The OCaml system
release 4.10

Documentation and user’s manual

Xavier Leroy,
Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy and Jérome Vouillon

February 21, 2020

Copyright © 2020 Institut National de Recherche en Informatique et en Automatique

Contents

I An introduction to OCaml

1

The core language

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11

Basics . .. e e
Data types o o
Functions as values e
Records and variantso
Imperative features
Exceptionso
Lazy expressions e e e e
Symbolic processing of expressions
Pretty-printing
Printf formats
Standalone OCaml programs o

The module system

2.1
2.2
2.3
2.4
2.5

Structures e e
Signatureso
Functors o e
Functors and type abstraction oo
Modules and separate compilationo

Objects in OCaml

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Classes and objects e
Immediate objects
Reference toself e
Initializers e
Virtual methods
Private methods
Class interfaces e
Inheritance L e
Multiple inheritance
Parameterized classes
Polymorphic methods
Using coercions o . e e
Functional objects

11

13
13
14
16
17
21
23
25
26
28
29
31

33
33
36
37
39
42

I1

3.14
3.15
3.16
3.17

Cloning objects e
Recursive classes e
Binary methods
Friends

Labels and variants

4.1
4.2

Labels o
Polymorphic variantso Lo

Polymorphism and its limitations

5.1
5.2
5.3

Weak polymorphism and mutation,
Polymorphic recursiono
Higher-rank polymorphic functions

Advanced examples with classes and modules

6.1
6.2
6.3

Extended example: bank accounts Lo
Simple modules as classes e
The subject/observer pattern

The OCaml language

The OCaml language

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

Lexical conventions e
Values e e
Names o e e e
Type expressions oL e
Constants e
Patterns e
Expressions
Type and exception definitions L L Lo
Classes v o e e
Module types (module specifications)
Module expressions (module implementations)
Compilation units

Language extensions

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Recursive definitions of valueso
Recursive modules Lo
Private types. o
Locally abstract types e
First-class modules e
Recovering the type of amodule L
Substituting inside a signature oo
Type-level module aliases L L o
Overriding in open statementso

77
7
83

89
89
94
97

99
99
105
111

115

117
117
122
124
127
130
131
136
150
153
160
164
167

8.10 Generalized algebraic datatypes o 182
8.11 Syntax for Bigarray access e e 188
8.12 Attributes L 188
8.13 Extension nodes 196
8.14 Extensible variant types L 198
8.15 Generative functors 200
8.16 Extension-only syntax L L 200
8.17 Imline records 201
8.18 Documentation comments Lo oo 202
8.19 Extended indexing operatorso 205
8.20 Empty variant types oL 206
821 Alerts. e 207
8.22 Generalized open statements 208
8.23 Binding operators L e 210
IIT The OCaml tools 213
9 Batch compilation (ocamlc) 215
9.1 Overview of the compiler 215
9.2 Options. o e 216
9.3 Modules and the file system oo oL 229
9.4 COMIMON EITOIS . + « + v v v e e e e e e e e e e e e e e e e 229
9.5 Warning reference L e 232
10 The toplevel system or REPL (ocaml) 235
10.1 Options o o 236
10.2 Toplevel directives e 243
10.3 The toplevel and the module system 246
10.4 Common erTOTS v v v v e e e e e e e e e e 246
10.5 Building custom toplevel systems: ocamlmktop 247
10.6 The native toplevel: ocamlnat (experimental) 248
11 The runtime system (ocamlrun) 249
111 OVerview o o oot e 249
11.2 Options o o e 250
11.3 Dynamic loading of shared libraries 252
11.4 Common eITOTS . . .« v v v v i e i e e e e e e e e e e 253
12 Native-code compilation (ocamlopt) 255
12.1 Overview of the compiler 255
12.2 Options o 0 o 256
12.3 Common eITOTS« . v v v v e e e e e e e e e e e 268
12.4 Running executables produced by ocamlopt 269
12.5 Compatibility with the bytecode compiler 269

13 Lexer and parser generators (ocamllex, ocamlyacc)
13.1 Overview of ocamllex o v i it
13.2 Syntax of lexer definitions o oo
13.3 Overview of ocamlyacc oL L
13.4 Syntax of grammar definitions Lo oL oL
13.5 Options o
13.6 A complete example
13.7 Common eITOTS« v v v v i e e e e e e

14 Dependency generator (ocamldep)
14.1 Options o e
14.2 A typical Makefile L

15 The browser/editor (ocamlbrowser)

16 The documentation generator (ocamldoc)
16.1 Usage o o o e
16.2 Syntax of documentation comments L L.
16.3 Custom generators Lo
16.4 Adding command line options L

17 The debugger (ocamldebug)
17.1 Compiling for debugging L
17.2 Invocation e
17.3 Commands o . L e
17.4 Executing a programol o e e e e e e
17.5 Breakpoints L L
17.6 Thecall stack e
17.7 Examining variable values oo o
17.8 Controlling the debugger L
17.9 Miscellaneous commands Lo Lo Lo
17.10 Running the debugger under Emacs

18 Profiling (ocamlprof)
18.1 Compiling for profiling
18.2 Profiling an execution L Lo
18.3 Printing profiling information L o o o
18.4 Time profiling L

19 The ocamlbuild compilation manager

20 Interfacing C with OCaml
20.1 Overview and compilation information
20.2 The value type e
20.3 Representation of OCaml data types
20.4 Operations on values

271
271
272
277
277
280
281
282

285
285
287

291

293
293
300
310
313

315
315
315
316
317
320
321
321
322
326
326

329
329
330
330
331

333

20.5 Living in harmony with the garbage collector
20.6 A complete example L L L e
20.7 Advanced topic: callbacks from C to OCaml
20.8 Advanced example with callbacks
20.9 Advanced topic: custom blocks
20.10 Advanced topic: Bigarrays and the OCaml-C interface
20.11 Advanced topic: cheaper Ccall
20.12 Advanced topic: multithreading oL o oo
20.13 Advanced topic: interfacing with Windows Unicode APIs
20.14 Building mixed C/OCaml libraries: ocamlmklib
20.15 Cautionary words: the internal runtime API
21 Optimisation with Flambda
211 OVErvIew e e e e e e e
21.2 Command-line flags L
21.3 Inlining oL e
21.4 Specialisation e
21.5 Default settings of parameters L L L
21.6 Manual control of inlining and specialisation
21.7 Simplification L e e e
21.8 Other code motion transformations 0oL,
21.9 Unboxing transformationso
21.10 Removal of unused code and values
21.11 Other code transformations
21.12 Treatment of effects
21.13 Compilation of statically-allocated modules
21.14 Inhibition of optimisation
21.15 Use of unsafe operations
21.16 GloSsary oL
22 Memory profiling with Spacetime
221 OVerview e
222 Howtouseit e
22.3 Runtime overhead
22.4 For developers
23 Fuzzing with afl-fuzz
23. 1 OVerview e
23.2 Generating instrumentation oL oL L
23.3 Example L e

IV The OCaml library

24 The core library
24.1 Built-in types and predefined exceptions,

349
354
358
363
365
369
371
373
375
378
380

383
383
383
386
391
394
395
396
397
398
402
402
403
404
404
404
405

407
407
407
408
409

411
411
411
411

413

415

24.2 Module Stdlib : The OCaml Standard library. 418
25 The standard library 447
25.1 Module Arg : Parsing of command line arguments. 449
25.2 Module Array 453
25.3 Module ArrayLabels : Array operations 458
25.4 Module Bigarray : Large, multi-dimensional, numerical arrays. 463
25.5 Module Bool : Boolean values. o 482
25.6 Module Buffer : Extensible buffers.. 000000 483
25.7 Module Bytes : Byte sequence operations. Lo oL 488
25.8 Module BytesLabels : Byte sequence operations. 499
25.9 Module Callback : Registering OCaml values with the C runtime. 508
25.10 Module Char : Character operations. 508
25.11 Module Complex : Complex numbers. 509
25.12 Module Digest : MD5 message digest. 511
25.13 Module Ephemeron : Ephemerons and weak hash table 512
25.14 Module Filename : Operations on file names. 520
25.15 Module Float : Floating-point arithmetic 524
25.16 Module Format : Pretty-printing. oL 536
25.17 Module Fun : Function manipulation. 560
25.18 Module Gec : Memory management control and statistics; finalised values. 561
25.19 Module Genlex : A generic lexical analyzer. 568
25.20 Module Hashtbl : Hash tables and hash functions. 569
25.21 Module Int : Integer values. L 578
25.22 Module Int32 : 32-bit integers. L 581
25.23 Module Int64 : 64-bit integers. L 584
25.24 Module Lazy : Deferred computations. 588
25.25 Module Lexing : The run-time library for lexers generated by ocamllex. 590
25.26 Module List : List operations. s 593
25.27 Module ListLabels o L e e e 599
25.28 Module Map : Association tables over ordered types. 606
25.29 Module Marshal : Marshaling of data structures. 612
25.30 Module MoreLabels : Extra labeled libraries., 615
25.31 Module Nativeint : Processor-native integers. 622
25.32 Module Oo : Operations on objects 626
25.33 Module Option : Option values. 626
25.34 Module Parsing : The run-time library for parsers generated by ocamlyacc. 628
25.35 Module Printexc : Facilities for printing exceptions and inspecting current call
stack. . . oL 629
25.36 Module Printf : Formatted output functions. 635
25.37 Module Queue : First-in first-out queues. oL 638
25.38 Module Random : Pseudo-random number generators (PRNG). 640
25.39 Module Result : Result values. L oo 642
25.40 Module Scanf : Formatted input functions. 644
25.41 Module Seq : Functional Iterators o 654

25.42 Module Set : Sets over ordered types. L oo 655
25.43 Module Spacetime : Profiling of a program’s space behaviour over time. 661
25.44 Module Stack : Last-in first-out stacks. o000 662
25.45 Module StdLabels : Standard labeled libraries. 664
25.46 Module Stream : Streams and parsers.o oo 664
25.47 Module String : String operations. oL 666
25.48 Module Stringlabels : String operations. 672
25.49 Module Sys : System interface. oo 0oL 677
25.50 Module Uchar : Unicode characters. 685
25.51 Module Unit : Unit values. e 686
25.52 Module Weak : Arrays of weak pointers and hash sets of weak pointers. 687
25.53 Ocaml_operators : Precedence level and associativity of operators 690
26 The compiler front-end 691
26.1 Module Ast_mapper : The interface of a -ppx rewriter 691
26.2 Module Asttypes : Auxiliary AST types used by parsetree and typedtree. 695
26.3 Module Location : Source code locations (ranges of positions), used in parsetree . 696
26.4 Module Longident : Long identifiers, used in parsetree.. 702
26.5 Module Parse : Entry points in the parser L. 702
26.6 Module Parsetree : Abstract syntax tree produced by parsing 702
26.7 Module Pprintast : Pretty-printers for Parsetree[26.6] 712
27 The unix library: Unix system calls 715
27.1 Module Unix : Interface to the Unix system. 715
27.2 s:Module UnixLabels: labelized version of the interface 756
28 The num library: arbitrary-precision rational arithmetic 759
29 The str library: regular expressions and string processing 761
29.1 Module Str : Regular expressions and high-level string processing 761
30 The threads library 767
30.1 Module Thread : Lightweight threads for Posix 1003.1c and Win32. 768
30.2 Module Mutex : Locks for mutual exclusion. 770
30.3 Module Condition : Condition variables to synchronize between threads. 770
30.4 Module Event : First-class synchronous communication. 771
30.5 Module ThreadUnix : Thread-compatible system calls. 773
31 The graphics library 775
32 The dynlink library: dynamic loading and linking of object files T
32.1 Module Dynlink : Dynamic loading of .cmo, .cma and .cmxs files. e

33 The bigarray library 781

V Appendix 783
Index to the library 785

Index of keywords 804

Foreword

This manual documents the release 4.10 of the OCaml system. It is organized as follows.
e Part I, “An introduction to OCaml”, gives an overview of the language.
e Part I, “The OCaml language”, is the reference description of the language.

e Part III, “The OCaml tools”, documents the compilers, toplevel system, and programming
utilities.

e Part IV, “The OCaml library”, describes the modules provided in the standard library.

e Part V, “Appendix”, contains an index of all identifiers defined in the standard library, and
an index of keywords.

Conventions

OCaml runs on several operating systems. The parts of this manual that are specific to one
operating system are presented as shown below:

Unix:
This is material specific to the Unix family of operating systems, including Linux and
MacOS X.

Windows:
This is material specific to Microsoft Windows (XP, Vista, 7, 8, 10).

License

The OCaml system is copyright © 1996-2020 Institut National de Recherche en Informatique et en
Automatique (INRIA). INRIA holds all ownership rights to the OCaml system.

The OCaml system is open source and can be freely redistributed. See the file LICENSE in the
distribution for licensing information.

The OCaml documentation and user’s manual is copyright © 2020 Institut National de
Recherche en Informatique et en Automatique (INRIA).

The OCaml documentation and user’s manual is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0), https://creativecommons.
org/licenses/by-sa/4.0/.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

10 Foreword

Availability

The complete OCaml distribution can be accessed via the Web sites http://www.ocaml.org/ and
http://caml.inria.fr/. The former Web site contains a lot of additional information on OCaml.

http://www.ocaml.org/
http://caml.inria.fr/

Part 1

An introduction to OCaml

11

Chapter 1

The core language

This part of the manual is a tutorial introduction to the OCaml language. A good familiarity with
programming in a conventional languages (say, C or Java) is assumed, but no prior exposure to
functional languages is required. The present chapter introduces the core language. Chapter 2 deals
with the module system, chapter 3 with the object-oriented features, chapter 4 with extensions to
the core language (labeled arguments and polymorphic variants), and chapter 6 gives some advanced
examples.

1.1 Basics

For this overview of OCaml, we use the interactive system, which is started by running ocaml from
the Unix shell, or by launching the OCamlwin.exe application under Windows. This tutorial is
presented as the transcript of a session with the interactive system: lines starting with # represent
user input; the system responses are printed below, without a leading #.

Under the interactive system, the user types OCaml phrases terminated by ;; in response to
the # prompt, and the system compiles them on the fly, executes them, and prints the outcome of
evaluation. Phrases are either simple expressions, or let definitions of identifiers (either values or
functions).

1+2%3;,;
- : int =7

let pi = 4.0 *. atan 1.0;;
val pi : float = 3.14159265358979312

let square x = X *. X;;
val square : float -> float = <fun>

square (sin pi) +. square (cos pi);;

- : float = 1.

The OCaml system computes both the value and the type for each phrase. Even function parameters
need no explicit type declaration: the system infers their types from their usage in the function.
Notice also that integers and floating-point numbers are distinct types, with distinct operators: +
and * operate on integers, but +. and *. operate on floats.

13

14

1.0 x 2;;

Error: This expression has type float but an expression was expected of type

int
Recursive functions are defined with the let rec binding:

let rec fib n =
if n < 2 then n else fib (n-1) + fib (n-2);;
val fib : int -> int = <fun>

fib 10;;
- : int = 55

1.2 Data types

In addition to integers and floating-point numbers, OCaml offers the usual basic data types:

e booleans
(1 < 2) = false;;

- : bool = false

let one = if true then 1 else 2;;
val one : int = 1

e characters
'a'ys
- : char = 'a'

int_of_char '\n';;
- : int = 10

o immutable character strings

IIHellOII ~ nn = Ilworldll; ;
- : string = "Hello world"

{|This is a quoted string, here, neither \ nor " are special characters|};;

- : string =
"This is a quoted string, here, neither \\ nor \" are special characters"

YOO

- : bool = true

{delimiter|the end of this|}quoted string is here|delimiter}
= "the end of this|}quoted string is here";;
- : bool = true

Chapter 1. The core language 15

Predefined data structures include tuples, arrays, and lists. There are also general mechanisms
for defining your own data structures, such as records and variants, which will be covered in more
detail later; for now, we concentrate on lists. Lists are either given in extension as a bracketed
list of semicolon-separated elements, or built from the empty list [1 (pronounce “nil”) by adding
elements in front using the :: (“cons”) operator.

let 1 = ["is"; "a"; "tale"; "told"; "etc."];;
val 1 : string list = ["is"; "a"; "tale"; "told"; "etc."]

"Life" :: 1;;
- : string list = ["Life"; "is"; "a"; "tale"; "told"; "etc."]

As with all other OCaml data structures, lists do not need to be explicitly allocated and deallocated
from memory: all memory management is entirely automatic in OCaml. Similarly, there is no
explicit handling of pointers: the OCaml compiler silently introduces pointers where necessary.

As with most OCaml data structures, inspecting and destructuring lists is performed by pattern-
matching. List patterns have exactly the same form as list expressions, with identifiers representing
unspecified parts of the list. As an example, here is insertion sort on a list:

let rec sort 1lst =
match 1st with

0 ->

| head :: tail -> insert head (sort tail)

and insert elt 1lst =

match 1lst with

[0 -> [elt]

| head :: tail -> if elt <= head then elt :: 1lst else head :: insert elt tail
5

val sort : 'a list -> 'a list = <fun>

val insert : 'a -> 'a list -> 'a list = <fun>

sort 1;;

- : string list = ["a"; "etc."; "is"; "tale"; "told"]

The type inferred for sort, 'a list -> 'a list, means that sort can actually apply to lists
of any type, and returns a list of the same type. The type 'a is a type variable, and stands for
any given type. The reason why sort can apply to lists of any type is that the comparisons (=,
<=, etc.) are polymorphic in OCaml: they operate between any two values of the same type. This
makes sort itself polymorphic over all list types.

sort [6;2;5;3];;
- : int list = [2; 3; 5; 6]

sort [3.14; 2.718];;
: float list = [2.718; 3.14]

The sort function above does not modify its input list: it builds and returns a new list con-
taining the same elements as the input list, in ascending order. There is actually no way in OCaml
to modify a list in-place once it is built: we say that lists are immutable data structures. Most

16

OCaml data structures are immutable, but a few (most notably arrays) are mutable, meaning that
they can be modified in-place at any time.

The OCaml notation for the type of a function with multiple arguments is
argl_type —-> arg2_type -> ... -> return_type. For example, the type inferred for insert,
'a => 'a list -> 'a list, means that insert takes two arguments, an element of any type 'a
and a list with elements of the same type 'a and returns a list of the same type.

1.3 Functions as values

OCaml is a functional language: functions in the full mathematical sense are supported and can
be passed around freely just as any other piece of data. For instance, here is a deriv function that
takes any float function as argument and returns an approximation of its derivative function:

let deriv f dx = function x -> (f (x +. dx) -. f x) /. dx;;
val deriv : (float -> float) -> float -> float -> float = <fun>

let sin' = deriv sin le-6;;
val sin' : float -> float = <fun>
sin' pi;;

- : float = -1.00000000013961143
Even function composition is definable:

let compose f g = function x > f (g x);;
val compose : ('a -> 'b) -> ('c => 'a) -> 'c -> 'b = <fun>

let cos2 = compose square cos;;
val cos2 : float -> float = <fun>

Functions that take other functions as arguments are called “functionals”, or “higher-order
functions”. Functionals are especially useful to provide iterators or similar generic operations over
a data structure. For instance, the standard OCaml library provides a List.map functional that
applies a given function to each element of a list, and returns the list of the results:

List.map (function n ->n * 2 + 1) [0;1;2;3;4];;
- : int list = [1; 3; 5; 7; 9]

This functional, along with a number of other list and array functionals, is predefined because it is
often useful, but there is nothing magic with it: it can easily be defined as follows.

let rec map £ 1 =

match 1 with

0 -> 1

| hd :: t1 -> f hd :: map f tl;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

Chapter 1. The core language 17

1.4 Records and variants

User-defined data structures include records and variants. Both are defined with the type declara-
tion. Here, we declare a record type to represent rational numbers.

type ratio = {num: int; denom: int};;
type ratio = { num : int; denom : int; }

let add_ratio rl r2 =

{num = ri1.num * r2.denom + r2.num * rl.denom;
denom = rl.denom * r2.denom};;

val add_ratio : ratio -> ratio -> ratio = <fun>

add_ratio {num=1; denom=3} {num=2; denom=5};;
- : ratio = {num = 11; denom = 15}
Record fields can also be accessed through pattern-matching:

let integer_part r =

match r with

{num=num; denom=denom} -> num / denom;;
val integer_part : ratio -> int = <fun>

Since there is only one case in this pattern matching, it is safe to expand directly the argument r
in a record pattern:

let integer_part {num=num; denom=denom} = num / denom;;
val integer_part : ratio -> int = <fun>

Unneeded fields can be omitted:

let get_denom {denom=denom} = denom;;
val get_denom : ratio -> int = <fun>

Optionally, missing fields can be made explicit by ending the list of fields with a trailing wildcard

let get_num {num=num; _ } = num;;
val get_num : ratio -> int = <fun>

When both sides of the = sign are the same, it is possible to avoid repeating the field name by
eliding the =field part:

let integer_part {num; denom} = num / denom;;
val integer_part : ratio -> int = <fun>

This short notation for fields also works when constructing records:

let ratio num denom = {num; denom};;
val ratio : int -> int -> ratio = <fun>

At last, it is possible to update few fields of a record at once:

let integer_product integer ratio = { ratio with num = integer * ratio.num };;

18

val integer_product : int -> ratio -> ratio = <fun>

With this functional update notation, the record on the left-hand side of with is copied except for
the fields on the right-hand side which are updated.

The declaration of a variant type lists all possible forms for values of that type. Each case is
identified by a name, called a constructor, which serves both for constructing values of the variant
type and inspecting them by pattern-matching. Constructor names are capitalized to distinguish
them from variable names (which must start with a lowercase letter). For instance, here is a variant
type for doing mixed arithmetic (integers and floats):

type number = Int of int | Float of float | Error;;
type number = Int of int | Float of float | Error

This declaration expresses that a value of type number is either an integer, a floating-point number,
or the constant Error representing the result of an invalid operation (e.g. a division by zero).
Enumerated types are a special case of variant types, where all alternatives are constants:

type sign = Positive | Negative;;
type sign = Positive | Negative

let sign_int n = if n >= 0 then Positive else Negative;;
val sign_int : int -> sign = <fun>

To define arithmetic operations for the number type, we use pattern-matching on the two num-
bers involved:

let add_num nl n2 =
match (nl, n2) with
(Int i1, Int i2) ->
(* Check for overflow of integer addition)
if sign_int il = sign_int i2 && sign_int (il + i2) <> sign_int il
then Float(float il +. float i2)
else Int(il + i2)
| (Int i1, Float f2) -> Float(float il +. £2)
| (Float f1, Int i2) -> Float(fl +. float i2)
| (Float f1, Float f2) -> Float(f1i +. f2)
| (Error, _) -> Error
| (_, Error) -> Error;;

H OH HF H H H H HF H H

val add_num : number -> number -> number = <fun>
add_num (Int 123) (Float 3.14159);;
- : number = Float 126.14159

Another interesting example of variant type is the built-in 'a option type which represents
either a value of type 'a or an absence of value:

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

This type is particularly useful when defining function that can fail in common situations, for
instance

Chapter 1. The core language 19

let safe_square_root x = if x > 0. then Some(sqrt x) else None;;
val safe_square_root : float -> float option = <fun>

The most common usage of variant types is to describe recursive data structures. Consider for
example the type of binary trees:

type 'a btree = Empty | Node of 'a * 'a btree * 'a btree;;
type 'a btree = Empty | Node of 'a * 'a btree * 'a btree

This definition reads as follows: a binary tree containing values of type 'a (an arbitrary type) is
either empty, or is a node containing one value of type 'a and two subtrees also containing values
of type 'a, that is, two 'a btree.

Operations on binary trees are naturally expressed as recursive functions following the same
structure as the type definition itself. For instance, here are functions performing lookup and
insertion in ordered binary trees (elements increase from left to right):

let rec member x btree =
match btree with

Empty -> false

| Node(y, left, right) ->

if x = y then true else

if x < y then member x left else member x right;;
val member : 'a -> 'a btree -> bool = <fun>

let rec insert x btree =

match btree with

Empty -> Node(x, Empty, Empty)

| Node(y, left, right) ->

if x <= y then Node(y, insert x left, right)

else Node(y, left, insert x right);;
val insert : 'a -> 'a btree -> 'a btree = <fun>

1.4.1 Record and variant disambiguation

(This subsection can be skipped on the first reading)
Astute readers may have wondered what happens when two or more record fields or constructors
share the same name

type first_record = { x:int; y:int; z:int }
type middle_record = { x:int; z:int }
type last_record { x:int };;

type first_variant = A | B | C
type last_variant = A;;

The answer is that when confronted with multiple options, OCaml tries to use locally available
information to disambiguate between the various fields and constructors. First, if the type of the
record or variant is known, OCaml can pick unambiguously the corresponding field or constructor.
For instance:

20

let look_at_x_then_z (r:first_record) =

let x = r.x in

X +r.z;;

val look_at_x then_z : first_record -> int = <fun>

let permute (x:first_variant) = match x with

| A -> (B:first_variant)
| B> A
| C > C;;

val permute : first_variant -> first_variant = <fun>

type wrapped = First of first_record

let f (First r) =r, r.x;;

type wrapped = First of first_record

val f : wrapped -> first_record * int = <fun>

In the first example, (r:first_record) is an explicit annotation telling OCaml that the type
of r is first_record. With this annotation, Ocaml knows that r.x refers to the x field of the
first record type. Similarly, the type annotation in the second example makes it clear to OCaml
that the constructors A, B and C come from the first variant type. Contrarily, in the last example,
OCaml has inferred by itself that the type of r can only be first_record and there are no needs
for explicit type annotations.

Those explicit type annotations can in fact be used anywhere. Most of the time they are
unnecessary, but they are useful to guide disambiguation, to debug unexpected type errors, or
combined with some of the more advanced features of OCaml described in later chapters.

Secondly, for records, OCaml can also deduce the right record type by looking at the whole set
of fields used in a expression or pattern:

let project_and_rotate {x;y; _ Y} ={x=-y; y=x; z =0} ;;

val project_and_rotate : first_record -> first_record = <fun>

Since the fields x and y can only appear simultaneously in the first record type, OCaml infers that
the type of project_and_rotate is first_record -> first_record.

In last resort, if there is not enough information to disambiguate between different fields or
constructors, Ocaml picks the last defined type amongst all locally valid choices:

let look_at_xz {x;z} = x;;
val look_at_xz : middle_record -> int = <fun>

Here, OCaml has inferred that the possible choices for the type of {x;z} are first_record
and middle_record, since the type last_record has no field z. Ocaml then picks the type
middle_record as the last defined type between the two possibilities.

Beware that this last resort disambiguation is local: once Ocaml has chosen a disambiguation,
it sticks to this choice, even if it leads to an ulterior type error:

let look_at_x_then_y r =
let x = r.x in (* Ocaml deduces [r: last record] *)
X +r.y;;

Chapter 1. The core language 21

Error: This expression has type last_record
The field y does not belong to type last_record

let is_a_or_b x = match x with
| A -> true (x OCaml infers [x: last_ variant] x)
| B -> true;;

Error: This variant pattern is expected to have type last_variant
The constructor B does not belong to type last_variant

Moreover, being the last defined type is a quite unstable position that may change surrepti-
tiously after adding or moving around a type definition, or after opening a module (see chapter
2). Consequently, adding explicit type annotations to guide disambiguation is more robust than
relying on the last defined type disambiguation.

1.5 Imperative features

Though all examples so far were written in purely applicative style, OCaml is also equipped with
full imperative features. This includes the usual while and for loops, as well as mutable data
structures such as arrays. Arrays are either created by listing semicolon-separated element values
between [| and |] brackets, or allocated and initialized with the Array.make function, then filled
up later by assignments. For instance, the function below sums two vectors (represented as float
arrays) componentwise.

let add_vect vl v2 =

let len = min (Array.length v1) (Array.length v2) in
let res = Array.make len 0.0 in

for i = 0 to len - 1 do

res. (i) <- vi.(i) +. v2.(1)

done;

res;;

val add_vect : float array -> float array -> float array = <fun>

add_vect [| 1.0; 2.0 |1 [l 3.0; 4.0 |]1;;
- : float array = [|4.; 6.]]

Record fields can also be modified by assignment, provided they are declared mutable in the
definition of the record type:

type mutable_point = { mutable x: float; mutable y: float };;
type mutable_point = { mutable x : float; mutable y : float; }

let translate p dx dy =
p.x <-p.x +. dx; p.y <- p.y +. dy;;
val translate : mutable_point -> float -> float -> unit = <fun>

let mypoint = { x = 0.0; y = 0.0 };;
val mypoint : mutable_point = {x = 0.; y = 0.}

22

translate mypoint 1.0 2.0;;
- : unit = ()

+H+

mypoint;;
- : mutable_point = {x = 1.; y = 2.}

OCaml has no built-in notion of variable — identifiers whose current value can be changed
by assignment. (The let binding is not an assignment, it introduces a new identifier with a new
scope.) However, the standard library provides references, which are mutable indirection cells, with
operators ! to fetch the current contents of the reference and := to assign the contents. Variables
can then be emulated by let-binding a reference. For instance, here is an in-place insertion sort
over arrays:

let insertion_sort a =
for i = 1 to Array.length a - 1 do

let val_i = a.(i) in

let j = ref i in

while !j > 0 && val_i < a.(!j - 1) do
4 a.(13) <= a.(1j - 1);

joi=1'j-1

done;

a.('j) <- val_i

done;;

val insertion_sort : 'a array -> unit = <fun>

References are also useful to write functions that maintain a current state between two calls to
the function. For instance, the following pseudo-random number generator keeps the last returned
number in a reference:

let current_rand = ref O;;
val current_rand : int ref = {contents = O}

let random () =

current_rand := !current_rand * 25713 + 1345;
lcurrent_rand;;

val random : unit -> int = <fun>

Again, there is nothing magical with references: they are implemented as a single-field mutable
record, as follows.

type 'a ref = { mutable contents: 'a };;

type 'a ref = { mutable contents : 'a; }

let (!) r = r.contents;;
val (!) : 'a ref -> 'a = <fun>

let (:=) r newval = r.contents <- newval;;
val (:=) : 'a ref -> 'a -> unit = <fun>

Chapter 1. The core language 23

In some special cases, you may need to store a polymorphic function in a data structure, keeping
its polymorphism. Doing this requires user-provided type annotations, since polymorphism is only
introduced automatically for global definitions. However, you can explicitly give polymorphic types
to record fields.

type idref = { mutable id: 'a. 'a -> 'a };;
type idref = { mutable id : 'a. 'a -> 'a; }

let r = {id = fun x -> x};;
val r : idref = {id = <fun>}

let g s = (s.id 1, s.id true);;
val g : idref -> int * bool = <fun>

r.id <- (fun x -> print_string "called id\n"; x);;
- : unit = ()

#gr;;

called id

called id

- : int * bool = (1, true)

1.6 Exceptions

OCaml provides exceptions for signalling and handling exceptional conditions. Exceptions can also
be used as a general-purpose non-local control structure, although this should not be overused since
it can make the code harder to understand. Exceptions are declared with the exception construct,
and signalled with the raise operator. For instance, the function below for taking the head of a
list uses an exception to signal the case where an empty list is given.

exception Empty_list;;
exception Empty_list

let head 1 =
match 1 with

[] -> raise Empty_list
| hd :: t1 -> hd;;

val head : 'a list -> 'a = <fun>
head [1;2];;

- : int =1

head [1;;

Exception: Empty_list.

Exceptions are used throughout the standard library to signal cases where the library functions
cannot complete normally. For instance, the List.assoc function, which returns the data associ-
ated with a given key in a list of (key, data) pairs, raises the predefined exception Not_found when
the key does not appear in the list:

24

List.assoc 1 [(0, "zero"); (1, "one")];;
- : string = "one"

List.assoc 2 [(0, "zero"); (1, "one")];;
Exception: Not_found.
Exceptions can be trapped with the try...with construct:

let name_of_binary_digit digit =

try

List.assoc digit [0, "zero"; 1, "one"]
with Not_found ->

"not a binary digit";;

val name_of_binary_digit : int -> string = <fun>

name_of_binary_digit O;;
- : string = "zero"

name_of_binary_digit (-1);;
- : string = "not a binary digit"

The with part does pattern matching on the exception value with the same syntax and behavior
as match. Thus, several exceptions can be caught by one try...with construct:

let rec first_named_value values names =

try

List.assoc (head values) names

with

| Empty_list -> "no named value"

| Not_found -> first named value (List.tl values) names;;

val first_named_value : 'a list -> ('a * string) list -> string = <fun>
first named value [0; 10] [1, "one"; 10, "ten"];;
- : string = "ten"

Also, finalization can be performed by trapping all exceptions, performing the finalization, then
re-raising the exception:

let temporarily_set_reference ref newval funct =
let oldval = !ref in

try

ref := newval;

let res = funct () in
ref := oldval;

res

with x ->

ref := oldval;

raise x;;

val temporarily_set_reference : 'a ref -> 'a -> (unit -> 'b) -> 'b = <fun>

Chapter 1. The core language 25

An alternative to try...with is to catch the exception while pattern matching:

let assoc_may map f x 1 =

match List.assoc x 1 with

| exception Not_found -> None

'y > £ y;;

val assoc_may_map : ('a -> 'b option) -> 'c¢ -> ('c * 'a) list -> 'b option =
<fun>

Note that this construction is only useful if the exception is raised between match. ..with. Exception
patterns can be combined with ordinary patterns at the toplevel,

let flat_assoc_opt x 1 =
match List.assoc x 1 with

| None | exception Not_found -> None
| Some _ as v -> v;;
val flat_assoc_opt : 'a -> ('a * 'b option) list -> 'b option = <fun>

but they cannot be nested inside other patterns. For instance, the pattern Some (exception A)
is invalid.

When exceptions are used as a control structure, it can be useful to make them as local as
possible by using a locally defined exception. For instance, with

let fixpoint f x =

let exception Done in
let x = ref x in

try while true do

let y = f !x in

if !x = y then raise Done else x := y
done; assert false

with Done -> !x;;

val fixpoint : ('a -> 'a) -> 'a -> 'a = <fun>

the function f cannot raise a Done exception, which removes an entire class of misbehaving functions.

1.7 Lazy expressions

OCaml allows us to defer some computation until later when we need the result of that computation.

We use lazy (expr) to delay the evaluation of some expression expr. For example, we can
defer the computation of 1+1 until we need the result of that expression, 2. Let us see how we
initialize a lazy expression.

let lazy_two = lazy (print_endline "lazy_two evaluation"; 1 + 1);;
val lazy_two : int lazy_ t = <lazy>

We added print_endline "lazy_two evaluation" to see when the lazy expression is being
evaluated.

The value of lazy_two is displayed as <lazy>, which means the expression has not been eval-
uated yet, and its final value is unknown.

26

Note that lazy_two has type int lazy_t. However, the type 'a lazy_t is an internal type
name, so the type 'a Lazy.t should be preferred when possible.

When we finally need the result of a lazy expression, we can call Lazy.force on that expression
to force its evaluation. The function force comes from standard-library module Lazy[25.24].

Lazy.force lazy_two;;
lazy_two evaluation
- : int = 2

Notice that our function call above prints “lazy_two evaluation” and then returns the plain
value of the computation.

Now if we look at the value of lazy_two, we see that it is not displayed as <lazy> anymore but
as lazy 2.

lazy_two;;
- : int lazy_t = lazy 2

This is because Lazy.force memoizes the result of the forced expression. In other words,
every subsequent call of Lazy.force on that expression returns the result of the first computation
without recomputing the lazy expression. Let us force lazy_two once again.

Lazy.force lazy_two;;
- : int = 2

The expression is not evaluated this time; notice that “lazy_two evaluation” is not printed. The
result of the initial computation is simply returned.
Lazy patterns provide another way to force a lazy expression.

let lazy_l = lazy ([1; 2] @ [3; 41);;
val lazy_1 : int list lazy_t = <lazy>

let lazy 1 = lazy_1;;

val 1 : int list = [1; 2; 3; 4]

We can also use lazy patterns in pattern matching.

let maybe_eval lazy_guard lazy_expr =

match lazy_guard, lazy_expr with

| lazy false, _ -> "matches if (Lazy.force lazy_guard = false); lazy_expr not forced"
| lazy true, lazy _ -> "matches if (Lazy.force lazy_guard = true); lazy_expr forced";;

val maybe_eval : bool lazy_t -> 'a lazy_t -> string = <fun>

The lazy expression lazy_expr is forced only if the lazy_guard value yields true once com-
puted. Indeed, a simple wildcard pattern (not lazy) never forces the lazy expression’s evaluation.
However, a pattern with keyword lazy, even if it is wildcard, always forces the evaluation of the
deferred computation.

1.8 Symbolic processing of expressions

We finish this introduction with a more complete example representative of the use of OCaml
for symbolic processing: formal manipulations of arithmetic expressions containing variables. The
following variant type describes the expressions we shall manipulate:

Chapter 1. The core language 27

type expression =

Const of float
| Var of string
| Sum of expression * expression (€2 *)
| Diff of expression * expression (x(l—f() <)
| Prod of expression * expression (xel xe2 %)
I (

Quot of expression * expression x el / e2 x)

H OH H H OH H R

)
type expression =

Const of float
| Var of string
| Sum of expression * expression
| Diff of expression * expression
| Prod of expression * expression
| Quot of expression * expression

We first define a function to evaluate an expression given an environment that maps variable
names to their values. For simplicity, the environment is represented as an association list.

exception Unbound_variable of string;;
exception Unbound_variable of string

let rec eval env exp =

match exp with

Const ¢ -> ¢

| Var v —>

(try List.assoc v env with Not_found -> raise (Unbound_variable v))
| Sum(f, g) -> eval env f +. eval env g

| Diff(f, g) -> eval env f -. eval env g

| Prod(f, g) -> eval env f *. eval env g

| Quot(f, g) -> eval env f /. eval env g;;

val eval : (string * float) list -> expression -> float = <fun>

eval [("x", 1.0); ("y", 3.14)] (Prod(Sum(Var "x", Const 2.0), Var "y"));;
- : float = 9.42

Now for a real symbolic processing, we define the derivative of an expression with respect to a
variable dv:

let rec deriv exp dv =
match exp with
Const ¢ -> Const 0.0
| Var v —=> if v = dv then Const 1.0 else Const 0.0
| Sum(f, g) -> Sum(deriv f dv, deriv g dv)
| Diff(f, g) -> Diff(deriv f dv, deriv g dv)
| Prod(f, g) -> Sum(Prod(f, deriv g dv), Prod(deriv f dv, g))
| Quot(f, g) -> Quot(Diff(Prod(deriv f dv, g), Prod(f, deriv g dv)),
Prod(g, g))

H OH HF H H HF H H

28

val deriv : expression -> string -> expression = <fun>

deriv (Quot(Const 1.0, Var "x")) "x'";;

- ! expression =

Quot (Diff (Prod (Comst 0., Var "x"), Prod (Const 1., Comst 1.)),
Prod (Var "x", Var "x"))

1.9 Pretty-printing

As shown in the examples above, the internal representation (also called abstract syntax) of expres-
sions quickly becomes hard to read and write as the expressions get larger. We need a printer and
a parser to go back and forth between the abstract syntax and the concrete syntax, which in the
case of expressions is the familiar algebraic notation (e.g. 2*x+1).

For the printing function, we take into account the usual precedence rules (i.e. * binds tighter
than +) to avoid printing unnecessary parentheses. To this end, we maintain the current operator
precedence and print parentheses around an operator only if its precedence is less than the current
precedence.

let print_expr exp =
(* Local function definitions)
let open_paren prec op_prec =

if prec > op_prec then print_string "(" in

let close_paren prec op_prec =

if prec > op_prec then print_string ")" in

let rec print prec exp = (* prec is the current precedence)
match exp with

Const ¢ -> print_float c

| Var v -> print_string v

| Sum(f, g) ->

open_paren prec O;

print O f; print_string " + "; print O g;

close_paren prec O

| Diff(f, g) ->

open_paren prec O;

print O f; print_string " - "; print 1 g;

close_paren prec O

| Prod(f, g) —>

open_paren prec 2;

print 2 f; print_string " * "; print 2 g;

close_paren prec 2

| Quot(f, g —->

open_paren prec 2;

print 2 f; print_string " / "; print 3 g;

close_paren prec 2

in print O exp;;

Chapter 1. The core language 29

val print_expr : expression —> unit = <fun>

let e = Sum(Prod(Const 2.0, Var "x"), Const 1.0);;
val e : expression = Sum (Prod (Const 2., Var "x"), Const 1.)

print_expr e; print_newline Q);;
2. *x x + 1.
- : unit = ()

print_expr (deriv e "x"); print_newline ();;
2. x 1. + 0. *x + 0.
- : unit = ()

1.10 Printf formats

There is a printf function in the Printf[25.36] module (see chapter 2) that allows you to make
formatted output more concisely. It follows the behavior of the printf function from the C standard
library. The printf function takes a format string that describes the desired output as a text
interspered with specifiers (for instance %d, %f). Next, the specifiers are substituted by the following
arguments in their order of apparition in the format string:

Printf.printf "%i + %i is an integer value, %F * %F is a float, %S\n"

32 4.5 1. "this is a string";;

3 + 2 is an integer value, 4.5 * 1. is a float, "this is a string"

- : unit = ()

The OCaml type system checks that the type of the arguments and the specifiers are compatible.
If you pass it an argument of a type that does not correspond to the format specifier, the compiler
will display an error message:

Printf.printf "Float value: JF" 42;;

Error: This expression has type int but an expression was expected of type
float
Hint: Did you mean °42.'7

The fprintf function is like printf except that it takes an output channel as the first argument.
The %a specifier can be useful to define custom printer (for custom types). For instance, we can
create a printing template that converts an integer argument to signed decimal:

let pp_int ppf n = Printf.fprintf ppf "Jd" n;;
val pp_int : out_channel -> int -> unit = <fun>

Printf.printf "Outputting an integer using a custom printer: %a " pp_int 42;;
Outputting an integer using a custom printer: 42 - : unit = ()

The advantage of those printers based on the %a specifier is that they can be composed together to
create more complex printers step by step. We can define a combinator that can turn a printer for
'a type into a printer for 'a optional:

30

let pp_option printer ppf = function
| None -> Printf.fprintf ppf "None"
| Some v -> Printf.fprintf ppf "Some(%a)" printer v;;
val pp_option :
(out_channel -> 'a -> unit) -> out_channel -> 'a option -> unit = <fun>

Printf.fprintf stdout
"The current setting is %a. \nThere is only J%a\n"
(pp_option pp_int) (Some 3)
(pp_option pp_int) None
#55
The current setting is Some(3).
There is only None
- : unit = O
If the value of its argument its None, the printer returned by pp_option printer prints None otherwise
it uses the provided printer to print Some .
Here is how to rewrite the pretty-printer using fprintf:

let pp_expr ppf expr =

let open_paren prec op_prec output =

if prec > op_prec then Printf.fprintf output "%s" "(" in

let close_paren prec op_prec output =

if prec > op_prec then Printf.fprintf output "%s" ")" in

let rec print prec ppf expr =

match expr with

| Const ¢ -> Printf.fprintf ppf "%F" ¢

| Var v -> Printf.fprintf ppf "/s" v

| Sum(£f, g) —->

open_paren prec O ppf;

Printf.fprintf ppf "%a + %a" (print 0) f (print 0) g;
close_paren prec O ppf

| Diff(f, g) ->

open_paren prec O ppf;

Printf.fprintf ppf "%a - %a" (print 0) f (print 1) g;
close_paren prec O ppf

| Prod(f, g) ->

open_paren prec 2 ppf;

Printf.fprintf ppf "%a * %a" (print 2) f (print 2) g;
close_paren prec 2 ppf

| Quot(f, g ->

open_paren prec 2 ppf;

Printf.fprintf ppf "Ja / %a" (print 2) f (print 3) g;
close_paren prec 2 ppf

in print O ppf expr;;

val pp_expr : out_channel -> expression -> unit = <fun>

Chapter 1. The core language 31

pp_expr stdout e; print_newline ();;
2. xx + 1.
- : unit = ()

pp_expr stdout (deriv e "x"); print_newline ();;
. % 1.+ 0. ¥ x + 0.
:unit = ()

N

Due to the way that format string are build, storing a format string requires an explicit type
annotation:

+H+

let str : _ format =
"%i is an integer value, %F is a float, %S\n";;

Printf.printf str 3 4.5 "string value'";;

is an integer value, 4.5 is a float, "string value"
:unit = ()

W HF H

1.11 Standalone OCaml programs

All examples given so far were executed under the interactive system. OCaml code can also be com-
piled separately and executed non-interactively using the batch compilers ocamlc and ocamlopt.
The source code must be put in a file with extension .ml. It consists of a sequence of phrases, which
will be evaluated at runtime in their order of appearance in the source file. Unlike in interactive
mode, types and values are not printed automatically; the program must call printing functions
explicitly to produce some output. The ;; used in the interactive examples is not required in
source files created for use with OCaml compilers, but can be helpful to mark the end of a top-level
expression unambiguously even when there are syntax errors. Here is a sample standalone program
to print Fibonacci numbers:

(x File fib.ml *)
let rec fib n =

if n < 2 then 1 else fib (n-1) + fib (n-2);;
let main () =

let arg = int_of_string Sys.argv.(l) in

print_int (fib arg);

print_newline ();

exit 0;;
main ();;

Sys.argv is an array of strings containing the command-line parameters. Sys.argv. (1) is thus
the first command-line parameter. The program above is compiled and executed with the following
shell commands:

$ ocamlc -o fib fib.ml

$./fib 10
89
$./fib 20

10946

32

More complex standalone OCaml programs are typically composed of multiple source files, and
can link with precompiled libraries. Chapters 9 and 12 explain how to use the batch compilers
ocamlc and ocamlopt. Recompilation of multi-file OCaml projects can be automated using third-
party build systems, such as the ocamlbuild compilation manager.

https://github.com/ocaml/ocamlbuild/

Chapter 2

The module system

This chapter introduces the module system of OCaml.

2.1 Structures

A primary motivation for modules is to package together related definitions (such as the definitions
of a data type and associated operations over that type) and enforce a consistent naming scheme for
these definitions. This avoids running out of names or accidentally confusing names. Such a package
is called a structure and is introduced by the struct...end construct, which contains an arbitrary
sequence of definitions. The structure is usually given a name with the module binding. Here is
for instance a structure packaging together a type of priority queues and their operations:

module PrioQueue =
struct

if lprio <= rprio
then Node(lprio, lelt, remove_top left, right)

type priority = int

type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue
let empty = Empty

let rec insert queue prio elt =

match queue with

Empty -> Node(prio, elt, Empty, Empty)

| Node(p, e, left, right) ->

if prio <=p

then Node(prio, elt, insert right p e, left)

else Node(p, e, insert right prio elt, left)

exception Queue_is_empty

let rec remove_top = function

Empty -> raise Queue_is_empty

| Node(prio, elt, left, Empty) -> left

| Node(prio, elt, Empty, right) -> right

| Node(prio, elt, (Node(lprio, lelt, _, _) as left),

(Node(rprio, relt, _, _) as right)) ->
#

#

33

else Node(rprio, relt, left, remove_top right)
let extract = function
Empty -> raise Queue_is_empty
| Node(prio, elt, _, _) as queue -> (prio, elt, remove_top queue)

end;;
module PrioQueue :
sig

type priority = int

type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue

H OH H H

val empty : 'a queue

val insert : 'a queue -> priority -> 'a -> 'a queue

exception (ueue_is_empty

val remove_top : 'a queue -> 'a queue

val extract : 'a queue -> priority * 'a * 'a queue
end

Outside the structure, its components can be referred to using the “dot notation”, that is, identifiers
qualified by a structure name. For instance, PrioQueue. insert is the function insert defined in-
side the structure PrioQueue and PrioQueue.queue is the type queue defined in PrioQueue.

PrioQueue.insert PrioQueue.empty 1 "hello";;
- : string PrioQueue.queue =
PrioQueue.Node (1, "hello", PrioQueue.Empty, PrioQueue.Empty)

Another possibility is to open the module, which brings all identifiers defined inside the module
in the scope of the current structure.

open PrioQueue;;

insert empty 1 "hello";;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

Opening a module enables lighter access to its components, at the cost of making it harder to
identify in which module a identifier has been defined. In particular, opened modules can shadow
identifiers present in the current scope, potentially leading to confusing errors:

let empty = []
open PrioQueue; ;
val empty : 'a list = []

let x =1 :: empty ;;

Error: This expression has type 'a PrioQueue.queue
but an expression was expected of type int list

A partial solution to this conundrum is to open modules locally, making the components of
the module available only in the concerned expression. This can also make the code easier to read
— the open statement is closer to where it is used— and to refactor — the code fragment is more
self-contained. Two constructions are available for this purpose:

let open PrioQueue in
insert empty 1 "hello";;

Chapter 2. The module system 35

- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)
and

PrioQueue. (insert empty 1 "hello");;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

In the second form, when the body of a local open is itself delimited by parentheses, braces or
bracket, the parentheses of the local open can be omitted. For instance,

PrioQueue. [empty] = PrioQueue. ([emptyl);;

- : bool = true

PrioQueue.[|lemptyl] = PrioQueue. ([|lemptyl]l);;
- : bool = true

PrioQueue.{ contents = empty } = PrioQueue.({ contents = empty });;
- : bool = true
becomes

PrioQueue. [insert empty 1 "hello"];;
- : string PrioQueue.queue list = [Node (1, "hello", Empty, Empty)]

This second form also works for patterns:

let at_most_one_element x = match x with
| PrioQueue.(Empty| Node (_,_, Empty,Empty)) -> true

| _ -> false ;;
val at_most_one_element : 'a PrioQueue.queue -> bool = <fun>

It is also possible to copy the components of a module inside another module by using an
include statement. This can be particularly useful to extend existing modules. As an illustration,
we could add functions that returns an optional value rather than an exception when the priority
queue is empty.

module PrioQueueOpt =

struct
include PrioQueue
let remove_top_opt x =
try Some(remove_top x) with Queue_is_empty -> None
let extract_opt x =
try Some(extract x) with Queue_is_empty -> None
end;;
module PrioQueueOpt :
sig

int

type priority

type 'a queue

'a PrioQueue.queue =
Empty

36

| Node of priority * 'a * 'a queue * 'a queue

val empty : 'a queue

val insert : 'a queue -> priority -> 'a -> 'a queue

exception (ueue_is_empty

val remove_top : 'a queue -> 'a queue

val extract : 'a queue -> priority * 'a * 'a queue

val remove_top_opt : 'a queue -> 'a queue option

val extract_opt : 'a queue -> (priority * 'a * 'a queue) option
end

2.2 Signatures

Signatures are interfaces for structures. A signature specifies which components of a structure
are accessible from the outside, and with which type. It can be used to hide some components
of a structure (e.g. local function definitions) or export some components with a restricted type.
For instance, the signature below specifies the three priority queue operations empty, insert and
extract, but not the auxiliary function remove_top. Similarly, it makes the queue type abstract
(by not providing its actual representation as a concrete type).

module type PRIOQUEUE =

sig
type priority = int (x still concrete)
type 'a queue (* now abstract *)
val empty : 'a queue
val insert : 'a queue -> int -> 'a -> 'a queue
val extract : 'a queue -> int * 'a * 'a queue
exception Queue_is_empty
end;;
module type PRIOQUEUE =
sS1g

type priority = int
type 'a queue

val empty : 'a queue
val insert : 'a queue -> int -> 'a -> 'a queue
val extract : 'a queue -> int * 'a * 'a queue
exception (ueue_is_empty

end

Restricting the PrioQueue structure by this signature results in another view of the PrioQueue
structure where the remove_top function is not accessible and the actual representation of priority
queues is hidden:

module AbstractPrioQueue = (PrioQueue : PRIOQUEUE);;
module AbstractPrioQueue : PRIOQUEUE

AbstractPrioQueue.remove_top ;;

Error: Unbound value AbstractPrioQueue.remove_top

Chapter 2. The module system 37

AbstractPrioQueue.insert AbstractPrioQueue.empty 1 "hello";;
- : string AbstractPrioQueue.queue = <abstr>

The restriction can also be performed during the definition of the structure, as in
module PrioQueue = (struct ... end : PRIOQUEUE);;

An alternate syntax is provided for the above:
module PrioQueue : PRIOQUEUE = struct ... end;;

Like for modules, it is possible to include a signature to copy its components inside the current
signature. For instance, we can extend the PRIOQUEUE signature with the extract_opt function:

module type PRIOQUEUE_WITH_OPT =

sig
include PRIOQUEUE
val extract_opt : 'a queue -> (int * 'a * 'a queue) option
end;;
module type PRIOQUEUE_WITH_OPT =
sig

type priority = int
type 'a queue

val empty : 'a queue

val insert : 'a queue -> int -> 'a -> 'a queue

val extract : 'a queue -> int * 'a * 'a queue

exception (ueue_is_empty

val extract_opt : 'a queue -> (int * 'a * 'a queue) option
end

2.3 Functors

Functors are “functions” from modules to modules. Functors let you create parameterized modules
and then provide other modules as parameter(s) to get a specific implementation. For instance,
a Set module implementing sets as sorted lists could be parameterized to work with any module
that provides an element type and a comparison function compare (such as OrderedString):

type comparison = Less | Equal | Greater;;
type comparison = Less | Equal | Greater

module type ORDERED_TYPE =

sig

type t

val compare: t -> t -> comparison
end;;

module type OURDERED_TYPE = sig type t val compare : t -> t -> comparison end

38

module Set =
functor (El1t: ORDERED_TYPE) ->
struct
type element = Elt.t
type set = element list
let empty = []
let rec add x s =
match s with

0 -> [x]
| hd::tl ->
match Elt.compare x hd with
Equal ->'s (x x is already in s *)
| Less -> x :: 8 (* x is smaller than all elements of s *)

| Greater -> hd :: add x tl
let rec member x s =

#
#
#
#
#
#
#
#
#
#
#
#
#
#
match s with
#
#
#
#
#
#
#

[1 -> false
| hd::tl ->
match Elt.compare x hd with
Equal -> true (* x belongs to s *)
| Less -> false (* x is smaller than all elements of s *)
| Greater —-> member x tl
end;;
module Set :
functor (E1t : ORDERED_TYPE) ->
sig

type element = Elt.t

type set = element list

val empty : 'a list

val add : Elt.t -> Elt.t list -> Elt.t list

val member : Elt.t -> Elt.t list -> bool
end

By applying the Set functor to a structure implementing an ordered type, we obtain set operations
for this type:

module OrderedString =
struct

type t = string
let compare x y = if x = y then Equal else if x < y then Less else Greater
end;;
module OrderedString :
sig type t = string val compare : 'a -> 'a -> comparison end

module StringSet = Set(OrderedString);;
module StringSet :
sig
type element = OrderedString.t

Chapter 2. The module system

type set = element list
val empty : 'a list

val add : OrderedString.t -> OrderedString.t list —-> OrderedString.t list
val member : OrderedString.t -> OrderedString.t list -> bool

end

StringSet.member "bar" (StringSet.add "foo" StringSet.empty);;

- : bool = false

2.4 Functors and type abstraction

39

As in the PrioQueue example, it would be good style to hide the actual implementation of the
type set, so that users of the structure will not rely on sets being lists, and we can switch later to
another, more efficient representation of sets without breaking their code. This can be achieved by

restricting Set by a suitable functor signature:

module type SETFUNCTOR =
functor (Elt: ORDERED_TYPE) ->

sig
type element = Elt.t (* concrete x)
type set (x abstract *)

val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end;;
module type SETFUNCTOR =
functor (E1t : ORDERED_TYPE) ->
sig
type element = Elt.t
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

H OH HF H H H R

module AbstractSet = (Set : SETFUNCTOR);;
module AbstractSet : SETFUNCTOR

module AbstractStringSet = AbstractSet(OrderedString);;
module AbstractStringSet :
sig
type element = OrderedString.t
type set = AbstractSet (OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

40

AbstractStringSet.add "gee" AbstractStringSet.empty;;
- : AbstractStringSet.set = <abstr>

In an attempt to write the type constraint above more elegantly, one may wish to name the
signature of the structure returned by the functor, then use that signature in the constraint:

module type SET =
sig

type element

type set

val empty : set

val add : element -> set -> set

val member : element -> set -> bool
end;;

H OH HF H H H

module type SET =
sig
type element
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

module WrongSet = (Set : functor(Elt: ORDERED_TYPE) -> SET);;
module WrongSet : functor (Elt : ORDERED_TYPE) -> SET

module WrongStringSet = WrongSet (OrderedString);;
module WrongStringSet :
sig
type element = WrongSet (OrderedString).element
type set = WrongSet (OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

WrongStringSet.add "gee" WrongStringSet.empty ;;

Error: This expression has type string but an expression was expected of type
WrongStringSet.element = WrongSet (OrderedString).element

The problem here is that SET specifies the type element abstractly, so that the type equality
between element in the result of the functor and t in its argument is forgotten. Consequently,
WrongStringSet.element is not the same type as string, and the operations of WrongStringSet
cannot be applied to strings. As demonstrated above, it is important that the type element in the
signature SET be declared equal to E1t.t; unfortunately, this is impossible above since SET is defined
in a context where E1t does not exist. To overcome this difficulty, OCaml provides a with type
construct over signatures that allows enriching a signature with extra type equalities:

module AbstractSet2 =
(Set : functor(Elt: ORDERED_TYPE) -> (SET with type element = Elt.t));;

Chapter 2. The module system 41

module AbstractSet2 :
functor (El1t : ORDERED_TYPE) ->

sig
type element = Elt.t
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool

end

As in the case of simple structures, an alternate syntax is provided for defining functors and
restricting their result:

module AbstractSet2(Elt: ORDERED_TYPE) : (SET with type element = Elt.t) =
struct ... end;;

Abstracting a type component in a functor result is a powerful technique that provides a high
degree of type safety, as we now illustrate. Consider an ordering over character strings that is
different from the standard ordering implemented in the OrderedString structure. For instance,
we compare strings without distinguishing upper and lower case.

module NoCaseString =
struct
type t = string
let compare sl s2 =
OrderedString.compare (String.lowercase_ascii s1) (String.lowercase_ascii s2)
end;;
module NoCaseString :
sig type t = string val compare : string -> string —-> comparison end

module NoCaseStringSet = AbstractSet(NoCaseString);;
module NoCaseStringSet :
sig
type element = NoCaseString.t
type set = AbstractSet(NoCaseString).set
val empty : set
val add : element -> set -> set
val member : element -> set —> bool
end

NoCaseStringSet.add "FOO" AbstractStringSet.empty ;;

Error: This expression has type
AbstractStringSet.set = AbstractSet (OrderedString).set
but an expression was expected of type
NoCaseStringSet.set = AbstractSet (NoCaseString).set

Note that the two types AbstractStringSet.set and NoCaseStringSet.set are not compatible,
and values of these two types do not match. This is the correct behavior: even though both
set types contain elements of the same type (strings), they are built upon different orderings
of that type, and different invariants need to be maintained by the operations (being strictly

42

increasing for the standard ordering and for the case-insensitive ordering). Applying operations
from AbstractStringSet to values of type NoCaseStringSet.set could give incorrect results, or
build lists that violate the invariants of NoCaseStringSet.

2.5 Modules and separate compilation

All examples of modules so far have been given in the context of the interactive system. However,
modules are most useful for large, batch-compiled programs. For these programs, it is a practi-
cal necessity to split the source into several files, called compilation units, that can be compiled
separately, thus minimizing recompilation after changes.

In OCaml, compilation units are special cases of structures and signatures, and the relationship
between the units can be explained easily in terms of the module system. A compilation unit A
comprises two files:

o the implementation file A.ml, which contains a sequence of definitions, analogous to the inside
of a struct...end construct;

o the interface file A.mli, which contains a sequence of specifications, analogous to the inside
of a sig...end construct.

These two files together define a structure named A as if the following definition was entered at
top-level:

module A: sig (* contents of file A.mli *) end
= struct (* contents of file A.ml *) end;;

The files that define the compilation units can be compiled separately using the ocamlc -c
command (the —c option means “compile only, do not try to link”); this produces compiled interface
files (with extension .cmi) and compiled object code files (with extension .cmo). When all units
have been compiled, their .cmo files are linked together using the ocamlc command. For instance,
the following commands compile and link a program composed of two compilation units Aux and
Main:

$ ocamlc -c Aux.mli # produces aux.cmi
$ ocamlc -c Aux.ml # produces aux.cmo
$ ocamlc -c Main.mli # produces main.cmi
$ ocamlc -c Main.ml # produces main.cmo
$ ocamlc -o theprogram Aux.cmo Main.cmo

The program behaves exactly as if the following phrases were entered at top-level:

module Aux: sig (* contents of Aux.mli *) end

= struct (* contents of Aux.ml *) end;;
module Main: sig (* contents of Main.mli *) end

= struct (* contents of Main.ml *) end;;

In particular, Main can refer to Aux: the definitions and declarations contained in Main.ml and
Main.mli can refer to definition in Aux.ml, using the Aux.ident notation, provided these definitions
are exported in Aux.mli.

Chapter 2. The module system 43

The order in which the .cmo files are given to ocamlc during the linking phase determines the
order in which the module definitions occur. Hence, in the example above, Aux appears first and
Main can refer to it, but Aux cannot refer to Main.

Note that only top-level structures can be mapped to separately-compiled files, but neither
functors nor module types. However, all module-class objects can appear as components of a
structure, so the solution is to put the functor or module type inside a structure, which can then
be mapped to a file.

44

Chapter 3

Objects in OCaml

(Chapter written by Jérome Vouillon, Didier Rémy and Jacques Garrigue)

This chapter gives an overview of the object-oriented features of OCaml.

Note that the relationship between object, class and type in OCaml is different than in main-
stream object-oriented languages such as Java and C++, so you shouldn’t assume that similar
keywords mean the same thing. Object-oriented features are used much less frequently in OCaml
than in those languages. OCaml has alternatives that are often more appropriate, such as modules
and functors. Indeed, many OCaml programs do not use objects at all.

3.1 Classes and objects

The class point below defines one instance variable x and two methods get_x and move. The
initial value of the instance variable is 0. The variable x is declared mutable, so the method move
can change its value.

class point =
object
val mutable x = 0
method get_x = x
method move d = x <- x + d
end;;
class point :
object val mutable x : int method get_x : int method move : int -> unit end

#
#
#
#

We now create a new point p, instance of the point class.

let p = new point;;

val p : point = <obj>

Note that the type of p is point. This is an abbreviation automatically defined by the class
definition above. It stands for the object type <get_x : int; move : int -> unit>, listing the

methods of class point along with their types.
We now invoke some methods of p:

pHget_x;;

45

46

- : int = 0
p#move 3;;
- : unit = ()
pHget_x;;
- : int = 3

The evaluation of the body of a class only takes place at object creation time. Therefore, in
the following example, the instance variable x is initialized to different values for two different
objects.

let x0 = ref O;;
val x0 : int ref = {contents = O}

class point =
object
val mutable x = incr x0; !x0
method get_x = x
method move d = x <- x + d
end;;
class point :
object val mutable x : int method get_x : int method move : int -> unit end

#
#
#
#
#
#

new point#get_x;;
- :int =1

new point#get_x;;
:int = 2

The class point can also be abstracted over the initial values of the x coordinate.

class point = fun x_init ->

object

val mutable x = x_init

method get_x = x

method move d = x <- x +d
end;;

class point :
int ->
object val mutable x : int method get_x : int method move : int -> unit end

Like in function definitions, the definition above can be abbreviated as:

class point x_init =

object

val mutable x = x_init
method get_x = x

method move d = x <- x +d

#
#
#
end;;

Chapter 3. Objects in OCaml 47

class point :
int ->
object val mutable x : int method get_x : int method move : int -> unit end

An instance of the class point is now a function that expects an initial parameter to create a point
object:

new point;;
- : int -> point = <fun>

let p = new point 7;;
val p : point = <obj>

The parameter x_init is, of course, visible in the whole body of the definition, including methods.
For instance, the method get_offset in the class below returns the position of the object relative
to its initial position.

class point x_init =
object
val mutable x = x_init
method get_x = x
method get_offset = x - x_init
method move d = x <- x + d
end;;
class point :
int ->
object
val mutable x : int
method get_offset : int
method get_x : int
method move : int -> unit
end

Expressions can be evaluated and bound before defining the object body of the class. This is useful
to enforce invariants. For instance, points can be automatically adjusted to the nearest point on a
grid, as follows:

class adjusted_point x_init =
let origin = (x_init / 10) * 10 imn

object
val mutable x = origin
method get_x = x
method get_offset = x - origin
method move d = x <- x + d
end;;
class adjusted_point :
int ->
object

val mutable x : int
method get_offset : int

48

method get_x : int
method move : int -> unit
end

(One could also raise an exception if the x_init coordinate is not on the grid.) In fact, the
same effect could here be obtained by calling the definition of class point with the value of the
origin.

class adjusted_point x_init = point ((x_init / 10) * 10);;

class adjusted_point : int -> point

An alternate solution would have been to define the adjustment in a special allocation func-
tion:

let new_adjusted_point x_init = new point ((x_init / 10) * 10);;
val new_adjusted_point : int -> point = <fun>

However, the former pattern is generally more appropriate, since the code for adjustment is part
of the definition of the class and will be inherited.

This ability provides class constructors as can be found in other languages. Several constructors
can be defined this way to build objects of the same class but with different initialization patterns;
an alternative is to use initializers, as described below in section 3.4.

3.2 Immediate objects

There is another, more direct way to create an object: create it without going through a class.

The syntax is exactly the same as for class expressions, but the result is a single object rather
than a class. All the constructs described in the rest of this section also apply to immediate
objects.

let p =

object

val mutable x = 0

method get_x = x

method move d = x <- x + d
end;;

val p : < get_x : int; move : int -> unit > = <obj>

p#get_x;;
- : int =0
p#move 3;;
- : unit = ()
pHget_x;;
- : int = 3

Unlike classes, which cannot be defined inside an expression, immediate objects can appear
anywhere, using variables from their environment.

Chapter 3. Objects in OCaml 49

let minmax x y =
if x < y then object method min = x method max = y end
else object method min = y method max = x end;;

1

val minmax : 'a -> 'a -> < max : 'a; min : 'a > = <fun>

Immediate objects have two weaknesses compared to classes: their types are not abbreviated,
and you cannot inherit from them. But these two weaknesses can be advantages in some situations,
as we will see in sections 3.3 and 3.10.

3.3 Reference to self

A method or an initializer can invoke methods on self (that is, the current object). For that, self
must be explicitly bound, here to the variable s (s could be any identifier, even though we will
often choose the name self.)

class printable_point x_init =
object (s)
val mutable x = x_init
method get_x = x
method move d = x <- x + d
method print = print_int s#get_x
end;;

H OH H H

class printable_point :

int ->

object
val mutable x : int
method get_x : int
method move : int -> unit
method print : unit

end

let p = new printable_point 7;;
val p : printable_point = <obj>

p#print;;
7- : unit = ()

Dynamically, the variable s is bound at the invocation of a method. In particular, when the class
printable_point is inherited, the variable s will be correctly bound to the object of the subclass

A common problem with self is that, as its type may be extended in subclasses, you cannot fix
it in advance. Here is a simple example.

let ints = ref [];;

val ints : '_weakl list ref = {contents = []}

class my_int =
object (self)
method n =1

50

method register = ints := self :: !ints
end ;;
Error: This expression has type < n : int; register : 'a; .. >

but an expression was expected of type 'weakl
Self type cannot escape its class

You can ignore the first two lines of the error message. What matters is the last one: putting self
into an external reference would make it impossible to extend it through inheritance. We will see
in section 3.12 a workaround to this problem. Note however that, since immediate objects are not
extensible, the problem does not occur with them.

let my_int =
object (self)

method n = 1
method register = ints := self :: !ints
end;;

val my_int : < n : int; register : unit > = <obj>

3.4 Initializers

Let-bindings within class definitions are evaluated before the object is constructed. It is also possible
to evaluate an expression immediately after the object has been built. Such code is written as an
anonymous hidden method called an initializer. Therefore, it can access self and the instance
variables.

class printable_point x_init
let origin = (x_init / 10)
object (self)

val mutable x = origin

method get_x = x

method move d = x <- x + d
#

#

#

*

10 in

method print = print_int self#get_x
initializer print_string "new point at "; self#print; print_newline ()
end; ;
class printable_point :
int ->
object
val mutable x : int
method get_x : int
method move : int -> unit
method print : unit
end

let p = new printable_point 17;;
new point at 10
val p : printable_point = <obj>

Chapter 3. Objects in OCaml 51

Initializers cannot be overridden. On the contrary, all initializers are evaluated sequentially. Ini-
tializers are particularly useful to enforce invariants. Another example can be seen in section 6.1.

3.5 Virtual methods

It is possible to declare a method without actually defining it, using the keyword virtual. This
method will be provided later in subclasses. A class containing virtual methods must be flagged
virtual, and cannot be instantiated (that is, no object of this class can be created). It still defines
type abbreviations (treating virtual methods as other methods.)

class virtual abstract_point x_init =
object (self)
method virtual get_x : int
method get_offset = self#get_x - x_init
method virtual move : int -> unit
end; ;
class virtual abstract_point :
int ->
object
method get_offset : int
method virtual get_x : int
method virtual move : int -> unit

end
class point x_init =
object
inherit abstract_point x_init
val mutable x = x_init
method get_x = x
method move d = x <- x +d
end;;
class point :
int ->
object

val mutable x : int

method get_offset : int

method get_x : int

method move : int -> unit
end

Instance variables can also be declared as virtual, with the same effect as with methods.

class virtual abstract_point2 =

object

val mutable virtual x : int
method move d = x <- x + d
end;;

class virtual abstract_point2 :
object val mutable virtual x : int method move : int -> unit end

52

class point2 x_init =

object

inherit abstract_point2

val mutable x = x_init

method get_offset = x - x_init
end;;

class point2 :
int ->
object
val mutable x : int
method get_offset : int
method move : int -> unit
end

3.6 Private methods

Private methods are methods that do not appear in object interfaces.

from other methods of the same object.

class restricted_point x_init =
object (self)
val mutable x = x_init
method get_x = x
method private move d = x <- x + d
method bump = self#move 1
end;;
class restricted_point :
int ->
object
val mutable x : int
method bump : unit
method get_x : int
method private move : int -> unit
end

let p = new restricted_point O;;
val p : restricted_point = <obj>
p#move 10 ;;

Error: This expression has type restricted_point
It has no method move

p#bump; ;
- : unit = ()

They can only be invoked

Note that this is not the same thing as private and protected methods in Java or C++4, which can
be called from other objects of the same class. This is a direct consequence of the independence

Chapter 3. Objects in OCaml 53

between types and classes in OCaml: two unrelated classes may produce objects of the same type,
and there is no way at the type level to ensure that an object comes from a specific class. However
a possible encoding of friend methods is given in section 3.17.

Private methods are inherited (they are by default visible in subclasses), unless they are hidden
by signature matching, as described below.

Private methods can be made public in a subclass.

class point_again x =
object (self)

inherit restricted_point x
method virtual move
end;;
class point_again :
int ->
object

val mutable x : int

method bump : unit

method get_x : int

method move : int -> unit
end

The annotation virtual here is only used to mention a method without providing its definition.
Since we didn’t add the private annotation, this makes the method public, keeping the original
definition.

An alternative definition is

class point_again x =
object (self : < move : _; ..>)
inherit restricted_point x
end;;
class point_again :
int ->
object
val mutable x : int
method bump : unit
method get_x : int
method move : int -> unit
end

The constraint on self’s type is requiring a public move method, and this is sufficient to override
private.

One could think that a private method should remain private in a subclass. However, since the
method is visible in a subclass, it is always possible to pick its code and define a method of the
same name that runs that code, so yet another (heavier) solution would be:

class point_again x =

object

inherit restricted_point x as super
method move = super#move

end;;

54

class point_again :

int ->

object
val mutable x : int
method bump : unit
method get_x : int
method move : int -> unit

end

Of course, private methods can also be virtual. Then, the keywords must appear in this order
method private virtual.

3.7 Class interfaces

Class interfaces are inferred from class definitions. They may also be defined directly and used to
restrict the type of a class. Like class declarations, they also define a new type abbreviation.

class type restricted_point_type =
object

method get_x : int

method bump : unit

end;;

class type restricted_point_type =
object method bump : unit method get_x : int end

fun (x : restricted_point_type) -> x;;
- : restricted_point_type —> restricted_point_type = <fun>

In addition to program documentation, class interfaces can be used to constrain the type of a
class. Both concrete instance variables and concrete private methods can be hidden by a class type
constraint. Public methods and virtual members, however, cannot.

class restricted_point' x = (restricted_point x : restricted_point_type);;
class restricted_point' : int -> restricted_point_type

Or, equivalently:

class restricted_point' = (restricted_point : int -> restricted_point_type);;
class restricted_point' : int -> restricted_point_type

The interface of a class can also be specified in a module signature, and used to restrict the inferred
signature of a module.

module type POINT = sig

class restricted_point' : int ->
object

method get_x : int

method bump : unit
end
end;;

Chapter 3. Objects in OCaml 55

module type POINT =
sig
class restricted_point'
int -> object method bump : unit method get_x : int end
end

module Point : POINT = struct

class restricted_point' = restricted_point
end;;

module Point : POINT

3.8 Inheritance

We illustrate inheritance by defining a class of colored points that inherits from the class of points.
This class has all instance variables and all methods of class point, plus a new instance variable ¢
and a new method color.

class colored_point x (c : string) =
object

inherit point x
val ¢ = ¢
method color = c
end;;
class colored_point :
int ->
string ->
object

val ¢ : string

val mutable x : int

method color : string

method get_offset : int

method get_x : int

method move : int -> unit
end

let p' = new colored_point 5 "red";;
val p' : colored_point = <obj>

p'#get_x, p'#color;;
- : int * string = (5, "red")

A point and a colored point have incompatible types, since a point has no method color. However,
the function get_x below is a generic function applying method get_x to any object p that has
this method (and possibly some others, which are represented by an ellipsis in the type). Thus, it
applies to both points and colored points.

let get_succ_x p = p#get_x + 1;;
val get_succ_x : < get_x : int; .. > -> int = <fun>

56

get_succ_x p + get_succ_x p';;
- : int = 8

Methods need not be declared previously, as shown by the example:

let set_x p = p#set_x;;
a; .. > -> 'a = <fun>

val set_x : < set_x : '
let incr p = set_x p (get_succ_x p);;
val incr : < get_x : int; set_x : int -> 'a; .. > -> 'a = <fun>

3.9 Multiple inheritance

Multiple inheritance is allowed. Only the last definition of a method is kept: the redefinition in a
subclass of a method that was visible in the parent class overrides the definition in the parent class.
Previous definitions of a method can be reused by binding the related ancestor. Below, super is
bound to the ancestor printable_point. The name super is a pseudo value identifier that can
only be used to invoke a super-class method, as in super#print.

class printable_colored_point y ¢ =
object (self)

val c = ¢
method color = ¢
inherit printable_point y as super
method! print =
print_string "(";
super#print;
print_string ", ";
print_string (self#color);
print_string ")"
end;;
class printable_colored_point :
int ->
string ->
object

val ¢ : string
val mutable x : int
method color : string
method get_x : int
method move : int -> unit
method print : unit

end

let p' = new printable_colored_point 17 "red";;
new point at (10, red)

val p' : printable_colored_point = <obj>

p'#print;;

Chapter 3. Objects in OCaml 57

(10, red)- : unit = ()

A private method that has been hidden in the parent class is no longer visible, and is thus not
overridden. Since initializers are treated as private methods, all initializers along the class hierarchy
are evaluated, in the order they are introduced.

Note that for clarity’s sake, the method print is explicitly marked as overriding another defi-
nition by annotating the method keyword with an exclamation mark !. If the method print were
not overriding the print method of printable_point, the compiler would raise an error:

object
method! m = ()
end;;

Error: The method "m' has no previous definition
This explicit overriding annotation also works for val and inherit:

class another_printable_colored_point y c c' =
object (self)

inherit printable_point y

inherit! printable_colored_point y c

wval! ¢ = c'

end;;

class another_printable_colored_point :

int ->
string ->
string ->
object

val ¢ : string
val mutable x : int
method color : string
method get_x : int
method move : int -> unit
method print : unit

end

3.10 Parameterized classes

Reference cells can be implemented as objects. The naive definition fails to typecheck:

class oref x_init

object

val mutable x = x_init
method get = x

method set y = x <- y
end;;

Error: Some type variables are unbound in this type:
class oref
la ->

58

object
val mutable x : 'a
method get : 'a
method set : 'a -> unit
end

The method get has type 'a where 'a is unbound

The reason is that at least one of the methods has a polymorphic type (here, the type of the value
stored in the reference cell), thus either the class should be parametric, or the method type should

be constrained to a monomorphic type. A monomorphic instance of the class could be defined
by:

class oref (x_init:int) =

object

val mutable x = x_init
method get = x

method set y = x <- y
end;;

class oref :
int ->
object val mutable x : int method get : int method set : int -> unit end

Note that since immediate objects do not define a class type, they have no such restriction.

let new_oref x_init =

object

val mutable x = x_init

method get = x

method set y = x <- y

end;;

val new_oref : 'a -> < get : 'a; set : 'a -> unit > = <fun>

On the other hand, a class for polymorphic references must explicitly list the type parameters in
its declaration. Class type parameters are listed between [and]. The type parameters must also
be bound somewhere in the class body by a type constraint.

class ['a] oref x_init =

object

val mutable x = (x_init : 'a)
method get = x

method set y = x <- y

end;;

class ['a] oref :
'a -> object val mutable x : 'a method get : 'a method set : 'a -> unit end

let r = new oref 1 in r#set 2; (r#get);;
- : int = 2

The type parameter in the declaration may actually be constrained in the body of the class def-
inition. In the class type, the actual value of the type parameter is displayed in the constraint
clause.

Chapter 3. Objects in OCaml 59

class ['a] oref_succ (x_init:'a) =
object
val mutable x = x_init + 1
method get = x
method set y = x <- y
end;;
class ['a] oref_succ :
'a =>
object
constraint 'a = int
val mutable x : int
method get : int
method set : int -> unit
end

#
#
#
#
#
#

Let us consider a more complex example: define a circle, whose center may be any kind of point. We
put an additional type constraint in method move, since no free variables must remain unaccounted
for by the class type parameters.

class ['a] circle (c : 'a) =
object
val mutable center = c
method center = center
method set_center ¢ = center <- ¢
method move = (center#move : int -> unit)
end;;
class ['a] circle :
'a =>
object
constraint 'a = < move : int -> unit; .. >
val mutable center : 'a
method center : 'a

method move : int -> unit
method set_center : 'a -> unit
end

An alternate definition of circle, using a constraint clause in the class definition, is shown below
The type #point used below in the constraint clause is an abbreviation produced by the definition
of class point. This abbreviation unifies with the type of any object belonging to a subclass of class
point. It actually expands to < get_x : int; move : int -> unit; .. >. This leads to the
following alternate definition of circle, which has slightly stronger constraints on its argument, as
we now expect center to have a method get_x.

class ['a] circle (c : 'a) =

object

constraint 'a = #point

val mutable center = c

method center = center

method set_center c = center <- ¢

H O H HF R

60

method move = center#move
end;;
class ['a] circle :
'a =>
object
constraint 'a = #point
val mutable center : 'a
method center : 'a
method move : int -> unit
method set_center : 'a -> unit
end

The class colored_circle is a specialized version of class circle that requires the type of the
center to unify with #colored_point, and adds a method color. Note that when specializing a
parameterized class, the instance of type parameter must always be explicitly given. It is again
written between [and J.

class ['al colored_circle ¢ =
object

constraint 'a = #colored_point
inherit ['a] circle c
method color = center#color
end;;
class ['a] colored_circle :
'a =>
object
constraint 'a = #colored_point
val mutable center : 'a
method center : 'a

method color : string

method move : int -> unit

method set_center : 'a -> unit
end

3.11 Polymorphic methods

While parameterized classes may be polymorphic in their contents, they are not enough to allow
polymorphism of method use.
A classical example is defining an iterator.

List.fold_left;;
-:('a->"'b->"'a) => 'a-> 'b list -> 'a = <fun>

class ['a] intlist (1 : int list) =
object
method empty = (1 = [])
method fold f (accu : 'a) = List.fold_left f accu l
end;;

H OH HF H R

Chapter 3. Objects in OCaml 61

class ['a] intlist :
int list ->
object method empty : bool method fold : ('a -> int -> 'a) -> 'a -> 'a end

At first look, we seem to have a polymorphic iterator, however this does not work in practice.
let 1 = new intlist [1; 2; 3];;

val 1 : '_weak2 intlist = <obj>

1#fold (fun x y -> x+y) 0;;

- : int = 6

1;;

- : int intlist = <obj>

1#fold (fun s x -> s ~ Int.to_string x ~ " ") "' ;;

Error: This expression has type int but an expression was expected of type
string

Our iterator works, as shows its first use for summation. However, since objects themselves are not
polymorphic (only their constructors are), using the fold method fixes its type for this individual
object. Our next attempt to use it as a string iterator fails.

The problem here is that quantification was wrongly located: it is not the class we want to be
polymorphic, but the fold method. This can be achieved by giving an explicitly polymorphic type
in the method definition.

class intlist (1 : int list) =

object

method empty = (1 = [])

method fold : 'a. ('a -> int -> 'a) -> 'a -> 'a =
fun f accu -> List.fold_left f accu l

end;;

class intlist :
int list ->
object method empty : bool method fold : ('a -> int -> 'a) -> 'a -> 'a end

let 1 = new intlist [1; 2; 3];;
val 1 : intlist = <obj>

1#fold (fun x y —-> x+y) 0;;
- : int = 6

1#fold (fun s x -> s ~ Int.to_string x =~ " ") "";;
- : string = "1 2 3 "

As you can see in the class type shown by the compiler, while polymorphic method types must be
fully explicit in class definitions (appearing immediately after the method name), quantified type
variables can be left implicit in class descriptions. Why require types to be explicit? The problem
is that (int -> int -> int) -> int -> int would also be a valid type for fold, and it happens

62

to be incompatible with the polymorphic type we gave (automatic instantiation only works for
toplevel types variables, not for inner quantifiers, where it becomes an undecidable problem.) So
the compiler cannot choose between those two types, and must be helped.

However, the type can be completely omitted in the class definition if it is already known,
through inheritance or type constraints on self. Here is an example of method overriding.

class intlist_rev 1 =

object

inherit intlist 1

method! fold f accu = List.fold_left f accu (List.rev 1)
end;;

The following idiom separates description and definition.

class type ['al iterator =
object method fold : ('b -> 'a -> 'b) -> 'b -> 'b end;;

class intlist' 1 =

object (self : int #iterator)

method empty = (1 = [])

method fold f accu = List.fold_left f accu 1
end;;

Note here the (self : int #iterator) idiom, which ensures that this object implements the
interface iterator.

