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Appendix G 

 

Proofs for Section 3.4.2 

 

 Here we present the technical details for Section 3.4.2.  First, we prove three 

lemmas that explore the relation between closed real intervals in terms of the lattice 

structure. 

 

 Prop. G.1. Given a continuous scalar s ∈ S, and [x, y] ∈ Is, then 

↓(⊥,...,[x, y],...,⊥) = I{↓(⊥,...,[z, z],...,⊥) | x ≤ z ≤ y}. 

 Proof.  ↓(⊥,...,[z, z],...,⊥) = {[u, v] | u ≤ z ≤ v} so 

I{↓(⊥,...,[z, z],...,⊥) | x ≤ z ≤ y} = {[u, v] | ∀z. (x ≤ z ≤ y ⇒ u ≤ z ≤ v)} = 

{[u, v] | u ≤ x ≤ y ≤ v} = ↓(⊥,...,[x, y],...,⊥).   

 

 Prop. G.2. Given a continuous scalar s ∈ S, and a set A ⊆ Is\{⊥} such that 

∃u'. ∀[u, v] ∈ A. u' ≤ u and ∃v'. ∀[u, v] ∈ A. v ≤ v', then 

↓(⊥,...,[inf{u | [u, v] ∈ A}, sup{v | [u, v] ∈ A}],...,⊥) = 

I{↓(⊥,...,[u, v],...,⊥) | [u, v] ∈ A}. 

 Proof. Let x = inf{u | [u, v] ∈ A} and y = sup{v | [u, v] ∈ A}.  This inf and sup 

exist since the lower and upper bounds u' and v' exist.  Then 

(⊥,...,[a, b],...,⊥) ∈ ↓(⊥,...,[x, y],...,⊥) ⇔ 

a ≤ x ≤ y ≤ b ⇔ 

∀[u, v] ∈ A. a ≤ u ≤ v ≤ b ⇔ 

∀[u, v] ∈ A. (⊥,...,[a, b],...,⊥) ∈ ↓(⊥,...,[u, v],...,⊥) ⇔ 

(⊥,...,[a, b],...,⊥) ∈ I{↓(⊥,...,[u, v],...,⊥) | [u, v] ∈ A}. 
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Thus ↓(⊥,...,[x, y],...,⊥) = I{↓(⊥,...,[u, v],...,⊥) | [u, v] ∈ A}.   

 

 Prop. G.3. Given a display function D:U → V, a continuous scalar s ∈ S, and 

[x, y] ∈ Is, then D(↓(⊥,...,[x, y],...,⊥)) = I{D(↓(⊥,...,[z, z],...,⊥)) | x ≤ z ≤ y}. 

 Proof. x ≤ w ≤ y ⇒ /\{D(↓(⊥,...,[z, z],...,⊥)) | x ≤ z ≤ y} ≤ D(↓(⊥,...,[w, w],...,⊥)), 

so there is A ∈ U such that D(A) = /\{D(↓(⊥,...,[z, z],...,⊥)) | x ≤ z ≤ y} = 

I{D(↓(⊥,...,[z, z],...,⊥)) | x ≤ z ≤ y} (by Prop. C.8) and such that 

x ≤ w ≤ y ⇒ A ≤ ↓(⊥,...,[w, w],...,⊥).  Thus A ≤ /\{↓(⊥,...,[w, w],...,⊥) | x ≤ w ≤ y} = 

I{↓(⊥,...,[w, w],...,⊥) | x ≤ w ≤ y} = ↓(⊥,...,[x, y],...,⊥) (by Prop. G.1). 

 On the other hand, x ≤ z ≤ y ⇒ ↓(⊥,...,[x, y],...,⊥) ≤ ↓(⊥,...,[z, z],...,⊥) ⇒ 

D(↓(⊥,...,[x, y],...,⊥)) ≤ D(↓(⊥,...,[z, z],...,⊥)), so D(↓(⊥,...,[x, y],...,⊥)) ≤ D(A) and thus 

↓(⊥,...,[x, y],...,⊥) ≤ A.  Therefore ↓(⊥,...,[x, y],...,⊥) = A so 

D(↓(⊥,...,[x, y],...,⊥)) = D(A) = I{D(↓(⊥,...,[z, z],...,⊥)) | x ≤ z ≤ y}.   

 

 Now we define the values of display functions on embedded continuous scalar 

objects in terms of functions of real numbers. 

 

 Def. Given a display function D:U → V and a continuous scalar s ∈ S, by Prop. 

F.8 and Prop. F.11 there is a continuous d ∈ DS such that values in Us are mapped to 

values in Vd.  Define functions gs:R × R → R and hs:R × R → R by: 

∀↓(⊥,...,[x, y],...,⊥) ∈ Us, D(↓(⊥,...,[x, y],...,⊥)) = ↓(⊥,...,[gs(x, y), hs(x, y)],...,⊥) ∈ Vd. 

Since D({(⊥,...,⊥)}) = {(⊥,...,⊥)} and D is injective, D maps intervals in Is to intervals in 

Id, so gs(x, y) and hs(x, y) are defined for all z.  Also define functions g's:R → R and 

h's:R → R by g's(z) = gs(z, z) and h's(z) = hs(z, z). 
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 In Prop. G.4 we show how the functions gs and hs can be defined in terms of the 

functions g's and h's. 

 

 Prop. G.4. Given a display function D:U → V, a continuous scalar s ∈ S, and 

[x, y] ∈ Is, then gs(x, y) = inf{g's(z) | x ≤ z ≤ y} and hs(x, y) = sup{h's(z) | x ≤ z ≤ y}. 

