelianTom, 1136
IsAdditiveElement, 476
IsAdditiveElementWithInverse, 476
IsAdditiveElementWithZero, 476
IsAdditiveGroup, 917
IsAdditiveGroupGeneralMapping, 494
IsAdditiveGroupHomomorphism, 494
IsAdditivelyCommutative, 920
IsAdditivelyCommutativeElement, 479
IsAdditivelyCommutativeElementColl-

Coll, 479
IsAdditivelyCommutativeElement-

Collection, 479
IsAdditivelyCommutativeElementFamily,

479
IsAdditiveMagma, 917
IsAdditiveMagmaWithInverses, 917
IsAdditiveMagmaWithZero, 917
IsAlgebra, 1008
IsAlgebraGeneralMapping, 496
IsAlgebraHomomorphism, 496
IsAlgebraicElement, 1106
IsAlgebraicExtension, 1105
IsAlgebraModuleElement, 1026
IsAlgebraModuleElementCollection, 1026
IsAlgebraModuleElementFamily, 1026
IsAlgebraWithOne, 1009
IsAlgebraWithOneGeneralMapping, 496
IsAlgebraWithOneHomomorphism, 496
IsAlmostSimple

for a character table, 1161
IsAlmostSimpleGroup, 586
IsAlphaChar, 411
IsAlternatingGroup, 677
IsAnticommutative, 931
IsAntisymmetricBinaryRelation, 502
IsAssociated, 932
IsAssociative, 524
IsAssociativeElement, 479
IsAssociativeElementCollColl, 479
IsAssociativeElementCollection, 479
IsAssocWord, 535
IsAssocWordWithInverse, 535
IsAssocWordWithOne, 535

GAP - Reference Manual 1462

IsAttribute, 186
IsAttributeStoringRep, 188
IsAutomorphismGroup, 634
IsBasicWreathLessThanOrEqual, 538
IsBasicWreathProductOrdering, 514
IsBasis, 979
IsBasisByNiceBasis, 994
IsBasisOfAlgebraModuleElementSpace,

1027
IsBergerCondition

for a character, 1279
for a group, 1279

IsBiCoset, 571
IsBijective, 487
IsBinaryRelation, 500
IsBinaryRelation

same as IsEndoGeneralMapping, 500
IsBLetterAssocWordRep, 542
IsBLetterWordsFamily, 542
IsBlist, 324
IsBlistRep, 330
IsBlockMatrixRep, 368
IsBool, 268
IsBound

for a global variable, 55
for a list index, 280
for a record component, 438

IsBound\., 439
IsBound\[\], 274

for a row list matrix, 398
IsBoundElmWPObj, 1414
IsBoundGlobal, 57
IsBrauerTable, 1153
IsBravaisGroup, 700
IsBuiltFromAdditiveMagmaWithInverses,

555
IsBuiltFromGroup, 555
IsBuiltFromMagma, 555
IsBuiltFromMagmaWithInverses, 555
IsBuiltFromMagmaWithOne, 555
IsBuiltFromSemigroup, 555
IsCanonicalBasis, 982
IsCanonicalBasisFullMatrixModule, 988
IsCanonicalBasisFullRowModule, 988
IsCanonicalNiceMonomorphism, 631
IsCanonicalPcgs, 711

IsCategory, 183
IsCentral, 524
IsCentralFactor, 618
IsChar, 405
IsCharacter, 1217
IsCharacteristicSubgroup, 563
IsCharacterTable, 1153
IsCharacterTableInProgress, 1153
IsCharCollection, 405
IsCheapConwayPolynomial, 964
IsClassFunction, 1207
IsClassFusionOfNormalSubgroup, 1175
IsClosedStream, 150
IsCochain, 1056
IsCochainCollection, 1056
IsCollection, 441
IsCollectionFamily, 442
IsCommutative, 524
IsCommutativeElement, 480
IsCommutativeElementCollColl, 480
IsCommutativeElementCollection, 480
IsComponentObjectRep, 184
IsCompositionMappingRep, 484
IsConfluent

for a rewriting system, 553
for an algebra with canonical rewriting sys-

tem, 553
for pc groups, 730

IsConjugacyClassSubgroupsBy-
StabilizerRep, 600

IsConjugacyClassSubgroupsRep, 600
IsConjugate

for a group and two elements, 576
for a group and two groups, 576

IsConjugatorAutomorphism, 632
IsConjugatorIsomorphism, 632
IsConstantRationalFunction, 1078
IsConstantTimeAccessGeneralMapping, 497
IsConstantTimeAccessList, 274
IsContainedInSpan, 985
IsCopyable, 171
IsCyc, 246
IsCyclic, 585

for a character table, 1161
IsCyclicTom, 1136
IsCyclotomic, 246

GAP - Reference Manual 1463

IsCyclotomicField, 969
IsCyclotomicMatrixGroup, 699
IsDataObjectRep, 184
IsDenseList, 273
IsDiagonalMat, 347
IsDiagonalMatrix, 347
IsDictionary, 430
IsDigitChar, 411
IsDihedralGroup, 803
IsDirectory, 141
IsDirectoryPath, 145
IsDirectProductElement, 481
IsDisjoint, 267
IsDistributive, 931
IsDivisionRing, 948
IsDomain, 465
IsDoneIterator, 456
IsDoubleCoset

operation, 573
IsDuplicateFree, 301
IsDuplicateFreeList, 301
IsDxLargeGroup, 1188
IsElementaryAbelian, 585

for a character table, 1161
IsElementOfFpMonoid, 859
IsElementOfFpSemigroup, 859
IsElementOfFreeMagmaRing, 1067
IsElementOfFreeMagmaRingCollection,

1067
IsElementOfFreeMagmaRingFamily, 1067
IsElementOfMagmaRingModuloRelations,

1068
IsElementOfMagmaRingModuloRelations-

Collection, 1068
IsElementOfMagmaRingModuloRelations-

Family, 1068
IsElementOfMagmaRingModuloSpanOfZero-

Family, 1069
IsEmpty, 449
IsEmptyMatrix

for a matrix object, 346
IsEmptyString, 410
IsEndOfStream, 154
IsEndoGeneralMapping, 497
IsEndoGeneralMapping

same as IsBinaryRelation, 500

IsEqualSet, 305
IsEquivalenceClass, 507
IsEquivalenceRelation, 503
IsEuclideanRing, 934
IsEvenInt, 198
IsExecutableFile, 145
IsExistingFile, 144
IsExtAElement, 475
IsExternalOrbit, 664
IsExternalSet, 662
IsExternalSubset, 663
IsExtLElement, 476
IsExtRElement, 477
IsFamilyPcgs, 726
IsFFE, 956
IsFFECollColl, 956
IsFFECollCollColl, 956
IsFFECollection, 956
IsFFEMatrixGroup, 694
IsField, 948
IsFieldControlledByGaloisGroup, 952
IsFieldHomomorphism, 497
IsFinite, 449

for a character table, 1161
for floats, 264

IsFiniteDimensional, 946
for matrix algebras, 1009

IsFiniteFieldPolynomialRing, 1090
IsFinitelyGeneratedGroup, 590
IsFiniteOrderElement, 480
IsFiniteOrderElementCollColl, 480
IsFiniteOrderElementCollection, 480
IsFiniteOrdersPcgs, 704
IsFixedStabilizer, 689
IsFLMLOR, 1008
IsFLMLORWithOne, 1008
IsFpGroup, 740
IsFpMonoid, 859
IsFpSemigroup, 859
IsFreeGroup, 536
IsFreeLeftModule, 945
IsFreeMagmaRing, 1065
IsFreeMagmaRingWithOne, 1066
IsFromFpGroupGeneralMappingByImages,

640
IsFromFpGroupHomomorphismByImages, 640

GAP - Reference Manual 1464

IsFromFpGroupStdGensGeneralMappingBy-
Images, 641

IsFromFpGroupStdGensHomomorphismBy-
Images, 641

IsFullHomModule, 992
IsFullMatrixModule, 947
IsFullRowModule, 947
IsFullSubgroupGLorSLRespecting-

BilinearForm, 697
IsFullSubgroupGLorSLRespecting-

QuadraticForm, 698
IsFullSubgroupGLorSLRespecting-

SesquilinearForm, 697
IsFullTransformationMonoid, 887
IsFullTransformationSemigroup, 887
IsFunction, 82
IsFunctionField, 1091
IsGAPRandomSource, 213
IsGaussianIntegers, 974
IsGaussianRationals, 968
IsGaussianSpace, 986
IsGaussInt, 249
IsGaussRat, 249
IsGeneralisedQuaternionGroup, 803
IsGeneralizedDomain, 465
IsGeneralizedRowVector, 287
IsGeneralLinearGroup, 696
IsGeneralMapping, 497
IsGeneralMappingFamily, 498
IsGeneratorsOfSemigroup, 834
IsGeneratorsOfStruct , 461
IsGF2MatrixRep, 403
IsGF2VectorRep, 403
IsGL, 696
IsGlobalRandomSource, 213
IsGreensClass, 846
IsGreensDClass, 846
IsGreensDRelation, 846
IsGreensHClass, 846
IsGreensHRelation, 846
IsGreensJClass, 846
IsGreensJRelation, 846
IsGreensLClass, 846
IsGreensLessThanOrEqual, 846
IsGreensLRelation, 846
IsGreensRClass, 846

IsGreensRelation, 846
IsGreensRRelation, 846
IsGroup, 560
IsGroupGeneralMapping, 493
IsGroupGeneralMappingByAsGroupGeneral-

MappingByImages, 639
IsGroupGeneralMappingByImages, 639
IsGroupGeneralMappingByPcgs, 640
IsGroupHClass, 847
IsGroupHomomorphism, 493
IsGroupOfAutomorphisms, 633
IsGroupRing, 1066
IsHandledByNiceBasis, 994
IsHandledByNiceMonomorphism, 630
IsHasseDiagram, 502
IsHomogeneousList, 273
IsIdempotent, 469
IsIdenticalObj, 169
IsIncomparableUnder, 510
IsInducedFromNormalSubgroup, 1282
IsInducedPcgs, 709
IsInducedPcgsWrtSpecialPcgs, 721
IsInfBitsFamily, 543
IsInfiniteAbelianizationGroup, 764
IsInfiniteAbelianizationGroup

for groups, 764
IsInfinity, 250
IsInjective, 486
IsInjectiveListTrans, 875
IsInnerAutomorphism, 632
IsInputOutputStream, 161
IsInputStream, 151
IsInputTextNone, 151
IsInputTextStream, 151
IsInt, 197
IsIntegerMatrixGroup, 699
IsIntegers, 197
IsIntegralBasis, 983
IsIntegralCyclotomic, 246
IsIntegralRing, 930
IsInternallyConsistent, 175

for character tables, 1174
for tables of marks, 1136

IsInternalRep, 184
IsInverseMonoid, 843
IsInverseSemigroup, 843

GAP - Reference Manual 1465

IsInverseSubsemigroup, 841
IsIrreducibleCharacter, 1217
IsIrreducibleRingElement, 933
IsIterator, 456
IsJacobianElement, 480
IsJacobianElementCollColl, 480
IsJacobianElementCollection, 480
IsJacobianRing, 931
IsKernelExtensionAvailable, 1295
IsLaurentPolynomial, 1078
IsLaurentPolynomialDefaultRep, 1101
IsLDistributive, 930
IsLeftAlgebraModuleElement, 1026
IsLeftAlgebraModuleElementCollection,

1026
IsLeftIdeal, 926
IsLeftIdealInParent, 926
IsLeftModule, 942
IsLeftModuleGeneralMapping, 495
IsLeftModuleHomomorphism, 495
IsLeftOperatorAdditiveGroup, 942
IsLeftSemigroupIdeal, 844
IsLeftVectorSpace, 975
IsLessThanOrEqualUnder, 511
IsLessThanUnder, 511
IsLetterAssocWordRep, 542
IsLetterWordsFamily, 542
IsLexicographicallyLess, 1327
IsLexOrderedFFE, 958
IsLieAbelian, 1042
IsLieAlgebra, 1009
IsLieMatrix, 342
IsLieNilpotent, 1043
IsLieObject, 1035
IsLieObjectCollection, 1035
IsLieSolvable, 1043
IsLinearMapping, 496
IsLinearMappingsModule, 992
IsLineByLineProfileActive, 127
IsList, 272
IsListDefault, 288
IsListOrCollection, 443
IsLogOrderedFFE, 958
IsLookupDictionary, 430
IsLowerAlphaChar, 411
IsLowerTriangularMat, 347

IsLowerTriangularMatrix, 347
IsMagma, 516
IsMagmaHomomorphism, 492
IsMagmaRingModuloRelations, 1069
IsMagmaRingModuloSpanOfZero, 1069
IsMagmaRingObjDefaultRep, 1066
IsMagmaWithInverses, 517
IsMagmaWithInversesIfNonzero, 516
IsMagmaWithOne, 516
IsMagmaWithZeroAdjoined, 519
IsMapping, 486
IsMatchingSublist, 300
IsMatrix, 341
IsMatrixGroup, 693
IsMatrixModule, 947
IsMatrixObj, 383
IsMatrixOrMatrixObj, 384
IsMatrixSpace, 986
IsMersenneTwister, 213
IsMinimalNonmonomial, 1286
IsModuloPcgs, 712
IsMonoid, 836
IsMonomial

for a character table, 1161
IsMonomial

for positive integers, 1283
IsMonomialGroup, 586
IsMonomialMatrix, 346
IsMonomialNumber, 1283
IsMonomialOrdering, 1092
IsMultiplicativeElement, 477
IsMultiplicativeElementWithInverse, 477
IsMultiplicativeElementWithOne, 477
IsMultiplicativeElementWithZero, 477
IsMultiplicativeGeneralizedRowVector,

287
IsMultiplicativeZero, 524
IsMutable, 171
IsMutableBasis, 984
IsNaN, 264
IsNaturalAlternatingGroup, 677
IsNaturalGL, 696
IsNaturalGLnZ, 699
IsNaturalSL, 696
IsNaturalSLnZ, 699
IsNaturalSymmetricGroup, 677

GAP - Reference Manual 1466

IsNearAdditiveElement, 475
IsNearAdditiveElementWithInverse, 476
IsNearAdditiveElementWithZero, 476
IsNearAdditiveGroup, 916
IsNearAdditiveMagma, 916
IsNearAdditiveMagmaWithInverses, 916
IsNearAdditiveMagmaWithZero, 916
IsNearlyCharacterTable, 1153
IsNearRingElement, 478
IsNearRingElementWithInverse, 478
IsNearRingElementWithOne, 478
IsNegInfinity, 250
IsNegRat, 243
IsNilpotent

for a character table, 1161
IsNilpotent

for groups with pcgs, 723
IsNilpotentElement, 1052
IsNilpotentGroup, 585
IsNilpotentTom, 1136
IsNInfinity, 264
IsNoImmediateMethodsObject, 1340
IsNonabelianSimpleGroup, 586
IsNonassocWord, 527
IsNonassocWordCollection, 528
IsNonassocWordWithOne, 527
IsNonassocWordWithOneCollection, 528
IsNonnegativeIntegers, 197
IsNonSPGeneralMapping, 498
IsNonTrivial, 449
IsNormal, 562
IsNormalBasis, 983
IsNotIdenticalObj, 170
IsNumberField, 969
IsObject, 168
IsOddInt, 198
isomorphic

pc group, 731, 732
IsomorphicSubgroups, 637
IsomorphismFpAlgebra, 1022
IsomorphismFpGroup, 753
IsomorphismFpGroup

for subgroups of fp groups, 756
IsomorphismFpGroupByGenerators, 754
IsomorphismFpGroupByGeneratorsNC, 754
IsomorphismFpGroupByPcgs, 728

