Appendix A

Definitions for Ordered Sets

The appendices contain all the formal definitions, propositions and proofs for developing a model of the display process based on lattices. Here we list some basic definitions from the theory of ordered sets.

Def. A partially ordered set (poset) is a set D with a binary relation \leq on D such that, $\forall x, y, z \in D$
(a) $x \leq x$
"reflexive"
(b) $x \leq y \& y \leq x \Rightarrow x=y \quad$ "anti-symmetric"
(c) $x \leq y \& y \leq z \Rightarrow x \leq z \quad$ "transitive"

Def. An upper bound for a set $M \subseteq D$ is an element $x \in D$ such that $\forall y \in M . y \leq x$.

Def. The least upper bound of a set $M \subseteq D$, if it exists, is an upper bound x for M such that if y is another upper bound for M, then $x \leq y$. The least upper bound of M is denoted $\sup M$ or $\bigvee M$. $\sup \{x, y\}$ is written $x \vee y$.

Def. A lower bound for a set $M \subseteq D$ is an element $x \in D$ such that $\forall y \in M . x \leq y$.

Def. The greatest lower bound of a set $M \subseteq D$, if it exists, is a lower bound x for M such that if y is another lower bound for M, then $y \leq x$. The greatest lower bound of M is denoted $\inf M$ or $/ \Lambda M$. $\inf \{x, y\}$ is written $x \wedge y$.

Def. A subset $M \subseteq D$ is a down set if $\forall x \in M . \forall y \in D . y \leq x \Rightarrow y \in M$. Given $M \subseteq D$, define $\downarrow_{M}=\{y \in D \mid \exists x \in M . y \leq x\}$, and given $x \in D$, define $\downarrow_{x}=\{y \in D \mid y \leq x\}$.

Def. A subset $M \subseteq D$ is an up set if $\forall x \in M . \forall y \in D . x \leq y \Rightarrow y \in M$. Given $M \subseteq D$, define $\uparrow M=\{y \in D \mid \exists x \in M . x \leq y\}$, and given $x \in D$, define $\uparrow x=\{y \in D \mid x \leq y\}$.

Def. A subset $M \subseteq D$ is a chain if, for all $x, y \in M$, either $y \leq x$ or $x \leq y$.

Def. A subset $M \subseteq D$ is directed if, for every finite subset $A \subseteq M$, there is an $x \in M$ such that $\forall y \in A . y \leq x$.

Def. A poset D is complete (and called a cpo) if every directed subset $M \subseteq D$ has a least upper bound $\sqrt{ } / M$ and if there is a least element $\perp \in D$ (that is, $\forall y \in D . \perp \leq y$).

Def. If D and E are posets, we use the notation $(D \rightarrow E)$ to denote the set of all functions from D to E.

Def. If D and E are posets, a function $f: D \rightarrow E$ is strict if $f(\perp)=\perp$.

Def. If D and E are posets, a function $f: D \rightarrow E$ is monotone if
$\forall x, y \in D . x \leq y \Rightarrow f(x) \leq f(y)$. We use the notation $\operatorname{MON}(D \rightarrow E)$ to denote the set of all monotone functions from D to E.

Def. If D and E are posets, a function $f: D \rightarrow E$ is an order embedding if $\forall x, y \in D . x \leq y \Leftrightarrow f(x) \leq f(y)$.

Def. Given posets D and E, a function $f: D \rightarrow E$, and a set $M \subseteq D$, we use the notation $f(M)$ to denote $\{f(d) \mid d \in M\}$.

Def. If D and E are cpos, a function $f: D \rightarrow E$ is continuous if it is monotone and if $f(\backslash / M)=\ / f(M)$ for directed $M \subseteq D$.

Def. If D is a cpo, then $x \in D$ is compact if, for all directed $M \subseteq D$, $x \leq \bigvee M \Rightarrow \exists y \in M . x \leq y$.

Def. A cpo D is algebraic if for all $x \in D, M=\{y \in D \mid y \leq x \& y$ compact $\}$ is directed and $x=\ / M$.

Def. A cpo D is a domain if D is algebraic and if D contains a countable number of compact elements.

Most of the ordered sets used in programming language semantics are domains.

Def. A poset D is a lattice if for all $x, y \in D, x \vee y$ and $x \wedge y$ exist in D.

Def. A poset D is a complete lattice if for all $M \subseteq D, \ M$ and $/ \ M$ exist in D.

Def. If D and E are lattices, a function $f: D \rightarrow E$ is a lattice homomorphism if for all $x, y \in D, \mathrm{f}(x \wedge y)=f(x) \wedge f(y)$ and $\mathrm{f}(x \vee y)=f(x) \vee f(y)$. If $f: D \rightarrow E$ is also a bijection then it is a lattice isomorphism.

Def. A binary relation \equiv on a set D is an equivalence relation if $\forall x, y, z \in D$

(a)	$x \equiv x$	"reflexive"
(b)	$x \equiv y \Leftrightarrow y \equiv x$	"symmetric"
(c)	$x \equiv y \& y \equiv z \Rightarrow x \equiv z$	"transitive"

Def. $i d_{D}$ denotes the identity function on D. Given a function $f: D \rightarrow D$, $i m(f)=\{f(d) \mid d \in D\}$.

Def. If D is a cpo, a continuous function $f: D \rightarrow D$ is a retraction of D if $f=f$ o f. A retraction $f: D \rightarrow D$ is a projection if $f \leq i d_{D}$ and a finitetary projection if in addition $\operatorname{im}(f)$ is a domain. A retraction $f: D \rightarrow D$ is a closure if $f \geq i d_{D}$ and a finitetary closure if in addition $\operatorname{im}(f)$ is a domain.

Def. If D and E are cpos, a pair of continuous functions $f: D \rightarrow E$ and $g: E \rightarrow D$ are a retraction pair if g o $f \leq i d_{D}$ and f o $g=i d_{E}$. The function g is called an embedding, and f is called a projection.

Appendix B

Proofs for Section 3.1.4

Here we present the technical details for Section 3.1.4. We can interpret Mackinlay's expressiveness conditions as follows:

Condition 1. $\forall P \in \operatorname{MON}(U \rightarrow\{\perp, 1\}) . \exists Q \in \operatorname{MON}(V \rightarrow\{\perp, 1\})$.

$$
\forall u \in U . P(u)=Q(D(u))
$$

Condition 2. $\forall Q \in \operatorname{MON}(V \rightarrow\{\perp, 1\}) . \exists P \in \operatorname{MON}(U \rightarrow\{\perp, 1\})$.

$$
\forall v \in V . Q(v)=P\left(D^{-1}(v)\right)
$$

Prop. B.1. If $D: U \rightarrow V$ satisfies Condition 2 then D is a monotone bijection from U onto V.

Proof. D is a function from U to V, and Condition 2 requires that D^{-1} is a functon from V to U, so Conditon 2 requires that D is a bijection from U onto V. Next, assume that $x \leq y$, and let $Q_{X}=\lambda v \in V$. (if ($v \geq D(x)$) then 1 else \perp). Then by Condition 2 there is a monotone function P_{X} such that $\forall v \in V . Q_{X}(v)=P_{X}\left(D^{-1}(v)\right)$. Since D is a bijection, this is equivalent to $\forall u \in U . Q_{X}(D(u))=P_{X}(u)$. Hence, $Q_{X}(D(y))=P_{X}(y) \geq P_{X}(x)=$ $Q_{X}(D(x))=1$ so $Q_{X}(D(y))=1$ and $D(y) \geq D(x)$. Thus D is monotone.