 Proof. By Prop. G.3, D(↓(⊥,...,[x, y],...,⊥)) = 

I{D(↓(⊥,...,[z, z],...,⊥)) | x ≤ z ≤ y} = I{↓(⊥,...,[g's(z), h's(z)],...,⊥) | x ≤ z ≤ y}.  By 

Prop. F.8 this is ↓(⊥,...,[a, b],...,⊥) for some a, b ∈ R.  Define 

A = {[g's(z), h's(z)] | x ≤ z ≤ y}.  Then  ∀[g's(z), h's(z)] ∈ A. a ≤ g's(z) and 

∀[g's(z), h's(z)] ∈ A. h's(z) ≤ b, and, by Prop. G.2, 

D(↓(⊥,...,[x, y],...,⊥)) = ↓(⊥,...,[a, b],...,⊥) = 

↓(⊥,...,[inf{g's(z) | x ≤ z ≤ y}, sup{h's(z) | x ≤ z ≤ y}],...,⊥).   

 

 Next, we prove a two lemmas useful for studying the functions gs and hs. 

 

 Prop. G.5. Given a display function D:U → V, a continuous scalar s ∈ S, and a 

finite set A ⊆ Is\{⊥}, then 

gs(inf{u | [u, v] ∈ A}, sup{v | [u, v] ∈ A}) = inf{gs(u, v) | [u, v] ∈ A} and 

hs(inf{u | [u, v] ∈ A}, sup{v | [u, v] ∈ A}) = sup{hs(u, v) | [u, v] ∈ A}. 

 Proof. Since A is finite, inf{u | [u, v] ∈ A} and sup{v | [u, v] ∈ A} exist, so, by 

Prop. G.2, ↓(⊥,...,[inf{u | [u, v] ∈ A}, sup{v | [u, v] ∈ A}],...,⊥) = 

I{↓(⊥,...,[u, v],...,⊥) | [u, v] ∈ A} = /\{↓(⊥,...,[u, v],...,⊥) | [u, v] ∈ A}.  Let 

a = gs(inf{u | [u, v] ∈ A}, sup{v | [u, v] ∈ A} and 

b = hs(inf{u | [u, v] ∈ A}, sup{v | [u, v] ∈ A}).  Then 

↓(⊥,...,[a, b],...,⊥) = 
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D(↓(⊥,...,[inf{u | [u, v] ∈ A}, sup{v | [u, v] ∈ A}],...,⊥)) = 

/\{D(↓(⊥,...,[u, v],...,⊥)) | [u, v] ∈ A} = 

I{↓(⊥,...,[gs(u, v), hs(u, v)],...,⊥) | [u, v] ∈ A} = (by Prop. G.2) 

↓(⊥,...,[inf{gs(u, v) | [u, v] ∈ A}, sup{hs(u, v) | [u, v] ∈ A}],...,⊥), so 

a = inf{gs(u, v) | [u, v] ∈ A} and b = sup{hs(u, v) | [u, v] ∈ A}.   

 

 Prop. G.6. Given a display function D:U → V and a continuous scalar s ∈ S, then  

[a, b] ⊂ [x, y] ⇔ [gs(a, b), hs(a, b)] ⊂ [gs(x, y), hs(x, y)]. 

 Proof. [a, b] ⊂ [x, y] ⇔ ↓[a, b] > ↓[x, y] ⇔ 

D(↓(⊥,...,[gs(a, b), hs(a, b)],...,⊥)) > D(↓(⊥,...,[gs(x, y), hs(x, y)],...,⊥)) ⇔ 

[gs(a, b), hs(a, b)] ⊂ [gs(x, y), hs(x, y)].   

 

 Now we show that the overall behavior of a display function on a continuous 

scalar must fall into one of two categories. 

 

 Prop. G.7. Given a display function D:U → V and a continuous scalar s ∈ S, then 

either 

(a) ∀x, y, z ∈ R. x < y < z implies that gs(x, z) = gs(x, y) & hs(x, y) < hs(x, z) and that 

 gs(x, z) < gs(y, z) & hs(y, z) = hs(x, z), 

or 

(b) ∀x, y, z ∈ R. x < y < z implies that gs(x, z) < gs(x, y) & hs(x, y) = hs(x, z) and that 

 gs(x, z) = gs(y, z) & hs(y, z) < hs(x, z). 

 Proof. Let x < y < z.  Then, by Prop. G.5, gs(x, z) = min{gs(x, y), gs(y, z)} and 

hs(x, z) = max{hs(x, y), hs(y, z)}.  If gs(x, z) < gs(x, y) and hs(x, y) < hs(x, z) then 
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gs(y, z) = gs(x, z) and hs(y, z) = hs(x, z), so [gs(x, y), hs(x, y)] ⊂ [gs(y, z), hs(y, z)] and by 

Prop. G.6, [x, y] ⊂ [y, z], which is impossible.  Thus either gs(x, y) = gs(x, z) or 

hs(x, y) = hs(x, z).  However, both equalities cannot hold, since 

↓(⊥,...,[gs(x, y), hs(x, y)],...,⊥) = ↓(⊥,...,[gs(x, z), hs(x, z)],...,⊥) ⇒ 

↓(⊥,...,[x, y],...,⊥) = ↓(⊥,...,[x, z],...,⊥), which is impossible.  Thus 

gs(x, z) = gs(x, y) & hs(x, y) < hs(x, z) or gs(x, z) < gs(x, y) & hs(x, y) = hs(x, z).  A 

similar argument applies to the relation between [y, z] and [x, z], so 

gs(x, z) = gs(y, z) & hs(y, z) < hs(x, z) or gs(x, z) < gs(y, z) & hs(y, z) = hs(x, z). 

