Oracle Berkeley DB

Getting Started with
Berkeley DB
for C++

Release 4.5

ORACLE
BERKELEY DR

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicensing.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle Corporation. All rights
to these marks are reserved. No third-party use is permitted without the express prior written consent of Oracle
Corporation.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology
Network forum at: http://forums.oracle.com/forums/forum.jspa?forumID=271

Published 9/20/2006

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicensing.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

Table of Contents

o =Tl iv
Conventions Used in this BOOKc.uviriiiiiiiiiiiiiiiii e e e iv

For More INformationeeeeeeietiiiii i e eer e ereneeeeeneeranneanes \%

1. Introduction to Berkeley DBuveiiiiiiiiiiiiiiiiiteeieeinineeeeeeennneeeeecennnnnaeens 1
ADBOUL THhis MaNUAL «..vennet it e e e e e e erenaeeeenaesaannesannes 2
Berkeley DB CONCEPLS tivviinetetiiaiiieeetereeiieeeeeesennneeeeesessnassesesensnsessssanns 2
Yool 1T o o T 4
Selecting Access Methods ...cevviiiiiiiiiiiiiiiiii it ieeeiieeeeeaaennaees 4

Choosing between BTree and Hashc.vvviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeennnns 5

Choosing between Queue and RECNOuvveiiiiiiiiiieiiieeiiieeeeeeennnneeeenns 5

Database Limits and Portabilityceeiviiiieiiiiiiiiiiiiiiiiiiiiii i eeeeenanes 6

o Y0 o 0 0= 6

(S Cel= oY (o] Tl o F- 1o Ta |11 o - H PP PP 7
o = A 8
Getting and USING DB ..viiiiiiiiiiiiiiiiiteeeeeiieeeeeeaannneeeeesssnneaessessnneneees 8

2 D - Y - oY= Y P 9
OPENING Databases teveuuuueretieiiiieteeeeeeiieeeeeeeeerneeeeeeessneeeeesesnnnnssesesennnnes 9
ClOSTNG DAt@baSES .uvveeeereiietettereiieeeeeeeiineeeeeeenenseeeesesssnnssssessnnnnsaseenns 10
Database Open FLags ...ueeeiieiiieeiieiiiieeeeereiineeeereseineneeeeesnnnnesssesannnnes 11
Administrative Methodsc.eeiriiiiiii i i e aees 11
Error Reporting FUNCEIONSiiiiiiiiiiiiiiiiiiiiiiiiiiieeeieiiiirnnnnnnnennennnnnnnns 13
Managing Databases in ENVIrONMENTSveeeiiiiiiieeeiereiiineeeeeeennnneeeeeesnnnnnes 15
Database EXamPLe ...uueeiiiiiiiiiiiiiiiieeeeeeiieeeeeeeenneeeseessnneeessesnnnnneess 17

3. Database RECOIAS ...uvvrnetiiittiiitererteeereeeetereanterenneeeennerennnerannnesannesnnn 20
Using Database RECOIAS . .uuueiiiiiiiiittiiiiiiieteeeeiieeeeeeeesnneeeeesennnneesesanns 20
Reading and Writing Database ReCOrdsciiviiiieiiiiiiienieeneiinneeeeeeennnnnes 21
Writing Records to the Databaseccevviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiinnes 21

Getting Records from the Databasecvevvieiiiiiiiiiieiiiiiiiieeeeeenennnnes 22

Deleting RECOIS .uvviiiiiiiiititieiiiieteeeeiieeeeeeeenneneeeesessnneseesssnnnnes 23

Data PersisteNCE ..iviueiiiiitiiei e et eeeeeeterenaterannreeanaerennnenes 23

Database Usage EXampPle .oiiiiiieeiiiiiiiiiieiiiiieeeeeeeiieeeeeeesnnneeeeseennnnnes 24

4, USING CUMSOIS 1uveeeeeennueeeeesennueeeeeessnnaseseesssnnsessesessnnssssssssnsssssssssnnnnnssses 33
Opening and CloSING CUMSOIS viviieinueeeeteeeiueeeeeeenreeeeeesesrnneseesessnnnnessasanns 33
Getting Records Using the CUISOreveiiiiiieieiiiiiieeeeereiiineeeeresennnneesenanns 34
Searching for RECOIAS ..vviiiiietitieiiiiiteiiieeeeeeineeeeeessnnaneeeenanns 35