By Prop. B.1, Conditon 2 is too strong since it requires that every display in V is the display of some data object under D. Since U is a complete lattice it contains a maximal data object X (the least upper bound of all members of U). For all data objects
$u \in U, u \leq X$. Since D is monotone this implies $D(u) \leq D(X)$. We use the notation $\downarrow D(X)$ for the set of all displays less than $D(X) . \downarrow D(X)$ is a complete lattice and for all data objects $u \in U, D(u) \in \downarrow D(X)$. Hence we can replace V by $\downarrow D(X)$ in Condition 2 in order to not require that every $v \in V$ is the display of some data object. We modify Condition 2 as follows:

Condition 2'. $\forall Q \in \operatorname{MON}(\downarrow D(X) \rightarrow\{\perp, 1\}) . \exists P \in \operatorname{MON}(U \rightarrow\{\perp, 1\})$.

$$
\forall v \in \downarrow D(X) . Q(v)=P\left(D^{-1}(v)\right)
$$

Def. A function $D: U \rightarrow V$ is a display function if it satisfies Conditions 1 and 2'.

The next two propositions demonstrate the consequences of this definition.

Prop. B.2. If $D: U \rightarrow V$ is a display function then:
(a) $\quad D$ is a bijective order embedding from U onto $\downarrow D(X)$
(b) $\quad \forall v \in V .\left(\exists u^{\prime} \in U . v \leq D\left(u^{\prime}\right) \Rightarrow \exists u \in U . v=D(u)\right)$
(c) $\quad \forall M \subseteq U . V D(M)=D(\mathbb{V} M)$ and $\forall M \subseteq U$. $\ D(M)=D(/ \ M)$.

Proof. For part (1), D is a function from U to V, and Condition 2' requires that D^{-}
1 is a functon from $\downarrow D(X)$ to U, so D is a bijection from U onto $\downarrow D(X)$.
To show that D is an order embedding, assume that $D(x) \leq D(y)$, and let $P_{X}=\lambda u \in U$. (if $(u \geq x)$ then 1 else \perp). Then by Condition 1 there is a monotone function Q_{X} such that $\forall u \in U . Q_{X}(D(u))=P_{X}(u)$. Hence, $P_{X}(y)=Q_{X}(D(y)) \geq Q_{X}(D(x))=$ $P_{X}(x)=1$ so $P_{X}(y)=1$ and $y \geq x$. Now assume that $x \leq y$, and let
$Q_{X}=\lambda v \in V$. (if $(v \geq D(x))$ then 1 else \perp). Then by Condition 2' there is a monotone function P_{X} such that $\forall v \in V . Q_{X}(v)=P_{X}\left(D^{-1}(v)\right)$. Since D is a bijection, this is equivalent to $\forall u \in U . Q_{X}(D(u))=P_{X}(u)$. Hence, $Q_{X}(D(y))=P_{X}(y) \geq P_{X}(x)=Q_{X}(D(x))=$ 1 so $Q_{X}(D(y))=1$ and $D(y) \geq D(x)$. Thus D is an order embedding.

For part (b), note that if $\exists u^{\prime} \in U . v \leq D\left(u^{\prime}\right)$, then $v \leq D(X)$ and $v \in \downarrow D(X)$ so $\exists u \in U . v=D(u)$.

For part (c), $\forall m \in M . m \leq \mathbf{V} / M$ so $\forall m \in M . D(m) \leq D(\mathbf{V} M)$ and so $\ D(M) \leq D(V / M)$. Thus, by part (2), $\exists u \in U . D(u)=V D(M)$, and $\forall m \in M . D(m) \leq D(u)$ so $\forall m \in M . m \leq u$ and thus $\mathbf{V} M \leq u$. Therefore $D(\mathbf{V} M) \leq D(u)=\mathbf{V} D(M)$, and thus $D(\mathbb{V} M)=\ / D(M)$.

Next, $\forall m \in M . / \backslash M \leq m$ so $\forall m \in M . D(\Lambda M) \leq D(m)$ and so $D(\Lambda M) \leq \Pi D(M)$. For any $m \in M, \Lambda D(M) \leq D(m)$, so, by part (2), $\exists u \in U . D(u)=\| D(M)$, and $\forall m \in M . D(u) \leq D(m)$ so $\forall m \in M . u \leq m$ and thus $u \leq \Lambda M$. Therefore $\Lambda D(M)=D(u) \leq D(/ \Lambda M)$, and thus $D(/ \ M)=/ \Lambda D(M)$.

As a corollary of Prop. B.2, next we show that display functions are lattice isomorphisms, and are continuous in the sense defined by Scott.

Prop. B.3. $D: U \rightarrow V$ is a display function if and only if it is a lattice isomorphism of U onto $\downarrow D(X)$, which is a sublattice of V. Furthermore, a display function D is continuous.

Proof. Assume $D: U \rightarrow V$ is a display function. For any $x, y \in U$, let $M=\{x, y\}$. Then, by Prop. B.2, $D(x \vee y)=D(x) \vee D(y)$ and $D(x \wedge y)=D(x) \wedge D(y)$, so D is a lattice homomorphism. Next, $a, b \in \downarrow D(X) \Rightarrow a, b \leq D(X) \Rightarrow a \vee b, a \wedge b \leq D(X) \Rightarrow$
$D(a \vee b), D(a \wedge b) \in \downarrow D(X)$, so $\downarrow D(X)$ is a sublattice of V. By Prop. B.2, D is bijective, so it is a lattice isomorphism.

Assume $D: U \rightarrow \downarrow D(X)$ is a lattice isomorphism. If $x \leq y$ then $D(y)=D(x \vee y)=$ $D(x) \vee D(y) \geq D(x)$. If $D(x) \leq D(y)$ then $y=D^{-1}(D(y))=D^{-1}(D(x) \vee D(y))=$ $D^{-1}(D(x \vee y))=x \vee y \geq x$. Thus D is an order embedding. Hence it is injective [that is $D(x)=D(y) \Rightarrow D(x) \leq D(y) \Rightarrow x \leq y$ and $D(x)=D(y) \Rightarrow D(y) \leq D(x) \Rightarrow y \leq x$, so $D(x)=D(y) \Rightarrow x=y]$ so D^{-1} is defined on $D(U) \subseteq V$. Given $P \in \operatorname{MON}(U \rightarrow\{\perp, 1\})$, define $Q=\lambda v \in V . \\left\{P\left(D^{-1}\left(v^{\prime}\right)\right) \mid v^{\prime} \leq v \& v^{\prime} \in D(U)\right\}$. The set of v^{\prime} such that $v^{\prime} \leq v$ and $v^{\prime} \in D(U)$ always includes $D(\perp)$, so Q is defined for all $v \in V . Q$ is a function from V to $\{\perp, 1\}$, and Q is monotone since
$v_{1} \leq v_{2} \Rightarrow\left\{v^{\prime} \mid v^{\prime} \leq v_{1} \& v^{\prime} \in D(U)\right\} \subseteq\left\{v^{\prime} \mid v^{\prime} \leq v_{2} \& v^{\prime} \in D(U)\right\}$. Then, for all $u \in U$,

$$
\begin{aligned}
& Q(D(u))=\bigvee\left\{P\left(D^{-1}\left(v^{\prime}\right)\right) \mid v^{\prime} \leq D(u) \& v^{\prime} \in D(U)\right\}= \\
& P\left(D^{-1}(D(u))\right) \vee \bigvee\left\{P\left(D^{-1}\left(v^{\prime}\right)\right) \mid v^{\prime}<D(u) \& v^{\prime} \in D(U)\right\}= \\
& \left.\quad \quad \quad \text { since } P \text { and } D^{-1} \text { are both monotone, } v^{\prime}<D(u) \Rightarrow P\left(D^{-1}\left(v^{\prime}\right)\right) \leq P\left(D^{-1}(D(u))\right)\right] \\
& P\left(D^{-1}(D(u))\right)=P(u) .
\end{aligned}
$$

This is equivalent to $P=Q$ o D. Thus D satisfies Condition 1 .
Given $Q \in \operatorname{MON}(V \rightarrow\{\perp, 1\})$, define $P=\lambda u \in U . Q(D(u)) . P$ is a function from U to $\{\perp, 1\}$, and P is monotone since Q and D are monotone. Clearly $\forall u \in U . Q(D(u))=P(u)$. Since D is a lattice isomorphism it is a bijection from U onto $\downarrow D(X)$ so this is equivalent to $\forall v \in \downarrow D(X) . Q(v)=P\left(D^{-1}(v)\right)$. Thus D satisfies Condition 2 ' and is a display function.

