XORP Error Handling
Version 1.6

XORP, Inc.
http://mwww.xor p.org/
feedback@xorp.org

January 7, 2009

1 Introduction

A XORP router is made up of a number of processes that communicatéRAs [1] (a messaging system
developed foXORP). In this document we will focus on how to deal with errorsttage generated directly
or indirectly by XRL calls, and discuss how to handle process failures and treegubnt restart of failed
processes. Of course, in an ideal world processes wouldihdbdit when they do fail, our goals are to keep
as much router functionality working as possible, to avacthpanent inconsistencies at all costs, and for the
remainder of the functionality to be restored as quickly essible.

Many XORP processes share routing state that must remain synchdoiseexample, the BGP process
sends the result of its routing decisions to the RIB processch passes these routes on to the FEA and
hence to the forwarding engine’s Forwarding Informatiors@&F-IB). If the RIB process fails, then BGP
would lose the ability to manipulate the FIB, and forwardimguld not match the BGP routing table. Thus,
BGP should withdraw all routes that it told its peers, orralégively it might drop all peerings until the RIB
has successfully restarted.

A critical component of the system is the router manager gs®dtrmgr) which is responsible for
starting and stopping routing processes. WheXOiRP process starts or terminates, that process’s XRL
client library ensures that tHeinder is notified. If a process has an interest in the status of angitocess
it can register interest with thieinder.

In a XORP router, as with any complex system, errors can occur. Thesesecan range from AORP
process simply failing, to an attempt to install a route ithi® forwarding engine that already exists. Errors
need to be dealt with in a consistent manner. The types of #rabmay occur are categorized below.

The first type of error i€rocess Failure.

The second type of error Sommunication Error. At the most basic level an attempt to send<gh. has
failed. The process that was the recipient of ¥R may have failed or be slow to respond. The message
that was being sent may have been lost in transit.

The third type of errorExecution Error, is when an XRL call returns an error due to some underlying
interaction failure. A simple example of this type of erreri“route add” failing. The attempt to add a route
may fail for many reasons. The identical route may alreadgrbeent or a different route may be installed.
The error may occur due to a bug in the router code, becausiagaiate has been manipulated by non
XORP processes, or due to resource starvation in the forwardigine.

The fourth type of errofType Error, is when an XRL call fails because the arguments passed tdRan X
are invalid. This error will most likely be due to a versionsmiatch betweeXORP processes. If all the
processes in XORP router have been built from the same source tree this ermirldmot occur. As we
are building an extensible router it may be the case that eegeobuilt from a different source tree may
encounter compatibility problems.

2 Process Failure

A XORP router is made up of a number of distinct processes. Therdegrendencies between these pro-
cesses. We define the critical dependencies and what acttakd on detecting failure.

The most critical component ofORP router is thertrmgr/Finder process. One of the functions of this
component is to start/re-start processes. If process Apisraient on the status.g., alive, dead, restarted) of
process B, then process A registers this interest withirthder. This dependency on thiérmgr/Finder for
managing and monitoring process liveness state means H@RR router cannot survive the failure of this
process. If we attempted to survivé-ander restart, it is conceivable that, in the same time windowtlaero
monitored process could restart, in which case the resgaai the monitored process could be missed by
theFinder. To guard against this possible racex@RP process that detects the loss of Fieder must exit.
There is one exception to this rule, therpsh process, that will be discussed later in section 2.2.11.

Each process in ZORP router is described with how it should behave when anothecgss in the
system fails. Processes can explicitly register interefite status of other processes throughRimeler. If
process A is dependent on the state of process B then proaesstAegister interest in process B.

2.1 Implementing process failure detection

TheFinder process will send keepalive messages to all processestatsiacond intervals. If a process does
not respond to a keepalive it is considered dead. The keepalessages are sent over a reliable transport
such as TCP. A process dying should therefore be easy tatdetec

Thertrmgr might also be able to detect that a process has died (but itas $imply not responding),
as it will normally receive a SIGCHILD signal. On discovegia process has died, themgr will send a
hint to theFinder, which will immediately try and send a keepalive. Again iétbrocess has died it should
be easy to detect.

If a process is not responding to keepalives but it is siielit will be marked as dead and all interested
processes will be notified. Most importantly, titemgr will be notified and it will kill the running process
and start a new process.

