
XORP Error Handling

Version 1.6

XORP, Inc.
http://www.xorp.org/
feedback@xorp.org

January 7, 2009

1 Introduction

A XORP router is made up of a number of processes that communicate via XRLs [1] (a messaging system
developed forXORP). In this document we will focus on how to deal with errors that are generated directly
or indirectly byXRL calls, and discuss how to handle process failures and the subsequent restart of failed
processes. Of course, in an ideal world processes would not fail, but when they do fail, our goals are to keep
as much router functionality working as possible, to avoid permanent inconsistencies at all costs, and for the
remainder of the functionality to be restored as quickly as possible.

ManyXORP processes share routing state that must remain synchronised. For example, the BGP process
sends the result of its routing decisions to the RIB process,which passes these routes on to the FEA and
hence to the forwarding engine’s Forwarding Information Base (FIB). If the RIB process fails, then BGP
would lose the ability to manipulate the FIB, and forwardingwould not match the BGP routing table. Thus,
BGP should withdraw all routes that it told its peers, or alternatively it might drop all peerings until the RIB
has successfully restarted.

A critical component of the system is the router manager process (rtrmgr) which is responsible for
starting and stopping routing processes. When aXORP process starts or terminates, that process’s XRL
client library ensures that theFinder is notified. If a process has an interest in the status of another process
it can register interest with theFinder.

In a XORP router, as with any complex system, errors can occur. These errors can range from aXORP
process simply failing, to an attempt to install a route intothe forwarding engine that already exists. Errors
need to be dealt with in a consistent manner. The types of error that may occur are categorized below.

The first type of error isProcess Failure.
The second type of error isCommunication Error. At the most basic level an attempt to send anXRL has

failed. The process that was the recipient of theXRL may have failed or be slow to respond. The message
that was being sent may have been lost in transit.

The third type of error,Execution Error, is when an XRL call returns an error due to some underlying
interaction failure. A simple example of this type of error is a “route add” failing. The attempt to add a route
may fail for many reasons. The identical route may already bepresent or a different route may be installed.
The error may occur due to a bug in the router code, because routing state has been manipulated by non
XORP processes, or due to resource starvation in the forwarding engine.

1



The fourth type of error,Type Error, is when an XRL call fails because the arguments passed to an XRL
are invalid. This error will most likely be due to a version mismatch betweenXORP processes. If all the
processes in aXORP router have been built from the same source tree this error should not occur. As we
are building an extensible router it may be the case that a process built from a different source tree may
encounter compatibility problems.

2 Process Failure

A XORP router is made up of a number of distinct processes. There aredependencies between these pro-
cesses. We define the critical dependencies and what action to take on detecting failure.

The most critical component of aXORP router is thertrmgr/Finder process. One of the functions of this
component is to start/re-start processes. If process A is dependent on the status (e.g., alive, dead, restarted) of
process B, then process A registers this interest with theFinder. This dependency on thertrmgr/Finder for
managing and monitoring process liveness state means that aXORP router cannot survive the failure of this
process. If we attempted to survive aFinder restart, it is conceivable that, in the same time window, another
monitored process could restart, in which case the restarting of the monitored process could be missed by
theFinder. To guard against this possible race, aXORP process that detects the loss of theFinder must exit.
There is one exception to this rule, theXorpsh process, that will be discussed later in section 2.2.11.

Each process in aXORP router is described with how it should behave when another process in the
system fails. Processes can explicitly register interest in the status of other processes through theFinder. If
process A is dependent on the state of process B then process Amust register interest in process B.

2.1 Implementing process failure detection

TheFinder process will send keepalive messages to all processes at thirty second intervals. If a process does
not respond to a keepalive it is considered dead. The keepalive messages are sent over a reliable transport
such as TCP. A process dying should therefore be easy to detect.

Thertrmgr might also be able to detect that a process has died (but not ifit is simply not responding),
as it will normally receive a SIGCHILD signal. On discovering a process has died, thertrmgr will send a
hint to theFinder, which will immediately try and send a keepalive. Again if the process has died it should
be easy to detect.

If a process is not responding to keepalives but it is still alive, it will be marked as dead and all interested
processes will be notified. Most importantly, thertrmgr will be notified and it will kill the running process
and start a new process.

