

 MidiLang (TM)

1.7

 USER'S GUIDE

 Copyright 1997 by Serge Sibony

ALL RIGHTS RESERVED

sibony@usa.net

sibony@club-internet.fr

WEB PAGES :

http://www.pik.com/pikprogs.html

http://sibony.home.ml.org

http://www.geocities.com/eureka/3286

 DISCLAIMER OF WARRANTY

 THIS SOFTWARE AND MANUAL ARE SOLD "AS IS" AND WITHOUT WARRANTIES AS TO PERFORMANCE OF MERCHANTABILITY OR ANY OTHER WARRANTIES WHETHER EXPRESSED OR IMPLIED. BECAUSE OF THE VARIOUS HARDWARE AND SOFTWARE ENVIRONMENTS INTO WHICH THIS PROGRAM MAY BE PUT, NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE IS OFFERED. GOOD DATA PROCESSING PROCEDURE DICTATES THAT ANY PROGRAM BE THOROUGHLY TESTED WITH NON-CRITICAL DATA BEFORE RELYING ON IT. THE USER MUST ASSUME THE ENTIRE RISK OF USING THE PROGRAM. ANY LIABILITY OF THE SELLER WILL BE LIMITED EXCLUSIVELY TO PRODUCT REPLACEMENT OR REFUND OF PURCHASE PRICE.

MidiLang 1.7 What's new ?

Much more effect files ready to be used, much of them are xpl files. New effects such as harmony modifications or random modifications on midi files...

New set of xpl functions

All mpl features now available with XPL. You don't have to learn MPL any more, XPL is much more easy to use.

You will be surprised (as I was) to know that MidiLang is mainly used as a Post-Processor on existing .mid files. Only few of you are using it as a Real-Time processor. That's why I have focused my work on a set of new xpl effects for Post-Processing (merge of a set of Midi Channel, transposition , time equalizer...).

I hope this tool helps and will help you in your play.

See U

		Serge

 Release nb Date Descript

 1.7	01/08/97	New xpl functions, harmony effects

 1.6	15/04/97 New adress

 1.5	22/07/96	More than 30 effects ready to be used

				New mpl and XPL instructions : Speedup and Clear

				Time available in mapper

				New Installation utility. (the previous one didn't work

					with floppy disks)

				Registration key for registered users (for free upgrade)

 1.41	14/07/96		XPL compiler upgrade (less mpl lines)

 1.4	10/06/96		XPL compiler

Introduction

 MidiLang has been created to :

	- allow effects such as echo, delay, loop in live (i.e. it's a Real-Time utility that will process midi events during your play) or as a Post-Processor on Standard Midi Files (.mid files).

	- allow harmony modifications on midi files.

	- allow random or user defined modifications on midi files.

	- do any kind of Midi Mapping on any type of Midi Event (control changes..).

	- calculate best chords for a given melody.

	- be able to add automatically bass based on your play in live.

	- allow user defined splits (not only those specified by the manufacturer of your keyboard)

	- save/load your play in .MID file

	- get an interactive link between the PC and your synthe: you can change any parameters, or any options directly from your midi keyboard.

	there is no more need to run from the PC keyboard to the Midi keyb.

	- allow anyone to create his own effect with a simple but powerful interpreter of Midi Programming Language (MPL) or with its included compiler of Extented Midi Programming language (XPL) (a little bit like C)

	- allow users to create their own library of effects, easy to update and to share.

	There is no need to be a programmer to use MidiLang, you can just use already done mpl files. But XPL is a so easy to use language that you should try to define your own effect.

	This language is very fast (actually it's compiled in memory during the load process) so can do almost anything you may have dreamt to do with your MIDI instrument.

 Installation

 To install MidiLang

 unzip the compressed file you have received (midilang.zip)

 run the program install.exe from this package.

 MidiLang is installed in its own directory

 (c:/midilang by default)

 a set of important files can be found in this directory :

 midilang.wri : this file

 midilang.exe : MidiLang exe

 order.txt : the register form

 sml.exe : the xpl -> mpl compiler

 Registration

 MidiLang is distributed in two forms :

 ShareWare Version:

 All effects functionalities, and MPL capabilities are available with the non-registered version of MidiLang.

 All examples work, all user made mpl files work. The only limitation is the maximum number of mpl instructions inside user made mpl files :

	The XPL compiler is fully functionnal.

 With the non registered version of MidiLang, you can't create mpl files with more than 25 MPL instructions.(but you can have as much blank lines, Label, Keydef, Descript or end, you want)

 A "please register" screen appears at each load_effect command.

Important Note : the effects files included in the package (the .mpl files or the .xpl files) can have more than 25 MPL instructions, you can use then or even modify them, as long as you touch only the parameters of the MPL instructions. You can, for example, change the channel number used in the switch.xpl file, recompile it and use the switch.mpl file generated.

 Registered version :

 With the registered version of MidiLang, the maximum number of MPL instructions is set to 800.

 No more "please register" screen.

 Included in the registered package of MidiLang :

	MidiLoop : MidiLoop is a mini-MidiLang specialized in echos. Very easy to use.

	MplDebug : a simple but useful debugger of MPL files to trace MPL behaviour.

 for 35 US$ (+ Handling, Postage), you get the up-to-date registered version of MidiLang.

 Please see : order.txt to get details about how to register.

 The menu of MidiLang :

 File :

 Open Effect...

 -to load your MPL file : load effects file

 this option will load your MPL file, check its syntax and update the screen

 New MIDI

 -to erase your current play

 Open MIDI,Save MIDI

 -to save your play or load any midi files (.mid format)

 the file saved can be used by any other standard midi tools (such as a sequencer..)

Note that with multi track midi files, midilang will apply the loaded effect on all tracks and just after the midi load command. The result will have to be saved immediatly.

 Compile XPL

	- This item will run the xpl compiler on any xpl files and create a new mpl file ready to be used.

 Exit

 -to end MidiLang

 Settings :

 Set Cmd Channel

 - to change the midi channel of the command midi (default 2)

 Input / Output Filters

 - to filter the Midi IN and OUT

 	Record

	- to Start or Stop the effect

	Play

	- to Start or Stop the play back your play (with effects)

	- to Run an effect on a loaded Midi File.

 With MidiLang 1.7, you can run any type of effect on a Midi file.

 See chap. FILE for more information about it.

	Register

	- to get info about the way to register

	Input/Output Device

	- to change the Midi IN/OUT device; your setting will be saved.

 (default SB (if exist))

 MidiLang Quick Start

 1) Check your Input/Output device

 in the menu Input / Output Device

 choose the proper device.

 2) Load an effect file :

 in the menu File

 submenu : Open Effect...

 choose the file : echo.mpl

 3) run the effect :

 in the menu Record

 choose : Start

 4) play on your keyboard

 on the screen, the beat number is displayed.

 Every note played is played back after a small delay, several time with decreasing volume.

 That's an almost real echo.

 5) Load an effect file :

 in the menu File

 submenu : Open Effect...

 choose the file : echom.mpl

 5) run the effect :

 in the menu Record

 choose : Start

 6) play on your keyboard

 on the screen the beat number is displayed

 Every note played is played back after 1 beat delay several time or only one time

 Split your Midi keyboard, and configure the lower part of it to Midi Channel 2

 Switch off the lower part of your keyboard

 (if you don't know how to do it, I can't help you, you should read your midi Keyb. User Guide.)

 Play on the lower part, a C and then a C#

 Notice that the delay value on the screen has changed

 Play, on the upper part, some notes

 the delay has increased

 Play on the lower part, a D and then a D#

 play on the upper part some notes

 the number of repeat has increased.

 ENJOY

	List of ready to use effects

Introduction :

More than 70 ready to use effects can be found with this version of MidiLang. Most of them have been done in XPL (those noted with a (XPL)).

Please note that these effects are given only as examples : you certainly will change part of them to match your configuration (channel number, note number ...). Don't forget to recompile the xpl files after modifications.

The shareware version of MidiLang will accept modifications on these examples only if you change only parameters value. (such as channel number). No instruction can be added or removed from the example (with the non-registered version of MidiLang only, of course !!).

The more famous effects are :

ARPEGIA, BREATH, EQUALIZE, FRIPP, MEMBASS, MULSPLIT, REALECHO, TRANSPOS, VELCURVE

But try the new one :

harmb? , harmd? , harmm? ,harmp? : they will modify the tonality of a existing .mid file

ARPEGIA (XPL)

will split a chord into its constituants and play them one by one. All in real-time.

AUTOBASS

This effect adds scale of basses (C D E F G A C) based on your melody.

The tonality is changed every 8 beats.

This mpl effect supposes that your bass channel is 2

BADPLAY

This effect creates a fellow that tries to follow you

but he's not as good as you :-)

BREATH

This effect replays any Note played in channel 1 to the channel 2 and replace the breath control with the volume control

This is an example of the use of the Midi Mapper

BREATH2

This effect replays any Note played in channel 1 to the channel 2 and replace the breath control with the volume control after inversion

This is an example of the use of the Midi Mapper

CBASS

This effect adds basses (C D E C) based on the bass you are playing (on channel 2).

The scale used here is C

CONTINUE

For each notes played, this effect will try to continue the melody. For example, if you play C and C#, this effect will play D, and so on, with the same tempo.

This effect works only on the upper channel (channel 4)

DOWN

This effect adds real echo to all notes you are playing

the notes added are going down and down...

ECHO (XPL)

ECHO MADE WITH XPL.

An example of XPL use

ECHOM

This effect adds echo of all notes played

The echo parameters (length, volume...) can be changed directly from your Midi Keyb.

EQUALIZE (XPL)

TIME EQUALIZER, TO BE USED LIVE OR AS A POST-PROCESSOR .

All notes played, or coming from a .mid file will be equalized to a multiple of a 8th of a beat.

