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Appendix E 

 

Proofs for Section 3.2.4 

 

 Here we present the technical details for Section 3.2.4. 

 

 Def. Given A ∈ U, define MAX(A) = {a ∈ A | ∀b ∈ A. ¬(a < b)}.  That is, 

MAX(A) consists of the maximal elements of A. 

 

 Zorn's Lemma. Let P be a non-empty ordered set in which every chain has an 

upper bound.  Then P has a maximal element. 

 

 Prop. E.1. ∀A ∈ U. A ⊆ ↓MAX(A), and hence A = ↓MAX(A). 

 Proof. Pick A ∈ U and a ∈ A and define Pa = {x ∈ A | a ≤ x}.  For all chains 

C ⊆ Pa, C is a directed set and C ⊆ A, so b = \/C ∈ A (since A is closed).  If C is not 

empty, then a ≤ b so b ∈ Pa.  Thus, every chain in Pa has an upper bound in Pa, so by 

Zorn's Lemma, Pa has a maximal element d.  If there is any c ∈ A such that d < c then 

a < c so c ∈ Pa, contradicting the maximality of d in Pa.  Thus d ∈ MAX(A) and 

a ∈ ↓MAX(A).  Therefore A ⊆ ↓MAX(A).  Clearly MAX(A) ⊆ A, and, since A is closed, 

↓MAX(A) ⊆ ↓A ⊆ A and so A = ↓MAX(A).   

 

 Prop. E.2. ∀A, B ∈ U. A = B ⇔ MAX(A) = MAX(B). 

 Proof. Assume A and B are in U.  Clearly, A = B ⇒ MAX(A) = MAX(B).  To show 

the converse, assume A ≠ B and, without loss of generality, that a ∈ A & a ∉ B.  Since 

A ⊆ ↓MAX(A), there must be c ∈ MAX(A) with a ≤ c.  However, since B is a down-set, 
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c ∉ B, and hence c ∉ MAX(B).  Thus MAX(A) ≠ MAX(B).   

 

 Prop. E.3. ∀A ∈ U. A ≡R MAX(A). 

 Proof. First, MAX(A) ≤R A, since MAX(A) ⊆ A.  Now, if A ∩ C ≠ φ for C ⊆ X 

open then ∃a ∈ A ∩ C.  Now, A ⊆ ↓MAX(A) so ∃b ∈ MAX(A). a ≤ b.  However, since C 

is open b ∈ C so b ∈ A ∩ C and MAX(A) ∩ C ≠ φ.  Thus A ≤R MAX(A) and 

A ≡R MAX(A).   

 

 Prop. E.4. Given a tuple type t = struct{t1;...;tn} ∈ T, A ∈ Ft and 
a = a1∨...∨an ∈ A, where ∀i . ai ∈ Ai ∈ , then a ∈ MAX(A) ⇔ ∀i. ai ∈ MAX(Ai). Fti

 Proof. Note that a and the ai are tuples, and the sup of tuples is taken 

componentwise, so ∀s ∈ S. as = a1s∨...∨ans.  Also note that 

i ≠ j ⇒ SC(ti) ∩ SC(ti) = φ.  If there is some i such that ai ∉ MAX(Ai), then 

∃bi ∈ Ai. ai < bi so b = a1∨...∨bi∨...∨an ∈ A.  Now, ai < bi ⇒ ∃s ∈ S. ais < bis and 

(since j ≠ i ⇒ ajs = ⊥ = bjs) as = ais and bs = bis, so a < b.  Thus a ∉ MAX(A).  

Conversely, if a ∉ MAX(A) then ∃b ∈ A. a < b with a = a1∨...∨an, b = b1∨...∨bn, and 

∀i. ai,bi ∈ Ai.  For some s ∈ S, as < bs.  Thus bs > ⊥ so ∃j. s ∈ SC(tj), and so 

as < bs ⇒ aj < bj (since as = ajs and bs = bjs).  Thus aj ∉ MAX(Aj).   

 

 Prop. E.5. For all types t ∈ T and all A ∈ Ft, MAX(A) is finite.  If t ∈ S and 

A = ↓(⊥,...,a,...,⊥) ∈ Ft then MAX(A) = {(⊥,...,a,...,⊥)}.  If t = struct{t1;...;tn} ∈ T and 

A = {(a1∨...∨an) | ∀i. ai ∈ Ai} ∈ Ft then MAX(A) = {(a1∨...∨an) | ∀i. ai ∈ MAX(Ai)}.  If 

t = (array [w] of r) ∈ T and A = {a1∨a2 | g∈G & a1∈Ew(g) & a2∈Er(a(g))} ∈ Ft then 

MAX(A) = {a1 ∨ a2 | g∈G & a1 ∈ MAX(Ew(g)) & a2 ∈ MAX(Er(a(g)))}. 
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 Proof. We will demonstrate this proposition by induction on the structure of t.  

