
148

Chapter 5

Applying the Lattice Model to Recursive Data Type Definitions

 In Section 3.1 we showed that a function D : U→V satisfying the expressiveness

conditions must be a lattice isomorphism. In Section 3.4 we applied this result to specific

lattice structures defined for scientific data and display models. However, this result can

be applied to any complete lattices and it is natural to apply this result to other lattice

structures for data and display models. The motive for new lattice structures must be

new data models, since display models are themselves motivated by the need to visualize

data. The data model defined in Section 3.2 includes tuples and arrays as ways of

aggregating data, but does not include linked list structures defined in terms of pointers.

In this chapter we describe several issues in extending our lattice theory to data types

appropriate for handling objects with pointers.

5.1 Recursive Data Types Definitions

 The denotational semantics of programming languages provides techniques for

defining ordered sets whose members are the values of programming language

expressions (Gunter and Scott, 1990; Schmidt, 1986; Scott, 1971; Scott, 1982). An

important topic of denotational semantics is the study of recursive domain equations,

which define cpos recursively (cpo is defined in Appendix A).

 Consider the following example of a recursive domain equation from (Schmidt,

1986). A data type for a binary tree may be defined by

(5.1) Bintree = (Data + (Data × Bintree × Bintree))⊥

149

Here "+", "×" and "(.)⊥" are type construction operators similar to the tuple and array

operators defined in Section 3.2.3. The "+" operator denotes a type that is a choice

between two other types (this is similar to "union" in the C language), "×" denotes a type

that is a cross product of other types (this is essentially the same as our tuple operator, so

that (Data × Bintree × Bintree) is a 3-tuple), and the "⊥" subscript indicates a type that

adds a new least element, ⊥, to the set of values of another type. Eq. (5.1) defines a data

type called Bintree, and says that a Bintree object is either ⊥, a data object of type Data,

or a 3-tuple consisting of a data object of type Data and two data objects of type Bintree.

Intuitively, a data object of type Bintree is either missing, a leaf node with a data value,

or a non-leaf node with a data value and two child nodes.

 The obvious way to implement binary trees is to define a record or structure for a

node of the tree, and to include two pointers to other nodes in that record or structure. In

general, self references in recursive type definitions are implemented using pointers.

5.2 The Inverse Limit Construction

 The equality in a recursive domain equation is really an isomorphism. As

explained by Schmidt, these equation may be solved by the inverse limit construction.

For the Bintree example this construction starts with Bintree0 = {⊥}, and then applies Eq.

(5.1) repeatedly to get:

(5.2) Bintree1 = (Data + (Data × Bintree0 × Bintree0))⊥

 Bintree2 = (Data + (Data × Bintree1 × Bintree1))⊥

 etc.

150

The construction also specifies a retraction pair (gi, fi):Bintreei ↔ Bintreei+1 for all i,

such that gi embeds Bintreei into Bintreei+1 and fi projects Bintreei+1 onto Bintreei

(retraction pair is defined in Appendix A). Then Bintree is the set of all infinite tuples of

the form (t0, t1, t2, ...) such that ti = fi(ti+1) for all i. It can be shown that Bintree is

isomorphic with (Data + (Data × Bintree × Bintree))⊥, and thus "solves" the recursive

domain equation. The order relation on the infinite tuples in Bintree is defined element-

wise, just like the order relation on finite tuples defined in Section 3.2, and Bintree is a

cpo. We note that the inverse limit construction can also be applied to solve sets of

simultaneous domain equations.

 The cpos defined by the inverse limit construction are generally not lattices. In

order to apply Prop. C.3 to these cpos they must be embedded in complete lattices.

However, the Dedekind-MacNeille completion shows that for any partially ordered set A,

there is always a complete lattice U such that there is an order embedding of A into U

(Davey and Priestley, 1990).

 The set of Bintree objects defined by the inverse limit construction includes

infinite trees. Denotational semantics must include values for non-terminating

computations, and non-terminating computations may produce infinite trees as their

values. Since our result that display functions are lattice isomorphisms depends on the

assumption that data and display lattices are complete, it is likely that any data lattice we

define that includes solutions of recursive domain equations must include infinite data

objects.

 The inverse limit construction defines the set of data objects of a particular data

type that solves a particular recursive domain equation. However, our approach in

Section 3.2 was to define a large lattice that contained data objects of many different data

types. It would be useful to continue this approach, by defining a lattice that includes all

151

data types that can be constructed from scalar types as tuples, arrays, and solutions of

recursive domain equations. This is the subject of Section 5.3.

5.3 Universal Domains

 A fundamental result of the theory of ordered sets is the fixed point theorem,

which says that, for any cpo D and any continuous function f:D → D, there is fix(f) ∈ D

such that f(fix(f)) = fix(f) (that is, fix(f) is a fixed point of f) and such that fix(f) is less than

any other fixed point of f.

