Appendix E

Proofs for Section 3.2.4

Here we present the technical details for Section 3.2.4.

Def. Given $A \in U$, define $M A X(A)=\{a \in A \mid \forall b \in A . \neg(a<b)\}$. That is, $\operatorname{MAX}(A)$ consists of the maximal elements of A.

Zorn's Lemma. Let P be a non-empty ordered set in which every chain has an upper bound. Then P has a maximal element.

Prop. E.1. $\forall A \in U . A \subseteq \downarrow M A X(A)$, and hence $A=\downarrow M A X(A)$.
Proof. Pick $A \in U$ and $a \in A$ and define $P_{a}=\{x \in A \mid a \leq x\}$. For all chains $C \subseteq P_{a}, C$ is a directed set and $C \subseteq A$, so $b=V / C \in A$ (since A is closed). If C is not empty, then $a \leq b$ so $b \in P_{a}$. Thus, every chain in P_{a} has an upper bound in P_{a}, so by Zorn's Lemma, P_{a} has a maximal element d. If there is any $c \in A$ such that $d<c$ then $a<c$ so $c \in P_{a}$, contradicting the maximality of d in P_{a}. Thus $d \in \operatorname{MAX}(A)$ and $a \in \downarrow M A X(A)$. Therefore $A \subseteq \downarrow M A X(A)$. Clearly $M A X(A) \subseteq A$, and, since A is closed, $\downarrow M A X(A) \subseteq \downarrow A \subseteq A$ and so $A=\downarrow M A X(A)$.

Prop. E.2. $\forall A, B \in U . A=B \Leftrightarrow M A X(A)=M A X(B)$.
Proof. Assume A and B are in U. Clearly, $A=B \Rightarrow M A X(A)=M A X(B)$. To show the converse, assume $A \neq B$ and, without loss of generality, that $a \in A \& a \notin B$. Since $A \subseteq \downarrow M A X(A)$, there must be $c \in M A X(A)$ with $a \leq c$. However, since B is a down-set,
$c \notin B$, and hence $c \notin M A X(B)$. Thus $M A X(A) \neq M A X(B)$.

Prop. E.3. $\forall A \in U$. $A \equiv_{\mathrm{R}} M A X(A)$.
Proof. First, $M A X(A) \leq_{\mathrm{R}} A$, since $M A X(A) \subseteq A$. Now, if $A \cap C \neq \phi$ for $C \subseteq X$ open then $\exists a \in A \cap C$. Now, $A \subseteq \downarrow M A X(A)$ so $\exists b \in M A X(A)$. $a \leq b$. However, since C is open $b \in C$ so $b \in A \cap C$ and $\operatorname{MAX}(A) \cap C \neq \phi$. Thus $A \leq_{\mathrm{R}} \operatorname{MAX}(A)$ and $A \equiv{ }_{\mathrm{R}} \operatorname{MAX}(A)$.

Prop. E.4. Given a tuple type $t=\operatorname{struct}\left\{t_{1} ; \ldots ; t_{n}\right\} \in T, A \in F_{t}$ and $a=a_{1} \vee \ldots \vee a_{n} \in A$, where $\forall i . a_{i} \in A_{i} \in F_{t_{i}}$, then $a \in \operatorname{MAX}(A) \Leftrightarrow \forall i . a_{i} \in \operatorname{MAX}\left(A_{i}\right)$.

Proof. Note that a and the a_{i} are tuples, and the sup of tuples is taken componentwise, so $\forall s \in S . a_{S}=a_{1 s} \vee \ldots \vee a_{n s}$. Also note that $i \neq j \Rightarrow S C\left(t_{i}\right) \cap S C\left(t_{i}\right)=\phi$. If there is some i such that $a_{i} \notin \operatorname{MAX}\left(A_{i}\right)$, then $\exists b_{i} \in A_{i} . a_{i}<b_{i}$ so $b=a_{1} \vee \ldots \vee b_{i} \vee \ldots \vee a_{n} \in A$. Now, $a_{i}<b_{i} \Rightarrow \exists s \in S . a_{i s}<b_{i s}$ and (since $j \neq i \Rightarrow a_{j s}=\perp=b_{j S}$) $a_{S}=a_{i s}$ and $b_{S}=b_{i S}$, so $a<b$. Thus $a \notin \operatorname{MAX}(A)$. Conversely, if $a \notin \operatorname{MAX}(A)$ then $\exists b \in A . a<b$ with $a=a_{1} \vee \ldots \vee a_{n}, b=b_{1} \vee \ldots \vee b_{n}$, and \forall i. $a_{i}, b_{i} \in A_{i}$. For some $s \in S, a_{S}<b_{S}$. Thus $b_{S}>\perp$ so $\exists j$. $s \in S C\left(t_{j}\right)$, and so $a_{S}<b_{S} \Rightarrow a_{j}<b_{j}$ (since $a_{S}=a_{j s}$ and $b_{S}=b_{j s}$). Thus $a_{j} \notin \operatorname{MAX}\left(A_{j}\right)$.

Prop. E.5. For all types $t \in T$ and all $A \in F_{t}, M A X(A)$ is finite. If $t \in S$ and $A=\downarrow(\perp, \ldots, a, \ldots, \perp) \in F_{t}$ then $\operatorname{MAX}(A)=\{(\perp, \ldots, a, \ldots, \perp)\}$. If $t=\operatorname{struct}\left\{t_{1} ; \ldots ; t_{n}\right\} \in T$ and $A=\left\{\left(a_{1} \vee \ldots \vee a_{n}\right) \mid \forall i . a_{i} \in A_{i}\right\} \in F_{t}$ then $\operatorname{MAX}(A)=\left\{\left(a_{1} \vee \ldots \vee a_{n}\right) \mid \forall i . a_{i} \in \operatorname{MAX}\left(A_{i}\right)\right\}$. If $t=(\operatorname{array}[w]$ of $r) \in T$ and $A=\left\{a_{1} \vee a_{2} \mid g \in G \& a_{1} \in E_{W}(g) \& a_{2} \in E_{r}(a(g))\right\} \in F_{t}$ then $\operatorname{MAX}(A)=\left\{a_{1} \vee a_{2} \mid g \in G \& a_{1} \in \operatorname{MAX}\left(E_{w}(g)\right) \& a_{2} \in \operatorname{MAX}\left(E_{r}(a(g))\right)\right\}$.

Proof. We will demonstrate this proposition by induction on the structure of t.
Let $t \in S$ and let $A \in F_{t}$. Then $\exists a \in I_{S} . A=\downarrow(\perp, \ldots, a, \ldots, \perp)$, so $M A X(A)=\{(\perp, \ldots, a, \ldots, \perp)\}$. $M A X(A)$ has a single member and is thus finite.