A display function D is an order embedding and thus monotone. For any directed set $M \subseteq U, \ / D(M)=D(\bigvee M)$ by Prop. B.2, so D is continuous.

Appendix C

Proofs for Section 3.2.2

Here we present the technical details for Section 3.2.2. Our lattices of data objects and of displays are defined in terms of scalar types. Each scalar type defines a value set, which may be either discrete or continuous, and which includes the undefined value \perp. We use the symbol \mathbf{R} to denote the set of real numbers.

Def. A discrete scalar s defines a countable value set I_{S} that includes a least element \perp and has discrete order. That is, $\forall x, y \in I_{S} .(x<y \Rightarrow(x=\perp \& y \neq \perp))$.

Def. A continuous scalar s defines a value set
$I_{S}=\{\perp\} \cup\{[x, y] \mid x, y \in \mathbf{R} \& x \leq y\}$ (that is, the set of closed real intervals, plus \perp) with the order defined by: $\perp<[x, y]$ and $[x, y] \leq[u, v] \Leftrightarrow[u, v] \subseteq[x, y]$.

Prop. C.1. Discrete and continuous scalars are cpos. Discrete scalars are domains. However, a continuous scalar is not algebraic because its only compact element is \perp, and hence it is not a domain.

Proof. A discrete scalar s is clearly complete. To show that a continuous scalar s is complete, let M be a directed set in I_{S}. We need to show that $V_{M}=\bigcap\{[u, v] \mid[u, v] \in M\}$ is an interval in I_{S}. Set $x=\max \{u \mid[u, v] \in M\}$ and $y=\min \{v \mid[u, v] \in M\}$. If $y<x$, set $a=x-y, y^{\prime}=y+a / 3$ and $x^{\prime}=x-a / 3$ so $y^{\prime}<x^{\prime}$. Then $\exists\left[u_{1}, v_{1}\right] \in M . v_{1} \leq y^{\prime}$ and $\exists\left[u_{2}, v_{2}\right] \in M . u_{2} \geq x^{\prime}$, so $\left[u_{1}, v_{1}\right] \cap\left[u_{2}, v_{2}\right]=\phi$. But
M directed implies that $\exists\left[u_{3}, v_{3}\right] \in M .\left[u_{3}, v_{3}\right] \subseteq\left[u_{1}, v_{1}\right] \cap\left[u_{2}, v_{2}\right]$. This is a contradiction, so $\mathrm{x} \leq \mathrm{y}$ and $[x, y]=\mathrm{V} / M$.

Let s be continuous and pick $[x, y] \in I_{S}$. To see if $[x, y]$ is compact, set $A_{n}=\left[x-2^{-n}, y+2^{-n}\right]$. Then $[\mathrm{x}, \mathrm{y}]=V_{n} A_{n}$ and $\left\{A_{n}\right\}$ is a directed set, but $\neg \exists A_{n} .[x, y] \leq A_{n}$ (that is, there is no interval A_{n} contained in $[x, y]$. Thus \perp is the only compact element in I_{S} (for s continuous).

We define a tuple space as the cross product of a set of scalar value sets, and define a data lattice whose members are sets of tuples. Note that we use the notation $\mathbf{X} A$ for the cross product of members of a set A.

Def. Let S be a finite set of scalars, and let $X=\mathbf{X}\left\{I_{S} \mid s \in S\right\}$ be the set of tuples with an element from each I_{S}. Let a_{S} denote the s component of a tuple $a \in X$. Define an order relation on X by: for $a, b \in X, a \leq b$ if $\forall s \in S$. $a_{S} \leq b_{S}$.

Prop. C.2. Let $A \subseteq X$. If $b_{S}=\mathbf{V}\left\{a_{S} \mid a \in A\right\}$ is defined for all $s \in S$ then $b=V / A$. If $c_{S}=\Lambda\left\{a_{S} \mid a \in A\right\}$ for all $s \in S$ then $c=\Lambda A$ (that is, sups and infs over X are taken componentwise). Thus, X is a cpo.

Proof. $\forall s \in S . \forall a \in A . a_{s} \leq b_{s}$, so b is an upper bound for A. If e is another upper bound for A, then $\forall s \in S . b_{S} \leq e_{S}$ (since b_{S} is the least upper bound of $\left\{a_{S} \mid a \in\right.$ $A\}$). Thus, $b \leq e$, so b is the least upper bound of A. The argument that $c=\Lambda A$ is similar.

Let $A \subseteq X$ be a directed set, and let $A_{S}=\left\{a_{S} \mid a \in A\right\}$. If $\left\{a_{i s} \mid i\right\}$ is a finite subset of A_{S}, then $\left\{a_{i} \mid i\right\}$ is a finite subset of A, so $\exists e \in A . \forall i$. $a_{i} \leq e$. Then for each $s \in S$, $e_{S} \in A_{S}$ and \forall i. $a_{i S} \leq e_{S}$, so A_{S} is a directed set, and thus $b_{S}=V / A_{S} \in I_{S}$. As we just showed, $b=V / A \in X$, so X is complete.

Def. We use $\operatorname{POWER}(X)=\{A \mid A \subseteq X\}$ to denote the set of all subsets of X.

As explained in Section 3.2.2, $\operatorname{POWER}(X)$ is not appropriate for a lattice structure, so we define equivalence classes on $\operatorname{POWER}(X)$ using the Scott topology. The Scott topology defines open and closed sets as follows.

Def. A set $A \subseteq X$ is open if $\uparrow A \subseteq A$ and, for all directed subsets $C \subseteq X, \mathbf{V} C \in A \Rightarrow C \cap A \neq \phi$.

Def. A set $A \subseteq X$ is closed if $\downarrow A \subseteq A$ and, for all directed subsets $C \subseteq A, V / C \in A$. We use $C L(X)$ to denote the set of all closed subsets of X.

Def. Define a relation \leq_{R} on $\operatorname{POWER}(X)$ as follows: $A \leq_{\mathrm{R}} B$ if for all open $C \subseteq X, A \cap C \neq \phi \Rightarrow B \cap C \neq \phi$. Also define a relation \equiv_{R} on $\operatorname{POWER}(X)$ as follows: $A \equiv_{\mathrm{R}} B$ if $A \leq_{\mathrm{R}} B$ and $B \leq_{\mathrm{R}} A$.

Prop. C.3. The relation \equiv_{R} is an equivalence relation.
Proof. Clearly $\forall A . A \leq_{\mathrm{R}} A$ and thus $\forall A . A \equiv_{\mathrm{R}} A$. And
$A \equiv_{\mathrm{R}} B \Leftrightarrow A \leq_{\mathrm{R}} B \& B \leq_{\mathrm{R}} A \Leftrightarrow B \equiv_{\mathrm{R}} A$. If $A \leq_{\mathrm{R}} B$ and $B \leq_{\mathrm{R}} C$ then for all open $E \subseteq X$, $A \cap E \neq \phi \Rightarrow B \cap E \neq \phi$ and $B \cap E \neq \phi \Rightarrow C \cap E \neq \phi$, so $A \cap E \neq \phi \Rightarrow C \cap E \neq \phi$, and thus $A \leq_{\mathrm{R}} C$. So \equiv_{R} is reflexive, symmetric and transitive, and therefore an equivalence relation.

If $A \equiv_{\mathrm{R}} B$ and $C \equiv_{\mathrm{R}} D$, then $A \leq_{\mathrm{R}} C \Leftrightarrow B \leq_{\mathrm{R}} D$. Thus the equivalence classes of \equiv_{R} are ordered by \leq_{R}. Now we show that the closed sets of the Scott topology can be used in place of the equivalence classes.

Def. Given an equivalence class E of the \equiv_{R} relation, let $M_{E}=\bigcup E$.