IsomorphismFpMonoid, 861
IsomorphismFpSemigroup, 861
IsomorphismGroups, 636
IsomorphismMatrixAlgebra, 1022
IsomorphismPartialPermMonoid, 914
IsomorphismPartialPermSemigroup, 914
IsomorphismPcGroup, 732
IsomorphismPermGroup, 675

for Imf matrix groups, 830
IsomorphismPermGroupImfGroup, 830
IsomorphismReesMatrixSemigroup, 850
IsomorphismReesZeroMatrixSemigroup, 850
IsomorphismRefinedPcGroup, 731
IsomorphismRepStruct , 462
isomorphisms

find all, 636
IsomorphismSCAlgebra

for an algebra, 1023
w.r.t. a given basis, 1023

IsomorphismSimplifiedFpGroup, 757
IsomorphismSpecialPcGroup, 732
IsomorphismTransformationMonoid, 888
IsomorphismTransformationSemigroup, 888
IsomorphismTypeInfoFiniteSimpleGroup

for a character table, 1161
for a group, 587
for a group order, 587

IsOne, 468
for matrix object, 394

IsOperation, 1330
IsOrdering, 509
IsOrderingOnFamilyOfAssocWords, 512
IsOrdinaryMatrix, 342
IsOrdinaryTable, 1153
IsOutputStream, 151
IsOutputTextNone, 151
IsOutputTextStream, 151
IsPackageLoaded, 1292
IsPackageMarkedForLoading, 1292
IsPackageMarkedForLoading, 1314
IsPadicExtensionNumber, 1110
IsPadicExtensionNumberFamily, 1110
IsParentPcgsFamilyPcgs, 726
IsPartialOrderBinaryRelation, 502
IsPartialPerm, 892
IsPartialPermCollection, 892

GAP - Reference Manual 1467

IsPartialPermMonoid, 912
IsPartialPermSemigroup, 912
IsPcGroup, 727
IsPcGroupGeneralMappingByImages, 640
IsPcGroupHomomorphismByImages, 640
IsPcgs, 703
IsPcgsCentralSeries, 715
IsPcgsChiefSeries, 717
IsPcgsElementaryAbelianSeries, 714
IsPcgsPCentralSeriesPGroup, 716
IsPerfect

for a character table, 1161
IsPerfectGroup, 585
IsPerfectTom, 1136
IsPerm, 668
IsPermCollColl, 668
IsPermCollection, 668
IsPermGroup, 674
IsPermGroupGeneralMapping, 640
IsPermGroupGeneralMappingByImages, 640
IsPermGroupHomomorphism, 640
IsPermGroupHomomorphismByImages, 640
IsPGroup, 591
IsPInfinity, 264
IsPlistMatrixRep, 404
IsPlistRep, 323
IsPlistVectorRep, 403
IsPNilpotent, 592
IsPolycyclicGroup, 586
IsPolynomial, 1077
IsPolynomialDefaultRep, 1100
IsPolynomialFunction, 1076
IsPolynomialFunctionsFamily, 1098
IsPolynomialRing, 1090
IsPosInt, 197
IsPositionalObjectRep, 184
IsPositiveIntegers, 197
IsPosRat, 243
IsPowerfulPGroup, 591
IsPreimagesByAsGroupGeneralMappingBy-

Images, 640
IsPreOrderBinaryRelation, 502
IsPrime, 933
IsPrimeField, 951
IsPrimeInt, 204
IsPrimeOrdersPcgs, 704

IsPrimePowerInt, 205
IsPrimitive

for a group, an action domain, etc., 660
for a permutation group, 660
for an external set, 660

IsPrimitiveCharacter, 1281
IsPrimitivePolynomial, 1078
IsPrimitiveRootMod, 221
IsProbablyPrimeInt, 204
IsProperty, 192
IsPseudoCanonicalBasisFullHomModule,

992
IsPSolubleCharacterTable, 1175
IsPSolubleCharacterTableOp, 1175
IsPSolvable, 592
IsPSolvableCharacterTable, 1175
IsPSolvableCharacterTableOp, 1175
IsPurePadicNumber, 1108
IsPurePadicNumberFamily, 1108
IsQuasiPrimitive, 1281
IsQuasisimple

for a character table, 1161
IsQuasisimpleGroup, 587
IsQuaternion, 1010
IsQuaternionCollColl, 1010
IsQuaternionCollection, 1010
IsQuaternionGroup, 803
IsQuickPositionList, 323
IsQuotientSemigroup, 845
IsRandomSource, 212
IsRange, 321
IsRangeRep, 321
IsRat, 243
IsRationalFunction, 1076
IsRationalFunctionDefaultRep, 1100
IsRationalFunctionsFamily, 1098
IsRationalMatrixGroup, 699
IsRationals, 242
IsRationalsPolynomialRing, 1091
IsRDistributive, 930
IsReadableFile, 145
IsReadOnlyGlobal, 56
IsRecord, 433
IsRecordCollColl, 433
IsRecordCollection, 433
IsRectangularTable, 274

GAP - Reference Manual 1468

IsReduced, 553
IsReductionOrdering, 512
IsReesCongruence, 844
IsReesCongruenceSemigroup, 843
IsReesMatrixSemigroup, 853
IsReesMatrixSemigroupElement, 851
IsReesMatrixSubsemigroup, 852
IsReesZeroMatrixSemigroup, 853
IsReesZeroMatrixSemigroupElement, 851
IsReesZeroMatrixSubsemigroup, 852
IsReflexiveBinaryRelation, 501
IsRegular

for a group, an action domain, etc., 659
for a permutation group, 659
for an external set, 659

IsRegularDClass, 848
IsRegularPGroup, 591
IsRegularSemigroup, 842
IsRegularSemigroupElement, 842
IsRelativelySM

for a character, 1285
for a group, 1285

IsRepresentation, 185
IsRestrictedJacobianElement, 480
IsRestrictedJacobianElementCollColl,

480
IsRestrictedJacobianElementCollection,

480
IsRestrictedLieAlgebra, 1049
IsRestrictedLieObject, 1035
IsRestrictedLieObjectCollection, 1035
IsRewritingSystem, 552
IsRightAlgebraModuleElement, 1026
IsRightAlgebraModuleElementCollection,

1026
IsRightCoset, 571
IsRightIdeal, 926
IsRightIdealInParent, 926
IsRightModule, 943
IsRightOperatorAdditiveGroup, 943
IsRightSemigroupIdeal, 844
IsRing, 922
IsRingElement, 478
IsRingElementWithInverse, 479
IsRingElementWithOne, 478
IsRingGeneralMapping, 496

IsRingHomomorphism, 496
IsRingWithOne, 928
IsRingWithOneGeneralMapping, 496
IsRingWithOneHomomorphism, 496
IsRootSystem, 1044
IsRootSystemFromLieAlgebra, 1044
IsRowListMatrix, 384
IsRowModule, 946
IsRowSpace, 986
IsRowVector, 331
IsScalar, 479
IsSemiEchelonized, 987
IsSemigroup, 832
IsSemigroupCongruence, 844
IsSemigroupIdeal, 844
IsSemiRegular

for a group, an action domain, etc., 659
for a permutation group, 659
for an external set, 659

IsSet, 301
IsShortLexLessThanOrEqual, 538
IsShortLexOrdering, 513
IsSimple

for a character table, 1161
IsSimpleAlgebra, 1009
IsSimpleGroup, 586
IsSimpleSemigroup, 843
IsSingleValued, 486
IsSL, 696
IsSolvable

for a character table, 1161
IsSolvableGroup, 586
IsSolvableTom, 1136
IsSortedList, 301
IsSpecialLinearGroup, 696
IsSpecialPcgs, 720
IsSPGeneralMapping, 498
IsSporadicSimple

for a character table, 1161
IsSquareInt, 200
IsSSortedList, 301
IsStandardIterator, 455
IsStraightLineProgElm, 550
IsStraightLineProgram, 545
IsStream, 150
IsString, 405

GAP - Reference Manual 1469

IsStringRep, 409
IsStruct , 463
IsSubgroup, 562
IsSubgroupFpGroup, 740
IsSubgroupOfWholeGroupByQuotientRep,

758
IsSubgroupSL, 696
IsSubmonoidFpMonoid, 859
IsSubnormal, 563
IsSubnormallyMonomial

for a character, 1285
for a group, 1284

IsSubsemigroup, 833
IsSubsemigroupFpSemigroup, 859
IsSubset, 451

for interval floats, 267
IsSubsetBlist, 326
IsSubsetLocallyFiniteGroup, 591
IsSubsetSet, 305
IsSubspacesVectorSpace, 978
IsSubstruct , 465
IsSupersolvable

for a character table, 1161
IsSupersolvable

for groups with pcgs, 723
IsSupersolvableGroup, 586
IsSurjective, 486
IsSyllableAssocWordRep, 542
IsSyllableWordsFamily, 543
IsSymmetricBinaryRelation, 501
IsSymmetricGroup, 677
IsSymmetricInverseMonoid, 913
IsSymmetricInverseSemigroup, 913
IsTable, 273
IsTableOfMarks, 1130
IsTableOfMarksWithGens, 1142
IsToPcGroupGeneralMappingByImages, 640
IsToPcGroupHomomorphismByImages, 640
IsToPermGroupGeneralMappingByImages,

640
IsToPermGroupHomomorphismByImages, 640
IsTotal, 486
IsTotalOrdering, 510
IsTransformation, 867
IsTransformationCollection, 867
IsTransformationMonoid, 886

IsTransformationSemigroup, 886
IsTransitive

for a character, 1221
for a group, an action domain, etc., 658
for a permutation group, 658
for an external set, 658

IsTransitiveBinaryRelation, 502
IsTranslationInvariantOrdering, 512
IsTrivial, 449
IsTwoSidedIdeal, 926
IsTwoSidedIdealInParent, 926
IsUEALatticeElement, 1060
IsUEALatticeElementCollection, 1060
IsUEALatticeElementFamily, 1060
IsUniqueFactorizationRing, 930
IsUnit, 931
IsUnivariatePolynomial, 1078
IsUnivariatePolynomialRing, 1092
IsUnivariateRationalFunction, 1077
IsUnknown, 1276
IsUpperAlphaChar, 411
IsUpperTriangularMat, 347
IsUpperTriangularMatrix, 347
IsValidIdentifier, 52
IsVector, 478
IsVectorObj, 383
IsVectorSpace, 975
IsVirtualCharacter, 1217
IsWeightLexOrdering, 514
IsWeightRepElement, 1061
IsWeightRepElementCollection, 1061
IsWeightRepElementFamily, 1061
IsWellFoundedOrdering, 510
IsWeylGroup, 1046
IsWholeFamily, 450
IsWLetterAssocWordRep, 542
IsWLetterWordsFamily, 542
IsWord, 526
IsWordCollection, 527
IsWordWithInverse, 526
IsWordWithOne, 526
IsWreathProductOrdering, 515
IsWritableFile, 145
IsXInfinity, 264
IsZero, 469

for matrix object, 394

GAP - Reference Manual 1470

for vector object, 392
IsZeroGroup, 843
IsZeroSimpleSemigroup, 843
IsZeroSquaredElement, 480
IsZeroSquaredElementCollColl, 480
IsZeroSquaredElementCollection, 480
IsZeroSquaredRing, 931
IsZmodnZMatrixRep, 404
IsZmodnZObj, 210
IsZmodnZObjNonprime, 210
IsZmodnZVectorRep, 403
IsZmodpZObj, 210
IsZmodpZObjLarge, 210
IsZmodpZObjSmall, 210
Iterated, 317
Iterator, 455
iterator

for low index subgroups, 752
IteratorByBasis, 982
IteratorByFunctions, 458
IteratorList, 457
IteratorOfCartesianProduct

for a list of lists, 312
for several lists, 312

IteratorOfCombinations, 230
IteratorOfPartitions, 236
IteratorOfPartitionsSet, 236
IteratorOfTuples, 233
IteratorSorted, 456
IteratorStabChain, 687

jN (irrational value), 253
Jacobi, 221
JenningsLieAlgebra, 1050
JenningsSeries, 597
JoinEquivalenceRelations, 507
JoinOfIdempotentPartialPermsNC, 894
JoinOfPartialPerms, 894
JoinStringsWithSeparator, 417
JordanDecomposition, 362

kN (irrational value), 253
KappaPerp, 1052
KB_REW, 864
kernel

group homomorphism, 627
of a matrix, 353

KernelOfAdditiveGeneralMapping, 495
KernelOfCharacter, 1219
KernelOfMultiplicativeGeneralMapping,

493
KernelOfTransformation, 880
KeyDependentOperation, 1407
KillingMatrix, 1052
KnownAttributesOfObject, 187
KnownPropertiesOfObject, 192
KnownTruePropertiesOfObject, 192
KnowsDictionary, 430
KnowsHowToDecompose, 622
KnuthBendixRewritingSystem

for a monoid and a reduction ordering, 864
for a semigroup and a reduction ordering, 864

Krasner-Kaloujnine theorem, 797
KroneckerProduct, 350
KuKGenerators, 797

lN (irrational value), 253
Lambda, 218
larger or equal, 64
larger test, 64
LargerQuotientBySubgroup-

Abelianization, 761
LargestElementGroup, 612
LargestElementStabChain, 687
LargestImageOfMovedPoint

for a partial permutation, 901
for a partial permutation coll, 901
for a transformation, 879
for a transformation coll, 879

LargestMovedPoint

for a list or collection of permutations, 670
for a partial perm, 900
for a partial perm coll, 900
for a permutation, 670
for a transformation, 878
for a transformation coll, 878

LargestUnknown, 1276
Last, 315
last, 85
last2, 85
last3, 85
LastOp, 315
LastSystemError, 140
LaTeX

GAP - Reference Manual 1471

for a decomposition matrix, 1173
for GAP objects, 426
for permutation characters, 1239
for the result of a straight line program, 547

