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Preface

Debugging kernel problems is a black art. Not many people do it, and documentation is rare, in-
accurate and incomplete. This document is no exception: faced with the choice of accuracy and
completeness, I chose to attempt the latter. As usual, time was the limiting factor, and this draft
is still in beta status. This is a typical situation for the whole topic of kernel debugging: building
debug tools and documentation is expensive, and the people who write them are also the people
who use them, so there’s a tendency to build as much of the tool as necessary to do the job at
hand. If the tool is well-written, it will be reusable by the next person who looks at a particular
area; if not, it might fall into disuse. Consider this book a starting point for your own develop-
ment of debugging tools, and remember: more than anywhere else, this is an area with “some as-
sembly required”.
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1
Introduction

Operating systems fail. All operating systems contain bugs, and they will sometimes cause the
system to behave incorrectly. BSD kernels are no exception. Compared to most other operating
systems, both free and commercial, BSD kernels offer a large number of debugging tools. This
tutorial examines the options available both to the experienced end user and also to the developer.

This tutorial bases on the FreeBSD kernel, but the differences in other BSDs are small. We’ll
look at the following topics:

• How and why kernels fail.

• Understanding log files: dmesg and the files in /var/log, notably /var/log/messages.

• Userland tools for debugging a running system.

• Building a kernel with debugging support: the options.

• Using a serial console.

• Preparing for dumps: dumpon, savecore.

• The assembler-level view of a C program.

• Preliminary dump analysis.

• Reading code.

• Introduction to the kernel source tree.

• Analysing panic dumps with gdb.

• On-line kernel debuggers: ddb, remote serial gdb.

• Debugging a running system with ddb.

• Debugging a running system with gdb.

• Debug options in the kernel: INVARIANTS and friends.
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• Debug options in the kernel: WITNESS.

• Code-based assistance: KTR.

How and why kernels fail

Good kernels should not fail. They must protect themselves against a number of external influ-
ences, including hardware failure, both deliberately and accidentally badly written user pro-
grams, and kernel programming errors. In some cases, of course, there is no way a kernel can re-
cover, for example if the only processor fails. On the other hand, a good kernel should be able to
protect itself from badly written user programs.

A kernel can fail in a number of ways:

• It can stop reacting to the outside world. This is called a hang.

• It can destroy itself (overwriting code). It’s almost impossible to distinguish this state from a
hang unless you have tools which can examine the machine state independently of the kernel.

• It can detect an inconsistency, report it and stop. In UNIX terminology, this is a panic .

• It can continue running incorrectly. For example, it might corrupt data on disk or breach net-
work protocols.

By far the easiest kind of failure to diagnose is a panic. There are two basic types:

• Failed consistency checks result in a specific panic:

panic: Free vnode isn’t

• Exception conditions result in a less specific panic:

panic: Page fault in kernel mode

The other cases can be very difficult to catch at the right moment.
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2
Userland programs

dmesg

In normal operation, a kernel will sometimes write messages to the outside world via the “con-
sole”, /dev/console. Internally it writes via a circular buffer called msgbuf. The dmesg pro-
gram can show the current contents of msgbuf. The most important use is at startup time for di-
agnosing configuration problems:

# dmesg
Copyright (c) 1992-2002 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994

The Regents of the University of California. All rights reserved.
FreeBSD 4.5-PRERELEASE #3: Sat Jan 5 13:25:02 CST 2002

grog@echunga.lemis.com:/src/FreeBSD/4-STABLE-ECHUNGA/src/sys/compile/ECHUNGA
Timecounter "i8254" frequency 1193182 Hz
Timecounter "TSC" frequency 751708714 Hz
CPU: AMD Athlon(tm) Processor (751.71-MHz 686-class CPU)

Origin = "AuthenticAMD" Id = 0x621 Stepping = 1
Features=0x183f9ff<FPU,VME,DE,PSE,TSC,MSR,PAE,MCE,CX8,SEP,MTRR,PGE,MCA,CMOV,PAT,PSE3

6,MMX,FXSR>
AMD Features=0xc0400000<AMIE,DSP,3DNow!>

...
pci0: <unknown card> (vendor=0x1039, dev=0x0009) at 1.1
...
cd1 at ahc0 bus 0 target 1 lun 0
cd1: <TEAC CD-ROM CD-532S 1.0A> Removable CD-ROM SCSI-2 device
cd1: 20.000MB/s transfers (20.000MHz, offset 15)
cd1: Attempt to query device size failed: NOT READY, Medium not present
...
WARNING: / was not properly unmounted

Much of this information is informative, but occasionally you get messages indicating some
problem. The last line in the previous example shows that the system did not shut down proper-
ly: either it crashed, or the power failed. During normal operation you might see messages like
the following:

sio1: 1 more silo overflow (total 1607)
sio1: 1 more silo overflow (total 1608)
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nfsd send error 64
...
nfs server wantadilla:/src: not responding
nfs server wantadilla:/: not responding
nfs server wantadilla:/src: is alive again
nfs server wantadilla:/: is alive again
arp info overwritten for 192.109.197.82 by 00:00:21:ca:6e:f1

In the course of time, the message buffer wraps around and the old contents are lost. For this
reason, FreeBSD and NetBSD print the dmesg contents after boot to the file
/var/run/dmesg.boot for later reference. In addition, the output is piped to syslogd, the system
log daemon, which by default writes it to /var/log/messages.

During kernel debugging you can print msgbuf. For FreeBSD, enter:

(gdb) printf "%s", (char *)msgbufp->msg_ptr

For NetBSD or OpenBSD, enter:

(gdb) printf "%s", (char *) msgbufp->msg_bufc

Log files

BSD systems keep track of significant events in log files. They can be of great use for debug-
ging. Most of them are kept in /var/log, though this is not a requirement. Many of them are
maintained by syslogd, but there is no requirement for a special program. The only requirement
is to avoid having two programs maintaining the same file.

syslogd
syslogd is a standard daemon which maintains a number of the files in /var/log. You should al-
ways run syslogd unless you have a very good reason not to.

Processes normally write to syslogd with the library function syslog:

#include <syslog.h>
#include <stdarg.h>

void syslog (int priority, const char *message, ...);

syslog is used in a similar manner to printf; only the first parameter is different. Although
it’s called priority in the man page, it’s divided into two parts:

• The level field describes how serious the message is. It ranges from LOG_DEBUG (informa-
tion normally suppressed and only produced for debug purposes) to LOG_EMERG (“machine
about to self-destruct”).

• The facility field describes what part of the system generated the message.

The priority field can be represented in text form as facility.level. For example, error messages
from the mail subsystem are called mail.err.
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In FreeBSD, as the result of security concerns, syslogd is started with the -s flag by default.
This stops syslogd from accepting remote messages. If you specify the -ss flag, as suggested
in the comment, you will also not be able to log to remote systems. Depending on your configu-
ration, it’s worth changing this default. For example, you might want all systems in example.org
to log to gw. That way you get one set of log files for the entire network.

/etc/syslog.conf
syslogd reads the file /etc/syslog.conf, which specifies where to log messages based on their
message priority. Here’s a slightly modified example:

# $FreeBSD: src/etc/syslog.conf,v 1.13 2000/02/08 21:57:28 rwatson Exp $
#
# Spaces are NOT valid field separators in this file.
# Consult the syslog.conf(5) manpage.
*.* @echunga log everything to system echunga
*.err;kern.debug;auth.notice;mail.crit /dev/console log specified messages to console
*.notice;kern.debug;lpr.info;mail.crit /var/log/messages log messages to file
security.* /var/log/security specific subsystems
mail.info /var/log/maillog get their own files
lpr.info /var/log/lpd-errs
cron.* /var/log/cron
*.err root inform logged-in root user of errors
*.notice;news.err root
*.alert root
*.emerg *
# uncomment this to enable logging of all log messages to /var/log/all.log
#*.* /var/log/all.log
# uncomment this to enable logging to a remote loghost named loghost
#*.* @loghost
# uncomment these if you’re running inn
# news.crit /var/log/news/news.crit
# news.err /var/log/news/news.err
# news.notice /var/log/news/news.notice
!startslip all messages from startslip
*.* /var/log/slip.log
!ppp all messages from ppp
*.* /var/log/ppp.log

Note that syslogd does not create the files if they don’t exist.

Userland programs

A number of userland programs are useful for divining what’s going on in the kernel:

• ps shows selected fields from the process structures. With an understanding of the structures,
it can give a good idea of what’s going on.

• top is like a repetitive ps: it shows the most active processes at regular intervals.

• vmstat shows a number of parameters, including virtual memory. It can also be set up to run
at regular intervals.

• iostat is similar to vmstat, and it duplicates some fields, but it concentrates more on I/O ac-
tivity.

• netstat show network information. It can also be set up to show transfer rates for specific in-
terfaces.
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• systat is a curses-based program which displays a large number of parameters, including
most of the parameters displayed by vmstat, iostat and netstat.

• ktrace traces system calls and their return values for a specific process. It’s like a GIGO :
you see what goes in and what comes out again.

ps

ps displays various process state. Most people use it for fields like PID, command and CPU
time usage, but it can also show a number of other more subtle items of information:

• When a process is sleeping (which is the normal case), WCHAN displays a string indicating
where it is sleeping. With the aid of the kernel code, you can then get a reasonably good idea
what the process is doing. FreeBSD calls this field MWCHAN, since it can also show the name
of a mutex on which the process is blocked.

• STAT shows current process state. There are a number of these, and they change from time
to time, and they differ between the versions of BSD. They’re defined in the man page.

• flags (F) show process flags. Like the state information they change from time to time and
differ between the versions of BSD. They’re also defined in the man page.

• There are a large number of optional fields which can also be specified with the -O option.

Here are some example processes, taken from a FreeBSD release 5 system:

$ ps lax
UID PID PPID CPU PRI NI VSZ RSS MWCHAN STAT TT TIME COMMAND

0 0 0 0 -16 0 0 12 sched DLs ?? 0:15.62 (swapper)

The swapper, sleeping on sched. It’s in a short-term wait (D status ), it has pages locked in core
(L) status, and it’s a session leader (s status), though this isn’t particularly relevant here. The
name in parentheses suggests that it’s swapped out, but it should have a W status for that.

UID PID PPID CPU PRI NI VSZ RSS MWCHAN STAT TT TIME COMMAND
1004 0 60226 0 -84 0 0 0 - ZW ?? 0:00.00 (galeon-bin)

This process is a zombie (Z status), and what’s left of it is swapped out (W status, name in paren-
theses).

UID PID PPID CPU PRI NI VSZ RSS MWCHAN STAT TT TIME COMMAND
0 1 0 0 8 0 708 84 wait ILs ?? 0:14.58 /sbin/init --

init is waiting for longer than 20 seconds (I state). Like swapper, it has pages locked in core
and is a session leader. A number of other system processes have similar flags.

UID PID PPID CPU PRI NI VSZ RSS MWCHAN STAT TT TIME COMMAND
0 7 0 0 171 0 0 12 -  RL ?? 80:46.00 (pagezero)

pagezero is waiting to run (R), and also no wait channel.

UID PID PPID CPU PRI NI VSZ RSS MWCHAN STAT TT TIME COMMAND
0 8 0 2 4 0 0 12 sbwait DL ?? 1:44.51 (bufdaemon)
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sbwait is the name of wait channel here, but it’s also the name of the function that is waiting:

/*
* Wait for data to arrive at/drain from a socket buffer.
*/

int
sbwait(sb)

struct sockbuf *sb;
{

sb->sb_flags |= SB_WAIT;
return (tsleep(&sb->sb_cc,

(sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
sb->sb_timeo));

}

The name sbwait in the ps output comes from the convoluted tsleep call at the end of the
function, not from the name of the function.

UID PID PPID CPU PRI NI VSZ RSS MWCHAN STAT TT TIME COMMAND
0 11 0 150 -16 0 0 12 - RL ?? 52617:10.66 (idle)

The idle process (currently only present in FreeBSD release 5) uses up the remaining CPU time
on the system. That explains the high CPU usage. The priority is bogus: idle only gets to run
when nothing else is runnable.

UID PID PPID CPU PRI NI VSZ RSS MWCHAN STAT TT TIME COMMAND
0 12 0 0 -44 0 0 12 -  WL ?? 39:11.32 (swi1: net)
0 13 0 0 -48 0 0 12 -  WL ?? 43:42.81 (swi6: tty:sio clock)

These two processes are examples of software interrupt threads. Again, they only exist in FreeB-
SD release 5.

UID PID PPID CPU PRI NI VSZ RSS MWCHAN STAT TT TIME COMMAND
0 20 0 0 -64 0 0 12 -  WL ?? 0:00.00 (irq11: ahc0)
0 21 0 34 -68 0 0 12 Giant LL ?? 116:10.44 (irq12: rl0)

These are hardware interrupts. irq12 is waiting on the Giant mutex.

top

top is like a repetitive ps It shows similar information at regular intervals. By default, the
busiest processes are listed at the top of the display, and the number of processes can be limited.
It also shows additional summary information about CPU and memory usage:

load averages: 1.42, 1.44, 1.41 16:50:23
41 processes: 2 running, 38 idle, 1 zombie
CPU states: 81.4% user, 0.0% nice, 16.7% system, 2.0% interrupt, 0.0% idle
Memory: Real: 22M/48M act/tot Free: 12M Swap: 7836K/194M used/tot

PID USERNAME PRI NICE SIZE RES STATE WAIT TIME CPU COMMAND
336 build 64 0 12M 244K run - 0:25 69.82% cc1
1407 grog 28 0 176K 328K run - 0:25 1.03% top

14928 grog 2 0 1688K 204K sleep select 0:17 0.54% xterm
9452 grog 18 4 620K 280K idle pause 376:06 0.00% xearth

18876 root 2 0 28K 72K sleep select 292:22 0.00% screenblank
399 grog 2 4 636K 0K idle select 126:37 0.00% <fvwm2>
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7280 grog 2 0 9872K 124K idle select 102:42 0.00% Xsun
8949 root 2 0 896K 104K sleep select 37:48 0.00% sendmail
10503 root 18 0 692K 248K sleep pause 24:39 0.00% ntpd

Here again the system is 100% busy. This machine (flame.lemis.com ) is a SPARCstation 5 run-
ning OpenBSD and part of the Samba build farm. The CPU usage shows that over 80% of the
time is spent in user mode, and less than 20% in system and interrupt mode combined. Most of
the time here is being used by the C compiler, cc1. The CPU usage percentages are calculated
dynamically and usually don’t quite add up.

The distinction between system and interrupt mode is the distinction between process and non-
process activities. This is a relatively easy thing to measure, but in traditional BSDs it’s not clear
how much of this time is due to I/O and how much due to other interrupts.

There’s a big difference in the reactiveness of a system with high system load and a system with
high interrupt load: load-balancing doesn’t work for interrupts, so a system with high interrupt
times reacts very sluggishly.

Sometimes things look different. Here’s a FreeBSD 5-CURRENT test system:

last pid: 79931; load averages: 2.16, 2.35, 2.21 up 0+01:25:07 18:07:46
75 processes: 4 running, 51 sleeping, 20 waiting
CPU states: 18.5% user, 0.0% nice, 81.5% system, 0.0% interrupt, 0.0% idle
Mem: 17M Active, 374M Inact, 69M Wired, 22M Cache, 60M Buf, 16M Free
Swap: 512M Total, 512M Free

PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
10 root -16 0 0K 12K RUN 18:11 1.07% 1.07% idle

79828 root 125 0 864K 756K select 0:00 3.75% 0.83% make
6 root 20 0 0K 12K syncer 0:35 0.20% 0.20% syncer
19 root -68 -187 0K 12K WAIT 0:12 0.00% 0.00% irq9: rl0
12 root -48 -167 0K 12K WAIT 0:08 0.00% 0.00% swi6: tty:sio clock
303 root 96 0 1052K 688K select 0:05 0.00% 0.00% rlogind

This example was taken during a kernel build. Again the CPU is 100% busy. Strangely, though,
the busiest process is the idle process, with only a little over 1% of the total load.

What’s missing here? The processes that start and finish in the interval between successive dis-
plays. One way to check this is to look at the last pid field at the top left (this field is not
present in the NetBSD and OpenBSD versions): if it increments rapidly, it’s probable that these
processes are using the CPU time.

There’s another thing to note here: the CPU time is spread between user time (18.5%) and sys-
tem time (81.5%). That’s not a typical situation. This build was done on a test version of FreeB-
SD 5-CURRENT, which includes a lot of debugging code, notably the WITNESS code which
will be discussed later. It would be very difficult to find this with ps.

Load average
It’s worth looking at the load averages mentioned on the first line. These values are printed by a
number of other commands, notably w and uptime. The load average is the length of the run
queue averaged over three intervals: 1, 5 and 15 minutes. The run queue contains jobs ready to
be scheduled, and is thus an indication of how busy the system is.
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vmstat

vmstat was originally intended to show virtual memory statistics, but current versions show a
number of other parameters as well. It can take a numeric argument representing the number of
seconds between samples. In this case, the first line shows the average values since boot time, so
it is usually noticeably different from the remaining lines.

$ vmstat 1
procs memory page disks faults cpu
r b w  avm fre flt re pi po fr sr s0 c0 in sy cs us sy id
1 1 0  17384 23184 200 0 0 0 0 0 9 0 236 222 35 22 7 70
2 1 0  17420 23148 2353 0 0 0 0 0 24 0 271 1471 94 36 45 20
1 1 0  18488 22292 2654 0 0 0 0 0 20 0 261 1592 102 35 51 14

The base form of this command is essentially identical in all BSDs. The parameters are:

• The first section (procs) shows the number of processes in different states. r shows the
number of processes on the run queue (effectively a snapshot of the load average). b counts
processes blocked on resources such as I/O or memory. w counts processes that are runnable
but is swapped out. This almost never happens any more.

• The next subsection describes memory availability. avm is the number of “active” virtual
memory pages, and fre is the number of free pages.

• Next come paging activity. re is the number of page reclaims, pi the number of pages
paged in from disk, po the number of pages paged out to disk, fr the number of pages freed
per second, and sr the number of pages scanned by the memory manager per second.

iostat

• Shows statistics about I/O activity.

• Can be repeated to show current activity.

• Can specify which devices or device categories to observe.

Example (OpenBSD SPARC)

tty sd0 rd0 rd1 cpu
tin tout KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s us ni sy in id
0 0 7.77 9 0.07 0.00 0 0.00 0.00 0 0.00 19 0 6 1 74
0 222 56.00 1 0.05 0.00 0 0.00 0.00 0 0.00 69 0 29 2 0
0 75 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 81 0 19 0 0
0 76 32.00 1 0.03 0.00 0 0.00 0.00 0 0.00 84 0 16 0 0
0 74 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 90 0 7 3 0
0 74 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 95 0 5 0 0
0 74 5.30 20 0.10 0.00 0 0.00 0.00 0 0.00 40 0 31 0 29
0 73 6.40 51 0.32 0.00 0 0.00 0.00 0 0.00 12 0 10 3 75
0 75 5.55 49 0.27 0.00 0 0.00 0.00 0 0.00 24 0 12 3 61
0 73 4.91 54 0.26 0.00 0 0.00 0.00 0 0.00 21 0 9 1 69
0 75 6.91 54 0.36 0.00 0 0.00 0.00 0 0.00 39 0 7 3 51
0 72 9.80 49 0.46 0.00 0 0.00 0.00 0 0.00 31 0 6 4 59
0 76 17.94 36 0.63 0.00 0 0.00 0.00 0 0.00 34 0 12 0 54
0 75 19.20 5 0.09 0.00 0 0.00 0.00 0 0.00 93 0 5 1 1
0 74 37.33 3 0.11 0.00 0 0.00 0.00 0 0.00 93 0 6 1 0
0 75 56.00 1 0.06 0.00 0 0.00 0.00 0 0.00 82 0 17 1 0
0 73 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 83 0 16 1 0
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systat

• Shows a number of different parameters in graphical form.

• Includes iostat, netstat and vmstat.

• Ugly display.

systat example

/0 /1 /2 /3 /4 /5 /6 /7 /8 /9 /10
Load Average ||

/0 /10 /20 /30 /40 /50 /60 /70 /80 /90 /100
cpu user|XXXXXXXXXXXXXXXXXXXXXX

nice|
system|XXXXX

interrupt|
idle|XXXXXXXXXXXXXXXXXXXXX

/0 /10 /20 /30 /40 /50 /60 /70 /80 /90 /100
ad0 MB/sXXXX

tps|XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

systat vmstat, FreeBSD

24 users Load 0.85 0.25 0.15 Sun Jan 20 14:40

Mem:KB REAL VIRTUAL VN PAGER SWAP PAGER
Tot Share Tot Share Free in out in out

Act 150180 3536 220116 10096 10404 count
All 252828 4808 3565340 15372 pages

zfod Interrupts
Proc:r p d s w Csw Trp Sys Int Sof Flt cow 62295 total

2 1 24 147 14 63262294 26 6 56060 wire 1 ata0 irq14
162880 act ata1 irq15

1.5%Sys 98.5%Intr 0.0%User 0.0%Nice 0.0%Idl 24140 inact ahc0 irq11
| | | | | | | | | |  9748 cache 27 mux irq10
=+++++++++++++++++++++++++++++++++++++++++++++++ 656 free 4 atkbd0 irq

daefr psm0 irq12
Namei Name-cache Dir-cache prcfr 77 sio1 irq3

Calls hits % hits % react ppc0 irq7
pdwak 99 clk irq0
pdpgs 128 rtc irq8

Disks ad0 ad2 cd0 cd1 sa0 pass0 pass1 intrn 61959 lpt0 irq7
KB/t 8.00 0.00 0.00 0.00 0.00 0.00 0.00 35712 buf
tps 1 0 0 0 0 0 0  27 dirtybuf
MB/s 0.01 0.00 0.00 0.00 0.00 0.00 0.00 17462 desiredvnodes
% busy 0 0 0 0 0 0 0 22916 numvnodes

17020 freevnodes

systat vmstat, NetBSD

1 user Load 2.74 1.91 1.60 Thu Jan 17 14:31:09

memory totals (in KB) PAGING SWAPPING Interrupts
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real virtual free in out in out 132 total
Active 9868 14100 6364 ops 1 100 irq0
All 21140 25372 658588 pages 14 irq9

18 irq10
Proc:r d s w Csw Trp Sys Int Sof Flt forks

2 1 5  40 27 193 133 20 8 fkppw
fksvm

95.9% Sy 1.4% Us 0.0% Ni 0.0% In 2.7% Id pwait
| | | | | | | | | | |  6 relck
================================================> 6 rlkok

noram
Namei Sys-cache Proc-cache ndcpy

Calls hits % hits % fltcp
1043 806 77 34 3 1 zfod

cow
Discs fd0 sd0 md0 64 fmin
seeks 85 ftarg
xfers 14 1372 itarg
Kbyte 164 941 wired
%busy 21.2 pdfre

pdscn

systat vmstat, OpenBSD

3 users Load 1.19 1.52 1.81 Thu Jan 17 14:31:48 2002

Mem:KB REAL VIRTUAL PAGING SWAPPING Interrupts
Tot Share Tot Share Free in out in out 227 total

Act 3348 1068 12940 6704 27016 count 2 5 lev1
All 35232 11888 358812 148796 pages 17 lev4

5 lev6
Proc:r p d s w Csw Trp Sys Int Sof Flt 17 cow 100 clock

2 5  29 206 184 227 374 3 objlk lev12
2 objht 100 prof

9.3% Sys 85.5% User 0.0% Nice 4.4% Idle 62 zfod
| | | | | | | | | | | 385 nzfod
=====>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 16.14 %zfod

kern
Namei Sys-cache Proc-cache 5408 wire

Calls hits % hits % 18312 act
212 203 96 3 1 11220 inact

27016 free
Discs sd0 rd0 rd1 daefr
seeks 411 372 prcfr
xfers 411 46 react
Kbyte 33 scan

sec 0.1 hdrev
intrn

ktrace

• Traces at system call interface.

• Doesn’t require source code.

• Shows a limited amount of information.

• Can be useful to find which files are being opened.

• You collect a dump file with ktrace, and dump in with kdump.
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ktrace example

71602 sh NAMI "/bin/url_handler.sh"
71602 sh RET stat -1 errno 2 No such file or directory
71602 sh CALL stat(0x80ec108,0xbfbff0b0)
71602 sh NAMI "/sbin/url_handler.sh"
71602 sh RET stat -1 errno 2 No such file or directory
71602 sh CALL stat(0x80ec108,0xbfbff0b0)
71602 sh NAMI "/usr/local/bin/url_handler.sh"
71602 sh RET stat -1 errno 2 No such file or directory
71602 sh CALL stat(0x80ec108,0xbfbff0b0)
71602 sh NAMI "/etc/url_handler.sh"
71602 sh RET stat -1 errno 2 No such file or directory
71602 sh CALL stat(0x80ec108,0xbfbff0b0)
71602 sh NAMI "/usr/X11R6/bin/url_handler.sh"
71602 sh RET stat -1 errno 2 No such file or directory
71602 sh CALL stat(0x80ec108,0xbfbff0b0)
71602 sh NAMI "/usr/monkey/url_handler.sh"
71602 sh RET stat -1 errno 2 No such file or directory
71602 sh CALL stat(0x80ec108,0xbfbff0b0)
71602 sh NAMI "/usr/local/sbin/url_handler.sh"
71602 sh RET stat -1 errno 2 No such file or directory
71602 sh CALL break(0x80f3000)
71602 sh RET break 0
71602 sh CALL write(0x2,0x80f2000,0x1a)
71602 sh GIO fd 2 wrote 26 bytes

"url_handler.sh: not found
"

71602 sh RET write 26/0x1a
71602 sh CALL exit(0x7f)
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3
Hardware data structures

Stack frames
Most modern machines have a stack-oriented architecture, though the support is rather rudimen-
tary in some cases. Everybody knows what a stack is, but here we’ll use a more restrictive defi-
nition: a stack is a linear list of storage elements, each relating to a particular function invocation.
These are called stack frames. Each stack frame contains

• The parameters with which the function was invoked.

• The address to which to return when the function is complete.

• Saved register contents.

• Variables local to the function.

• The address of the previous stack frame.

With the exception of the return address, any of these fields may be omitted.1 It’s possible to im-
plement a stack in software as a linked list of elements, but most machines nowadays have signif-
icant hardware support and use a reserved area for the stack. Such stack implementations typi-
cally supply two hardware registers to address the stack:

• The stack pointer points to the last used word of the stack.

• The frame pointer points to somewhere in the middle of the stack frame.

1. Debuggers recognize stack frames by the frame pointer. If you don’t sav e the frame pointer, it will still be
pointing to the previous frame, so the debugger will report that you are in the previous function. This frequently
happens in system call linkage functions, which typically do not save a stack linkage, or on the very first
instruction of a function, before the linkage has been built. In addition, some optimizers remove the stack frame.
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The resultant memory image looks like:

Function arguments

Return address
Old value of frame pointer

Automatic variables

Temporary storage

Function arguments

Return address
Old value of frame pointer

Automatic variables

Temporary storage

Stack frame 0

Stack frame 1

Frame pointer

Stack pointer

Figure 1: Function stack frame

The individual parts of the stack frames are built at various times. In the following sections,
we’ll use the Intel ia32 (i386) architecture as an example to see how the stack gets set up and
freed. The ia32 architecture has the following registers, all 32 bits wide:

• The Program Counter is the traditional name for the register that points to the next
instruction to be executed. Intel calls it the Instruction Pointer or eip. The e at the
beginning of the names of most registers stands for extended. It’s a reference to the older
8086 architecture, which has shorter registers with similar names: for example, on the 8086
this register is called ip and is 16 bits wide.

• The Stack Pointer is called esp.

• The Fr ame Pointer is called ebp (Extended Base Pointer ), referring to the fact that it points
to the stack base.

• The arithmetic and index registers are a mess on ia32. Their naming goes back to the 8 bit
8008 processor (1972). In those days, the only arithmetic register was the the Accumulator.
Nowadays some instructions can use other registers, but the name remains: eax, Extended
Accumulator Extended (no joke: the first extension was from 8 to 16 bits, the second from 16
to 32).

• The other registers are ebx, ecx and edx. Each of them has some special function, but they
can be used in many arithmetic instructions as well. ecx can hold a count for certain repeat
instructions.

• The registers esi (Extended Source Index ) and edi (Extended Destination Index ) are purely
index registers. Their original use was implicit in certain repeated instructions, where they
are incremented automatically.
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• The eflags register contains program status information.

• The segment registers contain information about memory segments. Their usage depends on
the mode in which the processor is running.

Some registers can be subdivided: for example, the two halves of eax are called ah (high bits)
and al (low bits).

Stack growth during function calls
Now that we have an initial stack, let’s see how it grows and shrinks during a function call. We’ll
consider the following simple C program compiled on the i386 architecture:

foo (int a, int b)
{

int c = a * b;
int d = a / b;
printf ("%d %d\n", c, d);
}

main (int argc, char *argv [])
{

int x = 4;
int y = 5;
foo (y, x);
}

The assembler code for the calling sequence for foo in main is:

pushl -4(%ebp) value of x
pushl -8(%ebp) value of y
call _foo call the function
addl $8,%esp and remove parameters

Register ebp is the base pointer, which we call the frame pointer. esp is the stack pointer.

The push instructions decrement the stack pointer and then place the word values of x and y at
the location to which the stack pointer now points.

The call instruction pushes the contents of the current instruction pointer (the address of the
instruction following the call instruction) onto the stack, thus saving the return address, and
loads the instruction pointer with the address of the function. We now hav e:

argc
return to start

saved frame pointer
local var x
local var y

parameter a
parameter b

return to main

Frame pointer

Stack pointer

main stack frame

foo stack frame

Figure 2: Stack frame after call instruction
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The called function foo saves the frame pointer (in this architecture, the register is
called ebp, for extended base pointer), and loads it with the current value of the stack pointer
register esp.

_foo: pushl %ebp save ebp on stack
movl %esp,%ebp and load with current value of esp

At this point, the stack linkage is complete, and this is where most debuggers normally set a
breakpoint when you request on to be placed at the entry to a function.

Next, foo creates local storage for c and d. They are each 4 bytes long, so it subtracts 8 from the
esp register to make space for them. Finally, it sav es the register ebx--the compiler has decided
that it will need this register in this function.

subl $8,%esp create two words on stack
pushl %ebx and save ebx register

At this point, our stack is now complete

saved frame pointer
local var x
local var y

parameter a
parameter b

return to main

saved frame pointer
local var c
local var d

saved ebx contents

Frame pointer

Stack pointer

main stack frame

foo stack frame

Figure 3: Complete stack frame after entering called function

The frame pointer isn’t absolutely necessary: you can get by without it and refer to the stack
pointer instead. The problem is that during the execution of the function, the compiler may save
further temporary information on the stack, so it’s difficult to keep track of the value of the stack
pointer--that’s why most architectures use a frame pointer, which does stay constant during the
execution of the function. Some optimizers, including newer versions of gcc, giv e you the option
of compiling without a stack frame. This makes debugging almost impossible.

On return from the function, the sequence is reversed:

movl -12(%ebp),%ebx and restore register ebx
leave reload ebp and esp
ret and return

The first instruction reloads the saved register ebx, which could be stored anywhere in the stack.
This instruction does not modify the stack.

The leave instruction loads the stack pointer esp from the frame pointer ebp, which effectively
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discards the part stack below the saved ebp value. Then it loads ebp with the contents of the
word to which it points, the saved ebp, effectively reversing the stack linkage. The stack now
looks like it did on entry.

Next, the ret instruction pops the return address into the instruction pointer, causing the next
instruction to be fetched from the address following the call instruction in the calling function.

The function parameters x and y are still on the stack, so the next instruction in the calling
function removes them by adding to the stack pointer:

addl $8,%esp and remove parameters

Stack frame at process start

A considerable amount of work on the stack occurs at process start, before the main function is
called. Here’s an example of what you might find on an i386 architecture at the point where you
enter main:

ps information

Environment variables

Program arguments

NULL

more environment pointers

env [1]

env [0]

NULL

more argument pointers

argv [1]

argv [0]

envp

argv

argc
Stack pointer %esp
Frame pointer %ebp

Contrary to the generally accepted view, the prototype for main in all versions of UNIX, and
also in Linux and other operating systems, is:

int main (int argc, char *argv [], char *env []);
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System call stack frame

Individual processors have are a number of different ways to perform a system call, but in
general they’re similar to a function call. In addition, though, the processor needs to manage the
change of context from user to system on the call, and to save enough information to find its way
back on return. Modern ELF-based ia32 systems use the INTR instruction (called int in the
assembler) to perform the transition. The older a.out format used a form of the CALL instruction
called lcall in the assembler. The entry point to the kernel ensures that the frames are the
same.

The first part of the stack frame is built by the INTR instruction:

Stack segment ss
Stack pointer esp

Flags eflags
Code segment cs
Return address eip

Error code err

Figure 4: Stack frame after INTR instruction

The kernel entry point for INTR-type system calls is int0x80_syscall. It sav es some
registers on the stack to make a standard exception trap frame and then calls syscall:

/*
* Call gate entry for FreeBSD ELF and Linux/NetBSD syscall (int 0x80)
*
* Even though the name says ’int0x80’, this is actually a TGT (trap gate)
* rather then an IGT (interrupt gate). Thus interrupts are enabled on
* entry just as they are for a normal syscall.
*/

SUPERALIGN_TEXT
IDTVEC(int0x80_syscall)

pushl $2 /* sizeof "int 0x80" */
subl $4,%esp /* skip over tf_trapno */
pushal
pushl %ds
pushl %es
pushl %fs
movl $KDSEL,%eax /* switch to kernel segments */
movl %eax,%ds
movl %eax,%es
movl $KPSEL,%eax
movl %eax,%fs
FAKE_MCOUNT(13*4(%esp))
call syscall
MEXITCOUNT
jmp doreti

At the end of this, the data on the stack is:
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Stack segment ss
Stack pointer esp

Flags eflags
Code segment cs
Return address eip

Error code err
Trap number trapno

Saved registers (pushal) eax
ecx
edx
ebx
esp
ebp
esi
edi

Data segment ds
Extended segment es

FS fs

Figure 5: Stack frame on entry to syscall
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4
The GNU debugger

This chapter takes a look at the GNU debugger, gdb, as it is used in userland.

What debuggers do

gdb runs on UNIX and similar platforms. In UNIX, a debugger is a process that takes control of
the execution of another process. Most versions of UNIX allow only one way for the debugger
to take control: it must start the process that it debugs. Some versions, notably FreeBSD and
SunOS 4, but not related systems like BSD/OS or Solaris 2, also allow the debugger to attach to
a running process. gdb supports attaching on platforms which offer the facility.

Whichever debugger you use, there are a surprisingly small number of commands that you need:

• A stack trace command answers the question, “Where am I, and how did I get here?”, and is
the most useful of all commands. It’s certainly the first thing you should do when examining
a core dump or after getting a signal while debugging the program.

• Displaying data is the most obvious requirement: “what is the current value of the variable
bar?”

• Displaying register contents is really the same thing as displaying program data. You’ll nor-
mally only look at registers if you’re debugging at the assembly code level, but it’s nice to
know that most systems return values from a function in a specific register (for example,
%eax on the Intel 386 architecture, a0 on the MIPS architecture, or %o0 on the SPARC ar-
chitecture.1 so you may find yourself using this command to find out the values which a func-
tion returns.2

1. In SPARC, the register names change on return from a function. The function places the return value in %i0,
which becomes %o0 after returning.

2. Shouldn’t the debugger volunteer this information? Yes, it should, but many don’t. No debugger that I know of
ev en comes close to being perfect.
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• Modifying data and register contents is an obvious way of modifying program execution.

• breakpoints stop execution of the process when the process attempts to execute an instruction
at a certain address.

• Single stepping originally meant to execute a single machine instruction and then return con-
trol to the debugger. This level of control is no longer of much use: the machine could ex-
ecute hundreds of millions of instructions before hitting the bug. Nowadays, there are four
different kinds of single stepping. You can choose one of each of these options:

• Instead of executing a single machine instruction, it might execute a single high-level lan-
guage instruction or a single line of code.

• Single stepping a function call instruction will normally land you in the function you’re
calling. Frequently, you’re not interested in the function: you’re pretty sure that it works
correctly, and you just want to continue in the current function. Most debuggers have the
ability to step "over" a function call rather than through it. You don’t get the choice with a
system call: you always step "over" it, since there is usually no way to trace into the ker-
nel. To trace system calls, you use either a system call trace utility such as ktrace, or a
kernel debugger.

In the following section, we’ll look at how gdb implements these functions.

The gdb command set

In this section, we’ll look at the gdb command set from a practical point of view: how do we use
the commands that are available? This isn’t meant to be an exhaustive description: if you have
gdb , you should also have the documentation, both in GNU info form and also in hardcopy.
Here we’ll concentrate on how to use the commands.

Breakpoints and Watchpoints
As we have seen, the single biggest difference between a debugger and other forms of debugging
is that a debugger can stop and restart program execution. The debugger will stop execution un-
der two circumstances: if the process receives a signal, or if you tell it to stop at a certain point.
For historical reasons, gdb refers to these points as breakpoints or watchpoints, depending on
how you specify them:

• A breakpoint tells gdb to take control of process execution when the program would execute
a certain code address.

• A watchpoint tells gdb to take control of process execution when a certain memory address
is changed.

Conceptually, there is little difference between these two functions: a breakpoint checks for a
certain value in the program counter, the register that addresses the next instruction to be execut-
ed, while a watchpoint checks for a certain value in just about anything else. The distinction is
made because the implementation is very different. Most machines specify a special breakpoint
instruction, but even on those machines that do not, it’s easy enough to find an instruction which
will do the job. The system replaces the instruction at the breakpoint address with a breakpoint
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instruction. When the instruction is executed, the breakpoint instruction causes a trap, and the
system invokes the debugger.

On the other hand, you can’t use this technique for watching for changed memory contents. gdb
solves this problem by executing the program one instruction at a time and examining the con-
tents of memory after every instruction. This means that for every program instruction, gdb will
execute thousands of instructions to check the memory locations. This makes program execution
several orders of magnitude slower.

Many systems provide hardware support for this kind of check. For example, the Intel 386 archi-
tecture has four breakpoint registers. Each register can specify an address and an event for
which a breakpoint interrupt should be generated. The events are instruction execution (this is
the classical breakpoint we just discussed), memory write (our watchpoint), and memory read
(which gdb can’t detect at all). This support allows you to run at full speed and still perform the
checks. Unfortunately, most UNIX systems don’t support this hardware, so you need to run in
stone-age simulation mode.

You set a breakpoint with the breakpoint command, which mercifully can be abbreviated to b .
Typically, you’ll set at least one breakpoint when you start the program, and possibly later you’ll
set further breakpoints as you explore the behaviour of the program. For example, you might
start a program like this:

$ gdb bisdnd
GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying" to see the conditions.

There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.13 (i386-unknown-freebsd), Copyright 1994 Free Software Foundation, Inc...
(gdb) b handle_charge set a breakpoint at handle_charge
Breakpoint 1 at 0x91e9: file msgutil.c, line 200.

gdb prints this political statement every time you start it. I’ve shown it in this case in respect of
the sentiments of the people who produced it, but in the remaining examples in this book I’ll
omit it, since it doesn’t change from one invocation to the next.

Running the program
When you start gdb, it’s much like any other interactive program: it reads input from stdin and
writes to stdout. You specify the name of the program you want to start, but initially that’s all.
Before you actually debug the process, you need to start it. While doing so, you specify the pa-
rameters that you would normally specify on the command line. In our case, our program bisd-
nd would normally be started as:

$ bisdnd -s 24 -F

It would be tempting (in fact, it would be a very good idea) just to put the word gdb in front of
this command line invocation, but for historical reasons all UNIX debuggers take exactly two pa-
rameters: the first is the name of the program to start, and the second, if present, is the name of a
core dump file.

Instead, the normal way to specify the parameters is when we actually run the program:

(gdb) r -s 24 -F and run the program
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Starting program: /usr/src/bisdn/bisdnd/bisdnd -s 24 -F

An alternative would be with the set args command:

(gdb) set args -s 24 -F define the arguments
(gdb) r and run the program
Starting program: /usr/src/bisdn/bisdnd/bisdnd -s 24 -F

Stopping the process
Once you let the process run, it should run in the same way as it would do without a debugger,
until it hits a breakpoint or it receives a signal. There are a few wrinkles, but they’re relatively
uncommon.

This could go on for hours, of course, depending on what the process does. Possibly you are
concerned about the fact that the process might be looping or hanging, or you’re just curious
about what it’s doing right now. Before you can talk to gdb again, you need to stop the process.
This isn’t the same thing as termination : the process continues to exist, but its execution is sus-
pended until you start it again.

An obvious way to get gdb ’s attention again is to send it a signal. That’s simple: you can send a
SIGINT via the keyboard, usually with the CTRL-C key:

ˆC
Program received signal SIGINT, Interrupt.
0x8081f31 in read ()
(gdb)

Alternatively, of course, you could hit a breakpoint, which also stops the execution:

Breakpoint 1, handle_charge (isdnfd=4, cp=0x11028, units=1, now=0xefbfd2b8, an=3,
channel=0) at msgutil.c:200
200 cp->charge = units;
(gdb)

Stack trace
One we have stopped the process, the most obvious thing is to take a look around. As we have
already seen, the stack trace command is probably the most useful of all. If your program bombs
out, it will usually stop in a well-defined place, and your first question will be "how did I get
here?". gdb implements this function with the backtrace command, which can be abbreviated
to bt. A backtrace looks like:

(gdb) bt
#0 handle_charge (isdnfd=4, cp=0x11028, units=1, now=0xefbfd2b8, an=3, channel=0)

at msgutil.c:200
#1 0x95e0 in info_dss1 (isdnfd=4, s=0xefbfd504 "i") at msgutil.c:324
#2 0x7ab3 in msg_info (isdnfd=4, rbuf=0xefbfd504 "i") at msg.c:569
#3 0x1f80 in main (argc=7, argv=0xefbfde30) at main.c:441
(gdb)

This format looks rather unintelligible at first, so let’s look at it in more detail. Each entry refers
to a particular stack frame. The information is:
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• The stack frame number , with a leading #. You can refer to this number with the frame
command.

• The address of the next instruction in the stack frame. In frame 0, the current execution ad-
dress, this is the next instruction that will be executed when you continue from the debugger.
In the other stack frames, it’s the next instruction that will be executed after returning control
to that frame.

In frame 0, the address is specified simply as handle_charge. This means that the pro-
gram is stopped at the beginning of the function. In the other frames, the address is specified
in hexadecimal as well. It doesn’t tell you how far into the function you are.

• The current values of the parameters supplied to the function. You’ll only see this informa-
tion if you have compiled the source file with the -g option. Don’t rely on this information
being accurate: it’s common enough for programs to change the values of the parameters sup-
plied, and the values shown here are the values which are on the stack at the time the program
was stopped.

• The name of the file and the line number of the source instruction.

Once you have found where you are, the most obvious thing to do is to look around a bit. gdb
supplies a number of options which help. Initially, they apply to frame 0, but you can change
that with the frame command. First, let’s look at the source code where we are:

Listing source code
To look at the source code in the current position, use the list command, which can be abbre-
viated to l:

(gdb) l
195 int units,
196 struct timeval *now,
197 int an,
198 int channel)
199 {
200 cp->charge = units;
201
202 if (cp->aoc_last.tv_sec == 0) /* if secs are 0, so will be usecs */
203 cp->aoc_last = *now;
204 else if (cp->aoc_now.tv_sec == 0)

If you look back to the stack trace, you’ll see that our current position is at line 200, but gdb
started at line 195. This is an attempt to show the area around the function. As you can see in
this case, it wasn’t enough: the function declaration takes up a number of lines. There are two
parameters (isdnfd and cp) which are not displayed, so let’s back up three lines (to 192) and
have a look there:

(gdb) l 192
187 }
188
189 /*---------------------------------------------------------------------------*
190 * process the charging units
191 *---------------------------------------------------------------------------*/
192 static void
193 handle_charge (int isdnfd,
194 struct confdata *cp,
195 int units,
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196 struct timeval *now,

How about that, gdb always goes back 5 lines. Still, now we hav e the start of our function. If
we want to see more, we just press ENTER:

(gdb) (ENTER pressed)
197 int an,
198 int channel)
199 {
200 cp->charge = units;
201
202 if (cp->aoc_last.tv_sec == 0) /* if secs are 0, so will be usecs */
203 cp->aoc_last = *now;
204 else if (cp->aoc_now.tv_sec == 0)
205 cp->aoc_now = *now;
206 else

In general, if you press ENTER, gdb will attempt to re-execute the last instruction, possibly
with parameters it calculates (like the starting address for the list command).

Examining other stack frames
We’v e just arrived in this function, so we’re probably more interested in the calling function than
the function we’re in. Indeed, maybe we’re just wondering how we can get here at all. The stack
trace has shown us where we came from, but we might want to look at it in more detail. We do
that with the frame command, which can be abbreviated to f. We supply the number of the
frame which we want to examine:

(gdb) f 1 look at frame 1
#1 0x95e0 in info_dss1 (isdnfd=4, s=0xefbfd504 "i") at msgutil.c:324
324 handle_charge (isdnfd, cp, i, &time_now, appl_no, channel);
(gdb) l and list the source code
319 gettimeofday (&time_now, NULL);
320
321 cp = getcp (appl_typ, appl_no);
322 i = decode_q932_aoc (s);
323 if (i != -1)
324 handle_charge (isdnfd, cp, i, &time_now, appl_no, channel);
325 break;
326
327 default:
328 dump_info (appl_typ, appl_no, mp->info);

Not surprisingly, line 324 is a call to handle_charge. This shows an interesting point: clear-
ly, the return address can’t be the beginning of the instruction. It must be somewhere near the
end. If I stop execution on line 324, I would expect to stop before calling handle_charge. If
I stop execution at address 0x95e0, I would expect to stop after calling handle_charge.
We’ll look into this question more further down, but it’s important to bear in mind that a line
number does not uniquely identify the instruction.

Displaying data
The next thing you might want to do is to look at some of the variables in the current stack envi-
ronment. There are a number of ways to do this. The most obvious way is to specify a variable
you want to look at. In gdb, you do this with the print command, which can be abbreviated to
p. For example, as we have noted, the values of the parameters that backtrace prints are the
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values at the time when process execution stopped. Maybe we have reason to think they might
have changed since the call. The parameters are usually copied on to the stack, so changing the
values of the parameters supplied to a function doesn’t change the values used to form the call.
We can find the original values in the calling frame. Looking at line 324 above, we hav e the val-
ues isdnfd, cp, i, &time_now, appl_no, and channel. Looking at them,

(gdb) p isdnfd
$1 = 6 an int

The output format means “result 1 has the value 6”. You can refer to these calculated results at a
later point if you want, rather than recalculating them:

(gdb) p $1
$2 = 6
(gdb) p cp a struct pointer
$3 = (struct confdata *) 0x11028

Well, that seems reasonable: cp is a pointer to a struct confdata, so gdb shows us the ad-
dress. That’s not usually of much use, but if we want to see the contents of the struct to which it
points, we need to specify that fact in the standard C manner:

(gdb) p *cp
$4 = {interface = "ipi3", ’\000’ <repeats 11 times>, atyp = 0, appl = 3,

name = "daemon\000\000\000\000\000\000\000\000\000", controller = 0,
isdntype = 1, telnloc_ldo = "919120", ’\000’ <repeats 26 times>,
telnrem_ldo = "919122", ’\000’ <repeats 26 times>, telnloc_rdi = "919120",

’\000’ <repeats 26 times>, telnrem_rdi = "6637919122", ’\000’ <repeats 22 times>,
reaction = 0, service = 2, protocol = 0, telaction = 0, dialretries = 3,
recoverytime = 3, callbackwait = 1,

...much more

This format is not the easiest to understand, but there is a way to make it better: the command
set print pretty causes gdb to structure printouts in a more appealing manner:

(gdb) set print pretty
(gdb) p *cp
$5 = {

interface = "ipi3", ’\000’ <repeats 11 times>,
atyp = 0,
appl = 3,
name = "daemon\000\000\000\000\000\000\000\000\000",
controller = 0,
isdntype = 1,
telnloc_ldo = "919120", ’\000’ <repeats 26 times>,
telnrem_ldo = "919122", ’\000’ <repeats 26 times>,
telnloc_rdi = "919120", ’\000’ <repeats 26 times>,
telnrem_rdi = "6637919122", ’\000’ <repeats 22 times>,

...much more

The disadvantage of this method, of course, is that it takes up much more space on the screen.
It’s not uncommon to find that the printout of a structure takes up several hundred lines.