Let $t=\operatorname{struct}\left\{t_{1} ; \ldots ; t_{n}\right\} \in T$ and let $A \in F_{t}$. By Prop. E.4, $\operatorname{MAX}(A)=\left\{\left(a_{1} \vee \ldots \vee a_{n}\right) \mid \forall i . a_{i} \in \operatorname{MAX}\left(A_{i}\right)\right\}$. By the inductive hypothesis, the $\operatorname{MAX}\left(A_{i}\right)$ are finite, so $\operatorname{MAX}(A)$ is finite.

Let $t=(\operatorname{array}[w]$ of $r) \in T$ and let $A \in F_{t}$. There is a finite set $G \in \operatorname{FIN}\left(H_{w}\right)$ and a function $a \in\left(G \rightarrow H_{r}\right)$ such that

$$
\begin{aligned}
& A=\left\{a_{1} \vee a_{2} \mid g \in G \& a_{1} \in E_{W}(g) \& a_{2} \in E_{r}(a(g))\right\}= \\
& \bigcup\left\{\left\{a_{1} \vee a_{2} \mid a_{1} \in E_{W}(g) \& a_{2} \in E_{r}(a(g))\right\} \mid g \in G\right\}=\bigcup\left\{A_{g} \mid g \in G\right\}
\end{aligned}
$$

where we define $A_{g}=\left\{a_{1} \vee a_{2} \mid a_{1} \in E_{W}(g) \& a_{2} \in E_{r}(a(g))\right\}$. Each A_{g} is an object in $F_{\text {struct }\{w ; r\}}$ for the tuple type struct $\{w ; r\}$. By Prop. E.4,

$$
\begin{aligned}
& \operatorname{MAX}\left(A_{g}\right)=\left\{a_{1} \vee a_{2} \mid a_{1} \in \operatorname{MAX}\left(E_{w}(g)\right) \& a_{2} \in \operatorname{MAX}\left(E_{r}(a(g))\right)\right\}= \\
& \left\{(\perp, \ldots, g, \ldots, \perp) \vee a_{2} \mid a_{2} \in \operatorname{MAX}\left(E_{r}(a(g))\right)\right\}
\end{aligned}
$$

Pick $g \neq g^{\prime}$ in G, and $b \in \operatorname{MAX}\left(A_{g}\right)$ and $b^{\prime} \in \operatorname{MAX}\left(A_{g^{\prime}}\right)$. Then there are $b_{2} \in \operatorname{MAX}\left(E_{r}(a(g))\right)$ and $b_{2}{ }^{\prime} \in \operatorname{MAX}\left(E_{r}\left(a\left(g^{\prime}\right)\right)\right)$ such that $b=(\perp, \ldots, g, \ldots, \perp) \vee b_{2}$ and $b^{\prime}=\left(\perp, \ldots, g^{\prime}, \ldots, \perp\right) \vee b_{2}{ }^{\prime}$. If $b>b^{\prime}$ then $g>g^{\prime}$ since $b_{2 w}=b_{2 w^{\prime}}=\perp$. However, this contradicts the defintion of $\operatorname{FIN}\left(H_{W}\right)$. Thus no $b \in \operatorname{MAX}\left(A_{g}\right)$ is larger than any $b^{\prime} \in \operatorname{MAX}\left(A_{g^{\prime}}\right)$ for $g \neq g^{\prime}$ in G. Thus

$$
\begin{aligned}
& \operatorname{MAX}(A)=\operatorname{MAX}\left(\bigcup\left\{A_{g} \mid g \in G\right\}\right)=\bigcup\left\{\operatorname{MAX}\left(A_{g}\right) \mid g \in G\right\}= \\
& \bigcup\left\{\left\{a_{1} \vee a_{2} \mid a_{1} \in \operatorname{MAX}\left(E_{w}(g)\right) \& a_{2} \in \operatorname{MAX}\left(E_{r}(a(g))\right)\right\} \mid g \in G\right\}= \\
& \left\{a_{1} \vee a_{2} \mid g \in G \& a_{1} \in \operatorname{MAX}\left(E_{W}(g)\right) \& a_{2} \in \operatorname{MAX}\left(E_{r}(a(g))\right)\right\} .
\end{aligned}
$$

G is finite, and by the inductive hypothesis, $\operatorname{MAX}\left(E_{W}(g)\right)$ and $\operatorname{MAX}\left(E_{r}(a(g))\right)$ are finite, so $M A X(A)$ is finite.

Appendix F

Proofs for Section 3.4.1

Here we present the technical details for Section 3.4.1. First, two definitions are given to provide the context for the work in this and subsequent appendices.

Def. Let S denote a finite set of scalars, let $X=\mathbf{X}\left\{I_{S} \mid s \in S\right\}$ denote a set of tuples, and let $U=C L(X)$ denote the lattice of data objects consisting of closed sets of tuples whose primitive values are taken from the scalars in S.

Def. Let $D S$ denote a finite set of display scalars, let $Y=\mathbf{X}\left\{I_{d} \mid d \in D S\right\}$ denote a set of tuples, and let $V=C L(Y)$ denote the lattice of displays consisting of closed sets of tuples whose primitive values are taken from the display scalars in $D S$.

Now we prove four propositions that we will use as lemmas in other proofs.

Prop. F.1. For all $A, B \in U, \downarrow A \wedge \downarrow B=\downarrow(A \wedge B)$.
Proof. $\downarrow A \wedge \downarrow B=\downarrow A \cap \downarrow B=\{C \mid C \leq A\} \cap\{C \mid C \leq B\}=\{C \mid C \leq A \& C \leq B\}=$ $\{C \mid C \leq A \wedge B\}=\downarrow(A \wedge B)$.

Prop. F.2. $D(\phi)=\phi$ and $D(\{(\perp, \ldots, \perp)\})=\{(\perp, \ldots, \perp)\}$.
Proof. First, note that $\forall u \in U . \phi \leq u$ and $\forall u \in U . u \neq \phi \Rightarrow\{(\perp, \ldots, \perp)\} \leq u$. That is, ϕ is the least element in U, and $\{(\perp, \ldots, \perp)\}$ is the next largest element in U. If
$D(\phi)=v>\phi$, then $\exists u \in U . D(u)=\phi$ and $u<\phi$, which is impossible. Thus $D(\phi)=\phi$. Similarly, if $D(\{(\perp, \ldots, \perp)\})=v>\{(\perp, \ldots, \perp)\}$, then $\exists u \in U . D(u)=\{(\perp, \ldots, \perp)\}$ and $u<\{(\perp, \ldots, \perp)\}$. However, the only $u<\{(\perp, \ldots, \perp)\}$ is ϕ, and $D(\phi)=\phi$, so $D(\{(\perp, \ldots, \perp)\})=\{(\perp, \ldots, \perp)\}$.