Prop. C.4. Given an equivalence class E of the \equiv_{R} relation, then $M_{E} \in E$.
Proof. Pick some $A \in E$. Then $A \subseteq M_{E}$ so $A \leq_{\mathrm{R}} M_{E}$. For all open $C \subseteq X$, we have $M_{E} \cap C \neq \phi \Rightarrow \exists B \in E . B \cap C \neq \phi$ (since $M_{E}=\bigcup E$), but $B \cap C \neq \phi \Rightarrow A \cap C \neq \phi$ (since $B \leq_{\mathrm{R}} A$). Thus $M_{E} \leq_{\mathrm{R}} A$ and $M_{E} \equiv_{\mathrm{R}} A$ so $M_{E} \in E$.

Prop. C.5. Given an equivalence class E of the \equiv_{R} relation, then $M_{E} \in C L(X)$.
Proof. Given $a \in M_{E}$ and $b \leq a$, we need to show that $M_{E} \equiv_{\mathrm{R}} M_{E} \cup\{b\}$ and hence that $b \in M_{E}$. Clearly $M_{E} \leq_{\mathrm{R}} M_{E} \cup\{b\}$. For all open $C \subseteq X$, if $b \in C$ then $a \in C$ (since $b \leq a$) so $M_{E} \cap C \neq \phi$. Thus $M_{E} \cup\{b\} \leq_{\mathrm{R}} M_{E}$ and $b \in M_{E}$.

Next, given a directed set $D \subseteq M_{E}$, let $b=\ / D$. Clearly $M_{E} \leq_{\mathrm{R}} M_{E} \cup\{b\}$. For all open $C \subseteq X$, if $b \in C$ then $\exists c \in D$. $c \in C$ so $c \in M_{E} \cap C$. Thus $M_{E} \cup\{b\} \leq_{\mathrm{R}} M_{E}$ and $b \in M_{E}$.

This shows that M_{E} is closed.

Prop. C.6. Given equivalence classes E and E^{\prime} of the \equiv_{R} relation, then $E \leq_{\mathrm{R}} E^{\prime} \Leftrightarrow M_{E} \subseteq M_{E^{\prime}}$ and $E=E^{\prime} \Leftrightarrow M_{E}=M_{E^{\prime}}$. If $A \subseteq X$ is a closed set, then for some equivalence class $E, A=M_{E}$.

Proof. Note that $E \leq_{\mathrm{R}} E^{\prime} \Leftrightarrow M_{E} \leq_{\mathrm{R}} M_{E^{\prime}}$. If $M_{E} \subseteq M_{E^{\prime}}$ then for all $C \subseteq X$ (whether C is open or not), $M_{E} \cap C \neq \phi \Rightarrow M_{E^{\prime}} \cap C \neq \phi$ and thus $M_{E} \leq_{\mathrm{R}} M_{E^{\prime}}$. If
$\neg M_{E} \subseteq M_{E^{\prime}}$, then there is $a \in M_{E}$ such that $a \notin M_{E^{\prime}}$. The complement of $M_{E^{\prime}}$, denoted $X \backslash M_{E^{\prime}}$, is open, and $a \in M_{E} \cap\left(X \backslash M_{E^{\prime}}\right)$ but $M_{E^{\prime}} \cap\left(X \backslash M_{E^{\prime}}\right)=\phi$, so $\neg M_{E} \leq_{\mathrm{R}} M_{E^{\prime}}$. $E=E^{\prime} \Rightarrow M_{E}=\bigcup E=\bigcup E^{\prime}=M_{E^{\prime}}$. Conversely, $M_{E}=M_{E^{\prime}} \Rightarrow M_{E} \leq_{\mathrm{R}} M_{E^{\prime}} \& M_{E^{\prime}} \leq_{\mathrm{R}} M_{E} \Rightarrow E \leq_{\mathrm{R}} E^{\prime} \& E \leq_{\mathrm{R}} E^{\prime} \Rightarrow E=E^{\prime}$. Thus $E \leftrightarrow M_{E}$ is a one-to-one correspondence between closed sets and equivalence classes of $\equiv \mathrm{R}$.

If $A \subseteq X$ is a closed set, then A belongs to some equivalence class E so $A \subseteq M_{E}$ and $A \equiv_{\mathrm{R}} M_{E}$. If $A \neq M_{E}$ then there is $a \in M_{E}$ such that $a \notin A . X \backslash A$ is open and $a \in M_{E} \cap(X \backslash A)$ but $A \cap(X \backslash A)=\phi$, so $\neg M_{E} \leq_{\mathrm{R}} A$. This contradicts $A \equiv_{\mathrm{R}} M_{E}$ so $A=M_{E}$.

The last proposition showed that there is a one to one correspondence between the equivalence classes of \equiv_{R} and $C L(X)$. Next, we show that these closed sets obey the usual laws governing intersections and unions of closed sets in a topology.

Prop. C.7. If L is a set of closed subsets of X, then $\bigcap L$ is closed. If L is finite, then $\bigcup L$ is closed. Furthermore, for all $x \in X, \downarrow_{x} \in C L(X)$.

Proof. If $x \in \bigcap L$ and $y \leq x$, then for all $A \in L, x \in A$ and $\downarrow A \subseteq A$, so $y \in A$ and so $y \in \bigcap L$. Thus $\downarrow \cap L \subseteq \bigcap L$. If C is a directed subset $C \subseteq \bigcap L$, then for all $A \in L, C \subseteq A$ and $V / C \in A$. Thus $V / C \in \bigcap L$ and $\bigcap L$ is closed.

Now assume L is finite. If $x \in \bigcup L$ and $y \leq x$, then for some $A \in L, x \in A$ and $\downarrow A \subseteq A$, so $y \in A$ and so $y \in \bigcup L$. Thus $\downarrow \bigcup L \subseteq \bigcup L$. Let C be a directed subset $C \subseteq \bigcup L$ and assume that $\mathbf{V} C \notin \bigcup L$. Then $\forall A \in L . V C \notin A$ so, since all $A \in L$ are closed, $\forall A \in L . \neg C \subseteq A$. Thus $\forall A \in L . \exists c_{A} \in C . c_{A} \notin A$. Now, $\left\{c_{A} \mid A \in L\right\}$ is finite, so $\exists c \in C . \forall A \in L . c_{A} \leq c$. But $\forall A \in L . c_{A} \notin A \Rightarrow c \notin \mathrm{~A}$ (since $A \in L$ are down sets), so $c \notin \bigcup L$. This contradicts $C \subseteq \bigcup L$ so we must have $V C \in \bigcup L$. Thus \bigcup_{L} is closed.

Clearly $\downarrow\left(\downarrow_{x}\right) \subseteq \downarrow_{x}$. If $C \subseteq \downarrow_{x}$ is a directed set (or any subset of \downarrow_{x}), then $\forall c \in C . c \leq x$ so $\mathbf{V} C \leq x$ and thus $\mathbf{V} C \in \downarrow_{x}$. Therefore \downarrow_{x} is closed.

Now we show that the equivalence classes of the \equiv_{R} relation, and equivalently $C L(X)$, form a complete lattice.

Prop. C.8. If W is a set of equivalence classes of the \equiv_{R} relation, and then ΛW is defined and $/ \Lambda W=E$ such that $M_{E}=\bigcap\left\{M_{W} \mid w \in W\right\}$. Similarly, $\mathbb{V} W$ is defined and $\mathbb{V} W$ $=E$ such that M_{E} is the smallest closed set containing $\bigcup\left\{M_{w} \mid w \in W\right\}$. Thus the equivalence classes of the \equiv_{R} relation form a complete lattice, and equivalently $C L(X)$ is a complete lattice. If W is finite and $E=V W$, then $M_{E}=\bigcup\left\{M_{W} \mid w \in W\right\}$.