2.2 Actions to take on detecting process failure

Table 1 indicates what action a process should take on detecting failure in other processes1. The “(G)”
denotes that the process should attempt to exit gracefully.Figure 1 shows the relationship between the
various processes. The thick arrows should be modelled as a signal sent from a process dying to its dependent
processes.

1Note that currently this document does not describe the policy manager. Such description will be included in the future.For
all practical reasons, the policy manager is as important asthe rtrmgr/finder, even though it is running as a separate process.

2



(Note 1*)

FEA MFEA

RIB
MLD/IGMP

BGP OSPF RIP PIM

Forced exit

Graceful exit

Cleanup state

All processes

Rtrmgr/Finder

Forwarding Plane

(Note 1*): Typically, the MFEA would be part of the FEA process

Figure 1: Process relationship on failure

3



Process fails
rtrmgr/ FEA MFEA RIB IGMP PIM BGP RIP OSPF Xorpsh
Finder

rtrmgr/ / Withdraw Exit Exit Exit Exit Exit Exit Exit Report
Finder All Problem

Unicast Wait
Routes
Exit

FEA(*) Restart / Exit Exit Exit Exit Exit Exit Exit -
MFEA(*) Restart - / - Exit Exit - - - -

RIB Restart Withdraw / - Exit Exit Exit Exit Exit -
All (G) (G) (G) (G) (G)

Unicast
Routes

IGMP Restart - - - / Delete - - - -
Local

Members
After

Timeout
PIM Restart - - - - / - - - -
BGP Restart - - - - - / - - -
BGP Restart - - - - - / - - -
RIP Restart - - - - - - / - -

OSPF Restart - - - - - - - / -
Xorpsh Restart - - - - - - - - /

Note(*): Typically, the MFEA would be part of the FEA process

Table 1: Action to take on detecting process failure

2.2.1 rtrmgr/Finder- Router manager

If the rtrmgr/Finder dies then all bets are off and all processes should exit apartfrom theXorpsh.
If a XORP process exits unexpectedly thertrmgr/Finder should attempt to restart the process.

2.2.2 FEA - Forwarding Engine Abstraction

The FEA primarily accepts routes from the RIB and places themin the kernel. The FEA should tag all routes
that it has installed in the kernel. On restart, the FEA should remove all routes that a previous incarnation of
the FEA has placed in the kernel. When an FEA is exiting it should attempt to remove all routes that it has
installed in the kernel.

The FEA process should register interest in the RIB. If the RIB fails the FEA should withdraw all routes
that the RIB has sent to it.

4



2.2.3 MFEA - Multicast Forwarding Engine Abstraction

The MFEA is multicast analogue to the unicast FEA. If should be noted that typically the MFEA would be
part of the FEA process.

Similar to the FEA, on restart or exit the MFEA should remove all multicast forwarding entries that were
installed in the kernel. Note that the MFEA does not contain acopy of the multicast forwarding entries that
were installed in the kernel, so it should utilize a mechanism that removes all multicast forwarding entries
at once. In case of UNIX-based systems, closing the multicast routing socket will automatically remove all
entries.

If the multicast routing process that has installed the multicast forwarding entries exits, then the MFEA
should remove all multicast forwarding entries from the kernel. Currently, PIM is the only multicast routing
process. In the future, the XORP multicast routing architecture may contain a special coordinator among all
multicast routing protocol instances, analogous to the function of the unicast RIB process. If that coordinator
exits, the MFEA should remove all multicast forwarding entries from the kernel.

2.2.4 RIB - Routing Information Base

Routes from the routing processes are sent to the RIB; the winners are sent to the FEA.
The RIB should register interest in the FEA. If the FEA fails the RIB should exit. All routing processes

that interact with the RIB should, on detecting the shutdownof the RIB, also terminate gracefully.

2.2.5 IGMP/MLD

If the FEA/MFEA process exits then this process should exit.

2.2.6 PIM

If the RIB or the FEA/MFEA process exits then this process should exit.

2.2.7 BGP

Currently the only other process in the system that BGP interacts with is the RIB. If the BGP process detects
that the RIB has died then it should gracefully terminate itssessions and exit.

In the future the TCP connections that BGP makes will be mediated through FEA, at which time the
BGP process should also register interest in the state of theFEA. If the BGP process detects the death of the
FEA it should exit immediately.

2.2.8 RIP

The RIP process should register interest in the FEA and the RIB. If the RIB dies then the RIP process should
attempt to exit gracefully. If the FEA dies the RIP process should exit immediately.

