Python/C API Reference Manual
Release 2.0.1

Guido van Rossum
Fred L. Drake, Jr., editor

June 22, 2001

PythonLabs
E-mail: python-docs@python.org

Copyright(© 2001 Python Software Foundation. All rights reserved.

Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

This manual documents the API used by C anid-@rogrammers who want to write extension modules or embed
Python. It is a companion tBxtending and Embedding the Python Interpretenich describes the general principles
of extension writing but does not document the API functions in detail.

Warning: The current version of this document is incomplete. | hope that it is nevertheless useful. | will continue to
work on it, and release new versions from time to time, independent from Python source code releases.

CONTENTS

Introduction 1
1.1 Include Files. o e 1
1.2 Objects, Typesand Reference Counts ittt 2
1.3 EXCEPLIONS. o e e e 5
1.4 Embedding Python e 7
The Very High Level Layer 9
Reference Counting 11
Exception Handling 13
4.1 Standard EXCeptions e e 15
4.2 Deprecation of String EXceptions e 16
Utilities 17
5.1 OSULIIES e e 17
5.2 ProcessControl. e 17
5.3 Importing Modules e e e 18
Abstract Objects Layer 21
6.1 ObjectProtocol e e 21
6.2 Number Protocol e e 23
6.3 Sequence Protocal L e 26
6.4 Mapping Protocol. e 27
Concrete Objects Layer 29
7.1 Fundamental Objects. 29
7.2 Sequence Objects. 29
7.3 Mapping Objects e e 42
7.4 Numeric ObJeCtS. e e e e e 43
7.5 OtherObjects e 46
Initialization, Finalization, and Threads 49
8.1 Thread State and the Global InterpreterLack 52
Memory Management 57
9.1 OVEIVIEW . . o ot e e e e e e e 57
9.2 MemoryInterface L e e e e e e 58
9.3 EXamples e e e e 58

10 Defining New Object Types

10.1 Common Object StrUCtUreS o o o e e e e e e e e
10.2 Mapping Object STrUCTUreS. o e e e
10.3 Number Object StruCtures o o e e
10.4 Sequence ObjeCt SIrUCtUresS. o 0 i i e e e e e e
10.5 Buffer Object Structures i e e e

A Reporting Bugs

B History and License

B.1 Historyofthe software e

B.2 Terms and conditions for accessing or otherwise using Python

Index

61
61
62
62
62
62

65

67
67
67

71

CHAPTER
ONE

Introduction

The Application Programmer’s Interface to Python gives C ahd frogrammers access to the Python interpreter at

a variety of levels. The API is equally usable fromt-€ but for brevity it is generally referred to as the Python/C

API. There are two fundamentally different reasons for using the Python/C API. The first reason is &Extetitgion
modulesfor specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to ae@mbeddindPython in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward that writing an extension.

Many API functions are useful independent of whether you're embedding or extending Python; moreover, most ap-
plications that embed Python will need to provide a custom extension as well, so it's probably a good idea to become
familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#include "Python.h"

This implies inclusion of the following standard headersstdio.h> | <string.h> |, <errno.h> , <lim-
its.h> |, and<stdlib.h> (if available).

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py’ or * _Py’. Names beginning with ‘Py’ are for internal use by the Python implementation and should
not be used by extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that begin vth or ‘ _Py’. This confuses the reader, and
jeopardizes the portability of the user code to future Python versions, which may define additional hames beginning
with one of these prefixes.

The header files are typically installed with Python. Omix, these are located in the directories
‘$prefix/include/pythonversior’ and ‘$exec_prefix/include/pythonversior’, where $prefix and $exeprefix are defined
by the corresponding parameters to Pythaasfigure script andversionis sys.version[:3] . On Windows, the
headers are installed isgrefix/include’, where $prefix is the installation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includest.plxce
the parent directories on the search path and ther#iselude <python2.0/Python.h> ’; this will break on

multi-platform builds since the platform independent headers under $prefix include the platform specific headers from
$exec_prefix.

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value Bi9pgct* . This type is

a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the
same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only
fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you never declare
an automatic or static variable of typyObject , only pointer variables of typByObject* can be declared. The

sole exception are the type objects; since these must never be deallocated, they are typicdlyTstpe©bject

objects.

All Python objects (even Python integers) hawg@eand areference countAn object’s type determines what kind of
objectitis (e.g., an integer, a list, or a user-defined function; there are many more as explain&ythdneReference
Manual). For each of the well-known types there is a macro to check whether an object is of that type; for instance,
‘PyList _Check(a) 'is true if (and only if) the object pointed to kyis a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or
a global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero,
the object is deallocated. If it contains references to other objects, their reference count is decremented. Those other
objects may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an
obvious problem with objects that reference each other here; for now, the solution is “don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use thePya¢dlCREF() to increment

an object’s reference count by one, aRg_DECREF() to decrement it by one. They_DECREF() macro is
considerably more complex than the incref one, since it must check whether the reference count becomes zero and then
cause the object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure.
The type-specific deallocator takes care of decrementing the reference counts for other objects contained in the object
if this is a compound object type, such as a list, as well as performing any additional finalization that’s needed. There’s
no chance that the reference count can overflow; at least as many bits are used to hold the reference count as there
are distinct memory locations in virtual memory (assunmsiggof(long) >= sizeof(char*)). Thus, the

reference count increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an object.
In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python
code which could do this; there is a code path which allows control to flow back to the user RgnDECREF(),

so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name beginByWitject _,
‘PyNumber_’, ‘PySequence _’ or ‘PyMapping _’). These operations always increment the reference count of

2 Chapter 1. Introduction

the object they return. This leaves the caller with the responsibility taPRgalDECREF() when they are done with
the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C APl is best explained in teowsefship of references

Note that we talk of owning references, never of owning objects; objects are always shared! When a function owns
a reference, it has to dispose of it properly — either by passing ownership on (usually to its caller) or by calling
Py_DECREF() or Py_XDECREF(). When a function passes ownership of a reference on to its caller, the caller is
said to receive aewreference. When no ownership is transferred, the caller is s&idrtow the reference. Nothing

needs to be done for a borrowed reference.