EXTRACT (XPL)

THIS EFFECT WILL EXTRACT THE MIDI CHANNEL 4 FROM ANY .MID FILE

FADECUT (XPL)

this xpl file will shorten and fade out any midi file or in real time during a live play

FIVE

This effect adds a perfect fifth for each note played

FRIPP

This effect will record your play and play it back softer several time and with a delay of several beats between.

This effect allows you to play almost like R.Fripp

HARMB1 (XPL)

HARMB2 (XPL)

HARMB3 (XPL)

HARMB4 (XPL)

HARMB5 (XPL)

HARMB6 (XPL)

HARMB7 (XPL)

HARMB8 (XPL)

HARMB9 (XPL)

HARMB10 (XPL)

HARMB11 (XPL)

HARMB12 (XPL)

	These effects will modify a midi file (or your play) and play it back in the tonality choosen (B1 : A, B2 : Bb, B3, Eb)

HARMD1 (XPL)

HARMD2 (XPL)

HARMD3 (XPL)

HARMD4 (XPL)

HARMD5 (XPL)

HARMD6 (XPL)

HARMD7 (XPL)

HARMD8 (XPL)

HARMD9 (XPL)

HARMD10 (XPL)

HARMD11 (XPL)

HARMD12 (XPL)

	These effects will modify a midi file (or your play) and play it back in the tonality choosen (D1 : A, D2 : F, D3, C)

HARMM1 (XPL)

HARMM2 (XPL)

HARMM3 (XPL)

HARMM4 (XPL)

HARMM5 (XPL)

HARMM6 (XPL)

HARMM7 (XPL)

	These effects will change the tonality of your midi file (or of your play), and switch it 1 to 7 steps down. (C with harmm1 become F...)

HARMP1 (XPL)

HARMP2 (XPL)

HARMP3 (XPL)

HARMP4 (XPL)

HARMP5 (XPL)

HARMP6 (XPL)

HARMP7 (XPL)

		These effects will change the tonality of your midi file (or of your play), and switch it 1 to 7 steps up. (F with harmp1 become C...)

INVNOTE (XPL)

AN INVERTER

 PLAYS 	B# FOR A C#

	 	B FOR A D

		 ETC....

LOWDELAY

This effect replays every notes play to the lower part channel (channel 3) one half beat later

LOWER

This effect replays at the lower part channel (channel 3), every notes played.

MEMBASS (XPL)

Bass live record and replay.

First press any bass (chan 2)

Replay this bass and keep it pressed

Play any basses

Release the first bass played

your basses are replayed until the next save

MERGEMID (XPL)

Merge a set of Midi Channel into only one after transposition

METRO (XPL)

Metronome in XPL

MULSPLIT (XPL)

Multiple splits of your keyboard :

	C2 to C4 -> Channel 2

	C4 to C8 -> Channel 4

NONE

This effect does nothing

It is used when you want to record a Midi and run some effects after

REALECHO

This effect adds real echo to all notes you are playing

REPEATUP

This effect adds a 3 times loop to all notes you are playing.

The notes added are going up and up....

REPLACE (XPL)

Replace a set of channel/note by an another

SCALE

This effect will play the scale of your melody

SMTSPLIT (XPL)

a smart split

play one bass (below C4) and keep it pressed (this note will be played on channel 2)

all note played will be played on channel 4 (even those played below C4)

SPEEDUP (XPL)

to speed up or slow down a .mid file

SWITCH (XPL)

switch two midi channels

TRANSPOS (XPL)

Transposition of all notes from a set of midi channel on any .mid file or in live during your play

UP

This effect adds real echo to all notes you are playing

the notes added are going up and up

VANGELIS (XPL)

echo in a vangelis way

Loop after the last key is released

VELCURVE (XPL)

redefine the vel curve of your keyboard

VELMIDI (XPL)

choose the midi channel based on the volume played

VIBRATOR (XPL)

will do a vibrator when a key is pressed more than a specified time (works only on sounds without any attack).

XPL TUTORIAL

 This tutorial will teach you how to do your own XPL files.

Don't forget that most of you will never use this langage; you can use MidiLang without knowing anything about XPL, you can only use allready made effect and ask me to help you doing your own effect. But you should try to create yourself your own effects, it is so easy and you will be able to create whatever effect you need.

XPL format :

This document presents the eXtended midi Programming Language (XPL) used by MidiLang.

XPL has been created to ease the writing of complex effects and to add features missing in the MPL. Most of the features found in the C language (named variables, loop, calculation..) have been ported into the XPL. A knowledge of C will help you a lot.

Because, my aim is not to teach C language, this document is based on examples only. Each features of the XPL will be demonstrated with examples ready to be used and compiled.

How to Compile

Because MPL can be sometime a real headhack, XPL has been created. But Midilang read only MPL file. You must then translate your XPL files into MPL files. A sort of compilation from XPL to MPL.

To do so, use the "Compile XPL" item of the FILE menu of MidiLang.

The name of the input XPL file (filename.xpl) and the name of the output MPL file will be asked. A DOS window will appear, any error will be displayed in this window. At the end of the compilation, if no error occur, the MPL file has been created and is ready to be used as a normal effect file.

Note that the compiler is actually an external dos program : "sml.exe". My Windows C compiler didn't like my way to deal with the malloc function.. I was obliged to switch to my old Dos C compiler for SML... You can run the XPL compiler directly from Dos : sml file.XPL file.mpl . But you still need to run windows to use the MPL file with MidiLang !

XPL : a small C

You can think of XPL as a specialized C with some limitations :

-free format

	the two instructions are similar :

	1)	chan +=

			12 -

		(6*time)

			;

	2)	chan+=12-(6*time);

-case insensitive

	chan is equivalent to Chan , to CHAN, to cHan ...

-named variables

	you can define as much variable you need, and with whatever name you want :

	var i,j,memo;

	var list_notes;

-array

	arrays can be used (but only one dim is allowed)

	var data[100];

- ; at the end of all instructions

as C, all instruction must be ended with a ;

- any level of {} inside an function

- any level of () inside an instruction

- /* */ commentary

Functions :

All XPL files must have the main function :

main ()

{

}

This is the minimal xpl program. It does nothing.

the main function is equivalent to the LABEL MAIN in MPL

With this version of sml, you can define only 4 functions :

main () 	<-> LABEL MAIN

beats () 	<-> LABEL BEATS

init ()		<-> LABEL INIT

mapper ()	<-> LABEL MAPPER

		(read the chapter MPL in midilang.wri to know about LABEL)

but you can use :

exp,log,cos,sin,rand,sqrt,abs

ex : x= abs(y);

Some variations of the main function :

main ()	the standard one

	NOTE,VEL,CHAN,TIME are the name of the variable of the MidiIn Events

main (notename)

the variable with the note number of the incoming Midi Event is defined as "notename"

	ex : main (key)

main (notename, velname)

the variable with the note number of the incoming Midi Event is defined as "notename"

the variable with the velocity value of the incoming Midi Event is defined as "velname"

	ex : main (key, speed)

main (notename, velname, channame)

the variable with the note number of the incoming Midi Event is defined as "notename"

the variable with the velocity value of the incoming Midi Event is defined as "velname"

the variable with the channel number of the incoming Midi Event is defined as "channame"

	ex : main (key, speed, path)

main (notename, velname, channame , timename)

the variable with the note number of the incoming Midi Event is defined as "notename"

the variable with the velocity value of the incoming Midi Event is defined as "velname"

the variable with the channel number of the incoming Midi Event is defined as "channame"

the variable with the time count of the incoming Midi Event is defined as "timename"

	ex : main (key, speed, path, timing)

Variables

Only one type of variable is used : var (equivalent to float)

ex :

main ()

{

var i,j,k;

i=1;

j=1.23;

}

But this type of variable accepts arrays :

ex:

main ()

{

var memo[10],i,j;

memo[1]=12.2;

i=2;

j = memo[1] / i ;

memo[I]=j;

}

All variables in XPL are global: a variable defined in the function main can be used in any other function.

Set

The most common instruction is : setting a value to a variable :

variable set_cmd value

ex: chan = 12;

the list of set_commands is :

=	var1 = var2 	copy the value of var2 into var1

		ex: i = 1;

+=	var1 += var2	 add the value of var2 to var1

		ex: i += 2;

-=	var1 -= var2	substract the value of var2 to var1

		ex: note -= 12;

*=	var1 *= var2 	multiply var1 by var2 and copy the result into var1

		ex: note *= 2;

/=	var1 /= var2	divide var1 by var2 and copy the result into var1

		ex: note /= 2;

==	test if var1 is equal to var2

		ex: if (chan == 12)

			{ i+=1; note =12; }

>=	test if var1 is upper or equal than var2

		ex: while (note >= 24) note -=12;

<=	test if var2 is lower or equal than var2

>	test if var2 is upper than var2

<	test if var2 is lower than var2

!=	test if var2 is different than var2

&&	test if two tests are true

		ex: if ((i==2) && (j==3)) k=5;

||

	test if at least one of two tests is true

		ex: if ((i==2) || (j==3)) k=5;

!	test if a test is false

		ex: if (! (chan==12)) chan=12;

*	multiply

		ex: i = 12*k;

/	divide

		ex: i = 12/k;

+	add

		ex : i = k + (j/12);

-	substract

		ex: i = 12-j:

++	add 1

		ex: i++;

--	subtract 1

		ex: i--;

ex:

main ()

{

var i,k;

i = note /12;

j = note - (i*12);

if (j<0) j+=12;

chan++;

outmidi ();

}

ex:

main ()

{

var value;

value = 5- (12/(7-8.12)*(5-(7+(12/46))));

}

CONST

A sort of define.

main ()

{

const pi = 3.14159265354;

var val1,val2;

val1=3*pi;

}

IF	[ELSE]

main ()

{

if (chan>12)

	chan -= 12;

if ((vel>0) && (chan < 12))

	{

	vel /=2;

	time+=120;

	outmidi();

	}

if (i>12) i--;

	else i++;

}

WHILE

main ()

{

while (chan > 12) chan -=12;

while (vel > 1)

	{

vel /= 2;

time+=120;

outmidi ();

	}

}

DO WHILE

main ()

{

do

	{

time+=120;

chan--;

outmidi();

	}

while (chan >0);

}

FOR

main ()

{

var i;

for (i=0;i<4;i++)

	{

time+=120;

vel/=2;

outmidi();

	}

}

OUTMIDI

same as the OUTMIDI command in MPL

DESCRIPT

main ()

{

descript (" Echo in xpl");

descript (" 4 echos, 1/8 sec delay");

const sec 960

var i;

for (i=0;i<4;i++)

{

vel /= 1.5;

time += sec / 8;

outmidi();

}

}

SAVEIN

savein (0) is equivalent to UNSAVEIN in MPL

savein (1) is equivalent to SAVEIN in MPL

SPEEDUP (value)

To speed up or slow down a .mid file, use this command

speedup(2) will speedup 2 times a .mid file (in post-processing)

speedup (0.5) will slow down 2 times a .mid file (in live or in post-processing)

To speed up 2 time a .mid file use the xpl file :

init ()

{

speedup (2.0);

}

main ()

{

}

CLEAR ()

Clear will clear all notes still in memory (and supposed to be sent later to the keyboard).