Polymorphic methods are called in exactly the same way as normal methods, but you should
be aware of some limitations of type inference. Namely, a polymorphic method can only be called
if its type is known at the call site. Otherwise, the method will be assumed to be monomorphic,
and given an incompatible type.

let sum lst = lst#fold (fun x y -> x+y) 0;;
val sum : < fold : (int -> int -> int) -> int -> 'a; .. > -> 'a = <fun>

sum 1 ;;

Error: This expression has type intlist
but an expression was expected of type
< fold : (int -> int -> int) -> int -> 'a; .. >
Types for method fold are incompatible

The workaround is easy: you should put a type constraint on the parameter.

let sum (1st : _ #iterator) = lst#fold (fun x y -> x+y) 0;;
val sum : int #iterator -> int = <fun>

Of course the constraint may also be an explicit method type. Only occurrences of quantified
variables are required.

let sum 1lst =
(st : < fold : 'a. ('a -> _ => 'a) —> 'a —> 'a; .. >)#fold (+) 0;;
val sum : < fold : 'a. ('a -> int -> 'a) -> 'a -> 'a; .. > -> int = <fun>

Chapter 3. Objects in OCaml 63

Another use of polymorphic methods is to allow some form of implicit subtyping in method
arguments. We have already seen in section 3.8 how some functions may be polymorphic in the
class of their argument. This can be extended to methods.

class type pointO = object method get_x : int end;;
class type point0O = object method get_x : int end

class distance_point x =
object
inherit point x
method distance : 'a. (#pointO as 'a) -> int =
fun other -> abs (other#get_x - x)
end;;
class distance_point :
int ->
object
val mutable x : int
method distance : #pointO -> int
method get_offset : int
method get_x : int
method move : int -> unit
end

let p = new distance_point 3 in
(p#distance (new point 8), p#distance (new colored_point 1 "blue"));;
- : int * int = (5, 2)

Note here the special syntax (#pointO as 'a) we have to use to quantify the extensible part
of #point0. As for the variable binder, it can be omitted in class specifications. If you want
polymorphism inside object field it must be quantified independently.

class multi_poly =

object
method m1 : 'a. (<K nl1 : 'b. 'b => 'b; .. > as 'a) -> _ =
fun o -> o#nl true, o#nl "hello"
method m2 : 'a 'b. (< n2 : 'b -> bool; .. > as 'a) > 'b > _ =
fun o x -> o#n2 x
end;;
class multi_poly :
object
method m1 : < nl1 : 'b. 'b => 'b; .. > -> bool * string
method m2 : < n2 : 'b -> bool; .. > -> 'b -> bool
end

In method m1, o must be an object with at least a method n1, itself polymorphic. In method m2,
the argument of n2 and x must have the same type, which is quantified at the same level as 'a.

64

3.12 Using coercions

Subtyping is never implicit. There are, however, two ways to perform subtyping. The most general
construction is fully explicit: both the domain and the codomain of the type coercion must be
given.

We have seen that points and colored points have incompatible types. For instance, they cannot
be mixed in the same list. However, a colored point can be coerced to a point, hiding its color
method:

let colored_point_to_point cp = (cp : colored_point :> point);;

val colored_point_to_point : colored_point -> point = <fun>

let p = new point 3 and q = new colored_point 4 "blue";;
val p : point = <obj>
val q : colored_point = <obj>

let 1 = [p; (colored_point_to_point q)];;
val 1 : point list = [<obj>; <obj>]

An object of type t can be seen as an object of type t' only if t is a subtype of t'. For instance,
a point cannot be seen as a colored point.

(p : point :> colored_point);;

Error: Type point = < get_offset : int; get_x : int; move : int -> unit >
is not a subtype of
colored_point =
< color : string; get_offset : int; get_x : int;
move : int -> unit >
The first object type has no method color

Indeed, narrowing coercions without runtime checks would be unsafe. Runtime type checks might
raise exceptions, and they would require the presence of type information at runtime, which is
not the case in the OCaml system. For these reasons, there is no such operation available in the
language.

Be aware that subtyping and inheritance are not related. Inheritance is a syntactic relation
between classes while subtyping is a semantic relation between types. For instance, the class of
colored points could have been defined directly, without inheriting from the class of points; the
type of colored points would remain unchanged and thus still be a subtype of points.

The domain of a coercion can often be omitted. For instance, one can define:

let to_point cp = (cp :> point);;
val to_point : #point -> point = <fun>
In this case, the function colored_point_to_point is an instance of the function to_point. This is

not always true, however. The fully explicit coercion is more precise and is sometimes unavoidable.
Consider, for example, the following class:

class cO = object method m = {< >} method n = 0 end;;
class cO : object ('a) method m : 'a method n : int end

Chapter 3. Objects in OCaml 65

The object type cO is an abbreviation for <m : 'a; n : int> as 'a. Consider now the type
declaration:
class type cl = object method m : cl end;;

class type cl1 = object method m : c1 end

The object type c1 is an abbreviation for the type <m : 'a> as 'a. The coercion from an object
of type cO to an object of type c1 is correct:

fun (x:c0) > (x : cO0 :> cl);;
- : ¢c0 -> cl1 = <fun>

However, the domain of the coercion cannot always be omitted. In that case, the solution is to use
the explicit form. Sometimes, a change in the class-type definition can also solve the problem

class type c2 = object ('a) method m : 'a end;;
class type c2 = object ('a) method m : 'a end

fun (x:c0) -> (x :> c2);;
- : ¢c0 -> c2 = <fun>

While class types c1 and c2 are different, both object types c1 and c2 expand to the same object
type (same method names and types). Yet, when the domain of a coercion is left implicit and its
co-domain is an abbreviation of a known class type, then the class type, rather than the object
type, is used to derive the coercion function. This allows leaving the domain implicit in most cases
when coercing form a subclass to its superclass. The type of a coercion can always be seen as
below:

let to_cl x = (x :> cl);;
val to_cl : <m : #cl; .. > -> cl1 = <fun>

let to_c2 x = (x :> c2);;
val to_c2 : #c2 -> c2 = <fun>

Note the difference between these two coercions: in the case of to_c2, the type
#c2 = < m : 'a; .. > as 'a is polymorphically recursive (according to the explicit re-
cursion in the class type of c2); hence the success of applying this coercion to an object of
class c0. On the other hand, in the first case, c1 was only expanded and unrolled twice to
obtain <m : <m : cl; .. >; .. > (remember #c1 = < m : cl; .. >), without introducing
recursion. You may also note that the type of to_c2 is #c2 -> c2 while the type of to_c1 is
more general than #c1 -> c1. This is not always true, since there are class types for which some
instances of #c are not subtypes of ¢, as explained in section 3.16. Yet, for parameterless classes
the coercion (_ :> c) is always more general than (_ : #c :> c).

A common problem may occur when one tries to define a coercion to a class ¢ while defining
class c. The problem is due to the type abbreviation not being completely defined yet, and so its
subtypes are not clearly known. Then, a coercion (_ :> ¢) or (_ : #c :> c) is taken to be the
identity function, as in

function x —> (x :> 'a);;
- : 'a -> 'a = <fun>

66

As a consequence, if the coercion is applied to self, as in the following example, the type of self is
unified with the closed type ¢ (a closed object type is an object type without ellipsis). This would
constrain the type of self be closed and is thus rejected. Indeed, the type of self cannot be closed:
this would prevent any further extension of the class. Therefore, a type error is generated when
the unification of this type with another type would result in a closed object type.

class ¢ = object method m = 1 end

and d = object (self)

inherit c

method n = 2

method as_c = (self :> c)

end;;

Error: This expression cannot be coerced to type ¢ = < m : int >; it has type

< as_c : ¢; m : int; n : int; .. >
but is here used with type c
Self type cannot escape its class

However, the most common instance of this problem, coercing self to its current class, is detected
as a special case by the type checker, and properly typed.

class ¢ = object (self) method m = (self :> c) end;;
class ¢ : object method m : ¢ end

This allows the following idiom, keeping a list of all objects belonging to a class or its sub-
classes:

let all ¢ = ref [];;
val all_c : '_weak3 list ref = {contents = []}

class ¢ (m : int) =
object (self)

method m = m
initializer all_c := (self :> c) :: 'all_ c
end;;

class ¢ : int -> object method m : int end
This idiom can in turn be used to retrieve an object whose type has been weakened:

let rec lookup_obj obj = function [] -> raise Not_found

| obj' :: 1 >
if (obj :> < >) = (obj' :> < >) then obj' else lookup_obj obj 1 ;;
val lookup_obj : < .. > -> (< .. > as 'a) list -> 'a = <fun>

let lookup_c obj = lookup_obj obj !'all_c;;
val lookup_c : < .. > -> < m : int > = <fun>

The type < m : int > we see here is just the expansion of ¢, due to the use of a reference; we have
succeeded in getting back an object of type c.

The previous coercion problem can often be avoided by first defining the abbreviation, using a
class type:

Chapter 3. Objects in OCaml 67

class type c' = object method m : int end;;
class type c' = object method m : int end

class ¢ : c' = object method m = 1 end

and d = object (self)

inherit c

method n = 2

method as_c = (self :> c¢')

end;;

class ¢ : c'

and d : object method as_c : c' method m : int method n : int end

It is also possible to use a virtual class. Inheriting from this class simultaneously forces all methods
of ¢ to have the same type as the methods of c'.

class virtual c' = object method virtual m : int end;;
class virtual c' : object method virtual m : int end

class c = object (self) inherit c¢' method m = 1 end;;
class ¢ : object method m : int end

One could think of defining the type abbreviation directly:

type c¢c' = <m : int>;;

However, the abbreviation #c' cannot be defined directly in a similar way. It can only be defined
by a class or a class-type definition. This is because a #-abbreviation carries an implicit anonymous
variable .. that cannot be explicitly named. The closer you get to it is:

type 'a c'_class = 'a constraint 'a = < m : int; .. >;;
with an extra type variable capturing the open object type.

3.13 Functional objects

It is possible to write a version of class point without assignments on the instance variables. The
override construct {< ... >} returns a copy of “self” (that is, the current object), possibly changing
the value of some instance variables.

class functional_point y

object
val x = y
method get_x = x
method move d = {< x = x + 4 >}
method move_to x = {< x >}
end;;
class functional_point :
int ->
object ('a)

val x : int
method get_x : int

68

method move : int -> 'a
method move_to : int -> 'a
end

let p = new functional_point 7;;
val p : functional_point = <obj>

p#get_x;;
- : int =7

+*

(p#move 3)#get_x;;
- : int = 10

=+

(p#move_to 15)#get_x;;
- : int = 15

pHget_x;;
- :int =7

As with records, the form {< x >} is an elided version of {< x = x >} which avoids the repetition
of the instance variable name. Note that the type abbreviation functional_point is recursive,
which can be seen in the class type of functional_point: the type of self is 'a and 'a appears
inside the type of the method move.

The above definition of functional_point is not equivalent to the following:

class bad_functional_point y =
object
val x = y
method get_x = x
method move d = new bad_functional point (x+d)
method move_to x = new bad_functional_point x
end;;
class bad_functional_point :
int ->
object
val x : int
method get_x : int
method move : int -> bad_functional_point
method move_to : int -> bad_functional_point
end

While objects of either class will behave the same, objects of their subclasses will be different. In a
subclass of bad_functional_point, the method move will keep returning an object of the parent
class. On the contrary, in a subclass of functional_point, the method move will return an object
of the subclass.

Functional update is often used in conjunction with binary methods as illustrated in sec-
tion 6.2.1.

Chapter 3. Objects in OCaml 69

3.14 Cloning objects

Objects can also be cloned, whether they are functional or imperative. The library function Oo . copy
makes a shallow copy of an object. That is, it returns a new object that has the same methods
and instance variables as its argument. The instance variables are copied but their contents are
shared. Assigning a new value to an instance variable of the copy (using a method call) will not
affect instance variables of the original, and conversely. A deeper assignment (for example if the
instance variable is a reference cell) will of course affect both the original and the copy.

The type of Do.copy is the following:

0o.copy;;
- : (< .. >as 'a) > 'a=<fun>

The keyword as in that type binds the type variable 'a to the object type < .. >. Therefore,
Oo.copy takes an object with any methods (represented by the ellipsis), and returns an object
of the same type. The type of Oo.copy is different from type < .. > -> < .. > as each ellipsis
represents a different set of methods. Ellipsis actually behaves as a type variable.

let p = new point 5;;
val p : point = <obj>

let q = Oo.copy p;;
val q : point = <obj>

g#tmove 7; (p#get_x, q#fget_x);;
- : int * int = (5, 12)

In fact, Oo.copy p will behave as p#copy assuming that a public method copy with body {< >}
has been defined in the class of p.

Objects can be compared using the generic comparison functions = and <>. Two objects are equal
if and only if they are physically equal. In particular, an object and its copy are not equal.

let q = Oo.copy p;;
val g : point = <obj>

#p=4d, P =Pp;;

- : bool * bool = (false, true)

Other generic comparisons such as (<, <=, ...) can also be used on objects. The relation < defines an

unspecified but strict ordering on objects. The ordering relationship between two objects is fixed

once for all after the two objects have been created and it is not affected by mutation of fields.
Cloning and override have a non empty intersection. They are interchangeable when used within

an object and without overriding any field:

class copy =

object
method copy = {< >}
end;;

class copy : object ('a) method copy : 'a end

70

class copy =

object (self)

method copy = 0Oo.copy self

end;;

class copy : object ('a) method copy : 'a end

Only the override can be used to actually override fields, and only the Oo.copy primitive can be

used externally.
Cloning can also be used to provide facilities for saving and restoring the state of objects.

class backup =
object (self : 'mytype)
val mutable copy = None
method save = copy <- Some {< copy = None >}
method restore = match copy with Some x -> x | None -> self
end;;
class backup :
object ('a)
val mutable copy : 'a option
method restore : 'a
method save : unit
end

The above definition will only backup one level. The backup facility can be added to any class by
using multiple inheritance.

class ['al backup_ref x = object inherit ['al oref x inherit backup end;;
class ['al backup_ref :

'a =>
object ('b)
val mutable copy : 'b option
val mutable x : 'a
method get : 'a
method restore : 'b
method save : unit
method set : 'a -> unit
end

let rec get pn = if n = 0 then p # get else get (p # restore) (n-1);;
val get : (< get : 'b; restore : 'a; .. > as 'a) -> int -> 'b = <fun>

let p = new backup_ref O in

p # save; p # set 1; p # save; p # set 2;

[get p O; get p 1; get p 2; get p 3; get p 4];;

- : int list = [2; 1; 1; 1; 1]

We can define a variant of backup that retains all copies. (We also add a method clear to manually
erase all copies.)

class backup =
object (self : 'mytype)

Chapter 3. Objects in OCaml

val mutable copy = None
method save = copy <- Some {< >}
method restore = match copy with Some x -> x | None -> self
method clear = copy <- None
end;;
class backup :

object ('a)

val mutable copy : 'a option

method clear : unit

method restore : 'a

method save : unit
end

class ['al] backup_ref x = object inherit ['al oref x inherit backup end;;
class ['al backup_ref :
'a =>
object ('b)
val mutable copy : 'b option
val mutable x : 'a
method clear : unit
method get : 'a

method restore : 'b

method save : unit

method set : 'a -> unit
end

let p = new backup_ref 0 in

p # save; p # set 1; p # save; p # set 2;

[get p O; get p 1; get p 2; get p 3; get p 41;;
- : int list = [2; 1; 0; 0; 0]

3.15 Recursive classes

Recursive classes can be used to define objects whose types are mutually recursive.

class window =
object
val mutable top_widget = (None : widget option)
method top_widget = top_widget
end
and widget (w : window) =
object
val window = w
method window = window
end;;

=+

H OH HF H H HF H H

class window :
object

72

val mutable top_widget : widget option
method top_widget : widget option
end
and widget : window —-> object val window : window method window : window end

Although their types are mutually recursive, the classes widget and window are themselves inde-
pendent.

3.16 Binary methods

A binary method is a method which takes an argument of the same type as self. The class
comparable below is a template for classes with a binary method leq of type 'a -> bool
where the type variable 'a is bound to the type of self. Therefore, #comparable expands to

< leq : 'a => bool; .. > as 'a. We see here that the binder as also allows writing recursive
types.

class virtual comparable =

object (_ : 'a)

method virtual leq : 'a -> bool

end;;

class virtual comparable : object ('a) method virtual leq : 'a -> bool end

We then define a subclass money of comparable. The class money simply wraps floats as comparable
objects. We will extend it below with more operations. We have to use a type constraint on the
class parameter x because the primitive <= is a polymorphic function in OCaml. The inherit
clause ensures that the type of objects of this class is an instance of #comparable.

class money (x : float) =
object

inherit comparable
val repr = x
method value = repr
method leq p = repr <= p#value
end;;
class money :
float —->
object ('a)

val repr : float

method leq : 'a —> bool

method value : float
end

Note that the type money is not a subtype of type comparable, as the self type appears in con-
travariant position in the type of method leq. Indeed, an object m of class money has a method
leq that expects an argument of type money since it accesses its value method. Considering m of
type comparable would allow a call to method leq on m with an argument that does not have a
method value, which would be an error.

Similarly, the type money2 below is not a subtype of type money.

Chapter 3. Objects in OCaml 73

class money2 x =

object
inherit money x
method times k = {< repr = k *. repr >}
end;;
class money2 :
float ->
object ('a)

val repr : float
method leq : 'a —> bool
method times : float -> 'a
method value : float

end

It is however possible to define functions that manipulate objects of type either money or money2:
the function min will return the minimum of any two objects whose type unifies with #comparable.
The type of min is not the same as #comparable -> #comparable -> #comparable, as the ab-
breviation #comparable hides a type variable (an ellipsis). Each occurrence of this abbreviation
generates a new variable.

let min (x : #comparable) y =
if x#leq y then x else y;;
val min : (#comparable as 'a) -> 'a -> 'a = <fun>

This function can be applied to objects of type money or money?2.

(min (new money 1.3) (new money 3.1))#value;;
- : float = 1.3

(min (new money2 5.0) (new money2 3.14))#value;;
- : float = 3.14

More examples of binary methods can be found in sections 6.2.1 and 6.2.4.

Note the use of override for method times. Writing new money2 (k *. repr) instead of
{< repr = k *. repr >} would not behave well with inheritance: in a subclass money3 of money?2
the times method would return an object of class money2 but not of class money3 as would be
expected.

The class money could naturally carry another binary method. Here is a direct definition:

class money x =
object (self : 'a)
val repr = x
method value = repr
method print = print_float repr
method times k = {< repr = k *. x >}
method leq (p : 'a) = repr <= p#value
method plus (p : 'a) = {< repr = x +. p#value >}
end;;
class money :
float ->

74

object ('a)
val repr : float
method leq : 'a —-> bool
method plus : 'a -> 'a
method print : unit
method times : float -> 'a
method value : float

end

3.17 Friends

The above class money reveals a problem that often occurs with binary methods. In order to interact
with other objects of the same class, the representation of money objects must be revealed, using a
method such as value. If we remove all binary methods (here plus and leq), the representation
can easily be hidden inside objects by removing the method value as well. However, this is not
possible as soon as some binary method requires access to the representation of objects of the same
class (other than self).

class safe_money x =

object (self : 'a)

val repr = x

method print = print_float repr
#

#

method times k = {< repr = k *. x >}
end;;
class safe_money :

float ->

object ('a)
val repr : float
method print : unit
method times : float -> 'a

end

Here, the representation of the object is known only to a particular object. To make it available to
other objects of the same class, we are forced to make it available to the whole world. However we
can easily restrict the visibility of the representation using the module system.

module type MONEY =
sig
type t
class ¢ : float —>
object ('a)
val repr : t
method value : t
method print : unit
method times : float -> 'a
method leq : 'a -> bool
method plus : 'a -> 'a
end

H OH HF H H HF H OH H H

Chapter 3. Objects in OCaml 75

end;;

module Euro : MONEY =

struct

type t = float

class ¢ x =

object (self : 'a)

val repr = x

method value = repr

method print = print_float repr

method times k = {< repr = k *. x >}
method leq (p : 'a) = repr <= p#value
method plus (p : 'a) = {< repr = x +. p#value >}
end

end;;

Another example of friend functions may be found in section 6.2.4. These examples occur when
a group of objects (here objects of the same class) and functions should see each others internal
representation, while their representation should be hidden from the outside. The solution is always
to define all friends in the same module, give access to the representation and use a signature
constraint to make the representation abstract outside the module.

76

Chapter 4

Labels and variants

(Chapter written by Jacques Garrigue)

This chapter gives an overview of the new features in OCaml 3: labels, and polymorphic variants.

4.1 Labels

If you have a look at modules ending in Labels in the standard library, you will see that function
types have annotations you did not have in the functions you defined yourself.

ListLabels.map;;

- : f:('a -> 'b) -> 'a list -> 'b list = <fun>

Stringlabels.sub;;

- : string -> pos:int -> len:int -> string = <fun>

Such annotations of the form name: are called labels. They are meant to document the code,
allow more checking, and give more flexibility to function application. You can give such names to
arguments in your programs, by prefixing them with a tilde ~.

let £ ~x ~y = x - y;;

val £ : x:int -> y:int -> int = <fun>
let x =3 and y = 2 in £ ~x ~y;;
- :int =1

When you want to use distinct names for the variable and the label appearing in the type, you
can use a naming label of the form ~name:. This also applies when the argument is not a variable.

let £ ~x:x1 ~y:yl = x1 - yi;;
val f : x:int -> y:int -> int = <fun>

£ ~x:3 ~y:2;;
- : int =1

7

78

Labels obey the same rules as other identifiers in OCaml, that is you cannot use a reserved
keyword (like in or to) as label.

Formal parameters and arguments are matched according to their respective labels®, the absence
of label being interpreted as the empty label. This allows commuting arguments in applications.
One can also partially apply a function on any argument, creating a new function of the remaining
parameters.

let £ ~x ~y = x - ¥y;;

val f : x:int -> y:int -> int = <fun>

f ~y:2 ~x:3;;
- : int = 1

ListLabels.fold_left;;
: f:('a -> 'b -> 'a) -> init:'a -> 'b list -> 'a = <fun>

+*

ListLabels.fold_left [1;2;3] ~init:0 ~f:(+);;
- : int = 6

ListLabels.fold_left ~init:0;;
- : f:(int -> 'a -> int) -> 'a list -> int = <fun>

If several arguments of a function bear the same label (or no label), they will not commute
among themselves, and order matters. But they can still commute with other arguments.

let hline ~x:x1 ~x:x2 ~y = (x1, %2, ¥);;
val hline : x:'a -> x:'b -> y:'c -> 'a * 'b ¥ 'c = <fun>

hline ~x:3 ~y:2 ~x:5;;
- : int * int * int = (3, 5, 2)

As an exception to the above parameter matching rules, if an application is total (omitting all
optional arguments), labels may be omitted. In practice, many applications are total, so that labels
can often be omitted.

#f 3 2;;

- : int =1

ListLabels.map succ [1;2;3];;
- : int list = [2; 3; 4]

But beware that functions like ListLabels.fold_left whose result type is a type variable will
never be considered as totally applied.

ListLabels.fold left (+) 0 [1;2;3];;

Error: This expression has type int -> int -> int
but an expression was expected of type 'a list

!This correspond to the commuting label mode of Objective Caml 3.00 through 3.02, with some additional flexi-
bility on total applications. The so-called classic mode (-nolabels options) is now deprecated for normal use.

Chapter 4. Labels and variants 79

When a function is passed as an argument to a higher-order function, labels must match in
both types. Neither adding nor removing labels are allowed.

let hg =g ~x:3 ~y:2;;
val h : (x:int -> y:int -> 'a) -> 'a = <fun>

#h £;;
- : int =1

#h (+) ;;

Error: This expression has type int -> int -> int

but an expression was expected of type x:int -> y:int -> '

a

Note that when you don’t need an argument, you can still use a wildcard pattern, but you must
prefix it with the label.

h (fun ~x:_ ~y -> y+1);;
- : int = 3

4.1.1 Optional arguments

An interesting feature of labeled arguments is that they can be made optional. For optional
parameters, the question mark ? replaces the tilde ~ of non-optional ones, and the label is also
prefixed by 7 in the function type. Default values may be given for such optional parameters.

let bump 7(step = 1) x = x + step;;
val bump : ?step:int -> int -> int = <fun>

bump 2;;
- : int = 3

bump ~step:3 2;;
- : int =5

A function taking some optional arguments must also take at least one non-optional argument.
The criterion for deciding whether an optional argument has been omitted is the non-labeled
application of an argument appearing after this optional argument in the function type. Note
that if that argument is labeled, you will only be able to eliminate optional arguments by totally
applying the function, omitting all optional arguments and omitting all labels for all remaining
arguments.

let test ?7(x =0) ?(y=0) O ?(z=0) O = (x, 7y, 2);;
val test : 7x:int -> ?y:int -> unit -> 7z:int -> unit -> int * int * int =
<fun>

test O);;
- : ?z:int -> unit -> int * int * int = <fun>

test ~x:2 O ~z:3 O;;

80

- : int * int * int = (2, 0, 3)

Optional parameters may also commute with non-optional or unlabeled ones, as long as they are
applied simultaneously. By nature, optional arguments do not commute with unlabeled arguments
applied independently.

test ~y:2 ~x:3 O O;3;;
- : int * int * int = (3, 2, 0)

H+

test () () ~z:1 ~y:2 ~x:3;;
- : int * int * int = (3, 2, 1)

(test O O) ~z:1 ;;

Error: This expression has type int * int * int
This is not a function; it cannot be applied.

Here (test (O ()) is already (0,0,0) and cannot be further applied.

Optional arguments are actually implemented as option types. If you do not give a default
value, you have access to their internal representation, type 'a option = None | Some of 'a.
You can then provide different behaviors when an argument is present or not.

let bump 7step x =
match step with

| None -> x * 2
| Some y > x +y
55

val bump : 7?step:int -> int -> int = <fun>

It may also be useful to relay an optional argument from a function call to another. This can
be done by prefixing the applied argument with ?. This question mark disables the wrapping of
optional argument in an option type.

let test2 7x 7y (O = test 7x 7y OO O;;

val test2 : 7x:int -> ?y:int -> unit -> int * int * int = <fun>

test2 7?x:None;;
- : ?y:int -> unit -> int * int * int = <fun>

4.1.2 Labels and type inference

While they provide an increased comfort for writing function applications, labels and optional
arguments have the pitfall that they cannot be inferred as completely as the rest of the language.
You can see it in the following two examples.

let h' g =g ~y:2 ~x:3;;

val h' : (y:int -> x:int -> 'a) -> 'a = <fun>

h' £ ;;

Chapter 4. Labels and variants 81

Error: This expression has type x:int -> y:int -> int
but an expression was expected of type y:int -> x:int -> 'a

let bump_it bump x =
bump ~step:2 x;;
val bump_it : (step:int -> 'a -> 'b) -> 'a -> 'b = <fun>

bump_it bump 1 ;;

Error: This expression has type 7step:int -> int -> int
but an expression was expected of type step:int -> 'a -> 'b

The first case is simple: g is passed ~y and then ~x, but £ expects ~x and then ~y. This is correctly
handled if we know the type of g to be x:int -> y:int -> int in advance, but otherwise this
causes the above type clash. The simplest workaround is to apply formal parameters in a standard
order.

The second example is more subtle: while we intended the argument bump to be of type
?step:int -> int -> int, it is inferred as step:int -> int -> 'a. These two types being
incompatible (internally normal and optional arguments are different), a type error occurs when
applying bump_it to the real bump.

We will not try here to explain in detail how type inference works. One must just understand
that there is not enough information in the above program to deduce the correct type of g or bump.
That is, there is no way to know whether an argument is optional or not, or which is the correct
order, by looking only at how a function is applied. The strategy used by the compiler is to assume
that there are no optional arguments, and that applications are done in the right order.

The right way to solve this problem for optional parameters is to add a type annotation to the
argument bump.

let bump_it (bump : 7?step:int -> int -> int) x =
bump ~step:2 x;;
val bump_it : (?step:int -> int -> int) -> int -> int = <fun>

bump_it bump 1;;
- : int = 3

In practice, such problems appear mostly when using objects whose methods have optional argu-
ments, so that writing the type of object arguments is often a good idea.

Normally the compiler generates a type error if you attempt to pass to a function a parameter
whose type is different from the expected one. However, in the specific case where the expected
type is a non-labeled function type, and the argument is a function expecting optional parameters,
the compiler will attempt to transform the argument to have it match the expected type, by passing
None for all optional parameters.

let twice f (x : int) = £f(f x);;

val twice : (int -> int) -> int -> int = <fun>

twice bump 2;;
- : int = 8

82

This transformation is coherent with the intended semantics, including side-effects. That is, if
the application of optional parameters shall produce side-effects, these are delayed until the received
function is really applied to an argument.

4.1.3 Suggestions for labeling

Like for names, choosing labels for functions is not an easy task. A good labeling is a labeling
which

o makes programs more readable,
o is easy to remember,

e when possible, allows useful partial applications.

We explain here the rules we applied when labeling OCaml libraries.

To speak in an “object-oriented” way, one can consider that each function has a main argument,
its object, and other arguments related with its action, the parameters. To permit the combination
of functions through functionals in commuting label mode, the object will not be labeled. Its role
is clear from the function itself. The parameters are labeled with names reminding of their nature
or their role. The best labels combine nature and role. When this is not possible the role is to be
preferred, since the nature will often be given by the type itself. Obscure abbreviations should be
avoided.

ListLabels.map : f:('a -> 'b) -> 'a list -> 'b list
UnixLabels.write : file_descr —-> buf:bytes -> pos:int -> len:int -> unit

When there are several objects of same nature and role, they are all left unlabeled.
ListLabels.iter2 : f:('a -> 'b => 'c) -> 'a list -> 'b list -> unit
When there is no preferable object, all arguments are labeled.

BytesLabels.blit
src:bytes —-> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit

However, when there is only one argument, it is often left unlabeled.
BytesLabels.create : int -> bytes

This principle also applies to functions of several arguments whose return type is a type variable,
as long as the role of each argument is not ambiguous. Labeling such functions may lead to
awkward error messages when one attempts to omit labels in an application, as we have seen with
ListLabels.fold_left.

Here are some of the label names you will find throughout the libraries.

Chapter 4. Labels and variants 83

Label | Meaning

f: a function to be applied

pos: a position in a string, array or byte sequence
len: a length

buf: a byte sequence or string used as buffer

src: the source of an operation

dst: the destination of an operation

init: | the initial value for an iterator

cmp: a comparison function, e.g. Stdlib.compare
mode: | an operation mode or a flag list

All these are only suggestions, but keep in mind that the choice of labels is essential for read-
ability. Bizarre choices will make the program harder to maintain.

In the ideal, the right function name with right labels should be enough to understand the
function’s meaning. Since one can get this information with OCamlBrowser or the ocaml toplevel,
the documentation is only used when a more detailed specification is needed.

4.2 Polymorphic variants

Variants as presented in section 1.4 are a powerful tool to build data structures and algorithms.
However they sometimes lack flexibility when used in modular programming. This is due to the
fact that every constructor is assigned to a unique type when defined and used. Even if the same
name appears in the definition of multiple types, the constructor itself belongs to only one type.
Therefore, one cannot decide that a given constructor belongs to multiple types, or consider a value
of some type to belong to some other type with more constructors.

With polymorphic variants, this original assumption is removed. That is, a variant tag does
not belong to any type in particular, the type system will just check that it is an admissible value
according to its use. You need not define a type before using a variant tag. A variant type will be
inferred independently for each of its uses.

Basic use

In programs, polymorphic variants work like usual ones. You just have to prefix their names with
a backquote character *

[On; "“0ff];;

- : [> "0ff | "0On] list = ["0On; ~0ff]

~Number 1;;
- : [> “Number of int] = “Number 1

let f = function "On -> 1 | “0ff -> 0 | “Number n -> n;;
val f : [< “Number of int | “Off | “On] -> int = <fun>

List.map £ ["On; ~0ff];;
- : int list = [1; 0]

84

[>°0ff| 0n] list means that to match this list, you should at least be able to match ~0ff and
“0On, without argument. [<*0n|~0£ff| Number of int] means that £ may be applied to ~0ff, “0On
(both without argument), or ~Number n where n is an integer. The > and < inside the variant types
show that they may still be refined, either by defining more tags or by allowing less. As such, they
contain an implicit type variable. Because each of the variant types appears only once in the whole
type, their implicit type variables are not shown.

The above variant types were polymorphic, allowing further refinement. When writing type an-
notations, one will most often describe fixed variant types, that is types that cannot be refined. This
is also the case for type abbreviations. Such types do not contain < or >, but just an enumeration
of the tags and their associated types, just like in a normal datatype definition.

type 'a vlist = ['Nil | “Cons of 'a * 'a vlist];;
type 'a vlist = [“Cons of 'a * 'a vlist | "Nil]

let rec map £ : 'a vlist -> 'b vlist = function
| "Nil -> °Nil

| “Cons(a, 1) -> “Cons(f a, map f 1)

#55

val map : ('a -> 'b) -> 'a vlist -> 'b vlist = <fun>

Advanced use

Type-checking polymorphic variants is a subtle thing, and some expressions may result in more
complex type information.

let f = function A -> "C | "B -> "D | x -> x;;
val £ : ([> A | B | *C| D] as 'a) -> 'a = <fun>

f "E;;

-:[>4/| B Cl| D] E]="E

Here we are seeing two phenomena. First, since this matching is open (the last case catches any
tag), we obtain the type [> “A | “B] rather than [< “A | “B] in a closed matching. Then, since
x is returned as is, input and return types are identical. The notation as 'a denotes such type
sharing. If we apply f to yet another tag “E, it gets added to the list.

let f1 = function A x ->x =1 | "B -> true | “C -> false
let f2 function A x -> x = "a" | "B -> true ;;

val f1 : [< “A of int | "B | C] -> bool = <fun>

val f2 : [< "A of string | "B] -> bool = <fun>

let £f x = f1 x && f2 x;;
val f : [< A of string & int | "B] -> bool = <fun>

Here f1 and £2 both accept the variant tags ~A and "B, but the argument of “A is int for £1 and
string for £2. In f’s type ~C, only accepted by £1, disappears, but both argument types appear
for “A as int & string. This means that if we pass the variant tag ~A to f, its argument should
be both int and string. Since there is no such value, £ cannot be applied to ~A, and “B is the only
accepted input.

Chapter 4. Labels and variants 85

Even if a value has a fixed variant type, one can still give it a larger type through coercions.
Coercions are normally written with both the source type and the destination type, but in simple
cases the source type may be omitted.

type 'a wlist = ['Nil | “Cons of 'a * 'a wlist | “Snoc of 'a wlist * 'al;;
type 'a wlist = [“Cons of 'a * 'a wlist | "Nil | “Snoc of 'a wlist * 'a]

let wlist_of_vlist 1 = (1 : 'a vlist :> 'a wlist);;

val wlist_of_vlist : 'a vlist -> 'a wlist = <fun>
let open_vlist 1 = (1 : 'a vlist :> [> 'a vlist]);;
val open_vlist : 'a vlist -> [> 'a vlist] = <fun>

fun x > (x :> [CA|I'B|°C]);;
-:[<"A| B ¢c]l->1["A| B| C] = <fun>

You may also selectively coerce values through pattern matching.

let split_cases = function

| "Nil | "Cons _ as x -> A x
| “Snoc _ as x -> "B x

#55

val split_cases :
[< “Cons of 'a | "Nil | “Snoc of 'b] ->
[> A of [> “Cons of 'a | "Nil] | "B of [> “Snoc of 'b]] = <fun>

When an or-pattern composed of variant tags is wrapped inside an alias-pattern, the alias is given
a type containing only the tags enumerated in the or-pattern. This allows for many useful idioms,
like incremental definition of functions.

let num x = "Num x

let evall eval ("Num x) = x

let rec eval x = evall eval x ;;

val num : 'a -> [> “Num of 'a] = <fun>

val evall : 'a -> [< “Num of 'b] -> 'b = <fun>
val eval : [< "Num of 'a] -> 'a = <fun>

let plus x y = “Plus(x,y)
let eval2 eval = function

| "Plus(x,y) -> eval x + eval y

| "Num _ as x —> evall eval x

let rec eval x = eval2 eval x ;;

val plus : 'a -> 'b -> [> “Plus of 'a * 'b] = <fun>

val eval2 : ('a -> int) -> [< “Num of int | “Plus of 'a * 'a] -> int = <fun>
val eval : ([< “Num of int | “Plus of 'a * 'a] as 'a) -> int = <fun>

To make this even more comfortable, you may use type definitions as abbreviations for or-
patterns. That is, if you have defined type myvariant = [Tagl of int | “Tag2 of booll],
then the pattern #myvariant is equivalent to writing ("Tagl1(_ : int) | “Tag2(_ : bool))

Such abbreviations may be used alone,

86

let £ = function

| #myvariant -> "myvariant"

| “Tag3 -> "Tag3";;

val f : [< "Tagl of int | “Tag2 of bool | “Tag3] -> string = <fun>

or combined with with aliases.

let gl = function “Tagl _ -> "Tagl" | “Tag2 _ -> "Tag2";;
val g1 : [< "Tagl of 'a | "Tag2 of 'b] -> string = <fun>

let g = function

| #myvariant as x -> gl x

| ~Tag3 -> "Tag3";;

val g : [< "Tagl of int | “Tag2 of bool | “Tag3] -> string = <fun>

4.2.1 Weaknesses of polymorphic variants

After seeing the power of polymorphic variants, one may wonder why they were added to core
language variants, rather than replacing them.

The answer is twofold. One first aspect is that while being pretty efficient, the lack of static type
information allows for less optimizations, and makes polymorphic variants slightly heavier than core
language ones. However noticeable differences would only appear on huge data structures.

More important is the fact that polymorphic variants, while being type-safe, result in a weaker
type discipline. That is, core language variants do actually much more than ensuring type-safety,
they also check that you use only declared constructors, that all constructors present in a data-
structure are compatible, and they enforce typing constraints to their parameters.

For this reason, you must be more careful about making types explicit when you use polymorphic
variants. When you write a library, this is easy since you can describe exact types in interfaces,
but for simple programs you are probably better off with core language variants.

Beware also that some idioms make trivial errors very hard to find. For instance, the following
code is probably wrong but the compiler has no way to see it.

type abc = [TA | "B | °C] ;;
type abc = [A | "B | *C]

let £ = function

| “As -> "A"

| #abc -> "other" ;;

val f : [< A | "As | "B | “C] -> string = <fun>

let £ : abc -> string = f ;;
val f : abc -> string = <fun>
You can avoid such risks by annotating the definition itself.

let £ : abc —-> string = function
| ~AS -> ||A||
| #abc -> "other" ;;

Chapter 4. Labels and variants

Error: This pattern matches values of type [? “As]
but a pattern was expected which matches values of type abc
The second variant type does not allow tag(s) "As

87

88

Chapter 5

Polymorphism and its limitations

This chapter covers more advanced questions related to the limitations of polymorphic functions and
types. There are some situations in OCaml where the type inferred by the type checker may be less
generic than expected. Such non-genericity can stem either from interactions between side-effect
and typing or the difficulties of implicit polymorphic recursion and higher-rank polymorphism.
This chapter details each of these situations and, if it is possible, how to recover genericity.

5.1 Weak polymorphism and mutation

5.1.1 Weakly polymorphic types

Maybe the most frequent examples of non-genericity derive from the interactions between polymor-
phic types and mutation. A simple example appears when typing the following expression

let store = ref None ;;
val store : '_weakl option ref = {contents = None}

Since the type of None is 'a option and the function ref has type 'b -> 'b ref, a natural
deduction for the type of store would be 'a option ref. However, the inferred type,
'_weakl option ref, is different. Type variables whose name starts with a _weak prefix like
' _weakl are weakly polymorphic type variables, sometimes shortened as weak type variables. A
weak type variable is a placeholder for a single type that is currently unknown. Once the specific
type t behind the placeholder type '_weakl is known, all occurrences of '_weakl will be replaced
by t. For instance, we can define another option reference and store an int inside:

let another_store = ref None ;;
val another_store : '_weak2 option ref = {contents = Nonel}

another_store := Some 0;
another_store ;;
- : int option ref = {contents = Some O}

After storing an int inside another_store, the type of another_store has been updated from
' _weak2 option ref to int option ref. This distinction between weakly and generic polymor-
phic type variable protects OCaml programs from unsoundness and runtime errors. To understand

89

90

from where unsoundness might come, consider this simple function which swaps a value x with the
value stored inside a store reference, if there is such value:

let swap store x = match !store with

| None -> store := Some x; X
| Some y -> store := Some X; ¥;;
val swap : 'a option ref -> 'a -> 'a = <fun>

We can apply this function to our store

let one = swap store 1

let one_again = swap store 2
let two = swap store 3;;

val one : int =1

val one_again : int = 1

val two : int = 2

After these three swaps the stored value is 3. Everything is fine up to now. We can then try to
swap 3 with a more interesting value, for instance a function:

let error = swap store (fun x -> x);;
Error: This expression should not be a function, the expected type is int

At this point, the type checker rightfully complains that it is not possible to swap an integer and a
function, and that an int should always be traded for another int. Furthermore, the type checker
prevents us to change manually the type of the value stored by store:

store := Some (fun x -> xX);;
Error: This expression should not be a function, the expected type is int

Indeed, looking at the type of store, we see that the weak type '_weakl has been replaced by the
type int

store;;
- : int option ref = {contents = Some 3}

Therefore, after placing an int in store, we cannot use it to store any value other than an int.
More generally, weak types protect the program from undue mutation of values with a polymorphic
type.

Moreover, weak types cannot appear in the signature of toplevel modules: types must be known
at compilation time. Otherwise, different compilation units could replace the weak type with
different and incompatible types. For this reason, compiling the following small piece of code

let option_ref = ref None
yields a compilation error

Error: The type of this expression, '_weakl option ref,
contains type variables that cannot be generalized

To solve this error, it is enough to add an explicit type annotation to specify the type at
declaration time:

Chapter 5. Polymorphism and its limitations 91

let option_ref: int option ref = ref None

This is in any case a good practice for such global mutable variables. Otherwise, they will pick
out the type of first use. If there is a mistake at this point, this can result in confusing type errors
when later, correct uses are flagged as errors.

5.1.2 The value restriction

Identifying the exact context in which polymorphic types should be replaced by weak types in
a modular way is a difficult question. Indeed the type system must handle the possibility that
functions may hide persistent mutable states. For instance, the following function uses an internal
reference to implement a delayed identity function

let make fake_id () =

let store = ref None in

fun x -> swap store x ;;

val make_fake_id : unit -> 'a -> 'a = <fun>

let fake_id = make_fake_id();;
val fake_id : '_weak3 -> '_weak3 = <fun>

It would be unsound to apply this fake_id function to values with different types. The function
fake_id is therefore rightfully assigned the type '_weak3 -> '_weak3 rather than 'a -> 'a. At
the same time, it ought to be possible to use a local mutable state without impacting the type of
a function.

To circumvent these dual difficulties, the type checker considers that any value returned by a
function might rely on persistent mutable states behind the scene and should be given a weak type.
This restriction on the type of mutable values and the results of function application is called the
value restriction. Note that this value restriction is conservative: there are situations where the
value restriction is too cautious and gives a weak type to a value that could be safely generalized
to a polymorphic type:

let not_id = (fun x -> x) (fun x -> x);;
val not_id : '_weak4 -> '_weak4 = <fun>

Quite often, this happens when defining function using higher order function. To avoid this problem,
a solution is to add an explicit argument to the function:

let id_again = fun x -> (fun x -> x) (fun x -> X) X;;
val id_again : 'a -> 'a = <fun>

With this argument, id_again is seen as a function definition by the type checker and can there-
fore be generalized. This kind of manipulation is called eta-expansion in lambda calculus and is
sometimes referred under this name.

5.1.3 The relaxed value restriction

There is another partial solution to the problem of unnecessary weak type, which is implemented
directly within the type checker. Briefly, it is possible to prove that weak types that only appear
as type parameters in covariant positions —also called positive positions— can be safely generalized
to polymorphic types. For instance, the type 'a list is covariant in 'a:

92

let £ O = [1;;
val f : unit -> 'a list = <fun>

let empty = £ O;;
val empty : 'a list = []

Remark that the type inferred for empty is 'a list and not '_weak5 list that should have
occurred with the value restriction since £ () is a function application.

The value restriction combined with this generalization for covariant type parameters is called
the relaxed value restriction.

5.1.4 Variance and value restriction

Variance describes how type constructors behave with respect to subtyping. Consider for instance
a pair of type x and xy with x a subtype of xy, denoted x :> xy:

type x = ["X 1;;
type x = ["X]

typexy=1L[X1"Y1;;
type xy = ["X | Y]

As x is a subtype of xy, we can convert a value of type x to a value of type xy:

let x:x = “X;;

val x : x = °
let x' = (x > xy);;
val x' : xy = X

Similarly, if we have a value of type x list, we can convert it to a value of type xy list, since we
could convert each element one by one:

let 1l:x list = [X; “X1;;
val 1 : x list = [*X; “X]

let 1' = (1 :> xy list);;
val 1' : xy list = [X; “X]
In other words, x :> xy implies that x 1ist :> xy 1list, therefore the type constructor 'a list

is covariant (it preserves subtyping) in its parameter 'a.
Contrarily, if we have a function that can handle values of type xy

let f: xy -> unit = function
| "X >0

1Y > 0O;;

val £ : xy -> unit = <fun>

it can also handle values of type x:

let £f' = (f :> x -> unit);;
val f' : x -> unit = <fun>

Chapter 5. Polymorphism and its limitations 93

Note that we can rewrite the type of £ and £' as

type 'a proc = 'a -> unit

let f' = (f: xy proc :> x proc);;
type 'a proc = 'a -> unit

val f' : x proc = <fun>

In this case, we have x :> xy implies xy proc :> x proc. Notice that the second subtyping
relation reverse the order of x and xy: the type constructor 'a proc is contravariant in its parameter
'a. More generally, the function type constructor 'a -> 'b is covariant in its return type 'b and
contravariant in its argument type 'a.

A type constructor can also be invariant in some of its type parameters, neither covariant nor
contravariant. A typical example is a reference:

let x: x ref = ref “X;;
val x : x ref = {contents = "X}

If we were able to coerce x to the type xy ref as a variable xy, we could use xy to store the value
Y inside the reference and then use the x value to read this content as a value of type x, which
would break the type system.

More generally, as soon as a type variable appears in a position describing mutable state it
becomes invariant. As a corollary, covariant variables will never denote mutable locations and can
be safely generalized. For a better description, interested readers can consult the original article
by Jacques Garrigue on http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.
pdf

Together, the relaxed wvalue restriction and type parameter covariance help to avoid
eta-expansion in many situations.

5.1.5 Abstract data types

Moreover, when the type definitions are exposed, the type checker is able to infer variance informa-
tion on its own and one can benefit from the relaxed value restriction even unknowingly. However,
this is not the case anymore when defining new abstract types. As an illustration, we can define a
module type collection as:

module type COLLECTION = sig

type 'a t

val empty: unit -> 'a t

end

module Implementation = struct
type 'a t = 'a list

let empty O= []

end;;

module type COLLECTION = sig type 'a t val empty : unit -> 'a t end
module Implementation :
sig type 'a t = 'a list val empty : unit -> 'a list end

module List2: COLLECTION = Implementation;;

http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf
http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf

94

module List2 : COLLECTION

In this situation, when coercing the module List2 to the module type COLLECTION, the type
checker forgets that 'a List2.t was covariant in 'a. Consequently, the relaxed value restriction
does not apply anymore:

List2.empty O;;
- : '_weakb List2.t = <abstr>

To keep the relaxed value restriction, we need to declare the abstract type 'a COLLECTION.t
as covariant in 'a:

module type COLLECTION = sig
type +'a t

val empty: unit -> 'a t

end

module List2: COLLECTION = Implementation;;

module type COLLECTION = sig type +'a t val empty : unit -> 'a t end
module List2 : COLLECTION

We then recover polymorphism:

List2.empty O;;
- : 'a List2.t = <abstr>

5.2 Polymorphic recursion

The second major class of non-genericity is directly related to the problem of type inference for
polymorphic functions. In some circumstances, the type inferred by OCaml might be not general
enough to allow the definition of some recursive functions, in particular for recursive function acting
on non-regular algebraic data type.

With a regular polymorphic algebraic data type, the type parameters of the type constructor
are constant within the definition of the type. For instance, we can look at arbitrarily nested list
defined as:

type 'a regular_nested = List of 'a list | Nested of 'a regular_nested list
let 1 = Nested[List [1]; Nested [List[2;3]]; Nested[Nested[1] 1;;
type 'a regular_nested = List of 'a list | Nested of 'a regular_nested list

val 1 : int regular_nested =
Nested [List [1]; Nested [List [2; 3]]; Nested [Nested []1]]

Note that the type constructor regular_nested always appears as 'a regular_nested in the
definition above, with the same parameter 'a. Equipped with this type, one can compute a maximal
depth with a classic recursive function

let rec maximal_depth = function

| List _ —> 1
| Nested [] —> O
| Nested (a::q) -> 1 + max (maximal_depth a) (maximal_depth (Nested q));;

Chapter 5. Polymorphism and its limitations 95

val maximal_depth : 'a regular_nested -> int = <fun>

Non-regular recursive algebraic data types correspond to polymorphic algebraic data types
whose parameter types vary between the left and right side of the type definition. For instance,
it might be interesting to define a datatype that ensures that all lists are nested at the same
depth:

type 'a nested = List of 'a list | Nested of 'a list nested;;
type 'a nested = List of 'a list | Nested of 'a list nested

Intuitively, a value of type 'a nested is a list of list ... of list of elements a with k nested list. We
can then adapt the maximal_depth function defined on regular_depth into a depth function that
computes this k. As a first try, we may define

let rec depth = function
| List _ -> 1
| Nested n -> 1 + depth n;;

Error: This expression has type 'a list nested
but an expression was expected of type 'a nested
The type variable 'a occurs inside 'a list

The type error here comes from the fact that during the definition of depth, the type checker
first assigns to depth the type 'a -> 'b . When typing the pattern matching, 'a -> 'b becomes
'a nested -> 'b, then 'a nested -> int once the List branch is typed. However, when typing
the application depth n in the Nested branch, the type checker encounters a problem: depth n is
applied to 'a 1list nested, it must therefore have the type 'a list nested -> 'b. Unifying this
constraint with the previous one leads to the impossible constraint 'a list nested = 'a nested.
In other words, within its definition, the recursive function depth is applied to values of type 'a t
with different types 'a due to the non-regularity of the type constructor nested. This creates a
problem because the type checker had introduced a new type variable 'a only at the definition of
the function depth whereas, here, we need a different type variable for every application of the
function depth.

5.2.1 Explicitly polymorphic annotations

The solution of this conundrum is to use an explicitly polymorphic type annotation for the type
'a:

let rec depth: 'a. 'a nested -> int = function

| List _ > 1
| Nested n -> 1 + depth n;;
val depth : 'a nested -> int = <fun>

depth (Nested(List [[71; [8] 1));;
- :int =2

In the type of depth, 'a.'a nested -> int, the type variable 'a is universally quantified. In other
words, 'a.'a nested -> int reads as “for all type 'a, depth maps 'a nested values to integers”.
Whereas the standard type 'a nested -> int can be interpreted as “let be a type variable 'a,

96

then depth maps 'a nested values to integers”. There are two major differences with these two
type expressions. First, the explicit polymorphic annotation indicates to the type checker that it
needs to introduce a new type variable every times the function depth is applied. This solves our
problem with the definition of the function depth.

Second, it also notifies the type checker that the type of the function should be polymorphic.
Indeed, without explicit polymorphic type annotation, the following type annotation is perfectly
valid

let sum: 'a => 'b > 'c = fun x y > x + y;;
val sum : int -> int -> int = <fun>

since 'a,'b and 'c denote type variables that may or may not be polymorphic. Whereas, it is an
error to unify an explicitly polymorphic type with a non-polymorphic type:

let sum: 'a 'b 'c. 'a > 'b > 'c =fun xy -> x +y;;

Error: This definition has type int -> int -> int which is less general than
'a 'b 'c. 'a -> 'b -> 'c

An important remark here is that it is not needed to explicit fully the type of depth: it is
sufficient to add annotations only for the universally quantified type variables:

let rec depth: 'a. 'a nested -> _ = function
| List _ —> 1

| Nested n -> 1 + depth n;;

val depth : 'a nested -> int = <fun>

depth (Nested(List [[71; [81 1));;
- : int = 2

5.2.2 More examples

With explicit polymorphic annotations, it becomes possible to implement any recursive function
that depends only on the structure of the nested lists and not on the type of the elements. For
instance, a more complex example would be to compute the total number of elements of the nested
lists:

let len nested =

let map_and_sum f = List.fold_left (fun acc x -> acc + £ x) O in
let rec len: 'a. ('a list -> int) -> 'a nested -> int =

fun nested_len n ->

match n with

| List 1 -> nested_len 1

| Nested n -> len (map_and_sum nested_len) n

in

len List.length nested;;

val len : 'a nested -> int = <fun>

len (Nested(Nested(List [[[1;2]; [31 1; [01; [41; [5;6;711; C011 1)));;

Chapter 5. Polymorphism and its limitations 97

- : int =7

Similarly, it may be necessary to use more than one explicitly polymorphic type variables, like
for computing the nested list of list lengths of the nested list:

let shape n =

let rec shape: 'a 'b. ('a nested -> int nested) ->

('b 1list list -> 'a list) -> 'b nested -> int nested

= fun nest nested_shape ->

function

| List 1 -> raise

(Invalid_argument "shape requires nested_list of depth greater than 1")
| Nested (List 1) -> nest @@ List (nested_shape 1)

| Nested n ->

let nested_shape = List.map nested_shape in

let nest x = nest (Nested x) in

shape nest nested_shape n in

shape (funn ->n) (fun 1 -> List.map List.length 1) n;;
val shape : 'a nested -> int nested = <fun>

shape (Nested(Nested(List [[[1;2]; [3] 1; [[1; [4]; [5;6;711; [[11 1)));;
- : int nested = Nested (List [[2; 1]; [0; 1; 3]1; [01])

5.3 Higher-rank polymorphic functions

Explicit polymorphic annotations are however not sufficient to cover all the cases where the inferred
type of a function is less general than expected. A similar problem arises when using polymorphic
functions as arguments of higher-order functions. For instance, we may want to compute the
average depth or length of two nested lists:

let average_depth x y = (depth x + depth y) / 2;;

val average_depth : 'a nested -> 'b nested -> int = <fun>

let average_len x y = (len x + len y) / 2;;
val average_len : 'a nested -> 'b nested -> int = <fun>

let one = average_len (List [2]) (List [[11);;
val one : int =1
It would be natural to factorize these two definitions as:

let average f x y= (£ x + £ y) / 2;;

val average : ('a -> int) -> 'a -> 'a -> int = <fun>

However, the type of average len is less generic than the type of average_len, since it requires
the type of the first and second argument to be the same:

average_len (List [2]) (List [[11);;
- : int =1

98

average len (List [2]) (List [[11);;

Error: This expression has type 'a list
but an expression was expected of type int

As previously with polymorphic recursion, the problem stems from the fact that type variables
are introduced only at the start of the let definitions. When we compute both £ x and £ y, the
type of x and y are unified together. To avoid this unification, we need to indicate to the type
checker that f is polymorphic in its first argument. In some sense, we would want average to have

type
val average: ('a. 'a nested -> int) -> 'a nested -> 'b nested -> int

Note that this syntax is not valid within OCaml: average has an universally quantified type 'a
inside the type of one of its argument whereas for polymorphic recursion the universally quantified
type was introduced before the rest of the type. This position of the universally quantified type
means that average is a second-rank polymorphic function. This kind of higher-rank functions is
not directly supported by OCaml: type inference for second-rank polymorphic function and beyond
is undecidable; therefore using this kind of higher-rank functions requires to handle manually these
universally quantified types.

In OCaml, there are two ways to introduce this kind of explicit universally quantified types:
universally quantified record fields,

type 'a nested_reduction = { f:'elt. 'elt nested -> 'a };;
type 'a nested_reduction = { f : 'elt. 'elt nested -> 'a; }

let boxed len = { f = len };;

val boxed_len : int nested_reduction = {f = <fun>}

and universally quantified object methods:

let obj_len = object method f:'a. 'a nested -> 'b = len end;;
val obj_len : < f : 'a. 'a nested -> int > = <obj>

To solve our problem, we can therefore use either the record solution:

let average nsm x y = (nsm.f x + nsm.f y) / 2 ;;
val average : int nested_reduction -> 'a nested -> 'b nested -> int = <fun>

or the object one:

let average (obj:<f:'a. 'a nested -> _ >) x y = (obj#f x + obj#f y) / 2 ;;
val average : < f : 'a. 'a nested -> int > -> 'b nested -> 'c nested -> int =
<fun>

Chapter 6

Advanced examples with classes and
modules

(Chapter written by Didier Rémy)

In this chapter, we show some larger examples using objects, classes and modules. We review
many of the object features simultaneously on the example of a bank account. We show how modules
taken from the standard library can be expressed as classes. Lastly, we describe a programming
pattern known as virtual types through the example of window managers.

6.1 Extended example: bank accounts

In this section, we illustrate most aspects of Object and inheritance by refining, debugging, and
specializing the following initial naive definition of a simple bank account. (We reuse the module
Euro defined at the end of chapter 3.)

let euro = new Euro.c;;
val euro : float -> Euro.c = <fun>

let zero = euro O.;;
val zero : Euro.c = <obj>

let neg x = x#times (-1.);;

val neg : < times : float -> 'a; .. > -> 'a = <fun>

class account =

object

val mutable balance = zero

method balance = balance

method deposit x = balance <- balance # plus x

method withdraw x =

if x#leq balance then (balance <- balance # plus (neg x); x) else zero
end;;

99

100

class account :
object
val mutable balance : Euro.c
method balance : Euro.c
method deposit : Euro.c —> unit
method withdraw : Euro.c -> Euro.c
end

let c = new account in c # deposit (euro 100.); c # withdraw (euro 50.);;
- : Euro.c = <obj>

We now refine this definition with a method to compute interest.

class account_with_interests =
object (self)
inherit account
method private interest = self # deposit (self # balance # times 0.03)
end;;
class account_with_interests :
object
val mutable balance : Euro.c
method balance : Euro.c
method deposit : Euro.c -> unit
method private interest : unit
method withdraw : Euro.c -> Euro.c
end

We make the method interest private, since clearly it should not be called freely from the outside.
Here, it is only made accessible to subclasses that will manage monthly or yearly updates of the
account.

We should soon fix a bug in the current definition: the deposit method can be used for with-
drawing money by depositing negative amounts. We can fix this directly:

class safe_account =

object
inherit account
method deposit x = if zero#leq x then balance <- balance#plus x
end;;
class safe_account :
object

val mutable balance : Euro.c

method balance : Euro.c

method deposit : Euro.c -> unit

method withdraw : Euro.c -> Euro.c
end

However, the bug might be fixed more safely by the following definition:

class safe_account =
object
inherit account as unsafe

Chapter 6. Advanced examples with classes and modules 101

method deposit x =
if zero#leq x then unsafe # deposit x
else raise (Invalid_argument "deposit")
end; ;
class safe_account :
object
val mutable balance : Euro.c
method balance : Euro.c
method deposit : Euro.c —-> unit
method withdraw : Euro.c —-> Euro.c
end

In particular, this does not require the knowledge of the implementation of the method deposit.
To keep track of operations, we extend the class with a mutable field history and a private
method trace to add an operation in the log. Then each method to be traced is redefined.

type 'a operation = Deposit of 'a | Retrieval of 'a;;
type 'a operation = Deposit of 'a | Retrieval of 'a

class account_with_history =
object (self)
inherit safe_account as super
val mutable history = []
method private trace x = history <- x :: history
method deposit x = self#trace (Deposit x); super#deposit x
method withdraw x = self#trace (Retrieval x); super#withdraw x
method history = List.rev history
end;;
class account_with_history :
object
val mutable balance : Euro.c
val mutable history : Euro.c operation list
method balance : Euro.c
method deposit : Euro.c -> unit
method history : Euro.c operation list
method private trace : Euro.c operation -> unit
method withdraw : Euro.c —-> Euro.c
end

One may wish to open an account and simultaneously deposit some initial amount. Although the
initial implementation did not address this requirement, it can be achieved by using an initial-
izer.

class account_with_deposit x =

object

inherit account_with_history
initializer balance <- x

end;;

class account_with_deposit :
Euro.c ->

102

object
val mutable balance : Euro.c
val mutable history : Euro.c operation list
method balance : Euro.c
method deposit : Euro.c —> unit
method history : Euro.c operation list
method private trace : Euro.c operation -> unit
method withdraw : Euro.c -> Euro.c
end

A better alternative is:

class account_with_deposit x =
object (self)

inherit account_with_history
initializer self#deposit x
end;;
class account_with_deposit :
Euro.c ->
object

val mutable balance : Euro.c
val mutable history : Euro.c operation list
method balance : Euro.c
method deposit : Euro.c —-> unit
method history : Euro.c operation list
method private trace : Euro.c operation —> unit
method withdraw : Euro.c -> Euro.c
end

Indeed, the latter is safer since the call to deposit will automatically benefit from safety checks
and from the trace. Let’s test it:

let ccp = new account_with_deposit (euro 100.) in

let _balance = ccp#withdraw (euro 50.) in

ccp#history;;

- : Euro.c operation list = [Deposit <obj>; Retrieval <obj>]

Closing an account can be done with the following polymorphic function:

let close c = c#withdraw c#balance;;
val close : < balance : 'a; withdraw : 'a -> 'b; .. > -> 'b = <fun>

Of course, this applies to all sorts of accounts.
Finally, we gather several versions of the account into a module Account abstracted over some

currency.

let today () = (01,01,2000) (* an approximation)
module Account (M:MONEY) =

struct

type m = M.c

let m = new M.c

let zero = m O.

Chapter 6. Advanced examples with classes and modules 103

class bank =
object (self)
val mutable balance = zero
method balance = balance
val mutable history = []
method private trace x = history <- x::history
method deposit x =
self#trace (Deposit x);
if zero#leq x then balance <- balance # plus x
else raise (Invalid_argument "deposit")
method withdraw x =
if x#leq balance then
(balance <- balance # plus (neg x); self#trace (Retrieval x); x)
else zero
method history = List.rev history
end

H OH HF H H HF H H H H H H H K H K

class type client_view =
object
method deposit : m -> unit
method history : m operation list
method withdraw : m -> m
method balance : m
end

H OH HF OH OH H H

class virtual check_client x =
let y = if (m 100.)#leq x then x
else raise (Failure "Insufficient initial deposit") in
object (self)
initializer self#deposit y
method virtual deposit: m -> unit
end

H OHF H OH OHF H H

module Client (B : sig class bank : client_view end) =
struct
class account x : client_view =
object
inherit B.bank
inherit check_client x

H O H HF H OH H R

end

+H+

let discount x =
let ¢ = new account x in
if today() < (1998,10,30) then c # deposit (m 100.); c

104

end
end;;
This shows the use of modules to group several class definitions that can in fact be thought of as
a single unit. This unit would be provided by a bank for both internal and external uses. This is
implemented as a functor that abstracts over the currency so that the same code can be used to
provide accounts in different currencies.

The class bank is the real implementation of the bank account (it could have been inlined).
This is the one that will be used for further extensions, refinements, etc. Conversely, the client will
only be given the client view.

module Euro_account = Account(Euro);;
module Client = Euro_account.Client (Euro_account);;

new Client.account (new Euro.c 100.);;
Hence, the clients do not have direct access to the balance, nor the history of their own accounts.
Their only way to change their balance is to deposit or withdraw money. It is important to give
the clients a class and not just the ability to create accounts (such as the promotional discount
account), so that they can personalize their account. For instance, a client may refine the deposit
and withdraw methods so as to do his own financial bookkeeping, automatically. On the other
hand, the function discount is given as such, with no possibility for further personalization.

It is important to provide the client’s view as a functor Client so that client accounts can still
be built after a possible specialization of the bank. The functor Client may remain unchanged
and be passed the new definition to initialize a client’s view of the extended account.

module Investment_account (M : MONEY) =

struct

type m = M.c

module A = Account (M)

class bank =

object

inherit A.bank as super

method deposit x =

if (new M.c 1000.)#leq x then
print_string "Would you like to invest?";
super#deposit x

end

module Client = A.Client

end;;
The functor Client may also be redefined when some new features of the account can be given to
the client.

module Internet_account (M : MONEY) =
struct

type m = M.c

module A = Account (M)

Chapter 6. Advanced examples with classes and modules 105

H OH O HF H R

H OH O HF H H OHF H H

H OH HF H OH H OH H H

class bank =
object
inherit A.bank

method mail s = print_string s

end

class type client_view =
object
method deposit : m -> unit

method history : m operation list

method withdraw : m -> m

method balance : m

method mail : string -> unit
end

module Client (B : sig class bank :

struct

class account x : client_view

object
inherit B.bank
inherit A.check_client x
end
end

end;;

6.2 Simple modules as classes

client_view end) =

One may wonder whether it is possible to treat primitive types such as integers and strings as
objects. Although this is usually uninteresting for integers or strings, there may be some situations
where this is desirable. The class money above is such an example. We show here how to do it for

strings.

6.2.1 Strings

A naive definition of strings as objects could be:

class ostring s =

#

H O H H R

object

method get n = String.get s n
method print = print_string s

method escaped = new ostring (String.escaped s)

end;;

class ostring :

string ->
object

106

method escaped : ostring
method get : int -> char
method print : unit

end

However, the method escaped returns an object of the class ostring, and not an object of the
current class. Hence, if the class is further extended, the method escaped will only return an object
of the parent class.

class sub_string s =
object
inherit ostring s
method sub start len = new sub_string (String.sub s start len)
end;;
class sub_string :
string ->
object
method escaped : ostring
method get : int -> char
method print : unit
method sub : int -> int -> sub_string
end

As seen in section 3.16, the solution is to use functional update instead. We need to create an
instance variable containing the representation s of the string.

class better_string s =
object

val repr = s

method get n = String.get repr n

method print = print_string repr

method escaped = {< repr = String.escaped repr >}

method sub start len = {< repr = String.sub s start len >}
end;;

H OH H H H H

class better_string :
string ->
object ('a)
val repr : string
method escaped : 'a
method get : int -> char
method print : unit
method sub : int -> int -> 'a
end

As shown in the inferred type, the methods escaped and sub now return objects of the same type
as the one of the class.

Another difficulty is the implementation of the method concat. In order to concatenate a string
with another string of the same class, one must be able to access the instance variable externally.
Thus, a method repr returning s must be defined. Here is the correct definition of strings:

class ostring s =

Chapter 6. Advanced examples with classes and modules 107

object (self : 'mytype)
val repr = s
method repr = repr
method get n = String.get repr n
method print = print_string repr
method escaped = {< repr = String.escaped repr >}
method sub start len = {< repr = String.sub s start len >}
method concat (t : 'mytype) = {< repr = repr ~ t#repr >}
end;;
class ostring :
string ->
object ('a)
val repr : string
method concat : 'a -> 'a
method escaped : 'a
method get : int -> char
method print : unit
method repr : string
method sub : int -> int -> 'a
end

Another constructor of the class string can be defined to return a new string of a given length:

class cstring n = ostring (String.make n ' ');;
class cstring : int -> ostring

Here, exposing the representation of strings is probably harmless. We do could also hide the
representation of strings as we hid the currency in the class money of section 3.17.

6.2.2 Stacks

There is sometimes an alternative between using modules or classes for parametric data types.
Indeed, there are situations when the two approaches are quite similar. For instance, a stack can
be straightforwardly implemented as a class:

exception Empty;;
exception Empty

class ['a] stack =

object

val mutable 1 = ([] : 'a list)

method push x = 1 <- x::1

method pop = match 1 with [] -> raise Empty | a::1' -> 1 <-1'; a
method clear = 1 <- []

method length = List.length 1

end;;

class ['a] stack :
object
val mutable 1 : 'a list

108

method clear : unit

method length : int

method pop : 'a

method push : 'a -> unit
end

However, writing a method for iterating over a stack is more problematic. A method fold would
have type ('b => 'a -> 'b) -> 'b -> 'b. Here 'a is the parameter of the stack. The parameter
'b is not related to the class 'a stack but to the argument that will be passed to the method
fold. A naive approach is to make 'b an extra parameter of class stack:

class ['a, 'b] stack2 =

object
inherit ['al stack
method fold f (x : 'b) = List.fold_left f x 1
end;;
class ['a, 'b] stack2 :
object
val mutable 1 : 'a list

method clear : unit
method fold : ('b => 'a => 'b) => 'b => 'b
method length : int
method pop : 'a
method push : 'a -> unit
end

However, the method fold of a given object can only be applied to functions that all have the same
type:

let s = new stack2;;
val s : ('_weakl, '_weak2) stack2 = <obj>

s#fold (+) 0;;
- : int = 0

s;;

- : (int, int) stack2 = <obj>

A better solution is to use polymorphic methods, which were introduced in OCaml version 3.05.
Polymorphic methods makes it possible to treat the type variable 'b in the type of fold as univer-
sally quantified, giving fold the polymorphic type Forall 'b. ('b => 'a -> 'b) -> 'b -> 'b.
An explicit type declaration on the method fold is required, since the type checker cannot infer
the polymorphic type by itself.

class ['a] stack3 =
object
inherit ['a] stack
method fold : 'b. ('b -> 'a -> 'b) -> 'b > 'b
= fun f x -> List.fold_left f x 1
end;;

Chapter 6. Advanced examples with classes and modules 109

class ['a] stack3 :

object
val mutable 1 : 'a list
method clear : unit
method fold : ('b -> 'a -=> 'b) -=> 'b -> 'b
method length : int
method pop : 'a
method push : 'a -> unit

end

6.2.3 Hashtbl

A simplified version of object-oriented hash tables should have the following class type.

class type ['a, 'b] hash_table =

object

method find : 'a -> 'b

method add : 'a -> 'b -> unit
end;;

class type ['a, 'b] hash_table =
object method add : 'a -> 'b -> unit method find : 'a -> 'b end

A simple implementation, which is quite reasonable for small hash tables is to use an association
list:

class ['a, 'b] small _hashtbl : ['a, 'b] hash_table =
object

val mutable table = []

method find key = List.assoc key table

method add key valeur = table <- (key, valeur) :: table
end;;

class ['a, 'b] small_hashtbl : ['a, 'b] hash_table

A better implementation, and one that scales up better, is to use a true hash table... whose
elements are small hash tables!

class ['a, 'b] hashtbl size : ['a, 'b] hash table =
object (self)
val table = Array.init size (fun i -> new small_hashtbl)
method private hash key =
(Hashtbl.hash key) mod (Array.length table)
method find key = table.(self#hash key) # find key
method add key = table. (self#hash key) # add key
end;;
class ['a, 'b] hashtbl : int -> ['a, 'b] hash_table

H OH HF H O H

6.2.4 Sets

Implementing sets leads to another difficulty. Indeed, the method union needs to be able to access
the internal representation of another object of the same class.

110

This is another instance of friend functions as seen in section 3.17. Indeed, this is the same
mechanism used in the module Set in the absence of objects.

In the object-oriented version of sets, we only need to add an additional method tag to return
the representation of a set. Since sets are parametric in the type of elements, the method tag has a
parametric type 'a tag, concrete within the module definition but abstract in its signature. From
outside, it will then be guaranteed that two objects with a method tag of the same type will share
the same representation.

module type SET =
sig

type 'a tag
class ['al c :

object ('b)
method is_empty : bool
method mem : 'a -> bool
method add : 'a -> 'b
method union : 'b -> 'b

method iter : ('a -> unit) -> unit
method tag : 'a tag
end
end;;
module Set : SET =
struct

let rec merge 11 12 =
match 11 with

] -> 12
| h1 :: t1 —>
match 12 with
0 -—->11
| h2 :: t2 —>

if hl < h2 then hl :: merge t1 12
else if hl > h2 then h2 :: merge 11 t2
else merge t1 12
type 'a tag = 'a list
class ['a] ¢ =
object (_ : 'b)
val repr = ([] : 'a list)
method is_empty = (repr = []1)
method mem x = List.exists ((=) x) repr
method add x = {< repr = merge [x] repr >}

method union (s : 'b) = {< repr = merge repr s#tag >}
method iter (f : 'a -> unit) = List.iter f repr
method tag = repr

end

H OH HF OH H HF H OH H K HH HHH HHFH HHEHEHHH OHHEHHEHHHHFH K H

end;;

Chapter 6. Advanced examples with classes and modules 111

6.3 The subject/observer pattern

The following example, known as the subject/observer pattern, is often presented in the literature
as a difficult inheritance problem with inter-connected classes. The general pattern amounts to the
definition a pair of two classes that recursively interact with one another.

The class observer has a distinguished method notify that requires two arguments, a subject
and an event to execute an action.

class virtual ['subject, 'event] observer =

object
method virtual notify : 'subject -> 'event -> unit
end;;
class virtual ['subject, 'event] observer :
object method virtual notify : 'subject -> 'event -> unit end

The class subject remembers a list of observers in an instance variable, and has a distinguished
method notify_observers to broadcast the message notify to all observers with a particular
event e.

class ['observer, 'event] subject =
object (self)

val mutable observers = ([]:'observer list)
method add_observer obs = observers <- (obs :: observers)
method notify_observers (e : 'event) =
List.iter (fun x -> x#notify self e) observers
end;;
class ['a, 'event] subject :
object ('b)
constraint 'a = < notify : 'b -> 'event -> unit; .. >
val mutable observers : 'a list
method add_observer : 'a -> unit
method notify_observers : 'event -> unit
end

The difficulty usually lies in defining instances of the pattern above by inheritance. This can be
done in a natural and obvious manner in OCaml, as shown on the following example manipulating
windows.

type event = Raise | Resize | Move;;
type event = Raise | Resize | Move

let string_of_event = function
Raise -> "Raise" | Resize -> "Resize" | Move -> "Move';;
val string_of_event : event —-> string = <fun>

let count = ref O;;
val count : int ref = {contents = 0}

class ['observer] window_subject =
let id = count := succ !count; !count in

112

object (self)

inherit ['observer, event] subject

val mutable position = 0

method identity = id

method move x = position <- position + x; self#notify_observers Move
method draw = Printf.printf "{Position = ’d}\n" position;

#

end;;
class ['al] window_subject
object ('b)
constraint 'a = < notify : 'b -> event -> unit; .. >
val mutable observers : 'a list
val mutable position : int
method add_observer : 'a -> unit

method draw : unit

method identity : int

method move : int -> unit

method notify observers : event -> unit
end

class ['subject] window_observer =

object
inherit ['subject, event] observer
method notify s e = s#draw
end;;
class ['a] window_observer :
object
constraint 'a = < draw : unit; .. >
method notify : 'a -> event -> unit
end

As can be expected, the type of window is recursive.

let window = new window_subject;;
val window : < notify : 'a -> event -> unit; _.. > window_subject as 'a =
<obj>
However, the two classes of window_subject and window_observer are not mutually
recursive.

let window_observer = new window_observer;;
val window_observer : < draw : unit; _.. > window_observer = <obj>

window#add_observer window_observer;;
- : unit = ()

window#move 1;;
{Position = 1}
- : unit = ()

Chapter 6. Advanced examples with classes and modules 113

Classes window_observer and window_subject can still be extended by inheritance. For
instance, one may enrich the subject with new behaviors and refine the behavior of the ob-

server.

class ['observer] richer_window_subject =
object (self)

inherit ['observer] window_subject
val mutable size = 1
method resize x = size <- size + x; self#notify_observers Resize
val mutable top = false
method raise = top <- true; self#notify_observers Raise
method draw = Printf.printf "{Position = Jd; Size = Jd}\n" position size;
end;;
class ['al richer_window_subject :
object ('b)
constraint 'a = < notify : 'b -> event -> unit; .. >
val mutable observers : 'a list

val mutable position : int

val mutable size : int

val mutable top : bool

method add_observer : 'a -> unit
method draw : unit

method identity : int

method move : int -> unit

method notify observers : event -> unit
method raise : unit

method resize : int -> unit

end

class ['subject] richer_window_observer =

object
inherit ['subject] window_observer as super
method notify s e = if e <> Raise then s#raise; super#notify s e
end;;
class ['a] richer_window_observer :
object
constraint 'a = < draw : unit; raise : unit; .. >
method notify : 'a -> event -> unit
end

We can also create a different kind of observer:

class ['subject] trace_observer =

object

inherit ['subject, event] observer

method notify s e =

Printf.printf

"<Window %d <== %s>\n" s#identity (string_of_event e)
end;;

114

class ['a] trace_observer :

object
constraint 'a = < identity : int; .. >
method notify : 'a -> event -> unit
end

and attach several observers to the same object:

let window = new richer_window_subject;;
val window :
< notify : 'a -> event -> unit; _.. > richer_window_subject as 'a = <obj>

window#add_observer (new richer_window_observer);;
- : unit = ()

window#add_observer (new trace_observer);;
- : unit = ()

window#move 1; window#resize 2;;
<Window 1 <== Move>

<Window 1 <== Raise>

{Position = 1; Size 1}

{Position = 1; Size = 1}

<Window 1 <== Resize>

<Window 1 <== Raise>

{Position = 1; Size = 3}

{Position = 1; Size = 3}

- : unit = O

Part 11

The OCaml language

115

Chapter 7

The OCaml language

Foreword

This document is intended as a reference manual for the OCaml language. It lists the language
constructs, and gives their precise syntax and informal semantics. It is by no means a tutorial
introduction to the language: there is not a single example. A good working knowledge of OCaml
is assumed.

No attempt has been made at mathematical rigor: words are employed with their intuitive
meaning, without further definition. As a consequence, the typing rules have been left out, by lack
of the mathematical framework required to express them, while they are definitely part of a full
formal definition of the language.

Notations

The syntax of the language is given in BNF-like notation. Terminal symbols are set in typewriter
font (1ike this). Non-terminal symbols are set in italic font (like that). Square brackets [...]
denote optional components. Curly brackets {...} denotes zero, one or several repetitions of
the enclosed components. Curly brackets with a trailing plus sign {...}" denote one or several
repetitions of the enclosed components. Parentheses (. ..) denote grouping.

7.1 Lexical conventions

Blanks

The following characters are considered as blanks: space, horizontal tabulation, carriage return,
line feed and form feed. Blanks are ignored, but they separate adjacent identifiers, literals and
keywords that would otherwise be confused as one single identifier, literal or keyword.

Comments

Comments are introduced by the two characters (%, with no intervening blanks, and terminated
by the characters *), with no intervening blanks. Comments are treated as blank characters.
Comments do not occur inside string or character literals. Nested comments are handled correctly.

117

118

Identifiers
ident == (letter | _) {letter |0...9| _| "'}
capitalized-ident ::= (A...Z) {letter |0...9|_|"'}
lowercase-ident = (a...z | _) {letter] 0...9|_|"}
letter == A...Z]a...z

Identifiers are sequences of letters, digits, _ (the underscore character), and ' (the single quote),
starting with a letter or an underscore. Letters contain at least the 52 lowercase and uppercase
letters from the ASCII set. The current implementation also recognizes as letters some characters
from the ISO 8859-1 set (characters 192-214 and 216-222 as uppercase letters; characters 223-246
and 248-255 as lowercase letters). This feature is deprecated and should be avoided for future
compatibility.

All characters in an identifier are meaningful. The current implementation accepts identifiers
up to 16000000 characters in length.

In many places, OCaml makes a distinction between capitalized identifiers and identifiers that
begin with a lowercase letter. The underscore character is considered a lowercase letter for this
purpose.

Integer literals

](0...9){0...9]|_}
“OXWX)E ..9|A...Fla...£){0...9|A...F|a...t]_}

0o]00)(0...7){0...7] _}
] (0b|0B)(0...1){0...1|_}

integer-literal

-
-
-
-

int32-literal ::= integer-literal 1
int64-literal ::= integer-literal L
nativeint-literal ::= integer-literal n

An integer literal is a sequence of one or more digits, optionally preceded by a minus sign. By
default, integer literals are in decimal (radix 10). The following prefixes select a different radix:

Prefix | Radix

0x, 0X | hexadecimal (radix 16)
0o, 00 | octal (radix 8)

Ob, OB | binary (radix 2)

(The initial 0 is the digit zero; the 0 for octal is the letter O.) An integer literal can be followed
by one of the letters 1, L or n to indicate that this integer has type int32, int64 or nativeint
respectively, instead of the default type int for integer literals. The interpretation of integer literals
that fall outside the range of representable integer values is undefined.

For convenience and readability, underscore characters (_) are accepted (and ignored) within
integer literals.

Chapter 7. The OCaml language 119

Floating-point literals

float-literal = [-] (0...9){0...9|_}[. {0...9| _}[(e|E)[+|-] (0...9){0...9] _}]
| [-] (0x|0X) (0...9|A...F|a...£){0...9[A...F|a...£ | _}

[L{0...9|A...F|la...£| M [(p|P)[+]|-](0...9){0...9] }]

Floating-point decimal literals consist in an integer part, a fractional part and an exponent
part. The integer part is a sequence of one or more digits, optionally preceded by a minus sign.
The fractional part is a decimal point followed by zero, one or more digits. The exponent part
is the character e or E followed by an optional + or - sign, followed by one or more digits. It is
interpreted as a power of 10. The fractional part or the exponent part can be omitted but not
both, to avoid ambiguity with integer literals. The interpretation of floating-point literals that fall
outside the range of representable floating-point values is undefined.

Floating-point hexadecimal literals are denoted with the Ox or 0X prefix. The syntax is similar
to that of floating-point decimal literals, with the following differences. The integer part and the
fractional part use hexadecimal digits. The exponent part starts with the character p or P. It is
written in decimal and interpreted as a power of 2.

For convenience and readability, underscore characters (_) are accepted (and ignored) within
floating-point literals.

Character literals

char-literal ::= ' regular-char '
' escape-sequence '

escape-sequence = \(\|"|"'|n|t]|b]|r]|space)
| \(0...9)(0...9)(0...9)

| \x(0...9]A...F|la...£)(0...9|A...F|a...f)
|

\o (0...3)(0...7) (0...7)

Character literals are delimited by ' (single quote) characters. The two single quotes enclose
either one character different from ' and \, or one of the escape sequences below:

Sequence | Character denoted

\\ backslash (\)

\" double quote (")

\! single quote (")

\n linefeed (LF)

\r carriage return (CR)

\t horizontal tabulation (TAB)

\b backspace (BS)

\space space (SPC)

\ddd the character with ASCII code ddd in decimal
\xhh the character with ASCII code hh in hexadecimal
\oooo the character with ASCII code 000 in octal

120

String literals

string-literal ::= " {string-character} "
{ quoted-string-id | {any-char} | quoted-string-id }

{a...z| _}

quoted-string-id

string-character ::= regular-string-char
| escape-sequence
| \u{{0...9|A...Fla...£}7}
|

\ newline {space | tab}

String literals are delimited by " (double quote) characters. The two double quotes enclose a
sequence of either characters different from " and \, or escape sequences from the table given above
for character literals, or a Unicode character escape sequence.

A Unicode character escape sequence is substituted by the UTF-8 encoding of the specified
Unicode scalar value. The Unicode scalar value, an integer in the ranges 0x0000...0xD7FF or
0xE000...0x10FFFF, is defined using 1 to 6 hexadecimal digits; leading zeros are allowed.

To allow splitting long string literals across lines, the sequence \newline spaces-or-tabs (a back-
slash at the end of a line followed by any number of spaces and horizontal tabulations at the
beginning of the next line) is ignored inside string literals.

Quoted string literals provide an alternative lexical syntax for string literals. They are useful to
represent strings of arbitrary content without escaping. Quoted strings are delimited by a matching
pair of { quoted-string-id | and | quoted-string-id } with the same quoted-string-id on both sides.
Quoted strings do not interpret any character in a special way but requires that the sequence
| quoted-string-id } does not occur in the string itself. The identifier quoted-string-id is a (possibly
empty) sequence of lowercase letters and underscores that can be freely chosen to avoid such issue
(e.g. {lhellol}, {ext|hello {|world|}|ext}, ...).

The current implementation places practically no restrictions on the length of string literals.

Naming labels

To avoid ambiguities, naming labels in expressions cannot just be defined syntactically as the
sequence of the three tokens ~, ident and :, and have to be defined at the lexical level.

label-name ::= lowercase-ident
label ::= ~ label-name :
optlabel ::= 7 label-name :

Naming labels come in two flavours: label for normal arguments and optlabel for optional ones.
They are simply distinguished by their first character, either ~ or 7.