2.2 Actions to take on detecting process failure

Table 1 indicates what action a process should take on dejefetlure in other processeés The “(G)”
denotes that the process should attempt to exit gracefligure 1 shows the relationship between the
various processes. The thick arrows should be modelledigsa sent from a process dying to its dependent
processes.

"Note that currently this document does not describe theyatianager. Such description will be included in the futifer
all practical reasons, the policy manager is as importatti@strmgr/finder, even though it is running as a separategs®

——= Forced exit

—= Graceful exit

,,,,,,,,, > Cleanup stat:

(Note 1*)

All processes

Rtrmgr/Finder

- ______

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y

Forwarding Plane

(Note 1*): Typically, the MFEA would be part of the FEA process

Figure 1: Process relationship on failure

Process fails
rtrmgr/ FEA MFEA | RIB | IGMP PIM BGP | RIP | OSPF| Xorpsh
Finder
rtrmgr/ / Withdraw | Exit | Exit | Exit Exit Exit | Exit | Exit Report
Finder All Problem
Unicast Wait
Routes
Exit
FEA(*) Restart / Exit | Exit | Exit Exit Exit | Exit | Exit -
MFEA(*) Restart - / - Exit Exit - - - -
RIB Restart| Withdraw / - Exit Exit Exit | Exit | Exit -
All (G) (G) ©G) | ©)] (©)
Unicast
Routes
IGMP Restart - - - / Delete - - - -
Local
Members
After
Timeout
PIM Restart - - - - / - - - -
BGP Restart - - - - - / - - -
BGP Restart - - - - - / - - -
RIP Restart - - - - - - / - -
OSPF Restart - - - - - - - / -
Xorpsh Restart - - - - - - - - /

Note(*): Typically, the MFEA would be part of the FEA process

Table 1: Action to take on detecting process failure

2.2.1 rtrmgr/Finder- Router manager

If the rtrmgr/Finder dies then all bets are off and all processes should exit &pantthe Xorpsh.
If a XORP process exits unexpectedly thtemgr/Finder should attempt to restart the process.

2.2.2 FEA - Forwarding Engine Abstraction

The FEA primarily accepts routes from the RIB and places thmetfme kernel. The FEA should tag all routes
that it has installed in the kernel. On restart, the FEA sthoeinove all routes that a previous incarnation of
the FEA has placed in the kernel. When an FEA is exiting it fhattempt to remove all routes that it has
installed in the kernel.

The FEA process should register interest in the RIB. If the Rils the FEA should withdraw all routes
that the RIB has sent to it.

2.2.3 MFEA - Multicast Forwarding Engine Abstraction

The MFEA is multicast analogue to the unicast FEA. If showddhbted that typically the MFEA would be
part of the FEA process.

Similar to the FEA, on restart or exit the MFEA should remoNenalticast forwarding entries that were
installed in the kernel. Note that the MFEA does not contatopy of the multicast forwarding entries that
were installed in the kernel, so it should utilize a mechanikat removes all multicast forwarding entries
at once. In case of UNIX-based systems, closing the multicaging socket will automatically remove all
entries.

If the multicast routing process that has installed the icadt forwarding entries exits, then the MFEA
should remove all multicast forwarding entries from thenledr Currently, PIM is the only multicast routing
process. In the future, the XORP multicast routing architecmay contain a special coordinator among all
multicast routing protocol instances, analogous to thetfan of the unicast RIB process. If that coordinator
exits, the MFEA should remove all multicast forwarding @¥rfrom the kernel.

2.2.4 RIB - Routing Information Base

Routes from the routing processes are sent to the RIB; theersrare sent to the FEA.

The RIB should register interest in the FEA. If the FEA falie RIB should exit. All routing processes
that interact with the RIB should, on detecting the shutdofvtne RIB, also terminate gracefully.
2.2.5 IGMP/MLD

If the FEA/MFEA process exits then this process should exit.

2.2.6 PIM
If the RIB or the FEA/MFEA process exits then this procesaugthexit.

227 BGP

Currently the only other process in the system that BGPawtemwith is the RIB. If the BGP process detects
that the RIB has died then it should gracefully terminateséssions and exit.

In the future the TCP connections that BGP makes will be ntedithrough FEA, at which time the
BGP process should also register interest in the state ¢fElAe If the BGP process detects the death of the
FEA it should exit immediately.

2.2.8 RIP
The RIP process should register interest in the FEA and tBelRthe RIB dies then the RIP process should
attempt to exit gracefully. If the FEA dies the RIP processuth exit immediately.