Proof. By Prop. C.7, $\bigcap\left\{M_{w} \mid w \in W\right\}$ is closed and, by Prop. C.6, must be M_{E} for some equivalence class E. Now, $\forall w \in W . M_{E} \subseteq M_{w}$ so $\forall w \in W . M_{E} \leq_{\mathrm{R}} M_{w}$ and $\forall w \in W . E \leq_{\mathrm{R}} w$. If E^{\prime} is an equivalence class such that $\forall w \in W . E^{\prime} \leq_{\mathrm{R}} w$, then $\forall w \in W . M_{E^{\prime}} \subseteq M_{W}$, so $M_{E^{\prime}} \subseteq M_{E}$ and $E^{\prime} \leq_{\mathrm{R}} E$. Thus $E=V / W$.

By Prop. C.7, the intersection of all closed sets containing $\bigcup\left\{M_{w} \mid w \in W\right\}$ must be a closed set and, by Prop. C.6, must be M_{E} for some equivalence class E. Now, $\forall w \in W . M_{w} \subseteq M_{E}$ so $\forall w \in W . M_{w} \leq_{\mathrm{R}} M_{E}$ and $\forall w \in W . w \leq_{\mathrm{R}} E$. If E^{\prime} is an equivalence class such that $\forall w \in W . w \leq_{\mathrm{R}} E^{\prime}$, then $\forall w \in W . M_{w} \subseteq M_{E^{\prime}}$, so $M_{E^{\prime}}$ contains $\bigcup\left\{M_{W} \mid w \in W\right\}$. Thus $M_{E} \subseteq M_{E^{\prime}}$ and $E \leq_{\mathrm{R}} E^{\prime}$. Therefore $E=V / W$.

If W is finite, then $\bigcup\left\{M_{w} \mid w \in W\right\}$ is closed and equal to M_{E}, where $E=V / W$.

Now we prove two propositions that will be useful for determining when sets of tuples are closed.

Prop. C.9. If $a \in X, B \subseteq X$ and $a \leq V / B$ then $a=V\{a \wedge b \mid b \in B\}$.
Proof. Let a_{S} and b_{S} denote the tuple components of a and b. The order relation, sups and infs of a cross product are taken componentwise, so it is sufficient to prove the proposition for each tuple component. That is, we will show that
$\forall s \in S . a_{S} \leq \bigvee\left\{a_{S} \wedge b_{S} \mid b \in B\right\}$.
For discrete s, I_{S} has the discrete order. If $\backslash\left\{b_{S} \mid b \in B\right\}=\perp$ then $a_{S}=\perp$ and $\forall s \in S$. $b_{S}=\perp$, and the conclusion is clearly true. Otherwise, let $c_{S}=V\left\{b_{S} \mid b \in B\right\}$. Then $\forall b \in B$. $\left(b_{S}=\perp\right.$ or $\left.b_{S}=c_{S}\right)$. If $a_{S}=\perp$ then $\forall b \in B$. $a_{S} \wedge b_{S}=\perp$ and $a_{S}=\perp=\ /\left\{a_{S} \wedge b_{S} \mid b \in B\right\}$. Otherwise $a_{S}=c_{S}$ and $\forall b \in B . a_{S} \wedge b_{S}=b_{S}$ and $a_{S}=c_{S}=\\left\{b_{S} \mid b \in B\right\}=\\left\{a_{S} \wedge b_{S} \mid b \in B\right\}$.

For continuous s, the members of I_{S} are real intervals, or are \perp. Let $a_{S}=\left[x_{S}, y_{S}\right]$ and $b_{S}=\left[x\left(b_{S}\right), y\left(b_{S}\right)\right]$, where we use $x=-\infty$ and $y=+\infty$ for $a_{S}=\perp$ or $b_{S}=\perp$. The order relation on I_{S} corresponds to the inverse of interval containment, sup corresponds to intersection of intervals, and \inf corresponds to the smallest interval containing the union of intervals. First, note that $\forall b \in B . a \wedge b \leq a$ and thus $\\{a \wedge b \mid b \in B\} \leq a$. So, it is only necessary to show that $a \leq V\{a \wedge b \mid b \in B\}$, or, in other words, that the intersection of the intervals $\left[\min \left\{x_{S}, x\left(b_{S}\right)\right\}, \max \left\{y_{S}, y\left(b_{S}\right)\right\}\right]$ for all $b \in B$ is contained in the interval [x_{S}, y_{S}]. This intersection of intervals is $[c, d]=\left[\max \left\{\min \left\{x_{S}, x\left(b_{S}\right)\right\} \mid b \in B\right\}, \min \left\{\max \left\{y_{S}, y\left(b_{S}\right)\right\} \mid b \in B\right\}\right]$. Now, $a_{S} \leq \bigvee\left\{b_{S} \mid b \in B\right\}$ says that $x_{S} \leq \max \left\{x\left(b_{S}\right) \mid b \in B\right\}$ and $\min \left\{x\left(b_{S}\right) \mid b \in B\right\} \leq y_{S}$. So for at least one $b \in B, x_{S} \leq x\left(b_{S}\right)$ and $\min \left\{x_{S}, x\left(b_{S}\right)\right\}=x_{S}$, and thus $c=\max \left\{\min \left\{x_{S}, x\left(b_{S}\right)\right\} \mid b \in B\right\} \geq x_{S}$. Similarly $d \leq y_{S}$, and so $[c, d] \subseteq\left[x_{S}, y_{S}\right]$, showing the needed containment.

Prop. C.10. If $Y \subseteq C L(X)$ then $B=\{\backslash M \mid M \subseteq \bigcup Y \& M$ directed $\}$ is closed.
Proof. First, we show that B is a down set. By Prop. C.9, $a \leq \mathbf{V} M \Rightarrow a=\mathbf{V}\{a \wedge m \mid m \in M\}$, so we need to show that $\mathbf{V}\{a \wedge m \mid m \in M\}$ is directed when M is. Given a finite set $\left\{a \wedge b_{i} \mid b_{i} \in M\right\}$ there is c in M such that $\forall i . b_{i} \leq c$, and thus $\bigvee_{i} b_{i} \leq c$. Now $\forall i . b_{i} \leq \bigvee_{i} b_{i} \Rightarrow \forall i . a \wedge b_{i} \leq a \wedge \bigvee_{i} b_{i} \Rightarrow \bigvee_{i}\left(a \wedge b_{i}\right) \leq a \wedge \bigvee_{i} b_{i} \leq$ $a \wedge c$. However $a \wedge c \in \backslash\{a \wedge m \mid m \in M\}$, so $\{a \wedge m \mid m \in M\}$ is directed, $a \in B$ and B is a down set.

Next, we show that B is closed under sups. Let M be a directed subset of B and we will show that $a=V_{M} \in B$. For each $m \in M$ there is a directed set $Q(m) \subseteq \bigcup Y$ such that $m=\ / Q(m)$. Define $Q^{\prime}=\bigcup\{Q(m) \mid m \in M\}$ and $Q=\left\{\ / C \mid C \subseteq Q^{\prime} \& C\right.$ finite $\}$. Note that $V Q^{\prime}$ exists $($ and $=a)$ so V / C exists. For each finite $C \subseteq Q^{\prime}$, each $c \in C$ belongs to a member of Y. Thus C is a subset of a finite union of members of Y, which is a closed set, so V / C must belong to this same closed set and therefore belongs to $\bigcup Y$. Thus $Q \subseteq \bigcup Y$. Pick a finite set $\left\{q_{i}\right\} \subseteq Q$. Each q_{i} is the sup of a finite subset $C_{i} \subseteq Q^{\prime}$, and $_{i} q_{i}$ is the sup of the finite subset $\bigcup_{i} C_{i}$ of Q^{\prime}. Thus $\bigvee_{i} q_{i} \in Q$ so Q is a directed subset of $\bigcup Y$ with $a=\ Q=\ / Q^{\prime}$, so a is a member of B. Thus B is closed under sups, and is a closed set.

Appendix D

Proofs for Section 3.2.3

Here we present the technical details for Section 3.2.3.