Despite label and optlabel being lexical entities in expressions, their expansions ~ label-name :
and ? label-name : will be used in grammars, for the sake of readability. Note also that inside
type expressions, this expansion can be taken literally, i.e. there are really 3 tokens, with optional
blanks between them.

Chapter 7. The OCaml language 121

Prefix and infix symbols

infix-symbol ::= (core-operator-char | % | <) {operator-char}
| # {operator-char}*

prefix-symbol ::= ! {operator-char}
| (7| ~) {operator-char}™
operator-char = ~| | 7| core-operator-char | % | <|: | .
core-operator-char == $|&|*|+|-|/|=|>]|@|" ||

See also the following language extensions: extension operators, extended indexing operators, and
binding operators.

Sequences of “operator characters”, such as <=> or !!, are read as a single token from the
infix-symbol or prefix-symbol class. These symbols are parsed as prefix and infix operators inside
expressions, but otherwise behave like normal identifiers.

Keywords

The identifiers below are reserved as keywords, and cannot be employed otherwise:

and as assert asr begin class
constraint do done downto else end
exception external false for fun function
functor if in include inherit initializer
land lazy let lor 1sl lsr

1xor match method mod module mutable

new nonrec object of open or

private rec sig struct then to

true try type val virtual when

while with

The following character sequences are also keywords:

= # & && ' () * + , -
-. -> . . it : MM = > 5 M
< <- = > >] >} ? [[< > [l
]) { {< I 1] I } ~

Note that the following identifiers are keywords of the Camlp4 extensions and should be avoided
for compatibility reasons.

parser value $ $$ $: <: << >> 77

Ambiguities

Lexical ambiguities are resolved according to the “longest match” rule: when a character sequence
can be decomposed into two tokens in several different ways, the decomposition retained is the one
with the longest first token.

122

Line number directives

linenum-directive = #{0...9}"
| #{0...9}" " {string-character} "

Preprocessors that generate OCaml source code can insert line number directives in their output
so that error messages produced by the compiler contain line numbers and file names referring to
the source file before preprocessing, instead of after preprocessing. A line number directive is
composed of a # (sharp sign), followed by a positive integer (the source line number), optionally
followed by a character string (the source file name). Line number directives are treated as blanks
during lexical analysis.

7.2 Values

This section describes the kinds of values that are manipulated by OCaml programs.

7.2.1 Base values
Integer numbers

Integer values are integer numbers from —230 to 230 — 1, that is —1073741824 to 1073741823. The
implementation may support a wider range of integer values: on 64-bit platforms, the current
implementation supports integers ranging from —262 to 262 — 1.

Floating-point numbers

Floating-point values are numbers in floating-point representation. The current implementation
uses double-precision floating-point numbers conforming to the IEEE 754 standard, with 53 bits of
mantissa and an exponent ranging from —1022 to 1023.

Characters

Character values are represented as 8-bit integers between 0 and 255. Character codes between
0 and 127 are interpreted following the ASCII standard. The current implementation interprets
character codes between 128 and 255 following the ISO 8859-1 standard.

Character strings

String values are finite sequences of characters. The current implementation supports strings con-
taining up to 224 — 5 characters (16777211 characters); on 64-bit platforms, the limit is 2°7 — 9.
7.2.2 Tuples

Tuples of values are written (vy , ..., v,), standing for the n-tuple of values v| to v,. The current
implementation supports tuple of up to 222 — 1 elements (4194303 elements).

Chapter 7. The OCaml language 123

7.2.3 Records

Record values are labeled tuples of values. The record value written { field; =vy ;... ; field, =v, }

associates the value v; to the record field field;, for i = 1...n. The current implementation supports
records with up to 222 — 1 fields (4194303 fields).

7.2.4 Arrays

Arrays are finite, variable-sized sequences of values of the same type. The current implementation
supports arrays containing up to 2?2 — 1 elements (4194303 elements) unless the elements are
floating-point numbers (2097151 elements in this case); on 64-bit platforms, the limit is 2°4 — 1 for
all arrays.

7.2.5 Variant values

Variant values are either a constant constructor, or a non-constant constructor applied to a number
of values. The former case is written constr; the latter case is written constr (vy ,... ,v,), where
the v; are said to be the arguments of the non-constant constructor constr. The parentheses may
be omitted if there is only one argument.

The following constants are treated like built-in constant constructors:

Constant | Constructor
false the boolean false
true the boolean true
O the “unit” value
(] the empty list

The current implementation limits each variant type to have at most 246 non-constant con-
structors and 23° — 1 constant constructors.
7.2.6 Polymorphic variants

Polymorphic variants are an alternate form of variant values, not belonging explicitly to a predefined
variant type, and following specific typing rules. They can be either constant, written ~ tag-name,
or non-constant, written ~ tag-name (v).

7.2.7 Functions

Functional values are mappings from values to values.

7.2.8 Objects

Objects are composed of a hidden internal state which is a record of instance variables, and a set
of methods for accessing and modifying these variables. The structure of an object is described by
the toplevel class that created it.

124

7.3 Names

Identifiers are used to give names to several classes of language objects and refer to these objects
by name later:

 value names (syntactic class value-name),
« value constructors and exception constructors (class constr-name),
o labels (label-name, defined in section 7.1),
o polymorphic variant tags (tag-name),
 type constructors (typeconstr-name),

o record fields (field-name),

o class names (class-name),

o method names (method-name),

o instance variable names (inst-var-name),
o module names (module-name),

o module type names (modtype-name).

These eleven name spaces are distinguished both by the context and by the capitalization of the
identifier: whether the first letter of the identifier is in lowercase (written lowercase-ident below)
or in uppercase (written capitalized-ident). Underscore is considered a lowercase letter for this
purpose.

Chapter 7. The OCaml language

Naming objects

value-name

operator-name

infix-op

constr-name
tag-name
typeconstr-name
field-name
module-name
modtype-name
class-name
inst-var-name

method-name

lowercase-ident
(operator-name)

prefix-symbol | infix-op

infix-symbol

*[+[-f-f=]t=]<[>]or|Il[&]&&]:=
mod | land | lor | 1xor | 1sl | 1sr | asr

capitalized-ident
capitalized-ident
lowercase-ident
lowercase-ident
capitalized-ident
ident
lowercase-ident
lowercase-ident

lowercase-ident

See also the following language extension: extended indexing operators.

As shown above, prefix and infix symbols as well as some keywords can be used as value names,
provided they are written between parentheses. The capitalization rules are summarized in the
table below.

Name space Case of first letter
Values lowercase
Constructors uppercase
Labels lowercase
Polymorphic variant tags | uppercase
Exceptions uppercase
Type constructors lowercase
Record fields lowercase
Classes lowercase
Instance variables lowercase
Methods lowercase
Modules uppercase
Module types any

Note on polymorphic variant tags: the current implementation accepts lowercase variant tags in
addition to capitalized variant tags, but we suggest you avoid lowercase variant tags for portability
and compatibility with future OCaml versions.

126

Referring to named objects

value-path ::= [module-path .| value-name
constr = [module-path .] constr-name
typeconstr ::= [extended-module-path .] typeconstr-name

extended-module-path .] modtype-name

[

[

[
field ::= [module-path .| field-name

modtype-path = |

[

[

class-path ::= [module-path .| class-name
classtype-path = [extended-module-path .] class-name
module-path := module-name {. module-name}
extended-module-path := extended-module-name {. extended-module-name}
extended-module-name ::= module-name {(extended-module-path)}

A named object can be referred to either by its name (following the usual static scoping rules
for names) or by an access path prefix . name, where prefix designates a module and name is
the name of an object defined in that module. The first component of the path, prefix, is either
a simple module name or an access path name; . names ..., in case the defining module is itself
nested inside other modules. For referring to type constructors, module types, or class types, the
prefix can also contain simple functor applications (as in the syntactic class extended-module-path
above) in case the defining module is the result of a functor application.

Label names, tag names, method names and instance variable names need not be qualified: the
former three are global labels, while the latter are local to a class.

Chapter 7. The OCaml language 127

7.4 Type expressions

typexpr = ' ident

(typexpr)

[[?] label-name :] typexpr => typexpr
typexpr {* typexpr}™

typeconstr

typexpr typeconstr

(typexpr {, typexpr}) typeconstr
typexpr as ' ident
polymorphic-variant-type

<[..]>

< method-type {; method-type} [; | ; ..] >
class-path

typexpr # class-path

(typexpr {, typexpr}) # class-path

poly-typexpr ::= typexpr
| {'ident}* . typexpr
method-type ::= method-name : poly-typexpr
See also the following language extensions: first-class modules, attributes and extension nodes.

The table below shows the relative precedences and associativity of operators and non-closed
type constructions. The constructions with higher precedences come first.

Operator Associativity
Type constructor application | —

_

* _

-> right

as -

Type expressions denote types in definitions of data types as well as in type constraints over
patterns and expressions.

Type variables

The type expression ' ident stands for the type variable named ident. The type expression _ stands
for either an anonymous type variable or anonymous type parameters. In data type definitions, type
variables are names for the data type parameters. In type constraints, they represent unspecified
types that can be instantiated by any type to satisfy the type constraint. In general the scope of a
named type variable is the whole top-level phrase where it appears, and it can only be generalized
when leaving this scope. Anonymous variables have no such restriction. In the following cases,
the scope of named type variables is restricted to the type expression where they appear: 1) for
universal (explicitly polymorphic) type variables; 2) for type variables that only appear in public
method specifications (as those variables will be made universal, as described in section 7.9.1); 3)

128

for variables used as aliases, when the type they are aliased to would be invalid in the scope of the
enclosing definition (7.e. when it contains free universal type variables, or locally defined types.)

Parenthesized types

The type expression (typexpr) denotes the same type as typexpr.

Function types

The type expression typexpr,; —> typexpr, denotes the type of functions mapping arguments of
type typexpr; to results of type typexprs.

label-name : typexpr; —> typexpr, denotes the same function type, but the argument is labeled
label.

? label-name : typexpr, —> typexpry denotes the type of functions mapping an optional labeled
argument of type typexpr; to results of type typexpr,. That is, the physical type of the function
will be typexpr; option —> typexprs.

Tuple types

The type expression typexpr; *...* typexpr, denotes the type of tuples whose elements belong to
types typexpry,...typexpr, respectively.

Constructed types

Type constructors with no parameter, as in typeconstr, are type expressions.

The type expression typexpr typeconstr, where typeconstr is a type constructor with one pa-
rameter, denotes the application of the unary type constructor typeconstr to the type typexpr.

The type expression (typexpry, ..., typexpr,) typeconstr, where typeconstr is a type construc-
tor with n parameters, denotes the application of the n-ary type constructor typeconstr to the
types typexpr; through typexpr,,.

In the type expression _ typeconstr, the anonymous type expression _ stands in for anony-
mous type parameters and is equivalent to (_,...,_) with as many repetitions of _ as the arity of
typeconstr.

Aliased and recursive types

The type expression typexpr as ' ident denotes the same type as typexpr, and also binds the
type variable ident to type typexpr both in typexpr and in other types. In general the scope of
an alias is the same as for a named type variable, and covers the whole enclosing definition. If
the type variable ident actually occurs in typexpr, a recursive type is created. Recursive types for
which there exists a recursive path that does not contain an object or polymorphic variant type
constructor are rejected, except when the -rectypes mode is selected.

If ' ident denotes an explicit polymorphic variable, and typexpr denotes either an object or
polymorphic variant type, the row variable of typexpr is captured by ' ident, and quantified upon.

Chapter 7. The OCaml language 129

Polymorphic variant types

[> [tag-spec| {| tag-spec}]

polymorphic-variant-type ::= [tag-spec-first {| tag-spec}]
|
| [<[I] tag-spec-full {| tag-spec-full} [> {* tag-name}*]]

tag-spec-first = " tag-name [of typexpr]
| [typexpr] | tag-spec
tag-spec = " tag-name [of typexpr]
| typexpr
tag-spec-full = =~ tag-name [of [&] typexpr {& typexpr}]
| typexpr

Polymorphic variant types describe the values a polymorphic variant may take.

The first case is an exact variant type: all possible tags are known, with their associated types,
and they can all be present. Its structure is fully known.

The second case is an open variant type, describing a polymorphic variant value: it gives the
list of all tags the value could take, with their associated types. This type is still compatible with a
variant type containing more tags. A special case is the unknown type, which does not define any
tag, and is compatible with any variant type.

The third case is a closed variant type. It gives information about all the possible tags and
their associated types, and which tags are known to potentially appear in values. The exact variant
type (first case) is just an abbreviation for a closed variant type where all possible tags are also
potentially present.

In all three cases, tags may be either specified directly in the ~ tag-name [of typexpr] form,
or indirectly through a type expression, which must expand to an exact variant type, whose tag
specifications are inserted in its place.

Full specifications of variant tags are only used for non-exact closed types. They can be under-
stood as a conjunctive type for the argument: it is intended to have all the types enumerated in
the specification.

Such conjunctive constraints may be unsatisfiable. In such a case the corresponding tag may
not be used in a value of this type. This does not mean that the whole type is not valid: one can
still use other available tags. Conjunctive constraints are mainly intended as output from the type
checker. When they are used in source programs, unsolvable constraints may cause early failures.

Object types

An object type < [method-type {; method-type}] > is a record of method types.

Each method may have an explicit polymorphic type: {' ident}™ . typexpr. Explicit poly-
morphic variables have a local scope, and an explicit polymorphic type can only be unified to an
equivalent one, where only the order and names of polymorphic variables may change.

The type < {method-type ;} .. > is the type of an object whose method names and types
are described by method-typey, ..., method-type,,, and possibly some other methods represented
by the ellipsis. This ellipsis actually is a special kind of type variable (called row variable in the
literature) that stands for any number of extra method types.

130

#-types

The type # class-path is a special kind of abbreviation. This abbreviation unifies with the type of
any object belonging to a subclass of class class-path. It is handled in a special way as it usually
hides a type variable (an ellipsis, representing the methods that may be added in a subclass).
In particular, it vanishes when the ellipsis gets instantiated. Each type expression # class-path
defines a new type variable, so type # class-path —> # class-path is usually not the same as type
(# class-path as ' ident) -> ' ident.

Use of #-types to abbreviate polymorphic variant types is deprecated. If ¢ is an exact variant
type then #t translates to [<t], and #t [> ~ tag, ... ~ tag,] translates to [<t >~ tag,... ~ tagy]

Variant and record types

There are no type expressions describing (defined) variant types nor record types, since those are
always named, i.e. defined before use and referred to by name. Type definitions are described in
section 7.8.1.

7.5 Constants

constant := integer-literal
| int32-literal
| int64-literal
| nativeint-literal
| float-literal
| char-literal
| string-literal
| constr
| false
| true
| O

| begin end

| []

| O]

|

° tag-name

See also the following language extension: extension literals.

The syntactic class of constants comprises literals from the four base types (integers, floating-
point numbers, characters, character strings), the integer variants, and constant constructors from
both normal and polymorphic variants, as well as the special constants false, true, (), [], and
[l 1], which behave like constant constructors, and begin end, which is equivalent to ().

Chapter 7. The OCaml language 131

7.6 Patterns

pattern ::= value-name
|-
| constant
| pattern as value-name
| (pattern)
| (pattern : typexpr)
| pattern | pattern
| constr pattern
| ° tag-name pattern
| # typeconstr
| pattern {, pattern}™
| { field [: typexpr]| [= pattern] {; field [: typexpr] [= pattern]} [; _] [;] }
| [pattern {; pattern} [;]]
| pattern :: pattern
| [l pattern {; pattern} [;] |]
| char-literal .. char-literal
| lazy pattern
| exception pattern
| module-path . (pattern)
| module-path . [pattern]
| module-path . [| pattern |]
| module-path .{ pattern }

See also the following language extensions: first-class modules, attributes and extension nodes.
The table below shows the relative precedences and associativity of operators and non-closed
pattern constructions. The constructions with higher precedences come first.

Operator Associativity

lazy (see section 7.6.1) -
Constructor application, Tag application | right
right
| left

as -

Patterns are templates that allow selecting data structures of a given shape, and binding iden-
tifiers to components of the data structure. This selection operation is called pattern matching;
its outcome is either “this value does not match this pattern”, or “this value matches this pattern,
resulting in the following bindings of names to values”.

Variable patterns

A pattern that consists in a value name matches any value, binding the name to the value. The
pattern _ also matches any value, but does not bind any name.

132

Patterns are linear: a variable cannot be bound several times by a given pattern. In particular,
there is no way to test for equality between two parts of a data structure using only a pattern (but
when guards can be used for this purpose).

Constant patterns

A pattern consisting in a constant matches the values that are equal to this constant.

Alias patterns

The pattern pattern, as value-name matches the same values as pattern;. If the matching against
pattern; is successful, the name value-name is bound to the matched value, in addition to the
bindings performed by the matching against pattern,.

Parenthesized patterns

The pattern (pattern;) matches the same values as pattern;. A type constraint can appear in a
parenthesized pattern, as in (pattern; : typexpr). This constraint forces the type of pattern; to
be compatible with typexpr.

“Or” patterns

The pattern pattern; | pattern, represents the logical “or” of the two patterns pattern; and
patterny,. A value matches pattern,; | pattern, if it matches pattern; or pattern,. The two
sub-patterns pattern; and pattern, must bind exactly the same identifiers to values having the
same types. Matching is performed from left to right. More precisely, in case some value v
matches pattern; | pattern,, the bindings performed are those of pattern; when v matches pattern;, .
Otherwise, value v matches pattern, whose bindings are performed.

Variant patterns

The pattern constr (pattern; , ..., pattern,) matches all variants whose constructor is equal to
constr, and whose arguments match pattern, ... pattern,. It is a type error if n is not the number
of arguments expected by the constructor.

The pattern constr _ matches all variants whose constructor is constr.

The pattern pattern; :: pattern, matches non-empty lists whose heads match pattern;, and
whose tails match patterns,.

The pattern [pattern; ;...; pattern,] matches lists of length n whose elements match
pattern; ... pattern,, respectively. This pattern behaves like pattern; :: ... :: pattern, :: [J.

Polymorphic variant patterns

The pattern ~ tag-name pattern; matches all polymorphic variants whose tag is equal to tag-name,
and whose argument matches pattern;.

Chapter 7. The OCaml language 133

Polymorphic variant abbreviation patterns

If the type [('a,'b,...)] typeconstr = [° tag-name; typexpr; |...| ~ tag-name,, typexpr,,]
is defined, then the pattern # typeconstr is a shorthand for the following or-pattern:
(~ tag-name; (_ : typexpry;) |...| " tag-name, (_ : typexpr,)). It matches all values of type

[< typeconstr].

Tuple patterns

The pattern pattern; , ..., pattern, matches n-tuples whose components match the patterns
pattern; through pattern,,. That is, the pattern matches the tuple values (v1,...,v,) such that
pattern, matches v; for i =1,...,n.

Record patterns

The pattern { field; [= pattern,] ; ... ; field, [= pattern,] } matches records that define at least the
fields field; through field,,, and such that the value associated to field; matches the pattern pattern,,
for i = 1,...,n. A single identifier field, stands for field; = field;, and a single qualified identifier
module-path . field;, stands for module-path . field, = field;. The record value can define more
fields than field; ... field,; the values associated to these extra fields are not taken into account for
matching. Optionally, a record pattern can be terminated by ; _ to convey the fact that not all fields
of the record type are listed in the record pattern and that it is intentional. Optional type constraints
can be added field by field with { field; : typexpr; = pattern; ; ... ; field, : typexpr, = pattern, }
to force the type of fieldj, to be compatible with typexpr;.

Array patterns

The pattern [| pattern; ;...; pattern, |] matches arrays of length n such that the i-th array
element matches the pattern pattern,, for i =1,...,n.

Range patterns

The pattern 'c ' .. 'd ' is a shorthand for the pattern

e | 'Cl'I'CQ' II lcnl | 'd !
where c1, ¢, ..., ¢, are the characters that occur between ¢ and d in the ASCII character set. For
instance, the pattern '0'..'9"' matches all characters that are digits.

7.6.1 Lazy patterns
(Introduced in Objective Caml 3.11)

pattern =

The pattern lazy pattern matches a value v of type Lazy.t, provided pattern matches the
result of forcing v with Lazy.force. A successful match of a pattern containing lazy sub-patterns

134

forces the corresponding parts of the value being matched, even those that imply no test such
as lazy value-name or lazy _. Matching a value with a pattern-matching where some patterns
contain lazy sub-patterns may imply forcing parts of the value, even when the pattern selected in
the end has no lazy sub-pattern.

For more information, see the description of module Lazy in the standard library (module
Lazy[25.24]).

Exception patterns

(Introduced in OCaml 4.02)

A new form of exception pattern, exception pattern, is allowed only as a toplevel pattern or
inside a toplevel or-pattern under a match...with pattern-matching (other occurrences are rejected
by the type-checker).

Cases with such a toplevel pattern are called “exception cases”, as opposed to regular “value
cases”. Exception cases are applied when the evaluation of the matched expression raises an excep-
tion. The exception value is then matched against all the exception cases and re-raised if none of
them accept the exception (as with a try...with block). Since the bodies of all exception and value
cases are outside the scope of the exception handler, they are all considered to be in tail-position:
if the match...with block itself is in tail position in the current function, any function call in tail
position in one of the case bodies results in an actual tail call.

A pattern match must contain at least one value case. It is an error if all cases are exceptions,
because there would be no code to handle the return of a value.

Local opens for patterns

(Introduced in OCaml 4.04)

For patterns, local opens are limited to the module-path .(pattern) construction. This
construction locally opens the module referred to by the module path module-path in the scope of
the pattern pattern.

When the body of a local open pattern is delimited by [], [l |], or { }, the parentheses can
be omitted. For example, module-path . [pattern] is equivalent to module-path . ([pattern]),
and module-path . [| pattern |] is equivalent to module-path . ([| pattern 11).

Chapter 7. The OCaml language 135

136

7.7 Expressions

expr

value-path

constant

(expr)

begin expr end

(expr : typexpr)

expr {, expr}™t

constr expr

© tag-name expr

expr :: expr

[expr {; expr} [;]]

[l expr {; expr} [;] 1]

{ field [: typexpr| [= expr| {; field [: typexpr] [= expr]} [;] }
{ expr with field [: typexpr] [= expr] {; field [: typexpr] [= expr|} [;] }
expr {argument}™*

prefix-symbol expr

- expr

-. expr

expr infix-op expr

expr . field

expr . field <- expr

expr . (expr)

expr . (expr) <- expr

expr . [expr]

expr . [expr] <- expr

if expr then expr [else expr]

while expr do expr done

for value-name = expr (to | downto) expr do expr done
expr ; expr

match expr with pattern-matching

function pattern-matching

fun {parameter}t [: typexpr] -> expr

try expr with pattern-matching

let [rec] let-binding {and let-binding} in expr

let exception constr-decl in expr

new class-path

object class-body end

expr # method-name

inst-var-name

inst-var-name <- expr

(expr :> typexpr)

(expr : typexpr :> typexpr)

{< [inst-var-name [= expr] {; inst-var-name [= expr|} [;]] >}
assert expr

lazy expr

let module module-name { (module-name : module-type)} [: module-type]
= module-expr in expr

let open module-path in expr

module-path . (expr)

module-path . [expr]

Chapter 7. The OCaml language 137

argument

pattern-matching ::=

let-binding

parameter

expr
~ label-name
~ label-name : expr
? label-name
? label-name : expr

[|] pattern [when expr| -> expr {| pattern [when expr| -> expr}

pattern = expr
value-name {parameter} [: typexpr] [:> typexpr]| = expr
value-name : poly-typexpr = expr

pattern

~ label-name

~ (label-name [: typexpr])

~ label-name : pattern

? label-name

? (label-name |[: typexpr]| [= expr])

? label-name : pattern

? label-name : (pattern [: typexpr] [= expr])

See also the following language extensions: first-class modules, overriding in open statements,
syntax for Bigarray access, attributes, extension nodes and extended indexing operators.

7.7.1 Precedence and associativity

The table below shows the relative precedences and associativity of operators and non-closed con-
structions. The constructions with higher precedence come first. For infix and prefix symbols, we
write “*...” to mean “any symbol starting with *”.

138

Construction or operator Associativity
prefix-symbol —

.C [.{ (see section 8.11) —
#... left
function application, constructor application, tag application, assert, lazy | left
- -. (prefix) -
Xk, 1sl 1lsr asr right
x. .. /... %... mod land lor 1lxor left

- left

3N right
Q... T right
=... <... > cee &L $... 1= left
& && right
or || right
<- = right
if -
; right
let match fun function try -

7.7.2 Basic expressions
Constants

An expression consisting in a constant evaluates to this constant.

Value paths

An expression consisting in an access path evaluates to the value bound to this path in the cur-
rent evaluation environment. The path can be either a value name or an access path to a value
component of a module.

Parenthesized expressions

The expressions (expr) and begin expr end have the same value as expr. The two constructs are
semantically equivalent, but it is good style to use begin...end inside control structures:

if ... then begin ... ; ... end else begin ... ; ... end

and (...) for the other grouping situations.

Parenthesized expressions can contain a type constraint, as in (expr : typexpr). This
constraint forces the type of expr to be compatible with typexpr.

Parenthesized expressions can also contain coercions (expr [: typexpr| :> typexpr) (see
subsection 7.7.8 below).

Chapter 7. The OCaml language 139

Function application

Function application is denoted by juxtaposition of (possibly labeled) expressions. The expression
expr argument, . ..argument, evaluates the expression expr and those appearing in argument; to
argument,,. The expression expr must evaluate to a functional value f, which is then applied to
the values of argument,, ..., argument,,.

The order in which the expressions expr, argument,,...,argument,, are evaluated is not spec-
ified.

Arguments and parameters are matched according to their respective labels. Argument order
is irrelevant, except among arguments with the same label, or no label.

If a parameter is specified as optional (label prefixed by ?) in the type of expr, the corresponding
argument will be automatically wrapped with the constructor Some, except if the argument itself
is also prefixed by 7, in which case it is passed as is. If a non-labeled argument is passed, and its
corresponding parameter is preceded by one or several optional parameters, then these parameters
are defaulted, i.e. the value None will be passed for them. All other missing parameters (without
corresponding argument), both optional and non-optional, will be kept, and the result of the
function will still be a function of these missing parameters to the body of f.

As a special case, if the function has a known arity, all the arguments are unlabeled, and their
number matches the number of non-optional parameters, then labels are ignored and non-optional
parameters are matched in their definition order. Optional arguments are defaulted.

In all cases but exact match of order and labels, without optional parameters, the function
type should be known at the application point. This can be ensured by adding a type constraint.
Principality of the derivation can be checked in the -principal mode.

Function definition

Two syntactic forms are provided to define functions. The first form is introduced by the keyword
function:

function pattern; -> expr
[

| pattern, -> expr,

This expression evaluates to a functional value with one argument. When this function is applied
to a value v, this value is matched against each pattern pattern; to pattern,. If one of these
matchings succeeds, that is, if the value v matches the pattern pattern; for some 4, then the
expression expr; associated to the selected pattern is evaluated, and its value becomes the value
of the function application. The evaluation of expr; takes place in an environment enriched by the
bindings performed during the matching.

If several patterns match the argument v, the one that occurs first in the function definition is
selected. If none of the patterns matches the argument, the exception Match_failure is raised.

The other form of function definition is introduced by the keyword fun:
fun parameter, ... parameter, —> expr
This expression is equivalent to:

fun parameter,; ->...fun parameter, —-> expr

140

An optional type constraint typexpr can be added before -> to enforce the type of the result
to be compatible with the constraint typexpr:

fun parameter; ... parameter,, : typexpr —> expr
is equivalent to
fun parameter; =>...fun parameter, -> (expr : typexpr)
Beware of the small syntactic difference between a type constraint on the last parameter
fun parameter, ... (parameter, : typexpr) -> expr
and one on the result
fun parameter, ... parameter,, : typexpr —-> expr

The parameter patterns ~ lab and ~(lab [: typ]) are shorthands for respectively ~ lab : lab
and ~ lab : (lab [: typ]), and similarly for their optional counterparts.
A function of the form fun ? lab : (pattern = expry) -> expr is equivalent to

fun 7 lab : ident -> let pattern = match ident with Some ident —> ident | None —> expr, in expr

where ident is a fresh variable, except that it is unspecified when expr, is evaluated.
After these two transformations, expressions are of the form

fun [label;| pattern; =>...fun [label,] pattern, -> expr
If we ignore labels, which will only be meaningful at function application, this is equivalent to
function pattern; ->...function pattern, -> expr

That is, the fun expression above evaluates to a curried function with n arguments: after applying
this function n times to the values vi...v,, the values will be matched in parallel against the
patterns pattern, ... pattern,,. If the matching succeeds, the function returns the value of expr in
an environment enriched by the bindings performed during the matchings. If the matching fails,
the exception Match_failure is raised.

Guards in pattern-matchings

The cases of a pattern matching (in the function, match and try constructs) can include guard
expressions, which are arbitrary boolean expressions that must evaluate to true for the match case
to be selected. Guards occur just before the -> token and are introduced by the when keyword:

function pattern; [when cond;] -> expr;
|

| pattern,, [when cond,] -> expr,

Matching proceeds as described before, except that if the value matches some pattern pattern;
which has a guard cond;, then the expression cond; is evaluated (in an environment enriched by
the bindings performed during matching). If cond; evaluates to true, then expr; is evaluated and
its value returned as the result of the matching, as usual. But if cond; evaluates to false, the
matching is resumed against the patterns following pattern,.

Chapter 7. The OCaml language 141

Local definitions

The let and let rec constructs bind value names locally. The construct
let pattern; = expr; and...and pattern, = expr, in expr

evaluates expr; ...expr, in some unspecified order and matches their values against the patterns
pattern, ... pattern,. If the matchings succeed, expr is evaluated in the environment enriched by
the bindings performed during matching, and the value of expr is returned as the value of the whole
let expression. If one of the matchings fails, the exception Match_failure is raised.

An alternate syntax is provided to bind variables to functional values: instead of writing

let ident = fun parameter; ... parameter,, —> expr
in a let expression, one may instead write

let ident parameter, ... parameter,, = expr

Recursive definitions of names are introduced by let rec:
let rec pattern; = expry and...and pattern, = expr,, in expr

The only difference with the 1let construct described above is that the bindings of names to values
performed by the pattern-matching are considered already performed when the expressions expr;
to expr,, are evaluated. That is, the expressions expr; to expr,, can reference identifiers that are
bound by one of the patterns pattern,, ..., pattern,, and expect them to have the same value as
in expr, the body of the let rec construct.

The recursive definition is guaranteed to behave as described above if the expressions expr; to
expr,, are function definitions (fun... or function...), and the patterns pattern, ... pattern,, are
just value names, as in:

no

let rec name; = fun...and...and name, = fun...in expr

This defines name ... name, as mutually recursive functions local to expr.

The behavior of other forms of let rec definitions is implementation-dependent. The current
implementation also supports a certain class of recursive definitions of non-functional values, as
explained in section 8.1.

7.7.3 Explicit polymorphic type annotations

(Introduced in OCaml 3.12)
Polymorphic type annotations in let-definitions behave in a way similar to polymorphic meth-
ods:

let patterny : typ;...typ,, . typeexpr = expr

These annotations explicitly require the defined value to be polymorphic, and allow one to use
this polymorphism in recursive occurrences (when using let rec). Note however that this is a
normal polymorphic type, unifiable with any instance of itself.

142

It is possible to define local exceptions in expressions: let exception constr-decl in expr . The
syntactic scope of the exception constructor is the inner expression, but nothing prevents exception
values created with this constructor from escaping this scope. Two executions of the definition
above result in two incompatible exception constructors (as for any exception definition). For
instance, the following assertion is true:

let gen () = let exception A in A
let () = assert(gen () <> gen ())

7.7.4 Control structures
Sequence

The expression expr; ; expr, evaluates expr; first, then expry, and returns the value of exprs.

Conditional

The expression if expr; then expry else exprs evaluates to the value of expry if expr; evaluates
to the boolean true, and to the value of exprs if expr, evaluates to the boolean false.
The else exprs part can be omitted, in which case it defaults to else ().

Case expression

The expression
match expr

with pattern; -> expr
|

| pattern, -> expr,

matches the value of expr against the patterns pattern; to pattern,. If the matching against
pattern, succeeds, the associated expression expr; is evaluated, and its value becomes the value of
the whole match expression. The evaluation of expr; takes place in an environment enriched by
the bindings performed during matching. If several patterns match the value of expr, the one that
occurs first in the match expression is selected. If none of the patterns match the value of expr,
the exception Match_failure is raised.

Boolean operators

The expression expr; && expry evaluates to true if both expr; and expr, evaluate to true; oth-
erwise, it evaluates to false. The first component, expr;, is evaluated first. The second com-
ponent, expry, is not evaluated if the first component evaluates to false. Hence, the expression
expry && expry behaves exactly as

if expr, then expry else false.

The expression expr; || expr, evaluates to true if one of the expressions expr; and expr,
evaluates to true; otherwise, it evaluates to false. The first component, expr;, is evaluated first.
The second component, expr,, is not evaluated if the first component evaluates to true. Hence,
the expression expr, || expry, behaves exactly as

Chapter 7. The OCaml language 143

if expr, then true else expr,.

The boolean operators & and or are deprecated synonyms for (respectively) && and | |.

Loops

The expression while expr; do expr, done repeatedly evaluates expr, while expr; evaluates to
true. The loop condition expr; is evaluated and tested at the beginning of each iteration. The
whole while...done expression evaluates to the unit value ().

The expression for name = expr; to expry do exprs done first evaluates the expressions expr;
and expry (the boundaries) into integer values n and p. Then, the loop body exprs is repeatedly
evaluated in an environment where name is successively bound to the values n, n+1, ..., p — 1,
p. The loop body is never evaluated if n > p.

The expression for name = expr; downto expry do exprs done evaluates similarly, except that
name is successively bound to the values n, n — 1, ..., p+ 1, p. The loop body is never evaluated
if n <p.

In both cases, the whole for expression evaluates to the unit value ().

Exception handling

The expression
try expr
with pattern; -> expr;
I

| pattern, -> expr,

evaluates the expression expr and returns its value if the evaluation of expr does not raise any
exception. If the evaluation of expr raises an exception, the exception value is matched against the
patterns pattern, to pattern,. If the matching against pattern; succeeds, the associated expression
expr; is evaluated, and its value becomes the value of the whole try expression. The evaluation of
expr; takes place in an environment enriched by the bindings performed during matching. If several
patterns match the value of expr, the one that occurs first in the try expression is selected. If none
of the patterns matches the value of expr, the exception value is raised again, thereby transparently
“passing through” the try construct.

7.7.5 Operations on data structures

Products

The expression expr; , ..., expr, evaluates to the n-tuple of the values of expressions expr; to
expr,,. The evaluation order of the subexpressions is not specified.

Variants

The expression constr expr evaluates to the unary variant value whose constructor is constr, and
whose argument is the value of expr. Similarly, the expression constr (expr; ,..., expr,)
evaluates to the n-ary variant value whose constructor is constr and whose arguments are the
values of expry, ..., expr,.

144

The expression constr (expry,...,expr,) evaluates to the variant value whose constructor is
constr, and whose arguments are the values of expr; ... expr,,.

For lists, some syntactic sugar is provided. The expression expr; :: expr, stands for the con-
structor (::) applied to the arguments (expr; , expry), and therefore evaluates to the list whose
head is the value of expr; and whose tail is the value of expry. The expression [expr; ; ... ; expr,,]
is equivalent to expry ::...:: expr, :: [], and therefore evaluates to the list whose elements are
the values of expr; to expr,,.

Polymorphic variants

The expression ~ tag-name expr evaluates to the polymorphic variant value whose tag is tag-name,
and whose argument is the value of expr.

Records
The expression { field; [= expr;| ;...; field, [= expr, 1} evaluates to the record value
{fieldy = wy;...; field, = v,} where v; is the value of expr; for i = 1,...,n. A single

identifier field; stands for field, = field;, and a qualified identifier module-path . fieldy
stands for module-path . field, = field,. The fields field; to field, must all belong to the
same record type; each field of this record type must appear exactly once in the record
expression, though they can appear in any order. The order in which expr; to expr,

are evaluated is not specified. Optional type constraints can be added after each field
{ field, : typexpr, = expry ;...; field, : typexpr, = expr, } to force the type of field; to be
compatible with typexpr;.

The expression { expr with field; [= expr;] ;...; field, [= expr,]| } builds a fresh record

with fields field; ... field, equal to expr;...expr,, and all other fields having the same value
as in the record expr. In other terms, it returns a shallow copy of the record expr, except
for the fields field; ...field,, which are initialized to expr;...expr,. As previously, single
identifier field; stands for field;, = field;, a qualified identifier module-path . field;, stands for
module-path . field; = field;, and it is possible to add an optional type constraint on each field
being updated with { expr with field; : typexpr; = expry ; ...; field, : typexpr, = expr,, }.

The expression expr; . field evaluates expr; to a record value, and returns the value associated
to field in this record value.

The expression expr; . field <~ expr, evaluates expr; to a record value, which is then modified
in-place by replacing the value associated to field in this record by the value of expr,. This operation
is permitted only if field has been declared mutable in the definition of the record type. The whole
expression expr; . field <- expr, evaluates to the unit value ().

Arrays

The expression [| expry ;...; expr, |] evaluates to a n-element array, whose elements are ini-
tialized with the values of expr; to expr,, respectively. The order in which these expressions are
evaluated is unspecified.

The expression expr; . (expr,) returns the value of element number expr, in the array denoted
by expr;. The first element has number 0; the last element has number n — 1, where n is the size
of the array. The exception Invalid_argument is raised if the access is out of bounds.

Chapter 7. The OCaml language 145

The expression expr; . (expry) <- exprs modifies in-place the array denoted by expr,, replac-
ing element number expry by the value of expr;. The exception Invalid_argument is raised if the
access is out of bounds. The value of the whole expression is ().

Strings

The expression expr; . [expry] returns the value of character number expry in the string denoted
by expr;. The first character has number 0; the last character has number n — 1, where n is the
length of the string. The exception Invalid_argument is raised if the access is out of bounds.

The expression expr; .[expry 1 <- expr; modifies in-place the string denoted by expr,
replacing character number expr, by the value of expr;. The exception Invalid_argument is
raised if the access is out of bounds. The value of the whole expression is ().

Note: this possibility is offered only for backward compatibility with older versions of OCaml
and will be removed in a future version. New code should use byte sequences and the Bytes.set
function.

7.7.6 Operators

Symbols from the class infix-symbol, as well as the keywords *, +, -, —=., =, = <, > or, ||, &, &&,
:=, mod, land, lor, 1xor, 1sl, 1sr, and asr can appear in infix position (between two expressions).
Symbols from the class prefix-symbol, as well as the keywords - and -. can appear in prefix position
(in front of an expression).

Infix and prefix symbols do not have a fixed meaning: they are simply interpreted as
applications of functions bound to the names corresponding to the symbols. The expression
prefix-symbol expr is interpreted as the application (prefix-symbol) expr. Similarly, the
expression expr; infix-symbol expr, is interpreted as the application (infix-symbol) expr, exprsy.

The table below lists the symbols defined in the initial environment and their initial meaning.
(See the description of the core library module Stdlib in chapter 24 for more details). Their
meaning may be changed at any time using let (infix-op) name; names =. ..

Note: the operators &&, ||, and ~- are handled specially and it is not advisable to change their
meaning.

The keywords - and -. can appear both as infix and prefix operators. When they appear as
prefix operators, they are interpreted respectively as the functions (~-) and (~-.).

146

Operator Initial meaning

+ Integer addition.

- (infix) Integer subtraction.

~= - (prefix) Integer negation.

* Integer multiplication.

/ Integer division. Raise Division_by_zero if second argument is zero.
mod Integer modulus. Raise Division_by_zero if second argument is zero.
land Bitwise logical “and” on integers.

lor Bitwise logical “or” on integers.

1lxor Bitwise logical “exclusive or” on integers.

1sl Bitwise logical shift left on integers.

lsr Bitwise logical shift right on integers.

asr Bitwise arithmetic shift right on integers.

+. Floating-point addition.

-. (infix) Floating-point subtraction.

~=. —. (prefix) | Floating-point negation.

*, Floating-point multiplication.

/. Floating-point division.

** Floating-point exponentiation.

@ List concatenation.

String concatenation.

! Dereferencing (return the current contents of a reference).

1= Reference assignment (update the reference given as first argument with
the value of the second argument).

= Structural equality test.

<> Structural inequality test.

== Physical equality test.

I= Physical inequality test.

< Test “less than”.

<= Test “less than or equal”.

> Test “greater than”.

>= Test “greater than or equal”.
&& & Boolean conjunction.

| or Boolean disjunction.

7.7.7 Objects
Object creation

When class-path evaluates to a class body, new class-path evaluates to a new object containing the
instance variables and methods of this class.

When class-path evaluates to a class function, new class-path evaluates to a function expecting
the same number of arguments and returning a new object of this class.

Chapter 7. The OCaml language 147

Immediate object creation

Creating directly an object through the object class-body end construct is operationally equivalent
to defining locally a class class-name = object class-body end —see sections 7.9.2 and following
for the syntax of class-body— and immediately creating a single object from it by new class-name.

The typing of immediate objects is slightly different from explicitly defining a class in two
respects. First, the inferred object type may contain free type variables. Second, since the class
body of an immediate object will never be extended, its self type can be unified with a closed object

type.

Method invocation

The expression expr # method-name invokes the method method-name of the object denoted by
expr.

If method-name is a polymorphic method, its type should be known at the invocation site. This
is true for instance if expr is the name of a fresh object (let ident = new class-path...) or if there
is a type constraint. Principality of the derivation can be checked in the -principal mode.

Accessing and modifying instance variables

The instance variables of a class are visible only in the body of the methods defined in the same class
or a class that inherits from the class defining the instance variables. The expression inst-var-name
evaluates to the value of the given instance variable. The expression inst-var-name <- expr assigns
the value of expr to the instance variable inst-var-name, which must be mutable. The whole
expression inst-var-name <- expr evaluates to ().

Object duplication

An object can be duplicated using the library function Oo.copy (see module 00[25.32]). Inside a
method, the expression {< [inst-var-name [= expr] {; inst-var-name [= expr]}] >} returns a copy of
self with the given instance variables replaced by the values of the associated expressions. A single
instance variable name id stands for id = id. Other instance variables have the same value in the
returned object as in self.

7.7.8 Coercions

Expressions whose type contains object or polymorphic variant types can be explicitly coerced
(weakened) to a supertype. The expression (expr :> typexpr) coerces the expression expr to
type typexpr. The expression (expr : typexpr; :> typexpr,) coerces the expression expr from
type typexpr; to type typexprs.

The former operator will sometimes fail to coerce an expression expr from a type typ, to a type
typ, even if type typ; is a subtype of type typy: in the current implementation it only expands two
levels of type abbreviations containing objects and/or polymorphic variants, keeping only recursion
when it is explicit in the class type (for objects). As an exception to the above algorithm, if both the
inferred type of expr and typ are ground (i.e. do not contain type variables), the former operator
behaves as the latter one, taking the inferred type of expr as typ,. In case of failure with the former
operator, the latter one should be used.

148

It is only possible to coerce an expression expr from type typ; to type typ,, if the type of expr
is an instance of typ; (like for a type annotation), and typ; is a subtype of typy. The type of the
coerced expression is an instance of typ,. If the types contain variables, they may be instantiated
by the subtyping algorithm, but this is only done after determining whether typ, is a potential
subtype of typy. This means that typing may fail during this latter unification step, even if some
instance of typ, is a subtype of some instance of typy. In the following paragraphs we describe the
subtyping relation used.

Object types

A fixed object type admits as subtype any object type that includes all its methods. The types of
the methods shall be subtypes of those in the supertype. Namely,

<mety : typy ;... ; met, : typ, >
is a supertype of

<mety : typl; ... ; mety, : typ); mety 1z typy ;... 5 Metyim: tyDy iy [-] >

which may contain an ellipsis .. if every typ; is a supertype of the corresponding typ).

A monomorphic method type can be a supertype of a polymorphic method type. Namely, if
typ is an instance of typ’, then 'aj... 'a, . typ’ is a subtype of typ.

Inside a class definition, newly defined types are not available for subtyping, as the type abbre-
viations are not yet completely defined. There is an exception for coercing self to the (exact) type
of its class: this is allowed if the type of self does not appear in a contravariant position in the
class type, i.e. if there are no binary methods.

Polymorphic variant types

A polymorphic variant type typ is a subtype of another polymorphic variant type typ’ if the upper
bound of typ (i.e. the maximum set of constructors that may appear in an instance of typ) is
included in the lower bound of typ’, and the types of arguments for the constructors of typ are
subtypes of those in typ’. Namely,

[[<]>Cioftyp; |... |~ Cyof typ,]
which may be a shrinkable type, is a subtype of
[[>] " Cioftypil... | = Cpof typ),| = Cpy10f typy gl ... |~ Coymof typy]

which may be an extensible type, if every typ; is a subtype of typ..

Variance

Other types do not introduce new subtyping, but they may propagate the subtyping of their
arguments. For instance, typ; * typs is a subtype of typ}* typ, when typ, and typ, are respectively
subtypes of typ} and typ,. For function types, the relation is more subtle: typ; => typ, is a subtype
of typ) => typ} if typ, is a supertype of typ] and typ, is a subtype of typ,. For this reason, function
types are covariant in their second argument (like tuples), but contravariant in their first argument.

Chapter 7. The OCaml language 149

Mutable types, like array or ref are neither covariant nor contravariant, they are nonvariant, that
is they do not propagate subtyping.

For user-defined types, the variance is automatically inferred: a parameter is covariant if it
has only covariant occurrences, contravariant if it has only contravariant occurrences, variance-free
if it has no occurrences, and nonvariant otherwise. A variance-free parameter may change freely
through subtyping, it does not have to be a subtype or a supertype. For abstract and private types,
the variance must be given explicitly (see section 7.8.1), otherwise the default is nonvariant. This
is also the case for constrained arguments in type definitions.

7.7.9 Other
Assertion checking

OCaml supports the assert construct to check debugging assertions. The expression assert expr
evaluates the expression expr and returns () if expr evaluates to true. If it evaluates to false
the exception Assert_failure is raised with the source file name and the location of expr as
arguments. Assertion checking can be turned off with the -noassert compiler option. In this case,
expr is not evaluated at all.

As a special case, assert false is reduced to raise (Assert_failure ...), which gives it
a polymorphic type. This means that it can be used in place of any expression (for example as
a branch of any pattern-matching). It also means that the assert,false “assertions” cannot be
turned off by the -noassert option.

Lazy expressions

The expression lazy expr returns a value v of type Lazy.t that encapsulates the computation of
expr. The argument expr is not evaluated at this point in the program. Instead, its evaluation
will be performed the first time the function Lazy.force is applied to the value v, returning the
actual value of expr. Subsequent applications of Lazy.force to v do not evaluate expr again.
Applications of Lazy.force may be implicit through pattern matching (see 7.6.1).

Local modules

The expression let module module-name = module-expr in expr locally binds the module expres-
sion module-expr to the identifier module-name during the evaluation of the expression expr. It
then returns the value of expr. For example:

let remove_duplicates comparison_fun string_list =
let module StringSet =
Set.Make(struct type t = string
let compare = comparison_fun end) in
StringSet.elements
(List.fold_right StringSet.add string list StringSet.empty)

val remove_duplicates :
(string -> string -> int) -> string list -> string list = <fun>

150

Local opens

The expressions let open module-path in expr and module-path . (expr) are strictly equivalent.
These constructions locally open the module referred to by the module path module-path in the
respective scope of the expression expr.

When the body of a local open expression is delimited by [1, [l |1, or { }, the parenthe-
ses can be omitted. For expression, parentheses can also be omitted for {< >}. For example,
module-path . [expr] is equivalent to module-path . ([expr]), and module-path . [| expr |] is
equivalent to module-path . ([| expr 11).

7.8 Type and exception definitions

7.8.1 Type definitions

Type definitions bind type constructors to data types: either variant types, record types, type
abbreviations, or abstract data types. They also bind the value constructors and record fields
associated with the definition.

type-definition ::= type [nonrec| typedef {and typedef}

typedef = [type-params| typeconstr-name type-information

type-information
type-equation

type-representation

type-params

type-param

variance

record-decl
constr-decl
constr-args

field-decl

type-constraint

[type-equation] [type-representation] {type-constraint}

= typexpr

= [I] constr-decl {| constr-decl}
= record-decl

type-param
(type-param {, type-param})

[variance] ' ident

+

{ field-decl {; field-decl} [;] }
(constr-name | [1 | (::)) [of constr-args]
typexpr {* typexpr}

[mutable] field-name : poly-typexpr

constraint ' ident = typexpr

See also the following language extensions: private types, generalized algebraic datatypes, at-
tributes, extension nodes, extensible variant types and inline records.

Type definitions are introduced by the type keyword, and consist in one or several simple

definitions, possibly mutually recursive, separated by the and keyword. Each simple definition

defines one type constructor.

Chapter 7. The OCaml language 151

A simple definition consists in a lowercase identifier, possibly preceded by one or several type
parameters, and followed by an optional type equation, then an optional type representation, and
then a constraint clause. The identifier is the name of the type constructor being defined.

In the right-hand side of type definitions, references to one of the type constructor name being
defined are considered as recursive, unless type is followed by nonrec. The nonrec keyword was
introduced in OCaml 4.02.2.

The optional type parameters are either one type variable ' ident, for type constructors with
one parameter, or a list of type variables (' ident, ..., "' ident,), for type constructors with several
parameters. Each type parameter may be prefixed by a variance constraint + (resp. -) indicating
that the parameter is covariant (resp. contravariant). These type parameters can appear in the type
expressions of the right-hand side of the definition, optionally restricted by a variance constraint ;
i.e. a covariant parameter may only appear on the right side of a functional arrow (more precisely,
follow the left branch of an even number of arrows), and a contravariant parameter only the left
side (left branch of an odd number of arrows). If the type has a representation or an equation,
and the parameter is free (i.e. not bound via a type constraint to a constructed type), its variance
constraint is checked but subtyping etc. will use the inferred variance of the parameter, which may
be less restrictive; otherwise (i.e. for abstract types or non-free parameters), the variance must be
given explicitly, and the parameter is invariant if no variance is given.

The optional type equation = typexpr makes the defined type equivalent to the type expression
typexpr: one can be substituted for the other during typing. If no type equation is given, a new
type is generated: the defined type is incompatible with any other type.

The optional type representation describes the data structure representing the defined type, by
giving the list of associated constructors (if it is a variant type) or associated fields (if it is a record
type). If no type representation is given, nothing is assumed on the structure of the type besides
what is stated in the optional type equation.

The type representation = [|] constr-decl {| constr-decl} describes a variant type. The construc-
tor declarations constr-decly, ..., constr-decl,, describe the constructors associated to this variant
type. The constructor declaration constr-name of typexpr; *...* typexpr, declares the name
constr-name as a non-constant constructor, whose arguments have types typexpr; ...typexpr,,.
The constructor declaration constr-name declares the name constr-name as a constant constructor.
Constructor names must be capitalized.

The type representation = { field-decl {; field-decl} [;] } describes a record type. The field
declarations field-decly, . . ., field-decl,, describe the fields associated to this record type. The field
declaration field-name : poly-typexpr declares field-name as a field whose argument has type
poly-typexpr. The field declaration mutable field-name : poly-typexpr behaves similarly; in ad-
dition, it allows physical modification of this field. Immutable fields are covariant, mutable fields
are non-variant. Both mutable and immutable fields may have explicitly polymorphic types. The
polymorphism of the contents is statically checked whenever a record value is created or modified.
Extracted values may have their types instantiated.

The two components of a type definition, the optional equation and the optional representation,
can be combined independently, giving rise to four typical situations:

Abstract type: no equation, no representation.
When appearing in a module signature, this definition specifies nothing on the type con-
structor, besides its number of parameters: its representation is hidden and it is assumed

152

incompatible with any other type.

Type abbreviation: an equation, no representation.
This defines the type constructor as an abbreviation for the type expression on the right of
the = sign.

New variant type or record type: no equation, a representation.
This generates a new type constructor and defines associated constructors or fields, through
which values of that type can be directly built or inspected.

Re-exported variant type or record type: an equation, a representation.

In this case, the type constructor is defined as an abbreviation for the type expression given
in the equation, but in addition the constructors or fields given in the representation remain
attached to the defined type constructor. The type expression in the equation part must agree
with the representation: it must be of the same kind (record or variant) and have exactly the
same constructors or fields, in the same order, with the same arguments. Moreover, the new
type constructor must have the same arity and the same type constraints as the original type
constructor.

The type variables appearing as type parameters can optionally be prefixed by + or - to indicate
that the type constructor is covariant or contravariant with respect to this parameter. This variance
information is used to decide subtyping relations when checking the validity of :> coercions (see
section 7.7.8).

For instance, type +'a t declares t as an abstract type that is covariant in its parameter;
this means that if the type 7 is a subtype of the type o, then 7 t is a subtype of ¢ t. Similarly,
type -'a t declares that the abstract type t is contravariant in its parameter: if 7 is a subtype of
o, then o t is a subtype of 7 t. If no + or - variance annotation is given, the type constructor is
assumed non-variant in the corresponding parameter. For instance, the abstract type declaration
type 'a t means that 7 t is neither a subtype nor a supertype of o t if 7 is subtype of o.

The variance indicated by the + and - annotations on parameters is enforced only for abstract
and private types, or when there are type constraints. Otherwise, for abbreviations, variant and
record types without type constraints, the variance properties of the type constructor are inferred
from its definition, and the variance annotations are only checked for conformance with the defini-
tion.

The construct constraint ' ident = typexpr allows the specification of type parameters. Any
actual type argument corresponding to the type parameter ident has to be an instance of typexpr
(more precisely, ident and typexpr are unified). Type variables of typexpr can appear in the type
equation and the type declaration.

7.8.2 Exception definitions
exception-definition ::= exception constr-decl

| exception constr-name = constr

Exception definitions add new constructors to the built-in variant type exn of exception values.
The constructors are declared as for a definition of a variant type.

Chapter 7. The OCaml language 153

The form exception constr-decl generates a new exception, distinct from all other exceptions
in the system. The form exception constr-name = constr gives an alternate name to an existing
exception.

7.9 Classes

Classes are defined using a small language, similar to the module language.

7.9.1 Class types

Class types are the class-level equivalent of type expressions: they specify the general shape and
type properties of classes.

class-type ::= [[?] label-name :] typexpr -> class-type
class-body-type

object [(typexpr)| {class-field-spec} end
[[typexpr {, typexpr} 1] classtype-path
let open module-path in class-body-type

class-body-type

inherit class-body-type

val [mutable] [virtual] inst-var-name : typexpr

val virtual mutable inst-var-name : typexpr

method [private] [virtual] method-name : poly-typexpr
method virtual private method-name : poly-typexpr
constraint typexpr = typexpr

class-field-spec

See also the following language extensions: attributes and extension nodes.

Simple class expressions

The expression classtype-path is equivalent to the class type bound to the name classtype-path.
Similarly, the expression [typexpr; , ...typexpr, 1 classtype-path is equivalent to the parametric
class type bound to the name classtype-path, in which type parameters have been instantiated to
respectively typexpry, ... typexpr,,.

Class function type

The class type expression typexpr -> class-type is the type of class functions (functions from
values to classes) that take as argument a value of type typexpr and return as result a class of type
class-type.

Class body type

The class type expression object [(typexpr)] {class-field-spec} end is the type of a class body. It
specifies its instance variables and methods. In this type, typexpr is matched against the self type,
therefore providing a name for the self type.

154

A class body will match a class body type if it provides definitions for all the components
specified in the class body type, and these definitions meet the type requirements given in the
class body type. Furthermore, all methods either virtual or public present in the class body must
also be present in the class body type (on the other hand, some instance variables and concrete
private methods may be omitted). A virtual method will match a concrete method, which makes
it possible to forget its implementation. An immutable instance variable will match a mutable
instance variable.

Local opens

Local opens are supported in class types since OCaml 4.06.

Inheritance

The inheritance construct inherit class-body-type provides for inclusion of methods and instance
variables from other class types. The instance variable and method types from class-body-type are
added into the current class type.

Instance variable specification

A specification of an instance variable is written val [mutable] [virtual] inst-var-name : typexpr,
where inst-var-name is the name of the instance variable and typexpr its expected type. The
flag mutable indicates whether this instance variable can be physically modified. The flag virtual
indicates that this instance variable is not initialized. It can be initialized later through inheritance.

An instance variable specification will hide any previous specification of an instance variable of
the same name.

Method specification

The specification of a method is written method [private] method-name : poly-typexpr, where
method-name is the name of the method and poly-typexpr its expected type, possibly polymorphic.
The flag private indicates that the method cannot be accessed from outside the object.

The polymorphism may be left implicit in public method specifications: any type variable which
is not bound to a class parameter and does not appear elsewhere inside the class specification will be
assumed to be universal, and made polymorphic in the resulting method type. Writing an explicit
polymorphic type will disable this behaviour.

If several specifications are present for the same method, they must have compatible types. Any
non-private specification of a method forces it to be public.

Virtual method specification

A virtual method specification is written method [private| virtual method-name : poly-typexpr,
where method-name is the name of the method and poly-typexpr its expected type.

Chapter 7. The OCaml language 155

Constraints on type parameters

The construct constraint typexpr; = typexpr, forces the two type expressions to be equal. This
is typically used to specify type parameters: in this way, they can be bound to specific type
expressions.

7.9.2 Class expressions

Class expressions are the class-level equivalent of value expressions: they evaluate to classes, thus
providing implementations for the specifications expressed in class types.

class-expr ::= class-path
| [typexpr {, typexpr} 1 class-path
| (class-expr)
| (class-expr : class-type)
| class-expr {argument}™
| fun {parameter}t -> class-expr
| let [rec] let-binding {and let-binding} in class-expr
| object class-body end
| let open module-path in class-expr

class-field := inherit class-expr [as lowercase-ident]
| inherit! class-expr [as lowercase-ident]
| val [mutable] inst-var-name [: typexpr| = expr
| val! [mutable] inst-var-name [: typexpr| = expr
| val [mutable] virtual inst-var-name : typexpr
\ val virtual mutable inst-var-name : typexpr
| method [private] method-name {parameter} [: typexpr| = expr
| method! [private] method-name {parameter} [: typexpr| = expr
| method [private| method-name : poly-typexpr = expr
| method! [private] method-name : poly-typexpr = expr
| method [private| virtual method-name : poly-typexpr
| method virtual private method-name : poly-typexpr
| constraint typexpr = typexpr
| initializer expr

See also the following language extensions: locally abstract types, attributes and extension nodes.

Simple class expressions

The expression class-path evaluates to the class bound to the name class-path. Similarly, the ex-
pression [typexpr , ...typexpr, 1 class-path evaluates to the parametric class bound to the name
class-path, in which type parameters have been instantiated respectively to typexpry, ... typexpr,,.
The expression (class-expr) evaluates to the same module as class-expr.
The expression (class-expr : class-type) checks that class-type matches the type of class-expr
(that is, that the implementation class-expr meets the type specification class-type). The whole

156

expression evaluates to the same class as class-expr, except that all components not specified in
class-type are hidden and can no longer be accessed.

Class application

Class application is denoted by juxtaposition of (possibly labeled) expressions. It denotes the
class whose constructor is the first expression applied to the given arguments. The arguments
are evaluated as for expression application, but the constructor itself will only be evaluated when
objects are created. In particular, side-effects caused by the application of the constructor will only
occur at object creation time.

Class function

The expression fun [[?] label-name :| pattern -> class-expr evaluates to a function from values
to classes. When this function is applied to a value v, this value is matched against the pattern
pattern and the result is the result of the evaluation of class-expr in the extended environment.
Conversion from functions with default values to functions with patterns only works identically
for class functions as for normal functions.
The expression

fun parameter ... parameter, —> class-expr
is a short form for

fun parameter; -=>...fun parameter, -> expr

Local definitions

The let and let rec constructs bind value names locally, as for the core language expressions.

If a local definition occurs at the very beginning of a class definition, it will be evaluated when
the class is created (just as if the definition was outside of the class). Otherwise, it will be evaluated
when the object constructor is called.

Local opens

Local opens are supported in class expressions since OCaml 4.06.

Class body

class-body ::= [(pattern [: typexpr])] {class-field}

The expression object class-body end denotes a class body. This is the prototype for an object :
it lists the instance variables and methods of an object of this class.

A class body is a class value: it is not evaluated at once. Rather, its components are evaluated
each time an object is created.

In a class body, the pattern (pattern [: typexpr|) is matched against self, therefore providing
a binding for self and self type. Self can only be used in method and initializers.

Self type cannot be a closed object type, so that the class remains extensible.

Since OCaml 4.01, it is an error if the same method or instance variable name is defined several
times in the same class body.

Chapter 7. The OCaml language 157

Inheritance

The inheritance construct inherit class-expr allows reusing methods and instance variables from
other classes. The class expression class-expr must evaluate to a class body. The instance variables,
methods and initializers from this class body are added into the current class. The addition of a
method will override any previously defined method of the same name.

An ancestor can be bound by appending as lowercase-ident to the inheritance construct.
lowercase-ident is not a true variable and can only be used to select a method, i.e. in an ex-
pression lowercase-ident # method-name. This gives access to the method method-name as it was
defined in the parent class even if it is redefined in the current class. The scope of this ancestor
binding is limited to the current class. The ancestor method may be called from a subclass but
only indirectly.

Instance variable definition

The definition val [mutable] inst-var-name = expr adds an instance variable inst-var-name whose
initial value is the value of expression expr. The flag mutable allows physical modification of this
variable by methods.

An instance variable can only be used in the methods and initializers that follow its definition.

Since version 3.10, redefinitions of a visible instance variable with the same name do not create
a new variable, but are merged, using the last value for initialization. They must have identical
types and mutability. However, if an instance variable is hidden by omitting it from an interface,
it will be kept distinct from other instance variables with the same name.

Virtual instance variable definition

A variable specification is written val [mutable| virtual inst-var-name : typexpr. It specifies
whether the variable is modifiable, and gives its type.
Virtual instance variables were added in version 3.10.

Method definition

A method definition is written method method-name = expr. The definition of a method overrides
any previous definition of this method. The method will be public (that is, not private) if any of
the definition states so.

A private method, method private method-name = expr, is a method that can only be invoked
on self (from other methods of the same object, defined in this class or one of its subclasses).
This invocation is performed using the expression value-name # method-name, where value-name
is directly bound to self at the beginning of the class definition. Private methods do not appear
in object types. A method may have both public and private definitions, but as soon as there is a
public one, all subsequent definitions will be made public.

Methods may have an explicitly polymorphic type, allowing them to be used polymorphically
in programs (even for the same object). The explicit declaration may be done in one of three ways:
(1) by giving an explicit polymorphic type in the method definition, immediately after the method
name, i.e. method [private| method-name : {' ident}* . typexpr = expr; (2) by a forward

158

declaration of the explicit polymorphic type through a virtual method definition; (3) by importing
such a declaration through inheritance and/or constraining the type of self.

Some special expressions are available in method bodies for manipulating instance variables and
duplicating self:

expr =
| inst-var-name <- expr
| {< [inst-var-name = expr {; inst-var-name = expr} [;]] >}

The expression inst-var-name <- expr modifies in-place the current object by replacing the
value associated to inst-var-name by the value of expr. Of course, this instance variable must have
been declared mutable.

The expression {< inst-var-name; = expry ; ... ; inst-var-name,, = expr,, >} evaluates to a copy
of the current object in which the values of instance variables inst-var-namey, ..., inst-var-name,,
have been replaced by the values of the corresponding expressions expry, ..., expr,,.

Virtual method definition

A method specification is written method [private| virtual method-name : poly-typexpr. It
specifies whether the method is public or private, and gives its type. If the method is intended to
be polymorphic, the type must be explicitly polymorphic.

Explicit overriding

Since Ocaml 3.12, the keywords inherit!, val! and method! have the same semantics as
inherit, val and method, but they additionally require the definition they introduce to be
overriding. Namely, method! requires method-name to be already defined in this class, val!
requires inst-var-name to be already defined in this class, and inherit! requires class-expr to
override some definitions. If no such overriding occurs, an error is signaled.

As a side-effect, these 3 keywords avoid the warnings 7 (method override) and 13 (instance
variable override). Note that warning 7 is disabled by default.

Constraints on type parameters

The construct constraint typexpr; = typexpr, forces the two type expressions to be equals.
This is typically used to specify type parameters: in that way they can be bound to specific type
expressions.

Initializers

A class initializer initializer expr specifies an expression that will be evaluated whenever an
object is created from the class, once all its instance variables have been initialized.

Chapter 7. The OCaml language 159

7.9.3 Class definitions

class-definition ::= class class-binding {and class-binding}
class-binding ::= [virtual] [[type-parameters]] class-name {parameter} [: class-type]
= class-expr
type-parameters = ' ident {, ' ident}

A class definition class class-binding {and class-binding} is recursive. FEach class-binding
defines a class-name that can be used in the whole expression except for inheritance. It can also
be used for inheritance, but only in the definitions that follow its own.

A class binding binds the class name class-name to the value of expression class-expr. It also
binds the class type class-name to the type of the class, and defines two type abbreviations :
class-name and # class-name. The first one is the type of objects of this class, while the second is
more general as it unifies with the type of any object belonging to a subclass (see section 7.4).

Virtual class

A class must be flagged virtual if one of its methods is virtual (that is, appears in the class type,
but is not actually defined). Objects cannot be created from a virtual class.

Type parameters

The class type parameters correspond to the ones of the class type and of the two type abbreviations
defined by the class binding. They must be bound to actual types in the class definition using type
constraints. So that the abbreviations are well-formed, type variables of the inferred type of the
class must either be type parameters or be bound in the constraint clause.

7.9.4 Class specifications
class-specification = class class-spec {and class-spec}
class-spec = [virtual] [[type-parameters 1] class-name : class-type

This is the counterpart in signatures of class definitions. A class specification matches a class
definition if they have the same type parameters and their types match.

7.9.5 Class type definitions
classtype-definition ::= class type classtype-def {and classtype-def}

classtype-def ::= [virtual] [[type-parameters]] class-name = class-body-type

A class type definition class class-name = class-body-type defines an abbreviation class-name
for the class body type class-body-type. As for class definitions, two type abbreviations class-name
and # class-name are also defined. The definition can be parameterized by some type parameters.
If any method in the class type body is virtual, the definition must be flagged virtual.

Two class type definitions match if they have the same type parameters and they expand to
matching types.

160

7.10 Module types (module specifications)

Module types are the module-level equivalent of type expressions: they specify the general shape
and type properties of modules.

module-type ::= modtype-path
| sig {specification [;;]} end
| functor (module-name : module-type) => module-type
| module-type -> module-type
| module-type with mod-constraint {and mod-constraint}
|

(module-type)

mod-constraint = type [type-params]| typeconstr type-equation {type-constraint}
| module module-path = extended-module-path

specification ::= val value-name : typexpr

| external value-name : typexpr = external-declaration
| type-definition

| exception constr-decl

| class-specification

| classtype-definition

| module module-name : module-type

| module module-name {(module-name : module-type)} : module-type
| module type modtype-name

| module type modtype-name = module-type

| open module-path

| include module-type

See also the following language extensions: recovering the type of a module, substitution inside a
signature, type-level module aliases, attributes, extension nodes and generative functors.

7.10.1 Simple module types

The expression modtype-path is equivalent to the module type bound to the name modtype-path.
The expression (module-type) denotes the same type as module-type.

7.10.2 Signatures

Signatures are type specifications for structures. Signatures sig...end are collections of type
specifications for value names, type names, exceptions, module names and module type names.
A structure will match a signature if the structure provides definitions (implementations) for all
the names specified in the signature (and possibly more), and these definitions meet the type
requirements given in the signature.

An optional ; ; is allowed after each specification in a signature. It serves as a syntactic separator

with no semantic meaning.

Chapter 7. The OCaml language 161

Value specifications

A specification of a value component in a signature is written val value-name : typexpr, where
value-name is the name of the value and typexpr its expected type.

The form external value-name : typexpr = external-declaration is similar, except that
it requires in addition the name to be implemented as the external function specified in
external-declaration (see chapter 20).

Type specifications

A specification of one or several type components in a signature is written type typedef {and typedef}
and consists of a sequence of mutually recursive definitions of type names.

Each type definition in the signature specifies an optional type equation = typexpr and an
optional type representation = constr-decl. .. or = { field-decl . ..}. The implementation of the type
name in a matching structure must be compatible with the type expression specified in the equation
(if given), and have the specified representation (if given). Conversely, users of that signature will
be able to rely on the type equation or type representation, if given. More precisely, we have the
following four situations:

Abstract type: no equation, no representation.

Names that are defined as abstract types in a signature can be implemented in a matching
structure by any kind of type definition (provided it has the same number of type param-
eters). The exact implementation of the type will be hidden to the users of the structure.
In particular, if the type is implemented as a variant type or record type, the associated
constructors and fields will not be accessible to the users; if the type is implemented as an
abbreviation, the type equality between the type name and the right-hand side of the abbre-
viation will be hidden from the users of the structure. Users of the structure consider that
type as incompatible with any other type: a fresh type has been generated.

Type abbreviation: an equation = typexpr, no representation.
The type name must be implemented by a type compatible with typexpr. All users of the
structure know that the type name is compatible with typexpr.

New variant type or record type: no equation, a representation.
The type name must be implemented by a variant type or record type with exactly the
constructors or fields specified. All users of the structure have access to the constructors
or fields, and can use them to create or inspect values of that type. However, users of the
structure consider that type as incompatible with any other type: a fresh type has been
generated.

Re-exported variant type or record type: an equation, a representation.
This case combines the previous two: the representation of the type is made visible to all
users, and no fresh type is generated.

Exception specification

The specification exception constr-decl in a signature requires the matching structure to provide
an exception with the name and arguments specified in the definition, and makes the exception

162

available to all users of the structure.

Class specifications

A specification of one or several classes in a signature is written class class-spec {and class-spec}
and consists of a sequence of mutually recursive definitions of class names.
Class specifications are described more precisely in section 7.9.4.

Class type specifications

A specification of one or several classe types in a signature is written class type classtype-def
{and classtype-def} and consists of a sequence of mutually recursive definitions of class type names.
Class type specifications are described more precisely in section 7.9.5.

Module specifications

A specification of a module component in a signature is written module module-name : module-type,
where module-name is the name of the module component and module-type its expected type.
Modules can be nested arbitrarily; in particular, functors can appear as components of structures
and functor types as components of signatures.

For specifying a module component that is a functor, one may write

module module-name (name; : module-type;) ... (name, : module-type,) : module-type
instead of

module module-name : functor (name; : module-type;) =>...-> module-type

Module type specifications

A module type component of a signature can be specified either as a manifest module type or as
an abstract module type.

An abstract module type specification module type modtype-name allows the name
modtype-name to be implemented by any module type in a matching signature, but hides the
implementation of the module type to all users of the signature.

A manifest module type specification module type modtype-name = module-type requires the
name modtype-name to be implemented by the module type module-type in a matching signa-
ture, but makes the equality between modtype-name and module-type apparent to all users of the
signature.

7.10.3 Opening a module path

The expression open module-path in a signature does not specify any components. It simply
affects the parsing of the following items of the signature, allowing components of the module
denoted by module-path to be referred to by their simple names name instead of path accesses
module-path . name. The scope of the open stops at the end of the signature expression.

Chapter 7. The OCaml language 163

7.10.4 Including a signature

The expression include module-type in a signature performs textual inclusion of the components
of the signature denoted by module-type. It behaves as if the components of the included signature
were copied at the location of the include. The module-type argument must refer to a module
type that is a signature, not a functor type.

7.10.5 Functor types

The module type expression functor (module-name : module-type;) -> module-type, is the
type of functors (functions from modules to modules) that take as argument a module of type
module-type; and return as result a module of type module-typey. The module type module-type,
can use the name module-name to refer to type components of the actual argument of the functor.
If the type module-type, does not depend on type components of module-name, the module type
expression can be simplified with the alternative short syntax module-type; -> module-typey. No
restrictions are placed on the type of the functor argument; in particular, a functor may take
another functor as argument (“higher-order” functor).

7.10.6 The with operator

Assuming module-type denotes a signature, the expression module-type with mod-constraint
{and mod-constraint} denotes the same signature where type equations have been added to some
of the type specifications, as described by the constraints following the with keyword. The con-
straint type [type-parameters| typeconstr = typexpr adds the type equation = typexpr to the
specification of the type component named typeconstr of the constrained signature. The con-
straint module module-path = extended-module-path adds type equations to all type components
of the sub-structure denoted by module-path, making them equivalent to the corresponding type
components of the structure denoted by extended-module-path.
For instance, if the module type name S is bound to the signature

sig type t module M: (sig type u end) end
then S with type t=int denotes the signature
sig type t=int module M: (sig type u end) end
and S with module M = N denotes the signature
sig type t module M: (sig type u=N.u end) end
A functor taking two arguments of type S that share their t component is written
functor (A: S) (B: S with type t = A.t)

Constraints are added left to right. After each constraint has been applied, the resulting signa-
ture must be a subtype of the signature before the constraint was applied. Thus, the with operator
can only add information on the type components of a signature, but never remove information.

164

7.11 Module expressions (module implementations)

Module expressions are the module-level equivalent of value expressions: they evaluate to modules,
thus providing implementations for the specifications expressed in module types.

module-expr ::= module-path
| struct [module-items| end
| functor (module-name : module-type) -> module-expr
| module-expr (module-expr)
| (module-expr)
|

(module-expr : module-type)
module-items ::= {;;} (definition | expr) {{;;} (definition | ;; expr)} {;;}

definition := 1let [rec] let-binding {and let-binding}
| external value-name : typexpr = external-declaration
| type-definition
| exception-definition
| class-definition
| classtype-definition
| module module-name {(module-name : module-type)} [: module-type]
= module-expr
| module type modtype-name = module-type
| open module-path
| include module-expr

See also the following language extensions: recursive modules, first-class modules, overriding in
open statements, attributes, extension nodes and generative functors.

7.11.1 Simple module expressions

The expression module-path evaluates to the module bound to the name module-path.

The expression (module-expr) evaluates to the same module as module-expr.

The expression (module-expr : module-type) checks that the type of module-expr is a
subtype of module-type, that is, that all components specified in module-type are implemented
in module-expr, and their implementation meets the requirements given in module-type. In other
terms, it checks that the implementation module-expr meets the type specification module-type.
The whole expression evaluates to the same module as module-expr, except that all components
not specified in module-type are hidden and can no longer be accessed.

7.11.2 Structures

Structures struct...end are collections of definitions for value names, type names, exceptions,
module names and module type names. The definitions are evaluated in the order in which they
appear in the structure. The scopes of the bindings performed by the definitions extend to the end
of the structure. As a consequence, a definition may refer to names bound by earlier definitions in
the same structure.

Chapter 7. The OCaml language 165

For compatibility with toplevel phrases (chapter 10), optional ;; are allowed after and before
each definition in a structure. These ; ; have no semantic meanings. Similarly, an expr preceded by
; 3 is allowed as a component of a structure. It is equivalent to let _ = expr, i.e. expr is evaluated
for its side-effects but is not bound to any identifier. If expr is the first component of a structure,
the preceding ;; can be omitted.

Value definitions

A value definition let [rec] let-binding {and let-binding} bind value names in the same way as
a let...in... expression (see section 7.7.2). The value names appearing in the left-hand sides of
the bindings are bound to the corresponding values in the right-hand sides.

A value definition external value-name : typexpr = external-declaration implements
value-name as the external function specified in external-declaration (see chapter 20).
Type definitions
A definition of one or several type components is written type typedef {and typedef} and consists
of a sequence of mutually recursive definitions of type names.

Exception definitions

Exceptions are defined with the syntax exception constr-decl or exception constr-name = constr.

Class definitions

A definition of one or several classes is written class class-binding {and class-binding} and consists
of a sequence of mutually recursive definitions of class names. Class definitions are described more
precisely in section 7.9.3.

Class type definitions

A definition of one or several classes is written class type classtype-def {and classtype-def } and
consists of a sequence of mutually recursive definitions of class type names. Class type definitions
are described more precisely in section 7.9.5.

Module definitions

The basic form for defining a module component is module module-name = module-expr, which
evaluates module-expr and binds the result to the name module-name.
One can write

module module-name : module-type = module-expr
instead of
module module-name = (module-expr : module-type).

Another derived form is

166

module module-name (name; : module-type;) ... (name, : module-type,,) = module-expr
which is equivalent to

module module-name = functor (name; : module-type;) ->...-> module-expr

Module type definitions

A definition for a module type is written module type modtype-name = module-type. It binds the
name modtype-name to the module type denoted by the expression module-type.

Opening a module path

The expression open module-path in a structure does not define any components nor perform any
bindings. It simply affects the parsing of the following items of the structure, allowing components
of the module denoted by module-path to be referred to by their simple names name instead of path
accesses module-path . name. The scope of the open stops at the end of the structure expression.

Including the components of another structure

The expression include module-expr in a structure re-exports in the current structure all defini-
tions of the structure denoted by module-expr. For instance, if you define a module S as below

module S = struct type t = int let x = 2 end
defining the module B as

module B = struct include S let y = (x + 1 : t) end
is equivalent to defining it as

module B = struct type t = S.t let x = S.x lety= (x+ 1 : t) end
The difference between open and include is that open simply provides short names for the com-
ponents of the opened structure, without defining any components of the current structure, while
include also adds definitions for the components of the included structure.

7.11.3 Functors
Functor definition

The expression functor (module-name : module-type) -> module-expr evaluates to a functor
that takes as argument modules of the type module-type,, binds module-name to these modules,
evaluates module-expr in the extended environment, and returns the resulting modules as results.
No restrictions are placed on the type of the functor argument; in particular, a functor may take
another functor as argument (“higher-order” functor).

Functor application

The expression module-expr; (module-expry) evaluates module-expr; to a functor and
module-expry to a module, and applies the former to the latter. The type of module-expr, must
match the type expected for the arguments of the functor module-expr;.

Chapter 7. The OCaml language 167

7.12 Compilation units

unit-interface ::= {specification [;;]}

unit-implementation ::= [module-items]

Compilation units bridge the module system and the separate compilation system. A compila-
tion unit is composed of two parts: an interface and an implementation. The interface contains a
sequence of specifications, just as the inside of a sig...end signature expression. The implementa-
tion contains a sequence of definitions and expressions, just as the inside of a struct...end module
expression. A compilation unit also has a name unit-name, derived from the names of the files con-
taining the interface and the implementation (see chapter 9 for more details). A compilation unit
behaves roughly as the module definition

module unit-name : sig unit-interface end = struct unit-implementation end

A compilation unit can refer to other compilation units by their names, as if they were regular
modules. For instance, if U is a compilation unit that defines a type t, other compilation units can
refer to that type under the name U.t; they can also refer to U as a whole structure. Except for
names of other compilation units, a unit interface or unit implementation must not have any other
free variables. In other terms, the type-checking and compilation of an interface or implementation
proceeds in the initial environment

name; : sig specification; end...name,, : sig specification,, end

where name ... name, are the names of the other compilation units available in the search path
(see chapter 9 for more details) and specification, . .. specification,, are their respective interfaces.

168

Chapter 8

Language extensions

This chapter describes language extensions and convenience features that are implemented in
OCaml, but not described in the OCaml reference manual.

8.1 Recursive definitions of values

(Introduced in Objective Caml 1.00)
As mentioned in section 7.7.2, the let rec binding construct, in addition to the definition of
recursive functions, also supports a certain class of recursive definitions of non-functional values,

such as

let rec name; =1 :: names and names = 2 :: name; in expr
which binds name; to the cyclic list 1::2::1::2::..., and names to the cyclic list
2::1::2::1::...Informally, the class of accepted definitions consists of those definitions where

the defined names occur only inside function bodies or as argument to a data constructor.
More precisely, consider the expression:

let rec name; = expry and...and name, = expr, in expr

It will be accepted if each one of expr;...expr, is statically constructive with respect to
names ...namey,, is not immediately linked to any of name; ...name,, and is not an array
constructor whose arguments have abstract type.

An expression e is said to be statically constructive with respect to the variables namej ... name,,
if at least one of the following conditions is true:

¢ ¢ has no free occurrence of any of name; ... name,
e ¢ is a variable

e has the form fun...->...

e ¢ has the form function...->...

o e has the form lazy (...)

169

170

e e has one of the following forms, where each one of expr; ...expr,, is statically construc-
tive with respect to name; ...name,, and exprq is statically constructive with respect to
namej ...namey,, Xnamej ...Xnamey,:

let [rec| xname; = expr; and...and xname,, = expr,, in expr,

let module...in expry

constr (expry , ..., €xpr,,)

— ° tag-name (expry , ..., €xpr,,)

— [l expry ;...; expr,, |]

— { field; = expry ; ...; field,, = expr,, }

— { expr; with fieldy = expry ;...; field,, = expr,, } where expr; is not immediately
linked to name; ... name,,

— (expry ,..., expr,,)

— expry ;...; expr,,

An expression e is said to be immediately linked to the variable name in the following cases:
e ¢ is name
e ¢ has the form expr; ;... ; expr,, where expr,, is immediately linked to name

o ¢ has the form let [rec] xname; = expr; and...and xname,, = expr,, in expr, where expr
is immediately linked to name or to one of the xname; such that expr; is immediately linked
to name.

8.2 Recursive modules

(Introduced in Objective Caml 3.07)

definition = ...
| module rec module-name : module-type = module-expr
{and module-name : module-type = module-expr}
specification = ...
| module rec module-name : module-type {and module-name : module-type}
Recursive module definitions, introduced by the module rec ...and ... construction, gener-

alize regular module definitions module module-name = module-expr and module specifications
module module-name : module-type by allowing the defining module-expr and the module-type to
refer recursively to the module identifiers being defined. A typical example of a recursive module
definition is:

module rec A : sig
type t = Leaf of string | Node of ASet.t
val compare: t -> t -> int

Chapter 8. Language extensions 171

end = struct
type t = Leaf of string | Node of ASet.t
let compare tl1 t2 =
match (t1, t2) with
| (Leaf s1, Leaf s2) -> Stdlib.compare sl s2
| (Leaf _, Node _) —> 1
| (Node _, Leaf) -> -1
| (Node nl, Node n2) -> ASet.compare nl n2
end
and ASet
: Set.S with type elt = A.t
= Set.Make(A)
It can be given the following specification:

module rec A : sig

type t = Leaf of string | Node of ASet.t

val compare: t -> t -> int
end
and ASet : Set.S with type elt = A.t

This is an experimental extension of OCaml: the class of recursive definitions accepted, as well
as its dynamic semantics are not final and subject to change in future releases.

Currently, the compiler requires that all dependency cycles between the recursively-defined
module identifiers go through at least one “safe” module. A module is “safe” if all value definitions
that it contains have function types typexpr; -> typexpry. Evaluation of a recursive module
definition proceeds by building initial values for the safe modules involved, binding all (functional)
values to fun _ -> raiseUndefined_recursive_module. The defining module expressions are then
evaluated, and the initial values for the safe modules are replaced by the values thus computed. If a
function component of a safe module is applied during this computation (which corresponds to an
ill-founded recursive definition), the Undefined_recursive_module exception is raised at runtime:

module rec M: sig val f: unit -> int end = struct let £ () = N.x end
and N:sig val x: int end = struct let x = M.f () end
Exception: Undefined_recursive_module ("exten.etex", 1, 43).

