

KORG 1212 I/O API Revised: 1/4/00 Page 1 of 20

KORG R&D CONFIDENTIAL

1212 I/O

Low Level Driver SpeciÞcation

© KORG Inc.

Version 1.0

KORG 1212 I/O API Revised: 1/4/00 Page 2 of 20

KORG R&D CONFIDENTIAL

1.0 SCOPE

This document covers the low level communications that need to exist between the Korg 1212I/O PCI
Multi-Channel Audio Interface Card and the application software. This API is written with three points of
view. First, the initial applications software to be bundled with the card is MacroMediaÕs DECK II, which
speciÞes a set of calls in its API. These calls either request information (via <GET> commands) from the
PCI card (hereafter referred to as ÒhardwareÓ), or setup some type of parameter on the hardware (via
<SET> commands). Secondly, the DSP code is contained within the low level driver, and is downloaded
into the DSP program memory at system startup. The DSP will request a program loading sequence, and
the driver will begin loading code via the PCI Mailboxes (more on this later). Lastly, there is memory allo-
cation, card allocation, and all other necessary ÒMacintoshÓ low level setup that needs to be done. I hope
that the driver programmer will be able to furnish the necessary Macintosh setup commands/standard
practices, as I am mainly focused on getting information to and from the hardware.

KORG 1212 I/O API Revised: 1/4/00 Page 3 of 20

KORG R&D CONFIDENTIAL

2.0 Communications Essentials

The hardware contains a PCI device manufactured by PLX Inc., called the PLX9060SD. The 9060 handles
all PCI bus chores including bus requests, PCI setups and card IDs, etc. It also provides two primary com-
munication channels: a single, bi-directional DMA channel, and a set of doorbell and mailbox registers.

2.1 DMA

The DMA channel is used to move data from the DSP receive buffers into the host record buffers, and from
the host play buffers into the DSP transmit buffers. Of course, this is simpliÞcation that I am using just to
show how the driver should be thinking of this transfer. The DSP transmit and receive buffers are actually
a complex set of memory areas, each with 8 buffers, which must be constructed and deconstructed so that
their formats correspond correctly to the FPGA. Also, there is routing and mixing happening before trans-
mitting to the outside world. But, for the driver needs, this simpliÞcation will sufÞce. The following dia-
gram shows this generalized concept:

The DSP will setup and initiate the DMA transfers. The driver will need to allocate the memory for the
host buffers and periodically Þll the playback buffers with host data. The DSP will notify the driver that it
(the driver) needs to request more audio data every time one of the playback buffers is emptied. The DSP
keeps track of this. The application will be constantly emptying the record buffers, and the DSP constantly
Þlling them. This will be discussed in detail later.

2.2 Doorbells and Mailboxes

The 9060 provides two

8-bit

 doorbells and four

32-bit

 mailboxes. The two doorbells are setup as a PCI-to-
Local doorbell and a Local-to-PCI doorbell. When the host needs to tell the hardware something, it rings
the PCI-to-Local doorbell, which generates a local interrupt to the DSP. Likewise, when the DSP needs to
tell the host something, it rings the Local-to-PCI doorbell, which generates a PCI interrupt. The Driver will
need to service this interrupt. Both the host (driver) and DSP (hardware) can read and write to all of the
mailbox registers. Therefore, in general, a typical communication via the doorbell/mailboxes would go

Host Playback Buffers

Host Record Buffers

DSP Transmit Buffers

DSP Receive Buffers

OUTSIDE
AUDIO
WORLD

PCI BUS

Audio
Out

Audio
In

DMA PCI to Local

DMA Local to PCI

Figure 1: Basic DMA Scheme

(8 total) (8 total)

(8 total)(8 total)

KORG 1212 I/O API Revised: 1/4/00 Page 4 of 20

KORG R&D CONFIDENTIAL

something like this (this is a typical conÞguration example, where the host is conÞguring the hardware
and passing it some info):

 ¥ Driver writes some information into one or more of the mailboxes
 ¥ Driver rings PCI-to-Local doorbell, setting the doorbell bits according to a pre-deÞned scheme
 ¥ This generates an interrupt to the DSP
 ¥ The DSP jumps to its ISR where it then reads the doorbell and clears the set bits (thus clearing the

interrupt)
 ¥ The DSP decodes the doorbell byte and jumps to a routine for that type of servicing
 ¥ The DSP reads the mailbox register(s) and takes the information out
 ¥ The DSP returns from its ISR and continues what it was doing

Note that there is no acknowledge at the end of this transfer; the cleared interrupt is really the acknowl-
edge. For a DSP-to-Driver communication, the exact same thing happens, but with the driver reading the
doorbell, clearing the interrupt, and then reading the mailbox(es).

