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Appendix A 

 

Definitions for Ordered Sets 

 

 The appendices contain all the formal definitions, propositions and proofs for 

developing a model of the display process based on lattices.  Here we list some basic 

definitions from the theory of ordered sets. 

 

 Def. A partially ordered set (poset) is a set D with a binary relation ≤ on D such 

that, ∀x, y, z ∈ D 

(a) x ≤ x    "reflexive" 

(b) x ≤ y & y ≤ x ⇒ x = y  "anti-symmetric" 

(c) x ≤ y & y ≤ z ⇒ x ≤ z  "transitive" 

 

 Def. An upper bound for a set M ⊆ D is an element x D∈  such that 

∀y ∈ M. y ≤ x. 

 

 Def. The least upper bound of a set M ⊆ D, if it exists, is an upper bound x for M 

such that if y is another upper bound for M, then  x ≤ y.  The least upper bound of M is 

denoted sup M or \/M.  sup{x,y} is written x ∨ y. 

 

 Def. A lower bound for a set M ⊆ D is an element x D∈  such that ∀y ∈ M. x ≤ y. 
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 Def. The greatest lower bound of a set M ⊆ D, if it exists, is a lower bound x for 

M such that if y is another lower bound for M, then  y ≤ x.  The greatest lower bound of 

M is denoted inf M or /\M.  inf{x,y} is written x ∧ y. 

 

 Def. A subset M ⊆ D is a down set if ∀x ∈ M.∀y ∈ D. y ≤ x ⇒ y ∈ M.  Given 

M ⊆ D, define ↓M = {y ∈ D | ∃x ∈ M. y ≤ x}, and given x ∈ D, define 

↓x = {y ∈ D | y ≤ x}. 

 

 Def. A subset M ⊆ D is an up set if ∀x ∈ M. ∀y ∈ D. x ≤ y ⇒ y ∈ M.  Given 

M ⊆ D, define ↑M = {y ∈ D | ∃x ∈ M. x ≤ y}, and given x ∈ D, define 

↑x = {y ∈ D | x ≤ y}. 

 

 Def. A subset M ⊆ D is a chain if, for all x, y ∈ M, either y ≤ x or x ≤ y. 

 

 Def. A subset M ⊆ D is directed if, for every finite subset A ⊆ M, there is an 

x ∈ M such that ∀y ∈ A. y ≤ x. 

 

 Def. A poset D is complete (and called a cpo) if every directed subset M ⊆ D has 

a least upper bound \/M and if there is a least element ⊥ ∈ D (that is, ∀y ∈ D. ⊥ ≤ y). 

 

 Def. If D and E are posets, we use the notation (D → E) to denote the set of all 

functions from D to E. 

 

 Def. If D and E are posets, a function f:D→E is strict if f(⊥) = ⊥. 
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 Def. If D and E are posets, a function f:D→E is monotone if 

∀x, y ∈ D. x ≤ y ⇒ f(x) ≤ f(y).  We use the notation MON(D → E) to denote the set of all 

monotone functions from D to E. 

 

 Def. If D and E are posets, a function f:D→E is an order embedding if 

∀x, y ∈ D. x ≤ y ⇔ f(x) ≤ f(y). 

 

 Def. Given posets D and E, a function f:D→E, and a set M ⊆ D, we use the 

notation f(M) to denote {f(d) | d ∈ M}. 

 

 Def. If D and E are cpos, a function f:D→E is continuous if it is monotone and if 

f(\/M) = \/f(M) for directed M ⊆ D. 

 

 Def. If D is a cpo, then x ∈ D is compact if, for all directed M ⊆ D, 

x ≤ \/M ⇒ ∃y ∈ M. x ≤ y. 

 

 Def. A cpo D is algebraic if for all x ∈ D, M = {y ∈ D | y ≤ x & y compact} is 

directed and x = \/M. 

 

 Def. A cpo D is a domain if D is algebraic and if D contains a countable number 

of compact elements. 

 

 Most of the ordered sets used in programming language semantics are domains. 

 

 Def. A poset D is a lattice if for all x, y ∈ D, x ∨ y and x ∧ y exist in D. 
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 Def. A poset D is a complete lattice if for all M ⊆ D, \/M and /\M exist in D. 

 

 Def. If D and E are lattices, a function f:D→E is a lattice homomorphism if for all 

x, y ∈ D, f(x ∧ y) = f(x) ∧ f(y) and f(x ∨ y) = f(x) ∨ f(y).  If f:D→E is also a bijection then 

it is a lattice isomorphism. 

 

 Def. A binary relation ≡ on a set D is an equivalence relation if ∀x, y, z ∈ D 

(a) x ≡ x    "reflexive" 

(b) x ≡ y ⇔ y ≡ x   "symmetric" 

(c) x ≡ y & y ≡ z ⇒ x ≡ z  "transitive" 

 

 Def. idD denotes the identity function on D.  Given a function f:D→D, 

im(f) = {f(d) | d ∈ D}. 

 

 Def. If D is a cpo, a continuous function f:D→D is a retraction of D if  f =  f o f.  

A retraction f:D→D is a projection if f ≤ idD and a finitetary projection if in addition 

im(f) is a domain.  A retraction f:D→D is a closure if f ≥ idD and a finitetary closure if in 

addition im(f) is a domain. 

 

 Def. If D and E are cpos, a pair of continuous functions f:D→E and g:E→D are a 

retraction pair if g o f ≤ idD and f o g = idE.  The function g is called an embedding, and 

f is called a projection. 
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Appendix B 

 

Proofs for Section 3.1.4 

 

 Here we present the technical details for Section 3.1.4.  We can interpret 

Mackinlay's expressiveness conditions as follows: 

 

 Condition 1. ∀P ∈ MON(U → {⊥ , 1}). ∃Q ∈ MON(V → {⊥ , 1}). 

   ∀u ∈ U. P(u) = Q(D(u)). 

 Condition 2. ∀Q ∈ MON(V → {⊥ , 1}). ∃P ∈ MON(U → {⊥ , 1}). 

   ∀v ∈ V. Q(v) = P(D-1(v)). 