If there are no safe modules along a dependency cycle, an error is raised

module rec M: sig val x: int end = struct let x = N.y end
and N:sig val x: int val y:int end = struct let x = M.x let y = O end

Error: Cannot safely evaluate the definition of the following cycle
of recursively-defined modules: M -> N -> M.
There are no safe modules in this cycle (see manual section 8.2).
Module M defines an unsafe value, X
Module N defines an unsafe value, x

Note that, in the specification case, the module-types must be parenthesized if they use the
with mod-constraint construct.

172

8.3 Private types

Private type declarations in module signatures, of the form type t = private ..., enable libraries
to reveal some, but not all aspects of the implementation of a type to clients of the library. In this
respect, they strike a middle ground between abstract type declarations, where no information is
revealed on the type implementation, and data type definitions and type abbreviations, where all
aspects of the type implementation are publicized. Private type declarations come in three flavors:
for variant and record types (section 8.3.1), for type abbreviations (section 8.3.2), and for row types
(section 8.3.3).

8.3.1 Private variant and record types

(Introduced in Objective Caml 3.07)

type-representation := ...
| =private [|]| constr-decl {| constr-decl}
| =private record-decl

Values of a variant or record type declared private can be de-structured normally in pattern-
matching or via the expr . field notation for record accesses. However, values of these types cannot
be constructed directly by constructor application or record construction. Moreover, assignment
on a mutable field of a private record type is not allowed.

The typical use of private types is in the export signature of a module, to ensure that construc-
tion of values of the private type always go through the functions provided by the module, while
still allowing pattern-matching outside the defining module. For example:

module M : sig
type t = private A | B of int
val a : t
val b : int > ¢t
end = struct
type t = A | B of int
let a = A
let bn = assert (n > 0); Bn
end
Here, the private declaration ensures that in any value of type M.t, the argument to the B con-
structor is always a positive integer.
With respect to the variance of their parameters, private types are handled like abstract types.
That is, if a private type has parameters, their variance is the one explicitly given by prefixing the
parameter by a ‘+’ or a ‘-’, it is invariant otherwise.

8.3.2 Private type abbreviations
(Introduced in Objective Caml 3.11)

type-equation = ...
| =private typexpr

Chapter 8. Language extensions 173

Unlike a regular type abbreviation, a private type abbreviation declares a type that is distinct
from its implementation type typexpr. However, coercions from the type to typexpr are permitted.
Moreover, the compiler “knows” the implementation type and can take advantage of this knowledge
to perform type-directed optimizations.

The following example uses a private type abbreviation to define a module of nonnegative
integers:

module N : sig
type t = private int
val of_int: int -> t
val to_int: t -> int

end = struct
type t = int
let of _int n
let to_int n

end

assert (n >= 0); n
n

The type N.t is incompatible with int, ensuring that nonnegative integers and regular integers
are not confused. However, if x has type N.t, the coercion (x :> int) is legal and returns the
underlying integer, just like N.to_int x. Deep coercions are also supported: if 1 has typeN.t 1list,
the coercion (1 :> int list) returns the list of underlying integers, like List.map N.to_int 1
but without copying the list 1.

Note that the coercion (expr :> typexpr) is actually an abbreviated form, and will only
work in presence of private abbreviations if neither the type of expr nor typexpr contain any
type variables. If they do, you must use the full form (expr : typexpr; :> typexpr,) where
typexpr; is the expected type of expr. Concretely, this would be (x : N.t :> int) and
(1 : N.t list :> int 1list) for the above examples.

8.3.3 Private row types
(Introduced in Objective Caml 3.09)

type-equation = ...
| =private typexpr

Private row types are type abbreviations where part of the structure of the type is left ab-
stract. Concretely typexpr in the above should denote either an object type or a polymorphic
variant type, with some possibility of refinement left. If the private declaration is used in an inter-
face, the corresponding implementation may either provide a ground instance, or a refined private

type.

module M : sig type ¢ = private < x : int; .. > val o : ¢ end =
struct

class ¢ = object method x = 3 method y = 2 end

let o = new c
end

174

This declaration does more than hiding the y method, it also makes the type c incompatible with
any other closed object type, meaning that only o will be of type c. In that respect it behaves
similarly to private record types. But private row types are more flexible with respect to incremental
refinement. This feature can be used in combination with functors.

module F(X : sig type ¢ = private < x : int; .. > end) =
struct
let get_x (o : X.c) = o#x
end
module G(X : sig type ¢ = private < x : int; y : int; .. > end) =
struct

include F(X)

let get_y (o : X.c)
end

A polymorphic variant type [t], for example

o#y

type t = [A of int | "B of bool]
can be refined in two ways. A definition [u] may add new field to [t], and the declaration

type u = private [> t]
will keep those new fields abstract. Construction of values of type [u] is possible using the known
variants of [t], but any pattern-matching will require a default case to handle the potential extra
fields. Dually, a declaration [u] may restrict the fields of [t] through abstraction: the declaration

type v = private [< t > “A]
corresponds to private variant types. One cannot create a value of the private type [v], except
using the constructors that are explicitly listed as present, (*A n) in this example; yet, when
patter-matching on a [v], one should assume that any of the constructors of [t] could be present.
Similarly to abstract types, the variance of type parameters is not inferred, and must be given
explicitly.

8.4 Locally abstract types
(Introduced in OCaml 3.12, short syntax added in 4.03)

parameter = ...
| (type {typeconstr-name}™)

The expression fun (type typeconstr-name) -> expr introduces a type constructor named
typeconstr-name which is considered abstract in the scope of the sub-expression, but then replaced
by a fresh type variable. Note that contrary to what the syntax could suggest, the expression
fun (type typeconstr-name) —> expr itself does not suspend the evaluation of expr as a regular
abstraction would. The syntax has been chosen to fit nicely in the context of function declarations,
where it is generally used. It is possible to freely mix regular function parameters with pseudo type
parameters, as in:

let £ = fun (type t) (foo : t list) -> ...
and even use the alternative syntax for declaring functions:

Chapter 8. Language extensions 175

let £ (type t) (foo : t list) = ...

If several locally abstract types need to be introduced, it is possible to use the syn-
tax fun (type typeconstr-name ...typeconstr-name,) -> expr as syntactic sugar for
fun (type typeconstr-name;) ->...-> fun (type typeconstr-name,) -> expr. For
instance,

let £ = fun (type t u v) -> fun (foo : (t * u * v) list) -> ...
let f' (type t u v) (foo : (t * u * v) list) = ...
This construction is useful because the type constructors it introduces can be used in places
where a type variable is not allowed. For instance, one can use it to define an exception in a local
module within a polymorphic function.

let £ (type t) O =
let module M = struct exception E of t end in
(fun x -> M.E x), (function M.E x -> Some x | _ -> None)
Here is another example:

let sort_uniq (type s) (cmp : s -> s -> int) =
let module S = Set.Make(struct type t = s let compare = cmp end) in
fun 1 ->
S.elements (List.fold_right S.add 1 S.empty)
It is also extremely useful for first-class modules (see section 8.5) and generalized algebraic
datatypes (GADTs: see section 8.10).

p:polymorpic-locally-abstract Polymorphic syntax (Introduced in OCaml 4.00)

let-binding = ..
| value-name : type {typeconstr-name}™* . typexpr = expr

class-field = ...
| method [private] method-name : type {typeconstr-name}* . typexpr = expr
| method! [private] method-name : type {typeconstr-name}* . typexpr = expr

The (type typeconstr-name) syntax construction by itself does not make polymorphic the
type variable it introduces, but it can be combined with explicit polymorphic annotations where
needed. The above rule is provided as syntactic sugar to make this easier:

let rec £ : type tl1l t2. t1 * t2 list -> ti
is automatically expanded into

let rec £ : 't1l 't2. 't1l *x 't2 list -> 't1
fun (type t1) (type t2) -> (... : tl * t2 list -> t1)
This syntax can be very useful when defining recursive functions involving GADTSs, see the sec-
tion 8.10 for a more detailed explanation.
The same feature is provided for method definitions.

176

8.5 First-class modules

(Introduced in OCaml 3.12; pattern syntax and package type inference introduced in 4.00; structural
comparison of package types introduced in 4.02.; fewer parens required starting from 4.05)

typexpr = ...
| (module package-type)
module-expr = ...
| (val expr [: package-type])

expr = ..
| (module module-expr [: package-type])
pattern = ...
| (module module-name [: package-type])
package-type := modtype-path
| modtype-path with package-constraint {and package-constraint}
package-constraint ::= type typeconstr = typexpr

Modules are typically thought of as static components. This extension makes it possible to pack
a module as a first-class value, which can later be dynamically unpacked into a module.

The expression (module module-expr : package-type) converts the module (structure or func-
tor) denoted by module expression module-expr to a value of the core language that encapsulates
this module. The type of this core language value is (module package-type). The package-type
annotation can be omitted if it can be inferred from the context.

Conversely, the module expression (val expr : package-type) evaluates the core language
expression expr to a value, which must have type module package-type, and extracts the module
that was encapsulated in this value. Again package-type can be omitted if the type of expr is
known. If the module expression is already parenthesized, like the arguments of functors are, no
additional parens are needed: Map.Make(val key).

The pattern (module module-name : package-type) matches a package with type
package-type and binds it to module-name. It is not allowed in toplevel let bindings. Again
package-type can be omitted if it can be inferred from the enclosing pattern.

The package-type syntactic class appearing in the (module package-type) type expression and
in the annotated forms represents a subset of module types. This subset consists of named module
types with optional constraints of a limited form: only non-parametrized types can be specified.

For type-checking purposes (and starting from OCaml 4.02), package types are compared using
the structural comparison of module types.

In general, the module expression (val expr : package-type) cannot be used in the body of
a functor, because this could cause unsoundness in conjunction with applicative functors. Since
OCaml 4.02, this is relaxed in two ways: if package-type does not contain nominal type decla-
rations (i.e. types that are created with a proper identity), then this expression can be used
anywhere, and even if it contains such types it can be used inside the body of a generative functor,

Chapter 8. Language extensions 177

described in section 8.15. It can also be used anywhere in the context of a local module binding
let module module-name = (val expr; : package-type) in exprs,.

p:fst-mod-example Basic example A typical use of first-class modules is to select at run-time
among several implementations of a signature. Each implementation is a structure that we can
encapsulate as a first-class module, then store in a data structure such as a hash table:

type picture = ...
module type DEVICE = sig
val draw : picture -> unit

end
let devices : (string, (module DEVICE)) Hashtbl.t = Hashtbl.create 17

module SVG = struct ... end
let _ = Hashtbl.add devices "SVG" (module SVG : DEVICE)
module PDF = struct ... end
let _ = Hashtbl.add devices "PDF" (module PDF : DEVICE)

We can then select one implementation based on command-line arguments, for instance:

let parse_cmdline () = ...
module Device =
(val (let device_name = parse_cmdline () in
try Hashtbl.find devices device_name
with Not_found ->
Printf.eprintf "Unknown device %s\n" device_name;
exit 2)
: DEVICE)
Alternatively, the selection can be performed within a function:

let draw_using_device device_name picture =
let module Device =
(val (Hashtbl.find devices device_name) : DEVICE)
in
Device.draw picture

p:fst-mod-advexamples Advanced examples With first-class modules, it is possible to
parametrize some code over the implementation of a module without using a functor.

let sort (type s) (module Set : Set.S with type elt = s) 1 =
Set.elements (List.fold_right Set.add 1 Set.empty)
val sort : (module Set.S with type elt = 's) -> 's list -> 's list = <fun>

To use this function, one can wrap the Set.Make functor:

let make_set (type s) cmp =
let module S = Set.Make(struct

178

type t = s
let compare = cmp
end) in

(module S : Set.S with type elt = s)
val make_set : ('s -> 's -> int) -> (module Set.S with type elt = 's) = <fun>

8.6 Recovering the type of a module
(Introduced in OCaml 3.12)

module-type ::=
| module type of module-expr

The construction module type of module-expr expands to the module type (signature or functor
type) inferred for the module expression module-expr. To make this module type reusable in many
situations, it is intentionally not strengthened: abstract types and datatypes are not explicitly
related with the types of the original module. For the same reason, module aliases in the inferred
type are expanded.

A typical use, in conjunction with the signature-level include construct, is to extend the
signature of an existing structure. In that case, one wants to keep the types equal to types in the
original module. This can done using the following idiom.

module type MYHASH = sig
include module type of struct include Hashtbl end
val replace: ('a, 'b) t -> 'a -> 'b -> unit
end
The signature MYHASH then contains all the fields of the signature of the module Hashtbl (with
strengthened type definitions), plus the new field replace. An implementation of this signature can
be obtained easily by using the include construct again, but this time at the structure level:

module MyHash : MYHASH = struct
include Hashtbl
let replace t k v = remove t k; add t k v
end
Another application where the absence of strengthening comes handy, is to provide an alterna-
tive implementation for an existing module.

module MySet : module type of Set = struct
end

This idiom guarantees that Myset is compatible with Set, but allows it to represent sets internally
in a different way.

Chapter 8. Language extensions 179

8.7 Substituting inside a signature

8.7.1 Destructive substitutions

(Introduced in OCaml 3.12, generalized in 4.06)

mod-constraint = ..
| type [type-params| typeconstr-name := typexpr
| module module-path := extended-module-path

A “destructive” substitution (with... :=...) behaves essentially like normal signature constraints
(with... =...), but it additionally removes the redefined type or module from the signature.

Prior to OCaml 4.06, there were a number of restrictions: one could only remove types and
modules at the outermost level (not inside submodules), and in the case of with type the definition
had to be another type constructor with the same type parameters.

A natural application of destructive substitution is merging two signatures sharing a type
name.

module type Printable = sig

type t
val print : Format.formatter -> t -> unit
end

module type Comparable = sig

type t
val compare : t -> t -> int
end

module type PrintableComparable = sig
include Printable
include Comparable with type t :=t

end
One can also use this to completely remove a field:

module type S = Comparable with type t := int
module type S = sig val compare : int -> int -> int end

or to rename one:

module type S = sig
type u
include Comparable with type t := u
end
module type S = sig type u val compare : u -> u —-> int end
Note that you can also remove manifest types, by substituting with the same type.
module type ComparableInt = Comparable with type t = int ;;

module type Comparablelnt = sig type t = int val compare : t -> t -> int end

module type Comparelnt = ComparableInt with type t := int
module type Comparelnt = sig val compare : int -> int -> int end

180

8.7.2 Local substitution declarations

(Introduced in OCaml 4.08)

specification = ...
| type type-subst {and type-subst}
| module module-name := extended-module-path
type-subst ::= [type-params| typeconstr-name := typexpr {type-constraint}
Local substitutions behave like destructive substitutions (with... :=...) but instead of being

applied to a whole signature after the fact, they are introduced during the specification of the
signature, and will apply to all the items that follow.

This provides a convenient way to introduce local names for types and modules when defining
a signature:

module type S = sig
type t

module Sub : sig

type outer := t

type t
val to_outer : t -> outer
end
end

module type S =
sig type t module Sub : sig type t val to_outer : t/1 -> t/2 end end

Note that, unlike type declarations, type substitution declarations are not recursive, so substi-
tutions like the following are rejected:

module type S = sig
type 'a poly_list := [“Cons of 'a * 'a poly_list | “Nil]
end ;;

Error: Unbound type constructor poly_1list

8.8 Type-level module aliases
(Introduced in OCaml 4.02)

specification = ...
| module module-name = module-path

The above specification, inside a signature, only matches a module definition equal to
module-path. Conversely, a type-level module alias can be matched by itself, or by any supertype
of the type of the module it references.

There are several restrictions on module-path:

Chapter 8. Language extensions 181

1. it should be of the form My.M;...M,, (i.e. without functor applications);
2. inside the body of a functor, M, should not be one of the functor parameters;
3. inside a recursive module definition, My should not be one of the recursively defined modules.

Such specifications are also inferred. Namely, when P is a path satisfying the above con-
straints,

module N = P
has type
module N = P

Type-level module aliases are used when checking module path equalities. That is, in a context
where module name N is known to be an alias for P, not only these two module paths check as
equal, but F' (N) and F (P) are also recognized as equal. In the default compilation mode, this is
the only difference with the previous approach of module aliases having just the same module type
as the module they reference.

When the compiler flag -no-alias-deps is enabled, type-level module aliases are also exploited
to avoid introducing dependencies between compilation units. Namely, a module alias referring
to a module inside another compilation unit does not introduce a link-time dependency on that
compilation unit, as long as it is not dereferenced; it still introduces a compile-time dependency
if the interface needs to be read, i.e. if the module is a submodule of the compilation unit, or if
some type components are referred to. Additionally, accessing a module alias introduces a link-time
dependency on the compilation unit containing the module referenced by the alias, rather than the
compilation unit containing the alias. Note that these differences in link-time behavior may be
incompatible with the previous behavior, as some compilation units might not be extracted from
libraries, and their side-effects ignored.

These weakened dependencies make possible to use module aliases in place of the -pack mech-
anism. Suppose that you have a library Mylib composed of modules A and B. Using -pack, one
would issue the command line

ocamlc -pack a.cmo b.cmo -o mylib.cmo

and as a result obtain a Mylib compilation unit, containing physically A and B as submodules,
and with no dependencies on their respective compilation units. Here is a concrete example of a
possible alternative approach:

1. Rename the files containing A and B to Mylib__A and Mylib__B.

2. Create a packing interface Mylib.ml, containing the following lines.

module A = Mylib__A
module B Mylib__B

3. Compile Mylib.ml using -no-alias-deps, and the other files using -no-alias-deps and
-open Mylib (the last one is equivalent to adding the line open! Mylib at the top of each
file).

182

ocamlc -c -no-alias-deps Mylib.ml
ocamlc -c -no-alias-deps -open Mylib Mylib__*.mli Mylib__x*.ml

4. Finally, create a library containing all the compilation units, and export all the compiled
interfaces.

ocamlc -a Mylib*.cmo -o Mylib.cma

This approach lets you access A and B directly inside the library, and as Mylib.A and Mylib.B from
outside. It also has the advantage that Mylib is no longer monolithic: if you use Mylib.A, only
Mylib__A will be linked in, not Mylib__B.

Note the use of double underscores in Mylib__A and Mylib__B. These were chosen on pur-
pose; the compiler uses the following heuristic when printing paths: given a path Lib__fooBar,
if Lib.FooBar exists and is an alias for Lib__fooBar, then the compiler will always display
Lib.FooBar instead of Lib__fooBar. This way the long Mylib__ names stay hidden and all the
user sees is the nicer dot names. This is how the OCaml standard library is compiled.

8.9 Overriding in open statements

(Introduced in OCaml 4.01)

definition = ...
| open! module-path
specification = ...
| open! module-path
expr =

| let open! module-path in expr
class-body-type = ...
| let open! module-path in class-body-type

class-expr = ...
| let open! module-path in class-expr

Since OCaml 4.01, open statements shadowing an existing identifier (which is later used) trigger
the warning 44. Adding a ! character after the open keyword indicates that such a shadowing is
intentional and should not trigger the warning.

This is also available (since OCaml 4.06) for local opens in class expressions and class type
expressions.

8.10 Generalized algebraic datatypes

(Introduced in OCaml 4.00)

Chapter 8. Language extensions 183

constr-decl = ...
| constr-name : [constr-args —>] typexpr

type-param ::=
| [variance] _

Generalized algebraic datatypes, or GADTS, extend usual sum types in two ways: constraints on
type parameters may change depending on the value constructor, and some type variables may be
existentially quantified. Adding constraints is done by giving an explicit return type (the rightmost
typexpr in the above syntax), where type parameters are instantiated. This return type must use
the same type constructor as the type being defined, and have the same number of parameters.
Variables are made existential when they appear inside a constructor’s argument, but not in its
return type.

Since the use of a return type often eliminates the need to name type parameters in the left-hand
side of a type definition, one can replace them with anonymous types _ in that case.

The constraints associated to each constructor can be recovered through pattern-matching.
Namely, if the type of the scrutinee of a pattern-matching contains a locally abstract type, this
type can be refined according to the constructor used. These extra constraints are only valid inside
the corresponding branch of the pattern-matching. If a constructor has some existential variables,
fresh locally abstract types are generated, and they must not escape the scope of this branch.

p:gadts-recfun Recursive functions
Here is a concrete example:

type _ term =
| Int : int -> int term
| Add : (int -> int -> int) term
| App : ('b -> 'a) term * 'b term -> 'a term

let rec eval : type a. a term -> a = function
| Int n ->n (x a = int *)
| Add => (fun x y -> x+y) (xa=int —> int —> int *)
| App(f,x) -> (eval f) (eval x)
(* eval called at types (b—>a) and b for fresh b x)

let two = eval (App (App (Add, Int 1), Int 1))
val two : int = 2

It is important to remark that the function eval is using the polymorphic syntax for locally abstract
types. When defining a recursive function that manipulates a GADT, explicit polymorphic recur-
sion should generally be used. For instance, the following definition fails with a type error:

let rec eval (type a) : a term -> a = function
| Int n ->n
| Add => (fun x y -> x+y)
| App(f,x) -> (eval f) (eval x)

184

Error: This expression has type ($App_'b -> a) term
but an expression was expected of type 'a
The type constructor $App_'b would escape its scope

In absence of an explicit polymorphic annotation, a monomorphic type is inferred for the recursive
function. If a recursive call occurs inside the function definition at a type that involves an existential
GADT type variable, this variable flows to the type of the recursive function, and thus escapes its
scope. In the above example, this happens in the branch App(f,x) when eval is called with f as
an argument. In this branch, the type of £ is ($App_ 'b-> a). The prefix $ in $App_ 'b denotes
an existential type named by the compiler (see 8.10). Since the type of eval is 'a term -> 'a, the
call eval f makes the existential type $App_'Db flow to the type variable 'a and escape its scope.
This triggers the above error.

p:gadts-type-inference Type inference

Type inference for GADTs is notoriously hard. This is due to the fact some types may become
ambiguous when escaping from a branch. For instance, in the Int case above, n could have either
type int or a, and they are not equivalent outside of that branch. As a first approximation, type
inference will always work if a pattern-matching is annotated with types containing no free type
variables (both on the scrutinee and the return type). This is the case in the above example, thanks
to the type annotation containing only locally abstract types.

In practice, type inference is a bit more clever than that: type annotations do not need to be
immediately on the pattern-matching, and the types do not have to be always closed. As a result,
it is usually enough to only annotate functions, as in the example above. Type annotations are
propagated in two ways: for the scrutinee, they follow the flow of type inference, in a way similar to
polymorphic methods; for the return type, they follow the structure of the program, they are split
on functions, propagated to all branches of a pattern matching, and go through tuples, records, and
sum types. Moreover, the notion of ambiguity used is stronger: a type is only seen as ambiguous if
it was mixed with incompatible types (equated by constraints), without type annotations between
them. For instance, the following program types correctly.

let rec sum : type a. a term -> _ = fun x >
let y =
match x with
| Int n > n

| Add -> 0
| App(f,x) -> sum f + sum x
iny + 1
val sum : 'a term -> int = <fun>

Here the return type int is never mixed with a, so it is seen as non-ambiguous, and can be inferred.
When using such partial type annotations we strongly suggest specifying the -principal mode, to
check that inference is principal.

The exhaustiveness check is aware of GADT constraints, and can automatically infer that some
cases cannot happen. For instance, the following pattern matching is correctly seen as exhaustive
(the Add case cannot happen).

let get_int : int term -> int = function
| Int n ->n

Chapter 8. Language extensions 185

| App(_,_) -> 0

p:gadt-refutation-cases Refutation cases (Introduced in OCaml 4.03)
Usually, the exhaustiveness check only tries to check whether the cases omitted from the pattern
matching are typable or not. However, you can force it to try harder by adding refutation cases:

matching-case ::= pattern [When expr] -> expr
| pattern -> .

In presence of a refutation case, the exhaustiveness check will first compute the intersection of the

pattern with the complement of the cases preceding it. It then checks whether the resulting patterns
can really match any concrete values by trying to type-check them. Wild cards in the generated
patterns are handled in a special way: if their type is a variant type with only GADT constructors,
then the pattern is split into the different constructors, in order to check whether any of them is
possible (this splitting is not done for arguments of these constructors, to avoid non-termination).
We also split tuples and variant types with only one case, since they may contain GADTs inside.
For instance, the following code is deemed exhaustive:

type _ t =
| Int : int t
| Bool : bool t

let deep : (char t * int) option -> char = function

| None -> 'c'

| _ - .

Namely, the inferred remaining case is Some _, which is split into Some (Int, _) and
Some (Bool, _), which are both untypable because deep expects a non-existing char t as the
first element of the tuple. Note that the refutation case could be omitted here, because it is
automatically added when there is only one case in the pattern matching.

Another addition is that the redundancy check is now aware of GADTs: a case will be detected

as redundant if it could be replaced by a refutation case using the same pattern.

p:gadts-advexamples Advanced examples The term type we have defined above is an indexed
type, where a type parameter reflects a property of the value contents. Another use of GADTs
is singleton types, where a GADT value represents exactly one type. This value can be used as
runtime representation for this type, and a function receiving it can have a polytypic behavior.

Here is an example of a polymorphic function that takes the runtime representation of some
type t and a value of the same type, then pretty-prints the value as a string:

type _ typ =
| Int : int typ
| String : string typ
| Pair : 'a typ * 'b typ > ('a * 'b) typ

let rec to_string: type t. t typ > t -> string =
fun t x >
match t with

186

| Int -> Int.to_string x
| String -> Printf.sprintf "JS" x
| Pair(t1l,t2) —>
let (x1, x2) = x in
Printf.sprintf "(s,%s)" (to_string tl x1) (to_string t2 x2)
Another frequent application of GADTs is equality witnesses.

type (_,_) eq =Eq : ('a,'a) eq

let cast : type a b. (a,b) eq -> a -> b = fun Eq x -> x
Here type eq has only one constructor, and by matching on it one adds a local constraint allowing
the conversion between a and b. By building such equality witnesses, one can make equal types
which are syntactically different.
Here is an example using both singleton types and equality witnesses to implement dynamic
types.
let rec eq_type : type a b. a typ -> b typ -> (a,b) eq option =
fun a b >
match a, b with
| Int, Int -> Some Eq
| String, String -> Some Eq
| Pair(al,a2), Pair(bi,b2) ->
begin match eq_type al bl, eq_type a2 b2 with
| Some Eq, Some Eq -> Some Eq
| _ -> None
end
| -> None

type dyn = Dyn : 'a typ * 'a -> dyn

let get_dyn : type a. a typ —> dyn -> a option =
fun a (Dyn(b,x)) ->
match eq_type a b with
| None -> None
| Some Eq -> Some x

p:existential-names Existential type names in error messages(Updated in OCaml 4.03.0)

The typing of pattern matching in presence of GADT can generate many existential types.
When necessary, error messages refer to these existential types using compiler-generated names.
Currently, the compiler generates these names according to the following nomenclature:

o First, types whose name starts with a $ are existentials.

e $Constr_'a denotes an existential type introduced for the type variable 'a of the GADT
constructor Constr:
type any = Any : 'name -> any
let escape (Any x) = x

Chapter 8. Language extensions 187

Error: This expression has type $Any_ 'name
but an expression was expected of type 'a
The type constructor $Any_ 'name would escape its scope

o $Constr denotes an existential type introduced for an anonymous type variable in the GADT
constructor Constr:

type any = Any : _ -> any
let escape (Any x) = x

Error: This expression has type $Any but an expression was expected of type
'a
The type constructor $Any would escape its scope

e $'a if the existential variable was unified with the type variable 'a during typing:

type ('arg, 'result,'aux) fn =
| Fun: ('a ->'b) -> ('a,'b,unit) fn
| Memi1: ('a ->'b) * 'a * 'b -> ('a, 'b, 'a * 'b) fn
let apply: ('arg,'result, _) fn -> 'arg -> 'result = fun f x ->
match f with
| Fun £ -> f x
| Mem1 (f,y,fy) -> if x = y then fy else f x

Error: This pattern matches values of type
($'arg, 'result, $'arg * 'result) fn
but a pattern was expected which matches values of type
($'arg, 'result, unit) fn
The type constructor $'arg would escape its scope

e $n (n a number) is an internally generated existential which could not be named using one of
the previous schemes.

As shown by the last item, the current behavior is imperfect and may be improved in future
versions.

p:gadt-equation-nonlocal-abstract Equations on non-local abstract types (Introduced in
OCaml 4.04)

GADT pattern-matching may also add type equations to non-local abstract types. The be-
haviour is the same as with local abstract types. Reusing the above eq type, one can write:

module M : sig type t val x : t val e : (t,int) eq end = struct
type t = int

let x = 33
let e = Eq
end

let x : int = let Eq = M.e in M.x

188

Of course, not all abstract types can be refined, as this would contradict the exhaustiveness
check. Namely, builtin types (those defined by the compiler itself, such as int or array), and
abstract types defined by the local module, are non-instantiable, and as such cause a type error
rather than introduce an equation.

8.11 Syntax for Bigarray access
(Introduced in Objective Caml 3.00)

expr = ..
| expr .{expr{, expr}?}
| expr .{expr{, expr} } <- expr

This extension provides syntactic sugar for getting and setting elements in the arrays provided
by the Bigarray[25.4] module.

The short expressions are translated into calls to functions of the Bigarray module as described
in the following table.

expression translation

expry .{ expry } Bigarray.Arrayl.get exprg expr;

expry .{ expry } <- expr Bigarray.Arrayl.set exprgy expry expr

expry .{ expr, , expry } Bigarray.Array2.get expry expry expry

expry .{ expr; , expry } <- expr Bigarray.Array2.set expry expry expro expr

expry .{ expr, , expry , exprs Bigarray.Array3.get exprg; expry expry exprj

expry .{ expr; , expry , exprs } <- expr | Bigarray.Array3.set expr, expr; expry exprs expr

expry .{ expr; ,..., expr, } Bigarray.Genarray.get exprg [| expr, , ..., expr, |]
expry .{ expry , ..., expr, } <- expr Bigarray.Genarray.set expr, [| expr; , ..., expr, |] expr

The last two entries are valid for any n > 3.

8.12 Attributes

(Introduced in OCaml 4.02, infix notations for constructs other than expressions added in 4.03)

Attributes are “decorations” of the syntax tree which are mostly ignored by the type-checker
but can be used by external tools. An attribute is made of an identifier and a payload, which
can be a structure, a type expression (prefixed with :), a signature (prefixed with :) or a pattern
(prefixed with ?) optionally followed by a when clause:

Chapter 8. Language extensions 189

lowercase-ident
capitalized-ident
attr-id . attr-id

attr-id

[module-items]

1 typexpr

: [specification]

? pattern [when expr]

attr-payload

The first form of attributes is attached with a postfix notation on “algebraic” categories:

attribute ::= [@ attr-id attr-payload]

expr = ..
| expr attribute
typexpr = ..
| typexpr attribute
pattern = ...
| pattern attribute
module-expr = ...
| module-expr attribute
module-type = ...
| module-type attribute
class-expr = ..
| class-expr attribute
class-type = ...
| class-type attribute

This form of attributes can also be inserted after the ~ tag-name in polymorphic variant type
expressions (tag-spec-first, tag-spec, tag-spec-full) or after the method-name in method-type.

The same syntactic form is also used to attach attributes to labels and constructors in type
declarations:

field-decl ::= [mutable] field-name : poly-typexpr {attribute}

constr-decl = (constr-name | ()) [of constr-args] {attribute}

Note: when a label declaration is followed by a semi-colon, attributes can also be put after the
semi-colon (in which case they are merged to those specified before).

190

The second form of attributes are attached to “blocks” such as type declarations, class fields,
etc:

Chapter 8. Language extensions 191

item-attribute

typedef

exception-definition

module-items

class-binding

class-spec

classtype-def

definition

specification

class-field-spec

class-field

[@@ attr-id attr-payload]

typedef item-attribute

exception constr-decl
exception constr-name = constr

[; ;] (definition | expr {item-attribute}) {[; ;| definition | ; ; expr {item-attribute}} [;
class-binding item-attribute
class-spec item-attribute

classtype-def item-attribute

let [rec| let-binding {and let-binding}

external value-name : typexpr = external-declaration {item-attribute}
type-definition

exception-definition {item-attribute}

class-definition

classtype-definition

module module-name {(module-name : module-type)} [: module-type]
= module-expr {item-attribute}

module type modtype-name = module-type {item-attribute}

open module-path {item-attribute}

include module-expr {item-attribute}

module rec module-name : module-type =

module-expr {item-attribute}

{and module-name : module-type = module-expr

{item-attribute} }

val value-name : typexpr {item-attribute}

external value-name : typexpr = external-declaration {item-attribute}
type-definition

exception constr-decl {item-attribute}

class-specification

classtype-definition

module module-name : module-type {item-attribute}

module module-name {(module-name : module-type)} : module-type {item-attribu
module type modtype-name {item-attribute}

module type modtype-name = module-type {item-attribute}

open module-path {item-attribute}

include module-type {item-attribute}

class-field-spec item-attribute

class-field item-attribute

192

A third form of attributes appears as stand-alone structure or signature items in the module or
class sub-languages. They are not attached to any specific node in the syntax tree:

floating-attribute ::= [@@Q attr-id attr-payload]

definition 1=

| floating-attribute

specification ::=

class-field-spec ::=

class-field ::=

| floating-attribute

| floating-attribute

| floating-attribute

(Note: contrary to what the grammar above describes, item-attributes cannot be attached to
these floating attributes in class-field-spec and class-field.)
It is also possible to specify attributes using an infix syntax. For instance:

let[@foo] x = 2 in x + 1 === (let x
begin[@foo] [@bar x] ... end === (begin
module[@foo] M = ... === module
typel[@foo] t = T === type t
method[@foo] m = ... === method

= -

—

m

For let, the attributes are applied to each bindings:

let[@foo] x = 2 and y = 3 in x + y === (let x
let[@foo] x = 2
and[@bar] y = 3 in x + y === (let x

8.12.1 Built-in attributes

Some attributes are understood by the type-checker:

2

[@@foo] in x + 1)

. end) [@foo] [@@bar x]

[@@foo]
[@@foo]
[@e@foo]

2 [@@foo] and y

2 [@@foo] and y

3inx+y)

3 [@bar] in x + y)

e “ocaml.warning” or “warning”, with a string literal payload. This can be used as floating
attributes in a signature/structure/object/object type. The string is parsed and has the
same effect as the -w command-line option, in the scope between the attribute and the end
of the current signature/structure/object/object type. The attribute can also be attached
to any kind of syntactic item which support attributes (such as an expression, or a type
expression) in which case its scope is limited to that item. Note that it is not well-defined
which scope is used for a specific warning. This is implementation dependent and can change
between versions. Some warnings are even completely outside the control of “ocaml.warning”

(for instance, warnings 1, 2, 14, 29 and 50).

Chapter 8. Language extensions 193

“ocaml.warnerror” or “warnerror”, with a string literal payload. Same as “ocaml.warning”,
for the -warn-error command-line option.

“ocaml.alert” or “alert”: see section 8.21.
“ocaml.deprecated” or “deprecated”: alias for the “deprecated” alert, see section 8.21.

“ocaml.deprecated_mutable” or “deprecated_mutable”. Can be applied to a mutable record
label. If the label is later used to modify the field (with “expr.l <- expr”), the “deprecated”
alert will be triggered. If the payload of the attribute is a string literal, the alert message
includes this text.

“ocaml.ppwarning” or “ppwarning”, in any context, with a string literal payload. The text
is reported as warning (22) by the compiler (currently, the warning location is the location
of the string payload). This is mostly useful for preprocessors which need to communicate
warnings to the user. This could also be used to mark explicitly some code location for further
inspection.

“ocaml.warn_on_literal_pattern” or “warn_on_literal_pattern” annotate constructors in type
definition. A warning (52) is then emitted when this constructor is pattern matched with a
constant literal as argument. This attribute denotes constructors whose argument is purely
informative and may change in the future. Therefore, pattern matching on this argument with
a constant literal is unreliable. For instance, all built-in exception constructors are marked
as “warn_on_literal_pattern”. Note that, due to an implementation limitation, this warning
(52) is only triggered for single argument constructor.

“ocaml.tailcall” or “tailcall” can be applied to function application in order to check that the
call is tailcall optimized. If it it not the case, a warning (51) is emitted.

@

“ocaml.inline” or “inline” take either “never”, “always” or nothing as payload on a function
or functor definition. If no payload is provided, the default value is “always”. This payload
controls when applications of the annotated functions should be inlined.

“ocaml.inlined” or “inlined” can be applied to any function or functor application to check
that the call is inlined by the compiler. If the call is not inlined, a warning (55) is emitted.

“ocaml.noalloc”, “ocaml.unboxed”and “ocaml.untagged” or “noalloc”, “unboxed” and “un-
tagged” can be used on external definitions to obtain finer control over the C-to-OCaml
interface. See 20.11 for more details.

“ocaml.immediate” or “immediate” applied on an abstract type mark the type as having
a non-pointer implementation (e.g. “int”, “bool”, “char” or enumerated types). Mutation
of these immediate types does not activate the garbage collector’s write barrier, which can
significantly boost performance in programs relying heavily on mutable state.

“ocaml.immediate64” or “immediate64” applied on an abstract type mark the type as hav-
ing a non-pointer implementation on 64 bit platforms. No assumption is made on other
platforms. In order to produce a type with the “immediate64“ attribute, one must use
“Sys.Immediate64.Make“ functor.

194

ocaml .unboxed or unboxed can be used on a type definition if the type is a single-field record
or a concrete type with a single constructor that has a single argument. It tells the compiler
to optimize the representation of the type by removing the block that represents the record
or the constructor (i.e. a value of this type is physically equal to its argument). In the case of
GADTs, an additional restriction applies: the argument must not be an existential variable,
represented by an existential type variable, or an abstract type constructor applied to an
existential type variable.

ocaml.boxed or boxed can be used on type definitions to mean the opposite of
ocaml.unboxed: keep the unoptimized representation of the type. When there is no
annotation, the default is currently boxed but it may change in the future.

ocaml.local or local take either never, always, maybe or nothing as payload on a func-
tion definition. If no payload is provided, the default is always. The attribute controls an
optimization which consists in compiling a function into a static continuation. Contrary to
inlining, this optimization does not duplicate the function’s body. This is possible when all
references to the function are full applications, all sharing the same continuation (for instance,
the returned value of several branches of a pattern matching). never disables the optimiza-
tion, always asserts that the optimization applies (otherwise a warning 55 is emitted) and
maybe lets the optimization apply when possible (this is the default behavior when the at-
tribute is not specified). The optimization is implicitly disabled when using the bytecode
compiler in debug mode (-g), and for functions marked with an ocaml.inline always or
ocaml.unrolled attribute which supersede ocaml.local.

module X = struct
[@@@warning "+9"] (x locally enable warning 9 in this structure =)

end

[@@deprecated "Please use module 'Y' instead."]

let

X = begin[@warning "+9"] [...] end

type t = A | B
[@@deprecated "Please use type 's' instead."]

let

fires_warning 22 x =

assert (x >= 0) [@ppwarning "TODO: remove this later"]

Warning 22: TODO: remove this later

let
|
I

let
I
I

rec is_a_tail_call = function
a0 ->0
:: q -> (is_a_tail_call[@tailcalll) g

rec not_a_tail_call = function
0 -> 1
X 11 q->x :: (not_a_tail_call[@tailcall]) g

Chapter 8. Language extensions

Warning 51: expected tailcall
let f x = x [@@inline]

let () = (f[@inlined]) ()

type fragile =
| Int of int [@warn_on_literal_pattern]
| String of string [@warn_on_literal_pattern]

let fragile_match_1 = function
| Int 0 -> ()
I _ > O

Warning 52: Code should not depend on the actual values of
this constructor 's arguments. They are only for information
and may change in future versions. (See manual section 9.5)
val fragile_match_1 : fragile -> unit = <fun>

let fragile_match_2 = function
| String "comstant" -> ()

I - > 0O

Warning 52: Code should not depend on the actual values of
this constructor 's arguments. They are only for information
and may change in future versions. (See manual section 9.5)
val fragile_match_2 : fragile -> unit = <fun>

module Immediate: sig
type t [@Q@immediate]
val x: t ref

end = struct
type t = A | B
let x = ref A

end

module Int_or_int64 : sig
type t [@Q@immediate64]
val zero : t
val one : t
val add : t >t > ¢
end = struct

include Sys.Immediate64.Make(Int) (Int64)

module type S = sig
val zero : t
val one : t
val add : t >t > ¢t

195

196

end

let impl : (module S) =
match repr with
| Immediate ->
(module Int : S)
| Non_immediate ->
(module Int64 : S)

include (val impl : S)
end

8.13 Extension nodes

(Introduced in OCaml 4.02, infix notations for constructs other than expressions added in 4.03,
infix notation (el ;%ext e2) added in 4.04.)

Extension nodes are generic placeholders in the syntax tree. They are rejected by the type-
checker and are intended to be “expanded” by external tools such as —ppx rewriters.

Extension nodes share the same notion of identifier and payload as attributes 8.12.

The first form of extension node is used for “algebraic” categories:

extension := [% attr-id attr-payload]
expr =
| extension
typexpr = ..
| extension
pattern =
| extension

module-expr = ...
| extension

module-type ::=
| extension
class-expr = ..
| extension
class-type =
| extension

A second form of extension node can be used in structures and signatures, both in the module
and object languages:

Chapter 8. Language extensions 197

item-extension := [%} attr-id attr-payload]
definition = ...
| item-extension

specification = ...
| item-extension
class-field-spec = ...
| item-extension

class-field = ..
| item-extension

An infix form is available for extension nodes when the payload is of the same kind (expression
with expression, pattern with pattern ...).
Examples:

let/foo x = 2 in x + 1 [%foo let x = 2 in x + 1]

begin)foo ... end === [}foo begin ... end]
x ;%foo 2 === [%foo x; 2]
module¥%foo M = .. === [}%foo module M = ...]

valYfoo x : t [%%foo: val x : t]

When this form is used together with the infix syntax for attributes, the attributes are considered
to apply to the payload:

funlfoo[@bar] x > x + 1 === [Jfoo (fun x -> x + 1)[@bar] 1;

Quoted strings {|...|} are particularly interesting for payloads that embed foreign syntax
fragments. Those fragments can be interpreted by a preprocessor and turned into OCaml code
without requiring escaping quotes. For instance, you can use [%sql {|...|2}] torepresent arbitrary
SQL statements — assuming you have a ppx-rewriter that recognizes the %sql extension.

Note that the word-delimited form, for example {sqll ... |sql}, should not be used for signaling
that an extension is in use. Indeed, the user cannot see from the code whether this string literal
has different semantics than they expect. Moreover, giving semantics to a specific delimiter limits
the freedom to change the delimiter to avoid escaping issues.

8.13.1 Built-in extension nodes

(Introduced in OCaml 4.03)
Some extension nodes are understood by the compiler itself:

e “ocaml.extension_constructor” or “extension_constructor” take as payload a constructor from
an extensible variant type (see 8.14) and return its extension constructor slot.

198

type t = ..

type t += X of int | Y of string
let x = [Jiextension_constructor X]
let y = [Jextension_constructor Y]

x <>y
- : bool = true
8.14 Extensible variant types

(Introduced in OCaml 4.02)

type-representation ::=

specification = ...
| type [type-params| typeconstr type-extension-spec
definition = ...
| type [type-params] typeconstr type-extension-def
type-extension-spec = += [private] [|] constr-decl {| constr-decl}
type-extension-def ::= += [private]| [|]| constr-def {| constr-def}
constr-def ::= constr-decl

| constr-name = constr

Extensible variant types are variant types which can be extended with new variant constructors.
Extensible variant types are defined using ... New variant constructors are added using +=.

module Expr = struct
type attr

type attr += Str of string

type attr +=
| Int of int
| Float of float
end
Pattern matching on an extensible variant type requires a default case to handle unknown
variant constructors

let to_string = function
| Expr.Str s -> s
| Expr.Int i -> Int.to_string i

| Expr.Float f -> string_of_float f
| -> nen

Chapter 8. Language extensions 199

A preexisting example of an extensible variant type is the built-in exn type used for exceptions.
Indeed, exception constructors can be declared using the type extension syntax:

type exn += Exc of int
Extensible variant constructors can be rebound to a different name. This allows exporting
variants from another module.

let not_in_scope = Str "Foo";;

Error: Unbound constructor Str

type Expr.attr += Str = Expr.Str

let now_works = Str "foo'";;
val now_works : Expr.attr = Expr.Str "foo"

Extensible variant constructors can be declared private. As with regular variants, this prevents
them from being constructed directly by constructor application while still allowing them to be de-
structured in pattern-matching.

module B : sig

type Expr.attr += private Bool of int

val bool : bool -> Expr.attr
end = struct

type Expr.attr += Bool of int

let bool p = if p then Bool 1 else Bool 0
end

let inspection_works = function

| B.Bool p -> (p = 1)

| _ -> true;;

val inspection_works : Expr.attr -> bool = <fun>

let construction_is_forbidden = B.Bool 1;;

Error: Cannot use private constructor Bool to create values of type Expr.attr

8.14.1 Private extensible variant types
(Introduced in OCaml 4.06)

type-representation ::=
| =private ..

Extensible variant types can be declared private. This prevents new constructors from being
declared directly, but allows extension constructors to be referred to in interfaces.

module Msg : sig
type t = private ..

200

module MkConstr (X : sig type t end) : sig
type t += C of X.t

end
end = struct
type t = ..

module MkConstr (X : sig type t end) = struct
type t += C of X.t
end
end

8.15 Generative functors
(Introduced in OCaml 4.02)
module-expr

functor () -> module-expr
module-expr ()

definition

module module-name {(module-name : module-type) | O} [: module-type]
= module-expr

module-type = ...
| functor () -> module-type

specification ::= ...
| module module-name {(module-name : module-type) | ()} : module-type

A generative functor takes a unit () argument. In order to use it, one must necessarily apply
it to this unit argument, ensuring that all type components in the result of the functor behave
in a generative way, i.e. they are different from types obtained by other applications of the same
functor. This is equivalent to taking an argument of signature sig end, and always applying to
struct end, but not to some defined module (in the latter case, applying twice to the same module
would return identical types).

As a side-effect of this generativity, one is allowed to unpack first-class modules in the body of
generative functors.

8.16 Extension-only syntax

(Introduced in OCaml 4.02.2, extended in 4.03)

Some syntactic constructions are accepted during parsing and rejected during type checking.
These syntactic constructions can therefore not be used directly in vanilla OCaml. However, -ppx
rewriters and other external tools can exploit this parser leniency to extend the language with these
new syntactic constructions by rewriting them to vanilla constructions.

Chapter 8. Language extensions 201

8.16.1 Extension operators

(Introduced in OCaml 4.02.2)

infix-symbol ::=
| # {operator-chars} # {operator-char | #}

Operator names starting with a # character and containing more than one # character are
reserved for extensions.

8.16.2 Extension literals
(Introduced in OCaml 4.03)

float-literal

[-] (0x | 0X) (0...9|A...F|a...£){0...9|A...F|a...£|_}
L {0...9|A...F|a...£| M[p|P)[+|-](0...9){0...9] N [g...z|G...2]

int-literal

| [[](0...9){0...9] }[g...2z]|G...Z]

| [-] (0x|0X) (0...9|A...F|a...£){0...9|A...F|a...£| }[g...2|G...2]
| [-] (00| 00) (0...7){0...7| }[g...2|G...Z]

| [] (ob|0B)(0...1){0...1| }[g...2z|G...2]

Int and float literals followed by an one-letter identifier in the range [g.. z | G.. Z] are extension-only
literals.

8.17 Inline records

(Introduced in OCaml 4.03)
constr-args =
| record-decl

The arguments of sum-type constructors can now be defined using the same syntax as records.
Mutable and polymorphic fields are allowed. GADT syntax is supported. Attributes can be
specified on individual fields.

Syntactically, building or matching constructors with such an inline record argument is similar
to working with a unary constructor whose unique argument is a declared record type. A pattern
can bind the inline record as a pseudo-value, but the record cannot escape the scope of the binding
and can only be used with the dot-notation to extract or modify fields or to build new constructor
values.

_l 1(0...9){0...9] }[.{0...9] Y(e|B)[|-1(0...9{0..9] Ylg...z|G...

202

type t =
| Point of {width: int; mutable x: float; mutable y: float}
| Other

let v = Point {width = 10; x = 0.; y = 0.}

let scale 1 = function
| Point p -> Point {p with x =1 *. p.x; y =1 *. p.y}
| Other -> Other

let print = function
| Point {x; y; _} -> Printf.printf "%f/%f" x y
| Other -> O

let reset = function
| Point p -> p.x <= 0.; p.y <= 0.
| Other -> ()

let invalid = function
| Point p -> p

Error: This form is not allowed as the type of the inlined record could escape.

8.18 Documentation comments

(Introduced in OCaml 4.03)
Comments which start with ** are treated specially by the compiler. They are automatically
converted during parsing into attributes (see 8.12) to allow tools to process them as documentation.
Such comments can take three forms: floating comments, item comments and label comments.
Any comment starting with ** which does not match one of these forms will cause the compiler to

emit warning 50.

Comments which start with ** are also used by the ocamldoc documentation generator (see
16). The three comment forms recognised by the compiler are a subset of the forms accepted by
ocamldoc (see 16.2).

8.18.1 Floating comments

Comments surrounded by blank lines that appear within structures, signatures, classes or class
types are converted into floating-attributes. For example:

type t = T
(x* Now some definitions for [t])

let mkT =T
will be converted to:

Chapter 8. Language extensions 203

type t = T
[@@Qocaml.text " Now some definitions for [t] "]

let mkT =T

8.18.2 Item comments

Comments which appear immediately before or immediately after a structure item, signature item,
class item or class type item are converted into item-attributes. Immediately before or immediately
after means that there must be no blank lines, ; ;, or other documentation comments between them.
For example:

type t =T

(#x A description of [t] *)
or

(xx A description of [t] x)

type t =T

will be converted to:

type t = T
[@@ocaml.doc " A description of [t] "]
Note that, if a comment appears immediately next to multiple items, as in:

type t = T
(% An ambiguous comment)
type s = S

then it will be attached to both items:
type t = T
[@@ocaml.doc " An ambiguous comment "]
type s = S

[@@ocaml.doc " An ambiguous comment "]
and the compiler will emit warning 50.

8.18.3 Label comments

Comments which appear immediately after a labelled argument, record field, variant constructor,
object method or polymorphic variant constructor are are converted into attributes. Immediately
after means that there must be no blank lines or other documentation comments between them.
For example:

type tl = 1bl:int (s Labelled argument) => unit

type t2 = {
f1d: int; (xx Record field =)
£f1d2: float;

}

204

type t3 =
| Cstr of string (xx Variant constructor x)
| Cstr2 of string

type t4 = < meth: int * int; (s Object method %) >

1
“PCstr (x* Polymorphic variant constructor)
]

will be converted to:

type tb5

type tl = 1bl:(int [Q@ocaml.doc " Labelled argument "]) -> unit
type t2 = {
fld: int [@ocaml.doc " Record field "];
f1d2: float;
}
type t3 =

| Cstr of string [@ocaml.doc " Variant constructor "]
| Cstr2 of string

type t4 = < meth : int * int [Qocaml.doc " Object method "] >

type t5 = [
"PCstr [Q@ocaml.doc " Polymorphic variant constructor "]

]

Note that label comments take precedence over item comments, so:

type t = T of string
(s Attaches to T not t *)
will be converted to:

type t = T of string [@ocaml.doc " Attaches to T not t "]
whilst:

type t = T of string
(xx Attaches to T not t *)
(xx Attaches to t *)

will be converted to:

type t = T of string [@ocaml.doc " Attaches to T not t "]
[@Q@ocaml.doc " Attaches to t "]
In the absence of meaningful comment on the last constructor of a type, an empty comment (**)
can be used instead:

type t = T of string

(%)

Chapter 8. Language extensions 205

(+ Attaches to t)
will be converted directly to

type t = T of string
[@@ocaml.doc " Attaches to t "]

8.19 Extended indexing operators

(Introduced in 4.06)

dot-ext =
| dot-operator-char {operator-char}
dot-operator-char := ! |? | core-operator-char | % | :
expr =

| expr . [module-path .| dot-ext (Cexpr) | [expr] | { expr }) [<- expr]

operator-name =

| . dot-ext (OO | [1]43})[<]

This extension provides syntactic sugar for getting and setting elements for user-defined indexed
types. For instance, we can define python-like dictionaries with

module Dict = struct
include Hashtbl
let (.%{}) tabl index = find tabl index
let (.%{}<-) tabl index value = add tabl index value
end
let dict =
let dict = Dict.create 10 in
let O =
dict.Dict.%{"one"} <- 1;
let open Dict in
dict.%{"two"} <- 2 in
dict
dict.Dict.%{"one"};;

- : int =1

let open Dict in dict.%{"two"};;
- : int = 2

206

8.19.1 Multi-index notation

expr

expr . [module-path .| dot-ext [expr {; expr}™ 1 [<- expr]

| expr . [module-path .| dot-ext (expr {; expr}*) [<- expr]
|
| expr . [module-path .| dot-ext { expr {; expr}* } [<- expr]

operator-name =

| . dot-ext (G;..) | [;..1]4;5..}) [<]

Multi-index are also supported through a second variant of indexing operators

let (.%[;..1)

Bigarray.Genarray.get
let (.%{;..}) = Bigarray.Genarray.get
let (.%(;..)) = Bigarray.Genarray.get
which is called when an index literals contain a semicolon separated list of expressions with two

and more elements:

let sum x y = x.%[1;2;3] + y.%[1;2]
(* is equivalent to *)
let sum x y = C(.%[;..1) x [11;2;311 + C.%0;..1) v [11;21]
In particular this multi-index notation makes it possible to uniformly handle indexing Genarray
and other implementations of multidimensional arrays.

module A = Bigarray.Genarray

let (.%{;..}) = A.get

let (.%{;..}<-) = A.set

let (.%{ }) ak = A.get a [lkl|]

let (.%{ }<-) a k x = A.set a [l|kl|] x

let syntax_compare vec mat t3 t4 =

vec.%{0} = A.get vec [|0]]

&% mat.%{0;0} = A.get mat [|0;0]]
& t3.%{0;0;0} = A.get t3 [10;0;01]
&& t4.%{0;0;0;0} = t4.{0,0,0,0}

8.20 Empty variant types
(Introduced in 4.07.0)

type-representation = ...
| =1

This extension allows user to define empty variants. Empty variant type can be eliminated by
refutation case of pattern matching.

type t = |
let £ (x: t) = match x with _ -> .

Chapter 8. Language extensions 207

8.21 Alerts

(Introduced in 4.08)

Since OCaml 4.08, it is possible to mark components (such as value or type declarations)
in signatures with “alerts” that will be reported when those components are referenced. This
generalizes the notion of “deprecated” components which were previously reported as warning 3.
Those alerts can be used for instance to report usage of unsafe features, or of features which are
only available on some platforms, etc.

Alert categories are identified by a symbolic identifier (a lowercase identifier, following the usual
lexical rules) and an optional message. The identifier is used to control which alerts are enabled,
and which ones are turned into fatal errors. The message is reported to the user when the alert is
triggered (i.e. when the marked component is referenced).

The ocaml.alert or alert attribute serves two purposes: (i) to mark component with an
alert to be triggered when the component is referenced, and (ii) to control which alert names are
enabled. In the first form, the attribute takes an identifier possibly followed by a message. Here is
an example of a value declaration marked with an alert:

module U: sig
val fork: unit -> bool
[@@alert unix "This function is only available under Unix."]
end

Here unix is the identifier for the alert. If this alert category is enabled, any reference to U.fork
will produce a message at compile time, which can be turned or not into a fatal error.

And here is another example as a floating attribute on top of an “mli” file (i.e. before any other
non-attribute item) or on top of an “ml” file without a corresponding interface file, so that any
reference to that unit will trigger the alert:

[@@0Galert unsafe "This module is unsafe!"]

Controlling which alerts are enabled and whether they are turned into fatal errors is done either
through the compiler’s command-line option -alert <spec> or locally in the code through the
alert or ocaml.alert attribute taking a single string payload <spec>. In both cases, the syntax
for <spec> is a concatenation of items of the form:

e +id enables alert id.

e -id disables alert id.

e ++id turns alert id into a fatal error.

e —id turns alert id into non-fatal mode.

¢ @id equivalent to ++id+id (enables id and turns it into a fatal-error)

As a special case, if id is all, it stands for all alerts.
Here are some examples:

208

(* Disable all alerts, reenables just unix (as a soft alert) and window
(as a fatal-error), for the rest of the current structure *)

[@@Galert "-all--all+unix@window"]

let x =
(* Locally disable the window alert x*)
begin[@alert "-window"]

end

Before OCaml 4.08, there was support for a single kind of deprecation alert. It is now known
as the deprecated alert, but legacy attributes to trigger it and the legacy ways to control it as
warning 3 are still supported. For instance, passing -w +3 on the command-line is equivant to
-alert +deprecated, and:

val x: int
[@@Gocaml.deprecated "Please do something else"]

is equivalent to:

val x: int
[@@Gocaml.alert deprecated "Please do something else"]

8.22 Generalized open statements

(Introduced in 4.08)

definition = ...
| open module-expr
| open! module-expr
specification = ...
| open extended-module-path
| open! extended-module-path
expr

let open module-expr in expr
let open! module-expr in expr

This extension makes it possible to open any module expression in module structures and
expressions. A similar mechanism is also available inside module types, but only for extended
module paths (e.g. F(X).G(Y)).

For instance, a module can be constrained when opened with

Chapter 8. Language extensions 209

module M = struct let x = 0 let hidden = 1 end
open (M:sig val x: int end)
let y = hidden

Error: Unbound value hidden
Another possibility is to immediately open the result of a functor application

let sort (type x) (x:x list) =
let open Set.Make(struct type t = x let compare=compare end) in
elements (of_list x)
val sort : 'x list -> 'x list = <fun>

Going further, this construction can introduce local components inside a structure,

module M = struct
let x =0
open! struct
let x =0
let y 1
end
let w=x+y
end

module M : sig val x : int val w : int end

One important restriction is that types introduced by open struct... end cannot appear in the
signature of the enclosing structure, unless they are defined equal to some non-local type. So:

module M = struct

open struct type 'a t = 'a option = None | Some of 'a end
let x : int t = Some 1
end

module M : sig val x : int option end
is OK, but:

module M = struct
open struct type t = A end
let x = A

end

Error: The type t/4516 introduced by this open appears in the signature
File "exten.etex", line 3, characters 6-7:
The value x has no valid type if t/4516 is hidden

is not because x cannot be given any type other than t, which only exists locally. Although the
above would be OK if x too was local:

module M: sig end = struct
open struct
type t = A
end

210

open struct let x = A end

end
module M : sig end

Inside signatures, extended opens are limited to extended module paths,

module type S = sig
module F: sig end -> sig type t end
module X: sig end

open F(X)
val f: t
end

module type S =
sig
module F : sig end -> sig type t end
module X : sig end
val £ : F(X).t
end

and not
open struct type t = int end

In those situations, local substitutions(see 8.7.2) can be used instead.
Beware that this extension is not available inside class definitions:

class ¢ =
let open Set.Make(Int) in

8.23 Binding operators

(Introduced in 4.08.0)

let-operator ::=
| let (core-operator-char | <) {dot-operator-char}

and-operator =
| and (core-operator-char | <) {dot-operator-char}
operator-name = ...
| let-operator
| and-operator
expr = ...
| let-operator let-binding {and-operator let-binding} in expr

Chapter 8. Language extensions 211

Users can define let operators:

let (let*) o f =
match o with
| None -> None
| Some x —> f x

let return x = Some x
val (let*) : 'a option -> ('a -> 'b option) -> 'b option = <fun>
val return : 'a -> 'a option = <fun>

and then apply them using this convenient syntax:

let find_and_sum tbl k1 k2 =
let* x1 = Hashtbl.find_opt tbl ki1 in
let*x x2 = Hashtbl.find_opt tbl k2 in
return (x1 + x2)
val find_and_sum : ('a, int) Hashtbl.t -> 'a -> 'a -> int option = <fun>
which is equivalent to this expanded form:

let find_and_sum tbl k1 k2 =
(let*) (Hashtbl.find_opt tbl k1)
(fun x1 ->
(let*) (Hashtbl.find_opt tbl k2)
(fun x2 -> return (x1 + x2)))
val find_and_sum : ('a, int) Hashtbl.t -> 'a -> 'a -> int option = <fun>

Users can also define and operators:

module ZipSeq = struct
type 'a t = 'a Seq.t
open Seq

let rec return x =
fun () -> Cons(x, return x)

let rec prod a b =

fun O ->
match a O, b () with
| Nil, _ | _, Nil -> Nil

| Cons(x, a), Cons(y, b) -> Cons((x, y), prod a b)

let (let+) £ s = map s £
let (and+) a b = prod a b

end

212

module ZipSeq :

sig
type 'a t = 'a Seq.t
val return : 'a -> 'a Seq.t

val prod : 'a Seq.t -> 'b Seq.t -> ('a * 'b) Seq.t

val (let+) : 'a Seq.t -> ('a -> 'b) -> 'b Seq.t

val (and+) : 'a Seq.t -> 'b Seq.t -> ('a * 'b) Seq.t
end

to support the syntax:

open ZipSeq
let sum3 z1 z2 z3 =
let+ x1 = z1
and+ x2 = z2
and+ x3 = z3 in
xl + x2 + x3
val sum3 : int Seq.t -> int Seq.t -> int Seq.t -> int Seq.t = <fun>

which is equivalent to this expanded form:

open ZipSeq
let sum3 zl1 z2 z3 =
(let+) ((and+) ((and+) zl z2) z3)
(fun ((x1, x2), x3) —> x1 + x2 + x3)
val sum3 : int Seq.t -> int Seq.t -> int Seq.t -> int Seq.t

<fun>

8.23.1 Rationale

This extension is intended to provide a convenient syntax for working with monads and applicatives.
An applicative should provide a module implementing the following interface:

module type Applicative_syntax = sig

type 'a t
val (let+) : 'at -> ('a -> 'b) -=> 'b t
val (and+): 'at -> 'bt -> ('a * 'b) t
end
where (let+) is bound to the map operation and (and+) is bound to the monoidal product
operation.

A monad should provide a module implementing the following interface:

module type Monad_syntax = sig
include Applicative_syntax
val (letx) : 'at -> ('a-> 'bt) -> 'bt
val (and*): 'at -> 'bt -> ('a * 'b) t
end
where (let*) is bound to the bind operation, and (and*) is also bound to the monoidal product
operation.

Part 111

The OCaml tools

213

Chapter 9

Batch compilation (ocamlc)

This chapter describes the OCaml batch compiler ocamlc, which compiles OCaml source files to
bytecode object files and links these object files to produce standalone bytecode executable files.
These executable files are then run by the bytecode interpreter ocamlrun.

9.1 Overview of the compiler

The ocamlc command has a command-line interface similar to the one of most C compilers. It
accepts several types of arguments and processes them sequentially, after all options have been
processed:

e Arguments ending in .mli are taken to be source files for compilation unit interfaces. Inter-
faces specify the names exported by compilation units: they declare value names with their
types, define public data types, declare abstract data types, and so on. From the file z.ml11,
the ocamlc compiler produces a compiled interface in the file z.cmi.

o Arguments ending in .ml are taken to be source files for compilation unit implementations.
Implementations provide definitions for the names exported by the unit, and also contain
expressions to be evaluated for their side-effects. From the file z.m1, the ocamlc compiler
produces compiled object bytecode in the file z. cmo.

If the interface file x.m1i exists, the implementation x.ml is checked against the corresponding
compiled interface x.cmi, which is assumed to exist. If no interface z.mli is provided, the
compilation of z.ml produces a compiled interface file z.cmi in addition to the compiled
object code file z.cmo. The file z.cmi produced corresponds to an interface that exports
everything that is defined in the implementation z.ml.

o Arguments ending in .cmo are taken to be compiled object bytecode. These files are linked
together, along with the object files obtained by compiling .m1 arguments (if any), and the
OCaml standard library, to produce a standalone executable program. The order in which
.cmo and .ml arguments are presented on the command line is relevant: compilation units
are initialized in that order at run-time, and it is a link-time error to use a component of a
unit before having initialized it. Hence, a given z.cmo file must come before all .cmo files
that refer to the unit z.

215

216

o Arguments ending in .cma are taken to be libraries of object bytecode. A library of object
bytecode packs in a single file a set of object bytecode files (.cmo files). Libraries are built
with ocamlc -a (see the description of the —a option below). The object files contained in the
library are linked as regular .cmo files (see above), in the order specified when the .cma file
was built. The only difference is that if an object file contained in a library is not referenced
anywhere in the program, then it is not linked in.

o Arguments ending in .c are passed to the C compiler, which generates a .o object file (.obj
under Windows). This object file is linked with the program if the —custom flag is set (see
the description of -custom below).

o Arguments ending in .o or .a (.obj or .1ib under Windows) are assumed to be C object
files and libraries. They are passed to the C linker when linking in —custom mode (see the
description of -custom below).

o Arguments ending in .so (.d11 under Windows) are assumed to be C shared libraries (DLLs).
During linking, they are searched for external C functions referenced from the OCaml code,
and their names are written in the generated bytecode executable. The run-time system
ocamlrun then loads them dynamically at program start-up time.

The output of the linking phase is a file containing compiled bytecode that can be executed by
the OCaml bytecode interpreter: the command named ocamlrun. If a.out is the name of the file
produced by the linking phase, the command

ocamlrun a.out arg; args ... arg,

executes the compiled code contained in a.out, passing it as arguments the character strings
arg; to arg,. (See chapter 11 for more details.)
On most systems, the file produced by the linking phase can be run directly, as in:

./a.out arg; argy ... arg,

The produced file has the executable bit set, and it manages to launch the bytecode interpreter
by itself.

The compiler is able to emit some information on its internal stages. It can output .cmt files
for the implementation of the compilation unit and .cmti for signatures if the option -bin-annot
is passed to it (see the description of ~bin-annot below). Each such file contains a typed abstract
syntax tree (AST), that is produced during the type checking procedure. This tree contains all
available information about the location and the specific type of each term in the source file. The
AST is partial if type checking was unsuccessful.

These .cmt and .cmti files are typically useful for code inspection tools.

9.2 Options

The following command-line options are recognized by ocamlc. The options -pack, -a, -c and
-output-obj are mutually exclusive.

Chapter 9. Batch compilation (ocamlc) 217

-a Build a library(. cma file) with the object files (.cmo files) given on the command line, instead
of linking them into an executable file. The name of the library must be set with the —-o option.

If ~custom, -cclib or -ccopt options are passed on the command line, these options are
stored in the resulting .cmalibrary. Then, linking with this library automatically adds back
the ~custom, -cclib and -ccopt options as if they had been provided on the command line,
unless the -noautolink option is given.

—absname
Force error messages to show absolute paths for file names.

-annot
Dump detailed information about the compilation (types, bindings, tail-calls, etc). The in-
formation for file src.ml is put into file src.annot. In case of a type error, dump all the
information inferred by the type-checker before the error. The src.annot file can be used
with the emacs commands given in emacs/caml-types.el to display types and other anno-
tations interactively.

-args filename
Read additional newline-terminated command line arguments from filename.

-args0 filename
Read additional null character terminated command line arguments from filename.

-bin-annot
Dump detailed information about the compilation (types, bindings, tail-calls, etc) in bi-
nary format. The information for file src.ml (resp. src.mli) is put into file src.cmt (resp.
src.cmti). In case of a type error, dump all the information inferred by the type-checker be-
fore the error. The *.cmt and *. cmti files produced by -bin-annot contain more information
and are much more compact than the files produced by -annot.

-c Compile only. Suppress the linking phase of the compilation. Source code files are turned into
compiled files, but no executable file is produced. This option is useful to compile modules
separately.

-cc ccomp
Use ccomp as the C linker when linking in “custom runtime” mode (see the ~custom option)
and as the C compiler for compiling .c source files.

-cclib -1llibname
Pass the -1libname option to the C linker when linking in “custom runtime” mode (see the
-custom option). This causes the given C library to be linked with the program.

—-ccopt option
Pass the given option to the C compiler and linker. When linking in “custom runtime” mode,
for instance-ccopt -Ldir causes the C linker to search for C libraries in directory dir.(See
the -custom option.)

218

-color mode
Enable or disable colors in compiler messages (especially warnings and errors). The following
modes are supported:

auto
use heuristics to enable colors only if the output supports them (an ANSI-compatible
tty terminal);

always
enable colors unconditionally;

never
disable color output.

The default setting is 'auto’, and the current heuristic checks that the TERM environment
variable exists and is not empty or dumb, and that ’isatty(stderr)’ holds.

The environment variable OCAML_COLOR is considered if —color is not provided. Its values
are auto/always/never as above.

-error-style mode
Control the way error messages and warnings are printed. The following modes are supported:

short
only print the error and its location;

contextual
like short, but also display the source code snippet corresponding to the location of the
erTor.

The default setting is contextual.

The environment variable 0CAML_ERROR_STYLE is considered if ~error-style is not provided.
Its values are short/contextual as above.

—-compat-32
Check that the generated bytecode executable can run on 32-bit platforms and signal an error
if it cannot. This is useful when compiling bytecode on a 64-bit machine.

-config
Print the version number of ocamlc and a detailed summary of its configuration, then exit.

-config-var var
Print the value of a specific configuration variable from the —config output, then exit. If the
variable does not exist, the exit code is non-zero. This option is only available since OCaml
4.08, so script authors should have a fallback for older versions.

—custom
Link in “custom runtime” mode. In the default linking mode, the linker produces bytecode
that is intended to be executed with the shared runtime system, ocamlrun. In the custom
runtime mode, the linker produces an output file that contains both the runtime system and
the bytecode for the program. The resulting file is larger, but it can be executed directly, even

Chapter 9. Batch compilation (ocamlc) 219

if the ocamlrun command is not installed. Moreover, the “custom runtime” mode enables
static linking of OCaml code with user-defined C functions, as described in chapter 20.

Unix:

Never use the strip command on executables produced by ocamlc -custom,
this would remove the bytecode part of the executable.

Unix:

Security warning: never set the “setuid” or “setgid” bits on executables pro-
duced by ocamlc -custom, this would make them vulnerable to attacks.

-depend ocamldep-args

Compute dependencies, as the ocamldep command would do. The remaining arguments are
interpreted as if they were given to the ocamldep command.

-d11ib -1libname

Arrange for the C shared library dlllibname.so (dlllibname.dll under Windows) to be
loaded dynamically by the run-time system ocamlrun at program start-up time.

-dllpath dir

Adds the directory dir to the run-time search path for shared C libraries. At link-time, shared
libraries are searched in the standard search path (the one corresponding to the -I option).
The -d1lpath option simply stores dir in the produced executable file, where ocamlrun can
find it and use it as described in section 11.3.

-for-pack module-path

g

Generate an object file (.cmo) that can later be included as a sub-module (with the given
access path) of a compilation unit constructed with -pack. For instance, ocamlc -for-pack P
-¢ A.ml will generate a..cmo that can later be used with ocamlc -pack -o P.cmo a.cmo. Note:
you can still pack a module that was compiled without —~for-pack but in this case exceptions
will be printed with the wrong names.

Add debugging information while compiling and linking. This option is required in order
to be able to debug the program with ocamldebug (see chapter 17), and to produce stack
backtraces when the program terminates on an uncaught exception (see section 11.2).

Cause the compiler to print all defined names (with their inferred types or their definitions)
when compiling an implementation (.ml file). No compiled files (.cmo and .cmi files) are
produced. This can be useful to check the types inferred by the compiler. Also, since the
output follows the syntax of interfaces, it can help in writing an explicit interface (.mli file)
for a file: just redirect the standard output of the compiler to a .mli file, and edit that file
to remove all declarations of unexported names.

-I directory

Add the given directory to the list of directories searched for compiled interface files (.cmi),
compiled object code files .cmo, libraries (.cma) and C libraries specified with -cclib -1xxx.

220

By default, the current directory is searched first, then the standard library directory. Di-
rectories added with -I are searched after the current directory, in the order in which they
were given on the command line, but before the standard library directory. See also option
-nostdlib.

If the given directory starts with +, it is taken relative to the standard library directory. For
instance, -I +unix adds the subdirectory unix of the standard library to the search path.

-impl filename

Compile the file filename as an implementation file, even if its extension is not .ml.

-intf filename

Compile the file filename as an interface file, even if its extension is not .mli.

—intf-suffix string

Recognize file names ending with string as interface files (instead of the default .mli).

-labels

Labels are not ignored in types, labels may be used in applications, and labelled parameters
can be given in any order. This is the default.

-linkall

Force all modules contained in libraries to be linked in. If this flag is not given, unreferenced
modules are not linked in. When building a library (option -a), setting the -~1inkall option
forces all subsequent links of programs involving that library to link all the modules contained
in the library. When compiling a module (option -c), setting the -1inkall option ensures
that this module will always be linked if it is put in a library and this library is linked.

-make-runtime

Build a custom runtime system (in the file specified by option -o) incorporating the C object
files and libraries given on the command line. This custom runtime system can be used later
to execute bytecode executables produced with the ocamlc -use-runtime runtime-name
option. See section 20.1.6 for more information.

-match-context-rows

Set the number of rows of context used for optimization during pattern matching compilation.
The default value is 32. Lower values cause faster compilation, but less optimized code. This
advanced option is meant for use in the event that a pattern-match-heavy program leads to
significant increases in compilation time.

-no-alias-deps

Do not record dependencies for module aliases. See section 8.8 for more information.

-no-app-funct

Deactivates the applicative behaviour of functors. With this option, each functor application
generates new types in its result and applying the same functor twice to the same argument
yields two incompatible structures.

Chapter 9. Batch compilation (ocamlc) 221

-noassert
Do not compile assertion checks. Note that the special form assert false is always compiled
because it is typed specially. This flag has no effect when linking already-compiled files.

-noautolink
When linking . cmalibraries, ignore -custom, -cclib and -ccopt options potentially contained
in the libraries (if these options were given when building the libraries). This can be useful
if a library contains incorrect specifications of C libraries or C options; in this case, during
linking, set -noautolink and pass the correct C libraries and options on the command line.

-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter
order becomes strict.

-nostdlib
Do not include the standard library directory in the list of directories searched for compiled
interface files (.cmi), compiled object code files (.cmo), libraries (.cma), and C libraries
specified with —cclib -1xxx. See also option -I.

-o exec-file
Specify the name of the output file produced by the compiler. The default output name is
a.out under Unix and camlprog.exe under Windows. If the —a option is given, specify the
name of the library produced. If the -pack option is given, specify the name of the packed
object file produced. If the —output-obj option is given, specify the name of the output file
produced. If the —c option is given, specify the name of the object file produced for the next
source file that appears on the command line.

-opaque
When the native compiler compiles an implementation, by default it produces a .cmx file
containing information for cross-module optimization. It also expects .cmx files to be present
for the dependencies of the currently compiled source, and uses them for optimization. Since
OCaml 4.03, the compiler will emit a warning if it is unable to locate the .cmx file of one of
those dependencies.

The -opaque option, available since 4.04, disables cross-module optimization information
for the currently compiled unit. When compiling .mli interface, using -opaque marks the
compiled .cmi interface so that subsequent compilations of modules that depend on it will
not rely on the corresponding .cmx file, nor warn if it is absent. When the native compiler
compiles a .ml implementation, using -opaque generates a .cmx that does not contain any
cross-module optimization information.

Using this option may degrade the quality of generated code, but it reduces compilation
time, both on clean and incremental builds. Indeed, with the native compiler, when the
implementation of a compilation unit changes, all the units that depend on it may need to
be recompiled — because the cross-module information may have changed. If the compilation
unit whose implementation changed was compiled with —opaque, no such recompilation needs
to occur. This option can thus be used, for example, to get faster edit-compile-test feedback
loops.

222

-open Module
Opens the given module before processing the interface or implementation files. If several
-open options are given, they are processed in order, just as if the statements open! Modulel; ;
. open! ModuleN;; were added at the top of each file.

-output-obj
Cause the linker to produce a C object file instead of a bytecode executable file. This is
useful to wrap OCaml code as a C library, callable from any C program. See chapter 20,
section 20.7.5. The name of the output object file must be set with the —o option. This
option can also be used to produce a C source file (. c extension) or a compiled shared/dynamic
library (.so extension, .d11 under Windows).

-output-complete-exe
Build a self-contained executable by linking a C object file containing the bytecode program,
the OCaml runtime system and any other static C code given to ocamlc. The resulting effect
is similar to —custom, except that the bytecode is embedded in the C code so it is no longer
accessible to tools such as ocamldebug. On the other hand, the resulting binary is resistant
to strip.

-pack
Build a bytecode object file (.cmo file) and its associated compiled interface (.cmi) that
combines the object files given on the command line, making them appear as sub-modules of
the output .cmo file. The name of the output .cmo file must be given with the -o option.
For instance,

ocamlc -pack -o p.cmo a.cmo b.cmo c.cmo

generates compiled files p.cmo and p.cmi describing a compilation unit having three sub-
modules A, B and C, corresponding to the contents of the object files a.cmo, b.cmo and c. cmo.
These contents can be referenced as P.A, P.B and P.C in the remainder of the program.

-pp command
Cause the compiler to call the given command as a preprocessor for each source file. The
output of command is redirected to an intermediate file, which is compiled. If there are no
compilation errors, the intermediate file is deleted afterwards.

-ppx command
After parsing, pipe the abstract syntax tree through the preprocessor command. The module
Ast_mapper, described in section 26.1, implements the external interface of a preprocessor.

-principal
Check information path during type-checking, to make sure that all types are derived in
a principal way. When using labelled arguments and/or polymorphic methods, this flag is
required to ensure future versions of the compiler will be able to infer types correctly, even
if internal algorithms change. All programs accepted in -principal mode are also accepted
in the default mode with equivalent types, but different binary signatures, and this may slow
down type checking; yet it is a good idea to use it once before publishing source code.

Chapter 9. Batch compilation (ocamlc) 223

-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where
the recursion goes through an object type are supported.Note that once you have created an
interface using this flag, you must use it again for all dependencies.

-runtime-variant suffiz
Add the suffiz string to the name of the runtime library used by the program. Currently, only
one such suffix is supported: d, and only if the OCaml compiler was configured with option
-with-debug-runtime. This suffix gives the debug version of the runtime, which is useful for
debugging pointer problems in low-level code such as C stubs.

-stop-after pass
Stop compilation after the given compilation pass. The currently supported passes are:
parsing, typing.

-safe-string
Enforce the separation between types string and bytes, thereby making strings read-only.
This is the default.

-short-paths
When a type is visible under several module-paths, use the shortest one when printing the
type’s name in inferred interfaces and error and warning messages. Identifier names starting
with an underscore _ or containing double underscores __ incur a penalty of +10 when

computing their length.

-strict-sequence
Force the left-hand part of each sequence to have type unit.

-strict-formats
Reject invalid formats that were accepted in legacy format implementations. You should use
this flag to detect and fix such invalid formats, as they will be rejected by future OCaml
versions.

-unboxed-types
When a type is unboxable (i.e. a record with a single argument or a concrete datatype
with a single constructor of one argument) it will be unboxed unless annotated with
[@@ocaml . boxed].

-no—unboxed-types
When a type is unboxable it will be boxed unless annotated with [@@ocaml.unboxed]. This
is the default.

-unsafe
Turn bound checking off for array and string accesses (the v.(i) and s.[i] constructs).
Programs compiled with -unsafe are therefore slightly faster, but unsafe: anything can
happen if the program accesses an array or string outside of its bounds. Additionally, turn
off the check for zero divisor in integer division and modulus operations. With -unsafe, an
integer division (or modulus) by zero can halt the program or continue with an unspecified
result instead of raising a Division_by_zero exception.

224

-unsafe-string
Identify the types string and bytes, thereby making strings writable. This is intended for
compatibility with old source code and should not be used with new software.

-use-runtime runtime-name
Generate a bytecode executable file that can be executed on the custom runtime system
runtime-name, built earlier with ocamlc -make-runtime runtime-name. See section 20.1.6
for more information.

-v Print the version number of the compiler and the location of the standard library directory,
then exit.

-verbose
Print all external commands before they are executed, in particular invocations of the C
compiler and linker in -custom mode. Useful to debug C library problems.

-version or -vnum
Print the version number of the compiler in short form (e.g. 3.11.0), then exit.

-w warning-list
Enable, disable, or mark as fatal the warnings specified by the argument warning-list. Each
warning can be enabled or disabled, and each warning can be fatal or non-fatal. If a warning
is disabled, it isn’t displayed and doesn’t affect compilation in any way (even if it is fatal).
If a warning is enabled, it is displayed normally by the compiler whenever the source code
triggers it. If it is enabled and fatal, the compiler will also stop with an error after displaying
it.

The warning-list argument is a sequence of warning specifiers, with no separators between
them. A warning specifier is one of the following:

+num
Enable warning number num.

-num
Disable warning number num.

@num
Enable and mark as fatal warning number num.

+numl..num2
Enable warnings in the given range.

-numl..num2
Disable warnings in the given range.

@numl..num2
Enable and mark as fatal warnings in the given range.

+letter
Enable the set of warnings corresponding to letter. The letter may be uppercase or
lowercase.

Chapter 9. Batch compilation (ocamlc) 225

~letter
Disable the set of warnings corresponding to letter. The letter may be uppercase or
lowercase.

Qletter
Enable and mark as fatal the set of warnings corresponding to letter. The letter may be
uppercase or lowercase.

uppercase-letter
Enable the set of warnings corresponding to uppercase-letter.

lowercase-letter
Disable the set of warnings corresponding to lowercase-letter.

Warning numbers and letters which are out of the range of warnings that are currently defined
are ignored. The warnings are as follows.

Suspicious-looking start-of-comment mark.

Suspicious-looking end-of-comment mark.

Deprecated synonym for the ’deprecated’ alert

DU VI

Fragile pattern matching: matching that will remain complete even if additional con-
structors are added to one of the variant types matched.

Partially applied function: expression whose result has function type and is ignored.
Label omitted in function application.
Method overridden.

Partial match: missing cases in pattern-matching.

© 0w o O

Missing fields in a record pattern.

10 Expression on the left-hand side of a sequence that doesn’t have type unit (and that is
not a function, see warning number 5).

11 Redundant case in a pattern matching (unused match case).
12 Redundant sub-pattern in a pattern-matching.
13 Instance variable overridden.

14 TIllegal backslash escape in a string constant.
15 Private method made public implicitly.

16 Unerasable optional argument.

17 Undeclared virtual method.

18 Non-principal type.

19 Type without principality.

20 Unused function argument.

21 Non-returning statement.

22 Preprocessor warning.

23 Useless record with clause.

226

24
25
26

27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56

Bad module name: the source file name is not a valid OCaml module name.
Deprecated: now part of warning 8.

Suspicious unused variable: unused variable that is bound with let or as, and doesn’t
start with an underscore (_) character.

Innocuous unused variable: unused variable that is not bound with let nor as, and
doesn’t start with an underscore (_) character.

Wildcard pattern given as argument to a constant constructor.
Unescaped end-of-line in a string constant (non-portable code).
Two labels or constructors of the same name are defined in two mutually recursive types.
A module is linked twice in the same executable.

Unused value declaration.

Unused open statement.

Unused type declaration.

Unused for-loop index.

Unused ancestor variable.

Unused constructor.

Unused extension constructor.

Unused rec flag.

Constructor or label name used out of scope.

Ambiguous constructor or label name.

Disambiguated constructor or label name (compatibility warning).
Nonoptional label applied as optional.

Open statement shadows an already defined identifier.

Open statement shadows an already defined label or constructor.
FError in environment variable.

Tllegal attribute payload.

Implicit elimination of optional arguments.

Absent cmi file when looking up module alias.

Unexpected documentation comment.

Warning on non-tail calls if @tailcall present.

(see 9.5.2)

Fragile constant pattern.