The format isn’t always what you’d like. For example, time_now is a struct timeval,
which looks like:

(gdb) p time_now
$6 = {

tv_sec = 835701726,
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tv_usec = 238536
}

The value 835701726 is the number of seconds since the start of the epoch, 00:00 UTC on 1
January 1970, the beginning of UNIX time. gdb provides no way to transform this value into a
real date. On many systems, you can do it with a little-known feature of the date command:

$ date -r 835701726
Tue Jun 25 13:22:06 MET DST 1996

Displaying register contents
Sometimes it’s not enough to look at official variables. Optimized code can store variables in
registers without ever assigning them a memory location. Even when variables do have a memo-
ry location, you can’t count on the compiler to store them there immediately. Sometimes you
need to look at the register where the variable is currently stored.

A lot of this is deep magic, but one case is relatively frequent: after returning from a function, the
return value is stored in a specific register. In this example, which was run on FreeBSD on an In-
tel platform, the compiler returns the value in the register eax. For example:

Breakpoint 2, 0x133f6 in isatty () hit the breakpoint
(gdb) fin continue until the end of the function
Run till exit from #0 0x133f6 in isatty ()
0x2fe2 in main (argc=5, argv=0xefbfd4c4) at mklinks.c:777 back in the calling function
777 if (interactive = isatty (Stdin) /* interactive */
(gdb) i reg look at the registers
eax 0x1 1 isatty returned 1
ecx 0xefbfd4c4 -272640828
edx 0x1 1
ebx 0xefbfd602 -272640510
esp 0xefbfd48c 0xefbfd48c
ebp 0xefbfd4a0 0xefbfd4a0
esi 0x0 0
edi 0x0 0
eip 0x2fe2 0x2fe2
eflags 0x202 514
(gdb)

This looks like overkill: we just wanted to see the value of the register eax, and we had to look
at all values. An alternative in this case would have been to print out the value explicitly:

(gdb) p $eax
$3 = 1

At this point, it’s worth noting that gdb is not overly consistent in its naming conventions. In the
disassembler, it will use the standard assembler convention and display register contents with a %
sign, for example %eax:

0xf011bc7c <mi_switch+116>: movl %edi,%eax

On the other hand, if you want to refer to the value of the register, we must specify it as $eax.
gdb can’t make any sense of %eax in this context:

(gdb) p %eax
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syntax error

Single stepping
Single stepping in its original form is supported in hardware by many architectures: after execut-
ing a single instruction, the machine automatically generates a hardware interrupt that ultimately
causes a SIGTRAP signal to the debugger. gdb performs this function with the stepi command.

You won’t want to execute individual machine instructions unless you are in deep trouble. In-
stead, you will execute a single line instruction, which effectively single steps until you leave the
current line of source code. To add to the confusion, this is also frequently called single step-
ping. This command comes in two flavours, depending on how it treats function calls. One form
will execute the function and stop the program at the next line after the call. The other, more
thorough form will stop execution at the first executable line of the function. It’s important to
notice the difference between these two functions: both are extremely useful, but for different
things. gdb performs single line execution omitting calls with the next command, and includes
calls with the step command.

(gdb) n
203 if (cp->aoc_last.tv_sec == 0) /* if secs are 0, so will be usecs */
(gdb) (ENTER pressed)
204 cp->aoc_last = *now;
(gdb) (ENTER pressed)
216 if (do_fullscreen)
(gdb) (ENTER pressed)
222 if ((cp->unit_length_typ == ULTYP_DYN) && (cp->aoc_valid == AOC_VALID))
(gdb) (ENTER pressed)
240 if (do_debug && cp->aoc_valid)
(gdb) (ENTER pressed)
243 }
(gdb) (ENTER pressed)
info_dss1 (isdnfd=6, s=0xefbfcac0 "i") at msgutil.c:328
328 break;
(gdb)

Modifying the execution environment
In gdb, you do this with the set command.

Jumping (changing the address from which the next instruction will be read) is really a special
case of modifying register contents, in this case the program counter (the register that contains
the address of the next instruction). Some architectures, including the Intel i386 architecture, re-
fer to this register as the instruction pointer, which makes more sense. In gdb, use the jump com-
mand to do this. Use this instruction with care: if the compiler expects the stack to look different
at the source and at the destination, this can easily cause incorrect execution.
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Using debuggers

There are two possible approaches when using a debugger. The easier one is to wait until some-
thing goes wrong, then find out where it happened. This is appropriate when the process gets a
signal and does not overwrite the stack: the backtrace command will show you how it got there.

Sometimes this method doesn’t work well: the process may end up in no-man’s-land, and you
see something like:

Program received signal SIGSEGV, Segmentation fault.
0x0 in ?? ()
(gdb) bt abbreviation for backtrace
#0 0x0 in ?? () nowhere
(gdb)

Before dying, the process has mutilated itself beyond recognition. Clearly, the first approach
won’t work here. In this case, we can start by conceptually dividing the program into a number
of parts: initially we take the function main and the set of functions which main calls. By single
stepping over the function calls until something blows up, we can localize the function in which
the problem occurs. Then we can restart the program and single step through this function until
we find what it calls before dying. This iterative approach sounds slow and tiring, but in fact it
works surprisingly well.
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5
Reading Code

This section still needs to be written. It will be demonstrated.
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6
Preparing to debug a kernel

When building a kernel for debug purposes, you need to know how you’re going to perform the
debugging. If you’re using remote debugging, it’s better to have the kernel sources and objects
on the machine from which you perform the debugging, rather than on the machine you’re de-
bugging. That way the sources are available when the machine is frozen. On the other hand, you
should always build the kernel on the machine which you are debugging. There are two ways to
do this:

1. Build the kernel on the debug target machine, then copy the files to the debugging ma-
chine.

2. NFS mount the sources on the debugging machine and then build from the target machine.

Unless you’re having problems with NFS, the second alternative is infinitely preferable. It’s very
easy to forget to copy files across, and you may not notice your error until hours of head scratch-
ing have passed. I use the following method:

• All sources are kept on a single large drive called /src and mounted on system echunga.

• /src contains subdirectories /src/FreeBSD, /src/NetBSD, /src/OpenBSD and /src/Linux.

These directories in turn contain subdirectories with source trees for specific systems. For ex-
ample, /src/FreeBSD/ZAPHOD/src is the top-level build directory for system zaphod.

• On zaphod I mount /src under the same name and create two symbolic links:

# ln -s /src/FreeBSD/ZAPHOD/src /usr/src
# ln -s /src/FreeBSD/obj /usr/obj

In this manner, I can build the system in the “normal” way and have both sources and binaries on
the remote system echunga. Normally the kernel build installs the kernel in the “standard” place:
/boot/kernel/kernel for FreeBSD version 5, /netbsd for NetBSD, or /bsd on OpenBSD. The
versions installed there usually have the symbols stripped off, however, so you’ll have to find
where the unstripped versions are. That depends on how you build the kernel.
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Kernel debuggers

Currently, two different kernel debuggers are available for BSD systems: ddb and gdb. ddb is a
low-level debugger completely contained in the kernel, while you need a second machine to de-
bug with gdb.

You can build a FreeBSD kernel with support for both debuggers, but in NetBSD and OpenBSD
you must make a choice.

Building a kernel for debugging

There are three different kinds of kernel parameters for debug kernels:

• As an absolute minimum to be able to debug things easily, you need a kernel with debug sym-
bols. This is commonly called a debug kernel, though in fact compiling with symbols adds
no code, and the kernel is identical in size.1

To create a debug kernel, ensure you have the following line in your kernel configuration file:

makeoptions DEBUG=-g #Build kernel with gdb(1) debug symbols

In most cases, this is simply a matter of removing the comment character at the beginning of
the line.

• If you want to use a kernel debugger, you need additional parameters to specify which debug-
ger and some other options. These options differ between the individual systems, so we’ll
look at them in the following sections.

• Finally, the kernel code offers specific consistency checking code. Often this changes as vari-
ous parts of the kernel go through updates which require debugging. Again, these options dif-
fer between the individual systems, so we’ll look at them in the following sections.

FreeBSD kernel
FreeBSD has recently changed the manner of building the kernel. The canonical method is now:

# cd /usr/src
# make kernel KERNCONF=ZAPHOD

Assuming that /usr/src is not a symbolic link, this performs the following steps:

• It builds a kernel /usr/obj/sys/ZAPHOD/kernel.debug and a stripped copy at /usr/obj/sys/ZA-
PHOD/kernel.

• It also builds all modules. This can take longer than the kernel itself.

• It removes any directory /boot/kernel.old and renames /boot/kernel to /boot/kernel.old.

1. On occasion the compiler generates slightly different code when compiling with symbols, but the difference is
negligible. It does make it difficult to perform a direct comparison of the code with cmp, howev er.
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• It installs /usr/obj/sys/ZAPHOD/kernel and the modules in /boot/kernel.

If you’re building kernels for debugging, there’s a good chance that they won’t work; they may
not even boot. That’s why the old version is saved in /boot/kernel.old. If the kernel doesn’t
boot, you boot /boot/kerne.old/kernel and recover.

Under these circumstances, the method described above is a little heavy-handed: it’s too easy to
overwrite your /boot/kerne.old/kernel and end up with two kernels, neither of which run. Also,
chances are that you won’t want to rebuild every module every time. You can speed things up a
lot with the following approach:

# cd /usr/src
# make buildkernel KERNCONF=ZAPHOD -DNOCLEAN -DNO_MODULES -j2
# make installkernel KERNCONF=ZAPHOD -DNO_MODULES install the kernel, renaming /boot/kernel
# make reinstallkernel KERNCONF=ZAPHOD -DNO_MODULES install the kernel, overwriting /boot/kernel

The options have the following meanings:

• -DNOCLEAN tells the build process not to remove the old object files. This greatly speeds up
a kernel build where you’ve only changed a file or two.

• -DNO_MODULES tells the build process to build only a kernel.

• -j2 tells the build process to perform two compilations in parallel at any one time. The val-
ue 2 is right for a single processor; -j3 tends to be slower again. If you’re building on an
SMP machine, multiply the number of CPUs by 2. For example, on a four-way machine you
would use -j8.

• The installkernel target first renames the /boot/kernel to /boot/kernel.old and then in-
stalls /usr/obj/sys/ZAPHOD/kernel and any the modules in /boot/kernel, in the same way as
the kernel target.

• The reinstallkernel target does not rename /boot/kernel. It overwrites the old con-
tents. Use this when the previous kernel was no good.

In the situations we’re looking at, though, you’re unlikely to build the kernel in /usr/src, or if you
do, it will be a symbolic link. In either case, the location of the kernel build directory changes.
In the example above, if /usr/src is a symbolic link to /src/FreeBSD/ZAPHOD/src, the kernel bi-
naries will be placed in /usr/obj/src/FreeBSD/ZAPHOD/src/sys/ZAPHOD, and the debug kernel
will be called /usr/obj/src/FreeBSD/ZAPHOD/src/sys/ZAPHOD/kernel.debug.

Setting up debug macros

FreeBSD has a number of debug macros in the directory /usr/src/tools/debugscripts. Normally
you install them in the kernel build directory:

# cd /src/FreeBSD/obj/src/FreeBSD/ZAPHOD/src/sys/ZAPHOD/
# make gdbinit
grep -v ’# XXX’ /src/FreeBSD/ZAPHOD/src/sys/../tools/debugscripts/dot.gdbinit

| sed "s:MODPATH:/src/FreeBSD/obj/src/FreeBSD/ZAPHOD/src/sys/ZAPHOD/modules:" \
> .gdbinit

cp /src/FreeBSD/ZAPHOD/src/sys/../tools/debugscripts/gdbinit.kernel \
/src/FreeBSD/ZAPHOD/src/sys/../tools/debugscripts/gdbinit.vinum \
/src/FreeBSD/obj/src/FreeBSD/ZAPHOD/src/sys/ZAPHOD \

cp /src/FreeBSD/ZAPHOD/src/sys/../tools/debugscripts/gdbinit.i386
/src/FreeBSD/obj/src/FreeBSD/ZAPHOD/src/sys/ZAPHOD/gdbinit.machine \
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NetBSD kernel
NetBSD now has a do-it-all tool called make.sh. As the name suggests, it’s a shell script front
end to a bewildering number of build options. To build, say, a 1.6W kernel for daikon, an i386
box, you might do this:

# ln -s /src/NetBSD/1.6W-DAIKON/src /usr/src
# cd /usr/src
# ./build.sh tools

This step builds the tool chain in the directory tools.

Continuing,

# ./build.sh kernel=DAIKON
# mv /netbsd /onetbsd
# cp sys/arch/i386/compile/DAIKON/netbsd /

This builds a kernel file /usr/src/sys/arch/i386/compile/DAIKON/netbsd.gdb with debug sym-
bols, and a file /usr/src/sys/arch/i386/compile/DAIKON/netbsd without.

ddb

The local debugger is called ddb. It runs entirely on debugged machine and displays on the con-
sole (including serial console if selected). There are a number of ways to enter it:

• You can configure your system to enter the debugger automatically from panic. In FreeB-
SD, debugger_on_panic needs to be set.

• DDB_UNATTENDED resets debugger_on_panic.

• Enter from keyboard with CTRL-ALT-ESC.

The following examples are from a FreeBSD system on the Intel ia32 platform.

ddb entry from keyboard

# Debugger("manual escape to debugger")
Stopped at Debugger+0x44: pushl %ebx
db> t
Debugger(c03ca5e9) at Debugger+0x44
scgetc(c16d9800,2,c16d1440,c046ac60,0) at scgetc+0x426
sckbdevent(c046ac60,0,c16d9800,c16d1440,c16d4300) at sckbdevent+0x1c9
atkbd_intr(c046ac60,0,cc04bd18,c024c79a,c046ac60) at atkbd_intr+0x22
atkbd_isa_intr(c046ac60) at atkbd_isa_intr+0x18
ithread_loop(c16d4300,cc04bd48,c16d4300,c024c670,0) at ithread_loop+0x12a
fork_exit(c024c670,c16d4300,cc04bd48) at fork_exit+0x58
fork_trampoline() at fork_trampoline+0x8db>
db>
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ddb entry on panic
A call to panic produces a register summary:

Fatal trap 12: page fault while in kernel mode
fault virtual address = 0x64
fault code = supervisor read, page not present
instruction pointer = 0x8:0xc02451d7
stack pointer = 0x10:0xccd99a20
frame pointer = 0x10:0xccd99a24
code segment = base 0x0, limit 0xfffff, type 0x1b

= DPL 0, pres 1, def32 1, gran 1
processor eflags = interrupt enabled, resume, IOPL = 0
current process = 107 (syslogd)

If you have selected it, you will then enter ddb

kernel: type 12 trap, code=0
Stopped at devsw+0x7: cmpl $0,0x64(%ebx)
db> tr stack backtrace
devsw(0,c045cd80,cc066e04,cc066e04,0) at devsw+0x7
cn_devopen(c045cd80,cc066e04,0) at cn_devopen+0x27
cnopen(c0435ec8,6,2000,cc066e04,0) at cnopen+0x39
spec_open(ccd99b50,ccd99b24,c0320589,ccd99b50,ccd99bc4) at spec_open+0x127
spec_vnoperate(ccd99b50,ccd99bc4,c029984b,ccd99b50,ccd99d20) at spec_vnoperate+0x15
ufs_vnoperatespec(ccd99b50,ccd99d20,0,cc066e04,6) at ufs_vnoperatespec+0x15
vn_open(ccd99c2c,ccd99bf8,0,cc066f0c,cc066d00) at vn_open+0x333
open(cc066e04,ccd99d20,8054000,bfbfef64,bfbfef34) at open+0xde
syscall(2f,2f,2f,bfbfef34,bfbfef64) at syscall+0x24c
syscall_with_err_pushed() at syscall_with_err_pushed+0x1b
- syscall (5, FreeBSD ELF, open), eip = 0x280aae50, esp = 0xbfbfe960, ebp =0xbfbfe9cc -

The main disadvantage of ddb is the limited symbol support. This backtrace shows the function
names, but not the parameters, and not the file names or line numbers. It also cannot display au-
tomatic variables, and it does not know the types of global variables.

Serial console

Until about 15 years ago, the console of most UNIX machines was a terminal connected by a se-
rial line. Nowadays, most modern machines have an integrated display. If the system fails, the
display fails too. For debugging, it’s often useful to fall back to the older serial console on ma-
chines with a serial port. Instead of a terminal, though, it’s better to use a terminal emulator on
another computer: that way you can save the screen output to a file.

Serial console: debugging machine
To boot a machine with a serial console, first connect the system with a serial cable to a machine
with a terminal emulator running at 9600 bps. Start a terminal emulator; I run the following
command inside an X window so that I can copy any interesting output:

# cu -s 9600 -l /dev/cuaa0

The device name will change depending on the system you’re using and the serial port hardware.
The machine doesn’t need to be a BSD machine. It can even be a real terminal if you can find
one, but that makes it difficult to save output.
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cu runs setuid to the user uucp. You may need to adjust ownership or permissions of the serial
port, otherwise you’ll get the unlikely looking error

# cu -l /dev/cuaa1
cu: /dev/cuaa1: Line in use

Typical permissions are:

# ls -l /dev/cuaa0
crw-rw-rw- 1 root wheel 28, 0 Nov 3 15:23 /dev/cuaa0
# ps aux | grep cu
uucp 6828 0.0 0.5 1020 640 p0 I+ 3:21PM 0:00.01 cu -s 9600 -l /dev/cuaa0
uucp 6829 0.0 0.5 1020 640 p0 I+ 3:21PM 0:00.01 cu -s 9600 -l /dev/cuaa0

Boot the target machine with serial console support:

• On FreeBSD, interrupt the boot sequence at the following point:

Hit [Enter] to boot immediately, or any other key for command prompt.
Booting [kernel] in 6 seconds... press space bar here

OK set console=comconsole select chosen serial port
the remainder appears on the serial console
OK boot and continue booting normally
OK boot -d or boot and go into debugger

If you specify the -d flag to the boot command, the kernel will enter the kernel debugger as
soon as it has enough context to do so.

You “choose” a serial port by setting bit 0x80 of the device flags in /boot/loader.conf :

hint.sio.0.flags="0x90"

In this example, bit 0x10 is also set to tell the kernel gdb stub to access remote debugging
via this port.

• On NetBSD,

>> NetBSD BIOS Boot, revision 2.2
>> (user@buildhost, builddate)
>> Memory: 637/15360 k
Press return to boot now, any other key for boot menu
booting hd0a:netbsd - starting in 5 press space bar here

> consdev com0 select first serial port
the remainder appears on the serial console
>> NetBSD/i386 BIOS Boot, Revision 2.12
>> (autobuild@tgm.daemon.org, Sun Sep 8 19:22:13 UTC 2002)
>> Memory: 637/129984 k
> boot continue booting normally
> boot -d or boot and go into debugger

In NetBSD, you can’t run the serial console and the debugger on the same interface. If the se-
rial console is on the debugger interface, the bootstrap ignores the -d flag.
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Problems with remote debugging
Remote debugging is a powerful technique, but it’s anything but perfect. Here are some of the
things which will annoy you:

• It is slow. Few serial ports can run at more than 115,200 bps, a mere 11 kB/s. Dumping the
msgbuf (the equivalent of dmesg) can take five minutes.

• If that weren’t enough, the GNU remote serial protocol is wasteful.

• The link must work when the system is not running, so you can’t use the serial drivers. In-
stead, there’s a primitive driver, called a stub, which handles the I/O. It’s inefficient, and for
reasons we don’t quite understand, at least on FreeBSD it does not work reliably over 9,600
bps, further slowing things down.

• Why don’t we know why the stub doesn’t work reliably over 9,600 bps? How do you debug a
debugger? Code reading can only get you so far.

• “Legacy” serial ports are on their way out. Modern laptops often don’t hav e them any more,
and it won’t be long before they’re a thing of the past.

FreeBSD also supports debugging over a firewire (IEEE 1349) interface. This eliminates the de-
lay of the serial link (firewire is significantly faster than 100 Mb/s Ethernet), but it doesn’t help
much with gdb’s inherent slowness. Firewire also offers the possibility of accessing the target
processor memory without participation of the target processor, which promises to help debug a
large number of processor hangs and halts. We’ll look at it in more detail below.

In addition, some other debugging interfaces are around, but they’re not overly well supported.
NetBSD supports debugging over Ethernet, but only on NE2000 cards. FreeBSD now supports
firewire debugging, which we’ll look at in the next section.

Kernel gdb

Kernel gdb is the same gdb program you know and love in userland. It provides the symbolic
capability that is missing in ddb, and also macro language capability. It can run on serial lines
(and in some cases on Ethernet and Firewire links) and post-mortem dumps. In the last case, it
requires some modifications to adapt to the dump structure, so you must specify the -k flag
when using it on kernel dumps.

gdb is not a very good fit to the kernel: it assumes that it’s running in process context, and it’s
relatively difficult to get things like stack traces and register contents for processes other than the
one (if any) currently running on the processor. There are some macros that help in this area, but
it’s more than a little kludgy.

Entering gdb from ddb
In FreeBSD you can build a kernel with support for both ddb and gdb. You can then change
backwards and forwards between them. For example, if you’re in ddb, you can go to gdb like
this:

db> gdb
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Next trap will enter GDB remote protocol mode
db> si step a single instruction to reenter ddb

||||$T0b08:d75124c0;05:249ad9cc;04:209ad9cc;#32˜.

Disconnected.
#

The noise at the bottom is the prompt from the gdb stub on the debugged machine: the serial
console and gdb are sharing the same line. In this case, you need to exit the terminal emulator
session to be able to debug. The input sequence ˜. at the end of the line tells cu to exit, as
shown on the following lines. Next, you need to attach from the local gdb, which we’ll see in
the next section.

Running serial gdb
On the side of the debugging (“local”) machine you run gdb in much the same way as you
would for a userland program. In the case of the panic we saw above, enter:

$ cd /usr/src/sys/compile/CANBERRA
$ gdbk
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-unknown-freebsd".
(kgdb) target remote /dev/cuaa1 connect to remote machine
devsw (dev=0x0) at ../../../kern/kern_conf.c:83
83 if (dev->si_devsw)
(kgdb)

The first thing you would do there would be to do a backtrace:

(kgdb) bt
#0 devsw (dev=0x0) at ../../../kern/kern_conf.c:83
#1 0xc027d0c7 in cn_devopen (cnd=0xc045cd80, td=0xcc066e04, forceopen=0x0)

at ../../../kern/tty_cons.c:344
#2 0xc027d211 in cnopen (dev=0xc0435ec8, flag=0x6, mode=0x2000, td=0xcc066e04)

at ../../../kern/tty_cons.c:376
#3 0xc0230f6f in spec_open (ap=0xccd99b50) at ../../../fs/specfs/spec_vnops.c:199
#4 0xc0230e45 in spec_vnoperate (ap=0xccd99b50) at ../../../fs/specfs/spec_vnops.c:119
#5 0xc0320589 in ufs_vnoperatespec (ap=0xccd99b50) at ../../../ufs/ufs/ufs_vnops.c:2676
#6 0xc029984b in vn_open (ndp=0xccd99c2c, flagp=0xccd99bf8, cmode=0x0) at vnode_if.h:159
#7 0xc0294c12 in open (td=0xcc066e04, uap=0xccd99d20) at ../../../kern/vfs_syscalls.c:1099
#8 0xc035aedc in syscall (frame={tf_fs = 0x2f, tf_es = 0x2f, tf_ds = 0x2f,

tf_edi = 0xbfbfef34, tf_esi = 0xbfbfef64, tf_ebp = 0xbfbfe9cc,
tf_isp = 0xccd99d74, tf_ebx = 0x8054000, tf_edx = 0xf7, tf_ecx = 0x805402f,
tf_eax = 0x5, tf_trapno = 0x0, tf_err = 0x2, tf_eip = 0x280aae50,
tf_cs = 0x1f, tf_eflags = 0x293, tf_esp = 0xbfbfe960, tf_ss = 0x2f})
at ../../../i386/i386/trap.c:1129

#9 0xc034c28d in syscall_with_err_pushed ()
#10 0x804b2b5 in ?? ()
#11 0x804abe9 in ?? ()
#12 0x804b6fe in ?? ()
#13 0x804b7af in ?? ()
#14 0x8049fb5 in ?? ()
#15 0x8049709 in ?? ()
(kgdb)

This corresponds to the ddb example above. As can be seen, it provides a lot more information.
Stack frames 10 to 15 are userland code: on most platforms, userland and kernel share the same
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address space, so it’s possible to show the user call stack as well. If necessary, you can also load
symbols for the process, assuming you have them available on the debugging machine.

Getting out of the debugger
How do you stop the debugger? You can hit ˆC, and you’ll get a debugger prompt:

ˆC
Program received signal SIGTRAP, Trace/breakpoint trap.
0xc5ac8378 in ?? ()
(gdb) The program is running. Exit anyway? (y or n) y
#

You may not realise the problem with this approach for a while: the debugged machine is still in
the debugger, and it won’t respond. You can reboot it, of course, but that’s usually overkill. The
correct way is the detach command:

ˆC
Program received signal SIGTRAP, Trace/breakpoint trap.
0xc5ac8378 in ?? ()
(gdb) detach
Ending remote debugging.
(gdb)

You can then attach again with one of the target remote commands we have seen above.

Debugging running systems

For some things, you don’t need to stop the kernel. If you’re only looking, for example, and the
data you’re looking at is not very likely to change, you can use a debugger on the same system to
look at its own kernel. In this case you use the special file /dev/mem instead of dump file.
You’re somewhat limited in what you can do: you can’t set breakpoints, you can’t stop execution,
and things can change while you’re looking at them. You can change data, but you need to be
particularly careful, or not care too much whether you crash the system.

Debugging a running FreeBSD system

# gdb -k /isr/src/sys/i386//MONORCHID/kernel.debug /dev/mem
GNU gdb 4.18
...
This GDB was configured as "i386-unknown-freebsd"...
IdlePTD at phsyical address 0x004f3000
initial pcb at physical address 0x0e5ccda0
panic messages:
---
---
#0 0xc023a6df in mi_switch () at ../../../kern/kern_synch.c:779
779 cpu_switch();
(kgdb) bt
#0 0xc023a6df in mi_switch () at ../../../kern/kern_synch.c:779
#1 0xffffffff in ?? ()
error reading /proc/95156/mem

You need the -k option to tell gdb that the “core dump” is really a kernel memory image. The
line panic messages is somewhat misleading: the system hasn’t panicked. This is also the
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reason for the empty messages (between the two lines with ---).

Debugging a running NetBSD system
NetBSD’s gdb no longer accepts the same syntax as FreeBSD, so on NetBSD you need a slight-
ly different syntax:

# gdb /netbsd no dump
...
This GDB was configured as "i386--netbsd"...(no debugging symbols found)...
(gdb) target kcore /dev/mem specify the core file
#0 0xc01a78f3 in mi_switch ()
(gdb) bt backtrace
#0 0xc01a78f3 in mi_switch ()
#1 0xc01a72ca in ltsleep ()
#2 0xc02d6c81 in uvm_scheduler ()
#3 0xc019a358 in check_console ()
(gdb)

In this case, we don’t see very much of use, because we’re using the standard kernel, which is
stripped (thus the message above no debugging symbols found). Things look a lot bet-
ter with symbols:

# gdb /usr/src/sys/arch/i386/compile/KIMCHI/netbsd.gdb
...
This GDB was configured as "i386--netbsd"...
(gdb) target kcore /dev/mem
#0 mi_switch (p=0xc0529be0) at ../../../../kern/kern_synch.c:834
834 microtime(&p->p_cpu->ci_schedstate.spc_runtime);
(gdb) bt
#0 mi_switch (p=0xc0529be0) at ../../../../kern/kern_synch.c:834
#1 0xc01a72ca in ltsleep (ident=0xc0529be0, priority=4, wmesg=0xc04131e4

"scheduler", timo=0, interlock=0x0) at ../../../../kern/kern_synch.c:.482
#2 0xc02d6c81 in uvm_scheduler () at ../../../../uvm/uvm_glue.c:453
#3 0xc019a358 in check_console (p=0x0) at

../../../../kern/init_main.c:522

Debugging via firewire

Currently remote debugging via firewire is available only on FreeBSD. Firewire offers new pos-
sibilities for remote debugging:

• It provides a much faster method of remote debugging, though the speed is still limited by the
inefficiencies of gdb processing.

• It provides a completely new method to debug systems which have crashed or hung: firewire
can access the memory of the machine to be debugged without its intervention, which pro-
vides an interface similar to local memory debugging. This makes it possible to debug hangs
and crashes which previously could not be debugged at all.

As with serial debugging, to debug a live system with a firewire link, compile the kernel with the
option

options DDB

options GDB_REMOTE_CHAT is not necessary, since the firewire implementation uses sepa-
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rate ports for the console and debug connection.

A number of steps must be performed to set up a firewire link:

• Ensure that both systems have firewire support, and that the kernel of the system to be de-
bugged includes the dcons and dcons_crom drivers. At the time of writing, the kernel
gdb infrastructure in FreeBSD is broken, and remote debugging will not work unless the
firewire driver is compiled into the kernel. Add the following lines to your kernel configura-
tion and build a new kernel:

device firewire # FireWire bus code
device dcons # dumb console driver
device dcons_crom # FireWire attachment

It’s probably not necessary to include the dcons support, but since this is a bug, it’s better to
play it safe.

If firewire is loaded in the kernel (and if your machine has a firewire interface), you will
should see something like this in the dmesg output:

fwohci0: OHCI version 1.10 (ROM=0)
fwohci0: No. of Isochronous channels is 4.
fwohci0: EUI64 43:4f:c0:00:1d:b0:a8:38
fwohci0: Phy 1394a available S400, 2 ports.
fwohci0: Link S400, max_rec 2048 bytes.
firewire0: <IEEE1394(FireWire) bus> on fwohci0
fwe0: <Ethernet over FireWire> on firewire0
if_fwe0: Fake Ethernet address: 42:4f:c0:b0:a8:38
fwe0: Ethernet address: 42:4f:c0:b0:a8:38
sbp0: <SBP-2/SCSI over FireWire> on firewire0
fwohci0: Initiate bus reset
fwohci0: node_id=0xc800ffc0, gen=1, CYCLEMASTER mode
firewire0: 1 nodes, maxhop <= 0, cable IRM = 0 (me)
firewire0: bus manager 0 (me)

When the gdb bug has been fixed, you won’t need to have the driver in the kernel. Instead,
load the KLDs:

# kldload firewire

• On the system to be debugged only, you need dcons and dcons_crom If they hav e been load-
ed, you’ll see the following in the dmesg output:

dcons_crom0: <dcons configuration ROM> on firewire0
dcons_crom0: bus_addr 0x13d3000

Otherwise load them:

# kldload dcons
# kldload dcons_crom

It is a good idea to load these modules at boot time with the following entry in /boot/load-
er.conf:

dcons_crom_enable="YES"
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This ensures that all three modules are loaded. There is no harm in loading dcons and
dcons_crom on the debugging system, but if you only want to load the firewire module, in-
clude the following in /boot/loader.conf:

firewire_enable="YES"

• Next, use fwcontrol to find the firewire node corresponding to the machine to be debugged.
On the debugging machine you might see:

# fwcontrol
2 devices (info_len=2)
node EUI64 status

0 43-4f-c0-00-1d-b0-a8-38 0
1 00-c0-4f-32-26-e8-80-61 1

The first node is always the local system, so in this case, node 1 is the machine to be de-
bugged. If there are more than two systems, check from the other end to find which node cor-
responds to the remote system. On the machine to be debugged, it looks like this:

# fwcontrol
2 devices (info_len=2)
node EUI64 status

1 00-c0-4f-32-26-e8-80-61 0
0 43-4f-c0-00-1d-b0-a8-38 1

• Next, on the debugging system, establish a firewire connection with dconschat:

# dconschat -br -G 5556 -t 00-c0-4f-32-26-e8-80-61
[dcons connected]
dcons_crom0: <dcons configuration ROM> on firewire0
dcons_crom0: bus_addr 0x13d300
fwohci0: BUS reset
fwohci0: node_id=0xc000ffc0, gen=3, CYCLEMASTER mode
firewire0: 1 nodes, maxhop <= 0, cable IRM = 0 (me)
firewire0: bus manager 0 (me)
fwohci0: BUS reset
fwohci0: node_id=0xc000ffc1, gen=4, CYCLEMASTER mode
firewire0: 2 nodes, maxhop <= 1, cable IRM = 1 (me)
firewire0: bus manager 1 (me)

FreeBSD/i386 (adelaide.lemis.com) (dcons)

login: root
Password:
Last login: Fri Aug 13 07:59:37 on ttyv0
Copyright (c) 1992-2004 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994

The Regents of the University of California. All rights reserved.

FreeBSD 5.2-CURRENT (ADELAIDE) #0: Fri Jan 2 16:29:05 CST 2004
You have mail.
erase ˆH, kill ˆU, intr ˆC status ˆT
Could not open a connection to your authentication agent.
=== root@adelaide (/dev/dcons) ˜ 1 ->

00-c0-4f-32-26-e8-80-61 is the EUI64 address of the remote node, as determined
from the output of fwcontrol above. When started in this manner, dconschat establishes a lo-
cal tunnel connection from port localhost:5556 to the remote debugger. You can also
establish a console port connection with the -C option to the same invocation dconschat. See
the dconschat manpage for further details.
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Currently, it’s still possible that this may not work. Instead, you may see:

# dconschat -br -G 5556 -t 00-c0-4f-32-26-e8-80-61
[dcons disconnected (get crom failed)]

crom is the abbreviation for Control ROM, and it’s the purpose of the dcons_crom module. If
it fails, it’s probably due to incompatibilities in the version of dcons_crom. To solve the
problem, specify the crom address manually using the a flag:

# dconschat -br -a 0x13d300 -G 5556 -t 00-c0-4f-32-26-e8-80-61
[dcons connected]
dcons_crom0: <dcons configuration ROM> on firewire0
dcons_crom0: bus_addr 0x13d300

FreeBSD/i386 (zaphod.lemis.com) (dcons)
(etc)

Get the crom address from the dmesg output from the machine to be debugged. As we have
seen, it is:

dcons_crom0: bus_addr 0x13d300

The dconschat utility does not return control to the user. It displays error messages and con-
sole output for the remote system, and (as shown above) you can put a getty on the port
/dev//dev/dcons, so it is a good idea to start it in its own window.

To start the getty, add the following line to /etc/ttys:

dcons "/usr/libexec/getty std.9600" vt100 on secure

If dcons was loaded after the system was booted, you’ll also need to HUP init:

# kill -HUP 1

• Find the location of the kernel objects for the machine to be debugged. These need to be on a
different machine. If you’re using method recommended above, do the following on the ma-
chine to be debugged:

# ls -l /usr/src /usr/obj
lrwxr-xr-x 1 root wheel 16 Jan 2 2004 /usr/obj -> /src/FreeBSD/obj
lrwxr-xr-x 1 root wheel 25 Aug 1 16:55 /usr/src -> /src/FreeBSD/ADELAIDE/src
# ls -l /boot/kernel/kernel
-r-xr-xr-x 1 root wheel 6034055 Jan 2 2004 /boot/kernel/kernel

On the debugging machine (assuming the same mount points),

# cd /src/FreeBSD/obj/src/FreeBSD/ADELAIDE/src/sys/ADELAIDE/
# ls -l kernel*
-rwxr-xr-x 1 grog lemis 6034055 Jan 2 2004 kernel
-rwxr-xr-x 1 grog lemis 31883941 Jan 2 2004 kernel.debug
# make gdbinit
grep -v ’# XXX’ /src/FreeBSD/ADELAIDE/src/sys/../tools/debugscripts/dot.gdbinit

| sed "s:MODPATH:/src/FreeBSD/obj/src/FreeBSD/ADELAIDE/src/sys/ADELAIDE/modules:" \
> .gdbinit

cp /src/FreeBSD/ADELAIDE/src/sys/../tools/debugscripts/gdbinit.kernel \
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/src/FreeBSD/ADELAIDE/src/sys/../tools/debugscripts/gdbinit.vinum \
/src/FreeBSD/obj/src/FreeBSD/ADELAIDE/src/sys/ADELAIDE \

cp /src/FreeBSD/ADELAIDE/src/sys/../tools/debugscripts/gdbinit.i386
/src/FreeBSD/obj/src/FreeBSD/ADELAIDE/src/sys/ADELAIDE/gdbinit.machine \

# ls -l gdbinit* .gdbinit
-rw-r--r-- 1 grog lemis 3828 Aug 23 13:26 .gdbinit
-rw-r--r-- 1 grog lemis 10293 Aug 23 13:26 gdbinit.kernel
-rw-r--r-- 1 grog lemis 8913 Aug 23 13:26 gdbinit.machine
-rw-r--r-- 1 grog lemis 10018 Aug 23 13:26 gdbinit.vinum

The purpose of these entries is to:

1. First, find our object file. In this example, the directory /usr/src is a symbolic link
pointing to an NFS mounted file system. The corresponding directory /usr/obj points
several levels higher; effectively you need to add the path name of the symbolic link
/usr/src to the end of the path name. After that, the directory with the kernel objects is
in the subdirectory sys and has the name of the kernel. In more detail:

• Object directory name: /src/FreeBSD/obj.

• Source directory name, without the initial /: src/FreeBSD/ADELAIDE/src.

• Directory sys.

• Kernel name: ADELAIDE.

So the final name of the directory is /src/FreeBSD/obj/src/FreeBSD/ADE-
LAIDE/src/sys/ADELAIDE.

2. Ensure that we have the correct kernel. The file kernel should be exactly the same
size, and normally it will be a few minutes older than the file /boot/kernel/kernel on the
machine to be debugged. This difference represents the time between when the file was
linked and when it was copied to /boot.

3. Ensure that we have a file kernel.debug. It should have approximately the same modifi-
cation timestamp as the kernel file, and it will be a lot bigger.

4. Ensure that we have the debugging macros in place.

• Put the machine to be debugged into the debugger. On the console of the machine, you can
enter:

# sync just in case
(press ctrl-alt-esc)
Stopped at Debugger +0x54: xchgl %ebx,in_Debugger.0
db> gdb select gdb mode
Next trap will enter GDB remote protocol mode
db> s single step to get the next trap

This doesn’t work from a console connected via dconschat.

At this point the system will appear to hang.

Alternatively, with FreeBSD, you can enter the following from any root shell:

# sysctl -w debug.kdb.enter=1
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• Finally, on the debugging machine, establish connection:

# gdb kernel.debug
GNU gdb 6.1.1 [FreeBSD]
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-marcel-freebsd"...
Ready to go. Enter ’tr’ to connect to the remote target
with /dev/cuaa0, ’tr /dev/cuaa1’ to connect to a different port
or ’trf portno’ to connect to the remote target with the firewire
interface. portno defaults to 5556.

Type ’getsyms’ after connection to load kld symbols.

If you’re debugging a local system, you can use ’kldsyms’ instead
to load the kld symbols. That’s a less obnoxious interface.
(gdb) trf
0xc07c6bba in Debugger (msg=0x26 <Address 0x26 out of bounds>) at machine/atomic.h:263
263 machine/atomic.h: No such file or directory.

in machine/atomic.h
warning: Unable to find dynamic linker breakpoint function.
GDB will be unable to debug shared library initializers
and track explicitly loaded dynamic code.
warning: shared library handler failed to enable breakpoint

The trf macro assumes a connection on port 5556. If you want to use a different port (by
changing the invocation of dconschat above), use the tr macro instead. For example, if you
want to use port 4711, run dconschat like this:

# dconschat -br -G 4711 -t 0x000199000003622b

Then establish connection with:

(gdb) tr localhost:4711
0xc21bd378 in ?? ()

Non-cooperative debugging a live system with a remote firewire link
In addition to the conventional debugging via firewire described in the previous section, it is pos-
sible to debug a remote system without its cooperation, once an initial connection has been estab-
lished. This corresponds to debugging a local machine using /dev/mem. It can be very useful if
a system crashes and the debugger no longer responds. To use this method, set the sysctl vari-
ables hw.firewire.fwmem.eui64_hi and hw.firewire.fwmem.eui64_lo to the
upper and lower halves of the EUI64 ID of the remote system, respectively. From the previous
example, the machine to be debugged shows:

# fwcontrol
2 devices (info_len=2)
node EUI64 status

1 00-c0-4f-32-26-e8-80-61 0
0 43-4f-c0-00-1d-b0-a8-38 1

Enter:
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# sysctl -w hw.firewire.fwmem.eui64_hi=0x434fc000
hw.firewire.fwmem.eui64_hi: 0 -> 1129299968
# sysctl -w hw.firewire.fwmem.eui64_lo=0x1db0a838
hw.firewire.fwmem.eui64_lo: 0 -> 498116664

Note that the variables must be explicitly stated in hexadecimal. After this, you can examine the
state of the machine to be debugged with the following input:

# gdb -k kernel.debug /dev/fwmem0.0
GNU gdb 5.2.1 (FreeBSD)
(messages omitted)
Reading symbols from /boot/kernel/dcons.ko...done.
Loaded symbols for /boot/kernel/dcons.ko
Reading symbols from /boot/kernel/dcons_crom.ko...done.
Loaded symbols for /boot/kernel/dcons_crom.ko
#0 sched_switch (td=0xc0922fe0) at /usr/src/sys/kern/sched_4bsd.c:621
0xc21bd378 in ?? ()

In this case, it is not necessary to load the symbols explicitly. The remote system continues to
run.

Currently this feature appears to be broken. Depending on the version of FreeBSD, it may be
necessary to load the mem module to use it.
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7
Debugging a processor dump

Probably the most common way of debugging is the processor post-mortem dump. After a panic
you can save the contents of memory to disk. At boot time you can then save this image to a disk
file and use a debugger to find out what has gone on.

Compared to on-line serial debugging, post-mortem debugging has the disadvantage that you
can’t continue with the execution when you have seen what you can from the present view of the
system: it’s dead. On the other hand, post-mortem debugging eliminates the long delays fre-
quently associated with serial debugging.

There are two configuration steps to prepare for dumps:

• You must tell the kernel where to write the dump when it panics. By convention it’s the swap
partition, though theoretically you could dedicate a separate partition for this purpose. This
would make sense if there were a post-mortem tool which could analyse the contents of swap:
in this case you wouldn’t want to overwrite it. Sadly, we currently don’t hav e such a tool.

The dump partition needs to be the size of main memory with a little bit extra for a header. It
needs to be in one piece: you can’t spread a dump over multiple swap partitions, even if
there’s enough space.

We tell the system where to write the dump with the dumpon command:

# dumpon /dev/ad0s1b

• On reboot, the startup scripts run savecore, which checks the dump partition for a core dump
and saves it to disk if it does. Obviously it needs to know where to put the resultant dump.
By convention, it’s /var/crash. There’s seldom a good reason to change that. If there’s not
enough space on the partition, it can be a symbolic link to somewhere where there is.
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In /etc/rc.conf, set:

dumpdev=/dev/ad0b

Saving the dump

When you reboot after a panic, savecore saves the dump to disk. By convention they’re stored
in /var/crash. There you might see:

# ls -l
total 661
-rw-r--r-- 1 root wheel 3 Sep 20 11:12 bounds
-rw-r--r-- 1 root wheel 3464574 Sep 16 06:13 kernel.10
-rw-r--r-- 1 root wheel 3589033 Sep 18 09:08 kernel.11
-rw-r--r-- 1 root wheel 3589033 Sep 19 03:13 kernel.12
-rw-r--r-- 1 root wheel 3589033 Sep 20 10:50 kernel.13
-rw-r--r-- 1 root wheel 3589033 Sep 20 11:03 kernel.14
-rw-r--r-- 1 root wheel 3589033 Sep 20 11:12 kernel.15
lrwxr-xr-x 1 root wheel 61 Sep 20 16:13 kernel.debug ->

/src/FreeBSD/4.4-RELEASE/src/sys/compile/ECHUNGA/kernel.debug
-rw-r--r-- 1 root wheel 5 Sep 17 1999 minfree
-rw------- 1 root wheel 134152192 Sep 18 09:08 vmcore.11
-rw------- 1 root wheel 134152192 Sep 19 03:13 vmcore.12
-rw------- 1 root wheel 134152192 Sep 20 10:50 vmcore.13
-rw------- 1 root wheel 134152192 Sep 20 11:03 vmcore.14
-rw------- 1 root wheel 134152192 Sep 20 11:12 vmcore.15

These files have the following purpose:

• vmcore.11 and friends are the individual core images. This directory contains five dumps,
numbered 11 to 15.

• kernel.11 and friends are corresponding copies of the kernel on reboot. Normally they’re the
kernel which crashed, but it’s possible that they might not be. For example, you might have
replaced the kernel in single-user mode after the crash and before rebooting to multi-user
mode. They’re also normally stripped, so they’re not much use for debugging. Recent ver-
sions of FreeBSD no longer include this file; see the next entry.

• Recent versions of FreeBSD include files with names like info.15. As the name suggests, the
file contains information about the dump. For example:

Good dump found on device /dev/ad0s4b
Architecture: i386
Architecture version: 1
Dump length: 134217728B (128 MB)
Blocksize: 512
Dumptime: Thu Aug 7 11:01:23 2003
Hostname: zaphod.lemis.com
Versionstring: FreeBSD 5.1-BETA #7: Tue Jun 3 18:10:59 CST 2003

grog@zaphod.lemis.com:/src/FreeBSD/obj/src/FreeBSD/ZAPHOD/src/sys/ZAPHOD
Panicstring: from debugger
Bounds: 0

• kernel.debug is a symbolic link to a real debug kernel in the kernel build directory. This is
one way to do it, and it has the advantage that gdb then finds the source files with no further
problem. If you’re debugging multiple kernels, there’s no reason why you shouldn’t remove
the saved kernels and create symlinks with names like kernel.11 etc.
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• minfree specifies the minimum amount of space to leave on the file system after saving the
dump. The avoids running out of space on the file system.

• bounds is a rather misleading name: it contains the number of the next kernel dump, followed
by a \n character.