229 IS-IS

The IS-IS process should register interest in the FEA andRiBe If the RIB dies then the 1S-IS process
should attempt to exit gracefully. If the FEA dies the IS-18gess should exit immediately.

2.2.10 OSPF

The OSPF process should register interest in the FEA andIBielfRhe RIB dies then the OSPF process
should attempt to exit gracefully. If the FEA dies the OSPécpss should exit immediately.

2.2.11 Xorpsh

The Xorpsh provides a command line interface to the XORP router. Othecgsses in the system exiting
should never cause it to exit. Themgr/Finder process exiting should generate warning output to the user
and then theXorpsh should wait for the router to restart.

3 XRL Communication Errors

Interprocess communication XORP is achieved using XRLs. In this section we will consider wétabuld
be done when an XRL call fails due to a communication error.

XRLs can be sent over unreliable transports such as UDPiablelransports such as TCP. The type of
transport used is decided by the XRL library based on theifspegigon of each interface. For the purposes
of error handling, the reliable and unreliable transports tae same in all regards, except that reliable
transports in XORP never explicitly report a timeout error.

XRL communication is asynchronous: applications requessidispatch of an XRL and expect to have
a callback invoked when the dispatch result is availableis Phesents opportunities for immediate and
deferred error indications. Immediate error indicationsuw when the request for XRL dispatch is made:
the canonical example occurring when no more buffer spaaegigable within the XRL library is available.
An application is able to detect these errors synchronouslg dispatch request indicates an error in its
return value. Deferred error indications happen througtdibpatch callbacks. These callbacks are required
to take an XrlError object as an argument. An XrlError objecomprised of an enumerated error code and
an optional string containing specific information relgtio the error. The set of enumerated error codes is
presented below.

Immediate and deferred errors are exclusive. IfXRk Target dispatching an XRL got an immediate
error, it will not receive a callback indicating a deferradoe

Standard Dispatch XRL Error Values

The standard XRL return values are returned to the requeXi®h Target by the dispatching(RL Target.
When any of these values are returned, the XRL communichtisrbeen successful.

OKAY XRL dispatch successful. Additional parameters in XRLIzatk contain return values.

COMMAND _FAILED XRL reached dispatcher, but could not be dispatched. Ttsorefor failure may
be specified in the note associated with the XrlError object.

BAD_ARGS XRL reached dispatcher, but argument types did not matctetbmpected by the dispatcher.

Finder XRL Error Values

NO_FINDER This error occurs when akRL Target cannot communicate with théinder. This always
indicates a serious problem with the router, asRheler should always be present. The application
SHOULD treat this error as fatal.

RESOLVE _FAILED This error occurs when #RL Target process tries to resolve an XRL thender has
no result for. This may be because the target specified in Rie does not exist or exists, but is still
in the process of registering the XRL it exports.

RESOLVEFAILED errors may happen because of a benign cause, namayptbcesses started
up in a less than perfect order, so a target’s user has inéthlbefore the target itself. Applica-
tions SHOULD handle this type of transient RESOLW¥EILED error with a retransmission strategy.
Applications may avoid this error by using the Finder evengavver interface to detect when the
particular target becomes ready.

NO_SUCH_METHOD This error occurs when the nam&RL Target is running and has registered it's
XRLs, but it does not support the method named in the XRL_SIGOCH METHOD generally indi-
cates a version mismatch between two processes. This easobeconsidered fatal, or (for example)
the application might react by trying to access an olderioersf the interface. The application
can expect, however, that NOUCHMETHOD errors are not transient: If an XRL access gets a
NO_SUCHMETHOD error, then that XRL will always result in a NOGUCHMETHOD error, at
least until the target process restarts.

Transport and Internal Xrl Error Values

SEND_FAILED The underlying XRL transport mechanism has failed. For glanthe TCP connection
has been reset, or a UDP connection gets a port-unreachassage. The expectation is that no
further communication with the specific endpoint will suede

SEND_FAILED _TRANSIENT This error occurs when the XRL library temporarily cannaicgea particu-
lar XRL. Usually, this will be because of congestion or a steeeiver: the kernel has run out of buffer
space. Note that the XRL library performs some bufferinglitgo ensure that XRL requests are ei-
ther completely transmitted or not transmitted at Alote: The XRL library does not yet implement
thiserror.

REPLY TIMED _OUT - The target did not reply within a transport-protocol-dfieperiod of time. Pos-
sible reasons include network congestion, peer failureyark interface failure, and so on. As in
all network communications, when a timeout occurs we domivk if the last unacknowledged XRL
request was received and processed by the peer. This ecumsan unreliable transmit only.