 

 Prop. B.1. If D:U → V satisfies Condition 2 then D is a monotone bijection from 

U onto V. 

 Proof. D is a function from U to V, and Condition 2 requires that D-1 is a functon 

from V to U, so Conditon 2 requires that D is a bijection from U onto V.  Next, assume 

that x ≤ y, and let Qx = λv ∈ V. (if (v ≥ D(x)) then 1 else ⊥).  Then by Condition 2 there is 

a monotone function Px such that ∀v ∈ V. Qx(v) = Px(D-1(v)).  Since D is a bijection, 

this is equivalent to ∀u ∈ U. Qx(D(u)) = Px(u).  Hence, Qx(D(y)) = Px(y) ≥ Px(x) = 

Qx(D(x)) = 1 so Qx(D(y)) = 1 and D(y) ≥ D(x).  Thus D is monotone.   

 

 By Prop. B.1, Conditon 2 is too strong since it requires that every display in V is 

the display of some data object under D.  Since U is a complete lattice it contains a 

maximal data object X (the least upper bound of all members of U).  For all data objects 
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u ∈ U, u ≤ X.  Since D is monotone this implies D(u) ≤ D(X).  We use the notation ↓D(X) 

for the set of all displays less than D(X).  ↓D(X) is a complete lattice and for all data 

objects u ∈ U, D(u) ∈ ↓D(X).  Hence we can replace V by ↓D(X) in Condition 2 in order 

to not require that every v ∈ V is the display of some data object.  We modify Condition 

2 as follows: 

 

 Condition 2'. ∀Q ∈ MON(↓D(X) → {⊥ , 1}). ∃P ∈ MON(U → {⊥ , 1}). 

   ∀v ∈ ↓D(X). Q(v) = P(D-1(v)). 

 

 Def. A function D:U → V is a display function if it satisfies Conditions 1 and 2'. 

 

 The next two propositions demonstrate the consequences of this definition. 

 

 Prop. B.2. If D:U→V is a display function then: 

(a) D is a bijective order embedding from U onto ↓D(X) 

(b) ∀v ∈ V. (∃u' ∈ U. v ≤ D(u') ⇒ ∃u ∈ U. v = D(u)) 

(c) ∀M ⊆ U. \/D(M) = D(\/M) and ∀M ⊆ U. /\D(M) = D(/\M). 

 Proof. For part (1), D is a function from U to V, and Condition 2' requires that D-

1 is a functon from ↓D(X) to U, so D is a bijection from U onto ↓D(X). 

 To show that D is an order embedding, assume that D(x) ≤ D(y), and let 

Px = λu ∈ U. (if (u ≥ x) then 1 else ⊥).  Then by Condition 1 there is a monotone 

function Qx such that ∀u ∈ U. Qx(D(u)) = Px(u).  Hence, Px(y) = Qx(D(y)) ≥ Qx(D(x)) = 

Px(x) = 1 so Px(y) = 1 and y ≥ x.  Now assume that x ≤ y, and let 
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Qx = λv ∈ V. (if (v ≥ D(x)) then 1 else ⊥).  Then by Condition 2' there is a monotone 

function Px such that ∀v ∈ V. Qx(v) = Px(D-1(v)).  Since D is a bijection, this is 

equivalent to ∀u ∈ U. Qx(D(u)) = Px(u).  Hence, Qx(D(y)) = Px(y) ≥ Px(x) = Qx(D(x)) = 

1 so Qx(D(y)) = 1 and D(y) ≥ D(x).  Thus D is an order embedding. 

 For part (b), note that if ∃u' ∈ U. v ≤ D(u'), then v ≤ D(X) and v ∈ ↓D(X) so 

∃u ∈ U. v = D(u). 

 For part (c), ∀m ∈ M. m ≤ \/M so ∀m ∈ M. D(m) ≤ D(\/M) and so 

\/D(M) ≤ D(\/M).  Thus, by part (2), ∃u ∈ U. D(u) = \/D(M), and ∀m ∈ M. D(m) ≤ D(u) 

so ∀m ∈ M. m ≤ u and thus \/M ≤ u.  Therefore D(\/M) ≤ D(u) = \/D(M), and thus 

D(\/M) = \/D(M). 

 Next, ∀m ∈ M. /\M ≤ m so ∀m ∈ M. D(/\M) ≤ D(m) and so D(/\M) ≤ /\D(M).  

For any m ∈ M, /\D(M) ≤ D(m), so, by part (2), ∃u ∈ U. D(u) = /\D(M), and 

∀m ∈ M. D(u) ≤ D(m) so ∀m ∈ M. u ≤ m and thus u ≤ /\M.  Therefore 

/\D(M) = D(u) ≤ D(/\M), and thus D(/\M) = /\D(M).   

 

 As a corollary of Prop. B.2, next we show that display functions are lattice 

isomorphisms, and are continuous in the sense defined by Scott. 

 

 Prop. B.3. D:U → V is a display function if and only if it is a lattice isomorphism 

of U onto ↓D(X), which is a sublattice of V.  Furthermore, a display function D is 

continuous. 

 Proof. Assume D:U → V is a display function.  For any x, y ∈ U, let M = {x, y}.  

Then, by Prop. B.2, D(x ∨ y) = D(x) ∨ D(y) and D(x ∧ y) = D(x) ∧ D(y), so D is a lattice 

homomorphism.  Next, a, b ∈ ↓D(X) ⇒ a, b ≤ D(X) ⇒ a ∨ b, a ∧ b ≤ D(X) ⇒ 
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D(a ∨ b), D(a ∧ b) ∈ ↓D(X), so ↓D(X) is a sublattice of V.  By Prop. B.2, D is bijective, 

so it is a lattice isomorphism. 