Working with Duplicate ReCOrds ...ccveeeiiiiiiiniiiiiiiiiieeneiiieneeeaennns 38

Putting Records USING CUISOIS ...ueeeeieeiiiueeeeeeeiineeeeeesensseeeeesssnnssescasnnnnes 40
Deleting Records USING CUISOIS t..uuueeeeieeeniueeeeeesenaeeeeesessnseeeessennnnsssesanns 42
Replacing Records USING CUISOIS .uuiiieeiieeeeereeiiueeeeeeserraeeeeeesnsnnsseesasnnnnes 43

O] o]l o 11 1] (- PP PP 44

5. Secondary Databases ..uciieeiieeetiiieiiieeeeeeeeiieeeeeeeeernneeeesessneseseessnnnseseeeanns 49
Opening and Closing Secondary Databasescccevvveeeieiiiiiineeeereeninneeeennnns 50
Implementing Key EXTractors ...ciiiviieiiiiiiiiiieeeeieeiieeeeereerineeeeeesennneaaeens 51
Reading Secondary Databases ...ceeeeieeeeiiiiiieeeeereiiineeeereerineneeeesennneeaeens 52
Deleting Secondary Database RECOrds ...cvvvueeiiiiiiiineeieieiiineeeereennnnneeeannns 53
Using Cursors with Secondary Databasescccivvvvieiiiiiiiiieeeineiiinneneennns 54
9/20/2006 Getting Started with DB Page ii

B F= =0 Y= 1 < TN [0} [13 55

USING JOTN CUMSOIS «eieenetttiiieiitetteeenaneeeeeeennaneesssessannesssessnnnnesss 56
Secondary Database EXampPle ..couueieeieiieiieeirieieeieeerieeeneneeeenneeesnaeeesnnees 58
Secondary Databases with example_database_loadccccevvveevennnenn. 58
Secondary Databases with example_database_readcccccvvviieiinnneen. 63

6. Database Configurationcceeeeieiieeietieiueeeeineeerneeeeseeeenneeeenaeeesneesesneeenns 67
Setting the Page Size ..ccviiiiiiiiiiiiiii i e i et eee e eenaeeaenaees 67
OVErTlOW PagES .viinrtiiiitiiiitieiieteiteteieteeaeeeenneerenaeeesneeeennessanns 67
LOCKING vteettieittieiteeettteeeteeeanteeenneeeaneeeesneeeanneeesnnseesnnesenneeens 68

(O 2 i (el =] o Ty A PP PP PPN 69
Page Sizing AdVICE ..iiiiniiiiiiiiiii ittt eerreieeeeneeeeeeeeanaees 69
Selecting the Cache SizZe ...iivieiiiiiiiiiiii it ieei e ereeneeeeeeeeanas 70
BTree Configurationieeeeieieiiiietieiietieitereneeereneeeenneerenneessnaeeenneasanns 70
Allowing DUplicate RECOIAS ...uuiiiireiierttieitereieteeareerenneeeenaeeesneeeanns 71
Sorted DUPLICATES tivnreieeeiiiiiieieiiteeeieeeneeeenneeeenneeannaeens 71

Unsorted DUPLICAtES .uveeereeieintiriitieiieeeeeeeeenneeeeneeeesneeeanneeenns 71
Configuring a Database to Support Duplicatescccevveeeeneeennnenn. 72

Setting Comparison FUNCLIONSueueeiiiiiiiiiiiiiiiiiiiiiiiireiiieereeeanns 73
Creating Comparison FUNCLIONScovviiiiiinneiiieiinnnneereeennneeennas 74

9/20/2006 Getting Started with DB Page iii

Preface

Welcome to Berkeley DB (DB). This document introduces DB, version 4.5. It is intended
to provide a rapid introduction to the DB API set and related concepts. The goal of this
document is to provide you with an efficient mechanism with which you can evaluate DB
against your project's technical requirements. As such, this document is intended for C++
developers and senior software architects who are looking for an in-process data
management solution. No prior experience with Berkeley DB is expected or required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in nonospaced font, as are met hod names. For example:
"Db: : open() is a Db class method."

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory."