Conversely, when a calling function passes it a reference to an object, there are two possibilities: the function
stealsa reference to the object, or it does not. Few functions steal references; the two notable exceptions are
PyList _Setltem() andPyTuple _Setltem() , which steal a reference to the item (but not to the tuple or

list into which the item is put!). These functions were designed to steal a reference because of a common idiom for
populating a tuple or list with newly created objects; for example, the code to create théliuf@e "three")

could look like this (forgetting about error handling for the moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);

PyTuple_Setitem(t, 0, PyInt_FromLong(1L));
PyTuple_Setltem(t, 1, PyInt_FromLong(2L));
PyTuple_Setitem(t, 2, PyString_FromString("three"));

Incidentally, PyTuple _Setltem() is theonly way to set tuple itemsPySequence _Setltem() and Py-
Object _Setltem() refuse to do this since tuples are an immutable data type. You should onlyylse
ple _Setltem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written udiydist _New() andPyList _Setltem() . Such code
can also us®ySequence _Setltem() ; this illustrates the difference between the two (the eRyaDECREF()
calls):

PyObject *, *x;

| = PyList_New(3);

X = Pyint_FromLong(1L);
PySequence_Setltem(l, 0, x); Py _DECREF(X);
X = PyInt_FromLong(2L);
PySequence_Setltem(l, 1, x); Py_DECREF(x);
X = PyString_FromString("three");
PySequence_Setltem(l, 2, x); Py_DECREF(x);

You might find it strange that the “recommended” approach takes more code. However, in practice, you will rarely
use these ways of creating and populating a tuple or list. There’s a generic fuigtioBuildValue() , that can

create most common objects from C values, directed foyraat string For example, the above two blocks of code
could be replaced by the following (which also takes care of the error checking):

1.2. Objects, Types and Reference Counts 3

PyObject *t, *I;

t
I

Py_BuildValue("(iis)", 1, 2, "three");
Py_BuildValue("fiis]", 1, 2, "three");

It is much more common to udeyObject _Setltem() and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
reference counts is much saner, since you don’t have to increment a reference count so you can give a reference away
(“have it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int set_all(PyObject *target, PyObject *item)

{ . .
int i, n;
n = PyObject_Length(target);
if (n < 0)
return -1,
for (i = 0; i < n; i++) {
if (PyObject_Setltem(target, i, item) < 0)
return -1;
}
return O;
}

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a referece to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject _Getltem() andPySequence _Getltem() , always return a new reference (i.e., the caller becomes

the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumagdi.e., the type of the type of the object passed as an argument to the furdiiesn)'t enter into

it! Thus, if you extract an item from a list usiiRyList _Getltem() , you don’t own the reference — but if you
obtain the same item from the same list usihgsequence _Getltem() (which happens to take exactly the same
arguments), you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
usingPyList _Getltem() , and once usin@ySequence _Getltem()

4 Chapter 1. Introduction

long sum_list(PyObject *list)

{ . .
int i, n;
long total = O;
PyObject *item;
n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for i = 0; i < n; i++) {
item = PyList_Getltem(list, i); /* Can’t fail */
if (!PyInt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);
}
return total;
}

long sum_sequence(PyObject *sequence)

int i, n;
long total = O;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_Getltem(sequence, i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyInt_Check(item))
total += PyInt_AsLong(item);
Py_DECREF(item); /* Discard reference ownership */
}

return total;

1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C typesrsuch as

long , double andchar* . A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise

1.3. Exceptions 5

exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator
— usuallyNULLor -1 . A few functions return a Boolean true/false result, with false indicating an error. Very few
functions return no explicit error indicator or have an ambiguous return value, and require explicit testing for errors
with PyErr _Occurred()

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded appli-
cation). A thread can be in one of two states: an exception has occurred, or not. The fly&ron_Occurred()

can be used to check for this: it returns a borrowed reference to the exception type object when an exception has
occurred, andNULL otherwise. There are a number of functions to set the exception Bygr _SetString()

is the most common (though not the most general) function to set the exception sta@yfand Clear() clears

the exception state.

The full exception state consists of three objects (all of which caNWBkL): the exception type, the correspond-

ing exception value, and the traceback. These have the same meanings as the Python sysbgects _type

sys.exc _value , andsys.exc _traceback ; however, they are not the same: the Python objects represent the
last exception being handled by a Pythton ... except statement, while the C level exception state only exists
while an exception is being passed on between C functions until it reaches the Python bytecode interpreter's main
loop, which takes care of transferring itdgs.exc _type and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is
to call the function sys.exc _info() , which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it shaubdset another exception — that would overwrite the exception

that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shownsaorthesequence() example above.

It so happens that that example doesn'’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
return item + 1

Here is the corresponding C code, in all its glory:

6 Chapter 1. Introduction

int incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_Getltem(dict, key);
if (tem == NULL) {
/* Handle KeyError only: */
if (IPyErr_ExceptionMatches(PyExc_KeyError)) goto error;

[* Clear the error and use zero: */
PyErr_Clear();
item = PyInt_FromLong(OL);
if (item == NULL) goto error;
}

const_one = Pyint_FromLong(1L);
if (const_one == NULL) goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL) goto error;

if (PyObject_Setltem(dict, key, incremented_item) < 0) goto error;
rv = 0; /* Success */
/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py XDECREF() to ignore NULL references */
Py XDECREF(item);

Py_XDECREF(const_one);
Py_XDECREF(incremented_item);

return rv; /* -1 for error, O for success */

This example represents an endorsed use of dbto statement in C! It illustrates the use d?Py-

Err _ExceptionMatches() and PyErr _Clear() to handle specific exceptions, and the use of
Py_XDECREF() to dispose of owned references that mayNigLL (note the X' in the name;Py_DECREF()
would crash when confronted withNULL reference). It is important that the variables used to hold owned references
are initialized toNULL for this to work; likewise, the proposed return value is initializedto(failure) and only set

to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function iBy _Initialize() . This initializes the table of loaded modules, and creates the
fundamental modules_builtin ~ __, __main __ andsys . It also initializes the module search patlyg.path).