Analyzing the dump

When you start kernel gdb against a processor dump, you’ll see something like this:

# gdb -k kernel.debug vmcore.11
panicstr: general protection fault
panic messages:
---
Fatal trap 9: general protection fault while in kernel mode
instruction pointer = 0x8:0xc01c434b
stack pointer = 0x10:0xc99f8d0c
frame pointer = 0x10:0xc99f8d28
code segment = base 0x0, limit 0xfffff, type 0x1b

= DPL 0, pres 1, def32 1, gran 1
processor eflags = interrupt enabled, resume, IOPL = 0
current process = 2638 (find)
interrupt mask = net tty bio cam
trap number = 9
panic: general protection fault

syncing disks... 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
giving up on 6 buffers
Uptime: 17h53m13s
dumping to dev #ad/1, offset 786560
dump ata0: resetting devices .. done

---
#0 dumpsys () at ../../kern/kern_shutdown.c:473
473 if (dumping++) {
(kgdb)

With the exception of the last three lines, this is the same as what the system prints on the screen
when it panics. The last three lines show what the processor was executing at the time of the
dump. This information is of marginal importance: it shows the functions which create the core
dump. They work, or you wouldn’t hav e the dump. To find out what really happened, start with
a stack backtrace:

(kgdb) bt
#0 dumpsys () at ../../kern/kern_shutdown.c:473
#1 0xc01c88bf in boot (howto=256) at ../../kern/kern_shutdown.c:313
#2 0xc01c8ca5 in panic (fmt=0xc03a8cac "%s") at ../../kern/kern_shutdown.c:581
#3 0xc033ab03 in trap_fatal (frame=0xc99f8ccc, eva=0)

at ../../i386/i386/trap.c:956
#4 0xc033a4ba in trap (frame={tf_fs = 16, tf_es = 16, tf_ds = 16,

tf_edi = -1069794208, tf_esi = -1069630360, tf_ebp = -912290520,
tf_isp = -912290568, tf_ebx = -1069794208, tf_edx = 10, tf_ecx = 10,
tf_eax = -1, tf_trapno = 9, tf_err = 0, tf_eip = -1071889589, tf_cs = 8,
tf_eflags = 66182, tf_esp = 1024, tf_ss = 6864992})

at ../../i386/i386/trap.c:618
#5 0xc01c434b in malloc (size=1024, type=0xc03c3c60, flags=0)

at ../../kern/kern_malloc.c:233
#6 0xc01f015c in allocbuf (bp=0xc3a6f7cc, size=1024)

at ../../kern/vfs_bio.c:2380
#7 0xc01effa6 in getblk (vp=0xc9642f00, blkno=0, size=1024, slpflag=0,

slptimeo=0) at ../../kern/vfs_bio.c:2271
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#8 0xc01eded2 in bread (vp=0xc9642f00, blkno=0, size=1024, cred=0x0,
bpp=0xc99f8e3c) at ../../kern/vfs_bio.c:504

#9 0xc02d0634 in ffs_read (ap=0xc99f8ea0) at ../../ufs/ufs/ufs_readwrite.c:273
#10 0xc02d734e in ufs_readdir (ap=0xc99f8ef0) at vnode_if.h:334
#11 0xc02d7cd1 in ufs_vnoperate (ap=0xc99f8ef0)

at ../../ufs/ufs/ufs_vnops.c:2382
#12 0xc01fbc3b in getdirentries (p=0xc9a53ac0, uap=0xc99f8f80)

at vnode_if.h:769
#13 0xc033adb5 in syscall2 (frame={tf_fs = 47, tf_es = 47, tf_ds = 47,

tf_edi = 134567680, tf_esi = 134554336, tf_ebp = -1077937404,
tf_isp = -912289836, tf_ebx = 672064612, tf_edx = 134554336,
tf_ecx = 672137600, tf_eax = 196, tf_trapno = 7, tf_err = 2,
tf_eip = 671767876, tf_cs = 31, tf_eflags = 582, tf_esp = -1077937448,
tf_ss = 47}) at ../../i386/i386/trap.c:1155

#14 0xc032b825 in Xint0x80_syscall ()
#15 0x280a1eee in ?? ()
#16 0x280a173a in ?? ()
#17 0x804969e in ?? ()
#18 0x804b550 in ?? ()
#19 0x804935d in ?? ()
(kgdb)

The most important stack frame is the one below trap. Select it with the frame command,
which you can abbreviate to f, and list the code with list (or l):

(kgdb) f 5
#5 0xc01c434b in malloc (size=1024, type=0xc03c3c60, flags=0)

at ../../kern/kern_malloc.c:233
233 va = kbp->kb_next;
(kgdb) l
228 }
229 freep->next = savedlist;
230 if (kbp->kb_last == NULL)
231 kbp->kb_last = (caddr_t)freep;
232 }
233 va = kbp->kb_next;
234 kbp->kb_next = ((struct freelist *)va)->next;
235 #ifdef INVARIANTS
236 freep = (struct freelist *)va;
237 savedtype = (const char *) freep->type->ks_shortdesc;
(kgdb)

You might want to look at the local (automatic) variables. Use info local, which you can
abbreviate to i loc:

(kgdb) i loc
type = (struct malloc_type *) 0xc03c3c60
kbp = (struct kmembuckets *) 0xc03ebc68
kup = (struct kmemusage *) 0x0
freep = (struct freelist *) 0x0
indx = 10
npg = -1071714292
allocsize = -1069794208
s = 6864992
va = 0xffffffff <Address 0xffffffff out of bounds>
cp = 0x0
savedlist = 0x0
ksp = (struct malloc_type *) 0xffffffff
(kgdb)

As gdb shows, the line where the problem occurs is 233:

233 va = kbp->kb_next;

Look at the structure kbp:
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(kgdb) p *kbp
$2 = {

kb_next = 0xffffffff <Address 0xffffffff out of bounds>,
kb_last = 0xc1a31000 "",
kb_calls = 83299,
kb_total = 1164,
kb_elmpercl = 4,
kb_totalfree = 178,
kb_highwat = 20,
kb_couldfree = 3812

}

With this relatively mechanical method, we have found that the crash was in malloc. malloc
gets called many times every second. There’s every reason to believe that it works correctly, so
it’s probably not a bug in malloc. More likely it’s the result of a client of malloc either writ-
ing beyond the end of the allocated area, or writing to it after calling free.

Finding this kind of problem is particularly difficult: there’s no reason to believe that the process
or function which trips over this problem has anything to do with the process or function which
caused it. In the following sections we’ll look at variants on the problem.

A panic in Vinum

It’s more interesting to look at bugs which happen when developing code. I wrote Vinum, so I
have a plethora of bugs to look at. In the following sections we’ll look at some of them.

In the first example, our Vinum test system panics during boot:

Mounting root from ufs:/dev/ad0s2a
swapon: adding /dev/ad0s4b as swap device
Automatic boot in progress...
/dev/ad0s2a: 38440 files, 381933 used, 1165992 free (21752 frags, 143030 blocks, 1.4%
fragmentation)

/dev/ad0s3a: FILESYSTEM CLEAN; SKIPPING CHECKS
/dev/ad0s3a: clean, 1653026 free (46890 frags, 200767 blocks, 1.5% fragmentation)
/dev/ad0s1a: FILESYSTEM CLEAN; SKIPPING CHECKS
/dev/ad0s1a: clean, 181000 free (5352 frags, 21956 blocks, 0.3% fragmentation)
Memory modified at 0xc199657c after free 0xc1996000(2044): deafc0de
panic: Most recently used by devbuf

This system is set up with remote debugging, so next we see:

Debugger("panic")
Stopped at Debugger+0x54 xchgl %ebx, in_Debugger.0
db> gdb
Next trap will enter GDB remote protocol mode
db> s
(nothing more appears here)

At this point, the system is trying to access the remote debugger. On the system connected to the
other end of the debugger cable, we enter:

# cd /src/FreeBSD/obj/src/FreeBSD/ZAPHOD/src/sys/GENERIC
# gdb
...
Ready to go. Enter ’tr’ to connect to the remote target
with /dev/cuaa0, ’tr /dev/cuaa1’ to connect to a different port
or ’trf portno’ to connect to the remote target with the firewire
interface. portno defaults to 5556.
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Type ’getsyms’ after connection to load kld symbols.

If you’re debugging a local system, you can use ’kldsyms’ instead
to load the kld symbols. That’s a less obnoxious interface.
(gdb) tr
Debugger (msg=0x12 <Address 0x12 out of bounds>) at /src/FreeBSD/ZAPHOD/src
/sys/i386/i386/db_interface.c:330
330 }
warning: Unable to find dynamic linker breakpoint function.
GDB will be unable to debug shared library initializers
and track explicitly loaded dynamic code.
warning: shared library handler failed to enable breakpoint

The messages above come from this particular version of the kernel. In a dev elopment kernel,
you’re likely to see things like this. Unless they stop you debugging, they’re probably not worth
worrying about.

The “Ready to go” messages come from the debugging macros created by make gdbinit as
described on page 36. We use the getsyms macro to load the symbols:

(gdb) getsyms
add symbol table from file "/src/FreeBSD/obj/src/FreeBSD/ZAPHOD/src/sys/GEN
ERIC/modules/src/FreeBSD/ZAPHOD/src/sys/modules/vinum/vinum.ko.debug" at

.text_addr = 0xc06a4920

.data_addr = 0xc06b5000

.bss_addr = 0xc06b5400

Traditionally, the first thing you do with a panic is to see where it happens. Do that with the
backtrace (bt) command:

(gdb) bt
#0 Debugger (msg=0x12 <Address 0x12 out of bounds>)

at /src/FreeBSD/ZAPHOD/src/sys/i386/i386/db_interface.c:330
#1 0xc031294b in panic (fmt=0x1 <Address 0x1 out of bounds>)

at /src/FreeBSD/ZAPHOD/src/sys/kern/kern_shutdown.c:527
#2 0xc0462137 in mtrash_ctor (mem=0xc1996000, size=0x20, arg=0x0)

at /src/FreeBSD/ZAPHOD/src/sys/vm/uma_dbg.c:138
#3 0xc04609ff in uma_zalloc_arg (zone=0xc0b65240, udata=0x0, flags=0x2)

at /src/FreeBSD/ZAPHOD/src/sys/vm/uma_core.c:1366
#4 0xc0307614 in malloc (size=0xc0b65240, type=0xc0557300, flags=0x2) at uma.h:229
#5 0xc035a1ff in allocbuf (bp=0xc3f0a420, size=0x800) at /src/FreeBSD/ZAPH
OD/src/sys/kern/vfs_bio.c:2723
#6 0xc0359f0c in getblk (vp=0xc1a1936c, blkno=0x0, size=0x800, slpflag=0x0, slptimeo
=0x0, flags=0x0)

at /src/FreeBSD/ZAPHOD/src/sys/kern/vfs_bio.c:2606
#7 0xc0356732 in breadn (vp=0xc1a1936c, blkno=0x2000000012, size=0x12, rablkno=0x0,
rabsize=0x0, cnt=0x0, cred=0x0,

bpp=0x12) at /src/FreeBSD/ZAPHOD/src/sys/kern/vfs_bio.c:701
#8 0xc03566dc in bread (vp=0x12, blkno=0x2000000012, size=0x12, cred=0x12, bpp=0x12)

at /src/FreeBSD/ZAPHOD/src/sys/kern/vfs_bio.c:683
#9 0xc043586f in ffs_blkatoff (vp=0xc1a1936c, offset=0x0, res=0x0, bpp=0xcccb3988)

at /src/FreeBSD/ZAPHOD/src/sys/ufs/ffs/ffs_subr.c:91
#10 0xc043f5a7 in ufs_lookup (ap=0xcccb3ab8) at /src/FreeBSD/ZAPHOD/src/sys
/ufs/ufs/ufs_lookup.c:266
#11 0xc0446dd8 in ufs_vnoperate (ap=0x0) at /src/FreeBSD/ZAPHOD/src/sys/ufs
/ufs/ufs_vnops.c:2787
#12 0xc035d19c in vfs_cache_lookup (ap=0x12) at vnode_if.h:82
#13 0xc0446dd8 in ufs_vnoperate (ap=0x0) at /src/FreeBSD/ZAPHOD/src/sys/ufs
/ufs/ufs_vnops.c:2787
#14 0xc0361e92 in lookup (ndp=0xcccb3c24) at vnode_if.h:52
#15 0xc036188e in namei (ndp=0xcccb3c24) at /src/FreeBSD/ZAPHOD/src/sys/ker
n/vfs_lookup.c:181
#16 0xc036ee32 in lstat (td=0xc199b980, uap=0xcccb3d10)

at /src/FreeBSD/ZAPHOD/src/sys/kern/vfs_syscalls.c:1719
#17 0xc0497d7e in syscall (frame=

{tf_fs = 0x2f, tf_es = 0x2f, tf_ds = 0x2f, tf_edi = 0xbfbffda8, tf_esi = 0xbfbf
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fda0, tf_ebp = 0xbfbffd48, tf_isp = 0xcccb3d74, tf_ebx = 0xbfbffe49, tf_edx = 0xfffff
fff, tf_ecx = 0x2, tf_eax = 0xbe, tf_trapno = 0xc, tf_err = 0x2, tf_eip = 0x804ac0b,
tf_cs = 0x1f, tf_eflags = 0x282, tf_esp = 0xbfbffcbc, tf_ss = 0x2f})

at /src/FreeBSD/ZAPHOD/src/sys/i386/i386/trap.c:1025
#18 0xc048724d in Xint0x80_syscall () at {standard input}:138
#19 0x080483b6 in ?? ()
#20 0x08048145 in ?? ()

In this case, about all we can see is that the backtrace has nothing to do with Vinum. The first
frame is always in Debugger, and since this is a panic, the second frame is panic. The third
frame is the frame which called panic. We can look at it in more detail:

(gdb) f 2 select frame 2
#2 0xc0462137 in mtrash_ctor (mem=0xc1996000, size=0x20, arg=0x0)

at /src/FreeBSD/ZAPHOD/src/sys/vm/uma_dbg.c:138
138 panic("Most recently used by %s\n", (*ksp == NULL)?
(gdb) l list code
133
134 for (p = mem; cnt > 0; cnt--, p++)
135 if (*p != uma_junk) {
136 printf("Memory modified at %p after free %p(%d): %x\n",
137 p, mem, size, *p);
138 panic("Most recently used by %s\n", (*ksp == NULL)?
139 "none" : (*ksp)->ks_shortdesc);
140 }
141 }
142

Looking for the definition of uma_junk leads us to:

51 static const u_int32_t uma_junk = 0xdeadc0de;

This code is part of the INVARIANTS code to check memory allocations. When INVARI-
ANTS are set, free writes uma_junk (0xdeadc0de) to every word of the freed memory.
malloc then checks if it’s still that way when it’s taken off the free list. If anything is changed
in the meantime, it will show up with this panic. In our example, one word has changed from
0xdeadc0de to 0xdeafc0de. The obvious question is where. Looking at the local vari-
ables, we see:

(gdb) i loc show local variables
ksp = (struct malloc_type **)
0xc19967fc p = (u_int32_t *) 0x0 cnt = 0x12

The value of the pointer p is important. But how can it be 0? We just printed the message of
line 136:

Memory modified at 0xc199657c after free 0xc1996000(2044): deafc0de

This is a problem with the optimizer. On line 138, the call to panic, the pointer p is no longer
needed, and the optimizer has used the register for something else. This is one of the reasons
why the message prints out the value of p.

So where did the problem happen? We’re hacking on Vinum, so it’s reasonable to assume that
it’s related to Vinum, and we know from the panic message and the backtrace that it’s related to
memory allocation. When compiled with the VINUMDEBUG option, Vinum includes a number
of kernel debug tools. There are also some macros in /usr/src/tools/debugtools/. Two are mem-
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info, which keeps track of currently allocated memory, and finfo, which keeps track of recently
freed memory areas. They’re only enabled on request—see the debug subcommand of
vinum(8) for more details. Here we have enabled them before booting, and we see:

(gdb) meminfo look at currently allocated memory
Block Time Sequence size address line file

0 18.987686 3 3136 0xc1958000 160 vinum.c
1 19.491101 7 256 0xc1991d00 117 vinumio.c
2 19.504050 9 256 0xc1991c00 117 vinumio.c
3 19.507847 11 256 0xc1991b00 117 vinumio.c
4 19.523213 13 256 0xc1991a00 117 vinumio.c
5 19.530848 16 256 0xc1991900 117 vinumio.c
6 19.537997 18 256 0xc1991800 117 vinumio.c
7 19.565260 31 2048 0xc1995800 902 vinumio.c
8 19.599982 32 1536 0xc1995000 841 vinumconfig.c
9 19.600115 33 16 0xc19885a0 768 vinumconfig.c
10 19.600170 34 16 0xc19885c0 768 vinumconfig.c
11 19.600215 35 16 0xc19885e0 768 vinumconfig.c
12 19.600263 36 16 0xc1988610 768 vinumconfig.c
13 19.600307 37 16 0xc1988620 768 vinumconfig.c
14 19.600368 38 3072 0xc1954000 1450 vinumconfig.c
15 19.600408 39 16 0xc18d93a0 768 vinumconfig.c
16 19.600453 40 16 0xc1988600 768 vinumconfig.c
17 19.600508 41 3072 0xc1953000 1450 vinumconfig.c
18 19.600546 42 16 0xc1988690 768 vinumconfig.c
19 19.600601 43 3072 0xc1952000 1450 vinumconfig.c
20 19.601170 44 3072 0xc1951000 468 vinumconfig.c
21 19.637070 45 3520 0xc1950000 763 vinumconfig.c
22 19.637122 46 16 0xc1988640 768 vinumconfig.c
23 19.637145 47 16 0xc1988670 768 vinumconfig.c
24 19.637166 48 16 0xc19886a0 768 vinumconfig.c
25 19.637186 49 16 0xc19886f0 768 vinumconfig.c
26 19.637207 50 16 0xc19886b0 768 vinumconfig.c
27 19.637227 51 16 0xc1988710 768 vinumconfig.c
28 19.637247 52 16 0xc1988730 768 vinumconfig.c
29 19.637268 53 16 0xc1988750 768 vinumconfig.c
30 19.673860 54 16 0xc1988780 768 vinumconfig.c
31 19.673884 55 16 0xc19882d0 768 vinumconfig.c
32 19.673905 56 16 0xc19887d0 768 vinumconfig.c
33 19.673925 57 16 0xc19887a0 768 vinumconfig.c
34 19.673946 58 16 0xc1988800 768 vinumconfig.c
35 19.673966 59 16 0xc1988810 768 vinumconfig.c
36 19.673988 60 16 0xc19887e0 768 vinumconfig.c
37 19.674009 61 16 0xc1988840 768 vinumconfig.c
38 19.710319 62 16 0xc1988860 768 vinumconfig.c
39 19.710343 63 16 0xc18d9ab0 768 vinumconfig.c
40 19.710364 64 16 0xc18d95c0 768 vinumconfig.c
41 19.710385 65 16 0xc18d9e40 768 vinumconfig.c
42 19.710406 66 16 0xc0b877d0 768 vinumconfig.c
43 19.710427 67 16 0xc18d99c0 768 vinumconfig.c
44 19.710448 68 16 0xc18d9b40 768 vinumconfig.c
45 19.710469 69 16 0xc19888c0 768 vinumconfig.c
46 19.740424 70 16 0xc19888e0 768 vinumconfig.c
47 19.740448 71 16 0xc18d9d00 768 vinumconfig.c
48 19.740469 72 16 0xc1988100 768 vinumconfig.c
49 19.740490 73 16 0xc18d9eb0 768 vinumconfig.c
50 19.740511 74 16 0xc1988190 768 vinumconfig.c
51 19.740532 75 16 0xc18d9a30 768 vinumconfig.c
52 19.740554 76 16 0xc1988580 768 vinumconfig.c
53 19.740576 77 16 0xc1988560 768 vinumconfig.c
54 19.778006 78 16 0xc1988570 768 vinumconfig.c
55 19.778031 79 16 0xc18d9360 768 vinumconfig.c
56 19.778052 80 16 0xc1988500 768 vinumconfig.c
57 19.778074 81 16 0xc19884c0 768 vinumconfig.c
58 19.778095 82 16 0xc1988520 768 vinumconfig.c
59 19.778116 83 16 0xc19884e0 768 vinumconfig.c
60 19.778138 84 16 0xc19884b0 768 vinumconfig.c
61 19.778159 85 16 0xc19884d0 768 vinumconfig.c
62 19.780088 86 16 0xc19884a0 224 vinumdaemon.c
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(gdb) finfo look at already freed memory
Block Time Sequence size address line file

0 19.501059 8 512 0xc1975c00 318 vinumio.c
1 19.505499 10 512 0xc1975e00 318 vinumio.c
2 19.519560 12 512 0xc197ac00 318 vinumio.c
3 19.527459 14 512 0xc18dac00 318 vinumio.c
4 19.527834 0 1024 0xc1981c00 468 vinumconfig.c
5 19.534994 17 512 0xc197a400 318 vinumio.c
6 19.542243 19 512 0xc197a000 318 vinumio.c
7 19.543044 21 512 0xc18dac00 318 vinumio.c
8 19.546529 20 256 0xc1991700 596 vinumconfig.c
9 19.547444 23 512 0xc1975e00 318 vinumio.c
10 19.550881 22 256 0xc1991400 596 vinumconfig.c
11 19.551790 25 512 0xc1975c00 318 vinumio.c
12 19.555305 24 256 0xc1991100 596 vinumconfig.c
13 19.556213 27 512 0xc1975c00 318 vinumio.c
14 19.559655 26 256 0xc198dd00 596 vinumconfig.c
15 19.560516 29 512 0xc1975c00 318 vinumio.c
16 19.564290 28 256 0xc198da00 596 vinumconfig.c
17 19.564687 5 1024 0xc197ec00 882 vinumio.c
18 19.600004 1 768 0xc1981400 841 vinumconfig.c
19 19.601196 15 2048 0xc1996000 468 vinumconfig.c
20 19.637102 2 1760 0xc18e5000 763 vinumconfig.c
21 19.779320 30 131072 0xc1998000 966 vinumio.c
22 19.779366 6 1024 0xc197f000 967 vinumio.c
23 19.780113 4 28 0xc18d68a0 974 vinumio.c

The time in the second column is in time_t format. Normally it would be a very large number,
the number of seconds and microseconds since 1 January 1970 0:0 UTC, but at this point during
booting the system doesn’t know the time yet, and it is in fact the time since starting the kernel.

Looking at the free info table, it’s clear that yes, indeed, the block starting at 0xc1996000
memory was allocated to Vinum until time 19.601196:

19 19.601196 15 2048 0xc1996000 468 vinumconfig.c

It looks as if something was left pointing into the block of memory after it’s freed. The obvious
thing to do is to check what it was used for. Looking at line 468 of vinumconfig.c, we see:

if (driveno >= vinum_conf.drives_allocated) /* we’ve used all our allocation */
EXPAND(DRIVE, struct drive, vinum_conf.drives_allocated, INITIAL_DRIVES);

/* got a drive entry. Make it pretty */
drive = &DRIVE[driveno];

The EXPAND macro is effectively the same as realloc. It allocates INITIAL_DRIVES *
sizeof (struct drive) more memory and copies the old data to it, then frees the old da-
ta; that’s the free call we saw. In the meminfo output, we see at time 19.601170 (26 µs earlier)
an allocation of 3072 bytes, which is the replacement area:

20 19.601170 44 3072 0xc1951000 468 vinumconfig.c

Looking at the code, though, you’ll see that the pointer to the drive is not allocated until after the
call to EXPAND. So maybe it’s from a function which calls it.

How do we find which functions call it? We could go through manually and check, but that can
rapidly become a problem. It could be worthwhile finding out what has changed. The word
which has been modified has only a single bit changed: 0xdeadc0de became 0xdeafc0de,
so we’re probably looking at a logical bit set operation which or s 0x20000 with the previous val-
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ue.

But what’s the value? It’s part of the drive, but which part? The memory area is of type
struct drive [], and it contains information for a number of drives. The first thing to do
is to find which drive this error belongs to. We need to do a bit of arithmetic. First, find out how
long a drive entry is. We can do that by comparing the address of the start of the area with the
address of the second drive entry (drive [1]):

(gdb) p &((struct drive *) 0xc1996000)[1]
$2 = (struct drive *) 0xc1996100

So struct drive is exactly 256 bytes long. That means that our fault address 0xc199657c
is in drive 5 at offset 0x7c. We can look at the entry like this:

(gdb) p ((struct drive *) 0xc1996000)[5]
$3 = {

devicename = "ÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞ",
label = {

sysname = "ÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞ",
name = "ÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞ",
date_of_birth = {

tv_sec = 0xdeadc0de,
tv_usec = 0xdeadc0de

},
last_update = {

tv_sec = 0xdeadc0de,
tv_usec = 0xdeadc0de

},
drive_size = 0xdeadc0dedeadc0de

},
state = 3735929054,
flags = 0xdeafc0de,
subdisks_allocated = 0xdeadc0de,
subdisks_used = 0xdeadc0de,
blocksize = 0xdeadc0de,
pid = 0xdeadc0de,
sectors_available = 0xdeadc0dedeadc0de,
secsperblock = 0xdeadc0de,
lasterror = 0xdeadc0de,
driveno = 0xdeadc0de,
opencount = 0xdeadc0de,
reads = 0xdeadc0dedeadc0de,
writes = 0xdeadc0dedeadc0de,
bytes_read = 0xdeadc0dedeadc0de,
bytes_written = 0xdeadc0dedeadc0de,
active = 0xdeadc0de,
maxactive = 0xdeadc0de,
freelist_size = 0xdeadc0de,
freelist_entries = 0xdeadc0de,
freelist = 0xdeadc0de,
sectorsize = 0xdeadc0de,
mediasize = 0xdeadc0dedeadc0de,
dev = 0xdeadc0de,
lockfilename = "ÞÀÞÞÀÞÞÀÞÞÀÞ",
lockline = 0xdeadc0de

}

There’s a problem here: some of the fields are not represented in hex. The device name is in text,
so it looks completely different. We can’t rely on finding our 0xdeafc0de here, and looking at
the output makes your eyes go funny. It could be easier to use something approximating to a bi-
nary search:
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(gdb) p &((struct drive *) 0xc1996000)[5].writes
$4 = (u_int64_t *) 0xc19965b0
(gdb) p &((struct drive *) 0xc1996000)[5].state
$5 = (enum drivestate *) 0xc1996578
(gdb) p &((struct drive *) 0xc1996000)[5].flags
$6 = (int *) 0xc199657c
(gdb) p ((struct drive *) 0xc1996000)[5].flags
$7 = 0xdeafc0de

So the field is flags. Looking back shows that yes, this value is shown in hex, so we didn’t
need to do this search. In fact, though, after a few hours of this sort of stuff, it’s easier to do the
search than run through output which may or may not contain the information you’re looking for.

It makes sense that the problem is in flags: it’s a collection of bits, so setting or resetting indi-
vidual bits is a fairly typical access mode. What’s 0x20000? The bits are defined in vinu-
mobj.h :

/*
* Flags for all objects. Most of them only apply
* to specific objects, but we currently have
* space for all in any 32 bit flags word.
*/

enum objflags {
VF_LOCKED = 1, /* somebody has locked access to this object */
VF_LOCKING = 2, /* we want access to this object */
VF_OPEN = 4, /* object has openers */
VF_WRITETHROUGH = 8, /* volume: write through */
VF_INITED = 0x10, /* unit has been initialized */
VF_WLABEL = 0x20, /* label area is writable */
VF_LABELLING = 0x40, /* unit is currently being labelled */
VF_WANTED = 0x80, /* someone is waiting to obtain a lock */
VF_RAW = 0x100, /* raw volume (no file system) */
VF_LOADED = 0x200, /* module is loaded */
VF_CONFIGURING = 0x400, /* somebody is changing the config */
VF_WILL_CONFIGURE = 0x800, /* somebody wants to change the config */
VF_CONFIG_INCOMPLETE = 0x1000, /* haven’t finished changing the config */
VF_CONFIG_SETUPSTATE = 0x2000, /* set a volume up if all plexes are empty */
VF_READING_CONFIG = 0x4000, /* we’re reading config database from disk */
VF_FORCECONFIG = 0x8000, /* configure drives even with different names */
VF_NEWBORN = 0x10000, /* for objects: we’ve just created it */
VF_CONFIGURED = 0x20000, /* for drives: we read the config */
VF_STOPPING = 0x40000, /* for vinum_conf: stop on last close */
VF_DAEMONOPEN = 0x80000, /* the daemon has us open (only superdev) */
VF_CREATED = 0x100000, /* for volumes: freshly created, more then new */
VF_HOTSPARE = 0x200000, /* for drives: use as hot spare */
VF_RETRYERRORS = 0x400000, /* don’t down subdisks on I/O errors */
VF_HASDEBUG = 0x800000, /* set if we support debug */

};

So our bit is VF_CONFIGURED. Where does it get set?

$ grep -n VF_CONFIGURED *.c
vinumio.c:843: else if (drive->flags & VF_CONFIGURED)
vinumio.c:868: else if (drive->flags & VF_CONFIGURED)
vinumio.c:963: drive->flags |= VF_CONFIGURED;

The last line is the only place which modifies the flags. Line 963 of vinumio.c is in the function
vinum_scandisk. This function first builds up the drive list, a drive at a time, paying great
attention to not assign any pointers. Once the list is complete and not going to change, it goes
through a second loop and reads the configuration from the drives. Here’s the second loop:

for (driveno = 0; driveno < gooddrives; driveno++) { /* now include the config */
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drive = &DRIVE[drivelist[driveno]]; /* point to the drive */

if (firsttime && (driveno == 0)) /* we’ve never configured before, */
log(LOG_INFO, "vinum: reading configuration from %s\n", drive->devicename);

else
log(LOG_INFO, "vinum: updating configuration from %s\n", drive->devicename);

if (drive->state == drive_up)
/* Read in both copies of the configuration information */
error = read_drive(drive, config_text, MAXCONFIG * 2, VINUM_CONFIG_OFFSET);

else {
error = EIO;
printf("vinum_scandisk: %s is %s\n",

drive->devicename, drive_state(drive->state));
}

if (error != 0) {
log(LOG_ERR, "vinum: Can’t read device %s, error %d\n", drive->devicename, error);
free_drive(drive); /* give it back */
status = error;

}
/*
* At this point, check that the two copies
* are the same, and do something useful if
* not. In particular, consider which is
* newer, and what this means for the
* integrity of the data on the drive.
*/

else {
vinum_conf.drives_used++; /* another drive in use */
/* Parse the configuration, and add it to the global configuration */
for (cptr = config_text; *cptr != ’\0’;) { /* love this style(9) */
volatile int parse_status; /* return value from parse_config */

for (eptr = config_line; (*cptr != ’\n’) && (*cptr != ’\0’);)
*eptr++ = *cptr++; /* until the end of the line */

*eptr = ’\0’; /* and delimit */
if (setjmp(command_fail) == 0) { /* come back here on error and continue */

/* parse the config line */
parse_status = parse_config(config_line, &keyword_set, 1);
if (parse_status < 0) { /* error in config */

/*
* This config should have been parsed
* in user space. If we run into
* problems here, something serious is
* afoot. Complain and let the user
* snarf the config to see what’s
* wrong.
*/
log(LOG_ERR,

"vinum: Config error on %s, aborting integration\n",
drive->devicename);

free_drive(drive); /* give it back */
status = EINVAL;

}
}
while (*cptr == ’\n’)

cptr++; /* skip to next line */
}

}
drive->flags |= VF_CONFIGURED; /* this drive’s configuration is complete */

}

There’s nothing there which reaches out and grabs you. You could read the code and find out
what’s going on (probably the better choice in this particular case), but you could also find out
where get_empty_drive is being called from. To do this, reboot the machine and go into
ddb before Vinum starts. To do this, interrupt the boot sequence and enter:
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OK boot -d

As soon as the system has enough context, it goes into the debugger. Look for a place to put a
breakpoint:

(gdb) l get_empty_drive
452 }
453
454 /* Get an empty drive entry from the drive table */
455 int
456 get_empty_drive(void)
457 {
458 int driveno;
459 struct drive *drive;
460
461 /* first see if we have one which has been deallocated */
462 for (driveno = 0; driveno < vinum_conf.drives_allocated; driveno++) {
463 if (DRIVE[driveno].state == drive_unallocated) /* bingo */
464 break;
465 }
466
467 if (driveno >= vinum_conf.drives_allocated) /* we’ve used all our allocation */
468 EXPAND(DRIVE, struct drive, vinum_conf.drives_allocated, INITIAL_DRIVES);
469
470 /* got a drive entry. Make it pretty */
471 drive = &DRIVE[driveno];

This function gets called many times. In FreeBSD it’s 35 times for every disk (four slices and
compatibility slice, seven partitions per slice). This code is meticulously careful not to assign
any pointers:

for (slice = 1; slice < 5; slice++)
for (part = ’a’; part < ’i’; part++) {

if (part != ’c’) { /* don’t do the c partition */
snprintf(np,

partnamelen,
"s%d%c",
slice,
part);

drive = check_drive(partname); /* try to open it */
if (drive) { /* got something, */

if (drive->flags & VF_CONFIGURED) /* already read this config, */
log(LOG_WARNING,

"vinum: already read config from %s\n", /* say so */
drive->label.name);

else {
if (gooddrives == drives) /* ran out of entries */

EXPAND(drivelist, int, drives, drives); /* double the size */
drivelist[gooddrives] = drive->driveno; /* keep the drive index */
drive->flags &= ˜VF_NEWBORN; /* which is no longer newly born */
gooddrives++;

}
}

}
}

After lots of code reading, it’s still not clear how this could cause the kind of corruption we’re
looking for. The problem is obviously related to expanding the table, so the obvious place to put
the breakpoint on the macro EXPAND on line 468:

(gdb) b 468 set a breakpoint on the EXPAND call
Breakpoint 1 at 0xc06a600f: file /src/FreeBSD/ZAPHOD/src/sys/dev/vinum/vinum
config.c, line 468.
(gdb) c
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Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.
Debugger (msg=0x12 <Address 0x12 out of bounds>) at atomic.h:260
260 ATOMIC_STORE_LOAD(int, "cmpxchgl %0,%1", "xchgl %1,%0");
(gdb) bt find how we got here
Breakpoint 1, 0xc06a6010 in get_empty_drive () at /src/FreeBSD/ZAPHOD/src/sy
s/dev/vinum/vinumconfig.c:468
468 EXPAND(DRIVE, struct drive, vinum_conf.drives_allocated, INITIAL_DRIVES);
(gdb) bt
#0 0xc06a6010 in get_empty_drive () at /src/FreeBSD/ZAPHOD/src/sys/dev/vinu
m/vinumconfig.c:468
#1 0xc06a60f9 in find_drive (name=0xc199581a "virtual", create=0x1)

at /src/FreeBSD/ZAPHOD/src/sys/dev/vinum/vinumconfig.c:505
#2 0xc06a7217 in config_subdisk (update=0x1) at /src/FreeBSD/ZAPHOD/src/sys
/dev/vinum/vinumconfig.c:1157
#3 0xc06a7ebe in parse_config (cptr=0x700 <Address 0x700 out of bounds>, keyset=0x700
, update=0x1)

at /src/FreeBSD/ZAPHOD/src/sys/dev/vinum/vinumconfig.c:1641
#4 0xc06abdc5 in vinum_scandisk (devicename=0xc18d68a0 "da5 da4 da3 da2 da1 da0 ad0")

at /src/FreeBSD/ZAPHOD/src/sys/dev/vinum/vinumio.c:942
#5 0xc06a4c65 in vinumattach (dummy=0x0) at /src/FreeBSD/ZAPHOD/src/sys/dev
/vinum/vinum.c:176
#6 0xc06a4f6d in vinum_modevent (mod=0xc0b89f00, type=1792, unused=0x0)

at /src/FreeBSD/ZAPHOD/src/sys/dev/vinum/vinum.c:277
#7 0xc0308541 in module_register_init (arg=0xc06b5054) at /src/FreeBSD/ZAPH
OD/src/sys/kern/kern_module.c:107
#8 0xc02ed275 in mi_startup () at /src/FreeBSD/ZAPHOD/src/sys/kern/init_mai
n.c:214

This shows that we got to get_empty_drive from find_drive. Why?

486 int
487 find_drive(const char *name, int create)
488 {
489 int driveno;
490 struct drive *drive;
491
492 if (name != NULL) {
493 for (driveno = 0; driveno < vinum_conf.drives_allocated; driveno++) {
494 drive = &DRIVE[driveno]; /* point to drive */
495 if ((drive->label.name[0] != ’ ’) /* it has a name */
496 &&(strcmp(drive->label.name, name) == 0) /* and it’s this one */
497 &&(drive->state > drive_unallocated)) /* and it’s a real one: found */
498 return driveno;
499 }
500 }
501 /* the drive isn’t in the list. Add it if he wants */
502 if (create == 0) /* don’t want to create */
503 return -1; /* give up */
504
505 driveno = get_empty_drive();
506 drive = &DRIVE[driveno];
507 if (name != NULL)
508 strlcpy(drive->label.name, /* put in its name */
509 name,
510 sizeof(drive->label.name));
511 drive->state = drive_referenced; /* in use, nothing worthwhile */
512 return driveno; /* return the index */

So we’re trying to find a drive, but it doesn’t exist. Looking at config_subdisk, we find
we’re in a case statement:

1151 case kw_drive:
1152 sd->driveno = find_drive(token[++parameter], 1); /* insert info */
1153 break;
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This is part of the config line parsing. The config line might look something like:

sd usr.p0.s0 drive virtual size 43243243222s

Unfortunately, Vinum doesn’t know a drive called virtual: maybe it was a drive which has
failed. In such a case, Vinum creates a drive entry with the state referenced.

Looking further down the stack, we see our vinum_scandisk, as expected:

(gdb) f 4
#4 0xc06abdc5 in vinum_scandisk (devicename=0xc18d68a0 "da5 da4 da3 da2 da1 da0 ad0")

at /src/FreeBSD/ZAPHOD/src/sys/dev/vinum/vinumio.c:942
942 parse_status = parse_config(config_line, &keyword_set, 1);

Looking back to vinum_scandisk, we see:

else {
vinum_conf.drives_used++; /* another drive in use */
/* Parse the configuration, and add it to the global configuration */
for (cptr = config_text; *cptr != ’\0’;) {

volatile int parse_status; /* return value from parse_config */

for (eptr = config_line; (*cptr != ’\n’) && (*cptr != ’\0’);)
*eptr++ = *cptr++; /* until the end of the line */
*eptr = ’\0’; /* and delimit */
if (setjmp(command_fail) == 0) { /* come back here on error and continue */

(line 942) parse_status = parse_config(config_line, &keyword_set, 1); /* parse config */
... error check code

}
}

}
drive->flags |= VF_CONFIGURED; /* this drive’s configuration is complete */

}

The problem here is that parse_config changes the location of the drive, but the drive
pointer remains pointing to the old location. At the end of the example, it then sets the
VF_CONFIGURED bit. It’s not immediately apparent that the pointer is reset in a function called
indirectly from parse_config, particularly in a case like this where parse_config does
not normally allocate a drive. It’s easy to look for the bug where the code is obviously creating
new drive entries.

Once we know this, solving the problem is trivial: reinitialize the drive pointer after the call to
parse_config:

@@ -940,6 +940,14 @@
*eptr = ’\0’; /* and delimit */
if (setjmp(command_fail) == 0) { /* come back here on error and continue */

parse_status = parse_config(config_line, &keyword_set, 1); /* parse config */
+ /*
+ * parse_config recognizes referenced
+ * drives and builds a drive entry for
+ * them. This may expand the drive
+ * table, thus invalidating the pointer.
+ */
+ drive = &DRIVE[drivelist[driveno]]; /* point to the drive */
+

if (parse_status < 0) { /* error in config */
/*
* This config should have been parsed
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Another panic

After fixing the previous bug, we get the following panic:

Mounting root from ufs:/dev/ad0s2a
Memory modified at 0xc1958838 after free 0xc1958000(4092)
panic: Most recently used by devbuf

This looks almost identical, and the obvious first conclusion is that the change didn’t fix the bug.
That’s jumping to conclusions, though: the panic message is a symptom, not a cause, and we
should look at it more carefully. Again, the first thing to do is to look at the back trace. We find
something very similar to the previous example: the process involved is almost certainly not the
culprit. Instead, since we’re working on Vinum, we suspect Vinum.

Looking at the memory allocation, we see:

(gdb) finfo show info about freed memory
Block Time Sequence size address line file

0 19.539380 8 512 0xc1975c00 318 vinumio.c
1 19.547689 10 512 0xc197a000 318 vinumio.c
2 19.554801 12 512 0xc197a800 318 vinumio.c
3 19.568804 14 512 0xc197ae00 318 vinumio.c
4 19.568876 0 1024 0xc1981c00 468 vinumconfig.c
5 19.583257 17 512 0xc1975e00 318 vinumio.c
6 19.597787 19 512 0xc1975e00 318 vinumio.c
7 19.598547 21 512 0xc197a800 318 vinumio.c
8 19.602026 20 256 0xc1991700 598 vinumconfig.c
9 19.602936 23 512 0xc1975c00 318 vinumio.c
10 19.606420 22 256 0xc1991400 598 vinumconfig.c
11 19.607325 25 512 0xc197ac00 318 vinumio.c
12 19.610766 24 256 0xc1991100 598 vinumconfig.c
13 19.611664 27 512 0xc197ac00 318 vinumio.c
14 19.615103 26 256 0xc198dd00 598 vinumconfig.c
15 19.616040 29 512 0xc197ac00 318 vinumio.c
16 19.619775 28 256 0xc198da00 598 vinumconfig.c
17 19.620171 5 1024 0xc197ec00 882 vinumio.c
18 19.655536 1 768 0xc1981400 845 vinumconfig.c
19 19.659108 15 2048 0xc18e5000 468 vinumconfig.c
20 19.696490 2 2144 0xc1958000 765 vinumconfig.c
21 19.828777 30 131072 0xc1994000 974 vinumio.c
22 19.828823 6 1024 0xc197f000 975 vinumio.c
23 19.829590 4 28 0xc18d68a0 982 vinumio.c

The address 0xc1958838 is in the block freed at sequence number 20, which finishes at ad-
dress 0xc1958000 + 2144, or 0xc1958860. It would be interesting to know where it
points:

(gdb) p/x *0xc1958838
$2 = 0xc1994068

After a lot of investigation, including another meminfo output like the one on page 54, we con-
clude that this pointer doesn’t point into a Vinum structure. Maybe this isn’t Vinum after all?

Look at the code round where the block was freed, vinumconfig.c line 765:

if (plexno >= vinum_conf.plexes_allocated)
EXPAND(PLEX, struct plex, vinum_conf.plexes_allocated, INITIAL_PLEXES);

/* Found a plex. Give it an sd structure */
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plex = &PLEX[plexno]; /* this one is ours */

We’v e already seen the EXPAND macro, which is effectively the same as realloc. As before,
the pointer to the plex is not allocated until after the call to EXPAND, and it’s probably from a
function which calls it. There are two ways to look at this problem:

1. Look at all the calls and read code to see where something might have happened.

2. Look at what got changed and try to guess what it was.

Which is better? We won’t know until we’ve done both. Normally we’ll be happy with the first
one unless we’re not sure that we’ve done it right, in which case we can check the validity of our
assumptions by doing it the other way too.

Finding what changed is relatively easy. First we need to know how long struct plex is.
There are a couple of ways of doing this:

• Count it in the header files. Good for sleepless nights.

• Look at the length that was allocated, 2144 bytes. From vinumvar.h we find:

INITIAL_PLEXES = 8,

So the length of a plex must be 2144 / 8 bytes, or 268 bytes. This method is easier, but it
requires finding this definition.

• Look at the addresses:

(gdb) p &vinum_conf.plex[0]
$5 = (struct plex *) 0xc18a7000
(gdb) p &vinum_conf.plex[1]
$6 = (struct plex *) 0xc18a710c

What you can’t do is:

(gdb) p &vinum_conf.plex[1] - &vinum_conf.plex[0]
$7 = 0x1

This gives you a result in units of sizeof (struct plex), not bytes. You hav e to do:

(gdb) p (char*) &vinum_conf.plex[1] - (char *) &vinum_conf.plex[0]
$8 = 0x10c

Whichever method you use, we have the length of struct plex, so we can determine which
plex entry was affected: it’s the offset divided by the length, 0x838 / 0x10c, or 7. The offset
in the plex is the remainder, 0x838 - 0x10c * 7:

(gdb) p 0x838 - 0x10c * 7
$9 = 0xe4

That’s pretty close to the end of the plex. Looking at the struct, we see:

(gdb) p ((struct plex *) 0xc1958000) [7]
$10 = {

organization = 3735929054,
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state = 3735929054,
length = 0xdeadc0dedeadc0de,
flags = 0xdeadc0de,
stripesize = 0xdeadc0de,
sectorsize = 0xdeadc0de,
subdisks = 0xdeadc0de,
subdisks_allocated = 0xdeadc0de,
sdnos = 0xdeadc0de,
plexno = 0xdeadc0de,
volno = 0xdeadc0de,
volplexno = 0xdeadc0de,
reads = 0xdeadc0dedeadc0de,
writes = 0xdeadc0dedeadc0de,
bytes_read = 0xdeadc0dedeadc0de,
bytes_written = 0xdeadc0dedeadc0de,
recovered_reads = 0xdeadc0dedeadc0de,
degraded_writes = 0xdeadc0dedeadc0de,
parityless_writes = 0xdeadc0dedeadc0de,
multiblock = 0xdeadc0dedeadc0de,
multistripe = 0xdeadc0dedeadc0de,
sddowncount = 0xdeadc0de,
usedlocks = 0xdeadc0de,
lockwaits = 0xdeadc0de,
checkblock = 0xdeadc0dedeadc0de,
name = "ÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞÞÀÞ",
lock = 0xdeadc0de,
lockmtx = {

mtx_object = {
lo_class = 0xdeadc0de,
lo_name = 0xdeadc0de <Address 0xdeadc0de out of bounds>,
lo_type = 0xdeadc0de <Address 0xdeadc0de out of bounds>,
lo_flags = 0xdeadc0de,
lo_list = {

tqe_next = 0xc1994068,
tqe_prev = 0xdeadc0de

},
lo_witness = 0xdeadc0de

},
mtx_lock = 0xdeadc0de,
mtx_recurse = 0xdeadc0de,
mtx_blocked = {

tqh_first = 0xdeadc0de,
tqh_last = 0xdeadc0de

},
mtx_contested = {

le_next = 0xdeadc0de,
le_prev = 0xdeadc0de

}
},
dev = 0xdeadc0de

}

That’s inside the plex’s lock mutex. Nothing touches mutexes except the mutex primitives, so
this looks like somewhere a mutex constructor has been handed a stale pointer. That helps us
narrow our search:

$ grep -n mtx *.c
vinumconfig.c:831: mtx_destroy(&plex->lockmtx);
vinumconfig.c:1457: mtx_init(&plex->lockmtx, plex->name, "plex", MTX_DEF);
vinumdaemon.c:74: mtx_lock_spin(&sched_lock);
vinumdaemon.c:76: mtx_unlock_spin(&sched_lock);
vinumlock.c:139: mtx_lock(&plex->lockmtx);
vinumlock.c:143: msleep(&plex->usedlocks, &plex->lockmtx, PRIBIO, "vlock", 0);
vinumlock.c:171: msleep(lock, &plex->lockmtx, PRIBIO, "vrlock", 0);
vinumlock.c:195: mtx_unlock(&plex->lockmtx);

The calls in vinumdaemon.c are for sched_lock, so we can forget them. The others refer to
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the plex lockmtx, so it might seem that we need to look at them all. But the value that has
changed is a list pointer, so it’s a good choice that this is creating or destroying a mutex. That
leaves only the first two mutexes, in vinumconfig.c.

Looking at the code round line 831, we find it’s in free_plex:

/*
* Free an allocated plex entry
* and its associated memory areas
*/

void
free_plex(int plexno)
{

struct plex *plex;

plex = &PLEX[plexno];
if (plex->sdnos)

Free(plex->sdnos);
if (plex->lock)

Free(plex->lock);
if (isstriped(plex))

mtx_destroy(&plex->lockmtx);
destroy_dev(plex->dev);
bzero(plex, sizeof(struct plex)); /* and clear it out */
plex->state = plex_unallocated;

}

Here, the parameter passed is the plex number, not the plex pointer, which is initialized in the
function. Theoretically it could also be a race condition, which would imply a problem with the
config lock. But more important is that the plex lock is being freed immediately before. If it
were working on freed memory, the value of plex->lock would be 0xdeadc0de, so it
would try to free it and panic right there, since 0xdeadc0de is not a valid address. So it can’t
be this one.

Line 1457 is in config_plex:

if (isstriped(plex)) {
plex->lock = (struct rangelock *)

Malloc(PLEX_LOCKS * sizeof(struct rangelock));
CHECKALLOC(plex->lock, "vinum: Can’t allocate lock table\n");
bzero((char *) plex->lock, PLEX_LOCKS * sizeof(struct rangelock));
mtx_init(&plex->lockmtx, plex->name, "plex", MTX_DEF);

}

Again, if we had been through this code, we would have allocated a lock table, but there’s no evi-
dence of that.

We could go on looking at the other instances, but it’s unlikely that any of those functions would
change the linkage. What does change the linkage is the creation or destruction of other mutex-
es. This is a basic problem with the approach: you can’t move an element in a linked list without
changing the linkage. That’s the bug.

So how do we solve the problem? Again, there are two possibilities:

• When moving the plex table, adjust the mutex linkage.

• Don’t move the mutexes.