It is important to remember that mailboxes are

32-bit

 registers. The 9060 breaks this into 4 bytes, which the
DSP reads as 2 words. For example, Mailbox 0 is broken into MBox0_LO and MBox0_HI in the DSP-world.
This spec will always show which word is important, i.e. the DSP-world designation. In a call, the driver
may only need to write a value (e.g. 04h) to the LO word. The spec would say Òwrite the value 0x0004 to

MBox0_LO

.Ó The driver may either write 0x0004 to the MBox0_LO register, or 0x0000 0004 to the entire 32
bit mailbox register. That decision is up to the programmer. In a few cases, the DSP will be expecting 32 bit
data in the mailboxes (and must do double reads to access it). In these cases, the spec will say Òwrite the
value 0x0004 to

MBox0

Ó which indicates that all 32 bits must be speciÞed.

2.3 PCI Addresses

Upon bootup, the PCI controller will scan the bus and setup and allocate memory offsets for several PCI
address spaces. These include:

 ¥ RunTime Base Address (RunTime)
 ¥ Address Space 0 Aperture (AS0A)
 ¥ PCI Expansion ROM (PER)

These offsets are dynamic, and are held somewhere in the MacOS. Presumably, the driver writer will
understand how to Þnd these offsets. Names in parentheses are the offset address names I use in this doc-
ument. E.G.

RunTime + 060h

 would signify 060h spaces from the RunTime Base Address.

2.4 Non-Communication Calls

The application may also request information from the driver in which the driver does not have to talk to
the hardware at all. An example of this is the application call, GetPlayChannelCount, in which the driver
will ALWAYS return the value 12.

2.5 Important Addresses

Appendix A contains a copy of the registers that will be referenced in this document. Remember to use the
PCI addresses and note the directives to Base offsets (see above Section 2.3).

2.6 Conventions

PCI registers are abbreviated as:

Mailboxes = MBox

E.G.

Mbox0_LO

 = low word of Mailbox 0 register,

MBox0

 = both words (32 bit data)
of Mailbox 0.

KORG 1212 I/O API Revised: 1/4/00 Page 5 of 20

KORG R&D CONFIDENTIAL

3.0 Play and Record Buffer Spaces

The 1212 I/O Driver allocates two multiple-buffer spaces (currently 8 buffers apiece): a Record buffer and
Playback buffer. The multiple buffers are concatenated back-to-back, so that the buffer (n+1) begins at the
next address after buffer (n) ends.

The buffers are set up as a circular queue. The card starts reading and writing at buffer zero and continues
through to the last buffer, at which point it then starts back at buffer zero. The application must keep track
of the buffers.

Each Audio Data Frame includes 12 channels worth of audio data, plus ADAT timecode data. The Þrst 10
audio channels are 16 bit data, the last 2 audio channels are 32 bit data (for S/PDIF), and the ADAT time-
code is 32 bit data, for a total of 32 bytes (10*2 + 2*4 + 1*4). (The timecode data is only read from the card,
and not written to the card; in Playback frames, simply pad this area with zeroes.)

Buffers are expected to be 512 frames long; however, this allocation is dynamic and can change as long as
all the buffers are exactly the same length (Length of Record (n) = Record (n+1) = Play (n) = Play (n+1).
Accordingly, there is an application call (GetPacketSize) that asks the driver how big these buffers are, and
a DSP setup command that gives it the same number. The DSP keeps track of how much data has been
read into the buffers and provides a request for more buffer data. Figure 1, below, is an example of one
Audio Data Frame as it relates to one of the playback buffers:

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

Channel 8

Channel 9

Channel A MSW

Channel A LSW

Channel B MSW

Channel B LSW

16 Bits Wide

One Audio Frame

Frame 0_A

Frame 1_A

Frame 2_A

Frame 255_A

Play Buffer A

Frame N_A

Frame 0_B

Frame 1_B

Play Buffer B

Figure 2: Play and Record Buffers

Timecode MSW

Timecode LSW Starts Here

KORG 1212 I/O API Revised: 1/4/00 Page 6 of 20

KORG R&D CONFIDENTIAL

3.1 S/PDIF Channels

The Korg 1212 I/O has S/PDIF channels located at Channels A and B. Note in the above diagram that
these channels are long words and consist of an MSW and LSW channel. This is necessary to support
S/PDIF bit depths up to 20 bits. In addition, the 1212 I/O makes the S/PDIF (V)alidity, (C)hannel, and
(C)hannel (B)lock (S)tatus bits available to the application. These bits are packed into the S/PDIF long
word as follows: (in this example, we are looking at S/PDIF channel A only):

Note the ÒdonÕt careÓ bits. The 1212 I/O will

transmit

 these as zeros to the application. On the receiving
end, the 1212 I/O ignores these bits since the S/PDIF transmitter IC will truncate this byte to 20 bits any-
way.