Def. A set T of data types can be defined from the set S of scalars. Two functions, $S C$ and $D O M$ are defined with T, such that $\forall t \in T$. $S C(t) \subseteq S \& D O M(t) \subseteq S$. $T, S C$ and $D O M$ are defined as follows:
(D.1) $s \in S \Rightarrow s \in T$ (that is, $S \subset T$)
$S C(s)=\{s\}$
$D O M(s)=\phi$.
(D.2) $\left(\right.$ for $\left.i=1, \ldots, n . t_{i} \in T\right) \&\left(i \neq j \Rightarrow S C\left(t_{i}\right) \cap S C\left(t_{j}\right)=\phi\right) \Rightarrow \operatorname{struct}\left\{t_{1} ; \ldots ; t_{n}\right\} \in T$
$S C\left(s t r u c t\left\{t_{1} ; \ldots ; t_{n}\right\}\right)=\bigcup_{i} S C\left(t_{i}\right)$
$\operatorname{DOM}\left(\operatorname{struct}\left\{t_{1} ; \ldots ; t_{n}\right\}\right)=\bigcup_{i} D O M\left(t_{i}\right)$
(D.3) $w \in S \& r \in T \& w \notin S C(r) \Rightarrow($ array $[w]$ of $r) \in T$
$S C((\operatorname{array}[w]$ of $r))=\{w\} \cup S C(r)$
$\operatorname{DOM}((\operatorname{array}[w]$ of $r))=\{w\} \cup D O M(r)$

The type struct $\left\{t_{1} ; \ldots ; t_{n}\right\}$ is a tuple with element types t_{i}, and the type (array $[w]$ of r) is an array with domain type w and range type r. $S C(t)$ is the set of scalars occurring in t, and $\operatorname{DOM}(t)$ is the set of scalars occurring as array domains in t. Note that each scalar in S may occur at most once in a type in T.

Def. For each scalar $s \in S$, define a countable set $H_{S} \subseteq I_{S}$ such that for all $a, b \in H_{S}, a \wedge b \in H_{S}, a \vee b \in I_{S} \Rightarrow a \vee b \in H_{S}$, and such that $\forall a \in I_{S} . \exists A \subseteq H_{S} . a=\ / A$ (that is, H_{S} is closed under infs and sups, and any member of I_{S} is a sup of a set of members of H_{S}). For discrete s this implies that $H_{S}=I_{S}$ (recall that we defined discrete scalars as having countable value sets). Also note that, for continuous s, H_{S} cannot be a сро.

Def. Given a scalar w, let
$\operatorname{FIN}\left(H_{W}\right)=\left\{A \subseteq H_{W} \backslash\{\perp\} \mid A\right.$ finite $\left.\& \forall a, b \in A . \neg(a \leq b)\right\}$.

Def. Extend the definition of H_{t} to $t \in T$ by:
(D.4) $t=\operatorname{struct}\left\{t_{1} ; \ldots ; t_{n}\right\} \Rightarrow H_{t}=H_{t_{1}} \times \ldots \times H_{t_{n}}$
(D.5) $t=(\operatorname{array}[w]$ of $r) \Rightarrow H_{t}=\bigcup\left\{\left(A \rightarrow H_{r}\right) \mid A \in \operatorname{FIN}\left(H_{W}\right)\right\}$

Def. Define an embedding $E_{t}: H_{t} \rightarrow U$ by:
$t \in S \Rightarrow E_{t}(a)=\downarrow(\perp, \ldots, a, \ldots, \perp)$
(D.7) $t=\operatorname{struct}\left\{t_{1} ; \ldots ; t_{n}\right\} \Rightarrow E_{t}\left(\left(a_{1}, \ldots, a_{n}\right)\right)=\left\{b_{1} \vee \ldots \vee b_{n} \mid \forall \mathrm{i} . b_{i} \in E_{t_{i}}\left(a_{i}\right)\right\}$

$$
\begin{align*}
& t=(\operatorname{array}[w] \text { of } r) \Rightarrow \tag{D.8}\\
& \qquad\left[a \in\left(A \rightarrow H_{r}\right) \Rightarrow E_{t}(a)=\left\{b \vee c \mid x \in A \& b \in E_{w}(x) \& c \in E_{r}(a(x))\right\}\right]
\end{align*}
$$

The notation $\downarrow(\perp, \ldots, a, \ldots, \perp)$ in Eq. (D.6) indicates the closed set of all tuples less than $(\perp, \ldots, a, \ldots, \perp)$. As we will show in Prop. D.1, for all $a \in H_{t}$ and for all $b \in E_{t}(a)$, $b_{S}=\perp$ unless $s \in S C(t)$. Thus $b_{1} \vee \ldots \vee b_{n}$ in Eq. (D.7) is the tuple that merges the non- \perp components of the tuples b_{1}, \ldots, b_{n}., since the types t_{i} in Eq. (D.7) are defined from disjoint sets of scalars. Similarly, $b \vee c$ in Eq. (D.8) is the tuple that merges the non- \perp components of the tuples b and c, since the scalar w does not occur in the type r. Prop. D. 2 will show that E_{t} does indeed map members of H_{t} to members of U.

Def. For $t \in T$ define $F_{t}=E_{t}\left(H_{t}\right)$.

Prop. D.1. Given $t \in T$ and $A \in F_{t}$, for all tuples $b \in A$,
$\forall s \in S .\left(s \notin S C(t) \Rightarrow b_{S}=\perp\right)$.
Proof. We prove this by induction on the structure of t. This is clearly true for $t \in S$. For $t=\operatorname{struct}\left\{t_{1} ; \ldots ; t_{n}\right\}$ pick $b=b_{1} \vee \ldots \vee b_{n} \in A \in F_{t}$, where $b_{i} \in B_{i} \in F_{t_{i}}$. Then
 $\forall s .\left(\forall i . s \notin S C\left(t_{i}\right)\right) \Rightarrow b_{S}=\perp$, and so $\forall s . s \notin \bigcup_{i} S C\left(t_{i}\right) \Rightarrow b_{S}=\perp$. But $S C(t)=\bigcup_{i} S C\left(t_{i}\right)$.

For $t=(\operatorname{array}[w]$ of $r)$ pick $a=b \vee c \in A \in F_{t}$, where $b \in B \in F_{w}$ and $c \in C \in F_{r}$. Then $a_{S}=b_{S} \vee c_{S}$. By induction, $s \neq w \Rightarrow b_{S}=\perp$ and $\left.s \notin S C(r)\right) \Rightarrow c_{S}=\perp$, so $\forall s . s \notin\{w\} \cup S C(r) \Rightarrow b_{S}=\perp$. But $S C(t)=\{w\} \cup S C(r)$.

The following propositions show that E_{t} maps members of H_{t} to closed sets, and that this mapping is injective.

Prop. D.2. For all $a \in H_{t}, E_{t}(a)$ is a closed set.
Proof. We prove this by induction on the structure of t. For $t \in S$, $E_{t}(a)=\downarrow(\perp, \ldots, a, \ldots, \perp)$ is closed, by Prop. C.7. For $t=\operatorname{struct}\left\{t_{1} ; \ldots ; t_{n}\right\}$, we need to show that $E_{t}(a)=\left\{b_{1} \vee \ldots \vee b_{n} \mid \forall\right.$ i. $\left.b_{i} \in E_{t_{i}}\left(a_{i}\right)\right\}$ is closed, where $a=\left(a_{1}, \ldots, a_{n}\right)$. To show that $E_{t}(a)$ is a down-set, pick $b \leq b_{1} \vee \ldots \vee b_{n} \in E_{t}(a)$. Then $\forall i . b \wedge b_{i} \leq b_{i}$ and hence $\forall i . b \wedge b_{i} \in E_{t_{i}}\left(a_{i}\right)$ (since these are down sets). Thus, by Prop. C.9,
$b=\left(b \wedge b_{1}\right) \vee \ldots \vee\left(b \wedge b_{n}\right) \in E_{t}(a)$. To show that $E_{t}(a)$ is closed under sups of directed sets, pick a directed set $C \subseteq E_{t}(a)$ and for all $c \in C$ let $c=b_{1}(c) \vee \ldots \vee b_{n}(c)$ where $\forall i . b_{i}(c) \in E_{t_{i}}\left(a_{i}\right)$. We need to show that $C_{i}=\left\{b_{i}(c) \mid c \in C\right\}$ is a directed set. Pick a finite subset $\left\{b_{i}\left(c_{j}\right) \mid j\right\} \subseteq C_{i}$. Since C is directed, there is $m \in C$ such that $\forall j . c_{j} \leq m$. Note that $m=b_{1}(m) \vee \ldots \vee b_{n}(m)$ where $\forall i . b_{i}(m) \in C_{i}$. Since the t_{i} have disjoint sets of non $-\perp$ components, $\forall i . \forall j . b_{i}\left(c_{j}\right) \leq b_{i}(m)$. Thus C_{i} is directed, and $V C_{i} \in E_{t_{i}}\left(a_{i}\right)$. Hence $V C=V C_{1} \vee \ldots \vee / C_{n} \in E_{t}(a)$, and thus $E_{t}(a)$ is closed under sups of directed sets.

