
Ghostscript 9.05 Color Management

Michael J. Vrhel, Ph.D.

Artifex Software

7 Mt. Lassen Drive, A-134

San Rafael, CA 94903, USA

www.artifex.com

Abstract

This document provides information about the color architecture in Ghostscript
9.05. The document is suitable for users who wish to obtain accurate color with their
output device as well as for developers who wish to customize Ghostscript to achieve
a higher level of control and/or interface with a different color management module.

Revision 1.1

Artifex Software Inc. www.artifex.com 1

1 Introduction

With release 9.0, the color architecture of Ghostscript was updated to primarily use the
ICC[1] format for its color management needs. Prior to this release, Ghostscript’s color
architecture was based heavily upon PostScript[2] Color Management (PCM). This is due to
the fact that Ghostscript was designed prior to the ICC format and likely even before there
was much thought about digital color management. At that point in time, color management
was very much an art with someone adjusting controls to achieve the proper output color.

Today, almost all print color management is performed using ICC profiles as opposed
to PCM. This fact along with the desire to create a faster, more flexible design was the
motivation for the color architectural changes in release 9.0. Since 9.0, several new features
and capabilities have been added. As of the 9.05 release, features of the color architecture
include:

• Easy to interface different CMMs (Color Management Modules) with Ghostscript.

• ALL color spaces are defined in terms of ICC profiles.

• Linked transformations and internally generated profiles are cached.

• Easily accessed manager for ICC profiles.

• Easy to specify default profiles for DeviceGray, DeviceRGB and DeviceCMYK color
spaces.

• Devices can readily communicate their ICC profiles and have their ICC profiles set.

• Operates efficiently in a multithreaded environment.

• Handles named colors (spots) with ICC named color profile or proprietary format.

• ICC color management of Device-N colors or alternatively customizable spot color
handing.

• Includes object type (e.g. image, graphic, text) and rendering intent into the compu-
tation of the linked transform.

• Ability to override document embedded ICC profiles with Ghostscript’s default ICC
profiles.

• Easy to specify unique source ICC profiles to use with CMYK and RGB graphic,
image and text objects.

• Easy to specify unique destination ICC profiles to use with graphic, image and text
objects.

Artifex Software Inc. www.artifex.com 2

• Easy to specify different rendering intents (perceptual, colorimetric, saturation, abso-
lute colorimetric) for graphic, image and text objects.

• Control to force gray source colors to black ink only when rendering to output devices
that support black ink.

The document is organized to first provide a high level overview of the architecture. This
is followed by details of the various functions and structures, which include the information
necessary to interface other color management modules to Ghostscript as well as how to
interface specialized color handling operations.

2 Overall Architecture and Typical Flow

Figure 1 provides a graphical overview of the various components that make up the archi-
tecture. The primary components are:

• The ICC manager, which maintains the various default profiles.

• The link cache, which stores recently used linked transforms.

• The profile cache, which stores internally generated ICC profiles created from PostScript
CIE based color spaces and CalRGB, CalGray PDF color spaces.

• The profiles contained in the root folder iccprofiles, which are used as default color
spaces for the output device and for undefined source colors in the document.

• The color management module (CMM), which is the engine that provides and performs
the transformations (e.g. little CMS).

• The profiles associated with the device, which include profiles dependent upon object
type, a proofing profile and a device link profile.

In the typical flow, when a thread is ready to transform a buffer of data, it will request
a linked transform from the link cache. When requesting a link, it is necessary to provide
information to the CMM, which consists of a source color space, a destination color space, an
object state (e.g. text, graphic, or image) and a rendering type (e.g. perceptual, saturation,
colorimetric). The linked transform provides a mapping directly from the source color space
to the destination color space. If a linked transform for these settings does not already exist
in the link cache, a linked transform from the CMM will be obtained (assuming there is
sufficient memory – if there is not sufficient memory then the requesting thread will need
to wait). Depending upon the CMM, it is possible that the CMM may create a lazy linked
object (i.e. create the real thing when it is asked to transform data). At some point, a linked

Artifex Software Inc. www.artifex.com 3

gsicc_init_buffer
gsicc_get_link

gsicc_release_link

gsicc_set_icc_directory
gsicc_set_profile

gsicc_init_device_profile
gsicc_set_gscs_profile
gsicc_get_gscs_profile

gsicc_profile_new
gsicc_get_profile_handle_buffer

Each thread could
have access to a

common ICC cache
or create its own

Graphics
Library

&
Interpreter

CMM

gscms_error
gscms_create
gscms_destroy
gscms_get_profile_handle_mem
gscms_get_profile_handle_file
gscms_release_profile
gscms_get_link
gscms_get_link_proof_devlink
gscms_get_name2device_link
gscms_release_link
gscms_transform_color_buffer
gscms_transform_color
gscms_transform_named_color
gscms_get_numberclrtnames
gscms_get_clrtname
gscms_get_input_channel_count
gscms_get_output_channel_count
gscms_get_profile_data_space

gsicc_set_device_profile
gsicc_set_device_profile_intent
gx_default_get_profile

Device

User profile directory

gsicc_set_icc_directory
gsicc_set_profile
gsicc_init_device_profile

TextProfile.icc

Device Profiles For
Various Rendering
Cases and Object Types

GraphicsProfile.icc

ImageProfile.icc

ICC Manager

Link Cache

Named Color Profile

DeviceN Profiles []

DefaultGray Profile

DefaultRGB Profile

DefaultCMYK Profile

Profile Cache

SoftMask Profiles

Source Profiles
(override)

default_gray.icc

default_rgb.icc

default_cmyk.icc

iccprofiles

lab.icc

sRGB.icc

s-gray.icc

ps_gray.icc

ps_rgb.icc

ps_cmyk.icc

gray_to_k.icc

ProofProfile.icc

DevicLinkProfile.icc

Figure 1: Graphical Overview of Ghostscript’s Color Architecture

transform will be returned to the requesting thread. The thread can then use this mapping
to transform buffers of data through calls through an interface to the external CMM. Once
the thread has completed its use of the link transform, it will notify the link cache. The link
cache will then be able to release the link when it needs additional cache space due to other
link requests.

3 PDL Color Definitions and ICC Profiles

To help reduce confusion, it is worthwhile to clarify terminology. In particular, the use of the
terms process color and device color need to be defined in the context of ICC profiles. Both
PDF[3] and PostScript (PS) have a distinction between process colors and device colors. In

Artifex Software Inc. www.artifex.com 4

PS, there is a conversion (e.g. via UCR/BG) from device colors to process colors. In an
ICC work flow, the colors are transformed directly from an input color space (often called
the source space) to an output color space (often called the destination space). The output
color space defined by the device’s ICC profile is a mapping to what PDF and PS define as
the process color space of the device. In other words, the “device color space” as defined by
the device’s ICC profile IS the process color space of PDF and PS. The ICC profile of the
device is a mapping from a CIE color space to the process color space AND from the process
color space to a CIE color space.