Program examples are displayed in a nonospaced font on a shaded background. For

example:

typedef struct vendor {
char name[MAXFI ELD] ; Il Vendor nane
char street[MAXFI ELD] ; Il Street name and number
char city[MAXFI ELD] ; Il Gty
char state[3]; Il Two-digit US state code
char zipcode[6] ; Il US zipcode
char phone_nunber[13]; Il Vendor phone number

} VENDOR

In some situations, programming examples are updated from one chapter to the next.
When this occurs, the new code is presented in nonospaced bol d font. For example:

typedef struct vendor {

char name[MAXFI ELD] ; Il Vendor nane
char street[MAXFI ELD] ; I/ Street name and nunmber
char city[MAXFI ELD] ; Il Gty
char state[3]; Il Two-digit US state code
char zipcode[6] ; Il US zipcode
char phone_nunber[13]; Il Vendor phone number
char sal es_rep[MAXFI ELD] ; [/ Name of sales representative
char sal es_rep_phone[MAXFIELD]; // Sales rep's phone nunber
} VENDOR

|:| Finally, notes of interest are represented using a note block such as this.

9/20/2006 Getting Started with DB Page iv

Conventions Used in this Book

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a DB application:

o Getting Started with Transaction Processing for C++

[http:/ /www.orade.com/technology/doaumentation/berkeley-db/db/gsg Ha/COXX/BerkeleyDB-Core-Co-Txn.pdf]

» Berkeley DB Getting Started with Replicated Applications for C++
[http:/ /www.orade.com/technology/documentation/berkeley-db/db/gsg db rep/CXX/Replication OXX_ GSG.pdf]

« Berkeley DB Programmer's Reference Guide
[http://www.oracle.com/technology/documentation/berkeley-db/db/ref/toc.html]

o Berkeley DB C++ API
[http://www.oracle.com/technology/documentation/berkeley-db/db/api_cxx/frame.html]

9/20/2006 Getting Started with DB Page v

http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/CXX/BerkeleyDB-Core-Cxx-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/CXX/Replication_CXX_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/toc.html
http://www.oracle.com/technology/documentation/berkeley-db/db/api_cxx/frame.html

9/20/2006 Getting Started with DB Page vi

Chapter 1. Introduction to Berkeley DB

Welcome to Berkeley DB (DB). DB is a general-purpose embedded database engine that
is capable of providing a wealth of data management services. It is designed from the
ground up for high-throughput applications requiring in-process, bullet-proof management
of mission-critical data. DB can gracefully scale from managing a few bytes to terabytes
of data. For the most part, DB is limited only by your system's available physical resources.

Because DB is an embedded database engine, it is extremely fast. You compile and link
it into your application in the same way as you would any third-party library. This means
that DB runs in the same process space as does your application, allowing you to avoid

the high cost of interprocess communications incurred by stand-alone database servers.

To further improve performance, DB offers an in-memory cache designed to provide rapid
access to your most frequently used data. Once configured, cache usage is transparent.
It requires very little attention on the part of the application developer.

Beyond raw speed, DB is also extremely configurable. It provides several different ways
of organizing your data in its databases. Known as access methods, each such data

organization mechanism provides different characteristics that are appropriate for different
data management profiles. (Note that this manual focuses almost entirely on the BTree
access method as this is the access method used by the vast majority of DB applications).

To further improve its configurability, DB offers many different subsystems, each of which
can be used to extend DB's capabilities. For example, many applications require
write-protection of their data so as to ensure that data is never left in an inconsistent
state for any reason (such as software bugs or hardware failures). For those applications,
a transaction subsystem can be enabled and used to transactional-protect database writes.

The list of operating systems on which DB is available is too long to detail here. Suffice
to say that it is available on all major commercial operating systems, as well as on many
embedded platforms.

Finally, DB is available in a wealth of programming languages. DB is officially supported
in C, C++, and Java, but the library is also available in many other languages, especially
scripting languages such as Perl and Python.

|:| Before going any further, it is important to mention that DB is not a relational database
(although you could use it to build a relational database). Out of the box, DB does not
provide higher-level features such as triggers, or a high-level query language such as SQL.
Instead, DB provides just those minimal APIs required to store and retrieve your data as
efficiently as possible.

9/20/2006 Getting Started with DB Page 1

About This Manual

About This Manual

This manual introduces DB. As such, this book does not examine intermediate or advanced
features such as threaded library usage or transactional usage. Instead, this manual
provides a step-by-step introduction to DB's basic concepts and library usage.

Specifically, this manual introduces DB environments, databases, database records, and
storage and retrieval of database records. This book also introduces cursors and their
usage, and it describes secondary databases.

For the most part, this manual focuses on the BTree access method. A chapter is given
at the end of this manual that describes some of the concepts involving BTree usage, such
as duplicate record management and comparison routines.