Let t ∈ S and let A ∈ Ft.  Then ∃a ∈ Is. A = ↓(⊥,...,a,...,⊥), so MAX(A) = {(⊥,...,a,...,⊥)}.  

MAX(A) has a single member and is thus finite. 

 Let t = struct{t1;...;tn} ∈ T and let A ∈ Ft.  By Prop. E.4, 

MAX(A) = {(a1∨...∨an) | ∀i. ai ∈ MAX(Ai)}.  By the inductive hypothesis, the MAX(Ai) 

are finite, so MAX(A) is finite. 

 Let t = (array [w] of r) ∈ T and let A ∈ Ft.  There is a finite set G ∈ FIN(Hw) and 

a function a ∈ (G → Hr) such that 

 

 A = {a1∨a2 | g∈G & a1∈Ew(g) & a2∈Er(a(g))} = 

 U{{a1∨a2 | a1∈Ew(g) & a2∈Er(a(g))} | g∈G} =  U{Ag | g∈G} 

 

where we define Ag = {a1∨a2 | a1∈Ew(g) & a2∈Er(a(g))}.  Each Ag is an object in 

Fstruct{w; r} for the tuple type struct{w; r}.  By Prop. E.4, 

 

 MAX(Ag) = {a1 ∨ a2 | a1 ∈ MAX(Ew(g)) & a2 ∈ MAX(Er(a(g)))} = 

 {(⊥,...,g,...,⊥) ∨ a2 | a2 ∈ MAX(Er(a(g)))} 

 

Pick g ≠ g' in G, and b ∈ MAX(Ag) and b' ∈ MAX(Ag').  Then there are 

b2 ∈ MAX(Er(a(g))) and b2' ∈ MAX(Er(a(g'))) such that b = (⊥,...,g,...,⊥) ∨ b2 and 

b' = (⊥,...,g',...,⊥) ∨ b2'.  If b > b' then g > g' since b2w = b2w' = ⊥.  However, this 

contradicts the defintion of FIN(Hw).  Thus no b ∈ MAX(Ag) is larger than any 

b' ∈ MAX(Ag') for g ≠ g' in G.  Thus 

 

 



189 

 MAX(A) =  MAX(U{Ag | g∈G}) = U{MAX(Ag) | g∈G} = 

  U{{a1 ∨ a2 | a1 ∈ MAX(Ew(g)) & a2 ∈ MAX(Er(a(g)))} | g∈G} = 

 {a1 ∨ a2 | g∈G & a1 ∈ MAX(Ew(g)) & a2 ∈ MAX(Er(a(g)))}. 

 

G is finite, and by the inductive hypothesis, MAX(Ew(g)) and MAX(Er(a(g))) are finite, 

so MAX(A) is finite.   
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Appendix F 

 

Proofs for Section 3.4.1 

 

 Here we present the technical details for Section 3.4.1.  First, two definitions are 

given to provide the context for the work in this and subsequent appendices. 

 

 Def. Let S denote a finite set of scalars, let X = X{Is | s ∈ S} denote a set of 

tuples, and let U = CL(X) denote the lattice of data objects consisting of closed sets of 

tuples whose primitive values are taken from the scalars in S. 

 

 Def. Let DS denote a finite set of display scalars, let Y = X{Id | d ∈ DS} denote a 

set of tuples, and let V = CL(Y) denote the lattice of displays consisting of closed sets of 

tuples whose primitive values are taken from the display scalars in DS. 

 

 Now we prove four propositions that we will use as lemmas in other proofs. 

 

 Prop. F.1. For all A, B ∈ U, ↓A ∧ ↓B = ↓(A ∧ B). 

 Proof. ↓A ∧ ↓B = ↓A ∩ ↓B = {C | C ≤ A} ∩ {C | C ≤ B} = {C | C ≤ A & C ≤ B} = 

{C | C ≤ A ∧ B} = ↓(A ∧ B).   

 

 Prop. F.2. D(φ) = φ and D({(⊥,...,⊥)}) = {(⊥,...,⊥)}. 

 Proof.   First, note that ∀u ∈ U. φ ≤ u and ∀u ∈ U. u ≠ φ ⇒ {(⊥,...,⊥)} ≤ u.  That 

is, φ is the least element in U, and {(⊥,...,⊥)} is the next largest element in U.  If 
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D(φ) = v > φ, then ∃u ∈ U. D(u) = φ and u < φ, which is impossible.  Thus D(φ) = φ.  

Similarly, if D({(⊥,...,⊥)}) = v > {(⊥,...,⊥)}, then ∃u ∈ U. D(u) = {(⊥,...,⊥)} and 

u < {(⊥,...,⊥)}.  However, the only u < {(⊥,...,⊥)} is φ, and D(φ) = φ, so 

D({(⊥,...,⊥)}) = {(⊥,...,⊥)}.   