To understand this better, it may help to understand the method by which a print based
ICC profile is created. To create an ICC profile for a device, a chart is printed using its process
colors (e.g. CMYK). This chart is measured using a colorimeter or a spectrophotometer. This
provides the forward mapping from process colors to CIELAB values. The inverse mapping
(from CIELAB to process colors) is obtained by inverting this table usually through a brute
force search and extrapolation method. These mappings are both packed into an ICC format,
thereby defining mappings between the device “process colors” and the CIE color space.

4 Usage

There are a number of command line options available for color control. These options are
also available as device parameters and so can be set from Ghostscript’s command prompt
when Ghostscript is used in “server-mode” operation.

To define source colors that are not already colorimetrically defined in the source docu-
ment, the following command line options can be invoked:

-sDefaultGrayProfile = my gray profile.icc

-sDefaultRGBProfile = my rgb profile.icc

-sDefaultCMYKProfile = my cmyk profile.icc

In this case, for example, any source gray colors will be interpreted as being defined by
the ICC profile my gray profile.icc. If these profiles are not set, default ICC profiles will
be used to define undefined colors. These default profiles are contained in the directory
iccprofiles and are named default gray.icc, default rgb.icc and default cmyk.icc. The profile
default gray.icc is defined to provide output along the neutral axis with an sRGB lineariza-
tion. The profile default rgb.icc is the V2 sRGB ICC profile and the profile default cmyk.icc
is a SWOP CMYK ICC profile.

It is possible to have Ghostscript use the above specified ICC profiles in place of ICC

Artifex Software Inc. www.artifex.com 5

profiles embedded in the document. This is achieved using

-dOverrideICC = true/false

which, when set to true overrides any ICC profiles contained in the source document with the
profiles specified by sDefaultGrayProfile, sDefaultRGBProfile, sDefaultCMYKProfile. Note
that if no profiles are specified for the default Device color spaces, then the system default
profiles will be used. For detailed override control in the specification of source colors see
SourceObjectICC.

In addition to being able to define undefined source colors, it is possible to define the
ICC profile for the output device using

-sOutputICCProfile = my device profile.icc

Care should be taken to make sure that the number of components associated with the output
device is the same as the number of components for the output device ICC profile (i.e. use an
RGB profile for an RGB device). If the destination device is CMYK + SPOT colorants, then
it is possible to specify either a CMYK ICC profile or an N-Color ICC profile for the device.
If a CMYK profile is specified, then only the CMYK colorants will be color managed. If
an output profile is not specified, then the default CMYK profile is used as the output profile.

A directory can be defined, which will be searched to find the above defined ICC profiles.
This makes it easier for users who have their profiles contained in a single directory and do
not wish to append the full path name in the above command line options. The directory is
set using

-sICCProfilesDir = c:/my icc profiles

Note that if the build of gs or other PDL languages is performed with COMPILE INITS=1,
then the profiles contained in gs/iccprofiles will be placed in the ROM file system. If a
directory is specified on the command line using -sICCProfilesDir=, that directory is searched
before the iccprofiles/ directory of the ROM file system is searched.

Named color support for separation color spaces is specified through the command line
option

-sNamedProfile = c:/my namedcolor structure

While the ICC does define a named color format, the above structure can in practice be much
more general for those who have more complex handling requirements of separation color

Artifex Software Inc. www.artifex.com 6

spaces. For example, some developers wish to use their own proprietary-based format for
spot color management. This command option is for developer use when an implementation
for named color management is designed for the function gsicc transform named color
located in gsicc cache.c . An example implementation is currently contained in the code [see
comments above gsicc transform named color in gsicc cache.c]. For the general user,
this command option should really not be used.

The above option deals with the handling of single spot colors. It is possible to specify
ICC profiles for managing DeviceN source colors. This is done using the command line option

-sDeviceNProfile = c:/my devicen profile.icc

Note that neither PS nor PDF provide in-document ICC profile definitions for DeviceN color
spaces. With this interface it is possible to provide this definition. The colorants tag order in
the ICC profile defines the lay-down order of the inks associated with the profile. A windows-
based tool for creating these source profiles is contained in gs/toolbin/color/icc creator. If
non-ICC based color management of DeviceN source colors is desired by a developer, it is
possible to use the same methods used for the handling of individual spot colors. In that case,
a single proprietary structure could be used, which contains information about how to blend
multiple colorants for accurate DeviceN color proofing. This would require the addition of
code in gx concretize DeviceN similar to what is done in gx concretize Separation
(with the call of gsicc transform named color) for the specialized handing of spot colors
described above.

The command line option

-sProofProfile = my proof profile.icc

enables the specification of a proofing profile, which will make the color management system
link multiple profiles together to emulate the device defined by the proofing profile. See
Section 4.2 for details on this option.

The command line option

-sDeviceLinkProfile = my link profile.icc

makes it possible to include a device link profile in the color transformations. This is useful
for work flows where one wants to map colors first to a standard color space such as SWOP or
Fogra CMYK, but it is desired to redirect this output to other CMYK devices. See Section
4.2 for details on this option.

Artifex Software Inc. www.artifex.com 7

It is possible for a document to specify the rendering intent to be used when performing a
color transformation. Ghostscript is set up to handle four rendering intents with the nomen-
clature of Perceptual, Colorimetric, Saturation, and Absolute Colorimetric, which matches
the terminology used by the ICC format. By default, per the specification, the rendering
intent is Perceptual for PDF and PS documents. In many cases, it may be desired to ignore
the source settings for rendering intent. This is achieved through the use of two parameter
settings which are

-dOverrideRI = true/false

which, when set to true overrides the rendering intent contained in the source document
with the rendering intent that has been specified by

-dRenderIntent = intent

which sets the rendering intent that should be used with the profile specified above by -
sOutputICCProfile. The options for intent are 0, 1, 2 and 3, which correspond to the ICC
intents of Perceptual, Colorimetric, Saturation, and Absolute Colorimetric.

There are two additional special color handling options that may be of interest to some
users. One is

-dDeviceGrayToK = true/false

By default, Ghostscript will map DeviceGray color spaces to pure K when the output device
is CMYK based. This may not always be desired. In particular, it may be desired to map
from the gray ICC profile specified by -sDefaultGrayProfile to the output device profile. To
achieve this, one should specify -dDeviceGrayToK=false. The gray to k.icc profile in ./pro-
files is used to achieve this mapping of source gray to the colorant K.