Clear use the 4 values :

chan1(value)

chan2(value)

note1(value)

note2(value)

clear will remove all notes stillin memory if their channel is between chan1 and chan2 (included) and if the note number is between note1 and note2 (included).

example to remove all notes still in memory :

main ()

{

chan1(0);

chan2(16);

note1(0);

note2(9999);

clear();

}

Conclusion

 MidiLang is a never finished tool, New effects will appear little by little.

 Keep in touch with me and register to get the last release of this program and receive periodically new mpl files ready to be used.

 Starting learning a new language (even as primitive as the MPL) is often frustrating, so please feel free to contact me if you have problems to report or suggestions for improvement. Your satisfaction is my goal!

	Questions / Answers

MidiLang ? what for ?

Some user's comments :

" So far, all I've really done with it is a thing to make the WX11 more GM friendly; it sets all velocities to 127, maps Breath Control to Expression and attempts to turn 2 program change events into 'next patch' and 'previous patch'. "

"I use it whenever I'm doing sequencing"

"If there is no direct solution from inside Cubase for this problem, perhaps MidiLang could be of avail. It is a scripting language for PC designed to process both real-time MIDI and Midi files."

"There is a package called "MidiLang" that does exactly what the original author requested. I don't remember exactly where I got it, but I found it by searching http://www.yahoo.com with the keyword "MidiLang". MidiLang has two languages: a rudimentary but good BSAIC-like language and a higher-level C-derived language."

Email Registration:

"By the way, the registration instructions suggest that Pik a Program insist on sending a disk by post, but they don't tell you what the non-US shipping rates are. Can't they just send it by email?"

Actually, on the http://www.pik.com site, you can buy it online and download the registered version of MidiLang.

- What kind of files are saved by MidiLang ? Are they "real" Midi files ?

Midilang saves Midi events into .mid files. These files are Standard MIDI Files (SMF). This file interchange format is similar to the RIFF file formats used in Windows and is related to the Electronic Arts' IFF format. Most commercial sequencer programs can read and write SMFs.

An SMF is one of three formats. Format 0 is the simplest format, with all sequence data contained in a single track. All MIDI application should be able to read and write format 0 files. Format 1 files can have any number of tracks. Certain data, such as tempo changes, can appear only in the first track, while MIDI events can be written to any number of tracks. Format 2 file consist of multiple independent multitrack sequences or patterns.

Because of the aim of MidiLang, the files are saved as format 0 files, but format 1 or 2 can be read.

In case of multi-track midi file, all tracks will be calculated and saved back but only the first one will be actually loaded to be played.

In conclusion, the answer of the question is : The saved files are Standard Midi files, and Yes they are "real" Midi files.

Why short notes are badly played by MidiLang, How can I solve it ?.

MidiLang process speed is linked with the internal tempo of your Midi Keyboard, the higher your tempo is, the more accurate MidiLang will be.

Please note that we are speaking about the internal tempo of your Midi Keyboard not the one used by MidiLang (found in the setting menu).

A good value is 120 (the accuracy of MidiLang is then less than 20 milisec.)

Short notes should then be played without any troubles by MidiLang.

Why a Midi Programming Language ? most of the users care only about already made effects files.

Well, at first perhaps, but because each user has is own view of useful effects, and because soon you will need a set of specialized and personnalized effects, you will be happy to be able to create your own effect with this language.

You are typically not English-Native, are you ?

No, that's true, and I know that my english can be strange and difficult to decrypt sometime. I am sorry about that and I am working hard to improve this document and make it easy to read, but as all language user manuals, you must practice and try to create your own MPL files.

Feel free to ask me any questions regarding any part of this document or MPL files. (sibony@usa.net or sibony@club-internet.fr)

	 RUNNING AN EFFECT ON MIDI FILES

	With this version of MidiLang, you can run any type of effect on MIDI files (.mid files).

	This feature can be used on any PC, even without a MIDI link to a keyboard.

	All types of Midi files can be used , those saved by MidiLang or any standard one. The only limitation is that MidiLang will read only the track one of the given MIDI file.

	 Example of adding echo.mpl effect on a MIDI file

	First you must load the effect :

	Menu FILE / Open Effect / file : ECHO.MPL

	Then load your MIDI file :

	Menu FILE / Open Midi

	At this time you can listen to the original Midi File :

	Menu Play / Start

	And/Or run the effect on it :

	Menu Play / Run Effect on loaded notes

	Wait until the end of the process

	MidiLang will display the number of notes loaded and generated

	Listen to the result :

	Menu Play / Start

	Save the result to a Standard Midi File (.mid) :

	Menu File / Save Midi

	

Note that even if you are using an effect in live (Record / Start) , you can save your record and then use the saved file with another effect.

 MAPPING

	Description

An useful feature has been added to the version 1.3 and upper of MidiLang : a midi mapping.

Midi Mapping is used to control in detail all Midi Events generated by your Midi instrument, and to modify them the way you want.

For example, the breath control used by all wind instruments (such as the digital sax WX11) is very difficult to find in most of the expanders of the market. This control can be replaced by the volume control which is more likely to be find in any expander. Therefore the mapping will replace any breath control event by a volume change event which can be sent to the expander.

The pitch bender action can be modified too (it is just a controller as the volume or expression controller).

For example, you can link it to the expression controller.

The effect of the controller can be modified too :

	you can change its curve

	you can inverse its action

	 How to use the Midi Mapper

To define a midi mapping, you have to create a function in your mpl/xpl file.

This function name is : MAPPER

in mpl :

	LABEL MAPPER

	END

or in xpl :

mapper ()

{

}

This function will be executed every time a controller event is received.

In the MAIN function or the BEATS function, the only Midi Event received is the note Event :

A channel number, a Note number and a velocity.

Here, in the MAPPER function, the Events used are all the other Events (Control change, Program change, Pitch Bender..)

Note that even if you can't received any control event in the MAIN or BEATS function, you can generate them inside these functions

There is one main difference between the MAIN or BEATS functions and the MAPPER function :

	in the MAIN/BEATS functions, all received Notes are saved in memory (as those generated by MidiLang).

	in the MAPPER functions only the Events generated by MidiLang are saved.

	The saved Notes and Events can then be saved to disk (.mid files)

	 List of Midi Events

This section describes MIDI events as documented by the MIDI 1.0 specification.

More information may be obtained from:

	The International MIDI Association

	5316 W. 57th St.

	Los Angeles, CA 90056

	(310) 649-6434

Midi Messages

	There are two types of MIDI messages:

	Channel Messages

	System Messages

Channel Messages

	Channel Messages communicate performance information.

	These messages are assigned to one of 16 channels.

	Channel messages are as coded in the table below.

	'n' stand for the channel number, with 0-15 corresponding to the channels 1-16

Status (hexa)		Data1		Data2		Message Type

0x8n			Note #		n/a		Note Off

0x9n			Note #		Velocity	Note On

0xAn			Note #		Pressure	Polyphonic Key Pressure

0xBn			Control #	Value		Control Change

0xCn			Program #	n/a		Program Change

0xDn			Pressure	n/a		Channel Pressure

0xEn			Pitch LSB	Pitch MSB	Pitch Bend

Note : The note off function is represented by either the 0x8n message (Note Off) or by the 0x9n message (Note on) with zero velocity.

Controller Type

	Control change message apply to a given controller, as given below, The value associated to the controller varies from 0 to 127.

	Controller type			Number (hexa)

	Modulation Wheel			0x01

	Breath Controller			0x02

	Foot Controller			0x04

	Portamento time			0x05

	Data Entry MSB			0x06

	Main Volume	 	0x07

	Balance 	0x08

	Pan 	0x0A

	Expression Controller		0x0B

	General Purpose			0x10-0x13,0x50-0x53

	LSB for value 0-31			0x20-0x3F

	Sustain Pedal			0x40

	Portamento 	0x41

	Sostenuto 	0x42

	Soft Pedal 	0x43

	Hold 2				 	0x45

	External Effects Depth		0x5B

	Tremelo Depth			0x5C

	Chorus Depth			0x5D

	Detune Depth			0x5E

	Phaser Depth			0x5F

	Data Increment			0x60

	Data Decrement			0x61

	Nonregistered Parameter LSB	0x62

	Nonregistered Parameter MSB	0x63

	Registered Parameter LSB		0x64

	Registered Parameter MSB	0x65

	Channel Mode Messages		0x79-0x7F

Note : Check if your Midi Keyboard support a controller before sending a Control Change.

	For example, not all synthetisers support breath control change.

	If your Midi intrument receives a control change for a unknown controller, It will simply ignore this message.

System Messages

System Messages apply to all devices on the Midi Network.