 Since gs(x, z) = min{gs(x, y), gs(y, z)} and hs(x, z) = max{hs(x, y), hs(y, z)}, if  

gs(x, z) = gs(x, y) then hs(x, y) < hs(x, z) so hs(x, z) = hs(y, z), and if gs(x, z) = gs(y, z) 

then hs(y, z) < hs(x, z) so hs(x, z)=hs(x, y).  Thus, for all x, y, z ∈ R, x < y < z implies that 

(c) gs(x, z) = gs(x, y) & hs(x, y) < hs(x, z) and gs(x, z) < gs(y, z) & hs(y, z) = hs(x, z), 

or 

(d) gs(x, z) < gs(x, y) & hs(x, y) = hs(x, z) and gs(x, z) = gs(y, z) & hs(y, z) < hs(x, z). 

We need to show that either (c) is true for all x < y < z, or that (d) is true for all x < y < z. 

 Now let x < y < z < w.  Apply (c) and (d) to x < y < z and x < z <  w, but assume 

that (c) applies in one case and that (d) applies in the other case.  That is, assume that 

gs(x, w) = gs(x, z) < gs(x, y) and hs(x, y) = hs(x, z) < hs(x, w), or that 

gs(x, w) < gs(x, z) = gs(x, y) and hs(x, y) < hs(x, z) = hs(x, w).  Under both of these 

assumptions, gs(x, w) < gs(x, y) and hs(x, y) < hs(x, w), which is impossible (applying the 

result of the previous paragraph to x < y < w).  Thus either (c) applies to both x < y < z 

and x < z <  w, or (d) applies to both x < y < z and x < z <  w. 

 Similarly, apply (c) and (d) to x < y < w and y < z < w, but assume that (c) applies 

in one case and that (d) applies in the other case.  That is, assume that 

gs(x, w) < gs(y, w) = gs(z, w) and hs(z, w) < hs(y, w) = hs(x, w), or that 
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gs(x, w) = gs(y, w) < gs(z, w) and hs(z, w) = hs(y, w) < hs(x, w).  Under both of these 

assumptions, gs(x, w) < gs(z, w) and hs(z, w) < hs(x, w), which is impossible (applying 

the result of the previous paragraph to x < z < w).  Thus either (c) applies to both x < y < 

w and y < z <  w, or (d) applies to both x < y < w and y < z <  w. 

 Now let x < y < z < x' < y' < z'.  The results of the last two paragraphs can be 

applied to show that (c) and (d) are applied consistently to the following chain of triples: 

x < y < z 

x < y < x' 

x < x' < y' 

x < y' < z' 

y < y' < z' 

z < y' < z' 

x' < y' < z'. 

Thus either (c) applies to both x < y < z and x' < y' < z', or (d) applies to both x < y < z and 

x' < y' < z'. 

 Given any two triples x < y < z and x' < y' < z', pick x" < y" < z" with z < x" and 

z' < x".  Then x < y < z < x" < y" < z" and x' < y' < z' < x" < y" < z" so either (c) or (d) 

applies uniformly to the triples x < y < z, x" < y" < z" and x' < y' < z'.  Thus either (c) or 

(d) applies uniformly to all triples, proving the proposition.   

 

 Next we define names for the two categories established in Prop. G.7. 

 

 Def. Given a display function D:U → V and a continuous scalar s ∈ S, by Prop. 

G.7, either (a) or (b) is applies to all triples x < y < z.  If (a) applies, say that D is 

increasing on s, and if (b) applies, say that D is decreasing on s. 
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 Prop. G.8 is useful for showing how the categories established in Prop. G.7 apply 

to the functions g's and h's. 

 

 Prop. G.8. Given a display function D:U → V, a continuous scalar s ∈ S, z ∈ R, 

and a set A ⊆ Is\{⊥} such that [z, z] = IA, then 

g's(a) = sup{gs(a, b) | [a, b] ∈ A} and 

h's(a) = inf{hs(a, b) | [a, b] ∈ A}. 

 Proof.  

↓(⊥,...,[z, z],...,⊥) = {(⊥,...,[u, v],...,⊥) | u ≤ z ≤ v} = 

{(⊥,...,[u, v],...,⊥) | ∃[a, b] ∈ A. u ≤ a ≤ b ≤ v} = 

U{↓(⊥,...,[a, b],...,⊥) | [a, b] ∈ A}.  This union of closed sets is closed (since it equals 

↓(⊥,...,[z, z],...,⊥)), so, by Prop. C.8, 

↓(⊥,...,[z, z],...,⊥) = \/{↓(⊥,...,[a, b],...,⊥) | [a, b] ∈ A}.  Then, by Prop. B.3, 

D(↓(⊥,...,[z, z],...,⊥)) = \/{D(↓(⊥,...,[a, b],...,⊥)) | [a, b] ∈ A} = 

\/{↓(⊥,...,[gs(a, b), hs(a, b)],...,⊥) | [a, b] ∈ A}.  Therefore 

↓(⊥,...,[g's(a), h's(a)],...,⊥) = \/{↓(⊥,...,[gs(a, b), hs(a, b)],...,⊥) | [a, b] ∈ A}.  Thus 

∀[a, b] ∈ A. ↓(⊥,...,[gs(a, b), hs(a, b)],...,⊥) ≤ ↓(⊥,...,[g's(a), h's(a)],...,⊥), so 

∀[a, b] ∈ A. gs(a, b) ≤ g's(a) ≤ h's(a) ≤ hs(a, b).  Therefore 

sup{gs(a, b) | [a, b] ∈ A} ≤ g's(a) and h's(a) ≤ inf{hs(a, b) | [a, b] ∈ A}. 