 Assume D:U→↓D(X) is a lattice isomorphism.  If x ≤ y then D(y) = D(x ∨ y) = 

D(x) ∨ D(y) ≥ D(x).  If D(x) ≤ D(y) then y = D-1(D(y)) = D-1(D(x) ∨ D(y)) = 

D-1(D(x ∨ y)) = x ∨ y ≥ x.  Thus D is an order embedding.  Hence it is injective 

[that is D(x) = D(y) ⇒ D(x) ≤ D(y) ⇒ x ≤ y and D(x) = D(y) ⇒ D(y) ≤ D(x) ⇒ y ≤ x, so 

D(x) = D(y) ⇒ x = y] 

so D-1 is defined on D(U) ⊆ V.  Given P ∈ MON(U → {⊥ , 1}), define 

Q = λv ∈ V. \/{P(D-1(v')) | v' ≤ v & v' ∈ D(U)}.  The set of v' such that v' ≤ v and 

v' ∈ D(U) always includes D(⊥), so Q is defined for all v ∈ V.  Q is a function from V to 

{⊥ , 1}, and Q is monotone since 

v1 ≤ v2 ⇒ {v' | v' ≤ v1 & v' ∈ D(U)} ⊆ {v' | v' ≤ v2 & v' ∈ D(U)}.  Then, for all u ∈ U, 

 

Q(D(u)) = \/{P(D-1(v')) | v' ≤ D(u) & v' ∈ D(U)} = 

P(D-1(D(u))) ∨ \/{P(D-1(v')) | v' < D(u) & v' ∈ D(U)} = 

 [since P and D-1 are both monotone, v' < D(u) ⇒ P(D-1(v')) ≤ P(D-1(D(u)))] 

P(D-1(D(u))) = P(u). 

 

This is equivalent to P = Q o D.  Thus D satisfies Condition 1. 

 Given Q ∈ MON(V → {⊥ , 1}), define P = λu ∈ U. Q(D(u)).  P is a function from 

U to {⊥ , 1}, and P is monotone since Q and D are monotone.  Clearly 

∀u ∈ U. Q(D(u)) = P(u).  Since D is a lattice isomorphism it is a bijection from U onto 

↓D(X) so this is equivalent to ∀v∈↓D(X). Q(v) = P(D-1(v)).  Thus D satisfies Condition 

2' and is a display function. 
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 A display function D is an order embedding and thus monotone.  For any directed 

set M ⊆ U, \/D(M) = D(\/M) by Prop. B.2, so D is continuous.   
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Appendix C 

 

Proofs for Section 3.2.2 

 

 Here we present the technical details for Section 3.2.2.  Our lattices of data 

objects and of displays are defined in terms of scalar types.  Each scalar type defines a 

value set, which may be either discrete or continuous, and which includes the undefined 

value ⊥.  We use the symbol R to denote the set of real numbers. 

 

 Def. A discrete scalar s defines a countable value set Is that includes a least 

element ⊥ and has discrete order.  That is, ∀x, y ∈ Is. (x < y ⇒ (x = ⊥ & y ≠ ⊥)). 

 

 Def. A continuous scalar s defines a value set 

Is = {⊥} ∪ {[x, y] | x, y ∈ R & x ≤ y} (that is, the set of closed real intervals, plus ⊥) with 

the order defined by: ⊥ < [x, y] and [x, y] ≤ [u, v] ⇔ [u, v] ⊆ [x, y]. 

 

 Prop. C.1. Discrete and continuous scalars are cpos.  Discrete scalars are 

domains.  However, a continuous scalar is not algebraic because its only compact 

element is ⊥, and hence it is not a domain. 

 Proof. A discrete scalar s is clearly complete.  To show that a continuous scalar s 

is complete, let M be a directed set in Is.  We need to show that 

\/M = I{[u, v] | [u, v] ∈ M} is an interval in Is.  Set x = max{u | [u, v] ∈ M} and 

y = min{v | [u, v] ∈ M}.  If y < x, set a = x - y, y' = y + a / 3 and x' = x - a / 3 so y' < x'.  

Then ∃[u1, v1] ∈ M. v1 ≤ y' and ∃[u2, v2] ∈ M. u2 ≥ x', so [u1, v1] ∩ [u2, v2] = φ.  But 
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M directed implies that ∃[u3, v3] ∈ M. [u3, v3] ⊆ [u1, v1] ∩ [u2, v2].  This is a 

contradiction, so x ≤ y and [x, y] = \/M. 

 Let s be continuous and pick [x, y] ∈ Is.  To see if [x, y] is compact, set 

An = [x - 2-n, y + 2-n].  Then [x, y] =  \/nAn and {An} is a directed set, but 

¬∃An. [x, y] ≤ An (that is, there is no interval An contained in [x, y].  Thus ⊥ is the only 

compact element in Is (for s continuous).   

 

 We define a tuple space as the cross product of a set of scalar value sets, and 

define a data lattice whose members are sets of tuples.  Note that we use the notation XA 

for the cross product of members of a set A. 

 

 Def. Let S be a finite set of scalars, and let X = X{Is | s ∈ S} be the set of tuples 

with an element from each Is.  Let as denote the s component of a tuple a ∈ X.  Define an 

order relation on X by: for a, b ∈ X, a ≤ b if ∀s ∈ S. as ≤ bs. 

 

 Prop. C.2. Let A ⊆ X. If bs = \/{as | a ∈ A} is defined for all s ∈ S then b = \/A.  

If cs = /\{as | a ∈ A} for all s ∈ S then c = /\A (that is, sups and infs over X are taken 

componentwise).  Thus, X is a cpo. 

 Proof. ∀s ∈ S. ∀a ∈ A. as ≤ bs, so b is an upper bound for A.  If e is another 

upper bound for A, then ∀s ∈ S. bs ≤ es (since bs is the least upper bound of {as | a ∈ 

A}).  Thus, b ≤ e, so b is the least upper bound of A.  The argument that c = /\A is similar. 

 Let A ⊆ X be a directed set, and let As = {as | a ∈ A}.  If {ais | i} is a finite subset 

of As, then {ai | i} is a finite subset of A, so ∃e ∈ A. ∀i. ai ≤ e.  Then for each s ∈ S, 

es ∈ As and ∀i. ais ≤ es, so As is a directed set, and thus bs = \/As ∈ Is.  As we just 

showed, b = \/A ∈ X, so X is complete.   
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 Def. We use POWER(X) = {A | A ⊆ X} to denote the set of all subsets of X. 