In certain cases, it may be desired to not perform ICC color management on DeviceGray,
DeviceRGB and DeviceCMYK source colors. This can occur in particular. if one is attempt-
ing to create an ICC profile for a target device and needed to print pure colorants. In this
case, one may want instead to use the traditional Postscript 255 minus operations to con-
vert between RGB and CMYK with black generation and undercolor removal mappings. To
achieve these types of color mappings use the following command set to true

-dUseFastColor = true/false

Artifex Software Inc. www.artifex.com 8

4.1 Object dependent color management

It is often desired to perform unique mappings based upon object types. For example, one
may want to perform one color transformation on text colors to ensure a black text and
a different transformation on image colors to ensure perceptually pleasing images and yet
another transformation on graphics to create saturated colors. To achieve this, Ghostscript
provides a unprecedented amount of color control based upon object type.

The following commands, enable one to specify unique output ICC profiles and render-
ing intents for text, graphic and image objects. As shown in Figure 1, these profiles are
stored in the device structure. Specifically, the command options are:

-sGraphicICCProfile = filename

Sets the ICC profile that will be associated with the output device for vector-based graphics
(e.g. solid color Fill, Stroke operations). This option can be used to obtain more saturated
colors for graphics. Care should be taken to ensure that the number of colorants associated
with the device is the same as the profile.

-sGraphicIntent = intent

Sets the rendering intent that should be used with the profile specified above by -sGraphicICCProfile.
The options are the same as specified for -dRenderIntent. It is also necessary to set -
dOverrideRI=true.

-sImageICCProfile = filename

Sets the ICC profile that will be associated with the output device for images. This can
be used to obtain perceptually pleasing images. Care should be taken to ensure that the
number of colorants associated with the device is the same as the profile.

-sImageIntent = intent

Sets the rendering intent that should be used with the profile specified above by -sImageICCProfile.
The options are the same as specified for -dRenderIntent. It is also necessary to set -
dOverrideRI=true.

-sTextICCProfile = filename

Sets the ICC profile that will be associated with the output device for text. This can be
used ensure K only text at the output. Care should be taken to ensure that the number of

Artifex Software Inc. www.artifex.com 9

colorants associated with the device is the same as the profile.

-sTextIntent = intent

Sets the rendering intent that should be used with the profile specified above by -sTextICCProfile.
The options are the same as specified for -dRenderIntent. It is also necessary to set -
dOverrideRI=true.

In addition to being able to have the output ICC profile dependent upon object type, it
is possible to have the source ICC profile and rendering intents be dependent upon object
types for RGB and CMYK objects. Because this requires the specification of 12 new param-
eters and is only used in specialized situations, the specification is made through a single
text file. The text file is specified to Ghostscript using

-sSourceObjectICC = filename

This option provides an extreme level of override control to specify the source color spaces
and rendering intents to use with graphics, images and text for both RGB and CMYK source
objects. The specification is made through a file that contains on a line, a key name to spec-
ify the object type (e.g. Image CMYK) followed by an ICC profile file name and a rendering
intent number (0 for perceptual, 1 for colorimetric, 2 for saturation, 3 for absolute colori-
metric). An example file is given in ./gs/toolbin/color/src color/objsrc profiles example.txt.
Profiles to demonstrate this method of specification are also included in this folder. Note
that if objects are colorimetrically specified through this mechanism, other operations like
-sImageIntent, -dOverrideICC, have no affect.

The example file mentioned above contains the following tab delimited lines

Graphic CMYK cmyk src cyan.icc 0
Image CMYK cmyk src magenta.icc 0
Text CMYK cmyk src yellow.icc 0
Graphic RGB rgb source red.icc 0
Image RGB rgb source green.icc 0
Text RGB rgb source blue.icc 0

where the first item in the line is the key word, the second item in the line is the file name of
the source ICC profile to use for that object type and the third item specifies the rendering
intent. Note that not all types need to be specified. It is possible to have only a single type
specified in the file (e.g. Image CMYK). The other items would render in a normal default
fashion in this case.

Artifex Software Inc. www.artifex.com 10

RGB Image

CMYK Image CMYK Graphic

RGB Graphic

RGB TEXT

CMYK TEXT

Figure 2: Example file with mixed content. The file includes RGB and CMYK text,
graphics, and iamges

For those interested in this level of control, it is recommended to execute a number
of examples. In the first example, copy the files in ./gs/toolbin/color/src color/ to ./ic-
cprofiles and render the file ./examples/text graph image cmyk rgb.pdf with the option -
sSourceObjectICC = objsrc profiles example.txt to an RGB device (e.g. tiff24nc). Note, to
ensure that Ghostscript can find all the files and to avoid having to do a full rebuild to create
the ROM file system, you may want to specify the icc directory using
-sICCProfilesDir=“your full path to iccprofiles/”, which provides the full path to ./iccpro-
files/. Windows users should be sure to use the forward slash delimiter due to the special
interpretation of “\” by the Microsoft C startup code.

Figure 2 displays the source file text graph image cmyk rgb.pdf rendered with default
settings and Figure 3a displays the result when rendered using -sSourceObjectICC = ob-
jsrc profiles example.txt. The profiles specified in objsrc profiles example.txt are designed
to render object types to the color specified in their name when used as a source profile. In
this case, RGB graphics, images and text are rendered red, green and blue respectively and
CMYK graphics, images and text are rendered cyan, magenta and yellow respectively.

Modifying the contents of the objsrc profiles example.txt file to

Artifex Software Inc. www.artifex.com 11

(a) Source profiles vary with object type (b) Rendering intents vary with CMYK source object
type

Figure 3: Examples of object based color transformations for the file from Figure 2 by
specifying source profiles and/or rendering intents

Artifex Software Inc. www.artifex.com 12

(a) Destination profiles vary with object type (b) Destination intents vary with object type

Figure 4: Examples of object based color transformations for the file from Figure 2 by
specifying destination profiles and/or intents

Artifex Software Inc. www.artifex.com 13

Graphic CMYK cmyk src renderintent.icc 0
Image CMYK cmyk src renderintent.icc 1
Text CMYK cmyk src renderintent.icc 2

and rendering the file ./examples/text graph image cmyk rgb.pdf to an RGB device, one
obtains the output shown in Figure 3b. In this case, we demonstrated the control of rendering
intent based upon object type. The profile cmyk src renderintent.icc is designed to create
significantly different colors for its different intents. Since we only specified this for the
CMYK objects we see that they are the only objects effected and that this profile renders
its perceptual intent cyan, its colorimetric intent magenta and its saturation intent yellow.