Attribute cannot appear in this context
Attribute used more than once on an expression
Inlining impossible

Unreachable case in a pattern-matching (based on type information).

Chapter 9. Batch compilation (ocamlc) 227

57 (see 9.5.3)
Ambiguous or-pattern variables under guard

58 Missing cmx file

59 Assignment to non-mutable value

60 Unused module declaration

61 Unboxable type in primitive declaration

62 Type constraint on GADT type declaration

=]
w

Erroneous printed signature

-unsafe used with a preprocessor returning a syntax tree
Type declaration defining a new ’()’ constructor
Unused open! statement

all warnings

warnings 1, 2.

Alias for warning 3.

Alias for warning 4.

Alias for warning 5.

warnings 32, 33, 34, 35, 36, 37, 38, 39.

Alias for warning 6.

Alias for warning 7.

Alias for warning 8.

Alias for warning 9.

Alias for warning 10.

warnings 11, 12.

Alias for warning 13.

warnings 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 30.

Alias for warning 26.

NKMYX<ornmdzrtRAIITQP 2292

Alias for warning 27.

The default setting is -w +a-4-6-7-9-27-29-32..42-44-45-48-50-60. It is displayed by
ocamlc -help. Note that warnings 5 and 10 are not always triggered, depending on the
internals of the type checker.

-warn-error warning-list
Mark as fatal the warnings specified in the argument warning-list. The compiler will stop
with an error when one of these warnings is emitted. The warning-list has the same meaning
as for the -w option: a + sign (or an uppercase letter) marks the corresponding warnings as
fatal, a - sign (or a lowercase letter) turns them back into non-fatal warnings, and a @ sign
both enables and marks as fatal the corresponding warnings.

228

Note: it is not recommended to use warning sets (i.e. letters) as arguments to -warn-error
in production code, because this can break your build when future versions of OCaml add
some new warnings.

The default setting is -warn-error -a+31 (only warning 31 is fatal).

-warn-help
Show the description of all available warning numbers.

-where
Print the location of the standard library, then exit.

-with-runtime
Include the runtime system in the generated program. This is the default.

-without-runtime
The compiler does not include the runtime system (nor a reference to it) in the generated
program; it must be supplied separately.

- file

Process file as a file name, even if it starts with a dash (=) character.

-help or -help
Display a short usage summary and exit.

contextual-cli-control Contextual control of command-line options

The compiler command line can be modified “from the outside” with the following mechanisms.
These are experimental and subject to change. They should be used only for experimental and
development work, not in released packages.

OCAMLPARAM (environment variable)
A set of arguments that will be inserted before or after the arguments from the command
line. Arguments are specified in a comma-separated list of name=value pairs. A _ is used to
specify the position of the command line arguments, i.e. a=x,_,b=y means that a=x should
be executed before parsing the arguments, and b=y after. Finally, an alternative separator
can be specified as the first character of the string, within the set :[; ,.

ocaml_compiler_internal_params (file in the stdlib directory)
A mapping of file names to lists of arguments that will be added to the command line (and
OCAMLPARAM) arguments.

OCAML_FLEXLINK (environment variable)
Alternative executable to use on native Windows for flex1link instead of the configured value.
Primarily used for bootstrapping.

Chapter 9. Batch compilation (ocamlc) 229

9.3 Modules and the file system

This short section is intended to clarify the relationship between the names of the modules corre-
sponding to compilation units and the names of the files that contain their compiled interface and
compiled implementation.

The compiler always derives the module name by taking the capitalized base name of the source
file (.ml or .mli file). That is, it strips the leading directory name, if any, as well as the .ml or
.mli suffix; then, it set the first letter to uppercase, in order to comply with the requirement that
module names must be capitalized. For instance, compiling the file mylib/misc.ml provides an
implementation for the module named Misc. Other compilation units may refer to components
defined in mylib/misc.ml under the names Misc.name; they can also do open Misc, then use
unqualified names name.

The .cmi and .cmo files produced by the compiler have the same base name as the source file.
Hence, the compiled files always have their base name equal (modulo capitalization of the first
letter) to the name of the module they describe (for .cmi files) or implement (for .cmo files).

When the compiler encounters a reference to a free module identifier Mod, it looks in the search
path for a file named Mod. cmi or mod. cmi and loads the compiled interface contained in that file. As
a consequence, renaming .cmi files is not advised: the name of a .cmi file must always correspond
to the name of the compilation unit it implements. It is admissible to move them to another
directory, if their base name is preserved, and the correct -I options are given to the compiler. The
compiler will flag an error if it loads a .cmi file that has been renamed.

Compiled bytecode files (.cmo files), on the other hand, can be freely renamed once created.
That’s because the linker never attempts to find by itself the .cmo file that implements a module
with a given name: it relies instead on the user providing the list of .cmo files by hand.

9.4 Common errors
This section describes and explains the most frequently encountered error messages.

Cannot find file filename
The named file could not be found in the current directory, nor in the directories of the search
path. The filename is either a compiled interface file (.cmi file), or a compiled bytecode file
(.cmo file). If filename has the format mod.cmi, this means you are trying to compile a
file that references identifiers from module mod, but you have not yet compiled an interface
for module mod. Fix: compile mod.mli or mod.ml first, to create the compiled interface
mod.cmi.

If filename has the format mod. cmo, this means you are trying to link a bytecode object file
that does not exist yet. Fix: compile mod.ml first.

If your program spans several directories, this error can also appear because you haven’t
specified the directories to look into. Fix: add the correct -I options to the command line.

Corrupted compiled interface filename
The compiler produces this error when it tries to read a compiled interface file (. cmi file) that
has the wrong structure. This means something went wrong when this .cmi file was written:
the disk was full, the compiler was interrupted in the middle of the file creation, and so on.

230

This error can also appear if a .cmi file is modified after its creation by the compiler. Fix:
remove the corrupted .cmi file, and rebuild it.

This expression has type t;, but is used with type t,

This is by far the most common type error in programs. Type t; is the type inferred for the
expression (the part of the program that is displayed in the error message), by looking at the
expression itself. Type to is the type expected by the context of the expression; it is deduced
by looking at how the value of this expression is used in the rest of the program. If the two
types t; and t; are not compatible, then the error above is produced.

In some cases, it is hard to understand why the two types #; and f#y are incompatible. For
instance, the compiler can report that “expression of type foo cannot be used with type foo”,
and it really seems that the two types foo are compatible. This is not always true. Two type
constructors can have the same name, but actually represent different types. This can happen
if a type constructor is redefined. Example:

type foo = A | B

let f = function A -> 0 | B -> 1
type foo = C | D

fC

This result in the error message “expression C of type foo cannot be used with type foo”.

The type of this expression, ¢, contains type variables that cannot be generalized

Type variables ('a, 'b, ...) in a type ¢ can be in either of two states: generalized (which
means that the type ¢ is valid for all possible instantiations of the variables) and not gener-
alized (which means that the type ¢ is valid only for one instantiation of the variables). In a
let binding let name = expr, the type-checker normally generalizes as many type variables
as possible in the type of expr. However, this leads to unsoundness (a well-typed program
can crash) in conjunction with polymorphic mutable data structures. To avoid this, general-
ization is performed at let bindings only if the bound expression ezpr belongs to the class of
“syntactic values”, which includes constants, identifiers, functions, tuples of syntactic values,
etc. In all other cases (for instance, ezpr is a function application), a polymorphic mutable
could have been created and generalization is therefore turned off for all variables occurring
in contravariant or non-variant branches of the type. For instance, if the type of a non-value
is 'a list the variable is generalizable (1ist is a covariant type constructor), but not in
'a list -> 'a list (the left branch of -> is contravariant) or 'a ref (ref is non-variant).

Non-generalized type variables in a type cause no difficulties inside a given structure or
compilation unit (the contents of a .ml file, or an interactive session), but they cannot be
allowed inside signatures nor in compiled interfaces (.cmi file), because they could be used
inconsistently later. Therefore, the compiler flags an error when a structure or compilation
unit defines a value name whose type contains non-generalized type variables. There are two
ways to fix this error:

e Add a type constraint or a .m1i file to give a monomorphic type (without type variables)
to name. For instance, instead of writing

Chapter 9. Batch compilation (ocamlc) 231

let sort_int_list List.sort Stdlib.compare
(* inferred type 'a list -> 'a list, with 'a not generalized *)

write

let sort_int_list (List.sort Stdlib.compare : int list -> int list);;

e If you really need name to have a polymorphic type, turn its defining expression into a
function by adding an extra parameter. For instance, instead of writing

let map_length = List.map Array.length
(* inferred type 'a array list -> int list, with 'a not generalized *)

write

let map_length 1lv = List.map Array.length 1v

Reference to undefined global mod

This error appears when trying to link an incomplete or incorrectly ordered set of files. Either
you have forgotten to provide an implementation for the compilation unit named mod on the
command line (typically, the file named mod. cmo, or a library containing that file). Fix: add
the missing .ml or .cmo file to the command line. Or, you have provided an implementation
for the module named mod, but it comes too late on the command line: the implementation
of mod must come before all bytecode object files that reference mod. Fix: change the order
of .ml and .cmo files on the command line.

Of course, you will always encounter this error if you have mutually recursive functions across
modules. That is, function Mod1.f calls function Mod2.g, and function Mod2.g calls function
Mod1l.f. In this case, no matter what permutations you perform on the command line, the
program will be rejected at link-time. Fixes:

e Put f and g in the same module.

e Parameterize one function by the other. That is, instead of having

modl.ml: let £ x = ... Mod2.g ...
mod2.ml: let gy = . Modl.f

define

modl.ml: let fgx=...¢g ...

mod2.ml: let rec gy = ... Modl.f g ...

and link mod1.cmo before mod2.cmo.

e Use a reference to hold one of the two functions, as in :

modl.ml: let forward_g =
ref ((fun x -> failwith "forward_g") : <type>)
let £ x = ... !forward_g ...
mod2.ml: let gy = ... Modl.f
let _ = Modl.forward_g := g

232

The external function f is not available
This error appears when trying to link code that calls external functions written in C. As
explained in chapter 20, such code must be linked with C libraries that implement the required
f C function. If the C libraries in question are not shared libraries (DLLs), the code must be
linked in “custom runtime” mode. Fix: add the required C libraries to the command line,
and possibly the —custom option.

9.5 Warning reference

This section describes and explains in detail some warnings:

9.5.1 Warning 9: missing fields in a record pattern

When pattern matching on records, it can be useful to match only few fields of a record. Eliding
fields can be done either implicitly or explicitly by ending the record pattern with ; _. However,
implicit field elision is at odd with pattern matching exhaustiveness checks. Enabling warning
9 prioritizes exhaustiveness checks over the convenience of implicit field elision and will warn on
implicit field elision in record patterns. In particular, this warning can help to spot exhaustive
record pattern that may need to be updated after the addition of new fields to a record type.

type 'a point = {x : 'a; y : 'a}
let dx { x } = x (% implicit field elision: trigger warning 9 *)
let dy { y; _ } =y (% explicit field elision: do not trigger warning 9 *)

9.5.2 Warning 52: fragile constant pattern

Some constructors, such as the exception constructors Failure and Invalid_argument, take as
parameter a string value holding a text message intended for the user.

These text messages are usually not stable over time: call sites building these constructors may
refine the message in a future version to make it more explicit, etc. Therefore, it is dangerous to
match over the precise value of the message. For example, until OCaml 4.02, Array.iter2 would
raise the exception

Invalid_argument "arrays must have the same length"
Since 4.03 it raises the more helpful message

Invalid_argument "Array.iter2: arrays must have the same length"
but this means that any code of the form

try ...
with Invalid_argument "arrays must have the same length" -> ...

is now broken and may suffer from uncaught exceptions.

Warning 52 is there to prevent users from writing such fragile code in the first place. It does not
occur on every matching on a literal string, but only in the case in which library authors expressed
their intent to possibly change the constructor parameter value in the future, by using the attribute
ocaml.warn_on_literal_pattern (see the manual section on builtin attributes in 8.12.1):

Chapter 9. Batch compilation (ocamlc) 233

type t =
| Foo of string [@ocaml.warn_on_literal_pattern]
| Bar of string

let no_warning = function
| Bar "specific value" -> 0
| _ > 1

let warning = function
| Foo "specific value" -> 0
| > 1

| Foo "specific value" -> 0
Warning 52: Code should not depend on the actual values of
this constructor's arguments. They are only for information
and may change in future versions. (See manual section 8.5)

V V V V V

In particular, all built-in exceptions with a string argument have this attribute set:
Invalid_argument, Failure, Sys_error will all raise this warning if you match for a specific
string argument.

Additionally, built-in exceptions with a structured argument that includes a string also have
the attribute set: Assert_failure and Match_failure will raise the warning for a pattern that
uses a literal string to match the first element of their tuple argument.

If your code raises this warning, you should not change the way you test for the specific string
to avoid the warning (for example using a string equality inside the right-hand-side instead of a
literal pattern), as your code would remain fragile. You should instead enlarge the scope of the
pattern by matching on all possible values.

let warning = function

| Foo _ > 0

| > 1

This may require some care: if the scrutinee may return several different cases of the same
pattern, or raise distinct instances of the same exception, you may need to modify your code to
separate those several cases.

For example,

try (int_of_string count_str, bool_of_string choice_str) with
| Failure "int_of_string" -> (0, true)
| Failure "bool_of_string" -> (-1, false)

should be rewritten into more atomic tests. For example, using the exception patterns docu-
mented in Section 7.6.1, one can write:

match int_of_string count_str with
| exception (Failure _) -> (0, true)

234

| count ->
begin match bool_of_string choice_str with
| exception (Failure _) -> (-1, false)
| choice -> (count, choice)
end

The only case where that transformation is not possible is if a given function call may raise
distinct exceptions with the same constructor but different string values. In this case, you will have
to check for specific string values. This is dangerous API design and it should be discouraged: it’s
better to define more precise exception constructors than store useful information in strings.

9.5.3 Warning 57: Ambiguous or-pattern variables under guard

The semantics of or-patterns in OCaml is specified with a left-to-right bias: a value v matches the
pattern p | ¢ if it matches p or ¢, but if it matches both, the environment captured by the match
is the environment captured by p, never the one captured by gq.

While this property is generally intuitive, there is at least one specific case where a different
semantics might be expected. Consider a pattern followed by a when-guard: | p when g -> e, for
example:

| ((Const x, _) | (_, Const x)) when is_neutral x -> branch

The semantics is clear: match the scrutinee against the pattern, if it matches, test the guard,
and if the guard passes, take the branch. In particular, consider the input (Const a, Const b)),
where q fails the test is_neutral a, while b passes the test is_neutral b. With the left-to-right
semantics, the clause above is mot taken by its input: matching (Const @, Const b) against the
or-pattern succeeds in the left branch, it returns the environment x -> a, and then the guard
is_neutral a is tested and fails, the branch is not taken.

However, another semantics may be considered more natural here: any pair that has one side
passing the test will take the branch. With this semantics the previous code fragment would be
equivalent to

| (Const x, _) when is_neutral x -> branch
| (_, Const x) when is_neutral x -> branch

This is not the semantics adopted by OCaml.

Warning 57 is dedicated to these confusing cases where the specified left-to-right semantics is
not equivalent to a non-deterministic semantics (any branch can be taken) relatively to a specific
guard. More precisely, it warns when guard uses “ambiguous” variables, that are bound to different
parts of the scrutinees by different sides of a or-pattern.

Chapter 10

The toplevel system or REPL (ocaml)

This chapter describes the toplevel system for OCaml, that permits interactive use of the OCaml
system through a read-eval-print loop (REPL). In this mode, the system repeatedly reads OCaml
phrases from the input, then typechecks, compile and evaluate them, then prints the inferred type
and result value, if any. The system prints a # (sharp) prompt before reading each phrase.

Input to the toplevel can span several lines. It is terminated by ;; (a double-semicolon). The
toplevel input consists in one or several toplevel phrases, with the following syntax:

{definition}* ;;

expr ; ;
ident [directive-argument] ; ;

toplevel-input

string-literal
integer-literal
value-path

true | false

directive-argument

A phrase can consist of a definition, like those found in implementations of compilation units
or in struct...end module expressions. The definition can bind value names, type names, an
exception, a module name, or a module type name. The toplevel system performs the bindings,
then prints the types and values (if any) for the names thus defined.

A phrase may also consist in a value expression (section 7.7). It is simply evaluated without
performing any bindings, and its value is printed.

Finally, a phrase can also consist in a toplevel directive, starting with # (the sharp sign). These
directives control the behavior of the toplevel; they are listed below in section 10.2.

Unix:
The toplevel system is started by the command ocaml, as follows:

ocaml options objects # interactive mode
ocaml options objects scriptfile # script mode

options are described below. objects are filenames ending in .cmo or .cma; they are loaded
into the interpreter immediately after options are set. scriptfile is any file name not ending
in .cmo or .cma.

235

236

If no scriptfile is given on the command line, the toplevel system enters interactive mode:
phrases are read on standard input, results are printed on standard output, errors on stan-
dard error. End-of-file on standard input terminates ocaml (see also the #quit directive in
section 10.2).

On start-up (before the first phrase is read), if the file .ocamlinit exists in the current
directory, its contents are read as a sequence of OCaml phrases and executed as per
the #use directive described in section 10.2. The evaluation outcode for each phrase
are not displayed. If the current directory does not contain an .ocamlinit file, the file
XDG_CONFIG_HOME/ocaml/init.ml is looked up according to the XDG base directory
specification and used instead (on Windows this is skipped). If that file doesn’t exist then
an [.ocamlinit| file in the users’ home directory (determined via environment variable HOME)
is used if existing.

The toplevel system does not perform line editing, but it can easily be used in conjunction
with an external line editor such as ledit, or rlwrap. An improved toplevel, utop, is also
available. Another option is to use ocaml under Gnu Emacs, which gives the full editing
power of Emacs (command run-caml from library inf-caml).

At any point, the parsing, compilation or evaluation of the current phrase can be interrupted
by pressing ctrl-C (or, more precisely, by sending the INTR signal to the ocaml process).
The toplevel then immediately returns to the # prompt.

If scriptfile is given on the command-line to ocaml, the toplevel system enters script mode:
the contents of the file are read as a sequence of OCaml phrases and executed, as per the
#use directive (section 10.2). The outcome of the evaluation is not printed. On reaching the
end of file, the ocaml command exits immediately. No commands are read from standard
input. Sys.argv is transformed, ignoring all OCaml parameters, and starting with the script
file name in Sys.argv. (0).

In script mode, the first line of the script is ignored if it starts with #!. Thus, it should be
possible to make the script itself executable and put as first line #! /usr/local/bin/ocaml,
thus calling the toplevel system automatically when the script is run. However, ocaml itself
is a #! script on most installations of OCaml, and Unix kernels usually do not handle nested
#! scripts. A better solution is to put the following as the first line of the script:

#!/usr/local/bin/ocamlrun /usr/local/bin/ocaml

10.1 Options

The following command-line options are recognized by the ocaml command.

—-absname

Force error messages to show absolute paths for file names.

-args filename

Read additional newline-terminated command line arguments from filename. It is not possible
to pass a scriptfile via file to the toplevel.

Chapter 10. The toplevel system or REPL (ocaml) 237

-args0 filename
Read additional null character terminated command line arguments from filename. It is not
possible to pass a scriptfile via file to the toplevel.

-1 directory
Add the given directory to the list of directories searched for source and compiled files. By
default, the current directory is searched first, then the standard library directory. Directories
added with -I are searched after the current directory, in the order in which they were given
on the command line, but before the standard library directory. See also option -nostdlib.

If the given directory starts with +, it is taken relative to the standard library directory. For
instance, -I +unix adds the subdirectory unix of the standard library to the search path.

Directories can also be added to the list once the toplevel is running with the #directory
directive (section 10.2).

-init file
Load the given file instead of the default initialization file. The default file is .ocamlinit in
the current directory if it exists, otherwise XDG_CONFIG_HOME/ocaml/init.ml or .ocamlinit
in the user’s home directory.

-labels
Labels are not ignored in types, labels may be used in applications, and labelled parameters
can be given in any order. This is the default.

-no-app—funct
Deactivates the applicative behaviour of functors. With this option, each functor application
generates new types in its result and applying the same functor twice to the same argument
yields two incompatible structures.

-noassert
Do not compile assertion checks. Note that the special form assert false is always compiled
because it is typed specially.

-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter
order becomes strict.

-noprompt
Do not display any prompt when waiting for input.

-nopromptcont
Do not display the secondary prompt when waiting for continuation lines in multi-line inputs.
This should be used e.g. when running ocaml in an emacs window.

-nostdlib
Do not include the standard library directory in the list of directories searched for source and
compiled files.

238

-ppx command
After parsing, pipe the abstract syntax tree through the preprocessor command. The module
Ast_mapper, described in section 26.1, implements the external interface of a preprocessor.

-principal
Check information path during type-checking, to make sure that all types are derived in
a principal way. When using labelled arguments and/or polymorphic methods, this flag is
required to ensure future versions of the compiler will be able to infer types correctly, even
if internal algorithms change. All programs accepted in -principal mode are also accepted
in the default mode with equivalent types, but different binary signatures, and this may slow
down type checking; yet it is a good idea to use it once before publishing source code.

-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where
the recursion goes through an object type are supported.

-safe-string
Enforce the separation between types string and bytes, thereby making strings read-only.
This is the default.

-short-paths
When a type is visible under several module-paths, use the shortest one when printing the
type’s name in inferred interfaces and error and warning messages. Identifier names starting
with an underscore _ or containing double underscores __ incur a penalty of +10 when
computing their length.

-stdin
Read the standard input as a script file rather than starting an interactive session.

-strict-sequence
Force the left-hand part of each sequence to have type unit.

-strict-formats
Reject invalid formats that were accepted in legacy format implementations. You should use
this flag to detect and fix such invalid formats, as they will be rejected by future OCaml
versions.

-unsafe
Turn bound checking off for array and string accesses (the v. (i) and s.[i] constructs).
Programs compiled with -unsafe are therefore faster, but unsafe: anything can happen if
the program accesses an array or string outside of its bounds.

-unsafe-string
Identify the types string and bytes, thereby making strings writable. This is intended for
compatibility with old source code and should not be used with new software.

-v Print the version number of the compiler and the location of the standard library directory,
then exit.

Chapter 10. The toplevel system or REPL (ocaml) 239

-verbose
Print all external commands before they are executed, Useful to debug C library problems.

-version
Print version string and exit.

-vnum
Print short version number and exit.

-no-version
Do not print the version banner at startup.

-w warning-list
Enable, disable, or mark as fatal the warnings specified by the argument warning-list. Each
warning can be enabled or disabled, and each warning can be fatal or non-fatal. If a warning
is disabled, it isn’t displayed and doesn’t affect compilation in any way (even if it is fatal).
If a warning is enabled, it is displayed normally by the compiler whenever the source code
triggers it. If it is enabled and fatal, the compiler will also stop with an error after displaying
it.

The warning-list argument is a sequence of warning specifiers, with no separators between
them. A warning specifier is one of the following:

+num
Enable warning number num.

-num
Disable warning number num.

@num
Enable and mark as fatal warning number num.

+numl..num2
Enable warnings in the given range.

-numl..num2
Disable warnings in the given range.

@numl..num2
Enable and mark as fatal warnings in the given range.

+letter
Enable the set of warnings corresponding to letter. The letter may be uppercase or
lowercase.

~letter
Disable the set of warnings corresponding to letter. The letter may be uppercase or
lowercase.

Qletter
Enable and mark as fatal the set of warnings corresponding to letter. The letter may be
uppercase or lowercase.

240

uppercase-letter

Enable the set of warnings corresponding to uppercase-letter.

lowercase-letter

Disable the set of warnings corresponding to lowercase-letter.

Warning numbers and letters which are out of the range of warnings that are currently defined
are ignored. The warnings are as follows.

=W N =

© W N o O«

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

Suspicious-looking start-of-comment mark.
Suspicious-looking end-of-comment mark.
Deprecated synonym for the ’deprecated’ alert

Fragile pattern matching: matching that will remain complete even if additional con-
structors are added to one of the variant types matched.

Partially applied function: expression whose result has function type and is ignored.
Label omitted in function application.

Method overridden.

Partial match: missing cases in pattern-matching.

Missing fields in a record pattern.

Expression on the left-hand side of a sequence that doesn’t have type unit (and that is
not a function, see warning number 5).

Redundant case in a pattern matching (unused match case).
Redundant sub-pattern in a pattern-matching.

Instance variable overridden.

Illegal backslash escape in a string constant.

Private method made public implicitly.

Unerasable optional argument.

Undeclared virtual method.

Non-principal type.

Type without principality.

Unused function argument.

Non-returning statement.

Preprocessor warning.

Useless record with clause.

Bad module name: the source file name is not a valid OCaml module name.
Deprecated: now part of warning 8.

Suspicious unused variable: unused variable that is bound with let or as, and doesn’t
start with an underscore (_) character.

Innocuous unused variable: unused variable that is not bound with let nor as, and
doesn’t start with an underscore (_) character.

Chapter 10. The toplevel system or REPL (ocaml) 241

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57

58
59
60
61

Wildcard pattern given as argument to a constant constructor.
Unescaped end-of-line in a string constant (non-portable code).
Two labels or constructors of the same name are defined in two mutually recursive types.
A module is linked twice in the same executable.

Unused value declaration.

Unused open statement.

Unused type declaration.

Unused for-loop index.

Unused ancestor variable.

Unused constructor.

Unused extension constructor.

Unused rec flag.

Constructor or label name used out of scope.

Ambiguous constructor or label name.

Disambiguated constructor or label name (compatibility warning).
Nonoptional label applied as optional.

Open statement shadows an already defined identifier.

Open statement shadows an already defined label or constructor.
Error in environment variable.

Illegal attribute payload.

Implicit elimination of optional arguments.

Absent cmi file when looking up module alias.

Unexpected documentation comment.

Warning on non-tail calls if @Qtailcall present.

(see 9.5.2)
Fragile constant pattern.

Attribute cannot appear in this context

Attribute used more than once on an expression

Inlining impossible

Unreachable case in a pattern-matching (based on type information).

(see 9.5.3)
Ambiguous or-pattern variables under guard

Missing cmx file
Assignment to non-mutable value
Unused module declaration

Unboxable type in primitive declaration

242

=2
N

Type constraint on GADT type declaration

=]
w

Erroneous printed signature

-unsafe used with a preprocessor returning a syntax tree
Type declaration defining a new ’()’ constructor
Unused open! statement

all warnings

warnings 1, 2.

Alias for warning 3.

Alias for warning 4.

Alias for warning 5.

warnings 32, 33, 34, 35, 36, 37, 38, 39.

Alias for warning 6.

Alias for warning 7.

Alias for warning 8.

Alias for warning 9.

Alias for warning 10.

warnings 11, 12.

Alias for warning 13.

warnings 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 30.

Alias for warning 26.

N X< mvzeR"IzgQP» 2292

Alias for warning 27.

The default setting is -w +a-4-6-7-9-27-29-32. .42-44-45-48-50-60. It is displayed by
-help. Note that warnings 5 and 10 are not always triggered, depending on the internals of
the type checker.

-warn-error warning-list
Mark as fatal the warnings specified in the argument warning-list. The compiler will stop
with an error when one of these warnings is emitted. The warning-list has the same meaning
as for the -w option: a + sign (or an uppercase letter) marks the corresponding warnings as
fatal, a - sign (or a lowercase letter) turns them back into non-fatal warnings, and a @ sign
both enables and marks as fatal the corresponding warnings.

Note: it is not recommended to use warning sets (i.e. letters) as arguments to -warn-error
in production code, because this can break your build when future versions of OCaml add
some new warnings.

The default setting is ~-warn-error -a+31 (only warning 31 is fatal).

-warn-help
Show the description of all available warning numbers.

Chapter 10. The toplevel system or REPL (ocaml) 243

- file

Use file as a script file name, even when it starts with a hyphen (-).

-help or -help
Display a short usage summary and exit.

Unix:
The following environment variables are also consulted:

OCAMLTOP_INCLUDE_PATH
Additional directories to search for compiled object code files (.cmi, .cmo and .cma).
The specified directories are considered from left to right, after the include directories
specified on the command line via -I have been searched. Available since OCaml 4.08.

OCAMLTOP_UTF_8
When printing string values, non-ascii bytes (> \0x7E) are printed as decimal escape
sequence if OCAMLTOP_UTF_8 is set to false. Otherwise, they are printed unescaped.

TERM
When printing error messages, the toplevel system attempts to underline visually the
location of the error. It consults the TERM variable to determines the type of output
terminal and look up its capabilities in the terminal database.

XDG_CONFIG_HOME, HOME
.ocamlinit lookup procedure (see above).

10.2 Toplevel directives

The following directives control the toplevel behavior, load files in memory, and trace program
execution.

Note: all directives start with a # (sharp) symbol. This # must be typed before the directive,
and must not be confused with the # prompt displayed by the interactive loop. For instance, typing
#quit;; will exit the toplevel loop, but typing quit;; will result in an “unbound value quit” error.

General

#help; ;

Prints a list of all available directives, with corresponding argument type if appropriate.
#quit;;

Exit the toplevel loop and terminate the ocaml command.

Loading codes

#cd "dir-name"; ;
Change the current working directory.
#directory "dir-name";;
Add the given directory to the list of directories searched for source and compiled files.

244

#remove_directory "dir-name";;
Remove the given directory from the list of directories searched for source and compiled
files. Do nothing if the list does not contain the given directory.

#load "file-name";;
Load in memory a bytecode object file (.cmo file) or library file (.cma file) produced by
the batch compiler ocamlc.

#load_rec "file-name";;
Load in memory a bytecode object file (.cmo file) or library file (.cma file) produced by
the batch compiler ocamlc. When loading an object file that depends on other modules
which have not been loaded yet, the .cmo files for these modules are searched and loaded
as well, recursively. The loading order is not specified.

#use "file-name";;
Read, compile and execute source phrases from the given file. This is textual inclusion:
phrases are processed just as if they were typed on standard input. The reading of the
file stops at the first error encountered.

#mod_use "file-name"; ;
Similar to #use but also wrap the code into a top-level module of the same name as
capitalized file name without extensions, following semantics of the compiler.

For directives that take file names as arguments, if the given file name specifies no directory,
the file is searched in the following directories:

1. In script mode, the directory containing the script currently executing; in interactive
mode, the current working directory.
Directories added with the #directory directive.
Directories given on the command line with -I options.

The standard library directory.

Environment queries

#show_class class-path; ;
#show_class_type class-path; ;
#show_exception ident;;
#show_module module-path; ;
#show_module_type modtype-path; ;
#show_type typeconsir;;

#show_val wvalue-path;;

Print the signature of the corresponding component.

#show ident; ;
Print the signatures of components with name ident in all the above categories.

Pretty-printing

Chapter 10. The toplevel system or REPL (ocaml) 245

#install_printer printer-name; ;
This directive registers the function named printer-name (a value path) as a printer for
values whose types match the argument type of the function. That is, the toplevel loop
will call printer-name when it has such a value to print.
The printing function printer-name should have type Format.formatter ->t -> unit,
where t is the type for the values to be printed, and should output its textual represen-
tation for the value of type t on the given formatter, using the functions provided by the
Format library. For backward compatibility, printer-name can also have type t-> unit
and should then output on the standard formatter, but this usage is deprecated.
#print_depth n;;
Limit the printing of values to a maximal depth of n. The parts of values whose depth
exceeds n are printed as ... (ellipsis).

#print_length n;;
Limit the number of value nodes printed to at most n. Remaining parts of values are
printed as ... (ellipsis).

#remove_printer printer-name;;
Remove the named function from the table of toplevel printers.

Tracing

#trace function-name; ;
After executing this directive, all calls to the function named function-name will be
“traced”. That is, the argument and the result are displayed for each call, as well as the
exceptions escaping out of the function, raised either by the function itself or by another
function it calls. If the function is curried, each argument is printed as it is passed to
the function.

#untrace function-name; ;
Stop tracing the given function.

#untrace_all;;
Stop tracing all functions traced so far.

Compiler options

#labels bool; ;
Ignore labels in function types if argument is false, or switch back to default behaviour
(commuting style) if argument is true.
#ppx "file-name"; ;
After parsing, pipe the abstract syntax tree through the preprocessor command.
#principal bool;;
If the argument is true, check information paths during type-checking, to make sure
that all types are derived in a principal way. If the argument is false, do not check
information paths.

246

#rectypes; ;
Allow arbitrary recursive types during type-checking. Note: once enabled, this option
cannot be disabled because that would lead to unsoundness of the type system.

#warn_error "warning-list";;
Treat as errors the warnings enabled by the argument and as normal warnings the
warnings disabled by the argument.

#warnings "warning-list";;
Enable or disable warnings according to the argument.

10.3 The toplevel and the module system

Toplevel phrases can refer to identifiers defined in compilation units with the same mechanisms
as for separately compiled units: either by using qualified names (Modulename.localname), or by
using the open construct and unqualified names (see section 7.3).

However, before referencing another compilation unit, an implementation of that unit must be
present in memory. At start-up, the toplevel system contains implementations for all the modules in
the the standard library. Implementations for user modules can be entered with the #load directive
described above. Referencing a unit for which no implementation has been provided results in the
error Reference to undefined global ~...'.

Note that entering open Mod merely accesses the compiled interface (.cmi file) for Mod, but
does not load the implementation of Mod, and does not cause any error if no implementation of Mod
has been loaded. The error “reference to undefined global Mod” will occur only when executing a
value or module definition that refers to Mod.

10.4 Common errors
This section describes and explains the most frequently encountered error messages.

Cannot find file filename
The named file could not be found in the current directory, nor in the directories of the search
path.

If filename has the format mod.cmi, this means you have referenced the compilation unit
mod, but its compiled interface could not be found. Fix: compile mod.mli or mod.ml first,
to create the compiled interface mod. cmi.

If filename has the format mod. cmo, this means you are trying to load with #1load a bytecode
object file that does not exist yet. Fix: compile mod.ml first.

If your program spans several directories, this error can also appear because you haven’t
specified the directories to look into. Fix: use the #directory directive to add the correct
directories to the search path.

This expression has type t;, but is used with type t
See section 9.4.

Chapter 10. The toplevel system or REPL (ocaml) 247

Reference to undefined global mod
You have neglected to load in memory an implementation for a module with #load. See
section 10.3 above.

10.5 Building custom toplevel systems: ocamlmktop

The ocamlmktop command builds OCaml toplevels that contain user code preloaded at start-up.
The ocamlmktop command takes as argument a set of .cmo and .cma files, and links them with
the object files that implement the OCaml toplevel. The typical use is:

ocamlmktop -o mytoplevel foo.cmo bar.cmo gee.cmo

This creates the bytecode file mytoplevel, containing the OCaml toplevel system, plus the code
from the three .cmo files. This toplevel is directly executable and is started by:

./mytoplevel

This enters a regular toplevel loop, except that the code from foo.cmo, bar.cmo and gee.cmo
is already loaded in memory, just as if you had typed:

#load "foo.cmo";;
#load "bar.cmo";;
#load "gee.cmo";;

on entrance to the toplevel. The modules Foo, Bar and Gee are not opened, though; you still
have to do

open Foo;;

yourself, if this is what you wish.

10.5.1 Options
The following command-line options are recognized by ocamlmktop.

-cclib libname
Pass the -1libname option to the C linker when linking in “custom runtime” mode. See the
corresponding option for ocamlc, in chapter 9.

—-ccopt option
Pass the given option to the C compiler and linker, when linking in “custom runtime” mode.
See the corresponding option for ocamlc, in chapter 9.

-custom
Link in “custom runtime” mode. See the corresponding option for ocamlc, in chapter 9.

-1 directory
Add the given directory to the list of directories searched for compiled object code files (.cmo
and .cma).

-0 exec-file
Specify the name of the toplevel file produced by the linker. The default is a.out.

248

10.6 The native toplevel: ocamlnat (experimental)

This section describes a tool that is not yet officially supported but may be found
useful.

OCaml code executing in the traditional toplevel system uses the bytecode interpreter. When
increased performance is required, or for testing programs that will only execute correctly when
compiled to native code, the native toplevel may be used instead.

For the majority of installations the native toplevel will not have been installed along with the
rest of the OCaml toolchain. In such circumstances it will be necessary to build the OCaml distri-
bution from source. From the built source tree of the distribution you may use make natruntop
to build and execute a native toplevel. (Alternatively make ocamlnat can be used, which just
performs the build step.)

If the make install command is run after having built the native toplevel then the ocamlnat
program (either from the source or the installation directory) may be invoked directly rather than
using make natruntop.

Chapter 11

The runtime system (ocamlrun)

The ocamlrun command executes bytecode files produced by the linking phase of the ocamlc
command.

11.1 Overview

The ocamlrun command comprises three main parts: the bytecode interpreter, that actually ex-
ecutes bytecode files; the memory allocator and garbage collector; and a set of C functions that
implement primitive operations such as input/output.

The usage for ocamlrun is:

ocamlrun options bytecode-executable arg, ... arg,

The first non-option argument is taken to be the name of the file containing the executable
bytecode. (That file is searched in the executable path as well as in the current directory.) The
remaining arguments are passed to the OCaml program, in the string array Sys.argv. Element 0 of
this array is the name of the bytecode executable file; elements 1 to n are the remaining arguments
argy to arg,,.

As mentioned in chapter 9, the bytecode executable files produced by the ocamlc command are
self-executable, and manage to launch the ocamlrun command on themselves automatically. That
is, assuming a.out is a bytecode executable file,

a.out arg; ... arg,
works exactly as
ocamlrun a.out arg; ... arg,

Notice that it is not possible to pass options to ocamlrun when invoking a.out directly.

Windows:
Under several versions of Windows, bytecode executable files are self-executable only if their
name ends in .exe. It is recommended to always give .exe names to bytecode executables,
e.g. compile with ocamlc -o myprog.exe ... rather than ocamlc -o myprog

249

250

11.2 Options

The following command-line options are recognized by ocamlrun.

-b When the program aborts due to an uncaught exception, print a detailed “back trace” of the
execution, showing where the exception was raised and which function calls were outstanding
at this point. The back trace is printed only if the bytecode executable contains debugging
information, i.e. was compiled and linked with the -g option to ocamlc set. This is equivalent
to setting the b flag in the 0CAMLRUNPARAM environment variable (see below).

-I dir
Search the directory dir for dynamically-loaded libraries, in addition to the standard search
path (see section 11.3).

-m Print the magic number of the bytecode executable given as argument and exit.
-M Print the magic number expected by this version of the runtime and exit.
-p Print the names of the primitives known to this version of ocamlrun and exit.

-v Direct the memory manager to print some progress messages on standard error. This is
equivalent to setting v=63 in the 0CAMLRUNPARAM environment variable (see below).

-version
Print version string and exit.

-vnum
Print short version number and exit.

The following environment variables are also consulted:

CAML_LD_LIBRARY PATH
Additional directories to search for dynamically-loaded libraries (see section 11.3).

OCAMLLIB
The directory containing the OCaml standard library. (If OCAMLLIB is not set, CAMLLIB will
be used instead.) Used to locate the 1d.conf configuration file for dynamic loading (see
section 11.3). If not set, default to the library directory specified when compiling OCaml.

OCAMLRUNPARAM
Set the runtime system options and garbage collection parameters. (If OCAMLRUNPARAM is
not set, CAMLRUNPARAM will be used instead.) This variable must be a sequence of parameter
specifications separated by commas. A parameter specification is an option letter followed
by an = sign, a decimal number (or an hexadecimal number prefixed by 0x), and an optional
multiplier. The options are documented below; the last six correspond to the fields of the
control record documented in section 25.18.

b (backtrace) Trigger the printing of a stack backtrace when an uncaught exception aborts
the program. This option takes no argument.

Chapter 11. The runtime system (ocamlrun) 251

p

(parser trace) Turn on debugging support for ocamlyacc-generated parsers. When this
option is on, the pushdown automaton that executes the parsers prints a trace of its
actions. This option takes no argument.

(randomize) Turn on randomization of all hash tables by default (see section 25.20).
This option takes no argument.

The initial size of the major heap (in words).

(allocation_policy) The policy used for allocating in the OCaml heap. Possible values
are 0 for the next-fit policy, 1 for the first-fit policy, and 2 for the best-fit policy. Best-fit
is still experimental, but probably the best of the three. The default is 0 (next-fit). See
the Gc module documentation for details.

minor_heap_size) Size of the minor heap. (in words
P
(major_heap_increment) Default size increment for the major heap. (in words)

(space_overhead) The major GC speed setting. See the Gc module documentation for
details.

(max_overhead) The heap compaction trigger setting.
(stack_limit) The limit (in words) of the stack size.

(verbose) What GC messages to print to stderr. This is a sum of values selected from
the following:
1 (= 0x001)
Start of major GC cycle.
2 (= 0x002)
Minor collection and major GC slice.
4 (= 0x004)
Growing and shrinking of the heap.
8 (= 0x008)
Resizing of stacks and memory manager tables.
16 (= 0x010)
Heap compaction.
32 (= 0x020)
Change of GC parameters.
64 (= 0x040)
Computation of major GC slice size.

128 (= 0x080)
Calling of finalization functions

256 (= 0x100)
Startup messages (loading the bytecode executable file, resolving shared libraries).

512 (= 0x200)
Computation of compaction-triggering condition.

1024 (= 0x400)
Output GC statistics at program exit.

252

¢ (cleanup_on_exit) Shut the runtime down gracefully on exit (see caml_shutdown in
section 20.7.5). The option also enables pooling (as in caml_startup_pooled). This
mode can be used to detect leaks with a third-party memory debugger.

M (custom_major_ratio) Target ratio of floating garbage to major heap size for out-of-
heap memory held by custom values (e.g. bigarrays) located in the major heap. The
GC speed is adjusted to try to use this much memory for dead values that are not yet
collected. Expressed as a percentage of major heap size. Default: 44. Note: this only
applies to values allocated with caml_alloc_custom_mem.

m (custom_minor_ratio) Bound on floating garbage for out-of-heap memory held by cus-
tom values in the minor heap. A minor GC is triggered when this much memory is held by
custom values located in the minor heap. Expressed as a percentage of minor heap size.
Default: 100. Note: this only applies to values allocated with caml_alloc_custom_mem.

n (custom_minor_max_size) Maximum amount of out-of-heap memory for each
custom value allocated in the minor heap. When a custom value is allocated
on the minor heap and holds more than this many bytes, only this value is
counted against custom_minor_ratio and the rest is directly counted against
custom_major_ratio. Default: 8192 bytes. Note: this only applies to values allocated
with caml alloc_custom_mem.

The multiplier is k, M, or G, for multiplication by 2!, 229 and 230 respectively.

If the option letter is not recognized, the whole parameter is ignored; if the equal sign or the
number is missing, the value is taken as 1; if the multiplier is not recognized, it is ignored.

For example, on a 32-bit machine, under bash the command
export OCAMLRUNPARAM='b,s=256k,v=0x015"

tells a subsequent ocamlrun to print backtraces for uncaught exceptions, set its initial minor
heap size to 1 megabyte and print a message at the start of each major GC cycle, when the
heap size changes, and when compaction is triggered.

CAMLRUNPARAM
If OCAMLRUNPARAM is not found in the environment, then CAMLRUNPARAM will be used instead.
If CAMLRUNPARAM is also not found, then the default values will be used.

PATH
List of directories searched to find the bytecode executable file.

11.3 Dynamic loading of shared libraries

On platforms that support dynamic loading, ocamlrun can link dynamically with C shared libraries
(DLLs) providing additional C primitives beyond those provided by the standard runtime system.
The names for these libraries are provided at link time as described in section 20.1.4), and recorded
in the bytecode executable file; ocamlrun, then, locates these libraries and resolves references to
their primitives when the bytecode executable program starts.

The ocamlrun command searches shared libraries in the following directories, in the order
indicated:

Chapter 11. The runtime system (ocamlrun) 253

1. Directories specified on the ocamlrun command line with the -I option.
2. Directories specified in the CAML_LD_LIBRARY_PATH environment variable.

3. Directories specified at link-time via the ~d11lpath option to ocamlc. (These directories are
recorded in the bytecode executable file.)

4. Directories specified in the file 1d.conf. This file resides in the OCaml standard library
directory, and lists directory names (one per line) to be searched. Typically, it contains
only one line naming the stublibs subdirectory of the OCaml standard library directory.
Users can add there the names of other directories containing frequently-used shared libraries;
however, for consistency of installation, we recommend that shared libraries are installed
directly in the system stublibs directory, rather than adding lines to the 1d.conf file.

5. Default directories searched by the system dynamic loader. Under Unix, these generally
include /1ib and /usr/1ib, plus the directories listed in the file /etc/1d.so.conf and the
environment variable LD_LIBRARY_PATH. Under Windows, these include the Windows system
directories, plus the directories listed in the PATH environment variable.

11.4 Common errors
This section describes and explains the most frequently encountered error messages.

filename: no such file or directory
If filename is the name of a self-executable bytecode file, this means that either that file does
not exist, or that it failed to run the ocamlrun bytecode interpreter on itself. The second
possibility indicates that OCaml has not been properly installed on your system.

Cannot exec ocamlrun
(When launching a self-executable bytecode file.) The ocamlrun could not be found in the
executable path. Check that OCaml has been properly installed on your system.

Cannot find the bytecode file
The file that ocamlrun is trying to execute (e.g. the file given as first non-option argument
to ocamlrun) either does not exist, or is not a valid executable bytecode file.

Truncated bytecode file
The file that ocamlrun is trying to execute is not a valid executable bytecode file. Probably
it has been truncated or mangled since created. Erase and rebuild it.

Uncaught exception

The program being executed contains a “stray” exception. That is, it raises an exception at
some point, and this exception is never caught. This causes immediate termination of the
program. The name of the exception is printed, along with its string, byte sequence, and
integer arguments (arguments of more complex types are not correctly printed). To locate
the context of the uncaught exception, compile the program with the -g option and either
run it again under the ocamldebug debugger (see chapter 17), or run it with ocamlrun -b or
with the OCAMLRUNPARAM environment variable set to b=1.

254

Out of memory

The program being executed requires more memory than available. Either the program builds
excessively large data structures; or the program contains too many nested function calls, and
the stack overflows. In some cases, your program is perfectly correct, it just requires more
memory than your machine provides. In other cases, the “out of memory” message reveals an
error in your program: non-terminating recursive function, allocation of an excessively large
array, string or byte sequence, attempts to build an infinite list or other data structure, ...

To help you diagnose this error, run your program with the -v option to ocamlrun,
or with the OCAMLRUNPARAM environment variable set to v=63. If it displays lots of
“Growing stack...” messages, this is probably a looping recursive function. If it displays
lots of “Growing heap...” messages, with the heap size growing slowly, this is probably
an attempt to construct a data structure with too many (infinitely many?) cells. If it
displays few “Growing heap...” messages, but with a huge increment in the heap size, this
is probably an attempt to build an excessively large array, string or byte sequence.

Chapter 12

Native-code compilation (ocamlopt)

This chapter describes the OCaml high-performance native-code compiler ocamlopt, which com-
piles OCaml source files to native code object files and links these object files to produce standalone
executables.

The native-code compiler is only available on certain platforms. It produces code that runs faster
than the bytecode produced by ocamlc, at the cost of increased compilation time and executable
code size. Compatibility with the bytecode compiler is extremely high: the same source code should
run identically when compiled with ocamlc and ocamlopt.

It is not possible to mix native-code object files produced by ocamlopt with bytecode object
files produced by ocamlc: a program must be compiled entirely with ocamlopt or entirely with
ocamlc. Native-code object files produced by ocamlopt cannot be loaded in the toplevel system
ocaml.

12.1 Overview of the compiler

The ocamlopt command has a command-line interface very close to that of ocamlc. It accepts the
same types of arguments, and processes them sequentially, after all options have been processed:

e Arguments ending in .mli are taken to be source files for compilation unit interfaces. In-
terfaces specify the names exported by compilation units: they declare value names with
their types, define public data types, declare abstract data types, and so on. From the file
xz.m1i, the ocamlopt compiler produces a compiled interface in the file x.cmi. The interface
produced is identical to that produced by the bytecode compiler ocamlc.

o Arguments ending in .ml are taken to be source files for compilation unit implementations.
Implementations provide definitions for the names exported by the unit, and also contain
expressions to be evaluated for their side-effects. From the file z.m1, the ocamlopt compiler
produces two files: z.o, containing native object code, and z.cmx, containing extra informa-
tion for linking and optimization of the clients of the unit. The compiled implementation
should always be referred to under the name z.cmx (when given a .o or .obj file, ocamlopt
assumes that it contains code compiled from C, not from OCaml).

The implementation is checked against the interface file z.m1i (if it exists) as described in
the manual for ocamlc (chapter 9).

255

256

e Arguments ending in .cmx are taken to be compiled object code. These files are linked
together, along with the object files obtained by compiling .m1 arguments (if any), and the
OCaml standard library, to produce a native-code executable program. The order in which
.cmx and .ml arguments are presented on the command line is relevant: compilation units
are initialized in that order at run-time, and it is a link-time error to use a component of a
unit before having initialized it. Hence, a given z.cmx file must come before all .cmx files
that refer to the unit z.

o Arguments ending in .cmxa are taken to be libraries of object code. Such a library packs in
two files (lib.cmxa and lib.a/.1ib) a set of object files (.cmx and .o/.obj files). Libraries
are build with ocamlopt -a (see the description of the -a option below). The object files
contained in the library are linked as regular .cmx files (see above), in the order specified
when the library was built. The only difference is that if an object file contained in a library
is not referenced anywhere in the program, then it is not linked in.

o Arguments ending in .c are passed to the C compiler, which generates a .o/.obj object file.
This object file is linked with the program.

o Arguments ending in .o, .a or .so (.obj, .1lib and .d11l under Windows) are assumed to
be C object files and libraries. They are linked with the program.

The output of the linking phase is a regular Unix or Windows executable file. It does not need
ocamlrun to run.

The compiler is able to emit some information on its internal stages. It can output .cmt files
for the implementation of the compilation unit and .cmti for signatures if the option -bin-annot
is passed to it (see the description of ~bin-annot below). Each such file contains a typed abstract
syntax tree (AST), that is produced during the type checking procedure. This tree contains all
available information about the location and the specific type of each term in the source file. The
AST is partial if type checking was unsuccessful.

These .cmt and .cmti files are typically useful for code inspection tools.

12.2 Options

The following command-line options are recognized by ocamlopt. The options -pack, -a, -shared,
-c and -output-obj are mutually exclusive.

-a Build a library(.cmxa and .a/.1ib files) with the object files (.cmx and .o/.obj files) given
on the command line, instead of linking them into an executable file. The name of the library
must be set with the -o option.

If —cclib or —ccopt options are passed on the command line, these options are stored in the
resulting .cmxalibrary. Then, linking with this library automatically adds back the -cclib
and -ccopt options as if they had been provided on the command line, unless the -noautolink
option is given.

—absname
Force error messages to show absolute paths for file names.

Chapter 12. Native-code compilation (ocamlopt) 257

-annot
Dump detailed information about the compilation (types, bindings, tail-calls, etc). The in-
formation for file src.ml is put into file src.annot. In case of a type error, dump all the
information inferred by the type-checker before the error. The src.annot file can be used
with the emacs commands given in emacs/caml-types.el to display types and other anno-
tations interactively.

-args filename
Read additional newline-terminated command line arguments from filename.

-args0 filename
Read additional null character terminated command line arguments from filename.

-bin-annot
Dump detailed information about the compilation (types, bindings, tail-calls, etc) in bi-
nary format. The information for file src.ml (resp. src.mli) is put into file src.cmt (resp.
src.cmti). In case of a type error, dump all the information inferred by the type-checker be-
fore the error. The *.cmt and *. cmti files produced by -bin-annot contain more information
and are much more compact than the files produced by -annot.

-c Compile only. Suppress the linking phase of the compilation. Source code files are turned into
compiled files, but no executable file is produced. This option is useful to compile modules
separately.

-cc ccomp
Use ccomp as the C linker called to build the final executable and as the C compiler for
compiling . c source files.

-cclib -1llibname
Pass the -1libname option to the linker . This causes the given C library to be linked with
the program.

—-ccopt option
Pass the given option to the C compiler and linker. For instance,~ccopt -Ldir causes the C
linker to search for C libraries in directory dir.

-color mode
Enable or disable colors in compiler messages (especially warnings and errors). The following
modes are supported:

auto
use heuristics to enable colors only if the output supports them (an ANSI-compatible
tty terminal);

always
enable colors unconditionally;

never
disable color output.

258

The default setting is 'auto’, and the current heuristic checks that the TERM environment
variable exists and is not empty or dumb, and that ’isatty(stderr)’ holds.

The environment variable OCAML_COLOR is considered if —color is not provided. Its values
are auto/always/never as above.

-error-style mode

Control the way error messages and warnings are printed. The following modes are supported:
short
only print the error and its location;

contextual
like short, but also display the source code snippet corresponding to the location of the
error.

The default setting is contextual.

The environment variable 0CAML_ERROR_STYLE is considered if ~error-style is not provided.
Its values are short/contextual as above.

—-compact

Optimize the produced code for space rather than for time. This results in slightly smaller
but slightly slower programs. The default is to optimize for speed.

-config

Print the version number of ocamlopt and a detailed summary of its configuration, then exit.

-config-var var

Print the value of a specific configuration variable from the -config output, then exit. If the
variable does not exist, the exit code is non-zero. This option is only available since OCaml
4.08, so script authors should have a fallback for older versions.

-depend ocamldep-args

Compute dependencies, as the ocamldep command would do. The remaining arguments are
interpreted as if they were given to the ocamldep command.

-for-pack module-path

Generate an object file (.cmx and .o/.obj files) that can later be included as a sub-module
(with the given access path) of a compilation unit constructed with -pack. For instance,
ocamlopt -for-pack P -¢ A.ml will generate a..cmx and a.o files that can later be used with
ocamlopt -pack -o P.cmx a.cmx. Note: you can still pack a module that was compiled without
-for-pack but in this case exceptions will be printed with the wrong names.

Add debugging information while compiling and linking. This option is required in order
to produce stack backtraces when the program terminates on an uncaught exception (see
section 11.2).

Cause the compiler to print all defined names (with their inferred types or their definitions)
when compiling an implementation (.ml file). No compiled files (.cmo and .cmi files) are
produced. This can be useful to check the types inferred by the compiler. Also, since the

Chapter 12. Native-code compilation (ocamlopt) 259

output follows the syntax of interfaces, it can help in writing an explicit interface (.mli file)
for a file: just redirect the standard output of the compiler to a .mli file, and edit that file
to remove all declarations of unexported names.

-1 directory
Add the given directory to the list of directories searched for compiled interface files (.cmi),
compiled object code files (.cmx), and libraries (.cmxa). By default, the current directory
is searched first, then the standard library directory. Directories added with -I are searched
after the current directory, in the order in which they were given on the command line, but
before the standard library directory. See also option -nostdlib.

If the given directory starts with +, it is taken relative to the standard library directory. For
instance, -I +unix adds the subdirectory unix of the standard library to the search path.

-impl filename
Compile the file filename as an implementation file, even if its extension is not .ml.

-inline n
Set aggressiveness of inlining to n, where n is a positive integer. Specifying -inline 0
prevents all functions from being inlined, except those whose body is smaller than the call
site. Thus, inlining causes no expansion in code size. The default aggressiveness, -inline 1,
allows slightly larger functions to be inlined, resulting in a slight expansion in code size.
Higher values for the -inline option cause larger and larger functions to become candidate
for inlining, but can result in a serious increase in code size.

-intf filename
Compile the file filename as an interface file, even if its extension is not .mli.

-intf-suffix string
Recognize file names ending with string as interface files (instead of the default .mli).

-labels
Labels are not ignored in types, labels may be used in applications, and labelled parameters
can be given in any order. This is the default.

—-linkall
Force all modules contained in libraries to be linked in. If this flag is not given, unreferenced
modules are not linked in. When building a library (option -a), setting the -1inkall option
forces all subsequent links of programs involving that library to link all the modules contained
in the library. When compiling a module (option -c), setting the -1inkall option ensures
that this module will always be linked if it is put in a library and this library is linked.

-linscan
Use linear scan register allocation. Compiling with this allocator is faster than with the usual
graph coloring allocator, sometimes quite drastically so for long functions and modules. On
the other hand, the generated code can be a bit slower.

-match-context-rows
Set the number of rows of context used for optimization during pattern matching compilation.

260

The default value is 32. Lower values cause faster compilation, but less optimized code. This
advanced option is meant for use in the event that a pattern-match-heavy program leads to
significant increases in compilation time.

-no-alias-deps
Do not record dependencies for module aliases. See section 8.8 for more information.

-no-app—funct
Deactivates the applicative behaviour of functors. With this option, each functor application
generates new types in its result and applying the same functor twice to the same argument
yields two incompatible structures.

-noassert
Do not compile assertion checks. Note that the special form assert false is always compiled
because it is typed specially. This flag has no effect when linking already-compiled files.

-noautolink
When linking .cmxalibraries, ignore -cclib and -ccopt options potentially contained in
the libraries (if these options were given when building the libraries). This can be useful
if a library contains incorrect specifications of C libraries or C options; in this case, during
linking, set —-noautolink and pass the correct C libraries and options on the command line.

-nodynlink
Allow the compiler to use some optimizations that are valid only for code that is never
dynlinked.

-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter
order becomes strict.

-nostdlib
Do not automatically add the standard library directory to the list of directories searched for
compiled interface files (.cmi), compiled object code files (.cmx), and libraries (.cmxa). See
also option -1I.

-0 exec-file
Specify the name of the output file produced by the linker. The default output name is a.out
under Unix and camlprog.exe under Windows. If the -a option is given, specify the name of
the library produced. If the -pack option is given, specify the name of the packed object file
produced. If the —output-obj option is given, specify the name of the output file produced.
If the -shared option is given, specify the name of plugin file produced.

-opaque
When the native compiler compiles an implementation, by default it produces a .cmx file
containing information for cross-module optimization. It also expects .cmx files to be present
for the dependencies of the currently compiled source, and uses them for optimization. Since
OCaml 4.03, the compiler will emit a warning if it is unable to locate the .cmx file of one of
those dependencies.

Chapter 12. Native-code compilation (ocamlopt) 261

The -opaque option, available since 4.04, disables cross-module optimization information
for the currently compiled unit. When compiling .mli interface, using -opaque marks the
compiled .cmi interface so that subsequent compilations of modules that depend on it will
not rely on the corresponding .cmx file, nor warn if it is absent. When the native compiler
compiles a .ml implementation, using -opaque generates a .cmx that does not contain any
cross-module optimization information.

Using this option may degrade the quality of generated code, but it reduces compilation
time, both on clean and incremental builds. Indeed, with the native compiler, when the
implementation of a compilation unit changes, all the units that depend on it may need to
be recompiled — because the cross-module information may have changed. If the compilation
unit whose implementation changed was compiled with -~opaque, no such recompilation needs
to occur. This option can thus be used, for example, to get faster edit-compile-test feedback
loops.

-open Module
Opens the given module before processing the interface or implementation files. If several
-open options are given, they are processed in order, just as if the statements open! Modulel; ;
. open! ModuleN;; were added at the top of each file.

—output-obj
Cause the linker to produce a C object file instead of an executable file. This is useful to wrap
OCaml code as a C library, callable from any C program. See chapter 20, section 20.7.5. The
name of the output object file must be set with the —o option. This option can also be used
to produce a compiled shared/dynamic library (.so extension, .d11 under Windows).

-pack
Build an object file (.cmx and .o/.obj files) and its associated compiled interface (.cmi)
that combines the .cmx object files given on the command line, making them appear as sub-
modules of the output .cmx file. The name of the output .cmx file must be given with the -o
option. For instance,

ocamlopt -pack -o P.cmx A.cmx B.cmx C.cmx

generates compiled files P.cmx, P.o and P.cmi describing a compilation unit having three
sub-modules A, B and C, corresponding to the contents of the object files A.cmx, B.cmx and
C.cmx. These contents can be referenced as P. A, P.B and P.C in the remainder of the program.

The .cmx object files being combined must have been compiled with the appropriate
-for-pack option. In the example above, A.cmx, B.cmx and C.cmx must have been compiled
with ocamlopt -for-pack P.

Multiple levels of packing can be achieved by combining -pack with -for-pack. Consider
the following example:

ocamlopt —for-pack P.Q -c A.ml ocamlopt -pack -o Q.cmx -for-pack P A.cmx
ocamlopt -for-pack P -c B.ml ocamlopt -pack -o P.cmx Q.cmx B.cmx

The resulting P.cmx object file has sub-modules P.Q, P.Q.A and P.B.

262

-pp command
Cause the compiler to call the given command as a preprocessor for each source file. The
output of command is redirected to an intermediate file, which is compiled. If there are no
compilation errors, the intermediate file is deleted afterwards.

-ppx command
After parsing, pipe the abstract syntax tree through the preprocessor command. The module
Ast_mapper, described in section 26.1, implements the external interface of a preprocessor.

-principal
Check information path during type-checking, to make sure that all types are derived in
a principal way. When using labelled arguments and/or polymorphic methods, this flag is
required to ensure future versions of the compiler will be able to infer types correctly, even
if internal algorithms change. All programs accepted in -principal mode are also accepted
in the default mode with equivalent types, but different binary signatures, and this may slow
down type checking; yet it is a good idea to use it once before publishing source code.

-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where
the recursion goes through an object type are supported.Note that once you have created an
interface using this flag, you must use it again for all dependencies.

-runtime-variant suffix
Add the suffiz string to the name of the runtime library used by the program. Currently, only
one such suffix is supported: d, and only if the OCaml compiler was configured with option
-with-debug-runtime. This suffix gives the debug version of the runtime, which is useful for
debugging pointer problems in low-level code such as C stubs.

-stop-after pass
Stop compilation after the given compilation pass. The currently supported passes are:

parsing, typing.

-S Keep the assembly code produced during the compilation. The assembly code for the source
file z.m1 is saved in the file z.s.

-shared

Build a plugin (usually . cmxs) that can be dynamically loaded with the Dynlink module. The
name of the plugin must be set with the —o option. A plugin can include a number of OCaml
modules and libraries, and extra native objects (.o, .obj, .a, .1ib files). Building native
plugins is only supported for some operating system. Under some systems (currently, only
Linux AMD 64), all the OCaml code linked in a plugin must have been compiled without the
-nodynlink flag. Some constraints might also apply to the way the extra native objects have
been compiled (under Linux AMD 64, they must contain only position-independent code).

-safe-string
Enforce the separation between types string and bytes, thereby making strings read-only.
This is the default.

Chapter 12. Native-code compilation (ocamlopt) 263

-short-paths
When a type is visible under several module-paths, use the shortest one when printing the
type’s name in inferred interfaces and error and warning messages. Identifier names starting
with an underscore _ or containing double underscores __ incur a penalty of +10 when
computing their length.

-strict-sequence
Force the left-hand part of each sequence to have type unit.

-strict-formats
Reject invalid formats that were accepted in legacy format implementations. You should use
this flag to detect and fix such invalid formats, as they will be rejected by future OCaml
versions.

-unboxed-types
When a type is unboxable (i.e. a record with a single argument or a concrete datatype
with a single constructor of one argument) it will be unboxed unless annotated with
[@@ocaml.boxed].

-no-unboxed-types
When a type is unboxable it will be boxed unless annotated with [@@ocaml.unboxed]. This
is the default.

-unsafe
Turn bound checking off for array and string accesses (the v.(i) and s.[i] constructs).
Programs compiled with —unsafe are therefore faster, but unsafe: anything can happen if
the program accesses an array or string outside of its bounds. Additionally, turn off the check
for zero divisor in integer division and modulus operations. With —unsafe, an integer division
(or modulus) by zero can halt the program or continue with an unspecified result instead of
raising a Division_by_zero exception.

-unsafe-string
Identify the types string and bytes, thereby making strings writable. This is intended for
compatibility with old source code and should not be used with new software.

-v Print the version number of the compiler and the location of the standard library directory,
then exit.

-verbose
Print all external commands before they are executed, in particular invocations of the assem-
bler, C compiler, and linker. Useful to debug C library problems.

-version or —vnum
Print the version number of the compiler in short form (e.g. 3.11.0), then exit.

-w warning-list
Enable, disable, or mark as fatal the warnings specified by the argument warning-list. Each
warning can be enabled or disabled, and each warning can be fatal or non-fatal. If a warning
is disabled, it isn’t displayed and doesn’t affect compilation in any way (even if it is fatal).

264

If a warning is enabled, it is displayed normally by the compiler whenever the source code
triggers it. If it is enabled and fatal, the compiler will also stop with an error after displaying
it.

The warning-list argument is a sequence of warning specifiers, with no separators between
them. A warning specifier is one of the following:

+num
Enable warning number num.

-num
Disable warning number num.
@num

Enable and mark as fatal warning number num.

+numl..num2
Enable warnings in the given range.

-numl..num2
Disable warnings in the given range.
@numl..num2
Enable and mark as fatal warnings in the given range.

+letter
Enable the set of warnings corresponding to letter. The letter may be uppercase or
lowercase.

~letter
Disable the set of warnings corresponding to letter. The letter may be uppercase or
lowercase.

Qletter
Enable and mark as fatal the set of warnings corresponding to letter. The letter may be
uppercase or lowercase.

uppercase-letter
Enable the set of warnings corresponding to uppercase-letter.

lowercase-letter
Disable the set of warnings corresponding to lowercase-letter.

Warning numbers and letters which are out of the range of warnings that are currently defined
are ignored. The warnings are as follows.

Suspicious-looking start-of-comment mark.

Suspicious-looking end-of-comment mark.

Deprecated synonym for the ’deprecated’ alert

W N =

Fragile pattern matching: matching that will remain complete even if additional con-
structors are added to one of the variant types matched.

5 Partially applied function: expression whose result has function type and is ignored.

Chapter 12. Native-code compilation (ocamlopt) 265

© 0w N O

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

28
29
30
31
32
33
34
35
36
37
38

Label omitted in function application.

Method overridden.

Partial match: missing cases in pattern-matching.
Missing fields in a record pattern.

Expression on the left-hand side of a sequence that doesn’t have type unit (and that is
not a function, see warning number 5).

Redundant case in a pattern matching (unused match case).
Redundant sub-pattern in a pattern-matching.

Instance variable overridden.

Illegal backslash escape in a string constant.

Private method made public implicitly.

Unerasable optional argument.

Undeclared virtual method.

Non-principal type.

Type without principality.

Unused function argument.

Non-returning statement.

Preprocessor warning.

Useless record with clause.

Bad module name: the source file name is not a valid OCaml module name.
Deprecated: now part of warning 8.

Suspicious unused variable: unused variable that is bound with let or as, and doesn’t
start with an underscore (_) character.

Innocuous unused variable: unused variable that is not bound with let nor as, and
doesn’t start with an underscore (_) character.

Wildcard pattern given as argument to a constant constructor.

Unescaped end-of-line in a string constant (non-portable code).

Two labels or constructors of the same name are defined in two mutually recursive types.
A module is linked twice in the same executable.

Unused value declaration.

Unused open statement.

Unused type declaration.

Unused for-loop index.

Unused ancestor variable.

Unused constructor.

Unused extension constructor.

266

39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57

58
59
60
61
62
63

Unused rec flag.

Constructor or label name used out of scope.

Ambiguous constructor or label name.

Disambiguated constructor or label name (compatibility warning).
Nonoptional label applied as optional.

Open statement shadows an already defined identifier.

Open statement shadows an already defined label or constructor.
FError in environment variable.

Illegal attribute payload.

Implicit elimination of optional arguments.

Absent cmi file when looking up module alias.

Unexpected documentation comment.

Warning on non-tail calls if @tailcall present.

(see 9.5.2)
Fragile constant pattern.

Attribute cannot appear in this context

Attribute used more than once on an expression

Inlining impossible

Unreachable case in a pattern-matching (based on type information).

(see 9.5.3)
Ambiguous or-pattern variables under guard

Missing cmx file

Assignment to non-mutable value

Unused module declaration

Unboxable type in primitive declaration

Type constraint on GADT type declaration
Erroneous printed signature

-unsafe used with a preprocessor returning a syntax tree
Type declaration defining a new ’()’ constructor
Unused open! statement

all warnings

warnings 1, 2.

Alias for warning 3.

Alias for warning 4.

Alias for warning 5.

warnings 32, 33, 34, 35, 36, 37, 38, 39.

Chapter 12. Native-code compilation (ocamlopt) 267

Alias for warning 6.

Alias for warning 7.

Alias for warning 8.

Alias for warning 9.

Alias for warning 10.

warnings 11, 12.

Alias for warning 13.

warnings 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 30.

Alias for warning 26.

NwW<cnmg g

Alias for warning 27.

The default setting is -w +a-4-6-7-9-27-29-32..42-44-45-48-50-60. It is displayed by
ocamlopt -help. Note that warnings 5 and 10 are not always triggered, depending on the
internals of the type checker.

-warn-error warning-list
Mark as fatal the warnings specified in the argument warning-list. The compiler will stop
with an error when one of these warnings is emitted. The warning-list has the same meaning
as for the -w option: a + sign (or an uppercase letter) marks the corresponding warnings as
fatal, a - sign (or a lowercase letter) turns them back into non-fatal warnings, and a @ sign
both enables and marks as fatal the corresponding warnings.

Note: it is not recommended to use warning sets (i.e. letters) as arguments to -warn-error
in production code, because this can break your build when future versions of OCaml add
some new warnings.

The default setting is ~-warn-error -a+31 (only warning 31 is fatal).

-warn-help
Show the description of all available warning numbers.

-where
Print the location of the standard library, then exit.

-with-runtime
Include the runtime system in the generated program. This is the default.

-without-runtime
The compiler does not include the runtime system (nor a reference to it) in the generated
program,; it must be supplied separately.

- file

Process file as a file name, even if it starts with a dash (=) character.

-help or -help
Display a short usage summary and exit.

268

Options for the IA32 architecture The IA32 code generator (Intel Pentium, AMD Athlon)
supports the following additional option:

—-ffast-math
Use the TA32 instructions to compute trigonometric and exponential functions, instead of
calling the corresponding library routines. The functions affected are: atan, atan2, cos, log,
logl0, sin, sqrt and tan. The resulting code runs faster, but the range of supported argu-
ments and the precision of the result can be reduced. In particular, trigonometric operations
cos, sin, tan have their range reduced to [—2%%, 264].

Options for the AMDG64 architecture The AMD64 code generator (64-bit versions of Intel
Pentium and AMD Athlon) supports the following additional options:

-fPIC
Generate position-independent machine code. This is the default.

-fno-PIC
Generate position-dependent machine code.

Contextual control of command-line options

The compiler command line can be modified “from the outside” with the following mechanisms.
These are experimental and subject to change. They should be used only for experimental and
development work, not in released packages.

OCAMLPARAM (environment variable)
A set of arguments that will be inserted before or after the arguments from the command
line. Arguments are specified in a comma-separated list of name=value pairs. A _ is used to
specify the position of the command line arguments, i.e. a=x,_,b=y means that a=x should
be executed before parsing the arguments, and b=y after. Finally, an alternative separator
can be specified as the first character of the string, within the set : |; ,.

ocaml_compiler_internal_params (file in the stdlib directory)
A mapping of file names to lists of arguments that will be added to the command line (and
OCAMLPARAM) arguments.

OCAML_FLEXLINK (environment variable)
Alternative executable to use on native Windows for £1lex1link instead of the configured value.
Primarily used for bootstrapping.

12.3 Common errors

The error messages are almost identical to those of ocamlc. See section 9.4.

Chapter 12. Native-code compilation (ocamlopt) 269

12.4 Running executables produced by ocamlopt

Executables generated by ocamlopt are native, stand-alone executable files that can be invoked
directly. They do not depend on the ocamlrun bytecode runtime system nor on dynamically-loaded
C/OCaml stub libraries.

During execution of an ocamlopt-generated executable, the following environment variables are
also consulted:

OCAMLRUNPARAM
Same usage as in ocamlrun (see section 11.2), except that option 1 is ignored (the operating
system’s stack size limit is used instead).

CAMLRUNPARAM
If OCAMLRUNPARAM is not found in the environment, then CAMLRUNPARAM will be used instead.
If CAMLRUNPARAM is not found, then the default values will be used.

12.5 Compatibility with the bytecode compiler

This section lists the known incompatibilities between the bytecode compiler and the native-code
compiler. Except on those points, the two compilers should generate code that behave identically.

e Signals are detected only when the program performs an allocation in the heap. That is, if
a signal is delivered while in a piece of code that does not allocate, its handler will not be
called until the next heap allocation.

e On ARM and PowerPC processors (32 and 64 bits), fused multiply-add (FMA) instructions
can be generated for a floating-point multiplication followed by a floating-point addition or
subtraction, as in x *. y +. z. The FMA instruction avoids rounding the intermediate
result x *. y, which is generally beneficial, but produces floating-point results that differ
slightly from those produced by the bytecode interpreter.

o On TA32 processors only (Intel and AMD x86 processors in 32-bit mode), some intermedi-
ate results in floating-point computations are kept in extended precision rather than being
rounded to double precision like the bytecode compiler always does. Floating-point results
can therefore differ slightly between bytecode and native code.

e The native-code compiler performs a number of optimizations that the bytecode compiler
does not perform, especially when the Flambda optimizer is active. In particular, the native-
code compiler identifies and eliminates “dead code”, i.e. computations that do not contribute
to the results of the program. For example,

let _ = ignore M.f

contains a reference to compilation unit M when compiled to bytecode. This reference forces M
to be linked and its initialization code to be executed. The native-code compiler eliminates the
reference to M, hence the compilation unit M may not be linked and executed. A workaround
is to compile M with the -1inkall flag so that it will always be linked and executed, even if

270

not referenced. See also the Sys.opaque_identity function from the Sys standard library
module.

Before 4.10, stack overflows, typically caused by excessively deep recursion, are not always
turned into a Stack_overflow exception like with the bytecode compiler. The runtime system
makes a best effort to trap stack overflows and raise the Stack_overflow exception, but
sometimes it fails and a “segmentation fault” or another system fault occurs instead.

Chapter 13

Lexer and parser generators
(ocamllex, ocamlyacc)

This chapter describes two program generators: ocamllex, that produces a lexical analyzer from a
set of regular expressions with associated semantic actions, and ocamlyacc, that produces a parser
from a grammar with associated semantic actions.

These program generators are very close to the well-known lex and yacc commands that can
be found in most C programming environments. This chapter assumes a working knowledge of lex
and yacc: while it describes the input syntax for ocamllex and ocamlyacc and the main differences
with lex and yacc, it does not explain the basics of writing a lexer or parser description in lex and
yacc. Readers unfamiliar with lex and yacc are referred to “Compilers: principles, techniques,
and tools” by Aho, Sethi and Ullman (Addison-Wesley, 1986), or “Lex & Yacc”, by Levine, Mason
and Brown (O’Reilly, 1992).

13.1 Overview of ocamllex

The ocamllex command produces a lexical analyzer from a set of regular expressions with attached
semantic actions, in the style of lex. Assuming the input file is lezer.m11, executing

ocamllex lexer.mll

produces OCaml code for a lexical analyzer in file lexer.m1l. This file defines one lexing func-
tion per entry point in the lexer definition. These functions have the same names as the entry
points. Lexing functions take as argument a lexer buffer, and return the semantic attribute of the
corresponding entry point.

Lexer buffers are an abstract data type implemented in the standard library module Lexing.
The functions Lexing.from_channel, Lexing.from_string and Lexing.from_function create
lexer buffers that read from an input channel, a character string, or any reading function, respec-
tively. (See the description of module Lexing in chapter 25.)

When used in conjunction with a parser generated by ocamlyacc, the semantic actions compute
a value belonging to the type token defined by the generated parsing module. (See the description
of ocamlyacc below.)

271

272

13.1.1 Options

The following command-line options are recognized by ocamllex.

-ml Output code that does not use OCaml’s built-in automata interpreter. Instead, the automaton
is encoded by OCaml functions. This option improves performance when using the native
compiler, but decreases it when using the bytecode compiler.

-0 output-file
Specify the name of the output file produced by ocamllex. The default is the input file name
with its extension replaced by .ml.

-q Quiet mode. ocamllex normally outputs informational messages to standard output. They
are suppressed if option -q is used.

-V or -version
Print version string and exit.

-vnum
Print short version number and exit.

—-help or -help
Display a short usage summary and exit.

13.2 Syntax of lexer definitions

The format of lexer definitions is as follows:

{ header }
let ident = regexp ...
[refill { refill-handler }]
rule entrypoint [arg,... arg,] =
parse regexp { action }
|
| regexp { action }
and entrypoint Larg,... arg,] =
parse ...
and ...
{ trailer }

Comments are delimited by (* and *), as in OCaml. The parse keyword, can be replaced by
the shortest keyword, with the semantic consequences explained below.

Refill handlers are a recent (optional) feature introduced in 4.02, documented below in subsec-
tion 13.2.7.

Chapter 13. Lexer and parser generators (ocamllex, ocamlyacc) 273

13.2.1 Header and trailer

The header and trailer sections are arbitrary OCaml text enclosed in curly braces. Either or both
can be omitted. If present, the header text is copied as is at the beginning of the output file and
the trailer text at the end. Typically, the header section contains the open directives required by
the actions, and possibly some auxiliary functions used in the actions.

13.2.2 Naming regular expressions

Between the header and the entry points, one can give names to frequently-occurring regular
expressions. This is written let ident = regexp. In regular expressions that follow this declaration,
the identifier ident can be used as shorthand for regexp.

13.2.3 Entry points

The names of the entry points must be valid identifiers for OCaml values (starting with a lowercase
letter). Similarly, the arguments arg;... arg, must be valid identifiers for OCaml. Each entry
point becomes an OCaml function that takes n 4+ 1 arguments, the extra implicit last argument
being of type Lexing.lexbuf. Characters are read from the Lexing.lexbuf argument and matched
against the regular expressions provided in the rule, until a prefix of the input matches one of the
rule. The corresponding action is then evaluated and returned as the result of the function.

If several regular expressions match a prefix of the input, the “longest match” rule applies: the
regular expression that matches the longest prefix of the input is selected. In case of tie, the regular
expression that occurs earlier in the rule is selected.

However, if lexer rules are introduced with the shortest keyword in place of the parse keyword,
then the “shortest match” rule applies: the shortest prefix of the input is selected. In case of tie,
the regular expression that occurs earlier in the rule is still selected. This feature is not intended for
use in ordinary lexical analyzers, it may facilitate the use of ocamllex as a simple text processing
tool.

13.2.4 Regular expressions

The regular expressions are in the style of lex, with a more OCaml-like syntax.
regexp =

' regular-char | escape-sequence '
A character constant, with the same syntax as OCaml character constants. Match the denoted
character.

(underscore) Match any character.

eof Match the end of the lexer input.
Note: On some systems, with interactive input, an end-of-file may be followed by more
characters. However, ocamllex will not correctly handle regular expressions that contain eof
followed by something else.

274

" {string-character} "
A string constant, with the same syntax as OCaml string constants. Match the corresponding
sequence of characters.

[character-set]
Match any single character belonging to the given character set. Valid character sets are:
single character constants 'c '; ranges of characters 'c; ' - 'co ' (all characters between ¢;
and cg, inclusive); and the union of two or more character sets, denoted by concatenation.

[~ character-set]
Match any single character not belonging to the given character set.

regexp, # regexpo
(difference of character sets) Regular expressions regexp; and regexp, must be character sets
defined with [...] (or a single character expression or underscore _). Match the difference
of the two specified character sets.

regexp
(repetition) Match the concatenation of zero or more strings that match regexp.

regexp +
(strict repetition) Match the concatenation of one or more strings that match regexp.

regexp ?
(option) Match the empty string, or a string matching regexp.

regexp, | regexpy
(alternative) Match any string that matches regexp; or regexps

regexp; regexp,
(concatenation) Match the concatenation of two strings, the first matching regexp;, the second
matching regexps.

(regexp)
Match the same strings as regexp.

ident
Reference the regular expression bound to ident by an earlier let ident = regexp definition.

regexp as ident
Bind the substring matched by regexp to identifier ident.

Concerning the precedences of operators, # has the highest precedence, followed by *, + and 7,
then concatenation, then | (alternation), then as.

13.2.5 Actions

The actions are arbitrary OCaml expressions. They are evaluated in a context where the identifiers
defined by using the as construct are bound to subparts of the matched string. Additionally,
lexbuf is bound to the current lexer buffer. Some typical uses for lexbuf, in conjunction with the
operations on lexer buffers provided by the Lexing standard library module, are listed below.

Chapter 13. Lexer and parser generators (ocamllex, ocamlyacc) 275

Lexing.lexeme lexbuf
Return the matched string.

Lexing.lexeme_char lexbuf n
Return the n'® character in the matched string. The first character corresponds to n = 0.

Lexing.lexeme_start lexbuf
Return the absolute position in the input text of the beginning of the matched string (i.e. the
offset of the first character of the matched string). The first character read from the input
text has offset 0.

Lexing.lexeme_end lexbuf
Return the absolute position in the input text of the end of the matched string (i.e. the offset
of the first character after the matched string). The first character read from the input text
has offset 0.

entrypoint [expi... exp,] lexbuf
(Where entrypoint is the name of another entry point in the same lexer definition.) Recursively
call the lexer on the given entry point. Notice that lexbuf is the last argument. Useful for
lexing nested comments, for example.

13.2.6 Variables in regular expressions

The as construct is similar to “groups” as provided by numerous regular expression packages. The
type of these variables can be string, char, string option or char option.

We first consider the case of linear patterns, that is the case when all as bound variables are
distinct. In regexp as ident, the type of ident normally is string (or string option) except
when regexp is a character constant, an underscore, a string constant of length one, a character set
specification, or an alternation of those. Then, the type of ident is char (or char option). Option
types are introduced when overall rule matching does not imply matching of the bound sub-pattern.
This is in particular the case of (regexp as ident) 7 and of regexp, | (regexp, as ident).

There is no linearity restriction over as bound variables. When a variable is bound more than
once, the previous rules are to be extended as follows:

o A variable is a char variable when all its occurrences bind char occurrences in the previous
sense.

e A variable is an option variable when the overall expression can be matched without binding
this variable.

For instance, in ('a' as x) | ('a' (_ as x)) the variable x is of type char, whereas in
("ab" as x) | ('a' (_ as x) 7) the variable x is of type string option.

In some cases, a successful match may not yield a unique set of bindings. For instance the
matching of aba by the regular expression (('a'|"ab") as x) (("ba"|'a') as y) may result
in binding either x to "ab" and y to "a", or x to "a" and y to "ba". The automata produced
ocamllex on such ambiguous regular expressions will select one of the possible resulting sets of
bindings. The selected set of bindings is purposely left unspecified.

276

13.2.7 Refill handlers

By default, when ocamllex reaches the end of its lexing buffer, it will silently call the refill_buff
function of lexbuf structure and continue lexing. It is sometimes useful to be able to take control
of refilling action; typically, if you use a library for asynchronous computation, you may want to
wrap the refilling action in a delaying function to avoid blocking synchronous operations.

Since OCaml 4.02, it is possible to specify a refill-handler, a function that will be called when
refill happens. It is passed the continuation of the lexing, on which it has total control. The OCaml
expression used as refill action should have a type that is an instance of

(Lexing.lexbuf -> 'a) -> Lexing.lexbuf -> 'a

where the first argument is the continuation which captures the processing ocamllex would
usually perform (refilling the buffer, then calling the lexing function again), and the result type
that instantiates [a] should unify with the result type of all lexing rules.