Let’s look at how this mutex gets used, in lock_plex:



70 Debugging Kernel Problems

/*
* we can’t use 0 as a valid address, so
* increment all addresses by 1.
*/

stripe++;
mtx_lock(&plex->lockmtx);

/* Wait here if the table is full */
while (plex->usedlocks == PLEX_LOCKS) /* all in use */

msleep(&plex->usedlocks, &plex->lockmtx, PRIBIO, "vlock", 0);

In older versions of FreeBSD, as well as NetBSD and OpenBSD, the corresponding code is:

/*
* we can’t use 0 as a valid address, so
* increment all addresses by 1.
*/

stripe++;
/*
* We give the locks back from an interrupt
* context, so we need to raise the spl here.
*/

s = splbio();

/* Wait here if the table is full */
while (plex->usedlocks == PLEX_LOCKS) /* all in use */

tsleep(&plex->usedlocks, PRIBIO, "vlock", 0);

In other words, the mutex simply replaces an splbio call, which is a no-op in FreeBSD release
5. So why one mutex per plex? It’s simply an example of finer-grained locking. There are two
ways to handle this issue:

• Use a single mutex for all plexes. That’s the closest approximation to the original, but it can
mean unnecessary waits: the only thing we want to avoid in this function is having two callers
locking the same plex, not two callers locking different plexes.

• Use a pool of mutexes. Each plex is allocated one of a number of mutexes. If more than one
plex uses the same mutex, there’s a possibility of unnecessary delay, but it’s not as much as if
all plexes used the same mutex.

I chose the second way. In Vinum startup, I added this code:

#define MUTEXNAMELEN 16
char mutexname[MUTEXNAMELEN];

#if PLEXMUTEXES > 10000
#error Increase size of MUTEXNAMELEN
#endif

...

for (i = 0; i < PLEXMUTEXES; i++) {
snprintf(mutexname, MUTEXNAMELEN, "vinumplex%d", i);
mtx_init(&plexmutex[i], mutexname, "plex", MTX_DEF);

}

Then the code in config_plex became:

if (isstriped(plex)) {
plex->lock = (struct rangelock *)

Malloc(PLEX_LOCKS * sizeof(struct rangelock));
CHECKALLOC(plex->lock, "vinum: Can’t allocate lock table\n");
bzero((char *) plex->lock, PLEX_LOCKS * sizeof(struct rangelock));
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plex->lockmtx = &plexmutex[plexno % PLEXMUTEXES]; /* use this mutex for locking */
}

Since the mutexes no longer belong to a single plex, there’s no need to destroy them when de-
stroying the plex; instead, they’re destroyed when unloading the Vinum module.



72 Debugging Kernel Problems

8
panic: cleaned vnode isn’t

zaphod, a FreeBSD 5-CURRENT system, panics regularly with the message:

panic: cleaned vnode isn’t
at line 755 in file /usr/src/sys/kern/vfs_subr.c

Look at the dump:

# cd /usr/obj/usr/src/sys/ZAPHOD/
# ls -l kernel* /boot/kernel/kernel
-r-xr-xr-x 1 root wheel 5403188 May 6 08:41 /boot/kernel/kernel
-rwxr-xr-x 1 root wheel 5403188 May 6 08:41 kernel
-rwxr-xr-x 1 root wheel 30470585 May 6 08:41 kernel.debug
# gdb -k kernel.debug /var/crash/vmcore.8
...
This GDB was configured as "i386-undermydesk-freebsd"...
panic: cleaned vnode isn’t
panic messages:
---
panic: cleaned vnode isn’t
at line 755 in file /usr/src/sys/kern/vfs_subr.c
cpuid = 0;
Debugger("panic")
Dumping 384 MB
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336 352 368

---
Reading symbols from /usr/obj/usr/src/sys/ZAPHOD/modules/usr/src/sys/modules/dcons/dco
ns.ko.debug...done.
Loaded symbols for /usr/obj/usr/src/sys/ZAPHOD/modules/usr/src/sys/modules/dcons/dcons
.ko.debug
Reading symbols from /usr/obj/usr/src/sys/ZAPHOD/modules/usr/src/sys/modules/dcons_cro
m/dcons_crom.ko.debug...done.
Loaded symbols for /usr/obj/usr/src/sys/ZAPHOD/modules/usr/src/sys/modules/dcons_crom/
dcons_crom.ko.debug
#0 doadump () at /usr/src/sys/kern/kern_shutdown.c:236
236 dumping++;
Ready to go. Enter ’tr’ to connect to the remote target
with /dev/cuaa0, ’tr /dev/cuaa1’ to connect to a different port
or ’trf portno’ to connect to the remote target with the firewire
interface. portno defaults to 5556.

Type ’getsyms’ after connection to load kld symbols.

If you’re debugging a local system, you can use ’kldsyms’ instead
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to load the kld symbols. That’s a less obnoxious interface.

As always, the first thing to do is to look at a stack trace:

(kgdb) bt
#0 doadump () at /usr/src/sys/kern/kern_shutdown.c:236
#1 0xc045c882 in db_fncall (dummy1=0x0, dummy2=0x0, dummy3=0xc0886034,

dummy4=0xd7d427f4 "Àñ\211À((Ô×R<sÀ((Ô×¿<sÀ\220\a") at /usr/src/sys/ddb/db_command.
c:551
#2 0xc045c688 in db_command (last_cmdp=0xc08535c0, cmd_table=0x0, aux_cmd_tablep=0xc0
7d66a8,

aux_cmd_tablep_end=0xc07d66c0) at /usr/src/sys/ddb/db_command.c:348
#3 0xc045c768 in db_command_loop () at /usr/src/sys/ddb/db_command.c:475
#4 0xc045eefd in db_trap (type=0x3, code=0x0) at /usr/src/sys/ddb/db_trap.c:73
#5 0xc073a219 in kdb_trap (type=0x3, code=0x0, regs=0xd7d42920) at /usr/src/sys/i386/
i386/db_interface.c:159
#6 0xc074c67c in trap (frame=

{tf_fs = 0x18, tf_es = 0x10, tf_ds = 0x10, tf_edi = 0xc07ba264, tf_esi = 0x1, tf
_ebp = 0xd7d42964, tf_isp = 0xd7d4294c, tf_ebx = 0x0, tf_edx = 0x0, tf_ecx = 0xc101400
0, tf_eax = 0x12, tf_trapno = 0x3, tf_err = 0x0, tf_eip = 0xc073a4de, tf_cs = 0x8, tf_
eflags = 0x296, tf_esp = 0xd7d42998, tf_ss = 0xd7d42984}) at /usr/src/sys/i386/i386/tr
ap.c:579
#7 0xc073a4de in Debugger (msg=0xc07b390c "panic") at machine/cpufunc.h:56
#8 0xc05ddc85 in __panic (file=0xc07ba1fb "/usr/src/sys/kern/vfs_subr.c", line=0x2f3,

fmt=0xc07ba264 "cleaned vnode isn’t") at /usr/src/sys/kern/kern_shutdown.c:532
#9 0xc06259b0 in getnewvnode (tag=0xc07bdc45 "ufs", mp=0xc399e800, vops=0x0, vpp=0x0)

at /usr/src/sys/kern/vfs_subr.c:785
#10 0xc06f7cb0 in ffs_vget (mp=0xc399e800, ino=0x39471e, flags=0x2, vpp=0xd7d42a84)

at /usr/src/sys/ufs/ffs/ffs_vfsops.c:1252
#11 0xc06fe9da in ufs_lookup (ap=0xd7d42b40) at /usr/src/sys/ufs/ufs/ufs_lookup.c:599
#12 0xc0704ae7 in ufs_vnoperate (ap=0x0) at /usr/src/sys/ufs/ufs/ufs_vnops.c:2819
#13 0xc061deb1 in vfs_cache_lookup (ap=0x0) at vnode_if.h:82
#14 0xc0704ae7 in ufs_vnoperate (ap=0x0) at /usr/src/sys/ufs/ufs/ufs_vnops.c:2819
#15 0xc0622377 in lookup (ndp=0xd7d42c30) at vnode_if.h:52
#16 0xc0621df8 in namei (ndp=0xd7d42c30) at /usr/src/sys/kern/vfs_lookup.c:179
#17 0xc062ccde in lstat (td=0xc5333bd0, uap=0xd7d42d14) at /usr/src/sys/kern/vfs_sysca
lls.c:2063
#18 0xc074ce57 in syscall (frame=

{tf_fs = 0x805002f, tf_es = 0xffff002f, tf_ds = 0xbfbf002f, tf_edi = 0x8066600,
tf_esi = 0x8066648, tf_ebp = 0xbfbfec58, tf_isp = 0xd7d42d74, tf_ebx = 0x2812e78c, tf_
edx = 0x80533c0, tf_ecx = 0x0, tf_eax = 0xbe, tf_trapno = 0x0, tf_err = 0x2, tf_eip =
0x280bd2a7, tf_cs = 0x1f, tf_eflags = 0x292, tf_esp = 0xbfbfebbc, tf_ss = 0x2f})

at /usr/src/sys/i386/i386/trap.c:1004
#19 0x280bd2a7 in ?? ()
---Can’t read userspace from dump, or kernel process---

This last message comes from FreeBSD 5.0 round mid-2004, where gdb no longer accesses
userland.

Looking at the back trace, frame 9 (getnewvnode) is the culprit.

(kgdb) f 9
#9 0xc06259b0 in getnewvnode (tag=0xc07bdc45 "ufs", mp=0xc399e800, vops=0x0, vpp=0x0)

at /usr/src/sys/kern/vfs_subr.c:785
785 KASSERT(vp->v_dirtyblkroot == NULL, ("dirtyblkroot not NULL"));
(kgdb) l
780 lockdestroy(vp->v_vnlock);
781 lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
782 KASSERT(vp->v_cleanbufcnt == 0, ("cleanbufcnt not 0"));
783 KASSERT(vp->v_cleanblkroot == NULL, ("cleanblkroot not NULL"));
784 KASSERT(vp->v_dirtybufcnt == 0, ("dirtybufcnt not 0"));
785 KASSERT(vp->v_dirtyblkroot == NULL, ("dirtyblkroot not NULL"));
786 } else {
787 numvnodes++;
788 mtx_unlock(&vnode_free_list_mtx);
789
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The code is funny. We hav e a KASSERT, which asserts that a certain condition exists. If it
doesn’t, it panics with the second string. But the string isn’t correct: the panic message is
“cleaned vnode isn’t”, but the message in the code is “dirtyblkroot not NULL”. The problem
here is the optimizer: there are many potential calls to panic, and the optimizer improves the
code by creating only one call and getting the other calls to jump to that one call. Looking for
the panic message “cleaned vnode isn’t” in that file, we find it at line 755:

(kgdb) l 755
750 mtx_unlock(&vnode_free_list_mtx);
751
752 #ifdef INVARIANTS
753 {
754 if (vp->v_data)
755 panic("cleaned vnode isn’t");
756 if (vp->v_numoutput)
757 panic("Clean vnode has pending I/O’s");
758 if (vp->v_writecount != 0)
759 panic("Non-zero write count");

We should confirm that we’re in the right place; this kind of discrepancy could also be due to the
use of the incorrect source file. We can get confirmation by looking at the code at that line:

(kgdb) i li 754
Line 754 of "/usr/src/sys/kern/vfs_subr.c" starts at address 0xc0625870 <getnewvnode+516>

and ends at 0xc062587c <getnewvnode+528>.
(kgdb) x/10i 0xc0625870
0xc0625870 <getnewvnode+516>: add $0x10,%esp
0xc0625873 <getnewvnode+519>: cmpl $0x0,0xa8(%esi)
0xc062587a <getnewvnode+526>: je 0xc062588c <getnewvnode+544>
0xc062587c <getnewvnode+528>: push $0xc07ba264
0xc0625881 <getnewvnode+533>: push $0x2f3
0xc0625886 <getnewvnode+538>: jmp 0xc06259a6 <getnewvnode+826>
(kgdb) x/10i 0xc06259a6
0xc06259a6 <getnewvnode+826>: push $0xc07ba1fb
0xc06259ab <getnewvnode+831>: call 0xc05ddb48 <__panic>
0xc06259b0 <getnewvnode+836>: incl 0xc0878014

The address after the call to panic is the return address in our stack trace, so it’s reasonable to
assume that this is, in fact, correct. So the test is at line 754: is vp->v_data set to NULL?
Let’s look at the vnode:

(kgdb) p *vp
$1 = {

v_interlock = {
mtx_object = {

lo_class = 0xc080c83c,
lo_name = 0xc07ba2fb "vnode interlock",
lo_type = 0xc07ba2fb "vnode interlock",
lo_flags = 0x30000,
lo_list = {

tqe_next = 0x0,
tqe_prev = 0x0

},
lo_witness = 0x0

},
mtx_lock = 0xc5333bd0,
mtx_recurse = 0x0

},
v_iflag = 0x80,
v_usecount = 0x0,
v_numoutput = 0x0,
v_vxthread = 0x0,
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v_holdcnt = 0x0,
v_cleanblkhd = {

tqh_first = 0x0,
tqh_last = 0xc4804858

},
v_cleanblkroot = 0x0,
v_cleanbufcnt = 0x0,
v_dirtyblkhd = {

tqh_first = 0x0,
tqh_last = 0xc4804868

},
v_dirtyblkroot = 0x0,
v_dirtybufcnt = 0x0,
v_vflag = 0x0,
v_writecount = 0x0,
v_object = 0x0,
v_lastw = 0x0,
v_cstart = 0x0,
v_lasta = 0x0,
v_clen = 0x0,
v_un = {

vu_mountedhere = 0x0,
vu_socket = 0x0,
vu_spec = {

vu_cdev = 0x0,
vu_specnext = {

sle_next = 0x0
}

},
vu_fifoinfo = 0x0

},
v_freelist = {

tqe_next = 0x0,
tqe_prev = 0xc42e07a4

},
v_nmntvnodes = {

tqe_next = 0xc506f71c,
tqe_prev = 0xc3d207ac

},
v_synclist = {

le_next = 0x0,
le_prev = 0x0

},
v_type = VBAD,
v_tag = 0xc07bdc45 "ufs",
v_data = 0xc489b578,
v_lock = {

lk_interlock = 0xc08705b4,
lk_flags = 0x1000040,
lk_sharecount = 0x0,
lk_waitcount = 0x0,
lk_exclusivecount = 0x0,
lk_prio = 0x50,
lk_wmesg = 0xc07bdc45 "ufs",
lk_timo = 0x6,
lk_lockholder = 0xffffffff,
lk_newlock = 0x0

},
v_vnlock = 0xc48048cc,
v_op = 0xc38ed000,
v_mount = 0xc399e800,
v_cache_src = {

lh_first = 0x0
},
v_cache_dst = {

tqh_first = 0xc529d8c4,
tqh_last = 0xc529d8d4

},
v_id = 0x1329183,
v_dd = 0xc4804820,
v_ddid = 0x0,
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v_pollinfo = 0x0,
v_label = 0x0,
v_cachedfs = 0x41b,
v_cachedid = 0x391bf8

}

So vp->v_data isn’t NULL. Why not? The first obvious thing to do would be to look at the
rest of the structure. For example, it could conceivably be complete junk, which could happen if
the pointer itself were corrupted, or if something overwrote the object. In this case, though,
without looking at all the pointers there’s not much that looks obviously wrong. The interlock
mutex has a name vnode interlock, which looks plausible. The list links look reasonable
(they’re well above the kernel base address of 0xc0000000). The v_tag is ufs, which
seems reasonable. In general, at first glance there’s no reason to believe that this isn’t a valid vn-
ode pointer, and the vnode hasn’t been overwritten en masse. About the only thing that is unusu-
al is the field v_type: it’s VBAD. With etags or similar we find it’s in sys/sys/vnode.h:

/*
* Vnode types. VNON means no type.
*/

enum vtype { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO, VBAD };

There’s no further explanation, but the name of the enum, as well as the fact that gdb ev en uses
it, shows that it’s in the correct place. The name suggests that there’s something wrong with this
vnode.

But what’s the file? Looking further down the stack we find we’re called from namei, which
resolves path names. Looking at it, we see:

(kgdb) l namei
92 * }
93 */
94 int
95 namei(ndp)
96 register struct nameidata *ndp;
97 {
98 register struct filedesc *fdp; /* pointer to file descriptor state */
99 register char *cp; /* pointer into pathname argument */
100 register struct vnode *dp; /* the directory we are searching */
101 struct iovec aiov; /* uio for reading symbolic links */

The parameter ndp passed to namei contains all the to namei. It is defined in sys/namei.h:

56 /*
57 * Encapsulation of namei parameters.
58 */
59 struct nameidata {
60 /*
61 * Arguments to namei/lookup.
62 */
63 const char *ni_dirp; /* pathname pointer */
64 enum uio_seg ni_segflg; /* location of pathname */
65 /*
66 * Arguments to lookup.
67 */
68 struct vnode *ni_startdir; /* starting directory */
69 struct vnode *ni_rootdir; /* logical root directory */
70 struct vnode *ni_topdir; /* logical top directory */
71 /*
72 * Results: returned from/manipulated by lookup
73 */
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74 struct vnode *ni_vp; /* vnode of result */
75 struct vnode *ni_dvp; /* vnode of intermediate directory */
76 /*
77 * Shared between namei and lookup/commit routines.
78 */
79 size_t ni_pathlen; /* remaining chars in path */
80 char *ni_next; /* next location in pathname */
81 u_long ni_loopcnt; /* count of symlinks encountered */
82 /*
83 * Lookup parameters: this structure describes the subset of
84 * information from the nameidata structure that is passed
85 * through the VOP interface.
86 */
87 struct componentname ni_cnd;
88 };

So there we have the pathname at ndp->ni_dirp. Looking at it, we find:

(kgdb) f 16
#16 0xc0621df8 in namei (ndp=0xd7d42c30) at /usr/src/sys/kern/vfs_lookup.c:179
179 error = lookup(ndp);
(kgdb) p ndp->ni_dirp
$4 = 0x80666a8---Can’t read userspace from dump, or kernel process---

This is the same bug in gdb that we saw above, and now it’s very annoying. Looking at the mes-
sage buffer, we see:

(kgdb) dmesg
... much output omited
<118>Aug 26 18:59:34 zaphod postfix/postqueue[1750]: fatal: Cannot flush mail queue -
mail system is down
panic: cleaned vnode isn’t
at line 755 in file /usr/src/sys/kern/vfs_subr.c
cpuid = 0;
Debugger("panic")
Dumping 384 MB
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336 352 368

In other words, no messages about bad files. The next possibility is to look through the stack for
where the name gets used. This requires a little more code reading. It doesn’t make much differ-
ence to finding the name whether we start at the top or bottom of the stack, but starting at the
bottom might make it easier to understand the calling sequence.

syscall

syscall is the clearing house function for all system calls. It takes the trap frame from the
int0x80 instruction and extracts the register contents from it. Here’s a simplified version:

894 /*
895 * syscall - system call request C handler
896 *
897 * A system call is essentially treated as a trap.
898 */
899 void
900 syscall(frame)
901 struct trapframe frame;
902 {
903 caddr_t params;
904 struct sysent *callp;
905 struct thread *td = curthread;
906 struct proc *p = td->td_proc;
907 register_t orig_tf_eflags;
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908 u_int sticks;
909 int error;
910 int narg;
911 int args[8];
912 u_int code;
913
914 /*
915 * note: PCPU_LAZY_INC() can only be used if we can afford
916 * occassional inaccuracy in the count.
917 */
918 PCPU_LAZY_INC(cnt.v_syscall);
919
920 #ifdef DIAGNOSTIC
921 if (ISPL(frame.tf_cs) != SEL_UPL) {
922 mtx_lock(&Giant); /* try to stabilize the system XXX */
923 panic("syscall");
924 /* NOT REACHED */
925 mtx_unlock(&Giant);
926 }
927 #endif
928
929 sticks = td->td_sticks;
930 td->td_frame = &frame;
931 if (td->td_ucred != p->p_ucred)
932 cred_update_thread(td);
933 if (p->p_flag & P_SA)
934 thread_user_enter(p, td);
935 params = (caddr_t)frame.tf_esp + sizeof(int);
936 code = frame.tf_eax;
937 orig_tf_eflags = frame.tf_eflags;
938
939 if (p->p_sysent->sv_prepsyscall) {
940 /*
941 * The prep code is MP aware.
942 */
943 (*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
944 } else {
945 /*
946 * Need to check if this is a 32 bit or 64 bit syscall.
947 * fuword is MP aware.
948 */
949 if (code == SYS_syscall) {
950 /*
951 * Code is first argument, followed by actual args.
952 */
953 code = fuword(params);
954 params += sizeof(int);
955 } else if (code == SYS___syscall) {
956 /*
957 * Like syscall, but code is a quad, so as to maintain
958 * quad alignment for the rest of the arguments.
959 */
960 code = fuword(params);
961 params += sizeof(quad_t);
962 }
963 }
964
965 if (p->p_sysent->sv_mask)
966 code &= p->p_sysent->sv_mask;
967
968 if (code >= p->p_sysent->sv_size)
969 callp = &p->p_sysent->sv_table[0];
970 else
971 callp = &p->p_sysent->sv_table[code];
972
973 narg = callp->sy_narg & SYF_ARGMASK;
974
975 /*
976 * copyin and the ktrsyscall()/ktrsysret() code is MP-aware
977 */
978 if (params != NULL && narg != 0)
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979 error = copyin(params, (caddr_t)args,
980 (u_int)(narg * sizeof(int)));
981 else
982 error = 0;

The following code is used by ktrace to trace system calls

984 #ifdef KTRACE
985 if (KTRPOINT(td, KTR_SYSCALL))
986 ktrsyscall(code, narg, args);
987 #endif

Next, we call the function which handles the system call:

989 /*
990 * Try to run the syscall without Giant if the syscall
991 * is MP safe.
992 */
993 if ((callp->sy_narg & SYF_MPSAFE) == 0)
994 mtx_lock(&Giant);
995
996 if (error == 0) {
997 td->td_retval[0] = 0;
998 td->td_retval[1] = frame.tf_edx;
999
1000 STOPEVENT(p, S_SCE, narg);
1001
1002 PTRACESTOP_SC(p, td, S_PT_SCE);
1003
1004 error = (*callp->sy_call)(td, args);

This is the call to the system call itself. The code below handles the return values.

1005 }
1006
1007 switch (error) {
1008 case 0:
1009 frame.tf_eax = td->td_retval[0];
1010 frame.tf_edx = td->td_retval[1];
1011 frame.tf_eflags &= ˜PSL_C;
1012 break;
1013
1014 case ERESTART:
1015 /*
1016 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
1017 * int 0x80 is 2 bytes. We saved this in tf_err.
1018 */
1019 frame.tf_eip -= frame.tf_err;
1020 break;
1021
1022 case EJUSTRETURN:
1023 break;
1024
1025 default:
1026 if (p->p_sysent->sv_errsize) {
1027 if (error >= p->p_sysent->sv_errsize)
1028 error = -1; /* XXX */
1029 else
1030 error = p->p_sysent->sv_errtbl[error];
1031 }
1032 frame.tf_eax = error;
1033 frame.tf_eflags |= PSL_C;
1034 break;
1035 }
1036
1037 /*



80 Debugging Kernel Problems

1038 * Release Giant if we previously set it.
1039 */
1040 if ((callp->sy_narg & SYF_MPSAFE) == 0)
1041 mtx_unlock(&Giant);
1042
1043 /*
1044 * Traced syscall.
1045 */
1046 if ((orig_tf_eflags & PSL_T) && !(orig_tf_eflags & PSL_VM)) {
1047 frame.tf_eflags &= ˜PSL_T;
1048 trapsignal(td, SIGTRAP, 0);
1049 }
1050
1051 /*
1052 * Handle reschedule and other end-of-syscall issues
1053 */
1054 userret(td, &frame, sticks);
1055
1056 #ifdef KTRACE
1057 if (KTRPOINT(td, KTR_SYSRET))
1058 ktrsysret(code, error, td->td_retval[0]);
1059 #endif
1060
1061 /*
1062 * This works because errno is findable through the
1063 * register set. If we ever support an emulation where this
1064 * is not the case, this code will need to be revisited.
1065 */
1066 STOPEVENT(p, S_SCX, code);
1067
1068 PTRACESTOP_SC(p, td, S_PT_SCX);
1069
1070 #ifdef DIAGNOSTIC
1071 cred_free_thread(td);
1072 #endif
1073 WITNESS_WARN(WARN_PANIC, NULL, "System call %s returning",
1074 (code >= 0 && code < SYS_MAXSYSCALL) ? syscallnames[code] : "???");
1075 mtx_assert(&sched_lock, MA_NOTOWNED);
1076 mtx_assert(&Giant, MA_NOTOWNED);
1077 }

This code doesn’t actually look at the contents of the parameters, so we move on.

lstat

Clearly this system call is an lstat call, since that’s where we arrive next. As we saw above,
syscall calls the function with two arguments:

2039 /*
2040 * Get file status; this version does not follow links.
2041 */
2042 #ifndef _SYS_SYSPROTO_H_
2043 struct lstat_args {
2044 char *path;
2045 struct stat *ub;
2046 };
2047 #endif
2048 int
2049 lstat(td, uap)
2050 struct thread *td;
2051 register struct lstat_args /* {
2052 char *path;
2053 struct stat *ub;
2054 } */ *uap;

td is a pointer to the thread of the current process, and uap (“user argument pointer”) points to
the arguments. Nearly all system calls have the same parameter names, so you should recognize
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the name uap. The kind of structure depends on the function; in this case, it’s defined at line
2043.

The first parameter is the path name, which is what we’re looking for:

(kgdb) p *uap
$6 = {

path_l_ = 0xd7d42d14 "¨f\006\bHf\006\b(Å2Å\0244\005\b",
path = 0x80666a8---Can’t read userspace from dump, or kernel process---

What’s this? This has nothing to do with our definition of uap. It appears to be a bug in gdb,
but it’s not clear where. In particular, there doesn’t seem to be any structure with a member
called path_l in the kernel source tree. We could follow this, but it’s probably better to leave
that until we need it. In this case, the function is relatively short:

2055 {
2056 int error;
2057 struct vnode *vp;
2058 struct stat sb;
2059 struct nameidata nd;
2060
2061 NDINIT(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | NOOBJ, UIO_USERSPACE,
2062 uap->path, td);
2063 if ((error = namei(&nd)) != 0)
2064 return (error);
2065 vp = nd.ni_vp;
2066 error = vn_stat(vp, &sb, td->td_ucred, NOCRED, td);
2067 NDFREE(&nd, NDF_ONLY_PNBUF);
2068 vput(vp);
2069 if (error)
2070 return (error);
2071 error = copyout(&sb, uap->ub, sizeof (sb));
2072 return (error);
2073 }

NDINIT uses the path name. Let’s look at that. The name in all capitals suggests that it’s a
macro, but in fact it’s an inline function in sys/namei.h:

142 /*
143 * Initialization of a nameidata structure.
144 */
145 static void NDINIT(struct nameidata *, u_long, u_long, enum uio_seg,
146 const char *, struct thread *);
147 static __inline void
148 NDINIT(struct nameidata *ndp,
149 u_long op, u_long flags,
150 enum uio_seg segflg,
151 const char *namep,
152 struct thread *td)
153 {
154 ndp->ni_cnd.cn_nameiop = op;
155 ndp->ni_cnd.cn_flags = flags;
156 ndp->ni_segflg = segflg;
157 ndp->ni_dirp = namep;
158 ndp->ni_cnd.cn_thread = td;
159 }

Yes, it uses the path name, but just to put it into the variable nd. We can check that:

(kgdb) p nd
$7 = {

ni_dirp = 0x80666a8---Can’t read userspace from dump, or kernel process---
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Well, at least it’s consistent, but this doesn’t help us much more. The next line is a call to
namei, so let’s look there.

namei

namei is quite long, so we’ll just look at parts of it. It starts with:

74 /*
75 * Convert a pathname into a pointer to a locked inode.
76 *
77 * The FOLLOW flag is set when symbolic links are to be followed
78 * when they occur at the end of the name translation process.
79 * Symbolic links are always followed for all other pathname
80 * components other than the last.
81 *
82 * The segflg defines whether the name is to be copied from user
83 * space or kernel space.
84 *
85 * Overall outline of namei:
86 *
87 * copy in name
88 * get starting directory
89 * while (!done && !error) {
90 * call lookup to search path.
91 * if symbolic link, massage name in buffer and continue
92 * }
93 */
94 int
95 namei(ndp)
96 register struct nameidata *ndp;
97 {

The obvious first pass is to search the function for references to ndp which come before the call
to lookup at line 179. There are quite a few of them:

98 register struct filedesc *fdp; /* pointer to file descriptor state */
99 register char *cp; /* pointer into pathname argument */
100 register struct vnode *dp; /* the directory we are searching */
101 struct iovec aiov; /* uio for reading symbolic links */
102 struct uio auio;
103 int error, linklen;
104 struct componentname *cnp = &ndp->ni_cnd;

This isn’t much use, since this data hasn’t been completely initialized yet. From the definition of
NDINIT ndp->ni_cnd.cn_nameiop and ndp->ni_cnd.cn_flags are initialized at
this point.

Continuing,

105 struct thread *td = cnp->cn_thread;
106 struct proc *p = td->td_proc;
107
108 ndp->ni_cnd.cn_cred = ndp->ni_cnd.cn_thread->td_ucred;

This one is just credentials; not much help there.

109 KASSERT(cnp->cn_cred && p, ("namei: bad cred/proc"));
110 KASSERT((cnp->cn_nameiop & (˜OPMASK)) == 0,
111 ("namei: nameiop contaminated with flags"));
112 KASSERT((cnp->cn_flags & OPMASK) == 0,
113 ("namei: flags contaminated with nameiops"));
114 fdp = p->p_fd;
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115
116 /*
117 * Get a buffer for the name to be translated, and copy the
118 * name into the buffer.
119 */
120 if ((cnp->cn_flags & HASBUF) == 0)
121 cnp->cn_pnbuf = uma_zalloc(namei_zone, M_WAITOK);
122 if (ndp->ni_segflg == UIO_SYSSPACE)
123 error = copystr(ndp->ni_dirp, cnp->cn_pnbuf,
124 MAXPATHLEN, (size_t *)&ndp->ni_pathlen);
125 else
126 error = copyinstr(ndp->ni_dirp, cnp->cn_pnbuf,
127 MAXPATHLEN, (size_t *)&ndp->ni_pathlen);

This one looks better. It copies the directory name to the component name variable
cnp->cn_pnbuf. Should we look at it? That depends on whether it’s been overwritten after-
wards or not. Let’s note this one and move on.

128
129 /*
130 * Don’t allow empty pathnames.
131 */
132 if (!error && *cnp->cn_pnbuf == ’ ’)
133 error = ENOENT;
134
135 if (error) {
136 uma_zfree(namei_zone, cnp->cn_pnbuf);
137 #ifdef DIAGNOSTIC
138 cnp->cn_pnbuf = NULL;
139 cnp->cn_nameptr = NULL;
140 #endif
141 ndp->ni_vp = NULL;

This doesn’t help much. We’re just noting that we don’t yet have a vnode pointer.

142 return (error);
143 }
144 ndp->ni_loopcnt = 0;

And here we’re just initializing a variable.

145 #ifdef KTRACE
146 if (KTRPOINT(td, KTR_NAMEI)) {
147 KASSERT(cnp->cn_thread == curthread,
148 ("namei not using curthread"));
149 ktrnamei(cnp->cn_pnbuf);
150 }
151 #endif
152
153 /*
154 * Get starting point for the translation.
155 */
156 FILEDESC_LOCK(fdp);
157 ndp->ni_rootdir = fdp->fd_rdir;
158 ndp->ni_topdir = fdp->fd_jdir;

This looks more interesting. What’s in fdp?

(kgdb) p *fdp
$10 = {

fd_ofiles = 0xc080c83c,
fd_ofileflags = 0xc07ba2fb "vnode interlock",
fd_cdir = 0xc07ba2fb,
fd_rdir = 0x30000,
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fd_jdir = 0x0,
fd_nfiles = 0x0,
fd_map = 0x0,
fd_lastfile = 0x4,
fd_freefile = 0x0,
fd_cmask = 0x0,
fd_refcnt = 0x0,
fd_knlistsize = 0x3,
fd_knlist = 0x0,
fd_knhashmask = 0x0,
fd_knhash = 0x2,
fd_mtx = {

mtx_object = {
lo_class = 0xcb237338,
lo_name = 0xcb2373dc "",
lo_type = 0xcb237338 " 01",
lo_flags = 0x1,
lo_list = {

tqe_next = 0x0,
tqe_prev = 0xc50e9a70

},
lo_witness = 0x0

},
mtx_lock = 0x0,
mtx_recurse = 0x8

},
fd_holdleaderscount = 0x0,
fd_holdleaderswakeup = 0xc50ed000

}

Neither of these are interesting: if fd_rdir is a string, it would be in user space, so we
couldn’t do anything with it. fd_jdir is NULL, so it’s not of interest. But there’s another field
there, fd_cdir, which looks like a valid pointer. Before seeing what it’s used for, it’s easier to
check what it contains:

(kgdb) p *fdp->fd_cdir
$11 = {

v_interlock = {
mtx_object = {

lo_class = 0x646f6e76,
lo_name = 0x6e692065---Can’t read userspace from dump, or kernel process---

We’v e seen this before, but this one is in a mutex; possibly there’s other stuff behind which is of
interest. So we go and look for the definition. It’s a struct filedesc, which is defined in
sys/filedesc.h:

42 /*
43 * This structure is used for the management of descriptors. It may be
44 * shared by multiple processes.
(kgdb)
45 *
46 * A process is initially started out with NDFILE descriptors stored within
47 * this structure, selected to be enough for typical applications based on
48 * the historical limit of 20 open files (and the usage of descriptors by
49 * shells). If these descriptors are exhausted, a larger descriptor table
50 * may be allocated, up to a process’ resource limit; the internal arrays
51 * are then unused.
52 */
60
61 struct filedesc {
62 struct file **fd_ofiles; /* file structures for open files */
63 char *fd_ofileflags; /* per-process open file flags */
64 struct vnode *fd_cdir; /* current directory */
65 struct vnode *fd_rdir; /* root directory */
66 struct vnode *fd_jdir; /* jail root directory */
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67 int fd_nfiles; /* number of open files allocated */
68 NDSLOTTYPE *fd_map; /* bitmap of free fds */
69 int fd_lastfile; /* high-water mark of fd_ofiles */
70 int fd_freefile; /* approx. next free file */
71 u_short fd_cmask; /* mask for file creation */
72 u_short fd_refcnt; /* reference count */
73
74 int fd_knlistsize; /* size of knlist */
(kgdb)
75 struct klist *fd_knlist; /* list of attached knotes */
76 u_long fd_knhashmask; /* size of knhash */
77 struct klist *fd_knhash; /* hash table for attached knotes */
78 struct mtx fd_mtx; /* protects members of this struct */
79 int fd_holdleaderscount; /* block fdfree() for shared close() */
80 int fd_holdleaderswakeup; /* fdfree() needs wakeup */
81 };

So fd_cdir is the current directory, and it’s of type vnode. That’s defined in file sys/vn-
ode.h. Omitting some comments and #ifdef ed code, it looks like this:

93 * Vnodes may be found on many lists. The general way to deal with operating
94 * on a vnode that is on a list is:
95 * 1) Lock the list and find the vnode.
96 * 2) Lock interlock so that the vnode does not go away.
97 * 3) Unlock the list to avoid lock order reversals.
98 * 4) vget with LK_INTERLOCK and check for ENOENT, or
99 * 5) Check for XLOCK if the vnode lock is not required.
100 * 6) Perform your operation, then vput().
101 *
102 * XXX Not all fields are locked yet and some fields that are marked are not
103 * locked consistently. This is a work in progress. Requires Giant!
104 */
105
106 struct vnode {
107 struct mtx v_interlock; /* lock for "i" things */
108 u_long v_iflag; /* i vnode flags (see below) */
109 int v_usecount; /* i ref count of users */
110 long v_numoutput; /* i writes in progress */
111 struct thread *v_vxthread; /* i thread owning VXLOCK */
112 int v_holdcnt; /* i page & buffer references */
113 struct buflists v_cleanblkhd; /* i SORTED clean blocklist */
114 struct buf *v_cleanblkroot; /* i clean buf splay tree */
115 int v_cleanbufcnt; /* i number of clean buffers */
116 struct buflists v_dirtyblkhd; /* i SORTED dirty blocklist */
117 struct buf *v_dirtyblkroot; /* i dirty buf splay tree */
118 int v_dirtybufcnt; /* i number of dirty buffers */
119 u_long v_vflag; /* v vnode flags */
120 int v_writecount; /* v ref count of writers */
121 struct vm_object *v_object; /* v Place to store VM object */
122 daddr_t v_lastw; /* v last write (write cluster) */
123 daddr_t v_cstart; /* v start block of cluster */
124 daddr_t v_lasta; /* v last allocation (cluster) */
125 int v_clen; /* v length of current cluster */
126 union {
127 struct mount *vu_mountedhere;/* v ptr to mounted vfs (VDIR) */
128 struct socket *vu_socket; /* v unix ipc (VSOCK) */
129 struct {
130 struct cdev *vu_cdev; /* v device (VCHR, VBLK) */
131 SLIST_ENTRY(vnode) vu_specnext; /* s device aliases */
132 } vu_spec;
133 struct fifoinfo *vu_fifoinfo; /* v fifo (VFIFO) */
134 } v_un;
135 TAILQ_ENTRY(vnode) v_freelist; /* f vnode freelist */
136 TAILQ_ENTRY(vnode) v_nmntvnodes; /* m vnodes for mount point */
137 LIST_ENTRY(vnode) v_synclist; /* S dirty vnode list */
138 enum vtype v_type; /* u vnode type */
139 const char *v_tag; /* u type of underlying data */
140 void *v_data; /* u private data for fs */
141 struct lock v_lock; /* u used if fs don’t have one */
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142 struct lock *v_vnlock; /* u pointer to vnode lock */
143 vop_t **v_op; /* u vnode operations vector */
144 struct mount *v_mount; /* u ptr to vfs we are in */
145 LIST_HEAD(, namecache) v_cache_src; /* c Cache entries from us */
146 TAILQ_HEAD(, namecache) v_cache_dst; /* c Cache entries to us */
147 u_long v_id; /* c capability identifier */
148 struct vnode *v_dd; /* c .. vnode */
149 u_long v_ddid; /* c .. capability identifier */
150 struct vpollinfo *v_pollinfo; /* p Poll events */
151 struct label *v_label; /* MAC label for vnode */
156 udev_t v_cachedfs; /* cached fs id */
157 ino_t v_cachedid; /* cached file id */
158 };

The letters at the beginning of the comments refer to the locks required to access the individual
fields of the vnode. What we’re interested in here are any path names, but there aren’t any: path
names are a level above the vnode layer. We return to namei:

159
160 dp = fdp->fd_cdir;
161 VREF(dp);
162 FILEDESC_UNLOCK(fdp);
163 for (;;) {
164 /*
165 * Check if root directory should replace current directory.
166 * Done at start of translation and after symbolic link.
167 */
168 cnp->cn_nameptr = cnp->cn_pnbuf;
169 if (*(cnp->cn_nameptr) == ’/’) {
170 vrele(dp);
171 while (*(cnp->cn_nameptr) == ’/’) {
172 cnp->cn_nameptr++;
173 ndp->ni_pathlen--;

This code strips leading / characters, which probably doesn’t change very much. There’s not
much else in the loop:

174 }
175 dp = ndp->ni_rootdir;
176 VREF(dp);
177 }
178 ndp->ni_startdir = dp;
179 error = lookup(ndp);

So it would be interesting to find out what’s in cnp:

(kgdb) p *cnp
$1 = {

cn_nameiop = 0x0,
cn_flags = 0xc084,
cn_thread = 0xc5333bd0,
cn_cred = 0xc5202580,
cn_pnbuf = 0xc39d6400 "mime",
cn_nameptr = 0xc39d6400 "mime",
cn_namelen = 0x4,
cn_consume = 0x0

}

At this point, and assuming that the called functions don’t change our structures further, we seem
to have only one lead: the pathname mime. There are a total of 725 directories called mime on
this file system, so this doesn’t help too much.

There’s also another issue: since we’re just allocating the vnode for this file, it can’t be the file
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that caused the problem. It’s possible that it would happen in the same manner every time, but
it’s also possible that it might not: depending on what the system has been doing previously, vn-
odes could be recycled in different ways, and this one might be assigned to a different file on ev-
ery occasion.

Since the machine keeps panicking, it’s easy enough to check this. With another dump we see:

(kgdb) p *cnp
$4 = {

cn_nameiop = 0x0,
cn_flags = 0xc084,
cn_thread = 0xc4891930,
cn_cred = 0xc4922780,
cn_pnbuf = 0xc4895000 "cpphash.h",
cn_nameptr = 0xc4895000 "cpphash.h",
cn_namelen = 0x9,
cn_consume = 0x0

}

This tells us not one, but two things:

1. The path name does change.

2. This name is almost certainly the name of a file, not of a directory. Without checking, it’s
possible that it could be either.

It’s possible that we could get more information with this approach, but it’s looking less likely.
Let’s consider an alternative way to do it.

An alternative approach: find VBAD

One problem with the previous approach is that it’s looking for the wrong file name. The vnode
with VBAD set has already been freed, and we’re trying to reuse it. A better way to look for the
problem might be to look at where VBAD is used. Using the etags search function, we find:

1. A number of references in file systems we’re not using, such as fs/coda/, fs/ntfs/, fs/udf
and so on. We won’t look at them.

2. In file fs/devfs/devfs_vnops.c, function devfs_allocv, we set VBAD if the directory
type is incorrect:

151 if (de->de_dirent->d_type == DT_CHR) {
152 vp->v_type = VCHR;
153 vp = addaliasu(vp, dev->si_udev);
154 vp->v_op = devfs_specop_p;
155 } else if (de->de_dirent->d_type == DT_DIR) {
156 vp->v_type = VDIR;
157 } else if (de->de_dirent->d_type == DT_LNK) {
158 vp->v_type = VLNK;
159 } else {
160 vp->v_type = VBAD;
161 }

3. In function acctwatch in kern/kern_acct.c we abort if we find a vnode with VBAD set.
This could be a possibility, but since this happens with find, it seems rather unlikely.
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4. In file kern/tty_cons.c there’s a macro definition that refers to it. We’re dealing with a disk
here, so we’ll ignore this one too.

5. File kern/vfs_subr.c has a conversion table which uses it. It’s possible that it’s relevant,
but we’ll see that later.

6. In the same file, function vlrureclaim checks for it, but doesn’t do anything useful if
it finds it.

7. Still in kern/vfs_subr.c, function vtryrecycle checks for it:

588 /*
589 * Check to see if a free vnode can be recycled. If it can,
590 * recycle it and return it with the vnode interlock held.
591 */
592 static int
593 vtryrecycle(struct vnode *vp)
594 {
...
659 /*
660 * If we got this far, we need to acquire the interlock and see if
661 * anyone picked up this vnode from another list. If not, we will
662 * mark it with XLOCK via vgonel() so that anyone who does find it
663 * will skip over it.
664 */
665 VI_LOCK(vp);
666 if (VSHOULDBUSY(vp) && (vp->v_iflag & VI_XLOCK) == 0) {
667 VI_UNLOCK(vp);
668 error = EBUSY;
669 goto done;
670 }
671 mtx_lock(&vnode_free_list_mtx);
672 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
673 vp->v_iflag &= ˜VI_FREE;
674 mtx_unlock(&vnode_free_list_mtx);
675 vp->v_iflag |= VI_DOOMED;
676 if (vp->v_type != VBAD) {
677 VOP_UNLOCK(vp, 0, td);
678 vgonel(vp, td);
679 VI_LOCK(vp);
680 } else
681 VOP_UNLOCK(vp, 0, td);
682 vn_finished_write(vnmp);
683 return (0);

This looks like a possibility for further investigation; we note it and continue searching for
places.

8. Yet again in kern/vfs_subr.c, function vgonel (called from the previous function) sets it:

2594 /*
2595 * If it is on the freelist and not already at the head,
2596 * move it to the head of the list. The test of the
2597 * VDOOMED flag and the reference count of zero is because
2598 * it will be removed from the free list by getnewvnode,
2599 * but will not have its reference count incremented until
2600 * after calling vgone. If the reference count were
2601 * incremented first, vgone would (incorrectly) try to
2602 * close the previous instance of the underlying object.
2603 */
2604 if (vp->v_usecount == 0 && !(vp->v_iflag & VI_DOOMED)) {
2605 mtx_lock(&vnode_free_list_mtx);
2606 if (vp->v_iflag & VI_FREE) {
2607 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2608 } else {
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2609 vp->v_iflag |= VI_FREE;
2610 freevnodes++;
2611 }
2612 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2613 mtx_unlock(&vnode_free_list_mtx);
2614 }
2615
2616 vp->v_type = VBAD;
2617 vx_unlock(vp);
2618 VI_UNLOCK(vp);
2619 }

This seems to be a general thing, so maybe VBAD isn’t as seldom as it might appear. We
need to look back at the vnode in question. What flags are set?

(kgdb) f 9
#9 0xc06259b0 in getnewvnode (tag=0xc07bdc45 "ufs", mp=0xc399e800, vops=0x0, vpp=0x0)

at /usr/src/sys/kern/vfs_subr.c:785
785 KASSERT(vp->v_dirtyblkroot == NULL, ("dirtyblkroot not NULL"));
(kgdb) p vp->v_iflag
$14 = 0x80
(kgdb)

From sys/vnode.h we read:

#define VI_DOOMED 0x0080 /* This vnode is being recycled */

So yes, indeed, it looks as if this vnode has been freed by this method.

But if that’s the case, why is the v_data field not zeroed out?

9. Still in kern/vfs_subr.c, function kern_mknod checks for it:

switch (mode & S_IFMT) {
case S_IFMT: /* used by badsect to flag bad sectors */

vattr.va_type = VBAD;
break;

Clearly this isn’t of interest to us, since we’re not making a node when this panic occurs.

The reference in vgonel is important: we’ve been assuming that the value VBAD was a clue;
now it looks as if any valid vnode we pull off the free list will have its type field set to VBAD. It
looks as if this whole exercise was a waste of time. What now? We’ll have to try yet another
tack.

Zeroing vp->v_data

The immediate cause of the panic had nothing to do with the value of the vp->va_type: it
was that vp->v_data was not set to NULL. So where does that get done? Again, we search
the source tree, this time for the variable v_data. We find:

1. In file coda/cnode.h it’s used to define a macro:

#define VTOC(vp) ((struct cnode *)(vp)->v_data)

This is potentially a reason to note the name VTOC: it could be used to set the v_data
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field. In this case, though, the name of the file shows us that it’s only used in the coda file
system, which we’re not using. So we can forget this one. There’s also another hit in co-
da/coda_vnops.c, which we won’t discuss further.

2. We get a few false positives with names like recv_data and ncv_da-
ta_read_bytes. Clearly they’re not what we’re looking for, so we can ignore them
too.

3. In function devfs_delete, fs/devfs/devfs_devs.c we find:

257 if (de->de_vnode)
258 de->de_vnode->v_data = NULL;
259 TAILQ_REMOVE(&dd->de_dlist, de, de_list);
263 FREE(de, M_DEVFS);

This time we’re in devfs, so this reference isn’t of immediate relevance. But it looks like
the sort of thing that we might expect: before removing a vnode entry, we zero out the data
pointer. We can expect to find a similar definition that is relevant to our code.

4. In function devfs_populate in the same file, we find:

308 if (dev == NULL && de != NULL) {
309 dd = de->de_dir;
310 *dep = NULL;
311 TAILQ_REMOVE(&dd->de_dlist, de, de_list);
312 if (de->de_vnode)
313 de->de_vnode->v_data = NULL;
314 FREE(de, M_DEVFS);
315 devfs_dropref(i);
316 continue;
317 }

This is part of code which decides that the vnode in question is no longer required and re-
cycles it. It’s interesting to note that the v_data field requires explicit clearing. This
could be a clue.