The 1212 I/O transmits the S/PDIF channel bits (V, C, CBS) but ignores the received channel byte. There-
fore, these channel bits are read-only and are for information only. The application can not alter these bits
in the outbound direction. One instance where these might be useful is in an S/PDIF error-count indicator
(much like those on a DAT machine) which monitors the (V)alidity bit and ßashes an LED when the
received data is invalid. See the S/PDIF professional speciÞcation for more details.

For 16-Bit S/PDIF, the application should place this word in the ÒHIÓ word slot (Bits 19:4) and Þll the LSB
with zeros.

Channel 9

Channel A HI

Channel A LO

MSB LSB B
it

 0

B
it

 1
5

MSB NSB B
it

 4

B
it

 1
9

B
it

 2
B

it
 3

B
it

 0
B

it
 1

V C

Figure 3: S/PDIF 20 bit data and V, U, C,P Locations

LSB

C
B

S

KORG 1212 I/O API Revised: 1/4/00 Page 7 of 20

KORG R&D CONFIDENTIAL

4.0 Other Memory Allocations

Besides the Play and Record buffer memory allocation, the driver also needs to allocate spaces for the fol-
lowing data:

4.1 Analog Volume Control Values

The application will make calls to the driver to setup a digitally controlled analog volume IC. There will be
both a Left and Right Volume level, that we should NOT assume will always be the same. The driver will
receive the volume control change commands and transmit them to the PCI card using a rather tedious
method of bit-toggling. The volume control receives 2 bytes per channel, MSB Þrst. The Þrst byte (Byte 0)
selects the channel, and will have a value of either 0000 0000b (for Channel 1 or Left) or 0000 0001b (for
Channel 2 or Right).

The second byte (Byte 1) will contain the actual volume control information. The driver needs to allocate
memory locations (either 2 bytes, 1 word, 1/2 LWord, etc...) to store the last volume code written for each
channel. The driver may periodically ask for the last control word written. It is up to the driver program-
mer to decide how to allocate the memory.

4.2 Channel Volume Control Values

The driver also needs to allocate memory locations for Channel Volume values. There are twelve 16-bit
values to be stored, one for each channel in the DSP core. Both the application and the DSP will need to
know the starting address of this memory block. See Figure 3 below.

4.3 Channel Routing Control Values

In addition to channel volumes, the driver needs to allocate Channel Routing control values in another
contiguous chunk of memory. There are twelve 16-bit values to be stored, one for each channel in the DSP
core. Both the application and the DSP will need to know the starting address of this memory block. See
Þgure 3 below.

4.4 State Variable

The driver needs to know its state as either ÒstoppedÓ or Ònot stopped.Ó A state variable should be allo-
cated for this and provisions made. More states may be added later as things Þnalize.

4.5 ADAT TimeCode Register

The Driver needs to allocate a 2 words of memory for the ADAT Timecode information. The timeCode
value is a 32-bit number. We need to discuss how this will be mapped (as bytes/words/LWords).

KORG 1212 I/O API Revised: 1/4/00 Page 8 of 20

KORG R&D CONFIDENTIAL

4.5.1 ADAT Timecode Format

It is beyond the scope of this document to get too detailed about exact ADAT timecode peculiarities. The
Alesis document

Alesis ADAT Proprietary Synchronization Interface

 (contact Alesis Corp. for more informa-
tion) contains very detailed information concerning the sync and timecode functions of the ADAT and
ADAT XT.

The Korg 1212 I/O reads and generates ADAT timecode. Every four frames, the DMA sequence will result
in a freshly updated timecode value. This value is a 32 bit number which represents

the number of sample
clocks that have passed since the very beginning of the tape

. This value must therefore be decoded by the
application to produce an hour:minute:second:tenth (00:00:00:00) time value. There are several important
considerations when looking at ADAT timecode:

 ¥ ADAT timecode can only be read when the ADAT is the clocking master (a limitation due to the
AUSY2 ADAT interface chip)

 ¥ The actual value (in hours:minutes...) must be calculated by dividing the timecode number by the

sample rate as selected on the face of the ADAT -- this can be 44.1 or 48 KHz.

Since the applica-
tion knows (and must provide) the clocking information, this should not be a problem.

 ¥ In the ADAT itself, vari-speeding the tape will not alter the timecode, but will alter the number of
sample clocks.

This creates a severe anomaly since ADAT timecode is deÞned as Òthe number of word-
clocks that have passed since the beginning of the tape

.Ó The Korg 1212 I/O counts ÒrealÓ sample clocks
(the ADAT counts either 44.1 or 48K clocks, regardless of the true sample frequency) -- as the user
vari-speeds the tape, the Korg1212 I/O ADAT timecode value

will

 slow down or speed up accord-
ingly. This is a trade-off made due to an inefÞcient timecode reader inside the AUSY2 chip which
only allows true timecode reading every 2 sample frames. This is too much overhead for the DSP,
so it reads ÒtrueÓ timecode while it chase-locks the ADAT code, then begins generating its own
timecode (by counting sample clocks) thereafter.