For $t=($ array $[w]$ of $r)$, we need to show that
$E_{t}(a)=\left\{b \vee c \mid x \in A \& b \in E_{W}(x) \& c \in E_{r}(a(x))\right\}$ is closed, where $a \in\left(A \rightarrow H_{r}\right)$.
Define $E_{t}(a)_{X}=\left\{b \vee c \mid b \in E_{W}(x) \& c \in E_{r}(a(x))\right\}$. Note that $E_{t}(a)_{X}=$
$E_{\text {struct }\{w ; r\}}((a, a(x)))$ [where struct $\{w ; r\}$ is a tuple type and $\left.(a, a(x)) \in H_{\text {struct }\{w ; r\}}\right]$ and thus, by the argument above for tuple types, $E_{t}(a)_{X}$ is closed. Also note that $E_{t}(a)=$ $\bigcup\left\{E_{t}(a)_{X} \mid x \in A\right\}$. However, A is finite, so $E_{t}(a)$ is a union of a finite number of closed sets, and thus is itself closed.

Prop. D.3. The embedding $E_{t}: H_{t} \rightarrow U$ is injective.
Proof. We prove this by induction on the structure of t.
Let t be a scalar and $a \neq b$. Then $\neg(a \leq b)$ or $\neg(b \leq a)$. Assume without loss of generality that $\neg(a \leq b)$. Then $(\perp, \ldots, a, \ldots, \perp) \in \downarrow(\perp, \ldots, a, \ldots, \perp)=E_{t}(a)$ but $(\perp, \ldots, a, \ldots, \perp) \notin \downarrow(\perp, \ldots, b, \ldots, \perp)=E_{t}(b)$, so $E_{t}(a) \neq E_{t}(b)$.

Let $t=\operatorname{struct}\left\{t_{1} ; \ldots ; t_{n}\right\}$ and $a=\left(a_{1}, \ldots, a_{n}\right) \neq\left(b_{1}, \ldots, b_{n}\right)=b$. Then $\exists k . a_{k} \neq b_{k}$ and, by the inductive hypothesis, $E_{t_{k}}\left(a_{k}\right) \neq E_{t_{k}}\left(b_{k}\right)$. Assume without loss of generality that $\exists c_{k} \in E_{t_{k}}\left(a_{k}\right) . c_{k} \notin E_{t_{k}}\left(b_{k}\right)$, and for all $i \neq k$ pick $c_{i} \in E_{t_{i}}\left(a_{i}\right)$. Then $c_{1} \vee \ldots \vee c_{n} \in E_{t}\left(\left(a_{1}, \ldots, a_{n}\right)\right)$, but, since $c_{k} \notin E_{t_{k}}\left(b_{k}\right)$ and since $\forall s \in S . \forall i \neq k . c_{k s} \neq \perp \Rightarrow c_{i s}=\perp, c_{1} \vee \ldots \vee c_{n} \notin E_{t}\left(\left(b_{1}, \ldots, b_{n}\right)\right)$. Thus $E_{t}\left(\left(a_{1}, \ldots, a_{n}\right)\right) \neq E_{t}\left(\left(b_{1}, \ldots, b_{n}\right)\right)$.

Let $t=($ array $[w]$ of $r)$ and $a \neq b$ where $a \in\left(A \rightarrow H_{r}\right)$ and $b \in\left(B \rightarrow H_{r}\right)$. Then either $A \neq B$ or $A=B \& \exists x \in A$. $a(x) \neq b(x)$. In the first case (that is, $A \neq B$), assume without loss of generality that $\exists x \in A . x \notin B$. If $\exists y \in B . x \leq y$ then $\neg \exists z \in A . y \leq z$ (otherwise $x \in A \& z \in A \& x \leq z$). Thus either $\exists x \in A$. $\neg(\exists y \in B . x \leq y)$ or $\exists y \in B . \neg(\exists z \in A . y \leq z)$. Assume without loss of generality that $\exists x \in A . \neg(\exists y \in B . x \leq y)$. Then $e=(\perp, \ldots, x, \ldots, \perp) \in E_{W}(x)$ and $\neg\left(\exists y \in B . e \in E_{W}(y)\right)$. Pick $f \in E_{r}(a(x))$. Then $e \vee f \in E_{t}(a)$ but $e \vee f \notin E_{t}(b)$, so $E_{t}(a) \neq E_{t}(b)$. In the second case (that is, $A=B \& \exists x \in A . a(x) \neq b(x)$), by the inductive hypothesis, $E_{r}(a(x)) \neq$ $E_{r}(b(x))$. Assume without loss of generality that $\exists x \in A . \exists f \in E_{r}(a(x)) . f \notin E_{r}(b(x))$. Pick $e \in E_{W}(x)$. Then $e \vee f \in E_{t}(a)$ but $e \vee f \notin E_{t}(b)$, so $E_{t}(a) \neq E_{t}(b)$.

Because $E_{t}: H_{t} \rightarrow U$ is injective, we can define an order relation between the members of H_{t} simply by assuming that E_{t} is an order embedding. If E_{t} were not
injective, it would map a pair of members of H_{t} to the same member of U, and induce an anti-symmetric relation on H_{t}.

Def. Given $a, b \in H_{t}$, we say that $a \leq b$ if and only if $E_{t}(a) \leq E_{t}(b)$.

The order that E_{t} induces on H_{t} has a simple and intuitive structure, as the following proposition shows.

Prop. D.4. If t is a scalar and $a, b \in H_{t}$ then $E_{t}(a) \leq E_{t}(b)$ if and only if $a \leq b$ in I_{t}. If $t=\operatorname{struct}\left\{t_{1} ; \ldots ; t_{n}\right\}$ then $E_{t}\left(\left(a_{1}, \ldots, a_{n}\right)\right) \leq E_{t}\left(\left(b_{1}, \ldots, b_{n}\right)\right)$ if and only if $\forall i . E_{t_{i}}\left(a_{i}\right) \leq E_{t_{i}}\left(b_{i}\right)$ (that is, the order relation between tuples is defined element-wise). If $t=(\operatorname{array}[w]$ of $r)$, if $a, b \in H_{t}$ and if $a \in\left(A \rightarrow H_{r}\right)$ and $b \in\left(B \rightarrow H_{r}\right)$, then $E_{t}(a) \leq E_{t}(b)$ if and only if $\forall x \in A . E_{r}(a(x)) \leq \bigvee\left\{E_{r}(b(y)) \mid y \in B \& E_{W}(x) \leq E_{W}(y)\right\}$ (that is, an array a is less than an array b if the embedding of the value of a at any sample x is less than the sup of the embeddings of the set of values of b at its samples greater than x).