 

 As explained in Section 3.2.2, POWER(X) is not appropriate for a lattice 

structure, so we define equivalence classes on POWER(X) using the Scott topology.  The 

Scott topology defines open and closed sets as follows. 

 

 Def. A set A ⊆ X is open if ↑A ⊆ A and, for all directed subsets 

C ⊆ X, \/C ∈ A ⇒ C ∩ A ≠ φ. 

 

 Def. A set A ⊆ X is closed if ↓A ⊆ A and, for all directed subsets C ⊆ A, \/C ∈ A.  

We use CL(X) to denote the set of all closed subsets of X. 

 

 Def. Define a relation ≤R on POWER(X) as follows: A ≤R B if for all open 

C ⊆ X, A ∩ C ≠ φ ⇒ B ∩ C ≠ φ.  Also define a relation ≡R on POWER(X) as follows: 

A ≡R B if A ≤R B and B ≤R A. 

 

 Prop. C.3. The relation ≡R is an equivalence relation. 

 Proof. Clearly ∀A.A ≤R A and thus ∀A.A ≡R A.  And 

A ≡R B ⇔ A ≤R B & B ≤R A ⇔ B ≡R A.  If A ≤R B and  B ≤R C then for all open E ⊆ X, 

A ∩ E ≠ φ ⇒ B ∩ E ≠ φ and B ∩ E ≠ φ ⇒ C ∩ E ≠ φ, so A ∩ E ≠ φ ⇒ C ∩ E ≠ φ, and 

thus A ≤R C.  So ≡R is reflexive, symmetric and transitive, and therefore an equivalence 

relation.   
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 If A ≡R B and C ≡R D, then A ≤R C ⇔ B ≤R D.  Thus the equivalence classes of 

≡R are ordered by ≤R.  Now we show that the closed sets of the Scott topology can be 

used in place of the equivalence classes. 

 

 Def. Given an equivalence class E of the ≡R relation, let ME = UE. 

 

 Prop. C.4. Given an equivalence class E of the ≡R relation, then ME ∈ E. 

 Proof. Pick some A ∈ E.  Then A ⊆ ME so A ≤R ME.  For all open C ⊆ X, we 

have ME ∩ C ≠ φ ⇒ ∃B ∈ E. B ∩ C ≠ φ (since ME =  UE), but B ∩ C ≠ φ ⇒ A ∩ C ≠ φ 

(since B ≤R A).  Thus ME ≤R A and ME ≡R A so ME ∈ E.   

 

 Prop. C.5. Given an equivalence class E of the ≡R relation, then ME ∈ CL(X). 

 Proof. Given a ∈ ME and b ≤ a, we need to show that ME ≡R ME ∪ {b} and 

hence that b ∈ ME.  Clearly ME ≤R ME ∪ {b}.  For all open C ⊆ X, if b ∈ C then a ∈ C 

(since b ≤ a) so ME ∩ C ≠ φ.  Thus ME ∪ {b} ≤R ME and b ∈ ME. 

 Next, given a directed set D ⊆ ME, let b = \/D.  Clearly ME ≤R ME ∪ {b}.  For 

all open C ⊆ X, if b ∈ C then ∃c ∈ D. c ∈ C so c ∈ ME ∩ C.  Thus ME ∪ {b} ≤R ME and 

b ∈ ME. 

 This shows that ME is closed.   

 

 Prop. C.6. Given equivalence classes E and E' of the ≡R relation, then 

E ≤R E' ⇔ ME ⊆ ME' and E = E' ⇔ ME = ME'.  If A ⊆ X is a closed set, then for some 

equivalence class E, A = ME. 

 Proof.  Note that E ≤R E' ⇔ ME ≤R ME'.  If ME ⊆ ME' then for all C ⊆ X 

(whether C is open or not), ME ∩ C ≠ φ ⇒ ME' ∩ C ≠ φ and thus ME ≤R ME'.  If 

 



174 

¬ME ⊆ ME' then there is a ∈ ME such that a ∉ ME'.  The complement of ME', denoted 

X \ ME', is open, and a ∈ ME ∩ (X \ ME') but ME' ∩ (X \ ME') = φ, so ¬ME ≤R ME'. 

 E = E' ⇒ ME = UE = UE' = ME'.  Conversely, 

ME = ME' ⇒ ME ≤R ME' & ME' ≤R ME  ⇒ E ≤R E' & E ≤R E' ⇒ E = E'.  Thus E ↔ ME 

is a one-to-one correspondence between closed sets and equivalence classes of ≡R. 

 If A ⊆ X is a closed set, then A belongs to some equivalence class E so A ⊆ ME 

and A ≡R ME.  If A ≠ ME then there is a ∈ ME such that a ∉ A.  X \ A is open and 

a ∈ ME ∩ (X \ A) but A ∩ (X \ A) = φ, so ¬ME ≤R A.  This contradicts A ≡R ME so 

A = ME.   

 

 The last proposition showed that there is a one to one correspondence between 

the equivalence classes of ≡R and CL(X).  Next, we show that these closed sets obey the 

usual laws governing intersections and unions of closed sets in a topology. 

 

 Prop. C.7. If L is a set of closed subsets of X, then IL is closed.  If L is finite, 

then UL is closed.  Furthermore, for all x ∈ X, ↓x ∈ CL(X). 

 Proof. If x ∈ IL and y ≤ x, then for all A ∈ L, x ∈ A and ↓A ⊆ A, so y ∈ A and so 

y ∈ IL.  Thus ↓IL ⊆ IL.  If C is a directed subset C ⊆ IL, then for all A ∈ L, C ⊆ A 

and \/C ∈ A.  Thus \/C ∈ IL and IL is closed. 