 ¥ The ADAT tape format puts 00:02:00:00 (2 minutes) of a special formatting at the head of each
tape. The Timecode is the number of samples since 00:00:00:00, so the Þrst valid, legal timecode
that can be produced is: 0x0057 E400 which represents 2 minutes. The math involved is:

Channel 0 Volume
Channel 1 Volume
Channel 2 Volume
Channel 3 Volume
Channel 4 Volume
Channel 5 Volume
Channel 6 Volume
Channel 7 Volume
Channel 8 Volume
Channel 9 Volume
Channel A Volume
Channel B Volume

Channel 0 Routing
Channel 1 Routing
Channel 2 Routing
Channel 3 Routing
Channel 4 Routing
Channel 5 Routing
Channel 6 Routing
Channel 7 Routing
Channel 8 Routing
Channel 9 Routing
Channel A Routing
Channel B Routing

16 Bits 16 Bits

Channel Volume Channel Routing

Figure 4: Volume and Routing Memory Blocks & Misc Memory

Analog Volume
Left Channel (1)

Right Channel (2)

8 Bits

ADAT Master Time Code Value
TimeCode

32 Bits

State

width not yet specified

Sample_Rate

32 Bits

KORG 1212 I/O API Revised: 1/4/00 Page 9 of 20

KORG R&D CONFIDENTIAL

57 E400h = 5,760,000d

5,760,000/48000 = 120

120/60 = 2.0 (if the result of this division is greater than 60.0, then another divide-by-60 must be done;
these successive divide-by-60s will eventually produce the full, hours:minutes:seconds:tenths number.

4.5.2 Fast ADAT Stop Mode

The 1212I/O includes a DSP switch that allows a mode of operation called ÒFast ADAT Stop.Ó The Alesis
ADAT timecode specs that a new timecode base will appear every 33 to 65,535 WordClocks (i.e. Fs).

When synchronized to an ADAT, the Application tells the driver the Starting ADAT timecode (a raw,
unsigned 32 bit integer). The 1212I/O will chase lock the ADAT, but will wait until the start time is hit
before going into play-mode. When the ADAT is stopped, the 1212I/O will also stop.

In order to hit the worst case of 65,535 clocks, the 1212I/O must wait for (65,535 * 20 uSec) or about 1.5 sec-
onds before it can guarantee that the locally generated timecode has ÒslippedÓ by too much; the indication
that the tape has stopped.

However, for ADATs and ADAT XTs, the timecode base is constantly sent every 960 sample clocks. The
1212I/O has a special function to allow the card to stop playback faster (960 * 20uSec) or 19mSec. This is
barely perceptible.

The driver must notify the card

before

 issuing a play command, that the card will be Syncing to ADAT.
This call uses an extra data element to set the Fast ADAT Stop mode. See the API call

 TriggerFromAda

t for
more details.

4.6 Record/Playback Latency Issues

4.6.1 Play-Only Latency

In a Playback session, the 1212 I/O Þrst preloads its local buffers. These are analogous to the Host Play-
back and Record Buffers. After Þlling its own buffers, the 1212 I/O card updates its host memory pointers.
These pointers tell the DSP where, within the Playback and Record buffers, it will need to setup the DMA
starting addresses. After that, the DSP waits for a ÒtriggerÓ signal (a call made through the driver) after
which it begins playback. Because it has already preloaded its buffers, and updated its host address point-
ers, the playback starts immediately, taking two (2) sample periods. Due to the way data I/O is set up
within the DSP architecture itself, these 2 cycles are required. Therefore, there is a 2 sample-period latency
between the time the trigger is received, and the time that the Þrst playback sample is output.

4.6.2 Record/Play Latency

The second type of latency is the record/playback latency. the 1212 I/O receives playback data frames

from

the host, and sends record frames

to

 the host. These events should be sample accurate and locked. In other
words, on the same sample period that playback frame N is sent out, the host should receive record frame
N. However, the DSP pre-loading scheme, which makes sample playback accurate to 2 sample periods,
causes the record data to be offset from the playback data. In fact, this latency is exactly equal to the size of
the local DSP sample buffers. Currently, this is 16 sample periods. When the DSP preloads its Þrst buffer
full of playback data, it

can not

 preload the Þrst buffer of record data to the host, since recording has not yet
started. So, it Þlls the host record buffer with zeros, Þlling the record buffer with exactly the same number
of frames-of-zeros as playback-frames it has preloaded.

For example, say that a play/record session has been initiated. The host has preÞlled its Playback buffers
with data, and the DSP has preÞlled its local buffers with data, and incremented the host address pointer.

KORG 1212 I/O API Revised: 1/4/00 Page 10 of 20

KORG R&D CONFIDENTIAL

At the time that playback frame 0 is output, the 1212 I/O has also acquired record frame 0. However, the
latency due to the DSP preÞlling routine causes record frame 0 to be placed at the 16th slot in the Host
Record Buffer. Examine Figure 4 below:

The application should adjust its recorded data storage requirements accordingly so that record frame 0
and play frame 0 Òline upÓ in time.