 

 Prop. F.3. If D:U → V is a display function, then its inverse D-1 is a continuous 

function from D(U) to U. 

 Proof. First, D-1 is a function since D is injective, and D-1 is monotone since D is 

an order embedding. D-1 is continuous if for all directed M ⊆ D(U), \/D-1(M) = D-

1(\/M).  However, since D is a homomorphism, D-1(M) is a directed set in U.  Thus, since 

D is continuous, \/D(D-1(M)) = D(\/D-1(M)), and so D-1(\/D(D-1(M))) = D-1(D(\/D-

1(M))).  This simplifies to D-1(\/M) = \/D-1(M), showing that D-1 is continuous.   

 

 Prop. F.4. If D:U → V is a display function, then 

∀M ⊆ D(U). \/D-1(M) = D-1(\/M). 

 Proof. Given M ⊆ D(U) let N = D-1(M) ⊆ U.  By Prop. B.2, \/D(N) = D(\/N), 

which is equivalent to \/M = D(\/D-1(M)), and applying D-1 to both sides of this, we get 

D-1(\/M) = D-1(D(\/D-1(M))) = \/D-1(M).   

 

 Now we define an open neighborhood of a tuple in X, and prove two more 

lemmas.  Note that in the following we will use the notation as to indicate the s 

component of a tuple a ∈ X{Is | s ∈ S}. 

 

 Def. Given a tuple a ∈ X{Is | s ∈ S} such that as ≠ [x, x] for continuous s, define 

neighbor(a) as the set of tuples b such that: 
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 s discrete ⇒ bs ≥ as 

 s continuous and as = ⊥ ⇒ bs ≥ as 

 s continuous and as ≠ ⊥ ⇒ bs > as 

   (that is as = [x, y] and bs = [u, v] ⇒ x < u and v < y). 

 

 Prop. F.5. For a ∈ X{Is | s ∈ S}, the set neighbor(a) is open (in the Scott 

topology). 

 Proof. Clearly neighbor(a) is an up set.  Let C be a directed set in X{Is | s ∈ S} 

such that d = \/C belongs to neighbor(a).  The sup is taken componentwise, so 

ds = \/{cs | c ∈ C} for each s.  If s is discrete, then ∃cs ∈ C. css = ds > as.  If s is 

continuous and as = ⊥, then for any c ∈ C, cs ≥ as.  If s is continuous and as ≠ ⊥, then as 

and ds are intervals such that ds = [u, v] ⊂ [x, y] = as, with x < u and v < y.  Here 

u = max{p | ∃c ∈ C. [p, q] = cs} and v = min{q | ∃c ∈ C. [p, q] = cs} so there exist 

cs1 , cs2 ∈ C such that cs1s = [p1, q1] and cs2s = [p2, q2] with x < p1 and q2 < y.  Since 

C is directed, there must be cs ∈ C such that cs ≥ cs1 ∨ cs2 , so css > as.  For each s ∈ S 

we have shown that there is cs ∈ C such that css ≥ as.  Since S is finite, and C is directed, 

there is c ∈ C such that c ≥ \/{cs | s ∈ S} ≥ a and c ∈ neighbor(a).  Thus neighbor(a) is 

an open set.   

 

 Prop. F.6. Given a set C ⊆ U, B = \/C and an open set A in X{Is | s ∈ S}, then 

A ∩ B ≠ φ ⇒ ∃c ∈ C. A ∩ c ≠ φ. 

 Proof. B and all c ∈ C are closed, so B is the smallest closed set containing UC.  

All the c ∈ C are down sets, so UC is also a down set.  Thus, by Prop. C.10, 
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{\/M | M ⊆ UC & M directed} is closed and hence equal to B.  We are given that there is 

a y ∈ A ∩ B, so there must be a directed set M in UC such that y = \/M.  However, since 

A is open, there must be m ∈ M ∩ A, and since M ⊆ UC, there is c ∈ C such that 

m ∈ c ∩ A.   

 

 Now we define the embeddings of scalar objects and display scalar objects in the 

lattices U and V. 

 

 Def. For each scalar s ∈ S, define an embedding  Es:Is → U by: 

∀b ∈ Is. Es(b) = ↓(⊥,...,b,...,⊥) (this notation indicates that all elements of the tuple are ⊥ 

except b).  Also define Us = Es(Is) ⊆ U. 

 

 Def. For each display scalar d ∈ DS, define an embedding  Ed:Id → V by: 

∀b ∈ Id. Ed(b) = ↓(⊥,...,b,...,⊥).  Also define Vd = Ed(Id) ⊆ V. 