LaTeXStringDecompositionMatrix, 1173
lattice base reduction, 377, 378
lattice basis reduction

for virtual characters, 1227
LatticeByCyclicExtension, 608
LatticeGeneratorsInUEA, 1060
LatticeSubgroups, 603
LatticeSubgroupsByTom, 1127
LaurentPolynomialByCoefficients, 1087
LaurentPolynomialByExtRep, 1102
LaurentPolynomialByExtRepNC, 1102
LClassOfHClass, 846
Lcm

for (a ring and) a list of elements, 937
for (a ring and) several elements, 937

LcmInt, 202
LcmOp, 937
LdExp, 265
LeadCoeffsIGS, 710
LeadingCoefficient, 1082
LeadingCoefficientOfPolynomial, 1093
LeadingExponentOfPcElement, 706
LeadingMonomial, 1082
LeadingMonomialOfPolynomial, 1092
LeadingTermOfPolynomial, 1093
left cosets, 571
LeftActingAlgebra, 1027
LeftActingDomain, 944
LeftActingRingOfIdeal, 928
LeftAlgebraModule, 1025
LeftAlgebraModuleByGenerators, 1024
LeftDerivations, 1038
LeftIdeal, 925
LeftIdealByGenerators, 927
LeftIdealNC, 926
LeftModuleByGenerators, 944
LeftModuleByHomomorphismToMatAlg, 1028
LeftModuleGeneralMappingByImages, 989
LeftModuleHomomorphismByImages, 990
LeftModuleHomomorphismByImagesNC, 990
LeftModuleHomomorphismByMatrix, 990
LeftOne

for a partial perm, 903
for a transformation, 884

LeftQuotient, 471
for a permutation and transformation, 874
for a permutation or partial permutation and

a partial permutation, 906
LeftQuotient

for words, 538
LeftShiftRowVector, 337
legacy, 1326
Legendre, 222
Length, 302

for a vector object, 385
for an associative word, 538

length
of a word, 538

LengthsTom, 1132
LengthWPObj, 1414
LenstraBase, 972
LessThanFunction, 511
LessThanOrEqualFunction, 511
LetterRepAssocWord, 543
LevelsOfGenerators, 515
LeviMalcevDecomposition

for Lie algebras, 1017
LexicographicOrdering, 512
LGFirst, 720
LGLayers, 720
LGLength, 720
LGWeights, 720
library tables, 1150
LieAlgebra

for an associative algebra, 1037
for field and generators, 1037

LieAlgebraByStructureConstants, 1036
LieBracket, 472
LieCenter, 1040
LieCentralizer, 1040
LieCentre, 1040
LieCoboundaryOperator, 1057
LieDerivedSeries, 1041
LieDerivedSubalgebra, 1040
LieFamily, 1035
LieLowerCentralSeries, 1042
LieNilRadical, 1041
LieNormalizer, 1040

GAP - Reference Manual 1472

LieObject, 1035
LieSolvableRadical, 1041
LieUpperCentralSeries, 1042
LiftedInducedPcgs, 714
LiftedPcElement, 714
LinearAction, 722
LinearActionLayer, 722
LinearCharacters

for a character table, 1160
for a group, 1160

LinearCombination, 981
LinearCombinationPcgs, 706
LinearIndependentColumns, 376
LinearOperation, 722
LinearOperationLayer, 722
LinesOfStraightLineProgram, 545
List

for a collection, 445
for a list (and a function), 313

list
sorted, 301

list and non-list
difference, 290
left quotient, 293
mod, 292
product, 291
quotient, 292

list assignment
operation, 274

list boundedness test
operation, 274

list element
access, 275
assignment, 276
operation, 274

list equal
comparison, 285

list of available books, 29
list smaller

comparison, 286
list unbind

operation, 274
ListBlist, 325
ListN, 318
ListOfDigits, 200
ListOp

for a row list matrix, 399
for vector object and function, 391

ListOp, 313, 445
ListPerm, 671
ListStabChain, 686
ListTransformation, 876
ListWithIdenticalEntries, 294
ListWreathProductElement, 797
ListWreathProductElementNC, 797
ListX, 318
LLL, 1227
LLL algorithm

for Gram matrices, 378
for vectors, 377
for virtual characters, 1227

LLLReducedBasis, 377
LLLReducedGramMat, 378
LoadAllPackages, 1320
LoadDynamicModule, 1296
LoadKernelExtension, 1295
LoadPackage, 1288
local, 59
local namespace

for a GAP package, 1309
LocationFunc, 77
Log, 265
Log10, 265
Log1p, 264
Log2, 265
logarithm

discrete, 219, 220
of a root of unity, 249

LogFFE, 959
logical, 268
Logical conjunction, 270
Logical disjunction, 269
Logical negation, 270
logical operations, 269
LogInt, 199
LogMod, 219
LogModShanks, 219
LogPackageLoadingMessage, 1290
LogPackageLoadingMessage, 1316
LogTo

for a filename, 147
for streams, 156

GAP - Reference Manual 1473

stop logging, 147
LongestWeylWordPerm, 1048
LookupDictionary, 430
loop

for, 71
read eval print, 85
repeat, 70
while, 70

loop over iterator, 72
loop over object, 72
loop over range, 71
loops

leaving, 73
restarting, 73

LowercaseChar, 415
LowercaseString, 414
LowerCentralSeriesOfGroup, 596
LowIndexSubgroups, 601
LowIndexSubgroupsFpGroup, 752
LowIndexSubgroupsFpGroupIterator, 752
LowLayerSubgroups, 606
Lucas, 240

mN (irrational value), 253
Magma, 517
MagmaByGenerators, 518
MagmaByMultiplicationTable, 520
MagmaElement, 521
MagmaHomomorphismByFunctionNC, 492
MagmaRingModuloSpanOfZero, 1069
MagmaWithInverses, 518
MagmaWithInversesByGenerators, 518
MagmaWithInversesByMultiplication-

Table, 521
MagmaWithOne, 517
MagmaWithOneByGenerators, 518
MagmaWithOneByMultiplicationTable, 521
MagmaWithZeroAdjoined, 519
MakeBitfields, 215
MakeConfluent, 554
MakeConstantGlobal, 57
MakeFloat, 261
MakeImmutable, 172
MakeReadOnlyGlobal, 56
MakeReadWriteGlobal, 56
map

parametrized, 1259

MappedWord, 529
MappingByFunction

by function (and inverse function) between
two domains, 483

by function and function that computes one
preimage, 483

MappingGeneratorsImages, 639
MappingPermListList, 672
maps, 1248
MarksTom, 1131
MatAlgebra, 1005
MatClassMultCoeffsCharTable, 1178
MatElm, 395
MathieuGroup, 805
MatLieAlgebra, 1038
matrices

commutator, 344
Matrix

for a list, 388
for a list and a matrix object, 388
for a list and ncols, 388
for a list, ncols, and a matrix object, 388
for base domain and list, 388
for base domain and matrix object, 388
for base domain, list, ncols, 387
for filter, base domain, and list, 387
for filter, base domain, and matrix object, 387
for filter, base domain, list, ncols, 387
for Rees matrix semigroups, 854
for two matrix objects, 388

matrix automorphisms, 1252
matrix spaces, 986
MatrixAlgebra, 1005
MatrixAutomorphisms, 1200
MatrixByBlockMatrix, 368
MatrixLieAlgebra, 1038
MatrixOfAction, 1028
MatrixOfReesMatrixSemigroup, 854
MatrixOfReesZeroMatrixSemigroup, 854
MatScalarProducts, 1218
MatTom, 1134
MaxBitsIntView, 42
MaximalAbelianQuotient, 599
MaximalBlocks

for a group, an action domain, etc., 661
for an external set, 661

GAP - Reference Manual 1474

MaximalNormalSubgroups, 603
MaximalSubgroupClassReps, 601
MaximalSubgroups, 602
MaximalSubgroups

for groups with pcgs, 723
MaximalSubgroupsLattice, 604
MaximalSubgroupsTom, 1140
Maximum

for a list, 311
for various objects, 311

MaximumList, 312
meet strategy, 1424
MeetBlist, 328
MeetEquivalenceRelations, 507
MeetMaps, 1263
MeetOfPartialPerms, 895
MemoizePosIntFunction, 79
memory_allocated, 85
MemoryUsage, 175
memory_allocated, 119
method, 1330
MicroSleep, 118
Mid, 267
MinimalElementCosetStabChain, 687
MinimalFaithfulPermutationDegree, 607
MinimalFaithfulPermutation-

Representation, 607
MinimalGeneratingSet, 612
MinimalGeneratingSet

for groups with pcgs, 723
MinimalNonmonomialGroup, 1286
MinimalNormalSubgroups, 603
MinimalPolynomial, 1084

over a field, 953
MinimalPolynomial

over a ring, 1084
MinimalStabChain, 684
MinimalSupergroupsLattice, 605
MinimalSupergroupsTom, 1141
MinimizedBombieriNorm, 1087
Minimum

for a list, 311
for various objects, 311

MinimumList, 312
MinusCharacter, 1270
mod

Integers, 209
Laurent polynomials, 1074
lists, 292
rationals, 66

mod, 65
arithmetic operators, 65
for character tables, 1158
residue class rings, 208

modular inverse, 66
modular remainder, 66
modular roots, 223
ModuleByRestriction, 1030
ModuleOfExtension, 734
modulo, 65

arithmetic operators, 65
residue class rings, 208

ModuloPcgs, 711
MoebiusMu, 224
MoebiusTom, 1135
MolienSeries, 1236
MolienSeriesInfo, 1236
MolienSeriesWithGivenDenominator, 1238
Monoid

for a list, 837
for various generators, 837

MonoidByGenerators, 837
MonoidByMultiplicationTable, 839
MonoidOfRewritingSystem, 864
MonomialComparisonFunction, 1093
MonomialExtGrlexLess, 1096
MonomialExtrepComparisonFun, 1094
MonomialGrevlexOrdering, 1095
MonomialGrlexOrdering, 1094
MonomialLexOrdering, 1094
MonomialTotalDegreeLess, 1328
monomorphisms

find all, 637
MorClassLoop, 638
MostFrequentGeneratorFpGroup, 749
MovedPoints

for a list or collection of permutations, 670
for a partial perm, 899
for a partial perm coll, 899
for a permutation, 670
for a transformation, 877
for a transformation coll, 877

GAP - Reference Manual 1475

MTX, 1112
MTX.BasesCompositionSeries, 1116
MTX.BasesMaximalSubmodules, 1115
MTX.BasesMinimalSubmodules, 1115
MTX.BasesMinimalSupermodules, 1115
MTX.BasesSubmodules, 1115
MTX.BasisInOrbit, 1120
MTX.BasisModuleEndomorphisms, 1117
MTX.BasisModuleHomomorphisms, 1117
MTX.BasisRadical, 1115
MTX.BasisSocle, 1115
MTX.CollectedFactors, 1116
MTX.CompositionFactors, 1116
MTX.DegreeSplittingField, 1113
MTX.Dimension, 1113
MTX.Distinguish, 1118
MTX.Field, 1113
MTX.Generators, 1113
MTX.HomogeneousComponents, 1114
MTX.Homomorphism, 1118
MTX.Homomorphisms, 1118
MTX.Indecomposition, 1114
MTX.InducedAction, 1117
MTX.InducedActionFactorMatrix, 1117
MTX.InducedActionFactorModule, 1116
MTX.InducedActionSubMatrix, 1117
MTX.InducedActionSubMatrixNB, 1117
MTX.InducedActionSubmodule, 1116
MTX.InducedActionSubmoduleNB, 1116
MTX.InvariantBilinearForm, 1119
MTX.InvariantQuadraticForm, 1119
MTX.InvariantSesquilinearForm, 1119
MTX.IsAbsolutelyIrreducible, 1113
MTX.IsEquivalent, 1118
MTX.IsIndecomposable, 1114
MTX.IsIrreducible, 1113
MTX.IsomorphismIrred, 1118
MTX.IsomorphismModules, 1117
MTX.ModuleAutomorphisms, 1117
MTX.NormedBasisAndBaseChange, 1116
MTX.OrthogonalSign, 1120
MTX.ProperSubmoduleBasis, 1115
MTX.SubGModule, 1114
MTX.SubmoduleGModule, 1114
multiplication, 65

matrices, 344

matrix and matrix list, 344
matrix and scalar, 343
matrix and vector, 343
operation, 471
scalar and matrix, 343
scalar and matrix list, 344
scalar and vector, 332
vector and matrix, 343
vector and matrix list, 345
vector and scalar, 332
vectors, 333

MultiplicationTable

for a list of elements, 521
for a magma, 521

multiplicative order of an integer, 219
MultiplicativeNeutralElement, 524
MultiplicativeZero, 524

for a partial perm, 904
MultiplicativeZeroOp, 468
multiplicity

of constituents of a group character, 1218
Multiplier, 617
multisets, 304
MultMatrixColumn, 400
MultMatrixColumnLeft, 400
MultMatrixColumnRight, 400
MultMatrixRow, 400
MultMatrixRowLeft, 400
MultMatrixRowRight, 400
MultRowVector, 1328
MultVector, 336

for a vector object, 393
MultVectorLeft, 336

for a vector object, 393
MultVectorRight

for a vector object, 393
Murnaghan components, 1234, 1235
MutableBasis, 984
MutableBasisOfClosureUnderAction, 1013
MutableBasisOfIdealInNonassociative-

Algebra, 1014
MutableBasisOfNonassociativeAlgebra,

1014
MutableCopyMat, 1328
MutableCopyMatrix

for a matrix object, 396

GAP - Reference Manual 1476

MutableIdentityMat, 1328
MutableNullMat, 1328

Name, 174
NameFunction, 75
NameRNam, 439
NamesFilter, 179
NamesGVars, 58
NamesLocalVariablesFunction, 76
NamesOfComponents, 1344
NamesOfFusionSources, 1256
namespace, 52, 55
NamesSystemGVars, 58
NamesUserGVars, 58
NanosecondsSinceEpoch, 118
NanosecondsSinceEpochInfo, 118
NaturalCharacter

for a group, 1215
for a homomorphism, 1215

NaturalGModule

for matrix group and a field, 1112
NaturalHomomorphismByGenerators, 492
NaturalHomomorphismByIdeal, 939

for an algebra and an ideal, 1021
NaturalHomomorphismByNormalSubgroup,

598
NaturalHomomorphismByNormalSubgroupNC,

598
NaturalHomomorphismBySubAlgebraModule,

1031
NaturalHomomorphismBySubspace, 991
NaturalHomomorphismOfLieAlgebraFrom-

NilpotentGroup, 1051
NaturalLeqPartialPerm, 908
NaturalPartialOrder, 913
NearAdditiveGroup, 918
NearAdditiveGroupByGenerators, 919
NearAdditiveMagma, 918
NearAdditiveMagmaByGenerators, 918
NearAdditiveMagmaWithZero, 918
NearAdditiveMagmaWithZeroByGenerators,

918
NearlyCharacterTablesFamily, 1154
needed package, 1311
negative number, 65
NegativeRoots, 1045
NegativeRootVectors, 1045

NestingDepthA, 288
NestingDepthM, 288
NewAttribute, 187
NewAttribute

example, 1362
NewCategory, 183
NewConstructor, 1333
NewDictionary, 429
NewFamily, 178
NewFilter, 194
NewFloat, 261
NewIdentityMatrix, 387
NewInfoClass, 114
newline, 50
newline character, 408
NewmanInfinityCriterion, 764
NewMatrix, 387
NewOperation, 1331
NewProperty, 193
NewRepresentation, 185
NewRepresentation

example, 1363
NewTagBasedOperation, 1332
NewType, 195
NewVector, 386
NewZeroMatrix, 387
NewZeroVector, 386
NextIterator, 457
NextPrimeInt, 205
NF, 968
NiceAlgebraMonomorphism, 1022
NiceBasis, 993
NiceBasisFiltersInfo, 995
NiceFreeLeftModule, 993
NiceFreeLeftModuleInfo, 993
NiceMonomorphism, 630
NiceMonomorphismAutomGroup, 635
NiceObject, 630
NiceVector, 993
NilpotencyClassOfGroup, 585
NilpotentQuotientOfFpLieAlgebra, 1054
NK, 253
NOAUTO, 1289
NonabelianExteriorSquare, 617
NonnegativeIntegers, 196
NonnegIntScalarProducts, 1266