As an example, consider the following lexer that is parametrized over an arbitrary monad:

{
type token = EOL | INT of int | PLUS

module Make (M : sig
type 'a t
val return: 'a -> 'a t
val bind: 'at -> ('a -> 'bt) -> 'b t
val fail : string -> 'a t

(* Set up lexbuf *)
val on_refill : Lexing.lexbuf -> unit t
end)
= struct

let refill_handler k lexbuf =
M.bind (M.on_refill lexbuf) (fun () -> k lexbuf)

refill {refill handler}

rule token = parse
0 '"\t']
{ token lexbuf }
["\n'
{ M.return EOL }
| ['0'-'9']+ as i
{ M.return (INT (int_of_string i)) }
|
{ M.return PLUS }

Chapter 13. Lexer and parser generators (ocamllex, ocamlyacc) 277

{ M.fail "unexpected character" }

13.2.8 Reserved identifiers

All identifiers starting with __ocaml_lex are reserved for use by ocamllex; do not use any such
identifier in your programs.

13.3 Overview of ocamlyacc

The ocamlyacc command produces a parser from a context-free grammar specification with at-
tached semantic actions, in the style of yacc. Assuming the input file is grammar.mly, executing

ocamlyacc options grammar.mly

produces OCaml code for a parser in the file grammar.ml, and its interface in file grammar.mli.

The generated module defines one parsing function per entry point in the grammar. These
functions have the same names as the entry points. Parsing functions take as arguments a lexical
analyzer (a function from lexer buffers to tokens) and a lexer buffer, and return the semantic
attribute of the corresponding entry point. Lexical analyzer functions are usually generated from a
lexer specification by the ocamllex program. Lexer buffers are an abstract data type implemented
in the standard library module Lexing. Tokens are values from the concrete type token, defined
in the interface file grammar.mli produced by ocamlyacc.

13.4 Syntax of grammar definitions

Grammar definitions have the following format:

hi

header

h}

declarations
Ioth

rules
Ioth

trailer

Comments are enclosed between /* and */ (as in C) in the “declarations” and “rules” sections,
and between (* and *) (as in OCaml) in the “header” and “trailer” sections.

278

13.4.1 Header and trailer

The header and the trailer sections are OCaml code that is copied as is into file grammar.m1l. Both
sections are optional. The header goes at the beginning of the output file; it usually contains open
directives and auxiliary functions required by the semantic actions of the rules. The trailer goes at
the end of the output file.

13.4.2 Declarations

Declarations are given one per line. They all start with a % sign.

Jitoken constr ... constr
Declare the given symbols constr . .. constr as tokens (terminal symbols). These symbols are
added as constant constructors for the token concrete type.

%token < typexpr > constr ... constr

Declare the given symbols constr ... constr as tokens with an attached attribute of the given
type. These symbols are added as constructors with arguments of the given type for the
token concrete type. The typexpr part is an arbitrary OCaml type expression, except that
all type constructor names must be fully qualified (e.g. Modname.typename) for all types
except standard built-in types, even if the proper open directives (e.g. open Modname) were
given in the header section. That’s because the header is copied only to the .ml output file,
but not to the .mli output file, while the typexpr part of a %token declaration is copied to
both.

%start symbol...symbol
Declare the given symbols as entry points for the grammar. For each entry point, a parsing
function with the same name is defined in the output module. Non-terminals that are not
declared as entry points have no such parsing function. Start symbols must be given a type
with the %type directive below.

htype < typexpr > symbol . .. symbol
Specify the type of the semantic attributes for the given symbols. This is mandatory for start
symbols only. Other nonterminal symbols need not be given types by hand: these types will
be inferred when running the output files through the OCaml compiler (unless the -s option
is in effect). The typexpr part is an arbitrary OCaml type expression, except that all type
constructor names must be fully qualified, as explained above for %token.

%left symbol...symbol

%right symbol...symbol

Jnonassoc symbol . ..symbol

Associate precedences and associativities to the given symbols. All symbols on the same line
are given the same precedence. They have higher precedence than symbols declared before

Chapter 13. Lexer and parser generators (ocamllex, ocamlyacc) 279

in a %left, %right or %nonassoc line. They have lower precedence than symbols declared
after in a %left, Jright or %nonassoc line. The symbols are declared to associate to the
left (%left), to the right (%right), or to be non-associative (%nonassoc). The symbols are
usually tokens. They can also be dummy nonterminals, for use with the %prec directive inside
the rules.

The precedence declarations are used in the following way to resolve reduce/reduce and
shift /reduce conflicts:

e Tokens and rules have precedences. By default, the precedence of a rule is the precedence
of its rightmost terminal. You can override this default by using the %prec directive in
the rule.

e A reduce/reduce conflict is resolved in favor of the first rule (in the order given by the
source file), and ocamlyacc outputs a warning.

e A shift/reduce conflict is resolved by comparing the precedence of the rule to be reduced
with the precedence of the token to be shifted. If the precedence of the rule is higher,
then the rule will be reduced; if the precedence of the token is higher, then the token
will be shifted.

o A shift/reduce conflict between a rule and a token with the same precedence will be
resolved using the associativity: if the token is left-associative, then the parser will
reduce; if the token is right-associative, then the parser will shift. If the token is non-
associative, then the parser will declare a syntax error.

o When a shift /reduce conflict cannot be resolved using the above method, then ocamlyacc
will output a warning and the parser will always shift.

13.4.3 Rules
The syntax for rules is as usual:

nonterminal :
symbol ... symbol { semantic-action }
|

| symbol ... symbol { semantic-action }

Rules can also contain the %prec symbol directive in the right-hand side part, to override the
default precedence and associativity of the rule with the precedence and associativity of the given
symbol.

Semantic actions are arbitrary OCaml expressions, that are evaluated to produce the semantic
attribute attached to the defined nonterminal. The semantic actions can access the semantic
attributes of the symbols in the right-hand side of the rule with the $ notation: $1 is the attribute
for the first (leftmost) symbol, $2 is the attribute for the second symbol, etc.

The rules may contain the special symbol error to indicate resynchronization points, as in
yacc.

Actions occurring in the middle of rules are not supported.

Nonterminal symbols are like regular OCaml symbols, except that they cannot end with '
(single quote).

280

13.4.4 Error handling

Error recovery is supported as follows: when the parser reaches an error state (no grammar rules can
apply), it calls a function named parse_error with the string "syntax error" as argument. The
default parse_error function does nothing and returns, thus initiating error recovery (see below).
The user can define a customized parse_error function in the header section of the grammar file.

The parser also enters error recovery mode if one of the grammar actions raises the
Parsing.Parse_error exception.

In error recovery mode, the parser discards states from the stack until it reaches a place where
the error token can be shifted. It then discards tokens from the input until it finds three suc-
cessive tokens that can be accepted, and starts processing with the first of these. If no state
can be uncovered where the error token can be shifted, then the parser aborts by raising the
Parsing.Parse_error exception.

Refer to documentation on yacc for more details and guidance in how to use error recovery.

13.5 Options

The ocamlyacc command recognizes the following options:

-bprefix
Name the output files prefiz.ml, prefix.mli, prefix.output, instead of the default naming
convention.

-q This option has no effect.

-v Generate a description of the parsing tables and a report on conflicts resulting from ambigu-
ities in the grammar. The description is put in file grammar. output.

-version
Print version string and exit.

-vnum
Print short version number and exit.

- Read the grammar specification from standard input. The default output file names are
stdin.ml and stdin.mli.

- file
Process file as the grammar specification, even if its name starts with a dash (-) character.
This option must be the last on the command line.

At run-time, the ocamlyacc-generated parser can be debugged by setting the p option in the
OCAMLRUNPARAM environment variable (see section 11.2). This causes the pushdown automaton exe-
cuting the parser to print a trace of its action (tokens shifted, rules reduced, etc). The trace mentions
rule numbers and state numbers that can be interpreted by looking at the file grammar. output
generated by ocamlyacc -v.

Chapter 13. Lexer and parser generators (ocamllex, ocamlyacc) 281

13.6 A complete example

The all-time favorite: a desk calculator. This program reads arithmetic expressions on standard
input, one per line, and prints their values. Here is the grammar definition:

/* File parser.mly */
%token <int> INT

%token PLUS MINUS TIMES DIV
J%token LPAREN RPAREN

%token EOL

%left PLUS MINUS /* lowest precedence */
%left TIMES DIV /* medium precedence */
%nonassoc UMINUS /* highest precedence */
%start main /* the entry point */

%type <int> main

hoto

main:
expr EOL { %11}
expr
INT {8113
| LPAREN expr RPAREN {%$21}
| expr PLUS expr {$1 +$31%
| expr MINUS expr {$1-$31%
| expr TIMES expr {$1 % $3 1}
| expr DIV expr {$1/ 83}
| MINUS expr %prec UMINUS { - $2 }

Here is the definition for the corresponding lexer:

(* File lexer.mll =*)

{
open Parser (* The type token is defined in parser.mli *)
exception Eof
b
rule token = parse
["\t'] { token lexbuf } (*x skip blanks *)
I ['\n"] { EOL }
| ['0'-'9']+ as 1lxm { INT(int_of_string lxm) }
|+ { PLUS }
|- { MINUS }
|t { TIMES }
I/ { DIV }
e { LPAREN }
(DA { RPAREN }
| eof { raise Eof }

282

Here is the main program, that combines the parser with the lexer:

(* File calc.ml *)

let _ =

try
let lexbuf = Lexing.from_channel stdin in
while true do

let result = Parser.main Lexer.token lexbuf in
print_int result; print_newline(); flush stdout

done

with Lexer.Eof ->
exit O

To compile everything, execute:

ocamllex lexer.mll # generates lexer.ml

ocamlyacc parser.mly # generates parser.ml and parser.mli
ocamlc -c parser.mli

ocamlc -c lexer.ml

ocamlc -c parser.ml

ocamlc -c¢ calc.ml

ocamlc -o calc lexer.cmo parser.cmo calc.cmo

13.7 Common errors

ocamllex: transition table overflow, automaton is too big

The deterministic automata generated by ocamllex are limited to at most 32767 transitions.
The message above indicates that your lexer definition is too complex and overflows this
limit. This is commonly caused by lexer definitions that have separate rules for each of the
alphabetic keywords of the language, as in the following example.

rule token = parse
"keywordl" { KwD1 }
"keyword2" { KWD2 }

"keyword100" { KWD100 }
[lAI_IZI 'a'—'z'] [IAI_lZI Ig'=t'z! 10'=19" |] * as id
{ IDENT id}

To keep the generated automata small, rewrite those definitions with only one general “iden-
tifier” rule, followed by a hashtable lookup to separate keywords from identifiers:

{ let keyword_table = Hashtbl.create 53
let _ =

List.iter (fun (kwd, tok) -> Hashtbl.add keyword_table kwd tok)

Chapter 13. Lexer and parser generators (ocamllex, ocamlyacc) 283

["keywordl", KwD1;
"keyword2", KWD2;
"keyword100", KWD100]
b
rule token = parse
['A'-'Z" ta'='z'] ['A'-'Z" 'a'='z" '0'-'9" '_'] % as id
{ try
Hashtbl.find keyword_table id
with Not_found ->
IDENT id }

ocamllex: Position memory overflow, too many bindings
The deterministic automata generated by ocamllex maintain a table of positions inside the
scanned lexer buffer. The size of this table is limited to at most 255 cells. This error should
not show up in normal situations.

284

Chapter 14

Dependency generator (ocamldep)

The ocamldep command scans a set of OCaml source files (.ml and .mli files) for references to
external compilation units, and outputs dependency lines in a format suitable for the make utility.
This ensures that make will compile the source files in the correct order, and recompile those files
that need to when a source file is modified.

The typical usage is:

ocamldep options *.mli *.ml > .depend

where *.m1i *.ml expands to all source files in the current directory and .depend is the file
that should contain the dependencies. (See below for a typical Makefile.)

Dependencies are generated both for compiling with the bytecode compiler ocamlc and with
the native-code compiler ocamlopt.

14.1 Options
The following command-line options are recognized by ocamldep.

—-absname
Show absolute filenames in error messages.

-all
Generate dependencies on all required files, rather than assuming implicit dependencies.

-allow-approx
Allow falling back on a lexer-based approximation when parsing fails.

-args filename
Read additional newline-terminated command line arguments from filename.

-args0 filename
Read additional null character terminated command line arguments from filename.

-as-map
For the following files, do not include delayed dependencies for module aliases. This option

285

286

assumes that they are compiled using options -no-alias-deps -w -49, and that those files
or their interface are passed with the -map option when computing dependencies for other
files. Note also that for dependencies to be correct in the implementation of a map file, its
interface should not coerce any of the aliases it contains.

-debug-map

Dump the delayed dependency map for each map file.

-1 directory

Add the given directory to the list of directories searched for source files. If a source file
foo.ml mentions an external compilation unit Bar, a dependency on that unit’s interface
bar.cmi is generated only if the source for bar is found in the current directory or in one of
the directories specified with -I. Otherwise, Bar is assumed to be a module from the standard
library, and no dependencies are generated. For programs that span multiple directories, it
is recommended to pass ocamldep the same -I options that are passed to the compiler.

-impl file

Process file as a .ml file.

-intf file

Process file as a .mli file.

-map file

Read an propagate the delayed dependencies for module aliases in file, so that the following
files will depend on the exported aliased modules if they use them. See the example below.

-ml-synonym .ext

Consider the given extension (with leading dot) to be a synonym for .ml.

-mli-synonym .ext

Consider the given extension (with leading dot) to be a synonym for .mli.

-modules

Output raw dependencies of the form
filename: Modulel Module2 ... ModuleN

where Modulel, ..., ModuleN are the names of the compilation units referenced within the
file filename, but these names are not resolved to source file names. Such raw dependencies
cannot be used by make, but can be post-processed by other tools such as Omake.

-native

Generate dependencies for a pure native-code program (no bytecode version). When an
implementation file (.ml file) has no explicit interface file (.mli file), ocamldep generates
dependencies on the bytecode compiled file (.cmo file) to reflect interface changes. This can
cause unnecessary bytecode recompilations for programs that are compiled to native-code
only. The flag -native causes dependencies on native compiled files (.cmx) to be generated
instead of on .cmo files. (This flag makes no difference if all source files have explicit .m1i
interface files.)

Chapter 14. Dependency generator (ocamldep) 287

-one-line
Output one line per file, regardless of the length.

-open module
Assume that module module is opened before parsing each of the following files.

-pp command
Cause ocamldep to call the given command as a preprocessor for each source file.

-ppx command
Pipe abstract syntax trees through preprocessor command.

-shared
Generate dependencies for native plugin files (.cmxs) in addition to native compiled files
(.cmx).

-slash
Under Windows, use a forward slash (/) as the path separator instead of the usual backward
slash (\). Under Unix, this option does nothing.

-sort
Sort files according to their dependencies.

-version
Print version string and exit.

-vnum
Print short version number and exit.

—-help or -help
Display a short usage summary and exit.

14.2 A typical Makefile

Here is a template Makefile for a OCaml program.

0CAMLC=ocamlc

0CAMLOPT=ocamlopt

OCAMLDEP=ocamldep

INCLUDES= # all relevant -I options here
OCAMLFLAGS=$ (INCLUDES) # add other options for ocamlc here
OCAMLOPTFLAGS=$ (INCLUDES) # add other options for ocamlopt here

progl should be compiled to bytecode, and is composed of three
units: modl, mod2 and mod3.

The list of object files for progl
PROG1_0BJS=mod1.cmo mod2.cmo mod3.cmo

288

progl: $(PROG1_0BJS)
$ (OCAMLC) -o progl $(OCAMLFLAGS) $(PROG1_0BJS)

prog2 should be compiled to native-code, and is composed of two
units: mod4 and mod5.

The list of object files for prog2
PROG2_0BJS=mod4.cmx mod5.cmx

prog2: $(PROG2_0BJS)
$ (OCAMLOPT) -o prog2 $(OCAMLFLAGS) $(PROG2_0BJS)

Common rules
.SUFFIXES: .ml .mli .cmo .cmi .cmx

.ml.cmo:
$(0CAMLC) $(OCAMLFLAGS) -c $<

.mli.cmi:
$(OCAMLC) $(OCAMLFLAGS) -c $<

.ml.cmx:
$ (OCAMLOPT) $(OCAMLOPTFLAGS) -c $<

Clean up

clean:
rm -f progl prog2
rm -f *.cm[iox]

Dependencies
depend:
$ (OCAMLDEP) $(INCLUDES) *.mli *.ml > .depend

include .depend

If you use module aliases to give shorter names to modules, you need to change the above
definitions. Assuming that your map file is called mylib.mli, here are minimal modifications.

OCAMLFLAGS=$ (INCLUDES) -open Mylib

mylib.cmi: mylib.mli
$(0CAMLC) $(INCLUDES) -no-alias-deps -w -49 -c $<

depend:
$ (OCAMLDEP) $(INCLUDES) -map mylib.mli $(PROG1_0BJS:.cmo=.ml) > .depend

Chapter 14. Dependency generator (ocamldep) 289

Note that in this case you should not compute dependencies for mylib.mli together with the
other files, hence the need to pass explicitly the list of files to process. If mylib.mli itself has
dependencies, you should compute them using -as-map.

290

Chapter 15

The browser/editor (ocamlbrowser)

Since OCaml version 4.02, the OCamlBrowser tool and the Labltk library are distributed sepa-
rately from the OCaml compiler. The project is now hosted at https://forge.ocamlcore.org/
projects/labltk/.

291

https://forge.ocamlcore.org/projects/labltk/
https://forge.ocamlcore.org/projects/labltk/

292

Chapter 16

The documentation generator
(ocamldoc)

This chapter describes OCamldoc, a tool that generates documentation from special comments
embedded in source files. The comments used by OCamldoc are of the form (k*...*) and follow
the format described in section 16.2.

OCamldoc can produce documentation in various formats: HTML, IXTEX, TeXinfo, Unix man
pages, and dot dependency graphs. Moreover, users can add their own custom generators, as
explained in section 16.3.

In this chapter, we use the word element to refer to any of the following parts of an OCaml
source file: a type declaration, a value, a module, an exception, a module type, a type constructor,
a record field, a class, a class type, a class method, a class value or a class inheritance clause.

16.1 Usage

16.1.1 Invocation

OCamldoc is invoked via the command ocamldoc, as follows:

ocamldoc options sourcefiles

Options for choosing the output format

The following options determine the format for the generated documentation.

-html
Generate documentation in HTML default format. The generated HTML pages are stored in
the current directory, or in the directory specified with the -d option. You can customize the
style of the generated pages by editing the generated style.css file, or by providing your
own style sheet using option -css-style. The file style.css is not generated if it already
exists or if -css-style is used.

-latex
Generate documentation in IXTEX default format. The generated ITEX document is saved in

293

294

file ocamldoc.out, or in the file specified with the —o option. The document uses the style
file ocamldoc.sty. This file is generated when using the -latex option, if it does not already
exist. You can change this file to customize the style of your KTEX documentation.

-texi
Generate documentation in TeXinfo default format. The generated IATEX document is saved
in file ocamldoc.out, or in the file specified with the -o option.

—man
Generate documentation as a set of Unix man pages. The generated pages are stored in the
current directory, or in the directory specified with the -d option.

-dot
Generate a dependency graph for the toplevel modules, in a format suitable for displaying
and processing by dot. The dot tool is available from https://graphviz.org/. The textual
representation of the graph is written to the file ocamldoc.out, or to the file specified with
the -o option. Use dot ocamldoc.out to display it.

-g file.cmfo,a,xs]
Dynamically load the given file, which defines a custom documentation generator. See section
16.4.1. This option is supported by the ocamldoc command (to load .cmo and .cma files)
and by its native-code version ocamldoc.opt (to load .cmxs files). If the given file is a simple
one and does not exist in the current directory, then ocamldoc looks for it in the custom
generators default directory, and in the directories specified with optional —-i options.

-customdir
Display the custom generators default directory.

-i directory
Add the given directory to the path where to look for custom generators.

General options

-d dir
Generate files in directory dir, rather than the current directory.

~dump file
Dump collected information into file. This information can be read with the -load option in
a subsequent invocation of ocamldoc.

-hide modules
Hide the given complete module names in the generated documentation. modules is a list of
complete module names separated by ’,’, without blanks. For instance: Stdlib,M2.M3.

-inv-merge-ml-mli
Reverse the precedence of implementations and interfaces when merging. All elements in
implementation files are kept, and the -m option indicates which parts of the comments in
interface files are merged with the comments in implementation files.

https://graphviz.org/

Chapter 16. The documentation generator (ocamldoc) 295

-keep-code
Always keep the source code for values, methods and instance variables, when available.

-load file
Load information from file, which has been produced by ocamldoc -dump. Several -load
options can be given.

-m flags
Specify merge options between interfaces and implementations. (see section 16.1.2 for details).
flags can be one or several of the following characters:

d merge description

a merge @author
v merge @version
1 merge @see

s merge @since

b merge @before

o merge @deprecated

merge @param

o®

merge Qraise
r merge @return
A merge everything

-no-custom-tags
Do not allow custom @-tags (see section 16.2.12).

-no-stop
Keep elements placed after/between the (x*/*x) special comment(s) (see section 16.2).

-o file
Output the generated documentation to file instead of ocamldoc.out. This option is mean-
ingful only in conjunction with the -latex, -texi, or —~dot options.

-pp command
Pipe sources through preprocessor command.

-impl filename
Process the file filename as an implementation file, even if its extension is not .ml.

-intf filename
Process the file filename as an interface file, even if its extension is not .mli.

-text filename
Process the file filename as a text file, even if its extension is not .txt.

-sort
Sort the list of top-level modules before generating the documentation.

296

-stars
Remove blank characters until the first asterisk (’*’) in each line of comments.

-t title
Use title as the title for the generated documentation.

-intro file
Use content of file as ocamldoc text to use as introduction (HTML, IXTEX and TeXinfo only).
For HTML, the file is used to create the whole index.html file.

-v Verbose mode. Display progress information.

-version
Print version string and exit.

-vnum
Print short version number and exit.

-Warn-error
Treat Ocamldoc warnings as errors.

-hide-warnings
Do not print OCamldoc warnings.

-help or -help
Display a short usage summary and exit.
Type-checking options

OCamldoc calls the OCaml type-checker to obtain type information. The following options impact
the type-checking phase. They have the same meaning as for the ocamlc and ocamlopt commands.

-1 directory
Add directory to the list of directories search for compiled interface files (.cmi files).

-nolabels
Ignore non-optional labels in types.

-rectypes
Allow arbitrary recursive types. (See the -rectypes option to ocamlc.)
Options for generating HTML pages

The following options apply in conjunction with the ~html option:

-all-params
Display the complete list of parameters for functions and methods.

-charset charset
Add information about character encoding being charset (default is is0-8859-1).

Chapter 16. The documentation generator (ocamldoc) 297

-colorize-code
Colorize the OCaml code enclosed in [] and {[1}, using colors to emphasize keywords,
etc. If the code fragments are not syntactically correct, no color is added.

-css-style filename
Use filename as the Cascading Style Sheet file.

-index-only
Generate only index files.

-short-functors
Use a short form to display functors:

module M : functor (A:Module) -> functor (B:Module2) -> sig .. end
is displayed as:

module M (A:Module) (B:Module2) : sig .. end

Options for generating BTEX files

The following options apply in conjunction with the -latex option:

-latex-value-prefix prefix
Give a prefix to use for the labels of the values in the generated ITEX document. The
default prefix is the empty string. You can also use the options -latex-type-prefix,
-latex-exception-prefix, -latex-module-prefix, -latex-module-type-prefix,
-latex-class-prefix, -latex-class-type-prefix, -latex-attribute-prefix and
-latex-method-prefix.

These options are useful when you have, for example, a type and a value with the same name.
If you do not specify prefixes, INTEX will complain about multiply defined labels.

-latextitle n,style
Associate style number n to the given IXTEX sectioning command style, e.g. section or
subsection. (KTEX only.) This is useful when including the generated document in another
KTEX document, at a given sectioning level. The default association is 1 for section, 2 for
subsection, 3 for subsubsection, 4 for paragraph and 5 for subparagraph.

-noheader
Suppress header in generated documentation.

-notoc
Do not generate a table of contents.

-notrailer
Suppress trailer in generated documentation.

-sepfiles
Generate one .tex file per toplevel module, instead of the global ocamldoc.out file.

298

Options for generating TeXinfo files

The following options apply in conjunction with the -texi option:

-esc8
Escape accented characters in Info files.

—info-entry
Specify Info directory entry.

-info-section
Specify section of Info directory.

-noheader
Suppress header in generated documentation.

-noindex
Do not build index for Info files.

-notrailer
Suppress trailer in generated documentation.

Options for generating dot graphs

The following options apply in conjunction with the -dot option:

-dot-colors colors
Specify the colors to use in the generated dot code. When generating module dependencies,
ocamldoc uses different colors for modules, depending on the directories in which they reside.
When generating types dependencies, ocamldoc uses different colors for types, depending on
the modules in which they are defined. colors is a list of color names separated by ’,’, as in
Red,Blue,Green. The available colors are the ones supported by the dot tool.

—-dot-include-all
Include all modules in the dot output, not only modules given on the command line or loaded
with the -load option.

—-dot-reduce
Perform a transitive reduction of the dependency graph before outputting the dot code. This
can be useful if there are a lot of transitive dependencies that clutter the graph.

—-dot-types
Output dot code describing the type dependency graph instead of the module dependency
graph.

Chapter 16. The documentation generator (ocamldoc) 299

Options for generating man files

The following options apply in conjunction with the -man option:

-man-mini
Generate man pages only for modules, module types, classes and class types, instead of pages
for all elements.

-man-suffix suffiz
Set the suffix used for generated man filenames. Default is '30’, as in List. 3o.

-man-section section
Set the section number used for generated man filenames. Default is ’3’.

16.1.2 Merging of module information

Information on a module can be extracted either from the .mli or .ml file, or both, depending on
the files given on the command line. When both .ml1i and .ml files are given for the same module,
information extracted from these files is merged according to the following rules:

o Only elements (values, types, classes, ...) declared in the .mli file are kept. In other terms,
definitions from the .ml file that are not exported in the .mli file are not documented.

e Descriptions of elements and descriptions in @-tags are handled as follows. If a description
for the same element or in the same @-tag of the same element is present in both files, then
the description of the .ml file is concatenated to the one in the .mli file, if the corresponding
-m flag is given on the command line. If a description is present in the .ml file and not in the
.mli file, the .ml description is kept. In either case, all the information given in the .mli file
is kept.

16.1.3 Coding rules

The following rules must be respected in order to avoid name clashes resulting in cross-reference
errors:

e In a module, there must not be two modules, two module types or a module and a module
type with the same name. In the default HTML generator, modules ab and AB will be printed
to the same file on case insensitive file systems.

e In a module, there must not be two classes, two class types or a class and a class type with
the same name.

e In a module, there must not be two values, two types, or two exceptions with the same name.
e Values defined in tuple, as in let (x,y,z) = (1,2,3) are not kept by OCamldoc.

o Avoid the following construction:

300

open Foo (x which has a module Bar with a value x x)
module Foo =
struct
module Bar =
struct
let x =1
end
end
let dummy = Bar.x

In this case, OCamldoc will associate Bar.x to the x of module Foo defined just above, instead
of to the Bar.x defined in the opened module Foo.

16.2 Syntax of documentation comments

Comments containing documentation material are called special comments and are written between
(*x and *). Special comments must start exactly with (**. Comments beginning with (and more
than two * are ignored.

16.2.1 Placement of documentation comments

OCamldoc can associate comments to some elements of the language encountered in the source
files. The association is made according to the locations of comments with respect to the language
elements. The locations of comments in .m1li and .ml files are different.

16.2.2 Comments in .mli files

A special comment is associated to an element if it is placed before or after the element.
A special comment before an element is associated to this element if :

e There is no blank line or another special comment between the special comment and the ele-
ment. However, a regular comment can occur between the special comment and the element.

e The special comment is not already associated to the previous element.
e The special comment is not the first one of a toplevel module.

A special comment after an element is associated to this element if there is no blank line or
comment between the special comment and the element.

There are two exceptions: for constructors and record fields in type definitions, the associated
comment can only be placed after the constructor or field definition, without blank lines or other
comments between them. The special comment for a constructor with another constructor following
must be placed before the ’|’ character separating the two constructors.

The following sample interface file foo.mli illustrates the placement rules for comments in .mli
files.

(*x The first special comment of the file is the comment associated

with the whole module.x)

Chapter 16. The documentation generator (ocamldoc) 301

(s Special comments can be placed between elements and are kept
by the OCamldoc tool, but are not associated to any element.
@—tags in these comments are ignored.x)

(st R R R KRR SR SRS ok)
(#x Comments like the one above, with more than two asterisks,

are ignored.)

(s The comment for function f.)
val £ : int -> int -> int
(#* The continuation of the comment for function f. x)

(s« Comment for exception My__exception, even with a simple comment
between the special comment and the exception.x)

(* Hello, I'm a simple comment :—) %)

exception My_exception of (int -> int) * int

(s Comment for type weather)

type weather =

| Rain of int (xx The comment for constructor Rain)
| Sun (%% The comment for constructor Sun)

(#x Comment for type weather2 x)
type weather2 =
| Rain of int (xx The comment for constructor Rain)
| Sun (#% The comment for constructor Sun)
(s I can continue the comment for type weather2 here
because there is already a comment associated to the last constructor.x)

(% The comment for type my record x)

type my_record = {
foo : int ; (xx Comment for field foo *)
bar : string ; (xx Comment for field bar)

}

(++ Continuation of comment for type my_ record)

(s« Comment for foo x)

val foo : string

(#* This comment is associated to foo and not to bar. x)
val bar : string

(#* This comment is associated to bar. x)

(#* The comment for class my_class x)

302

class my_class
object
(x+ A comment to describe inheritance from cl)

inherit cl

(#+ The comment for attribute tutu x)
val mutable tutu : string

(#* The comment for attribute toto. *)
val toto : int

(+x+ This comment is not attached to titi since
there is a blank line before titi, but is kept

as a comment in the class. x)
val titi : string

(% Comment for method toto)
method toto : string

(#+ Comment for method m x)
method m : float -> int
end

(s The comment for the class type my class type *)
class type my_class_type =
object
(% The comment for variable x. *)
val mutable x : int

(#* The comment for method m. %)
method m : int -> int
end

(x* The comment for module Foo)
module Foo
sig
(#+ The comment for x *)
val x : int

(xx A special comment that is kept but not associated to any element x)

end

(s The comment for module type my_module_type. %)
module type my_module_type =

Chapter 16. The documentation generator (ocamldoc) 303

sig
(% The comment for value x. *)
val x : int

(#* The comment for module M. x)
module M
sig
(#* The comment for value y. %)
val y : int

end

16.2.3 Comments in .ml files

A special comment is associated to an element if it is placed before the element and there is no blank
line between the comment and the element. Meanwhile, there can be a simple comment between the
special comment and the element. There are two exceptions, for constructors and record fields in
type definitions, whose associated comment must be placed after the constructor or field definition,
without blank line between them. The special comment for a constructor with another constructor
following must be placed before the ’|’ character separating the two constructors.

The following example of file toto.ml shows where to place comments in a .ml file.

(x* The first special comment of the file is the comment associated

to the whole module. %)

(s The comment for function f)
let fxy=x+y

(s« This comment is not attached to any element since there is another

special comment just before the next element.)

(*x+x Comment for exception My_exception, even with a simple comment
between the special comment and the exception.x)

(* A simple comment. *)

exception My_exception of (int -> int) * int

(s Comment for type weather)
type weather =
| Rain of int (xx The comment for constructor Rain)

| Sun (x+ The comment for constructor Sun)

(x* The comment for type my_ record)

type my_record = {

304

foo : int ; (x+ Comment for field foo x)
bar : string ; (s+ Comment for field bar)

3

(s The comment for class my class x)
class my_class =
object
(**x A comment to describe inheritance from cl)
inherit cl

(% The comment for the instance variable tutu)
val mutable tutu = "tutu"
(x* The comment for toto *)
val toto =1
val titi "titi"
(% Comment for method toto *)
method toto = tutu = "!"
(% Comment for method m)
method m (f : float) =1
end

(x* The comment for class type my_ class_ type *)
class type my_class_type =
object
(#+ The comment for the instance variable x. x)
val mutable x : int
(#+ The comment for method m. %)
method m : int -> int
end

(#* The comment for module Foo x*)
module Foo =

struct
(#+ The comment for x)
let x =0

(x+ A special comment in the class, but not associated to any element. %)

end

(% The comment for module type my__module_type. x)
module type my_module_type =
sig
(* Comment for value x. %)
val x : int

Chapter 16. The documentation generator (ocamldoc) 305

16.2.4 The Stop special comment

The special comment (**/**) tells OCamldoc to discard elements placed after this comment, up
to the end of the current class, class type, module or module type, or up to the next stop comment.
For instance:

class type foo =
object
(++ comment for method m)
method m : string

(*+ This method won't appear in the documentation)
method bar : int
end

(s This value appears in the documentation, since the Stop special comment
in the class does not affect the parent module of the class.x)

val foo : string

(x* The value bar does not appear in the documentation.s)

val bar : string

(*+ The type t appears since in the documentation since the previous stop comment
toggled off the "no documentation mode". x)
type t = string
The -no-stop option to ocamldoc causes the Stop special comments to be ignored.

16.2.5 Syntax of documentation comments

The inside of documentation comments (**...*) consists of free-form text with optional formatting
annotations, followed by optional tags giving more specific information about parameters, version,
authors, ... The tags are distinguished by a leading @ character. Thus, a documentation comment
has the following shape:

(** The comment begins with a description, which is text formatted
according to the rules described in the next section.
The description continues until the first non-escaped 'Q@' character.
Q@author Mr Smith
Oparam x description for parameter x

*)

Some elements support only a subset of all @Q-tags. Tags that are not relevant to the documented
element are simply ignored. For instance, all tags are ignored when documenting type constructors,

306

record fields, and class inheritance clauses. Similarly, a @param tag on a class instance variable is
ignored.
At last, (x*) is the empty documentation comment.

16.2.6 Text formatting

Here is the BNF grammar for the simple markup language used to format text descriptions.

Chapter 16. The documentation generator (ocamldoc) 307

text

text-element ::=

{{0...9}T text }

{{0...9}" : label text }

{b text }
{i text }
{e text }
{C text }
{L text }
{R text }
{ul Iist }
{ol Iist }
{{: string } text }

[string]

{[string 1}

{v string v}

{% string %}

{! string }

{!'modules: string string... }
{!indexlist}

{" text }

{_text}

escaped-string

blank-line

16.2.7 List formatting

list

= {text-element}*

format text as a section header; the integer following { in-
dicates the sectioning level.

same, but also associate the name label to the current point.
This point can be referenced by its fully-qualified label in a
{! command, just like any other element.

set text in bold.

set text in italic.

emphasize text.

center text.

left align text.

right align text.

build a list.

build an enumerated list.

put a link to the given address (given as string) on the given
text.

set the given string in source code style.

set the given string in preformatted source code style.

set the given string in verbatim style.

target-specific content (IWTEX code by default, see details in
16.2.10)

insert a cross-reference to an element (see section 16.2.8 for
the syntax of cross-references).

insert an index table for the given module names. Used in
HTML only.

insert a table of links to the various indexes (types, values,
modules, ...). Used in HTML only.

set text in superscript.

set text in subscript.

typeset the given string as is; special characters ("{’, '}, ’[’,
’]” and ’@’) must be escaped by a "\’

force a new line.

|- text 1)t
| {{1i text }}T

A shortcut syntax exists for lists and enumerated lists:

308

(*x Here is a {b list}
- item 1
- item 2
- item 3

The list is ended by the blank line.*)
is equivalent to:

(*x Here is a {b list}

{ul {- item 1}

{- item 2}

{- item 33}}

The list is ended by the blank line.*)

The same shortcut is available for enumerated lists, using '+’ instead of ’-’. Note that only one
list can be defined by this shortcut in nested lists.

16.2.8 Cross-reference formatting

Cross-references are fully qualified element names, as in the example {!'Foo.Bar.t}. This is an
ambiguous reference as it may designate a type name, a value name, a class name, etc. It is possible
to make explicit the intended syntactic class, using {!type:Foo.Bar.t} to designate a type, and
{!val:Foo.Bar.t} a value of the same name.

The list of possible syntactic class is as follows:

tag syntactic class

module: module
modtype: module type
class: class
classtype: class type
val: value
type: type
exception: exception
attribute: attribute
method: class method
section: ocamldoc section
const: variant constructor
recfield: record field

In the case of variant constructors or record field, the constructor or field name should be
preceded by the name of the correspond type — to avoid the ambiguity of several types having the
same constructor names. For example, the constructor Node of the type tree will be referenced
as {!tree.Node} or {!const:tree.Node}, or possibly {!Mod1.Mod2.tree.Node} from outside the
module.

Chapter 16. The documentation generator (ocamldoc) 309

16.2.9 First sentence

In the description of a value, type, exception, module, module type, class or class type, the first
sentence is sometimes used in indexes, or when just a part of the description is needed. The first
sentence is composed of the first characters of the description, until

e the first dot followed by a blank, or

e the first blank line
outside of the following text formatting : {ul list }, {ol list }, [string 1, {[string 1}, {v string v},
{% string %}, {! string ¥, {~ text }, {_ text }.
16.2.10 Target-specific formatting

The content inside {%foo: ... %} is target-specific and will only be interpreted by the backend
foo, and ignored by the others. The backends of the distribution are latex, html, texi and man.
If no target is specified (syntax {% ... %}), latex is chosen by default. Custom generators may
support their own target prefix.

16.2.11 Recognized HTML tags

The HTML tags .. <code>..</code> <i>..</i>,
<1i>..</1i>, <center>..</center> and <h[0-9]>..</h[0-9]> can be used instead of,
respectively, {by..}, [..], {iy. .}, {uly. .}, {o1y. .}, {1i,. .}, {CL. .} and {[0-9] ..}
16.2.12 Documentation tags (@-tags)

16.2.13 Predefined tags

The following table gives the list of predefined @-tags, with their syntax and meaning.

310

Qauthor string The author of the element. One author per @author tag.
There may be several @author tags for the same element.

@deprecated text The text should describe when the element was deprecated,
what to use as a replacement, and possibly the reason for
deprecation.

@param id text Associate the given description (text) to the given parameter
name id. This tag is used for functions, methods, classes and
functors.

@raise Exc text Explain that the element may raise the exception Exc.

@return text Describe the return value and its possible values. This tag
is used for functions and methods.

@see < URL > text Add a reference to the URL with the given text as comment.

@see 'filename' text Add a reference to the given file name (written between sin-
gle quotes), with the given text as comment.

@see "document-name" text | Add a reference to the given document name (written be-
tween double quotes), with the given text as comment.

@since string Indicate when the element was introduced.

@before version text Associate the given description (text) to the given version
in order to document compatibility issues.

@version string The version number for the element.

16.2.14 Custom tags

You can use custom tags in the documentation comments, but they will have no effect if the
generator used does not handle them. To use a custom tag, for example foo, just put @foo with
some text in your comment, as in:

(¥* My comment to show you a custom tag.
@foo this is the text argument to the [foo] custom tag.
*)

To handle custom tags, you need to define a custom generator, as explained in section 16.3.2.

16.3 Custom generators

OCamldoc operates in two steps:

1. analysis of the source files;

2. generation of documentation, through a documentation generator, which is an object of class
Odoc_args.class_generator.

Users can provide their own documentation generator to be used during step 2 instead of the
default generators. All the information retrieved during the analysis step is available through the
Odoc_info module, which gives access to all the types and functions representing the elements
found in the given modules, with their associated description.

The files you can use to define custom generators are installed in the ocamldoc sub-directory
of the OCaml standard library.

Chapter 16. The documentation generator (ocamldoc) 311

16.3.1 The generator modules

The type of a generator module depends on the kind of generated documentation. Here is the list
of generator module types, with the name of the generator class in the module :

o for HTML : Odoc_html.Html_generator (class html),

o for INTEX : Odoc_latex.Latex_generator (class latex),
o for TeXinfo : Odoc_texi.Texi_generator (class texi),

o for man pages : Odoc_man.Man_generator (class man),

o for graphviz (dot) : 0doc_dot.Dot_generator (class dot),
o for other kinds : Odoc_gen.Base (class generator).

That is, to define a new generator, one must implement a module with the expected signature,
and with the given generator class, providing the generate method as entry point to make the
generator generates documentation for a given list of modules :

method generate : Odoc_info.Module.t_module list -> unit

This method will be called with the list of analysed and possibly merged Odoc_info.t_module
structures.

It is recommended to inherit from the current generator of the same kind as the one you want to
define. Doing so, it is possible to load various custom generators to combine improvements brought
by each one.

This is done using first class modules (see chapter 8.5).

The easiest way to define a custom generator is the following this example, here extending the
current HTML generator. We don’t have to know if this is the original HT'ML generator defined
in ocamldoc or if it has been extended already by a previously loaded custom generator :

module Generator (G : Odoc_html.Html_generator) =
struct
class html =
object(self)
inherit G.html as html
(x ... %)

method generate module_list =

(x ... %)
O

let _ = Odoc_args.extend_html_generator (module Generator : Odoc_gen.Html_functor);;

312

To know which methods to override and/or which methods are available, have a look at the
different base implementations, depending on the kind of generator you are extending :

e for HTML : odoc_html.ml,

o for KTEX : odoc_latex.ml,

for TeXinfo : odoc_texi.ml,
e for man pages : odoc_man.ml,

o for graphviz (dot) : odoc_dot.ml.

16.3.2 Handling custom tags

Making a custom generator handle custom tags (see 16.2.14) is very simple.

For HTML

Here is how to develop a HTML generator handling your custom tags.

The class 0doc_html .Generator.html inherits from the class Odoc_html.info, containing a
field tag_functions which is a list pairs composed of a custom tag (e.g. "foo") and a function
taking a text and returning HTML code (of type string). To handle a new tag bar, extend the
current HTML generator and complete the tag_functions field:

module Generator (G : Odoc_html.Html_generator) =
struct
class html =
object(self)
inherit G.html

(** Return HTML code for the given text of a bar tag. *)
method html_of_bar t = (* your code here *)

initializer
tag_functions <- ("bar", self#html_of_bar) :: tag_functions
end
end
let _ = Odoc_args.extend_html_generator (module Generator : Odoc_gen.Html_functor);;

Another method of the class 0doc_html.info will look for the function associated to a custom
tag and apply it to the text given to the tag. If no function is associated to a custom tag, then the
method prints a warning message on stderr.

16.3.3 For other generators

You can act the same way for other kinds of generators.

https://github.com/ocaml/ocaml/blob/{4.10}/ocamldoc/odoc_html.ml
https://github.com/ocaml/ocaml/blob/{4.10}/ocamldoc/odoc_latex.ml
https://github.com/ocaml/ocaml/blob/{4.10}/ocamldoc/odoc_texi.ml
https://github.com/ocaml/ocaml/blob/{4.10}/ocamldoc/odoc_man.ml
https://github.com/ocaml/ocaml/blob/{4.10}/ocamldoc/odoc_dot.ml

Chapter 16. The documentation generator (ocamldoc) 313

16.4 Adding command line options

The command line analysis is performed after loading the module containing the documentation
generator, thus allowing command line options to be added to the list of existing ones. Adding an
option can be done with the function

Odoc_args.add_option : string * Arg.spec * string -> unit

Note: Existing command line options can be redefined using this function.

16.4.1 Compilation and usage
16.4.2 Defining a custom generator class in one file

Let custom.ml be the file defining a new generator class. Compilation of custom.ml can be per-
formed by the following command :

ocamlc -I +ocamldoc -c custom.ml
The file custom. cmo is created and can be used this way :
ocamldoc -g custom.cmo other-options source-files

Options selecting a built-in generator to ocamldoc, such as -html, have no effect if a custom
generator of the same kind is provided using -g. If the kinds do not match, the selected built-in
generator is used and the custom one is ignored.

16.4.3 Defining a custom generator class in several files

It is possible to define a generator class in several modules, which are defined in several files
file; .m1[i], filey .m1[i], ..., file, .m1[i]. A .cma library file must be created, including all these files.
The following commands create the custom.cma file from files file; .m1[i], ..., file,, .m1[i] :

ocamlc -I +ocamldoc -c file; .m1[i]
ocamlc -I +ocamldoc -c filey.ml[i]

ocamlc -I +ocamldoc -c file, .ml[i]
ocamlc -o custom.cma -a file;.cmo filey.cmo ... file,.cmo

Then, the following command uses custom.cma as custom generator:

ocamldoc -g custom.cma other-options source-files

314

Chapter 17

The debugger (ocamldebug)

This chapter describes the OCaml source-level replay debugger ocamldebug.

Unix:
The debugger is available on Unix systems that provide BSD sockets.

Windows:
The debugger is available under the Cygwin port of OCaml, but not under the native Win32
ports.

17.1 Compiling for debugging

Before the debugger can be used, the program must be compiled and linked with the -g option: all
.cmo and .cma files that are part of the program should have been created with ocamlc -g, and
they must be linked together with ocamlc -g.

Compiling with -g entails no penalty on the running time of programs: object files and bytecode
executable files are bigger and take longer to produce, but the executable files run at exactly the
same speed as if they had been compiled without -g.

17.2 Invocation

17.2.1 Starting the debugger

The OCaml debugger is invoked by running the program ocamldebug with the name of the bytecode
executable file as first argument:

ocamldebug [options| program [arguments]

The arguments following program are optional, and are passed as command-line arguments to
the program being debugged. (See also the set arguments command.)
The following command-line options are recognized:

-c count
Set the maximum number of simultaneously live checkpoints to count.

315

316

-cd dir
Run the debugger program from the working directory dir, instead of the current directory.
(See also the cd command.)

-emacs
Tell the debugger it is executed under Emacs. (See section 17.10 for information on how to
run the debugger under Emacs.)

-1 directory
Add directory to the list of directories searched for source files and compiled files. (See also
the directory command.)

-s socket
Use socket for communicating with the debugged program. See the description of the com-
mand set socket (section 17.8.8) for the format of socket.

-version
Print version string and exit.

-vnum
Print short version number and exit.

-help or -help
Display a short usage summary and exit.

17.2.2 Initialization file

On start-up, the debugger will read commands from an initialization file before giving control to the
user. The default file is .ocamldebug in the current directory if it exists, otherwise .ocamldebug
in the user’s home directory.

17.2.3 Exiting the debugger

The command quit exits the debugger. You can also exit the debugger by typing an end-of-file
character (usually ctrl-D).

Typing an interrupt character (usually ctrl-C) will not exit the debugger, but will terminate
the action of any debugger command that is in progress and return to the debugger command level.

17.3 Commands

A debugger command is a single line of input. It starts with a command name, which is followed
by arguments depending on this name. Examples:

run
goto 1000
set arguments argl arg?2

Chapter 17. The debugger (ocamldebug) 317

A command name can be truncated as long as there is no ambiguity. For instance, go 1000
is understood as goto 1000, since there are no other commands whose name starts with go. For
the most frequently used commands, ambiguous abbreviations are allowed. For instance, r stands
for run even though there are others commands starting with r. You can test the validity of an
abbreviation using the help command.

If the previous command has been successful, a blank line (typing just RET) will repeat it.

17.3.1 Getting help

The OCaml debugger has a simple on-line help system, which gives a brief description of each
command and variable.

help
Print the list of commands.

help command
Give help about the command command.

help set wariable, help show wvariable
Give help about the variable variable. The list of all debugger variables can be obtained with
help set.

help info topic
Give help about topic. Use help info to get a list of known topics.

17.3.2 Accessing the debugger state

set wvariable value
Set the debugger variable variable to the value value.

show wvariable
Print the value of the debugger variable variable.

info subject
Give information about the given subject. For instance, info breakpoints will print the list
of all breakpoints.

17.4 Executing a program

17.4.1 Events

Events are “interesting” locations in the source code, corresponding to the beginning or end of
evaluation of “interesting” sub-expressions. Events are the unit of single-stepping (stepping goes to
the next or previous event encountered in the program execution). Also, breakpoints can only be
set at events. Thus, events play the role of line numbers in debuggers for conventional languages.

During program execution, a counter is incremented at each event encountered. The value of
this counter is referred as the current time. Thanks to reverse execution, it is possible to jump
back and forth to any time of the execution.

Here is where the debugger events (written <) are located in the source code:

318

e Following a function application:
(f arg)

e On entrance to a function:
fun x y z > ...

o On each case of a pattern-matching definition (function, match...with construct, try...with
construct):

function patl -> X exprl

| ...
| patN -> < exprN

o Between subexpressions of a sequence:
exprl; D4 expr2; > ...; X exprN

e In the two branches of a conditional expression:
if cond then I exprl else D expr2

e At the beginning of each iteration of a loop:

while cond do <1 body done
for i = a to b do > body done

Exceptions: A function application followed by a function return is replaced by the compiler by a
jump (tail-call optimization). In this case, no event is put after the function application.

17.4.2 Starting the debugged program

The debugger starts executing the debugged program only when needed. This allows setting break-
points or assigning debugger variables before execution starts. There are several ways to start
execution:

run Run the program until a breakpoint is hit, or the program terminates.

goto O
Load the program and stop on the first event.

goto time
Load the program and execute it until the given time. Useful when you already know ap-
proximately at what time the problem appears. Also useful to set breakpoints on function
values that have not been computed at time 0 (see section 17.5).

The execution of a program is affected by certain information it receives when the debugger
starts it, such as the command-line arguments to the program and its working directory. The
debugger provides commands to specify this information (set arguments and cd). These com-
mands must be used before program execution starts. If you try to change the arguments or the
working directory after starting your program, the debugger will kill the program (after asking for
confirmation).

Chapter 17. The debugger (ocamldebug) 319

17.4.3 Running the program

The following commands execute the program forward or backward, starting at the current time.
The execution will stop either when specified by the command or when a breakpoint is encountered.

run Execute the program forward from current time. Stops at next breakpoint or when the
program terminates.

reverse
Execute the program backward from current time. Mostly useful to go to the last breakpoint
encountered before the current time.

step [count]
Run the program and stop at the next event. With an argument, do it count times. If count
is 0, run until the program terminates or a breakpoint is hit.

backstep [count]
Run the program backward and stop at the previous event. With an argument, do it count
times.

next [count]
Run the program and stop at the next event, skipping over function calls. With an argument,
do it count times.

previous [count]
Run the program backward and stop at the previous event, skipping over function calls. With
an argument, do it count times.

finish
Run the program until the current function returns.

start
Run the program backward and stop at the first event before the current function invocation.

17.4.4 Time travel

You can jump directly to a given time, without stopping on breakpoints, using the goto command.
As you move through the program, the debugger maintains an history of the successive times

you stop at. The last command can be used to revisit these times: each last command moves one

step back through the history. That is useful mainly to undo commands such as step and next.

goto time
Jump to the given time.

last [count]
Go back to the latest time recorded in the execution history. With an argument, do it count
times.

set history size
Set the size of the execution history.

320

17.4.5 Killing the program

kill
Kill the program being executed. This command is mainly useful if you wish to recompile
the program without leaving the debugger.

17.5 Breakpoints

A breakpoint causes the program to stop whenever a certain point in the program is reached. It
can be set in several ways using the break command. Breakpoints are assigned numbers when set,
for further reference. The most comfortable way to set breakpoints is through the Emacs interface
(see section 17.10).

break
Set a breakpoint at the current position in the program execution. The current position must
be on an event (i.e., neither at the beginning, nor at the end of the program).

break function
Set a breakpoint at the beginning of function. This works only when the functional value of
the identifier function has been computed and assigned to the identifier. Hence this command
cannot be used at the very beginning of the program execution, when all identifiers are still
undefined; use goto time to advance execution until the functional value is available.

break @ [module] line
Set a breakpoint in module module (or in the current module if module is not given), at the
first event of line line.

break @ [module] line column
Set a breakpoint in module module (or in the current module if module is not given), at the
event closest to line line, column column.

break @ [module] # character
Set a breakpoint in module module at the event closest to character number character.

break frag:pc, break pc
Set a breakpoint at code address frag: pc. The integer frag is the identifier of a code fragment,
a set of modules that have been loaded at once, either initially or with the Dynlink module.
The integer pc is the instruction counter within this code fragment. If frag is ommited, it
defaults to 0, which is the code fragment of the program loaded initially.

delete [breakpoint-numbers]
Delete the specified breakpoints. Without argument, all breakpoints are deleted (after asking
for confirmation).

info breakpoints
Print the list of all breakpoints.

Chapter 17. The debugger (ocamldebug) 321

17.6 The call stack

Each time the program performs a function application, it saves the location of the application (the
return address) in a block of data called a stack frame. The frame also contains the local variables
of the caller function. All the frames are allocated in a region of memory called the call stack. The
command backtrace (or bt) displays parts of the call stack.

At any time, one of the stack frames is “selected” by the debugger; several debugger commands
refer implicitly to the selected frame. In particular, whenever you ask the debugger for the value
of a local variable, the value is found in the selected frame. The commands frame, up and down
select whichever frame you are interested in.

When the program stops, the debugger automatically selects the currently executing frame and
describes it briefly as the frame command does.

frame
Describe the currently selected stack frame.

frame frame-number
Select a stack frame by number and describe it. The frame currently executing when the
program stopped has number 0; its caller has number 1; and so on up the call stack.

backtrace [count], bt [count]
Print the call stack. This is useful to see which sequence of function calls led to the currently
executing frame. With a positive argument, print only the innermost count frames. With a
negative argument, print only the outermost -count frames.

up [count]
Select and display the stack frame just “above” the selected frame, that is, the frame that
called the selected frame. An argument says how many frames to go up.

down [count]
Select and display the stack frame just “below” the selected frame, that is, the frame that
was called by the selected frame. An argument says how many frames to go down.

17.7 Examining variable values

The debugger can print the current value of simple expressions. The expressions can involve
program variables: all the identifiers that are in scope at the selected program point can be accessed.
Expressions that can be printed are a subset of OCaml expressions, as described by the following

322

grammar:

lowercase-ident

{capitalized-ident .} lowercase-ident
*

simple-expr

|
|
| $ integer

| simple-expr . lowercase-ident
| simple-expr . (integer)

| simple-expr . [integer]

| ! simple-expr

| (simple-expr)

The first two cases refer to a value identifier, either unqualified or qualified by the path to the
structure that define it. * refers to the result just computed (typically, the value of a function
application), and is valid only if the selected event is an “after” event (typically, a function appli-
cation). $ integer refer to a previously printed value. The remaining four forms select part of an
expression: respectively, a record field, an array element, a string element, and the current contents
of a reference.

print wvariables
Print the values of the given variables. print can be abbreviated as p.

display wariables
Same as print, but limit the depth of printing to 1. Useful to browse large data structures
without printing them in full. display can be abbreviated as d.

When printing a complex expression, a name of the form $integer is automatically assigned to
its value. Such names are also assigned to parts of the value that cannot be printed because the
maximal printing depth is exceeded. Named values can be printed later on with the commands
p $integer or d $integer. Named values are valid only as long as the program is stopped. They are
forgotten as soon as the program resumes execution.

set print_depth d
Limit the printing of values to a maximal depth of d.

set print_length [
Limit the printing of values to at most [nodes printed.

17.8 Controlling the debugger

17.8.1 Setting the program name and arguments

set progran file
Set the program name to file.

set arguments arguments
Give arguments as command-line arguments for the program.

Chapter 17. The debugger (ocamldebug) 323

A shell is used to pass the arguments to the debugged program. You can therefore use
wildcards, shell variables, and file redirections inside the arguments. To debug programs
that read from standard input, it is recommended to redirect their input from a file (using
set arguments < input-file), otherwise input to the program and input to the debugger
are not properly separated, and inputs are not properly replayed when running the program
backwards.

17.8.2 How programs are loaded

The loadingmode variable controls how the program is executed.

set loadingmode direct
The program is run directly by the debugger. This is the default mode.

set loadingmode runtime
The debugger execute the OCaml runtime ocamlrun on the program. Rarely useful; moreover
it prevents the debugging of programs compiled in “custom runtime” mode.

set loadingmode manual
The user starts manually the program, when asked by the debugger. Allows remote debugging
(see section 17.8.8).

17.8.3 Search path for files

The debugger searches for source files and compiled interface files in a list of directories, the search
path. The search path initially contains the current directory . and the standard library directory.
The directory command adds directories to the path.

Whenever the search path is modified, the debugger will clear any information it may have
cached about the files.

directory directorynames
Add the given directories to the search path. These directories are added at the front, and
will therefore be searched first.

directory directorynames for modulename
Same as directory directorynames, but the given directories will be searched only when
looking for the source file of a module that has been packed into modulename.

directory
Reset the search path. This requires confirmation.

17.8.4 Working directory

Each time a program is started in the debugger, it inherits its working directory from the current
working directory of the debugger. This working directory is initially whatever it inherited from its
parent process (typically the shell), but you can specify a new working directory in the debugger
with the c¢d command or the -cd command-line option.

324

cd directory
Set the working directory for ocamldebug to directory.

pwd Print the working directory for ocamldebug.

17.8.5 Turning reverse execution on and off

In some cases, you may want to turn reverse execution off. This speeds up the program execution,
and is also sometimes useful for interactive programs.

Normally, the debugger takes checkpoints of the program state from time to time. That is, it
makes a copy of the current state of the program (using the Unix system call fork). If the variable
checkpoints is set to off, the debugger will not take any checkpoints.

set checkpoints on/off
Select whether the debugger makes checkpoints or not.

17.8.6 Behavior of the debugger with respect to fork

When the program issues a call to fork, the debugger can either follow the child or the parent.
By default, the debugger follows the parent process. The variable follow_fork_mode controls this
behavior:

set follow_fork_mode child/parent
Select whether to follow the child or the parent in case of a call to fork.

17.8.7 Stopping execution when new code is loaded

The debugger is compatible with the Dynlink module. However, when an external module is not
yet loaded, it is impossible to set a breakpoint in its code. In order to facilitate setting breakpoints
in dynamically loaded code, the debugger stops the program each time new modules are loaded.
This behavior can be disabled using the break_on_load variable:

set break_on_load on/off
Select whether to stop after loading new code.

17.8.8 Communication between the debugger and the program

The debugger communicate with the program being debugged through a Unix socket. You may
need to change the socket name, for example if you need to run the debugger on a machine and
your program on another.

set socket socket
Use socket for communication with the program. socket can be either a file name, or an
Internet port specification host:port, where host is a host name or an Internet address in dot
notation, and port is a port number on the host.

On the debugged program side, the socket name is passed through the CAML_DEBUG_SOCKET
environment variable.

Chapter 17. The debugger (ocamldebug) 325

17.8.9 Fine-tuning the debugger

Several variables enables to fine-tune the debugger. Reasonable defaults are provided, and you
should normally not have to change them.

set processcount count
Set the maximum number of checkpoints to count. More checkpoints facilitate going far back
in time, but use more memory and create more Unix processes.

As checkpointing is quite expensive, it must not be done too often. On the other hand, backward
execution is faster when checkpoints are taken more often. In particular, backward single-stepping
is more responsive when many checkpoints have been taken just before the current time. To fine-
tune the checkpointing strategy, the debugger does not take checkpoints at the same frequency
for long displacements (e.g. run) and small ones (e.g. step). The two variables bigstep and
smallstep contain the number of events between two checkpoints in each case.

set bigstep count
Set the number of events between two checkpoints for long displacements.

set smallstep count
Set the number of events between two checkpoints for small displacements.

The following commands display information on checkpoints and events:

info checkpoints
Print a list of checkpoints.

info events [module]
Print the list of events in the given module (the current module, by default).

17.8.10 User-defined printers

Just as in the toplevel system (section 10.2), the user can register functions for printing values of
certain types. For technical reasons, the debugger cannot call printing functions that reside in the
program being debugged. The code for the printing functions must therefore be loaded explicitly
in the debugger.

load_printer "file-name"
Load in the debugger the indicated .cmo or .cma object file. The file is loaded in an environ-
ment consisting only of the OCaml standard library plus the definitions provided by object
files previously loaded using load_printer. If this file depends on other object files not yet
loaded, the debugger automatically loads them if it is able to find them in the search path.
The loaded file does not have direct access to the modules of the program being debugged.

install_printer printer-name
Register the function named printer-name (a value path) as a printer for objects whose types
match the argument type of the function. That is, the debugger will call printer-name when it
has such an object to print. The printing function printer-name must use the Format library

326

module to produce its output, otherwise its output will not be correctly located in the values
printed by the toplevel loop.

The value path printer-name must refer to one of the functions defined by the object files
loaded using load_printer. It cannot reference the functions of the program being debugged.

remove_printer printer-name
Remove the named function from the table of value printers.

17.9 Miscellaneous commands

list [module] [beginning] [end]
List the source of module module, from line number beginning to line number end. By default,
20 lines of the current module are displayed, starting 10 lines before the current position.

source filename
Read debugger commands from the script filename.

17.10 Running the debugger under Emacs

The most user-friendly way to use the debugger is to run it under Emacs. See the file emacs/README
in the distribution for information on how to load the Emacs Lisp files for OCaml support.

The OCaml debugger is started under Emacs by the command M-x camldebug, with argument
the name of the executable file progname to debug. Communication with the debugger takes place
in an Emacs buffer named *camldebug-progname*. The editing and history facilities of Shell mode
are available for interacting with the debugger.

In addition, Emacs displays the source files containing the current event (the current posi-
tion in the program execution) and highlights the location of the event. This display is updated
synchronously with the debugger action.

The following bindings for the most common debugger commands are available in the
xcamldebug-prognamex* buffer:

C-c C-s
(command step): execute the program one step forward.

C-c C-k
(command backstep): execute the program one step backward.

C-c C-n
(command next): execute the program one step forward, skipping over function calls.

Middle mouse button
(command display): display named value. $n under mouse cursor (support incremental
browsing of large data structures).

C-c C-p
(command print): print value of identifier at point.

Chapter 17. The debugger (ocamldebug) 327

C-c C-d
(command display): display value of identifier at point.

C-c C-r
(command run): execute the program forward to next breakpoint.

C-c C-v
(command reverse): execute the program backward to latest breakpoint.

C-c C-1
(command last): go back one step in the command history.

C-c C-t
(command backtrace): display backtrace of function calls.

C-c C-£
(command finish): run forward till the current function returns.

C-c <
(command up): select the stack frame below the current frame.

C-c >
(command down): select the stack frame above the current frame.

In all buffers in OCaml editing mode, the following debugger commands are also available:

C-x C-a C-b
(command break): set a breakpoint at event closest to point

C-x C-a C-p
(command print): print value of identifier at point

C-x C-a C-d
(command display): display value of identifier at point

328

Chapter 18

Profiling (ocamlprof)

This chapter describes how the execution of OCaml programs can be profiled, by recording how
many times functions are called, branches of conditionals are taken, ...

18.1 Compiling for profiling

Before profiling an execution, the program must be compiled in profiling mode, using the ocamlcp
front-end to the ocamlc compiler (see chapter 9) or the ocamloptp front-end to the ocamlopt
compiler (see chapter 12). When compiling modules separately, ocamlcp or ocamloptp must be
used when compiling the modules (production of .cmo or .cmx files), and can also be used (though
this is not strictly necessary) when linking them together.

p:ocamlprof-warning Note If a module (.ml file) doesn’t have a corresponding interface (.mli
file), then compiling it with ocamlcp will produce object files (.cmi and .cmo) that are not com-
patible with the ones produced by ocamlc, which may lead to problems (if the .cmi or .cmo is still
around) when switching between profiling and non-profiling compilations. To avoid this problem,
you should always have a .mli file for each .ml file. The same problem exists with ocamloptp.

p:ocamlprof-reserved Note To make sure your programs can be compiled in profiling mode,
avoid using any identifier that begins with __ocaml_prof.

The amount of profiling information can be controlled through the -P option to ocamlcp or
ocamloptp, followed by one or several letters indicating which parts of the program should be
profiled:

a all options
f function calls : a count point is set at the beginning of each function body
i if ...then ...else ... : count points are set in both then branch and else branch

1 while, for loops: a count point is set at the beginning of the loop body

m match branches: a count point is set at the beginning of the body of each branch

329

330

t try ...with ... branches: a count point is set at the beginning of the body of each branch

For instance, compiling with ocamlcp -P film profiles function calls, if. .. then...else. .., loops
and pattern matching.

Calling ocamlcp or ocamloptp without the -P option defaults to -P fm, meaning that only
function calls and pattern matching are profiled.

Note For compatibility with previous releases, ocamlcp also accepts the -p option, with the
same arguments and behaviour as -P.

The ocamlcp and ocamloptp commands also accept all the options of the corresponding ocamlc
or ocamlopt compiler, except the -pp (preprocessing) option.

18.2 Profiling an execution

Running an executable that has been compiled with ocamlcp or ocamloptp records the execution
counts for the specified parts of the program and saves them in a file called ocamlprof .dump in the
current directory.

If the environment variable OCAMLPROF_DUMP is set when the program exits, its value is used as
the file name instead of ocamlprof .dump.

The dump file is written only if the program terminates normally (by calling exit or by falling
through). It is not written if the program terminates with an uncaught exception.

If a compatible dump file already exists in the current directory, then the profiling information
is accumulated in this dump file. This allows, for instance, the profiling of several executions of a
program on different inputs. Note that dump files produced by byte-code executables (compiled
with ocamlcp) are compatible with the dump files produced by native executables (compiled with
ocamloptp).

18.3 Printing profiling information

The ocamlprof command produces a source listing of the program modules where execution counts
have been inserted as comments. For instance,

ocamlprof foo.ml

prints the source code for the foo module, with comments indicating how many times the
functions in this module have been called. Naturally, this information is accurate only if the source
file has not been modified after it was compiled.

The following options are recognized by ocamlprof:

-args filename
Read additional newline-terminated command line arguments from filename.

-args0 filename
Read additional null character terminated command line arguments from filename.

-f dumpfile
Specifies an alternate dump file of profiling information to be read.

Chapter 18. Profiling (ocamlprof) 331

-F string
Specifies an additional string to be output with profiling information. By default, ocamlprof
will annotate programs with comments of the form (* n *) where n is the counter value for
a profiling point. With option -F s, the annotation will be (* sn *).

-impl filename
Process the file filename as an implementation file, even if its extension is not .ml.

-intf filename
Process the file filename as an interface file, even if its extension is not .mli.

-version
Print version string and exit.

-vnum
Print short version number and exit.

-help or -help
Display a short usage summary and exit.

18.4 Time profiling

Profiling with ocamlprof only records execution counts, not the actual time spent within each
function. There is currently no way to perform time profiling on bytecode programs generated by
ocamlc. For time profiling of native code, users are recommended to use standard tools such as perf
(on Linux), Instruments (on macOS) and DTrace. Profiling with gprof is no longer supported.

332

Chapter 19

The ocamlbuild compilation manager

Since OCaml version 4.03, the ocamlbuild compilation manager is distributed separately from the
OCaml compiler. The project is now hosted at https://github.com/ocaml/ocamlbuild/.

333

https://github.com/ocaml/ocamlbuild/

334

Chapter 20

Interfacing C with OCaml

This chapter describes how user-defined primitives, written in C, can be linked with OCaml code
and called from OCaml functions, and how these C functions can call back to OCaml code.

20.1 Overview and compilation information

20.1.1 Declaring primitives

definition = ...
| external value-name : typexpr = external-declaration

external-declaration ::= string-literal [string-literal [string-literal]]

User primitives are declared in an implementation file or struct. .. end module expression using
the external keyword:

external name : type = C-function-name

This defines the value name name as a function with type type that executes by calling the given
C function. For instance, here is how the int_of_string primitive is declared in the standard
library module Stdlib:

external int_of_string : string -> int = "caml_int_of_string"

Primitives with several arguments are always curried. The C function does not necessarily have
the same name as the ML function.

External functions thus defined can be specified in interface files or sig...end signatures either
as regular values

val name : type
thus hiding their implementation as C functions, or explicitly as “manifest” external functions

external name : type = C-function-name

335

336

The latter is slightly more efficient, as it allows clients of the module to call directly the C
function instead of going through the corresponding OCaml function. On the other hand, it should
not be used in library modules if they have side-effects at toplevel, as this direct call interferes with
the linker’s algorithm for removing unused modules from libraries at link-time.

The arity (number of arguments) of a primitive is automatically determined from its OCaml type
in the external declaration, by counting the number of function arrows in the type. For instance,
input above has arity 4, and the input C function is called with four arguments. Similarly,

external input2 : in_channel * bytes * int * int -> int = "input2"

has arity 1, and the input2 C function receives one argument (which is a quadruple of OCaml
values).
Type abbreviations are not expanded when determining the arity of a primitive. For instance,

type int_endo = int -> int
external f : int_endo -> int_endo = "f"
external g : (int -> int) -> (int -> int) = "f"

f has arity 1, but g has arity 2. This allows a primitive to return a functional value (as in the
f example above): just remember to name the functional return type in a type abbreviation.

The language accepts external declarations with one or two flag strings in addition to the C
function’s name. These flags are reserved for the implementation of the standard library.

20.1.2 Implementing primitives

User primitives with arity n < 5 are implemented by C functions that take n arguments of type
value, and return a result of type value. The type value is the type of the representations
for OCaml values. It encodes objects of several base types (integers, floating-point numbers,
strings, ...) as well as OCaml data structures. The type value and the associated conversion
functions and macros are described in detail below. For instance, here is the declaration for the C
function implementing the input primitive:

CAMLprim value input(value channel, value buffer, value offset, value length)

{

When the primitive function is applied in an OCaml program, the C function is called with the
values of the expressions to which the primitive is applied as arguments. The value returned by
the function is passed back to the OCaml program as the result of the function application.

User primitives with arity greater than 5 should be implemented by two C functions. The first
function, to be used in conjunction with the bytecode compiler ocamlc, receives two arguments: a
pointer to an array of OCaml values (the values for the arguments), and an integer which is the
number of arguments provided. The other function, to be used in conjunction with the native-code
compiler ocamlopt, takes its arguments directly. For instance, here are the two C functions for the
7-argument primitive Nat.add_nat:

Chapter 20. Interfacing C with OCaml 337

CAMLprim value add_nat_native(value natl, value ofsl, value lenl,
value nat2, value ofs2, value len2,
value carry_in)

{
}
CAMLprim value add_nat_bytecode(value * argv, int argn)
{
return add_nat_native(argv[0], argv[1], argv[2], argv[3],
argv[4], argv[5], argv[6]);
}

The names of the two C functions must be given in the primitive declaration, as follows:

external name : type =
bytecode-C-function-name native-code-C-function-name

For instance, in the case of add_nat, the declaration is:

external add_nat: nat -> int -> int -> nat -> int -> int -> int -> int
= "add_nat_bytecode" "add_nat_native"

Implementing a user primitive is actually two separate tasks: on the one hand, decoding the
arguments to extract C values from the given OCaml values, and encoding the return value as an
OCaml value; on the other hand, actually computing the result from the arguments. Except for
very simple primitives, it is often preferable to have two distinct C functions to implement these two
tasks. The first function actually implements the primitive, taking native C values as arguments
and returning a native C value. The second function, often called the “stub code”, is a simple
wrapper around the first function that converts its arguments from OCaml values to C values, call
the first function, and convert the returned C value to OCaml value. For instance, here is the stub
code for the input primitive:

CAMLprim value input(value channel, value buffer, value offset, value length)
{
return Val_long(getblock((struct channel *) channel,
&Byte (buffer, Long_val(offset)),
Long_val(length)));

(Here, Val_long, Long_val and so on are conversion macros for the type value, that will be
described later. The CAMLprim macro expands to the required compiler directives to ensure that
the function is exported and accessible from OCaml.) The hard work is performed by the function
getblock, which is declared as:

long getblock(struct channel * channel, char * p, long n)

{

338

To write C code that operates on OCaml values, the following include files are provided:

Include file Provides

caml/mlvalues.h | definition of the value type, and conversion macros

caml/alloc.h allocation functions (to create structured OCaml objects)

caml/memory.h miscellaneous memory-related functions and macros (for GC interface,
in-place modification of structures, etc).

caml/fail.h functions for raising exceptions (see section 20.4.7)

caml/callback.h | callback from C to OCaml (see section 20.7).

caml/custom.h operations on custom blocks (see section 20.9).

caml/intext.h operations for writing user-defined serialization and deserialization func-
tions for custom blocks (see section 20.9).

caml/threads.h | operations for interfacing in the presence of multiple threads (see sec-
tion 20.12).

Before including any of these files, you should define the OCAML_NAME_SPACE macro. For instance,

#define CAML_NAME_SPACE
#include "caml/mlvalues.h"
#include "caml/fail.h"

These files reside in the caml/ subdirectory of the OCaml standard library directory, which is
returned by the command ocamlc -where (usually /usr/local/lib/ocaml or /usr/lib/ocaml).

Note: Including the header files without first defining CAML_NAME_SPACE introduces in scope
short names for most functions. Those short names are deprecated, and may be removed in the
future because they usually produce clashes with names defined by other C libraries.

20.1.3 Statically linking C code with OCaml code

The OCaml runtime system comprises three main parts: the bytecode interpreter, the memory
manager, and a set of C functions that implement the primitive operations. Some bytecode in-
structions are provided to call these C functions, designated by their offset in a table of functions
(the table of primitives).

In the default mode, the OCaml linker produces bytecode for the standard runtime system,
with a standard set of primitives. References to primitives that are not in this standard set result
in the “unavailable C primitive” error. (Unless dynamic loading of C libraries is supported — see
section 20.1.4 below.)

In the “custom runtime” mode, the OCaml linker scans the object files and determines the set
of required primitives. Then, it builds a suitable runtime system, by calling the native code linker
with:

o the table of the required primitives;

e a library that provides the bytecode interpreter, the memory manager, and the standard
primitives;

o libraries and object code files (.o files) mentioned on the command line for the OCaml linker,
that provide implementations for the user’s primitives.

Chapter 20. Interfacing C with OCaml 339

This builds a runtime system with the required primitives. The OCaml linker generates bytecode for
this custom runtime system. The bytecode is appended to the end of the custom runtime system,
so that it will be automatically executed when the output file (custom runtime + bytecode) is
launched.

To link in “custom runtime” mode, execute the ocamlc command with:

e the -custom option;
o the names of the desired OCaml object files (.cmo and .cma files) ;

o the names of the C object files and libraries (.o and .a files) that implement the required
primitives. Under Unix and Windows, a library named libname.a (respectively, .1lib) re-
siding in one of the standard library directories can also be specified as -cclib -1name.

If you are using the native-code compiler ocamlopt, the -custom flag is not needed, as the
final linking phase of ocamlopt always builds a standalone executable. To build a mixed OCaml/C
executable, execute the ocamlopt command with:

o the names of the desired OCaml native object files (.cmx and .cmxa files);

o the names of the C object files and libraries (.o, .a, .so or .dl1l files) that implement the
required primitives.

Starting with Objective Caml 3.00, it is possible to record the -custom option as well as the
names of C libraries in an OCaml library file .cma or .cmxa. For instance, consider an OCaml
library mylib.cma, built from the OCaml object files a.cmo and b.cmo, which reference C code in
libmylib.a. If the library is built as follows:

ocamlc -a -o mylib.cma -custom a.cmo b.cmo -cclib -1Imylib
users of the library can simply link with mylib.cma:
ocamlc -o myprog mylib.cma ...

and the system will automatically add the -custom and -cclib -1mylib options, achieving the
same effect as

ocamlc -o myprog -custom a.cmo b.cmo ... -cclib -1mylib

The alternative is of course to build the library without extra options:
ocamlc -a -o mylib.cma a.cmo b.cmo

and then ask users to provide the —custom and -cclib -1mylib options themselves at link-time:
ocamlc -o myprog -custom mylib.cma ... -cclib -1lmylib

The former alternative is more convenient for the final users of the library, however.

340

20.1.4 Dynamically linking C code with OCaml code

Starting with Objective Caml 3.03, an alternative to static linking of C code using the —~custom code
is provided. In this mode, the OCaml linker generates a pure bytecode executable (no embedded
custom runtime system) that simply records the names of dynamically-loaded libraries containing
the C code. The standard OCaml runtime system ocamlrun then loads dynamically these libraries,
and resolves references to the required primitives, before executing the bytecode.

This facility is currently supported and known to work well under Linux, MacOS X, and Win-
dows. It is supported, but not fully tested yet, under FreeBSD, Tru64, Solaris and Irix. It is not
supported yet under other Unixes.

To dynamically link C code with OCaml code, the C code must first be compiled into a shared
library (under Unix) or DLL (under Windows). This involves 1- compiling the C files with appro-
priate C compiler flags for producing position-independent code (when required by the operating
system), and 2- building a shared library from the resulting object files. The resulting shared li-
brary or DLL file must be installed in a place where ocamlrun can find it later at program start-up
time (see section 11.3). Finally (step 3), execute the ocamlc command with

o the names of the desired OCaml object files (.cmo and .cma files) ;

o the names of the C shared libraries (.so or .d11 files) that implement the required primitives.
Under Unix and Windows, a library named d11name.so (respectively, .d11) residing in one
of the standard library directories can also be specified as -d11ib -lname.

Do not set the —custom flag, otherwise you're back to static linking as described in section 20.1.3.
The ocamlmklib tool (see section 20.14) automates steps 2 and 3.

As in the case of static linking, it is possible (and recommended) to record the names of C
libraries in an OCaml .cma library archive. Consider again an OCaml library mylib.cma, built
from the OCaml object files a.cmo and b.cmo, which reference C code in dllmylib.so. If the
library is built as follows:

ocamlc -a -o mylib.cma a.cmo b.cmo -dllib -lmylib
users of the library can simply link with mylib.cma:
ocamlc -o myprog mylib.cma ...

and the system will automatically add the -d11ib -1mylib option, achieving the same effect
as

ocamlc -o myprog a.cmo b.cmo ... —-dllib -lmylib
Using this mechanism, users of the library mylib.cma do not need to known that it references
C code, nor whether this C code must be statically linked (using -custom) or dynamically linked.
20.1.5 Choosing between static linking and dynamic linking

After having described two different ways of linking C code with OCaml code, we now review the
pros and cons of each, to help developers of mixed OCaml/C libraries decide.

The main advantage of dynamic linking is that it preserves the platform-independence of byte-
code executables. That is, the bytecode executable contains no machine code, and can therefore be

Chapter 20. Interfacing C with OCaml 341

compiled on platform A and executed on other platforms B, C, ..., as long as the required shared
libraries are available on all these platforms. In contrast, executables generated by ocamlc -custom
run only on the platform on which they were created, because they embark a custom-tailored run-
time system specific to that platform. In addition, dynamic linking results in smaller executables.

Another advantage of dynamic linking is that the final users of the library do not need to have
a C compiler, C linker, and C runtime libraries installed on their machines. This is no big deal
under Unix and Cygwin, but many Windows users are reluctant to install Microsoft Visual C just
to be able to do ocamlc -custom.

There are two drawbacks to dynamic linking. The first is that the resulting executable is not
stand-alone: it requires the shared libraries, as well as ocamlrun, to be installed on the machine
executing the code. If you wish to distribute a stand-alone executable, it is better to link it stat-
ically, using ocamlc -custom -ccopt -static or ocamlopt -ccopt -static. Dynamic linking
also raises the “DLL hell” problem: some care must be taken to ensure that the right versions of
the shared libraries are found at start-up time.

The second drawback of dynamic linking is that it complicates the construction of the library.
The C compiler and linker flags to compile to position-independent code and build a shared library
vary wildly between different Unix systems. Also, dynamic linking is not supported on all Unix
systems, requiring a fall-back case to static linking in the Makefile for the library. The ocamlmklib
command (see section 20.14) tries to hide some of these system dependencies.

In conclusion: dynamic linking is highly recommended under the native Windows port, because
there are no portability problems and it is much more convenient for the end users. Under Unix,
dynamic linking should be considered for mature, frequently used libraries because it enhances
platform-independence of bytecode executables. For new or rarely-used libraries, static linking is
much simpler to set up in a portable way.

20.1.6 Building standalone custom runtime systems

It is sometimes inconvenient to build a custom runtime system each time OCaml code is linked
with C libraries, like ocamlc -custom does. For one thing, the building of the runtime system is
slow on some systems (that have bad linkers or slow remote file systems); for another thing, the
platform-independence of bytecode files is lost, forcing to perform one ocamlc -custom link per
platform of interest.

An alternative to ocamlc -custom is to build separately a custom runtime system integrating
the desired C libraries, then generate “pure” bytecode executables (not containing their own run-
time system) that can run on this custom runtime. This is achieved by the -make-runtime and
-use-runtime flags to ocamlc. For example, to build a custom runtime system integrating the C
parts of the “Unix” and “Threads” libraries, do:

ocamlc -make-runtime -o /home/me/ocamlunixrun unix.cma threads.cma
To generate a bytecode executable that runs on this runtime system, do:

ocamlc -use-runtime /home/me/ocamlunixrun -o myprog \
unix.cma threads.cma your .cmo and .cma files

The bytecode executable myprog can then be launched as usual: myprog args or
/home/me/ocamlunixrun myprog args.

342

Notice that the bytecode libraries unix.cma and threads.cma must be given twice: when
building the runtime system (so that ocamlc knows which C primitives are required) and also
when building the bytecode executable (so that the bytecode from unix.cma and threads.cma is
actually linked in).

20.2 The value type

All OCaml objects are represented by the C type value, defined in the include file
caml/mlvalues.h, along with macros to manipulate values of that type. An object of type value
is either:

e an unboxed integer;

o a pointer to a block inside the heap (such as the blocks allocated through one of the
caml_alloc_* functions below);

 a pointer to an object outside the heap (e.g., a pointer to a block allocated by malloc, or to
a C variable).

20.2.1 Integer values

Integer values encode 63-bit signed integers (31-bit on 32-bit architectures). They are unboxed
(unallocated).

20.2.2 Blocks

Blocks in the heap are garbage-collected, and therefore have strict structure constraints. Each
block includes a header containing the size of the block (in words), and the tag of the block. The
tag governs how the contents of the blocks are structured. A tag lower than No_scan_tag indicates
a structured block, containing well-formed values, which is recursively traversed by the garbage
collector. A tag greater than or equal to No_scan_tag indicates a raw block, whose contents are
not scanned by the garbage collector. For the benefit of ad-hoc polymorphic primitives such as
equality and structured input-output, structured and raw blocks are further classified according to
their tags as follows:

Chapter 20. Interfacing C with OCaml

Tag

Contents of the block

0 to No_scan_tag — 1
Closure_tag
String_tag
Double_tag

Double_array_tag

Abstract_tag
Custom_tag

A structured block (an array of OCaml objects). Each field
is a value.

A closure representing a functional value. The first word is
a pointer to a piece of code, the remaining words are value
containing the environment.

A character string or a byte sequence.

A double-precision floating-point number.

An array or record of double-precision floating-point num-
bers.

A block representing an abstract datatype.

A block representing an abstract datatype with user-defined
finalization, comparison, hashing, serialization and deserial-
ization functions attached.

20.2.3 Pointers outside the heap

343

Any word-aligned pointer to an address outside the heap can be safely cast to and from the type
value. This includes pointers returned by malloc, and pointers to C variables (of size at least one
word) obtained with the & operator.

Caution: if a pointer returned by malloc is cast to the type value and returned to OCaml,
explicit deallocation of the pointer using free is potentially dangerous, because the pointer may still
be accessible from the OCaml world. Worse, the memory space deallocated by free can later be
reallocated as part of the OCaml heap; the pointer, formerly pointing outside the OCaml heap, now
points inside the OCaml heap, and this can crash the garbage collector. To avoid these problems,

it is preferable to wrap the pointer in a OCaml block with tag Abstract_tag or Custom_tag.

20.3 Representation of OCaml data types

This section describes how OCaml data types are encoded in the value type.

20.3.1 Atomic types

OCaml type | Encoding

int
char
float
bytes

int32
int64

string

nativeint | Blocks with tag Custom_tag.

Unboxed integer values.