Examples are given throughout this book that are designed to illustrate API usage. At the
end of each chapter, a complete example is given that is designed to reinforce the concepts
covered in that chapter. In addition to being presented in this book, these final programs
are also available in the DB software distribution. You can find them in

DB I NSTALL/ exanpl es_cxx/ getting_started
where DB_| NSTALL is the location where you placed your DB distribution.

This book uses the C++ programming languages for its examples. Note that versions of
this book exist for the C and Java languages as well.

Berkeley DB Concepts

Before continuing, it is useful to describe some of the larger concepts that you will
encounter when building a DB application.

Conceptually, DB databases contain records. Logically each record represents a single
entry in the database. Each such record contains two pieces of information: a key and a
data. This manual will on occasion describe a a record’s key or a record’s data when it is
necessary to speak to one or the other portion of a database record.

Because of the key/data pairing used for DB databases, they are sometimes thought of
as a two-column table. However, data (and sometimes keys, depending on the access
method) can hold arbitrarily complex data. Frequently, C structures and other such
mechanisms are stored in the record. This effectively turns a 2-column table into a table
with n columns, where n-1 of those columns are provided by the structure’s fields.

Note that a DB database is very much like a table in a relational database system in that
most DB applications use more than one database (just as most relational databases use
more than one table).

Unlike relational systems, however, a DB database contains a single collection of records
organized according to a given access method (BTree, Queue, Hash, and so forth). In a
relational database system, the underlying access method is generally hidden from you.

9/20/2006 Getting Started with DB Page 2

Berkeley DB Concepts

In any case, frequently DB applications are designed so that a single database stores a
specific type of data (just as in a relational database system, a single table holds entries
containing a specific set of fields). Because most applications are required to manage
multiple kinds of data, a DB application will often use multiple databases.

For example, consider an accounting application. This kind of an application may manage
data based on bank accounts, checking accounts, stocks, bonds, loans, and so forth. An
accounting application will also have to manage information about people, banking
institutions, customer accounts, and so on. In a traditional relational database, all of
these different kinds of information would be stored and managed using a (probably very)
complex series of tables. In a DB application, all of this information would instead be
divided out and managed using multiple databases.

DB applications can efficiently use multiple databases using an optional mechanism called
an environment. For more information, see Environments (page 6).

You interact with most DB APIs using special structures that contain pointers to functions.
These callbacks are called methods because they look so much like a method on a C++
class. The variable that you use to access these methods is often referred to as a handle.
For example, to use a database you will obtain a handle to that database.

Retrieving a record from a database is sometimes called getting the record because the
method that you use to retrieve the records is called get () . Similarly, storing database
records is sometimes called putting the record because you use the put () method to do
this.

When you store, or put, a record to a database using its handle, the record is stored
according to whatever sort order is in use by the database. Sorting is mostly performed
based on the key, but sometimes the data is considered too. If you put a record using a
key that already exists in the database, then the existing record is replaced with the new
data. However, if the database supports duplicate records (that is, records with identical
keys but different data), then that new record is stored as a duplicate record and any
existing records are not overwritten.

If a database supports duplicate records, then you can use a database handle to retrieve
only the first record in a set of duplicate records.

In addition to using a database handle, you can also read and write data using a special
mechanism called a cursor. Cursors are essentially iterators that you can use to walk over
the records in a database. You can use cursors to iterate over a database from the first
record to the last, and from the last to the first. You can also use cursors to seek to a
record. In the event that a database supports duplicate records, cursors are the only way
you can access all the records in a set of duplicates.

Finally, DB provides a special kind of a database called a secondary database. Secondary
databases serve as an index into normal databases (called primary database to distinguish
them from secondaries). Secondary databases are interesting because DB records can
hold complex data types, but seeking to a given record is performed only based on that
record's key. If you wanted to be able to seek to a record based on some piece of

9/20/2006 Getting Started with DB Page 3

Access Methods

information that is not the key, then you enable this through the use of secondary
databases.

Access Methods

While this manual will focus primarily on the BTree access method, it is still useful to
briefly describe all of the access methods that DB makes available.

Note that an access method can be selected only when the database is created. Once
selected, actual APl usage is generally identical across all access methods. That is, while
some exceptions exist, mechanically you interact with the library in the same way
regardless of which access method you have selected.

The access method that you should choose is gated first by what you want to use as a
key, and then secondly by the performance that you see for a given access method.