3.1 Handling XRL Errors

XRLs may be directed to a class of target or a particular ntstaf a target. The first instance of a target that
registers with thé-inder is considered to be the primary instance of its class and Xdgldsessed to that are
directed to that instance. The XRL library MAY hide certaiERLY_TIMED_OUT and SENDFAILED
errors for XRLs directed towards classes,, should the instance which is acting as the primary instance
fail or exit, then another instance in that class, will rgeghe class directed XRL requests.

The XRL errors of NOQFINDER, RESOLVEFAILED, and to some extent NSUCHMETHOD gen-
erally represent serious problems with the router. SEHMILED represents a serious problem with the
target, such as that an instance of the target has died; itbidepn may or may not be transient. The
SEND.FAILED_TRANSIENT and REPLYTIMED_OUT errors are potentially common errors, and should

be handled by the application. However, the likelihood oNBEFAILED _TRANSIENT can often be re-
duced, making it a “fatal” error from the application’s poaf view, by limiting the rate at which requests
are sent.

NO_FINDER, RESOLVEFAILED, NO_.SUCHMETHOD, and SENDFAILED _TRANSIENT, are all
indications that the XRL was not communicated to its targétey are therefore callesbnd failures. The
other two errors, REPLYTIMED _OUT and SENDFAILED, may be generated even if the target received
the request. They are therefore caltedeive failures.

If a peer dies, we will receive notification of this expligithnd will deal with it as specified in section
2. Thus most XRL transport errors SHOULD NOT be taken as aication that the peer is definitely dead.
If an application cares that the peer has died or restarte®tHOULD register with the finder to receive
notifications of process restarts. Thus, a process SHOUEkDnas that an XRL transport problem will be
transient until it receives an explicit confirmation thas testination has failed, particularly when the XRL
interface is unreliable.

In addition to an XRL interface being reliable or unrelighttee way the application uses an XRL inter-
face can by pipelined or non-pipelined. In the pipelinedcecasultiple requests can be outstanding simulta-
neously; in the non-pipelined case at most one request caatbe@nding at a time.

Itis useful for us to categorize XRL interfaces along thegedxes: reliable/unreliable and pipelined/non-
pipelined.

Unreliable, Non-pipelined

If an XRL send failure occurs, the sending application MAYooke to retransmit the XRL, or ignore the
failure as it sees fit.

In an XRL receive failure occurs, the sending application¥eso choose to retransmit the XRL, or
ignore the failure as it sees fit. However, if the applicattbiwoses to re-send the XRL, the interface MUST
be written in such a way that the receipt of a duplicate reguésnot damage the system. (XXX Isn't this
true anyway? Network duplicates?)

Reliable, Non-pipelined

If a SEND_FAILED _TRANSIENT error occurs, the sending application MAY resarit the XRL.
SEND_FAILED, NO_FINDER, and most RESOLVEAILED and NOSUCHMETHOD errors are un-
recoverable. The application should cause this XRL interfi@ go dormant, in the expectation that it will
authoritatively discover from the finder that the target tiasl.
REPLY_TIMED_OUT cannot happen on reliable interfaces.

Unreliable, Pipelined

The same issues apply as with unreliable, non-pipelinedhesituation is more complicated. An interface
that uses unreliable transport and pipelining is one thpli@ity permits lossand re-ordering of requests.

It is up to the application to choose whether to retransmit Xkat return SENCFAILED _TRANSIENT

or REPLY_TIMED _OUT, but the application must only do so if it is certain tHag te-ordering caused by
retransmission will not be a problem.

Reliable, Pipelined

The XRL library ensures that pipelined messages sent téedkeltarget are delivered in order. In particular,
if a requestR to a given target gets an error, thenoutstanding requests to that targegistered later than
R will successfully complete — they will all get the same eri@md none of them will be delivered to the
receiving application. Once the error is delivered, thisiestate is wiped out, and later requests to the target
may succeed — perhaps because the target was restarted.

Again, SENDFAILED, NO_FINDER, and most RESOLVEAILED and NOSUCHMETHOD errors
are unrecoverable. The application SHOULD cause this XRérface to go dormant, in the expectation
that it will authoritatively discover from the finder thatetlarget has died.