 

 Next, we use an argument involving open neighborhoods to show that a display 

function maps embedded scalar objects to displays of the form ↓x, where x is a display 

tuple.  Prop. F.8 will show that these ↓x must be embedded display scalar objects. 

 

 Prop. F.7. If D:U → V is a display function, then for all s ∈ S, 

∀b ∈ Is. ∃x ∈ X{Id | d ∈ DS}. D(↓(⊥,...,b,...,⊥)) = ↓x. 

 Proof. Given s ∈ S and b ∈ Is, let a = (⊥,...,b,...,⊥) and let z = D(↓a).  Then 

z = \/{↓y | y ∈ z}, and by Prop. F.4, ↓a = D-1(z) = \/{D-1(↓y) | y ∈ z} (note ↓y ≤ z so 

D-1(↓y) exists). 
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 Now we know that a ∈ \/{D-1(↓y) | y ∈ z}.  If we could show that 

\/{D-1(↓y) | y ∈ z} = U{D-1(↓y) | y ∈ z} then there must be x ∈ z such that a ∈ D-1(↓x).  

However, the D-1(↓y) are closed sets, and, by Prop. C.8, we can only show that  

\/{D-1(↓y) | y ∈ z} = U{D-1(↓y) | y ∈ z} if z is finite.  Thus we need a more complex 

argument to construct x ∈ z such that a ∈ D-1(↓x). 

 Define a sequence of tuples an in U, for n =1, 2, ..., by: 

 

 if s is continuous and b = as = [x, y] for some interval [x, y], then 

  ans = [x-1/n, y+1/n] 

 if s is continuous and b = as = ⊥, then ans = ⊥ 

 if s is discrete, then ans = as 

 for all s' ∈ S such that s' ≠ s, ans' = ⊥ 

 

Also define zn = D(↓an) ≤ D(↓a) = z, and note that ↓an = \/{D-1(↓x) | x ∈ zn}.  Now 

neighbor(an-1) is open and ↓an ∩ neighbor(an-1) ≠ φ, so by Prop. F.6 there must be 

xn ∈ zn such that D-1(↓xn) ∩ neighbor(an-1) ≠ φ.  Say y is in this intersection.  Then 

y ∈ neighbor(an-1) ⇒ an-1 ≤ y and y ∈ D-1(↓xn) ⇒ ↓y ≤ D-1(↓xn) so 

↓an-1 ≤ ↓y ≤ D-1(↓xn).  Furthermore, xn ∈ zn ⇒ D-1(↓xn) ≤ D-1(zn) = ↓an, so we have 

↓an-1 ≤ D-1(↓xn) ≤ ↓an, or equivalently ↓xn-1 ≤ D(↓an-1) ≤ ↓xn.   Thus xn-1 ≤ xn and 

the set {xn} is a chain and thus a directed set.  Since X{Id | d ∈ DS} is a cpo, 

x = \/{xn} ∈ X{Id | d ∈ DS}.  Since z ∈ U, z is a closed under sups and thus x ∈ z. 

 Now, ∀n. xn ≤ x so ∀n. ↓an ≤ D-1(↓xn+1) ≤ D-1(↓x).  Thus ↓a = \/n↓an ≤ 

D-1(↓x) (note that a ∈ D-1(↓x)) and D(↓a) ≤ ↓x.  On the other hand, x ∈ z ⇒ ↓x ≤ z = 

D(↓a), and so D(↓a) = ↓x.   
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 Prop. F.7 showed that a display function maps embedded scalar objects to 

displays of the form ↓x, where x is a display tuple.  Now we show that these ↓x must be 

embedded display scalar objects, and that embedded scalar objects are mapped to 

embedded display scalar objects of the same kind (that is, discrete or continuous). 

 

 Prop. F.8. If D:U → V is a display function, then 

∀s ∈ S. ∀a ∈ Us. ∃d ∈ DS. D(a) ∈ Vd. 

Furthermore, if s is discrete, then d is discrete, and if s is continuous, then d is 

continuous. 

 Proof.  A value u ∈ Us has the form u = ↓(⊥,...,a,...,⊥).  If a = ⊥ then 

D(u) = {(⊥,...,⊥)} which belongs to Vd for all d ∈ DS.  Otherwise, by Prop. F.7, 

∃v ∈ X{Id | d ∈ DS}. D(u) = ↓v and by Prop. F.2, ↓v > {(⊥,...,⊥)}.  If ↓v is not in any 

Vd, then some (...,e,...,f,...) ∈ ↓v with e ≠ ⊥ ≠ f.  We consider the discrete and continuous 

cases separately. 

 First, consider s discrete.  We have ↓(...,e,...,⊥,...) < ↓v and ∃u' ∈ U such that 

D(u') = ↓(...,e,...,⊥,...) < ↓v = D(u), so u' < u.  But the only u' less than u are φ and 

{(⊥,...,⊥)}, and D does not carry them into ↓(...,e,...,⊥,...).  Thus ↓v must be in some Vd. 