 Now assume L is finite.  If x ∈ UL and y ≤ x, then for some A ∈ L, x ∈ A and 

↓A ⊆ A, so y ∈ A and so y ∈ UL.  Thus ↓UL ⊆ UL.  Let C be a directed subset C ⊆ UL 

and assume that \/C ∉ UL.  Then ∀A ∈ L. \/C ∉ A so, since all A ∈ L are closed, 

∀A ∈ L. ¬C ⊆ A.  Thus ∀A ∈ L. ∃cA ∈ C. cA ∉ A.  Now, {cA | A ∈ L} is finite, so 

∃c ∈ C. ∀A ∈ L. cA ≤ c.  But ∀A ∈ L. cA ∉ A ⇒ c ∉ A (since A ∈ L are down sets), so 

c ∉ UL.  This contradicts C ⊆ UL so we must have \/C ∈ UL.  Thus UL is closed. 
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 Clearly ↓(↓x) ⊆ ↓x.  If C ⊆ ↓x is a directed set (or any subset of ↓x), then 

∀c ∈ C. c ≤ x so \/C ≤ x and thus \/C ∈ ↓x.  Therefore ↓x is closed.   

 

 Now we show that the equivalence classes of the ≡R relation, and equivalently 

CL(X), form a complete lattice. 

 

 Prop. C.8. If W is a set of equivalence classes of the ≡R relation, and then /\W is 

defined and /\W = E such that ME = I{Mw | w ∈ W}.  Similarly, \/W is defined and \/W 

= E such that ME is the smallest closed set containing U{Mw | w ∈ W}.  Thus the 

equivalence classes of the ≡R relation form a complete lattice, and equivalently CL(X) is 

a complete lattice.  If W is finite and E = \/W, then ME = U{Mw | w ∈ W}. 

 Proof. By Prop. C.7, I{Mw | w ∈ W} is closed and, by Prop. C.6, must be ME for 

some equivalence class E.  Now, ∀w ∈ W. ME ⊆ Mw so ∀w ∈ W. ME ≤R Mw and 

∀w ∈ W. E ≤R w.  If E' is an equivalence class such that ∀w ∈ W. E' ≤R w, then 

∀w ∈ W. ME' ⊆ Mw, so ME' ⊆ ME and E' ≤R E.  Thus E = \/W. 

 By Prop. C.7, the intersection of all closed sets containing U{Mw | w ∈ W} must 

be a closed set and, by Prop. C.6, must be ME for some equivalence class E.  Now, 

∀w ∈ W. Mw ⊆ ME so ∀w ∈ W. Mw ≤R ME and ∀w ∈ W. w ≤R E. 

If E' is an equivalence class such that ∀w ∈ W. w ≤R E', then ∀w ∈ W. Mw ⊆ ME', so 

ME' contains U{Mw | w ∈ W}.  Thus ME ⊆ ME' and E ≤R E'.  Therefore E = \/W. 

 If W is finite, then U{Mw | w ∈ W} is closed and equal to ME, where E = \/W.   

 

 Now we prove two propositions that will be useful for determining when sets of 

tuples are closed. 
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 Prop. C.9. If a ∈ X, B ⊆ X and a ≤ \/B then a = \/{a ∧ b | b ∈ B}. 

 Proof. Let as and bs denote the tuple components of a and b.  The order relation, 

sups and infs of a cross product are taken componentwise, so it is sufficient to prove the 

proposition for each tuple component.  That is, we will show that 

∀s ∈ S. as ≤ \/{as ∧ bs | b ∈ B}. 

 For discrete s, Is has the discrete order.  If \/{bs | b ∈ B} = ⊥ then as = ⊥ and 

∀s ∈ S. bs = ⊥, and the conclusion is clearly true.  Otherwise, let cs = \/{bs | b ∈ B}.  

Then ∀b ∈ B. (bs = ⊥ or bs = cs).  If as = ⊥ then ∀b ∈ B. as ∧ bs = ⊥ and 

as = ⊥ = \/{as ∧ bs | b ∈ B}.  Otherwise as = cs and ∀b ∈ B. as ∧ bs = bs and  

as = cs = \/{bs | b ∈ B} = \/{as ∧ bs | b ∈ B}. 

 For continuous s, the members of Is are real intervals, or are ⊥.  Let as = [xs, ys] 

and bs = [x(bs), y(bs)], where we use x = -∞ and y = +∞ for as = ⊥ or bs = ⊥.  The order 

relation on Is corresponds to the inverse of interval containment, sup corresponds to 

intersection of intervals, and inf corresponds to the smallest interval containing the union 

of intervals.  First, note that ∀b ∈ B. a ∧ b ≤ a and thus \/{a ∧ b | b ∈ B} ≤ a.  So, it is 

only necessary to show that a ≤ \/{a ∧ b | b ∈ B}, or, in other words, that the intersection 

of the intervals [min{xs, x(bs)}, max{ys, y(bs)}] for all b ∈ B is contained in the interval 

[xs, ys].  This intersection of intervals is 

[c, d] = [max{min{xs, x(bs)}| b ∈ B}, min{max{ys, y(bs)}| b ∈ B}].  Now, 

as ≤ \/{bs | b ∈ B} says that xs ≤ max{x(bs) | b ∈ B} and min{x(bs) | b ∈ B} ≤ ys.  So for 

at least one b ∈ B, xs ≤ x(bs) and min{xs, x(bs)} = xs, and thus 

c = max{min{xs, x(bs)}| b ∈ B} ≥ xs.  Similarly d ≤ ys, and so [c, d] ⊆ [xs, ys], showing 

the needed containment.   
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 Prop. C.10. If Y ⊆ CL(X) then B = {\/M | M ⊆ UY & M directed} is closed. 

 Proof. First, we show that B is a down set.  By Prop. C.9, 

a ≤ \/M ⇒ a = \/{a ∧ m | m ∈ M}, so we need to show that \/{a ∧ m | m ∈ M} is directed 

when M is.  Given a finite set {a ∧ bi | bi ∈ M} there is c in M such that ∀i. bi ≤ c, and 

thus \/ibi ≤ c.  Now ∀i. bi ≤ \/ibi ⇒ ∀i. a ∧ bi ≤ a ∧ \/ibi ⇒ \/i(a ∧ bi) ≤ a ∧ \/ibi ≤ 

a ∧ c.  However a ∧ c ∈ \/{a ∧ m | m ∈ M}, so {a ∧ m | m ∈ M} is directed, a ∈ B and B 

is a down set. 