1.4. Embedding Python 7

Py_Initialize() does not set the “script argument lissy6.argv). If this variable is needed by Python code
that will be executed later, it must be set explicitly with a calPyBSys _SetArgv(argc, argv) subsequent to the
call to Py_Initialize()

On most systems (in particular, on N,k and Windows, although the details are slightly different),

Py _Initialize() calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python in-
terpreter executable. In particular, it looks for a directory nantieghython2.0’ relative to the parent directory where

the executable namegython’ is found on the shell command search path (the environment variable $PATH).

For instance, if the Python executable is found /msr/local/bin/python’, it will assume that the libraries are in
‘lusr/local/lib/python2.0’. (In fact, this particular path is also the “fallback” location, used when no executable file
named python’ is found along $PATH.) The user can override this behavior by setting the environment variable
$PYTHONHOME, or insert additional directories in front of the standard path by setting $SPYTHONPATH.

The embedding application can steer the search by calllygSetProgramName(file) before calling

Py _Initialize() . Note that SPYTHONHOME still overrides this and $PYTHONPATH is still inserted in
front of the standard path. An application that requires total control has to provide its own implementation of
Py_GetPath() , Py_GetPrefix() , Py_GetExecPrefix() , andPy_GetProgramFullPath() (all de-

fined in ‘Modules/getpath.c’).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another
call toPy_lInitialize()) or the application is simply done with its use of Python and wants to free all memory al-
located by Python. This can be accomplished by calggFinalize() . The functionPy _lIsInitialized()

returns true if Python is currently in the initialized state. More information about these functions is given in a later
chapter.

8 Chapter 1. Introduction

CHAPTER
TWO

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval _input , Py_file _input , andPy_single _input . These are described following the functions
which accept them as parameters.

Note also that several of these functions teffEE* parameters. On particular issue which needs to be handled
carefully is that theFILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that the
Python runtime is using.

int PyRun_AnyFile (FILE *fp, char *filenamé
If fp refers to a file associated with an interactive device (console or terminal inputior pseudo-terminal),
return the value oPyRun_lInteractiveLoop() , otherwise return the result 8yRun_SimpleFile()
If filenameis NULL, this function use§???" as the filename.

int PyRun_SimpleString (char *commandl
Executes the Python source code froommandn the __main __ module. If__main __ does not already
exist, it is created. Returrson success oil if an exception was raised. If there was an error, there is no way
to get the exception information.

int PyRun_SimpleFile (FILE *fp, char *filenamé
Similar to PyRun_SimpleString() , but the Python source code is read fréprinstead of an in-memory
string. filenameshould be the name of the file.

int PyRun_lInteractiveOne (FILE *fp, char *filenamé
Read and execute a single statement from a file associated with an interactive deYilemarfieis NULL,
"???" is used instead. The user will be prompted usigg.psl andsys.ps2 . Returns) when the input
was executed successfulh if there was an exception, or an error code from tlsecbde.h’ include file
distributed as part of Python in case of a parse error. (Note ¢habtle.h’ is not included by Python.h’, so
must be included specifically if needed.)

int PyRun_lInteractiveLoop (FILE *fp, char *filenamé
Read and execute statements from a file associated with an interactive devieouigireached. Iflename
is NULL, "???" is used instead. The user will be prompted ugsipg.psl andsys.ps2 . Return9 atEoOF.

struct _node* PyParser _SimpleParseString (char *str, int starf
Parse Python source code fraaim using the start tokestart The result can be used to create a code object
which can be evaluated efficiently. This is useful if a code fragment must be evaluated many times.

struct _node* PyParser _SimpleParseFile (FILE *fp, char *filename, int stait
Similar toPyParser _SimpleParseString() , but the Python source code is read fréprnstead of an
in-memory stringfilenameshould be the name of the file.

PyObject* PyRun_String (char *str, int start, PyObject *globals, PyObject *locals
Return valueNew reference
Execute Python source code fraatn in the context specified by the dictionarigiebalsandlocals The param-
eterstart specifies the start token that should be used to parse the source code.

Returns the result of executing the code as a Python objeisit bt if an exception was raised.

PyObject* PyRun_File (FILE *fp, char *filename, int start, PyObject *globals, PyObiject *lochls
Return valueNew reference
Similar to PyRun_String() , but the Python source code is read fréprinstead of an in-memory string.
filenameshould be the name of the file.

PyObject* Py_CompileString (char *str, char *filename, int stajt
Return valueNew reference
Parse and compile the Python source codstinreturning the resulting code object. The start token is given
by start, this can be used to constrain the code which can be compiled and shottgd leeal _input |,
Py_file _input ,orPy_single _input . The filename specified Hilenames used to construct the code
object and may appear in tracebacksSyntaxError exception messages. This retulBLL if the code
cannot be parsed or compiled.

int Py_eval _input
The start symbol from the Python grammar for isolated expressions; for us@witiompileString()

int Py_file _input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use withPy_CompileString() . This is the symbol to use when compiling arbitrarily long Python source
code.

int Py_single _input
The start symbol from the Python grammar for a single statement; for us@witGompileString() . This
is the symbol used for the interactive interpreter loop.

10 Chapter 2. The Very High Level Layer

CHAPTER
THREE

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void

void

void

void

The

Py

Py_INCREH PyObject *g
Increment the reference count for objectThe object must not bHULL; if you aren’t sure that it isn'NULL,
usePy_XINCREF() .

Py_XINCREKR PyObject *9
Increment the reference count for objecfThe object may b&lULL, in which case the macro has no effect.