2.2.9 IS-IS

The IS-IS process should register interest in the FEA and theRIB. If the RIB dies then the IS-IS process
should attempt to exit gracefully. If the FEA dies the IS-IS process should exit immediately.

5



2.2.10 OSPF

The OSPF process should register interest in the FEA and the RIB. If the RIB dies then the OSPF process
should attempt to exit gracefully. If the FEA dies the OSPF process should exit immediately.

2.2.11 Xorpsh

TheXorpsh provides a command line interface to the XORP router. Other processes in the system exiting
should never cause it to exit. Thertrmgr/Finder process exiting should generate warning output to the user
and then theXorpsh should wait for the router to restart.

3 XRL Communication Errors

Interprocess communication inXORP is achieved using XRLs. In this section we will consider whatshould
be done when an XRL call fails due to a communication error.

XRLs can be sent over unreliable transports such as UDP or reliable transports such as TCP. The type of
transport used is decided by the XRL library based on the specification of each interface. For the purposes
of error handling, the reliable and unreliable transports are the same in all regards, except that reliable
transports in XORP never explicitly report a timeout error.

XRL communication is asynchronous: applications request the dispatch of an XRL and expect to have
a callback invoked when the dispatch result is available. This presents opportunities for immediate and
deferred error indications. Immediate error indications occur when the request for XRL dispatch is made:
the canonical example occurring when no more buffer space isavailable within the XRL library is available.
An application is able to detect these errors synchronously: the dispatch request indicates an error in its
return value. Deferred error indications happen through the dispatch callbacks. These callbacks are required
to take an XrlError object as an argument. An XrlError objectis comprised of an enumerated error code and
an optional string containing specific information relating to the error. The set of enumerated error codes is
presented below.

Immediate and deferred errors are exclusive. If theXRL Target dispatching an XRL got an immediate
error, it will not receive a callback indicating a deferred error.

Standard Dispatch XRL Error Values

The standard XRL return values are returned to the requesting XRL Target by the dispatchingXRL Target.
When any of these values are returned, the XRL communicationhas been successful.

OKAY XRL dispatch successful. Additional parameters in XRL callback contain return values.

COMMAND FAILED XRL reached dispatcher, but could not be dispatched. The reason for failure may
be specified in the note associated with the XrlError object.

BAD ARGS XRL reached dispatcher, but argument types did not match those expected by the dispatcher.

Finder XRL Error Values

NO FINDER This error occurs when anXRL Target cannot communicate with theFinder. This always
indicates a serious problem with the router, as theFinder should always be present. The application
SHOULD treat this error as fatal.

6



RESOLVE FAILED This error occurs when aXRL Target process tries to resolve an XRL theFinder has
no result for. This may be because the target specified in the XRL does not exist or exists, but is still
in the process of registering the XRL it exports.

RESOLVEFAILED errors may happen because of a benign cause, namely that processes started
up in a less than perfect order, so a target’s user has initialized before the target itself. Applica-
tions SHOULD handle this type of transient RESOLVEFAILED error with a retransmission strategy.
Applications may avoid this error by using the Finder event observer interface to detect when the
particular target becomes ready.

NO SUCH METHOD This error occurs when the namedXRL Target is running and has registered it’s
XRLs, but it does not support the method named in the XRL. NOSUCH METHOD generally indi-
cates a version mismatch between two processes. This error may be considered fatal, or (for example)
the application might react by trying to access an older version of the interface. The application
can expect, however, that NOSUCH METHOD errors are not transient: If an XRL access gets a
NO SUCH METHOD error, then that XRL will always result in a NOSUCH METHOD error, at
least until the target process restarts.

Transport and Internal Xrl Error Values

SEND FAILED The underlying XRL transport mechanism has failed. For example, the TCP connection
has been reset, or a UDP connection gets a port-unreachable message. The expectation is that no
further communication with the specific endpoint will succeed.

SEND FAILED TRANSIENT This error occurs when the XRL library temporarily cannot send a particu-
lar XRL. Usually, this will be because of congestion or a slowreceiver: the kernel has run out of buffer
space. Note that the XRL library performs some buffering itself, to ensure that XRL requests are ei-
ther completely transmitted or not transmitted at all.Note: The XRL library does not yet implement
this error.