5. There are many further read-only references to the v_data field in this file; further down,
though, we see:

649 static int
650 devfs_reclaim(ap)
651 struct vop_reclaim_args /* {
652 struct vnode *a_vp;
653 } */ *ap;
654 {
655 struct vnode *vp = ap->a_vp;
656 struct devfs_dirent *de;
657 int i;
658
659 de = vp->v_data;
660 if (de != NULL)
661 de->de_vnode = NULL;
662 vp->v_data = NULL;
663 if (vp->v_rdev != NODEV && vp->v_rdev != NULL) {
664 i = vcount(vp);
665 if ((vp->v_rdev->si_flags & SI_CHEAPCLONE) && i == 0 &&
666 (vp->v_rdev->si_flags & SI_NAMED))
667 destroy_dev(vp->v_rdev);
668 }
669 return (0);
670 }
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This function has no comments whatsoever, but the name suggests that the vnode is no
longer needed. Similar code also occurs in the function devfs_remove. There are also
similar references in many other file systems.

6. The next reference of interest is one we know well, in function getnewvnode in
kern/vfs_subr.c. This is where we panicked from.

7. A few lines down in the same function, we initialize the newly found vnode:

801 TAILQ_INIT(&vp->v_cleanblkhd);
802 TAILQ_INIT(&vp->v_dirtyblkhd);
803 vp->v_type = VNON;
804 vp->v_tag = tag;
805 vp->v_op = vops;
806 *vpp = vp;
807 vp->v_usecount = 1;
808 vp->v_data = 0;
809 vp->v_cachedid = -1;

Why do this? We’ve just checked for v_data being non-zero and panicked if it is.

The issue here is where we panicked. The test which failed is done in a section marked
#ifdef INVARIANTS. It doesn’t normally get executed, but since this machine was
running a development kernel, INVARIANTS were turned on.

8. After that, addaliasu in kern/vfs_subr.c sets v_data to NULL while copying a vn-
ode:

1816 /*
1817 * Discard unneeded vnode, but save its node specific data.
1818 * Note that if there is a lock, it is carried over in the
1819 * node specific data to the replacement vnode.
1820 */
1821 vref(ovp);
1822 ovp->v_data = nvp->v_data;
1823 ovp->v_tag = nvp->v_tag;
1824 nvp->v_data = NULL;

Again, this doesn’t fit our scenario.

9. In sys/vnode.h we find the definition of struct vnode.

10. In file ufs/ufs/inode.h we find a macro that looks familiar:

/* Convert between inode pointers and vnode pointers. */
#define VTOI(vp) ((struct inode *)(vp)->v_data)
#define ITOV(ip) ((ip)->i_vnode)

We saw an almost identical macro VTOC in the coda code above. This time it’s in the
UFS code, so we need to take it seriously. We’ll do that in a second pass.

11. Finally, in function ufs_reclaim in file ufs/ufs/ufs_inode.c we find the code:

135 /*
136 * Reclaim an inode so that it can be used for other purposes.
137 */
138 int
139 ufs_reclaim(ap)
140 struct vop_reclaim_args /* {
141 struct vnode *a_vp;
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142 struct thread *a_td;
143 } */ *ap;
144 {
145 struct vnode *vp = ap->a_vp;
146 struct inode *ip = VTOI(vp);
147 struct ufsmount *ump = ip->i_ump;
148 #ifdef QUOTA
149 int i;
150 #endif
151
152 VI_LOCK(vp);
153 if (prtactive && vp->v_usecount != 0)
154 vprint("ufs_reclaim: pushing active", vp);
155 VI_UNLOCK(vp);
156 if (ip->i_flag & IN_LAZYMOD) {
157 ip->i_flag |= IN_MODIFIED;
158 UFS_UPDATE(vp, 0);
159 }
160 /*
161 * Remove the inode from its hash chain.
162 */
163 ufs_ihashrem(ip);
164 /*
165 * Purge old data structures associated with the inode.
166 */
167 vrele(ip->i_devvp);
168 #ifdef QUOTA
169 for (i = 0; i < MAXQUOTAS; i++) {
170 if (ip->i_dquot[i] != NODQUOT) {
171 dqrele(vp, ip->i_dquot[i]);
172 ip->i_dquot[i] = NODQUOT;
173 }
174 }
175 #endif
176 #ifdef UFS_DIRHASH
177 if (ip->i_dirhash != NULL)
178 ufsdirhash_free(ip);
179 #endif
180 UFS_IFREE(ump, ip);
181 vp->v_data = 0;
182 return (0);
183 }

This looks like the most likely place.

Although everything points to line 181 of ufs_reclaim, we should consider if there aren’t
other ways to clear it. An obvious possibility might be a macro. We’v e already seen that VTOI
refers to the field Before we go on to look for references to VTOI, we should take stock:

• v_data is one of the most important fields in struct vnode: it’s a pointer to the underly-
ing inode. This in itself is interesting enough, but it also saves us some work: the macro
VTOI above extracts the value of the v_data field; it doesn’t point to the field itself. So
we can’t use this macro to zero out the field, and we don’t need to look where it’s referenced.

• The panic wouldn’t hav e occurred if we hadn’t set INVARIANTS when building the kernel.
Maybe this happens all the time and nobody notices.

• On the other hand, we can’t just drop the test: the reason for INVARIANTS is precisely to
check for problems of this nature. In this case, we know that the code will work if we remove
the check, since we always set v_data to NULL later in the function. But there’s the possi-
bility of a memory leak (what if the underlying inode hasn’t been freed?). So we should con-
tinue looking.



Debugging Kernel Problems 93

• The error occurs when taking a vnode off the free list. This implies that vnodes on the free
list should have v_data set to NULL. An obvious next place to look is when freeing the
vnode to see if we get a vnode with v_data not set to NULL. We might use a breakpoint in
the kernel debugger to do so.

Freeing vnodes
To check what we’re freeing, we first need to know where we free the vnode. Typically the func-
tions to allocate and free objects are close to each other in the same file, or in some cases in two
different files in the same file. The function to allocate a vnode is called getnewvnode. We
might expect the corresponding function to release it to be called putoldvnode or freevn-
ode or some such. Looking through the code, we don’t find anything like this. Instead, we find
the function vfree:

3096 /*
3097 * Mark a vnode as free, putting it up for recycling.
3098 */
3099 void
3100 vfree(vp)
3101 struct vnode *vp;
3102 {
3103
3104 ASSERT_VI_LOCKED(vp, "vfree");
3105 mtx_lock(&vnode_free_list_mtx);
3106 KASSERT((vp->v_iflag & VI_FREE) == 0, ("vnode already free"));
3107 if (vp->v_iflag & VI_AGE) {
3108 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3109 } else {
3110 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3111 }
3112 freevnodes++;
3113 mtx_unlock(&vnode_free_list_mtx);
3114 vp->v_iflag &= ˜VI_AGE;
3115 vp->v_iflag |= VI_FREE;
3116 }

This certainly frees a vnode. But is it really the function corresponding to getnewvnode? It
inserts the vnode on the list vnode_free_list. Where does getnewvnode get its vnode
from? Looking at the code again, we see:

738 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
739 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);

So yes, this looks like the correct function.

One thing that’s obviously missing in this function is a corresponding check for valid fields.
Why should this be? It would be a lot easier to catch a culprit when freeing rather than when al-
locating, possibly much later.

One reason might be that the debugging code in getnewvnode was added to address a specific
case of corruption on the free list. Another might be that it was just done in a hurry. We’ll have
to look further to find out which it is. At any rate, we now hav e some code which we can investi-
gate with the kernel debugger. Let’s look at the code again:

3102 {
3103
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3104 ASSERT_VI_LOCKED(vp, "vfree");
3105 mtx_lock(&vnode_free_list_mtx);
3106 KASSERT((vp->v_iflag & VI_FREE) == 0, ("vnode already free"));

It’s a good idea to avoid putting breakpoints within locked areas, because they might interact
with the debugger. In the case of the lock vnode_free_list, this is as good as impossible,
but in the interests of consistency, we set the breakpoint before, on the call to AS-
SERT_VI_LOCKED:

(kgdb) b 3104
Breakpoint 1 at 0xc06293af: file /usr/src/sys/kern/vfs_subr.c, line 3104.
(kgdb) c
Continuing.

We know that the panics occur when running find, so it seems a good idea to run it to get the sys-
tem running:

$ find / > /dev/null

Shortly afterwards we hit the breakpoint:

Breakpoint 1, vfree (vp=0xc48ce924) at /usr/src/sys/kern/vfs_subr.c:3105
3105 mtx_lock(&vnode_free_list_mtx);
(kgdb) bt
#0 vfree (vp=0xc48ce924) at /usr/src/sys/kern/vfs_subr.c:3105
#1 0xc0627b99 in vrele (vp=0xc48ce924) at /usr/src/sys/kern/vfs_subr.c:2000
#2 0xc0631025 in vn_close (vp=0xc48ce924, flags=0x1, file_cred=0x1, td=0x1) at /usr/s
rc/sys/kern/vfs_vnops.c:328
#3 0xc0631cee in vn_closefile (fp=0x1, td=0xc3aa7930) at /usr/src/sys/kern/vfs_vnops.
c:914
#4 0xc05c6b8b in fdrop_locked (fp=0xc39e07f8, td=0xc3aa7930) at /usr/src/sys/sys/file
.h:288
#5 0xc05c5f84 in fdrop (fp=0xc39e07f8, td=0xc3aa7930) at /usr/src/sys/kern/kern_descr
ip.c:1879
#6 0xc05c5f57 in closef (fp=0xc39e07f8, td=0xc3aa7930) at /usr/src/sys/kern/kern_desc
rip.c:1865
#7 0xc05c57ff in fdfree (td=0xc3aa7930) at /usr/src/sys/kern/kern_descrip.c:1582
#8 0xc05cae03 in exit1 (td=0xc3aa7930, rv=0x0) at /usr/src/sys/kern/kern_exit.c:249
#9 0xc05ca9a4 in exit1 (td=0xc3aa7930, rv=0x116) at /usr/src/sys/kern/kern_exit.c:94
#10 0xc074ce57 in syscall (frame=

{tf_fs = 0x2f, tf_es = 0x2f, tf_ds = 0x2f, tf_edi = 0xbfbfe440, tf_esi = 0xbfbfe
448, tf_ebp = 0xbfbfe408, tf_isp = 0xd7c08d74, tf_ebx = 0x281a778c, tf_edx = 0x281b9b6
0, tf_ecx = 0x281b9b60, tf_eax = 0x1, tf_trapno = 0xc, tf_err = 0x2, tf_eip = 0x28134e
43, tf_cs = 0x1f, tf_eflags = 0x292, tf_esp = 0xbfbfe3ec, tf_ss = 0x2f})

at /usr/src/sys/i386/i386/trap.c:1004
#11 0x28134e43 in ?? ()
#12 0x08049327 in ?? ()
(kgdb) p vp->v_data
$1 = (void *) 0xc52f1280

Hmm, hit it the first time round? That looks suspicious. How often does is this the case? We
can save a lot of work by giving commands to the breakpoint to display the field and continue au-
tomatically:

(gdb) comm 1
Type commands for when breakpoint 1 is hit, one per line.
End with a line saying just "end".
>p vp->v_data print the field
>c and continue
>(gdb) c (hit ˆD)
Continuing.
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Breakpoint 1, vfree (vp=0xc519f410) at /usr/src/sys/kern/vfs_subr.c:3105
3105 mtx_lock(&vnode_free_list_mtx);
$2 = (void *) 0xc620f5c0

Breakpoint 1, vfree (vp=0xc4d1eb2c) at /usr/src/sys/kern/vfs_subr.c:3105
3105 mtx_lock(&vnode_free_list_mtx);
$3 = (void *) 0xc5b889d8

(etc)
Breakpoint 1, vfree (vp=0xc4eae410) at /usr/src/sys/kern/vfs_subr.c:3105
3105 mtx_lock(&vnode_free_list_mtx);
$18 = (void *) 0xc46ddf00
---Type <return> to continue, or q <return> to quit---Quit

In other words, it seems that v_data is always set to something on entering this function. It’s
obviously normally reset before we get to getnewvnode. So where does that happen? Look-
ing at the code above, the obvious place is in ufs_reclaim. When does that happen?

(gdb) l ufs_reclaim
139 ufs_reclaim(ap)
(etc)
180 UFS_IFREE(ump, ip);
181 vp->v_data = 0;
182 return (0);
183 }
(gdb) b 181
Breakpoint 2 at 0xc06fdcdc: file /usr/src/sys/ufs/ufs/ufs_inode.c, line 181.
(gdb) c
Continuing.

Breakpoint 2, ufs_reclaim (ap=0x1) at /usr/src/sys/ufs/ufs/ufs_inode.c:181
181 vp->v_data = 0;
(gdb) bt
#0 ufs_reclaim (ap=0x1) at /usr/src/sys/ufs/ufs/ufs_inode.c:181
#1 0xc0704ae7 in ufs_vnoperate (ap=0x4) at /usr/src/sys/ufs/ufs/ufs_vnops.c:2819
#2 0xc062855f in vclean (vp=0xc4d4b000, flags=0x8, td=0xc688a540) at vnode_if.h:981
#3 0xc062898d in vgonel (vp=0xc4d4b000, td=0xc688a540) at /usr/src/sys/kern/vfs_subr.
c:2577
#4 0xc06255d9 in vtryrecycle (vp=0xc4d4b000) at /usr/src/sys/kern/vfs_subr.c:678
#5 0xc0625819 in getnewvnode (tag=0xc07bdc45 "ufs", mp=0xc46a3c00, vops=0x1, vpp=0x1)

at /usr/src/sys/kern/vfs_subr.c:741
#6 0xc06f7cb0 in ffs_vget (mp=0xc46a3c00, ino=0x2a7a8, flags=0x2, vpp=0xe122da84)

at /usr/src/sys/ufs/ffs/ffs_vfsops.c:1252
(etc)
(gdb) p vp->v_data
$19 = (void *) 0xc5115ec4

Frame 5 is getnewvnode. Let’s look at that code more carefully:

693 int
694 getnewvnode(tag, mp, vops, vpp)
695 const char *tag;
696 struct mount *mp;
697 vop_t **vops;
698 struct vnode **vpp;
699 {
700 struct vnode *vp = NULL;
701 struct vpollinfo *pollinfo = NULL;
702
703 mtx_lock(&vnode_free_list_mtx);
704
705 /*
706 * Try to reuse vnodes if we hit the max. This situation only
707 * occurs in certain large-memory (2G+) situations. We cannot
708 * attempt to directly reclaim vnodes due to nasty recursion
709 * problems.
710 */
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711 while (numvnodes - freevnodes > desiredvnodes) {
712 if (vnlruproc_sig == 0) {
713 vnlruproc_sig = 1; /* avoid unnecessary wakeups */
714 wakeup(vnlruproc);
715 }
716 mtx_unlock(&vnode_free_list_mtx);
717 tsleep(&vnlruproc_sig, PVFS, "vlruwk", hz);
718 mtx_lock(&vnode_free_list_mtx);
719 }
720
721 /*
722 * Attempt to reuse a vnode already on the free list, allocating
723 * a new vnode if we can’t find one or if we have not reached a
724 * good minimum for good LRU performance.
725 */
726
727 if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
728 int error;
729 int count;
730
731 for (count = 0; count < freevnodes; count++) {
732 vp = TAILQ_FIRST(&vnode_free_list);
733
734 KASSERT(vp->v_usecount == 0 &&
735 (vp->v_iflag & VI_DOINGINACT) == 0,
736 ("getnewvnode: free vnode isn’t"));
737
738 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
739 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
740 mtx_unlock(&vnode_free_list_mtx);
741 error = vtryrecycle(vp); call ufs_reclaim via here
742 mtx_lock(&vnode_free_list_mtx);
743 if (error == 0)
744 break;
745 vp = NULL;
746 }
747 }
748 if (vp) {
749 freevnodes--;
750 mtx_unlock(&vnode_free_list_mtx);
751
752 #ifdef INVARIANTS
753 {
754 if (vp->v_data)
755 panic("cleaned vnode isn’t"); panic here
756 if (vp->v_numoutput)
757 panic("Clean vnode has pending I/O’s");
758 if (vp->v_writecount != 0)
759 panic("Non-zero write count");
760 }
761 #endif

In other words, the vnode doesn’t get cleaned until just before it’s reused—a “just in time” ap-
proach. But why didn’t it work this time? At line 727 we check whether we should be reusing
an existing vnode; if we don’t, vp is still set to NULL, so obviously the condition applies. Next,
in the loop starting on line 731 we look for a free vnode. If we find one, we try to clean it (line
741), and if that succeeds, we exit the loop and continue.

If that’s the case, the variable error should be set to 0, but since it’s local to the block starting
at line 727, it no longer exists. It’s possible that the registers still hold a clue, but for now we can
assume that vtryrecyle returned 0. Something else must have gone wrong. The stack trace
above shows the correct sequence; in the case of our panic, it doesn’t seem to have worked quite
like that. So where did things go wrong? Let’s look at the called functions, starting with
vtryrecyle.
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vtr yrecyle

vtryrecyle looks like this:

588 /*
589 * Check to see if a free vnode can be recycled. If it can,
590 * recycle it and return it with the vnode interlock held.
591 */
592 static int
593 vtryrecycle(struct vnode *vp)
594 {
595 struct thread *td = curthread;
596 vm_object_t object;
597 struct mount *vnmp;
598 int error;
599
600 /* Don’t recycle if we can’t get the interlock */
601 if (!VI_TRYLOCK(vp))
602 return (EWOULDBLOCK);
603 /*
604 * This vnode may found and locked via some other list, if so we
605 * can’t recycle it yet.
606 */
607 if (vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
608 return (EWOULDBLOCK);
609 /*
610 * Don’t recycle if its filesystem is being suspended.
611 */
612 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
613 VOP_UNLOCK(vp, 0, td);
614 return (EBUSY);
615 }

So far, we’ve done a few checks, but in any case where they fail, we return an obvious error num-
ber. Continuing,

616
617 /*
618 * Don’t recycle if we still have cached pages.
619 */
620 if (VOP_GETVOBJECT(vp, &object) == 0) {
621 VM_OBJECT_LOCK(object);
622 if (object->resident_page_count ||
623 object->ref_count) {
624 VM_OBJECT_UNLOCK(object);
625 error = EBUSY;
626 goto done;

This looks alright as well, but we have to assume that the code at done does the right thing.
We’ll check that below.

627 }
628 VM_OBJECT_UNLOCK(object);
629 }
630 if (LIST_FIRST(&vp->v_cache_src)) {
631 /*
632 * note: nameileafonly sysctl is temporary,
633 * for debugging only, and will eventually be
634 * removed.
635 */
636 if (nameileafonly > 0) {
637 /*
638 * Do not reuse namei-cached directory
639 * vnodes that have cached
640 * subdirectories.
641 */
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642 if (cache_leaf_test(vp) < 0) {
643 error = EISDIR;
644 goto done;
645 }
646 } else if (nameileafonly < 0 ||
647 vmiodirenable == 0) {
648 /*
649 * Do not reuse namei-cached directory
650 * vnodes if nameileafonly is -1 or
651 * if VMIO backing for directories is
652 * turned off (otherwise we reuse them
653 * too quickly).
654 */
655 error = EBUSY;
656 goto done;
657 }
658 }
659 /*
660 * If we got this far, we need to acquire the interlock and see if
661 * anyone picked up this vnode from another list. If not, we will
662 * mark it with XLOCK via vgonel() so that anyone who does find it
663 * will skip over it.
664 */
665 VI_LOCK(vp);
666 if (VSHOULDBUSY(vp) && (vp->v_iflag & VI_XLOCK) == 0) {
667 VI_UNLOCK(vp);
668 error = EBUSY;
669 goto done;
670 }

In the code above, we see more cases of setting error and going to done. We still need to
check, but there’s nothing obviously wrong with the code.

671 mtx_lock(&vnode_free_list_mtx);
672 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
673 vp->v_iflag &= ˜VI_FREE;
674 mtx_unlock(&vnode_free_list_mtx);

Here we lock the vnode free list so that it doesn’t change while we manipulate it, then we remove
a vnode from it, then we unlock it.

675 vp->v_iflag |= VI_DOOMED;
676 if (vp->v_type != VBAD) {
677 VOP_UNLOCK(vp, 0, td);
678 vgonel(vp, td);
679 VI_LOCK(vp);
680 } else
681 VOP_UNLOCK(vp, 0, td);

Next we check the vnode and possibly clean it (if the type isn’t set to VBAD). Based on what
we’ve seen in ufs_reclaim, we’d expect to have to clean it.

But one thing looks strange here: if the vnode type is not VBAD, the code cleans it and locks the
vnode pointer. If it is VBAD, howev er, it does not. Could this be the problem? We’ll defer that
question until we have finished reading the code.

682 vn_finished_write(vnmp);
683 return (0);

We obviously get this far. We wouldn’t expect vn_finished_write to change much, but
it’s worth bearing it in mind in case we draw a blank elsewhere.
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684 done:
685 VOP_UNLOCK(vp, 0, td);
686 vn_finished_write(vnmp);
687 return (error);
688 }

Finally, we come to done. As expected, it will always return an error indication. The occur-
rence of vn_finished_write here as well suggests that it’s not going to do very much to
the vnode, because in this case we can’t use it.

So, at this point we have the question of the call to VI_LOCK. What does it do? It’s a maze of
twisty little macros: in file vnode.h we read:

397 #define VI_LOCK(vp) mtx_lock(&(vp)->v_interlock)

So we’re taking a mutex. This code is specific to FreeBSD versions 5 and 6, so it’s new, and
there’s a better than average chance that the problem could be here, rather than with code which
has been with BSD for decades.

mtx_lock is described in mutex(9):

void
mtx_lock(struct mtx *mutex);

...
The mtx_lock() function acquires a MTX_DEF mutual exclusion lock on
behalf of the currently running kernel thread. If another kernel thread
is holding the mutex, the caller will be disconnected from the CPU until
the mutex is available (i.e. it will sleep).

This doesn’t tell us how to decide whether a mutex has been acquired or not when looking at it in
a dump. Before jumping into the mutex implementation, let’s take a look at what we have. From
above (page 70) we see:

v_interlock = {
mtx_object = {

lo_class = 0xc080c83c,
lo_name = 0xc07ba2fb "vnode interlock",
lo_type = 0xc07ba2fb "vnode interlock",
lo_flags = 0x30000,
lo_list = {

tqe_next = 0x0,
tqe_prev = 0x0

},
lo_witness = 0x0

},
mtx_lock = 0xc5333bd0,
mtx_recurse = 0x0

},

This is the field that’s referenced to in VI_LOCK. The obvious field to look at is mtx_lock.
But what is it? If it’s a pointer to the locker, then it’s obviously locked. But in might be a pointer
to a lock structure, in which case we’d need to look at the structure. So we don’t get away with-
out looking in _mutex.h, where we find:

34 /*
35 * Sleep/spin mutex.
36 */
37 struct mtx {
38 struct lock_object mtx_object; /* Common lock properties. */
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39 volatile uintptr_t mtx_lock; /* Owner and flags. */
40 volatile u_int mtx_recurse; /* Number of recursive holds. */
60 };

This doesn’t help very much: the field mtx_lock has deliberately been made non-transparent
(type uintptr_t). About the only thing that it does seem to imply is that the mutex has an
owner if the field is non-zero. So let’s assume that this is correct behaviour. We might find more
information about the information if we knew what mtx_lock is pointing to.

We could continue in this manner for some time, but it’s gradually moving into the “too hard”
department. Are we even on the right track? If so, we can expect to pass via line 681 of
vtryrecycle with vp->v_data not set to 0. We should be able to do that with a condi-
tional breakpoint:

(gdb) l vtryrecycle
589 * Check to see if a free vnode can be recycled. If it can,
590 * recycle it and return it with the vnode interlock held.
... (do this to ensure we’re pointing into the right function)
(gdb) l 681
680 } else
681 VOP_UNLOCK(vp, 0, td);
682 vn_finished_write(vnmp);
(gdb) b 681 if vp->v_data != 0
Breakpoint 3 at 0xc062561c: file /usr/src/sys/kern/vfs_subr.c, line 681.
(gdb) c
Continuing.

There’s a theoretical danger with this, though: what if the optimizer has coalesced the code? In
this case it doesn’t matter much, because we would want to stop in any case if vp->v_data is
not 0. The only issue is that breakpoints slow down execution, especially if they’re not taken and
happen frequently; they can slow down by a couple of orders of magnitude, even if you’re debug-
ging via firewire.

With this breakpoint in place, we try to provoke the problem:

$ find /src -type f > /dev/null

The type f isn’t important because it’s looking for files; it’s important because it makes find
look at the inode. If we didn’t do that, it would just read the directories, and the problem would
probably not occur. During this, we get the following messages:

$ find /src -type f >/dev/null
find: /src/Ports/LEMIS/logwatch/copyright: Bad file descriptor
find: /src/Ports/LEMIS/logwatch/pkginfo: Bad file descriptor
find: /src/Ports/LEMIS/logwatch/preinstall: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/doc: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/coffgrok.c: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/coffgrok.h: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/config.in: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/configure.in: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/configure.tgt: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/debug.c: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/debug.h: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/deflex.l: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/defparse.c: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/defparse.h: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/defparse.y: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/dep-in.sed: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/dlltool.h: Bad file descriptor
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find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/dllwrap.c: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/emul_vanilla.c: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/filemode.c: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/ieee.c: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/is-ranlib.c: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/is-strip.c: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/maybe-ranlib.c: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/maybe-strip.c: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/nm.c: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/not-ranlib.c: Bad file descriptor
find: /src/FreeBSD/BFS/src/contrib/binutils/binutils/not-strip.c: Bad file descriptor
panic: cleaned vnode isn’t
at line 755 in file /usr/src/sys/kern/vfs_subr.c
cpuid = 0;
Debugger("panic")

Looking at the directory /src/FreeBSD/BFS/src/contrib/binutils/binutils/, after rebooting, we see:

$ ls -il /src/FreeBSD/BFS/src/contrib/binutils/binutils
ls: coffgrok.c: Bad file descriptor
(the same messages as above)
total 1517313
3742650 -rw-r--r-- 1 grog lemis 89000 Dec 2 2002 ChangeLog
3742651 -rw-r--r-- 1 grog lemis 192257 Jan 27 2002 ChangeLog-9197
3742652 -rw-r--r-- 1 grog lemis 65072 May 28 2001 ChangeLog-9899
...
3742673 -rw-r--r-- 1 grog 24 46498 Oct 11 2002 coffdump.c
3742697 lr--r-x--T 2 root 340 1093514658 Dec 2 2002 configure -> /ucb/*) ;;?

*)? # OSF1 and SCO ODT 3.0 have their own names for install.? # Don’t use
installbsd from OSF since it installs stuff as root? # by default.? for ac_
prog in ginstall scoinst install; do? if test -f $ac_dir/$ac_prog; then?? if t
est $ac_prog = install &&? grep dspmsg $ac_dir/$ac_prog >/dev/null 2>&1; th
en?? # AIX install. It has an incompatible calling convention.?? :?? else??
ac_cv_path_install="$ac_dir/$ac_prog -c"?? break 2?? fi??fi? done? ;;?
esac? done? IFS="$ac_save_IFS"??fi? if test "${ac_cv_path_install+set}" = set; t

hen? INSTALL="$ac_cv_path_install"? else? # As a last resort, use the slow shel
l script. We don’t cache a? # path for INSTALL within a source directory, because
that will? # break other packages using the cache if that directory is? # remove
d, or if the path is relative.? INSTALL="$ac_install_sh"? fi?fi?echo "$ac_t""$INST
ALL" 1>&6??# Use test -z because SunOS4 sh mishandles braces in ${
3742707 b-wsrws--- 1 root 184 75, 0x01c80018 Oct 11 2002 dlltool.c
3742720 -rw-r--r-- 1 grog lemis 75533 Oct 11 2002 objcopy.c
...

There are a number of things to note here:

• Our assumption that the problem might be related to the locking calls at the end of vtryre-
cycle have proved incorrect. We didn’t hit the breakpoint, so it can’t be that.

• Obviously the directory is badly broken.

• The inode numbers (the first column of the listing) are all closely related. This is relatively
common in directories that are created at once and that subsequently don’t get changed very
much.

• The files that are reported as “Bad file descriptor” (which indicates that the system call re-
turned an EBADF error code) don’t appear in the list. This is a decision of ls rather than of
the kernel.

• This has been happening for some time. Why? At boot time we see the messages:

WARNING: / was not properly dismounted
WARNING: /src was not properly dismounted
WARNING: /blackwater/home was not properly dismounted
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After that, the system continues running without running fsck on the disk. That in itself is
not surprising: FreeBSD version 5 offers background fsck for all file systems except root. On
investigation, though, we discover that it doesn’t run fsck at all. In /etc/fstab we find:

# Device Mountpoint FStype Options Dump Pass#
# echunga:/src /src nfs rw 0 0
/dev/ad1h /src ufs rw 0 0

The problem here was that the file system had been moved to this system “temporarily” dur-
ing a rebuild, so the file system type changed from nfs to ufs. You don’t run fsck on NFS
file system, so the Pass# field is 0; we forgot to change it.

The missing fsck makes it easier to understand the problem; it doesn’t mean we’re done, though.
As stated at the beginning of this text,

Good kernels should not fail. They must protect themselves against a number of external influences, in-
cluding hardware failure, both deliberately and accidentally badly written user programs, and kernel pro-
gramming errors. In some cases, of course, there is no way a kernel can recover, for example if the only
processor fails. On the other hand, a good kernel should be able to protect itself from badly written user
programs.

So what do we do next? We now hav e more information. We can:

1. Continue with our examination of the call sequence to ufs_reclaim and find out what
went wrong.

2. Now that we know that some system call returned EBADF, we can check why that hap-
pened.

3. The vp->v_data field should point to an inode. Now that we have an inode number,
it’s easy to check whether the numbers are in the general area of what we saw in this direc-
tory.

We should do all of these things, but the easiest thing to do is to look at vp->v_data, so we’ll
do that first:

(kgdb) f 9
#9 0xc06259b0 in getnewvnode (tag=0xc07bdc45 "ufs", mp=0xc45bf400, vops=0x0, vpp=0x0)

at /usr/src/sys/kern/vfs_subr.c:785
785 KASSERT(vp->v_dirtyblkroot == NULL, ("dirtyblkroot not NULL"));
(kgdb) p vp->v_data
$1 = (void *) 0xc5989c08
(kgdb) p *(struct inode *)vp->v_data
$2 = {

i_hash = {
le_next = 0x0,
le_prev = 0xc454f050

},
i_nextsnap = {

tqe_next = 0x0,
tqe_prev = 0x0

},
i_vnode = 0xc5c03410,
i_ump = 0xc463d000,
i_flag = 0x20,
i_dev = 0xc45c2800,
i_number = 0x391bf8,
i_effnlink = 0x2,
i_fs = 0xc4603000,
i_dquot = {0x0, 0x0},
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i_modrev = 0xefd6515a6286,
i_lockf = 0x0,
i_count = 0x0,
i_endoff = 0x0,
i_diroff = 0x0,
i_offset = 0x0,
i_ino = 0x0,
i_reclen = 0x0,
i_un = {

dirhash = 0x0,
snapblklist = 0x0

},
i_ea_area = 0x0,
i_ea_len = 0x0,
i_ea_error = 0x0,
i_mode = 0xf502,
i_nlink = 0x2,
i_size = 0x412db5a3,
i_flags = 0x0,
i_gen = 0x68f46009,
i_uid = 0x0,
i_gid = 0x17c,
dinode_u = {

din1 = 0xc4d8bd00,
din2 = 0xc4d8bd00

}
}

Some of these fields (highlighted above) giv e us clues:

• i_vnode is a pointer to the parent vnode. If we’re correct that this is really supposed to be
an inode (and given the content there are good reasons that speak against it), this field will
point to vp. It does:

(kgdb) p vp
$5 = (struct vnode *) 0xc5c03410

• The inode number should be close to the directory we’re looking at. It’s in hex, which
doesn’t make things any easier. Looking at it in decimal (d modifier), we see:

(kgdb) p/d (struct inode *)vp->v_data->i_number
Attempt to dereference a generic pointer.
(kgdb) p/d ((struct inode *)vp->v_data)->i_number
$4 = 3742712

So the number is in the same range, but a quick grep shows that it’s not present in the direc-
tory listing. There’s a very good chance that it’s one of the EBADF directory entries.

The first attempt to list the value failed because gdb tried to take the entire expression
vp->v_data->i_number as an inode pointer; since it’s a scalar, that can’t work. To get
the correct results, we need to tell gdb which part of the expression is the inode pointer by
putting brackets around it.

• The file mode looks funny. Looking at it in octal (which is the way it’s done for this particu-
lar field), we find:

(kgdb) p/o ((struct inode *)vp->v_data)->i_mode
$7 = 0172402

The first four bits of the file mode (0170000) specify the file type. It’s described in
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sys/stat.h:

#define S_IFMT 0170000 /* type of file mask */
#define S_IFIFO 0010000 /* named pipe (fifo) */
#define S_IFCHR 0020000 /* character special */
#define S_IFDIR 0040000 /* directory */
#define S_IFBLK 0060000 /* block special */
#define S_IFREG 0100000 /* regular */
#define S_IFLNK 0120000 /* symbolic link */
#define S_IFSOCK 0140000 /* socket */

In other words, (0170000) is not a valid file type (though it is defined above as a mask, since
all bits are set). This is probably why the system returned EBADF. The permissions part (the
last 16 bits) look very unlikely too.

• i_size is the file size, a little bit over 1 GB. That’s not impossible, but unlikely. In combi-
nation with the other fields, we can assume that this inode is not really an inode at all.

So where do we look next? We can continue looking at our call chain to ufs_reclaim, or we
can go looking for where the EBADF comes from. Let’s do both, in that sequence. Based on not
hitting our breakpoint in vtryrecycle, we know that we called vgonel.

vgonel

Looking at vgonel, we see:

2554 /*
2555 * vgone, with the vp interlock held.
2556 */
2557 void
2558 vgonel(vp, td)
2559 struct vnode *vp;
2560 struct thread *td;
2561 {
2562 /*
2563 * If a vgone (or vclean) is already in progress,
2564 * wait until it is done and return.
2565 */
2566 ASSERT_VI_LOCKED(vp, "vgonel");
2567 if (vp->v_iflag & VI_XLOCK) {
2568 vp->v_iflag |= VI_XWANT;
2569 msleep(vp, VI_MTX(vp), PINOD | PDROP, "vgone", 0);
2570 return;
2571 }
2572 vx_lock(vp);
2573
2574 /*
2575 * Clean out the filesystem specific data.
2576 */
2577 vclean(vp, DOCLOSE, td);

There’s not very much that can go wrong there, unless again we have problems with locking.
That seems unlikely, though.

There’s a lot more code after this call, but we’re unlikely to hit it. It has some interesting com-
ments, however:

2578 VI_UNLOCK(vp);
2579
2580 /*
2581 * If special device, remove it from special device alias list
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2582 * if it is on one.
2583 */
2584 VI_LOCK(vp);
2585 if (vp->v_type == VCHR && vp->v_rdev != NODEV) {
2586 mtx_lock(&spechash_mtx);
2587 SLIST_REMOVE(&vp->v_rdev->si_hlist, vp, vnode, v_specnext);
2588 vp->v_rdev->si_usecount -= vp->v_usecount;
2589 mtx_unlock(&spechash_mtx);
2590 dev_rel(vp->v_rdev);
2591 vp->v_rdev = NULL;
2592 }
2593
2594 /*
2595 * If it is on the freelist and not already at the head,
2596 * move it to the head of the list. The test of the
2597 * VDOOMED flag and the reference count of zero is because
2598 * it will be removed from the free list by getnewvnode,
2599 * but will not have its reference count incremented until
2600 * after calling vgone. If the reference count were
2601 * incremented first, vgone would (incorrectly) try to
2602 * close the previous instance of the underlying object.
2603 */
2604 if (vp->v_usecount == 0 && !(vp->v_iflag & VI_DOOMED)) {
2605 mtx_lock(&vnode_free_list_mtx);
2606 if (vp->v_iflag & VI_FREE) {
2607 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2608 } else {
2609 vp->v_iflag |= VI_FREE;
2610 freevnodes++;
2611 }
2612 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2613 mtx_unlock(&vnode_free_list_mtx);
2614 }
2615
2616 vp->v_type = VBAD;
2617 vx_unlock(vp);
2618 VI_UNLOCK(vp);
2619 }

vclean

The name vclean suggests that we should find something relating to our problem in this func-
tion. It’s quite long, from line 2314 to line 2430. Where’s the call to ufs_reclaim? It
doesn’t show up in the code. Looking at the backtrace, we find:

#1 0xc0704ae7 in ufs_vnoperate (ap=0x4) at /usr/src/sys/ufs/ufs/ufs_vnops.c:2819
#2 0xc062855f in vclean (vp=0xc4d4b000, flags=0x8, td=0xc688a540) at vnode_if.h:981

Huh? The second frame should be in vclean, and that’s what gdb claims, but the file name
and the line number are all wrong. Looking at line 981 of vnode_if.h (in the kernel build tree),
we find:

970 static __inline int VOP_RECLAIM(
971 struct vnode *vp,
972 struct thread *td)
973 {
974 struct vop_reclaim_args a;
975 int rc;
976 a.a_desc = VDESC(vop_reclaim);
977 a.a_vp = vp;
978 a.a_td = td;
979 ASSERT_VI_UNLOCKED(vp, "VOP_RECLAIM");
980 ASSERT_VOP_UNLOCKED(vp, "VOP_RECLAIM");
981 rc = VCALL(vp, VOFFSET(vop_reclaim), &a);
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982 CTR2(KTR_VOP, "VOP_RECLAIM(vp 0x%lX, td 0x%lX)", vp, td);
983 if (rc == 0) {
984 ASSERT_VI_UNLOCKED(vp, "VOP_RECLAIM");
985 ASSERT_VOP_UNLOCKED(vp, "VOP_RECLAIM");
986 } else {
987 ASSERT_VI_UNLOCKED(vp, "VOP_RECLAIM");
988 ASSERT_VOP_UNLOCKED(vp, "VOP_RECLAIM");
989 }
990 return (rc);
991 }

Yes, the indentation is like that. These are automatically generated inline functions. So what we
should be looking for is an invocation of the macro VOP_RECLAIM. The VCALL macro calls
the correct clean function for the file system in question.

2314 /*
2315 * Disassociate the underlying filesystem from a vnode.
2316 */
2317 static void
2318 vclean(vp, flags, td)
2319 struct vnode *vp;
2320 int flags;
2321 struct thread *td;
2322 {
2323 int active;
2324
2325 ASSERT_VI_LOCKED(vp, "vclean");
2326 /*
2327 * Check to see if the vnode is in use. If so we have to reference it
2328 * before we clean it out so that its count cannot fall to zero and
2329 * generate a race against ourselves to recycle it.
2330 */
2331 if ((active = vp->v_usecount))
2332 v_incr_usecount(vp, 1);

Here’s a situation that we hadn’t expected: it’s obviously valid to call this function with an active
vnode. This may be of relevance. It’s tempting to look at the value of vp->v_usecount
here, but that doesn’t help much; first we need to see if it gets changed.

2334 /*
2335 * Even if the count is zero, the VOP_INACTIVE routine may still
2336 * have the object locked while it cleans it out. The VOP_LOCK
2337 * ensures that the VOP_INACTIVE routine is done with its work.
2338 * For active vnodes, it ensures that no other activity can
2339 * occur while the underlying object is being cleaned out.
2340 */
2341 VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2342
2343 /*
2344 * Clean out any buffers associated with the vnode.
2345 * If the flush fails, just toss the buffers.
2346 */
2347 if (flags & DOCLOSE) {

vgonel calls vclean with DCLOSE set, so we execute the following code, which invalidates
the buffers associated with the vnode. We’re not too interested in this at the moment; vinval-
buf can either return an errors or panic if it fails. We didn’t hav e a panic here, and the return
value isn’t checked the second time round, so we obviously got past this point. It would, howev-
er, make an interesting area to look at in more detail.

2348 struct buf *bp;
2349 bp = TAILQ_FIRST(&vp->v_dirtyblkhd);



Debugging Kernel Problems 107

2350 if (bp != NULL)
2351 (void) vn_write_suspend_wait(vp, NULL, V_WAIT);
2352 if (vinvalbuf(vp, V_SAVE, NOCRED, td, 0, 0) != 0)
2353 vinvalbuf(vp, 0, NOCRED, td, 0, 0);
2354 }
2355
2356 VOP_DESTROYVOBJECT(vp);
2357
2358 /*
2359 * Any other processes trying to obtain this lock must first
2360 * wait for VXLOCK to clear, then call the new lock operation.
2361 */
2362 VOP_UNLOCK(vp, 0, td);
2363
2364 /*
2365 * If purging an active vnode, it must be closed and
2366 * deactivated before being reclaimed. Note that the
2367 * VOP_INACTIVE will unlock the vnode.
2368 */
2369 if (active) {
2370 if (flags & DOCLOSE)
2371 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2372 VI_LOCK(vp);
2373 if ((vp->v_iflag & VI_DOINGINACT) == 0) {
2374 vp->v_iflag |= VI_DOINGINACT;
2375 VI_UNLOCK(vp);
2376 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
2377 panic("vclean: cannot relock.");
2378 VOP_INACTIVE(vp, td);
2379 VI_LOCK(vp);
2380 KASSERT(vp->v_iflag & VI_DOINGINACT,
2381 ("vclean: lost VI_DOINGINACT"));
2382 vp->v_iflag &= ˜VI_DOINGINACT;
2383 }
2384 VI_UNLOCK(vp);
2385 }

The code above may or may not have been called; there’s no way to know. At the time we panic,
we have:

(kgdb) p vp->v_iflag
$11 = 0x80

In vnode.h, we see:

220 #define VI_DOOMED 0x0080 /* This vnode is being recycled */

So again, it looks as if this condition either didn’t apply, or that the purge was successful.

2386 /*
2387 * Reclaim the vnode.
2388 */
2389 if (VOP_RECLAIM(vp, td))
2390 panic("vclean: cannot reclaim");

This is the macro that calls ufs_vnoperate. To be sure, we check the addresses:

(kgdb) info line 2389
Line 2389 of "/usr/src/sys/kern/vfs_subr.c" is at address 0xc0628566 <vclean+510> but
contains no code.

That doesn’t help. There should be code there, but the address given suggests that the code we’re
looking for is earlier in the file. Going back to the next line with code in it, 2384, we find:
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(kgdb) info line 2384
Line 2384 of "/usr/src/sys/kern/vfs_subr.c" starts at address 0xc062852b <vclean+451>

and ends at 0xc0628540 <vclean+472>.

That doesn’t make sense; it’s probably part of the general problem of the inline functions. In any
case, we’re obviously in the right place, more or less.

Again, there’s nothing in this function that would explain why we wouldn’t get this far. We’ll
keep the rest of the function for future reference and move on to ufs_vnoperate:

2391
2392 if (active) {
2393 /*
2394 * Inline copy of vrele() since VOP_INACTIVE
2395 * has already been called.
2396 */
2397 VI_LOCK(vp);
2398 v_incr_usecount(vp, -1);
2399 if (vp->v_usecount <= 0) {
2400 #ifdef INVARIANTS
2401 if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2402 vprint("vclean: bad ref count", vp);
2403 panic("vclean: ref cnt");
2404 }
2405 #endif
2406 if (VSHOULDFREE(vp))
2407 vfree(vp);
2408 }
2409 VI_UNLOCK(vp);
2410 }
2411 /*
2412 * Delete from old mount point vnode list.
2413 */
2414 if (vp->v_mount != NULL)
2415 insmntque(vp, (struct mount *)0);
2416 cache_purge(vp);
2417 VI_LOCK(vp);
2418 if (VSHOULDFREE(vp))
2419 vfree(vp);
2420
2421 /*
2422 * Done with purge, reset to the standard lock and
2423 * notify sleepers of the grim news.
2424 */
2425 vp->v_vnlock = &vp->v_lock;
2426 vp->v_op = dead_vnodeop_p;
2427 if (vp->v_pollinfo != NULL)
2428 vn_pollgone(vp);
2429 vp->v_tag = "none";
2430 }

ufs_vnoperate

ufs_vnoperate is mercifully short:

2813 int
2814 ufs_vnoperate(ap)
2815 struct vop_generic_args /* {
2816 struct vnodeop_desc *a_desc;
2817 } */ *ap;
2818 {
2819 return (VOCALL(ufs_vnodeop_p, ap->a_desc->vdesc_offset, ap));
2820 }

From the stack trace, we know where we’re going next:
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ufs_reclaim

2813 int
139 ufs_reclaim(ap)
140 struct vop_reclaim_args /* {
141 struct vnode *a_vp;
142 struct thread *a_td;
143 } */ *ap;
144 {
145 struct vnode *vp = ap->a_vp;
146 struct inode *ip = VTOI(vp);
147 struct ufsmount *ump = ip->i_ump;
151
152 VI_LOCK(vp);
153 if (prtactive && vp->v_usecount != 0)
154 vprint("ufs_reclaim: pushing active", vp);
155 VI_UNLOCK(vp);
156 if (ip->i_flag & IN_LAZYMOD) {
157 ip->i_flag |= IN_MODIFIED;
158 UFS_UPDATE(vp, 0);
159 }
160 /*
161 * Remove the inode from its hash chain.
162 */
163 ufs_ihashrem(ip);
164 /*
165 * Purge old data structures associated with the inode.
166 */
167 vrele(ip->i_devvp);
180 UFS_IFREE(ump, ip);
181 vp->v_data = 0;
182 return (0);
183 }

This listing omits some #ifdef ed code, thus the jumps in the line numbers.

This is fairly simple code. How can we avoid setting vp->v_data here? Maybe it’s a race
condition after all. On the other hand, it’s possible that we’ve missed something. Let’s go back
and look at what happens when we return EBADF. Something in the vnode must be different, or
we’d handle it the same when picking it off the free list.

The obvious place to look at would be in vfree, which we’ve already seen. Now that we know
which files are triggering the problem, we can be much more selective. First we set a breakpoint
on vfree, then we trigger it by looking at a couple of files. First, we find a good file in the list
on page 95. We’ll choose this one:

3742650 -rw-r--r-- 1 grog lemis 89000 Dec 2 2002 ChangeLog

We set a breakpoint to catch exactly this inode:

(gdb) b vfree if ((struct inode *) vp->v_data)->i_number == 3742650
Breakpoint 1 at 0xc06293af: file /usr/src/sys/kern/vfs_subr.c, line 3105.
(gdb) c
# ls -l ls -li /src/FreeBSD/BFS/src/contrib/binutils/binutils/size.c
Breakpoint 1, vfree (vp=0xc49ebc30) at /usr/src/sys/kern/vfs_subr.c:3105
3105 mtx_lock(&vnode_free_list_mtx);
(gdb) p *vp
$1 = {

v_interlock = {
mtx_object = {

lo_class = 0xc080c83c,
...
(gdb) p *((struct inode *) vp->v_data)
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$2 = {
i_hash = {

...
(gdb) c
Continuing.

Breakpoint 1, vfree (vp=0xc49ebc30) at /usr/src/sys/kern/vfs_subr.c:3105
3105 mtx_lock(&vnode_free_list_mtx);
(gdb) p *vp
$3 = {

v_interlock = {
mtx_object = {

lo_class = 0xc080c83c,
...
(gdb) p *((struct inode *) vp->v_data)
$4 = {

i_hash = {
...
(gdb) c
Continuing.
(gdb) c
Continuing.
3742736 -rw-r--r-- 1 grog lemis 14176 Oct 11 2002 /src/FreeBSD/BFS/src/contrib/bin
utils/binutils/size.c

Rather to our surprise, we hit the breakpoint twice. The commands we input give a lot of output,
more than our tired eyes can handle. We sav e it in a file, goodvnode, for later comparison.

Next, we do the same with the vnode that we found in the previous section, number 3742712,
and do almost the same thing. We don’t know the name of this file, since ls didn’t tell us, but we
can confirm that it’s in this directory by listing it:

(gdb) b vfree if ((struct inode *) vp->v_data)->i_number == 3742712
Note: breakpoint 1 also set at pc 0xc06293af.
Breakpoint 2 at 0xc06293af: file /usr/src/sys/kern/vfs_subr.c, line 3105.