Py_DECREF PyObject *9
Decrement the reference count for objecThe object must not bULL; if you aren’t sure that it isn'NULL,
usePy_XDECREF(). If the reference count reaches zero, the object’s type’s deallocation function (which must
not beNULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance
with a__del __() method is deallocated). While exceptions in such code are not propagated, the executed
code has free access to all Python global variables. This means that any object that is reachable from a global
variable should be in a consistent state beRye DECREF() is invoked. For example, code to delete an object

from a list should copy a reference to the deleted object in a temporary variable, update the list data structure,
and then calPy_DECREF() for the temporary variable.

Py_XDECREFPyObject *9
Decrement the reference count for objectThe object may b&ULL, in which case the macro has no effect;
otherwise the effect is the same asRyr_DECREF(), and the same warning applies.

following functions or macros are only for use within the interpreter corePy_Dealloc()
ForgetReference() , _Py_NewReference() ,as well as the global variablePy_RefTotal

11

12

CHAPTER
FOUR

Exception Handling

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat likentive &frno variable: there is a global
indicator (per thread) of the last error that occurred. Most functions don't clear this on success, but will set it to indicate
the cause of the error on failure. Most functions also return an error indicator, ublidlly if they are supposed to

return a pointer, orl if they return an integer (exception: tiRyArg _Parse*() functions returnl for success

andO for failure). When a function must fail because some function it called failed, it generally doesn't set the error
indicator; the function it called already set it.

The error indicator consists of three Python objects corresponding to the Python vasghlesc _type ,
sys.exc _value andsys.exc _traceback . API functions exist to interact with the error indicator in various
ways. There is a separate error indicator for each thread.

void PYErmr _Print ()
Print a standard tracebackggs.stderr and clear the error indicator. Call this function only when the error
indicator is set. (Otherwise it will cause a fatal error!)

PyObject* PyErr _Occurred ()
Return valueBorrowed reference
Test whether the error indicator is set. If set, return the excepyioa(the first argument to the last call to
one of thePyErr _Set*() functions or toPyErr _Restore()). If not set, returlNULL You do not own a
reference to the return value, so you do not neeéiytoDECREF() it. Note: Do not compare the return value
to a specific exception; useyErr _ExceptionMatches() instead, shown below. (The comparison could
easily fail since the exception may be an instance instead of a class, in the case of a class exception, or it may
the a subclass of the expected exception.)

int PyErr _ExceptionMatches (PyObject *exg
Equivalent to PyErr _GivenExceptionMatches(PyErr _Occurred(), exq '. This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr _GivenExceptionMatches (PyObject *given, PyObject *eXc
Return true if thegivenexception matches the exceptiondrc If excis a class object, this also returns true
whengivenis an instance of a subclasseKcis a tuple, all exceptions in the tuple (and recursively in subtuples)
are searched for a match.divenis NULL, a memory access violation will occur.

void PyErr _NormalizeException (PyObject**exc, PyObject**val, PyObject**tb
Under certain circumstances, the values returneeyirr _Fetch() below can be “unnormalized”, meaning
that* excis a class object butval is not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens. The delayed normalization is
implemented to improve performance.

void PyErr _Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr _Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback

13

void

void

void

Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set
all three variables tlULL If it is set, it will be cleared and you own a reference to each object retrieved. The
value and traceback object may NeJLL even when the type object is ndiote: This function is normally

only used by code that needs to handle exceptions or by code that needs to save and restore the error indicator
temporarily.

PyErr _Restore (PyObject *type, PyObject *value, PyObject *tracebpck
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects
are NULL, the error indicator is cleared. Do not passldLL type and norNULL value or traceback. The
exception type should be a string or class; if it is a class, the value should be an instance of that class. Do not
pass an invalid exception type or value. (Violating these rules will cause subtle problems later.) This call takes
away a reference to each object, i.e. you must own a reference to each object before the call and after the call
you no longer own these references. (If you don’t understand this, don’t use this function. | warnegteu.)
This function is normally only used by code that needs to save and restore the error indicator temporarily.

PyErr _SetString (PyObiject *type, char *messape
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, €gExc _RuntimeError . You need not increment its reference
count. The second argument is an error message,; it is converted to a string object.

PyErr _SetObject (PyObject *type, PyObject *valye
This function is similar toPyErr _SetString() but lets you specify an arbitrary Python object for the
“value” of the exception. You need not increment its reference count.

PyObject* PyErr _Format (PyObject *exception, const char *format)...

void

int

Return valueAlwaysNULL
This function sets the error indicat@xceptiorshould be a Python exception (string or class, not an instance).
fmtshould be a string, containing format codes, similgsriatf . Thewidth.precision before a format

code is parsed, but the width part is ignored.
Character | Meaning

‘c’ Character, as aint parameter

d’ Number in decimal, as ant parameter

‘X’ Number in hexadecimal, as amt parameter
‘X’ A string, as echar * parameter

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string,
and any extra arguments discarded.

A new reference is returned, which is owned by the caller.

PyErr _SetNone (PyObject *typé
This is a shorthand foPyErr _SetObject(typg Py _None)'.

PyErr _BadArgument ()
This is a shorthand folPyErr _SetString(PyExc _TypekError, messagg’, where messagéndicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr _NoMemory()

Return valueAlwaysNULL
This is a shorthand foPyErr _SetNone(PyExc _MemoryError) ’;itreturnsNULLSo0 an object allocation
function can writefeturn PyErr _NoMemory(); ’when it runs out of memory.

PyObject* PyErr _SetFromErrno (PyObject *typé

Return value:AlwaysNULL

This is a convenience function to raise an exception when a C library function has returned an error and set the C
variableerrno . It constructs a tuple object whose first item is the integgano value and whose second item

is the corresponding error message (gotten febrarror()), and then callsPyErr _SetObject(type

objec) . On UNIX, when theerrno value isEINTR, indicating an interrupted system call, this cdhg-

Err _CheckSignals() , and if that set the error indicator, leaves it set to that. The function always returns

14

Chapter 4. Exception Handling

NULL, so a wrapper function around a system call can wrigeurn PyErr _SetFromErrno(); "when
the system call returns an error.