The following are the available access methods:

Access Method Description

BTree Data is stored in a sorted, balanced tree structure. Both the
key and the data for BTree records can be arbitrarily complex.
That is, they can contain single values such as an integer or a
string, or complex types such as a structure. Also, although not
the default behavior, it is possible for two records to use keys
that compare as equals. When this occurs, the records are
considered to be duplicates of one another.

Hash Data is stored in an extended linear hash table. Like BTree, the
key and the data used for Hash records can be of arbitrarily
complex data. Also, like BTree, duplicate records are optionally
supported.

Queue Data is stored in a queue as fixed-length records. Each record
uses a logical record number as its key. This access method is
designed for fast inserts at the tail of the queue, and it has a
special operation that deletes and returns a record from the
head of the queue.

This access method is unusual in that it provides record level
locking. This can provide beneficial performance improvements
in applications requiring concurrent access to the queue.

Recno Data is stored in either fixed or variable-length records. Like
Queue, Recno records use logical record numbers as keys.

Selecting Access Methods

To select an access method, you should first consider what you want to use as a key for
you database records. If you want to use arbitrary data (even strings), then you should
use either BTree or Hash. If you want to use logical record numbers (essentially integers)
then you should use Queue or Recno.

9/20/2006 Getting Started with DB Page 4

Access Methods

Once you have made this decision, you must choose between either BTree or Hash, or
Queue or Recno. This decision is described next.

Choosing between BTree and Hash

For small working datasets that fit entirely in memory, there is no difference between
BTree and Hash. Both will perform just as well as the other. In this situation, you might
just as well use BTree, if for no other reason than the majority of DB applications use
BTree.

Note that the main concern here is your working dataset, not your entire dataset. Many
applications maintain large amounts of information but only need to access some small
portion of that data with any frequency. So what you want to consider is the data that

you will routinely use, not the sum total of all the data managed by your application.

However, as your working dataset grows to the point where you cannot fit it all into
memory, then you need to take more care when choosing your access method. Specifically,
choose:

« BTree if your keys have some locality of reference. That is, if they sort well and you
can expect that a query for a given key will likely be followed by a query for one of
its neighbors.

» Hash if your dataset is extremely large. For any given access method, DB must maintain
a certain amount of internal information. However, the amount of information that
DB must maintain for BTree is much greater than for Hash. The result is that as your
dataset grows, this internal information can dominate the cache to the point where
there is relatively little space left for application data. As a result, BTree can be forced
to perform disk 1/0 much more frequently than would Hash given the same amount
of data.

Moreover, if your dataset becomes so large that DB will almost certainly have to
perform disk 1/0 to satisfy a random request, then Hash will definitely out perform
BTree because it has fewer internal records to search through than does BTree.

Choosing between Queue and Recno

Queue or Recno are used when the application wants to use logical record numbers for
the primary database key. Logical record numbers are essentially integers that uniquely
identify the database record. They can be either mutable or fixed, where a mutable
record number is one that might change as database records are stored or deleted. Fixed
logical record numbers never change regardless of what database operations are
performed.

When deciding between Queue and Recno, choose:

« Queue if your application requires high degrees of concurrency. Queue provides
record-level locking (as opposed to the page-level locking that the other access methods
use), and this can result in significantly faster throughput for highly concurrent
applications.

9/20/2006 Getting Started with DB Page 5

Database Limits and Portability

Note, however, that Queue provides support only for fixed length records. So if the
size of the data that you want to store varies widely from record to record, you should
probably choose an access method other than Queue.

» Recno if you want mutable record numbers. Queue is only capable of providing fixed
record numbers. Also, Recno provides support for databases whose permanent storage
is a flat text file. This is useful for applications looking for fast, temporary storage
while the data is being read or modified.

Database Limits and Portability

Berkeley DB provides support for managing everything from very small databases that fit
entirely in memory, to extremely large databases holding millions of records and terabytes
of data. DB databases can store up to 256 terabytes of data. Individual record keys or
record data can store up to 4 gigabytes of data.

DB's databases store data in a binary format that is portable across platforms, even of
differing endian-ness. Be aware, however, that portability aside, some performance issues
can crop up in the event that you are using little endian architecture. See Setting
Comparison Functions (page 73) for more information.

Also, DB's databases and data structures are designed for concurrent access — they are
thread-safe, and they share well across multiple processes. That said, in order to allow
multiple processes to share databases and the cache, DB makes use of mechanisms that
do not work well on network-shared drives (NFS or Windows networks shares, for example).
For this reason, you cannot place your DB databases and environments on network-mounted
drives.