For another example of object dependent color management, copy the files in
./toolbin/color/icc creator/effects to ./iccprofiles. Now specify unique output ICC profiles
for different object types using the command line options

-sGraphicICCProfile = yellow output.icc
-sImageICCProfile = magenta output.icc
-sTextICCProfile = cyan output.icc

while rendering the file text graph image cmyk rgb.pdf to a CMYK device (e.g. tiff32nc).
Figure 4a displays the results. In this case, the profiles, cyan output.icc, yellow output.icc
and magenta output.icc render a color that is indicated by their name when used as an
output profile.

Finally, in yet another example, we can demonstrate the effect of rendering intent for
different objects using the command line options

-sGraphicICCProfile = cmyk des renderintent.icc
-sImageICCProfile = cmyk des renderintent.icc
-sTextICCProfile = cmyk des renderintent.icc
-dImageIntent = 0
-dGraphicIntent = 1
-dTextIntent = 2
-dOverrideRI

Figure 4b displays the result. The profile cmyk des renderintent.icc is designed such that
the perceptual rendering intent outputs cyan only, the colorimetric intent outputs magenta
only and the saturation intent outputs yellow only.

A graphical overview of the object dependent color control is shown in Figure 5, which
shows how both the source and/or the destination ICC profiles can be specified.

Finally, it should be mentioned that Ghostscript has the capability to maintain object

Artifex Software Inc. www.artifex.com 14

CMYK Text

RGB Text

CMYK
Image

CMYK
Graphic

RGB
Graphic

RGB
Image

 Destination
Profile
Images

Destination
Profile

Graphics

Destination
Profile
Text

Source Profile
CMYK Images

Source Profile
CMYK Graphics

Source Profile
CMYK Text

Source Profile
RGB Images

Source Profile
RGB Graphics

Source Profile
RGB Text

Color
Management

Module

Object
Dependent

Color Managed
Output

Figure 5: Overview of profiles that can be used in object dependent color management

Artifex Software Inc. www.artifex.com 15

type information even through transparency blending. This is achieved through the use of a
special tag plane during the blending of the objects. When the final blending of the objects
occurs this tag information is available. Mixed objects will be indicated as such (e.g text
blended with image). A device can have a specialized put image operation that can handle
the pixel level color management operation and apply the desired color mapping for different
blend cases. The bittagrgb device in Ghostscript provides a demonstration of the use of the
tag information.

4.2 Proof and Device-Link Profiles

As shown in Figure 1, the proofing profile and the device link profile are associated with the
device. If these profiles have been specified using the options -sProofProfile = my proof profile.icc
and -sDeviceLinkProfile = my link profile.icc, then when the graphics library maps a source
color defined by the ICC profile source.icc to the device color values, a transformation is
computed by the CMM that consists of the steps shown in Figure 6. In this Figure, Device
ICC Profile is the ICC profile specified for the actual device (this can be specified using
-sOutputICCProfile). In practice, the CMM will create a single mapping that performs the
transformation of the multiple mappings shown in Figure 6. If we specify a proofing pro-
file, then our output should provide a proof of how the output would appear if it had been
displayed or printed on the proofing device defined by the proofing profile. The device link
profile is useful for cases where one may have a work flow that consists of always rendering
to a common CMYK space such as Fogra 39 followed by a mapping with a specialized device
link profile. In this case, the profile specified by -sOutputICCProfile would be the profile for
the common CMYK space.

5 Details of objects and methods

At this point, let us go into further detail of the architecture. Following this, we will dis-
cuss the requirements for interfacing another CMM to Ghostscript as well as details for
customization of handling Separation and DeviceN color spaces.

5.1 ICC Manager

The ICC Manager is a reference counted member variable of Ghostscript’s imager state. Its
functions are to:

• Store the required profile information to use for Gray, RGB, and CMYK source colors
that are NOT colorimetrically defined in the source document. These entries must
always be set in the manager and are set to default values unless defined by the
command line interface.

Artifex Software Inc. www.artifex.com 16

Source
Colors

Source
ICC Profile

Proof
Profile

(inverse table)

Device
ICC Profile

Device Link
ICC Profile

Proof
Profile

(forward table)

CIELAB CIELAB

Proof
Device
Values

Device
Values

Device
Values

Figure 6: Flow of data through source, proof, destination and device link ICC profiles

Artifex Software Inc. www.artifex.com 17

• Store the optional profile/structure information related to named colors and DeviceN
colors.

• Store the CIELAB source profile.

• Store the specialized profile for mapping gray source colors to K-only CMYK values.

• Store settings for profile override, output rendering intent (i.e. perceptual, colorimetric,
saturation or absolute colorimetric) and source color rendering intents.

• Store the profiles that are used for softmask rendering if soft masks are contained in
the document.

• Store the profiles used for object dependent source color specification through the use
of -sSourceObjectICC.

• Store the boolean flags for profile and rendering intent override of source settings.

The manager is created when the imaging state object is created for the graphics library.
It is reference counted and allocated in garbage collected (GC) memory that is stable with
graphic state restores. The default gray, RGB and CMYK ICC color spaces are defined
immediately during the initialization of the graphics library. If no ICC profiles are specified
externally, then the ICC profiles that are contained in the root folder iccprofiles will be used.
The ICC Manager is defined by the structure given below.

typedef struct gsicc manager s {
cmm profile t *device named; /* The named color profile for the device */
cmm profile t *default gray; /* Default gray profile for device gray */
cmm profile t *default rgb; /* Default RGB profile for device RGB */
cmm profile t *default cmyk; /* Default CMYK profile for device CMKY */
cmm profile t *lab profile; /* Colorspace type ICC profile from LAB to LAB */
cmm profile t *graytok profile; /* A specialized profile for mapping gray to K */
gsicc devicen t *device n; /* A linked list of profiles used for DeviceN support */
gsicc smask t *smask profiles; /* Profiles used when we are in a softmask group */
bool override internal; /* Override source ICC profiles */
bool override ri; /* Override source rendering intent */
cmm srcgtag profile t *srcgtag profile; /* Object dependent source profiles */
gs memory t *memory;
rc header rc;

} gsicc manager t;

Artifex Software Inc. www.artifex.com 18

Operators that relate to the ICC Manager are contained in the file gsicc manage.c/h and
include the following:

gsicc manager t* gsicc manager new(gs memory t *memory);

Creator for the ICC Manager.

int gsicc init iccmanager(gs state * pgs);

Initializes the ICC Manager with all the required default profiles.

cmm profile t* gsicc profile new(stream *s, gs memory t *memory, const char* pname,
int namelen);

Returns an ICC object given a stream pointer to the ICC content. The variables
pname and namelen provide the filename and name length of the stream if it is to be
created from a file. If the data is from the source stream, pname should be NULL
and namelen should be zero.

int gsicc set profile(gsicc manager t *icc manager, const char *pname, int namelen,
gsicc profile t defaulttype);

This is used to set the default related member variables in the ICC Manager. The
member variable to set is specified by defaulttype.