PyObject* PyErr _SetFromErrmoWithFilename (PyObject *type, char *filename

void

int

void

Similar toPyErr _SetFromErrno() , with the additional behavior that filenameis notNULL, it is passed
to the constructor dfypeas a third parameter. In the case of exceptions sut@BEsor andOSError , this
is used to define thilename attribute of the exception instance.

PyErr _BadInternalCall 0
This is a shorthand folPyErr _SetString(PyExc _TypekError, message’, where messagéndicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

PyErr _CheckSignals ()

This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. Isigeal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effectSEBINT is to raise theKeyboardinterrupt

exception. If an exception is raised the error indicator is set and the function rétuntiserwise the function
returns0. The error indicator may or may not be cleared if it was previously set.

PyErr _Setinterrupt 0
This function is obsolete. It simulates the effect ofS&GINT signal arriving — the next timePy-
Err _CheckSignals() is called, Keyboardinterrupt will be raised. It may be called without holding
the interpreter lock.

PyObject* PyErr _NewException (char *name, PyObject *base, PyObject *dict

void

Return valueNNew reference

This utility function creates and returns a new exception object. nEmeargument must be the name of the
new exception, a C string of the formodule.class . Thebaseanddict arguments are normallMULL This
creates a class object derived from the root for all exceptions, the built-in Baosption (accessible in C as
PyExc _Exception). The__module __ attribute of the new class is set to the first part (up to the last dot)
of thenameargument, and the class name is set to the last part (after the last dotha3émgument can be
used to specify an alternate base class. dibeargument can be used to specify a dictionary of class variables
and methods.

PyErr _WriteUnraisable (PyObject *ob)
This utility function prints a warning messagedys.stdermvhen an exception has been set but it is impossible
for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
__del __ method.

The function is called with a single argumeutbj that identifies where the context in which the unraisable
exception occurred. The repr obj will be printed in the warning message.

4.1 Standard Exceptions

All standard Python exceptions are available as global variables whose nam@gtaxe *’ followed by the Python
exception name. These have the typgObject* ; they are all class objects. For completeness, here are all the
variables:

4.1. Standard Exceptions 15

Notes:

(1) This is a base class for other standard exceptions.

(2) Only defined on Windows; protect code that uses this by testing that the preprocessoMBadftiNDOW &

defined.

C Name | Python Name | Notes
PyExc _Exception Exception Q)
PyExc _StandardError StandardError Q)
PyExc _ArithmeticError ArithmeticError 1)
PyExc _LookupError LookupError 1)
PyExc _AssertionError AssertionError

PyExc _AttributeError AttributeError

PyExc _EOFError EOFError

PyExc _EnvironmentError EnvironmentError 1)
PyExc _FloatingPointError FloatingPointError

PyExc _IOError IOError

PyExc _ImportError ImportError

PyExc _IndexError IndexError

PyExc _KeyError KeyError

PyExc _KeyboardInterrupt KeyboardInterrupt

PyExc _MemoryError MemoryError

PyExc _NameError NameError

PyExc _NotimplementedError NotimplementedError

PyExc _OSError OSError

PyExc _OverflowError OverflowError

PyExc _RuntimeError RuntimeError

PyExc _SyntaxError SyntaxError

PyExc _SystemError SystemError

PyExc _SystemExit SystemExit

PyExc _TypeError TypeError

PyExc _ValueError ValueError

PyExc _WindowsError WindowsError (2)
PyExc _ZeroDivisionError ZeroDivisionError

4.2 Deprecation of String Exceptions

All exceptions built into Python or provided in the standard library are derived Erogption

String exceptions are still supported in the interpreter to allow existing code to run unmodified, but this will also

change in a future release.

16

Chapter 4. Exception Handling

CHAPTER
FIVE

Utilities

The functions in this chapter perform various utility tasks, such as parsing function arguments and constructing Python
values from C values.

5.1 OS Utilities

int Py_FdisInteractive (FILE *fp, char *filenamé
Return true (nonzero) if the standard I/O filewith namefilenameis deemed interactive. This is the case

for files for which fsatty(fileno(fp)) ’is true. If the global flagPy_InteractiveFlag is true, this
function also returns true if theamepointer isNULL or if the name is equal to one of the stririgstdin>’
or'???

long PyOS GetlLastModificationTime (char *filenamé

Return the time of last modification of the fiilename The result is encoded in the same way as the timestamp
returned by the standard C library functitime()

void PyOS AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not
need to be called.

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only available when
USE_STACKCHECIKs defined (currently on Windows using the Microsoft Visual C++ compiler and on the
Macintosh).USE_CHECKSTACMiIll be defined automatically; you should never change the definition in your
own code.

PyOS sighandler _t PyOS getsig (inti)
Return the current signal handler for signalThis is a thin wrapper around eithgigaction or signal
Do not call those functions directfPyOS _sighandler _t is a typedef alias fovoid (*)(int)

PyOS sighandler _t PyOS setsig (inti, PyOS sighandlert h)
Set the signal handler for signato beh; return the old signal handler. This is a thin wrapper around either
sigaction orsignal . Do not call those functions directhy?yOS sighandler _t is a typedef alias for
void (*)(int)

5.2 Process Control

void Py_FatalError (char *message
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when

17

the object administration appears to be corrupted. @mxUthe standard C library functicabort() s called
which will attempt to produce abre’ file.

void Py_Exit (intstatu3
Exit the current process. This calRy_Finalize() and then calls the standard C library function
exit(statug.

int Py_AtExit (void (*func) ()
Register a cleanup function to be called By_Finalize() . The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successfulRy _AtExit() returns0; on failure, it returnsl . The cleanup function registered last is called
first. Each cleanup function will be called at most once. Since Python’s internal finallization will have completed
before the cleanup function, no Python APIs should be callefitg

5.3 Importing Modules

PyObject* Pylmport _ImportModule (char *nameg
Return valueNew reference
This is a simplified interface t®ylmport _lmportModuleEx() below, leaving theglobals and locals
arguments set ttlULL When thenameargument contains a dot (i.e., when it specifies a submodule of a
package), thdromlist argument is set to the ligt*] so that the return value is the named module rather
than the top-level package containing it as would otherwise be the case. (Unfortunately, this has an additional
side effect whemamein fact specifies a subpackage instead of a submodule: the submodules specified in the
package’'s__all __ variable are loaded.) Return a new reference to the imported modul,Jlo with an
exception set on failure (the module may still be created in this case — exagsmaodules to find out).