This latency is related to the size of the local buffers. This buffer sizing is

not dynamically changeable nor is it
user-selectable

. However, the buffer size may change as the software (both DSP and driver) are updated.
Therefore, the application should make a call at startup requesting the Record/Play Latency time in sam-
ples. There is an API call for this very function.

Host Playback BufferHost Record Buffer
Play_A Frame 0

Play_A Frame 1...
Play_A Frame 15

...
Play_A Frame 255

A

B

A

B

First 16 Frames
are zero-ed out

Record_A Frame 0

Record/Play
Latency

Play_B Frame 0

Figure 5: Record/Playback latency

...

Record_A Frame 1

...

for first A-buffer
only

KORG 1212 I/O API Revised: 1/4/00 Page 11 of 20

KORG R&D CONFIDENTIAL

5.0 DSP ucode Download

The DSP code is stored in and shipped with the Korg 1212 I/O driver. When the system boots, or when the
Application Þrst calls the driver, the DSP code must be downloaded via the PCI bus. The driver will need
to allocate at most 8K bytes of space for the DSP code. The complete board boot sequence is shown below:

5.0.1 Boot Notes

After booting, the 1212I/O will need to use the SRAM space that contains the boot code. Therefore, part of
the code is written over, and the DSP may never boot again using this code. Therefore, the driver may not
issue a boot-from-page-4 command. The driver must issue a boot-from-page-0 command, give the DSP the
starting address (of the uCode), then the DSP will do the rest. Although there is a limitation for Boot Page
4 (the SRAM image), there are no limitations on reboots from Pages 0-3 -- these may be done at any time.

Power ON
DSP Boots from Page 0

DSP initializes all
Peripherals (chips)
into known state

DSP waits for host
to deliver boot code info

DRIVER sends following:
MBOX0: 32 bit starting address

of DSP code in Host
Memory

 PCI->LCL Doorbell: 0x00AF

DRIVER waits for ACKDSP sets up and inits the
DMA from host to local
SRAM

DSP ACKs by writing
 to LCL->PCI

a PCI interrupt

0x00AE
doorbell, generating

ring doorbell

ring doorbell

DSP waits for <BOOT>
command

DRIVER issues boot command,
ring doorbell boots from page Y by writing

Figure 6: Boot sequence

DSP self boots into page Y

0x00AY to PCI->LCL doorbell
Example:
0x00A0 = boot page 0
0x00A1 = boot page 1
etc...

KORG 1212 I/O API Revised: 1/4/00 Page 12 of 20

KORG R&D CONFIDENTIAL

6.0 Driver-to-Hardware Communications

These are the calls that will need to be made to the hardware.

These calls to and from hardware are established with the following header:

API Name:

This is just a label for this document; may be renamed by programmer

Direction:

PCI-to-Local is a call issued by the driver to the hardware
Local-to-PCI is issued by the hardware to the driver via PCI Interrupt
Application-to-Driver is called only to driver; no calls to the hardware
Driver-to-Application is called only to the application; no calls to hardware

Com Type:

Either Mailbox, DMA, or Host (Host is for application-to-driver calls)

OTF?:

Can this be done On The Fly during playback/record?

Var I/O:

lists the variables to be passed and direction (in = into driver; out = out of driver)
for Application to Driver or Driver to Application

State:

in a few calls, the driver will need to know its state and a variable

6.1 Calls Made TO the Hardware

API Name: SetClockSourceRate
Direction: PCI to Local
Com Type: Mailbox
OTF?: No
Var I/O: in:

long

 srate

This call selects the clock source for the card. The hardware can be run from 6 different clocks/rates:

 ¥ ADAT Clock @ 44.1KHz
 ¥ ADAT Clock @ 48KHz
 ¥ S/PDIF Clock or Word Clock In @ 44.1KHz
 ¥ S/PDIF Clock or Word Clock In @ 48 KHz
 ¥ Local Oscillator @ 44.1 KHz
 ¥ Local Oscillator @ 48 KHz

The user has 6 options for setting the sample rate and clock source. The driver will issue this command
and pass in the parameter for sample rate/source. The Application may use Table 1 to set this up. This
should only be done occasionally. The encoding is:

PROCEDURE:

 ¥ Driver receives

srate

 ¥ Driver saves this value in a memory location

sample_rate

 ¥ Load

MBox0_LO

 with the corresponding value from Table 1
 ¥ Write

0x05

 into PCI-to-Local Doorbell

KORG 1212 I/O API Revised: 1/4/00 Page 13 of 20

KORG R&D CONFIDENTIAL

API Name: ConÞgureBufferMemory
Direction: PCI to Local
Com Type: Mailbox
OTF?: Yes

This procedure is called to the hardware after the PCI initialization is complete and the play/record buffer
space has been allocated. At this point, the driver will know the starting addresses of the play/record buff-
ers in host memory as well as the size of the buffers (should be 256 frames = 256*28Bytes = 7.168KBytes per
half-buffer; one buffer = A half and B half concatenated). The DSP needs to know these starting addresses
so that it can set up the DMA blocks correctly. Also, it needs to know the length so it can issue requests to
the driver, notifying it that the buffer is half empty.