Unboxed integer values (ASCII code).
Blocks with tag Double_tag.

Blocks with tag String_tag.

Blocks with tag String_tag.

Blocks with tag Custom_tag.

Blocks with tag Custom_tag.

20.3.2 Tuples and records

Tuples are represented by pointers to blocks, with tag 0.

344

Records are also represented by zero-tagged blocks. The ordering of labels in the record type
declaration determines the layout of the record fields: the value associated to the label declared
first is stored in field 0 of the block, the value associated to the second label goes in field 1, and so
on.

As an optimization, records whose fields all have static type float are represented as arrays of
floating-point numbers, with tag Double_array_tag. (See the section below on arrays.)

As another optimization, unboxable record types are represented specially; unboxable record
types are the immutable record types that have only one field. An unboxable type will be repre-
sented in one of two ways: boxed or unboxed. Boxed record types are represented as described
above (by a block with tag 0 or Double_array_tag). An unboxed record type is represented directly
by the value of its field (i.e. there is no block to represent the record itself).

The representation is chosen according to the following, in decreasing order of priority:

o An attribute ([@@boxed] or [@@unboxed]) on the type declaration.
o A compiler option (-unboxed-types or -no-unboxed-types).

e The default representation. In the present version of OCaml, the default is the boxed repre-
sentation.

20.3.3 Arrays

Arrays of integers and pointers are represented like tuples, that is, as pointers to blocks tagged O.
They are accessed with the Field macro for reading and the caml_modify function for writing.

Arrays of floating-point numbers (type float array) have a special, unboxed, more efficient
representation. These arrays are represented by pointers to blocks with tag Double_array_tag.
They should be accessed with the Double_field and Store_double_field macros.

20.3.4 Concrete data types

Constructed terms are represented either by unboxed integers (for constant constructors) or by
blocks whose tag encode the constructor (for non-constant constructors). The constant constructors
and the non-constant constructors for a given concrete type are numbered separately, starting from
0, in the order in which they appear in the concrete type declaration. A constant constructor is
represented by the unboxed integer equal to its constructor number. A non-constant constructor
declared with n arguments is represented by a block of size n, tagged with the constructor number;
the n fields contain its arguments. Example:

Constructed term | Representation

O Val int(0)

false Val_int(0)

true Val_int (1)

(] Val_int (0)

h::t Block with size = 2 and tag = 0; first field con-
tains h, second field t.

Chapter 20. Interfacing C with OCaml 345

As a convenience, caml/mlvalues.h defines the macros Val_unit, Val_false and Val_true
to refer to (), false and true.
The following example illustrates the assignment of integers and block tags to constructors:

type t =
| A (x First constant constructor -> integer "Val_int(0)" *)
| B of string (* First non-constant constructor -> block with tag O *)
| C (* Second constant constructor -> integer "Val_int(1)" *)
| D of bool (* Second non-constant constructor -> block with tag 1 *)
| Eof t *xt (* Third non-constant constructor -> block with tag 2 *)

As an optimization, unboxable concrete data types are represented specially; a concrete data
type is unboxable if it has exactly one constructor and this constructor has exactly one argument.
Unboxable concrete data types are represented in the same ways as unboxable record types: see
the description in section 20.3.2.

20.3.5 Objects

Objects are represented as blocks with tag Object_tag. The first field of the block refers to the
object’s class and associated method suite, in a format that cannot easily be exploited from C. The
second field contains a unique object ID, used for comparisons. The remaining fields of the object
contain the values of the instance variables of the object. It is unsafe to access directly instance
variables, as the type system provides no guarantee about the instance variables contained by an
object.

One may extract a public method from an object using the C function caml_get_public_method
(declared in <caml/mlvalues.h>.) Since public method tags are hashed in the same way as variant
tags, and methods are functions taking self as first argument, if you want to do the method call
foo#tbar from the C side, you should call:

callback(caml_get_public_method(foo, hash_variant("bar")), foo);

20.3.6 Polymorphic variants

Like constructed terms, polymorphic variant values are represented either as integers (for poly-
morphic variants without argument), or as blocks (for polymorphic variants with an argument).
Unlike constructed terms, variant constructors are not numbered starting from 0, but identi-
fied by a hash value (an OCaml integer), as computed by the C function hash_variant (de-
clared in <caml/mlvalues.h>): the hash value for a variant constructor named, say, VConstr is
hash_variant ("VConstr").

The variant value ~VConstr is represented by hash_variant ("VConstr"). The variant value
“VConstr(wv) is represented by a block of size 2 and tag 0, with field number 0 containing
hash_variant ("VConstr") and field number 1 containing v.

Unlike constructed values, polymorphic variant values taking several arguments are not flat-
tened. That is, “VConstr (v, w) is represented by a block of size 2, whose field number 1 contains
the representation of the pair (v, w), rather than a block of size 3 containing v and w in fields 1
and 2.

346

20.4 Operations on values

20.4.1 Kind tests

Is_long(w) is true if value v is an immediate integer, false otherwise

Is_block(w) is true if value v is a pointer to a block, and false if it is an immediate integer.

20.4.2 Operations on integers

Val_long(l) returns the value encoding the long int I

Long_val(v) returns the long int encoded in value v.

Val_int (4) returns the value encoding the int 7.

Int_val(w) returns the int encoded in value v.

Val_bool(x) returns the OCaml boolean representing the truth value of the C integer .
Bool_val(w) returns O if v is the OCaml boolean false, 1 if v is true.

Val_true, Val_false represent the OCaml booleans true and false.

20.4.3 Accessing blocks

Wosize_val (v) returns the size of the block v, in words, excluding the header.
Tag_val(wv) returns the tag of the block v.

Field(v, n) returns the value contained in the n'" field of the structured block v. Fields are
numbered from 0 to Wosize_val(v) — 1.

Store_field(b, n, v) stores the value v in the field number n of value b, which must be a
structured block.

Code_val (v) returns the code part of the closure v.

caml_string_length(v) returns the length (number of bytes) of the string or byte sequence
v.

Byte (v, n) returns the n'" byte of the string or byte sequence v, with type char. Bytes are
numbered from 0 to string_length(v) — 1.

Byte_u(v, n) returns the n'® byte of the string or byte sequence v, with type unsigned char.
Bytes are numbered from 0 to string_length(v) — 1.

String_val(w) returns a pointer to the first byte of the string v, with type char * or, when
OCaml is configured with -force-safe-string, with type const char *. This pointer is a
valid C string: there is a null byte after the last byte in the string. However, OCaml strings
can contain embedded null bytes, which will confuse the usual C functions over strings.

Chapter 20. Interfacing C with OCaml 347
e Bytes_val(w) returns a pointer to the first byte of the byte sequence v, with type
unsigned char *.
e Double_val(w) returns the floating-point number contained in value v, with type double.

« Double_field(w, n) returns the n'" element of the array of floating-point numbers v (a
block tagged Double_array_tag).

e Store_double_field(w, n, d) stores the double precision floating-point number d in the
n'™ element of the array of floating-point numbers v.

e Data_custom_val(v) returns a pointer to the data part of the custom block v. This pointer
has type void * and must be cast to the type of the data contained in the custom block.

e Int32_val(w) returns the 32-bit integer contained in the int32 w.
e Int64_val(w) returns the 64-bit integer contained in the int64 v.
e Nativeint_val(w) returns the long integer contained in the nativeint wv.

o caml_field_unboxed(v) returns the value of the field of a value v of any unboxed type (record
or concrete data type).

o caml_field_boxed(w) returns the value of the field of a value v of any boxed type (record or
concrete data type).

e caml_field_unboxable(w) calls either caml_field_unboxed or caml_field_boxed accord-
ing to the default representation of unboxable types in the current version of OCaml.

The expressions Field(v, n), Byte(v, n) and Byte_u(w, n) are valid l-values. Hence, they can
be assigned to, resulting in an in-place modification of value v. Assigning directly to Field(v, n)
must be done with care to avoid confusing the garbage collector (see below).

20.4.4 Allocating blocks

20.4.5 Simple interface

o Atom(?) returns an “atom” (zero-sized block) with tag t. Zero-sized blocks are preallocated
outside of the heap. It is incorrect to try and allocate a zero-sized block using the functions
below. For instance, Atom(0) represents the empty array.

e caml_alloc(n, t) returns a fresh block of size n with tag ¢. If ¢ is less than No_scan_tag,
then the fields of the block are initialized with a valid value in order to satisfy the GC
constraints.

e caml_alloc_tuple(n) returns a fresh block of size n words, with tag 0.

o caml_alloc_string(n) returns a byte sequence (or string) value of length n bytes. The
sequence initially contains uninitialized bytes.

348

caml_alloc_initialized_string(n, p) returns a byte sequence (or string) value of length
n bytes. The value is initialized from the n bytes starting at address p.

caml_copy_string(s) returns a string or byte sequence value containing a copy of the null-
terminated C string s (a char *).

caml_copy_double(d) returns a floating-point value initialized with the double d.

caml_copy_int32(¢), caml_copy_int64(7) and caml_copy_nativeint(7) return a value of
OCaml type int32, int64 and nativeint, respectively, initialized with the integer i.

caml_alloc_array(f, a) allocates an array of values, calling function f over each element of
the input array a to transform it into a value. The array a is an array of pointers terminated
by the null pointer. The function f receives each pointer as argument, and returns a value.
The zero-tagged block returned by alloc_array(f, a) is filled with the values returned by
the successive calls to f. (This function must not be used to build an array of floating-point
numbers.)

caml_copy_string_array(p) allocates an array of strings or byte sequences, copied from the
pointer to a string array p (a char **). p must be NULL-terminated.

caml_alloc_float_array(n) allocates an array of floating point numbers of size n. The
array initially contains uninitialized values.

caml_alloc_unboxed(v) returns the value (of any unboxed type) whose field is the value v.

caml_alloc_boxed(v) allocates and returns a value (of any boxed type) whose field is the
value v.

caml_alloc_unboxable(w) calls either caml_alloc_unboxed or caml_alloc_boxed accord-
ing to the default representation of unboxable types in the current version of OCaml.

20.4.6 Low-level interface

The following functions are slightly more efficient than caml_alloc, but also much more difficult
to use.

From the standpoint of the allocation functions, blocks are divided according to their size as

zero-sized blocks, small blocks (with size less than or equal to Max_young_wosize), and large blocks
(with size greater than Max_young_wosize). The constant Max_young_wosize is declared in the
include file mlvalues.h. It is guaranteed to be at least 64 (words), so that any block with constant
size less than or equal to 64 can be assumed to be small. For blocks whose size is computed at
run-time, the size must be compared against Max_young_wosize to determine the correct allocation

procedure.

e caml_alloc_small(n, t) returns a fresh small block of size n < Max_young_wosize words,

with tag t. If this block is a structured block (i.e. if ¢ < No_scan_tag), then the fields
of the block (initially containing garbage) must be initialized with legal values (using direct
assignment to the fields of the block) before the next allocation.

Chapter 20. Interfacing C with OCaml 349

e caml_alloc_shr(n, t) returns a fresh block of size n, with tag ¢. The size of the block
can be greater than Max_young_wosize. (It can also be smaller, but in this case it is more
efficient to call caml_alloc_small instead of caml_alloc_shr.) If this block is a structured
block (i.e. if t < No_scan_tag), then the fields of the block (initially containing garbage)
must be initialized with legal values (using the caml_initialize function described below)
before the next allocation.

20.4.7 Raising exceptions

Two functions are provided to raise two standard exceptions:

o caml_failwith(s), where sis a null-terminated C string (with type char *), raises exception
Failure with argument s.

o caml_invalid_argument (s), where s is a null-terminated C string (with type char *), raises
exception Invalid_argument with argument s.

Raising arbitrary exceptions from C is more delicate: the exception identifier is dynamically
allocated by the OCaml program, and therefore must be communicated to the C function using the
registration facility described below in section 20.7.3. Once the exception identifier is recovered in
C, the following functions actually raise the exception:

e caml_raise_constant (id) raises the exception id with no argument;
o caml_raise_with_arg(id, v) raises the exception id with the OCaml value v as argument;

e caml_raise_with_args(id, m, v) raises the exception id with the OCaml values v[0], ...,
v[n-1] as arguments;

e caml_raise_with_string(id, s), where sis a null-terminated C string, raises the exception
id with a copy of the C string s as argument.

20.5 Living in harmony with the garbage collector

Unused blocks in the heap are automatically reclaimed by the garbage collector. This requires some
cooperation from C code that manipulates heap-allocated blocks.

20.5.1 Simple interface

All the macros described in this section are declared in the memory.h header file.

Rule 1 A function that has parameters or local variables of type value must begin with a call to
one of the CAMLparam macros and return with CAMLreturn, CAMLreturnO, or CAMLreturnT. In
particular, CAMLlocal and CAMLxparam can only be called after CAMLparam.

There are six CAMLparam macros: CAMLparamO to CAMLparamb, which take zero to five arguments
respectively. If your function has no more than 5 parameters of type value, use the corresponding
macros with these parameters as arguments. If your function has more than 5 parameters of type

350

value, use CAMLparamb with five of these parameters, and use one or more calls to the CAMLxparam
macros for the remaining parameters (CAMLxparaml to CAMLxparam5).

The macros CAMLreturn, CAMLreturnO, and CAMLreturnT are used to replace the C keyword
return. Every occurrence of return x must be replaced by CAMLreturn (x) if x has type value,
or CAMLreturnT (t, x) (where t is the type of x); every occurrence of return without argument
must be replaced by CAMLreturn0. If your C function is a procedure (i.e. if it returns void), you
must insert CAMLreturnO at the end (to replace C’s implicit return).

Note: some C compilers give bogus warnings about unused variables caml__dummy_xxx at each
use of CAMLparam and CAMLlocal. You should ignore them.
Example:

void foo (value v1, value v2, value v3)

{
CAMLparam3 (v1, v2, v3);

CAMLreturnO;
}

Note: if your function is a primitive with more than 5 arguments for use with the byte-code
runtime, its arguments are not values and must not be declared (they have types value * and
int).

Rule 2 Local variables of type value must be declared with one of the CAML1ocal macros. Arrays of
values are declared with CAMLlocalN. These macros must be used at the beginning of the function,
not in a nested block.

The macros CAMLlocall to CAMLlocal5 declare and initialize one to five local variables of type
value. The variable names are given as arguments to the macros. CAMLlocalN(z, n) declares and
initializes a local variable of type value [n]. You can use several calls to these macros if you have
more than 5 local variables.

Example:

value bar (value vi, value v2, value v3)
{

CAMLparam3 (v1, v2, v3);

CAMLlocall (result);

result = caml _alloc (3, 0);

CAMLreturn (result);
}

Rule 3 Assignments to the fields of structured blocks must be done with the Store_field macro
(for normal blocks) or Store_double_field macro (for arrays and records of floating-point num-
bers). Other assignments must not use Store_field nor Store_double_field.

Chapter 20. Interfacing C with OCaml 351

Store_field (b, n, wv) stores the value v in the field number n of value b, which must be a
block (i.e. Is_block(bd) must be true).
Example:

value bar (value vl, value v2, value v3)
{
CAMLparam3 (v1, v2, v3);
CAMLlocall (result);
result = caml _alloc (3, 0);
Store_field (result, 0, vi1);
Store_field (result, 1, v2);
Store_field (result, 2, v3);
CAMLreturn (result);

Warning: The first argument of Store_field and Store_double_field must be a variable
declared by CAMLparam* or a parameter declared by CAMLlocal* to ensure that a garbage collection
triggered by the evaluation of the other arguments will not invalidate the first argument after it is
computed.

Use with CAMLIlocalN: Arrays of values declared using CAML1ocalN must not be written to
using Store_field. Use the normal C array syntax instead.

Rule 4 Global variables containing values must be registered with the garbage collector using the
caml_register_global_root function, save that global variables and locations that will only ever
contain OCaml integers (and never pointers) do not have to be registered.

The same is true for any memory location outside the OCaml heap that contains a value and is
not guaranteed to be reachable—for as long as it contains such value—from either another registered
global variable or location, local variable declared with CAMLlocal or function parameter declared
with CAMLparam.

Registration of a global variable v is achieved by calling caml_register_global_root(&v) just
before or just after a valid value is stored in v for the first time; likewise, registration of an arbitrary
location p is achieved by calling caml_register_global_root (p).

You must not call any of the OCaml runtime functions or macros between registering and storing
the value. Neither must you store anything in the variable v (likewise, the location p) that is not
a valid value.

The registration causes the contents of the variable or memory location to be updated by the
garbage collector whenever the value in such variable or location is moved within the OCaml heap.
In the presence of threads care must be taken to ensure appropriate synchronisation with the OCaml
runtime to avoid a race condition against the garbage collector when reading or writing the value.
(See section 20.12.2.)

A registered global variable v can be un-registered by calling caml_remove_global_root (&v).

If the contents of the global variable v are seldom modified after registration, better performance
can be achieved by calling caml_register_generational_global_root(&v) to register v (after
its initialization with a valid value, but before any allocation or call to the GC functions), and

352

caml_remove_generational_global_root(&v) to un-register it. In this case, you must not modify
the value of v directly, but you must use caml_modify_generational_global_root(&v,x) to set
it to x. The garbage collector takes advantage of the guarantee that v is not modified between calls
to caml_modify_generational_global_root to scan it less often. This improves performance if
the modifications of v happen less often than minor collections.

Note: The CAML macros use identifiers (local variables, type identifiers, structure tags) that start
with caml__. Do not use any identifier starting with caml__ in your programs.

20.5.2 Low-level interface

We now give the GC rules corresponding to the low-level allocation functions caml_alloc_small
and caml_alloc_shr. You can ignore those rules if you stick to the simplified allocation function
caml_alloc.

Rule 5 After a structured block (a block with tag less than No_scan_tag) is allocated with the
low-level functions, all fields of this block must be filled with well-formed values before the next
allocation operation. If the block has been allocated with caml_alloc_small, filling is performed by
direct assignment to the fields of the block:

Field(v, n) = wv,;

If the block has been allocated with caml_alloc_shr, filling is performed through the
caml_initialize function:

caml_initialize(&Field(v, n), w,);

The next allocation can trigger a garbage collection. The garbage collector assumes that all
structured blocks contain well-formed values. Newly created blocks contain random data, which
generally do not represent well-formed values.

If you really need to allocate before the fields can receive their final value, first initialize with
a constant value (e.g. Val_unit), then allocate, then modify the fields with the correct value (see
rule 6).

Rule 6 Direct assignment to a field of a block, as in
Field(v, n) = w;

s safe only if v is a block newly allocated by caml_alloc_small; that is, if no allocation took
place between the allocation of v and the assignment to the field. In all other cases, never assign
directly. If the block has just been allocated by caml_alloc_shr, use caml_initialize to assign a
value to a field for the first time:

caml_initialize(&Field(v, n), w);

Otherwise, you are updating a field that previously contained a well-formed value; then, call the
caml_modify function:

caml_modify(&Field(v, n), w);

Chapter 20. Interfacing C with OCaml 353

To illustrate the rules above, here is a C function that builds and returns a list containing the
two integers given as parameters. First, we write it using the simplified allocation functions:

value alloc_list_int(int il, int i2)

{
CAMLparamO ();
CAMLlocal2 (result, r);
r = caml_alloc(2, 0); /* Allocate a cons cell */
Store_field(r, 0, Val_int(i2)); /* car = the integer i2 */
Store_field(r, 1, Val_int(0)); /* cdr = the empty list [] */
result = caml_alloc(2, 0); /* Allocate the other cons cell */
Store_field(result, 0, Val_int(il)); /* car = the integer il */
Store_field(result, 1, r); /* cdr = the first cons cell */
CAMLreturn (result);

}

Here, the registering of result is not strictly needed, because no allocation takes place after
it gets its value, but it’s easier and safer to simply register all the local variables that have type
value.

Here is the same function written using the low-level allocation functions. We notice that
the cons cells are small blocks and can be allocated with caml_alloc_small, and filled by direct
assignments on their fields.

value alloc_list_int(int i1, int i2)

{
CAMLparamO ();
CAMLlocal2 (result, r);
r = caml_alloc_small(2, 0); /* Allocate a cons cell */
Field(r, 0) = Val_int(i2); /* car = the integer i2 */
Field(r, 1) = Val_int(0); /* cdr = the empty list [] */
result = caml_alloc_small(2, 0); /* Allocate the other cons cell */
Field(result, 0) = Val_int(il); /* car = the integer il */
Field(result, 1) = r; /* cdr = the first cons cell */
CAMLreturn (result);

}

In the two examples above, the list is built bottom-up. Here is an alternate way, that proceeds
top-down. It is less efficient, but illustrates the use of caml_modify.

value alloc_list_int(int il, int i2)
{

CAMLparamO ();

CAMLlocal2 (tail, r);

r = caml_alloc_small(2, 0); /* Allocate a cons cell */

354

Field(r, 0) = Val_int(il); /* car = the integer il */
Field(r, 1) = Val_int(0); /* A dummy value

tail = caml_alloc_small(2, 0); /* Allocate the other cons cell */
Field(tail, 0) = Val_int(i2); /* car = the integer i2 */
Field(tail, 1) = Val_int(0); /* cdr = the empty list [] */
caml_modify(&Field(r, 1), tail); /* cdr of the result = tail */

CAMLreturn (r);

It would be incorrect to perform Field(r, 1) = tail directly, because the allocation of tail
has taken place since r was allocated.

20.5.3 Pending actions and asynchronous exceptions

Since 4.10, allocation functions are guaranteed not to call any OCaml callbacks from C, including
finalisers and signal handlers, and delay their execution instead.

The function caml_process_pending_actions from <caml/signals.h> executes any pending
signal handlers and finalisers, Memprof callbacks, and requested minor and major garbage collec-
tions. In particular, it can raise asynchronous exceptions. It is recommended to call it regularly at
safe points inside long-running non-blocking C code.

The variant caml_process_pending_actions_exn is provided, that returns the exception in-
stead of raising it directly into OCaml code. Its result must be tested using Is_exception_result,
and followed by Extract_exception if appropriate. It is typically used for clean up before re-
raising;:

CAMLlocall(exn);

exn = caml_process_pending_actions_exn();
if (Is_exception_result(exn)) {
exn = Extract_exception(exn);
...cleanup...
caml_raise(exn) ;

}

Correct use of exceptional return, in particular in the presence of garbage collection, is further
detailed in Section 20.7.1.

20.6 A complete example

This section outlines how the functions from the Unix curses library can be made available to
OCaml programs. First of all, here is the interface curses.ml that declares the curses primitives
and data types:

(* File curses.ml -- declaration of primitives and data types *)
type window (* The type "window" remains abstract *)
external initscr: unit -> window = "caml_curses_initscr"

Chapter 20. Interfacing C with OCaml 355

external endwin: unit -> unit = "caml_curses_endwin"

external refresh: unit -> unit = "caml_curses_refresh"

external wrefresh : window -> unit = "caml_curses_wrefresh"

external newwin: int -> int -> int -> int -> window = "caml_curses_newwin"
external addch: char -> unit = "caml_curses_addch"

external mvwaddch: window -> int -> int -> char -> unit = "caml_curses_mvwaddch"
external addstr: string -> unit = "caml_curses_addstr"

external mvwaddstr: window -> int -> int -> string -> unit
= "caml_curses_mvwaddstr"
(x lots more omitted *)

To compile this interface:
ocamlc -c curses.ml

To implement these functions, we just have to provide the stub code; the core functions are
already implemented in the curses library. The stub code file, curses_stubs.c, looks like this:

/* File curses_stubs.c -- stub code for curses */
#include <curses.h>

#define CAML NAME_SPACE

#include <caml/mlvalues.h>

#include <caml/memory.h>

#include <caml/alloc.h>

#include <caml/custom.h>

/* Encapsulation of opaque window handles (of type WINDOW *)
as 0Caml custom blocks. */

static struct custom_operations curses_window_ops = {
"fr.inria.caml.curses_windows",
custom_finalize_default,
custom_compare_default,
custom_hash_default,
custom_serialize_default,
custom_deserialize_default,
custom_compare_ext_default,
custom_fixed_length_default

};

/* Accessing the WINDOW * part of an OCaml custom block */
#define Window_val(v) (*x((WINDOW #**) Data_custom_val(v)))

/* Allocating an 0Caml custom block to hold the given WINDOW * */
static value alloc_window(WINDOW * w)
{

value v = caml_alloc_custom(&curses_window_ops, sizeof (WINDOW *), 0, 1);

356

Window_val(v) = w;
return v;

¥

value caml curses_initscr(value unit)
{
CAMLparaml (unit);
CAMLreturn (alloc_window(initscr()));

}

value caml curses_endwin(value unit)
{

CAMLparaml (unit);

endwin();

CAMLreturn (Val_unit);
}

value caml curses _refresh(value unit)
{

CAMLparaml (unit);

refresh();

CAMLreturn (Val_unit);
}

value caml_curses_wrefresh(value win)

{
CAMLparaml (win);
wrefresh(Window_val(win));
CAMLreturn (Val_unit);

}

value caml_curses_newwin(value nlines, value ncols, value x0, value yO)
{
CAMLparam4 (nlines, ncols, x0, y0);
CAMLreturn (alloc_window(newwin(Int_val(nlines), Int_val(ncols),
Int_val(x0), Int_val(y0))));

value caml_curses_addch(value c)

{
CAMLparaml (c);
addch(Int_val(c)); /* Characters are encoded like integers */
CAMLreturn (Val_unit);

}

Chapter 20. Interfacing C with OCaml 357

value caml_curses_mvwaddch(value win, value x, value y, value c)
{
CAMLparam4 (win, x, y, C);
mvwaddch (Window_val(win), Int_val(x), Int_val(y), Int_val(c));
CAMLreturn (Val unit);
}

value caml_curses_addstr(value s)

{
CAMLparaml (s);
addstr(String_val(s));
CAMLreturn (Val_unit);

}

value caml_curses_mvwaddstr(value win, value x, value y, value s)

{
CAMLparam4 (win, x, y, s);
mvwaddstr (Window_val(win), Int_val(x), Int_val(y), String val(s));
CAMLreturn (Val_unit);

}

/* This goes on for pages. */
The file curses_stubs.c can be compiled with:
cc -¢c -I'ocamlc -where®™ curses_stubs.c
or, even simpler
ocamlc -c curses_stubs.c

(When passed a .c file, the ocamlc command simply calls the C compiler on that file, with the
right -I option.)
Now, here is a sample OCaml program prog.ml that uses the curses module:

(* File prog.ml -- main program using curses *)
open Curses;;
let main_window = initscr () in
let small_window = newwin 10 5 20 10 in
mvwaddstr main_window 10 2 "Hello";
mvwaddstr small_window 4 3 "world";
refresh();
Unix.sleep 5;
endwin()

To compile and link this program, run:
ocamlc —-custom -o prog unix.cma curses.cmo prog.ml curses_stubs.o -cclib -lcurses

(On some machines, you may need to put -cclib -lcurses -cclib -ltermcap or
-cclib -ltermcap instead of ~cclib -lcurses.)

358

20.7 Advanced topic: callbacks from C to OCaml

So far, we have described how to call C functions from OCaml. In this section, we show how C
functions can call OCaml functions, either as callbacks (OCaml calls C which calls OCaml), or with
the main program written in C.

20.7.1 Applying OCaml closures from C

C functions can apply OCaml function values (closures) to OCaml values. The following functions
are provided to perform the applications:

e caml_callback(f, a) applies the functional value f to the value a and returns the value
returned by f.

o caml_callback2(f, a, b) applies the functional value f (which is assumed to be a curried
OCaml function with two arguments) to a and b.

o caml_callback3(f, a, b, ¢) applies the functional value f (a curried OCaml function with
three arguments) to a, b and c.

e caml_callbackN(f, n, args) applies the functional value fto the n arguments contained in
the array of values args.

If the function f does not return, but raises an exception that escapes the scope of the application,
then this exception is propagated to the next enclosing OCaml code, skipping over the C code.
That is, if an OCaml function f calls a C function g that calls back an OCaml function h that raises
a stray exception, then the execution of g is interrupted and the exception is propagated back into
f

If the C code wishes to catch exceptions escaping the OCaml function, it can use the functions
caml_callback_exn, caml_callback2_exn, caml_callback3_exn, caml_callbackN_exn. These
functions take the same arguments as their non-_exn counterparts, but catch escaping exceptions
and return them to the C code. The return value v of the caml_callback*_exn functions must
be tested with the macro Is_exception_result(v). If the macro returns “false”, no exception
occurred, and v is the value returned by the OCaml function. If Is_exception_result(v) returns
“true”, an exception escaped, and its value (the exception descriptor) can be recovered using
Extract_exception(v).

Warning: If the OCaml function returned with an exception, Extract_exception should be
applied to the exception result prior to calling a function that may trigger garbage collection.
Otherwise, if v is reachable during garbage collection, the runtime can crash since v does not
contain a valid value.

Example:

value call_caml_f_ex(value closure, value arg)
{

CAMLparam2(closure, arg);

CAMLlocal2(res, tmp);

res = caml_callback_exn(closure, arg);

Chapter 20. Interfacing C with OCaml 359

if (Is_exception_result(res)) {
res = Extract_exception(res);
tmp = caml_alloc(3, 0); /* Safe to allocate: res contains valid value. */

}
CAMLreturn (res);

3

20.7.2 Obtaining or registering OCaml closures for use in C functions

There are two ways to obtain OCaml function values (closures) to be passed to the callback
functions described above. One way is to pass the OCaml function as an argument to a primitive
function. For example, if the OCaml code contains the declaration

external apply : ('a -> 'b) -> 'a -> 'b = "caml_apply"
the corresponding C stub can be written as follows:

CAMLprim value caml_apply(value vf, value vx)
{

CAMLparam2(vf, vx);

CAMLlocall(vy);

vy = caml_callback(vf, vx);

CAMLreturn(vy) ;
}

Another possibility is to use the registration mechanism provided by OCaml. This registration
mechanism enables OCaml code to register OCaml functions under some global name, and C code
to retrieve the corresponding closure by this global name.

On the OCaml side, registration is performed by evaluating Callback.register n v. Here, n
is the global name (an arbitrary string) and v the OCaml value. For instance:

let f x = print_string "f is applied to "; print_int x; print_newline()
let _ = Callback.register "test function" f

On the C side, a pointer to the value registered under name n is obtained by calling
caml_named_value(n). The returned pointer must then be dereferenced to recover the actual
OCaml value. If no value is registered under the name n, the null pointer is returned. For example,
here is a C wrapper that calls the OCaml function f above:

void call_caml_f(int arg)
{
caml_callback(*caml_named_value("test function"), Val_int(arg));

}

The pointer returned by caml_named_value is constant and can safely be cached in a C variable
to avoid repeated name lookups. The value pointed to cannot be changed from C. However, it might
change during garbage collection, so must always be recomputed at the point of use. Here is a more
efficient variant of call_caml_f above that calls caml_named_value only once:

360

void call_caml_f(int arg)

{
static const value * closure_f = NULL;
if (closure_f == NULL) {
/* First time around, look up by name */
closure_f = caml_named_value("test function");
}
caml_callback(*closure_f, Val_int(arg));
}

20.7.3 Registering OCaml exceptions for use in C functions

The registration mechanism described above can also be used to communicate excep-
tion identifiers from OCaml to C. The OCaml code registers the exception by evaluating
Callback.register_exception n exn, where n is an arbitrary name and ezn is an exception
value of the exception to register. For example:

exception Error of string
let _ = Callback.register_exception "test exception" (Error "any string")

The C code can then recover the exception identifier using caml_named_value and pass it as first
argument to the functions raise_constant, raise_with_arg, and raise_with_string (described
in section 20.4.7) to actually raise the exception. For example, here is a C function that raises the
Error exception with the given argument:

void raise_error(char * msg)

{

caml_raise_with_string(*caml_named_value("test exception"), msg);

20.7.4 Main program in C

In normal operation, a mixed OCaml/C program starts by executing the OCaml initialization code,
which then may proceed to call C functions. We say that the main program is the OCaml code.
In some applications, it is desirable that the C code plays the role of the main program, calling
OCaml functions when needed. This can be achieved as follows:

e The C part of the program must provide a main function, which will override the default main
function provided by the OCaml runtime system. Execution will start in the user-defined main
function just like for a regular C program.

e At some point, the C code must call caml_main(argv) to initialize the OCaml code. The
argv argument is a C array of strings (type char **), terminated with a NULL pointer, which
represents the command-line arguments, as passed as second argument to main. The OCaml
array Sys.argv will be initialized from this parameter. For the bytecode compiler, argv[0]
and argv[1] are also consulted to find the file containing the bytecode.

Chapter 20. Interfacing C with OCaml 361

o The call to caml_main initializes the OCaml runtime system, loads the bytecode (in the case
of the bytecode compiler), and executes the initialization code of the OCaml program. Typi-
cally, this initialization code registers callback functions using Callback.register. Once the
OCaml initialization code is complete, control returns to the C code that called caml_main.

o The C code can then invoke OCaml functions using the callback mechanism (see
section 20.7.1).

20.7.5 Embedding the OCaml code in the C code

The bytecode compiler in custom runtime mode (ocamlc -custom) normally appends the bytecode
to the executable file containing the custom runtime. This has two consequences. First, the final
linking step must be performed by ocamlc. Second, the OCaml runtime library must be able to find
the name of the executable file from the command-line arguments. When using caml_main(argv)
as in section 20.7.4, this means that argv[0] or argv[1] must contain the executable file name.

An alternative is to embed the bytecode in the C code. The -output-obj option to ocamlc
is provided for this purpose. It causes the ocamlc compiler to output a C object file (.o file,
.obj under Windows) containing the bytecode for the OCaml part of the program, as well as a
caml_startup function. The C object file produced by ocamlc -output-obj can then be linked
with C code using the standard C compiler, or stored in a C library.

The caml_startup function must be called from the main C program in order to initialize the
OCaml runtime and execute the OCaml initialization code. Just like caml_main, it takes one argv
parameter containing the command-line parameters. Unlike caml_main, this argv parameter is
used only to initialize Sys.argv, but not for finding the name of the executable file.

The caml_startup function calls the uncaught exception handler (or enters the debugger, if
running under ocamldebug) if an exception escapes from a top-level module initialiser. Such ex-
ceptions may be caught in the C code by instead using the caml_startup_exn function and testing
the result using Is_exception_result (followed by Extract_exception if appropriate).

The -output-obj option can also be used to obtain the C source file. More interestingly, the
same option can also produce directly a shared library (.so file, .d11 under Windows) that contains
the OCaml code, the OCaml runtime system and any other static C code given to ocamlc (.o, .a,
respectively, .obj, .1ib). This use of -output-obj is very similar to a normal linking step, but
instead of producing a main program that automatically runs the OCaml code, it produces a shared
library that can run the OCaml code on demand. The three possible behaviors of -output-obj
are selected according to the extension of the resulting file (given with -o).

The native-code compiler ocamlopt also supports the —output-obj option, causing it to output
a C object file or a shared library containing the native code for all OCaml modules on the command-
line, as well as the OCaml startup code. Initialization is performed by calling caml_startup (or
caml_startup_exn) as in the case of the bytecode compiler.

For the final linking phase, in addition to the object file produced by -output-obj, you will have
to provide the OCaml runtime library (1ibcamlrun.a for bytecode, libasmrun.a for native-code),
as well as all C libraries that are required by the OCaml libraries used. For instance, assume the
OCaml part of your program uses the Unix library. With ocamlc, you should do:

ocamlc -output-obj -o camlcode.o unix.cma other .cmo and .cma files
cc -o myprog C objects and libraries \

362

camlcode.o -Lfocamlc -where‘ -lunix -lcamlrun
With ocamlopt, you should do:

ocamlopt -output-obj -o camlcode.o unix.cmxa other .cmx and .cmxa files
cc —o myprog C objects and libraries \
camlcode.o -Lfocamlc -where‘ -lunix -lasmrun

Warning: On some ports, special options are required on the final linking phase that links
together the object file produced by the -output-obj option and the remainder of the program.
Those options are shown in the configuration file Makefile.config generated during compilation
of OCaml, as the variable 0C_LDFLAGS.

e Windows with the MSVC compiler: the object file produced by OCaml have been compiled
with the /MD flag, and therefore all other object files linked with it should also be compiled
with /MD.

e other systems: you may have to add one or more of ~1curses, -1m, -1d1, depending on your
OS and C compiler.

Stack backtraces. When OCaml bytecode produced by ocamlc -g is embedded in a C program,
no debugging information is included, and therefore it is impossible to print stack backtraces
on uncaught exceptions. This is not the case when native code produced by ocamlopt -g is
embedded in a C program: stack backtrace information is available, but the backtrace mechanism
needs to be turned on programmatically. This can be achieved from the OCaml side by calling
Printexc.record_backtrace true in the initialization of one of the OCaml modules. This can
also be achieved from the C side by calling caml_record_backtrace(Val_int (1)) ; in the OCaml-
C glue code.

Unloading the runtime.

In case the shared library produced with —output-obj is to be loaded and unloaded repeatedly
by a single process, care must be taken to unload the OCaml runtime explicitly, in order to avoid
various system resource leaks.

Since 4.05, caml_shutdown function can be used to shut the runtime down gracefully, which
equals the following:

¢ Running the functions that were registered with Stdlib.at_exit.

o Triggering finalization of allocated custom blocks (see section 20.9). For example,
Stdlib.in_channel and Stdlib.out_channel are represented by custom blocks that
enclose file descriptors, which are to be released.

e Unloading the dependent shared libraries that were loaded by the runtime, including dynlink
plugins.

e Freeing the memory blocks that were allocated by the runtime with malloc. Inside C prim-
itives, it is advised to use caml_stat_* functions from memory.h for managing static (that
is, non-moving) blocks of heap memory, as all the blocks allocated with these functions are

Chapter 20. Interfacing C with OCaml 363

automatically freed by caml_shutdown. For ensuring compatibility with legacy C stubs that
have used caml_stat_x* incorrectly, this behaviour is only enabled if the runtime is started
with a specialized caml_startup_pooled function.

As a shared library may have several clients simultaneously, it is made for convenience that
caml_startup (and caml_startup_pooled) may be called multiple times, given that each such
call is paired with a corresponding call to caml_shutdown (in a nested fashion). The runtime will
be unloaded once there are no outstanding calls to caml_startup.

Once a runtime is unloaded, it cannot be started up again without reloading the shared library
and reinitializing its static data. Therefore, at the moment, the facility is only useful for building
reloadable shared libraries.

20.8 Advanced example with callbacks

This section illustrates the callback facilities described in section 20.7. We are going to package
some OCaml functions in such a way that they can be linked with C code and called from C just
like any C functions. The OCaml functions are defined in the following mod.m1 OCaml source:

(* File mod.ml -- some "useful" OCaml functions *)
let rec fib n = if n < 2 then 1 else fib(n-1) + fib(n-2)
let format_result n = Printf.sprintf "Result is: %d\n" n

(* Export those two functions to C *)

let
let

Callback.register "fib" fib
Callback.register "format_result" format_result

Here is the C stub code for calling these functions from C:

/* File modwrap.c -- wrappers around the OCaml functions */

#include <stdio.h>
#include <string.h>
#include <caml/mlvalues.h>
#include <caml/callback.h>

int fib(int n)

{
static const value * fib_closure = NULL;
if (fib_closure == NULL) fib_closure = caml_named_value("fib");
return Int_val(caml_callback(*fib_closure, Val_int(n)));

}

char * format_result(int n)

364

static const value * format_result_closure = NULL;
if (format_result_closure == NULL)
format_result_closure = caml_named_value("format_result");
return strdup(String_val(caml_callback(*format_result_closure, Val_int(n))));
/* We copy the C string returned by String _val to the C heap
so that it remains valid after garbage collection. */

We now compile the OCaml code to a C object file and put it in a C library along with the
stub code in modwrap.c and the OCaml runtime system:

ocamlc -custom -output-obj -o modcaml.o mod.ml

ocamlc -c modwrap.c

cp ~ocamlc -where®/libcamlrun.a mod.a && chmod +w mod.a
ar r mod.a modcaml.o modwrap.o

(One can also use ocamlopt -output-obj instead of ocamlc -custom -output-obj. In this
case, replace libcamlrun.a (the bytecode runtime library) by libasmrun.a (the native-code run-
time library).)

Now, we can use the two functions £ib and format_result in any C program, just like regular
C functions. Just remember to call caml_startup (or caml_startup_exn) once before.

/* File main.c -- a sample client for the 0Caml functions */

#include <stdio.h>
#include <caml/callback.h>

extern int fib(int n);
extern char * format_result(int n);

int main(int argc, char *x argv)
{

int result;

/* Initialize 0Caml code */

caml_startup(argv) ;

/* Do some computation */

result = fib(10);

printf ("fib(10) = %s\n", format_result(result));
return O;

To build the whole program, just invoke the C compiler as follows:
cc —-o prog -I “ocamlc -where’ main.c mod.a -lcurses

(On some machines, you may need to put -ltermcap or -lcurses -ltermcap instead of
-lcurses.)

Chapter 20. Interfacing C with OCaml 365

20.9 Advanced topic: custom blocks

Blocks with tag Custom_tag contain both arbitrary user data and a pointer to a C struct, with
type struct custom_operations, that associates user-provided finalization, comparison, hashing,
serialization and deserialization functions to this block.

20.9.1 The struct custom_operations

The struct custom_operations is defined in <caml/custom.h> and contains the following fields:

char *identifier
A zero-terminated character string serving as an identifier for serialization and deserialization
operations.

void (*finalize) (value v)

The finalize field contains a pointer to a C function that is called when the block becomes
unreachable and is about to be reclaimed. The block is passed as first argument to the
function. The finalize field can also be custom_finalize default to indicate that no
finalization function is associated with the block.

int (*compare) (value vl, value v2)

The compare field contains a pointer to a C function that is called whenever two custom blocks
are compared using OCaml’s generic comparison operators (=, <>, <=, >=, <, > and compare).
The C function should return 0 if the data contained in the two blocks are structurally equal,
a negative integer if the data from the first block is less than the data from the second block,
and a positive integer if the data from the first block is greater than the data from the second
block.

The compare field can be set to custom_compare_default; this default comparison function
simply raises Failure.

int (*compare_ext) (value v1, value v2)

(Since 3.12.1) The compare_ext field contains a pointer to a C function that is called whenever
one custom block and one unboxed integer are compared using OCaml’s generic comparison
operators (=, <>, <=, >= < > and compare). As in the case of the compare field, the C
function should return 0 if the two arguments are structurally equal, a negative integer if
the first argument compares less than the second argument, and a positive integer if the first
argument compares greater than the second argument.

The compare_ext field can be set to custom_compare_ext_default; this default comparison
function simply raises Failure.

intnat (*hash) (value v)

The hash field contains a pointer to a C function that is called whenever OCaml’s generic
hash operator (see module Hashtb1[25.20]) is applied to a custom block. The C function can
return an arbitrary integer representing the hash value of the data contained in the given
custom block. The hash value must be compatible with the compare function, in the sense
that two structurally equal data (that is, two custom blocks for which compare returns 0)
must have the same hash value.

366

The hash field can be set to custom_hash_default, in which case the custom block is ignored
during hash computation.

void (*serialize) (value v, uintnat * bsize_32, uintnat * bsize_64)

The serialize field contains a pointer to a C function that is called whenever the cus-
tom block needs to be serialized (marshaled) using the OCaml functions output_value or
Marshal.to_.... For a custom block, those functions first write the identifier of the block (as
given by the identifier field) to the output stream, then call the user-provided serialize
function. That function is responsible for writing the data contained in the custom block,
using the serialize_. .. functions defined in <caml/intext.h> and listed below. The user-
provided serialize function must then store in its bsize_32 and bsize_64 parameters the
sizes in bytes of the data part of the custom block on a 32-bit architecture and on a 64-bit
architecture, respectively.

The serialize field can be set to custom_serialize_default, in which case the Failure
exception is raised when attempting to serialize the custom block.

uintnat (*deserialize) (void * dst)

The deserialize field contains a pointer to a C function that is called whenever a custom
block with identifier identifier needs to be deserialized (un-marshaled) using the OCaml
functions input_value or Marshal.from_.... This user-provided function is responsible
for reading back the data written by the serialize operation, using the deserialize_...
functions defined in <caml/intext.h> and listed below. It must then rebuild the data part
of the custom block and store it at the pointer given as the dst argument. Finally, it returns
the size in bytes of the data part of the custom block. This size must be identical to the
wsize_32 result of the serialize operation if the architecture is 32 bits, or wsize_64 if the
architecture is 64 bits.

The deserialize field can be set to custom_deserialize_default to indicate that deseri-
alization is not supported. In this case, do not register the struct custom_operations with
the deserializer using register_custom_operations (see below).

const struct custom_fixed_length* fixed_length

(Since 4.08.0) Normally, space in the serialized output is reserved to write the bsize_32 and
bsize_64 fields returned by serialize. However, for very short custom blocks, this space can
be larger than the data itself! As a space optimisation, if serialize always returns the same
values for bsize_32 and bsize_64, then these values may be specified in the fixed_length
structure, and do not consume space in the serialized output.

Note: the finalize, compare, hash, serialize and deserialize functions attached to custom

block descriptors must never trigger a garbage collection. Within these functions, do not call any
of the OCaml allocation functions, and do not perform a callback into OCaml code. Do not use
CAMLparam to register the parameters to these functions, and do not use CAMLreturn to return the
result.

20.9.2 Allocating custom blocks

Custom blocks must be allocated via caml_alloc_custom or caml_alloc_custom_mem:

Chapter 20. Interfacing C with OCaml 367

caml_alloc_custom(ops, size, used, max)

returns a fresh custom block, with room for size bytes of user data, and whose associated operations
are given by ops (a pointer to a struct custom_operations, usually statically allocated as a C
global variable).

The two parameters used and maz are used to control the speed of garbage collection when
the finalized object contains pointers to out-of-heap resources. Generally speaking, the OCaml
incremental major collector adjusts its speed relative to the allocation rate of the program. The
faster the program allocates, the harder the GC works in order to reclaim quickly unreachable
blocks and avoid having large amount of “floating garbage” (unreferenced objects that the GC has
not yet collected).

Normally, the allocation rate is measured by counting the in-heap size of allocated blocks.
However, it often happens that finalized objects contain pointers to out-of-heap memory blocks
and other resources (such as file descriptors, X Windows bitmaps, etc.). For those blocks, the
in-heap size of blocks is not a good measure of the quantity of resources allocated by the program.

The two arguments used and maz give the GC an idea of how much out-of-heap resources are
consumed by the finalized block being allocated: you give the amount of resources allocated to this
object as parameter used, and the maximum amount that you want to see in floating garbage as
parameter maz. The units are arbitrary: the GC cares only about the ratio used/maz.

For instance, if you are allocating a finalized block holding an X Windows bitmap of w by
h pixels, and you’d rather not have more than 1 mega-pixels of unreclaimed bitmaps, specify
used = w * h and maz = 1000000.

Another way to describe the effect of the used and max parameters is in terms of full GC
cycles. If you allocate many custom blocks with used/max = 1/N, the GC will then do one
full cycle (examining every object in the heap and calling finalization functions on those that are
unreachable) every N allocations. For instance, if used = 1 and maz = 1000, the GC will do one
full cycle at least every 1000 allocations of custom blocks.

If your finalized blocks contain no pointers to out-of-heap resources, or if the previous discussion
made little sense to you, just take used = 0 and maxz = 1. But if you later find that the finalization
functions are not called “often enough”, consider increasing the used/max ratio.

caml_alloc_custom_mem(ops, size, used)

Use this function when your custom block holds only out-of-heap memory (memory allocated with
malloc or caml_stat_alloc) and no other resources. used should be the number of bytes of out-
of-heap memory that are held by your custom block. This function works like caml_alloc_custom
except that the max parameter is under the control of the user (via the custom_major_ratio,
custom_minor_ratio, and custom_minor_max_size parameters) and proportional to the heap
sizes.

20.9.3 Accessing custom blocks

The data part of a custom block v can be accessed via the pointer Data_custom_val(wv). This
pointer has type void * and should be cast to the actual type of the data stored in the custom
block.

The contents of custom blocks are not scanned by the garbage collector, and must therefore
not contain any pointer inside the OCaml heap. In other terms, never store an OCaml value in a

368

custom block, and do not use Field, Store_field nor caml_modify to access the data part of a
custom block. Conversely, any C data structure (not containing heap pointers) can be stored in a
custom block.

20.9.4 Writing custom serialization and deserialization functions

The following functions, defined in <caml/intext.h>, are provided to write and read back the
contents of custom blocks in a portable way. Those functions handle endianness conversions when
e.g. data is written on a little-endian machine and read back on a big-endian machine.

Function Action

caml_serialize_int 1 Write a 1-byte integer
caml_serialize_int_2 Write a 2-byte integer
caml_serialize_int_4 Write a 4-byte integer
caml_serialize_int_8 Write a 8-byte integer

caml_serialize_float_4 Write a 4-byte float
caml_serialize_float_8 Write a 8-byte float

caml_serialize_block_1 Write an array of 1-byte quantities
caml_serialize_block_2 Write an array of 2-byte quantities
caml_serialize_block_4 Write an array of 4-byte quantities
caml_serialize_block_8 Write an array of 8-byte quantities

caml_deserialize_uint_1 | Read an unsigned 1-byte integer
caml_deserialize_sint_1 | Read a signed 1-byte integer

caml_deserialize_uint_2 | Read an unsigned 2-byte integer
caml_deserialize_sint_2 | Read a signed 2-byte integer

caml_deserialize_uint_4 | Read an unsigned 4-byte integer
caml_deserialize_sint_4 | Read a signed 4-byte integer

caml_deserialize_uint_8 | Read an unsigned 8-byte integer
caml_deserialize_sint_8 | Read a signed 8-byte integer

caml_deserialize_float_4 | Read a 4-byte float

caml_deserialize_float_8 | Read an 8-byte float

caml_deserialize_block_1 | Read an array of 1-byte quantities
caml_deserialize_block_2 | Read an array of 2-byte quantities
caml_deserialize_block_4 | Read an array of 4-byte quantities
caml_deserialize_block_8 | Read an array of 8-byte quantities
caml_deserialize_error Signal an error during deserialization; input_value or
Marshal.from_... raise a Failure exception after clean-
ing up their internal data structures

Serialization functions are attached to the custom blocks to which they apply. Obviously, dese-
rialization functions cannot be attached this way, since the custom block does not exist yet when de-
serialization begins! Thus, the struct custom_operations that contain deserialization functions
must be registered with the deserializer in advance, using the register_custom_operations func-
tion declared in <caml/custom.h>. Deserialization proceeds by reading the identifier off the input
stream, allocating a custom block of the size specified in the input stream, searching the registered

Chapter 20. Interfacing C with OCaml 369

struct custom_operation blocks for one with the same identifier, and calling its deserialize
function to fill the data part of the custom block.

20.9.5 Choosing identifiers

Identifiers in struct custom_operations must be chosen carefully, since they must identify
uniquely the data structure for serialization and deserialization operations. In particular, consider
including a version number in the identifier; this way, the format of the data can be changed later,
yet backward-compatible deserialisation functions can be provided.

Identifiers starting with _ (an underscore character) are reserved for the OCaml run-
time system; do not use them for your custom data. We recommend to use a URL
(http://mymachine.mydomain.com/mylibrary/version-number) or a Java-style package name
(com.mydomain.mymachine.mylibrary.version-number) as identifiers, to minimize the risk of
identifier collision.

20.9.6 Finalized blocks

Custom blocks generalize the finalized blocks that were present in OCaml prior to version
3.00. For backward compatibility, the format of custom blocks is compatible with that of
finalized blocks, and the alloc_final function is still available to allocate a custom block
with a given finalization function, but default comparison, hashing and serialization functions.
caml_alloc_final(n, f, used, mazx) returns a fresh custom block of size n+1 words, with
finalization function f. The first word is reserved for storing the custom operations; the other n
words are available for your data. The two parameters used and maz are used to control the speed
of garbage collection, as described for caml_alloc_custom.

20.10 Advanced topic: Bigarrays and the OCaml-C interface

This section explains how C stub code that interfaces C or Fortran code with OCaml code can use
Bigarrays.

20.10.1 Include file
The include file <caml/bigarray.h> must be included in the C stub file. It declares the functions,
constants and macros discussed below.

20.10.2 Accessing an OCaml bigarray from C or Fortran

If v is a OCaml value representing a Bigarray, the expression Caml_ba_data_val(v) returns a
pointer to the data part of the array. This pointer is of type void * and can be cast to the
appropriate C type for the array (e.g. double [], char [][10], etc).

Various characteristics of the OCaml Bigarray can be consulted from C as follows:

C expression Returns
Caml_ba_array_val(v)->num_dims number of dimensions
Caml_ba_array_val(v)->dim[7] #-th dimension
Caml_ba_array_val(v)->flags & BIGARRAY_KIND_MASK | kind of array elements

370

The kind of array elements is one of the following constants:

Constant Element kind
CAML_BA_FLOAT32 32-bit single-precision floats
CAML_BA_FLOAT64 64-bit double-precision floats
CAML_BA_SINT8 8-bit signed integers
CAML_BA_UINTS8 8-bit unsigned integers
CAML_BA_SINT16 16-bit signed integers
CAML_BA_UINT16 16-bit unsigned integers
CAML_BA_INT32 32-bit signed integers
CAML_BA_INT64 64-bit signed integers
CAML_BA_CAML_INT 31- or 63-bit signed integers
CAML_BA_NATIVE_INT | 32- or 64-bit (platform-native) integers

The following example shows the passing of a two-dimensional Bigarray to a C function and a
Fortran function.

extern void my_c_function(double * data, int dimx, int dimy);
extern void my_fortran_function_(double * data, int * dimx, int * dimy);

value caml_stub(value bigarray)

{
int dimx = Caml_ba_array_val(bigarray)->dim[0];
int dimy = Caml_ba_array_val(bigarray)->dim[1];
/* C passes scalar parameters by value */
my_c_function(Caml_ba_data_val(bigarray), dimx, dimy);
/* Fortran passes all parameters by reference */
my_fortran_function_(Caml_ba_data_val(bigarray), &dimx, &dimy);
return Val_unit;

20.10.3 Wrapping a C or Fortran array as an OCaml Bigarray

A pointer p to an already-allocated C or Fortran array can be wrapped and returned to OCaml as
a Bigarray using the caml_ba_alloc or caml_ba_alloc_dims functions.

e caml_ba_alloc(kind | layout, numdims, p, dims)

Return an OCaml Bigarray wrapping the data pointed to by p. kind is the kind of array
elements (one of the CAML_BA_ kind constants above). layout is CAML_BA_C_LAYOUT for an
array with C layout and CAML_BA_FORTRAN_LAYOQUT for an array with Fortran layout. numdims
is the number of dimensions in the array. dims is an array of numdims long integers, giving
the sizes of the array in each dimension.

e caml_ba_alloc_dims(kind | layout, numdims, p, (long) dimy, (long) dimo, ...,
(long) dimyumdims)
Same as caml_ba_alloc, but the sizes of the array in each dimension are listed as extra
arguments in the function call, rather than being passed as an array.

Chapter 20. Interfacing C with OCaml 371

The following example illustrates how statically-allocated C and Fortran arrays can be made avail-
able to OCaml.

extern long my_c_array[100] [200];
extern float my_fortran_array_[300] [400];

value caml_get_c_array(value unit)
{
long dims[2];
dims[0] = 100; dims[1] = 200;
return caml_ba_alloc(CAML BA NATIVE_INT | CAML BA_C_LAYOUT,
2, my_c_array, dims);

value caml_get_fortran_array(value unit)
{
return caml_ba_alloc_dims (CAML_BA_FLOAT32 | CAML_BA_FORTRAN LAYOUT,
2, my_fortran_array_, 300L, 400L);

20.11 Advanced topic: cheaper C call

This section describe how to make calling C functions cheaper.
Note: this only applies to the native compiler. So whenever you use any of these methods, you
have to provide an alternative byte-code stub that ignores all the special annotations.

20.11.1 Passing unboxed values

We said earlier that all OCaml objects are represented by the C type value, and one has to use
macros such as Int_val to decode data from the value type. It is however possible to tell the
OCaml native-code compiler to do this for us and pass arguments unboxed to the C function.
Similarly it is possible to tell OCaml to expect the result unboxed and box it for us.

The motivation is that, by letting ‘ocamlopt‘ deal with boxing, it can often decide to suppress
it entirely.

For instance let’s consider this example:

external foo : float -> float -> float = "foo"
let £ a b =
let len = Array.length a in

assert (Array.length b = len);
let res = Array.make len 0. in
for 1 = 0 to len - 1 do

res. (i) <- foo a.(i) b. (i)
done

372

Float arrays are unboxed in OCaml, however the C function foo expect its arguments as boxed
floats and returns a boxed float. Hence the OCaml compiler has no choice but to box a. (i) and
b. (i) and unbox the result of foo. This results in the allocation of 3 * len temporary float values.

Now if we annotate the arguments and result with [@unboxed], the native-code compiler will
be able to avoid all these allocations:

external foo
(float [@unboxed])
-> (float [@unboxed])
-> (float [@unboxed])
= "foo_byte" "foo"

In this case the C functions must look like:

CAMLprim double foo(double a, double b)

{
}
CAMLprim value foo_byte(value a, value b)
{
return caml_copy_double(foo(Double_val(a), Double_val(b)))
}

For convenicence, when all arguments and the result are annotated with [@unboxed], it is
possible to put the attribute only once on the declaration itself. So we can also write instead:

external foo : float -> float -> float = "foo_byte" "foo" [@Gunboxed]

The following table summarize what OCaml types can be unboxed, and what C types should
be used in correspondence:

OCaml type | C type
float double
int32 int32_t
int64 int64_t
nativeint intnat

Similarly, it is possible to pass untagged OCaml integers between OCaml and C. This is done
by annotating the arguments and/or result with [@untagged]:

external f : string -> (int [Quntagged]) = "f_byte" "f"

The corresponding C type must be intnat.
Note: do not use the C int type in correspondence with (int [@untagged]). This is because
they often differ in size.

Chapter 20. Interfacing C with OCaml 373

20.11.2 Direct C call

In order to be able to run the garbage collector in the middle of a C function, the OCaml native-
code compiler generates some bookkeeping code around C calls. Technically it wraps every C call
with the C function caml_c_call which is part of the OCaml runtime.

For small functions that are called repeatedly, this indirection can have a big impact on per-
formances. However this is not needed if we know that the C function doesn’t allocate, doesn’t
raise exceptions, and doesn’t release the master lock (see section 20.12.2). We can instruct the
OCaml native-code compiler of this fact by annotating the external declaration with the attribute
[@@noalloc]:

external bar : int -> int -> int = "foo" [@@noalloc]

In this case calling bar from OCaml is as cheap as calling any other OCaml function, except
for the fact that the OCaml compiler can’t inline C functions...
20.11.3 Example: calling C library functions without indirection

Using these attributes, it is possible to call C library functions with no indirection. For instance
many math functions are defined this way in the OCaml standard library:

external sqrt : float -> float = "caml_sqrt_float" "sqrt"
[@@unboxed] [@Gnoalloc]
(x* Square root. *)

external exp : float -> float
(** Exponential. *)

"caml_exp_float" "exp" [@Q@unboxed] [@@noalloc]

external log : float -> float
(** Natural logarithm. *)

"caml_log_float" "log" [@Qunboxed] [@@noalloc]

20.12 Advanced topic: multithreading

Using multiple threads (shared-memory concurrency) in a mixed OCaml/C application requires
special precautions, which are described in this section.

20.12.1 Registering threads created from C

Callbacks from C to OCaml are possible only if the calling thread is known to the OCaml run-
time system. Threads created from OCaml (through the Thread.create function of the system
threads library) are automatically known to the run-time system. If the application creates addi-
tional threads from C and wishes to callback into OCaml code from these threads, it must first
register them with the run-time system. The following functions are declared in the include file
<caml/threads.h>.

o caml_c_thread_register() registers the calling thread with the OCaml run-time system.
Returns 1 on success, 0 on error. Registering an already-registered thread does nothing and
returns 0.

374

e caml_c_thread_unregister () must be called before the thread terminates, to unregister it
from the OCaml run-time system. Returns 1 on success, 0 on error. If the calling thread was
not previously registered, does nothing and returns 0.

20.12.2 Parallel execution of long-running C code

The OCaml run-time system is not reentrant: at any time, at most one thread can be executing
OCaml code or C code that uses the OCaml run-time system. Technically, this is enforced by a
“master lock” that any thread must hold while executing such code.

When OCaml calls the C code implementing a primitive, the master lock is held, therefore the
C code has full access to the facilities of the run-time system. However, no other thread can execute
OCaml code concurrently with the C code of the primitive.

If a C primitive runs for a long time or performs potentially blocking input-output operations,
it can explicitly release the master lock, enabling other OCaml threads to run concurrently with
its operations. The C code must re-acquire the master lock before returning to OCaml. This is
achieved with the following functions, declared in the include file <caml/threads.h>.

e caml_release_runtime_system() The calling thread releases the master lock and other
OCaml resources, enabling other threads to run OCaml code in parallel with the execution
of the calling thread.

e caml_acquire_runtime_system() The calling thread re-acquires the master lock and other
OCaml resources. It may block until no other thread uses the OCaml run-time system.

These functions poll for pending signals by calling asynchronous callbacks (section 20.5.3) before
releasing and after acquiring the lock. They can therefore execute arbitrary OCaml code including
raising an asynchronous exception.

After caml_release_runtime_system() was called and until caml_acquire_runtime_system()
is called, the C code must not access any OCaml data, nor call any function of the
run-time system, nor call back into OCaml code. Consequently, arguments provided
by OCaml to the C primitive must be copied into C data structures before calling
caml_release_runtime_system(), and results to be returned to OCaml must be encoded
as OCaml values after caml_acquire_runtime_system() returns.

Example: the following C primitive invokes gethostbyname to find the IP address of a host
name. The gethostbyname function can block for a long time, so we choose to release the OCaml
run-time system while it is running.

CAMLprim stub_gethostbyname(value vname)
{

CAMLparaml (vname) ;

CAMLlocall (vres);

struct hostent * h;

char * name;

/* Copy the string argument to a C string, allocated outside the
O0Caml heap. */
name = caml_stat_strdup(String_val(vname));

Chapter 20. Interfacing C with OCaml 375

/* Release the 0OCaml run-time system */
caml_release_runtime_system();
/* Resolve the name */
h = gethostbyname (name) ;
/* Free the copy of the string, which we might as well do before
acquiring the runtime system to benefit from parallelism. */
caml_stat_free(name);
/* Re-acquire the OCaml run-time system */
caml_acquire_runtime_system();
/* Encode the relevant fields of h as the OCaml value vres */
. /* Omitted */
/* Return to OCaml */
CAMLreturn (vres);

Callbacks from C to OCaml must be performed while holding the master lock to the OCaml
run-time system. This is naturally the case if the callback is performed by a C primitive that did
not release the run-time system. If the C primitive released the run-time system previously, or the
callback is performed from other C code that was not invoked from OCaml (e.g. an event loop in
a GUI application), the run-time system must be acquired before the callback and released after:

caml_acquire_runtime_system();

/* Resolve 0Caml function vfun to be invoked */

/* Build OCaml argument varg to the callback */

vres = callback(vfun, varg);

/* Copy relevant parts of result vres to C data structures */
caml_release_runtime_system();

Note: the acquire and release functions described above were introduced in OCaml 3.12.
Older code uses the following historical names, declared in <caml/signals.h>:

e caml_enter_blocking section as an alias for caml_release_runtime_system
e caml_leave_blocking_section as an alias for caml_acquire_runtime_system
Intuition: a “blocking section” is a piece of C code that does not use the OCaml run-time system,

typically a blocking input/output operation.

20.13 Advanced topic: interfacing with Windows Unicode APIs

This section contains some general guidelines for writing C stubs that use Windows Unicode APIs.
Note: This is an experimental feature of OCaml: the set of APIs below, as well as their exact
semantics are not final and subject to change in future releases.
The OCaml system under Windows can be configured at build time in one of two modes:

e legacy mode: All path names, environment variables, command line arguments, etc. on the
OCaml side are assumed to be encoded using the current 8-bit code page of the system.

376

e Unicode mode: All path names, environment variables, command line arguments, etc. on
the OCaml side are assumed to be encoded using UTF-8.

In what follows, we say that a string has the OCaml encoding if it is encoded in UTF-8 when
in Unicode mode, in the current code page in legacy mode, or is an arbitrary string under Unix.
A string has the platform encoding if it is encoded in UTF-16 under Windows or is an arbitrary
string under Unix.

From the point of view of the writer of C stubs, the challenges of interacting with Windows
Unicode APIs are twofold:

e The Windows API uses the UTF-16 encoding to support Unicode. The runtime system
performs the necessary conversions so that the OCaml programmer only needs to deal with
the OCaml encoding. C stubs that call Windows Unicode APIs need to use specific runtime
functions to perform the necessary conversions in a compatible way.

e When writing stubs that need to be compiled under both Windows and Unix, the stubs need
to be written in a way that allow the necessary conversions under Windows but that also
work under Unix, where typically nothing particular needs to be done to support Unicode.

The native C character type under Windows is WCHAR, two bytes wide, while under Unix it is
char, one byte wide. A type char_os is defined in <caml/misc.h> that stands for the concrete C
character type of each platform. Strings in the platform encoding are of type char_os *.

The following functions are exposed to help write compatible C stubs. To use them, you need
to include both <caml/misc.h> and <caml/osdeps.h>.

e char_os* caml_stat_strdup_to_os(const char *) copies the argument while translating
from OCaml encoding to the platform encoding. This function is typically used to convert
the char * underlying an OCaml string before passing it to an operating system API that
takes a Unicode argument. Under Unix, it is equivalent to caml_stat_strdup.

Note: For maximum backwards compatibility in Unicode mode, if the argument is not a
valid UTF-8 string, this function will fall back to assuming that it is encoded in the current
code page.

e char* caml_stat_strdup_of_os(const char_os *) copies the argument while trans-
lating from the platform encoding to the OCaml encoding. It is the inverse of
caml_stat_strdup_to_os. This function is typically used to convert a string obtained from
the operating system before passing it on to OCaml code. Under Unix, it is equivalent to
caml_stat_strdup.

e value caml_copy_string_of_os(char_os *) allocates an OCaml string with contents equal
to the argument string converted to the OCaml encoding. This function is essentially equiv-
alent to caml_stat_strdup_of_os followed by caml_copy_string, except that it avoids the
allocation of the intermediate string returned by caml_stat_strdup_of_os. Under Unix, it
is equivalent to caml_copy_string.

Note: The strings returned by caml_stat_strdup_to_os and caml_stat_strdup_of_os are
allocated using caml_stat_alloc, so they need to be deallocated using caml_stat_free when they
are no longer needed.

Chapter 20. Interfacing C with OCaml 377

Example We want to bind the function getenv in a way that works both under Unix and
Windows. Under Unix this function has the prototype:

char *getenv(const char *);

While the Unicode version under Windows has the prototype:
WCHAR *_wgetenv(const WCHAR *);

In terms of char_os, both functions take an argument of type char_os * and return a result
of the same type. We begin by choosing the right implementation of the function to bind:

#ifdef _WIN32

#define getenv_os _wgetenv
#else

#define getenv_os getenv
#endif

The rest of the binding is the same for both platforms:

/* The following define is necessary because the API is experimental */
#define CAML_NAME_SPACE
#define CAML_INTERNALS

#include <caml/mlvalues.h>
#include <caml/misc.h>
#include <caml/alloc.h>
#include <caml/fail.h>
#include <caml/osdeps.h>
#include <stdlib.h>

CAMLprim value stub_getenv(value var_name)
{

CAMLparaml (var_name) ;
CAMLlocall(var_value);
char_os *var_name_os, *var_value_os;

var_name_os = caml_stat_strdup_to_os(String_val(var_name)) ;
var_value_os = getenv_os(var_name_os);

caml_stat_free(var_name_os);

if (var_value_os == NULL)
caml_raise_not_found();

var_value = caml_copy_string_of_os(var_value_os);

CAMLreturn(var_value) ;

378

20.14 Building mixed C/OCaml libraries: ocamlmklib

The ocamlmklib command facilitates the construction of libraries containing both OCaml code and
C code, and usable both in static linking and dynamic linking modes. This command is available
under Windows since Objective Caml 3.11 and under other operating systems since Objective Caml
3.03.

The ocamlmklib command takes three kinds of arguments:

o OCaml source files and object files (.cmo, .cmx, .ml) comprising the OCaml part of the
library;

o C object files (.o, .a, respectively, .obj, .1ib) comprising the C part of the library;
o Support libraries for the C part (-1[ib).
It generates the following outputs:

e An OCaml bytecode library .cma incorporating the .cmo and .m1 OCaml files given as argu-
ments, and automatically referencing the C library generated with the C object files.

e An OCaml native-code library .cmxa incorporating the .cmx and .m1 OCaml files given as
arguments, and automatically referencing the C library generated with the C object files.

o If dynamic linking is supported on the target platform, a .so (respectively, .d11) shared
library built from the C object files given as arguments, and automatically referencing the
support libraries.

o A C static library .a(respectively, .1ib) built from the C object files.
In addition, the following options are recognized:

-cclib, —ccopt, -I, -1linkall
These options are passed as is to ocamlc or ocamlopt. See the documentation of these
commands.

-rpath, -R, -W1,-rpath, -W1,-R
These options are passed as is to the C compiler. Refer to the documentation of the C
compiler.

—custom
Force the construction of a statically linked library only, even if dynamic linking is supported.

-failsafe
Fall back to building a statically linked library if a problem occurs while building the shared
library (e.g. some of the support libraries are not available as shared libraries).

-Ldir
Add dir to the search path for support libraries (-11ib).

-ocamlc cmd
Use c¢md instead of ocamlc to call the bytecode compiler.

Chapter 20. Interfacing C with OCaml 379

-ocamlopt cmd
Use c¢md instead of ocamlopt to call the native-code compiler.

-0 output
Set the name of the generated OCaml library. ocamlmklib will generate output.cma and/or
output.cmxa. If not specified, defaults to a.

-oc outputc
Set the name of the generated C library. ocamlmklib will generate liboutputc.so (if shared
libraries are supported) and liboutputc.a. If not specified, defaults to the output name given
with -o.

On native Windows, the following environment variable is also consulted:

OCAML_FLEXLINK
Alternative executable to use instead of the configured value. Primarily used for bootstrap-

ping.

Example Consider an OCaml interface to the standard 1ibz C library for reading and writing
compressed files. Assume this library resides in /usr/local/z1ib. This interface is composed of
an OCaml part zip.cmo/zip.cmx and a C part zipstubs.o containing the stub code around the
libz entry points. The following command builds the OCaml libraries zip.cma and zip.cmxa, as
well as the companion C libraries d11zip.so and libzip.a:

ocamlmklib -o zip zip.cmo zip.cmx zipstubs.o -1z -L/usr/local/zlib
If shared libraries are supported, this performs the following commands:

ocamlc -a -o zip.cma zip.cmo -dllib -1lzip \

-cclib -1zip -cclib -1z -ccopt -L/usr/local/zlib
ocamlopt -a -o zip.cmxa zip.cmx -cclib -lzip \

-cclib -1zip -cclib -1z -ccopt -L/usr/local/zlib
gcc -shared -o dllzip.so zipstubs.o -1z -L/usr/local/zlib
ar rc libzip.a zipstubs.o

Note: This example is on a Unix system. The exact command lines may be different on other
systems.
If shared libraries are not supported, the following commands are performed instead:

ocamlc -a -custom -o zip.cma zip.cmo -cclib -lzip \
-cclib -1z -ccopt -L/usr/local/zlib
ocamlopt -a -o zip.cmxa zip.cmx -lzip \
-cclib -1z -ccopt -L/usr/local/zlib
ar rc libzip.a zipstubs.o

Instead of building simultaneously the bytecode library, the native-code library and the C
libraries, ocamlmklib can be called three times to build each separately. Thus,

ocamlmklib -o zip zip.cmo -1z -L/usr/local/zlib

380

builds the bytecode library zip.cma, and
ocamlmklib -o zip zip.cmx -1z -L/usr/local/zlib
builds the native-code library zip.cmxa, and
ocamlmklib -o zip zipstubs.o -1z -L/usr/local/zlib

builds the C libraries d11zip.so and libzip.a. Notice that the support libraries (-1z) and the
corresponding options (-L/usr/local/zlib) must be given on all three invocations of ocamlmklib,
because they are needed at different times depending on whether shared libraries are supported.

20.15 Cautionary words: the internal runtime API

Not all header available in the caml/ directory were described in previous sections. All those
unmentioned headers are part of the internal runtime API, for which there is no stability guarantee.
If you really need access to this internal runtime API, this section provides some guidelines that
may help you to write code that might not break on every new version of OCaml.

Note Programmers which come to rely on the internal API for a use-case which they find realistic
and useful are encouraged to open a request for improvement on the bug tracker.

20.15.1 Internal variables and CAML_INTERNALS

Since OCaml 4.04, it is possible to get access to every part of the internal runtime API by defining
the CAML_INTERNALS macro before loading caml header files. If this macro is not defined, parts of
the internal runtime API are hidden.

If you are using internal C variables, do not redefine them by hand. You should import those
variables by including the corresponding header files. The representation of those variables has
already changed once in OCaml 4.10, and is still under evolution. If your code relies on such
internal and brittle properties, it will be broken at some point in time.

For instance, rather than redefining caml_young_limit:

extern int caml_young_limit;
which breaks in OCaml > 4.10, you should include the minor_gc header:

#include <caml/minor_gc.h>

20.15.2 OCaml version macros

Finally, if including the right headers is not enough, or if you need to support version older than
OCaml 4.04, the header file caml/version.h should help you to define your own compatibility layer.
This file provides few macros defining the current OCaml version. In particular, the OCAML_VERSION
macro describes the current version, its format is MmmPP. For example, if you need some specific
handling for versions older than 4.10.0, you could write

Chapter 20. Interfacing C with OCaml

#include <caml/version.h>
#if OCAML_VERSION >= 41000

#else

#endif

381

382

Chapter 21

Optimisation with Flambda

21.1 Overview

Flambda is the term used to describe a series of optimisation passes provided by the native code
compilers as of OCaml 4.03.

Flambda aims to make it easier to write idiomatic OCaml code without incurring performance
penalties.

To use the Flambda optimisers it is necessary to pass the -flambda option to the OCaml
configure script. (There is no support for a single compiler that can operate in both Flambda
and non-Flambda modes.) Code compiled with Flambda cannot be linked into the same program
as code compiled without Flambda. Attempting to do this will result in a compiler error.

Whether or not a particular ocamlopt uses Flambda may be determined by invoking it with
the —config option and looking for any line starting with “flambda:”. If such a line is present and
says “true”, then Flambda is supported, otherwise it is not.

Flambda provides full optimisation across different compilation units, so long as the .cmx files
for the dependencies of the unit currently being compiled are available. (A compilation unit cor-
responds to a single .ml source file.) However it does not yet act entirely as a whole-program
compiler: for example, elimination of dead code across a complete set of compilation units is not
supported.

Optimisation with Flambda is not currently supported when generating bytecode.

Flambda should not in general affect the semantics of existing programs. Two exceptions to
this rule are: possible elimination of pure code that is being benchmarked (see section 21.14) and
changes in behaviour of code using unsafe operations (see section 21.15).

Flambda does not yet optimise array or string bounds checks. Neither does it take hints for
optimisation from any assertions written by the user in the code.

Consult the Glossary at the end of this chapter for definitions of technical terms used below.

21.2 Command-line flags

The Flambda optimisers provide a variety of command-line flags that may be used to control their
behaviour. Detailed descriptions of each flag are given in the referenced sections. Those sections
also describe any arguments which the particular flags take.

383

384

Commonly-used options:

-02 Perform more optimisation than usual. Compilation times may be lengthened. (This flag is
an abbreviation for a certain set of parameters described in section 21.5.)

-03 Perform even more optimisation than usual, possibly including unrolling of recursive func-
tions. Compilation times may be significantly lengthened.

—-Oclassic

Make inlining decisions at the point of definition of a function rather than at the call site(s).
This mirrors the behaviour of OCaml compilers not using Flambda. Compared to compilation
using the new Flambda inlining heuristics (for example at -02) it produces smaller . cmx files,
shorter compilation times and code that probably runs rather slower. When using -Oclassic,
only the following options described in this section are relevant: -inlining-report and
-inline. If any other of the options described in this section are used, the behaviour is
undefined and may cause an error in future versions of the compiler.

-inlining-report
Emit .inlining files (one per round of optimisation) showing all of the inliner’s decisions.

Less commonly-used options:

-remove-unused-arguments
Remove unused function arguments even when the argument is not specialised. This may
have a small performance penalty. See section 21.10.3.

—-unbox-closures
Pass free variables via specialised arguments rather than closures (an optimisation for reducing
allocation). See section 21.9.3. This may have a small performance penalty.

Advanced options, only needed for detailed tuning:

-inline
The behaviour depends on whether -Oclassic is used.

e When not in -Oclassic mode, —inline limits the total size of functions considered for
inlining during any speculative inlining search. (See section 21.3.10.) Note that this
parameter does not control the assessment as to whether any particular function may
be inlined. Raising it to excessive amounts will not necessarily cause more functions to
be inlined.

e When in -Oclassic mode, -inline behaves as in previous versions of the compiler: it
is the maximum size of function to be considered for inlining. See section 21.3.2.

-inline-toplevel
The equivalent of —inline but used when speculative inlining starts at toplevel. See section
21.3.10. Not used in -Oclassic mode.

-inline-branch-factor
Controls how the inliner assesses whether a code path is likely to be hot or cold. See section
21.3.9.

Chapter 21. Optimisation with Flambda 385

-inline-alloc-cost, —inline-branch-cost, —inline-call-cost
Controls how the inliner assesses the runtime performance penalties associated with various
operations. See section 21.3.9.

-inline-indirect-cost, -inline-prim-cost
Likewise.

-inline-lifting-benefit
Controls inlining of functors at toplevel. See section 21.3.9.

-inline-max-depth
The maximum depth of any speculative inlining search. See section 21.3.10.

-inline-max-unroll
The maximum depth of any unrolling of recursive functions during any speculative inlining
search. See section 21.3.10.

-no-unbox-free-vars-of-closures
Do not unbox closure variables. See section 21.9.1.

-no—unbox-specialised-args
Do not unbox arguments to which functions have been specialised. See section 21.9.2.

-rounds
How many rounds of optimisation to perform. See section 21.2.1.

-unbox-closures—-factor
Scaling factor for benefit calculation when using —unbox-closures. See section 21.9.3.

Notes

e The set of command line flags relating to optimisation should typically be specified to be the
same across an entire project. Flambda does not currently record the requested flags in the
.cmx files. As such, inlining of functions from previously-compiled units will subject their
code to the optimisation parameters of the unit currently being compiled, rather than those
specified when they were previously compiled. It is hoped to rectify this deficiency in the
future.

e Flambda-specific flags do not affect linking with the exception of affecting the optimisation of
code in the startup file (containing generated functions such as currying helpers). Typically
such optimisation will not be significant, so eliding such flags at link time might be reasonable.

« Flambda-specific flags are silently accepted even when the —flambda option was not provided
to the configure script. (There is no means provided to change this behaviour.) This is
intended to make it more straightforward to run benchmarks with and without the Flambda
optimisers in effect.

e Some of the Flambda flags may be subject to change in future releases.

386

21.2.1 Specification of optimisation parameters by round

Flambda operates in rounds: one round consists of a certain sequence of transformations that
may then be repeated in order to achieve more satisfactory results. The number of rounds can be
set manually using the -rounds parameter (although this is not necessary when using predefined
optimisation levels such as with -02 and -03). For high optimisation the number of rounds might
be set at 3 or 4.

Command-line flags that may apply per round, for example those with -cost in the name,
accept arguments of the form:

n | round=n|,...]
e If the first form is used, with a single integer specified, the value will apply to all rounds.

e If the second form is used, zero-based round integers specify values which are to be used only
for those rounds.

The flags -Oclassic, -02 and -03 are applied before all other flags, meaning that certain
parameters may be overridden without having to specify every parameter usually invoked by the
given optimisation level.

21.3 Inlining

Inlining refers to the copying of the code of a function to a place where the function is called.
The code of the function will be surrounded by bindings of its parameters to the corresponding
arguments.

The aims of inlining are:

o to reduce the runtime overhead caused by function calls (including setting up for such calls
and returning afterwards);

e to reduce instruction cache misses by expressing frequently-taken paths through the program
using fewer machine instructions; and

o to reduce the amount of allocation (especially of closures).

These goals are often reached not just by inlining itself but also by other optimisations that the
compiler is able to perform as a result of inlining.

When a recursive call to a function (within the definition of that function or another in the same
mutually-recursive group) is inlined, the procedure is also known as unrolling. This is somewhat
akin to loop peeling. For example, given the following code:

let rec fact x =
if x = 0 then
1
else
x * fact (x - 1)

let n = fact 4

Chapter 21. Optimisation with Flambda 387

unrolling once at the call site fact 4 produces (with the body of fact unchanged):

let n =
if 4 = 0 then
1
else
4 x fact (4 - 1)

This simplifies to:
let n = 4 *x fact 3

Flambda provides significantly enhanced inlining capabilities relative to previous versions of the
compiler.

21.3.1 Aside: when inlining is performed

Inlining is performed together with all of the other Flambda optimisation passes, that is to say, after
closure conversion. This has three particular advantages over a potentially more straightforward
implementation prior to closure conversion:

o It permits higher-order inlining, for example when a non-inlinable function always returns the
same function yet with different environments of definition. Not all such cases are supported
yet, but it is intended that such support will be improved in future.

o It is easier to integrate with cross-module optimisation, since imported information about
other modules is already in the correct intermediate language.

e It becomes more straightforward to optimise closure allocations since the layout of closures
does not have to be estimated in any way: it is known. Similarly, it becomes more straight-
forward to control which variables end up in which closures, helping to avoid closure bloat.

21.3.2 Classic inlining heuristic

In -Oclassic mode the behaviour of the Flambda inliner mimics previous versions of the compiler.
(Code may still be subject to further optimisations not performed by previous versions of the
compiler: functors may be inlined, constants are lifted and unused code is eliminated all as described
elsewhere in this chapter. See sections 21.3.5, 21.8.1 and 21.10. At the definition site of a function,
the body of the function is measured. It will then be marked as eligible for inlining (and hence
inlined at every direct call site) if:

o the measured size (in unspecified units) is smaller than that of a function call plus the argu-
ment of the -inline command-line flag; and

¢ the function is not recursive.

Non-Flambda versions of the compiler cannot inline functions that contain a definition of an-
other function. However -Oclassic does permit this. Further, non-Flambda versions also cannot
inline functions that are only themselves exposed as a result of a previous pass of inlining, but
again this is permitted by -Oclassic. For example:

388

module M : sig
val i : int
end = struct

let £ x =
let gy =x+y in
g
let h=f£f 3
let i =h 4 (* h is correctly discovered to be g and inlined *)

end
All of this contrasts with the normal Flambda mode, that is to say without -Oclassic, where:
e the inlining decision is made at the call site; and
o recursive functions can be handled, by specialisation (see below).

The Flambda mode is described in the next section.

21.3.3 Overview of “Flambda” inlining heuristics

The Flambda inlining heuristics, used whenever the compiler is configured for Flambda and
-Oclassic was not specified, make inlining decisions at call sites. This helps in situations where
the context is important. For example:

let £ b x =
if b then
X
else

. big expression ...

let g x = £ true x

In this case, we would like to inline f into g, because a conditional jump can be eliminated and
the code size should reduce. If the inlining decision has been made after the declaration of £ without
seeing the use, its size would have probably made it ineligible for inlining; but at the call site, its
final size can be known. Further, this function should probably not be inlined systematically: if
b is unknown, or indeed false, there is little benefit to trade off against a large increase in code
size. In the existing non-Flambda inliner this isn’t a great problem because chains of inlining were
cut off fairly quickly. However it has led to excessive use of overly-large inlining parameters such
as —inline 10000.