GAP - Reference Manual 1477

NonNilpotentElement, 1053
Norm, 954

for a class function, 1218
for floats, 265

Norm

of character, 1218
NormalBase, 955
NormalClosure, 578

for group and a list, 578
NormalFormIntMat, 374
NormalIntersection, 578
NormalizedElementOfMagmaRingModulo-

Relations, 1069
NormalizedWhitespace, 416
Normalizer

for a group and a group element, 577
for two groups, 577

normalizer, 577
NormalizerInGLnZ, 700
NormalizerInGLnZBravaisGroup, 701
NormalizersTom, 1137
NormalizerTom, 1137
NormalizerViaRadical, 622
NormalizeWhitespace, 416
NormalSeriesByPcgs, 718
NormalSubgroupClasses, 1203
NormalSubgroupClassesInfo, 1202
NormalSubgroups, 602
NormedRowVector, 333
NormedRowVectors, 989
NormedVectors, 1328
not, 270
NotationForPartialPerms, 42
NotationForTransformations, 42
NrArrangements, 231
NrBasisVectors, 984
NrCols

for a matrix object, 385
NrCombinations, 231
NrComponentsOfPartialPerm, 902
NrComponentsOfTransformation, 882
NrConjugacyClasses, 575

for a character table, 1161
NrConjugacyClassesGL, 815
NrConjugacyClassesGU, 815
NrConjugacyClassesPGL, 815

NrConjugacyClassesPGU, 815
NrConjugacyClassesPSL, 815
NrConjugacyClassesPSU, 815
NrConjugacyClassesSL, 815
NrConjugacyClassesSLIsogeneous, 815
NrConjugacyClassesSU, 815
NrConjugacyClassesSUIsogeneous, 815
NrDerangements, 234
NrFixedPoints

for a partial perm, 899
for a partial perm coll, 899

NrInputsOfStraightLineProgram, 545
NrMovedPoints

for a list or collection of permutations, 670
for a partial perm, 899
for a partial perm coll, 899
for a permutation, 670
for a transformation, 878
for a transformation coll, 878

NrOrderedPartitions, 237
NrPartitions, 236
NrPartitionsSet, 235
NrPartitionTuples, 239
NrPerfectGroups, 818
NrPerfectLibraryGroups, 818
NrPermutationsList, 234
NrPolyhedralSubgroups, 1176
NrRestrictedPartitions, 238
NrRows

for a matrix object, 385
NrSubsTom, 1132
NrTuples, 233
NrUnorderedTuples, 232
NthRootsInGroup, 577
NullAlgebra, 1005
NullMat, 348
NullspaceIntMat, 370
NullspaceMat, 353
NullspaceMatDestructive, 353
NullspaceModN, 367
NullspaceModQ, 367
Number, 314
number

Bell, 228
binomial, 227
Stirling, of the first kind, 229

GAP - Reference Manual 1478

Stirling, of the second kind, 229
number field, 969
number fields

Galois group, 972
NumberArgumentsFunction, 76
NumberColumns

for a matrix object, 385
NumberFFVector, 335
NumberOp, 314
NumberPerfectGroups, 818
NumberPerfectLibraryGroups, 818
NumberRows

for a matrix object, 385
NumberSmallRings, 940
NumbersString, 419
NumberSyllables, 541
NumberTransformation, 870
numerator

of a rational, 243
NumeratorOfModuloPcgs, 712
NumeratorOfRationalFunction, 1076
NumeratorRat, 243

ObjByExtRep, 1352
for creating a UEALattice element, 1060

Objectify, 1342
ObjectifyWithAttributes, 1342
obsolete, 1326
OCOneCocycles, 615
octal character codes, 408
OctaveAlgebra, 1005
od, 71
OldGeneratorsOfPresentation, 785
Omega, 584

construct an orthogonal group, 811
construct an orthogonal group for a given

quadratic form, 811
OmniGraffle, 604
ONanScottType, 677
OnBreak, 92
OnBreakMessage, 94
One, 467

for a partial perm, 903
one cohomology, 613
OneAttr, 1328
OneCoboundaries, 614
OneCocycles

for a group and a pcgs, 613
for generators and a group, 613
for generators and a pcgs, 613
for two groups, 613

OneFactorBound, 1087
OneImmutable, 467
OneLibraryGroup, 817
OneMutable, 467

for matrix object, 394
OneOfBaseDomain

for a matrix object, 389
for a vector object, 389

OneOfPcgs, 705
OneOp, 467
OnePrimitiveGroup, 817
OneSameMutability, 467

for matrix object, 394
OneSM, 1328
OneTransitiveGroup, 817
OnIndeterminates

as a permutation action, 647
OnLeftInverse, 644
OnLines, 647
OnLines

example, 807
OnlyNeeded

option, 1312
OnPairs, 645
OnPoints, 643
OnQuit, 138
OnRight, 644
OnSets, 644
OnSetsDisjointSets, 646
OnSetsSets, 645
OnSetsTuples, 646
OnSubspacesByCanonicalBasis, 648
OnSubspacesByCanonicalBasis-

Concatenations, 648
OnTuples, 645
OnTuplesSets, 646
OnTuplesTuples, 646
Op(G)

see PCore, 577
OpenExternal, 164
Operation, 1327
operation, 1330

GAP - Reference Manual 1479

OperationAlgebraHomomorphism

action on a free left module, 1021
action w.r.t. a basis of the module, 1021

OperationHomomorphism, 1327
operations

for booleans, 269
Operations for algebraic elements, 1105
operators, 53

arithmetic, 65
associativity, 66
for cyclotomics, 251
for lists, 286
precedence, 65

options, 33
command line, filenames, 37
command line, internal, 37
under UNIX, 33

or, 269
Orbit, 648
OrbitFusions, 1259
OrbitishFO, 1411
OrbitLength, 650
OrbitLengths

for a group, a set of seeds, etc., 650
for a permutation group, 650
for an external set, 650

OrbitLengthsDomain

for a group and a set of seeds, 650
for a permutation group, 650
of an external set, 650

OrbitPerms, 675
OrbitPowerMaps, 1252
Orbits

attribute, 649
for a permutation group, 649
operation, 649

Orbits

as attributes for external sets, 1409
OrbitsDomain

for a group and an action domain, 649
for a permutation group, 649
of an external set, 649

OrbitsishOperation, 1410
OrbitsPerms, 675
OrbitStabChain, 686
OrbitStabilizer, 651

OrbitStabilizerAlgorithm, 651
Order, 470

for a class function, 1213
order

of a group, 558
of a list, collection or domain, 450
of the prime residue group, 218

ordered partitions
internal representation, 1418

OrderedPartitions, 237
ordering

booleans, 269
of records, 438

OrderingByLessThanFunctionNC, 509
OrderingByLessThanOrEqualFunctionNC,

509
OrderingOfRewritingSystem, 553
OrderingOnGenerators, 512
OrderingsFamily, 509
OrderMod, 219
OrderOfRewritingSystem, 553
OrdersClassRepresentatives, 1163
OrdersTom, 1132
Ordinal, 422
ordinary character, 1217
OrdinaryCharacterTable

for a character table, 1160
for a group, 1160

OrthogonalComponents, 1234
OrthogonalEmbeddings, 379
OrthogonalEmbeddingsSpecialDimension,

1229
output

suppressing, 85
OutputGzipFile, 158
OutputLogTo

for a filename, 147
for streams, 157
stop logging output, 147

OutputTextFile, 158
OutputTextNone, 162
OutputTextString, 160
OutputTextUser, 159
overload, 1341

p-group, 591
package, 1287

GAP - Reference Manual 1480

PackageInfo.g

for a GAP package, 1304
PackagesToIgnore, 43
PackagesToLoad, 43
PackageVariablesInfo, 1299
PACKAGE_DEBUG, 1290
PACKAGE_ERROR, 1290
PACKAGE_INFO, 1290
PACKAGE_WARNING, 1290
PadicCoefficients, 377
PadicExtensionNumberFamily, 1109
PadicNumber

for a p-adic extension family and a list, 1109
for a p-adic extension family and a rational,

1109
for a pure p-adic numbers family and a list,

1109
for pure padics, 1107

PadicValuation, 934
Pager, 31, 43
PagerOptions, 43
PageSource, 77
Parametrized, 1261
parametrized maps, 1248
Parent, 464
ParentPcgs, 709
ParseRelators, 742
partial order, 502
PartialFactorization, 207
PartialOrderByOrderingFunction, 505
PartialOrderOfHasseDiagram, 503
PartialPerm

for a dense image, 892
for a domain and image, 892

PartialPermDisplayLimit, 42
PartialPermFamily, 892
PartialPermOp, 893
PartialPermOpNC, 893
Partitions, 236
partitions

improper, of an integer, 237
ordered, of an integer, 237
restricted, of an integer, 238

PartitionsGreatestEQ, 237
PartitionsGreatestLE, 237
PartitionsSet, 235

PartitionTuples, 239
PathSystemProgram, 144
PcElementByExponents, 706
PcElementByExponentsNC, 706
PCentralLieAlgebra, 1050
PCentralNormalSeriesByPcgsPGroup, 717
PCentralSeries, 597
PcGroupCode, 737
PcGroupFpGroup, 729
PcGroupWithPcgs, 731
Pcgs, 703
PcgsByPcSequence, 704
PcgsByPcSequenceNC, 704
PcgsCentralSeries, 715
PcgsChiefSeries, 717
PcgsElementaryAbelianSeries

for a group, 714
for a list of normal subgroups, 714

PcgsPCentralSeriesPGroup, 716
Pcgs_OrbitStabilizer, 723
PClassPGroup, 592
PCore, 577
PcSeries, 705
perfect groups, 817
PerfectGroup

for a pair [order, index], 818
for group order (and index), 818

PerfectIdentification, 818
PerfectResiduum, 581
Perform, 310
Permanent, 241
PermBounds, 1244
PermCharInfo, 1239
PermCharInfoRelative, 1240
PermChars, 1241
PermCharsTom

from a character table, 1144
via fusion map, 1144

PermComb, 1245
PermLeftQuoPartialPerm, 907
PermLeftQuoPartialPermNC, 907
PermLeftQuoTransformation, 874
PermLeftQuoTransformationNC, 874
PermList, 671
PermListList, 310
Permutation

GAP - Reference Manual 1481

for a group, an action domain, etc., 656
for an external set, 656

permutation character, 1272
permutation characters

possible, 1238
PermutationCharacter

for a group, an action domain, and a function,
1216

for two groups, 1216
PermutationCycle, 656
PermutationGModule, 1112
PermutationMat, 349
PermutationOfImage, 873
PermutationsFamily, 668
PermutationsList, 233
PermutationTom, 1130
Permuted, 313

as a permutation action, 647
for a class function, 1212

PERM_INVERSE_THRESHOLD, 668
PGammaL, 814
PGL, 812
PGO, 813
PGU, 813
Phi, 218
PlainListCopy, 323
Pluralize, 423
point stabilizer, 651
PolynomialByExtRep, 1101
PolynomialByExtRepNC, 1101
PolynomialCoefficientsOfPolynomial,

1081
PolynomialDivisionAlgorithm, 1096
PolynomialModP, 1085
PolynomialReducedRemainder, 1096
PolynomialReduction, 1095
PolynomialRing

for a ring and a list of indeterminate numbers,
1089

for a ring and a list of indeterminates, 1089
for a ring and a list of names (and an exclu-

sion list), 1089
for a ring and a rank (and an exclusion list),

1089
POmega, 814
PopOptions, 138

Position, 294
PositionBound, 299
PositionCanonical, 295
PositionFirstComponent, 1328
PositionLastNonZero

for a vector object, 391
PositionMaximum, 298
PositionMinimum, 298
PositionNonZero, 299

for a vector object, 391
PositionNot, 299
PositionNthOccurrence, 296
PositionProperty, 298
Positions, 295
PositionsBound, 299
PositionSet, 297
PositionsOp, 295
PositionSorted, 296
PositionSortedBy, 297
PositionSortedByOp, 297
PositionSortedOp, 296
PositionsProperty, 298
PositionStream, 155
PositionSublist, 300
PositionWord, 539
positive number, 65
PositiveIntegers, 196
PositiveRoots, 1045
PositiveRootVectors, 1045
possible permutation characters, 1238
PossibleClassFusions, 1257
PossibleFusionsCharTableTom, 1144
PossiblePowerMaps, 1250
power, 65

matrix, 344
meaning for class functions, 1211
of words, 538

power set, 230
Powerful p-group, 591
PowerMap, 1249
PowerMapByComposition, 1251
PowerMapOp, 1249
PowerMapsAllowedBySymmetrizations, 1271
PowerMod, 938
PowerModCoeffs, 340
PowerModInt, 203

GAP - Reference Manual 1482

PowerPartition, 239
PowerSubalgebraSeries, 1011
PQuotient, 759
Pragmas, 83
precedence, 53, 65
precedence test

for permutations, 669
PrecisionFloat, 263
Prefix, 418
PrefrattiniSubgroup, 580
PrefrattiniSubgroup

for groups with pcgs, 723
PreImage

set of preimages of a collection under a gen-
eral mapping, 490

set of preimages of the range of a general
mapping, 490

unique preimage of an element under a gen-
eral mapping, 490

PreImageElm, 490
PreImagePartialPerm, 907
PreImages

set of preimages of a collection under a gen-
eral mapping, 491

set of preimages of an elm under a general
mapping, 491

set of preimages of the range of a general
mapping, 491

PreImagesElm, 489
PreImagesOfTransformation, 875
PreImagesRange, 489
PreImagesRepresentative, 490
PreImagesSet, 490
preorder, 502
PresentationFpGroup, 765
PresentationNormalClosure, 772
PresentationNormalClosureRrs, 772
PresentationSubgroup, 768
PresentationSubgroupMtc, 770
PresentationSubgroupRrs

for a group and a coset table (and a string),
768

for two groups (and a string), 768
PresentationViaCosetTable, 766
previous result, 85
PrevPrimeInt, 205

PrimalityProof, 204
primary subgroup generators, 787
PrimaryGeneratorWords, 770
prime residue group, 217

exponent, 218
generator, 220, 221
order, 218

PrimeBlocks, 1170
PrimeBlocksOp, 1170
PrimeDivisors, 206
PrimeField, 951
PrimePGroup, 591
PrimePowersInt, 208
PrimeResidues, 217
Primes, 203
primitive, 660
primitive root modulo an integer, 220
PrimitiveElement, 951
PrimitivePolynomial, 1085
PrimitiveRoot, 962
PrimitiveRootMod, 220
Print, 89
PrintAmbiguity, 1266
PrintArray, 351
PrintCharacterTable, 1182
PrintCSV, 164
PrintFactorsInt, 208
PrintFormatted, 418
PrintFormattingStatus, 157
PrintObj, 90

for a character table, 1178
for a ffe, 964
for a string, 406
for a table of marks, 1128
for class functions, 1213

PrintString, 413
PrintTo, 147

for streams, 156
PrintToFormatted, 418
ProbabilityShapes, 1086
procedure call, 68
procedure call with arguments, 68
Process, 165
Product, 316
product

of words, 538

GAP - Reference Manual 1483

rational functions, 1074
ProductCoeffs, 339
ProductOfStraightLinePrograms, 549
ProductOp, 317
ProductSpace, 1011
ProductX, 319
PROD_GF2MAT_GF2MAT_ADVANCED, 368
PROD_GF2MAT_GF2MAT_SIMPLE, 367
ProfileFunctions, 120
ProfileGlobalFunctions, 120
ProfileLineByLine, 126
ProfileMethods, 121
ProfileOperations, 120
ProfileOperationsAndMethods, 120
ProjectedInducedPcgs, 713
ProjectedPcElement, 713
Projection

for a domain, 485
for a domain and a positive integer, 485
for group products, 799
for two domains, 485