PROCEDURE:

 ¥

MBox0

 = Playback Buffer starting address (32 bit address)
 ¥

MBox1

 = Record Buffer starting address
 ¥

MBox2_LO

 = length of one buffer (should be 256, but may vary -- see Section 3.0)
 ¥ Write

0x03

 to PCI-to-Local Doorbell, which initiates the process

API Name: ConÞgureMiscMemory
Direction: PCI to Local
Com Type: Mailbox
OTF?: Yes

This procedure is called to the hardware after the PCI initialization is complete and the play/record buffer
space has been allocated. The Driver needs to give the DSP the starting addresses of the memory chunks
allocated for Channel Volume and Channel Routing arrays as well as the ADAT Timecode address.

PROCEDURE:

 ¥

MBox0

 = Channel Volume Control Starting Address (32 Bits)
 ¥

MBox1

 = Channel Routing Control Starting Address (32 Bits)
 ¥

MBox2

 = ADAT TimeCode Address (32 Bits)
 ¥ Write

0x06 to PCI-to-Local Doorbell, which initiates the process

Table 1: Clock Source/Rate vs. Mailbox Value

Clock Source/Rate MBox0_LO Value

ADAT Input @44.1 KHz 0x8000

ADAT Input @ 48 KHz 0x0000

S/PDIF or Word Clock Input @ 44.1 KHz 0x8001

S/PDIF or Word Clock Input @ 48 KHz 0x0001

Local @ 44.1KHz 0x8002

Local @ 48KHz 0x0002

KORG 1212 I/O API Revised: 1/4/00 Page 14 of 20

KORG R&D CONFIDENTIAL

API Name: MonitorOnOff
Direction: PCI to Local
Com Type: Mailbox
OTF?: No
Var I/O: in: short newmode (boolean)

This command turns monitor mode on or off. During Monitor mode, there are no DMAs to and from the
hardware. In monitor mode, the inputs are looped directly back out to the outputs.

PROCEDURE:

 ¥ Driver receives call from application and is given newmode = true or false (true=monitor on)
 ¥ Driver makes decision and loads MBox0_LO accordingly
 ¥ MBox0_LO = 0x0002 if Monitor = ON
 ¥ MBox0_LO = 0x0004 if Monitor = OFF
 ¥ Write 0x02 to PCI-to-Local Doorbell

API Name: SetupForPlay
Direction: PCI to Local
Com Type: Mailbox
OTF?: No
Var I/O: no variable passed

This routine is called after the playback buffers have been pre-initialized with data, and record buffers
have been zeroed out. This buffer initialization must be done each and every time a play-session is desired.
This call will put the PCI card into a play loop where it will initialize its play buffers (by doing the very
Þrst DMA) and then it will wait for the trigger.

PROCEDURE:

 ¥ Driver receives call for setup. It issues the following:
 ¥ MBox0_LO = 0x0001
 ¥ Write 0x02 to PCI-to-Local Doorbell

API Name: TriggerFromAdat
Direction: PCI to Local
Com Type: Mailbox
OTF?: No
Var I/O: adat_timecode

This sets up the DSP to trigger off of an ADAT timecode instead of the Òtrigger_playÓ command below.
The application will still issue a Òtrigger_playÓ command, but the DSP will wait until the correct ADAT
timecode value rolls around before actually triggering.

PROCEDURE:

 ¥ Driver receives call for trigger_from_adat, then:
 ¥ MBox0 = adat_timecode (32 bit adat-timecode formatted value)
 ¥ MB0x1_LO=FastAdatStop mode ßag: 0x8000 = fast stop mode, 0x0000 = non-fast-stop mode
 ¥ Write 0x07 to PCI-to-Local Doorbell

KORG 1212 I/O API Revised: 1/4/00 Page 15 of 20

KORG R&D CONFIDENTIAL

API Name: TriggerPlay
Direction: PCI to Local
Com Type: Mailbox
OTF?: No
Var I/O: no variable passed
State: save Ònot stoppedÓ state

This will trigger the playback/record routine in DSP. This can only be called after the Setup_for_Play has
been called. The driver will need to toggle its state variable to show that it is Ònot stoppedÓ -- it should
never trigger play if it is not stopped.

PROCEDURE:

 ¥ Driver receives call for trigger and immediately:
 ¥ Write 0x01 to PCI-to-Local Doorbell
 ¥ save state as Ònot stoppedÓ
 ¥ That is all.