This was really a mistake. It would have been easier to change the condition of breakpoint 1
rather than creating a new one. Breakpoints take time even if the condition doesn’t apply, and
two take twice as long as one. As a result, it takes several seconds before we hit our breakpoint:

(gdb) c
Continuing.

Breakpoint 2, vfree (vp=0xc49ee104) at /usr/src/sys/kern/vfs_subr.c:3105
3105 mtx_lock(&vnode_free_list_mtx);
(gdb) p *vp
$5 = {

v_interlock = {
mtx_object = {

lo_class = 0xc080c83c,
...
(gdb) p *((struct inode *) vp->v_data)
$6 = {

i_hash = {
le_next = 0x0,

...

Again we save the output (this time only one set) in a file, this time called badvnode. When we
have both, we run diff against them:

--- goodvnode Fri Oct 1 17:26:28 2004
+++ badvnode Fri Oct 1 17:17:24 2004
@@ -1,158 +1,13 @@
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-Breakpoint 1, vfree (vp=0xc49ebc30) at /usr/src/sys/kern/vfs_subr.c:3105
-3105 mtx_lock(&vnode_free_list_mtx);
-(gdb) p *vp
-$1 = {
- v_interlock = {
...

For some reason, diff has decided that the second set of outputs for the “good” vnode compares
better with the output for the “bad” vnode; this may mean that they’re different, or it may just be
the way diff handles this occurrence.

-Breakpoint 1, vfree (vp=0xc49ebc30) at /usr/src/sys/kern/vfs_subr.c:3105
+Breakpoint 2, vfree (vp=0xc49ee104) at /usr/src/sys/kern/vfs_subr.c:3105
3105 mtx_lock(&vnode_free_list_mtx);
(gdb) p *vp

-$3 = {
+$5 = {

v_interlock = {
mtx_object = {

lo_class = 0xc080c83c,
@@ -165,7 +20,7 @@

},
lo_witness = 0x0

},
- mtx_lock = 0xc47b7150,
+ mtx_lock = 0xc46fbd20,

mtx_recurse = 0x0
},
v_iflag = 0x0,

@@ -175,13 +30,13 @@
v_holdcnt = 0x0,
v_cleanblkhd = {

tqh_first = 0x0,
- tqh_last = 0xc49ebc68
+ tqh_last = 0xc49ee13c

},
v_cleanblkroot = 0x0,
v_cleanbufcnt = 0x0,
v_dirtyblkhd = {

tqh_first = 0x0,
- tqh_last = 0xc49ebc78
+ tqh_last = 0xc49ee14c

},
v_dirtyblkroot = 0x0,
v_dirtybufcnt = 0x0,

@@ -205,21 +60,21 @@
},
v_freelist = {

tqe_next = 0x0,
- tqe_prev = 0xc49c2290
+ tqe_prev = 0x0

},
v_nmntvnodes = {

tqe_next = 0x0,
- tqe_prev = 0xc49e78b0
+ tqe_prev = 0xc49ee6a8

},
v_synclist = {

le_next = 0x0,
le_prev = 0x0

},

Everything we’ve seen so far is more coincidental. They’re linkage and lock addresses. This
would happen with two different good vnodes as well, so we can ignore them. Next, however, is
something more important:
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- v_type = VREG,
+ v_type = VBAD,

The bad vnode already has its type field set to VBAD. We know these values: we’ve code which
is conditional on the type field being VBAD. This is definitely interesting.

The differences in the remainder of the vnode are also different pointers. Nothing stands out.
We’v e already looked at the inode structure for the bad inode; the diffs show nothing further
apart from the expected differences in pointers and other fields.

So it looks as if the problem is related to the end of vtryrecycle after all. But we set a
breakpoint there on the else clause of the condition. If our current assumptions are correct, we
should have it it. Why didn’t we? Let’s take another look:

(gdb) i li 681
Line 681 of "/usr/src/sys/kern/vfs_subr.c" is at address 0xc062561c <vtryrecycle+672>
but contains no code.

OK, that’s a giv eaw ay: the optimizer has tricked us again. Where are we?

(gdb) i li 682
Line 682 of "/usr/src/sys/kern/vfs_subr.c" starts at address 0xc062561c <vtryrecycle+672>

and ends at 0xc0625624 <vtryrecycle+680>.
(gdb) i li 676
Line 676 of "/usr/src/sys/kern/vfs_subr.c" starts at address 0xc062559d <vtryrecycle+545>

and ends at 0xc06255a9 <vtryrecycle+557>.
(gdb) x/50i 0xc062559d
0xc062559d <vtryrecycle+545>: add $0x10,%esp
0xc06255a0 <vtryrecycle+548>: cmpl $0x8,0xa0(%ebx)
0xc06255a7 <vtryrecycle+555>: je 0xc06255f0 <vtryrecycle+628>
0xc06255a9 <vtryrecycle+557>: movl $0xc0852220,0xffffffe4(%ebp)
0xc06255b0 <vtryrecycle+564>: mov %ebx,0xffffffe8(%ebp)
0xc06255b3 <vtryrecycle+567>: movl $0x0,0xffffffec(%ebp)
0xc06255ba <vtryrecycle+574>: mov %esi,0xfffffff0(%ebp)
0xc06255bd <vtryrecycle+577>: mov 0xd4(%ebx),%eax
0xc06255c3 <vtryrecycle+583>: lea 0xffffffe4(%ebp),%edx
0xc06255c6 <vtryrecycle+586>: push %edx
0xc06255c7 <vtryrecycle+587>: mov 0xc0852220,%edx
0xc06255cd <vtryrecycle+593>: call *(%eax,%edx,4)
0xc06255d0 <vtryrecycle+596>: mov %esi,(%esp,1)
0xc06255d3 <vtryrecycle+599>: push %ebx
0xc06255d4 <vtryrecycle+600>: call 0xc0628950 <vgonel>
0xc06255d9 <vtryrecycle+605>: push $0x2a7
0xc06255de <vtryrecycle+610>: push $0xc07ba1fb
0xc06255e3 <vtryrecycle+615>: push $0x0
0xc06255e5 <vtryrecycle+617>: push %ebx
0xc06255e6 <vtryrecycle+618>: call 0xc05d5ef0 <_mtx_lock_flags>
0xc06255eb <vtryrecycle+623>: add $0x18,%esp
0xc06255ee <vtryrecycle+626>: jmp 0xc062561c <vtryrecycle+672>
0xc06255f0 <vtryrecycle+628>: movl $0xc0852220,0xffffffe4(%ebp)
0xc06255f7 <vtryrecycle+635>: mov %ebx,0xffffffe8(%ebp)
0xc06255fa <vtryrecycle+638>: movl $0x0,0xffffffec(%ebp)
0xc0625601 <vtryrecycle+645>: mov %esi,0xfffffff0(%ebp)
0xc0625604 <vtryrecycle+648>: mov 0xd4(%ebx),%eax
0xc062560a <vtryrecycle+654>: lea 0xffffffe4(%ebp),%edx
0xc062560d <vtryrecycle+657>: push %edx
0xc062560e <vtryrecycle+658>: mov 0xc0852220,%edx
0xc0625614 <vtryrecycle+664>: call *(%eax,%edx,4)
0xc0625617 <vtryrecycle+667>: add $0x4,%esp
0xc062561a <vtryrecycle+670>: mov %esi,%esi
0xc062561c <vtryrecycle+672>: pushl 0xffffffe0(%ebp)
0xc062561f <vtryrecycle+675>: call 0xc0631e48 <vn_finished_write>
0xc0625624 <vtryrecycle+680>: mov $0x0,%edx
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We should recognize the last three lines: they’re clearly a call to the function vn_fin-
ished_write with a single parameter copied from something on the stack. That closely
matches line 682, so indeed it’s correct. But this code is executed every call, so it’s fairly clear
that we didn’t get a breakpoint on it. Why not?

It might be worth going back and finding out, but I’m not going to do so here. It’s an indication
of the general flakiness of kernel debugging. We can be pretty sure that something went wrong,
and while it’s annoying, it gav e us a chance to investigate more of the code. We can be pretty
sure now that the immediate cause of the panic is that the vnode in question had its type field set
to VBAD, but vp->v_data was not zero. This code assumes that it is and doesn’t try to clean
it.

Are we done? Not by a long way. Not only have we not fixed the bug, we still don’t even under-
stand how this is happening. Let’s go back and look again at the code which frees the vnode:

Freeing the vnode
We saw on page 88 that vnodes get freed by the function vfree. If we’re correct, we should
see something returning a vnode of type VBAD. Let’s go looking for it:

(gdb) l vfree
3097 * Mark a vnode as free, putting it up for recycling.
3098 */
3099 void
3100 vfree(vp)
3101 struct vnode *vp;
3102 {
3103
3104 ASSERT_VI_LOCKED(vp, "vfree");
3105 mtx_lock(&vnode_free_list_mtx);
3106 KASSERT((vp->v_iflag & VI_FREE) == 0, ("vnode already free"));
(gdb) b 3104
Breakpoint 1 at 0xc06293af: file /usr/src/sys/kern/vfs_subr.c, line 3104.
(gdb) c
Continuing.

Breakpoint 1, vfree (vp=0xc4ea3514) at /usr/src/sys/kern/vfs_subr.c:3105
3105 mtx_lock(&vnode_free_list_mtx);
(gdb) p vp->v_type
$1 = VCHR

That’s what we’d normally expect; the vast majority of vnodes will have a different type field.
Let’s refine our search by setting a condition on the breakpoint:

(gdb) cond 1 vp->v_type == VBAD
(gdb) c
Continuing.
(on a different terminal)
# ls -l /src/FreeBSD/BFS/src/contrib/binutils/binutils
(back to the debug terminal)
Breakpoint 1, vfree (vp=0xc4e9f30c) at /usr/src/sys/kern/vfs_subr.c:3105
3105 mtx_lock(&vnode_free_list_mtx);
(gdb) p vp->v_type
$2 = VBAD
(gdb) bt
#0 vfree (vp=0xc4e9f30c) at /usr/src/sys/kern/vfs_subr.c:3105
#1 0xc0627d66 in vput (vp=0xc4e9f30c) at /usr/src/sys/kern/vfs_subr.c:2055
#2 0xc062cc74 in stat (td=0xc47bca80, uap=0xe1186d14) at /usr/src/sys/kern/vfs_syscal
ls.c:2032
#3 0xc074ce57 in syscall (frame=

{tf_fs = 0x2f, tf_es = 0x2f, tf_ds = 0x2f, tf_edi = 0x8054e00, tf_esi = 0x8054e4
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8, tf_ebp = 0xbfbfdcb8, tf_isp = 0xe1186d74, tf_ebx = 0x2817f78c, tf_edx = 0x7, tf_ecx
= 0x0, tf_eax = 0xbc, tf_trapno = 0xc, tf_err = 0x2, tf_eip = 0x2810e2e7, tf_cs = 0x1
f, tf_eflags = 0x296, tf_esp = 0xbfbfdc1c, tf_ss = 0x2f}) at /usr/src/sys/i386/i386/tr
ap.c:1004

So in this case it’s a stat system call. Going back down the stack, we see:

2014 /*
2015 * Release an already locked vnode. This give the same effects as
2016 * unlock+vrele(), but takes less time and avoids releasing and
2017 * re-aquiring the lock (as vrele() aquires the lock internally.)
2018 */
2019 void
2020 vput(vp)
2021 struct vnode *vp;
2022 {
2023 struct thread *td = curthread; /* XXX */
2024
2025 GIANT_REQUIRED;
2026
2027 KASSERT(vp != NULL, ("vput: null vp"));
2028 VI_LOCK(vp);
2029 /* Skip this v_writecount check if we’re going to panic below. */
2030 KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
2031 ("vput: missed vn_close"));
2032
2033 if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2034 vp->v_usecount == 1)) {
2035 v_incr_usecount(vp, -1);
2036 VOP_UNLOCK(vp, LK_INTERLOCK, td);
2037 return;
2038 }
2039
2040 if (vp->v_usecount == 1) {
2041 v_incr_usecount(vp, -1);
2042 /*
2043 * We must call VOP_INACTIVE with the node locked, so
2044 * we just need to release the vnode mutex. Mark as
2045 * as VI_DOINGINACT to avoid recursion.
2046 */
2047 vp->v_iflag |= VI_DOINGINACT;
2048 VI_UNLOCK(vp);
2049 VOP_INACTIVE(vp, td);
2050 VI_LOCK(vp);
2051 KASSERT(vp->v_iflag & VI_DOINGINACT,
2052 ("vput: lost VI_DOINGINACT"));
2053 vp->v_iflag &= ˜VI_DOINGINACT;
2054 if (VSHOULDFREE(vp))
2055 vfree(vp);
2056 else
2057 vlruvp(vp);
2058 VI_UNLOCK(vp);
(etc)

There’s nothing there that looks very much like setting the vnode type. It’s reasonable to assume
that it was already set when the function was called. Let’s look further back, to stat:

2009 int
2010 stat(td, uap)
2011 struct thread *td;
2012 register struct stat_args /* {
2013 char *path;
2014 struct stat *ub;
2015 } */ *uap;
2016 {
2017 struct stat sb;
2018 int error;
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2019 struct nameidata nd;
2020
2025 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | NOOBJ, UIO_USERSPACE,
2026 uap->path, td);
2028 if ((error = namei(&nd)) != 0)
2029 return (error);
2030 error = vn_stat(nd.ni_vp, &sb, td->td_ucred, NOCRED, td);
2031 NDFREE(&nd, NDF_ONLY_PNBUF);
2032 vput(nd.ni_vp);
2033 if (error)
2034 return (error);
2035 error = copyout(&sb, uap->ub, sizeof (sb));
2036 return (error);
2037 }

There are a couple of possibilities here. It could be namei that sets the type to VBAD, or it
could be vn_stat. In all probability it’s vn_stat. Looking there, we see:

628 /*
629 * Stat a vnode; implementation for the stat syscall
630 */
631 int
632 vn_stat(vp, sb, active_cred, file_cred, td)
633 struct vnode *vp;
634 register struct stat *sb;
635 struct ucred *active_cred;
636 struct ucred *file_cred;
637 struct thread *td;
638 {
639 struct vattr vattr;
640 register struct vattr *vap;
641 int error;
642 u_short mode;
643
644 #ifdef MAC
645 error = mac_check_vnode_stat(active_cred, file_cred, vp);
646 if (error)
647 return (error);
648 #endif
649
650 vap = &vattr;
651 error = VOP_GETATTR(vp, vap, active_cred, td);
652 if (error)
653 return (error);
654
655 vp->v_cachedfs = vap->va_fsid;
656 vp->v_cachedid = vap->va_fileid;
657
658 /*
659 * Zero the spare stat fields
660 */
661 bzero(sb, sizeof *sb);
662
663 /*
664 * Copy from vattr table
665 */
666 if (vap->va_fsid != VNOVAL)
667 sb->st_dev = vap->va_fsid;
668 else
669 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
670 sb->st_ino = vap->va_fileid;
671 mode = vap->va_mode;
672 switch (vap->va_type) {
673 case VREG:
674 mode |= S_IFREG;
675 break;
676 case VDIR:
677 mode |= S_IFDIR;
678 break;
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679 case VBLK:
680 mode |= S_IFBLK;
681 break;
682 case VCHR:
683 mode |= S_IFCHR;
684 break;
685 case VLNK:
686 mode |= S_IFLNK;
687 /* This is a cosmetic change, symlinks do not have a mode. */
688 if (vp->v_mount->mnt_flag & MNT_NOSYMFOLLOW)
689 sb->st_mode &= ˜ACCESSPERMS; /* 0000 */
690 else
691 sb->st_mode |= ACCESSPERMS; /* 0777 */
692 break;
693 case VSOCK:
694 mode |= S_IFSOCK;
695 break;
696 case VFIFO:
697 mode |= S_IFIFO;
698 break;
699 default:
700 return (EBADF);
701 };

In other words, vn_stat returns EBADF if it doesn’t recognize the type of the inode. This is
the same field that we looked at on page 98, and as we saw there, it’s inv alid. So that explains
the EBADF.

Are we done? Not yet. We now understand how the EBADF is occurring, but what about the
VBAD? Let’s take a look:

(gdb) b 700
Breakpoint 2 at 0xc0631810: file /usr/src/sys/kern/vfs_vnops.c, line 700.
(gdb) c
Continuing.

Breakpoint 2, vn_stat (vp=0xc5692a28, sb=0xdff60c80, active_cred=0x0, file_cred=0x0, t
d=0xc456da80)

at /usr/src/sys/kern/vfs_vnops.c:700
700 return (EBADF);
(gdb) p vp->v_type
$3 = VNON
(gdb) bt
#0 vn_stat (vp=0xc5692a28, sb=0xdff60c80, active_cred=0x0, file_cred=0x0, td=0xc456da
80)

at /usr/src/sys/kern/vfs_vnops.c:700
#1 0xc062cc59 in stat (td=0xc456da80, uap=0xdff60d14) at /usr/src/sys/kern/vfs_syscal
ls.c:2030
#2 0xc074ce57 in syscall (frame=

{tf_fs = 0x2f, tf_es = 0x2f, tf_ds = 0x2f, tf_edi = 0x8053b00, tf_esi = 0x8053b4
8, tf_ebp = 0xbfbfdcb8, tf_isp = 0xdff60d74, tf_ebx = 0x2817f78c, tf_edx = 0x4, tf_ecx
= 0x0, tf_eax = 0xbc, tf_trapno = 0xc, tf_err = 0x2, tf_eip = 0x2810e2e7, tf_cs = 0x1
f, tf_eflags = 0x296, tf_esp = 0xbfbfdc1c, tf_ss = 0x2f}) at /usr/src/sys/i386/i386/tr
ap.c:1004
#3 0xc073b81f in Xint0x80_syscall () at {standard input}:136
OK, this is the right one
(gdb) fini
Run till exit from #0 vn_stat (vp=0xc5692a28, sb=0xdff60c80, active_cred=0x0, file_cr
ed=0x0, td=0xc456da80)

at /usr/src/sys/kern/vfs_vnops.c:700
0xc062cc59 in stat (td=0xc456da80, uap=0xdff60d14) at /usr/src/sys/kern/vfs_syscalls.c
:2030
2030 error = vn_stat(nd.ni_vp, &sb, td->td_ucred, NOCRED, td);
Value returned is $4 = 0x9
(gdb) p error
$5 = 0x9
(gdb) p nd.ni_vp.v_type
$6 = VNON
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So, although the vnode has been established to be in error, it’s still of indeterminate type (VNON).
How does it get VBAD?

(gdb) s
2032 vput(nd.ni_vp);
(gdb) p nd.ni_vp.v_type
$7 = VNON
(gdb)
vput (vp=0xc5692a28) at machine/pcpu.h:156
156 {
(gdb) p vp->v_type
$8 = VNON
(gdb) n
(several more steps, showing nothing remarkable)
961 }
(gdb) p vp->v_type
$9 = VNON
(gdb) disp vp->v_type display it on each stop
1: vp->v_type = VNON
(gdb) n
2047 vp->v_iflag |= VI_DOINGINACT;
1: vp->v_type = VNON
(gdb)
2048 VI_UNLOCK(vp);
1: vp->v_type = VNON
(gdb)
945 {
1: vp->v_type = VNON
(gdb)
948 a.a_desc = VDESC(vop_inactive);
1: vp->v_type = VNON
(gdb)
949 a.a_vp = vp;
1: vp->v_type = VNON
(gdb)
950 a.a_td = td;
1: vp->v_type = VNON
(gdb) n
953 rc = VCALL(vp, VOFFSET(vop_inactive), &a);
1: vp->v_type = VNON
(gdb)
2050 VI_LOCK(vp);
1: vp->v_type = VBAD
(gdb) bt
#0 vput (vp=0xc5692a28) at /usr/src/sys/kern/vfs_subr.c:2050
#1 0xc062cc74 in stat (td=0xc456da80, uap=0xdff60d14) at /usr/src/sys/kern/vfs_syscal
ls.c:2032
#2 0xc074ce57 in syscall (frame=

{tf_fs = 0x2f, tf_es = 0x2f, tf_ds = 0x2f, tf_edi = 0x8053b00, tf_esi = 0x8053b4
8, tf_ebp = 0xbfbfdcb8, tf_isp = 0xdff60d74, tf_ebx = 0x2817f78c, tf_edx = 0x4, tf_ecx
= 0x0, tf_eax = 0xbc, tf_trapno = 0xc, tf_err = 0x2, tf_eip = 0x2810e2e7, tf_cs = 0x1
f, tf_eflags = 0x296, tf_esp = 0xbfbfdc1c, tf_ss = 0x2f}) at /usr/src/sys/i386/i386/tr
ap.c:1004

Where are we now? When we stopped, we were at line 2050 of vfs_subr.c, but the code before
doesn’t match:

2048 VI_UNLOCK(vp);
2049 VOP_INACTIVE(vp, td);
2050 VI_LOCK(vp);

Once again it’s in a  generated header file; clearly it’s the function called by VOP_INACTIVE
that’s setting VBAD. Let’s take a look at that in more detail. The breakpoint in vn_stat is
handy because it won’t trigger unless we have a bad vnode. We trigger it again and proceed as
fast as we can to the correct place:
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Breakpoint 2, vn_stat (vp=0xc4e25514, sb=0xe1174c80, active_cred=0x0, file_cred=0x0, t
d=0xc47bc2a0)

at /usr/src/sys/kern/vfs_vnops.c:700
700 return (EBADF);
(gdb) fini
Run till exit from #0 vn_stat (vp=0xc4e25514, sb=0xe1174c80, active_cred=0x0, file_cr
ed=0x0, td=0xc47bc2a0)

at /usr/src/sys/kern/vfs_vnops.c:700
0xc062cc59 in stat (td=0xc47bc2a0, uap=0xe1174d14) at /usr/src/sys/kern/vfs_syscalls.c
:2030
2030 error = vn_stat(nd.ni_vp, &sb, td->td_ucred, NOCRED, td);
Value returned is $10 = 0x9
(gdb) b vput
Breakpoint 3 at 0xc0627bf7: file machine/pcpu.h, line 156.
(gdb) c
Continuing.

Breakpoint 3, vput (vp=0xc4e25514) at machine/pcpu.h:156
156 {
1: vp->v_type = VNON
(gdb) b 2049
No line 2049 in file "machine/pcpu.h".
(gdb) l
151 #define PCPU_PTR(member) __PCPU_PTR(pc_ ## member)
152 #define PCPU_SET(member, val) __PCPU_SET(pc_ ## member, val)
153
154 static __inline struct thread *
155 __curthread(void)
156 {
157 struct thread *td;
158
159 __asm __volatile("movl %%fs:0,%0" : "=r" (td));
160 return (td);

The problem here is that we’re in yet another inline function, so the line numbers are wrong.
Moving to the next instruction should solve the problem:

(gdb) n
2025 GIANT_REQUIRED;
1: vp->v_type = VNON
(gdb) b 2049
Breakpoint 4 at 0xc0627d02: file /usr/src/sys/kern/vfs_subr.c, line 2049.
(gdb) c
Continuing.

Breakpoint 4, vput (vp=0xc4e25514) at /usr/src/sys/kern/vfs_subr.c:2050
2050 VI_LOCK(vp);
1: vp->v_type = VBAD

Here, although we set a breakpoint on the correct line, we didn’t hit it, because we were on yet
another inline function. We’ll hav e to try again:

(gdb) disa 2 3 in case something else goes through here
(gdb) c
Continuing.

Breakpoint 3, vput (vp=0xc4e25514) at machine/pcpu.h:156
156 {
1: vp->v_type = VNON
(gdb) b 2048 set breakpoint on previous line
Breakpoint 5 at 0xc0627ccd: file /usr/src/sys/kern/vfs_subr.c, line 2048.
(gdb) c
Continuing.

Breakpoint 5, vput (vp=0xc4e25514) at /usr/src/sys/kern/vfs_subr.c:2048
2048 VI_UNLOCK(vp);
1: vp->v_type = VNON
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(gdb) n
945 {
1: vp->v_type = VNON
(gdb) s step into functions
948 a.a_desc = VDESC(vop_inactive);
1: vp->v_type = VNON
(gdb)
949 a.a_vp = vp;
1: vp->v_type = VNON
(gdb)
950 a.a_td = td;
1: vp->v_type = VNON
(gdb)
953 rc = VCALL(vp, VOFFSET(vop_inactive), &a);
1: vp->v_type = VNON
(gdb)
ufs_vnoperate (ap=0xe1174bf0) at /usr/src/sys/ufs/ufs/ufs_vnops.c:2819
2819 return (VOCALL(ufs_vnodeop_p, ap->a_desc->vdesc_offset, ap));

We no longer have a pointer vp in the current frame, so the display stops. Continuing,

ufs_inactive (ap=0xe1174bf0) at /usr/src/sys/ufs/ufs/ufs_inode.c:71
71 struct vnode *vp = ap->a_vp;
(gdb)
72 struct inode *ip = VTOI(vp);
(gdb) i dis
Auto-display expressions now in effect:
Num Enb Expression
1: y vp->v_type (cannot be evaluated in the current context)

This doesn’t make any sense: we’ve just defined (and correctly initialized) a new vp pointer.
We can display it:

(gdb) p vp
$11 = (struct vnode *) 0xc4e25514
(gdb) p vp->v_type
$12 = VNON
(gdb) disp vp->v_type
2: vp->v_type = VNON
(gdb) i dis
Auto-display expressions now in effect:
Num Enb Expression
2: y vp->v_type
1: y vp->v_type (cannot be evaluated in the current context)

Not for the first time, this is a bug in gdb. We move on:

(gdb) n
80 VI_UNLOCK(vp);
(a number of further steps)
(gdb)
131 vrecycle(vp, NULL, td);
2: vp->v_type = VNON
(gdb)
133 }
2: vp->v_type = VBAD

So there’s a good chance that vrecycle is responsible for setting VBAD. We could go back
and step through it again, but it’s likely that we can also just look at it directly:

2474 /*
2475 * Recycle an unused vnode to the front of the free list.
2476 * Release the passed interlock if the vnode will be recycled.
2477 */
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2478 int
2479 vrecycle(vp, inter_lkp, td)
2480 struct vnode *vp;
2481 struct mtx *inter_lkp;
2482 struct thread *td;
2483 {
2484
2485 VI_LOCK(vp);
2486 if (vp->v_usecount == 0) {
2487 if (inter_lkp) {
2488 mtx_unlock(inter_lkp);
2489 }
2490 vgonel(vp, td);
2491 return (1);
2492 }
2493 VI_UNLOCK(vp);
2494 return (0);
2495 }

There’s a function we recognize! It’s on page 98. From there, we know that it ultimately calls
ufs_reclaim, which sets VBAD. But that doesn’t help us much: we also know that
ufs_reclaim resets the vp->v_data. We didn’t check that; what do we have here? We
disable all breakpoints except the one in vn_stat, then try again and this time set a breakpoint
at vgonel, then single step from there:

Breakpoint 2, vn_stat (vp=0xc4e25514, sb=0xe11b5c80, active_cred=0x0, file_cred=0x0,
td=0xc4978000)

at /usr/src/sys/kern/vfs_vnops.c:700
700 return (EBADF);
(gdb) b vgonel
Breakpoint 6 at 0xc0628957: file /usr/src/sys/kern/vfs_subr.c, line 2567.
(gdb) c
Continuing.

Breakpoint 6, vgonel (vp=0xc4e25514, td=0xc4978000) at /usr/src/sys/kern/vfs_subr.c:2
567
2567 if (vp->v_iflag & VI_XLOCK) {
(gdb) p vp->v_type
$13 = VNON
(gdb) p vp->v_data
$14 = (void *) 0xc586dec4
(gdb) disp vp->v_data
3: vp->v_data = (void *) 0xc586dec4
(gdb) disp vp->v_type
4: vp->v_type = VNON
(gdb) n
2572 vx_lock(vp);
4: vp->v_type = VNON
3: vp->v_data = (void *) 0xc586dec4
(gdb)
2577 vclean(vp, DOCLOSE, td);
4: vp->v_type = VNON
3: vp->v_data = (void *) 0xc586dec4
(gdb)
2578 VI_UNLOCK(vp);
4: vp->v_type = VNON
3: vp->v_data = (void *) 0x0
...
2617 vx_unlock(vp);
4: vp->v_type = VBAD
3: vp->v_data = (void *) 0x0
(gdb)
2618 VI_UNLOCK(vp);
4: vp->v_type = VBAD
3: vp->v_data = (void *) 0x0
(gdb)
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That’s an interesting thing: it looks like a function hiding behind DOCLOSE is resetting
vp->v_data, and later an unlock function is setting the type to VBAD, both a very different
scenario from that which we saw at the beginning of this dump. It’s worth investigating the rea-
sons for that, but there’s not enough time. At any rate, there’s a good chance that in at least one
case the function behind DOCLOSE doesn’t like what it sees, and doesn’t reset vp->v_data.
We’v e know the inode number of the inode that has caused all the panics so far, so let’s wait for
that to go by:

(gdb) cond 6 ((struct inode *)vp->v_data)->i_number == 3742712
(gdb) c
Continuing.

And that’s it. We don’t hit the breakpoint. We remove the condition and instead display the in-
ode number:

(gdb) cond 6
Breakpoint 6 now unconditional.
(gdb) disp/d ((struct inode *)vp->v_data)->i_number
No symbol "vp" in current context.

That’s another problem with gdb: you can only display objects which are currently accessible.
We can handle that:

(gdb) c
Continuing.

Breakpoint 6, vgonel (vp=0xc5071a28, td=0xc497b000) at /usr/src/sys/kern/vfs_subr.c:2567
2567 if (vp->v_iflag & VI_XLOCK) {
(gdb) disp/d ((struct inode *)vp->v_data)->i_number
5: /d ((struct inode *) vp->v_data)->i_number = 3742674
(gdb) c
Continuing.
...
Breakpoint 6, vgonel (vp=0xc5071a28, td=0xc497b000) at /usr/src/sys/kern/vfs_subr.c:2567
2567 if (vp->v_iflag & VI_XLOCK) {
3: vp->v_data = (void *) 0xc56d59d8
(gdb)
Continuing.

Breakpoint 6, vgonel (vp=0xc5071a28, td=0xc497b000) at /usr/src/sys/kern/vfs_subr.c:2567
2567 if (vp->v_iflag & VI_XLOCK) {
5: /d ((struct inode *) vp->v_data)->i_number = 3742713
(gdb)

In other words, we don’t come here for this specific inode. There are two possible reasons:

• The code doesn’t do the same thing in that case.

• Something has happened on disk to make that particular inode go away.

So we set the conditional breakpoint in vn_stat instead:

(gdb) cond 2 ((struct inode *)vp->v_data)->i_number == 3742712
(gdb) c
Continuing.

Breakpoint 2, vn_stat (vp=0xc4e9f30c, sb=0xe11d0c80, active_cred=0x391bf8, file_cred=0
x0, td=0xc4978bd0)

at /usr/src/sys/kern/vfs_vnops.c:700
700 return (EBADF);
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6: /d ((struct inode *) vp->v_data)->i_number = 3742712
(gdb) fini
Run till exit from #0 vn_stat (vp=0xc4e9f30c, sb=0xe11d0c80, active_cred=0x391bf8, fi
le_cred=0x0, td=0xc4978bd0)

at /usr/src/sys/kern/vfs_vnops.c:700
0xc062cc59 in stat (td=0xc4978bd0, uap=0xe11d0d14) at /usr/src/sys/kern/vfs_syscalls.c
:2030
2030 error = vn_stat(nd.ni_vp, &sb, td->td_ucred, NOCRED, td);
Value returned is $20 = 0x9
(gdb) disp nd.ni_vp.v_type
7: nd.ni_vp.v_type = VBAD

OK, now things are getting clearer: in this one case, the vnode is already set to VBAD on return
from vn_stat. Our previous assumptions were based on a different vnode. It, too, was invalid,
but in a different way. We’ll have to go back and investigate again, looking for this specific in-
ode number.

Breakpoint 2, vn_stat (vp=0xc4e9f30c, sb=0xe118fc80, active_cred=0x391bf8, file_cred=0
x0, td=0xc47bce70)

at /usr/src/sys/kern/vfs_vnops.c:700
700 return (EBADF);
6: /d ((struct inode *) vp->v_data)->i_number = 3742712
(gdb) p vp->v_type
$21 = VBAD

So our vnode was bad even before we returned the EBADF. Let’s look at vn_stat again (page
108). About the first place it could get set would be at line 651:

651 error = VOP_GETATTR(vp, vap, active_cred, td);

(gdb) b 651 if ((struct inode *)vp->v_data)->i_number == 3742712
Breakpoint 7 at 0xc0631771: file /usr/src/sys/kern/vfs_vnops.c, line 651.
(gdb) c
Continuing.

Breakpoint 7, vn_stat (vp=0xc4e9f30c, sb=0xe11c1c80, active_cred=0x0, file_cred=0x0, t
d=0xc4978540)

at /usr/src/sys/kern/vfs_vnops.c:652
652 if (error)
6: /d ((struct inode *) vp->v_data)->i_number = 3742712
(gdb) p vp->v_type
$23 = VBAD

Incorrect assumption. It must have happened much earlier, possibly before entering the function.
We can check that:

(gdb) b vn_stat if ((struct inode *)vp->v_data)->i_number == 3742712
Breakpoint 8 at 0xc063172e: file /usr/src/sys/kern/vfs_vnops.c, line 650.
(gdb) c
Continuing.

Breakpoint 8, vn_stat (vp=0xc4e9f30c, sb=0xe11d0c80, active_cred=0xe11d0c80, file_cred
=0x0, td=0xc4978bd0)

at /usr/src/sys/kern/vfs_vnops.c:650
650 vap = &vattr;
6: /d ((struct inode *) vp->v_data)->i_number = 3742712
(gdb) p vp->v_type
$24 = VBAD

Yes, we entered like that. Let’s look back at the calling function: (stat, page 108). There’s not
very much to see there:
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2025 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | NOOBJ, UIO_USERSPACE,
2026 uap->path, td);
2028 if ((error = namei(&nd)) != 0)
2029 return (error);
2030 error = vn_stat(nd.ni_vp, &sb, td->td_ucred, NOCRED, td);

It must have happened in namei after all. We can check that, but we won’t know the inode
number until it’s too late. Fortunately, stat and namei keep track of file names, so we can
use them:

Breakpoint 8, vn_stat (vp=0xc4e9f30c, sb=0xe11b8c80, active_cred=0xe11b8c80, file_cred
=0x0, td=0xc4978150)

at /usr/src/sys/kern/vfs_vnops.c:650
650 vap = &vattr;
6: /d ((struct inode *) vp->v_data)->i_number = 3742712
(gdb) bt
#0 vn_stat (vp=0xc4e9f30c, sb=0xe11b8c80, active_cred=0xe11b8c80, file_cred=0x0, td=0
xc4978150)

at /usr/src/sys/kern/vfs_vnops.c:650
#1 0xc062cc59 in stat (td=0xc4978150, uap=0xe11b8d14) at /usr/src/sys/kern/vfs_syscal
ls.c:2030
(gdb) f 1
#1 0xc062cc59 in stat (td=0xc4978150, uap=0xe11b8d14) at /usr/src/sys/kern/vfs_syscal
ls.c:2030
2030 error = vn_stat(nd.ni_vp, &sb, td->td_ucred, NOCRED, td);
(gdb) p nd
$26 = {

ni_dirp = 0x8050000 "/src/FreeBSD/BFS/src/contrib/binutils/binutils/ieee.c",
ni_segflg = UIO_USERSPACE,
ni_startdir = 0x0,
ni_rootdir = 0xc46d1e38,
ni_topdir = 0x0,
ni_vp = 0xc4e9f30c,
ni_dvp = 0xc54ea618,
ni_pathlen = 0x1,
ni_next = 0xc46d8c35 "",
ni_loopcnt = 0x0,
ni_cnd = {

cn_nameiop = 0x0,
cn_flags = 0x20c0c4,
cn_thread = 0xc4978150,
cn_cred = 0xc61dc700,
cn_pnbuf = 0xc46d8c00 "/src/FreeBSD/BFS/src/contrib/binutils/binutils/ieee.c",
cn_nameptr = 0xc46d8c2f "ieee.c",
cn_namelen = 0x6,
cn_consume = 0x0

}
}

So now, for the first time, we know the name of the file which is causing us so much grief. We
could try setting a conditional breakpoint based on the name, but gdb is not very good at han-
dling strings. Instead, since we know the name, we can list it explicitly:

# ls -l /src/FreeBSD/BFS/src/contrib/binutils/binutils/ieee.c

(gdb) b namei
Breakpoint 10 at 0xc0621c05: file /usr/src/sys/kern/vfs_lookup.c, line 104.
(gdb) c
Continuing.

Breakpoint 10, namei (ndp=0xdff5dbe4) at /usr/src/sys/kern/vfs_lookup.c:104
104 struct componentname *cnp = &ndp->ni_cnd;
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(gdb) p *ndp
$27 = {

ni_dirp = 0x8145a60 "/bin/ls",
ni_segflg = UIO_USERSPACE,
ni_startdir = 0x0,
ni_rootdir = 0xc5466938,
ni_topdir = 0xc4cd6168,
ni_vp = 0x0,
ni_dvp = 0x0,
ni_pathlen = 0xc05de759,
ni_next = 0xe1186ca0 "D\b",
ni_loopcnt = 0xbfbfeb6c,
ni_cnd = {

cn_nameiop = 0x0,
cn_flags = 0x844,
cn_thread = 0xc47bca80,
cn_cred = 0xe1186ccc,
cn_pnbuf = 0xc47ba224 "<È\200À\227/{À\227/{À",
cn_nameptr = 0x2cc <Address 0x2cc out of bounds>,
cn_namelen = 0xc07d0c2f,
cn_consume = 0xe1186cdc

}
}

This is one of the problems with a function like namei: it gets called many times every time you
start a program. We can’t make it conditional on a string, but we can check individual charac-
ters. In this case, the second character of the pathname is s, so we can check for that:

(gdb) cond 10 ndp->ni_dirp[1] ==’s’

namei allocates a vnode, so on entry the value is indeterminate. Before we start looking at the
contents of the vnode, we need to be sure that it’s valid. In the example above, it’s set to NULL,
but it doesn’t hav e to be. But where is the vnode allocated? The code suggests that some func-
tion might have done it. An easy way to find out might be to single step through the main loop
until the value changes:

Breakpoint 10, namei (ndp=0xe11d3c30) at /usr/src/sys/kern/vfs_lookup.c:104
104 struct componentname *cnp = &ndp->ni_cnd;
(gdb) disp ndp->ni_vp
11: ndp->ni_vp = (struct vnode *) 0x1d2
(gdb) n
105 struct thread *td = cnp->cn_thread;
11: ndp->ni_vp = (struct vnode *) 0x1d2
(gdb)
106 struct proc *p = td->td_proc;
11: ndp->ni_vp = (struct vnode *) 0x1d2
...
178 ndp->ni_startdir = dp;
11: ndp->ni_vp = (struct vnode *) 0x1d2
(gdb)
179 error = lookup(ndp);
11: ndp->ni_vp = (struct vnode *) 0x1d2
(gdb)
180 if (error) {
11: ndp->ni_vp = (struct vnode *) 0xc4e9f30c
(gdb) p ndp->ni_vp->v_data
$31 = (void *) 0xc4c7e230
(gdb) p ndp->ni_vp->v_type
$32 = VBAD

So not only the allocation, but also the setting of the type is done by lookup. In this case, we
already have the scenario we’ve been looking at: the type is VBAD, but the v_data field is still
set. That’s the next thing to look at. lookup is in the file sys/kern/vfs_lookup.c. We quickly
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establish that there’s no reference to VBAD there, so it must be yet another called function.
Again we single-step:

Breakpoint 11, lookup (ndp=0xe1186c30) at /usr/src/sys/kern/vfs_lookup.c:328
328 int dpunlocked = 0; /* dp has already been unlocked */
(gdb) disp ndp->ni_vp
12: ndp->ni_vp = (struct vnode *) 0x1d2
(gdb) n
329 struct componentname *cnp = &ndp->ni_cnd;
12: ndp->ni_vp = (struct vnode *) 0x1d2
(gdb)
330 struct thread *td = cnp->cn_thread;
12: ndp->ni_vp = (struct vnode *) 0x1d2
(gdb)
...
482 ndp->ni_vp = NULL;
12: ndp->ni_vp = (struct vnode *) 0x1d2
(gdb)
483 cnp->cn_flags &= ˜PDIRUNLOCK;
12: ndp->ni_vp = (struct vnode *) 0x0
(gdb)
42 {
12: ndp->ni_vp = (struct vnode *) 0x0
...
52 rc = VCALL(dvp, VOFFSET(vop_lookup), &a);
12: ndp->ni_vp = (struct vnode *) 0x0
(gdb)
42 {
12: ndp->ni_vp = (struct vnode *) 0xc4760a28
(gdb) p ndp->ni_vp->v_data
$33 = (void *) 0xc470e834
(gdb) p ndp->ni_vp->v_type
$34 = VDIR
(gdb) p ndp
$35 = (struct nameidata *) 0xe1186c30
(gdb) p *ndp
$36 = {

ni_dirp = 0x80511a8 "/src/FreeBSD/BFS/src/contrib/binutils/binutils/ieee.c",
ni_segflg = UIO_USERSPACE,
ni_startdir = 0x0,
ni_rootdir = 0xc46d1e38,
ni_topdir = 0x0,
ni_vp = 0xc4760a28,
ni_dvp = 0xc46d1e38,
ni_pathlen = 0x32,
ni_next = 0xc497e004 "/FreeBSD/BFS/src/contrib/binutils/binutils/ieee.c",
ni_loopcnt = 0x0,
ni_cnd = {

cn_nameiop = 0x0,
cn_flags = 0x2040c4,
cn_thread = 0xc47bca80,
cn_cred = 0xc61dc700,
cn_pnbuf = 0xc497e000 "/src/FreeBSD/BFS/src/contrib/binutils/binutils/ieee.c",
cn_nameptr = 0xc497e001 "src/FreeBSD/BFS/src/contrib/binutils/binutils/ieee.c",
cn_namelen = 0x3,
cn_consume = 0x0

}
}
(gdb) disp ndp->ni_vp->v_type
13: ndp->ni_vp->v_type = VDIR
(gdb) p *((struct inode *)ndp->ni_vp.v_data)
$38 = {

i_hash = {
le_next = 0x0,
le_prev = 0xc4623078

},
i_nextsnap = {

tqe_next = 0x0,
tqe_prev = 0x0

},
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i_vnode = 0xc5937b2c,
i_ump = 0xc46cf000,
i_flag = 0x20,
i_dev = 0xc46aba00,
i_number = 0x2,
i_effnlink = 0x32,
i_fs = 0xc46ef800,
i_dquot = {0x0, 0x0},
i_modrev = 0xb161df9fa8c,
i_lockf = 0x0,
i_count = 0x0,
i_endoff = 0x0,
i_diroff = 0x200,
i_offset = 0x338,
i_ino = 0x86ee0f,
i_reclen = 0xc8,
i_un = {

dirhash = 0x0,
snapblklist = 0x0

},
i_ea_area = 0x0,
i_ea_len = 0x0,
i_ea_error = 0x0,
i_mode = 0x41ed,
i_nlink = 0x32,
i_size = 0x400,
i_flags = 0x0,
i_gen = 0xe6a9665,
i_uid = 0x0,
i_gid = 0x0,
dinode_u = {

din1 = 0xc55d4d00,
din2 = 0xc55d4d00

}
}
(gdb) p/o ((struct inode *)ndp->ni_vp.v_data)->i_mode
$39 = 040755

So far, this looks like a valid directory. That’s not surprising: lookup iterates its way through
the path name, a directory at a time. The function is 367 lines long, so it’s not reproduced here.
It’s in sys/kern/vfs_lookup.c for reference. Investigation of the code suggests that this is the
most likely place for the vnode to be modified. This listing omits some #ifdef ed code:

470 /*
471 * We now have a segment name to search for, and a directory to search.
472 */
473 unionlookup:
481 ndp->ni_dvp = dp;
482 ndp->ni_vp = NULL;
483 cnp->cn_flags &= ˜PDIRUNLOCK;
484 ASSERT_VOP_LOCKED(dp, "lookup");
485 if ((error = VOP_LOOKUP(dp, &ndp->ni_vp, cnp)) != 0) {
486 KASSERT(ndp->ni_vp == NULL, ("leaf should be empty"));

Clearly, here the important structure is not the vnode pointer (ndp->ni_vp), but the “interme-
diate” vnode pointer dp. Also, the pointer cnp points to a “component name”. We stop on the
conditional breakpoint in namei, then set a breakpoint before the call to VOP_LOOKUP and
take a look at what we see. We’v e already been burnt by trying to set breakpoints on these
macros, so we set it a little bit in advance, on line 481:

(gdb) en 10
(gdb) c

Breakpoint 10, namei (ndp=0xe1144c30) at /usr/src/sys/kern/vfs_lookup.c:104
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104 struct componentname *cnp = &ndp->ni_cnd;
11: ndp->ni_vp = (struct vnode *) 0x1d2
10: ndp->ni_dirp = 0x80511a8 "/src/FreeBSD/BFS/src/contrib/binutils/binutils/ieee.c"

(gdb) en 11
(gdb) c
Continuing.

Breakpoint 11, lookup (ndp=0xe1144c30) at /usr/src/sys/kern/vfs_lookup.c:328
328 int dpunlocked = 0; /* dp has already been unlocked */
15: ndp->ni_vp = (struct vnode *) 0x1d2
(gdb) b 481
Breakpoint 20 at 0xc062233c: file /usr/src/sys/kern/vfs_lookup.c, line 481.
(gdb) c
Continuing.

Breakpoint 20, lookup (ndp=0xe1144c30) at /usr/src/sys/kern/vfs_lookup.c:481
481 ndp->ni_dvp = dp;
15: ndp->ni_vp = (struct vnode *) 0x1d2
(gdb) p cnp
$63 = (struct componentname *) 0xe1144c58
(gdb) p *cnp
$64 = {

cn_nameiop = 0x0,
cn_flags = 0x4084,
cn_thread = 0xc46fbd20,
cn_cred = 0xc56a9400,
cn_pnbuf = 0xc46d7c00 "/src/FreeBSD/BFS/src/contrib/binutils/binutils/ieee.c",
cn_nameptr = 0xc46d7c01 "src/FreeBSD/BFS/src/contrib/binutils/binutils/ieee.c",
cn_namelen = 0x3,
cn_consume = 0x0

}
(gdb) c
Continuing.

Breakpoint 20, lookup (ndp=0xe1144c30) at /usr/src/sys/kern/vfs_lookup.c:481
481 ndp->ni_dvp = dp;
15: ndp->ni_vp = (struct vnode *) 0xc58b4208
(gdb) p *cnp
$65 = {

cn_nameiop = 0x0,
cn_flags = 0x204084,
cn_thread = 0xc46fbd20,
cn_cred = 0xc56a9400,

Breakpoint 20, lookup (ndp=0xe1144c30) at /usr/src/sys/kern/vfs_lookup.c:481
481 ndp->ni_dvp = dp;
15: ndp->ni_vp = (struct vnode *) 0x1d2
(gdb) p cnp
$63 = (struct componentname *) 0xe1144c58
(gdb) p *cnp
$64 = {

cn_nameiop = 0x0,
cn_flags = 0x4084,
cn_thread = 0xc46fbd20,
cn_cred = 0xc56a9400,
cn_pnbuf = 0xc46d7c00 "/src/FreeBSD/BFS/src/contrib/binutils/binutils/ieee.c",
cn_nameptr = 0xc46d7c01 "src/FreeBSD/BFS/src/contrib/binutils/binutils/ieee.c",
cn_namelen = 0x3,
cn_consume = 0x0

}
(gdb) c
Continuing.