 Now assume that sup{gs(a, b) | [a, b] ∈ A} < g's(a) and pick u such that 

sup{gs(a, b) | [a, b] ∈ A} < u < g's(a).  Then for all [a, b] ∈ A, gs(a, b) < u so 

↓(⊥,...,[gs(a, b), hs(a, b)],...,⊥) ≤ ↓(⊥,...,[u, h's(a)],...,⊥).  Therefore 

\/{↓(⊥,...,[gs(a, b), hs(a, b)],...,⊥) | [a, b] ∈ A} ≤ 

↓(⊥,...,[u, h's(a)],...,⊥) < ↓(⊥,...,[g's(a), h's(a)],...,⊥), 
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which contradicts  

\/{↓(⊥,...,[gs(a, b), hs(a, b)],...,⊥) | [a, b] ∈ A} = ↓(⊥,...,[g's(a), h's(a)],...,⊥).  Thus 

g's(a) = sup{gs(a, b) | [a, b] ∈ A}.  A similar argument shows that 

h's(a) = inf{hs(a, b) | [a, b] ∈ A}.   

 

 Now we show how the categories of behavior established in Prop. G.7 apply to 

the functions g's and h's. 

 

 Prop. G.9. Given a display function D:U → V, a continuous scalar s ∈ S, and 

z < z', if D is increasing on s then g's(z) < g's(z') and h's(z) < h's(z'), and if D is decreasing 

on s then g's(z) > g's(z') and h's(z) > h's(z'). 

 Proof. First assume that D is increasing on s.  Then, by Prop. G.8, 

g's(z) = sup{gs(z, x) | z < x}.  By Prop. G.7, ∀x > z. ∀y > z. gs(z, x) = gs(z, y), so 

∀x > z. g's(z) = gs(z, x).  Similarly, ∀x > z'. g's(z') = gs(z', x).  Pick x > z' > z.  Then, by 

Prop. G.7, g's(z) = gs(z, x) < gs(z', x) = g's(z'). 

 By Prop. G.8, h's(z) = inf{hs(x, z) | x < z}.  By Prop. G.7, 

∀x < z. ∀y < z. hs(x, z) = hs(y, z), so ∀x < z. h's(z) = hs(x, z).  Similarly, 

∀x < z'. h's(z') = hs(x, z').  Pick x < z < z'.  Then, by Prop. G.7, 

h's(z) = hs(x, z) < hs(x, z') = h's(z'). 

 Next  assume that D is decreasing on s.  Then, by Prop. G.8, 

g's(z) = sup{gs(x, z) | x < z}.  By Prop. G.7, ∀x < z. ∀y < z. gs(x, z) = gs(y, z), so 

∀x < z. g's(z) = gs(x, z).  Similarly, ∀x < z'. g's(z') = gs(x, z').  Pick x < z < z'.  Then, by 

Prop. G.7, g's(z) = gs(x, z) > gs(x, z') = g's(z'). 

 By Prop. G.8, h's(z) = inf{hs(z, x) | z < x}.  By Prop. G.7, 

∀x > z. ∀y > z. hs(z, x) = hs(z, y), so ∀x > z. h's(z) = hs(z, x).  Similarly, 
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∀x > z'. h's(z') = hs(z', x).  Pick x > z' > z.  Then, by Prop. G.7, 

h's(z) = hs(z, x) > hs(z', x) = h's(z').   

 

 Next we show that the functions g's and h's must be continuous functions of real 

variables.  The key idea is that g's and h's are either increasing or decreasing, so if they 

are discontinuous there must be a gap in their values, which contradicts Prop. B.2. 

 

 Prop. G.10. Given a display function D:U → V and a continuous scalar s ∈ S, the 

functions g's and h's are continuous (in the topological sense). 

 Proof. Assume that D is increasing on s.  Then, by Prop. G.9, g's and h's are 

monotone increasing.  Now assume that g's is discontinuous at z.  Then 

(a) ∃ε > 0. ∀δ > 0. ∃w. 

 z - δ < w < z & g's(w) ≤ g's(z) - ε  or 

 z < w < z + δ & g's(z) + ε ≤ g's(w) 

Fix ε satisfying (5).  If 

(b) ∃w-. (w- < z & g's(z) - ε < g's(w-)) 

then 

(c) ∀w. w- < w < z ⇒ g's(z) - ε < g's(w) < g's(z) 

and if 

(d) ∃w+. (z < w+ & g's(w+) < g's(z) + ε) 

then 

(e) ∀w. z < w < w+ ⇒ g's(z) < g's(w) < g's(z) + ε. 

Now, ((c) & (e)) contradicts (a), so (¬(b) or ¬(d)). 

¬(b) ≡ ∀w. w < z ⇒ g's(w) ≤ g's(z) - ε 

and 
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¬(d) ≡ ∀w. z < w ⇒ g's(z) + ε ≤ g's(w). 

 In the ¬(b) case, since z ≤ w ⇒ g's(z) ≤ g's(w), there is no w ∈ R such that 

g's(z) - ε < g's(w) < g's(z).  Now, [g's(z), h's(z)] ⊂ [g's(z) - ε/2, h's(z)] so 

↓(⊥,...,[g's(z) - ε/2, h's(z)],...,⊥) ≤ ↓(⊥,...,[g's(z), h's(z)],...,⊥).  Thus, by Prop. B.2, there 

is u ∈ U such that D(u) = ↓(⊥,...,[g's(z) - ε/2, h's(z)],...,⊥), and by Prop. F.9 and Prop. 

F.10, u ∈ Us.  Let u = ↓(⊥,...,[a, b],...,⊥).  Then, by Prop. G.4, 

g's(z) - ε/2 = gs(a, b) = inf{g's(w) | a ≤ w ≤ b}.  However, since there is no w such that 

g's(z) - ε < g's(w) < g's(z), this is impossible.  Thus g's cannot be discontinuous at z. 