API Name: StopPlay
Direction: PCI to Local
Com Type: Mailbox
OTF?: Yes
Var I/O: no variable passed
State: save ÒstoppedÓ state

This will stop playback or stop monitor mode. The driver should know that it is in the ÒstopÓ state by writ-
ing to the driver state variable.

PROCEDURE:

 ¥ MBox0_LO = 0x0008
 ¥ Write 0x02 to PCI-to-Local Doorbell

API Name: SetInputSensitivity
Direction: PCI to Local
Com Type: Mailbox
OTF?: No
Var I/O: in: short level_1, in: short level_2

This sets the record level sensitivity (not really gain, but sensitivity). The input sensitivity controls the ceil-
ing or clip point of the ADC stage. A high sensitivity means Òwide-openÓ or Òfull-onÓ while low sensitivity
implies ÒattenuationÓ or Òcutting down the signal.Ó This distinction is made because the 1212 I/O has no
pre-amps and thus no gain. A value of 0 is no attenuation (full gain), 0x00FF is maximum attenuation
(muted).

This sensitivity setting is accomplished across a 3-wire interface from the PCI chip to a digitally controlled
analog volume control. This was added on to the design late in the game. Therefore, the implementation is
slightly more complex. The application will pass in the left and right level variables and the driver will
implement.

KORG 1212 I/O API Revised: 1/4/00 Page 16 of 20

KORG R&D CONFIDENTIAL

Each bit on the 3-wire interface is toggled by writing to a control register on the PLX chip. This 3-wire
interface consists of data, clock and load. The load acts as a chip select and load/shift command. The vol-
ume control clock can run at a rate up to 1 MHz. Since the driver is toggling the bits, it needs to insert wait
loops between clock toggles (noted below as <wait>). The programmer should calculate the wait loop to
time give about 0.5 usec or more, thus giving a 1 MHz clock rate. The volume control easily runs at lower
rates, so anything up to 1 MHz can be used.

The volume control expects data as follows:

PROCEDURE:

 ¥ Driver gets call and is passed the level_1 and level_2 variables
 ¥ Driver writes these values into its Analog Volume memory spaces
 ¥ Driver checks the host variable sample_rate to determine if 44.1 KHz or 48 KHz (used later)
 ¥ Toggle volume control bits by writing to (PCI RunTime Offset + 06E) as follows:
 ¥ Initiation phase (Þrst data bit, and load/shift toggle):
 ¥ If Þrst data bit = 0: toggle load/shift AND write the Þrst data bit by writing 0x8000,
 ¥ If Þrst data bit = 1: toggle load/shift AND write the Þrst data bit by writing 0x8400,
 ¥ Clocking Data Phase (writing all remaining data) -- clock bit must be toggled twice per data bit
 ¥ If next data bit = 0: write 0x8000, <wait>, write 0x8100 ,<wait>
 ¥ If next data bit = 1: write 0x84000, <wait>, write 0x8500, <wait>
 ¥ repeat for all data bits
 ¥ EOT Phase: transfer complete
 ¥ toggle load/shift again by writing 0x8001
 ¥ S/PDIF FF Phase: Need to re-write the SPDIF FF
 ¥ Driver had determined if 44.1 KHz or 48K Hz above
 ¥ If 44.1 KHz, write 0x8001 to (PCI RunTime Offset + 06E), then
 ¥ write 0x8101 followed by 0x8001
 ¥ If 48 KHz, write 0x8401 to (PCI RunTime Offset + 06E), then
 ¥ write 0x8501 followed by 0x8401

Volume
Control
ChipByte 0Byte 1

MSBLSBMSBLSB

(1) Driver initiates Volume Control Toggle
(2) Driver begins clocking data in

(3) Driver brings load/shift high again, transfer complete

 Set to 00 if Channel 1 (Left)
 Set to 01 if Channel 2 (Right)

Set to appropriate
level_X variable

load/shift

Clock

Data

NOTE: Byte 0, MSB is first bit to be toggled into chip

Figure 4: Analog Volume Control timing diagram

KORG 1212 I/O API Revised: 1/4/00 Page 17 of 20

KORG R&D CONFIDENTIAL

6.2 Calls to the Driver only (no interaction with the hardware)

API Name: GetClockSourceRate
Direction: PCI to Local
Com Type: Mailbox
OTF?: No
Var I/O: out: long *srate

The application calls this to know the address of the sample_rate variable. The driver should return this
address (pointer). See also Set_Clock_Source_Rate.

API Name: GetPacketSize
Direction: Application to Driver
Com Type: Host
OTF?: No
Var I/O: out: short *psize

The driver needs to allocate a memory location that will hold the value of the packet-size. A packet is
really one buffer-of-frames. This should be 512. Upon boot and setup, the driver will load the buffer-of-
frames size (hopefully 512) into the memory location psize. If the Get_Packet_Size call is made, the driver
returns the size (512).