4 Execution Error

A XORP router is partitioned into many processes; most ofojherating system specific interactions are
performed by the FEA. In a router the most frequent operatidnbe the adding and deleting of routes.
Consider BGP adding a route. First the BGP process will seaddute to the RIB, then the route may be
sent to the FEA. If the addition of the route from the RIB to BieA fails, then there is no way of propagating
this failure back to the BGP process due to the asynchronamiwsenof XRLs. If adding/deleting a route fails

a very drastic way of propagating this failure back to the Bétess would be for either or both the FEA
and RIB processes to exit, in which case the process faibsgonses already described would be used and
BGP would exit. Process exit is an extreme response todaitiradd a route, but at least the error handling
code for process exit exists already. It is important thonghto mask over implementation problems by
ignoring errors. In the rest of this section we will outlinewhto deal with a number of common errors.

4.1 Adding/Deleting route failures

As stated above, a highly likely error is failures when addim deleting routes. Typically the interaction
will occur between the RIB and FEA. When an error occurs iusthde logged by the FEA and the cause
returned to the RIB. The RIB can be configured with policy owho react to different errors.

Adding a route will typically fail because a route alreadysex Firstly, if a route already exists it is
either the same or different to the one that we attempteddo @econdly, either the FEA installed the route
or a third party installed it. Therefore when adding a roaitsfthe FEA should return if the current route is
the same or different to the one we attempted to add, as welhasnstalled the route originally. The RIB
on receiving the error state from the FEA can decide as a n@tmolicy how to proceed. If an attempt to
add a route fails because a different route exists the RIBlathoose to delete the old route and add the
new route.

The most common reason for a route deletion to fail would lag tiie route is no longer present. The
FEA should log that it has been asked to delete a route thantoexist. The RIB should decide if this
problem should be considered fatal.

4.1.1 Route Add Failure due to Resource Starvation

When a routing process sends a route to the RIB, the asyrmisamature of XRL handling means that
the RIB will typically accept the route before it has finish@dcessing the addition, and certainly before it
attempts to pass the route to the FEA, and hence on into th&ifding engine. It is possible for the route
addition to fail due to memory exhaustion in either the RIBrothe forwarding engine itself. Should this

occur, it is important for the routing protocol to be made enaf the event, because the routing information
will now be out of synchronization with the forwarding infoation.

If the forwarding engine refuses the route due to resou®ation, the FEA will receive the failure.
The FEA will then indicate asynchronously to the RIB that fhdure occurred. The RIB will in turn
delete all state from all routing protocols that contrilebiteersions of this route, and asynchronously pass
the failure up to those routing protocols. Each of thoseinguprotocols will then handle the failure in a
protocol specific manner.

If the failure occurs due to resource starvation in the RIBinailar process will be initiated. It is not
currently clear how to reliably notify a routing protocoltime case when the router is running out of memory
for user-space processes.

In the case of BGP, if a route fails to be added due to resodareasion, the simplest mechanism is
to take down the peering that originated the route. The niopeer reinitialization mechanism (after some
time delay) will ensure that all the routes are re-instaetiafter the resource starvation problem goes away.

In the case of RIP, if a route fails to be added due to resoueseadion, the simplest mechanism is to
send our peers an infinite metric route for this particulafigrand to delete the state for this prefix. The
normal RIP periodic update will ensure that the route iswstantiated after the resource starvation problem
goes away.

In the case of link-state protocols such as OSPF and IS-etis no good way to deal with this
situation. A reasonable solution might be to take down gh@ehcies to avoid causing a blackhole, then
to bring up the adjacencies again but not propagate anystiale advertisements to our neighbors (so they
won't route via us) until all the link-state advertisemehése been received and we've successfully installed
all the routes in the kernel.

A Modification History

e June 9, 2003: Initial version 0.3 completed.

e August 28, 2003: Updated to match XORP release 0.4: No clsange

e November 6, 2003: Updated to match XORP release 0.5: No elsang

e July 8, 2004: Updated to match XORP release 1.0: No significlaanges.
e April 13, 2005: Updated to match XORP release 1.1: No changes

e March 8, 2006: Updated to match XORP release 1.2: Added adt®tabout the policy manager
process.

e August 2, 2006: Updated to match XORP release 1.3: Added ffidation History” appendix.
e March 20, 2007: Updated to match XORP release 1.4: No changes
e July 22, 2007: Updated to match XORP release 1.5: No changes.

References

[1] XORP Inter-Process Communication Library. XORP tecahdocument. http://www.xorp.org/.

10