	Status (hexa)	Data1		Data2		Message Type

	

	0xF1		Value		n/a		Midi Time Code

	0xF2		LSB		MSB		Song Position Pointer

	0xF3		Song #	n/a		Song Select

	0xF6		n/a		n/a		Tune Request

	0xF8		n/a		n/a		Timing Clock

	0xFA		n/a		n/a		Start

	0xFB		n/a		n/a		Continue

	0xFC		n/a		n/a		Stop

	0xFE		n/a		n/a		Active Sensing

	0xFF		n/a		n/a		System Reset

	 Example of Midi Mapper

A digital sax is generating notes and control events in channel 4.

We want all the notes to be sent to channel 5 without modifications

We want to replace the Expression change and the Modulation change of the channel 4 with the volume change in the channel 5.

No modification of the control curve is done now.

LABEL MAPPER

 Mapper (if exist) is executed at each control,program..	 event received

STATUS!= 0XB3 if the event a control event in the channel 4 ?

GOTO ENDM

STATUS= 0XB4

DATA1== 1

GOTO GOTIT

DATA1== 11

GOTO GOTIT

GOTO ENDM

LABEL GOTIT

STATUS= 0XB4 switch to channel 5 (control change status)

DATA1= 7 and to volume control

OUTMIDI and send it

LABEL ENDM

END

LABEL MAIN Main is executed at each note received

CHAN!= 4 is the note in the channel 4

GOTO END if not, forget it

CHAN= 5 if yes change it to channel 5

OUTMIDI	 and regenerated it

LABEL END

END

	Same example but with inverse effect

LABEL MAPPER Mapper (if exist) is executed at each control,program.. 				event received

STATUS!= 0XB3 if the event a control event in the channel 4 ?

GOTO ENDM

STATUS= 0XB4

DATA1== 1

GOTO GOTIT

DATA1== 11

GOTO GOTIT

GOTO ENDM

LABEL GOTIT

STATUS= 0XB4 switch to channel 5

DATA1= 7 and to volume control

V=DATA2 1 V[1]=DATA2

V= 2 127

V-=V 2 1 V[2]=127-V[1]

DATA2=V 2 DATA2=V[2]

OUTMIDI and send it

LABEL ENDM

END

LABEL MAIN Main is executed at each note received

CHAN!= 4 is the note in the channel 4

GOTO END if not, forget it

CHAN= 5 if yes change it to channel 5

OUTMIDI	 and regenerated it

LABEL END

END

Description of MPL files :

NOTE : the MPL have been replaced by the XPL, MPL is described just in case you would like to use the mpl debug (included in the registered version).

 A MPL (Midi Programming Language) file contains a set of commands to be executed at every Midi Events (i.e. every time you press or release a key of your Midi Keyboard, at every beats or every time you send a command request with your Midi Keyboard, or at all control changes (breath control, modulation..).

 These commands can be : change to an another channel, calculate harmony based on the notes I have played, play some bass with my melody, add delay, echo, change the controller action, the curve of the controller..

 Label

 MPL files are structured into groups, a group is a set of command. A group starts with the keyword : LABEL name (ex. LABEL TEST) and finishes with the keyword : END

 NOTE : MidiLang is case-insensitive

 This example does an echo of your play :

 # start of the main group

 LABEL MAIN

 TIME+= 240

 OUTMIDI

 END

4 labels are defined by default :

 The label MAIN is the one used at every MidiIn (every time you touch a key at your Midi Keyb. this note, with its time and volume, will be sent to your MPL file and MidiLang will execute the MAIN group.)

 The label INIT is the one used at the start of the effect. This optional label can be used to initialize a set of variables

 The optional label BEATS is the one executed at each beat.

 The optional label MAPPER is executed at each Midi Events except the Note events. It can be used to do a user-defined Midi Mapping (to swap two controllers for example)

 You can used up to 200 labels.

Note : you can use label inside a group :

 Label Main

 time+= 240

 outmidi

 #if time > 1000 go to next

 time> 1000

 goto next

 time+= 240

 outmidi

 label next

 end

 goto, gosub

 Anywhere in a MPL file you can do a goto, or a gosub

 goto label_name

 will jump to the label label_name and continue the execution from this point until a END command and stop.

 gosub label_name

 will jump to the label label_name, continue the execution from this point until a END command and resume the execution after the gosub command.

 The gosub command is useful when, for example, you have created an effect that you want to reuse,

 just copy you effect into a group (inside a LABEL ... END)

 and run it (with a gosub) every time you need it

 the program will run your effect and continue the execution.

 The goto command is useful for the test condition

 if test is ok goto action1 else continue

 ex.

 TIME> 480

 GOTO UPPER

 END

 LABEL UPPER

 END

 ex. LABEL ECHO

 TIME+= 240

 OUTMIDI

 END

 LABEL MAIN

 GOSUB ECHO

 CHAN-= 1

 TIME+= 240

 OUTMIDI

 END

 The gosub ECHO is executed and the program resumes to the next command (CHAN-= 1 here)

 NOTE 1: Gosub and Midi Value

Please note that any change done to the Midi Values (time, note/status, channel/data1,volume/data2) inside a gosub will be canceled at the end of this gosub.

 In the previous example, the Main group run a gosub to the LABEL ECHO.

 In this group, 240 is added to TIME but at the END of this group, TIME comes back to its initial value !!!

 When, in LABEL MAIN, 240 is added to TIME, It has been added actually one time only.

 This has been done to make sure that you can run a gosub without thinking about what this gosub will do to your midi values.

 NOTE 2: OUTMIDI before a gosub

Please note that if in a gosub, the command OUTMIDI is used, this gosub will be ran for every OUTMIDI done before the gosub.

 ex.

 LABEL ECHO

 TIME+= 240

 END

 LABEL MAIN

 NOTE+= 1

 OUTMIDI

 NOTE+= 1

 OUTMIDI

 GOSUB ECHO

 END

The gosub to the LABEL ECHO will be done two times, one for the first OUTMIDI, one for the second OUTMIDI.

This allows you to add, for example, an echo to all MidiOut you have done in the label MAIN, just by adding a gosub echo before the last END of your LABEL MAIN.

 NOTE 3: gosub in a gosub

You can use as many gosubs you want, and you can have gosubs inside gosubs..

 MIDI IN & OUT

 Every time you play something on your midi keyboard, a MidiIn is received by MidiLang, and the Label MAIN is executed.

 Every time you want MidiLang to play something on your Keyboard, you must use the command : OUTMIDI

 The command OUTMIDI will play the note defined at the time defined.

 The Midi Values are :

 TIME : number of tics from start (480 tics = 1 beat)

 CHAN or STATUS : Channel (Channel = Midi Channel)

 NOTE or DATA1 : note number (C1=0, C2=12, D1=2..)

 VEL or DATA2 : volume (0=OFF, 127=FULL)

 DATA3 : for Control events

Please note that on the version 1.0 of MidiLang, Channel was set to Midi Channel + 143. (Midi Channel + 143 is in fact the real channel number for incoming events).

 Because of that, both systems are available. (CHAN= 2 <-> CHAN= 145)

At each MidiIn these values are updated, you can change them and send them back to your synthe.

 Ex.

 LABEL MAIN

 TIME+= 240

 OUTMIDI

 END

 This file will add 240 (0.5 beat) to all In Midi and send it back.

 It's a delay !! (sort of lexikon)

 SAVEIN / UNSAVEIN :

By default, all notes played and all notes or events generated by the tool are saved in memory until the Record/Stop. You can then replay them or saved them into .mid files.

You can switch to save only the generated notes with the command : UNSAVEIN.The command : SAVEIN returns to the default status.

This can be used when you want to modify incoming midi events (swap two midi channel for example), only the generated notes should be saved in that case.

 Tools

 - RESCREEN which redraws the texts of the Window.

 Useful especially to display the up-to-date values of the variables specified in keydef.

 - Midi Mapping . see chap 7

 List of Effect commands

 The 'effects command' are used to get complex effects such as harmony calculation, or any effects too complex to be defined in mpl.

 This section will be updated on each new release of MidiLang with new effects asked by users.

 Midi Mapping :

	Modify in live any Midi Event and change it the way you want

 Harmony calculation :

 This effect will calculate the chord you should use based on :

 a tonality

 a set of notes.

 For example, if you choose a tonality of C

 and give the notes : D# F G

 This effect will give you the chord :

 C-7-

 Actually, you will have the scale of this chord : C D D# F G A A#

 CALCHARM nb

 The first time you use this command after the start or after a INITHARM or a OLDHARM, the current MidiIn Note defines the tonality (if you have played a C and after that you run CALCHARM, C will be your tonality)

 After, the MidiIn Note will be taken to calculate the chord for this tonality.

 The tonality will not change before a INITHARM or a OLDHARM.

 CALCHARM will change two variables : V[nb] and V[nb+1]

 V[nb] got the current tonality. You can change directly it by changing the value in V[nb]

	V[nb+1] got a note number use to calculate the chord

 GETHARM nb1 nb2 nb3

 At any time, after at least one CALCHARM, you can have access to the scale of the current calculated chord.

 You can, for example, ask for the second note of the scale of the current chord.

 V= 10 2 set V[10] to 2

 GETHARM nb1 10 nb3

 GETHARM will calculate the Note number (1-12) of the second note of the current Chord. This Chord have been calculated by CALCHARM and saved

 in V[nb1] and V[nb1+1]

 The Note number will be saved in V[nb3]

 Ex.

 CALCHARM 1 will save the chord in V[1],V[2]

 V= 30 5

 GETHARM 1 30 10 will calculate the note nb 5

 (because V[30]=5)

 of the chord saved in V[1],V[2]

 and save it in V[10]

 OLDHARM nb1

 OLDHARM nb1 will reset the tonality.

 The next CALCHARM will redefine it, and ask the Harmony calculator to decrease the weight of the note already used by the effect.

 It allow changing to an other chord in a smooth way.

 OLDHARM will work on the chord saved in V[nb1], V[nb2] by CALCHARM

 INITHARM nb1

 INITHARM nb1 will reset the tonality and start from zero the harmony calculation.