int gsicc set gscs profile(gs color space *pcs, cmm profile t *icc profile,
gs memory t * mem);

Sets the member variable cmm icc profile data of the gs color space object (pointed
to by pcs) to icc profile.

cmm profile t* gsicc get gscs profile(gs color space *gs colorspace, gsicc manager t *icc manager);

Artifex Software Inc. www.artifex.com 19

Returns the cmm icc profile data member variable of the gs color space object.

gcmmhprofile t gsicc get profile handle buffer(unsigned char *buffer, int profile size);

Returns the CMM handle to the ICC profile contained in the buffer.

void gsicc profile serialize(gsicc serialized profile t *profile data,
cmm profile t *iccprofile);

A function used to serialize the icc profile information for embedding into the c-list
(display list).

cmm profile t* gsicc get profile handle file(const char* pname, int namelen,
gs memory t *mem);

Given a profile file name, obtain a handle from the CMM.

void gsicc init profile info(cmm profile t *profile);

With a profile handle already obtained from the CMM set up some of the member
variables in the structure cmm profile t.

void gsicc init hash cs(cmm profile t *picc profile, gs imager state *pis);

Get the hash code for a profile.

gcmmhprofile t gsicc get profile handle clist(cmm profile t *picc profile,
gs memory t *memory);

For a profile that is embedded inside the c-list, obtain a handle from the CMM.

gcmmhprofile t gsicc get profile handle buffer(unsigned char *buffer, int profile size);

For a profile that is contained in a memory buffer, obtain a handle from the CMM.

Artifex Software Inc. www.artifex.com 20

gsicc smask t* gsicc new iccsmask(gs memory t *memory);

Allocate space for the icc soft mask structure. Only invoked when softmask groups
are used in rendering.

int gsicc initialize iccsmask(gsicc manager t *icc manager);

Initialize the icc soft mask structure. Only invoked when softmask groups are used
in rendering.

cmm profile t* gsicc set iccsmaskprofile(const char *pname, int namelen,
gsicc manager t *icc manager, gs memory t *mem);

Specialized function used in the setting of the soft mask profiles and the gray-to-k
profile.

unsigned int gsicc getprofilesize(unsigned char *buffer);

Get the size of a profile, as given by the profile information.

cmm profile t* gsicc read serial icc(gx device * dev, int64 t icc hashcode);

Read out the serialized icc data contained in the c-list for a given hash code.

cmm profile t* gsicc finddevicen(const gs color space *pcs, gsicc manager t *icc manager);

Search the DeviceN profile array for a profile that has the same colorants as the
DeviceN color space in the PDF or PS document.

gs color space index gsicc get default type(cmm profile t *profile data);

Detect profiles that were set as part of the default settings. These are needed to
differentiate between embedded document icc profiles and ones that were supplied to
undefined device source colors (e.g. DeviceRGB). During high level device writing
(e.g. pdfwrite), these default profiles are usually NOT written out.

void gsicc profile reference(cmm profile t *icc profile, int delta);

Enable other language interpreters (e.g. gxps) to adjust the reference count of a
profile.

int gsicc getsrc channel count(cmm profile t *icc profile);

Artifex Software Inc. www.artifex.com 21

Returns the number of device channels for a profile.

int gsicc init gs colors(gs state *pgs);

Used during start-up to ensure that the initial default color spaces are associated with
ICC profiles.

void gs setoverrideicc(gs imager state *pis, bool value);

Set the override internal variable in the icc manager.

bool gs currentoverrideicc(gs imager state *pis);

Get the override internal variable in the icc manager.

void gs setoverride ri(gs imager state *pis, bool value);

Set the override ri variable in the icc manager.

bool gs currentoverride ri(gs imager state *pis);

Get the override ri variable in the icc manager.

void gscms set icc range(cmm profile t **icc profile);

Set the range values to default of 0 to 1 for the profile data.

void gsicc setrange lab(cmm profile t *profile);

Set the range values to default of 0 to 100 for the first component and -128 to 127 for
components two and three.

int gsicc set srcgtag struct(gsicc manager t *icc manager, const char* pname,
int namelen);

Initializes the srcgtag profile member variable of the ICC manager. This is set using
-sSourceObjectICC.

void gsicc get srcprofile(gsicc colorbuffer t data cs, gs graphics type tag t graphics type tag,
cmm srcgtag profile t *srcgtag profile, cmm profile t **profile,

Artifex Software Inc. www.artifex.com 22

gsicc rendering intents t *rendering intent);

Given a particular object type this function will return the source profile and rendering
intent that should be used it it has been specified using -sSourceObjectICC.

5.2 Device Profile Structure

The device structure contains a member variable called icc struct, which is of type *cmm dev profile t.
The details of this structure are shown below.

typedef struct cmm dev profile s {
cmm profile t *device profile[]; /* Object dependent (and default) device profiles */
cmm profile t *proof profile; /* The proof profile */
cmm profile t *link profile; /* The device link profile */
gsicc rendering intents t intent[]; /* Object dependent rendering intents */
bool devicegraytok; /* Force source gray to device black */
bool usefastcolor; /* No color management */
gs memory t *memory;
rc header rc;

} cmm dev profile t;

There are a number of operators associated with the device profiles. These include:

cmm dev profile t* gsicc new device profile array(gs memory t *memory);

This allocates the above structure.

int gsicc set device profile intent(gx device *dev, gsicc profile types t intent,
gsicc profile types t profile type);

This sets the rendering intent for a particular object type.

int gsicc init device profile struct(gx device * dev, char *profile name,
gsicc profile types t profile type);

Artifex Software Inc. www.artifex.com 23

This sets the device profiles. If the device does not have a defined profile, then a
default one is selected.

void gsicc extract profile(gs graphics type tag t graphics type tag,
cmm dev profile t *profile struct, cmm profile t **profile,
gsicc rendering intents t *rendering intent);

Given a particular object type, this will return the device ICC profile and rendering
intent to use.

int gsicc set device profile(gx device * pdev, gs memory t * mem, char *file name,
gsicc profile types t defaulttype);

This sets the specified device profile. This is used by gsicc init device profile struct,
which will specify the default profile to this function if one was not specified.

int gsicc get device profile comps(cmm dev profile t *dev profile);

Returns the number of device components of the profile associated with the device.