In more detail, at each call site the following procedure is followed:

e Determine whether it is clear that inlining would be beneficial without, for the moment, doing
any inlining within the function itself. (The exact assessment of benefit is described below.)
If so, the function is inlined.

o If inlining the function is not clearly beneficial, then inlining will be performed speculatively
inside the function itself. The search for speculative inlining possibilities is controlled by two
parameters: the inlining threshold and the inlining depth. (These are described in more detail
below.)

Chapter 21. Optimisation with Flambda 389

— If such speculation shows that performing some inlining inside the function would be
beneficial, then such inlining is performed and the resulting function inlined at the
original call site.

— Otherwise, nothing happens.

Inlining within recursive functions of calls to other functions in the same mutually-recursive group
is kept in check by an wunrolling depth, described below. This ensures that functions are not
unrolled to excess. (Unrolling is only enabled if -03 optimisation level is selected and/or the
-inline-max-unroll flag is passed with an argument greater than zero.)

21.3.4 Handling of specific language constructs
21.3.5 Functors

There is nothing particular about functors that inhibits inlining compared to normal functions. To
the inliner, these both look the same, except that functors are marked as such.

Applications of functors at toplevel are biased in favour of inlining. (This bias may be adjusted:
see the documentation for ~inline-lifting-benefit below.)

Applications of functors not at toplevel, for example in a local module inside some other ex-
pression, are treated by the inliner identically to normal function calls.

21.3.6 First-class modules

The inliner will be able to consider inlining a call to a function in a first class module if it knows
which particular function is going to be called. The presence of the first-class module record that
wraps the set of functions in the module does not per se inhibit inlining.

21.3.7 Objects
Method calls to objects are not at present inlined by Flambda.

21.3.8 Inlining reports

If the ~inlining-report option is provided to the compiler then a file will be emitted corresponding
to each round of optimisation. For the OCaml source file basename.ml the files are named base-
name.round.inlining.org, with round a zero-based integer. Inside the files, which are formatted
as “org mode”, will be found English prose describing the decisions that the inliner took.

21.3.9 Assessment of inlining benefit

Inlining typically results in an increase in code size, which if left unchecked, may not only lead to
grossly large executables and excessive compilation times but also a decrease in performance due to
worse locality. As such, the Flambda inliner trades off the change in code size against the expected
runtime performance benefit, with the benefit being computed based on the number of operations
that the compiler observes may be removed as a result of inlining.

For example given the following code:

390

let £ b x =
if b then
X
else

. big expression ...

let g x = £ true x
it would be observed that inlining of £ would remove:

e one direct call;

e one conditional branch.

Formally, an estimate of runtime performance benefit is computed by first summing the cost of
the operations that are known to be removed as a result of the inlining and subsequent simplification
of the inlined body. The individual costs for the various kinds of operations may be adjusted using
the various -inline-...-cost flags as follows. Costs are specified as integers. All of these flags
accept a single argument describing such integers using the conventions detailed in section 21.2.1.

—-inline-alloc-cost
The cost of an allocation.

—inline-branch-cost
The cost of a branch.

—inline-call-cost
The cost of a direct function call.

—-inline-indirect-cost
The cost of an indirect function call.

-inline-prim-cost
The cost of a primitive. Primitives encompass operations including arithmetic and memory
access.

(Default values are described in section 21.5 below.)

The initial benefit value is then scaled by a factor that attempts to compensate for the fact that
the current point in the code, if under some number of conditional branches, may be cold. (Flambda
does not currently compute hot and cold paths.) The factor—the estimated probability that the
inliner really is on a hot path—is calculated as W, where f is set by -inline-branch-factor
and d is the nesting depth of branches at the current point. As the inliner descends into more
deeply-nested branches, the benefit of inlining thus lessens.

The resulting benefit value is known as the estimated benefit.

The change in code size is also estimated: morally speaking it should be the change in machine
code size, but since that is not available to the inliner, an approximation is used.

If the estimated benefit exceeds the increase in code size then the inlined version of the function
will be kept. Otherwise the function will not be inlined.

Applications of functors at toplevel will be given an additional benefit (which may be controlled
by the -inline-1lifting-benefit flag) to bias inlining in such situations towards keeping the
inlined version.

Chapter 21. Optimisation with Flambda 391

21.3.10 Control of speculation

As described above, there are three parameters that restrict the search for inlining opportunities
during speculation:

e the inlining threshold,
e the inlining depth,
e the unrolling depth.

These parameters are ultimately bounded by the arguments provided to the corresponding
command-line flags (or their default values):

e -inline (or, if the call site that triggered speculation is at toplevel, ~inline-toplevel);
e —inline-max-depth;
e —-inline-max-unroll.

Note in particular that -inline does not have the meaning that it has in the previous compiler
or in -Oclassic mode. In both of those situations -inline was effectively some kind of basic
assessment of inlining benefit. However in Flambda inlining mode it corresponds to a constraint
on the search; the assessment of benefit is independent, as described above.

When speculation starts the inlining threshold starts at the value set by -inline (or
-inline-toplevel if appropriate, see above). Upon making a speculative inlining decision the
threshold is reduced by the code size of the function being inlined. If the threshold becomes
exhausted, at or below zero, no further speculation will be performed.

The inlining depth starts at zero and is increased by one every time the inliner descends into
another function. It is then decreased by one every time the inliner leaves such function. If the
depth exceeds the value set by -inline-max-depth then speculation stops. This parameter is
intended as a general backstop for situations where the inlining threshold does not control the
search sufficiently.

The unrolling depth applies to calls within the same mutually-recursive group of functions.
Each time an inlining of such a call is performed the depth is incremented by one when examining
the resulting body. If the depth reaches the limit set by -inline-max-unroll then speculation
stops.

21.4 Specialisation

The inliner may discover a call site to a recursive function where something is known about the
arguments: for example, they may be equal to some other variables currently in scope. In this
situation it may be beneficial to specialise the function to those arguments. This is done by
copying the declaration of the function (and any others involved in any same mutually-recursive
declaration) and noting the extra information about the arguments. The arguments augmented by
this information are known as specialised arguments. In order to try to ensure that specialisation is
not performed uselessly, arguments are only specialised if it can be shown that they are invariant:
in other words, during the execution of the recursive function(s) themselves, the arguments never
change.

392

Unless overridden by an attribute (see below), specialisation of a function will not be attempted
if:

e the compiler is in —-Oclassic mode

¢ the function is not obviously recursive;

e the function is not closed.

The compiler can prove invariance of function arguments across multiple functions within a
recursive group (although this has some limitations, as shown by the example below).

It should be noted that the unbozxing of closures pass (see below) can introduce specialised
arguments on non-recursive functions. (No other place in the compiler currently does this.)

Example: the well-known List.iter function This function might be written like so:

let rec iter £ 1 =
match 1 with

I O-> 0

| h :: t —>
f h;
iter £ t

and used like this:

let print_int x =
print_endline (Int.to_string x)

let run xs =
iter print_int (List.rev xs)

The argument f to iter is invariant so the function may be specialised:

let run xs =
let rec iter' f 1 =
(* The compiler knows: f holds the same value as foo throughout iter'. *)

match 1 with

IO -> 0

| h :: t —>
f h;
iter' £ t

in
iter' print_int (List.rev xs)

The compiler notes down that for the function iter’, the argument f is specialised to the
constant closure print_int. This means that the body of iter’ may be simplified:

Chapter 21. Optimisation with Flambda 393

let run xs =
let rec iter' £ 1 =
(* The compiler knows: f holds the same value as foo throughout iter'. *)
match 1 with
I ->0
| h :: t —>
print_int h; (* this is now a direct call *)
iter' £ t
in
iter' print_int (List.rev xs)
The call to print_int can indeed be inlined:

let run xs =
let rec iter' £ 1 =
(* The compiler knows: f holds the same value as foo throughout iter'. *)
match 1 with
I ->0
| h :: t —>
print_endline (Int.to_string h);
iter' £ t
in
iter' print_int (List.rev xs)
The unused specialised argument £ may now be removed, leaving:

let run xs =
let rec iter' 1 =
match 1 with
IO -> 0
| h :: t —>
print_endline (Int.to_string h);
iter' t
in
iter' (List.rev xs)

Aside on invariant parameters. The compiler cannot currently detect invariance in cases
such as the following.

let rec iter_swap f g 1 =
match 1 with

10 ->0
| 0 :: t —>
iter_swap g £ 1
l h:: t >
f h;

iter_swap f g t

394

21.4.1 Assessment of specialisation benefit

The benefit of specialisation is assessed in a similar way as for inlining. Specialised argument
information may mean that the body of the function being specialised can be simplified: the
removed operations are accumulated into a benefit. This, together with the size of the duplicated
(specialised) function declaration, is then assessed against the size of the call to the original function.

21.5 Default settings of parameters

The default settings (when not using -Oclassic) are for one round of optimisation using the

following parameters.

21.5.1 Settings at

Parameter Setting
-inline 10
-inline-branch-factor 0.1
-inline-alloc-cost 7
-inline-branch-cost 5}
-inline-call-cost)
-inline-indirect-cost 4
-inline-prim-cost 3
-inline-lifting-benefit | 1300
—inline-toplevel 160
-inline-max-depth 1
-inline-max-unroll 0

-unbox-closures—-factor 10

-0O2 optimisation level

When -02 is specified two rounds of optimisation are performed. The first round uses the default
The second uses the following parameters.

parameters (see above).

Parameter

Setting

—-inline
—inline-branch-factor
—inline-alloc-cost
—inline-branch-cost
—inline-call-cost
—inline-indirect-cost
-inline-prim-cost
-inline-lifting-benefit
-inline-toplevel
-inline-max-depth
—inline-max-unroll
—unbox-closures-factor

25

Same as default
Double the default
Double the default
Double the default
Double the default
Double the default
Same as default
400

2

Same as default
Same as default

Chapter 21. Optimisation with Flambda 395

21.5.2 Settings at -O3 optimisation level

When -03 is specified three rounds of optimisation are performed. The first two rounds are as for
-02. The third round uses the following parameters.

Parameter

Setting

-inline
-inline-branch-factor
—inline-alloc-cost
-inline-branch-cost
—inline-call-cost
—inline-indirect-cost
-inline-prim-cost
-inline-lifting-benefit
-inline-toplevel

50

Same as default
Triple the default
Triple the default
Triple the default
Triple the default
Triple the default
Same as default
800

-inline-max-depth 3
-inline-max-unroll 1
-unbox-closures—-factor Same as default

21.6 Manual control of inlining and specialisation

Should the inliner prove recalcitrant and refuse to inline a particular function, or if the observed
inlining decisions are not to the programmer’s satisfaction for some other reason, inlining behaviour
can be dictated by the programmer directly in the source code. One example where this might be
appropriate is when the programmer, but not the compiler, knows that a particular function call
is on a cold code path. It might be desirable to prevent inlining of the function so that the code
size along the hot path is kept smaller, so as to increase locality.

The inliner is directed using attributes. For non-recursive functions (and one-step unrolling of
recursive functions, although @unroll is more clear for this purpose) the following are supported:

@Q@inline always or @@inline never
Attached to a declaration of a function or functor, these direct the inliner to either always or
never inline, irrespective of the size/benefit calculation. (If the function is recursive then the
body is substituted and no special action is taken for the recursive call site(s).) ©@@inline
with no argument is equivalent to @@inline always.

@inlined always or @inlined never
Attached to a function application, these direct the inliner likewise. These attributes at
call sites override any other attribute that may be present on the corresponding declaration.
@inlined with no argument is equivalent to @inlined always.

For recursive functions the relevant attributes are:

Q@@specialise always or @@specialise never
Attached to a declaration of a function or functor, this directs the inliner to either always
or never specialise the function so long as it has appropriate contextual knowledge, irre-
spective of the size/benefit calculation. @@specialise with no argument is equivalent to
@@specialise always.

396

O@specialised always or @specialised never
Attached to a function application, this directs the inliner likewise. This attribute at a
call site overrides any other attribute that may be present on the corresponding declara-
tion. (Note that the function will still only be specialised if there exist one or more invari-
ant parameters whose values are known.) @specialised with no argument is equivalent to
Ospecialised always.

Qunrolled n
This attribute is attached to a function application and always takes an integer argument.
Each time the inliner sees the attribute it behaves as follows:

e If n is zero or less, nothing happens.

e Otherwise the function being called is substituted at the call site with its body having
been rewritten such that any recursive calls to that function or any others in the same
mutually-recursive group are annotated with the attribute unrolled(n — 1). Inlining
may continue on that body.

As such, n behaves as the “maximum depth of unrolling”.

A compiler warning will be emitted if it was found impossible to obey an annotation from an
@inlined or @specialised attribute.

Example showing correct placement of attributes

module F (M : sig type t end) = struct
let[@inline never] bar x =
x * 3

let foo x =
(bar [@inlined]) (42 + x)
end [@@inline never]

module X = F [@inlined] (struct type t = int end)

21.7 Simplification

Simplification, which is run in conjunction with inlining, propagates information (known as ap-
proximations) about which variables hold what values at runtime. Certain relationships between
variables and symbols are also tracked: for example, some variable may be known to always hold
the same value as some other variable; or perhaps some variable may be known to always hold the
value pointed to by some symbol.

The propagation can help to eliminate allocations in cases such as:

let £ xy =
let p = x, y in

(fst p) ... (snd p)

Chapter 21. Optimisation with Flambda 397

The projections from p may be replaced by uses of the variables x and y, potentially meaning
that p becomes unused.

The propagation performed by the simplification pass is also important for discovering which
functions flow to indirect call sites. This can enable the transformation of such call sites into direct
call sites, which makes them eligible for an inlining transformation.

Note that no information is propagated about the contents of strings, even in safe-string
mode, because it cannot yet be guaranteed that they are immutable throughout a given program.

21.8 Other code motion transformations

21.8.1 Lifting of constants

Expressions found to be constant will be lifted to symbol bindings—that is to say, they will be
statically allocated in the object file—when they evaluate to boxed values. Such constants may be
straightforward numeric constants, such as the floating-point number 42.0, or more complicated
values such as constant closures.

Lifting of constants to toplevel reduces allocation at runtime.

The compiler aims to share constants lifted to toplevel such that there are no duplicate def-
initions. However if .cmx files are hidden from the compiler then maximal sharing may not be
possible.

Notes about float arrays The following language semantics apply specifically to constant float
arrays. (By “constant float array” is meant an array consisting entirely of floating point numbers
that are known at compile time. A common case is a literal such as [| 42.0; 43.0; |].

o Constant float arrays at the toplevel are mutable and never shared. (That is to say, for each
such definition there is a distinct symbol in the data section of the object file pointing at the
array.)

o Constant float arrays not at toplevel are mutable and are created each time the expression is
evaluated. This can be thought of as an operation that takes an immutable array (which in
the source code has no associated name; let us call it the initialising array) and duplicates it
into a fresh mutable array.

— If the array is of size four or less, the expression will create a fresh block and write the
values into it one by one. There is no reference to the initialising array as a whole.

— Otherwise, the initialising array is lifted out and subject to the normal constant sharing
procedure; creation of the array consists of bulk copying the initialising array into a fresh
value on the OCaml heap.

21.8.2 Lifting of toplevel let bindings

Toplevel let-expressions may be lifted to symbol bindings to ensure that the corresponding bound
variables are not captured by closures. If the defining expression of a given binding is found to be
constant, it is bound as such (the technical term is a let-symbol binding).

398

Otherwise, the symbol is bound to a (statically-allocated) preallocated block containing one field.
At runtime, the defining expression will be evaluated and the first field of the block filled with the
resulting value. This initialise-symbol binding causes one extra indirection but ensures, by virtue
of the symbol’s address being known at compile time, that uses of the value are not captured by
closures.

It should be noted that the blocks corresponding to initialise-symbol bindings are kept alive
forever, by virtue of them occurring in a static table of GC roots within the object file. This
extended lifetime of expressions may on occasion be surprising. If it is desired to create some
non-constant value (for example when writing GC tests) that does not have this extended lifetime,
then it may be created and used inside a function, with the application point of that function
(perhaps at toplevel)—or indeed the function declaration itself—marked as to never be inlined.
This technique prevents lifting of the definition of the value in question (assuming of course that
it is not constant).

21.9 Unboxing transformations

The transformations in this section relate to the splitting apart of boxed (that is to say, non-
immediate) values. They are largely intended to reduce allocation, which tends to result in a
runtime performance profile with lower variance and smaller tails.

21.9.1 Unboxing of closure variables

This transformation is enabled unless -no-unbox-free-vars-of-closures is provided.

Variables that appear in closure environments may themselves be boxed values. As such, they
may be split into further closure variables, each of which corresponds to some projection from the
original closure variable(s). This transformation is called unboxing of closure variables or unboxing
of free variables of closures. It is only applied when there is reasonable certainty that there are no
uses of the boxed free variable itself within the corresponding function bodies.

Example: In the following code, the compiler observes that the closure returned from the
function f contains a variable pair (free in the body of f) that may be split into two separate
variables.

let £ x0 x1 =
let pair = x0, x1 in
Printf.printf "foo\n";
fun y >
fst pair + snd pair + y

After some simplification one obtains:

let £ x0 x1 =
let pair_O0 = x0 in
let pair_1 = x1 in
Printf.printf "foo\n";
fun y >

pair_O0 + pair_1 + y

Chapter 21. Optimisation with Flambda 399

and then:

let £ x0 x1 =
Printf.printf "foo\n";
fun y >
x0 + x1 +y

The allocation of the pair has been eliminated.
This transformation does not operate if it would cause the closure to contain more than twice
as many closure variables as it did beforehand.

21.9.2 Unboxing of specialised arguments

This transformation is enabled unless -no-unbox-specialised-args is provided.

It may become the case during compilation that one or more invariant arguments to a function
become specialised to a particular value. When such values are themselves boxed the corresponding
specialised arguments may be split into more specialised arguments corresponding to the projections
out of the boxed value that occur within the function body. This transformation is called unboxing
of specialised arguments. It is only applied when there is reasonable certainty that the boxed
argument itself is unused within the function.

If the function in question is involved in a recursive group then unboxing of specialised arguments
may be immediately replicated across the group based on the dataflow between invariant arguments.

Example: Having been given the following code, the compiler will inline loop into £, and then
observe inv being invariant and always the pair formed by adding 42 and 43 to the argument x of
the function f.

let rec loop inv xs =

match xs with

| [1 -> fst inv + snd inv

| x::xs -> x + loop2 xs inv
and loop2 ys inv =

match ys with

I [0 >4

| y::ys => y - loop inv ys

let f x =
Printf.printf "J%d\n" (loop (x + 42, x + 43) [1; 2; 31)

Since the functions have sufficiently few arguments, more specialised arguments will be added.
After some simplification one obtains:

let £ x =
let rec loop' xs inv_0 inv_1 =
match xs with
| [-> inv_0 + inv_1
| x::xs -> x + loop2' xs inv_0 inv_1

400

and loop2' ys inv_0O inv_1 =
match ys with
I 0 ->4
| y::ys => y - loop' ys inv_0 inv_1
in
Printf.printf "J%d\n" (loop' [1; 2; 3] (x + 42) (x + 43))

The allocation of the pair within £ has been removed. (Since the two closures for loop’ and
loop2’ are constant they will also be lifted to toplevel with no runtime allocation penalty. This
would also happen without having run the transformation to unbox specialise arguments.)

The transformation to unbox specialised arguments never introduces extra allocation.

The transformation will not unbox arguments if it would result in the original function having
sufficiently many arguments so as to inhibit tail-call optimisation.

The transformation is implemented by creating a wrapper function that accepts the original ar-
guments. Meanwhile, the original function is renamed and extra arguments are added corresponding
to the unboxed specialised arguments; this new function is called from the wrapper. The wrapper
will then be inlined at direct call sites. Indeed, all call sites will be direct unless —unbox-closures
is being used, since they will have been generated by the compiler when originally specialising the
function. (In the case of —unbox-closures other functions may appear with specialised arguments;
in this case there may be indirect calls and these will incur a small penalty owing to having to
bounce through the wrapper. The technique of direct call surrogates used for —unbox-closures is
not used by the transformation to unbox specialised arguments.)

21.9.3 Unboxing of closures

This transformation is not enabled by default. It may be enabled using the —unbox-closures flag.

The transformation replaces closure variables by specialised arguments. The aim is to cause
more closures to become closed. It is particularly applicable, as a means of reducing allocation,
where the function concerned cannot be inlined or specialised. For example, some non-recursive
function might be too large to inline; or some recursive function might offer no opportunities for
specialisation perhaps because its only argument is one of type unit.

At present there may be a small penalty in terms of actual runtime performance when this
transformation is enabled, although more stable performance may be obtained due to reduced
allocation. It is recommended that developers experiment to determine whether the option is
beneficial for their code. (It is expected that in the future it will be possible for the performance
degradation to be removed.)

Simple example: In the following code (which might typically occur when g is too large to
inline) the value of x would usually be communicated to the application of the + function via the
closure of g.

let £ x =
let gy =
x+y
in
(g [@inlined never]) 42

Chapter 21. Optimisation with Flambda 401

Unboxing of the closure causes the value for x inside g to be passed as an argument to g rather
than through its closure. This means that the closure of g becomes constant and may be lifted to
toplevel, eliminating the runtime allocation.

The transformation is implemented by adding a new wrapper function in the manner of that
used when unboxing specialised arguments. The closure variables are still free in the wrapper, but
the intention is that when the wrapper is inlined at direct call sites, the relevant values are passed
directly to the main function via the new specialised arguments.

Adding such a wrapper will penalise indirect calls to the function (which might exist in arbitrary
places; remember that this transformation is not for example applied only on functions the compiler
has produced as a result of specialisation) since such calls will bounce through the wrapper. To
mitigate this, if a function is small enough when weighed up against the number of free variables
being removed, it will be duplicated by the transformation to obtain two versions: the original (used
for indirect calls, since we can do no better) and the wrapper/rewritten function pair as described
in the previous paragraph. The wrapper/rewritten function pair will only be used at direct call
sites of the function. (The wrapper in this case is known as a direct call surrogate, since it takes
the place of another function—the unchanged version used for indirect calls—at direct call sites.)

The -unbox-closures-factor command line flag, which takes an integer, may be used to
adjust the point at which a function is deemed large enough to be ineligible for duplication. The
benefit of duplication is scaled by the integer before being evaluated against the size.

Harder example: In the following code, there are two closure variables that would typically
cause closure allocations. One is called fv and occurs inside the function baz; the other is called
z and occurs inside the function bar. In this toy (yet sophisticated) example we again use an
attribute to simulate the typical situation where the first argument of baz is too large to inline.

let foo c =
let rec bar zs fv
match zs with

I 0 -> 11
| z::2zs8 —>
let rec baz f = function
I [1 -> 1]
| a::1 -> let r = fv + ((f [@inlined never]) a) inr :: baz f 1

in
(map2 (fun y -> z + y) [z; 2; 3; 4]) @ bar zs fv
in
Printf.printf "%d" (List.length (bar [1; 2; 3; 4] c))
The code resulting from applying -03 -unbox-closures to this code passes the free variables

via function arguments in order to eliminate all closure allocation in this example (aside from any
that might be performed inside printf).

402

21.10 Removal of unused code and values

21.10.1 Removal of redundant let expressions

The simplification pass removes unused let bindings so long as their corresponding defining ex-
pressions have “no effects”. See the section “Treatment of effects” below for the precise definition
of this term.

21.10.2 Removal of redundant program constructs

This transformation is analogous to the removal of let-expressions whose defining expressions have
no effects. It operates instead on symbol bindings, removing those that have no effects.

21.10.3 Removal of unused arguments

This transformation is only enabled by default for specialised arguments. It may be enabled for all
arguments using the -remove-unused-arguments flag.

The pass analyses functions to determine which arguments are unused. Removal is effected by
creating a wrapper function, which will be inlined at every direct call site, that accepts the original
arguments and then discards the unused ones before calling the original function. As a consequence,
this transformation may be detrimental if the original function is usually indirectly called, since
such calls will now bounce through the wrapper. (The technique of direct call surrogates used to
reduce this penalty during unboxing of closure variables (see above) does not yet apply to the pass
that removes unused arguments.)

21.10.4 Removal of unused closure variables

This transformation performs an analysis across the whole compilation unit to determine whether
there exist closure variables that are never used. Such closure variables are then eliminated. (Note
that this has to be a whole-unit analysis because a projection of a closure variable from some
particular closure may have propagated to an arbitrary location within the code due to inlining.)

21.11 Other code transformations

21.11.1 Transformation of non-escaping references into mutable variables

Flambda performs a simple analysis analogous to that performed elsewhere in the compiler that
can transform refs into mutable variables that may then be held in registers (or on the stack as
appropriate) rather than being allocated on the OCaml heap. This only happens so long as the
reference concerned can be shown to not escape from its defining scope.

21.11.2 Substitution of closure variables for specialised arguments

This transformation discovers closure variables that are known to be equal to specialised arguments.
Such closure variables are replaced by the specialised arguments; the closure variables may then be
removed by the “removal of unused closure variables” pass (see below).

Chapter 21. Optimisation with Flambda 403

21.12 Treatment of effects

The Flambda optimisers classify expressions in order to determine whether an expression:
o does not need to be evaluated at all; and/or
e may be duplicated.

This is done by forming judgements on the effects and the coeffects that might be performed
were the expression to be executed. Effects talk about how the expression might affect the world;
coeffects talk about how the world might affect the expression.

Effects are classified as follows:

No effects:
The expression does not change the observable state of the world. For example, it must not
write to any mutable storage, call arbitrary external functions or change control flow (e.g. by
raising an exception). Note that allocation is not classed as having “no effects” (see below).

e It is assumed in the compiler that expressions with no effects, whose results are not
used, may be eliminated. (This typically happens where the expression in question is
the defining expression of a let; in such cases the let-expression will be eliminated.)
It is further assumed that such expressions with no effects may be duplicated (and thus
possibly executed more than once).

e Exceptions arising from allocation points, for example “out of memory” or exceptions
propagated from finalizers or signal handlers, are treated as “effects out of the ether”
and thus ignored for our determination here of effectfulness. The same goes for floating
point operations that may cause hardware traps on some platforms.

Only generative effects:
The expression does not change the observable state of the world save for possibly affecting
the state of the garbage collector by performing an allocation. Expressions that only have
generative effects and whose results are unused may be eliminated by the compiler. However,
unlike expressions with “no effects”, such expressions will never be eligible for duplication.

Arbitrary effects:
All other expressions.

There is a single classification for coeffects:

No coeffects:
The expression does not observe the effects (in the sense described above) of other expressions.
For example, it must not read from any mutable storage or call arbitrary external functions.

It is assumed in the compiler that, subject to data dependencies, expressions with neither effects
nor coeffects may be reordered with respect to other expressions.

404

21.13 Compilation of statically-allocated modules

Compilation of modules that are able to be statically allocated (for example, the module corre-
sponding to an entire compilation unit, as opposed to a first class module dependent on values
computed at runtime) initially follows the strategy used for bytecode. A sequence of let-bindings,
which may be interspersed with arbitrary effects, surrounds a record creation that becomes the
module block. The Flambda-specific transformation follows: these bindings are lifted to toplevel
symbols, as described above.

21.14 Inhibition of optimisation

Especially when writing benchmarking suites that run non-side-effecting algorithms in loops, it may
be found that the optimiser entirely elides the code being benchmarked. This behaviour can be
prevented by using the Sys.opaque_identity function (which indeed behaves as a normal OCaml
function and does not possess any “magic” semantics). The documentation of the Sys module
should be consulted for further details.

21.15 Use of unsafe operations

The behaviour of the Flambda simplification pass means that certain unsafe operations, which may
without Flambda or when using previous versions of the compiler be safe, must not be used. This
specifically refers to functions found in the 0bj module.

In particular, it is forbidden to change any value (for example using Obj.set_field or
Obj.set_tag) that is not mutable. (Values returned from C stubs are always treated as mutable.)
The compiler will emit warning 59 if it detects such a write—but it cannot warn in all cases. Here
is an example of code that will trigger the warning;:

let f x
let a = 42, x in
(0bj.magic a : int ref) := 1;
fst a

The reason this is unsafe is because the simplification pass believes that fst a holds the value
42; and indeed it must, unless type soundness has been broken via unsafe operations.

If it must be the case that code has to be written that triggers warning 59, but the code is
known to actually be correct (for some definition of correct), then Sys.opaque_identity may be
used to wrap the value before unsafe operations are performed upon it. Great care must be taken
when doing this to ensure that the opacity is added at the correct place. It must be emphasised
that this use of Sys.opaque_identity is only for exceptional cases. It should not be used in
normal code or to try to guide the optimiser.

As an example, this code will return the integer 1:

let £ x =
let a = Sys.opaque_identity (42, x) in
(0bj.magic a : int ref) := 1;
fst a

Chapter 21. Optimisation with Flambda 405

However the following code will still return 42:

let f x =
let a = 42, x in
Sys.opaque_identity (Obj.magic a : int ref) := 1;
fst a

High levels of inlining performed by Flambda may expose bugs in code thought previously to
be correct. Take care, for example, not to add type annotations that claim some mutable value is
always immediate if it might be possible for an unsafe operation to update it to a boxed value.

21.16 Glossary

The following terminology is used in this chapter of the manual.

Call site
See direct call site and indirect call site below.

Closed function
A function whose body has no free variables except its parameters and any to which are
bound other functions within the same (possibly mutually-recursive) declaration.

Closure

The runtime representation of a function. This includes pointers to the code of the function
together with the values of any variables that are used in the body of the function but
actually defined outside of the function, in the enclosing scope. The values of such variables,
collectively known as the environment, are required because the function may be invoked
from a place where the original bindings of such variables are no longer in scope. A group of
possibly mutually-recursive functions defined using let rec all share a single closure. (Note to
developers: in the Flambda source code a closure always corresponds to a single function; a
set of closures refers to a group of such.)

Closure variable
A member of the environment held within the closure of a given function.

Constant
Some entity (typically an expression) the value of which is known by the compiler at com-
pile time. Constantness may be explicit from the source code or inferred by the Flambda
optimisers.

Constant closure
A closure that is statically allocated in an object file. It is almost always the case that the
environment portion of such a closure is empty.

Defining expression
The expression e in let x = e in e’.

406

Direct call site
A place in a program’s code where a function is called and it is known at compile time which
function it will always be.

Indirect call site
A place in a program’s code where a function is called but is not known to be a direct call
site.

Program
A collection of symbol bindings forming the definition of a single compilation unit (i.e. .cmx
file).

Specialised argument
An argument to a function that is known to always hold a particular value at runtime. These
are introduced by the inliner when specialising recursive functions; and the unbox-closures
pass. (See section 21.4.)

Symbol
A name referencing a particular place in an object file or executable image. At that particular
place will be some constant value. Symbols may be examined using operating system-specific
tools (for example objdump on Linux).

Symbol binding
Analogous to a let-expression but working at the level of symbols defined in the object file.
The address of a symbol is fixed, but it may be bound to both constant and non-constant
expressions.

Toplevel
An expression in the current program which is not enclosed within any function declaration.

Variable
A named entity to which some OCaml value is bound by a let expression, pattern-matching
construction, or similar.

Chapter 22

Memory profiling with Spacetime

22.1 Overview

Spacetime is the name given to functionality within the OCaml compiler that provides for accurate
profiling of the memory behaviour of a program. Using Spacetime it is possible to determine the
source of memory leaks and excess memory allocation quickly and easily. Excess allocation slows
programs down both by imposing a higher load on the garbage collector and reducing the cache
locality of the program’s code. Spacetime provides full backtraces for every allocation that occurred
on the OCaml heap during the lifetime of the program including those in C stubs.

Spacetime only analyses the memory behaviour of a program with respect to the OCaml heap
allocators and garbage collector. It does not analyse allocation on the C heap. Spacetime does
not affect the memory behaviour of a program being profiled with the exception of any change
caused by the overhead of profiling (see section 22.3)—for example the program running slower
might cause it to allocate less memory in total.

Spacetime is currently only available for x86-64 targets and has only been tested on Linux
systems (although it is expected to work on most modern Unix-like systems and provision has
been made for running under Windows). It is expected that the set of supported platforms will be
extended in the future.

22.2 How to use it

22.2.1 Building

To use Spacetime it is necessary to use an OCaml compiler that was configured with the —~spacetime
option. It is not possible to select Spacetime on a per-source-file basis or for a subset of files in a
project; all files involved in the executable being profiled must be built with the Spacetime compiler.
Only native code compilation is supported (not bytecode).

If the 1ibunwind library is not available on the system then it will not be possible for Spacetime
to profile allocations occurring within C stubs. If the libunwind library is available but in an un-
usual location then that location may be specified to the configure script using the ~-1ibunwinddir
option (or alternatively, using separate -libunwindinclude and -libunwindlib options).

OPAM switches will be provided for Spacetime-configured compilers.

407

408

Once the appropriate compiler has been selected the program should be built as normal (ensur-
ing that all files are built with the Spacetime compiler—there is currently no protection to ensure
this is the case, but it is essential). For many uses it will not be necessary to change the code of
the program to use the profiler.

Spacetime-configured compilers run slower and occupy more memory than their counterparts.
It is hoped this will be fixed in the future as part of improved cross compilation support.

22.2.2 Running

Programs built with Spacetime instrumentation have a dependency on the 1ibunwind library unless
that was unavailable at configure time or the ~disable-1libunwind option was specified (see section
22.3).

Setting the OCAML_SPACETIME_INTERVAL environment variable to an integer representing a num-
ber of milliseconds before running a program built with Spacetime will cause memory profiling to
be in operation when the program is started. The contents of the OCaml heap will be sampled
each time the number of milliseconds that the program has spent executing since the last sample
exceeds the given number. (Note that the time base is combined user plus system time—not wall
clock time. This peculiarity may be changed in future.)

The program being profiled must exit normally or be caused to exit using the SIGINT signal
(e.g. by pressing Ctrl+C). When the program exits files will be written in the directory that
was the working directory when the program was started. One Spacetime file will be written for
each process that was involved, indexed by process ID; there will normally only be one such. The
Spacetime files may be substantial. The directory to which they are written may be overridden by
setting the OCAML_SPACETIME_SNAPSHOT_DIR environment variable before the program is started.

Instead of using the automatic snapshot facility described above it is also possible to
manually control Spacetime profiling. (The environment variables 0CAML_SPACETIME_INTERVAL
and OCAML_SPACETIME_SNAPSHOT_DIR are then not relevant.) Full documentation as regards
this method of profiling is provided in the standard library documentation (section 25) for the
Spacetime module.

22.2.3 Analysis

The compiler distribution does not itself provide the facility for analysing Spacetime output files;
this is left to external tools. The first such tool will appear in OPAM as a package called
prof_spacetime. That tool will provide interactive graphical and terminal-based visualisation
of the results of profiling.

22.3 Runtime overhead

The runtime overhead imposed by Spacetime varies considerably depending on the particular pro-
gram being profiled. The overhead may be as low as ten percent—but more usually programs
should be expected to run at perhaps a third or quarter of their normal speed. It is expected that
this overhead will be reduced in future versions of the compiler.

Execution speed of instrumented programs may be increased by using a compiler configured
with the -disable-libunwind option. This prevents collection of profiling information from C

Chapter 22. Memory profiling with Spacetime 409

stubs.

Programs running with Spacetime instrumentation consume significantly more memory than
their non-instrumented counterparts. It is expected that this memory overhead will also be reduced
in the future.

22.4 For developers

The compiler distribution provides an “otherlibs” library called raw_spacetime_lib for decoding
Spacetime files. This library provides facilities to read not only memory profiling information but
also the full dynamic call graph of the profiled program which is written into Spacetime output
files.

A library package spacetime_1ib will be provided in OPAM to provide an interface for decoding
profiling information at a higher level than that provided by raw_spacetime_lib.

410

Chapter 23

Fuzzing with afl-fuzz

23.1 Overview

American fuzzy lop (“afl-fuzz”) is a fuzzer, a tool for testing software by providing randomly-
generated inputs, searching for those inputs which cause the program to crash.

Unlike most fuzzers, afl-fuzz observes the internal behaviour of the program being tested, and
adjusts the test cases it generates to trigger unexplored execution paths. As a result, test cases
generated by afl-fuzz cover more of the possible behaviours of the tested program than other fuzzers.

This requires that programs to be tested are instrumented to communicate with afl-fuzz. The
native-code compiler “ocamlopt” can generate such instrumentation, allowing afl-fuzz to be used
against programs written in OCaml.

For more information on afl-fuzz, see the website at http://lcamtuf.coredump.cx/afl/

23.2 Generating instrumentation

The instrumentation that afl-fuzz requires is not generated by default, and must be explicitly
enabled, by passing the —afl-instrument option to ocamlopt.

To fuzz a large system without modifying build tools, OCaml’s configure script also accepts
the afl-instrument option. If OCaml is configured with afl-instrument, then all programs
compiled by ocamlopt will be instrumented.

23.2.1 Advanced options

In rare cases, it is useful to control the amount of instrumentation generated. By passing the
-afl-inst-ratio N argument to ocamlopt with N less than 100, instrumentation can be generated
for only N% of branches. (See the afl-fuzz documentation on the parameter AFL_INST_RATIO for
the precise effect of this).

23.3 Example

As an example, we fuzz-test the following program, readline.ml:

411

412

let _ =
let s = read_line () in
match Array.to_list (Array.init (String.length s) (String.get s)) with
[ISI. lel. ICI. |rl. Iel. ltl.] . IC|. IOI. ldl. |e|] _> fallwith Iluh Ohll

I _ > 0

There is a single input (the string “secret code”) which causes this program to crash, but finding
it by blind random search is infeasible.
Instead, we compile with afl-fuzz instrumentation enabled:

ocamlopt -afl-instrument readline.ml -o readline
Next, we run the program under afl-fuzz:

mkdir input

echo asdf > input/testcase

mkdir output

afl-fuzz -i input -o output ./readline

By inspecting instrumentation output, the fuzzer finds the crashing input quickly.

Part 1V

The OCaml library

413

Chapter 24

The core library

This chapter describes the OCaml core library, which is composed of declarations for built-in types
and exceptions, plus the module Stdlib that provides basic operations on these built-in types. The
Stdlib module is special in two ways:

o It is automatically linked with the user’s object code files by the ocamlc command (chapter 9).

o It is automatically “opened” when a compilation starts, or when the toplevel system is
launched. Hence, it is possible to use unqualified identifiers to refer to the functions pro-
vided by the Stdlib module, without adding a open Stdlib directive.

Conventions

The declarations of the built-in types and the components of module Stdlib are printed one by
one in typewriter font, followed by a short comment. All library modules and the components they
provide are indexed at the end of this report.

24.1 Built-in types and predefined exceptions

The following built-in types and predefined exceptions are always defined in the compilation envi-
ronment, but are not part of any module. As a consequence, they can only be referred by their
short names.

24.1.1 *

Built-in types
type int

The type of integer numbers.

type char
The type of characters.

type bytes

415

416

The type of (writable) byte sequences.

type string
The type of (read-only) character strings.

type float
The type of floating-point numbers.

type bool = false | true
The type of booleans (truth values).

type unit = ()
The type of the unit value.

type exn
The type of exception values.

type 'a array
The type of arrays whose elements have type 'a.

type 'a list =[] | :: of 'a *x 'a list
The type of lists whose elements have type 'a.

type 'a option = None | Some of 'a

The type of optional values of type 'a.

type int32
The type of signed 32-bit integers. Literals for 32-bit integers are suffixed by 1. See the
Int32[25.22] module.

type int64
The type of signed 64-bit integers. Literals for 64-bit integers are suffixed by L. See the
Int64(25.23] module.

type nativeint
The type of signed, platform-native integers (32 bits on 32-bit processors, 64 bits on 64-bit
processors). Literals for native integers are suffixed by n. See the Nativeint[25.31] module.

type ('a, 'b, 'c, 'd, 'e, 'f) format6
The type of format strings. 'a is the type of the parameters of the format, 'f is the result
type for the printf-style functions, 'b is the type of the first argument given to %a and %t
printing functions (see module Printf[25.36]), 'c is the result type of these functions, and
also the type of the argument transmitted to the first argument of kprintf-style functions,
'd is the result type for the scanf-style functions (see module Scanf[25.40]), and 'e is the
type of the receiver function for the scanf-style functions.

type 'a lazy_t
This type is used to implement the Lazy[25.24] module. It should not be used directly.

Chapter 24. The core library 417

Predefined exceptions

exception Match_failure of (string * int * int)

Exception raised when none of the cases of a pattern-matching apply. The arguments are the
location of the match keyword in the source code (file name, line number, column number).

exception Assert_failure of (string * int * int)

Exception raised when an assertion fails. The arguments are the location of the assert
keyword in the source code (file name, line number, column number).

exception Invalid_argument of string

Exception raised by library functions to signal that the given arguments do not make sense.
The string gives some information to the programmer. As a general rule, this exception
should not be caught, it denotes a programming error and the code should be modified not
to trigger it.

exception Failure of string

Exception raised by library functions to signal that they are undefined on the given
arguments. The string is meant to give some information to the programmer; you must not
pattern match on the string literal because it may change in future versions (use Failure _
instead).

exception Not_found

Exception raised by search functions when the desired object could not be found.

exception Out_of_memory

Exception raised by the garbage collector when there is insufficient memory to complete the
computation. (Not reliable for allocations on the minor heap.)

exception Stack_overflow

Exception raised by the bytecode interpreter when the evaluation stack reaches its maximal
size. This often indicates infinite or excessively deep recursion in the user’s program. Before
4.10, it was not fully implemented by the native-code compiler.

exception Sys_error of string

Exception raised by the input/output functions to report an operating system error. The
string is meant to give some information to the programmer; you must not pattern match
on the string literal because it may change in future versions (use Sys_error _ instead).

exception End_of_file

Exception raised by input functions to signal that the end of file has been reached.

exception Division_by_zero

Exception raised by integer division and remainder operations when their second argument
is zero.

418

exception Sys_blocked_io

A special case of Sys_error raised when no I/0 is possible on a non-blocking 1/O channel.

exception Undefined_recursive_module of (string * int * int)

Exception raised when an ill-founded recursive module definition is evaluated. (See
section 8.2.) The arguments are the location of the definition in the source code (file name,
line number, column number).

24.2 Module Stdlib : The OCaml Standard library.

This module is automatically opened at the beginning of each compilation. All components of this
module can therefore be referred by their short name, without prefixing them by Stdlib.

It particular, it provides the basic operations over the built-in types (numbers, booleans, byte
sequences, strings, exceptions, references, lists, arrays, input-output channels, . ..) and the standard
library modules[24.2].

Exceptions

val raise : exn -> 'a

Raise the given exception value

val raise_notrace : exn -> 'a

A faster version raise which does not record the backtrace.

Since: 4.02.0

val invalid_arg : string -> 'a

Raise exception Invalid_argument with the given string.

val failwith : string -> 'a

Raise exception Failure with the given string.

exception Exit

The Exit exception is not raised by any library function. It is provided for use in your
programs.

exception Match_failure of (string * int * int)

Exception raised when none of the cases of a pattern-matching apply. The arguments are the
location of the match keyword in the source code (file name, line number, column number).

exception Assert_failure of (string * int * int)

Exception raised when an assertion fails. The arguments are the location of the assert
keyword in the source code (file name, line number, column number).

Chapter 24. The core library 419

exception Invalid_argument of string

Exception raised by library functions to signal that the given arguments do not make sense.
The string gives some information to the programmer. As a general rule, this exception
should not be caught, it denotes a programming error and the code should be modified not
to trigger it.

exception Failure of string

Exception raised by library functions to signal that they are undefined on the given
arguments. The string is meant to give some information to the programmer; you must not
pattern match on the string literal because it may change in future versions (use Failure _
instead).

exception Not_found

Exception raised by search functions when the desired object could not be found.

exception Out_of_memory

Exception raised by the garbage collector when there is insufficient memory to complete the
computation. (Not reliable for allocations on the minor heap.)

exception Stack_overflow

Exception raised by the bytecode interpreter when the evaluation stack reaches its maximal
size. This often indicates infinite or excessively deep recursion in the user’s program.

Before 4.10, it was not fully implemented by the native-code compiler.

exception Sys_error of string

Exception raised by the input/output functions to report an operating system error. The
string is meant to give some information to the programmer; you must not pattern match
on the string literal because it may change in future versions (use Sys_error _ instead).

exception End_of_file

Exception raised by input functions to signal that the end of file has been reached.

exception Division_by_zero

Exception raised by integer division and remainder operations when their second argument
is zero.

exception Sys_blocked_io

A special case of Sys_error raised when no I/0 is possible on a non-blocking I/O channel.

exception Undefined_recursive_module of (string * int * int)

Exception raised when an ill-founded recursive module definition is evaluated. The
arguments are the location of the definition in the source code (file name, line number,
column number).

420

Comparisons

val

val

val

val

val

val

(=) : 'a -> 'a -> bool

el = e2 tests for structural equality of el and e2. Mutable structures (e.g. references and
arrays) are equal if and only if their current contents are structurally equal, even if the two
mutable objects are not the same physical object. Equality between functional values raises
Invalid_argument. Equality between cyclic data structures may not terminate.
Left-associative operator, see Ocaml_operators[25.53] for more information.

(<>) : 'a -> 'a -> bool

Negation of (=)[24.2]. Left-associative operator, see Ocaml_operators[25.53] for more
information.

(<) : 'a -> 'a -> bool

See (>=)[24.2]. Left-associative operator, see Ocaml_operators[25.53] for more information.

(>) : 'a -> 'a -> bool

See (>=)[24.2]. Left-associative operator, see Ocaml_operators[25.53] for more information.

(=) : 'a -> 'a -> bool

See (>=)[24.2]. Left-associative operator, see Ocaml_operators[25.53] for more information.

(>=) : 'a -> 'a -> bool

Structural ordering functions. These functions coincide with the usual orderings over
integers, characters, strings, byte sequences and floating-point numbers, and extend them to
a total ordering over all types. The ordering is compatible with (=). As in the case of (=
), mutable structures are compared by contents. Comparison between functional values
raises Invalid_argument. Comparison between cyclic structures may not terminate.
Left-associative operator, see Ocaml_operators[25.53] for more information.

val compare : 'a -> 'a -> int

compare x y returns O if x is equal to y, a negative integer if x is less than y, and a positive
integer if x is greater than y. The ordering implemented by compare is compatible with the
comparison predicates =, < and > defined above, with one difference on the treatment of the
float value nan[24.2]. Namely, the comparison predicates treat nan as different from any
other float value, including itself; while compare treats nan as equal to itself and less than
any other float value. This treatment of nan ensures that compare defines a total ordering
relation.

compare applied to functional values may raise Invalid_argument. compare applied to
cyclic structures may not terminate.

The compare function can be used as the comparison function required by the
Set.Make[25.42] and Map.Make[25.28] functors, as well as the List.sort[25.26] and
Array.sort[25.2] functions.

val min : 'a -> 'a -> 'a

Chapter 24. The core library 421

Return the smaller of the two arguments. The result is unspecified if one of the arguments
contains the float value nan.

val max : 'a -> 'a -> 'a
Return the greater of the two arguments. The result is unspecified if one of the arguments
contains the float value nan.

val (==) : 'a -> 'a -> bool
el == e2 tests for physical equality of el and e2. On mutable types such as references,
arrays, byte sequences, records with mutable fields and objects with mutable instance
variables, el == e2 is true if and only if physical modification of el also affects e2. On
non-mutable types, the behavior of (==) is implementation-dependent; however, it is
guaranteed that el == e2 implies compare el e2 = 0. Left-associative operator, see
Ocaml_operators[25.53] for more information.

val (!=) : 'a -> 'a -> bool
Negation of (==)[24.2]. Left-associative operator, see Ocaml_operators[25.53] for more
information.

Boolean operations

val not : bool -> bool

The boolean negation.

val (&%) : bool -> bool -> bool

The boolean ’and’. Evaluation is sequential, left-to-right: in el && e2, el is evaluated first,
and if it returns false, e2 is not evaluated at all. Right-associative operator, see
Ocaml_operators[25.53] for more information.

val (&) : bool -> bool -> bool

Deprecated. (&&)[24.2] should be used instead. Right-associative operator, see
Ocaml_operators[25.53] for more information.

val (||) : bool -> bool -> bool

The boolean ’or’. Evaluation is sequential, left-to-right: in el || e2, el is evaluated first,
and if it returns true, e2 is not evaluated at all. Right-associative operator, see
Ocaml_operators[25.53] for more information.

val (or) : bool -> bool -> bool

Deprecated. (|1)[24.2] should be used instead. Right-associative operator, see
Ocaml_operators|25.53] for more information.

422

Debugging

val

val

val

val

val

val

val

val

__LOC__ : string
__LOC__ returns the location at which this expression appears in the file currently being

parsed by the compiler, with the standard error format of OCaml: "File %S, line %d,
characters %d-%d".

Since: 4.02.0

__FILE__ : string
__FILE__ returns the name of the file currently being parsed by the compiler.
Since: 4.02.0

__LINE__ : int
__LINE__ returns the line number at which this expression appears in the file currently

being parsed by the compiler.
Since: 4.02.0

__MODULE__ : string
__MODULE__ returns the module name of the file being parsed by the compiler.

Since: 4.02.0

POS__ : string * int * int * int

__P0OS__ returns a tuple (file,lnum,cnum,enum), corresponding to the location at which
this expression appears in the file currently being parsed by the compiler. file is the
current filename, 1num the line number, cnum the character position in the line and enum the
last character position in the line.

Since: 4.02.0
__LOC_OF__ : 'a -> string * 'a
__LOC_OF__ expr returns a pair (loc, expr) where loc is the location of expr in the file

currently being parsed by the compiler, with the standard error format of OCaml: "File %S,
line %d, characters %d-%d".

Since: 4.02.0

__LINE OF__ : 'a -> int * 'a

__LINE_OF__ expr returns a pair (line, expr), where line is the line number at which
the expression expr appears in the file currently being parsed by the compiler.

Since: 4.02.0

__POS_OF__ : 'a -> (string * int * int * int) * 'a

Chapter 24. The core library 423

__POS_OF__ expr returns a pair (loc,expr), where loc is a tuple (file,lnum, cnum, enum)
corresponding to the location at which the expression expr appears in the file currently
being parsed by the compiler. file is the current filename, 1lnum the line number, cnum the
character position in the line and enum the last character position in the line.

Since: 4.02.0

Composition operators

val (|>) : 'a -> ('a -> 'b) > 'b
Reverse-application operator: x |> £ |> g is exactly equivalent to g (£ (x)).
Left-associative operator, see Ocaml_operators|25.53] for more information.

Since: 4.01

val (@@) : ('a -> 'b) -> 'a > 'b
Application operator: g @@ f @@ x is exactly equivalent to g (f (x)). Right-associative
operator, see Ocaml_operators[25.53] for more information.

Since: 4.01

Integer arithmetic
Integers are Sys.int_size bits wide. All operations are taken modulo 2595-18t_si2¢ - They do not
fail on overflow.
val (~-) : int -> int
Unary negation. You can also write - e instead of ~- e. Unary operator, see
Ocaml_operators|25.53] for more information.

val (~+) : int -> int
Unary addition. You can also write + e instead of ~+ e. Unary operator, see
Ocaml_operators[25.53] for more information.

Since: 3.12.0

val succ : int -> int

succ xisx + 1.

val pred : int -> int

pred xisx - 1.

val (+) : int -> int -> int
Integer addition. Left-associative operator, see Ocaml_operators|25.53] for more
information.

val (=) : int -> int -> int

424

Integer subtraction. Left-associative operator, , see Ocaml_operators|25.53] for more
information.

val (*) : int -> int -> int
Integer multiplication. Left-associative operator, see Ocaml_operators[25.53] for more
information.

val (/) : int -> int -> int
Integer division. Raise Division_by_zero if the second argument is 0. Integer division
rounds the real quotient of its arguments towards zero. More precisely, if x >= 0 and y >
0, x / y is the greatest integer less than or equal to the real quotient of x by y. Moreover,
(-x) /y=x/ (-y) =- (x/ y) Left-associative operator, see
Ocaml_operators|25.53] for more information.

val (mod) : int -> int -> int

Integer remainder. If y is not zero, the result of x mod y satisfies the following properties: x
= (x/y) *y+ xmod yand abs(x mod y) <= abs(y) - 1. If y = 0, x mod y raises
Division_by_zero. Note that x mod y is negative only if x < 0. Raise Division_by_zero
if y is zero. Left-associative operator, see Ocaml_operators[25.53] for more information.

val abs : int -> int

Return the absolute value of the argument. Note that this may be negative if the argument
ismin_int.

val max_int : int

The greatest representable integer.

val min_int : int

The smallest representable integer.

Bitwise operations

val (land) : int -> int -> int

Bitwise logical and. Left-associative operator, see Ocaml_operators|25.53] for more
information.

val (lor) : int -> int -> int

Bitwise logical or. Left-associative operator, see Ocaml_operators[25.53] for more
information.

val (lxor) : int -> int -> int

Bitwise logical exclusive or. Left-associative operator, see Ocaml_operators|25.53] for more
information.

Chapter 24. The core library 425

val lnot : int -> int

Bitwise logical negation.

val (1sl) : int -> int -> int

n 1sl m shifts n to the left by m bits. The result is unspecified ifm < 0O orm >
Sys.int_size. Right-associative operator, see Ocaml_operators[25.53] for more
information.

val (1sr) : int -> int -> int

n 1lsr m shifts n to the right by m bits. This is a logical shift: zeroes are inserted regardless
of the sign of n. The result is unspecified if m < 0 or m > Sys.int_size. Right-associative
operator, see Ocaml_operators[25.53] for more information.

val (asr) : int -> int -> int

n asr m shifts n to the right by m bits. This is an arithmetic shift: the sign bit of n is
replicated. The result is unspecified if m < 0 orm > Sys.int_size. Right-associative
operator, see Ocaml_operators[25.53] for more information.

Floating-point arithmetic

OCaml!’s floating-point numbers follow the IEEE 754 standard, using double precision (64 bits)
numbers. Floating-point operations never raise an exception on overflow, underflow, division by
zero, etc. Instead, special IEEE numbers are returned as appropriate, such as infinity for 1.0 /.
0.0, neg_infinity for -1.0 /. 0.0, and nan ('not a number’) for 0.0 /. 0.0. These special
numbers then propagate through floating-point computations as expected: for instance, 1.0 /.
infinity is 0.0, and any arithmetic operation with nan as argument returns nan as result.

val (~-.) : float —-> float

Unary negation. You can also write —-. e instead of ~-. e. Unary operator, see
Ocaml_operators|25.53] for more information.

val (~+.) : float -> float

Unary addition. You can also write +. e instead of ~+. e. Unary operator, see
Ocaml_operators[25.53] for more information.

Since: 3.12.0

val (+.) : float -> float -> float

Floating-point addition. Left-associative operator, see Ocaml_operators|25.53] for more
information.

val (-.) : float -> float -> float

Floating-point subtraction. Left-associative operator, see Ocaml_operators[25.53] for more
information.

val (*.) : float -> float -> float

426

Floating-point multiplication. Left-associative operator, see Ocaml_operators[25.53] for
more information.

val (/.) : float -> float -> float

Floating-point division. Left-associative operator, see Ocaml_operators[25.53] for more
information.

val (*x) : float -> float -> float

Exponentiation. Right-associative operator, see Ocaml_operators[25.53] for more
information.

val sqrt : float -> float

Square root.

val exp : float -> float

Exponential.

val log : float -> float
Natural logarithm.

val loglO : float -> float
Base 10 logarithm.

val expml : float -> float

expml x computes exp x -. 1.0, giving numerically-accurate results even if x is close to
0.0.

Since: 3.12.0

val loglp : float -> float

loglp x computes log(1.0 +. x) (natural logarithm), giving numerically-accurate results
even if x is close to 0.0.

Since: 3.12.0

val cos : float -> float

Cosine. Argument is in radians.

val sin : float -> float

Sine. Argument is in radians.

val tan : float -> float

Tangent. Argument is in radians.

val acos : float -> float

Chapter 24. The core library 427

val

val

val

val

val

val

val

val

val

val

val

Arc cosine. The argument must fall within the range [-1.0, 1.0]. Result is in radians and
is between 0.0 and pi.

asin : float -> float

Arc sine. The argument must fall within the range [-1.0, 1.0]. Result is in radians and is
between -pi/2 and pi/2.

atan : float -> float

Arc tangent. Result is in radians and is between -pi/2 and pi/2.

atan2 : float -> float -> float

atan2 y x returns the arc tangent of y /. x. The signs of x and y are used to determine
the quadrant of the result. Result is in radians and is between -pi and pi.

hypot : float -> float -> float

hypot x y returns sqrt(x *. x + y *. y), that is, the length of the hypotenuse of a
right-angled triangle with sides of length x and y, or, equivalently, the distance of the point
(x,y) to origin. If one of x or y is infinite, returns infinity even if the other is nan.

Since: 4.00.0

cosh : float -> float

Hyperbolic cosine. Argument is in radians.

sinh : float -> float

Hyperbolic sine. Argument is in radians.

tanh : float -> float

Hyperbolic tangent. Argument is in radians.

ceil : float -> float

Round above to an integer value. ceil f returns the least integer value greater than or
equal to £. The result is returned as a float.

floor : float -> float

Round below to an integer value. floor f returns the greatest integer value less than or
equal to £f. The result is returned as a float.

abs_float : float -> float

abs_float f returns the absolute value of £.

copysign : float -> float -> float

copysign x y returns a float whose absolute value is that of x and whose sign is that of y.
If x is nan, returns nan. If y is nan, returns either x or -. x, but it is not specified which.

Since: 4.00.0

428

val

val

val

val

val

val

val

val

val

val

val

val

val

mod_float : float -> float -> float

mod_float a b returns the remainder of a with respect to b. The returned valueisa -. n
*. b, where n is the quotient a /. b rounded towards zero to an integer.

frexp : float -> float * int

frexp f returns the pair of the significant and the exponent of £. When £ is zero, the
significant x and the exponent n of £ are equal to zero. When £ is non-zero, they are defined
byf = x *x. 2 *x nand 0.5 <= x < 1.0.

ldexp : float -> int -> float

ldexp x nreturns x *. 2 *x n.

modf : float -> float * float

modf f returns the pair of the fractional and integral part of f.

float : int -> float
Same as float_of_int[24.2].

float_of_int : int -> float

Convert an integer to floating-point.

truncate : float -> int
Same as int_of _float[24.2].

int_of_float : float -> int

Truncate the given floating-point number to an integer. The result is unspecified if the
argument is nan or falls outside the range of representable integers.

infinity : float

Positive infinity.

neg_infinity : float
Negative infinity.

nan : float

A special floating-point value denoting the result of an undefined operation such as 0.0 /.
0.0. Stands for 'not a number’. Any floating-point operation with nan as argument returns
nan as result. As for floating-point comparisons, =, <, <=, > and >= return false and <>
returns true if one or both of their arguments is nan.

max_float : float
The largest positive finite value of type float.

min_float : float

Chapter 24. The core library 429

The smallest positive, non-zero, non-denormalized value of type float.

val epsilon_float : float

The difference between 1.0 and the smallest exactly representable floating-point number
greater than 1.0.

type fpclass =
| FP_normal

Normal number, none of the below

| FP_subnormal

Number very close to 0.0, has reduced precision

| FP_zero
Number is 0.0 or -0.0

| FP_infinite
Number is positive or negative infinity
| FP_nan
Not a number: result of an undefined operation

The five classes of floating-point numbers, as determined by the classify_float[24.2]
function.

val classify_float : float -> fpclass

Return the class of the given floating-point number: normal, subnormal, zero, infinite, or
not a number.

String operations

More string operations are provided in module String[25.47].

val (7) : string -> string -> string
String concatenation. Right-associative operator, see Ocaml_operators|25.53] for more
information.

Character operations

More character operations are provided in module Char[25.10].
val int_of_char : char -> int
Return the ASCII code of the argument.

val char_of_int : int -> char

Return the character with the given ASCII code. Raise Invalid_argument "char_of_int"
if the argument is outside the range 0-255.

430

Unit operations

val ignore : 'a -> unit

Discard the value of its argument and return (). For instance, ignore(f x) discards the
result of the side-effecting function £. It is equivalent to £ x; (), except that the latter
may generate a compiler warning; writing ignore(f x) instead avoids the warning.

String conversion functions

val string_of_bool : bool -> string

Return the string representation of a boolean. As the returned values may be shared, the
user should not modify them directly.

val bool_of_string opt : string -> bool option
Convert the given string to a boolean.
Return None if the string is not "true" or "false".

Since: 4.05

val bool_of_string : string -> bool

Same as bool_of_string_opt[24.2], but raise Invalid_argument "bool_of_string"
instead of returning None.

val string_of_int : int -> string

Return the string representation of an integer, in decimal.

val int_of_string_opt : string -> int option
Convert the given string to an integer. The string is read in decimal (by default, or if the
string begins with Ou), in hexadecimal (if it begins with 0x or 0X), in octal (if it begins with
0o or 00), or in binary (if it begins with Ob or OB).

The Ou prefix reads the input as an unsigned integer in the range [0, 2+*max_int+1]. If the
input exceeds max_int[24.2] it is converted to the signed integer min_int + input -
max_int - 1.

The _ (underscore) character can appear anywhere in the string and is ignored.

Return None if the given string is not a valid representation of an integer, or if the integer
represented exceeds the range of integers representable in type int.

Since: 4.05

val int_of_string : string -> int
Same as int_of_string_opt[24.2], but raise Failure "int_of_string" instead of
returning None.

val string_of_float : float -> string

Chapter 24. The core library 431

Return the string representation of a floating-point number.

val float_of_string opt : string -> float option

Convert the given string to a float. The string is read in decimal (by default) or in
hexadecimal (marked by 0x or 0X).

The format of decimal floating-point numbers is [-] dd.ddd (elE) [+|-] dd , where d
stands for a decimal digit.

The format of hexadecimal floating-point numbers is [-] 0(x|1X) hh.hhh (p|P) [+]-]
dd , where h stands for an hexadecimal digit and d for a decimal digit.

In both cases, at least one of the integer and fractional parts must be given; the exponent
part is optional.

The _ (underscore) character can appear anywhere in the string and is ignored.

Depending on the execution platforms, other representations of floating-point numbers can
be accepted, but should not be relied upon.

Return None if the given string is not a valid representation of a float.
Since: 4.05

val float_of_string : string -> float

Same as float_of_string_opt[24.2], but raise Failure "float_of_string" instead of
returning None.

Pair operations

val fst : 'a * 'b -> 'a

Return the first component of a pair.

val snd : 'a *x 'b -> 'b

Return the second component of a pair.

List operations

More list operations are provided in module List[25.26].
val (@) : 'a list -> 'a list -> 'a list

List concatenation. Not tail-recursive (length of the first argument). Right-associative
operator, see Ocaml_operators[25.53] for more information.

432

Input/output
Note: all input/output functions can raise Sys_error when the system calls they invoke fail.

type in_channel

The type of input channel.

type out_channel
The type of output channel.

val stdin : in_channel

The standard input for the process.

val stdout : out_channel

The standard output for the process.

val stderr : out_channel

The standard error output for the process.

Output functions on standard output

val print_char : char -> unit

Print a character on standard output.

val print_string : string -> unit

Print a string on standard output.

val print_bytes : bytes —> unit
Print a byte sequence on standard output.

Since: 4.02.0

val print_int : int -> unit

Print an integer, in decimal, on standard output.

val print_float : float -> unit

Print a floating-point number, in decimal, on standard output.

val print_endline : string -> unit
Print a string, followed by a newline character, on standard output and flush standard
output.

val print_newline : unit -> unit
Print a newline character on standard output, and flush standard output. This can be used
to simulate line buffering of standard output.

Chapter 24. The core library 433

Output functions on standard error

val prerr_char : char -> unit

Print a character on standard error.

val prerr_string : string -> unit

Print a string on standard error.

val prerr_bytes : bytes -> unit
Print a byte sequence on standard error.

Since: 4.02.0

val prerr_int : int -> unit

Print an integer, in decimal, on standard error.

val prerr_float : float -> unit

Print a floating-point number, in decimal, on standard error.

val prerr_endline : string -> unit

Print a string, followed by a newline character on standard error and flush standard error.

val prerr_newline : unit -> unit

Print a newline character on standard error, and flush standard error.

Input functions on standard input

val read_line : unit -> string

Flush standard output, then read characters from standard input until a newline character
is encountered. Return the string of all characters read, without the newline character at
the end.

val read_int_opt : unit -> int option
Flush standard output, then read one line from standard input and convert it to an integer.
Return None if the line read is not a valid representation of an integer.

Since: 4.05

val read_int : unit -> int

Same as read_int_opt[24.2], but raise Failure "int_of_string" instead of returning
None.

val read_float_opt : unit -> float option

434

Flush standard output, then read one line from standard input and convert it to a
floating-point number.

Return None if the line read is not a valid representation of a floating-point number.

Since: 4.05.0

val read_float : unit -> float

Same as read_float_opt[24.2], but raise Failure "float_of_string" instead of returning
None.

General output functions
type open_flag =
| Open_rdonly
open for reading.
| Open_wronly
open for writing.
| Open_append
open for appending: always write at end of file.
| Open_creat
create the file if it does not exist.
| Open_trunc
empty the file if it already exists.
| Open_excl
fail if Open_creat and the file already exists.
| Open_binary
open in binary mode (no conversion).
| Open_text
open in text mode (may perform conversions).
| Open_nonblock

open in non-blocking mode.
Opening modes for open_out_gen[24.2] and open_in_gen[24.2].

val open_out : string -> out_channel

Open the named file for writing, and return a new output channel on that file, positioned at
the beginning of the file. The file is truncated to zero length if it already exists. It is created
if it does not already exists.

val open_out_bin : string -> out_channel

Chapter 24. The core library 435

val

val

val

val

val

val

val

val

val

val

Same as open_out[24.2], but the file is opened in binary mode, so that no translation takes
place during writes. On operating systems that do not distinguish between text mode and
binary mode, this function behaves like open_out[24.2].

open_out_gen : open_flag list -> int -> string -> out_channel

open_out_gen mode perm filename opens the named file for writing, as described above.
The extra argument mode specifies the opening mode. The extra argument perm specifies
the file permissions, in case the file must be created. open_out[24.2] and
open_out_bin[24.2] are special cases of this function.

flush : out_channel -> unit

Flush the buffer associated with the given output channel, performing all pending writes on
that channel. Interactive programs must be careful about flushing standard output and
standard error at the right time.

flush_all : unit -> unit

Flush all open output channels; ignore errors.

output_char : out_channel -> char -> unit

Write the character on the given output channel.

output_string : out_channel -> string -> unit

Write the string on the given output channel.

output_bytes : out_channel -> bytes -> unit
Write the byte sequence on the given output channel.

Since: 4.02.0

output : out_channel -> bytes -> int -> int -> unit

output oc buf pos len writes len characters from byte sequence buf, starting at offset
pos, to the given output channel oc. Raise Invalid_argument "output" if pos and len do
not designate a valid range of buf.

output_substring : out_channel -> string -> int -> int -> unit
Same as output but take a string as argument instead of a byte sequence.

Since: 4.02.0

output_byte : out_channel -> int -> unit

Write one 8-bit integer (as the single character with that code) on the given output channel.
The given integer is taken modulo 256.

output_binary_int : out_channel -> int -> unit

436

val

val

val

val

val

val

val

Write one integer in binary format (4 bytes, big-endian) on the given output channel. The
given integer is taken modulo 232. The only reliable way to read it back is through the
input_binary_int[24.2] function. The format is compatible across all machines for a given
version of OCaml.

output_value : out_channel -> 'a -> unit

Write the representation of a structured value of any type to a channel. Circularities and
sharing inside the value are detected and preserved. The object can be read back, by the
function input_value[24.2]. See the description of module Marshal[25.29] for more
information. output_value[24.2] is equivalent to Marshal.to_channel[25.29] with an
empty list of flags.

seek_out : out_channel -> int -> unit

seek_out chan pos sets the current writing position to pos for channel chan. This works
only for regular files. On files of other kinds (such as terminals, pipes and sockets), the
behavior is unspecified.

pos_out : out_channel -> int

Return the current writing position for the given channel. Does not work on channels
opened with the Open_append flag (returns unspecified results).

out_channel_length : out_channel -> int

Return the size (number of characters) of the regular file on which the given channel is
opened. If the channel is opened on a file that is not a regular file, the result is meaningless.

close_out : out_channel -> unit

Close the given channel, flushing all buffered write operations. Output functions raise a
Sys_error exception when they are applied to a closed output channel, except close_out
and flush, which do nothing when applied to an already closed channel. Note that
close_out may raise Sys_error if the operating system signals an error when flushing or
closing.

close_out_noerr : out_channel -> unit

Same as close_out, but ignore all errors.

set_binary_mode_out : out_channel -> bool -> unit

set_binary_mode_out oc true sets the channel oc to binary mode: no translations take
place during output. set_binary_mode_out oc false sets the channel oc to text mode:
depending on the operating system, some translations may take place during output. For
instance, under Windows, end-of-lines will be translated from \n to \r\n. This function has
no effect under operating systems that do not distinguish between text mode and binary
mode.

Chapter 24. The core library 437

General input functions

val

val

val

val

val

val

open_in : string -> in_channel
Open the named file for reading, and return a new input channel on that file, positioned at
the beginning of the file.

open_in_bin : string -> in_channel
Same as open_in[24.2], but the file is opened in binary mode, so that no translation takes

place during reads. On operating systems that do not distinguish between text mode and
binary mode, this function behaves like open_in[24.2].

open_in_gen : open_flag list -> int -> string -> in_channel

open_in_gen mode perm filename opens the named file for reading, as described above.
The extra arguments mode and perm specify the opening mode and file permissions.
open_in[24.2] and open_in_bin[24.2] are special cases of this function.

input_char : in_channel -> char
Read one character from the given input channel. Raise End_of_file if there are no more
characters to read.

input_line : in_channel -> string

Read characters from the given input channel, until a newline character is encountered.
Return the string of all characters read, without the newline character at the end. Raise
End_of_file if the end of the file is reached at the beginning of line.

input : in_channel -> bytes -> int -> int -> int

input ic buf pos len reads up to len characters from the given channel ic, storing them
in byte sequence buf, starting at character number pos. It returns the actual number of
characters read, between 0 and len (inclusive). A return value of 0 means that the end of
file was reached. A return value between 0 and len exclusive means that not all requested
len characters were read, either because no more characters were available at that time, or
because the implementation found it convenient to do a partial read; input must be called
again to read the remaining characters, if desired. (See also really_input[24.2] for reading
exactly len characters.) Exception Invalid_argument "input" is raised if pos and len do
not designate a valid range of buf.

val really_input : in_channel -> bytes -> int -> int -> unit

really_input ic buf pos len reads len characters from channel ic, storing them in byte
sequence buf, starting at character number pos. Raise End_of_file if the end of file is
reached before len characters have been read. Raise Invalid_argument "really_input" if
pos and len do not designate a valid range of buf.

val really_input_string : in_channel -> int -> string

438

val

val

val

val

val

val

val

val

val

really_input_string ic len reads len characters from channel ic and returns them in a
new string. Raise End_of_file if the end of file is reached before len characters have been
read.

Since: 4.02.0

input_byte : in_channel -> int
Same as input_char([24.2], but return the 8-bit integer representing the character. Raise
End_of file if an end of file was reached.

input_binary_int : in_channel -> int

Read an integer encoded in binary format (4 bytes, big-endian) from the given input
channel. See output_binary_int[24.2]. Raise End_of_file if an end of file was reached
while reading the integer.

input_value : in_channel -> 'a

Read the representation of a structured value, as produced by output_value[24.2], and
return the corresponding value. This function is identical to Marshal.from_channel[25.29];
see the description of module Marshal[25.29] for more information, in particular concerning
the lack of type safety.

seek_in : in_channel -> int -> unit

seek_in chan pos sets the current reading position to pos for channel chan. This works
only for regular files. On files of other kinds, the behavior is unspecified.

pos_in : in_channel -> int

Return the current reading position for the given channel.

in_channel_length : in_channel -> int

Return the size (number of characters) of the regular file on which the given channel is
opened. If the channel is opened on a file that is not a regular file, the result is meaningless.
The returned size does not take into account the end-of-line translations that can be
performed when reading from a channel opened in text mode.

close_in : in_channel -> unit

Close the given channel. Input functions raise a Sys_error exception when they are applied
to a closed input channel, except close_in, which does nothing when applied to an already
closed channel.

close_in_noerr : in_channel -> unit

Same as close_in, but ignore all errors.

set_binary_mode_in : in_channel -> bool -> unit

Chapter 24. The core library 439

set_binary_mode_in ic true sets the channel ic to binary mode: no translations take
place during input. set_binary_mode_out ic false sets the channel ic to text mode:
depending on the operating system, some translations may take place during input. For
instance, under Windows, end-of-lines will be translated from \r\n to \n. This function has
no effect under operating systems that do not distinguish between text mode and binary
mode.

Operations on large files

module LargeFile
sig

val seek_out : out_channel -> int64 -> unit
val pos_out : out_channel -> int64
val out_channel_length : out_channel -> int64
val seek_in : in_channel -> int64 -> unit
val pos_in : in_channel -> int64
val in_channel_length : in_channel -> int64

end

Operations on large files. This sub-module provides 64-bit variants of the channel functions
that manipulate file positions and file sizes. By representing positions and sizes by 64-bit
integers (type int64) instead of regular integers (type int), these alternate functions allow
operating on files whose sizes are greater than max_int.

References

type 'a ref =
{ mutable contents : 'a ;

}

The type of references (mutable indirection cells) containing a value of type 'a.

val ref : 'a -> 'a ref

Return a fresh reference containing the given value.

val (!) : 'a ref -> 'a

't returns the current contents of reference r. Equivalent to fun r -> r.contents. Unary
operator, see Ocaml_operators[25.53] for more information.

val (:=) : 'a ref -> 'a -> unit
r := a stores the value of a in reference r. Equivalent to fun r v -> r.contents <- v.
Right-associative operator, see Ocaml_operators[25.53] for more information.

val incr : int ref -> unit

440

Increment the integer contained in the given reference. Equivalent to fun r -> r := succ
Ir.

val decr : int ref -> unit

Decrement the integer contained in the given reference. Equivalent to fun r -> r := pred
Ir.

Result type

type ('a, 'b) result =
| Ok of 'a
| Error of 'b

Since: 4.03.0

Operations on format strings

Format strings are character strings with special lexical conventions that defines the functionality
of formatted input/output functions. Format strings are used to read data with formatted in-
put functions from module Scanf[25.40] and to print data with formatted output functions from
modules Print£[25.36] and Format[25.16].

Format strings are made of three kinds of entities:

e conversions specifications, introduced by the special character '%' followed by one or more
characters specifying what kind of argument to read or print,

e formatting indications, introduced by the special character '@' followed by one or more
characters specifying how to read or print the argument,

e plain characters that are regular characters with usual lexical conventions. Plain characters
specify string literals to be read in the input or printed in the output.

There is an additional lexical rule to escape the special characters '%' and '@' in format strings:
if a special character follows a '%' character, it is treated as a plain character. In other words,
"%%" is considered as a plain 'J%"' and "%@" as a plain '@".

For more information about conversion specifications and formatting indications available, read
the documentation of modules Scanf[25.40], Print£[25.36] and Format[25.16].

Format strings have a general and highly polymorphic type ('a, 'b, 'c, 'd, 'e, 'f)
format6. The two simplified types, format and format4 below are included for backward
compatibility with earlier releases of OCaml.

The meaning of format string type parameters is as follows:

o 'ais the type of the parameters of the format for formatted output functions (printf-style
functions); 'a is the type of the values read by the format for formatted input functions
(scanf-style functions).

Chapter 24. The core library 441

e 'b is the type of input source for formatted input functions and the type of output target
for formatted output functions. For printf-style functions from module Print£[25.36], 'b is
typically out_channel; for printf-style functions from module Format[25.16], 'b is typically
Format.formatter[25.16]; for scanf-style functions from module Scanf[25.40], 'b is typically
Scanf.Scanning.in_channel|[25.40)].

Type argument 'b is also the type of the first argument given to user’s defined printing functions
for %a and %t conversions, and user’s defined reading functions for %r conversion.

e 'c is the type of the result of the %a and %t printing functions, and also the type of the
argument transmitted to the first argument of kprintf-style functions or to the kscanf-style
functions.

e 'd is the type of parameters for the scanf-style functions.
e 'e is the type of the receiver function for the scanf-style functions.
o 'f is the final result type of a formatted input/output function invocation: for the printf-

style functions, it is typically unit; for the scanf-style functions, it is typically the result
type of the receiver function.

type ('a, 'b, 'c, 'd, 'e, 'f) formaté = ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.form

type ('a, 'b, 'c, 'd) formatd = ('a, 'b, 'c, 'c, 'c, 'd) format6
type ('a, 'b, 'c) format = ('a, 'b, 'c, 'c) format4d
val string of_format : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> string

Converts a format string into a string.

val format_of_string :
('a, 'b, 'c, 'd, 'e, 'f) formaté6 ->
('a, 'b, 'c, 'd, 'e, 'f) format6
format_of_string s returns a format string read from the string literal s. Note:
format_of_string can not convert a string argument that is not a literal. If you need this
functionality, use the more general Scanf.format_from_string[25.40] function.

val (77)

('a, 'b, 'c, 'd, 'e, 'f) formaté6 ->

('f, 'pb, 'c, 'e, 'g, 'h) format6 ->

('a, 'pb, 'c, 'd, 'g, 'h) format6
f1 =~ £2 catenates format strings £1 and £2. The result is a format string that behaves as
the concatenation of format strings £1 and £2: in case of formatted output, it accepts
arguments from f1, then arguments from £2; in case of formatted input, it returns results
from £1, then results from £2. Right-associative operator, see Ocaml_operators|25.53] for
more information.

442

Program termination

val exit : int -> 'a
Terminate the process, returning the given status code to the operating system: usually 0 to
indicate no errors, and a small positive integer to indicate failure. All open output channels
are flushed with flush_all. An implicit exit 0 is performed each time a program
terminates normally. An implicit exit 2 is performed if the program terminates early
because of an uncaught exception.

val at_exit : (unit -> unit) -> unit

Register the given function to be called at program termination time. The functions
registered with at_exit will be called when the program does any of the following:

o executes exit[24.2]
e terminates, either normally or because of an uncaught exception

o executes the C function caml_shutdown. The functions are called in ’last in, first out
order: the function most recently added with at_exit is called first.

Standard library modules

module Arg :
Arg

module Array :
Array

module ArrayLabels :
ArrayLabels

module Bigarray :
Bigarray

module Bool :
Bool

module Buffer :
Buffer

module Bytes
Bytes

module BytesLabels
BytesLabels

module Callback :
Callback

module Char :
Char

module Complex :
Complex

Chapter 24. The core library 443

module Digest
Digest

module Ephemeron :
Ephemeron

module Filename
Filename

module Float
Float

module Format
Format

module Fun :
Fun

module Gc
Gc

module Genlex :
Genlex

module Hashtbl
Hashtbl

module Int
Int

module Int32 :
Int32

module Int64 :
Int64

module Lazy :
Lazy

module Lexing :
Lexing

module List
List

module ListLabels
ListLabels

module Map :
Map

module Marshal
Marshal

module MorelLabels
MoreLabels

module Nativeint

Nativeint
module Obj

444

0bj
module Oo
Oo
module Option :
Option
module Parsing :
Parsing
module Pervasives
Pervasives
module Printexc
Printexc
module Printf
Printf
module Queue :
Queue
module Random :
Random
module Result
Result
module Scanf
Scanf
module Seq :
Seq
module Set
Set
module Spacetime
Spacetime
module Stack :
Stack
module StdLabels
StdLabels
module Stream :
Stream
module String :
String
module StringLabels
Stringlabels
module Sys
Sys
module Uchar :
Uchar

Chapter 24. The core library

module Unit :
Unit

module Weak :
Weak

445

446

Chapter 25

The standard library

This chapter describes the functions provided by the OCaml standard library. The modules from the
standard library are automatically linked with the user’s object code files by the ocamlc command.
Hence, these modules can be used in standalone programs without having to add any .cmo file on
the command line for the linking phase. Similarly, in interactive use, these globals can be used in
toplevel phrases without having to load any .cmo file in memory.

Unlike the core Stdlib module, submodules are not automatically “opened” when compilation
starts, or when the toplevel system is launched. Hence it is necessary to use qualified identifiers to
refer to the functions provided by these modules, or to add open directives.

Conventions

For easy reference, the modules are listed below in alphabetical order of module names. For each
module, the declarations from its signature are printed one by one in typewriter font, followed by a
short comment. All modules and the identifiers they export are indexed at the end of this report.

Overview

Here is a short listing, by theme, of the standard library modules.

447

448

Data structures:

String p- 666 string operations

Bytes p- 488 operations on byte sequences

Array p- 453 array operations

List p- 593 list operations

StdLabels p. 664 labelized versions of the above 4 modules

Unit p- 686 unit values

Bool p. 482 boolean values

Char p- 508 character operations

Uchar p.- 685 Unicode characters

Int p.- 578 integer values

Option p- 626 option values

Result p. 642 result values

Hashtbl p. 569 hash tables and hash functions

Random p. 640 pseudo-random number generator

Set p- 655 sets over ordered types

Map p. 606 association tables over ordered types

MoreLabels p. 615 labelized versions of Hashtbl, Set, and Map

Oo p. 626 useful functions on objects

Stack p. 662 last-in first-out stacks

Queue p. 638 first-in first-out queues

Buffer p- 483 buffers that grow on demand

Seq p. 6564 functional iterators

Lazy p. 588 delayed evaluation

Weak p. 687 references that don’t prevent objects from being garbage-collected

Ephemeron p. 512 ephemerons and weak hash tables

Bigarray p- 463 large, multi-dimensional, numerical arrays
Arithmetic:

Complex p. 509 Complex numbers

Float p- 524 Floating-point numbers

Int32 p- 581 operations on 32-bit integers

Int64 p- 584 operations on 64-bit integers

Nativeint p. 622 operations on platform-native integers
25.0.1 Input/output:

Format p. 536 pretty printing with automatic indentation and line breaking

Marshal p. 612 marshaling of data structures

Printf p. 635 formatting printing functions

Scanf p- 644 formatted input functions

Digest p. 511 MDb5 message digest

Chapter 25. The standard library 449

25.0.2 Parsing:

Genlex p. 568 a generic lexer over streams

Lexing p. 590 the run-time library for lexers generated by ocamllex
Parsing p. 628 the run-time library for parsers generated by ocamlyacc
Stream p. 664 basic functions over streams

25.0.3 System interface:

Arg p- 449 parsing of command line arguments
Callback p. 508 registering OCaml functions to be called from C
Filename p. 520 operations on file names
Ge p. 561 memory management control and statistics
Printexc p. 629 a catch-all exception handler
Spacetime p. 661 memory profiler
Sys p. 677 system interface
25.0.4 Misc:

Fun p. 560 function values

25.1 Module Arg : Parsing of command line arguments.

This module provides a general mechanism for extracting options and arguments from the command
line to the program.

Syntax of command lines: A keyword is a character string starting with a -. An option is a
keyword alone or followed by an argument. The types of keywords are: Unit, Bool, Set, Clear,
String, Set_string, Int, Set_int, Float, Set_float, Tuple, Symbol, and Rest. Unit, Set and
Clear keywords take no argument. A Rest keyword takes the remaining of the command li