 Scott developed an elegant way to solve recursive domain equations by applying

the fixed point theorem (Scott, 1976; Gunter and Scott, 1990). The idea is that the

solution of a recursive domain equation is just a fixed point of a function that operates on

cpos. Scott first defined a universal domain U and a set W of retracts of U. W may be

the set of all retracts on U, the set of projections, the set of finitary projections, the set of

closures, or the set of finitary closures (these terms are defined in Appendix A). Then he

showed that a set OP of type construction operators (these operators build cpo's from

other cpo's) can be represented by continuous functions over W, in the sense that for op ∈

OP there is a continuous function f on W that makes the diagram in Figure 5.1 commute.

cpo's cpo's
op

W W
f

im im

Figure 5.1. The type construction operator op is represented by function f.

152

Note that im(w) = {w(u) | u ∈ U}. For unary op ∈ OP this is im(f(w)) = op(im(w)).

Similar commuting expressions hold for multiary operators in OP. Then, for any

recursive domain equation D = O(D) where O is composed from operators in OP, there is

a continuous function F:W → W that represents O. By the fixed point theorem, F will

have a least fixed point fix(F), and O(im(fix(F))) = im(F(fix(F))) = im(fix(F)), so

im(fix(F)) is a cpo satisfying the recursive domain equation D = O(D). The solution of

any domain equation (or any set of simultaneous domain equations) involving the type

construction operators in OP will be a cpo that is a subset of the universal domain U.

Thus this approach is similar to the way that we embedded data types in a complete

lattice (coincidentally denoted by U) in Section 3.2.3. Universal domains and

representations have been defined for sets OP that include most of the type constructors

used in denotational semantics, including "+", "×", "→", and "(.)⊥".

 A common example of a universal domain is the complete lattice POWER(N),

which is just the set of all subsets of the natural numbers N. In general, the embeddings

of data types into universal domains, as defined by papers in denotational semantics, are

not suitable for our display theory. For example, a single integer (that is, an object of

type N), and a function from the integers to the integers (that is, an object of type N →

N), may be embedded to the same member of POWER(N). A display function applied to

the lattice POWER(N), with these embeddings, would produce the same display for the

integer and the function from the integers to integers. Such displays cannot effectively

communicate information about data objects, so other embeddings of types into universal

domains must be developed.

153

5.4 Display of Recursively Defined Data Types

 Since the goal of visualization is to communicate information about data to

people, an extension of our theory must focus on the data lattice U. However, since a

display function D is a lattice isomorphism of U onto a sublattice V, we should be able to

say something about the structure of V. If a subset A ⊆ U is the solution of a recursive

domain equation (that is, A is the set of data objects of some recursively defined data

type), then D(A) ⊆ V is isomorphic to A and must itself be the solution of the recursive

domain equation.

 For example, if the set A is the solution of Eq. (5.1) for Bintree, then the set D(A)

must also solve this equation. The isomorphism D provides a definition of the operators

"+", "×" and "(.)⊥" in D(A) and thus also defines a relation between "tree" objects and

their "subtree" objects in D(A). The isomorphism does not tell us how to interpret these

operators and relations in a graphical display, but it does tell us that such a logical

structure exists. Given the complexity of this structure, it is seems likely that display

objects in D(A) will be interpreted using some graphical equivalent of the pointers that

are used to implement data objects in A.

 Two graphical analogs of pointers are commonly used in displays:

1. Diagrams. Here icons represent nodes in data objects, and lines between icons

represent pointers.

2. Hypertext links. Here the visible contents of a display screen represents one or

more nodes in a data object, and an icon embedded in that display screen represents

an interactive link to another node or set of nodes. That is, if the user selects the

154

icon (say by a mouse point and click), new display screen contents appear depicting

the display object (and possibly other objects) referenced by the icon.

In order to extend our display theory to data types defined with recursive domain

equations, we need to extend our display lattice V to include these graphical

interpretations of pointers. A difficult open problem is to find a way to do this that

produces a display lattice complex enough to be isomorphic to a universal domain as

described in Section 5.3.

155

Chapter 6

Conclusions

 This thesis was motivated by physical scientists' need for visualization techniques

that can be applied to the data of a wide variety of scientific applications, that can

produce a wide variety of different visualizations of data appropriate for different needs,

that are as interactive as possible, that require minimal effort by scientists to use, and that

can be integrated with a scientific programming environment. Our approach has been to

achieve generality and simplicity by developing appropriate abstractions for scientific

data, for scientific displays, and for the visualization mapping from data to displays.

6.1 Main Contributions and Limitations

 The main contributions of this thesis can be summarized as follows:

1. Development of a system for scientific visualization that enables a wide variety of

visual experiments with scientific computations. This system integrates

visualization with a scientific programming language that can be used to express

scientific computations. This programming language supports a wide variety of

scientific data types and integrates common forms of scientific metadata into the

computational and display semantics of data. Any data object defined in a program

in this language can be visualized in a wide variety of ways during and after

program execution. Displays are controlled by a set of simple mappings rather than

program logic. These mappings are independent of data type and separate from a

user's scientific programs, which is a clear distinction from previous visualization

156

systems that require scientists to embed calls to visualization functions in their

programs. Furthermore, computation and visualization are highly interactive. In

particular, the selection of data objects for display and the controls for how they are

displayed are treated like any other interactive display control (e.g., interactive

rotation). Previous visualization systems require a user to alter his program in

order to make such changes. The generality, integration, interactivity and ease-of-

use of this system all enhance the user's ability to perform visual experiments with

their algorithms.