Breakpoint 20, lookup (ndp=0xe1144c30) at /usr/src/sys/kern/vfs_lookup.c:481
481 ndp->ni_dvp = dp;
15: ndp->ni_vp = (struct vnode *) 0xc58b4208
(gdb) p *cnp
$65 = {

cn_nameiop = 0x0,
cn_flags = 0x204084,
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cn_thread = 0xc46fbd20,
cn_cred = 0xc56a9400,
cn_pnbuf = 0xc46d7c00 "/src/FreeBSD/BFS/src/contrib/binutils/binutils/ieee.c",
cn_nameptr = 0xc46d7c05 "FreeBSD/BFS/src/contrib/binutils/binutils/ieee.c",
cn_namelen = 0x7,
cn_consume = 0x0

}
(gdb) p cnp->cn_nameptr
$66 = 0xc46d7c05 "FreeBSD/BFS/src/contrib/binutils/binutils/ieee.c"
(gdb) disp cnp->cn_nameptr
18: cnp->cn_nameptr = 0xc46d7c05 "FreeBSD/BFS/src/contrib/binutils/binutils/ieee.c"

We’re now in the name parsing loop. Every iteration brings us one step closer to the end:

(gdb) c
Continuing.

Breakpoint 20, lookup (ndp=0xe1144c30) at /usr/src/sys/kern/vfs_lookup.c:481
481 ndp->ni_dvp = dp;
18: cnp->cn_nameptr = 0xc46d7c0d "BFS/src/contrib/binutils/binutils/ieee.c"
15: ndp->ni_vp = (struct vnode *) 0xc4ad2b2c
(gdb)
Continuing.

Breakpoint 20, lookup (ndp=0xe1144c30) at /usr/src/sys/kern/vfs_lookup.c:481
481 ndp->ni_dvp = dp;
18: cnp->cn_nameptr = 0xc46d7c11 "src/contrib/binutils/binutils/ieee.c"
15: ndp->ni_vp = (struct vnode *) 0xc6565a28
(gdb)
Continuing.

Breakpoint 20, lookup (ndp=0xe1144c30) at /usr/src/sys/kern/vfs_lookup.c:481
481 ndp->ni_dvp = dp;
18: cnp->cn_nameptr = 0xc46d7c15 "contrib/binutils/binutils/ieee.c"
15: ndp->ni_vp = (struct vnode *) 0xc5b51d34
(gdb)
Continuing.

Breakpoint 20, lookup (ndp=0xe1144c30) at /usr/src/sys/kern/vfs_lookup.c:481
481 ndp->ni_dvp = dp;
18: cnp->cn_nameptr = 0xc46d7c1d "binutils/binutils/ieee.c"
15: ndp->ni_vp = (struct vnode *) 0xc4d5d924
(gdb)
Continuing.

Breakpoint 20, lookup (ndp=0xe1144c30) at /usr/src/sys/kern/vfs_lookup.c:481
481 ndp->ni_dvp = dp;
18: cnp->cn_nameptr = 0xc46d7c26 "binutils/ieee.c"
15: ndp->ni_vp = (struct vnode *) 0xc5a05514
(gdb)
Continuing.

Breakpoint 20, lookup (ndp=0xe1144c30) at /usr/src/sys/kern/vfs_lookup.c:481
481 ndp->ni_dvp = dp;
18: cnp->cn_nameptr = 0xc46d7c2f "ieee.c"
15: ndp->ni_vp = (struct vnode *) 0xc5a3f71c

Now we’re at the final part of the path name, where we expect the sparks to fly. It’s interesting to
note that the vnode pointer changes every time; if we had watched the single vnode, we wouldn’t
have found anything in particular.

From here on we single step to find what function performs the lookup:

(gdb) s
482 ndp->ni_vp = NULL;
18: cnp->cn_nameptr = 0xc46d7c2f "ieee.c"
15: ndp->ni_vp = (struct vnode *) 0xc5a3f71c
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(gdb)
483 cnp->cn_flags &= ˜PDIRUNLOCK;
18: cnp->cn_nameptr = 0xc46d7c2f "ieee.c"
15: ndp->ni_vp = (struct vnode *) 0x0
(gdb)
42 {
18: cnp->cn_nameptr = 0xc46d7c2f "ieee.c"
15: ndp->ni_vp = (struct vnode *) 0x0
(gdb)
45 a.a_desc = VDESC(vop_lookup);
18: cnp->cn_nameptr = 0xc46d7c2f "ieee.c"
15: ndp->ni_vp = (struct vnode *) 0x0
(gdb) bt
#0 lookup (ndp=0xe1144c30) at vnode_if.h:45
#1 0xc0621df8 in namei (ndp=0xe1144c30) at /usr/src/sys/kern/vfs_lookup.c:179
#2 0xc062ccde in lstat (td=0xc46fbd20, uap=0xe1144d14) at /usr/src/sys/kern/vfs_sysca
lls.c:2063
#3 0xc074ce57 in syscall (frame=

{tf_fs = 0x2f, tf_es = 0x2f, tf_ds = 0x2f, tf_edi = 0x8051100, tf_esi = 0x805114
8, tf_ebp = 0xbfbfdd08, tf_isp = 0xe1144d74, tf_ebx = 0x2817f78c, tf_edx = 0x804f000,
tf_ecx = 0x0, tf_eax = 0xbe, tf_trapno = 0xc, tf_err = 0x2, tf_eip = 0x2810e2a7, tf_cs
= 0x1f, tf_eflags = 0x296, tf_esp = 0xbfbfdc6c, tf_ss = 0x2f}) at /usr/src/sys/i386/i
386/trap.c:1004
#4 0xc073b81f in Xint0x80_syscall () at {standard input}:136
#5 0x28108413 in ?? ()
#6 0x08049ad9 in ?? ()
#7 0x08049a9d in ?? ()
#8 0x0804921e in ?? ()
(gdb) s
46 a.a_dvp = dvp;
18: cnp->cn_nameptr = 0xc46d7c2f "ieee.c"
15: ndp->ni_vp = (struct vnode *) 0x0
(gdb)
47 a.a_vpp = vpp;
18: cnp->cn_nameptr = 0xc46d7c2f "ieee.c"
15: ndp->ni_vp = (struct vnode *) 0x0
(gdb)
48 a.a_cnp = cnp;
18: cnp->cn_nameptr = 0xc46d7c2f "ieee.c"
15: ndp->ni_vp = (struct vnode *) 0x0
(gdb)
52 rc = VCALL(dvp, VOFFSET(vop_lookup), &a);
18: cnp->cn_nameptr = 0xc46d7c2f "ieee.c"
15: ndp->ni_vp = (struct vnode *) 0x0
(gdb)
ufs_vnoperate (ap=0xe1144bb4) at /usr/src/sys/ufs/ufs/ufs_vnops.c:2819
2819 return (VOCALL(ufs_vnodeop_p, ap->a_desc->vdesc_offset, ap));
(gdb)
vfs_cache_lookup (ap=0xe1144bb4) at /usr/src/sys/kern/vfs_cache.c:636
636 struct vnode **vpp = ap->a_vpp;
(gdb)
637 struct componentname *cnp = ap->a_cnp;

So we end up in vfs_cache_lookup. It’s worth looking at that function:

620 /*
621 * Perform canonical checks and cache lookup and pass on to filesystem
622 * through the vop_cachedlookup only if needed.
623 */
624
625 int
626 vfs_cache_lookup(ap)
627 struct vop_lookup_args /* {
628 struct vnode *a_dvp;
629 struct vnode **a_vpp;
630 struct componentname *a_cnp;
631 } */ *ap;
632 {
633 struct vnode *dvp, *vp;
634 int lockparent;
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635 int error;
636 struct vnode **vpp = ap->a_vpp;
637 struct componentname *cnp = ap->a_cnp;
638 struct ucred *cred = cnp->cn_cred;
639 int flags = cnp->cn_flags;
640 struct thread *td = cnp->cn_thread;
641 u_long vpid; /* capability number of vnode */
642
643 *vpp = NULL;
644 dvp = ap->a_dvp;
645 lockparent = flags & LOCKPARENT;
646
647 if (dvp->v_type != VDIR)
648 return (ENOTDIR);
649
650 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
651 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
652 return (EROFS);
653
654 error = VOP_ACCESS(dvp, VEXEC, cred, td);
655
656 if (error)
657 return (error);

The checks above are the normal tests that would have giv en us a different error number (permis-
sions, ENOTDIR, EROFS), so we can probably discount them. The rest looks less obvious:

659 error = cache_lookup(dvp, vpp, cnp);
687 if (!error)
688 return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
690
691 if (error == ENOENT)
692 return (error);
693
694 vp = *vpp;
695 vpid = vp->v_id;
696 cnp->cn_flags &= ˜PDIRUNLOCK;
697 if (dvp == vp) { /* lookup on "." */
698 VREF(vp);
699 error = 0;
700 } else if (flags & ISDOTDOT) {
701 VOP_UNLOCK(dvp, 0, td);
702 cnp->cn_flags |= PDIRUNLOCK;
709 error = vget(vp, LK_EXCLUSIVE, td);
711
712 if (!error && lockparent && (flags & ISLASTCN)) {
713 if ((error = vn_lock(dvp, LK_EXCLUSIVE, td)) == 0)
714 cnp->cn_flags &= ˜PDIRUNLOCK;
715 }

We set a breakpoint on line 659 and single step from there:

Breakpoint 25, vfs_cache_lookup (ap=0x0) at /usr/src/sys/kern/vfs_cache.c:659
659 error = cache_lookup(dvp, vpp, cnp);
(gdb) p vpp
$86 = (struct vnode **) 0xe1144c44
(gdb) p *vpp
$87 = (struct vnode *) 0x0

vpp is a pointer to a vnode pointer; this shows us that the pointer itself is currently unallocated.

(gdb) n
687 if (!error)
20: dvp->v_type = VDIR
(gdb) p *vpp
$88 = (struct vnode *) 0xc56fb924
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(gdb) p *vpp->v_type
Attempt to take contents of a non-pointer value.
(gdb) p (*vpp)->v_type
$89 = VBAD

So it’s cache_lookup that somehow returns the VBAD. We single step through it and get to
this section:

406 /* We found a "positive" match, return the vnode */
407 if (ncp->nc_vp) {
408 numposhits++;
409 nchstats.ncs_goodhits++;
410 *vpp = ncp->nc_vp;
411 CACHE_UNLOCK();
412 return (-1);
413 }

Single stepping through, we find:

(gdb)
410 *vpp = ncp->nc_vp;
21: *vpp = (struct vnode *) 0x0
(gdb)
411 CACHE_UNLOCK();
21: *vpp = (struct vnode *) 0xc56fb924
(gdb) p (*vpp)->v_type
$91 = VBAD

So whatever caused the problem, it’s now in cache, and so we can’t find the original cause. We
have to reboot.

After rebooting, and not surprisingly, cache_lookup returns a cache miss.
vfs_cache_lookup moves on to:

687 if (!error)
688 return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));

Behind this we find a call to ufs_lookup.

Giving up

Round here, it’s becoming clear that finding the exact place where the problem occurs is not go-
ing to be very productive. It will almost certainly not be something that we can change easily.
We’re left with a number of possibilities:

• Send in a problem report. Maybe somebody will look at it. Without being too cynical,
though, it’s unlikely that a problem report will achieve very much. You’d need to send in the
data disk as well to make it easy to reproduce the problem.

• Remove INVARIANTS. As we’ve seen, that would “solve” (in other words, ignore) the
problem. The problem here is that we may have a memory leak as a result. One option here
might be to print a warning instead: certainly we’ve seen that a panic doesn’t help very much.

• Consider what would happen if we changed the test in vtryrecycle to try cleaning the
vnode if the v_data field is not reset.

We can implement code for the last two:
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Repor ting errors instead of panicking

It’s relatively trivial to replace the panic with an informative printout:

--- vfs_subr.c 11 Apr 2004 21:09:22 -0000 1.490
+++ vfs_subr.c 5 Oct 2004 06:31:49 -0000
@@ -752,7 +752,9 @@
#ifdef INVARIANTS

{
if (vp->v_data)

- panic("cleaned vnode isn’t");
+ printf("cleaned vnode isn’t, "
+ "address %p, inode %p\n",
+ vp, vp->vp_data);

if (vp->v_numoutput)
panic("Clean vnode has pending I/O’s");

if (vp->v_writecount != 0)

After this, when we run our find command, instead of a panic we get:

cleaned vnode isn’t, address 0xc49a8514, inode 0xc4996c08

It would be tempting to add the inode number, but that’s a bad idea. This code is in the virtual
file system. There’s a reason why the field vp->v_data is of indeterminate type. Though un-
likely, it would be a layering violation to try to interpret it as a UFS inode. In all probability,
though, it will still be there when you see the message (we’re counting on this being a memory
leak), so we can look at it later:

# gdb -k kernel.debug /dev/mem
...
(kgdb) p *(struct inode *)0xc4996c08
$1 = {

i_hash = {
le_next = 0x0,
le_prev = 0xc462a050

},
...

i_dev = 0xc4695b00,
i_number = 0x391bf8,
i_effnlink = 0x2,

}
(kgdb) p/d ((struct inode *)0xc4996c08)->i_number
$3 = 3742712

So this message will enable us to find out the information we want without panicking the ma-
chine. We commit the change:

grog 2004-10-06 02:06:11 UTC

FreeBSD src repository

Modified files:
sys/kern vfs_subr.c

Log:
getnewvnode: Weaken the panic "cleaned vnode isn’t" to a warning.

Discussion: this panic (or waning) only occurs when the kernel is
compiled with INVARIANTS. Otherwise the problem (which means that
the vp->v_data field isn’t NULL, and represents a coding error and
possibly a memory leak) is silently ignored by setting it to NULL
later on.
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Panicking here isn’t very helpful: by this time, we can only find
the symptoms. The panic occurs long after the reason for "not
cleaning" has been forgotten; in the case in point, it was the
result of severe file system corruption which left the v_type field
set to VBAD. That issue will be addressed by a separate commit.

Revision Changes Path
1.529 +3 -1 src/sys/kern/vfs_subr.c

Cleaning if v_data is set

The other possibility is in vtryrecycle: currently it assumes that a vnode is clean if its type
is VBAD. That’s clearly incorrect in the situation we’re looking at. It would be simple enough to
fix:

--- vfs_subr.c 11 Apr 2004 21:09:22 -0000 1.490
+++ vfs_subr.c 5 Oct 2004 07:02:57 -0000
@@ -673,7 +673,7 @@

vp->v_iflag &= ˜VI_FREE;
mtx_unlock(&vnode_free_list_mtx);
vp->v_iflag |= VI_DOOMED;

- if (vp->v_type != VBAD) {
+ if ((vp->v_type != VBAD) || (vp->v_data != NULL)) {

VOP_UNLOCK(vp, 0, td);
vgonel(vp, td);
VI_LOCK(vp);

This fix works for our particular case; however, it’s not as sure a thing as the previous fix.
Should we commit it anyway? If it works, it’s probably OK.

We commit the fix, and it works. We no longer have any problems with this system:

grog 2004-10-06 02:09:59 UTC

FreeBSD src repository

Modified files:
sys/kern vfs_subr.c

Log:
vtryrecycle: Don’t rely on type VBAD alone to mean that we don’t need

to clean the vnode. If v_data is set, we still need to
clean it. This code change should catch all incidents of
the previous commit (INVARIANTS only).

Revision Changes Path
1.530 +1 -1 src/sys/kern/vfs_subr.c



134 Debugging Kernel Problems

9
gdb macros

The gdb debugger includes a macro language. Its syntax is reminiscent of C, but different
enough to be confusing. Unfortunately, there’s no good reference to it. You can read the texinfo
files which come with gdb, but it doesn’t help much. This section is based on my experience,
and it includes some practical examples.

gdb macro gotchas

As mentioned, gdb macros have a syntax which superficially resembles C, but there are many
differences:

• Comments are written with a shell-like syntax: they start with # and continue to the end of the
line.

• Commands are terminated by the end of the line, not ;. If you want to carry a command over
more than one line, use the shell-like syntax of putting a \ character at the end of the line.

• Macro declarations don’t specify parameters; the parameters which are supplied are allocated
to the variables $arg0 to $arg9.

• On the other hand, there’s no way to find out how many parameters have been passed, and re-
ferring to parameters which haven’t been passed will cause the macro execution to fail. This
means that you can’t hav e a macro which takes a variable number of parameters.

• Macro parameters are allocated lexically, with a space as a delimiter. As we’ll see below, this
significantly restricts what you can pass.

• You don’t need to declare variables used in macros—in fact there’s no provision to do so.

• Macro variables (both parameters and others) do have type, however. This means that a
macro may or may not work depending on whether the name has been seen before, and if so,
in which context. To assign a type to them, use a cast when assigning a value. We’ll see an
example below.
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• Assignments require the set keyword, as we’ll see below.

• gdb has to deal with three kinds of variables: variables in the program being debugged, vari-
ables local to the macros, and internal gdb variables. It differentiates between them in two
ways:

• bp might be a pointer to a buffer header in the kernel being debugged. To change the val-
ue of such a pointer, you might write:

(gdb) set bp = 0xc8154711

This changes the value in the kernel being debugged.

• In a macro, you might use the variable name $bp to point to a local variable. The $ sign
is not used in the same way as in shell scripts: it’s part of the name. To change the value
of such a pointer, you might write:

(gdb) set $bp = 0xc8154711

This changes only the value used in the macros.

• Finally, there are a number of internal variables. For example, to set the number of lines
on a page (gdb doesn’t understand window size changes), you might write:

(gdb) set height 80

This sets the number of lines on the window to 80. Note that there is no = symbol in this
variant.

• Some commands don’t exist (case, for example).

• Other commands are so lax about the syntax that, combined with the documentation, I’m not
sure what the canonical version is. For example, if and while don’t require parentheses
around the condition argument.

• gdb does not seem to make a proper distinction between the operators . (structure member)
and -> (pointer to structure member). Again, I haven’t found a rigorous distinction.

Displaying memory

In almost all debuggers, it’s possible to display a block of memory in hexadecimal and character
format; this is so ubiquitous that it’s often called “canonical” format (in hexdump(8), for exam-
ple, which supplies this format with the -C option). gdb does not supply this format, which of
particular concern because it’s often not clear that it is displaying data correctly. In this section,
we’ll look at a macro to perform this simple task. The macro is called dm (for display memory).
For example, we might have a data variable called Cache, with the following contents:

(gdb) p Cache
$2 = {

blockcount = 1024,
blocksize = 65536,
alloccount = 1024,
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first = 535,
Block = 0x8173000,
stats = {

reads = 0,
writes = 0,
updates = 0,
flushes = 3,
creates = 0,
hits = 16738756,
misses = 439,
blockin = 0,
blockout = 0

}
}

If we want to look at this data in raw form, we first need the address and length of the item. The
address is simple, but we need to calculate the length:

(gdb) p sizeof Cache
$5 = 92

Then we can display the data:

(gdb) dm &Cache 92
08067160: 00 04 00 00 00 00 01 00 00 04 00 00 17 02 00 00 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
08067170: 00 30 17 08 00 00 00 00 00 00 00 00 00 00 00 00 ˜0˜˜˜˜˜˜˜˜˜˜˜˜˜˜
08067180: 00 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
08067190: 00 00 00 00 00 00 00 00 00 00 00 00 c4 69 ff 00 ˜˜˜˜˜˜˜˜˜˜˜˜Äiÿ˜
080671a0: 00 00 00 00 b7 01 00 00 00 00 00 00 00 00 00 00 ˜˜˜˜·˜˜˜˜˜˜˜˜˜˜˜
080671b0: 00 00 00 00 00 00 00 00 00 00 00 00

It would be tempting to write the following, but it doesn’t work:

(gdb) dm &Cache sizeof Cache
A syntax error in expression, near ‘’.

The problem here is that gdb parses the parameters as text, so the first parameter (address) is
correct, but the second parameter (length) is set to sizeof.

The following code implements this macro:

# Dump memory in "canonical" form.
# dm offset length
# This version starts lines at addr & ˜0xf
define dm
set $offset = (int) $arg0 first parameter, address
set $len = (int) $arg1 second parameter, length
while $len > 0 loop over lines
# Print a line
printf "%08x: ", $offset address at start of line

# byte address of start of line
set $byte = (unsigned char *) ($offset & ˜0xf) See (3) below

# first byte number to display
set $sbyte = $offset & 0xf
set $ebyte = $sbyte + $len
if $ebyte > 16

set $ebyte = 16
end

# And number of bytes to print on this line
set $pos = 0
while $pos < 16

if $pos < $sbyte || $pos >= $ebyte
# just leave space
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printf " "
else

printf " %02x", *((unsigned char *) $byte) & 0xff
end
if $pos == 7

printf " "
end
set $pos = $pos + 1
set $byte = $byte + 1

end
printf " "

# Now start again with the character representation
# Start byte number on line
set $pos = 0

# byte address of start of line
set $byte = (unsigned char *) ($offset & ˜0xf)
while $pos < 16

if $pos < $sbyte || $pos >= $ebyte
# just leave space

printf " "
else

if ((*$byte & 0x7f) < 0x20)
printf "˜"

else
printf "%c", *$byte

end
end
set $byte = $byte + 1
set $pos = $pos + 1

end
printf "\n"
set $len = $len - 16 + ($offset & 0xf)
set $offset = ($offset + 16) & ˜0xf
end

end
document dm document after the event
Dump memory in hex and chars dm offset length
end

There are a number of things to note about the way this macro has been written:

1. gdb automatically names the parameters $arg0 and $arg1. There can be up to ten pa-
rameters.

2. We’ve renamed the parameter for this macro to $offset and $len to make the mess
marginally more legible.

3. The pointer $byte is of type unsigned char *. Since we don’t declare variables, we
use casts to force a particular type.

kldstat

As we’ve seen, gdb understands nothing of kernel data structures. Many other kernel debuggers,
including ddb, can simulate userland commands such as ps and the FreeBSD command kldstat,
which shows the currently loaded kernel loadable modules (kld s, called LKM s in NetBSD and
OpenBSD). To get gdb to do the same thing, you need to write a macro which understands the
kernel internal data structures. We’ll call it kldstat after the userland macro which does the same
thing.

FreeBSD keeps track of klds with the variable linker_files, described in
sys/kern/kern_linker.c
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static linker_file_list_t linker_files;

In sys/sys/linker.h, we read:

typedef struct linker_file* linker_file_t;
...
struct linker_file {

KOBJ_FIELDS;
int refs; /* reference count */
int userrefs; /* kldload(2) count */
int flags;

#define LINKER_FILE_LINKED 0x1 /* file has been fully linked */
TAILQ_ENTRY(linker_file) link; /* list of all loaded files */
char* filename; /* file which was loaded */
int id; /* unique id */
caddr_t address; /* load address */
size_t size; /* size of file */
int ndeps; /* number of dependencies */
linker_file_t* deps; /* list of dependencies */
STAILQ_HEAD(, common_symbol) common; /* list of common symbols */
TAILQ_HEAD(, module) modules; /* modules in this file */
TAILQ_ENTRY(linker_file) loaded; /* preload dependency support */

};

This is a linked list, and we access the linkage by the standard macros. gdb doesn’t understand
these macros, of course, so we have to do things manually. The best way is to start with the pre-
processor output of the compilation of sys/kern/kern_linker.o

# cd /usr/src/sys/i386/compile/GENERIC
# make kern_linker.o
cc -c -O -pipe -mcpu=pentiumpro -Wall -Wredundant-decls -Wnested-externs -Wstrict-prot
otypes -Wmissing-prototypes -Wpointer-arith -Winline -Wcast-qual -fformat-extensions
-std=c99 -g -nostdinc -I- -I. -I../../.. -I../../../dev -I../../../contrib/dev/acpic
a -I../../../contrib/ipfilter -I../../../contrib/dev/ath -I../../../contrib/dev/ath/fr
eebsd -D_KERNEL -include opt_global.h -fno-common -finline-limit=15000 -fno-strict-ali
asing -mno-align-long-strings -mpreferred-stack-boundary=2 -ffreestanding -Werror ..
/../../kern/kern_linker.c
copy and paste into the window, then add the text in italic
# cc -c -O -pipe -mcpu=pentiumpro -Wall -Wredundant-decls -Wnested-externs -Wstrict-pr
ototypes -Wmissing-prototypes -Wpointer-arith -Winline -Wcast-qual -fformat-extensions
-std=c99 -g -nostdinc -I- -I. -I../../.. -I../../../dev -I../../../contrib/dev/acpica
-I../../../contrib/ipfilter -I../../../contrib/dev/ath -I../../../contrib/dev/ath/fre

ebsd -D_KERNEL -include opt_global.h -fno-common -finline-limit=15000 -fno-strict-alia
sing -mno-align-long-strings -mpreferred-stack-boundary=2 -ffreestanding -Werror ../..
/../kern/kern_linker.c -C -Dd -E | less

Then search through the output for linker_file (truncating lines where necessary to fit on
the page):

struct linker_file {
kobj_ops_t ops;
int refs; /* reference count */
int userrefs; /* kldload(2) count */
int flags;

#define LINKER_FILE_LINKED 0x1
struct { struct linker_file *tqe_next; struct linker_file **tqe_prev; } link;
char* filename; /* file which was loaded */
int id; /* unique id */
caddr_t address; /* load address */
size_t size; /* size of file */
int ndeps; /* number of dependencies */
linker_file_t* deps; /* list of dependencies */
struct { struct common_symbol *stqh_first; struct common_symbol **stqh_last; }
struct { struct module *tqh_first; struct module **tqh_last; } modules;
struct { struct linker_file *tqe_next; struct linker_file **tqe_prev; } loaded;
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};

With this information, we can walk through the list manually. In gdb macro form, it looks like
this:

# kldstat(8) lookalike
define kldstat

set $file = linker_files.tqh_first note $ for local variables
printf "Id Refs Address Size Name\n" no parentheses for functions
while ($file != 0)

printf "%2d %4d 0x%8x %8x %s\n", \ effectively C syntax
$file->id, \
$file->refs, \
$file->address, \
$file->size, \
$file->filename

set $file = $file->link.tqe_next note set keyword for assignments
end

end
document kldstat
Equivalent of the kldstat(8) command, without options.
end

Document the macro after its definition, not before. If you try to do it before, gdb complains
that the function doesn’t exist.

Your first attempt will almost certainly fail. To re-read the macros, use gdb’s source command:

(gdb) source .gdbinit

ps

One of the most important things you want to know is what is going on in the processor. Tradi-
tional BSD commands such as ps have options to work on a core dump for exactly this reason,
but they hav e been neglected in modern BSDs. Instead, here’s a gdb macro which does nearly
the same thing.

define ps
set $nproc = nprocs
set $aproc = allproc.lh_first
set $proc = allproc.lh_first
printf " pid proc addr uid ppid pgrp flag stat comm wchan\n"
while (--$nproc >= 0)

set $pptr = $proc.p_pptr
if ($pptr == 0)

set $pptr = $proc
end
if ($proc.p_stat)

printf "%5d %08x %08x %4d %5d %5d %06x %d %-10s ", \
$proc.p_pid, $aproc, \
$proc.p_addr, $proc.p_cred->p_ruid, $pptr->p_pid, \
$proc.p_pgrp->pg_id, $proc.p_flag, $proc.p_stat, \
&$proc.p_comm[0]

if ($proc.p_wchan)
if ($proc.p_wmesg)

printf "%s ", $proc.p_wmesg
end
printf "%x", $proc.p_wchan

end
printf "\n"
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end
set $aproc = $proc.p_list.le_next
set $proc = $aproc

end
end

This macro runs relatively slowly over a serial line, since it needs to transfer a lot of data. The
output looks like this:

(kgdb) ps
pid proc addr uid ppid pgrp flag stat comm wchan
2638 c9a53ac0 c99f7000 0 2624 2402 004004 2 find
2626 c9980f20 c99b0000 0 2614 2402 004084 3 sort piperd c95d2cc0
2625 c9a53440 c9a94000 0 2614 2402 004084 3 xargs piperd c95d3080
2624 c9a53780 c9a7d000 0 2614 2402 000084 3 sh wait c9a53780
2616 c9a535e0 c9a72000 0 2615 2402 004184 3 postdrop piperd c95d2e00
2615 c997e1a0 c9a4d000 0 2612 2402 004084 3 sendmail piperd c95d3b20
2614 c9a53e00 c9a41000 0 2612 2402 004084 3 sh wait c9a53e00
2612 c997f860 c99e8000 0 2413 2402 004084 3 sh wait c997f860
2437 c9a53c60 c9a54000 0 2432 2432 004184 3 postdrop piperd c95d34e0
2432 c997e340 c9a1d000 0 2400 2432 004084 3 sendmail piperd c95d31c0
2415 c997eb60 c9a21000 0 2414 2402 004084 3 cat piperd c95d3760
2414 c997f1e0 c99f2000 0 2404 2402 000084 3 sh wait c997f1e0
2413 c997e9c0 c9a30000 0 2404 2402 000084 3 sh wait c997e9c0
2404 c997e4e0 c9a38000 0 2402 2402 004084 3 sh wait c997e4e0

Both FreeBSD and NetBSD include some macros in the source tree. In FreeBSD you’ll find
them in /usr/src/tools/debugscripts/, and in NetBSD they’re in /usr/src/sys/gdbscripts/. Both are
good choices for examples for writing macros.
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10
Spontaneous traps

Sometimes you’ll see a backtrace like this:

Fatal trap 12: page fault while in kernel mode
fault virtual address = 0xb
fault code = supervisor write, page not present
instruction pointer = 0x8:0xdd363ccc
stack pointer = 0x10:0xdd363ca8
frame pointer = 0x10:0xdd363ce0
code segment = base 0x0, limit 0xfffff, type 0x1b

= DPL 0, pres 1, def32 1, gran 1
processor eflags = interrupt enabled, resume, IOPL = 0
current process = 64462 (emacs)
trap number = 12
panic: page fault

syncing disks... panic: bremfree: bp 0xce5f915c not locked
Uptime: 42d17h14m15s
pfs_vncache_unload(): 2 entries remaining
/dev/vmmon: Module vmmon: unloaded
Dumping 512 MB
ata0: resetting devices ..
done

This register dump looks confusing, but it doesn’t giv e very much information. It’s processor
specific, so non-Intel traps can look quite different. What we see is:

• The trap was type 12, described as page fault while in kernel mode. In kernel
mode you can’t take a page fault, so this is fatal.

• The fault virtual address is the address of the memory reference which generated the page
fault. In this case, 0xb, it’s almost certainly due to a NULL pointer dereference: a pointer
was set to 0 instead of a valid address.

• The fault code gives more information about the trap. In this case, we see that it was a write
access.

• The instruction pointer (eip) address has two parts: the segment (0x8) and the address
(0xdd363ccc). In the case of a page fault, this is the address of the instruction which
caused the fault.
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• The stack pointer (esp) and frame pointer (ebp) are of limited use. Without a processor
dump, it’s not likely to be of much use, though in this case we note that the instruction pointer
address is between the stack pointer and frame pointer address, which suggests that some-
thing has gone very wrong. The fact that the registers point to different segments is currently
not of importance in this FreeBSD dump, since the two segments overlap completely.

• The remaining information is of marginal use. We’v e already seen the trap number, and un-
der these circumstances you’d expect the panic message you see. The name of the process
may help, though in general no user process (not even Emacs) should cause a panic.

• The message syncing disks... does not belong to the register dump. But then we get a
second panic, almost certainly a result of the panic.

To find out what really went on, we need to look at the dump. Looking at the stack trace, we see:

(kgdb) bt
#0 doadump () at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/kern/kern_shutdown.c:223
#1 0xc02e238a in boot (howto=0x104)

at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/kern/kern_shutdown.c:355
#2 0xc02e25d3 in panic ()

at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/kern/kern_shutdown.c:508
#3 0xc0322407 in bremfree (bp=0xce5f915c)

at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/kern/vfs_bio.c:632
#4 0xc0324e10 in getblk (vp=0xc42e5000, blkno=0x1bde60, size=0x4000, slpflag=0x0,

slptimeo=0x0) at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/kern/vfs_bio.c:2344
#5 0xc032253a in breadn (vp=0xc42e5000, blkno=0x0, size=0x0, rablkno=0x0,

rabsize=0x0, cnt=0x0, cred=0x0, bpp=0x0)
at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/kern/vfs_bio.c:690

#6 0xc03224ec in bread (vp=0x0, blkno=0x0, size=0x0, cred=0x0, bpp=0x0)
at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/kern/vfs_bio.c:672

#7 0xc03efc46 in ffs_update (vp=0xc43fb250, waitfor=0x0)
at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/ufs/ffs/ffs_inode.c:102

#8 0xc040364f in ffs_fsync (ap=0xdd363ae0)
at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/ufs/ffs/ffs_vnops.c:315

#9 0xc04028be in ffs_sync (mp=0xc42d1200, waitfor=0x2, cred=0xc1616f00,
td=0xc0513040) at vnode_if.h:612

#10 0xc0336268 in sync (td=0xc0513040, uap=0x0)
at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/kern/vfs_syscalls.c:130

#11 0xc02e1fdc in boot (howto=0x100)
at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/kern/kern_shutdown.c:264

#12 0xc02e25d3 in panic ()
at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/kern/kern_shutdown.c:508

#13 0xc045f922 in trap_fatal (frame=0xdd363c68, eva=0x0)
at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/i386/i386/trap.c:846

#14 0xc045f602 in trap_pfault (frame=0xdd363c68, usermode=0x0, eva=0xb)
at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/i386/i386/trap.c:760

#15 0xc045f10d in trap (frame=
{tf_fs = 0x18, tf_es = 0x10, tf_ds = 0x10, tf_edi = 0xc5844a80, tf_esi = 0xdd36

3d10, tf_ebp = 0xdd363ce0, tf_isp = 0xdd363c94, tf_ebx = 0xbfbfe644, tf_edx = 0x270c,
tf_ecx = 0x0, tf_eax = 0xb, tf_trapno = 0xc, tf_err = 0x2, tf_eip = 0xdd363ccc, tf_c

s = 0x8, tf_eflags = 0x10202, tf_esp = 0xdd363ccc, tf_ss = 0x0})
at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/i386/i386/trap.c:446

#16 0xc044f3b8 in calltrap () at {standard input}:98
#17 0xc045fc2e in syscall (frame=

{tf_fs = 0x2f, tf_es = 0x2f, tf_ds = 0x2f, tf_edi = 0x827aec0, tf_esi = 0x1869d
, tf_ebp = 0xbfbfe65c, tf_isp = 0xdd363d74, tf_ebx = 0x0, tf_edx = 0x847f380, tf_ecx
= 0x0, tf_eax = 0x53, tf_trapno = 0x16, tf_err = 0x2, tf_eip = 0x284c4ff3, tf_cs = 0x
1f, tf_eflags = 0x202, tf_esp = 0xbfbfe620, tf_ss = 0x2f})

at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/i386/i386/trap.c:1035
#18 0xc044f40d in Xint0x80_syscall () at {standard input}:140

Here we have two panics, one at frame 2, the other at frame 12. If you have more than one panic,
the one lower down the stack is the important one; any others are almost certainly a consequence
of the first panic. This is also the panic that is reported in the message at the beginning: Fatal



Debugging Kernel Problems 143

trap 12: page fault while in kernel mode

Page faults aren’t always errors, of course. In userland they happen all the time, as we’ve seen in
the output from vmstat. They indicate that the program has tried to access data from an address
which doesn’t correspond to any page mapped in memory. It’s up to the VM system to decide
whether the page exists, in which case it gets it, maps it, and restarts the instruction.

In the kernel it’s simpler: the kernel isn’t pageable, so any page fault is a fatal error, and the sys-
tem panics.

Looking at the stack trace in more detail, we see that the kernel is executing a system call (frame
17). Looking at the trap summary at the beginning, we find one of the few useful pieces of infor-
mation about the environment:

current process = 64462 (emacs)

Looking at the frame, we see:

(kgdb) f 17
#17 0xc045fc2e in syscall (frame=

{tf_fs = 0x2f, tf_es = 0x2f, tf_ds = 0x2f, tf_edi = 0x827aec0, tf_esi = 0x1869d
, tf_ebp = 0xbfbfe65c, tf_isp = 0xdd363d74, tf_ebx = 0x0, tf_edx = 0x847f380, tf_ecx
= 0x0, tf_eax = 0x53, tf_trapno = 0x16, tf_err = 0x2, tf_eip = 0x284c4ff3, tf_cs = 0x
1f, tf_eflags = 0x202, tf_esp = 0xbfbfe620, tf_ss = 0x2f})

at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/i386/i386/trap.c:1035
1035 error = (*callp->sy_call)(td, args);

Which system call is this? syscall is no normal function: it’s a trap function,

(kgdb) p *callp
$1 = {

sy_narg = 0x10003,
sy_call = 0xc02ef060 <setitimer>

}

It would be tempting to think that the error occurred here: that’s where the trap frame appears to
be pointing. In fact, though, that’s not the case. Like syscall, the trap frame isn’t a real C
stack frame, and it confuses gdb, which thinks it’s part of the called function, which is hidden in
the middle. On this i386 architecture machine, the registers eip and esp of the trap frame
(frame 15) tell us where the error really occurred: eip is 0xdd363ccc, and esp is
0xdd363ccc. That’s strange. They’re both the same. That’s obviously wrong.

Looking at the code at this location, we see:

(kgdb) x/10i 0xdd363ccc
0xdd363ccc: add %al,(%eax)
0xdd363cce: add %al,(%eax)
0xdd363cd0: popf
0xdd363cd1: xchg %al,(%ecx)
0xdd363cd3: add %ch,%al
0xdd363cd5: dec %edx
0xdd363cd6: test %al,%ch
0xdd363cd8: lock pop %eax
0xdd363cda: pop %ebx
0xdd363cdb: lds 0x40c5844a(%eax),%eax

There are two strange things about this code: first, it doesn’t appear to have a symbolic name as-
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sociated with it. Normally you’d expect to see something like:

kgdb) x/10i 0xc02ef078
0xc02ef078 <setitimer+24>: inc %ebp
0xc02ef079 <setitimer+25>: fadds (%eax)
0xc02ef07b <setitimer+27>: add %al,(%eax)
0xc02ef07d <setitimer+29>: add %al,0xd76023e(%ebx)
0xc02ef083 <setitimer+35>: mov $0x16,%eax
0xc02ef088 <setitimer+40>: jmp 0xc02ef257 <setitimer+503>
0xc02ef08d <setitimer+45>: lea 0x0(%esi),%esi
0xc02ef090 <setitimer+48>: mov 0x4(%esi),%ebx
0xc02ef093 <setitimer+51>: test %ebx,%ebx
0xc02ef095 <setitimer+53>: je 0xc02ef0b9 <setitimer+89>

This code is also a long way from setitimer. In addition, the code doesn’t seem to make any
sense.

In fact, the address is well outside the bounds of kernel code:

(kgdb) kldstat
Id Refs Address Size Name
1 15 0xc0100000 53ac68 kernel
2 1 0xc4184000 5000 linprocfs.ko
3 3 0xc43c1000 17000 linux.ko
4 2 0xc422c000 a000 ibcs2.ko
5 1 0xc43d8000 3000 ibcs2_coff.ko
6 1 0xc4193000 2000 rtc.ko
7 1 0xc1ed7000 9000 vmmon_up.ko
8 1 0xc4264000 4000 if_tap.ko
9 1 0xc7a40000 4000 snd_via8233.ko
10 1 0xc7aaa000 18000 snd_pcm.ko

Clearly, any address above 0xd0000000 is not a valid code address. So somehow we’ve ended
up in the woods. How?

Things aren’t made much easier by the fact that we don’t hav e a stack frame for setitimer. It
does tell us one thing, though: things must have gone off track in setitimer itself, and not in a
function it called. Otherwise we would see the stack frame created by setitimer in the backtrace.

We obviously can’t find the stack frame from the register values saved in the trap frame, because
they’re incorrect. Instead, we need to go from the stack frame of the calling function, syscall.
Unfortunately, gdb is too stupid to be of much help here. Instead we dump the memory area in
hexadecimal:

(kgdb) i reg
eax 0x0 0x0
ecx 0x0 0x0
edx 0x0 0x0
ebx 0xbfbfe644 0xbfbfe644
esp 0xdd363884 0xdd363884
ebp 0xdd363d40 0xdd363d40
esi 0xdd363d10 0xdd363d10
edi 0xc5844a80 0xc5844a80
eip 0xc045fc2e 0xc045fc2e
...

Hmm. This is interesting: even on entry, the esp values are above 0xdd000000. Normally
they should be below the kernel text. Still, there’s memory there, so it’s not the immediate prob-
lem. The part of the stack we’re interested in is between the values of the %ebp and %esp regis-
ters. There’s quite a bit of data here:
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(kgdb) p $ebp - $esp
$5 = 0x4bc
(kgdb) p/d $ebp - $esp in decimal, overriding .gdbinit
$6 = 1212

In this case, it’s probably better to look at the code first. It starts like this:

void
syscall(frame)

struct trapframe frame;
{

caddr_t params;
struct sysent *callp;
struct thread *td = curthread;
struct proc *p = td->td_proc;
register_t orig_tf_eflags;
u_int sticks;
int error;
int narg;
int args[8];
u_int code;

We can normally look at the stack frame with info local, but in this case it doesn’t work:

(kgdb) i loc
params = 0xbfbfe624---Can’t read userspace from dump, or kernel process---

There are other ways. Normally the compiler allocates automatic variables in the order in which
they appear in the source, but there are exceptions: it can allocate them to registers, in which case
they don’t appear on the stack at all, or it can optimize the layout to reduce stack usage. In this
case, we have to check them all:

(kgdb) p &params
$7 = (char **) 0xdd363d08
(kgdb) p &callp
$8 = (struct sysent **) 0xdd363d04
(kgdb) p &td
Can’t take address of "td" which isn’t an lvalue.
(kgdb) p &p
Can’t take address of "p" which isn’t an lvalue.
(kgdb) p &orig_tf_eflag
$9 = (register_t *) 0xdd363d00
(kgdb) p &sticks
$10 = (u_int *) 0xdd363cfc
(kgdb) p &error
Can’t take address of "error" which isn’t an lvalue.
(kgdb) p &narg
$11 = (int *) 0xdd363cf8
(kgdb) p &args
$12 = (int (*)[8]) 0xdd363d10
(kgdb) p &code
$13 = (u_int *) 0xdd363d0c

The error message Can’t take address indicates that the compiler has allocated a register
for this value. Interestingly, the last automatic variables are args and code, but they hav e
been assigned the highest addresses. The lowest stack address is of narg, 0xdd363cf8.
That’s where we need to look. Below that on the stack we may find temporary storage, but be-
low that we should find the two parameters for the syscall function, followed (in descending or-
der) by the return address (0xc045fc2e). The return address is particularly useful because we
can use it to locate the stack frame in the first place.
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It would be nice to be able to dump memory backwards, but that’s not possible. How far down
the stack should we go? One way is to look at the stack frame of the next function. We hav e that
in frame 15: the esp is 0xdd363ccc. That’s not so far down, so let’s see what we find:

(kgdb) x/20x 0xdd363cc0
0xdd363cc0: 0xc5844ae8 0x00000000 0x00000000 0x00000000
0xdd363cd0: 0x0001869d 0xc5844ae8 0xc55b58f0 0xc5844a80
0xdd363ce0: 0xdd363d40 0xc045fc2e 0xc55b58f0 0xdd363d10
0xdd363cf0: 0xc04de816 0x00000409 0x00000003 0x00009a8d

When dumping data in this format, it’s a good idea to start with an address with the last (hex)
digit 0; otherwise it’s easy to get confused about the address of each word.

We find our return address at 0xdd363ce4. That means that the words at 0xdd363ce8 and
0xdd363cec are the parameters, so there are apparently two words of temporary storage on the
stack.

It’s worth looking at the parameters. Again, the call is:

1035 error = (*callp->sy_call)(td, args);

So we’d expect to see the value of td in location 0xdd363ce8, and the value of args in lo-
cation 0xdd363cec. Well, &args is really in 0xdd363cec, but the value of td is

(kgdb) p td
$1 = (struct thread *) 0xdd363d10

Look familiar? That’s the value of args. This is supposed to be a kernel thread descriptor, so
the address on the local stack has to be wrong. There are a number of ways this could have hap-
pened:

• The variable may no longer be needed, so it could have been optimized away. This is unlike-
ly here, since we’ve only just used it to call a function. We don’t seem to have returned from
the function, so there was no time for the calling function to reuse the storage space.

• Maybe the value was correct, but the called function could have changed the value of the
copy of the value passed as an argument. This is possible, but it’s pretty rare that a function
changes the value of the arguments passed to it.

• Maybe a random pointer bug resulted in the value of td being overwritten by the called
function or one of the functions that called it.

Which is it? Let’s look at what might have happened in setitimer. Where is it? gdb lists it
for you, but it doesn’t tell you where it is:

(kgdb) l setitimer
455 /* ARGSUSED */
456 int
457 setitimer(struct thread *td, struct setitimer_args *uap)
458 {
459 struct proc *p = td->td_proc;
460 struct itimerval aitv;
461 struct timeval ctv;
462 struct itimerval *itvp;
463 int s, error = 0;
464
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465 if (uap->which > ITIMER_PROF)
466 return (EINVAL);
467 itvp = uap->itv;
468 if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
469 return (error);
470
471 mtx_lock(&Giant);
472
473 if ((uap->itv = uap->oitv) &&
474 (error = getitimer(td, (struct getitimer_args *)uap))) {
475 goto done2;
476 }
477 if (itvp == 0) {
478 error = 0;
479 goto done2;
480 }
481 if (itimerfix(&aitv.it_value)) {
482 error = EINVAL;

It doesn’t tell you where it is, though; you can fake that by setting a breakpoint on the function.
Never mind that you can’t use the breakpoint; at least it tells you where it is:

(kgdb) b setitimer
Breakpoint 1 at 0xc02ef072: file /usr/src/sys/kern/kern_time.c, line 459.

The most interesting things to look at here are the automatic variables: we can try to find them on
the stack. Unfortunately, since gdb doesn’t recognize the stack frame for the function, we can’t
get much help from it. Doing it manually can be cumbersome: we have two ints (easy), two
struct pointers (not much more difficult) and two structs, for which we need to find the
sizes. Using etags, we find:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */

};
(another file)
struct timeval { int i; };

So our struct timeval is 4 bytes long, and struct itimerval is 8 bytes long. That
makes a total of 28 bytes on the stack. Looking at the assembler code, however, we see:

(kgdb) x/10i setitimer
0xc02ef060 <setitimer>: push %ebp
0xc02ef061 <setitimer+1>: mov %esp,%ebp
0xc02ef063 <setitimer+3>: sub $0x38,%esp

That’s our standard prologue, alright, but it’s reserving 0x38 or 56 bytes of local storage, twice
what we need for the automatic variables. Probably the compiler’s using them for other purpos-
es, but it could also mean that the variables aren’t where we think they are. In fact, as the code
continues, we see this to be true:

0xc02ef066 <setitimer+6>: mov %ebx,0xfffffff4(%ebp)
0xc02ef069 <setitimer+9>: mov %esi,0xfffffff8(%ebp)
0xc02ef06c <setitimer+12>: mov %edi,0xfffffffc(%ebp)

In other words, it’s saving the registers ebx, esi and edi on the stack immediately below the
stack frame. That accounts for 12 further words. It also gives us a chance to check whether we
know what the contents were. This will give us some confirmation that we’re on the right track.
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We call setitimer from this line:

1035 error = (*callp->sy_call)(td, args);
(kgdb) i li 1035 get info about the instruction addresses
Line 1035 of "/src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/i386/i386/trap.c"

starts at address 0xc045fc1e <syscall+638> and ends at 0xc045fc30 <syscall+656>.
(kgdb) x/10i 0xc045fc1e look at the code
0xc045fc1e <syscall+638>: mov %esi,(%esp,1)
0xc045fc21 <syscall+641>: lea 0xffffffd0(%ebp),%eax
0xc045fc24 <syscall+644>: mov %eax,0x4(%esp,1)
0xc045fc28 <syscall+648>: mov 0xffffffc4(%ebp),%edx
0xc045fc2b <syscall+651>: call *0x4(%edx)

This code is confusing because some instructions us ebp relative addressing, and others use
esp relative addressing. We know what the contents of the ebp and esp registers were when
these instructions were executed: ebp is saved on the stack at location 0xdd363ce0: it’s
0xdd363d40. At the start of the instruction sequence, esp is pointing to the location above
the return address, 0xdd363ce8:

0xdd363cc0: 0xc5844ae8 0x00000000 0x00000000 0x00000000
0xdd363cd0: 0x0001869d 0xc5844ae8 0xc55b58f0 0xc5844a80
0xdd363ce0: 0xdd363d40 0xc045fc2e

esp 0xc55b58f0 0xdd363d10
0xdd363cf0: 0xc04de816 0x00000409 0x00000003 0x00009a8d
0xdd363d00: 0x00000202 0xc05134f8 0xbfbfe624 0x00000053
0xdd363d10: 0x00000000 0x00000000 0x00000000 0x00009a8d
0xdd363d20: 0x00000000 0xc55ba9a0 0xc1619500 0x00000001
0xdd363d30: 0x0fffffff 0x00000000 0x0001869d 0x0827aec0
0xdd363d40:

ebp 0xbfbfe65c 0xc044f40d 0x0000002f 0x0000002f
0xdd363d50: 0x0000002f 0x0827aec0 0x0001869d 0xbfbfe65c

Looking at these instructions one by one, we see:

0xc045fc1e <syscall+638>: mov %esi,(%esp,1)

This moves the value in the esi register to location 0xdd363ce8. This is the first parameter,
td.