Environments

This manual is meant as an introduction to the Berkeley DB library. Consequently, it
describes how to build a very simple, single-threaded application. Consequently, this
manual omits a great many powerful aspects of the DB database engine that are not
required by simple applications. One of these is important enough that it warrants a brief
overview here: environments.

While environments are frequently not used by applications running in embedded
environments where every byte counts, they will be used by virtually any other DB
application requiring anything other than the bare minimum functionality. An environment
is essentially an encapsulation of one or more databases. Essentially, you open an
environment and then you open databases in that environment. When you do so, the
databases are created/located in a location relative to the environment’'s home directory.

Environments offer a great many features that a stand-alone DB database cannot offer:
» Multi-database files.

It is possible in DB to contain multiple databases in a single physical file on disk. This
is desirable for those application that open more than a few handful of databases.

9/20/2006 Getting Started with DB Page 6

Exception Handling

However, in order to have more than one database contained in a single physical file,
your application must use an environment.

e Multi-thread and multi-process support

When you use an environment, resources such as the in-memory cache and locks can
be shared by all of the databases opened in the environment. The environment allows
you to enable subsystems that are designed to allow multiple threads and/or processes
to access DB databases. For example, you use an environment to enable the concurrent
data store (CDS), the locking subsystem, and/or the shared memory buffer pool.

« Transactional processing

DB offers a transactional subsystem that allows for full ACID-protection of your database
writes. You use environments to enable the transactional subsystem, and then
subsequently to obtain transaction IDs.

« High availability (replication) support

DB offers a replication subsystem that enables single-master database replication with
multiple read-only copies of the replicated data. You use environments to enable and
then manage this subsystem.

o Logging subsystem

DB offers write-ahead logging for applications that want to obtain a high-degree of
recoverability in the face of an application or system crash. Once enabled, the logging
subsystem allows the application to perform two kinds of recovery ("normal” and
"catastrophic”) through the use of the information contained in the log files.

For more information on these topics, see the Berkeley DB Getting Started with Transaction
Processing guide and the Berkeley DB Getting Started with Replicated Applications guide.

Exception Handling

Before continuing, it is useful to spend a few moments on exception handling in DB with
the C++ API.

By default, most DB methods throw DbExcepti on in the event of a serious error. However,
be aware that DbExcept i on does not inherit from st d: : excepti on so your try blocks should
catch both types of exceptions. For example:

#incl ude <db_cxx. h>

T
{

}
cat ch(DbException &e)

{

// DB and other code goes here

[/ DB error handling goes here

9/20/2006 Getting Started with DB Page 7

Error Returns

}

catch(std::exception &e)

[/ Al'l other error handling goes here

}

You can obtain the DB error number for a DbExcept i on by using DbExcepti on;: get _errno().
You can also obtain the informational message associated with that error number using
DbException: : what () .

If for some reason you do not want to manage DbExcept i on objects in your try blocks,
you can configure DB to suppress them by setting DB_CXX_NO EXCEPTI ONS for your database
and environment handles. In this event, you must manage your DB error conditions using
the integer value returned by all DB methods. Be aware that this manual assumes that
you want to manage your error conditions using DoExcept i on objects.

Error Returns

In addition to exceptions, the DB interfaces always return a value of 0 on success. If the
operation does not succeed for any reason, the return value will be non-zero.

If a system error occurred (for example, DB ran out of disk space, or permission to access
a file was denied, or an illegal argument was specified to one of the interfaces), DB
returns an errno value. All of the possible values of errno are greater than 0.

If the operation did not fail due to a system error, but was not successful either, DB
returns a special error value. For example, if you tried to retrieve data from the database
and the record for which you are searching does not exist, DB would return DB_NOTFOUND,
a special error value that means the requested key does not appear in the database. All
of the possible special error values are less than 0.

Getting and Using DB

You can obtain DB by visiting the Berkeley DB download page:
http://www.oracle.com/technology/software/products/berkeley-db/db/index.html.

To install DB, untar or unzip the distribution to the directory of your choice. You will then
need to build the product binaries. For information on building DB, see

DB_INSTALL/ docs/ i ndex. ht M , where DB_INSTALL is the directory where you unpacked
DB. On that page, you will find links to platform-specific build instructions.

That page also contains links to more documentation for DB. In particular, you will find
links for the Berkeley DB Programmer’s Reference Guide as well as the API reference
documentation.

9/20/2006 Getting Started with DB Page 8

http://www.oracle.com/technology/software/products/berkeley-db/db/index.html

Chapter 2. Databases

In Berkeley DB, a database is a collection of records. Records, in turn, consist of key/data
pairings.