 To be used only when you start a totally new play.

 INITHARM will work on the chord saved in V[nb1], V[nb2] by CALCHARM

List of Description commands

 The 'description commands' are used to describe

 - the aim of your effect

 - the link between the midi keyboard

 and your mpl file (midi command)

 descript

 the command "descript" adds a line of commentary at the top of the output screen of MidiLang.

 you can use up to 10 lines of descriptions

 Those lines are useful to explain what the effect is supposed to do.

 syntax :

 descript text_text_...

 descript text_text_...

 descript text_text_...

You can use this command anywhere in your mpl file, except at the first line.

 ex.

 descript this mpl file will create an echo effect

 descript with delay, and nb loop modifiable directly

 descript from your midi keyboard.

 Commentary

 Inside your Mpl file, you can use commentary

 any line that starts with a # is a commentary

 any text after a command and its parameters is a commentary

 ex.

 # this is a commentary

 V= 1 2 this is too a commentary

 Link between Midi Keyboard and Mpl File

 MidiLang can use a midi channel to receive run request from the user.

 For example, you can switch off the lower channel of your

 keyboard, and send orders to MidiLang by just playing some notes in this channel.

 Echom.mpl uses this feature to allow you to change the loop number, or the delay, just by playing notes.

 MidiLang will wait for two keys (different keys) in the command channel, search for a keydef related to those key and run the label specified in the keydef command.

 The command Channel number can be changed in the setting menu.

 The command keys played are displayed at the top of MidiLang's window.

 syntax:

 keydef key1 key2 keydef_name label_name [var_name var_nb def_value.]

 with key1 and key2 : key name (C,C#,D,D#,E,F,F#,G,G#,A,A#,B)

 keydef_name : a name for this keydef (will appear in the window)

 label_name : the label to be run if the user has played key1 and key2 in the command channel.

 optional parameters :

 var_name : a name for a variable (will appear in the window)

 var_nb : the variable number (1-5000)

 def_value : default value

 you can use as many variables as you want in one keydef, the variable name and its value will be displayed in MidiLang window at each command run. (and at each rescreen command)

 ex. keydef C C# to_slow_down slow delay 1 2.2

 it defines a command called "to_slow_down", every time the user will play (in the command channel) the notes : C and C# (one after one), MidiLang will run the instruction starting at the "label slow" in the current mpl file (you must have this label in your file !).

 But before running this label, the variable V[1] will be displayed with the name "delay"

 you will have in your window :

 C C# to_slow_down delay 2.200

 because the default value of V[1] is 2.200.

 If your mpl file changes V[1], next time you run a command (or do a rescreen) the new value will appear.

List of basic commands

 The 'basic commands' are the set of commands that allow calculations and basic modifications on the Midi values.

 You have access to 5000 variables (float/integer), where you can save whatever you want.

 You can use hexa integer (format : 0xNN (ex 16 <-> 0x10))

 =

 BEAT= value : the Beat number if set to value

 ex. BEAT= 0

 BEAT=V nb1 : the Beat number is set to the value of the variable nb1

 ex. BEAT=V 1

 means : Beat = V[1]

 V=BEAT nb1 : the variable nb1 is set to Beat number

 ex. V=BEAT 1

 means : V[1] = Beat

 V= nb1 value : the variable nb1 is set to value

 ex. V= 10 1

 means V[10]=1

 V=V nb1 nb2 : the variable nb1 is set to the value of the variable nb2

 ex. V=V 1 2

 means V[1]=V[2]

 V=VV nb1 nb2 : the variable nb1 is set to the value of the variable V[nb2]

 ex. V=VV 1 2

 means V[1]=V[V[2]]

 if V[2] is set to 5, it means V[1]=V[5]

 VV=V nb1 nb2 : the variable V[nb1] is set to the value of the variable nb2

 ex. VV=V 1 2

 means V[V[1]]=V[2]

 if V[1] is set to 5, it means V[5]=V[2]

 VV=VV nb1 nb2 : the variable V[V[nb1]] is set to the value of the variable V[V[nb2]]

 ex. VV=VV 1 2

 means V[V[1]]=V[V[2]]

 if V[1] is set to 5 and V[2] to 6,

 it means V[5]=V[6]

 TIME= value : the MidiOut time is set to value

 (value is a number of tic since start)

 ex. TIME= 480

 (Note: one Beat = 480 tics)

 TIME=V nb1 : the MidiOut time is set to the value of the variable nb1

 ex. TIME=V 1

 means

 time = V[1]

 V=TIME nb1 : the variable nb1 is set to the value of the current MidiIn time

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V=TIME 1

 means V[1]= time

 CHAN= value : the MidiOut channel is set to value

 ex. CHAN= 3

 (Note: Channel = midi Chan)

 CHAN=V nb1 : the MidiOut channel is set to the value of the variable nb1

 ex. CHAN=V 1

 means

 Channel = V[1]

 V=CHAN nb1 : the variable nb1 is set to the value of the current MidiIn channel

 (the current MidiIn is the last midi event received)

 ex. V=CHAN 1

 means V[1]= Channel

 VEL= value : the MidiOut volume/velocity is set to value

 ex. VEL= 100

 (Note: volume value : 0 to 127)

 VEL=V nb1 : the MidiOut volume is set to the value of the variable nb1

 ex. VEL=V 1

 means

 Volume = V[1]

 V=VEL nb1 : the variable nb1 is set to the value of the current MidiIn volume

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V=VEL 1

 means V[1]= Volume

 NOTE= value : the MidiOut note is set to value

 ex. NOTE= 60

 (Note 0= C1, note 12=C2 ...)

 NOTE=V nb1 : the MidiOut note is set to the value of the variable nb1

 ex. NOTE=V 1

 (Note 0=C1, note 12=C2 ...)

 means Note = V[1]

 V=NOTE nb1 : the variable nb1 is set to the value of the current MidiIn note

 ex. V=NOTE 1

 (the current MidiIn is the last midi event received)

 (Note 0=C1, note 12=C2 ...)

 means V[1] = Note

 +=

 V+= nb1 value : Value is added to the variable nb1

 ex. V+= 10 1.5

 means V[10] = V[10] + 1.5

 V+=V nb1 nb2 : the value of the variable nb2 is added to the variable nb1

 ex. V+=V 1 2

 means V[1] = V[1] + V[2]

 V+=VV nb1 nb2 : the value of the variable V[nb2] is added to the variable nb1

 ex. V+=VV 1 2

 means V[1] =V[1] + V[V[2]]

 if V[2] is set to 5, it means V[1] =V[1]+V[5]

 VV+=V nb1 nb2 : the value of the variable nb2 is added to the variable V[nb1]

 ex. VV+=V 1 2

 means V[V[1]] = V[nb1] + V[2]

 if V[1] is set to 5, it means V[5] = V[5]+V[2]

 VV+=VV nb1 nb2 : the value of the variable V[V[nb2]] is added to the variable V[V[nb1]]

 ex. VV+=VV 1 2

 means V[V[1]] = V[V[1]] + V[V[2]]

 if V[1] is set to 5 and V[2] to 6,

 it means V[5] = V[5] + V[6]

 TIME+= value : Value is added to MidiOut time

 (value is a number of tic)

 ex. TIME+= 480

 means time = time + 480

 (Note: one Beat = 480 tics)

 TIME+=V nb1 : the value of the variable nb1 is added to the MidiOut time

 ex. TIME+=V 1

 means

 time = time + V[1]

 V+=TIME nb1 : the current time is added to the variable nb1

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V+=TIME 1

 means V[1] = V[1]+time

 CHAN+= value : Value if added to the MidiOut channel

 ex. CHAN+= 1

 means Channel = Channel + 1

 CHAN+=V nb1 : The value of the variable nb1 is added to the MidiOut channel

 ex. CHAN+=V 1

 means

 Channel = Channel + V[1]

 V+=CHAN nb1 : the current MidiIn channel is added to the variable nb1

 (the current MidiIn is the last midi event received)

 ex. V+=CHAN 1

 means V[1] = V[1] + Channel

 VEL+= value : Value is added to the MidiOut volume/velocity

 ex. VEL+= 100

 means volume = volume + 100

 (Note: volume value : 0 to 127)

 VEL+=V nb1 : The value of the variable nb1 is added to the MidiOut volume

 ex. VEL+=V 1

 means Volume = Volume + V[1]

 V+=VEL nb1 : The current MidiIn volume is added to the variable nb1

 (the current MidiIn is the last midi event

 received)

 ex. V+=VEL 1

 means V[1] = V[1] + Volume

 NOTE+= value : Value is added to the MidiOut note value

 ex. NOTE+= 12

 means Note = Note + 12

 (Note 0=C1, note 12=C2 ...)