 Second, consider s continuous.  Define wef = (⊥,...,e,...,f,...,⊥) (that is, e and f are 

the only elements in this tuple that are not ⊥).  Also define ve = ↓(⊥,...,e,...,⊥,...,⊥) and 

vf = ↓(⊥,...,⊥,...,f,...,⊥).  Then ve, vf  < ↓wef ≤ ↓v = D(u) so 

∃ue, uf < u. (D(ue) = ve & D(uf) = vf).  Now, ve ≠ {(⊥,...,⊥)} so ue ≠ {(⊥,...,⊥)} and 

∃ae ≠ ⊥. (⊥,...,ae,...,⊥) ∈ ue and hence ↓(⊥,...,ae,...,⊥) ≤ ue.  Similarly, 

∃af ≠ ⊥. ↓(⊥,...,af,...,⊥) ≤ uf.  By Prop. F.1, ↓(⊥,...,ae ∧ af,...,⊥) ≤ ue ∧ uf.  However, ae 

and af are real intervals (since they belong to a continuous scalar and are not ⊥), so 

ae ∧ af is the smallest interval containing both ae and af.  Let ag be this interval.  Then 
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ag = ae ∧ af ≠ ⊥, and ↓(⊥,...,ag,...,⊥) ≤ ue ∧ uf.  Thus ue ∧ uf ≠ {(⊥,...,⊥)}.  On the other 

hand, ve ∧ vf = {(⊥,...,⊥)}.  But this contradicts D(ue ∧ uf) = ve ∧ vf, so ↓v must be in 

some Vd. 

 Next we show that discrete scalar values map to discrete scalar values, and that 

continuous scalar values map to continuous scalar values. 

 Let u = ↓(⊥,...,a,...,⊥) ∈ Us for discrete s with D(u) = v = ↓(⊥,...,b,...,⊥) ∈ Vd and 

b ≠ ⊥.  If d is continuous, then ∃b'. ⊥ < b' < b such that 

{(⊥,...,⊥)} < ↓(⊥,...,b',...,⊥) = v' < v.  Thus ∃u'. D(u') = v' where 

{(⊥,...,⊥)} < u' < u = ↓(⊥,...,a,...,⊥).  Thus u' = ↓(⊥,...,a',...,⊥) where a' < a, which is 

impossible for discrete s, so d must be discrete. 

 Let u = ↓(⊥,...,a,...,⊥) ∈ Us for continuous s with D(u) = v = ↓(⊥,...,b,...,⊥) ∈ Vd.  

Then ∃a'. ⊥ < a' < a and {(⊥,...,⊥)} < ↓(⊥,...,a',...,⊥) = u' < u, so 

D({(⊥,...,⊥)}) = {(⊥,...,⊥)} < D(u') = v' < v.  This is only possible if Vd is continuous.   

 

 Next we show that embedded objects from different scalars are not mapped to the 

same display scalar embedding. 

 

 Prop. F.9. If D:U → V is a display function, then for all s and s' in S, 

(s ≠ s' & ua ∈ Us & ub ∈ Us' & ua ≠ ⊥ ≠ ub & D(ua) ∈ Vd & D(ub) ∈ Vd') ⇒ d ≠ d'. 

 Proof. Let va = D(ua) and vb = D(ub).  Assume that  va and vb are in the same 

Vd, and let ua = ↓(⊥,...,a,...,⊥,...,⊥), 

 ub = ↓(⊥,...,⊥,...,b,...,⊥), 

 va = ↓(⊥,...,e,...,⊥) and 

 vb = ↓(⊥,...,f,...,⊥), where a ≠ ⊥ ≠ b and e ≠ ⊥ ≠ f. 
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This notation indicates that ua and ub are in different Us, and that va and vb are in the 

same Vd. 

 First, we treat the continuous case.  ua ∧ ub = {(⊥,...,⊥)} and, by Prop. F.1, 

va ∧ vb = ↓(⊥,...,e ∧ f,...,⊥).  e and f are real intervals, and e ∧ f is the smallest interval 

containing both e and f.  Thus e ∧ f ≠ ⊥ so va ∧ vb ≠ {(⊥,...,⊥)}, which contradicts 

D(ua ∧ ub) = va ∧ vb.  Thus va and vb must be in the same Vd. 

 Second, treat the discrete case.  Note that 

ua ∨ ub = {(⊥,...,a,...,⊥,...,⊥), (⊥,...,⊥,...,b,...,⊥), (⊥,...,⊥)} and 

D(ua ∨ ub) = va ∨ vb = {(⊥,...,e,...,⊥), (⊥,...,f,...,⊥), (⊥,...,⊥)}. 