0xc045fc21 <syscall+641>: lea 0xffffffd0(%ebp),%eax

This loads the effective address (lea) of offset -0x30 from the ebp register contents, address
0xdd363d10, into register eax. This data is in the calling function’s local stack frame. Cur-
rently it’s 0, though it may not have been at the time.

0xc045fc24 <syscall+644>: mov %eax,0x4(%esp,1)

This stores register eax at 4 from the esp register contents, address 0xdd363cec. This is
the second parameter to the function call, args. We can confirm that by looking at the local
variables we printed out before:

(kgdb) p &args
$12 = (int (*)[8]) 0xdd363d10

As a result, we’d expect the contents of location 0xdd363cec to contain 0xdd363d10, which
it does.
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0xc045fc28 <syscall+648>: mov 0xffffffc4(%ebp),%edx
0xc045fc2b <syscall+651>: call *0x4(%edx)

This loads the contents of the storage location at offset -0x3c from the contents of the ebp into
the edx register. Register ebp contains 0xdd363d40, so we load edx from location
0xdd363d04. Again, we confirm with the locations we printed out before:

(kgdb) p &callp
$8 = (struct sysent **) 0xdd363d04

Finally, this instruction:

1035 error = (*callp->sy_call)(td, args);

calls the function whose address is at offset 4 from where edx. It’s pretty clear that this worked,
since we ended up in the correct function.

Where we are now
We’v e now found our way to the function call. We know that we the call was effectively:

setitimer (0xc55b58f0, 0xdd363d10)

We still haven’t found out what happened, so the next thing to look at is the called function,
setitimer.

Entering setitimer

On entering setitimer, we see:

int
setitimer(struct thread *td, struct setitimer_args *uap)
{

struct proc *p = td->td_proc;
struct itimerval aitv;
struct timeval ctv;
struct itimerval *itvp;
int s, error = 0;

if (uap->which > ITIMER_PROF)
return (EINVAL);

itvp = uap->itv;
if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))

return (error);

mtx_lock(&Giant);

if ((uap->itv = uap->oitv) &&
(error = getitimer(td, (struct getitimer_args *)uap))) {

goto done2;
}
if (itvp == 0) {

error = 0;
goto done2;

}
if (itimerfix(&aitv.it_value)) {

error = EINVAL;
goto done2;
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}
if (!timevalisset(&aitv.it_value)) {

timevalclear(&aitv.it_interval);
} else if (itimerfix(&aitv.it_interval)) {

error = EINVAL;
goto done2;

}
s = splclock(); /* XXX: still needed ? */
if (uap->which == ITIMER_REAL) {

if (timevalisset(&p->p_realtimer.it_value))
callout_stop(&p->p_itcallout);

if (timevalisset(&aitv.it_value))
callout_reset(&p->p_itcallout, tvtohz(&aitv.it_value),

realitexpire, p);
getmicrouptime(&ctv);
timevaladd(&aitv.it_value, &ctv);
p->p_realtimer = aitv;

} else {
p->p_stats->p_timer[uap->which] = aitv;

}
splx(s);

done2:
mtx_unlock(&Giant);
return (error);

}

The first code to be executed is the function prologue:

(kgdb) x/200i setitimer
prologue
0xc02ef060 <setitimer>: push %ebp save ebp
0xc02ef061 <setitimer+1>: mov %esp,%ebp and create a new stack frame
0xc02ef063 <setitimer+3>: sub $0x38,%esp make space on stack
0xc02ef066 <setitimer+6>: mov %ebx,0xfffffff4(%ebp) save ebx
0xc02ef069 <setitimer+9>: mov %esi,0xfffffff8(%ebp) save esi
0xc02ef06c <setitimer+12>: mov %edi,0xfffffffc(%ebp) save edi

After executing the prologue, then, we’d expect to see the esp value to be 0x38 lower than the
ebp value. It doesn’t hav e to stay that way, but it shouldn’t be any higher. The trap message
shows the values:

stack pointer = 0x10:0xdd363ca8
frame pointer = 0x10:0xdd363ce0

That looks fine: the difference is the expected value of 0x38. But looking at the trap frame in
the backtrace, we see:

#15 0xc045f10d in trap (frame=
{tf_fs = 0x18, tf_es = 0x10, tf_ds = 0x10, tf_edi = 0xc5844a80,
tf_esi = 0xdd363d10, tf_ebp = 0xdd363ce0, tf_isp = 0xdd363c94,
tf_ebx = 0xbfbfe644, tf_edx = 0x270c, tf_ecx = 0x0, tf_eax = 0xb,
tf_trapno = 0xc, tf_err = 0x2, tf_eip = 0xdd363ccc, tf_cs = 0x8,
tf_eflags = 0x10202, tf_esp = 0xdd363ccc, tf_ss = 0x0})

at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/i386/i386/trap.c:446

What’s wrong there? If you look at the function trap_fatal, conveniently in the same file as
syscall, /sys/i386/i386/trap.c, we see that it’s trap_fatal which prints out the values:

static void
trap_fatal(frame, eva)

struct trapframe *frame;
vm_offset_t eva;
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{
int code, type, ss, esp;
struct soft_segment_descriptor softseg;

...
printf("instruction pointer = 0x%x:0x%x\n",

frame->tf_cs & 0xffff, frame->tf_eip);
if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {

ss = frame->tf_ss & 0xffff;
esp = frame->tf_esp;

} else {
ss = GSEL(GDATA_SEL, SEL_KPL);
esp = (int)&frame->tf_esp;

}
printf("stack pointer = 0x%x:0x%x\n", ss, esp);
printf("frame pointer = 0x%x:0x%x\n", ss, frame->tf_ebp);

The parameter frame is the same frame that we’ve been looking at:

(kgdb) f 15
#15 0xc045f10d in trap (frame=

{tf_fs = 0x18, tf_es = 0x10, tf_ds = 0x10, tf_edi = 0xc5844a80, tf_esi = 0xdd36
3d10, tf_ebp = 0xdd363ce0, tf_isp = 0xdd363c94, tf_ebx = 0xbfbfe644, tf_edx = 0x270c,
tf_ecx = 0x0, tf_eax = 0xb, tf_trapno = 0xc, tf_err = 0x2, tf_eip = 0xdd363ccc, tf_c

s = 0x8, tf_eflags = 0x10202, tf_esp = 0xdd363ccc, tf_ss = 0x0})
at /src/FreeBSD/5-CURRENT-WANTADILLA/src/sys/i386/i386/trap.c:446

446 (void) trap_pfault(&frame, FALSE, eva);
Current language: auto; currently c
(kgdb) p &frame
$10 = (struct trapframe *) 0xdd363c68

Looking at the code, it’s not surprising that the values of eip and ebp agree with what’s in the
trap frame. But what about esp? trap_fatal calculates that itself. Why does it do so, and
why does it come to a different value? The test is:

if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {

The first test checks whether the saved code segment (cs) is a user code segment (the lowest two
bits are 3). We hav e:

(kgdb) p frame->tf_cs
$12 = 0x8

So it’s not that. The second one checks whether we’re running in virtual 8086 mode, as signaled
by the PSL_VM bit in the saved eflags value (see sys/i386/include/psl.h). That’s not the case
either:

(kgdb) p frame->tf_eflags
$13 = 0x10202

This is probably the normal case: instead of saved contents of esp value, it uses the address of
the saved contents.



152 Debugging Kernel Problems

Summary

Working through a dump like this is an open-ended matter. It’s nev er certain whether continuing
will find something or not. This example shows a relatively painful trace through a processor
dump. Will we find any more? It’s uncertain. The dump came from a system with known hard-
ware problems, so it’s quite possible that all that can be found is just what kind of problem oc-
curred.
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NAME
ddb — interactive kernel debugger

SYNOPSIS
options DDB

To prevent activation of the debugger on kernel panic(9):
options KDB_UNATTENDED

DESCRIPTION
The ddb kernel debugger has most of the features of the old kdb, but with a more rational syntax inspired by
gdb(1). If linked into the running kernel, it can be invoked locally with the debug keymap(5) action. The
debugger is also invoked on kernel panic(9) if the debug.debugger_on_panic sysctl(8) MIB variable is
set non-zero, which is the default unless the KDB_UNATTENDED option is specified.

The current location is called ‘dot’. The ‘dot’ is displayed with a hexadecimal format at a prompt. Examine
and write commands update ‘dot’ to the address of the last line examined or the last location modified, and
set ‘next’ to the address of the next location to be examined or changed. Other commands do not change
‘dot’, and set ‘next’ to be the same as ‘dot’.

The general command syntax is: command[/modifier] address[,count]

A blank line repeats the previous command from the address ‘next’ with count 1 and no modifiers. Specify-
ing address sets ‘dot’ to the address. Omitting address uses ‘dot’. A missing count is taken to be 1
for printing commands or infinity for stack traces.

The ddb debugger has a feature like the more(1) command for the output. If an output line exceeds the
number set in the $lines variable, it displays “--db_more--” and waits for a response. The valid responses
for it are:

SPC one more page
RET one more line
q abort the current command, and return to the command input mode

Finally, ddb provides a small (currently 10 items) command history, and offers simple emacs-style command
line editing capabilities. In addition to the emacs control keys, the usual ANSI arrow keys might be used to
browse through the history buffer, and move the cursor within the current line.

COMMANDS
examine

x
Display the addressed locations according to the formats in the modifier. Multiple modifier formats display
multiple locations. If no format is specified, the last formats specified for this command is used.

The format characters are:
b look at by bytes (8 bits)
h look at by half words (16 bits)
l look at by long words (32 bits)
a print the location being displayed
A print the location with a line number if possible
x display in unsigned hex
z display in signed hex
o display in unsigned octal
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d display in signed decimal
u display in unsigned decimal
r display in current radix, signed
c display low 8 bits as a character. Non-printing characters are displayed as an octal escape code

(e.g., ‘\000’).
s display the null-terminated string at the location. Non-printing characters are displayed as octal

escapes.
m display in unsigned hex with character dump at the end of each line. The location is also displayed

in hex at the beginning of each line.
i display as an instruction
I display as an instruction with possible alternate formats depending on the machine:

alpha Show the registers of the instruction.
amd64 No alternate format.
i386 No alternate format.
ia64 No alternate format.
powerpc No alternate format.
sparc64 No alternate format.

xf
Examine forward: Execute an examine command with the last specified parameters to it except that the next
address displayed by it is used as the start address.

xb
Examine backward: Execute an examine command with the last specified parameters to it except that the last
start address subtracted by the size displayed by it is used as the start address.

print[/acdoruxz]
Print addrs according to the modifier character (as described above for examine). Valid formats are: a, x,
z, o, d, u, r, and c. If no modifier is specified, the last one specified to it is used. addr can be a string, in
which case it is printed as it is. For example:

print/x "eax = " $eax "\necx = " $ecx "\n"

will print like:

eax = xxxxxx
ecx = yyyyyy

write[/bhl] addr expr1 [expr2 ...]
Write the expressions specified after addr on the command line at succeeding locations starting with addr
The write unit size can be specified in the modifier with a letter b (byte), h (half word) or l (long word)
respectively. If omitted, long word is assumed.

Warning: since there is no delimiter between expressions, strange things may happen. It is best to enclose
each expression in parentheses.

set $variable [=] expr
Set the named variable or register with the value of expr. Valid variable names are described below.

break[/u]
Set a break point at addr. If count is supplied, continues count - 1 times before stopping at the break
point. If the break point is set, a break point number is printed with ‘#’. This number can be used in delet-
ing the break point or adding conditions to it.

If the u modifier is specified, this command sets a break point in user space address. Without the u option,
the address is considered in the kernel space, and wrong space address is rejected with an error message.
This modifier can be used only if it is supported by machine dependent routines.
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Warning: If a user text is shadowed by a normal user space debugger, user space break points may not work
correctly. Setting a break point at the low-level code paths may also cause strange behavior.

delete addr

delete #number
Delete the break point. The target break point can be specified by a break point number with #, or by using
the same addr specified in the original break command.

step[/p]
Single step count times (the comma is a mandatory part of the syntax). If the p modifier is specified, print
each instruction at each step. Otherwise, only print the last instruction.

Warning: depending on machine type, it may not be possible to single-step through some low-level code
paths or user space code. On machines with software-emulated single-stepping (e.g., pmax), stepping
through code executed by interrupt handlers will probably do the wrong thing.

continue[/c]
Continue execution until a breakpoint or watchpoint. If the c modifier is specified, count instructions while
executing. Some machines (e.g., pmax) also count loads and stores.

Warning: when counting, the debugger is really silently single-stepping. This means that single-stepping on
low-level code may cause strange behavior.

until[/p]
Stop at the next call or return instruction. If the p modifier is specified, print the call nesting depth and the
cumulative instruction count at each call or return. Otherwise, only print when the matching return is hit.

next[/p]

match[/p]
Stop at the matching return instruction. If the p modifier is specified, print the call nesting depth and the
cumulative instruction count at each call or return. Otherwise, only print when the matching return is hit.

trace[/u] [frame] [,count]
Stack trace. The u option traces user space; if omitted, trace only traces kernel space. count is the num-
ber of frames to be traced. If count is omitted, all frames are printed.

Warning: User space stack trace is valid only if the machine dependent code supports it.

search[/bhl] addr value [mask] [,count]
Search memory for value. This command might fail in interesting ways if it does not find the searched-for
value. This is because ddb does not always recover from touching bad memory. The optional count argu-
ment limits the search.

show all procs[/m]

ps[/m]
Display all process information. The process information may not be shown if it is not supported in the
machine, or the bottom of the stack of the target process is not in the main memory at that time. The m modi-
fier will alter the display to show VM map addresses for the process and not show other info.

show registers[/u]
Display the register set. If the u option is specified, it displays user registers instead of kernel or currently
saved one.

Warning: The support of the u modifier depends on the machine. If not supported, incorrect information
will be displayed.
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show map[/f] addr
Prints the VM map at addr. If the f modifier is specified the complete map is printed.

show object[/f] addr
Prints the VM object at addr. If the f option is specified the complete object is printed.

show watches
Displays all watchpoints.

reset
Hard reset the system.

watch addr,size
Set a watchpoint for a region. Execution stops when an attempt to modify the region occurs. The size
argument defaults to 4. If you specify a wrong space address, the request is rejected with an error message.

Warning: Attempts to watch wired kernel memory may cause unrecoverable error in some systems such as
i386. Watchpoints on user addresses work best.

hwatch addr,size
Set a hardware watchpoint for a region if supported by the architecture. Execution stops when an attempt to
modify the region occurs. The size argument defaults to 4.

Warning: The hardware debug facilities do not have a concept of separate address spaces like the watch
command does. Use hwatch for setting watchpoints on kernel address locations only, and avoid its use on
user mode address spaces.

dhwatch addr,size
Delete specified hardware watchpoint.

gdb
Toggles between remote GDB and DDB mode. In remote GDB mode, another machine is required that runs
gdb(1) using the remote debug feature, with a connection to the serial console port on the target machine.
Currently only available on the i386 and Alpha architectures.

help
Print a short summary of the available commands and command abbreviations.

VARIABLES
The debugger accesses registers and variables as $name. Register names are as in the “show
registers” command. Some variables are suffixed with numbers, and may have some modifier following
a colon immediately after the variable name. For example, register variables can have a u modifier to indi-
cate user register (e.g., $eax:u).

Built-in variables currently supported are:
radix Input and output radix
maxoff Addresses are printed as ’symbol’+offset unless offset is greater than maxoff.
maxwidth The width of the displayed line.
lines The number of lines. It is used by “more” feature.
tabstops Tab stop width.
workxx Work variable. xx can be 0 to 31.

EXPRESSIONS
Almost all expression operators in C are supported except ‘˜’, ‘ˆ’, and unary ‘&’. Special rules in ddb are:

Identifiers The name of a symbol is translated to the value of the symbol, which is the address of the corre-
sponding object. ‘.’ and ‘:’ can be used in the identifier. If supported by an object format
dependent routine, [filename:]func:lineno, [filename:]variable, and [filename:]lineno can be
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accepted as a symbol.

Numbers Radix is determined by the first two letters: 0x: hex, 0o: octal, 0t: decimal; otherwise, follow
current radix.

. ‘dot’

+ ‘next’

.. address of the start of the last line examined. Unlike ‘dot’ or ‘next’, this is only changed by
“examine” or “write” command.

’ last address explicitly specified.

$variable Translated to the value of the specified variable. It may be followed by a : and modifiers as
described above.

a#b a binary operator which rounds up the left hand side to the next multiple of right hand side.

∗expr indirection. It may be followed by a ‘’: and modifiers as described above.

HINTS
On machines with an ISA expansion bus, a simple NMI generation card can be constructed by connecting a
push button between the A01 and B01 (CHCHK# and GND) card fingers. Momentarily shorting these two
fingers together may cause the bridge chipset to generate an NMI, which causes the kernel to pass control to
ddb. Some bridge chipsets do not generate a NMI on CHCHK#, so your mileage may vary. The NMI
allows one to break into the debugger on a wedged machine to diagnose problems. Other bus’ bridge
chipsets may be able to generate NMI using bus specific methods.

SEE ALSO
gdb(1)

HISTORY
The ddb debugger was developed for Mach, and ported to 386BSD 0.1. This manual page translated from
−man macros by Garrett Wollman.
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NAME
ddb − in-kernel debugger

SYNOPSIS
options DDB

To enable history editing:
options DDB_HISTORY_SIZE=integer

To disable entering ddb upon kernel panic:
options DDB_ONPANIC=0

DESCRIPTION
ddb is the in-kernel debugger. It may be entered at any time via a special key sequence, and optionally may
be invoked when the kernel panics.

ENTERING THE DEBUGGER
Unless DDB_ONPANIC is set to 0, ddb will be activated whenever the kernel would otherwise panic.

ddb may also be activated from the console. In general, sending a break on a serial console will activate .
There are also key sequences for each port that will activate ddb from the keyboard:

alpha <Ctrl>-<Alt>-<Esc> on PC style keyboards.
amiga <LAlt>-<LAmiga>-<F10>
atari <Alt>-<LeftShift>-<F9>
hp300 <Shift>-<Reset>
hpcmips <Ctrl>-<Alt>-<Esc>
hpcsh <Ctrl>-<Alt>-<Esc>
i386 <Ctrl>-<Alt>-<Esc>

<Break> on serial console.
mac68k <Command>-<Power>, or the Interrupt switch.
macppc Some models: <Command>-<Option>-<Power>
mvme68k Abort switch on CPU card.
pmax <Do> on LK-201 rcons console.

<Break> on serial console.
sparc <L1>-A, or <Stop>-A on a Sun keyboard.

<Break> on serial console.
sun3 <L1>-A, or <Stop>-A on a Sun keyboard.

<Break> on serial console.
sun3x <L1>-A, or <Stop>-A on a Sun keyboard.

<Break> on serial console.
x68k Interrupt switch on the body.

In addition, ddb may be explicitly activated by the debugging code in the kernel if DDB is configured.

COMMAND SYNTAX
The general command syntax is:

command[/modifier] address [,count]

The current memory location being edited is referred to as dot, and the next location is next. They are dis-
played as hexadecimal numbers.

Commands that examine and/or modify memory update dot to the address of the last line examined or the
last location modified, and set next to the next location to be examined or modified. Other commands don’t
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change dot, and set next to be the same as dot.

A blank line repeats the previous command from the address next with the previous count and no modi-
fiers. Specifying address sets dot to the address. If address is omitted, dot is used. A missing count
is taken to be 1 for printing commands, and infinity for stack traces.

The syntax:

,count

repeats the previous command, just as a blank line does, but with the specified count.

ddb has a more(1)-like functionality; if a number of lines in a command’s output exceeds the number de-
fined in the lines variable, then ddb displays ‘‘--db more--’’ and waits for a response, which may be one of:

<return> one more line.

<space> one more page.

q abort the current command, and return to the command input mode.

If ddb history editing is enabled (by defining the
options DDB_HISTORY_SIZE=num

kernel option), then a history of the last num commands is kept. The history can be manipulated with the
following key sequences:

<Ctrl>-P retrieve previous command in history (if any).

<Ctrl>-N retrieve next command in history (if any).

COMMANDS
ddb supports the following commands:

!address[(expression[,...])]
A synonym for call.

break[/u] address[,count]
Set a breakpoint at address. If count is supplied, continues (count-1 ) times before stopping at
the breakpoint. If the breakpoint is set, a breakpoint number is printed with ‘#’. This number can be
used to delete the breakpoint, or to add conditions to it.

If /u is specified, set a breakpoint at a user-space address. Without /u, address is considered to
be in the kernel-space, and an address in the wrong space will be rejected, and an error message will
be emitted. This modifier may only be used if it is supported by machine dependent routines.

Warning: if a user text is shadowed by a normal user-space debugger, user-space breakpoints may not
work correctly. Setting a breakpoint at the low-level code paths may also cause strange behavior.

bt[/u] [frame-address][,count]
A synonym for trace.

bt/t [pid][,count]
A synonym for trace.

call address[(expression[,...])]
Call the function specified by address with the argument(s) listed in parentheses. Parentheses

may be omitted if the function takes no arguments. The number of arguments is currently limited to
10.
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continue[/c]
Continue execution until a breakpoint or watchpoint. If /c is specified, count instructions while ex-
ecuting. Some machines (e.g., pmax) also count loads and stores.

Warning: when counting, the debugger is really silently single-stepping. This means that single-step-
ping on low-level may cause strange behavior.

delete address | #number
Delete a breakpoint. The target breakpoint may be specified by address, as per break, or by the
breakpoint number returned by break if it’s prefixed with ‘#’.

dmesg [count]
Prints the contents of the kernel message buffer. The optional count argument will limit printing to
at most the last count bytes of the message buffer.

dwatch address
Delete the watchpoint at address that was previously set with watch command.

examine[/modifier] address[,count]
Display the address locations according to the format in modifier. Multiple modifier formats dis-
play multiple locations. If modifier isn’t specified, the modifier from the last use of examine is
used.

The valid format characters for modifier are:
b examine bytes (8 bits).
h examine half-words (16 bits).
l examine words (legacy ‘‘long’’, 32 bits).
L examine long words (implementation dependent)
a print the location being examined.
A print the location with a line number if possible.
x display in unsigned hex.
z display in signed hex.
o display in unsigned octal.
d display in signed decimal.
u display in unsigned decimal.
r display in current radix, signed.
c display low 8 bits as a character. Non-printing characters as displayed as an octal escape

code (e.g., ‘\000’).
s display the NUL terminated string at the location. Non-printing characters are displayed

as octal escapes.
m display in unsigned hex with a character dump at the end of each line. The location is dis-

played as hex at the beginning of each line.
i display as a machine instruction.
I display as a machine instruction, with possible alternative formats depending upon the

machine:
alpha print register operands
m68k use Motorola syntax
pc532 print instruction bytes in hex
vax don’t assume that each external label is a procedure entry mask

kill pid[,signal_number]
Send a signal to the process specified by the pid. Note that pid is interpreted using the current
radix (see trace/t command for details). If signal_number isn’t specified, the SIGTERM sig-
nal is sent.
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match[/p]
A synonym for next.

next[/p]
Stop at the matching return instruction. If /p is specified, print the call nesting depth and the cumu-
lative instruction count at each call or return. Otherwise, only print when the matching return is hit.

print[/axzodurc] address [address ...]
Print addresses address according to the modifier character, as per examine. Valid modifiers are:
/a, /x, /z, /o, /d, /u, /r, and /c (as per examine). If no modifier is specified, the most recent
one specified is used. address may be a string, and is printed ‘‘as-is’’. For example:

print/x "eax = " $eax "\necx = " $ecx "\n"

will produce:

eax = xxxxxx
ecx = yyyyyy

ps[/a][/n][/w]
A synonym for show all procs.

reboot [flags]
Reboot, using the optionally supplied boot flags.

Note: Limitations of the command line interface preclude specification of a boot string.

search[/bhl] address value [mask] [,count]
Search memory from address for value. The unit size is specified with a modifier character, as
per examine. Valid modifiers are: /b, /h, and /l. If no modifier is specified, /l is used.

This command might fail in interesting ways if it doesn’t find value. This is because ddb doesn’t
always recover from touching bad memory. The optional count limits the search.

set $variable [=] expression
Set the named variable or register to the value of expression. Valid variable names are described
in VARIABLES.

show all procs[/a][/n][/w]
Display all process information. Valid modifiers:

/n show process information in a ps(1) style format (this is the default). Information printed in-
cludes: process ID, parent process ID, process group, UID, process status, process flags, process
command name, and process wait channel message.

/a show the kernel virtual addresses of each process’ proc structure, u-area, and vmspace structure.
The vmspace address is also the address of the process’ vm_map structure, and can be used in
the show map command.

/w show each process’ PID, command, system call emulation, wait channel address, and wait chan-
nel message.

show breaks
Display all breakpoints.

show buf[/f] address
Print the struct buf at address. The /f does nothing at this time.
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show event[/f]
Print all the non-zero evcnt(9) event counters. If /f is specified, all event counters with a count of
zero are printed as well.

show map[/f] address
Print the vm_map at address. If /f is specified, the complete map is printed.

show ncache address
Dump the namecache list associated with vnode at address.

show object[/f] address
Print the vm_object at address. If /f is specified, the complete object is printed.

show page[/f] address
Print the vm_page at address. If /f is specified, the complete page is printed.

show pool[/clp] address
Print the pool at address. Valid modifiers:
/c Print the cachelist and its statistics for this pool.
/l Print the log entries for this pool.
/p Print the pagelist for this pool.

show registers[/u]
Display the register set. If /u is specified, display user registers instead of kernel registers or the cur-
rently save one.

Warning: support for /u is machine dependent. If not supported, incorrect information will be dis-
played.

show uvmexp
Print a selection of UVM counters and statistics.

show vnode[/f] address
Print the vnode at address. If /f is specified, the complete vnode is printed.

show watches
Display all watchpoints.

sifting[/F] string
Search the symbol tables for all symbols of which string is a substring, and display them. If /F is
specified, a character is displayed immediately after each symbol name indicating the type of symbol.

For a.out(5)-format symbol tables, absolute symbols display @, text segment symbols display ∗,
data segment symbols display +, BSS segment symbols display -, and filename symbols display /. For
ELF-format symbol tables, object symbols display +, function symbols display ∗, section symbols
display , and file symbols display /.

To sift for a string beginning with a number, escape the first character with a backslash as:

sifting \386

step[/p] [,count]
Single-step count times. If /p is specified, print each instruction at each step. Otherwise, only
print the last instruction.

Warning: depending on the machine type, it may not be possible to single-step through some low-lev-
el code paths or user-space code. On machines with software-emulated single-stepping (e.g., pmax),
stepping through code executed by interrupt handlers will probably do the wrong thing.
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sync Force a crash dump, and then reboot.

trace [/u[l]] [frame-address][,count]
Stack trace from frame-address. If /u is specified, trace user-space, otherwise trace kernel-
space. count is the number of frames to be traced. If count is omitted, all frames are printed. If
/l is specified, the trace is printed and also stored in the kernel message buffer.

Warning: user-space stack trace is valid only if the machine dependent code supports it.

trace/t[l] [pid][,count]
Stack trace by ‘‘thread’’ (process, on NetBSD) rather than by stack frame address. Note that pid is
interpreted using the current radix, whilst ps displays pids in decimal; prefix pid with ‘0t’ to force it
to be interpreted as decimal (see VARIABLES section for radix). If /l is specified, the trace is
printed and also stored in the kernel message buffer.

Warning: trace by pid is valid only if the machine dependent code supports it.

until[/p]
Stop at the next call or return instruction. If /p is specified, print the call nesting depth and the cu-
mulative instruction count at each call or return. Otherwise, only print when the matching return is
hit.

watch address[,size]
Set a watchpoint for a region. Execution stops when an attempt to modify the region occurs. size
defaults to 4.

If you specify a wrong space address, the request is rejected with an error message.

Warning: attempts to watch wired kernel memory may cause an unrecoverable error in some systems
such as i386. Watchpoints on user addresses work the best.

write[/bhl] address expression [expression ...]
Write the expressions at succeeding locations. The unit size is specified with a modifier charac-
ter, as per examine. Valid modifiers are: /b, /h, and /l. If no modifier is specified, /l is used.

Warning: since there is no delimiter between expressions, strange things may occur. It’s best to
enclose each expression in parentheses.

x[/modifier] address[,count]
A synonym for examine.

MACHINE-SPECIFIC COMMANDS
The "glue" code that hooks ddb into the NetBSD kernel for any giv en port can also add machine specific
commands to the ddb command parser. All of these commands are preceded by the command word
machine to indicate that they are part of the machine-specific command set (e.g. machine reboot).
Some of these commands are:

ALPHA
halt Call the PROM monitor to halt the CPU.
reboot Call the PROM monitor to reboot the CPU.

ARM32
vmstat Equivalent to vmstat(1) output with "-s" option (statistics).
vnode Print out a description of a vnode.
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intrchain Print the list of IRQ handlers.
panic Print the current "panic" string.
frame Given a trap frame address, print out the trap frame.

MIPS
kvtop Print the physical address for a given kernel virtual address.
tlb Print out the Translation Lookaside Buffer (TLB). Only works in NetBSD kernels compiled

with DEBUG option.

SH3
tlb Print TLB entries
cache Print cache entries
frame Print switch frame and trap frames.
stack Print kernel stack usage. Only works in NetBSD kernels compiled with the KSTACK_DE-

BUG option.

SPARC
prom Exit to the Sun PROM monitor.

SPARC64
buf Print buffer information.
ctx Print process context information.
dtlb Print data translation look-aside buffer context information.
dtsb Display data translation storage buffer information.
kmap Display information about the listed mapping in the kernel pmap. Use the ‘‘f’’ modifier to get

a full listing.
pcb Display information about the ‘‘struct pcb’’ listed.
pctx Attempt to change process context.
page Display the pointer to the ‘‘struct vm_page’’ for this physical address.
phys Display physical memory.
pmap Display the pmap. Use the ‘‘f’’ modifier to get a fuller listing.
proc Display some information about the process pointed to, or curproc.
prom Enter the OFW PROM.
pv Display the ‘‘struct pv_entry’’ pointed to.
stack Dump the window stack. Use the ‘‘u’’ modifier to get userland information.
tf Display full trap frame state. This is most useful for inclusion with bug reports.
ts Display trap state.
traptrace Display or set trap trace information. Use the ‘‘r’’ and ‘‘f’’ modifiers to get reversed and full

information, respectively.
uvmdump Dumps the UVM histories.
watch Set or clear a physical or virtual hardware watchpoint. Pass the address to be watched, or ‘‘0’’

to clear the watchpoint. Append ‘‘p’’ to the watch point to use the physical watchpoint regis-
ters.

window Print register window information about given address.

SUN3 and SUN3X
abort Drop into monitor via abort (allows continue).
halt Exit to Sun PROM monitor as in halt(8).
reboot Reboot the machine as in reboot(8).
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pgmap Given an address, print the address, segment map, page map, and Page Table Entry (PTE).

VARIABLES
ddb accesses registers and variables as $name. Register names are as per the show registers com-
mand. Some variables are suffixed with numbers, and may have a modifier following a colon immediately
after the variable name. For example, register variables may have a ‘u’ modifier to indicate user register
(e.g., $eax:u).

Built-in variables currently supported are:
lines The number of lines. This is used by the more feature.
maxoff Addresses are printed as ’symbol’+offset unless offset is greater than maxoff.
maxwidth The width of the displayed line.
onpanic If non-zero (the default), ddb will be invoked when the kernel panics. If the kernel con-

figuration option
options DDB_ONPANIC=0

is used, onpanic will be initialized to off.
fromconsole

If non-zero (the default), the kernel allows to enter ddb from the console (by break sig-
nal or special key sequence). If the kernel configuration option

options DDB_FROMCONSOLE=0
is used, fromconsole will be initialized to off.

radix Input and output radix.
tabstops Tab stop width.

All built-in variables are accessible via sysctl(3).

EXPRESSIONS
Almost all expression operators in C are supported, except ‘˜’, ‘ˆ’, and unary ‘’. Special rules in ddb are:

identifier name of a symbol. It is translated to the address (or value) of it. ‘.’ and ‘:’ can be
used in the identifier. If supported by an object format dependent routine, [file-
name:]function[:linenumber], [filename:]variable, and file-
name[:linenumber], can be accepted as a symbol. The symbol may be prefixed
with symbol_table_name:: (e.g., emulator::mach_msg_trap) to specify
other than kernel symbols.

number number. Radix is determined by the first two characters: ‘0x’ - hex, ‘0o’ - octal, ‘0t’
- decimal, otherwise follow current radix.

. dot

+ next

.. address of the start of the last line examined. Unlike dot or next, this is only
changed by the examine or write commands.

" last address explicitly specified.

$name register name or variable. It is translated to the value of it. It may be followed by a
‘:’ and modifiers as described above.

a multiple of right-hand side.

∗expr expression indirection. It may be followed by a ‘:’ and modifiers as described above.
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SEE ALSO
options(4), sysctl(8)

HISTORY
The ddb kernel debugger was written as part of the MACH project at Carnegie-Mellon University.
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NAME
gdb — external kernel debugger

SYNOPSIS
makeoptions DEBUG=-g
options DDB

DESCRIPTION
The gdb kernel debugger is a variation of gdb(1) which understands some aspects of the FreeBSD kernel
environment. It can be used in a number of ways:

• It can be used to examine the memory of the processor on which it runs.

• It can be used to analyse a processor dump after a panic.

• It can be used to debug another system interactively via a serial or firewire link. In this mode, the proces-
sor can be stopped and single stepped.

• With a firewire link, it can be used to examine the memory of a remote system without the participation
of that system. In this mode, the processor cannot be stopped and single stepped, but it can be of use
when the remote system has crashed and is no longer responding.

When used for remote debugging, gdb requires the presence of the ddb(4) kernel debugger. Commands
exist to switch between gdb and ddb(4).

PREPARING FOR DEBUGGING
When debugging kernels, it is practically essential to have built a kernel with debugging symbols
(makeoptions DEBUG=-g ) .  It is easiest to perform operations from the kernel build directory, by
default /usr/obj/usr/src/sys/GENERIC.

First, ensure you have a copy of the debug macros in the directory:

make gdbinit

This command performs some transformations on the macros installed in
/usr/src/tools/debugscripts to adapt them to the local environment.

Inspecting the environment of the local machine
To look at and change the contents of the memory of the system you are running on,

gdb -k -wcore kernel.debug /dev/mem

In this mode, you need the −k flag to indicate to gdb(1) that the “dump file” /dev/mem is a kernel data
file. You can look at live data, and if you include the −wcore option, you can change it at your peril. The
system does not stop (obviously), so a number of things will not work. You can set breakpoints, but you can-
not “continue” execution, so they will not work.

Debugging a crash dump
By default, crash dumps are stored in the directory /var/crash. Inv estigate them from the kernel build
directory with:

gdb -k kernel.debug /var/crash/vmcore.29

In this mode, the system is obviously stopped, so you can only look at it.
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Debugging a live system with a remote link
In the following discussion, the term “local system” refers to the system running the debugger, and “remote
system” refers to the live system being debugged.

To debug a live system with a remote link, the kernel must be compiled with the option options DDB.
The option options BREAK_TO_DEBUGGER enables the debugging machine stop the debugged machine
once a connection has been established by pressing ‘ˆC’.

Debugging a live system with a remote serial link
When using a serial port for the remote link on the i386 platform, the serial port must be identified by setting
the flag bit 0x80 for the specified interface. Generally, this port will also be used as a serial console (flag bit
0x10), so the entry in /boot/device.hints should be:

hint.sio.0.flags="0x90"

Debugging a live system with a remote firewire link
As with serial debugging, to debug a live system with a firewire link, the kernel must be compiled with the
option options DDB.

A number of steps must be performed to set up a firewire link:

• Ensure that both systems have firewire(4) support, and that the kernel of the remote system includes
the dcons(4) and dcons_crom(4) drivers. If they are not compiled into the kernel, load the KLDs:

kldload firewire

On the remote system only:

kldload dcons
kldload dcons_crom

You should see something like this in the dmesg(8) output of the remote system:

fwohci0: BUS reset
fwohci0: node_id=0x8800ffc0, gen=2, non CYCLEMASTER mode
firewire0: 2 nodes, maxhop <= 1, cable IRM = 1
firewire0: bus manager 1
firewire0: New S400 device ID:00c04f3226e88061
dcons_crom0: <dcons configuration ROM> on firewire0
dcons_crom0: bus_addr 0x22a000

It is a good idea to load these modules at boot time with the following entry in /boot/loader.conf:

dcons_crom_enable="YES"

This ensures that all three modules are loaded. There is no harm in loading dcons(4) and
dcons_crom(4) on the local system, but if you only want to load the firewire(4) module, include
the following in /boot/loader.conf:

firewire_enable="YES"

• Next, use fwcontrol(8) to find the firewire node corresponding to the remote machine. On the local
machine you might see:

# fwcontrol
2 devices (info_len=2)
node EUI64 status

1 0x00c04f3226e88061 0
0 0x000199000003622b 1
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The first node is always the local system, so in this case, node 0 is the remote system. If there are more
than two systems, check from the other end to find which node corresponds to the remote system. On the
remote machine, it looks like this:

# fwcontrol
2 devices (info_len=2)
node EUI64 status

0 0x000199000003622b 0
1 0x00c04f3226e88061 1

• Next, establish a firewire connection with dconschat(8):

dconschat -br -G 5556 -t 0x000199000003622b

0x000199000003622b is the EUI64 address of the remote node, as determined from the output of
fwcontrol(8) above. When started in this manner, dconschat(8) establishes a local tunnel connec-
tion from port localhost:5556 to the remote debugger. You can also establish a console port con-
nection with the −C option to the same invocation dconschat(8). See the dconschat(8) manpage
for further details.

The dconschat(8) utility does not return control to the user. It displays error messages and console
output for the remote system, so it is a good idea to start it in its own window.

• Finally, establish connection:

# gdb kernel.debug
GNU gdb 5.2.1 (FreeBSD)
(political statements omitted)
Ready to go. Enter ’tr’ to connect to the remote target
with /dev/cuad0, ’tr /dev/cuad1’ to connect to a different port
or ’trf portno’ to connect to the remote target with the firewire
interface. portno defaults to 5556.

Type ’getsyms’ after connection to load kld symbols.

If you are debugging a local system, you can use ’kldsyms’ instead
to load the kld symbols. That is a less obnoxious interface.
(gdb) trf
0xc21bd378 in ?? ()

The trf macro assumes a connection on port 5556. If you want to use a different port (by changing the
invocation of dconschat(8) above), use the tr macro instead. For example, if you want to use port
4711, run dconschat(8) like this:

dconschat -br -G 4711 -t 0x000199000003622b

Then establish connection with:

(gdb) tr localhost:4711
0xc21bd378 in ?? ()

Non-cooperative debugging a live system with a remote firewire link
In addition to the conventional debugging via firewire described in the previous section, it is possible to
debug a remote system without its cooperation, once an initial connection has been established. This corre-
sponds to debugging a local machine using /dev/mem. It can be very useful if a system crashes and the
debugger no longer responds. To use this method, set the sysctl(8) variables hw.firewire.fwmem.eui64_hi
and hw.firewire.fwmem.eui64_lo to the upper and lower halves of the EUI64 ID of the remote system, respec-
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tively. From the previous example, the remote machine shows:

# fwcontrol
2 devices (info_len=2)
node EUI64 status

0 0x000199000003622b 0
1 0x00c04f3226e88061 1

Enter:

# sysctl -w hw.firewire.fwmem.eui64_hi=0x00019900
hw.firewire.fwmem.eui64_hi: 0 -> 104704
# sysctl -w hw.firewire.fwmem.eui64_lo=0x0003622b
hw.firewire.fwmem.eui64_lo: 0 -> 221739

Note that the variables must be explicitly stated in hexadecimal. After this, you can examine the remote
machine’s state with the following input:

# gdb -k kernel.debug /dev/fwmem0.0
GNU gdb 5.2.1 (FreeBSD)
(messages omitted)
Reading symbols from /boot/kernel/dcons.ko...done.
Loaded symbols for /boot/kernel/dcons.ko
Reading symbols from /boot/kernel/dcons_crom.ko...done.
Loaded symbols for /boot/kernel/dcons_crom.ko
#0 sched_switch (td=0xc0922fe0) at /usr/src/sys/kern/sched_4bsd.c:621
0xc21bd378 in ?? ()

In this case, it is not necessary to load the symbols explicitly. The remote system continues to run.

COMMANDS
The user interface to gdb is via gdb(1), so gdb(1) commands also work. This section discusses only the
extensions for kernel debugging that get installed in the kernel build directory.

Debugging environment
The following macros manipulate the debugging environment:

ddb Switch back to ddb(4). This command is only meaningful when performing remote debugging.

getsyms
Display kldstat information for the target machine and invite user to paste it back in. This is
required because gdb does not allow data to be passed to shell scripts. It is necessary for remote
debugging and crash dumps; for local memory debugging use kldsyms instead.

kldsyms
Read in the symbol tables for the debugging machine. This does not work for remote debugging
and crash dumps; use getsyms instead.

tr interface
Debug a remote system via the specified serial or firewire interface.

tr0 Debug a remote system via serial interface /dev/cuad0.

tr1 Debug a remote system via serial interface /dev/cuad1.

trf Debug a remote system via firewire interface at default port 5556.
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The commands tr0, tr1 and trf are convenience commands which invoke tr.

The current process environment
The following macros are convenience functions intended to make things easier than the standard gdb(1)
commands.

f0 Select stack frame 0 and show assembler-level details.

f1 Select stack frame 1 and show assembler-level details.

f2 Select stack frame 2 and show assembler-level details.

f3 Select stack frame 3 and show assembler-level details.

f4 Select stack frame 4 and show assembler-level details.

f5 Select stack frame 5 and show assembler-level details.

xb Show 12 words in hex, starting at current ebp value.

xi List the next 10 instructions from the current eip value.

xp Show the register contents and the first four parameters of the current stack frame.

xp0 Show the first parameter of current stack frame in various formats.

xp1 Show the second parameter of current stack frame in various formats.

xp2 Show the third parameter of current stack frame in various formats.

xp3 Show the fourth parameter of current stack frame in various formats.

xp4 Show the fifth parameter of current stack frame in various formats.

xs Show the last 12 words on stack in hexadecimal.

xxp Show the register contents and the first ten parameters.

z Single step 1 instruction (over calls) and show next instruction.

zs Single step 1 instruction (through calls) and show next instruction.

Examining other processes
The following macros access other processes. The gdb debugger does not understand the concept of multi-
ple processes, so they effectively bypass the entire gdb environment.

btp pid
Show a backtrace for the process pid.

btpa Show backtraces for all processes in the system.

btpp Show a backtrace for the process previously selected with defproc.

btr ebp
Show a backtrace from the ebp address specified.

defproc pid
Specify the PID of the process for some other commands in this section.

fr frame
Show frame frame of the stack of the process previously selected with defproc.
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pcb proc
Show some PCB contents of the process proc.

Examining data structures
You can use standard gdb(1) commands to look at most data structures. The macros in this section are con-
venience functions which typically display the data in a more readable format, or which omit less interesting
parts of the structure.

bp Show information about the buffer header pointed to by the variable bp in the current frame.

bpd Show the contents (char ∗ ) of bp->data in the current frame.

bpl Show detailed information about the buffer header (struct bp ) pointed at by the local vari-
able bp.

bpp bp Show summary information about the buffer header (struct bp ) pointed at by the parameter
bp.

bx Print a number of fields from the buffer header pointed at in by the pointer bp in the current envi-
ronment.

vdev Show some information of the vnode pointed to by the local variable vp.

Miscellaneous macros
checkmem

Check unallocated memory for modifications. This assumes that the kernel has been compiled
with options DIAGNOSTIC This causes the contents of free memory to be set to
0xdeadc0de.

dmesg Print the system message buffer. This corresponds to the dmesg(8) utility. This macro used to be
called msgbuf. It can take a very long time over a serial line, and it is even slower via firewire or
local memory due to inefficiencies in gdb. When debugging a crash dump or over firewire, it is
not necessary to start gdb to access the message buffer: instead, use an appropriate variation of

dmesg -M /var/crash/vmcore.0 -N kernel.debug
dmesg -M /dev/fwmem0.0 -N kernel.debug

kldstat
Equivalent of the kldstat(8) utility without options.

pname Print the command name of the current process.

ps Show process status. This corresponds in concept, but not in appearance, to the ps(1) utility.
When debugging a crash dump or over firewire, it is not necessary to start gdb to display the
ps(1) output: instead, use an appropriate variation of

ps -M /var/crash/vmcore.0 -N kernel.debug
ps -M /dev/fwmem0.0 -N kernel.debug

y Kludge for writing macros. When writing macros, it is convenient to paste them back into the gdb
window. Unfortunately, if the macro is already defined, gdb insists on asking

Redefine foo?

It will not give up until you answer ‘y’. This command is that answer. It does nothing else except
to print a warning message to remind you to remove it again.
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SEE ALSO
gdb(1), ps(1), ddb(4), firewire(4), dconschat(8), dmesg(8), fwcontrol(8), kldload(8)

AUTHORS
This man page was written by Greg Lehey 〈grog@FreeBSD.org〉.

BUGS
The gdb(1) debugger was never designed to debug kernels, and it is not a very good match. Many problems
exist.

The gdb implementation is very inefficient, and many operations are slow.

Serial debugging is even slower, and race conditions can make it difficult to run the link at more than 9600
bps. Firewire connections do not have this problem.

The debugging macros “just growed”. In general, the person who wrote them did so while looking for a spe-
cific problem, so they may not be general enough, and they may behave badly when used in ways for which
they were not intended, even if those ways make sense.

Many of these commands only work on the ia32 architecture.
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NAME
vinumdebug — debug macros for vinum(4)

DESCRIPTION
This man page describes gdb(4) macros for debugging the vinum(4) kernel module. See gdb(4) for the
description of the kernel debugging environment. No further action is required to access the vinum(4)
debug macros. They are loaded automatically along with the other macros.

COMMANDS
finfo Show recently freed vinum(4) memory blocks.

meminfo Equivalent of the vinum info −v command.

rq Show information about the request pointed to by the variable rq in the current frame.

rqe Show information about the request element pointed to by the variable rqe in the current frame.

rqi Print out a simplified version of the same information as the vinum info −V command.

rqinfo Show the vinum(4) request log buffer like the vinum info −V command.

rqq rq Show information about the request (struct rq ) pointed at by rq.

rqq0 Print information on some vinum(4) request structures.

rqq1 Print information on some vinum(4) request structures.

rrqe rqe Show information about the request element (struct rqe ) pointed at by the parameter
rqe.

AUTHORS
This man page was written by Greg Lehey 〈grog@FreeBSD.org〉.

SEE ALSO
gdb(4), vinum(4), vinum(8)
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