 NOTE+=V nb1 : The value of the variable nb1 is added to the MidiOut note

 ex. NOTE+=V 1

 means Note = Note + V[1]

 V+=NOTE nb1 : The current MidiIn note is added to the variable nb1

 (the current MidiIn is the last midi event received)

 ex. V+=NOTE 1

 means V[1] = V[1] + Note

 -=

 V-= nb1 value : Value is subtracted to the variable nb1

 ex. V-= 10 1.5

 means V[10] = V[10] - 1.5

 V-=V nb1 nb2 : the value of the variable nb2 is subtracted to the variable nb1

 ex. V-=V 1 2

 means V[1] = V[1] - V[2]

 V-=VV nb1 nb2 : the value of the variable V[nb2] is subtracted to the variable nb1

 ex. V-=VV 1 2

 means V[1] =V[1] - V[V[2]]

 if V[2] is set to 5, it means V[1] =V[1]-V[5]

 VV-=V nb1 nb2 : the value of the variable nb2 is subtracted to the variable V[nb1]

 ex. VV-=V 1 2

 means V[V[1]] = V[nb1] - V[2]

 if V[1] is set to 5, it means V[5] = V[5]-V[2]

 VV-=VV nb1 nb2 : the value of the variable V[V[nb2]] is subtracted to the variable V[V[nb1]]

 ex. VV-=VV 1 2

 means V[V[1]] = V[V[1]] - V[V[2]]

 if V[1] is set to 5 and V[2] to 6,

 it means V[5] = V[5] - V[6]

 TIME-= value : Value is subtracted to MidiOut time

 (value is a number of tic)

 ex. TIME-= 480

 means time = time - 480

 (Note: one Beat = 480 tics)

 TIME-=V nb1 : the value of the variable nb1 is subtracted to the MidiOut time

 ex. TIME-=V 1

 means

 time = time - V[1]

 V-=TIME nb1 : the current time is subtracted to the variable nb1

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V-=TIME 1

 means V[1] = V[1]-time

 CHAN-= value : Value if subtracted to the MidiOut channel

 ex. CHAN-= 1

 means Channel = Channel - 1

 CHAN-=V nb1 : The value of the variable nb1 is subtracted to the MidiOut channel

 ex. CHAN-=V 1

 means

 Channel = Channel - V[1]

 V-=CHAN nb1 : the current MidiIn channel is subtracted to the variable nb1

 (the current MidiIn is the last midi event received)

 ex. V-=CHAN 1

 means V[1] = V[1] - Channel

 VEL-= value : Value is subtracted to the MidiOut volume /velocity

 ex. VEL-= 100

 means volume = volume - 100

 (Note: volume value : 0 to 127)

 VEL-=V nb1 : The value of the variable nb1 is subtracted to the MidiOut volume

 ex. VEL-=V 1

 means Volume = Volume - V[1]

 V-=VEL nb1 : The current MidiIn volume is subtracted to the variable nb1

 (the current MidiIn is the last midi event

 received)

 ex. V-=VEL 1

 means V[1] = V[1] - Volume

 NOTE-= value : Value is subtracted to the MidiOut note value

 ex. NOTE-= 12

 means Note = Note - 12

 (Note 0=C1, note 12=C2 ...)

 NOTE-=V nb1 : The value of the variable nb1 is subtracted to the MidiOut note

 ex. NOTE-=V 1

 means Note = Note - V[1]

 V-=NOTE nb1 : The current MidiIn note is subtracted to the variable nb1

 (the current MidiIn is the last midi event received)

 ex. V-=NOTE 1

 means V[1] = V[1] - Note

 *=

 V*= nb1 value : the variable nb1 is multiplied by value

 ex. V*= 10 2.4

 means V[10] = V[10] * 2.4

 V*=V nb1 nb2 : the variable nb1 is multiplied by the value of the variable nb2

 ex. V*=V 1 2

 means V[1] = V[1] * V[2]

 V*=VV nb1 nb2 : the variable nb1 is multiplied by the value of the variable V[nb2]

 ex. V*=VV 1 2

 means V[1] = V[1] * V[V[2]]

 if V[2] is multiplied by 5,

 it means V[1] = V[1] * V[5]

 VV*=V nb1 nb2 : the variable V[nb1] is multiplied by the value of the variable nb2

 ex. VV*=V 1 2

 means V[V[1]] = V[V[1]] * V[2]

 if V[1] is multiplied by 5

 , it means V[5]= V[5] * V[2]

 VV*=VV nb1 nb2 : the variable V[V[nb1]] is multiplied by the value of the variable V[V[nb2]]

 ex. VV*=VV 1 2

 means V[V[1]] = V[V[1]] * V[V[2]]

 if V[1] is multiplied by 5 and V[2] to 6,

 it means V[5] = V[5] * V[6]

 TIME*= value : the MidiOut time is multiplied by value

 (value is a number of tic since start)

 ex. TIME*= 2

 means Time = Time * 2

 TIME*=V nb1 : the MidiOut time is multiplied by the value of the variable nb1

 ex. TIME*=V 1

 means

 time = time * V[1]

 V*=TIME nb1 : the variable nb1 is multiplied by the value of the current MidiIn time

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V*=TIME 1

 means V[1] = V[1]* time

 CHAN*= value : the MidiOut channel is multiplied by value

 ex. CHAN*= 2

 CHAN*= 2 means midi channel = channel * 2

 CHAN*=V nb1 : the MidiOut channel is multiplied by the value of the variable nb1

 ex. CHAN*=V 1

 means

 Channel = Channel * V[1]

 V*=CHAN nb1 : the variable nb1 is multiplied by the value of the current MidiIn channel

 (the current MidiIn is the last midi event

 received)

 ex. V*=CHAN 1

 means V[1] = V[1] * Channel

 VEL*= value : the MidiOut volume/velocity is multiplied by value

 ex. VEL*= 1.5

 (Note: volume value : 0 to 127)

 means Vel = Vel * 1.5

 VEL*=V nb1 : the MidiOut volume is multiplied by the value of the variable nb1

 ex. VEL*=V 1

 means

 Volume = Volume * V[1]

 V*=VEL nb1 : the variable nb1 is multiplied by the value of the current MidiIn volume

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V*=VEL 1

 means V[1] = V[1] * Volume

 NOTE*= value : the MidiOut note is multiplied by value

 ex. NOTE*= 2

 means Note = Note * 2

 (Note 0=C1, note 12=C2 ...)

 NOTE*=V nb1 : the MidiOut note is multiplied by the value of the variable nb1

 ex. NOTE*=V 1

 (Note 0=C1, note 12=C2 ...)

 means Note = Note * V[1]

 V*=NOTE nb1 : the variable nb1 is multiplied by the value of the current MidiIn note

 ex. V*=NOTE 1

 (the current MidiIn is the last midi event received)

 (Note 0=C1, note 12=C2 ...)

 means V[1] = V[1] * Note

 /=

 V/= nb1 value : the variable nb1 is divided by value

 ex. V/= 10 2.4

 means V[10] = V[10] / 2.4

 V/=V nb1 nb2 : the variable nb1 is divided by the value of the variable nb2

 ex. V/=V 1 2

 means V[1] = V[1] / V[2]

 V/=VV nb1 nb2 : the variable nb1 is divided by the value of the variable V[nb2]

 ex. V/=VV 1 2

 means V[1] = V[1] / V[V[2]]

 if V[2] is divided by 5,

 it means V[1] = V[1] / V[5]

 VV/=V nb1 nb2 : the variable V[nb1] is divided by the value of the variable nb2

 ex. VV/=V 1 2

 means V[V[1]] = V[V[1]] / V[2]

 if V[1] is divided by 5

 , it means V[5]= V[5] / V[2]

 VV/=VV nb1 nb2 : the variable V[V[nb1]] is divided by the value of the variable V[V[nb2]]

 ex. VV/=VV 1 2

 means V[V[1]] = V[V[1]] / V[V[2]]

 if V[1] is divided by 5 and V[2] to 6,

 it means V[5] = V[5] / V[6]

 TIME/= value : the MidiOut time is divided by value

 (value is a number of tic since start)

 ex. TIME/= 2

 means Time = Time / 2

 TIME/=V nb1 : the MidiOut time is divided by the value of the variable nb1

 ex. TIME/=V 1

 means

 time = time / V[1]

 V/=TIME nb1 : the variable nb1 is divided by the value of the current MidiIn time

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V/=TIME 1

 means V[1] = V[1]/ time

 CHAN/= value : the MidiOut channel is divided by value

 ex. CHAN/= 2

 CHAN/= 2 means midi channel = channel / 2

 CHAN/=V nb1 : the MidiOut channel is divided by the value of the variable nb1

 ex. CHAN/=V 1

 means

 Channel = Channel / V[1]

 V/=CHAN nb1 : the variable nb1 is divided by the value of the current MidiIn channel

 (the current MidiIn is the last midi event received)

 ex. V/=CHAN 1

 means V[1] = V[1] / Channel

 VEL/= value : the MidiOut volume/velocity is divided by value

 ex. VEL/= 1.5

 (Note: volume value : 0 to 127)

 means Vel = Vel / 1.5

 VEL/=V nb1 : the MidiOut volume is divided by the value of the variable nb1

 ex. VEL/=V 1

 means

 Volume = Volume / V[1]

 V/=VEL nb1 : the variable nb1 is divided by the value of the current MidiIn volume

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V/=VEL 1

 means V[1] = V[1] / Volume

 NOTE/= value : the MidiOut note is divided by value

 ex. NOTE/= 2

 means Note = Note / 2

 (Note 0=C1, note 12=C2 ...)

 NOTE/=V nb1 : the MidiOut note is divided by the value of the variable nb1

 ex. NOTE/=V 1

 (Note 0=C1, note 12=C2 ...)

 means Note = Note / V[1]

 V/=NOTE nb1 : the variable nb1 is divided by the value of the current MidiIn note

 ex. V/=NOTE 1

 (the current MidiIn is the last midi event received)

 (Note 0=C1, note 12=C2 ...)

 means V[1] = V[1] / Note

 ==

 How to do a test

 == : the equal test

 != : the unequal test

 > : the upper test

 < : the lower test

 >= : the upper or equal test

 <= : the lower or equal test

 work the same way :

 The next instruction, just after the test will be done only if the test did not failed.

 Otherwise, the run will ignore this instruction.

 ex.

 V= 1 5 V[1] is set to 5

 V= 2 4 V[2] is set to 4

 V== 1 3 if V[1] equal to 3 do

 V= 2 3 set V[2] to 3

 V= 3 4 set V[3] to 4

 Because V[1] is not equal to 3, the instruction V= 2 3

 just after the test have been ignored.

 But the instruction V= 3 4 is done whatever the result of the test (only the instruction just after the test is touched).

 V== nb1 value : the variable nb1 is tested to value

 ex. V== 10 1

 means : is V[10] equal to 1 ?

 V==V nb1 nb2 : the variable nb1 is tested to the value of the variable nb2

 ex. V==V 1 2

 means : is V[1] equal to V[2] ?