Projection

example for direct products, 793
example for semidirect products, 794
example for subdirect products, 795
example for wreath products, 796

ProjectionMap, 1261
projections

find all, 637
ProjectiveActionHomomorphismMatrix-

Group, 695
ProjectiveActionOnFullSpace, 695
ProjectiveGeneralLinearGroup, 812
ProjectiveGeneralOrthogonalGroup, 813
ProjectiveGeneralSemilinearGroup, 814
ProjectiveGeneralUnitaryGroup, 813
ProjectiveOmega, 814
ProjectiveOrder, 366
ProjectiveSpecialLinearGroup, 812
ProjectiveSpecialOrthogonalGroup, 814
ProjectiveSpecialSemilinearGroup, 814
ProjectiveSpecialUnitaryGroup, 813
ProjectiveSymplecticGroup, 813
prompt, 85

partial, 85
PRump, 582

PseudoRandom, 454
for finitely presented groups, 745

PSigmaL, 814
PSL, 812
PSO, 814
PSP, 813
PSp, 813
PSU, 813
PthPowerImage

for basis and element, 1050
for element, 1050
for element and integer, 1050

PthPowerImages, 1049
PurePadicNumberFamily, 1107
PushOptions, 137
PValuation, 226

Quadratic, 255
quadratic residue, 221, 222
QuaternionAlgebra, 1004
QuaternionGenerators, 803
QuaternionGroup, 803
QUIET, 1327
QUIT, 98
QUIT

emergency quit, 98
quit

in emergency, 98
QuitGap, 98
QUITTING, 99
QuoInt, 200
Quotient, 924
quotient

for finitely presented groups, 741
matrices, 344
matrix and matrix list, 345
matrix and scalar, 344
of free monoid, 860
of free semigroup, 860
of words, 538
rational functions, 1074
scalar and matrix, 344
scalar and matrix list, 344
vector and matrix, 344

QuotientFromSCTable, 1004
QuotientMod, 937
QuotientPolynomialsExtRep, 1103

GAP - Reference Manual 1484

QuotientRemainder, 935
QuotientSemigroupCongruence, 845
QuotientSemigroupHomomorphism, 845
QuotientSemigroupPreimage, 845
QuotRemLaurpols, 1080

rN (irrational value), 252
RadicalGroup, 1328
RadicalOfAlgebra, 1015
Random

for a list or collection, 454
for integers, 200
for lower and upper bound, 454
for random source and collection, 212
for random source and list, 212
for random source and two integers, 212
for rationals, 244

Random, 454
random seed, 455
RandomBinaryRelationOnPoints, 504
RandomInvertibleMat, 351
RandomIsomorphismTest, 738
Randomize

for a matrix object, 390
for a vector object, 390

RandomList, 455
RandomMat, 351
RandomPartialPerm

for a positive integer, 896
for a set of positive integers, 896
for domain and image, 896

RandomPrimitivePolynomial, 964
RandomSource, 214
RandomTransformation, 871
RandomUnimodularMat, 352
Range

of a general mapping, 487
range, 320
RankAction

for a group, an action domain, etc., 659
for an external set, 659

RankFilter, 179
RankMat, 352
RankMatrix, 352
RankOfPartialPerm, 897
RankOfPartialPermCollection, 897
RankOfPartialPermSemigroup, 912

RankOfTransformation

for a transformation and a list, 877
for a transformation and a positive integer,

877
RankPGroup, 592
Rat, 244

for floats, 261
for strings, 421

RationalCanonicalFormTransform, 362
RationalClass, 576
RationalClasses, 576
RationalFunctionByExtRep, 1101
RationalFunctionByExtRepNC, 1101
RationalFunctionByExtRepWith-

Cancellation, 1103
RationalFunctionsFamily, 1098
RationalizedMat, 257
Rationals, 242
RClassOfHClass, 846
Read, 146

for streams, 153
read eval print loop, 85
read.g

for a GAP package, 1304
ReadAll, 154
ReadAllLine, 162
ReadAsFunction, 146

for streams, 153
ReadByte, 153
ReadCommandLineHistory, 103
ReadCSV, 163
ReadLine, 153
ReadlineInitLine, 102
README

for a GAP package, 1303
ReadObsolete, 43
ReadPackage, 1291
ReadPkg, 1327
RealClasses, 1166
RealizableBrauerCharacters, 1247
RealPart, 255
RecNames, 434
record

component access, 434
component assignment, 435
component variable, 434

GAP - Reference Manual 1485

component variable assignment, 435
record assignment

operation, 440
record boundness test

operation, 440
record component

operation, 440
record unbind

operation, 440
recursion, 59
RedispatchOnCondition, 1338
redisplay a help section, 29
redisplay with next help viewer, 29
ReduceCoeffs, 339
ReduceCoeffsMod, 340
ReducedAdditiveInverse, 554
ReducedCharacters, 1226
ReducedClassFunctions, 1226
ReducedComm, 554
ReducedConfluentRewritingSystem, 863
ReducedConjugate, 554
ReducedDifference, 554
ReducedForm, 553
ReducedGroebnerBasis

for a list and a monomial ordering, 1097
for an ideal and a monomial ordering, 1097

ReducedInverse, 554
ReducedLeftQuotient, 554
ReducedOne, 554
ReducedPcElement, 707
ReducedPower, 554
ReducedProduct, 554
ReducedQuotient, 554
ReducedScalarProduct, 554
ReducedSum, 554
ReducedZero, 554
ReduceRules, 553
ReduceStabChain, 689
Ree, 805
ReeGroup, 805
ReesCongruenceOfSemigroupIdeal, 844
ReesMatrixSemigroup, 849
ReesMatrixSemigroupElement, 852
ReesMatrixSubsemigroup, 850
ReesZeroMatrixSemigroup, 849
ReesZeroMatrixSemigroupElement, 852

ReesZeroMatrixSubsemigroup, 850
RefinedPcGroup, 731
ReflectionMat, 350
reflexive relation, 501
ReflexiveClosureBinaryRelation, 504
regular, 659
regular action, 654
RegularActionHomomorphism, 655
RegularModule, 1186
Regular p-group, 591
relations, 481
RelationsOfFpMonoid, 862
RelationsOfFpSemigroup, 862
RelativeBasis, 980
RelativeBasisNC, 980
RelativeDiameter, 267
relatively prime, 66
RelativeOrderOfPcElement, 705
RelativeOrders, 704
RelativeOrders

of a pcgs, 704
RelatorsOfFpGroup, 744
remainder

operation, 471
remainder of a quotient, 201
RemInt, 201
Remove, 279

for a row list matrix, 399
remove

an element from a set, 306
RemoveCharacters, 416
RemoveFile, 148
RemoveOuterCoeffs, 337
RemoveRelator, 776
RemoveSet, 306
RemoveStabChain, 689
repeat loop, 70
ReplacedString, 416
representation

as a sum of two squares, 226
RepresentationsOfObject, 185
Representative, 450
representative

of a list or collection, 451
RepresentativeAction, 652
RepresentativeLinearOperation, 1023

GAP - Reference Manual 1486

RepresentativeOperation, 1327
RepresentativesContainedRightCosets,

572
RepresentativesFusions, 1259
RepresentativeSmallest, 451
RepresentativesMinimalBlocks

for a group, an action domain, etc., 661
for an external set, 661

RepresentativesPerfectSubgroups, 607
RepresentativesPowerMaps, 1252
RepresentativesSimpleSubgroups, 607
RepresentativeTom, 1143
RepresentativeTomByGenerators, 1143
RepresentativeTomByGeneratorsNC, 1143
ReproducibleBehaviour, 43
RequirePackage, 1327
Reread, 148
REREADING, 148
RereadPackage, 1291
RereadPkg, 1327
Reset, 212
ResetFilterObj, 194
ResetMethodReordering, 1340
ResetOptionsStack, 138
residue

quadratic, 221, 222
RespectsAddition, 494
RespectsAdditiveInverses, 494
RespectsInverses, 493
RespectsMultiplication, 493
RespectsOne, 493
RespectsScalarMultiplication, 495
RespectsZero, 494
RestrictedClassFunction, 1223
RestrictedClassFunctions, 1224
RestrictedInverseGeneralMapping, 483
RestrictedLieAlgebraByStructure-

Constants, 1037
RestrictedMapping, 486
RestrictedPartialPerm, 894
RestrictedPartitions, 238
RestrictedPerm, 672
RestrictedPermNC, 672
RestrictedTransformation, 873
RestrictOutputsOfSLP, 548
Resultant, 1083

ResultOfStraightLineProgram, 546
ResumeMethodReordering, 1340
return, 92

no value, 74
with value, 74

return from break loop, 92
ReturnFail, 81
ReturnFalse, 80
ReturnFirst, 81
ReturnNothing, 81
ReturnTrue, 80
Reversed, 309
ReversedOp, 309
ReverseNaturalPartialOrder, 913
RewindStream, 155
RewriteWord, 752
right cosets, 569
RightActingAlgebra, 1027
RightActingRingOfIdeal, 928
RightAlgebraModule, 1025
RightAlgebraModuleByGenerators, 1024
RightCoset, 569
RightCosets, 570
RightCosetsNC, 570
RightDerivations, 1038
RightIdeal, 925
RightIdealByGenerators, 927
RightIdealNC, 926
RightModuleByHomomorphismToMatAlg, 1028
RightOne

for a partial perm, 903
for a transformation, 884

RightShiftRowVector, 337
RightTransversal, 571
Ring

for a collection, 922
for ring elements, 922

RingByGenerators, 923
RingByStructureConstants, 941
RingGeneralMappingByImages, 938
RingHomomorphismByImages, 939
RingHomomorphismByImagesNC, 939
RingWithOne

for a collection, 929
for ring elements, 929

RingWithOneByGenerators, 929

GAP - Reference Manual 1487

RNamObj

for a positive integer, 439
for a string, 439

root
of 1 modulo an integer, 223
of an integer, 199
of an integer modulo another, 222
of an integer, smallest, 199

RootFFE, 961
RootInt, 199
RootMod, 222
RootOfDefiningPolynomial, 951
roots of unity, 245
RootsMod, 223
RootsOfPolynomial, 1079
RootsOfUPol, 1080
RootsUnityMod, 223
RootSystem, 1044
Round, 265
RoundCyc, 248
row spaces, 986
Rows, 854
RowsOfMatrix

for a matrix object, 397
RREF, 352
Rules, 552
Runtime, 118
Runtimes, 117

sN (irrational value), 252
SameBlock, 1171
save, 44
SaveAndRestoreHistory, 42
SaveCommandLineHistory, 103
SaveOnExitFile, 99
SaveWorkspace, 44
saving on exit, 98
ScalarProduct

for characters, 1218
for two vector objects, 392

Schreier, 768
Schreier-Sims

random, 679
Schur multiplier, 617
SchurCover, 616
SchurCoverOfSymmetricGroup, 619
scope, 53

Sec, 264
Sech, 265
SecHMSM, 425
secondary subgroup generators, 787
SecondsDMYhms, 426
SeekPositionStream, 155
SemidirectProduct

for a group of automorphisms and a group,
793

for acting group, action, and a group, 793
SemiEchelonBasis, 988
SemiEchelonBasisNC, 988
SemiEchelonMat, 357
SemiEchelonMatDestructive, 357
SemiEchelonMats, 358
SemiEchelonMatsDestructive, 358
SemiEchelonMatTransformation, 358
Semigroup

for a list, 832
for various generators, 832

semigroup, 832
SemigroupByGenerators, 833
SemigroupByMultiplicationTable, 836
SemigroupIdealByGenerators, 844
SemigroupOfRewritingSystem, 864
semiregular, 659
SemiSimpleType, 1043
sequence

Bernoulli, 228
Fibonacci, 240
Lucas, 240

Set, 446
set difference

of collections, 453
set stabilizer, 651
SetAllBlist, 329
SetAssertionLevel, 116
SetCommutator, 730
SetConjugate, 729
SetCrystGroupDefaultAction, 701
SetCyclotomicsLimit, 258
SetDefaultInfoOutput, 116
SetElmWPObj, 1414
SetEntrySCTable, 1002
SetFilterObj, 194
SetFloats, 262

GAP - Reference Manual 1488

SetGasmanMessageStatus, 136
SetHelpViewer, 30
SetIndeterminateName, 1073
SetInfoHandler, 115
SetInfoLevel, 114
SetInfoOutput, 115
SetMatElm, 396
SetName, 174
SetNameObject, 91
SetPackagePath, 1289
SetParent, 464
SetPower, 730
SetPrintFormattingStatus, 157
SetRecursionTrapInterval, 133
SetReducedMultiplication, 743
Sets, 272
sets, 304
Setter, 189
setter, 188
SetUserPreference, 39
SetX, 319
ShallowCopy, 173

for a row list matrix, 399
ShallowCopy

for lists, 283
ShiftedCoeffs, 340
ShiftedPadicNumber, 1108
short vectors spanning a lattice, 377, 1227
ShortBanners, 43
ShortestVectors, 379
ShortLexLeqPartialPerm, 909
ShortLexOrdering, 513
ShowAdditionTable, 921
ShowArgument, 109
ShowArguments, 108
ShowDeclarationsOfOperation, 1331
ShowDetails, 109
ShowGcd, 936
ShowImpliedFilters, 180
ShowMethods, 109
ShowMultiplicationTable, 921
ShowOtherMethods, 109
ShowPackageVariables, 1299
ShowPackageVariables, 1310
ShowUsedInfoClasses, 114
ShowUserPreferences, 39

ShrinkAllocationPlist, 285
ShrinkAllocationString, 410
ShrinkRowVector, 337
Shuffle, 310
SiftedPcElement, 706
SiftedPermutation, 687
SiftedVector, 989
Sigma, 223
SigmaL, 812
sign

of an integer, 198
SignBit, 263
SignFloat, 263
SignInt, 198
SignPartition, 238
SignPerm, 671
SimpleGroup, 589
SimpleGroupsIterator, 589
SimpleLieAlgebra, 1039
SimpleSystem, 1045
SimplexMethod, 369
SimplifiedFpGroup, 768
SimplifyPresentation, 776
SimultaneousEigenvalues, 366
Sin, 264
SinCos, 263
SingleCollector, 729
singlequote character, 408
singlequotes, 405
Sinh, 265
SIntChar, 420
Size, 450

for a character table, 1161
Size

for groups with pcgs, 723
size

of a list or collection, 450
SizeBlist, 325
SizeConsiderFunction, 610
SizeNumbersPerfectGroups, 819
SizeOfFieldOfDefinition, 1247
SizesCentralisers, 1163
SizesCentralizers, 1163
SizesConjugacyClasses, 1163
SizeScreen, 106
SizesPerfectGroups, 818