 In the ¬(d) case, since w ≤ z ⇒ g's(w) ≤ g's(z), there is no w ∈ R such that 

g's(z) < g's(w) < g's(z) + ε, and furthermore, z < z' ⇒ g's(z) < g's(z'), so there is z' such 

that g's(z) + ε ≤ g's(z').  Now, [g's(z'), h's(z')] ⊂ [g's(z) + ε/2, h's(z')] so 

↓(⊥,...,[g's(z) + ε/2, h's(z')],...,⊥) ≤ ↓(⊥,...,[g's(z'), h's(z')],...,⊥).  Thus, by Prop. B.2, there 

is u ∈ U such that D(u) = ↓(⊥,...,[g's(z) + ε/2, h's(z')],...,⊥), and by Prop. F.9 and Prop. 

F.10, u ∈ Us.  Let u = ↓(⊥,...,[a, b],...,⊥).  Then, by Prop. G.4, 

g's(z) + ε/2 = gs(a, b) = inf{g's(w) | a ≤ w ≤ b}.  However, since there is no w such that 

g's(z) < g's(w) < g's(z) + ε, this is impossible.  Thus g's cannot be discontinuous at z. 

 The proof that h's is continuous, and the proofs that g's and h's are continuous 

when D is decreasing on s, are virtually identical to this.   

 

 Prop. G.11 completes the list of conditions on the functions g's and h's that will 

allow us to define necessary and sufficient conditions for display functions. 

 

 Prop. G.11. Given a display function D:U → V and a continuous scalar s ∈ S, 

then g's has no lower bound and h's has no upper bound.  Furthermore, 

∀z ∈ R. g's(z) ≤ h's(z). 
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 Proof. If ∃a. ∀z. g's(z) > a then, 

D(↓(⊥,...,[0, 0],...,⊥)) = ↓(⊥,...,[g's(0), h's(0)],...,⊥) ≥ ↓(⊥,...,[a-1, h's(0)],...,⊥) 

[since a-1 < a ≤ g's(0)], so there must be u ∈ U such that 

D(u) = ↓(⊥,...,[a-1, h's(0)],...,⊥).  By Prop. F.9 and Prop. F.10, u ∈ Us.  However, by 

Prop. G.4, there is no [x, y] ∈ Is such that 

D(↓(⊥,...,[x, y],...,⊥)) = ↓(⊥,...,[a-1, h's(0)],...,⊥).  Thus g's has no lower bound.  The 

proof that h's has no upper bound is virtually identical. 

 If g's(z) > h's(z) then [g's(z), h's(z)] ∉ Is, which is impossible, so 

∀z ∈ R. g's(z) ≤ h's(z).   

 

 The results of this appendix can be summarized in the following definition. 

 

 Def. A pair of functions g's:R → R and h's:R → R are called a continuous 

display pair if: 

(a) g's has no lower bound and h's has no upper bound, 

(b) ∀z ∈ R. g's(z) ≤ h's(z), and 

(c) g's and h's are continuous, 

(d) either g's and h's are increasing: 

 ∀z, z' ∈ R. z < z' ⇒ g's(z) < g's(z') & h's(z) < h's(z'), 

 or g's and h's are decreasing: 

 ∀z, z' ∈ R. z < z' ⇒ g's(z) > g's(z') & h's(z) > h's(z'). 
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Appendix H 

 

Proofs for Section 3.4.3 

 

 Here we present the technical details for Section 3.4.3. 

 

 Def. Given a finite set S of scalars, a finite set DS of display scalars, 

X = X{Is | s ∈ S},  Y = X{Id | d ∈ DS}, U = CL(X), and V = CL(Y), then a function 

D:U → V is a scalar mapping function if: 

(a) there is a function MAPD: S → POWER(DS) such that 

 ∀s, s' ∈ S. MAPD(s) ∩ MAPD(s') = φ, 

(b) for all continuous s ∈ S, MAPD(s) contains a single continuous d ∈ DS, 

(c) for all discrete s ∈ S, all d ∈ MAPD(s) are discrete, 

(d) D(φ) = φ and D({(⊥,...,⊥)}) = {(⊥,...,⊥)}, 

(e) for all continuous s ∈ S, g's and h's are a continuous display pair, 

 for all [u, v] ∈ Is, gs(u, v) = inf{g's(z) | u ≤ z ≤ v} and 

 hs(u, v) = sup{h's(z) | u ≤ z ≤ v}, 

 and, given {d} = MAPD(s), then for all [u, v] ∈ Is\{⊥}, 

 D(↓(⊥,...,[u, v],...,⊥)) = ↓(⊥,...,[gs(u, v), hs(u, v)],...,⊥) ∈ Vd, 

(f) for all discrete s ∈ S, for all a ∈ Is\{⊥}, 

 D(↓(⊥,...,a,...,⊥)) = b ∈ Vd for some d ∈ MAPD(s), where b ≠ {(⊥,...,⊥)}, 

 and, for all a, a' ∈ Is\{⊥}, a ≠ a' ⇒ D(↓(⊥,...,a,...,⊥)) ≠ D(↓(⊥,...,a',...,⊥)) 

(g) for all x ∈ X, D(↓x) = ↓\/{y | ∃s ∈ S. xs ≠ ⊥ & ↓y = D(↓(⊥,...,xs,...,⊥))}, 

 where xs represents tuple components of x, and using the values for D defined 

 in (e) and (f), 
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(h) for all u ∈ U, D(u) = \/{D(↓x) | x ∈ u}, using the values for D defined in (g). 

 

 This definition contains a variety of expressions for the value of D on various 

subsets of U.  The next proposition shows that these expressions are consistent where the 

subsets of U overlap.  This involves showing that D is monotone. 