 V==VV nb1 nb2 : the variable nb1 is tested to the value of the variable V[nb2]

 ex. V==VV 1 2

 means : is V[1] equal to V[V[2]] ?

 if V[2] is set to 5,

 it means : is V[1] equal to V[5] ?

 VV==V nb1 nb2 : the variable V[nb1] is tested to the value of the variable nb2

 ex. VV==V 1 2

 means : is V[V[1]] equal to V[2] ?

 if V[1] is set to 5,

 it means : is V[5] equal to V[2] ?

 VV==VV nb1 nb2 : the variable V[V[nb1]] is tested to the value of the variable V[V[nb2]]

 ex. VV==VV 1 2

 means : is V[V[1]] equal to V[V[2]] ?

 if V[1] is set to 5 and V[2] to 6,

 it means : is V[5] equal to V[6] ?

 TIME== value : the MidiOut time is tested to value

 (value is a number of tic since start)

 ex. TIME== 480

 (Note: one Beat == 480 tics)

 it means : is time equal to 480 ?

 TIME==V nb1 : the MidiOut time is tested to the value of the variable nb1

 ex. TIME==V 1

 it means : is time equal to V[1] ?

 V==TIME nb1 : the variable nb1 is tested to the value of the current MidiIn time

 (number of tic since start)

 (the current MidiIn is the last midi event

 received)

 ex. V==TIME 1

 it means : is V[1] equal to time ?

 CHAN== value : the MidiOut channel is tested to value

 ex. CHAN== 2

 CHAN== 2 means

 if the Midi Channel equal to 2 ?

 CHAN==V nb1 : the MidiOut channel is tested to the value of the variable nb1

 ex. CHAN==V 1

 it means : is Channel equal to V[1] ?

 V==CHAN nb1 : the variable nb1 is tested to the value of the current MidiIn channel

 (the current MidiIn is the last midi event received)

 ex. V==CHAN 1

 it means : is V[1] equal to Channel ?

 VEL== value : the MidiOut volume/velocity is tested to value

 ex. VEL== 100

 (Note: volume value : 0 to 127)

 it means : is Vel equal to 100 ?

 VEL==V nb1 : the MidiOut volume is tested to the value of the variable nb1

 ex. VEL==V 1

 it means : is Volume equal to V[1] ?

 V==VEL nb1 : the variable nb1 is tested to the value of the current MidiIn volume

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V==VEL 1

 it means : is V[1] equal to Volume ?

 NOTE== value : the MidiOut note is tested to value

 ex. NOTE== 60

 (Note 0=C1, note 12=C2 ...)

 it means : is Note equal to 60 ?

 NOTE==V nb1 : the MidiOut note is tested to the value of the variable nb1

 ex. NOTE==V 1

 (Note 0=C1, note 12=C2 ...)

 it means : is Note equal to V[1] ?

 V==NOTE nb1 : the variable nb1 is tested to the value of the current MidiIn note

 ex. V==NOTE 1

 (the current MidiIn is the last midi event received)

 (Note 0=C1, note 12=C2 ...)

 it means : is V[1] equal to Note ?

 !=

 V!= nb1 value : the variable nb1 is tested to value

 ex. V!= 10 1

 means : is V[10] unequal to 1 ?

 V!=V nb1 nb2 : the variable nb1 is tested to the value of the variable nb2

 ex. V!=V 1 2

 means : is V[1] unequal to V[2] ?

 V!=VV nb1 nb2 : the variable nb1 is tested to the value of the variable V[nb2]

 ex. V!=VV 1 2

 means : is V[1] unequal to V[V[2]] ?

 if V[2] is set to 5,

 it means : is V[1] unequal to V[5] ?

 VV!=V nb1 nb2 : the variable V[nb1] is tested to the value of the variable nb2

 ex. VV!=V 1 2

 means : is V[V[1]] unequal to V[2] ?

 if V[1] is set to 5,

 it means : is V[5] unequal to V[2] ?

 VV!=VV nb1 nb2 : the variable V[V[nb1]] is tested to the value of the variable V[V[nb2]]

 ex. VV!=VV 1 2

 means : is V[V[1]] unequal to V[V[2]] ?

 if V[1] is set to 5 and V[2] to 6,

 it means : is V[5] unequal to V[6] ?

 TIME!= value : the MidiOut time is tested to value

 (value is a number of tic since start)

 ex. TIME!= 480

 (Note: one Beat != 480 tics)

 it means : is time unequal to 480 ?

 TIME!=V nb1 : the MidiOut time is tested to the value of the variable nb1

 ex. TIME!=V 1

 it means : is time unequal to V[1] ?

 V!=TIME nb1 : the variable nb1 is tested to the value of the current MidiIn time

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V!=TIME 1

 it means : is V[1] unequal to time ?

 CHAN!= value : the MidiOut channel is tested to value

 ex. CHAN!= 2

 CHAN!= 2 means

 is midi channel unequal to 2 ?

 CHAN!=V nb1 : the MidiOut channel is tested to the value of the variable nb1

 ex. CHAN!=V 1

 it means : is Channel unequal to V[1] ?

 V!=CHAN nb1 : the variable nb1 is tested to the value of the current MidiIn channel

 (the current MidiIn is the last midi event received)

 ex. V!=CHAN 1

 it means : is V[1] unequal to Channel ?

 VEL!= value : the MidiOut volume/velocity is tested to value

 ex. VEL!= 100

 (Note: volume value : 0 to 127)

 it means : is Vel unequal to 100 ?

 VEL!=V nb1 : the MidiOut volume is tested to the value of the variable nb1

 ex. VEL!=V 1

 it means : is Volume unequal to V[1] ?

 V!=VEL nb1 : the variable nb1 is tested to the value of the current MidiIn volume

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V!=VEL 1

 it means : is V[1] unequal to Volume ?

 NOTE!= value : the MidiOut note is tested to value

 ex. NOTE!= 60

 (Note 0=C1, note 12=C2 ...)

 it means : is Note unequal to 60 ?

 NOTE!=V nb1 : the MidiOut note is tested to the value of the variable nb1

 ex. NOTE!=V 1

 (Note 0=C1, note 12=C2 ...)

 it means : is Note unequal to V[1] ?

 V!=NOTE nb1 : the variable nb1 is tested to the value of the current MidiIn note

 ex. V!=NOTE 1

 (the current MidiIn is the last midi event received)

 (Note 0=C1, note 12=C2 ...)

 it means : is V[1] unequal to Note ?

 <

 V< nb1 value : the variable nb1 is tested to value

 ex. V< 10 1

 means : is V[10] lower than 1 ?

 V<V nb1 nb2 : the variable nb1 is tested to the value of the variable nb2

 ex. V<V 1 2

 means : is V[1] lower than V[2] ?

 V<VV nb1 nb2 : the variable nb1 is tested to the value of the variable V[nb2]

 ex. V<VV 1 2

 means : is V[1] lower than V[V[2]] ?

 if V[2] is set to 5,

 it means : is V[1] lower than V[5] ?

 VV<V nb1 nb2 : the variable V[nb1] is tested to the value of the variable nb2

 ex. VV<V 1 2

 means : is V[V[1]] lower than V[2] ?

 if V[1] is set to 5,

 it means : is V[5] lower than V[2] ?

 VV<VV nb1 nb2 : the variable V[V[nb1]] is tested to the value of the variable V[V[nb2]]

 ex. VV<VV 1 2

 means : is V[V[1]] lower than V[V[2]] ?

 if V[1] is set to 5 and V[2] to 6,

 it means : is V[5] lower than V[6] ?

 TIME< value : the MidiOut time is tested to value

 (value is a number of tic since start)

 ex. TIME< 480

 (Note: one Beat < 480 tics)

 it means : is time lower than 480 ?

 TIME<V nb1 : the MidiOut time is tested to the value of the variable nb1

 ex. TIME<V 1

 it means : is time lower than V[1] ?

 V<TIME nb1 : the variable nb1 is tested to the value of the current MidiIn time

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V<TIME 1

 it means : is V[1] lower than time ?

 CHAN< value : the MidiOut channel is tested to value

 ex. CHAN< 2

 CHAN< 2 means

 is midi channel lower than 2 ?

 CHAN<V nb1 : the MidiOut channel is tested to the value of the variable nb1

 ex. CHAN<V 1

 it means : is Channel lower than V[1] ?

 V<CHAN nb1 : the variable nb1 is tested to the value of the current MidiIn channel

 (the current MidiIn is the last midi event received)

 ex. V<CHAN 1

 it means : is V[1] lower than Channel ?

 VEL< value : the MidiOut volume/velocity is tested to value

 ex. VEL< 100

 (Note: volume value : 0 to 127)

 it means : is Vel lower than 100 ?

 VEL<V nb1 : the MidiOut volume is tested to the value of the variable nb1

 ex. VEL<V 1

 it means : is Volume lower than V[1] ?

 V<VEL nb1 : the variable nb1 is tested to the value of the current MidiIn volume

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V<VEL 1

 it means : is V[1] lower than Volume ?

 NOTE< value : the MidiOut note is tested to value

 ex. NOTE< 60

 (Note 0=C1, note 12=C2 ...)

 it means : is Note lower than 60 ?

 NOTE<V nb1 : the MidiOut note is tested to the value of the variable nb1

 ex. NOTE<V 1

 (Note 0=C1, note 12=C2 ...)

 it means : is Note lower than V[1] ?

 V<NOTE nb1 : the variable nb1 is tested to the value of the current MidiIn note

 ex. V<NOTE 1

 (the current MidiIn is the last midi event received)

 (Note 0=C1, note 12=C2 ...)

 it means : is V[1] lower than Note ?

 >

 V> nb1 value : the variable nb1 is tested to value

 ex. V> 10 1

 means : is V[10] upper than 1 ?

 V>V nb1 nb2 : the variable nb1 is tested to the value of the variable nb2

 ex. V>V 1 2

 means : is V[1] upper than V[2] ?