 Next, we show that B is closed under sups.  Let M be a directed subset of B and 

we will show that a = \/M ∈ B.  For each m ∈ M there is a directed set Q(m) ⊆ UY such 

that m = \/Q(m).  Define Q' = U{Q(m) | m ∈ M} and Q = {\/C | C ⊆ Q' & C finite}.  Note 

that \/Q' exists (and = a) so \/C exists.  For each finite C ⊆ Q', each c ∈ C belongs to a 

member of Y.  Thus C is a subset of a finite union of members of Y, which is a closed set, 

so \/C must belong to this same closed set and therefore belongs to UY.  Thus Q ⊆ UY.  

Pick a finite set {qi} ⊆ Q.  Each qi is the sup of a finite subset Ci ⊆ Q', and \/iqi is the 

sup of the finite subset UiCi of Q'.  Thus \/iqi ∈ Q so Q is a directed subset of UY with 

a = \/Q = \/Q', so a is a member of B.  Thus B is closed under sups, and is a closed set.   
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Appendix D 

 

Proofs for Section 3.2.3 

 

 Here we present the technical details for Section 3.2.3. 

 

 Def. A set T of data types can be defined from the set S of scalars.  Two 

functions, SC and DOM are defined with T, such that ∀t∈T. SC(t) ⊆ S & DOM(t) ⊆ S. 

T, SC and DOM are defined as follows: 

 

(D.1) s ∈ S ⇒ s ∈ T (that is, S ⊂ T) 

 SC(s) = {s} 

 DOM(s) = φ. 

 

(D.2) (for i = 1,...,n. ti ∈ T) & (i ≠ j ⇒ SC(ti) ∩ SC(tj) = φ) ⇒ struct{t1;...;tn} ∈ T 

 SC(struct{t1;...;tn}) = UiSC(ti) 

 DOM(struct{t1;...;tn}) = UiDOM(ti) 

 

(D.3) w ∈ S & r ∈ T & w ∉ SC(r) ⇒ (array [w] of r) ∈ T 

 SC((array [w] of r)) = {w} ∪ SC(r) 

 DOM((array [w] of r)) = {w} ∪ DOM(r) 
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 The type struct{t1;...;tn} is a tuple with element types ti, and the type 

(array [w] of r) is an array with domain type w and range type r.  SC(t) is the set of 

scalars occurring in t, and DOM(t) is the set of scalars occurring as array domains in t.  

Note that each scalar in S may occur at most once in a type in T. 

 

 Def. For each scalar s ∈ S, define a countable set Hs ⊆ Is such that for all 

a, b ∈ Hs, a ∧ b ∈ Hs, a ∨ b ∈ Is ⇒ a ∨ b ∈ Hs, and such that ∀a ∈ Is. ∃A ⊆ Hs. a = \/A 

(that is, Hs is closed under infs and sups, and any member of Is is a sup of a set of 

members of Hs).  For discrete s this implies that Hs = Is (recall that we defined discrete 

scalars as having countable value sets).   Also note that, for continuous s, Hs cannot be a 

cpo. 

 

 Def. Given a scalar w, let 

FIN(Hw) = {A ⊆ Hw\{⊥} | A finite & ∀a, b ∈ A. ¬(a ≤ b)}. 

 

 Def. Extend the definition of Ht to t ∈ T by: 

 
(D.4) t = struct{t1;...;tn} ⇒ Ht = H Ht tn1

× ×...  

(D.5) t = (array [w] of r) ⇒ Ht = U{(A → Hr) | A ∈ FIN(Hw)} 

 

 Def. Define an embedding Et:Ht → U by: 

 

(D.6) t ∈ S ⇒ Et(a) = ↓(⊥,...,a,...,⊥) 
Eti (ai)} (D.7) t = struct{t1;...;tn} ⇒ Et((a1,...,an)) = {b1∨...∨bn | ∀i. bi ∈ 
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(D.8) t = (array [w] of r) ⇒ 

  [a ∈ (A → Hr) ⇒ Et(a) = {b∨c | x ∈ A & b ∈ Ew(x) & c ∈ Er(a(x))}] 

 

 The notation ↓(⊥,...,a,...,⊥) in Eq. (D.6) indicates the closed set of all tuples less 

than (⊥,...,a,...,⊥).  As we will show in Prop. D.1, for all a ∈ Ht and for all b ∈ Et(a), 

bs = ⊥ unless s ∈ SC(t).  Thus b1∨...∨bn in Eq. (D.7) is the tuple that merges the non-⊥ 

components of the tuples b1, ..., bn., since the types ti in Eq. (D.7) are defined from 

disjoint sets of scalars.  Similarly, b∨c in Eq. (D.8) is the tuple that merges the non-⊥ 

components of the tuples b and c, since the scalar w does not occur in the type r.  Prop. 

D.2 will show that Et does indeed map members of Ht to members of U. 

 

 Def. For t ∈ T define Ft = Et(Ht). 

 

 Prop. D.1. Given t ∈ T and A ∈ Ft, for all tuples b ∈ A, 

∀s ∈ S. (s ∉ SC(t) ⇒ bs = ⊥). 

 Proof. We prove this by induction on the structure of t.  This is clearly true for 
t ∈ S. For t = struct{t1;...;tn} pick b = b1∨...∨bn ∈ A ∈ Ft, where bi ∈ Bi ∈F .  Then ti

bs = b1s∨...∨bns.  By induction, ∀i. ∀s. s ∉ SC(ti) ⇒ bis = ⊥, so 

∀s. (∀i. s ∉ SC(ti)) ⇒ bs = ⊥, and so ∀s. s ∉ UiSC(ti) ⇒ bs = ⊥.  But SC(t) = UiSC(ti). 

 For t = (array [w] of r) pick a = b ∨ c ∈ A ∈ Ft, where b ∈ B ∈ Fw and 

c ∈ C ∈ Fr.  Then as = bs ∨ cs.  By induction, s ≠ w ⇒ bs = ⊥ and s ∉ SC(r)) ⇒ cs = ⊥, 

so ∀s. s ∉ {w} ∪ SC(r) ⇒ bs = ⊥.  But SC(t) = {w} ∪ SC(r).   