Prop. F.3. If $D: U \rightarrow V$ is a display function, then its inverse D^{-1} is a continuous function from $D(U)$ to U.

Proof. First, D^{-1} is a function since D is injective, and D^{-1} is monotone since D is an order embedding. D^{-1} is continuous if for all directed $M \subseteq D(U), V D^{-1}(M)=D^{-}$ ${ }^{1}(V / M)$. However, since D is a homomorphism, $D^{-1}(M)$ is a directed set in U. Thus, since D is continuous, $V / D\left(D^{-1}(M)\right)=D\left(/ / D^{-1}(M)\right)$, and so $D^{-1}\left(V / D\left(D^{-1}(M)\right)\right)=D^{-1}\left(D\left(V / D^{-}\right.\right.$ $\left.{ }^{1}(M)\right)$). This simplifies to $D^{-1}(/ / M)=V D^{-1}(M)$, showing that D^{-1} is continuous.

Prop. F.4. If $D: U \rightarrow V$ is a display function, then $\forall M \subseteq D(U) . V D^{-1}(M)=D^{-1}(V / M)$.

Proof. Given $M \subseteq D(U)$ let $N=D^{-1}(M) \subseteq U$. By Prop. B.2, $\operatorname{V} / D(N)=D(\mathbb{V} N)$, which is equivalent to $\mathbf{V} M=D\left(\mathbb{V} D^{-1}(M)\right)$, and applying D^{-1} to both sides of this, we get $D^{-1}(\mathbf{V} / M)=D^{-1}\left(D\left(\mathbb{V} D^{-1}(M)\right)\right)=V / D^{-1}(M)$.

Now we define an open neighborhood of a tuple in X, and prove two more lemmas. Note that in the following we will use the notation a_{S} to indicate the s component of a tuple $a \in \mathbf{X}\left\{I_{S} \mid s \in S\right\}$.

Def. Given a tuple $a \in \mathbf{X}\left\{I_{S} \mid s \in S\right\}$ such that $a_{S} \neq[x, x]$ for continuous s, define neighbor (a) as the set of tuples b such that:

$$
\begin{aligned}
& s \text { discrete } \Rightarrow b_{S} \geq a_{S} \\
& s \text { continuous and } a_{S}=\perp \Rightarrow b_{S} \geq a_{S} \\
& s \text { continuous and } a_{S} \neq \perp \Rightarrow b_{S}>a_{S} \\
& \left.\qquad \text { (that is } a_{S}=[x, y] \text { and } b_{S}=[u, v] \Rightarrow x<u \text { and } v<y\right) .
\end{aligned}
$$

Prop. F.5. For $a \in \mathbf{X}\left\{I_{S} \mid s \in S\right\}$, the set neighbor(a) is open (in the Scott topology).

Proof. Clearly neighbor (a) is an up set. Let C be a directed set in $X\left\{I_{s} \mid s \in S\right\}$ such that $d=\ / C$ belongs to neighbor (a). The sup is taken componentwise, so $d_{S}=\bigvee\left\{c_{S} \mid c \in C\right\}$ for each s. If s is discrete, then $\exists c^{S} \in C . c^{S} S_{S}=d_{S}>a_{S}$. If s is continuous and $a_{S}=\perp$, then for any $c \in C, c_{S} \geq a_{S}$. If s is continuous and $a_{S} \neq \perp$, then a_{S} and d_{S} are intervals such that $d_{S}=[u, v] \subset[x, y]=a_{S}$, with $x<u$ and $v<y$. Here $u=\max \left\{p \mid \exists c \in C .[p, q]=c_{S}\right\}$ and $v=\min \left\{q \mid \exists c \in C .[p, q]=c_{S}\right\}$ so there exist $c^{s}{ }_{1}, c^{s} 2 \in C$ such that $c^{s} 1 s=\left[p_{1}, q_{1}\right]$ and $c^{s} 2 s=\left[p_{2}, q_{2}\right]$ with $x<p_{1}$ and $q_{2}<y$. Since C is directed, there must be $c^{S} \in C$ such that $c^{S} \geq c^{S} 1 \vee c^{S} 2$, so $c^{S}{ }_{S}>a_{S}$. For each $s \in S$ we have shown that there is $c^{S} \in C$ such that $c^{S}{ }_{S} \geq a_{S}$. Since S is finite, and C is directed, there is $c \in C$ such that $c \geq \mathbf{V}\left\{c^{S} \mid s \in S\right\} \geq a$ and $c \in$ neighbor(a). Thus neighbor(a) is an open set.

Prop. F.6. Given a set $C \subseteq U, B=V / C$ and an open set A in $\mathbf{X}\left\{I_{S} \mid s \in S\right\}$, then $A \cap B \neq \phi \Rightarrow \exists c \in C . A \cap c \neq \phi$.

Proof. B and all $c \in C$ are closed, so B is the smallest closed set containing $\cup C$. All the $c \in C$ are down sets, so $\bigcup C$ is also a down set. Thus, by Prop. C.10,
$\left\{V_{M \mid} \mid M \subseteq U C\right.$ \& M directed $\}$ is closed and hence equal to B. We are given that there is a $y \in A \cap B$, so there must be a directed set M in $\cup C$ such that $y=_{M}$. However, since A is open, there must be $m \in M \cap A$, and since $M \subseteq \cup C$, there is $c \in C$ such that $m \in c \cap A$.

Now we define the embeddings of scalar objects and display scalar objects in the lattices U and V.

Def. For each scalar $s \in S$, define an embedding $E_{S}: I_{S} \rightarrow U$ by: $\forall b \in I_{S} . E_{S}(b)=\downarrow(\perp, \ldots, b, \ldots, \perp)$ (this notation indicates that all elements of the tuple are \perp except b). Also define $U_{S}=E_{S}\left(I_{S}\right) \subseteq U$.

Def. For each display scalar $d \in D S$, define an embedding $E_{d}: I_{d} \rightarrow V$ by: $\forall b \in I_{d} . E_{d}(b)=\downarrow(\perp, \ldots, b, \ldots, \perp)$. Also define $V_{d}=E_{d}\left(I_{d}\right) \subseteq V$.

Next, we use an argument involving open neighborhoods to show that a display function maps embedded scalar objects to displays of the form \downarrow_{x}, where x is a display tuple. Prop. F .8 will show that these \downarrow_{x} must be embedded display scalar objects.

Prop. F.7. If $D: U \rightarrow V$ is a display function, then for all $s \in S$, $\forall b \in I_{s} . \exists x \in \mathbf{X}\left\{I_{d} \mid d \in D S\right\} . D(\downarrow(\perp, \ldots, b, \ldots, \perp))=\downarrow_{x}$.