REPLY TIMED OUT – The target did not reply within a transport-protocol-specific period of time. Pos-
sible reasons include network congestion, peer failure, network interface failure, and so on. As in
all network communications, when a timeout occurs we don’t know if the last unacknowledged XRL
request was received and processed by the peer. This error occurs in unreliable transmit only.

3.1 Handling XRL Errors

XRLs may be directed to a class of target or a particular instance of a target. The first instance of a target that
registers with theFinder is considered to be the primary instance of its class and XRLsaddressed to that are
directed to that instance. The XRL library MAY hide certain REPLY TIMED OUT and SENDFAILED
errors for XRLs directed towards classes,i.e., should the instance which is acting as the primary instance
fail or exit, then another instance in that class, will receive the class directed XRL requests.

The XRL errors of NOFINDER, RESOLVEFAILED, and to some extent NOSUCH METHOD gen-
erally represent serious problems with the router. SENDFAILED represents a serious problem with the
target, such as that an instance of the target has died; this problem may or may not be transient. The
SEND FAILED TRANSIENT and REPLYTIMED OUT errors are potentially common errors, and should

7



be handled by the application. However, the likelihood of SEND FAILED TRANSIENT can often be re-
duced, making it a “fatal” error from the application’s point of view, by limiting the rate at which requests
are sent.

NO FINDER, RESOLVEFAILED, NO SUCH METHOD, and SENDFAILED TRANSIENT, are all
indications that the XRL was not communicated to its target.They are therefore calledsend failures. The
other two errors, REPLYTIMED OUT and SENDFAILED, may be generated even if the target received
the request. They are therefore calledreceive failures.

If a peer dies, we will receive notification of this explicitly and will deal with it as specified in section
2. Thus most XRL transport errors SHOULD NOT be taken as an indication that the peer is definitely dead.
If an application cares that the peer has died or restarted, it SHOULD register with the finder to receive
notifications of process restarts. Thus, a process SHOULD assume that an XRL transport problem will be
transient until it receives an explicit confirmation that the destination has failed, particularly when the XRL
interface is unreliable.

In addition to an XRL interface being reliable or unreliable, the way the application uses an XRL inter-
face can by pipelined or non-pipelined. In the pipelined case, multiple requests can be outstanding simulta-
neously; in the non-pipelined case at most one request can beoutstanding at a time.

It is useful for us to categorize XRL interfaces along these two axes: reliable/unreliable and pipelined/non-
pipelined.

Unreliable, Non-pipelined

If an XRL send failure occurs, the sending application MAY choose to retransmit the XRL, or ignore the
failure as it sees fit.

In an XRL receive failure occurs, the sending application MAY also choose to retransmit the XRL, or
ignore the failure as it sees fit. However, if the applicationchooses to re-send the XRL, the interface MUST
be written in such a way that the receipt of a duplicate request will not damage the system. (XXX Isn’t this
true anyway? Network duplicates?)

Reliable, Non-pipelined

If a SEND FAILED TRANSIENT error occurs, the sending application MAY retransmit the XRL.
SEND FAILED, NO FINDER, and most RESOLVEFAILED and NOSUCH METHOD errors are un-

recoverable. The application should cause this XRL interface to go dormant, in the expectation that it will
authoritatively discover from the finder that the target hasdied.

REPLY TIMED OUT cannot happen on reliable interfaces.

Unreliable, Pipelined

The same issues apply as with unreliable, non-pipelined, but the situation is more complicated. An interface
that uses unreliable transport and pipelining is one that explicitly permits lossand re-ordering of requests.
It is up to the application to choose whether to retransmit XRLs that return SENDFAILED TRANSIENT
or REPLY TIMED OUT, but the application must only do so if it is certain that the re-ordering caused by
retransmission will not be a problem.

8



Reliable, Pipelined

The XRL library ensures that pipelined messages sent to a reliable target are delivered in order. In particular,
if a requestR to a given target gets an error, then nooutstanding requests to that targetregistered later than
R will successfully complete – they will all get the same error, and none of them will be delivered to the
receiving application. Once the error is delivered, this error state is wiped out, and later requests to the target
may succeed – perhaps because the target was restarted.

Again, SENDFAILED, NO FINDER, and most RESOLVEFAILED and NOSUCH METHOD errors
are unrecoverable. The application SHOULD cause this XRL interface to go dormant, in the expectation
that it will authoritatively discover from the finder that the target has died.