 

 Prop. H.1. In the definition of scalar mapping functions, the values defined for D 

in (d), (e), (f), (g) and (h) are consistent.  Furthermore, D is monotone. 

 Proof. (e), (f), (g) and (h) do not apply to φ and thus do not conflict with the 

definition of D(φ) in (d).  (e) and (f) do not apply to {(⊥,...,⊥)} and thus do not conflict 

with the definition of D({(⊥,...,⊥)}) in (d).  The definition of D({(⊥,...,⊥)}) in (d) is 

consistent with (g) and (h) if the sup of an empty set of objects is defined as (⊥,...,⊥).  (e) 

and (f) apply to disjoint sets and thus do not conflict.  For all s ∈ S, (g) applies to objects 

x ∈ Us, but defines D(↓x) as the sup of the singleton set containing the value of D(↓x) 

defined by (e) or (f), and is thus consistent with that value.  (h) applies to objects x ∈ Us, 

and is consistent with (e) and (f) if it is consistent with (g) on these objects.  Thus we 

need to show the consistency of (g) and (h). 

 If u = ↓y then (h) defines D(↓y) = \/{D(↓x) | x ∈ ↓y} = \/{D(↓x) | x ≤ y}.  To 

Show consistency with (g), it is necessary to show that x ≤ y ⇒ D(↓x) ≤ D(↓y) for the 

definition of D in (d), (e), (f) and (g) (that is, that D is monotone).  Clearly D in (d) is 

monotone, in itself and in relation to D in (e), (f) and (g).  If s ∈ S is discrete, then for all 

a, a' ∈ Is\{⊥}, a ≠ a' ⇒ ¬(a ≤ a'), so D in (f) is monotone by default.  If s ∈ S is 

continuous then for all [u, v], [u', v'] ∈ Is\{⊥}, 

↓(⊥,...,[u, v],...,⊥) ≤ ↓(⊥,...,[u', v'],...,⊥) ⇒ 

[u', v'] ⊆ [u, v] ⇒ 
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[inf{g's(z) | u' ≤ z ≤ v'}, sup{h's(z) | u' ≤ z ≤ v'}] ⊆ 

 [inf{g's(z) | u ≤ z ≤ v}, sup{h's(z) | u ≤ z ≤ v}] ⇒ 

D(↓(⊥,...,[u, v],...,⊥)) ≤ D(↓(⊥,...,[u', v'],...,⊥)). 

Thus D in (e) is monotone.  For all x, x' ∈ X, 

x ≤ x' ⇒ 

∀s ∈ S. xs ≤ xs' ⇒  (since D in (e) and (f) is monotone) 

∀s ∈ S. D(↓(⊥,...,xs,...,⊥)) ≤ D(↓(⊥,...,x's,...,⊥)) ⇒ 

D(↓x) ≤ D(↓x'). 

Thus D in (g) is monotone, so D is consistent in (g) and (h). 

 All that remains is to show that D in (h) is monotone.  For all u, u' ∈ U, 

u ≤ u' ⇒ u ⊆ u' so \/{D(↓x) | x ∈ u} ≤ \/{D(↓x) | x ∈ u'}.  Thus D is monotone.   

 

 As we will show in Prop. H.5, the values of a scalar mapping function D can be 

decomposed into the values of an auxiliary function D' from X to Y.  Now we define this 

auxiliary function, show that it is an order embedding, and prove two lemmas that will be 

useful in the proof of Prop. H.5. 

 

 Def. Given a scalar mapping function D:U → V, define D':X → Y by 

D'(x) = \/{(⊥,...,ad,...,⊥) | s ∈ S & xs ≠ ⊥ & D(↓(⊥,...,xs,...,⊥)) = ↓(⊥,...,ad,...,⊥)}. 

 

 Prop. H.2. Given a scalar mapping function D:U → V, D' is an order embedding. 

 Proof. Given x, x' ∈ X, x ≤ x' ⇔ ∀s ∈ S. xs ≤ x's.  Let 

D'((⊥,...,xs,...,⊥)) = (⊥,...,ad,...,⊥) and D'((⊥,...,x's,...,⊥)) = (⊥,...,a'd,...,⊥) where 

d ∈ MAPD(s).  Note that xs ≤ x's ⇒ (⊥,...,xs,...,⊥) ≤ (⊥,...,x's,...,⊥) ⇒ 

(⊥,...,ad,...,⊥) ≤ (⊥,...,a'd,...,⊥) (since a D is monotone) so ad and a'd are in the same Id. 
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For all s ∈ S, xs ≤ x's ⇔ (⊥,...,xs,...,⊥) ≤ (⊥,...,x's,...,⊥) ⇔  

↓(⊥,...,ad,...,⊥) = D(↓(⊥,...,xs,...,⊥)) ≤ D(↓(⊥,...,x's,...,⊥)) = ↓(⊥,...,a'd,...,⊥) ⇔ 

(⊥,...,ad,...,⊥) ≤ (⊥,...,a'd,...,⊥) ⇔ ad ≤ a'd.  Thus 

(∀s ∈ S. xs ≤ x's) ⇔ (∀d ∈ DS. ad ≤ a'd). Since ∀s, s' ∈ S. MAPD(s) ∩ MAPD(s') = φ, 

c = D'(x) ⇒ (∀d ∈ DS. cd ≠ ⊥ ⇒ ∃s ∈ S. D(↓(⊥,...,xs,...,⊥)) = ↓(⊥,...,cd,...,⊥)) 

(that is, cd = ad), and thus (∀d ∈ DS. ad ≤ a'd) ⇔ D'(x) ≤ D'(x').  Therefore, by a chain 

of logical equivalences, x ≤ x' ⇔ D'(x) ≤ D'(x').   