GAP - Reference Manual 1489

SizeStabChain, 686
SL

for dimension and a field size, 807
for dimension and a ring, 807

Sleep, 118
SlotUsagePattern, 549
small integer, 196
smaller

associative words, 537
elements of finitely presented groups, 743
for pcwords, 727
for transformations, 874
nonassociative words, 528
rational functions, 1075

smaller or equal, 64
smaller test, 64
SmallerDegreePermutation-

Representation, 675
SmallestGeneratorPerm, 669
SmallestIdempotentPower

for a partial perm, 902
for a transformation, 882

SmallestImageOfMovedPoint

for a partial permutation, 900
for a partial permutation coll, 900
for a transformation, 879
for a transformation coll, 879

SmallestMovedPoint

for a list or collection of permutations, 669
for a partial perm, 900
for a partial perm coll, 900
for a permutation, 669
for a transformation, 878
for a transformation coll, 878

SmallestRootInt, 199
SmallGeneratingSet, 612
SmallRing, 939
SmallSimpleGroup, 590
Smith normal form, 1327
SmithNormalFormIntegerMat, 373
SmithNormalFormIntegerMatTransforms,

373
SMTX.AbsoluteIrreducibilityTest, 1121
SMTX.AlgEl, 1122
SMTX.AlgElCharPol, 1122
SMTX.AlgElCharPolFac, 1123

SMTX.AlgElMat, 1122
SMTX.AlgElNullspaceDimension, 1123
SMTX.AlgElNullspaceVec, 1123
SMTX.CentMat, 1123
SMTX.CentMatMinPoly, 1123
SMTX.CompleteBasis, 1122
SMTX.Getter, 1121
SMTX.GoodElementGModule, 1121
SMTX.IrreducibilityTest, 1121
SMTX.MatrixSum, 1122
SMTX.MinimalSubGModule, 1122
SMTX.MinimalSubGModules, 1121
SMTX.RandomIrreducibleSubGModule, 1120
SMTX.Setter, 1121
SMTX.SortHomGModule, 1121
SMTX.Subbasis, 1122
SO, 810

for a form, 810
Socle, 581
SocleTypePrimitiveGroup, 678
SolutionIntMat, 370
SolutionMat, 353
SolutionMatDestructive, 354
SolutionNullspaceIntMat, 370
SolvableQuotient

for a f.p. group and a list of primes, 760
for a f.p. group and a list of tuples, 760
for a f.p. group and a size, 760

SolvableRadical, 581
Sort, 302
SortBy, 302
Sorted Lists as Collections, 443
SortedCharacters, 1197
SortedCharacterTable

relative to the table of a factor group, 1198
w.r.t. a normal subgroup, 1198
w.r.t. a series of normal subgroups, 1198

SortedList, 446
SortedSparseActionHomomorphism, 654
SortedTom, 1129
Sortex, 303
SortingPerm, 304
SortParallel, 303
Source, 487
SourceOfIsoclinicTable, 1192
SP

GAP - Reference Manual 1490

for dimension and a ring, 809
for dimension and field size, 809
for form, 809

Sp

for dimension and a ring, 809
for dimension and field size, 809
for form, 809

space, 50
SparseActionHomomorphism, 654
SparseCartanMatrix, 1047
SparseHashTable, 432
SparseIntKey, 431
special character sequences, 407
SpecialLinearGroup

for dimension and a field size, 807
for dimension and a ring, 807

SpecialOrthogonalGroup, 810
for a form, 810

SpecialPcgs

for a group, 720
for a pcgs, 720

SpecialSemilinearGroup, 812
SpecialUnitaryGroup, 808

for a form, 808
SplitCharacters, 1188
SplitExtension, 734

with specified homomorphism, 736
SplitString, 415
SplittingField, 1078
Spreadsheet, 163
SQ

synonym of SolvableQuotient, 760
Sqrt, 472
Square, 265
square root

of an integer, 199
SquareRoots, 525
SSortedList, 446
StabChain

for a group (and a record), 682
for a group and a base, 682

StabChainBaseStrongGenerators, 684
StabChainImmutable, 682
StabChainMutable

for a group, 682
for a homomorphism, 682

StabChainOp, 682
StabChainOptions, 683
Stabilizer, 651
StabilizerOfExternalSet, 664
StabilizerPcgs, 723
StableSort, 302
StableSortBy, 302
StableSortParallel, 303
Stack trace, 95
StandardAssociate, 932
StandardAssociateUnit, 933
StandardizeTable, 750
StandardWreathProduct, 796
StarCyc, 255
StartlineFunc, 77
StartsWith, 418
START_TEST, 127
State, 212
Stirling number of the first kind, 229
Stirling number of the second kind, 229
Stirling1, 229
Stirling2, 229
STOP_TEST, 127
StoredGroebnerBasis, 1097
StoreFusion, 1256
StraightLineProgElm, 550
StraightLineProgGens, 550
StraightLineProgram

for a list of lines (and the number of genera-
tors), 545

for a string and a list of generators names,
545

StraightLineProgramNC

for a list of lines (and the number of genera-
tors), 545

for a string and a list of generators names,
545

StraightLineProgramsTom, 1141
StreamsFamily, 151
StretchImportantSLPElement, 551
strictly sorted list, 301
String, 413

for a cyclotomic, 247
StringDate, 425
StringFactorizationWord, 742
StringFormatted, 418

GAP - Reference Manual 1491

StringNumbers, 419
StringOfMemoryAmount, 419
StringOfResultOfStraightLineProgram,

547
StringPP, 414
strings

equality of, 411
inequality of, 411
lexicographic ordering of, 412

StringTime, 425
StripLineBreakCharacters, 414
StrongGeneratorsStabChain, 686
StronglyConnectedComponents, 505
Struct , 461
StructByGenerators, 461
StructuralCopy, 173
StructuralCopy

for lists, 283
StructuralSeriesOfGroup, 598
structure constant, 1177, 1178
StructureConstantsTable, 1001
StructureDescription, 567
StructWithGenerators, 461
SU, 808

for a form, 808
SubadditiveGroup, 919
SubadditiveGroupNC, 919
SubadditiveMagma, 919
SubadditiveMagmaNC, 919
SubadditiveMagmaWithZero, 919
SubadditiveMagmaWithZeroNC, 919
Subalgebra, 1006
SubAlgebraModule, 1028
SubalgebraNC, 1006
SubalgebraWithOne, 1006
SubalgebraWithOneNC, 1007
SubdirectProduct, 795
SubdirectProducts, 795
Subdomains, 464
Subfield, 950
SubfieldNC, 950
Subfields, 952
Subgroup, 561

for a group, 561
subgroup fusions, 1253
subgroup generators tree, 787

SubgroupByPcgs, 710
SubgroupByProperty, 563
SubgroupNC, 561
SubgroupOfWholeGroupByCosetTable, 751
SubgroupOfWholeGroupByQuotient-

Subgroup, 757
SubgroupProperty, 690
subgroups

polyhedral, 1176
SubgroupShell, 564
SubgroupsSolvableGroup, 609
sublist, 275

access, 275
assignment, 277
operation, 276

sublist assignment
operation, 278

Submagma, 518
SubmagmaNC, 518
SubmagmaWithInverses, 518
SubmagmaWithInversesNC, 518
SubmagmaWithOne, 518
SubmagmaWithOneNC, 518
Submodule, 944
SubmoduleNC, 944
Submonoid, 837
SubmonoidNC, 837
SubnearAdditiveGroup, 919
SubnearAdditiveGroupNC, 919
SubnearAdditiveMagma, 919
SubnearAdditiveMagmaNC, 919
SubnearAdditiveMagmaWithZero, 919
SubnearAdditiveMagmaWithZeroNC, 919
SubnormalSeries, 594
Subring, 924
SubringNC, 924
Subrings, 940
SubringWithOne, 929
SubringWithOneNC, 929
Subsemigroup, 832
SubsemigroupNC, 832
subset test

for collections, 451
subsets, 230
Subspace, 976
SubspaceNC, 976

GAP - Reference Manual 1492

Subspaces, 977
SubstitutedWord

replace a subword by a given word, 540
replace an interval by a given word, 540

SubsTom, 1131
Substruct , 465
SubstructNC, 465
SubSyllables, 541
subtract

a set from another, 307
SubtractBlist, 328
subtraction, 65

matrices, 343
matrix and scalar, 343
rational functions, 1074
scalar and matrix, 343
scalar and matrix list, 344
scalar and vector, 332
vector and scalar, 332
vectors, 332

SubtractSet, 307
Subword, 539
Successors, 503
Suffix, 418
suggested package, 1311
Sum, 317
SumFactorizationFunctionPcgs, 718
SumIntersectionMat, 359
SumOp, 317
SumX, 319
Sup, 266
SupersolvableResiduum, 581
support

email address, 27
SupportedCharacterTableInfo, 1152
SurjectiveActionHomomorphismAttr, 666
SuspendMethodReordering, 1340
SuzukiGroup, 805
SwapMatrixColumns, 401
SwapMatrixRows, 401
SylowComplement, 582
SylowSubgroup, 582
SylowSystem, 583
symmetric group

power map, 239
symmetric power, 1233

symmetric relation, 501
SymmetricClosureBinaryRelation, 505
SymmetricGroup

for a degree, 804
for a domain, 804

SymmetricInverseMonoid, 912
SymmetricInverseSemigroup, 912
SymmetricParentGroup, 677
SymmetricParts, 1233
SymmetricPower, 996

for a character, 1234
SymmetricPowerOfAlgebraModule, 1063
Symmetrizations, 1232
symmetrizations

orthogonal, 1234
symplectic, 1235

SymplecticComponents, 1235
SymplecticGroup

for dimension and a ring, 809
for dimension and field size, 809
for form, 809

syntax errors, 85
SyntaxTree, 74
sysinfo.gap, 1315
system getter, 188
system setter, 188
Sz, 805

tN (irrational value), 252
table automorphisms, 1259, 1273
table of chapters for help books, 29
table of sections for help books, 29
TableAutomorphisms, 1200
TableOfMarks

for a group, 1126
for a matrix, 1126
for a string, 1126

TableOfMarksByLattice, 1127
TableOfMarksComponents, 1131
TableOfMarksCyclic, 1145
TableOfMarksDihedral, 1145
TableOfMarksFamily, 1130
TableOfMarksFrobenius, 1146
tables, 1147, 1150
tabulator, 50
Tan, 264
Tanh, 265

GAP - Reference Manual 1493

Tau, 224
TaylorSeriesRationalFunction, 1088
TCENUM, 747
TeachingMode, 107
TemporaryGlobalVarName, 1328
Tensored, 1222
TensorProduct

for a list of vector spaces, 995
for characters, 1223
for vector spaces, 995

TensorProductGModule, 1112
TensorProductOfAlgebraModules

for a list of algebra modules, 1062
for two algebra modules, 1062

Test, 128
test

for a primitive root, 221
for a rational, 243
for records, 433
for set equality, 305

TestConsistencyMaps, 1265
TestDirectory, 132
Tester, 188
tester, 188
TestHomogeneous, 1280
TestInducedFromNormalSubgroup, 1282
TestJacobi, 1003
TestMonomial

for a character, 1282
for a character and a Boolean, 1282
for a group, 1282
for a group and a Boolean, 1282

TestMonomialQuick

for a character, 1284
for a group, 1284

TestMonomialUseLattice, 1283
TestPackage, 1292
TestPackageAvailability, 1292
TestPerm1, 1243
TestPerm2, 1243
TestPerm3, 1243
TestPerm4, 1243
TestPerm5, 1243
TestQuasiPrimitive, 1281
TestRelativelySM

for a character, 1285

for a character and a normal subgroup, 1285
for a group, 1285
for a group and a normal subgroup, 1285

TestSubnormallyMonomial

for a character, 1284
for a group, 1284

then, 69
TietzeWordAbstractWord, 772
time, 118
time, 85
TotalMemoryAllocated, 119
Trace

for a field element, 954
for a matrix, 954
of a matrix, 345

TraceAllMethods, 111
TracedCosetFpGroup, 746
TraceImmediateMethods, 111
TraceInternalMethods, 112
TraceMat, 345
TraceMatrix, 345
TraceMethods

for a list of operations, 110
for operations, 110

TracePolynomial, 953
TransferDiagram, 1264
Transformation

for a list and function, 868
for a source and destination, 868
for an image list, 868

TransformationByImageAndKernel

for an image and kernel, 869
TransformationDisplayLimit, 42
TransformationFamily, 868
TransformationList

for an image list, 868
TransformationListList

for a source and destination, 868
TransformationNumber, 870
TransformationOp, 869
TransformationOpNC, 869
TransformingPermutations, 1201
TransformingPermutationsCharacter-

Tables, 1201
transitive, 658
transitive relation, 502

GAP - Reference Manual 1494

TransitiveClosureBinaryRelation, 505
Transitivity

for a character, 1221
for a group and an action domain, 658
for a permutation group, 658
for an external set, 658

TranslatorSubalgebra, 1032
transporter, 652
TransposedMat, 350
TransposedMatDestructive, 350
TransposedMatImmutable, 350
TransposedMatMutable, 350
TransposedMatOp, 350
TransposedMatrixGroup, 694
TriangulizedIntegerMat, 372
TriangulizedIntegerMatTransform, 372
TriangulizedMat, 352
TriangulizedNullspaceMat, 353
TriangulizedNullspaceMatDestructive,

353
TriangulizeIntegerMat, 372
TriangulizeMat, 352
TrimPartialPerm, 909
TrimTransformation, 884
TrivialCharacter

for a character table, 1215
for a group, 1215

TrivialGroup, 801
TrivialIterator, 457
TrivialSubalgebra, 1007
TrivialSubgroup, 579
TrivialSubmagmaWithOne, 525
TrivialSubmodule, 945
TrivialSubmonoid, 838
TrivialSubnearAdditiveMagmaWithZero,

921
TrivialSubspace, 977
Trunc, 265
TryCosetTableInWholeGroup, 751
TryGcdCancelExtRepPolynomials, 1103
TryNextMethod, 1338
tuple stabilizer, 651
Tuples, 232
TwoClosure, 691
TwoCoboundaries, 733
TwoCocycles, 733

TwoCohomology, 733
TwoCohomologyGeneric, 619
TwoSidedIdeal, 925
TwoSidedIdealByGenerators, 927
TwoSidedIdealNC, 926
TwoSquares, 226
type

boolean, 268
cyclotomic, 245
records, 433
strings, 405

TypeObj, 195
TypeOfDefaultGeneralMapping, 499
TypeOfOperation, 1331
TzEliminate

for a presentation (and a generator), 779
for a presentation (and an integer), 779