Conceptually, you can think of a database as containing a two-column table where column
1 contains a key and column 2 contains data. Both the key and the data are managed
using Dbt class instances (see Database Records (page 20) for details on this class). So,
fundamentally, using a DB database involves putting, getting, and deleting database
records, which in turns involves efficiently managing information encapsulated by Dbt
objects. The next several chapters of this book are dedicated to those activities.

Opening Databases

You open a database by instantiating a Db object and then calling its open() method.

Note that by default, DB does not create databases if they do not already exist. To override
this behavior, specify the DB_CREATE flag on the open() method.

The following code fragment illustrates a database open:

#include <db_cxx. h>

Db db(NULL, 0); Il Instantiate the Db object

u_int32_t oFl ags = DB _CREATE; // Open flags;

try {

[/ Open the database

db. open(NULL, [/ Transaction pointer
"ny_db. db", /| Database file nane
NULL, /] Optional |ogical database nane
DB _BTREE, /| Dat abase access nethod
OFl ags, /1 Open flags
0); [/ File mode (using defaul ts)

/| DbException is not subclassed fromstd::exception, so
Il need to catch both of these.
} catch(DbException &) {
[/ Error handling code goes here
} catch(std::exception &) {
[/ Error handling code goes here

}

9/20/2006 Getting Started with DB Page 9

Closing Databases

Closing Databases

Once you are done using the database, you must close it. You use the Db: : cl ose() method
to do this.

Closing a database causes it to become unusable until it is opened again. Note that you
should make sure that any open cursors are closed before closing your database. Active
cursors during a database close can cause unexpected results, especially if any of those
cursors are writing to the database. You should always make sure that all your database
accesses have completed before closing your database.

Cursors are described in Using Cursors (page 33) later in this manual.

Be aware that when you close the last open handle for a database, then by default its
cache is flushed to disk. This means that any information that has been modified in the
cache is guaranteed to be written to disk when the last handle is closed. You can manually
perform this operation using the Db: : sync() method, but for normal shutdown operations
it is not necessary. For more information about syncing your cache, see Data
Persistence (page 23).

The following code fragment illustrates a database close:

#incl ude <db_cxx. h>

Db db(NULL, 0);
/| Database open and access operations happen here.

try {
/] dose the database

db. cl ose(0);
/| DbException is not subclassed fromstd::exception, so
/1 need to catch both of these.
} catch(DbException &) {
/1 Error handling code goes here
} catch(std::exception &) {
/1 Error handling code goes here
}

9/20/2006 Getting Started with DB Page 10

Database Open Flags

Database Open Flags

The following are the flags that you may want to use at database open time. Note that
this list is not exhaustive — it includes only those flags likely to be of interest for
introductory, single-threaded database applications. For a complete list of the flags
available to you, see the Berkeley DB C++ API guide.

|:| To specify more than one flag on the call to Db: : open(), you must bitwise inclusively OR

them together:
u_int32_t open_flags = DB_CREATE | DB EXCL;
DB _CREATE

If the database does not currently exist, create it. By default, the database open fails
if the database does not already exist.

DB_EXCL

Exclusive database creation. Causes the database open to fail if the database already
exists. This flag is only meaningful when used with DB_CREATE.

DB_RDONLY

Open the database for read operations only. Causes any subsequent database write
operations to fail.

DB_TRUNCATE

Physically truncate (empty) the on-disk file that contains the database. Causes DB to
delete all databases physically contained in that file.

Administrative Methods

The following Db methods may be useful to you when managing DB databases:

Db: : get _open_flags()

Returns the current open flags. It is an error to use this method on an unopened
database.

#incl ude <db_cxx. h>

Db db(NULL, 0);
u_int32_t open_flags;

/'l Database open and subsequent operations onitted for clarity

db. get _open_flags(&open_flags);

9/20/2006

Getting Started with DB Page 11

Administrative Methods

Db: : remove()

Removes the specified database. If no value is given for the dat abase parameter, then
the entire file referenced by this method is removed.

Never remove a database that has handles opened for it. Never remove a file that

contains databases with opened handles.

#incl ude <db_cxx. h>

Db db(NULL, 0):

/| Database open and subsequent operations onitted for clarity

db. remove(" nydb. db", I
NULL, I

I

I

0); I

Db: : renane()

Dat abase file to remove

Dat abase to remove. This is
NULL so the entire file is
removed.