 

 Prop. H.3. Let D:U → V be a scalar mapping function.  Then, for all u ∈ U, 

x ∈ u and b ≤ D'(x) = a, there is y ≤ x such that b = D'(y). 

 Proof. For all d ∈ DS, bd ≠ ⊥ implies that 

∃s ∈ S. D'((⊥,...,xs,...,⊥)) = (⊥,...,ad,...,⊥) and bd ≤ ad.  For discrete s, 

bd ≤ ad & bd ≠ ⊥ ⇒ bd = ad.   Thus D'((⊥,...,xs,...,⊥)) = (⊥,...,bd,...,⊥).  Let ys = xs. 

 For continuous s, let ad = [inf{g's(z) | u ≤ z ≤ v}, sup{h's(z) | u ≤ z ≤ v}] where 

xs = [u, v].  There are e, f ∈ R such that bd = [e, f] where 

e ≤ inf{g's(z) | u ≤ z ≤ v} ≤ sup{h's(z) | u ≤ z ≤ v} ≤ f. 

Since g's is continuous and has no lower bound, ∃u'. g's(u') = e, and since  h's is 

continuous and has no upper bound, ∃v'. h's(v') = f.  Now g's and h's are either increasing 

or decreasing. 

 If g's and h's are increasing then u' ≤ u and v ≤ v', so e = inf{g's(z) | u' ≤ z ≤ v'} 

[since u' ≤ z ⇒ g's(u') ≤ g's(z)] and f = sup{h's(z) | u' ≤ z ≤ v'} [since 

z ≤ v' ⇒ h's(z) ≤ h's(v')].  Then 

bd = [e, f] = [inf{g's(z) | u' ≤ z ≤ v'}, sup{h's(z) | u' ≤ z ≤ v'}] and 

D'((⊥,...,[u', v'],...,⊥)) = (⊥,...,bd,...,⊥).  Let ys = [u', v']. 
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 If g's and h's are decreasing then v' ≤ u and v ≤ u', so e = inf{g's(z) | v' ≤ z ≤ u'} 

[since z ≤ u' ⇒ g's(u') ≤ g's(z)] and f = sup{h's(z) | v' ≤ z ≤ u'} [since 

v' ≤ z ⇒ h's(z) ≤ h's(v')].  Then 

bd = [e, f] = [inf{g's(z) | v' ≤ z ≤ u'}, sup{h's(z) | v' ≤ z ≤ u'}] and 

D'((⊥,...,[v', u'],...,⊥)) = (⊥,...,bd,...,⊥).  Let ys = [v', u']. 

 Thus for all d ∈ DS such that bd ≠ ⊥, there is ys ≤ xs such that 

D'((⊥,...,ys,...,⊥)) = (⊥,...,bd,...,⊥).  For any s ∈ S such that ys is not determined by any 

bd, set ys = ⊥.  Then D'(y) = b.   

 

 Prop. H.4. Given a scalar mapping function D:U → V, and a directed set M ⊆ X, 

D'(\/M) = \/D'(M). 

 Proof. Given a directed set M ⊆ X, let x = \/M and y = D'(x).  Since D' is an order 

embedding, D'(M) is directed so z  = \/D'(M) exists.  Also, ∀m ∈ M. m ≤ x, so 

∀m ∈ M. D'(m) ≤ y and thus z ≤ y.  For all d ∈ DS, if yd ≠ ⊥ then there is s ∈ S such that 

↓(⊥,...,yd,...,⊥) = D(↓(⊥,...,xs,...,⊥)), and so (⊥,...,yd,...,⊥) = D'((⊥,...,xs,...,⊥)).  Since 

sups are taken componentwise in X, xs = \/{ms | m ∈ M}. 

 If s is discrete, then ∃m ∈ M. xs = ms so 

(⊥,...,yd,...,⊥) = D'((⊥,...,ms,...,⊥)) ≤ D'(m) ≤ z, and thus yd ≤ zd.  Since z ≤ y, and thus 

zd ≤ yd, this gives yd = zd. 

 If s is continuous, then xs = [u, v] and ms = [um, vm] are real intervals (we adopt 

the convention that um = -∞ and vm = ∞ for ms = ⊥).  Then [u, v] is the intersection of 

the 

[um, vm], for all m ∈ M, so u = sup{um | m ∈ M} and v = inf{vm | m ∈ M} and thus 

yd = [a, b] = [inf{g's(z) | u ≤ z ≤ v}, sup{h's(z) | u ≤ z ≤ v}].  Also let zd = [e, f]. 

Then, since MAPD(s) contains only d, 
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e = sup{inf{g's(z) | um ≤ z ≤ vm } | m ∈ M} and 

f = inf{sup{h's(z) | um ≤ z ≤ vm} | m ∈ M}. 

If g's and h's are increasing then, since they are continuous, 

a = inf{g's(z) | sup{um | m ∈ M} ≤ z ≤ inf{vm | m ∈ M}} = g's(sup{um | m ∈ M}) = 

 sup{g's(um) | m ∈ M} = sup{inf{g's(z) | um ≤ z ≤ vm } | m ∈ M} = e and 

b = sup{h's(z) | sup{um | m ∈ M} ≤ z ≤ inf{vm | m ∈ M}} = h's(inf{vm | m ∈ M}) = 

 inf{h's(vm) | m ∈ M} = inf{sup{h's(z) | um ≤ z ≤ vm} | m ∈ M} = f. 

If g's and h's are decreasing then, since they are continuous, 

a = inf{g's(z) | sup{um | m ∈ M} ≤ z ≤ inf{vm | m ∈ M}} = g's(inf{vm | m ∈ M}) = 

 sup{g's(vm) | m ∈ M} = sup{inf{g's(z) | um ≤ z ≤ vm } | m ∈ M} = e and 

b = sup{h's(z) | sup{um | m ∈ M} ≤ z ≤ inf{vm | m ∈ M}} = h's(sup{um | m ∈ M}) = 

 inf{h's(um) | m ∈ M} = inf{sup{h's(z) | um ≤ z ≤ vm} | m ∈ M} = f. 