 V>VV nb1 nb2 : the variable nb1 is tested to the value of the variable V[nb2]

 ex. V>VV 1 2

 means : is V[1] upper than V[V[2]] ?

 if V[2] is set to 5,

 it means : is V[1] upper than V[5] ?

 VV>V nb1 nb2 : the variable V[nb1] is tested to the value of the variable nb2

 ex. VV>V 1 2

 means : is V[V[1]] upper than V[2] ?

 if V[1] is set to 5,

 it means : is V[5] upper than V[2] ?

 VV>VV nb1 nb2 : the variable V[V[nb1]] is tested to the value of the variable V[V[nb2]]

 ex. VV>VV 1 2

 means : is V[V[1]] upper than V[V[2]] ?

 if V[1] is set to 5 and V[2] to 6,

 it means : is V[5] upper than V[6] ?

 TIME> value : the MidiOut time is tested to value

 (value is a number of tic since start)

 ex. TIME> 480

 (Note: one Beat > 480 tics)

 it means : is time upper than 480 ?

 TIME>V nb1 : the MidiOut time is tested to the value of the variable nb1

 ex. TIME>V 1

 it means : is time upper than V[1] ?

 V>TIME nb1 : the variable nb1 is tested to the value of the current MidiIn time

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V>TIME 1

 it means : is V[1] upper than time ?

 CHAN> value : the MidiOut channel is tested to value

 ex. CHAN> 4

 CHAN> 4 means

 is midi channel upper than 4 ?

 CHAN>V nb1 : the MidiOut channel is tested to the value of the variable nb1

 ex. CHAN>V 1

 it means : is Channel upper than V[1] ?

 V>CHAN nb1 : the variable nb1 is tested to the value of the current MidiIn channel

 (the current MidiIn is the last midi event received)

 ex. V>CHAN 1

 it means : is V[1] upper than Channel ?

 VEL> value : the MidiOut volume/velocity is tested to value

 ex. VEL> 100

 (Note: volume value : 0 to 127)

 it means : is Vel upper than 100 ?

 VEL>V nb1 : the MidiOut volume is tested to the value of the variable nb1

 ex. VEL>V 1

 it means : is Volume upper than V[1] ?

 V>VEL nb1 : the variable nb1 is tested to the value of the current MidiIn volume

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V>VEL 1

 it means : is V[1] upper than Volume ?

 NOTE> value : the MidiOut note is tested to value

 ex. NOTE> 60

 (Note 0=C1, note 12=C2 ...)

 it means : is Note upper than 60 ?

 NOTE>V nb1 : the MidiOut note is tested to the value of the variable nb1

 ex. NOTE>V 1

 (Note 0=C1, note 12=C2 ...)

 it means : is Note upper than V[1] ?

 V>NOTE nb1 : the variable nb1 is tested to the value of the current MidiIn note

 ex. V>NOTE 1

 (the current MidiIn is the last midi event received)

 (Note 0=C1, note 12=C2 ...)

 it means : is V[1] upper than Note ?

 <=

 V<= nb1 value : the variable nb1 is tested to value

 ex. V<= 10 1

 means : is V[10] equal or lower than 1 ?

 V<=V nb1 nb2 : the variable nb1 is tested to the value of the variable nb2

 ex. V<=V 1 2

 means : is V[1] equal or lower than V[2] ?

 V<=VV nb1 nb2 : the variable nb1 is tested to the value of the variable V[nb2]

 ex. V<=VV 1 2

 means : is V[1] equal or lower than V[V[2]] ?

 if V[2] is set to 5,

 it means : is V[1] equal or lower than V[5] ?

 VV<=V nb1 nb2 : the variable V[nb1] is tested to the value of the variable nb2

 ex. VV<=V 1 2

 means : is V[V[1]] equal or lower than V[2] ?

 if V[1] is set to 5,

 it means : is V[5] equal or lower than V[2] ?

 VV<=VV nb1 nb2 : the variable V[V[nb1]] is tested to the value of the variable V[V[nb2]]

 ex. VV<=VV 1 2

 means : is V[V[1]] equal or lower than V[V[2]] ?

 if V[1] is set to 5 and V[2] to 6,

 it means : is V[5] equal or lower than V[6] ?

 TIME<= value : the MidiOut time is tested to value

 (value is a number of tic since start)

 ex. TIME<= 480

 (Note: one Beat <= 480 tics)

 it means : is time equal or lower than 480 ?

 TIME<=V nb1 : the MidiOut time is tested to the value of the variable nb1

 ex. TIME<=V 1

 it means : is time equal or lower than V[1] ?

 V<=TIME nb1 : the variable nb1 is tested to the value of the current MidiIn time

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V<=TIME 1

 it means : is V[1] equal or lower than time ?

 CHAN<= value : the MidiOut channel is tested to value

 ex. CHAN<= 4

 CHAN<= 4 means

 is midi channel equal or lower than 4 ?

 CHAN<=V nb1 : the MidiOut channel is tested to the value of the variable nb1

 ex. CHAN<=V 1

 it means : is Channel equal or lower than V[1] ?

 V<=CHAN nb1 : the variable nb1 is tested to the value of the current MidiIn channel

 (the current MidiIn is the last midi event received)

 ex. V<=CHAN 1

 it means : is V[1] equal or lower than Channel ?

 VEL<= value : the MidiOut volume/velocity is tested to value

 ex. VEL<= 100

 (Note: volume value : 0 to 127)

 it means : is Vel equal or lower than 100 ?

 VEL<=V nb1 : the MidiOut volume is tested to the value of the variable nb1

 ex. VEL<=V 1

 it means : is Volume equal or lower than V[1] ?

 V<=VEL nb1 : the variable nb1 is tested to the value of the current MidiIn volume

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V<=VEL 1

 it means : is V[1] equal or lower than Volume ?

 NOTE<= value : the MidiOut note is tested to value

 ex. NOTE<= 60

 (Note 0=C1, note 12=C2 ...)

 it means : is Note equal or lower than 60 ?

 NOTE<=V nb1 : the MidiOut note is tested to the value of the variable nb1

 ex. NOTE<=V 1

 (Note 0=C1, note 12=C2 ...)

 it means : is Note equal or lower than V[1] ?

 V<=NOTE nb1 : the variable nb1 is tested to the value of the current MidiIn note

 ex. V<=NOTE 1

 (the current MidiIn is the last midi event received)

 (Note 0=C1, note 12=C2 ...)

 it means : is V[1] equal or lower than Note ?

 >=

 V>= nb1 value : the variable nb1 is tested to value

 ex. V>= 10 1

 means : is V[10] equal or upper than 1 ?

 V>=V nb1 nb2 : the variable nb1 is tested to the value of the variable nb2

 ex. V>=V 1 2

 means : is V[1] equal or upper than V[2] ?

 V>=VV nb1 nb2 : the variable nb1 is tested to the value of the variable V[nb2]

 ex. V>=VV 1 2

 means : is V[1] equal or upper than V[V[2]] ?

 if V[2] is set to 5,

 it means : is V[1] equal or upper than V[5] ?

 VV>=V nb1 nb2 : the variable V[nb1] is tested to the value of the variable nb2

 ex. VV>=V 1 2

 means : is V[V[1]] equal or upper than V[2] ?

 if V[1] is set to 5,

 it means : is V[5] equal or upper than V[2] ?

 VV>=VV nb1 nb2 : the variable V[V[nb1]] is tested to the value of the variable V[V[nb2]]

 ex. VV>=VV 1 2

 means : is V[V[1]] equal or upper than V[V[2]] ?

 if V[1] is set to 5 and V[2] to 6,

 it means : is V[5] equal or upper than V[6] ?

 TIME>= value : the MidiOut time is tested to value

 (value is a number of tic since start)

 ex. TIME>= 480

 (Note: one Beat >= 480 tics)

 it means : is time equal or upper than 480 ?

 TIME>=V nb1 : the MidiOut time is tested to the value of the variable nb1

 ex. TIME>=V 1

 it means : is time equal or upper than V[1] ?

 V>=TIME nb1 : the variable nb1 is tested to the value of the current MidiIn time

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V>=TIME 1

 it means : is V[1] equal or upper than time ?

 CHAN>= value : the MidiOut channel is tested to value

 ex. CHAN>= 4

 CHAN>= 4 means

 is midi channel equal or upper than 4 ?

 CHAN>=V nb1 : the MidiOut channel is tested to the value of the variable nb1

 ex. CHAN>=V 1

 it means : is Channel equal or upper than V[1] ?

 V>=CHAN nb1 : the variable nb1 is tested to the value of the current MidiIn channel

 (the current MidiIn is the last midi event received)

 ex. V>=CHAN 1

 it means : is V[1] equal or upper than Channel ?

 VEL>= value : the MidiOut volume/velocity is tested to value

 ex. VEL>= 100

 (Note: volume value : 0 to 127)

 it means : is Vel equal or upper than 100 ?

 VEL>=V nb1 : the MidiOut volume is tested to the value of the variable nb1

 ex. VEL>=V 1

 it means : is Volume equal or upper than V[1] ?

 V>=VEL nb1 : the variable nb1 is tested to the value of the current MidiIn volume

 (number of tic since start)

 (the current MidiIn is the last midi event received)

 ex. V>=VEL 1

 it means : is V[1] equal or upper than Volume ?

 NOTE>= value : the MidiOut note is tested to value

 ex. NOTE>= 60

 (Note 0=C1, note 12=C2 ...)

 it means : is Note equal or upper than 60 ?

 NOTE>=V nb1 : the MidiOut note is tested to the value of the variable nb1

 ex. NOTE>=V 1

 (Note 0=C1, note 12=C2 ...)

 it means : is Note equal or upper than V[1] ?

 V>=NOTE nb1 : the variable nb1 is tested to the value of the current MidiIn note

 ex. V>=NOTE 1

 (the current MidiIn is the last midi event received)

 (Note 0=C1, note 12=C2 ...)

 it means : is V[1] equal or upper than Note ?