API Name: GetSampleSize
Direction: Application to Driver
Com Type: Host
OTF?: No
Var I/O: out: short *sample_size

The driver will setup a memory location called sample_size and Þll with the number 2 (2 bytes per sample).
This call returns that value.

API Name: GetPlayCount
Direction: Application to Driver
Com Type: Host
OTF?: No
Var I/O: out: short *count

The driver will setup a memory location called count, and Þll with the number 12. This call returns the
value 12.

API Name: GetRecordCount
Direction: Application to Driver
Com Type: Host
OTF?: No
Var I/O: out: short *count

The driver will setup a memory location called count, and Þll with the number 12. This call returns the
value 12.

KORG 1212 I/O API Revised: 1/4/00 Page 18 of 20

KORG R&D CONFIDENTIAL

API Name: GetInputSensitivity
DECK Call: GetInputGain
Direction: Application to Driver
Com Type: Host
OTF?: No
Var I/O: out: short *level

The driver allocates a memory location which holds the value level; the analog sensitivity level. This call
returns the address of (pointer to) the level memory location.

API Name: GetPlayBufferAddresses
Direction: Application to Driver
Com Type: Host
OTF?: No
Var I/O: out: char **b1, char ** b2

This is an initialization call from the application that will ask for the addresses of the Play buffers. These
addresses are the starting addresses of the A and B buffers, which are concatenated back-to-back. See Fig-
ure 2: Play and Record Buffers for a conceptual drawing. The driver then returns the pointer to the pointer of
the start addresses.

API Name: GetRecordBufferAddresses
Direction: Application to Driver
Com Type: Host
OTF?: No
Var I/O: out: char **b1, char ** b2

This is an initialization call from the application that will ask for the addresses of the Record buffers. These
addresses are the starting addresses of the A and B buffers, which are concatenated back-to-back. See Fig-
ure 2: Play and Record Buffers for a conceptual drawing. The driver then returns the pointer to the pointer of
the start addresses.

API Name: GetChannelVolumeBufferAddresses
Direction: Application to Driver
Com Type: Host
OTF?: No
Var I/O: out: char **v

The driver returns a pointer to the starting address of the Channel Volume Control Buffer.

API Name: GetChannelRoutingBufferAddresses
Direction: Application to Driver
Com Type: Host
OTF?: No
Var I/O: out: char **r

The driver returns a pointer to the starting address of the Channel Routing Control Buffer.

KORG 1212 I/O API Revised: 1/4/00 Page 19 of 20

KORG R&D CONFIDENTIAL

API Name: GetTimecodeAddresses
Direction: Application to Driver
Com Type: Host
OTF?: No
Var I/O: out: char **t

The driver returns a pointer to the starting address of the ADAT Timecode Buffer.

API Name: GetRecPlayLatency
Direction: Application to Driver
Com Type: Host
OTF?: No
Var I/O: None

The driver will return the value <16> which is the number of sample frames that the record buffer will lag
behind the play buffer. This latency description is covered in section 4.6. This value will only change when
a new driver is released, if at all.

6.3 Calls that directly affect buffer Þlls

API Name: SetFillRoutine
Direction: Application to Driver
Com Type: Host
OTF?: No
Var I/O: in: *FillRoutine, in: long param

During the initialization phase, the application establishes a method of communication between the driver
and Þll routine of the app. When the hardware realizes that the play buffers are half empty, it interrputs
the driver. The driver then calls the applicationÕs Þll routine and passes the param variable everytime the
hardware needs more data. The hardware will ring the host doorbell to signify the beginning of this pro-
cess. See Request_for_data below.

API Name: RequestForData
Direction: Hardware to Driver
Com Type: PCI Interrupt; Doorbell and Mailbox
OTF?: Yes

The DSP DMAs data from the host Playback Buffers (A and B). It also DMAs into the Record buffer. The
DSP begins outputting samples starting at the very Þrst Playback Buffer A location. It then keeps track of
how many frames it has played back and will issue a PCI interrupt when it has played completely through
the Þrst buffer.

PROCEDURE:

 ¥ The hardware rings the Local-to-PCI doorbell which generates a PCI interrupt
 ¥ The driver reads the doorbell (1 byte) into a register, and re-writes it back out to the doorbell, thus

clearing the interrupt.
 ¥ If the doorbell is a positive number (MSB not set) then there are no errors; everything is OK

KORG 1212 I/O API Revised: 1/4/00 Page 20 of 20

KORG R&D CONFIDENTIAL

 ¥ If the doorbell is a negative number (MSB set) then there has been an error. The driver issues a
Stop_Play command thus stopping the hardware playback

 ¥ The value of the doorbell determines the error-type; the driver has halted the hardware, and has
retained the value of the doorbell, and has set its state to stop

 ¥ IF there are no errors, then the driver will call the applications Fill_Routine and pass the param
variable as needed.