5.3 Link Cache

The Link Cache is a reference counted member variable of Ghostscript’s imager state and
maintains recently used links that were provided by the CMM. These links are handles or
context pointers provided by the CMM and are opaque to Ghostscript. As mentioned above,
the link is related to the rendering intents, the object type and the source and destination
ICC profile. From these items, a hash code is computed. This hash code is then used to
check if the link is already present in the Link Cache. A reference count variable is included
in the table entry so that it is possible to determine if any entries can be removed if there
is insufficient space in the Link Cache for a new link. The Link Cache is allocated in stable
GC memory and is designed with semaphore calls to allow multi-threaded c-list (display list)
rendering to share a common cache. Sharing does require that the CMM be thread safe.
Operators that relate to the Link Cache are contained in the file gsicc cache.c/h and include
the following:

gsicc link cache t* gsicc cache new(gs memory t *memory);

Artifex Software Inc. www.artifex.com 24

Creator for the Link Cache.

void gsicc init buffer(gsicc bufferdesc t *buffer desc, unsigned char num chan,
unsigned char bytes per chan, bool has alpha, bool alpha first,
bool is planar, int plane stride, int row stride, int num rows,
int pixels per row);

This is used to initialize a gsicc bufferdesc t object. Two of these objects are used to
describe the format of the source and destination buffers when transforming a buffer
of color values.

gsicc link t* gsicc get link(gs imager state * pis, gx device *dev, gs color space *input colorspace,
gs color space *output colorspace,
gsicc rendering param t *rendering params gs memory t *memory);

This returns the link given the input color space, the output color space, and the
rendering intent. When the requester of the link is finished using the link, it should
release the link. When a link request is made, the Link Cache will use the parameters
to compute a hash code. This hash code is used to determine if there is already a
link transform that meets the needs of the request. If there is not a link present,
the Link Cache will obtain a new one from the CMM (assuming there is sufficient
memory), updating the cache.

The linked hash code is a unique code that identifies the link for an input color
space, an object type, a rendering intent and an output color space.

Note, that the output color space can be different than the device space. This occurs
for example, when we have a transparency blending color space that is different than
the device color space. If the output colorspace variable is NULL, then the ICC
profile associated with dev will be used as the destination color space.

gsicc link t* gsicc get link profile(gs imager state *pis, gx device *dev,
cmm profile t *gs input profile,
cmm profile t *gs output profile,

Artifex Software Inc. www.artifex.com 25

gsicc rendering param t *rendering params,
gs memory t *memory, bool devicegraytok);

This is similar to the above operation gsicc get link but will obtain the link with
profiles that are not member variables of the gs color space object.

void gsicc get icc buff hash(unsigned char *buffer, int64 t *hash, unsigned int buff size);

This computes the hash code for the buffer that contains the ICC profile.

int gsicc transform named color(float tint value, byte *color name, uint name size,
gx color value device values[], const gs imager state *pis,
gx device *dev, cmm profile t *gs output profile,
gsicc rendering param t *rendering params);

This performs a transformation on the named color given a particular tint value and
returns device values.

void gsicc release link(gsicc link t *icclink);

This is called to notify the cache that the requester for the link no longer needs it.
The link is reference counted, so that the cache knows when it is able to destroy the
link. The link is released through a call to the CMM.

5.4 Interface of Ghostscript to CMM

Ghostscript interfaces to the CMM through a single file. The file gsicc littlecms.c/h is a
reference interface between littleCMS and Ghostscript. If a new library is used (for example,
if littleCMS is replaced with Windows ICM on a Windows platform (giving Windows color
system (WCS) access on Vista, Windows 7 and Windows 8)), the interface of these functions
will remain the same, but internally they will need to be changed. Specifically, the functions
are as follows:

void gscms create(void **contextptr);

Artifex Software Inc. www.artifex.com 26

This operation performs any initializations required for the CMM.

void gscms destroy(void **contextptr);

This operation performs any cleanup required for the CMM.

gcmmhprofile t gscms get profile handle mem(unsigned char *buffer,
unsigned int input size);

This returns a profile handle for the profile contained in the specified buffer.

void gscms release profile(void *profile);

When a color space is removed or we are ending, this is used to have the CMM release
a profile handle it has created.

int gscms get input channel count(gcmmhprofile t profile);

Provides the number of colorants associated with the ICC profile. Note that if this
is a device link profile this is the number of input channels for the profile.

int gscms get output channel count(gcmmhprofile t profile);

If this is a device link profile, then the function returns the number of output channels
for the profile. If it is a profile with a PCS, then the function should return a value
of three.

gcmmhlink t gscms get link(gcmmhprofile t lcms srchandle, gcmmhprofile t lcms deshandle,
gsicc rendering param t *rendering params);

Artifex Software Inc. www.artifex.com 27

This is the function that obtains the linkhandle from the CMM. The call
gscms get link is usually called from the Link Cache. In the graphics library, calls
are made to obtain links using gsicc get link, since the link may already be available.
However, it is possible to use gscms get link to obtain linked transforms outside the
graphics library. For example, this is the case with the XPS interpreter, where minor
color management needs to occur to properly handle gradient stops.

gcmmhlink t gscms get link proof devlink(gcmmhprofile t lcms srchandle,
gcmmhprofile t lcms proofhandle,
gcmmhprofile t lcms deshandle,
gcmmhprofile t lcms devlinkhandle,
gsicc rendering param t *rendering params);

This function is similar to the above function but includes a proofing ICC profile
and/or a device link ICC profile in the calculation of the link transform. See Section
4.2.

void gscms release link(gsicc link t *icclink);

When a link is removed from the cache or we are ending, this is used to have the
CMM release the link handles it has created.

void gscms transform color buffer(gx device *dev, gsicc link t *icclink,
gsicc bufferdesc t *input buff desc,
gsicc bufferdesc t *output buff desc,
void *inputbuffer, void *outputbuffer);

This is the function through which all color transformations on chunks of data will
occur. Note that if the source hash code and the destination hash code are the
same, the transformation will not occur as the source and destination color spaces
are identical. This feature can be used to enable “device colors” to pass unmolested
through the color processing. Note that a pointer to this function is stored in a
member variable of Ghostscript’s ICC link structure (gsicc link t.procs.map buffer).

void gscms transform color(gx device *dev, gsicc link t *icclink, void *inputcolor,
void *outputcolor, int num bytes);

Artifex Software Inc. www.artifex.com 28

This is a special case where we desire to transform a single color. While it would be
possible to use gscms transform color buffer for this operation, single color trans-
formations are frequently required and it is possible that the CMM may have special
optimized code for this operation. Note that a pointer to this function is stored in a
member variable of Ghostscript’s ICC link structure (gsicc link t.procs.map color).

int gscms transform named color(gsicc link t *icclink, float tint value,
const char* ColorName, gx color value device values[]);

This function obtains a device value for the named color. While there exist named
color ICC profiles and littleCMS supports them, the code in gsicc littlecms.c is not
designed to use that format. The named color object need not be an ICC named
color profile but can be a proprietary type table. This is discussed further where
-sNamedProfile is defined in the Usage section.

void gscms get name2device link(gsicc link t *icclink, gcmmhprofile t lcms srchandle,
gcmmhprofile t lcms deshandle,
gcmmhprofile t lcms proofhandle,
gsicc rendering param t *rendering params,
gsicc manager t *icc manager);

This is the companion operator to gscms transform named color in that it
provides the link transform that should be used when transforming named col-
ors when named color ICC profiles are used for named color management. Since
gscms transform named color currently is set up to use a non-ICC table format,
this function is not used.

gcmmhprofile t gscms get profile handle file(const char *filename);

Obtain a profile handle given a file name.

char* gscms get clrtname(gcmmhprofile t profile, int k);

Obtain the kth colorant name in a profile. Used for DeviceN color management with
ICC profiles.