PyObject* Pylmport _ImportModuleEx (char *name, PyObject *globals, PyObject *locals, PyObject *fron)list
Return valueNNew reference
Import a module. This is best described by referring to the built-in Python functiamport __() , as the
standard__import __() function calls this function directly.

The return value is a new reference to the imported module or top-level packagelLarwith an exception
set on failure (the module may still be created in this case). Like famport __() , the return value when
a submodule of a package was requested is normally the top-level package, unless a ndmettigtyvas
given.

PyObject* Pylmport _Import (PyObject *namg
Return valueNew reference
This is a higher-level interface that calls the current “import hook function”. It invokes themport __()
function from the__builtins __ of the current globals. This means that the import is done using whatever
import hooks are installed in the current environment, e.gelsgc orihooks .

PyObject* Pylmport _ReloadModule (PyObject*n)
Return valueNew reference
Reload a module. This is best described by referring to the built-in Python funetimed() , as the standard
reload() function calls this function directly. Return a new reference to the reloaded modN&Jldrwith
an exception set on failure (the module still exists in this case).

PyObject* Pylmport _AddModule (char *nameg
Return value Borrowed reference
Return the module object corresponding to a module name.n@iheargument may be of the forpack-
age.module). First check the modules dictionary if there’s one there, and if not, create a new one and insert
in in the modules dictionary. Warning: this function does not load or import the module; if the module wasn't al-
ready loaded, you will get an empty module object. Bgémport _ImportModule() or one of its variants
to import a module. ReturNULL with an exception set on failure.

18 Chapter 5. Utilities

PyObject* Pylmport _ExecCodeModule (char *name, PyObject *cp
Return valueNew reference
Given a module name (possibly of the fopackage.module) and a code object read from a Python bytecode
file or obtained from the built-in functiocompile() , load the module. Return a new reference to the module
object, orNULL with an exception set if an error occurred (the module may still be created in this case). (This
function would reload the module if it was already imported.)

long Pylmport _GetMagicNumber ()
Return the magic number for Python bytecode files (a.kpgicand ‘.pyo’ files). The magic number should be
present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* Pylmport _GetModuleDict ()
Return valueBorrowed reference
Return the dictionary used for the module administration (a.kys.modules). Note that this is a per-
interpreter variable.

void _Pylmport _Init ()
Initialize the import mechanism. For internal use only.

void Pylmport _Cleanup ()
Empty the module table. For internal use only.

void _Pylmport _Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _Pylmport _FindExtension (char*, char*)
For internal use only.

PyObject* _Pylmport _FixupExtension (char*, char *)
For internal use only.

int Pylmport _ImportFrozenModule (char *namg
Load a frozen module namathme Returnl for success if the module is not found, anel with an
exception set if the initialization failed. To access the imported module on a successful lodeylose
port _ImportModule() . (Note the misnomer — this function would reload the module if it was already
imported.)

struct _frozen
This is the structure type definition for frozen module descriptors, as generated [iedhe utility (see
‘Tools/freeze/!’ in the Python source distribution). Its definition, found include/import.h’, is:

struct _frozen {
char *name;
unsigned char *code;
int size;

b

struct _frozen* Pylmport _FrozenModules
This pointer is initialized to point to an array stfuct ~ _frozen records, terminated by one whose members
are allNULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could
play tricks with this to provide a dynamically created collection of frozen modules.

int Pylmport _Appendinittab (char *name, void (*initfunc)(void)
Add a single module to the existing table of built-in modules. This is a convenience wrapper &ylumd
port _Extendlnittab() , returning-1 if the table could not be extended. The new module can be imported
by the namename and uses the functianitfunc as the initialization function called on the first attempted im-
port. This should be called befoRy _Initialize()

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. Programs which embed Python may use an array of

5.3. Importing Modules 19

int

these structures in conjunction wilylmport _ExtendInittab() to provide additional built-in modules.
The structure is defined imnclude/import.h’ as:

struct _inittab {
char *name;
void (*initfunc)(void);

}

Pylmport _Extendlnittab ('struct_inittab *newtab

Add a collection of modules to the table of built-in modules. THesvtabarray must end with a sentinel entry
which containdNULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns0 on success o1l if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This should be called Pgfoheitialize()

20

Chapter 5. Utilities

CHAPTER
SIX

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will
raise a Python exception.

6.1 Object Protocol

int PyObject _Print (PyObject*o, FILE *fp, int flagk
Print an objecb, on filefp. Returns-1 on error. The flags argument is used to enable certain printing options.
The only option currently supported®y_PRINT_RAWiIf given, thestr() of the object is written instead of
therepr()

int PyObject _HasAttrString (PyObject *o, char *attr namé
Returnsl if o has the attributattr_name and O otherwise. This is equivalent to the Python expression
‘hasattr(o, attr_namg . This function always succeeds.

PyObject* PyObject _GetAttrString (PyObject *o, char *attr nam¢
Return valueNew reference
Retrieve an attribute nameditr_namefrom objecto. Returns the attribute value on succes$\\bOLLon failure.
This is the equivalent of the Python expressiondttr_name.

int PyObject _HasAttr (PyObject*o, PyObject *attrname
Returnsl if o has the attributattr_name and0 otherwise. This is equivalent to the Python expression
‘hasattr(o, attr_namg . This function always succeeds.