Let x = ↓(⊥,...,a,...,b,...,⊥) = 

{(⊥,...,a,...,b,...,⊥), (⊥,...,a,...,⊥,...,⊥), (⊥,...,⊥,...,b,...,⊥), (⊥,...,⊥)} > ua ∨ ub. 

Set y = D(x).  Then y > va ∨ vb so there is (⊥,...,g,...,⊥) ∈ y (all elements of this tuple are 

⊥ except g) such that (⊥,...,e,...,⊥) ≠ (⊥,...,g,...,⊥) ≠ (⊥,...,f,...,⊥).  [In fact (⊥,...,g,...,⊥) 

may not even be in the same Vd that (⊥,...,e,...,⊥) and (⊥,...,f,...,⊥) are in.]  Now if 

↓(⊥,...,g,...,⊥) = y then e ≤ g and f ≤ g which is impossible in the discrete order of Id.  

Thus ↓(⊥,...,g,...,⊥) < y and so ∃w < x. D(w) = ↓(⊥,...,g,...,⊥).  However, the only w less 

than x are φ, {(⊥,...,⊥)}, ua , ub and ua ∨ ub.  This contradicts g ≠ e and g ≠ f.  Thus va 

and vb must be in the same Vd.   

 

 As a corollary of Prop. F.9, we show that only embedded scalar objects are 

mapped to embedded display scalar objects (that is, non-scalar objects must be mapped to 

non-display scalar objects). 

 

 Prop. F.10. If D:U → V is a display function, then 

∀d ∈ DS. (D(u) ∈ Vd ⇒ ∃s ∈ S. u ∈ Us). 
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 Proof. If u ∈ U is not in any scalar embedding, then ∃(...,e,...,f,...) ∈ u. e ≠ ⊥ ≠ f.  

Assume D(u) = v ∈ Vd.  Then (⊥,...,e,...,⊥,...,⊥) ∈ u and (⊥,...,⊥,...,f,...,⊥) ∈ u, so 

↓(⊥,...,e,...,⊥,...,⊥) ≤ u and ↓(⊥,...,⊥,...,f,...,⊥) ≤ u, and thus D(↓(⊥,...,e,...,⊥,...,⊥)) ∈ Vd 

and D(↓(⊥,...,⊥,...,f,...,⊥)) ∈ Vd.  However ↓(⊥,...,e,...,⊥,...,⊥) and ↓(⊥,...,⊥,...,f,...,⊥) are 

in two different scalar embeddings and, by Prop. F.9, cannot both be mapped to Vd.  Thus 

D(u) cannot belong to any display scalar embedding.   

 

 Next, we show that all embedded objects from a continuous scalar are mapped to 

embedded objects from the same display scalar.  Note, however, that embedded objects 

from the same discrete scalar may be mapped to embedded objects from different display 

scalars. 

 

 Prop. F.11. If D:U → V is a display function and if s is a continuous scalar, then 

∀ua, ub ∈ Us. ((D(ua) ∈ Vd & D(ub) ∈ Vd' & ua ≠ ⊥ ≠ ub) ⇒ d = d'). 

 Proof. Let va = D(ua) and vb = D(ub).  Assume that s is continuous and that va 

and vb are in different Vd.  Let 

 ua = ↓(⊥,...,a,...,⊥), 

 ub = ↓(⊥,...,b,...,⊥), 

 va = ↓(⊥,...,e,...,⊥,...,⊥) and 

 vb = ↓(⊥,...,⊥,...,f,...,⊥), where a ≠ ⊥ ≠ b and e ≠ ⊥ ≠ f. 

This notation indicates that ua and ub are in the same Us, and that va and vb are in 

different Vd.  Now va ∧ vb = {(⊥,...,⊥)} and, by Prop. F.1, ua ∧ ub = ↓(⊥,...,a ∧ b,...,⊥).  

Since a and b are real intervals, a ∧ b is the smallest interval containing both a and b, so 

a ∧ b ≠ ⊥.  However, this contradicts D(ua ∧ ub) = va ∧ vb.  Thus, va and vb must be in 

the same Vd.   
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 Now we show that a display function maps objects of the form ↓a, for 

a ∈ X{Is | s ∈ S}, to objects of the form ↓x, for x ∈ X{Id | d ∈ DS}, and conversely.  

Furthermore, the values of display functions on objects of the form ↓a are determined by 

their values on embedded scalar objects.  Given this, it is an easy step in Prop. F.13 to 

show that the values of display functions on all of U are determined by their values on 

embedded scalar objects. 