Artifex Software Inc. www.artifex.com 29

int gscms get numberclrtnames(gcmmhprofile t profile);

Return the number of colorant names that are contained within the profile. Used for
DeviceN color management with ICC profiles.

gsicc colorbuffer t gscms get profile data space(gcmmhprofile t profile);

Get the color space type associated with the profile.

int gscms get channel count(gcmmhprofile t profile);

Return the number of colorants or primaries associated with the profile.

int gscms get pcs channel count(gcmmhprofile t profile);

Get the channel count for the profile connection space. In general this will be three
but could be larger for device link profiles.

6 ICC Color, the Display List and Multi-Threaded

Rendering

Ghostscript’s display list is referred to the c-list (command list). Using the option
-dNumRenderingThreads=X, it is possible to have Ghostscript’s c-list rendered with X
threads. In this case, each thread will simultaneously render different horizontal bands of the
page. When a thread completes a band, it will move on to the next one that has not yet been
started or completed by another thread. Since color transformations are computationally
expensive, it makes sense to perform these operations during the multi-threaded rendering.
To achieve this, ICC profiles can be stored in the c-list and the associated color data stored
in the c-list in its original source space.

Vector colors are typically passed into the c-list in their destination color space, which is to
say that they are already converted through the CMM. Images however are not necessarily
pre-converted but are usually put into the c-list in their source color space. In this way,
the more time consuming color conversions required for images occurs during the multi-
threaded rendering phase of the c-list list. Transparency buffers also require extensive color
conversions. These buffers are created during the c-list rendering phase and will thus benefit
from having their color conversions occur during the multi-threaded rendering process.

Artifex Software Inc. www.artifex.com 30

7 PDF and PS CIE color space handling

One feature of Ghostscript is that all color conversions can be handled by the external CMM.
This enables more consistent specialized rendering based upon object type and rendering
intents. Most CMMs cannot directly handle CIE color spaces defined in PostScript or the
CalGray and CalRGB color spaces defined in PDF. Instead most CMMs are limited to
handling only ICC-based color conversions. To enable the handling of the non ICC-based
color spaces, Ghostscript converts these to equivalent ICC forms. The profiles are created
by the functions in gsicc create.c.

PostScript color spaces can be quite complex, including functional mappings defined by
programming procedures. Representing these operations can require a sampling of the 1-D
procedures. Sampling of functions can be computationally expensive if the same non-ICC
color space is repeatedly encountered. To address this issue, the equivalent ICC profiles are
cached and a resource id is used to detect repeated color space settings within the source
document when possible. The profiles are stored in the profile cache indicated in Figure
1. In PDF, it is possible to define CIELAB color values directly. The ICC profile lab.icc
contained in iccprofiles of Figure 1 is used as the source ICC profile for color defined in this
manner.

Currently PostScript color rendering dictionaries (CRDs) are ignored. Instead, a device
ICC profile should be used to define the color for the output device. There is currently an
enhancement request to enable the option of converting CRDs to equivalent ICC profiles.

Note that gsicc create.c requires icc34.h, since it uses the type definitions in that file in
creating the ICC profiles from the PS and PDF CIE color spaces.

8 DeviceN and Separation colors

8.1 Spot Colors

Spot colors, which are sometimes referred to as named colors, are colorants that are different
than the standard cyan, magenta, yellow or black colorants. Spot colors are commonly used
in the printing of labels or for special corporate logos for example. In PostScript and PDF
documents, color spaces associated with spot colors are referred to as separation color spaces.
The ICC format defines a structure for managing spot colors called a named color profile.
The structure consists of a table of names with associated CIELAB values for 100 percent
tint coverage. In addition, the table can contain optional CMYK device values that can be
used to print the same color as the spot color. In practice, these profiles are rarely used
and instead the proofing of spot colors with CMYK colors is often achieved with proprietary
mixing models. The color architecture of Ghostscript enables the specification of a structure
that contains the data necessary for these mixing models. When a fill is to be made with a

Artifex Software Inc. www.artifex.com 31

color in a separation color space, a call is made passing along the tint value, the spot color
name and a pointer to the structure so that the proprietary function can return the device
values to be used for that particular spot color. If the function cannot perform the mapping,
then a NULL valued pointer is returned for the device values, in which case the alternate
tint transform specified in the PDF or PS content is used to map the spot tint color.

8.2 DeviceN Colors

DeviceN color spaces are defined to be spaces consisting of a spot color combined with one
or more additional colorants. A DeviceN color space can be handled in a similar proprietary
fashion as spot colors if desired. The details of this implementation are given in Section 8.3.
Ghostscript also provides an ICC-based approach for handling DeviceN source colors. In this
approach, xCLR ICC source profiles can be provided to Ghostscript upon execution through
the command line interface using -sDeviceNProfile. These profiles describe how to map from
DeviceN tint values to CIELAB values. The profiles must include the colorantTableTag.
This tag is used to indicate the colorant names and the lay-down order of the inks. The
colorant names are associated with the colorant names in a DeviceN color space when it
is encountered. If a match is found, the xCLR ICC profile will be used to characterize
the source DeviceN colors. Note that the colorant orders specified by the names may be
different in the source profile, necessitating the use of a permutation of the DeviceN tint
values prior to color management. An overview of the process is shown in Figure 7. The
directory ./gs/toolbin/color/icc creator contains a Windows application for creating these
DeviceN source ICC profiles. Refer to the README.txt file for details and for an example.

In Microsoft’s XPS format, all input DeviceN and Separation type colors are required to
have an associated ICC profile. If one is not provided, then per the XPS specification[4] a
SWOP CMYK profile is assumed for the first four colorants and the remaining colorants are
ignored. With PDF DeviceN or Separation colors, the document defines a tint transform
and an alternate color space, which could be any of the CIE (e.g. CalGray, CalRGB, Lab,
ICC) or device (e.g. Gray, RGB, CMYK) color spaces. If the input source document is PDF
or PS and the output device does not understand the colorants defined in the DeviceN color
space, then the colors will be transformed to the alternate color space and color managed
from there assuming an external xCLR ICC profile was not specified as described above.