PyObject* PyObject _GetAttr (PyObject *o, PyObject *attrnameg
Return valueNew reference
Retrieve an attribute namexditr_namefrom objecto. Returns the attribute value on succes$\\bt Lon failure.
This is the equivalent of the Python expressiondttr_name.

int PyObject _SetAttrString (PyObject *o, char *attr_.name, PyObject *v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statement attr_name = V'

int PyObject _SetAttr (PyObject*o, PyObject *attrname, PyObject *v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statement attr_name = V.

int PyObject _DelAttrString (PyObject *o, char *attr namé
Delete attribute namedttr_name for objecto. Returns-1 on failure. This is the equivalent of the Python
statement:del o. attr_name.

int PyObject _DelAttr (PyObject*o, PyObject *attrnamg
Delete attribute namedttr_name for objecto. Returns-1 on failure. This is the equivalent of the Python

21

statementdel o. attr_namé.

int PyObject _Cmyf PyObject *01, PyObject *02, int *resylt
Compare the values ofl ando2 using a routine provided byl, if one exists, otherwise with a routine provided
by 02. The result of the comparison is returned@sult Returns-1 on failure. This is the equivalent of the
Python statementésult = cmp(01, 02"

int PyObject _Compare(PyObject *0l1, PyObject *oR
Compare the values afl ando2 using a routine provided bgl, if one exists, otherwise with a routine pro-
vided byo2. Returns the result of the comparison on success. On error, the value returned is undefined; use
PyErr _Occurred() to detect an error. This is equivalent to the Python expressiop(01, 02) .

PyObject* PyObject _Repr (PyObject *g
Return valueNew reference
Compute a string representation of objecReturns the string representation on sucdski,L on failure. This
is the equivalent of the Python expressiogpr(o) '. Called by therepr() built-in function and by reverse
guotes.

PyObject* PyObject _Str (PyObject *9
Return valueNew reference
Compute a string representation of objecReturns the string representation on sucadki,Lon failure. This
is the equivalent of the Python expressistr(0) '. Called by thestr() built-in function and by therint
statement.

int PyCallable _Check(PyObject *q
Determine if the objeco is callable. Returr if the object is callable an@ otherwise. This function always
succeeds.

PyObject* PyObject _CallObject (PyObiject *callable object, PyObject *args
Return valueNew reference
Call a callable Python objedallable_object with arguments given by the tupbrgs If no arguments are
needed, themrgs may beNULL Returns the result of the call on successNafLL on failure. This is the
equivalent of the Python expressiapply(o, args)’.

PyObject* PyObject _CallFunction (PyObiject *callable_object, char *format, .).
Return valueNew reference
Call a callable Python objectallable_object with a variable number of C arguments. The C arguments are
described using ®#y_BuildValue() style format string. The format may BeULL, indicating that no
arguments are provided. Returns the result of the call on succes§lldron failure. This is the equivalent of
the Python expressioapply(o, args .

PyObject* PyObject _CallMethod (PyObject *o, char *m, char *format,).
Return valueNew reference
Call the method nameih of objecto with a variable number of C arguments. The C arguments are described
by aPy_BuildValue() format string. The format may BeULL, indicating that no arguments are provided.
Returns the result of the call on successNaiLL on failure. This is the equivalent of the Python expression
‘0. method args) '. Note that special method names, such.aadd __() , __getitem __() , and so on are
not supported. The specific abstract-object routines for these must be used.

int PyObject _Hash(PyObject*g
Compute and return the hash value of an obgedDn failure, returnl . This is the equivalent of the Python
expressionhash(o) .

int PyObject _IsTrue (PyObject*g
Returnsl if the objecto is considered to be true, afidotherwise. This is equivalent to the Python expression
‘not not 0. This function always succeeds.

PyObject* PyObject _Type (PyObject *g
Return valueNew reference
On success, returns a type object corresponding to the object type of @bfeffailure, return&dNULL This is

22 Chapter 6. Abstract Objects Layer

equivalent to the Python expressiapge(o) .

int PyObject _Length (PyObject*g
Return the length of object If the objecto provides both sequence and mapping protocols, the sequence length
is returned. On errorl is returned. This is the equivalent to the Python express$amg ‘ o) .

PyObject* PyObject _Getltem (PyObject *o, PyObject *key
Return valueNew reference
Return element 0b corresponding to the objekeyor NULL on failure. This is the equivalent of the Python
expressiond[key .

int PyObject _Setltem (PyObject*o, PyObject *key, PyObject)v
Map the objeckeyto the valuev. Returns1 on failure. This is the equivalent of the Python statemejpkéy]
= V.

int PyObject _Delltem (PyObject*o, PyObject *key
Delete the mapping fdteyfrom o. Returns-1 on failure. This is the equivalent of the Python statemdat *
of key .

int PyObject _AsFileDescriptor (PyObject *g
Derives a file-descriptor from a Python object. If the object is an integer or long integer, its value is returned.
If not, the object’sfileno() method is called if it exists; the method must return an integer or long integer,
which is returned as the file descriptor value. Retuin®n failure.

6.2 Number Protocol

int PyNumber_Check (PyObject *g
Returnsl if the objecto provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber_Add(PyObject *01, PyObject *oR
Return valueNew reference
Returns the result of addirgl ando2, or NULL on failure. This is the equivalent of the Python expressain
+ 02.

PyObject* PyNumber_Subtract (PyObject *o1, PyObject *oR
Return valueNew reference
Returns the result of subtracting from 01, or NULLon failure. This is the equivalent of the Python expression
‘ol - oZ.

PyObject* PyNumber_Multiply (PyObject *o1, PyObject *oR
Return valueNew reference
Returns the result of multiplyingl ando2, or NULL on failure. This is the equivalent of the Python expression
‘ol * oZ2.

PyObject* PyNumber_Divide (PyObject*ol, PyObject *opR
Return valueNew reference
Returns the result of dividing1 by 02, or NULL on failure. This is the equivalent of the Python expressain
/ 02.