 

 The following propositions show that Et maps members of Ht to closed sets, and 

that this mapping is injective. 
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 Prop. D.2. For all a ∈ Ht, Et(a) is a closed set. 

 Proof. We prove this by induction on the structure of t.  For t ∈ S, 

Et(a) = ↓(⊥,...,a,...,⊥) is closed, by Prop. C.7.  For t = struct{t1;...;tn}, we need to show 
that Et(a) = {b1∨...∨bn | ∀i. bi ∈Eti (ai)} is closed, where a = (a1,...,an).  To show that 

Et(a) is a down-set, pick b ≤ b1∨...∨bn ∈ Et(a).  Then ∀i. b ∧ bi ≤ bi and hence 
∀i. b ∧ bi ∈Eti (ai) (since these are down sets).  Thus, by Prop. C.9, 

b = (b ∧ b1)∨...∨(b ∧ bn) ∈ Et(a).  To show that Et(a) is closed under sups of directed 

sets, pick a directed set C ⊆ Et(a) and for all c ∈ C let c = b1(c)∨...∨bn(c) where 
E∀i. bi(c) ∈ ti (ai).  We need to show that Ci = {bi(c) | c ∈ C} is a directed set.  Pick a 

finite subset {bi(cj) | j} ⊆ Ci.  Since C is directed, there is m ∈ C such that ∀j. cj ≤ m.  

Note that m = b1(m)∨...∨bn(m) where ∀i. bi(m) ∈ Ci.  Since the ti have disjoint sets of 
non-⊥ components, ∀i. ∀j. bi(cj) ≤ bi(m).  Thus Ci is directed, and \/Ci ∈Eti (ai).  Hence 

\/C = \/C1∨...∨\/Cn ∈ Et(a), and thus Et(a) is closed under sups of directed sets. 

 For t = (array [w] of r), we need to show that 

Et(a) = {b∨c | x ∈ A & b ∈ Ew(x) & c ∈ Er(a(x))} is closed, where a ∈ (A → Hr).  

Define Et(a)x = {b∨c | b ∈ Ew(x) & c ∈ Er(a(x))}.  Note that Et(a)x = 

Estruct{w;r}((a, a(x))) [where struct{w; r} is a tuple type and (a, a(x)) ∈ Hstruct{w;r}] 

and thus, by the argument above for tuple types, Et(a)x is closed.  Also note that Et(a) = 

U{Et(a)x | x ∈ A}.  However, A is finite, so Et(a) is a union of a finite number of closed 

sets, and thus is itself closed.   
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 Prop. D.3. The embedding Et : Ht → U is injective. 

 Proof. We prove this by induction on the structure of t. 

 Let t be a scalar and a ≠ b.  Then ¬(a ≤ b) or ¬(b ≤ a).  Assume without loss of 

generality that ¬(a ≤ b).  Then (⊥,...,a,...,⊥) ∈ ↓(⊥,...,a,...,⊥) = Et(a) but 

(⊥,...,a,...,⊥) ∉ ↓(⊥,...,b,...,⊥) = Et(b), so Et(a) ≠ Et(b). 

 Let t = struct{t1;...;tn} and a = (a1,...,an) ≠ (b1,...,bn) = b.  Then ∃k. ak ≠ bk and, 
by the inductive hypothesis, E E

k
(ak) ≠

k
(bk).  Assume without loss of generality that  t t

∃ck ∈ E E
k

(bk), and for all i ≠ k pick ci ∈E
k

(ak). ck ∉ ti (ai).  Then t t

c1∨...∨cn ∈ Et((a1,...,an)), but, since ck ∉E
k

(bk) and since t

∀s ∈ S.∀i ≠ k. cks ≠ ⊥ ⇒ cis = ⊥, c1∨...∨cn ∉ Et((b1,...,bn)).  Thus 

Et((a1,...,an)) ≠ Et((b1,...,bn)). 

 Let t = (array [w] of r) and a ≠ b where a ∈ (A → Hr) and b ∈ (B → Hr).  Then 

either A ≠ B or A = B & ∃x ∈ A. a(x) ≠ b(x).  In the first case (that is, A ≠ B), assume 

without loss of generality that ∃x ∈ A. x ∉ B.  If ∃y ∈ B. x ≤ y then ¬∃z ∈ A. y ≤ z 

(otherwise x ∈ A & z ∈ A & x ≤ z).  Thus either ∃x ∈ A. ¬(∃y ∈ B. x ≤ y) or 

∃y ∈ B. ¬(∃z ∈ A. y ≤ z).  Assume without loss of generality that 

∃x ∈ A. ¬(∃y ∈ B. x ≤ y).  Then e = (⊥,...,x,...,⊥) ∈ Ew(x) and ¬(∃y ∈ B. e ∈ Ew(y)).  

Pick f ∈ Er(a(x)).  Then  e∨f ∈ Et(a) but  e∨f ∉ Et(b), so Et(a) ≠ Et(b).  In the second 

case (that is, A = B & ∃x ∈ A. a(x) ≠ b(x)), by the inductive hypothesis, Er(a(x)) ≠ 

Er(b(x)).  Assume without loss of generality that ∃x ∈ A. ∃f ∈ Er(a(x)). f ∉ Er(b(x)).  

Pick e ∈ Ew(x).  Then e∨f ∈ Et(a) but  e∨f ∉ Et(b), so Et(a) ≠ Et(b).   

 

 Because Et : Ht → U is injective, we can define an order relation between the 

members of Ht simply by assuming that Et is an order embedding.  If Et were not 
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injective, it would map a pair of members of Ht to the same member of U, and induce an 

anti-symmetric relation on Ht. 

 

 Def. Given a, b ∈ Ht, we say that a ≤ b if and only if Et(a) ≤ Et(b). 

 

 The order that Et induces on Ht has a simple and intuitive structure, as the 

following proposition shows. 

 

 Prop. D.4. If t is a scalar and a, b ∈ Ht then Et(a) ≤ Et(b) if and only if a ≤ b in It. 