TzFindCyclicJoins, 780
TzGo, 776
TzGoGo, 777
TzImagesOldGens, 785
TzInitGeneratorImages, 785
TzNewGenerator, 775
TzOptions, 789
TzPreImagesNewGens, 785
TzPrint, 774
TzPrintGeneratorImages, 786
TzPrintGenerators, 773
TzPrintLengths, 773
TzPrintOptions, 791
TzPrintPairs, 774
TzPrintPresentation, 774
TzPrintRelators, 773
TzPrintStatus, 774
TzSearch, 779
TzSearchEqual, 780
TzSort, 766
TzSubstitute

for a presentation (and an integer and 0/1/2),
781

for a presentation and a word, 781
TzSubstituteCyclicJoins, 784

uN (irrational value), 252
UglyVector, 993
Unbind

unbind a list entry, 281

GAP - Reference Manual 1495

unbind a record component, 438
unbind a variable, 55

Unbind\., 440
Unbind\[\], 275

for a row list matrix, 399
UnbindElmWPObj, 1414
UnbindGlobal, 57
UnbindInfoOutput, 115
UncoverageLineByLine, 127
UnderlyingCharacteristic

for a character, 1164
for a character table, 1164

UnderlyingCharacterTable, 1208
UnderlyingElement

fp group elements, 744
of an element in a fp semigroup or monoid,

861
UnderlyingExternalSet, 666
UnderlyingFamily, 1036
UnderlyingGeneralMapping, 487
UnderlyingGroup

for character tables, 1155
for tables of marks, 1133

UnderlyingInjectionZeroMagma, 520
UnderlyingLeftModule, 981
UnderlyingLieAlgebra, 1044
UnderlyingMagma, 1066
UnderlyingRelation, 487
UnderlyingRingElement, 1036
UnderlyingSemigroup

for a Rees 0-matrix semigroup, 855
for a Rees matrix semigroup, 855

UnInstallCharReadHookFunc, 163
Union

for a list, 452
for various collections, 452

union
of collections, 452
of sets, 306

Union2, 452
UnionBlist

for a list, 326
for various boolean lists, 326

Unique, 308
UniteBlist, 327
UniteBlistList, 327

UniteSet, 306
Units, 932
UnivariatenessTestRationalFunction,

1080
UnivariatePolynomial, 1079
UnivariatePolynomialByCoefficients,

1079
UnivariatePolynomialRing

for a ring (and a name and an exclusion list),
1091

for a ring (and an indeterminate number),
1091

UnivariateRationalFunctionBy-
Coefficients, 1088

UniversalEnvelopingAlgebra, 1053
UNIX

features, 33
options, 33

UNIXSelect, 152
Unknown, 1275
UnorderedTuples, 232
Unpack

for a matrix object, 390
for a vector object, 390

UnprofileFunctions, 121
UnprofileLineByLine, 126
UnprofileMethods, 121
until, 70
UntraceAllMethods, 111
UntraceImmediateMethods, 111
UntraceInternalMethods, 112
UntraceMethods

for a list of operations, 111
for operations, 111

UpdateMap, 1262
UpEnv, 96
UppercaseChar, 415
UppercaseString, 415
UpperCentralSeriesOfGroup, 596
UpperSubdiagonal, 360
UseBasis, 946
UseColorPrompt, 44
UseColorsInTerminal, 44
UseFactorRelation, 473
UseIsomorphismRelation, 474
UserHomeExpand, 148

GAP - Reference Manual 1496

UserPreference, 39
UseSubsetRelation, 473
utilities for editing GAP files, 105

vN (irrational value), 252
ValidatePackageInfo, 1299
ValidatePackageInfo, 1308
Valuation, 1108
Value

for a univariate rat. function, a value (and a
one), 1083

for rat. function, a list of indeterminates, a
value (and a one), 1083

ValueCochain, 1057
ValueGlobal, 57
ValueMolienSeries, 1237
ValueOption, 138
ValuePol, 339
ValuesOfClassFunction, 1208
variable names, 52
Vector

for a list, 386
for a list and a vector object, 386
for base domain and list, 386
for base domain and vector object, 386
for filter, base domain, and list, 386
for filter, base domain, and vector object, 386
for two vector objects, 386

VectorSpace, 975
VectorSpaceByPcgsOfElementaryAbelian-

Group, 721
verbosity of GAP output, 113
version number

for a GAP package, 1317
vi, 105
View, 89
ViewLength, 44
ViewObj, 90

for a character table, 1178
for a ffe, 964
for a string, 406
for a table of marks, 1127
for class functions, 1213

ViewString, 413
vim, 105
virtual character, 1217
virtual characters, 1205

VirtualCharacter

for a character table and a list, 1214
for a group and a list, 1214

wN (irrational value), 252
WeakPointerObj, 1413
web sites

for GAP, 27
WedgeGModule, 1112
WeekDay, 425
WeightLexOrdering, 513
WeightOfGenerators, 514
WeightOfVector

for a vector object, 394
WeightsTom, 1135
WeightVecFFE, 337
WeylGroup, 1047
WeylOrbitIterator, 1048
Where, 95
WhereWithVars, 95
while loop, 70
WordAlp, 414
words

in generators, 565
Wreath product embedding, 797
WreathProduct, 796
WreathProductElementList, 798
WreathProductElementListNC, 798
WreathProductImprimitiveAction, 796
WreathProductOrdering, 515
WreathProductProductAction, 797
WriteAll, 156
WriteByte, 155
WriteGapIniFile, 39
WriteLine, 155

X

for a family and a number, 1072
for a ring (and a name, and an exclusion list),

1072
for a ring (and a number), 1072

xN (irrational value), 252
XdviOptions, 42
XpdfOptions, 42

yN (irrational value), 252

Z

GAP - Reference Manual 1497

for field size, 956
for prime and degree, 956

ZClassRepsQClass, 700
Zero, 467
ZeroAttr, 1328
ZeroCoefficient, 1067
ZeroCoefficientRatFun, 1100
ZeroImmutable, 467
ZeroMapping, 485
ZeroMatrix

for base domain and dimensions, 388
for dimensions and matrix object, 388
for filter, base domain, and dimensions, 388

ZeroMutable, 467
for matrix object, 394
for vector object, 391

ZeroOfBaseDomain

for a matrix object, 389
for a vector object, 389

ZeroOp, 467
ZeroSameMutability, 467

for matrix object, 394
for vector object, 392

ZeroSM, 1328
ZeroVector

for base domain and length, 387
for filter, base domain and length, 387
for length and matrix object, 387
for length and vector object, 387

Zeta, 265
ZippedProduct, 1102
ZippedSum, 1102
ZmodnZ, 209
ZmodnZObj

for a residue class family and integer, 209
for two integers, 209

ZmodpZ, 209
ZmodpZNC, 209
ZumbroichBase, 971
Zuppos, 608

	Preface
	The GAP System
	Authors and Maintainers
	Acknowledgements
	Copyright and License
	Further Information about GAP

	The Help System
	Invoking the Help
	Browsing through the Sections
	Changing the Help Viewer
	The Pager Command

	Running GAP
	Command Line Options
	The gap.ini and gaprc files
	Saving and Loading a Workspace
	Testing for the System Architecture
	Global Values that Control the GAP Session
	Coloring the Prompt and Input

	The Programming Language
	Language Overview
	Lexical Structure
	Symbols
	Whitespaces
	Keywords
	Identifiers
	Expressions
	Variables
	More About Global Variables
	Namespaces for GAP packages
	Function
	Function Calls
	Comparisons
	Arithmetic Operators
	Statements
	Syntax Trees

	Functions
	Information about a function
	Calling a function with a list argument that is interpreted as several arguments
	Wrapping a function, so the values produced are cached
	Functions that do nothing
	Function Types
	Naming Conventions
	Code annotations (pragmas)

	Main Loop and Break Loop
	Main Loop
	Special Rules for Input Lines
	View and Print
	Break Loops
	Variable Access in a Break Loop
	Error and ErrorCount
	Leaving GAP
	Line Editing
	Editing using the readline library
	Editing Files
	Editor Support
	Changing the Screen Size
	Teaching Mode

	Debugging and Profiling Facilities
	Recovery from NoMethodFound45Errors
	Inspecting Applicable Methods
	Tracing Methods
	Info Functions
	Assertions
	Timing
	Tracking Memory Usage
	Profiling
	Information about the version used
	Test Files
	Debugging Recursion
	Global Memory Information

	Options Stack
	Functions Dealing with the Options Stack
	Options Stack – an Example

	Files and Filenames
	Portability
	GAP Root Directories
	Directories
	File Names
	Special Filenames
	File Access
	File Operations

	Streams
	Categories for Streams and the StreamsFamily
	Operations applicable to All Streams
	Operations for Input Streams
	Operations for Output Streams
	File Streams
	User Streams
	String Streams
	Input45Output Streams
	Dummy Streams
	Handling of Streams in the Background
	Comma separated files
	Opening files in the Operating System

	Processes
	Process and Exec

	Objects and Elements
	Objects
	Elements as equivalence classes
	Sets
	Domains
	Identical Objects
	Mutability and Copyability
	Duplication of Objects
	Other Operations Applicable to any Object

	Types of Objects
	Families
	Filters
	Categories
	Representation
	Attributes
	Setter and Tester for Attributes
	Properties
	Other Filters
	Types

	Integers
	Integers: Global Variables
	Elementary Operations for Integers
	Quotients and Remainders
	Prime Integers and Factorization
	Residue Class Rings
	Check Digits
	Random Sources
	Bitfields

	Number Theory
	InfoNumtheor (Info Class)
	Prime Residues
	Primitive Roots and Discrete Logarithms
	Roots Modulo Integers
	Multiplicative Arithmetic Functions
	Continued Fractions
	Miscellaneous

	Combinatorics
	Combinatorial Numbers
	Combinations, Arrangements and Tuples
	Fibonacci and Lucas Sequences
	Permanent of a Matrix

	Rational Numbers
	Rationals: Global Variables
	Elementary Operations for Rationals

	Cyclotomic Numbers
	Operations for Cyclotomics
	Infinity and negative Infinity
	Comparisons of Cyclotomics
	ATLAS Irrationalities
	Galois Conjugacy of Cyclotomics
	Internally Represented Cyclotomics

	Floats
	A sample run
	Methods
	High45precision45specific methods
	Complex arithmetic
	Interval45specific methods

	Booleans
	IsBool (Filter)
	Fail (Variable)
	Comparisons of Booleans
	Operations for Booleans

	Lists
	List Categories
	Basic Operations for Lists
	List Elements
	List Assignment
	IsBound and Unbind for Lists
	Identical Lists
	Duplication of Lists
	Membership Test for Lists
	Enlarging Internally Represented Lists
	Comparisons of Lists
	Arithmetic for Lists
	Filters Controlling the Arithmetic Behaviour of Lists
	Additive Arithmetic for Lists
	Multiplicative Arithmetic for Lists
	Mutability Status and List Arithmetic
	Finding Positions in Lists
	Properties and Attributes for Lists
	Sorting Lists
	Sorted Lists and Sets
	Operations for Lists
	Advanced List Manipulations
	Ranges
	Enumerators
	Plain Lists

	Boolean Lists
	IsBlist (Filter)
	Boolean Lists Representing Subsets
	Set Operations via Boolean Lists
	Function that Modify Boolean Lists
	More about Boolean Lists

	Row Vectors
	IsRowVector (Filter)
	Operators for Row Vectors
	Row Vectors over Finite Fields
	Coefficient List Arithmetic
	Shifting and Trimming Coefficient Lists
	Functions for Coding Theory
	Vectors as coefficients of polynomials

	Matrices
	InfoMatrix (Info Class)
	Categories of Matrices
	Operators for Matrices
	Properties and Attributes of Matrices
	Matrix Constructions
	Random Matrices
	Matrices Representing Linear Equations and the Gaussian Algorithm
	Eigenvectors and eigenvalues
	Elementary Divisors
	Echelonized Matrices
	Matrices as Basis of a Row Space
	Triangular Matrices
	Matrices as Linear Mappings
	Matrices over Finite Fields
	Inverse and Nullspace of an Integer Matrix Modulo an Ideal
	Special Multiplication Algorithms for Matrices over GF(2)
	Block Matrices
	Linear Programming

	Integral matrices and lattices
	Linear equations over the integers and Integral Matrices
	Normal Forms over the Integers
	Determinant of an integer matrix
	Decompositions
	Lattice Reduction
	Orthogonal Embeddings

	Vector and Matrix Objects
	Concepts and Rules for Vector and Matrix Objects
	Categories of Vector and Matrix Objects
	Defining Attributes of Vector and Matrix Objects
	Constructing Vector and Matrix Objects
	Operations for Base Domains of Vector and Matrix Objects
	Operations for Vector and Matrix Objects
	List Like Operations for Vector Objects
	Arithmetical Operations for Vector Objects
	Operations for Vector Objects
	Arithmetical Operations for Matrix Objects
	Operations for Matrix Objects
	Operations for Row List Matrix Objects
	Basic operations for row/column reductions
	Implementing New Vector and Matrix Objects Types
	Available Representations of Vector Objects
	Available Representations of Matrix Objects

	Strings and Characters
	IsChar and IsString
	Special Characters
	Triple Quoted Strings
	Internally Represented Strings
	Recognizing Characters
	Comparisons of Strings
	Operations to Produce or Manipulate Strings
	Character Conversion
	Operations to Evaluate Strings
	Calendar Arithmetic
	Obtaining LaTeX Representations of Objects

	Dictionaries and General Hash Tables
	Using Dictionaries
	Dictionaries
	Dictionaries via Binary Lists
	General Hash Tables
	Hash keys
	Dense hash tables
	Sparse hash tables

	Records
	IsRecord and RecNames
	Accessing Record Elements
	Record Assignment
	Identical Records
	Comparisons of Records
	IsBound and Unbind for Records
	Record Access Operations

	Collections
	IsCollection (Filter)
	Collection Families
	Lists and Collections
	Attributes and Properties for Collections
	Operations for Collections
	Membership Test for Collections
	Random Elements
	Iterators

	Domains and their Elements
	Operational Structure of Domains
	Equality and Comparison of Domains
	Constructing Domains
	Changing the Structure
	Changing the Representation
	Domain Categories
	Parents
	Constructing Subdomains
	Operations for Domains
	Attributes and Properties of Elements
	Comparison Operations for Elements
	Arithmetic Operations for Elements
	Relations Between Domains
	Useful Categories of Elements
	Useful Categories for all Elements of a Family

	Mappings
	Direct Products and their Elements
	Creating Mappings
	Properties and Attributes of (General) Mappings
	Images under Mappings
	Preimages under Mappings
	Arithmetic Operations for General Mappings
	Mappings which are Compatible with Algebraic Structures
	Magma Homomorphisms
	Mappings that Respect Multiplication
	Mappings that Respect Addition
	Linear Mappings
	Ring Homomorphisms
	General Mappings
	Technical Matters Concerning General Mappings

	Relations
	General Binary Relations
	Properties and Attributes of Binary Relations
	Binary Relations on Points
	Closure Operations and Other Constructors
	Equivalence Relations
	Attributes of and Operations on Equivalence Relations
	Equivalence Classes

	Orderings
	IsOrdering (Filter)
	Building new orderings
	Properties and basic functionality
	Orderings on families of associative words

	Magmas
	Magma Categories
	Magma Generation
	Magmas Defined by Multiplication Tables
	Attributes and Properties for Magmas

	Words
	Categories of Words and Nonassociative Words
	Comparison of Words
	Operations for Words
	Free Magmas
	External Representation for Nonassociative Words

	Associative Words
	Categories of Associative Words
	Free Groups, Monoids and Semigroups
	Comparison of Associative Words
	Operations for Associative Words
	Operations for Associative Words by their Syllables
	Representations for Associative Words
	The External Representation for Associative Words
	Straight Line Programs
	Straight Line Program Elements

	Rewriting Systems
	Operations on rewriting systems
	Operations on elements of the algebra
	Properties of rewriting systems
	Rewriting in Groups and Monoids
	Developing rewriting systems