 

 Prop. F.12. If D:U → V is a display function and if a is a tuple in X{Is | s ∈ S} 

then there exists a tuple x in X{Id | d ∈ DS} such that D(↓a) = ↓x.  Conversely, if x is a 

tuple in X{Id | d ∈ DS} such that ∃A ∈ U. x ∈ D(A), then there exists a tuple a in 

X{Is | s ∈ S} such that D(↓a) = ↓x.  From Prop. F.8 we know that for all s ∈ S, 

as ≠ ⊥ ⇒ ∃d ∈ DS. ∃yd ∈ Id. (yd ≠ ⊥ & ↓(⊥,...,yd,...,⊥) = D(↓(⊥,...,as,...,⊥))), 

and similarly, from Prop. D.3 we know that for all d ∈ DS, 

xd ≠ ⊥ ⇒ ∃s ∈ S. ∃bs ∈ Is. (bs ≠ ⊥ & ↓(⊥,...,xd,...,⊥) = D(↓(⊥,...,bs,...,⊥))), 

Here we assert that for all s ∈ S, as ≠ ⊥ ⇒ as = bs, and for all d ∈ DS, xd ≠ ⊥ ⇒ xd = yd.  

That is, the tuple elements of a determine the tuple elements of x, and vice versa, 

according to the values of D on the scalar embeddings Us. 

 Proof. This is similar to the proof of Prop F.7.  Given a ∈ X{Is | s ∈ S}, let 

z = D(↓a).  Then z = \/{↓y | y ∈ z}, and by Prop. F.4, ↓a = D-1(z) = \/{D-1(↓y) | y ∈ z} 

(note ↓y ≤ z so D-1(↓y) exists). 

 Define a sequence of tuples an in U, for n =1, 2, ..., by: 
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 s discrete ⇒ ans = as 

 s continuous and as = ⊥ ⇒ ans = as 

 s continuous and as = [x, y] ⇒ ans = [x-1/n, y+1/n]. 

 

Also define zn = D(↓an) ≤ D(↓a) = z, and note that ↓an = \/{D-1(↓x) | x ∈ zn}.  Now 

neighbor(an-1) is open and ↓an ∩ neighbor(an-1) ≠ φ.  By Prop. F.6 there must be 

xn ∈ zn such that D-1(↓xn) ∩ neighbor(an-1) ≠ φ.  Say y is in this intersection.  Then 

y ∈ neighbor(an-1) ⇒ an-1 ≤ y and y ∈ D-1(↓xn) ⇒ ↓y ≤ D-1(↓xn) so 

↓an-1 ≤ ↓y ≤ D-1(↓xn).  Furthermore, xn ∈ zn ⇒ D-1(↓xn) ≤ D-1(↓zn) = ↓an, so we 

have ↓an-1 ≤ D-1(↓xn) ≤ ↓an. 

 Now consider the tuple components of an and xn.  Define xn' by 

↓(⊥,...,xnd ',...,⊥) = D(↓(⊥,...,ans,...,⊥)), and set xnd ' = ⊥ for those d not corresponding to 

any ans ≠ ⊥.  Also define an' by ↓(⊥,...,xnd,...,⊥) = D(↓(⊥,...,ans',...,⊥)) for those d such 

that xnd ≠ ⊥, and set ans' = ⊥ for those s not corresponding to any xnd ≠ ⊥.  Note that ↓(

⊥,...,xnd,...,⊥) ≤ ↓xn so ∃w ∈ U. ↓(⊥,...,xnd,...,⊥) = D(w), and, by Prop. D.3, w must have 

the form ↓(⊥,...,ans',...,⊥), so ans' exists for xnd ≠ ⊥.  First, we use D-1(↓xn) ≤ ↓an to 

show that: 

 

(a) ↓(⊥,...,xnd,...,⊥) ≤ ↓xn ⇒ 

 ↓(⊥,...,ans',...,⊥) = D-1(↓(⊥,...,xnd,...,⊥)) ≤ D-1(↓xn) ≤ ↓an ⇒ 

 ans' ≤ ans ⇒ 

 ↓(⊥,...,ans',...,⊥) ≤ ↓(⊥,...,ans,...,⊥) ⇒ 

 ↓(⊥,...,xnd,...,⊥) = D(↓(⊥,...,ans',...,⊥)) ≤ 

  D(↓(⊥,...,ans,...,⊥)) = ↓(⊥,...,xnd ',...,⊥) ⇒ 

 xnd ≤ xnd ' 
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The transition from the fourth to the fifth line in (a) shows that if ans and ans' are in the 

same scalar s, then xnd and xnd ' are in the same display scalar d.  Next, we use 

↓an ≤ D-1(↓xn+1) to show that: 

 

(b) ↓(⊥,...,ans,...,⊥) ≤ ↓an ⇒ 

 ↓(⊥,...,xnd ',...,⊥) = D(↓(⊥,...,ans,...,⊥)) ≤ D(↓an) ≤ ↓xn+1 ⇒ 

 xnd ' ≤ x(n+1)d ⇒ 

 ↓(⊥,...,xnd ',...,⊥) ≤ ↓(⊥,...,x(n+1)d,...,⊥) ⇒ 

 ↓(⊥,...,ans,...,⊥) = D-1(↓(⊥,...,xnd ',...,⊥)) ≤ 

  D-1(↓(⊥,...,x(n+1)d,...,⊥)) = ↓(⊥,...,a(n+1)s',...,⊥) ⇒ 

 ans ≤ a(n+1)s' 

 

The transition from the fourth to the fifth line in (b) shows that if xnd and x(n+1)d ' are in 

the same display scalar d, then ans and a(n+1)s' are in the same scalar s. 