Proof. Given $s \in S$ and $b \in I_{S}$, let $a=(\perp, \ldots, b, \ldots, \perp)$ and let $z=D(\downarrow a)$. Then $\mathrm{z}=\backslash\left\{\{\downarrow y \mid y \in z\}\right.$, and by Prop. F.4, $\downarrow a=D^{-1}(z)=\backslash\left\{D^{-1}(\downarrow y) \mid y \in z\right\}$ (note $\downarrow y \leq z$ so $D^{-1}(\downarrow y)$ exists).

Now we know that $a \in \mathbb{V}\left\{D^{-1}(\downarrow y) \mid y \in z\right\}$. If we could show that $\\left\{D^{-1}(\downarrow y) \mid y \in z\right\}=\bigcup\left\{D^{-1}(\downarrow y) \mid y \in z\right\}$ then there must be $x \in z$ such that $a \in D^{-1}(\downarrow x)$. However, the $D^{-1}(\downarrow y)$ are closed sets, and, by Prop. C.8, we can only show that $\\left\{D^{-1}(\downarrow y) \mid y \in z\right\}=\bigcup\left\{D^{-1}(\downarrow y) \mid y \in z\right\}$ if z is finite. Thus we need a more complex argument to construct $x \in z$ such that $a \in D^{-1}\left(\downarrow_{x}\right)$.

Define a sequence of tuples a_{n} in U, for $n=1,2, \ldots$, by:
if s is continuous and $b=a_{S}=[x, y]$ for some interval $[x, y]$, then

$$
a_{n s}=[x-1 / n, y+1 / n]
$$

if s is continuous and $b=a_{S}=\perp$, then $a_{n s}=\perp$
if s is discrete, then $a_{n s}=a_{S}$
for all $s^{\prime} \in S$ such that $s^{\prime} \neq s, a_{n s^{\prime}}=\perp$

Also define $z_{n}=D\left(\downarrow a_{n}\right) \leq D(\downarrow a)=z$, and note that $\downarrow a_{n}=\bigvee\left\{D^{-1}\left(\downarrow_{x}\right) \mid x \in z_{n}\right\}$. Now neighbor $\left(a_{n-1}\right)$ is open and $\downarrow a_{n} \cap$ neighbor $\left(a_{n-1}\right) \neq \phi$, so by Prop. F. 6 there must be $x_{n} \in z_{n}$ such that $D^{-1}\left(\downarrow_{x_{n}}\right) \cap$ neighbor $\left(a_{n-1}\right) \neq \phi$. Say y is in this intersection. Then $y \in \operatorname{neighbor}\left(a_{n-1}\right) \Rightarrow a_{n-1} \leq y$ and $y \in D^{-1}\left(\downarrow_{x_{n}}\right) \Rightarrow \downarrow_{y} \leq D^{-1}\left(\downarrow_{x_{n}}\right)$ so $\downarrow_{n-1} \leq \downarrow_{y} \leq D^{-1}\left(\downarrow_{x_{n}}\right)$. Furthermore, $x_{n} \in z_{n} \Rightarrow D^{-1}\left(\downarrow_{x_{n}}\right) \leq D^{-1}\left(z_{n}\right)=\downarrow_{n}$, so we have $\downarrow_{n-1} \leq D^{-1}\left(\downarrow_{n}\right) \leq \downarrow a_{n}$, or equivalently $\downarrow_{x_{n-1}} \leq D\left(\downarrow_{n-1}\right) \leq \downarrow_{x_{n}}$. Thus $x_{n-1} \leq x_{n}$ and the set $\left\{x_{n}\right\}$ is a chain and thus a directed set. Since $\mathbf{X}\left\{I_{d} \mid d \in D S\right\}$ is a cpo, $x=\ /\left\{x_{n}\right\} \in \mathbf{X}\left\{I_{d} \mid d \in D S\right\}$. Since $z \in U, z$ is a closed under sups and thus $x \in z$.

Now, $\forall n$. $x_{n} \leq x$ so $\forall n . ~ \downarrow a_{n} \leq D^{-1}\left(\downarrow_{n+1}\right) \leq D^{-1}(\downarrow x)$. Thus $\downarrow a=V_{n} \downarrow a_{n} \leq$ $D^{-1}\left(\downarrow_{x}\right)$ (note that $a \in D^{-1}\left(\downarrow_{x}\right)$) and $D(\downarrow a) \leq \downarrow_{x}$. On the other hand, $x \in z \Rightarrow \downarrow_{x} \leq z=$ $D(\downarrow a)$, and so $D(\downarrow a)=\downarrow_{x}$.

Prop. F. 7 showed that a display function maps embedded scalar objects to displays of the form \downarrow_{x}, where x is a display tuple. Now we show that these \downarrow_{x} must be embedded display scalar objects, and that embedded scalar objects are mapped to embedded display scalar objects of the same kind (that is, discrete or continuous).

Prop. F.8. If $D: U \rightarrow V$ is a display function, then
$\forall s \in S . \forall a \in U_{S} . \exists d \in D S . D(a) \in V_{d}$.
Furthermore, if s is discrete, then d is discrete, and if s is continuous, then d is continuous.

Proof. A value $u \in U_{S}$ has the form $u=\downarrow(\perp, \ldots, a, \ldots, \perp)$. If $a=\perp$ then $D(u)=\{(\perp, \ldots, \perp)\}$ which belongs to V_{d} for all $d \in D S$. Otherwise, by Prop. F.7, $\exists v \in \mathbf{X}\left\{I_{d} \mid d \in D S\right\} . D(u)=\downarrow_{v}$ and by Prop. F.2, $\downarrow_{v}>\{(\perp, \ldots, \perp)\}$. If \downarrow_{v} is not in any V_{d}, then some $(\ldots, e, \ldots, f, \ldots) \in \downarrow v$ with $e \neq \perp \neq f$. We consider the discrete and continuous cases separately.

First, consider s discrete. We have $\downarrow(\ldots, e, \ldots, \perp, \ldots)<\downarrow_{v}$ and $\exists u^{\prime} \in U$ such that $D\left(u^{\prime}\right)=\downarrow(\ldots, e, \ldots, \perp, \ldots)<\downarrow v=D(u)$, so $u^{\prime}<u$. But the only u^{\prime} less than u are ϕ and $\{(\perp, \ldots, \perp)\}$, and D does not carry them into $\downarrow(\ldots, e, \ldots, \perp, \ldots)$. Thus \downarrow_{v} must be in some V_{d}.