In either case, yd = [a, b] = [e, f] = zd. 

 Thus yd = zd for all d ∈ DS such that yd ≠ ⊥.  However, we also have z ≤ y so 

zd = ⊥ whenever yd = ⊥, so yd = zd for all d ∈ DS and thus y = z.   

 

 Now we show how a scalar mapping function D can be defined in terms of the 

auxiliary function D'. 

 

 Prop. H.5. Given a scalar mapping function D:U → V, for all u ∈ U, 

D(u) = {D'(x) | x ∈ u}. 

 Proof. First, we show that for all u ∈ U, u is closed ⇒ {D'(x) | x ∈ u} is closed. 

Assume x ∈ u and b ≤ D'(x).  Then, by Prop. H.3, ∃y ≤ x. b = D'(y).  Further, 
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y ≤ x ⇒ y ∈ u so b ∈ {D'(x) | x ∈ u}.  Now assume N ⊆ {D'(x) | x ∈ u} and N is directed.  

Then there is M ⊆ u such that N = D'(M), and, since D' is an order embedding, M is 

directed.  Thus \/M ∈ u and, by Prop. H.4, \/N = D'(\/M) ∈ {D'(x) | x ∈ u}.  Thus 

{D'(x) | x ∈ u} is closed. 

 Second, we show that for all x ∈ X, D(↓x) = {D'(y) | y ≤ x}.  By (g) in the 

definition of scalar mapping functions, ∀y ∈ X. ∃b ∈ Y. D(↓y) = ↓b.  Furthermore, 

comparing (g) with the definition of D', ∀y ∈ X. D(↓y) = ↓b ⇔ D'(y) = b.  Then, given 

D(↓x) = ↓a, b ≤ a ⇔ ↓b ≤ ↓a ⇔ ∃y ≤ x. D(↓y) = ↓b ⇔ ∃y ≤ x. D'(y) = b.  Thus 

D(↓x) = ↓a = {b | b ≤ a} = {D'(y) | y ≤ x}. 

 By Prop. C.8, \/{D(↓x) | x ∈ u} is the smallest closed set containing 

U{D(↓x) | x ∈ u}.  However, 

U{D(↓x) | x ∈ u} = U{{D'(y) | y ≤ x} | x ∈ u} = {D'(x) | x ∈ u}, which is closed, so 

\/{D(↓x) | x ∈ u} = U{D(↓x) | x ∈ u}.  Thus, for all u ∈ U, 

D(u) = \/{D(↓x) | x ∈ u} = {D'(x) | x ∈ u}.   

 

 The next two propositions show that a scalar mapping function satisfies the 

conditions of a display function. 

 

 Prop. H.6. A scalar mapping function D:U → V is an order embedding (and thus 

injective). 

 Proof. By Prop. H.5, for all u ∈ U, D(u) = {D'(x) | x ∈ u}.  Members of U are 

ordered by set inclusion, so 

u ≤ u' ⇒ u ⊆ u' ⇒ D(u) = {D'(x) | x ∈ u} ⊆ {D'(x) | x ∈ u'} = D(u') ⇒ D(u) ≤ D(u'). 

By Prop. H.2, D' is an order embedding, and thus injective, so u = {(D')-1(x) | x ∈ D(u)}. 

Therefore D(u) ≤ D(u') ⇒ D(u) ⊆ D(u') ⇒ 

 



222 

u = {(D')-1(x) | x ∈ D(u)} ⊆ {(D')-1(x) | x ∈ D(u')} = u' ⇒ u ≤ u'. 

Thus D is an order embedding.   

 

 Prop. H.7. A scalar mapping function D:U → V is a surjective function onto 

↓D(X). 

 Proof. Assume that v' < v = D(X).  We need to show that there is u' ∈ U such that 

v' = D(u').  As we saw in the proof of Prop. H.6, if there is such a u', then 

u' = {(D')-1(x) | x ∈ v'}.  Thus let u' = {(D')-1(x) | x ∈ v'}, and we will show that this is a 

closed set, and thus a member of U. 

 Assume that y ∈ u' and b ≤ y.  Then D'(b) ≤ D'(y), and since D'(y) ∈ v' and v' is 

closed, D'(b) ∈ v' so b ∈ u'.  Now assume that N ⊆ u' and N is directed.  Then 

M = D'(N) ⊆ v' is directed (since D' is an order embedding), so \/M ∈ v' and 

(D')-1(\/M) ∈ u'.  By Prop. H.4, \/M = D'(\/N) so \/N = (D')-1(\/M) ∈ u'.  Thus u' is 

closed.   

 

 The results of the last three sections show that display functions are completely 

characterized as scalar mapping functions.  This is summarized by the following theorem. 

 

 Theorem H.8. D:U → V is a display function if and only if it is a scalar mapping 

function. 

 Proof. If D:U → V is a display function then Theorem F.14 shows that D satisfies 

conditions (a), (b), (c) and (f) of the definition of scalar mapping functions.  Theorem 

F.14, along with Props. G.4, G.9, G.10 and G.11 show that D satisfies condition (e).  

Prop. F.2 shows that D satisfies condition (d).  Prop. F.12 shows that D satisfies 
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condition (g), and the proof of Prop. F.13 shows that D satisfies condition (h).  Thus D is 

a scalar mapping function. 

 If D:U → V is a scalar mapping function then Props. H.6 and H.7 show that D is a 

display function.   

 