	Groups
	Group Elements
	Creating Groups
	Subgroups
	Closures of (Sub)groups
	Expressing Group Elements as Words in Generators
	Structure Descriptions
	Cosets
	Transversals
	Double Cosets
	Conjugacy Classes
	Normal Structure
	Specific and Parametrized Subgroups
	Sylow Subgroups and Hall Subgroups
	Subgroups characterized by prime powers
	Group Properties
	Numerical Group Attributes
	Subgroup Series
	Factor Groups
	Sets of Subgroups
	Subgroup Lattice
	Specific Methods for Subgroup Lattice Computations
	Special Generating Sets
	145Cohomology
	Schur Covers and Multipliers
	245Cohomology
	Tests for the Availability of Methods
	Specific functions for Normalizer calculation

	Group Homomorphisms
	Creating Group Homomorphisms
	Operations for Group Homomorphisms
	Efficiency of Homomorphisms
	Homomorphism for very large groups
	Nice Monomorphisms
	Group Automorphisms
	Groups of Automorphisms
	Calculating with Group Automorphisms
	Searching for Homomorphisms
	Representations for Group Homomorphisms

	Group Actions
	About Group Actions
	Basic Actions
	Action on canonical representatives
	Orbits
	Stabilizers
	Elements with Prescribed Images
	The Permutation Image of an Action
	Action of a group on itself
	Permutations Induced by Elements and Cycles
	Tests for Actions
	Block Systems
	External Sets

	Permutations
	IsPerm (Filter)
	Comparison of Permutations
	Moved Points of Permutations
	Sign and Cycle Structure
	Creating Permutations

	Permutation Groups
	IsPermGroup (Filter)
	The Natural Action
	Computing a Permutation Representation
	Symmetric and Alternating Groups
	Primitive Groups
	Stabilizer Chains
	Randomized Methods for Permutation Groups
	Construction of Stabilizer Chains
	Stabilizer Chain Records
	Operations for Stabilizer Chains
	Low Level Routines to Modify and Create Stabilizer Chains
	Backtrack
	Working with large degree permutation groups

	Matrix Groups
	IsMatrixGroup (Filter)
	Attributes and Properties for Matrix Groups
	Actions of Matrix Groups
	GL and SL
	Invariant Forms
	Matrix Groups in Characteristic 0
	Acting OnRight and OnLeft

	Polycyclic Groups
	Polycyclic Generating Systems
	Computing a Pcgs
	Defining a Pcgs Yourself
	Elementary Operations for a Pcgs
	Elementary Operations for a Pcgs and an Element
	Exponents of Special Products
	Subgroups of Polycyclic Groups – Induced Pcgs
	Subgroups of Polycyclic Groups – Canonical Pcgs
	Factor Groups of Polycyclic Groups – Modulo Pcgs
	Factor Groups of Polycyclic Groups in their Own Representation
	Pcgs and Normal Series
	Sum and Intersection of Pcgs
	Special Pcgs
	Action on Subfactors Defined by a Pcgs
	Orbit Stabilizer Methods for Polycyclic Groups
	Operations which have Special Methods for Groups with Pcgs
	Conjugacy Classes in Solvable Groups

	Pc Groups
	The Family Pcgs
	Elements of Pc Groups
	Pc Groups versus Fp Groups
	Constructing Pc Groups
	Computing Pc Groups
	Saving a Pc Group
	Operations for Pc Groups
	245Cohomology and Extensions
	Coding a Pc Presentation
	Random Isomorphism Testing

	Finitely Presented Groups
	IsSubgroupFpGroup and IsFpGroup
	Creating Finitely Presented Groups
	Comparison of Elements of Finitely Presented Groups
	Preimages in the Free Group
	Operations for Finitely Presented Groups
	Coset Tables and Coset Enumeration
	Standardization of coset tables
	Coset tables for subgroups in the whole group
	Augmented Coset Tables and Rewriting
	Low Index Subgroups
	Converting Groups to Finitely Presented Groups
	New Presentations and Presentations for Subgroups
	Preimages under Homomorphisms from an FpGroup
	Quotient Methods
	Abelian Invariants for Subgroups
	Testing Finiteness of Finitely Presented Groups

	Presentations and Tietze Transformations
	Creating Presentations
	Subgroup Presentations
	Relators in a Presentation
	Printing Presentations
	Changing Presentations
	Tietze Transformations
	Elementary Tietze Transformations
	Tietze Transformations that introduce new Generators
	Tracing generator images through Tietze transformations
	The Decoding Tree Procedure
	Tietze Options

	Group Products
	Direct Products
	Semidirect Products
	Subdirect Products
	Wreath Products
	Free Products
	Embeddings and Projections for Group Products

	Group Libraries
	Basic Groups
	Classical Groups
	Conjugacy Classes in Classical Groups
	Constructors for Basic Groups
	Selection Functions
	Finite Perfect Groups
	Irreducible Maximal Finite Integral Matrix Groups

	Semigroups and Monoids
	Semigroups
	Monoids
	Inverse semigroups and monoids
	Properties of Semigroups
	Ideals of semigroups
	Congruences on semigroups
	Quotients
	Green's Relations
	Rees Matrix Semigroups

	Finitely Presented Semigroups and Monoids
	IsSubsemigroupFpSemigroup (Filter)
	Creating Finitely Presented Semigroups and Monoids
	Comparison of Elements of Finitely Presented Semigroups
	Preimages in the Free Semigroup or Monoid
	Rewriting Systems and the Knuth45Bendix Procedure
	Todd45Coxeter Procedure

	Transformations
	The family and categories of transformations
	Creating transformations
	Changing the representation of a transformation
	Operators for transformations
	Attributes for transformations
	Displaying transformations
	Semigroups of transformations

	Partial permutations
	The family and categories of partial permutations
	Creating partial permutations
	Attributes for partial permutations
	Changing the representation of a partial permutation
	Operators and operations for partial permutations
	Displaying partial permutations
	Semigroups and inverse semigroups of partial permutations

	Additive Magmas
	(Near45)Additive Magma Categories
	(Near45)Additive Magma Generation
	Attributes and Properties for (Near45)Additive Magmas
	Operations for (Near45)Additive Magmas

	Rings
	Generating Rings
	Ideals of Rings
	Rings With One
	Properties of Rings
	Units and Factorizations
	Euclidean Rings
	Gcd and Lcm
	Homomorphisms of Rings
	Small Rings

	Modules
	Generating modules
	Submodules
	Free Modules

	Fields and Division Rings
	Generating Fields
	Subfields of Fields
	Galois Action

	Finite Fields
	Finite Field Elements
	Operations for Finite Field Elements
	Creating Finite Fields
	Frobenius Automorphisms
	Conway Polynomials
	Printing, Viewing and Displaying Finite Field Elements

	Abelian Number Fields
	Construction of Abelian Number Fields
	Operations for Abelian Number Fields
	Integral Bases of Abelian Number Fields
	Galois Groups of Abelian Number Fields
	Gaussians

	Vector Spaces
	IsLeftVectorSpace (Filter)
	Constructing Vector Spaces
	Operations and Attributes for Vector Spaces
	Domains of Subspaces of Vector Spaces
	Bases of Vector Spaces
	Operations for Vector Space Bases
	Operations for Special Kinds of Bases
	Mutable Bases
	Row and Matrix Spaces
	Vector Space Homomorphisms
	Vector Spaces Handled By Nice Bases
	How to Implement New Kinds of Vector Spaces
	Tensor Products and Exterior and Symmetric Powers

	Algebras
	InfoAlgebra (Info Class)
	Constructing Algebras by Generators
	Constructing Algebras as Free Algebras
	Constructing Algebras by Structure Constants
	Some Special Algebras
	Subalgebras
	Ideals of Algebras
	Categories and Properties of Algebras
	Attributes and Operations for Algebras
	Homomorphisms of Algebras
	Representations of Algebras

	Finitely Presented Algebras
	Lie Algebras
	Lie Objects
	Constructing Lie algebras
	Distinguished Subalgebras
	Series of Ideals
	Properties of a Lie Algebra
	Semisimple Lie Algebras and Root Systems
	Semisimple Lie Algebras and Weyl Groups of Root Systems
	Restricted Lie algebras
	The Adjoint Representation
	Universal Enveloping Algebras
	Finitely Presented Lie Algebras
	Modules over Lie Algebras and Their Cohomology
	Modules over Semisimple Lie Algebras
	Admissible Lattices in UEA
	Tensor Products and Exterior and Symmetric Powers of Algebra Modules

	Magma Rings
	Free Magma Rings
	Elements of Free Magma Rings
	Natural Embeddings related to Magma Rings
	Magma Rings modulo Relations
	Magma Rings modulo the Span of a Zero Element
	Technical Details about the Implementation of Magma Rings

	Polynomials and Rational Functions
	Indeterminates
	Operations for Rational Functions
	Comparison of Rational Functions
	Properties and Attributes of Rational Functions
	Univariate Polynomials
	Polynomials as Univariate Polynomials in one Indeterminate
	Multivariate Polynomials
	Minimal Polynomials
	Cyclotomic Polynomials
	Polynomial Factorization
	Polynomials over the Rationals
	Factorization of Polynomials over the Rationals
	Laurent Polynomials
	Univariate Rational Functions
	Polynomial Rings and Function Fields
	Univariate Polynomial Rings
	Monomial Orderings
	Groebner Bases
	Rational Function Families
	The Representations of Rational Functions
	The Defining Attributes of Rational Functions
	Creation of Rational Functions
	Arithmetic for External Representations of Polynomials
	Cancellation Tests for Rational Functions

	Algebraic extensions of fields
	Creation of Algebraic Extensions
	Elements in Algebraic Extensions
	Finding Subfields

	p45adic Numbers (preliminary)
	Pure p45adic Numbers
	Extensions of the p45adic Numbers

	The MeatAxe
	MeatAxe Modules
	Module Constructions
	Selecting a Different MeatAxe
	Accessing a Module
	Irreducibility Tests
	Decomposition of modules
	Finding Submodules
	Induced Actions
	Module Homomorphisms
	Module Homomorphisms for irreducible modules
	MeatAxe Functionality for Invariant Forms
	The Smash MeatAxe
	Smash MeatAxe Flags

	Tables of Marks
	More about Tables of Marks
	Table of Marks Objects in GAP
	Constructing Tables of Marks
	Printing Tables of Marks
	Sorting Tables of Marks
	Technical Details about Tables of Marks
	Attributes of Tables of Marks
	Properties of Tables of Marks
	Other Operations for Tables of Marks
	Accessing Subgroups via Tables of Marks
	The Interface between Tables of Marks and Character Tables
	Generic Construction of Tables of Marks
	The Library of Tables of Marks

	Character Tables
	Some Remarks about Character Theory in GAP
	History of Character Theory Stuff in GAP
	Creating Character Tables
	Character Table Categories
	Conventions for Character Tables
	The Interface between Character Tables and Groups
	Operators for Character Tables
	Attributes and Properties for Groups and Character Tables
	Attributes and Properties only for Character Tables
	Normal Subgroups Represented by Lists of Class Positions
	Operations Concerning Blocks
	Other Operations for Character Tables
	Printing Character Tables
	Computing the Irreducible Characters of a Group
	Representations Given by Modules
	The Dixon45Schneider Algorithm
	Advanced Methods for Dixon45Schneider Calculations
	Components of a Dixon Record
	An Example of Advanced Dixon45Schneider Calculations
	Constructing Character Tables from Others
	Sorted Character Tables
	Automorphisms and Equivalence of Character Tables
	Storing Normal Subgroup Information

	Class Functions
	Why Class Functions?
	Basic Operations for Class Functions
	Comparison of Class Functions
	Arithmetic Operations for Class Functions
	Printing Class Functions
	Creating Class Functions from Values Lists
	Creating Class Functions using Groups
	Operations for Class Functions
	Restricted and Induced Class Functions
	Reducing Virtual Characters
	Symmetrizations of Class Functions
	Molien Series
	Possible Permutation Characters
	Computing Possible Permutation Characters
	Operations for Brauer Characters
	Domains Generated by Class Functions

	Maps Concerning Character Tables
	Power Maps
	Orbits on Sets of Possible Power Maps
	Class Fusions between Character Tables
	Orbits on Sets of Possible Class Fusions
	Parametrized Maps
	Subroutines for the Construction of Power Maps
	Subroutines for the Construction of Class Fusions

	Unknowns
	More about Unknowns

	Monomiality Questions
	InfoMonomial (Info Class)
	Character Degrees and Derived Length
	Primitivity of Characters
	Testing Monomiality
	Minimal Nonmonomial Groups

	Using and Developing GAP Packages
	Installing a GAP Package
	Loading a GAP Package
	Functions for GAP Packages
	Guidelines for Writing a GAP Package
	Structure of a GAP Package
	Writing Documentation and Tools Needed
	An Example of a GAP Package
	File Structure
	Creating the PackageInfo.g File
	Functions and Variables and Choices of Their Names
	Package Dependencies (Requesting one GAP Package from within Another)
	Extensions Provided by a Package
	Declaration and Implementation Part of a Package
	Autoreadable Variables
	Standalone Programs in a GAP Package
	Having an InfoClass
	The Banner
	Version Numbers
	Testing a GAP package
	Access to the GAP Development Version
	Version control and continuous integration for GAP packages
	Selecting a license for a GAP Package
	Releasing a GAP Package
	The homepage of a Package
	Some things to keep in mind
	Package release checklists

	Replaced and Removed Command Names
	Group Actions – Name Changes
	Package Interface – Obsolete Functions and Name Changes
	Normal Forms of Integer Matrices – Name Changes
	Miscellaneous Name Changes or Removed Names
	The former .gaprc file
	Semigroup properties

	Method Selection
	Operations and Methods
	Constructors
	Method Installation
	Applicable Methods and Method Selection
	Partial Methods
	Redispatching
	Immediate Methods
	Logical Implications
	Operations and Mathematical Terms

	Creating New Objects
	Creating Objects
	Component Objects
	Positional Objects
	Implementing New List Objects
	Example – Constructing Enumerators
	Example – Constructing Iterators
	Arithmetic Issues in the Implementation of New Kinds of Lists
	External Representation
	Mutability and Copying
	Global Variables in the Library
	Declaration and Implementation Part

	Examples of Extending the System
	Addition of a Method
	Extending the Range of Definition of an Existing Operation
	Enforcing Property Tests
	Adding a new Operation
	Adding a new Attribute
	Adding a new Representation
	Components versus Attributes
	Adding new Concepts
	Creating Own Arithmetic Objects

	An Example – Residue Class Rings
	A First Attempt to Implement Elements of Residue Class Rings
	Why Proceed in a Different Way?
	A Second Attempt to Implement Elements of Residue Class Rings
	Compatibility of Residue Class Rings with Prime Fields
	Further Improvements in Implementing Residue Class Rings

	An Example – Designing Arithmetic Operations
	New Arithmetic Operations vs. New Objects
	Designing new Multiplicative Objects

	Library Files
	File Types
	Finding Implementations in the Library
	Undocumented Variables

	Interface to the GAP Help System
	Installing and Removing a Help Book
	The manual.six File
	The Help Book Handler
	Introducing new Viewer for the Online Help

	Function45Operation45Attribute Triples
	Key Dependent Operations
	In Parent Attributes
	Operation Functions

	Weak Pointers
	Weak Pointer Objects
	Low Level Access Functions for Weak Pointer Objects
	Accessing Weak Pointer Objects as Lists
	Copying Weak Pointer Objects

	More about Stabilizer Chains
	Generalized Conjugation Technique
	The General Backtrack Algorithm with Ordered Partitions
	Stabilizer Chains for Automorphisms Acting on Enumerators

	References
	Index