Second, consider s continuous. Define $w_{e f}=(\perp, \ldots, e, \ldots, f, \ldots, \perp)$ (that is, e and f are the only elements in this tuple that are not \perp). Also define $v_{e}=\downarrow(\perp, \ldots, e, \ldots, \perp, \ldots, \perp)$ and $v_{f}=\downarrow(\perp, \ldots, \perp, \ldots, f, \ldots, \perp)$. Then $v_{e}, v_{f}<\downarrow_{w_{e f}} \leq \downarrow_{v}=D(u)$ so
$\exists u_{e}, u_{f}<u .\left(D\left(u_{e}\right)=v_{e} \& D\left(u_{f}\right)=v_{f}\right)$. Now, $v_{e} \neq\{(\perp, \ldots, \perp)\}$ so $u_{e} \neq\{(\perp, \ldots, \perp)\}$ and $\exists a_{e} \neq \perp .\left(\perp, \ldots, a_{e}, \ldots, \perp\right) \in u_{e}$ and hence $\downarrow\left(\perp, \ldots, a_{e}, \ldots, \perp\right) \leq u_{e}$. Similarly, $\exists a_{f} \neq \perp . \downarrow\left(\perp, \ldots, a_{f}, \ldots, \perp\right) \leq u_{f}$. By Prop. F.1, $\downarrow\left(\perp, \ldots, a_{e} \wedge a_{f}, \ldots, \perp\right) \leq u_{e} \wedge u_{f}$. However, a_{e} and a_{f} are real intervals (since they belong to a continuous scalar and are not \perp), so $a_{e} \wedge a_{f}$ is the smallest interval containing both a_{e} and a_{f}. Let a_{g} be this interval. Then
$a_{g}=a_{e} \wedge a_{f} \neq \perp$, and $\downarrow\left(\perp, \ldots, a_{g}, \ldots, \perp\right) \leq u_{e} \wedge u_{f}$. Thus $u_{e} \wedge u_{f} \neq\{(\perp, \ldots, \perp)\}$. On the other hand, $v_{e} \wedge v_{f}=\{(\perp, \ldots, \perp)\}$. But this contradicts $\mathrm{D}\left(u_{e} \wedge u_{f}\right)=v_{e} \wedge v_{f}$, so \downarrow_{v} must be in some V_{d}.

Next we show that discrete scalar values map to discrete scalar values, and that continuous scalar values map to continuous scalar values.

Let $u=\downarrow(\perp, \ldots, a, \ldots, \perp) \in U_{S}$ for discrete s with $D(u)=v=\downarrow(\perp, \ldots, b, \ldots, \perp) \in V_{d}$ and $b \neq \perp$. If d is continuous, then $\exists b^{\prime} . \perp<b^{\prime}<b$ such that $\{(\perp, \ldots, \perp)\}<\downarrow\left(\perp, \ldots, b^{\prime}, \ldots, \perp\right)=v^{\prime}<v$. Thus $\exists u^{\prime} . D\left(u^{\prime}\right)=v^{\prime}$ where $\{(\perp, \ldots, \perp)\}<u^{\prime}<u=\downarrow(\perp, \ldots, a, \ldots, \perp)$. Thus $u^{\prime}=\downarrow\left(\perp, \ldots, a^{\prime}, \ldots, \perp\right)$ where $a^{\prime}<a$, which is impossible for discrete s, so d must be discrete.

Let $u=\downarrow(\perp, \ldots, a, \ldots, \perp) \in U_{S}$ for continuous s with $D(u)=v=\downarrow(\perp, \ldots, b, \ldots, \perp) \in V_{d}$. Then $\exists a^{\prime} . \perp<a^{\prime}<a$ and $\{(\perp, \ldots, \perp)\}<\downarrow\left(\perp, \ldots, a^{\prime}, \ldots, \perp\right)=u^{\prime}<u$, so $D(\{(\perp, \ldots, \perp)\})=\{(\perp, \ldots, \perp)\}<D\left(u^{\prime}\right)=v^{\prime}<v$. This is only possible if V_{d} is continuous.

Next we show that embedded objects from different scalars are not mapped to the same display scalar embedding.

Prop. F.9. If $D: U \rightarrow V$ is a display function, then for all s and s^{\prime} in S, $\left(s \neq s^{\prime} \& u_{a} \in U_{S} \& u_{b} \in U_{s^{\prime}} \& u_{a} \neq \perp \neq u_{b} \& D\left(u_{a}\right) \in V_{d} \& D\left(u_{b}\right) \in V_{d^{\prime}}\right) \Rightarrow d \neq d^{\prime}$.

Proof. Let $v_{a}=\mathrm{D}\left(u_{a}\right)$ and $v_{b}=\mathrm{D}\left(u_{b}\right)$. Assume that v_{a} and v_{b} are in the same V_{d}, and let $\quad u_{a}=\downarrow(\perp, \ldots, a, \ldots, \perp, \ldots, \perp)$,
$u_{b}=\downarrow(\perp, \ldots, \perp, \ldots, b, \ldots, \perp)$,
$v_{a}=\downarrow(\perp, \ldots, e, \ldots, \perp)$ and
$v_{b}=\downarrow(\perp, \ldots, f, \ldots, \perp)$, where $a \neq \perp \neq b$ and $e \neq \perp \neq f$.

This notation indicates that u_{a} and u_{b} are in different U_{S}, and that v_{a} and v_{b} are in the same V_{d}.

First, we treat the continuous case. $u_{a} \wedge u_{b}=\{(\perp, \ldots, \perp)\}$ and, by Prop. F.1, $v_{a} \wedge v_{b}=\downarrow(\perp, \ldots, e \wedge f, \ldots, \perp) . e$ and f are real intervals, and $e \wedge f$ is the smallest interval containing both e and f. Thus $e \wedge f \neq \perp$ so $v_{a} \wedge v_{b} \neq\{(\perp, \ldots, \perp)\}$, which contradicts $D\left(u_{a} \wedge u_{b}\right)=v_{a} \wedge v_{b}$. Thus v_{a} and v_{b} must be in the same V_{d}.