 Putting (a) and (b) together shows that ans' ≤ ans ≤ a(n+1)s' and xnd ≤ xnd ' ≤ 

x(n+1)d for all s and d.  If d is a discrete display scalar, then there is an n such that 

∀m ≥ n. xmd = xnd, and define xd = xnd.  If d is a continuous display scalar, then there 

either all the xnd are ⊥ or there is an n such that 

∀i, j ≥ n. i ≥ j ⇒ xid = [ui, vi] ⊆ [uj, vj] = xjd.  In the first case, define xd = ⊥ and in the 

second case define xd = [u, v] = I{[ui, vi] | i ≥ n}.  In any case, xd = \/nxnd, and defining 

x as the tuple with components xd, x = \/nxn.  Since z is closed, {xn} is a directed set, and 

∀n. xn ∈ z, then x ∈ z. 
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 By definition, a = \/nan.  We have already shown that ↓an-1 ≤ D-1(↓xn), so 

an-1 ∈ D-1(↓xn) ⊆ D-1(↓x).  Since D-1(↓x) is closed, a ∈ D-1(↓x) and thus ↓a ≤ 

D-1(↓x).  However, x ∈ z, so D-1(↓x) ≤ ↓a and thus ↓a = D-1(↓x).  Define x' and a' by 

↓(⊥,...,xnd ',...,⊥) = D(↓(⊥,...,ans,...,⊥)) and ↓(⊥,...,xnd,...,⊥) = D(↓(⊥,...,ans',...,⊥)).  

Then we can apply the logic of (a) and (b) (using ↓a ≤ D-1(↓x) ≤ ↓a) to show that 

as' ≤ as ≤ as' and xd ≤ xd ' ≤ xd, which is just as = as' and xd = xd '.  Thus D takes the set 

of tuple components of a into exactly the set of tuple components of x. 

 For the converse, we are given a tuple x in X{Id | d ∈ DS} such that 

∃A ∈ U. x ∈ D(A).  Then ↓x ≤ D(A) and ∃z ≤ A. ↓x = D(z) = \/{D(↓b) | b ∈ z}.  After 

this, the argument for the converse is identical, relying on properties of D that are shared 

by D-1.  D-1 is a homomorphism from D(U) to U, and Props. F.3 and F.4 show that D-1 

is continuous and preserves arbitrary sups.  In the argument D-1 is only applied to 

members of V that are less than ↓x, where D-1 is guaranteed to be defined.   

 

 Proposition F.13 will show that the values of display functions on all of U are 

determined by their values on the scalar embeddings Us, which is particularly interesting 

since most elements of U cannot be expressed as sups of sets of elements of the scalar 

embeddings Us. 

 

 Prop. F.13. If D:U → V is a display function, then its values on U are determined 

by its values on the scalar embeddings Us. 

 Proof. For all u ∈ U, u = \/{↓x | x ∈ u}.  By Prop. B.2, D(u) = \/{D(↓x) | x ∈ u}.  

Now, each x ∈ u is a tuple so by Prop. F.12, D(↓x) is determined by the values of D 

applied to the tuple components of x.  Thus D(u) is determined by the values of D on the 

scalar embeddings Us.   
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 The propositions in Appendix F are combined in the following definition and 

theorem about mappings from scalars to display scalars. 

 

 Def. Given a display function D, define a mapping MAPD: S → POWER(DS) by 

MAPD(s) = {d ∈ DS | ∃a ∈ Us. D(a) ∈ Vd}. 

 

 Theorem. F.14. Every display function D:U → V is an injective lattice 

homomorphism whose values are determined by its values on the scalar embeddings Us.  

D maps values in the scalar embedding Us to values in the display scalar embeddings Vd 

for d ∈ MAPD(s).  Furthermore, 

s discrete and d ∈ MAPD(s) ⇒ d discrete, 

s continuous and d ∈ MAPD(s) ⇒ d continuous, 

s ≠ s' ⇒ MAPD(s) ∩ MAPD(s') = φ, 

s continuous ⇒ MAPD(s) contains a single display scalar. 

 

 