If t = struct{t1;...;tn} then Et((a1,...,an)) ≤ Et((b1,...,bn)) if and only if 
∀i. Eti (ai) ≤ Eti (bi) (that is, the order relation between tuples is defined element-wise). 

If t = (array [w] of r), if a, b ∈ Ht and if a ∈ (A → Hr) and b ∈ (B → Hr), then 

Et(a) ≤ Et(b) if and only if ∀x ∈ A. Er(a(x)) ≤ \/{Er(b(y)) | y ∈ B & Ew(x) ≤ Ew(y)} (that 

is, an array a is less than an array b if the embedding of the value of a at any sample x is 

less than the sup of the embeddings of the set of values of b at its samples greater than x). 

 Proof. Recall that members of U are closed sets ordered by set inclusion, so  

Et(a) ≤ Et(b) ⇔ Et(a) ⊆ Et(b).  Let t be a scalar.  If a ≤ b in It then 

 Et(a) = ↓(⊥,...,a,...,⊥) = {(⊥,...,c,...,⊥) | c ≤ a} ⊆ 

 {(⊥,...,c,...,⊥) | c ≤ b} = ↓(⊥,...,b,...,⊥) = Et(b). 

Now assume that Et(a) ≤ Et(b).  Then 

 Et(a) = ↓(⊥,...,a,...,⊥) = {(⊥,...,c,...,⊥) | c ≤ a} ⊆ 

 {(⊥,...,c,...,⊥) | c ≤ b} = ↓(⊥,...,b,...,⊥) = Et(b) 

so (⊥,...,a,...,⊥) ∈ {(⊥,...,c,...,⊥) | c ≤ b} so a ≤ b in It. 
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E E Let t = struct{t1;...;tn}.  If ∀i. ti (ai) ⊆ ti (bi) then 

 Et((a1,...,an)) = {c1∨...∨cn | ∀i. ci ∈Eti (ai)} ⊆ 

 {c1∨...∨cn | ∀i. ci ∈ Eti (bi)} = Et((b1,...,bn)). 

Now assume that Et((a1,...,an)) ≤ Et((b1,...,bn)).  Then 
 Et((a1,...,an)) = {c1∨...∨cn | ∀i. ci ∈Eti (ai)} ⊆ 

 {c1∨...∨cn | ∀i. ci ∈ Eti (bi)} = Et((b1,...,bn)). 

 
[Parenthetical argument: assume that ck ∉E E

k
(bk), ci ∈ ti (ai) for i ≠ k, and t

c1∨...∨cn ∈ Et((b1,...,bn)).  Then there are di ∈ Eti (bi) such that c1∨...∨cn = d1∨...∨dn.  

However, i ≠ j ⇒ SC(ti) ∩ SC(tj) = φ so, by Prop. D.1, dis = ⊥ for s ∈ SC(tk) and i ≠ k.  

Thus cks = dks for s ∈ SC(tk) and so ck = dk.  This is impossible, so 

ti (ai) for i ≠ k ⇒ ck ∈Ec1∨...∨cn ∈ Et((b1,...,bn)) and ci ∈E
k

(bk).] t

 
E Eti (bi)), or in other words, ∀i.Eti (ai) ⊆EThus ∀i. (ci ∈ ti (ai) ⇒ ci ∈ ti (bi). 

 

 Let t = (array [w] of r), a, b ∈ Ht and a ∈ (A → Hr) and b ∈ (B → Hr).  Assume 

that ∀x ∈ A. Er(a(x)) ≤ \/{Er(b(y)) | y ∈ B & Ew(x) ≤ Ew(y)}.  Then 

∀x ∈ A. Er(a(x)) ⊆ U{Er(b(y)) | y ∈ B & Ew(x) ≤ Ew(y)}. 

 

 Et(a) = {e ∨ f | x∈A & e∈Ew(x) & f∈Er(a(x))} = 

 U{{e ∨ f | e∈Ew(x) & f∈Er(a(x))} | x∈A}. 

 

Now, f ∈ Er(a(x)) ⇒ ∃y ∈ B. Ew(x) ≤ Ew(y) & f ∈ Er(b(y)) and 

e ∈ Ew(x) & Ew(x) ≤ Ew(y) ⇒ e ∈ Ew(y), so (continuing the chain) 
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 U{{e ∨ f | e∈Ew(x) & f∈Er(a(x))} | x∈A} ⊆ 

 U{{e ∨ f | e∈Ew(y) & f∈Er(b(y)) & Ew(x) ≤ Ew(y) & y ∈ B} | x∈A} ⊆ 

 U{{e ∨ f | e∈Ew(y) & f∈Er(b(y))} | y ∈ B} = 

 {e ∨ f | y∈B & e∈Ew(y) & f∈Er(b(y))} = Et(b). 

 

Thus Et(a) ≤ Et(b). 

Now assume that Et(a) ≤ Et(b).  That is, 

 

 Et(a) = {e ∨ f | x∈A & e∈Ew(x) & f∈Er(a(x))} ⊆ 

 U{{e ∨ f | e∈Ew(y) & f∈Er(b(y))} | y ∈ B} = Et(b). 

 

Since w ∉ SC(r), e∈Ew(x) & f∈Er(a(x)) & e∨f ∈ Et(b) ⇒ ∃y∈B. e∈Ew(y) & f∈Er(b(y)) 

[this is a result of the parenthetical argument in the tuple case of this proof].  Pick x ∈ A 

and f ∈ Er(a(x)), and define e = (⊥,...,x,...,⊥).  Then ∃y∈B. e∈Ew(y) & f∈Er(b(y)).  Now 

e ∈ Ew(y) ⇒ x ≤ y ⇒ Ew(x) ≤ Ew(y) so f ∈ U{Er(b(y)) | y ∈ B & Ew(x) ≤ Ew(y)} = 

\/{Er(b(y)) | y ∈ B & Ew(x) ≤ Ew(y)}.  Thus 

∀x ∈ A. Er(a(x)) ≤ \/{Er(b(y)) | y ∈ B & Ew(x) ≤ Ew(y)}.   

 

 