Second, treat the discrete case. Note that
$u_{a} \vee u_{b}=\{(\perp, \ldots, a, \ldots, \perp, \ldots, \perp),(\perp, \ldots, \perp, \ldots, b, \ldots, \perp),(\perp, \ldots, \perp)\}$ and
$D\left(u_{a} \vee u_{b}\right)=v_{a} \vee v_{b}=\{(\perp, \ldots, e, \ldots, \perp),(\perp, \ldots, f, \ldots, \perp),(\perp, \ldots, \perp)\}$.
Let $x=\downarrow(\perp, \ldots, a, \ldots, b, \ldots, \perp)=$
$\{(\perp, \ldots, a, \ldots, b, \ldots, \perp),(\perp, \ldots, a, \ldots, \perp, \ldots, \perp),(\perp, \ldots, \perp, \ldots, b, \ldots, \perp),(\perp, \ldots, \perp)\}>u_{a} \vee u_{b}$.
Set $y=D(x)$. Then $y>v_{a} \vee v_{b}$ so there is $(\perp, \ldots, g, \ldots, \perp) \in y$ (all elements of this tuple are \perp except g) such that $(\perp, \ldots, e, \ldots, \perp) \neq(\perp, \ldots, g, \ldots, \perp) \neq(\perp, \ldots, f, \ldots, \perp)$. [In fact $(\perp, \ldots, g, \ldots, \perp)$ may not even be in the same V_{d} that $(\perp, \ldots, e, \ldots, \perp)$ and $(\perp, \ldots, f, \ldots, \perp)$ are in.] Now if $\downarrow(\perp, \ldots, g, \ldots, \perp)=y$ then $e \leq g$ and $f \leq g$ which is impossible in the discrete order of I_{d}. Thus $\downarrow(\perp, \ldots, g, \ldots, \perp)<y$ and so $\exists w<x . D(w)=\downarrow(\perp, \ldots, g, \ldots, \perp)$. However, the only w less than x are $\phi,\{(\perp, \ldots, \perp)\}, u_{a}, u_{b}$ and $u_{a} \vee u_{b}$. This contradicts $g \neq e$ and $g \neq f$. Thus v_{a} and v_{b} must be in the same V_{d}.

As a corollary of Prop. F.9, we show that only embedded scalar objects are mapped to embedded display scalar objects (that is, non-scalar objects must be mapped to non-display scalar objects).

Prop. F.10. If $D: U \rightarrow V$ is a display function, then $\forall d \in D S .\left(D(u) \in V_{d} \Rightarrow \exists s \in S . u \in U_{S}\right)$.

Proof. If $u \in U$ is not in any scalar embedding, then $\exists(\ldots, e, \ldots, f, \ldots) \in u . e \neq \perp \neq f$. Assume $D(u)=v \in V_{d}$. Then $(\perp, \ldots, e, \ldots, \perp, \ldots, \perp) \in u$ and $(\perp, \ldots, \perp, \ldots, f, \ldots, \perp) \in u$, so $\downarrow(\perp, \ldots, e, \ldots, \perp, \ldots, \perp) \leq u$ and $\downarrow(\perp, \ldots, \perp, \ldots, f, \ldots, \perp) \leq u$, and thus $D(\downarrow(\perp, \ldots, e, \ldots, \perp, \ldots, \perp)) \in V_{d}$ and $D(\downarrow(\perp, \ldots, \perp, \ldots, f, \ldots, \perp)) \in V_{d}$. However $\downarrow(\perp, \ldots, e, \ldots, \perp, \ldots, \perp)$ and $\downarrow(\perp, \ldots, \perp, \ldots, f, \ldots, \perp)$ are in two different scalar embeddings and, by Prop. F.9, cannot both be mapped to V_{d}. Thus $D(u)$ cannot belong to any display scalar embedding.

Next, we show that all embedded objects from a continuous scalar are mapped to embedded objects from the same display scalar. Note, however, that embedded objects from the same discrete scalar may be mapped to embedded objects from different display scalars.

Prop. F.11. If $D: U \rightarrow V$ is a display function and if s is a continuous scalar, then $\forall u_{a}, u_{b} \in U_{s} .\left(\left(D\left(u_{a}\right) \in V_{d} \& D\left(u_{b}\right) \in V_{d^{\prime}} \& u_{a} \neq \perp \neq u_{b}\right) \Rightarrow d=d^{\prime}\right)$.

Proof. Let $v_{a}=\mathrm{D}\left(u_{a}\right)$ and $v_{b}=\mathrm{D}\left(u_{b}\right)$. Assume that s is continuous and that v_{a} and v_{b} are in different V_{d}. Let

$$
\begin{aligned}
& u_{a}=\downarrow(\perp, \ldots, a, \ldots, \perp), \\
& u_{b}=\downarrow(\perp, \ldots, b, \ldots, \perp), \\
& v_{a}=\downarrow(\perp, \ldots, e, \ldots, \perp, \ldots, \perp) \text { and } \\
& v_{b}=\downarrow(\perp, \ldots, \perp, \ldots, f, \ldots, \perp), \text { where } a \neq \perp \neq b \text { and } e \neq \perp \neq f .
\end{aligned}
$$

This notation indicates that u_{a} and u_{b} are in the same U_{S}, and that v_{a} and v_{b} are in different V_{d}. Now $v_{a} \wedge v_{b}=\{(\perp, \ldots, \perp)\}$ and, by Prop. F.1, $u_{a} \wedge u_{b}=\downarrow(\perp, \ldots, a \wedge b, \ldots, \perp)$. Since a and b are real intervals, $a \wedge b$ is the smallest interval containing both a and b, so $a \wedge b \neq \perp$. However, this contradicts $D\left(u_{a} \wedge u_{b}\right)=v_{a} \wedge v_{b}$. Thus, v_{a} and v_{b} must be in the same V_{d}.

Now we show that a display function maps objects of the form $\downarrow a$, for $a \in \mathbf{X}\left\{I_{S} \mid s \in S\right\}$, to objects of the form \downarrow_{x}, for $x \in \mathbf{X}\left\{I_{d} \mid d \in D S\right\}$, and conversely. Furthermore, the values of display functions on objects of the form $\downarrow a$ are determined by their values on embedded scalar objects. Given this, it is an easy step in Prop. F. 13 to show that the values of display functions on all of U are determined by their values on embedded scalar objects.

Prop. F.12. If $D: U \rightarrow V$ is a display function and if a is a tuple in $\mathbf{X}\left\{I_{S} \mid s \in S\right\}$ then there exists a tuple x in $\mathbf{X}\left\{I_{d} \mid d \in D S\right\}$ such that $D(\downarrow a)=\downarrow_{x}$. Conversely, if x is a tuple in $\mathbf{X}\left\{I_{d} \mid d \in D S\right\}$ such that $\exists A \in U . x \in D(A)$, then there exists a tuple a in $X\left\{I_{S} \mid s \in S\right\}$ such that $D(\downarrow a)=\downarrow_{x}$. From Prop. F. 8 we know that for all $s \in S$, $a_{S} \neq \perp \Rightarrow \exists d \in D S . \exists y_{d} \in I_{d} \cdot\left(y_{d} \neq \perp \& \downarrow\left(\perp, \ldots, y_{d}, \ldots, \perp\right)=D\left(\downarrow\left(\perp, \ldots, a_{S}, \ldots, \perp\right)\right)\right)$, and similarly, from Prop. D. 3 we know that for all $d \in D S$, $x_{d} \neq \perp \Rightarrow \exists s \in S . \exists b_{S} \in I_{S} .\left(b_{S} \neq \perp \& \downarrow\left(\perp, \ldots, x_{d}, \ldots, \perp\right)=D\left(\downarrow\left(\perp, \ldots, b_{S}, \ldots, \perp\right)\right)\right)$,
Here we assert that for all $s \in S, a_{S} \neq \perp \Rightarrow a_{S}=b_{S}$, and for all $d \in D S, x_{d} \neq \perp \Rightarrow x_{d}=y_{d}$. That is, the tuple elements of a determine the tuple elements of x, and vice versa, according to the values of D on the scalar embeddings U_{S}.