2. Introduction of a systematic approach to analyzing visualization based on lattices.

We defined a set U of data objects and a set V of displays and showed how a lattice

structure on U and V expresses a fundamental property of scientific data and

displays (namely that they are approximations to the physical world). The

visualization repertoire of a system can be defined as a set of mappings of the form

D : U → V. It is common to define a system's visualization repertoire by

enumerating such a set of functions. However, an enumerated repertoire is justified

only by the tastes and experience of the people who decide what functions to

include in the set. In contrast, we interpreted certain well-known expressiveness

conditions on the visualization mapping D : U → V in terms of a lattice structure,

and defined a visualization repertoire as the set of functions that satisfy those

conditions. Such a repertoire is justified by the generality of the expressiveness

conditions. We showed that visualization mappings satisfy these conditions if and

only if they are lattice isomorphisms. Lattice structures can be defined for a wide

variety of data and display models, so this result can be applied to analyze

visualization repertoires in a wide variety of situations.

157

3. Demonstration of a specific lattice structure that unifies data objects of many

different scientific types in a data model U, and demonstration that the same lattice

structure can express interactive, animated, three-dimensional displays in a display

model V. These models integrate certain kinds of scientific metadata into the

computational and display semantics of data. In the context of these scientific data

and display models, we showed that the expressiveness conditions imply that

mappings of data aggregates to display aggregates can always be factored into

mappings of data primitives to display primitives. We showed that our display

mappings are complete, in the sense that we characterized all mappings satisfying

the expressiveness conditions.

 These results have several limitations. Foremost, they do not include data objects

with pointers. Thus our visualization techniques are not applicable to the data objects of

general programming languages. This thesis developed a single lattice-structured

scientific data model in which real numbers are approximated by intervals and functions

are approximated by finite sets of samples of their values. However, there are other ways

to approximate numbers and functions based on Eq. (3.2) and these may serve as the

basis for other lattice-structured models for scientific data. The display model developed

in this thesis models the ways that computers generate displays, but does not model the

ways that people perceive displays. Finally, this thesis only considered conditions on

visualization mappings based on lattice structures, and did not consider conditions based

on other kinds of mathematical structures.

158

6.2 Future Directions

 The work presented in this thesis can be extended to other lattice-structured

models for data and displays, and to analytic conditions on visualization functions based

on types of mathematical structures other than lattices. Specific future directions include:

1. Extend the VisAD system's display model to include more display scalars, such as

transparency, reflectivity and flow vectors. These would be interpreted by

including volume and flow rendering techniques in the mapping RENDER : V →

V'.

2. Extending the VisAD system to supply default mappings for controlling the

displays of data objects. This could be accomplished by integrating VisAD with

others' work on automating the design of displays (Robertson, 1991; Senay and

Ignatius, 1991; Senay and Ignatius, 1994; Beshers and Feiner, 1992).

3. Extending the lattice results to data objects with pointers (i.e., data objects of

recursively-defined data types). In Chapter 3 we showed how to embed scientific

data objects of many different data types in a lattice. In Chapter 5 we showed how

this might be extended by describing Scott's technique for embedding data objects

of many different recursively-defined data types in a lattice. We also described

graphical analogs of data objects with pointers. However, we described why

Scott's embeddings are not suitable for visualization. Thus, finding ways to extend

Scott's embeddings to a form suitable for visualization is an important next step.

This would enable us to extend the VisAD system to a general programming

language rather than a scientific programming language.

159

4. Defining lattice structures based on forms of approximations to numbers and

functions other than intervals and finite samplings. Whenever data objects can be

identified with sets of mathematical objects we can apply Eq. (3.2) (i.e., u ≤ u' ⇔

math(u') ⊆ math(u)) to define a lattice structure on a data model. For example,

functions may be approximated by finite sets of Fourier coefficients rather than

finite sets of function values.

5. The analytic approach has great potential for making the study of visualization

more rigorous and systematic. It is difficult to explicitly identify all of the

assumptions of a synthetic approach to visualization, whereas assumptions must be

explicit in an analytic approach. Analytic conditions on visualization mappings

must be based on some mathematical structures defined on data and display

models. In this thesis we have explored the consequences of a single set of

conditions defined in terms of lattice structures. However, the full potential of the

analytic approach can only be realized by exploring a much wider set of conditions

based on a variety of mathematical structures. Data and display models may also

have topological structures, metric structures, symmetry structures, structures based

on arithmetic operations, and type hierarchy structures. Each of these kinds of

structures can be used to define conditions on visualization mappings. Such

conditions may be able to express a wide range of visualization goals, and

mathematical analysis of visualization mappings satisfying various conditions may

provide a rigorous foundation for visualization.

160

6. Defining structures on display models that express principles of human perception.

For example, a metric can be defined for the perceived distance between displays

(as measured by psychology experiments or predicted by psychological models).

Alternatively, perception of displays may be invariant to certain operations (e.g.,

time translation or spatial translation), which may be expressed by defining

symmetry groups on sets of displays.