4 Execution Error

A XORP router is partitioned into many processes; most of theoperating system specific interactions are
performed by the FEA. In a router the most frequent operationwill be the adding and deleting of routes.
Consider BGP adding a route. First the BGP process will send the route to the RIB, then the route may be
sent to the FEA. If the addition of the route from the RIB to theFEA fails, then there is no way of propagating
this failure back to the BGP process due to the asynchronous nature of XRLs. If adding/deleting a route fails
a very drastic way of propagating this failure back to the BGPprocess would be for either or both the FEA
and RIB processes to exit, in which case the process failure responses already described would be used and
BGP would exit. Process exit is an extreme response to failing to add a route, but at least the error handling
code for process exit exists already. It is important thoughnot to mask over implementation problems by
ignoring errors. In the rest of this section we will outline how to deal with a number of common errors.

4.1 Adding/Deleting route failures

As stated above, a highly likely error is failures when adding or deleting routes. Typically the interaction
will occur between the RIB and FEA. When an error occurs it should be logged by the FEA and the cause
returned to the RIB. The RIB can be configured with policy on how to react to different errors.

Adding a route will typically fail because a route already exists. Firstly, if a route already exists it is
either the same or different to the one that we attempted to add. Secondly, either the FEA installed the route
or a third party installed it. Therefore when adding a route fails the FEA should return if the current route is
the same or different to the one we attempted to add, as well aswho installed the route originally. The RIB
on receiving the error state from the FEA can decide as a matter of policy how to proceed. If an attempt to
add a route fails because a different route exists the RIB could choose to delete the old route and add the
new route.

The most common reason for a route deletion to fail would be that the route is no longer present. The
FEA should log that it has been asked to delete a route that doesn’t exist. The RIB should decide if this
problem should be considered fatal.

4.1.1 Route Add Failure due to Resource Starvation

When a routing process sends a route to the RIB, the asynchronous nature of XRL handling means that
the RIB will typically accept the route before it has finishedprocessing the addition, and certainly before it
attempts to pass the route to the FEA, and hence on into the forwarding engine. It is possible for the route
addition to fail due to memory exhaustion in either the RIB orin the forwarding engine itself. Should this

9



occur, it is important for the routing protocol to be made aware of the event, because the routing information
will now be out of synchronization with the forwarding information.

If the forwarding engine refuses the route due to resource starvation, the FEA will receive the failure.
The FEA will then indicate asynchronously to the RIB that thefailure occurred. The RIB will in turn
delete all state from all routing protocols that contributed versions of this route, and asynchronously pass
the failure up to those routing protocols. Each of those routing protocols will then handle the failure in a
protocol specific manner.

If the failure occurs due to resource starvation in the RIB, asimilar process will be initiated. It is not
currently clear how to reliably notify a routing protocol inthe case when the router is running out of memory
for user-space processes.

In the case of BGP, if a route fails to be added due to resource starvation, the simplest mechanism is
to take down the peering that originated the route. The normal peer reinitialization mechanism (after some
time delay) will ensure that all the routes are re-instantiated after the resource starvation problem goes away.

In the case of RIP, if a route fails to be added due to resource starvation, the simplest mechanism is to
send our peers an infinite metric route for this particular prefix and to delete the state for this prefix. The
normal RIP periodic update will ensure that the route is re-instantiated after the resource starvation problem
goes away.

In the case of link-state protocols such as OSPF and IS-IS, there is no good way to deal with this
situation. A reasonable solution might be to take down all adjacencies to avoid causing a blackhole, then
to bring up the adjacencies again but not propagate any link-state advertisements to our neighbors (so they
won’t route via us) until all the link-state advertisementshave been received and we’ve successfully installed
all the routes in the kernel.

A Modification History

• June 9, 2003: Initial version 0.3 completed.

• August 28, 2003: Updated to match XORP release 0.4: No changes.

• November 6, 2003: Updated to match XORP release 0.5: No changes.

• July 8, 2004: Updated to match XORP release 1.0: No significant changes.

• April 13, 2005: Updated to match XORP release 1.1: No changes.

• March 8, 2006: Updated to match XORP release 1.2: Added a footnote about the policy manager
process.

• August 2, 2006: Updated to match XORP release 1.3: Added “Modification History” appendix.

• March 20, 2007: Updated to match XORP release 1.4: No changes.

• July 22, 2007: Updated to match XORP release 1.5: No changes.

References

[1] XORP Inter-Process Communication Library. XORP technical document. http://www.xorp.org/.

10