Proof. This is similar to the proof of Prop F.7. Given $a \in \mathbf{X}\left\{I_{S} \mid s \in S\right\}$, let $z=D(\downarrow a)$. Then $\mathrm{z}=\mathbf{V}\{\downarrow y \mid y \in z\}$, and by Prop. F.4, $\downarrow a=D^{-1}(z)=\bigvee\left\{D^{-1}(\downarrow y) \mid y \in z\right\}$ (note $\downarrow y \leq z$ so $D^{-1}(\downarrow y)$ exists).

Define a sequence of tuples a_{n} in U, for $n=1,2, \ldots$, by:

$$
\begin{aligned}
& s \text { discrete } \Rightarrow a_{n s}=a_{S} \\
& s \text { continuous and } a_{S}=\perp \Rightarrow a_{n s}=a_{S} \\
& s \text { continuous and } a_{S}=[x, y] \Rightarrow a_{n s}=[x-1 / n, y+1 / n] .
\end{aligned}
$$

Also define $z_{n}=D\left(\downarrow a_{n}\right) \leq D(\downarrow a)=z$, and note that $\downarrow a_{n}=\bigvee\left\{D^{-1}(\downarrow x) \mid x \in z_{n}\right\}$. Now neighbor $\left(a_{n-1}\right)$ is open and $\downarrow a_{n} \cap$ neighbor $\left(a_{n-1}\right) \neq \phi$. By Prop. F. 6 there must be $x_{n} \in z_{n}$ such that $D^{-1}\left(\downarrow_{x_{n}}\right) \cap$ neighbor $\left(a_{n-1}\right) \neq \phi$. Say y is in this intersection. Then $y \in \operatorname{neighbor}\left(a_{n-1}\right) \Rightarrow a_{n-1} \leq y$ and $y \in D^{-1}\left(\downarrow_{x_{n}}\right) \Rightarrow \downarrow y \leq D^{-1}\left(\downarrow_{n}\right)$ so $\downarrow_{n-1} \leq \downarrow_{y} \leq D^{-1}\left(\downarrow_{x_{n}}\right)$. Furthermore, $x_{n} \in z_{n} \Rightarrow D^{-1}\left(\downarrow_{x_{n}}\right) \leq D^{-1}\left(\downarrow_{z_{n}}\right)=\downarrow a_{n}$, so we have $\downarrow a_{n-1} \leq D^{-1}\left(\downarrow_{x_{n}}\right) \leq \downarrow a_{n}$.

Now consider the tuple components of a_{n} and x_{n}. Define $x_{n}{ }^{\prime}$ by $\downarrow\left(\perp, \ldots, x_{n d^{\prime}}, \ldots, \perp\right)=D\left(\downarrow\left(\perp, \ldots, a_{n s}, \ldots, \perp\right)\right)$, and set $x_{n d^{\prime}}=\perp$ for those d not corresponding to any $a_{n s} \neq \perp$. Also define $a_{n}{ }^{\prime}$ by $\downarrow\left(\perp, \ldots, x_{n d}, \ldots, \perp\right)=D\left(\downarrow\left(\perp, \ldots, a_{n s}{ }^{\prime}, \ldots, \perp\right)\right.$) for those d such that $x_{n d} \neq \perp$, and set $a_{n s^{\prime}}=\perp$ for those s not corresponding to any $x_{n d} \neq \perp$. Note that $\downarrow($ $\left.\perp, \ldots, x_{n d}, \ldots, \perp\right) \leq \downarrow_{x_{n}}$ so $\exists w \in U . \downarrow\left(\perp, \ldots, x_{n d}, \ldots, \perp\right)=D(w)$, and, by Prop. D.3, w must have the form $\downarrow\left(\perp, \ldots, a_{n s^{\prime}}, \ldots, \perp\right)$, so $a_{n s^{\prime}}$ exists for $x_{n d} \neq \perp$. First, we use $D^{-1}\left(\downarrow_{x_{n}}\right) \leq \downarrow a_{n}$ to show that:
(a)

$$
\begin{aligned}
& \downarrow\left(\perp, \ldots, x_{n d}, \ldots, \perp\right) \leq \downarrow x_{n} \Rightarrow \\
& \downarrow\left(\perp, \ldots, a_{n s^{\prime}}, \ldots, \perp\right)=D^{-1}\left(\downarrow\left(\perp, \ldots, x_{n d}, \ldots, \perp\right)\right) \leq D^{-1}\left(\downarrow_{x_{n}}\right) \leq \downarrow a_{n} \Rightarrow \\
& a_{n s^{\prime}} \leq a_{n s} \Rightarrow \\
& \downarrow\left(\perp, \ldots, a_{n s^{\prime}}, \ldots, \perp\right) \leq \downarrow\left(\perp, \ldots, a_{n s}, \ldots, \perp\right) \Rightarrow \\
& \downarrow\left(\perp, \ldots, x_{n d}, \ldots, \perp\right)=D\left(\downarrow\left(\perp, \ldots, a_{n s^{\prime}}, \ldots, \perp\right)\right) \leq \\
& \quad D\left(\downarrow\left(\perp, \ldots, a_{n s}, \ldots, \perp\right)\right)=\downarrow\left(\perp, \ldots, x_{n d^{\prime}}, \ldots, \perp\right) \Rightarrow \\
& x_{n d} \leq x_{n d}
\end{aligned}
$$

The transition from the fourth to the fifth line in (a) shows that if $a_{n s}$ and $a_{n s} s^{\prime}$ are in the same scalar s, then $x_{n d}$ and $x_{n d}$ ' are in the same display scalar d. Next, we use $\downarrow a_{n} \leq D^{-1}\left(\downarrow x_{n+1}\right)$ to show that:
(b) $\quad \downarrow\left(\perp, \ldots, a_{n s}, \ldots, \perp\right) \leq \downarrow a_{n} \Rightarrow$

$$
\begin{aligned}
& \downarrow\left(\perp, \ldots, x_{n d^{\prime}}, \ldots, \perp\right)=D\left(\downarrow\left(\perp, \ldots, a_{n s}, \ldots, \perp\right)\right) \leq D\left(\downarrow a_{n}\right) \leq \downarrow_{x_{n+1}} \Rightarrow \\
& x_{n d^{\prime}} \leq x_{(n+1) d} \Rightarrow \\
& \downarrow\left(\perp, \ldots, x_{n d^{\prime}}, \ldots, \perp\right) \leq \downarrow\left(\perp, \ldots, x_{(n+1) d, \ldots, \perp) \Rightarrow} \downarrow\left(\perp, \ldots, a_{n s}, \ldots, \perp\right)=D^{-1}\left(\downarrow\left(\perp, \ldots, x_{n d^{\prime}}, \ldots, \perp\right)\right) \leq\right. \\
& \quad D^{-1}\left(\downarrow \left(\perp, \ldots, x_{(n+1) d, \ldots, \perp))=\downarrow\left(\perp, \ldots, a_{\left.(n+1) s^{\prime}, \ldots, \perp\right)} \Rightarrow\right.} \begin{array}{l}
a_{n s} \leq a_{(n+1) s^{\prime}}
\end{array},\right.\right.
\end{aligned}
$$