PyObject* PyNumber_Remainder (PyObject *ol1, PyObject *op
Return valueNew reference
Returns the remainder of dividiral by 02, or NULL on failure. This is the equivalent of the Python expression
‘ol % oZ.

PyObject* PyNumber_Divmod (PyObject *o01, PyObject *op
Return valueNew reference
See the built-in functiodivmod() . ReturndNULL on failure. This is the equivalent of the Python expression
‘divmod(o0l1, 02)’.

6.2. Number Protocol 23

PyObject* PyNumber_Power (PyObject *o1, PyObject *02, PyObject *»3
Return valueNew reference
See the built-in functiopow() . ReturnsNULL on failure. This is the equivalent of the Python expression
‘pow(0l, 02, 03)’, whereo3is optional. Ifo3is to be ignored, paf®y_None in its place (passinglULL
for o3would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *9
Return valueNew reference
Returns the negation afon success, ddULL on failure. This is the equivalent of the Python expressia.’

PyObject* PyNumber_Positive (PyObject *9
Return valueNew reference
Returnso on success, ddULL on failure. This is the equivalent of the Python expressien.*

PyObject* PyNumber_Absolute (PyObject *9
Return valueNew reference
Returns the absolute value@for NULL on failure. This is the equivalent of the Python expressais(o) .

PyObject* PyNumber_Invert (PyObject*g
Return valueNew reference
Returns the bitwise negation obn success, ddULLon failure. This is the equivalent of the Python expression
7 o.

PyObject* PyNumber_Lshift (PyObject *ol1, PyObject *op
Return valueNew reference
Returns the result of left shiftingl by 02 on success, ddULL on failure. This is the equivalent of the Python
expressionol << o02.

PyObject* PyNumber_Rshift (PyObject *o1, PyObject *oR
Return valueNew reference
Returns the result of right shiftingll by 02 on success, ddULLon failure. This is the equivalent of the Python
expressionol >> o02.

PyObject* PyNumber_And(PyObject *o1, PyObject *oP
Return valueNew reference
Returns the “bitwise and” 062 ando2 on success andULL on failure. This is the equivalent of the Python
expressionol &o2.

PyObject* PyNumber_Xor (PyObject *o1, PyObject *oP
Return value:New reference
Returns the “bitwise exclusive or” afl by 02 on success, oNULL on failure. This is the equivalent of the
Python expressiorol ~ o02.

PyObject* PyNumber_Or(PyObject *ol1, PyObject *oR
Return valueNew reference
Returns the “bitwise or” obl and o2 on success, oNULL on failure. This is the equivalent of the Python
expressionol | oZ2.

PyObject* PyNumber_InPlaceAdd (PyObiject *o1, PyObject *oR
Return valueNNew reference
Returns the result of addirgl ando2, or NULL on failure. The operation is dome-placewhenol supports it.
This is the equivalent of the Python expressiof ‘+= 02.

PyObject* PyNumber_InPlaceSubtract (PyObject *o1, PyObject *opR
Return valueNew reference
Returns the result of subtractir@® from 01, or NULL on failure. The operation is dorie-place when ol
supports it. This is the equivalent of the Python expressidn-= 02.

PyObject* PyNumber_InPlaceMultiply (PyObject *o1, PyObject *op
Return valueNew reference

24 Chapter 6. Abstract Objects Layer

Returns the result of multiplyinglando2, or NULLon failure. The operation is doie-placewhenolsupports
it. This is the equivalent of the Python expressioth *= 02.

PyObject* PyNumber_InPlaceDivide (PyObject *01, PyObject *oR
Return valueNew reference
Returns the result of dividingl by 02, or NULLon failure. The operation is dome-placewhenol supports it.
This is the equivalent of the Python expressioh /= 02.

PyObject* PyNumber_InPlaceRemainder (PyObject *o1, PyObject *op
Return valueNew reference
Returns the remainder of dividingl by 02, or NULL on failure. The operation is doria-place whenol
supports it. This is the equivalent of the Python expressdn%= 02.

PyObject* PyNumber_InPlacePower (PyObject *01, PyObject *02, PyObject *p3
Return valueNew reference
See the built-in functiopow() . ReturndNULL on failure. The operation is dome-placewhenol supports it.
This is the equivalent of the Python expressioft **= 02 when 03 isPy_None, or an in-place variant of
‘pow(0l, 02 varo3) ’otherwise. Ifo3is to be ignored, paddy_None in its place (passinglULL for 03
would cause an illegal memory access).

PyObject* PyNumber _InPlaceLshift (PyObject *01, PyObject *op
Return valueNew reference
Returns the result of left shiftingl by 02 on success, ddULL on failure. The operation is dorie-placewhen
ol supports it. This is the equivalent of the Python expressidn<<= 02.

PyObject* PyNumber _InPlaceRshift (PyObject *01, PyObject *oP
Return valueNNew reference
Returns the result of right shiftingll by 02 on success, ddULLon failure. The operation is dome-placewhen
olsupports it. This is the equivalent of the Python expressidn*>= 02.

PyObject* PyNumber_InPlaceAnd (PyObject *o1, PyObject *oR
Return valueNew reference
Returns the “bitwise and” a62 ando2 on success anNULL on failure. The operation is done-placewhen
ol supports it. This is the equivalent of the Python expressian&= 02

PyObject* PyNumber_InPlaceXor (PyObiject *ol1, PyObject *oR
Return valueNew reference
Returns the “bitwise exclusive or” afl by 02 on success, dlULL on failure. The operation is dorie-place
whenol supports it. This is the equivalent of the Python expressidn™= 02.

PyObject* PyNumber_InPlaceOr (PyObject *o0l1, PyObject *op
Return valueNew reference
Returns the “bitwise or” 0b1 ando2 on success, dlULL on failure. The operation is done-placewhenol
supports it. This is the equivalent of the Python expressidn|= 02.

int PyNumber_Coerce (PyObject **p1, PyObject **p2
This function takes the addresses of two variables of Byp®bject* . If the objects pointed to bypl and
* p2 have the same type, increment their reference co