For cases when the device does understand the spot colorants of the DeviceN color space,
the preferred handling of DeviceN varies. Many prefer to color manage the CMYK compo-
nents with a defined CMYK profile, while the other spot colorants pass through unmolested.
This is the default manner by which Ghostscript handles DeviceN input colors. In other
words, if the device profile is set to a particular CMYK profile, and the output device is a
separation device, which can handle all spot colors, then the CMYK process colorants will
be color managed, but the other colorants will not be managed. If it is desired that the
CMYK colorants not be altered also, it is possible to achieve this by having the source and

Artifex Software Inc. www.artifex.com 32

1. xCLR ICC profiles.
One for each DeviceN
color space of interest.

. . .

2. Preload into
graphics library

D

Document with
a DeviceN color space

[/DeviceN
[/Orange /Green /Blue]
/DeviceCMYK
tintTransform
]

3. Load and parse document to render

Graphics Library

4. When DeviceN color
 space encountered, check
 xCLR ICC profiles. If
 match found, use as source
 profile.

Figure 7: Flow for use of xCLR source profiles to define DeviceN color in PDF and PS
source files

Artifex Software Inc. www.artifex.com 33

destination ICC profiles the same. This will result in an identity transform for the CMYK
colorants.

It should be noted that an ICC profile can define color spaces with up to 15 colorants.
For a device that has 15 or fewer colorants, it is possible to provide an ICC profile for such
a device. In this case, all the colorants will be color managed through the ICC profile. For
cases beyond 15, the device will be doing direct printing of the DeviceN colors outside of the
15 colorants.

8.3 DeviceN and Spot Color Customization

In earlier versions of Ghostscript, there existed a compile define named
CUSTOM COLOR CALLBACK, which provided developers with a method to intercept
color conversions and provide customized processing in particular for Separation and De-
viceN input color spaces. Using specialized mixing models in place of the standard tint
transforms, accurate proofing of the spot colorants was obtainable. An interface for cus-
tom handling of separation colors is now performed by customization of the function gs-
icc transform named color. An example, implementation is currently in place, which uses a
look-up-table based upon the colorant name. The look-up-table is stored in the device named
object of the icc manager. The structure can be stored in the location using -sNamedProfile
= c:/my namedcolor stucture.

DeviceN color handling is defined by an object stored in the device n entry of the
icc manager. Currently, the example implementation is to use an array of ICC profiles
that describe the mixing of the DeviceN colors of interest. This array of profiles is contained
in the device n entry of the icc manager. In this case, a multi-dimensional look-up-table is
essentially used to map the overlayed DeviceN colors to the output device colorants.

If a mathematical mixing model is to be used for the DeviceN colors instead of an
ICC-based approach, it will be necessary to store the data required for mixing either in
the device n entry or, if the same data is used for separation colors, the data in the
named color location can be used. In either case, a single line change will be required
in gx install DeviceN where a call is currently made to gsicc finddevicen to locate a
matching DeviceN ICC profile for DeviceN color management. In place of this call, it will
be necessary to make a call to a function that will prepare an object that can map colors in
this DeviceN space to the real device values. A pointer to this object is then returned by
the function. If the colorants cannot be handled, the function should return NULL. If the
function can handle the colorants, then when the link request is made between this color
space and the output device profile with the function gsicc get link it will be necessary
to populate the procs of Ghostscript’s link structure with the proper pointers to functions
that will use the link and transform the colors. The procedure structure, which is a member
variable of gsicc link t is defined in gscms.h and given as

Artifex Software Inc. www.artifex.com 34

typedef struct gscms procs s {
gscms trans buffer proc t map buffer; /* Use link to map buffer */
gscms trans color proc t map color; /* Use link to map single color */
gscms link free proc t free link /* Free link */

} gscms procs t;

For the CMM that is interfaced with Ghostscript, these procedures are populated with

map buffer = gscms transform color buffer;
map color = gscms transform color;
free link = gscms release link;

Assuming the DeviceN color manager can handle the DeviceN color space, when it returns
the opaque link handle, which is assigned to the link handle member variable of gsicc link t,
the above procs should be populated with the procedures that will actually make use of the
link. For example,

map buffer = devn transform buffer;
map color = devn transform color;
free link = devn release link;

In this case, the graphics library will make the appropriate calls when it is making use of
the link. As an example template, The unmanaged color option -dUseFastColor makes use
of this approach to provide “links” that use special mapping procedures where

map buffer = gsicc nocm transform color buffer;
map color = gsicc nocm transform color;
free link = gsicc nocm freelink;

In this way, the fact that unmanaged color is occurring is opaque to Ghostscript. Simi-
larly, the use of special mixing model links for DeviceN color would be unknown to Ghostscript
with this approach and requires nothing more than the minor interface procedure settings
(as well as the actual code to compute the mixing result).

9 PCL and XPS Support

PCL[5] makes use of the new color management architecture primarily through the output
device profiles as source colors are typically specified to be in the sRGB color space.

Artifex Software Inc. www.artifex.com 35

Full ICC support for XPS[4] is contained in ghostxps. This includes the handling of
profiles for DeviceN color spaces, Named colors and for profiles embedded within images.

References

[1] Specification ICC.1:2004-10 (Profile version 4.2.0.0) Image technology
colour management - Architecture, profile format, and data structure.
(http://www.color.org/ICC1v42 2006-05.pdf), Oct. 2004.

[2] PostScript R© Language Reference Third Edition, Adobe Systems Incorporated,
Addison-Wesley Publishing, (http://partners.adobe.com/public/developer/ps/index specs.html)
Reading Massachusetts, 1999.

[3] PDF Reference Sixth Edition Ver. 1.7, Adobe Systems Incorporated,
(http://www.adobe.com/devnet/pdf/pdf reference.html), November 2006.

[4] XML Paper Specification Ver. 1.0, Microsoft Corporation,
(http://www.microsoft.com/whdc/xps/xpsspec.mspx), 2006.

[5] PCL5 Printer Language Technical Reference Manual, Hewlett Packard,
(http://h20000.www2.hp.com/bc/docs/support/SupportManual/bpl13210/bpl13210.pdf),
October 1992.

Copyright (c) 2011, Artifex Software Inc. All rights reserved.

	Introduction
	Overall Architecture and Typical Flow
	PDL Color Definitions and ICC Profiles
	Usage
	Object dependent color management
	Proof and Device-Link Profiles

	Details of objects and methods
	ICC Manager
	Device Profile Structure
	Link Cache
	Interface of Ghostscript to CMM

	ICC Color, the Display List and Multi-Threaded Rendering
	PDF and PS CIE color space handling
	DeviceN and Separation colors
	Spot Colors
	DeviceN Colors
	DeviceN and Spot Color Customization

	PCL and XPS Support