The transition from the fourth to the fifth line in (b) shows that if $x_{n d}$ and $x_{(n+1) d} d^{\prime}$ are in the same display scalar d, then $a_{n s}$ and $a_{(n+1) s^{\prime}}$ are in the same scalar s.

Putting (a) and (b) together shows that $a_{n s^{\prime}} \leq a_{n s} \leq a_{(n+1) s^{\prime}}$ and $x_{n d} \leq x_{n d^{\prime}} \leq$ $x_{(n+1) d}$ for all s and d. If d is a discrete display scalar, then there is an n such that $\forall m \geq n . x_{m d}=x_{n d}$, and define $x_{d}=x_{n d}$. If d is a continuous display scalar, then there either all the $x_{n d}$ are \perp or there is an n such that $\forall i, j \geq n . i \geq j \Rightarrow x_{i d}=\left[u_{i}, v_{i}\right] \subseteq\left[u_{j}, v_{j}\right]=x_{j d}$. In the first case, define $x_{d}=\perp$ and in the second case define $x_{d}=[u, v]=\bigcap\left\{\left[u_{i}, v_{i}\right] \mid i \geq n\right\}$. In any case, $x_{d}=V_{n} x_{n d}$, and defining x as the tuple with components $x_{d}, x=V_{n^{x}}$. Since z is closed, $\left\{x_{n}\right\}$ is a directed set, and $\forall n . x_{n} \in z$, then $x \in z$.

By definition, $a=V_{n} a_{n}$. We have already shown that $\downarrow a_{n-1} \leq D^{-1}\left(\downarrow_{x_{n}}\right)$, so $a_{n-1} \in D^{-1}\left(\downarrow_{x_{n}}\right) \subseteq D^{-1}\left(\downarrow_{x}\right)$. Since $D^{-1}\left(\downarrow_{x}\right)$ is closed, $a \in D^{-1}\left(\downarrow_{x}\right)$ and thus $\downarrow a \leq$ $D^{-1}(\downarrow x)$. However, $x \in z$, so $D^{-1}(\downarrow x) \leq \downarrow a$ and thus $\downarrow a=D^{-1}\left(\downarrow_{x}\right)$. Define x^{\prime} and a^{\prime} by $\downarrow\left(\perp, \ldots, x_{n}{ }^{\prime}, \ldots, \perp\right)=\mathrm{D}\left(\downarrow\left(\perp, \ldots, a_{n S}, \ldots, \perp\right)\right)$ and $\downarrow\left(\perp, \ldots, x_{n d}, \ldots, \perp\right)=\mathrm{D}\left(\downarrow\left(\perp, \ldots, a_{n s}{ }^{\prime}, \ldots, \perp\right)\right)$. Then we can apply the logic of (a) and (b) (using $\downarrow a \leq D^{-1}(\downarrow x) \leq \downarrow a$) to show that $a_{S}{ }^{\prime} \leq a_{S} \leq a_{S}{ }^{\prime}$ and $x_{d} \leq x_{d}{ }^{\prime} \leq x_{d}$, which is just $a_{S}=a_{S}{ }^{\prime}$ and $x_{d}=x_{d}{ }^{\prime}$. Thus D takes the set of tuple components of a into exactly the set of tuple components of x.

For the converse, we are given a tuple x in $\mathbf{X}\left\{I_{d} \mid d \in D S\right\}$ such that $\exists A \in U . x \in D(A)$. Then $\downarrow_{x} \leq D(A)$ and $\exists z \leq A . \downarrow_{x}=D(z)=\bigvee\{D(\downarrow b) \mid b \in z\}$. After this, the argument for the converse is identical, relying on properties of D that are shared by D^{-1}. D^{-1} is a homomorphism from $D(U)$ to U, and Props. F. 3 and F. 4 show that D^{-1} is continuous and preserves arbitrary sups. In the argument D^{-1} is only applied to members of V that are less than \downarrow_{x}, where D^{-1} is guaranteed to be defined.

Proposition F. 13 will show that the values of display functions on all of U are determined by their values on the scalar embeddings U_{S}, which is particularly interesting since most elements of U cannot be expressed as sups of sets of elements of the scalar embeddings U_{S}.

Prop. F.13. If $D: U \rightarrow V$ is a display function, then its values on U are determined by its values on the scalar embeddings U_{S}.

Proof. For all $u \in U, u=\mathbf{V}\left\{\downarrow_{x} \mid x \in u\right\}$. By Prop. B.2, $D(u)=\mathbf{V}\left\{D\left(\downarrow_{x}\right) \mid x \in u\right\}$. Now, each $x \in u$ is a tuple so by Prop. F.12, $D(\downarrow x)$ is determined by the values of D applied to the tuple components of x. Thus $D(u)$ is determined by the values of D on the scalar embeddings U_{S}.

The propositions in Appendix F are combined in the following definition and theorem about mappings from scalars to display scalars.

Def. Given a display function D, define a mapping $M A P_{D}: S \rightarrow P O W E R(D S)$ by $M A P_{D}(s)=\left\{d \in D S \mid \exists a \in U_{S} . D(a) \in V_{d}\right\}$.

Theorem. F.14. Every display function $D: U \rightarrow V$ is an injective lattice homomorphism whose values are determined by its values on the scalar embeddings U_{S}. D maps values in the scalar embedding U_{S} to values in the display scalar embeddings V_{d} for $d \in M A P_{D}(s)$. Furthermore,

$$
s \text { discrete and } d \in M A P_{D}(s) \Rightarrow d \text { discrete, }
$$

s continuous and $d \in M A P_{D}(s) \Rightarrow d$ continuous,
$s \neq s^{\prime} \Rightarrow M A P_{D}(s) \cap M A P_{D}\left(s^{\prime}\right)=\phi$,
s continuous $\Rightarrow M A P_{D}(s)$ contains a single display scalar.