Proof. Recall that members of U are closed sets ordered by set inclusion, so $E_{t}(a) \leq E_{t}(b) \Leftrightarrow E_{t}(a) \subseteq E_{t}(b)$. Let t be a scalar. If $a \leq b$ in I_{t} then

$$
\begin{aligned}
& E_{t}(a)=\downarrow(\perp, \ldots, a, \ldots, \perp)=\{(\perp, \ldots, c, \ldots, \perp) \mid c \leq a\} \subseteq \\
& \{(\perp, \ldots, c, \ldots, \perp) \mid c \leq b\}=\downarrow(\perp, \ldots, b, \ldots, \perp)=E_{t}(b) .
\end{aligned}
$$

Now assume that $E_{t}(a) \leq E_{t}(b)$. Then

$$
\begin{gathered}
E_{t}(a)=\downarrow(\perp, \ldots, a, \ldots, \perp)=\{(\perp, \ldots, c, \ldots, \perp) \mid c \leq a\} \subseteq \\
\{(\perp, \ldots, c, \ldots, \perp) \mid c \leq b\}=\downarrow(\perp, \ldots, b, \ldots, \perp)=E_{t}(b) \\
\text { so }(\perp, \ldots, a, \ldots, \perp) \in\{(\perp, \ldots, c, \ldots, \perp) \mid c \leq b\} \text { so } a \leq b \text { in } I_{t} .
\end{gathered}
$$

Let $t=\operatorname{struct}\left\{t_{1} ; \ldots ; t_{n}\right\}$. If $\forall i . E_{t_{i}}\left(a_{i}\right) \subseteq E_{t_{i}}\left(b_{i}\right)$ then
$E_{t}\left(\left(a_{1}, \ldots, a_{n}\right)\right)=\left\{c_{1} \vee \ldots \vee c_{n} \mid \forall i . c_{i} \in E_{t_{i}}\left(a_{i}\right)\right\} \subseteq$

$$
\left\{c_{1} \vee \ldots \vee c_{n} \mid \forall i . c_{i} \in E_{t_{i}}\left(b_{i}\right)\right\}=E_{t}\left(\left(b_{1}, \ldots, b_{n}\right)\right)
$$

Now assume that $E_{t}\left(\left(a_{1}, \ldots, a_{n}\right)\right) \leq E_{t}\left(\left(b_{1}, \ldots, b_{n}\right)\right)$. Then

$$
\begin{aligned}
& E_{t}\left(\left(a_{1}, \ldots, a_{n}\right)\right)=\left\{c_{1} \vee \ldots \vee c_{n} \mid \forall i . c_{i} \in E_{t_{i}}\left(a_{i}\right)\right\} \subseteq \\
& \left\{c_{1} \vee \ldots \vee c_{n} \mid \forall i . c_{i} \in E_{t_{i}}\left(b_{i}\right)\right\}=E_{t}\left(\left(b_{1}, \ldots, b_{n}\right)\right) .
\end{aligned}
$$

[Parenthetical argument: assume that $c_{k} \notin E_{t_{k}}\left(b_{k}\right), c_{i} \in E_{t_{i}}\left(a_{i}\right)$ for $i \neq k$, and $c_{1} \vee \ldots \vee c_{n} \in E_{t}\left(\left(b_{1}, \ldots, b_{n}\right)\right)$. Then there are $d_{i} \in E_{t_{i}}\left(b_{i}\right)$ such that $c_{1} \vee \ldots \vee c_{n}=d_{1} \vee \ldots \vee d_{n}$.

However, $i \neq j \Rightarrow S C\left(t_{i}\right) \cap S C\left(t_{j}\right)=\phi$ so, by Prop. D.1, $d_{i s}=\perp$ for $s \in S C\left(t_{k}\right)$ and $i \neq k$.
Thus $c_{k s}=d_{k s}$ for $s \in S C\left(t_{k}\right)$ and so $c_{k}=d_{k}$. This is impossible, so $c_{1} \vee \ldots \vee c_{n} \in E_{t}\left(\left(b_{1}, \ldots, b_{n}\right)\right)$ and $c_{i} \in E_{t_{i}}\left(a_{i}\right)$ for $\left.i \neq k \Rightarrow c_{k} \in E_{t_{k}}\left(b_{k}\right).\right]$

Thus $\forall i .\left(c_{i} \in E_{t_{i}}\left(a_{i}\right) \Rightarrow c_{i} \in E_{t_{i}}\left(b_{i}\right)\right)$, or in other words, $\forall i . E_{t_{i}}\left(a_{i}\right) \subseteq E_{t_{i}}\left(b_{i}\right)$.

Let $t=($ array $[w]$ of $r), a, b \in H_{t}$ and $a \in\left(A \rightarrow H_{r}\right)$ and $b \in\left(B \rightarrow H_{r}\right)$. Assume that $\left.\forall x \in A . E_{r}(a(x)) \leq \backslash \backslash E_{r}(b(y)) \mid y \in B \& E_{W}(x) \leq E_{W}(y)\right\}$. Then $\forall x \in A . E_{r}(a(x)) \subseteq \bigcup\left\{E_{r}(b(y)) \mid y \in B \& E_{W}(x) \leq E_{W}(y)\right\}$.

$$
\begin{aligned}
& E_{t}(a)=\left\{e \vee f \mid x \in A \& e \in E_{W}(x) \& f \in E_{r}(a(x))\right\}= \\
& \bigcup\left\{\left\{e \vee f \mid e \in E_{W}(x) \& f \in E_{r}(a(x))\right\} \mid x \in A\right\} .
\end{aligned}
$$

Now, $f \in E_{r}(a(x)) \Rightarrow \exists y \in B . E_{W}(x) \leq E_{W}(y) \& f \in E_{r}(b(y))$ and $e \in E_{W}(x) \& E_{W}(x) \leq E_{W}(y) \Rightarrow e \in E_{W}(y)$, so (continuing the chain)

$$
\begin{aligned}
& \bigcup\left\{\left\{e \vee f \mid e \in E_{W}(x) \& f \in E_{r}(a(x))\right\} \mid x \in A\right\} \subseteq \\
& \bigcup\left\{\left\{e \vee f \mid e \in E_{W}(y) \& f \in E_{r}(b(y)) \& E_{W}(x) \leq E_{W}(y) \& y \in B\right\} \mid x \in A\right\} \subseteq \\
& \bigcup\left\{\left\{e \vee f \mid e \in E_{W}(y) \& f \in E_{r}(b(y))\right\} \mid y \in B\right\}= \\
& \left\{e \vee f \mid y \in B \& e \in E_{W}(y) \& f \in E_{r}(b(y))\right\}=E_{t}(b) .
\end{aligned}
$$

Thus $E_{t}(a) \leq E_{t}(b)$.
Now assume that $E_{t}(a) \leq E_{t}(b)$. That is,

$$
\begin{aligned}
& E_{t}(a)=\left\{e \vee f \mid x \in A \& e \in E_{W}(x) \& f \in E_{r}(a(x))\right\} \subseteq \\
& \bigcup\left\{\left\{e \vee f \mid e \in E_{W}(y) \& f \in E_{r}(b(y))\right\} \mid y \in B\right\}=E_{t}(b)
\end{aligned}
$$

Since $w \notin S C(r), e \in E_{W}(x) \& f \in E_{r}(a(x)) \& e \vee f \in E_{t}(b) \Rightarrow \exists y \in B . e \in E_{w}(y) \& f \in E_{r}(b(y))$ [this is a result of the parenthetical argument in the tuple case of this proof]. Pick $x \in A$ and $f \in E_{r}(a(x))$, and define $e=(\perp, \ldots, x, \ldots, \perp)$. Then $\exists y \in B . e \in E_{w}(y) \& f \in E_{r}(b(y))$. Now $e \in E_{W}(y) \Rightarrow x \leq y \Rightarrow E_{W}(x) \leq E_{W}(y)$ so $f \in \bigcup\left\{E_{r}(b(y)) \mid y \in B \& E_{W}(x) \leq E_{W}(y)\right\}=$ $\boldsymbol{V}\left\{E_{r}(b(y)) \mid y \in B \& E_{W}(x) \leq E_{W}(y)\right\}$. Thus $\forall x \in A . E_{r}(a(x)) \leq \backslash \backslash\left\{E_{r}(b(y)) \mid y \in B \& E_{W}(x) \leq E_{W}(y)\right\}$.