Fl ags. None used.

Renames the specified database. If no value is given for the dat abase parameter, then
the entire file referenced by this method is renamed.

Never rename a database that has handles opened for it. Never rename a file that

contains databases with opened handles.

#i ncl ude <db_cxx. h>

Db db(NULL, 0):

/| Database open and subsequent operations onitted for clarity

db. renane(" nydb. db", I
NULL, I

I

I

"newdb. db", I

0); I

Dat abase file to rename

Dat abase to rename. This is
NULL so the entire file is
renaned.

New dat abase file nane

Fl ags. None used.

9/20/2006

Getting Started with DB

Page 12

Error Reporting Functions

Error Reporting Functions

To simplify error reporting and handling, the Db class offers several useful methods.

set_error_strean()
Sets the C++ ost r eamto be used for displaying error messages issued by the DB library.
set_errcall()

Defines the function that is called when an error message is issued by DB. The error
prefix and message are passed to this callback. It is up to the application to display
this information correctly.

set_errfile()

Sets the C library FI LE * to be used for displaying error messages issued by the DB
library.

set_errpfx()
Sets the prefix used to for any error messages issued by the DB library.
err()

Issues an error message. The error message is sent to the callback function as defined
by set _errcal |l . If that method has not been used, then the error message is sent to
the file defined by set_errfile() orset_error_strean(). If none of these methods
have been used, then the error message is sent to standard error.

The error message consists of the prefix string (as defined by set _errpfx()), an optional
printf-style formatted message, the error message, and a trailing newline.

errx()

Behaves identically to err() except that the DB message text associated with the
supplied error value is not appended to the error string.

In addition, you can use the db_strerror() function to directly return the error string
that corresponds to a particular error number.

For example, to send all error messages for a given database handle to a callback for
handling, first create your callback. Do something like this:

/*

* Function called to handl e any database error messages
* issued by DB.

*/

voi d

my_error_handl er(const char *error_prefix, char *msg)

{

9/20/2006 Getting Started with DB Page 13

Error Reporting Functions

* Put your code to handle the error prefix and error

* message here. Note that one or both of these paraneters
* may be NULL depending on how the error nmessage is issued
* and how the DB handle is configured.

}

And then register the callback as follows:

#incl ude <db_cxx. h>

Db db(NULL, 0);
std::string dbFileNanme("ny_db.db");

try
{

/1 Set up error handling for this database
db.set _errcall (nmy_error_handl er);
db. set _errpfx("m_exanpl e_progranm');

And to issue an error message:

/1 Open the database
db. open(NULL, dbFileName.c_str(), NULL, DB BTREE, DB CREATE, 0);

/1 Mist catch both DbException and std::exception
cat ch(DoException &e)

{

db.err(e.get_errno(), "Database open failed %",
dbFi l eName. c_str());

throw e;

}

catch(std::exception &e)

{
/1 No DB error nunber available, so use errx
db. errx("Error opening database: %", e.what());
throw e;

}

9/20/2006 Getting Started with DB Page 14

Managing Databases in
Environments

Managing Databases in Environments

In Environments (page 6), we introduced environments. While environments are not used
in the example built in this book, they are so commonly used for a wide class of DB
applications that it is necessary to show their basic usage, if only from a completeness
perspective.

To use an environment, you must first open it. At open time, you must identify the
directory in which it resides. This directory must exist prior to the open attempt. You
can also identify open properties, such as whether the environment can be created if it
does not already exist.

You will also need to initialize the in-memory cache when you open your environment.

For example, to create an environment handle and open an environment:

#incl ude <db_cxx. h>

u_int32_t env_flags = DB CREATE | [/ If the environment does not
/] exist, create it.
DB INIT MPQOL; // Initialize the in-menmory cache.

std::string envHonme("/exportl/testEnv");
DbEnv nyEnv(0);

try {
nyEnv. open(envHome. c_str(), env_flags, 0);

} catch(DbException &) {
std::cerr << "Error opening database environnent:
<< envHone << std::endl;
std::cerr << e.what() << std::endl;
exit(-1);
} catch(std::exception &) {
std::cerr << "Error opening database environnent:
<< envHone << std::endl;
std::cerr << e.what() << std::endl;
exit(-1);

}

Once an environment is opened, you can open databases in it. Note that by default
databases are stored in the environment's home directory, or relative to that directory
if you provide any sort of a path in the database’s file name:

#incl ude <db_cxx. h>

u_int32_t env_flags = DB_CREATE,