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Chapter 3 

 

An Analysis of Mappings from Data to Displays 

 

 Current scientific visualization systems enumerate different ways of displaying 

data, or require users to write programs (possibly as data flow diagrams or in object-

oriented programming languages) to control how data are displayed.  These approaches 

either lack flexibility or require significant effort from users.  In contrast, we take a more 

systematic approach, analyzing the ways that data can be displayed from basic principles. 

 In this chapter we describe our approach to scientific visualization, based not only 

on an abstract view of data and displays, but also an abstract view of the visualization 

mapping between them.  First, we recognize that visualization is a computational process 

that defines a mapping from a large set of data objects to a large set of displays.  Thus, 

rather than analyzing visualization in terms of the way an individual data object is 

displayed, we analyze visualization in terms of its effect on sets of data objects.  (In fact, 

it is arguable that data objects only have meaning in relation to other data objects, just as 

the significance of the number pi can be explained only in relation to other mathematical 

objects).  Thus we let the symbol U represent a set of data objects, let the symbol V 

represent a set of displays, and let D : U → V represent the mapping from data to 

displays.  We define a visualization repertoire as the set of all such visualization 

mappings that satisfy certain analytic conditions. 

 The simplest example of an analytic condition on D expresses the uniqueness 

requirement that different data objects have different displays, so that users can 

distinguish different data objects from their displays.  This is just the condition that D be 

injective (one to one).  It can be expressed as follows: 
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(3.1) ∀u, u' ∈ U. u = u' ⇔ D(u) = D(u') 

 

 Eq. (3.1) is a very weak condition on D.  For example, if U is a set of two-

dimensional images and if V = U (that is, the display model V is also a set of two-

dimensional images), then any permutation of images satisfies Eq. (3.1).  However, it is 

easy to construct a permutation D of images such that the display D(u) generally does a 

poor job of communicating information about the data object u to users.  Thus we seek 

stronger conditions on D. 

 In general, any condition on D must be defined in terms of mathematical 

structures on U and V.  For example, Eq. (3.1) expresses a condition in terms of the 

mathematical structure of equality on U and V.  The advantage of Eq. (3.1) is that it can 

be applied very broadly to visualization because all data and display models include an 

equality relation.  Therefore we also seek to define stronger conditions on D that express 

fundamental properties of scientific data objects and displays. 

 

3.1 An Analytic Approach Based on Lattices 

 In this thesis we focus on the observation that, for most scientific computations, 

computer data objects and displays are finite approximations to mathematical models of 

nature.  That is, real numbers have infinite precision and functions of real variables have 

infinite domains, whereas the computer data objects that represent these mathematical 

objects are finite and therefore approximate.  Because scientific data objects and displays 

are approximations, we can define an order relation between them based on the precision 

of approximation (for example, a high resolution image is more precise than a low 

resolution image as an approximation to a radiance field).  This order relation allows us 
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to define lattice structures on data and display models, and to define analytic conditions 

on visualization mappings based on the lattice structures. 

 

3.1.1 Basic Definitions for Ordered Sets 

 Since our analytic approach to visualization draws on the theory of ordered sets, 

we first review some basic definitions from this theory (Davey and Priestly, 1990; Gierz, 

et al., 1980; Gunter and Scott, 1990; Schmidt, 1986; Scott, 1971; Scott, 1976; Scott, 

1982).  Appendix A contains a more complete list of definitions. 

 

 Def. A partially ordered set (poset) is a set D with a binary relation ≤ on D such 

that, ∀x, y, z ∈ D 

(a) x ≤ x    "reflexive" 

(b) x ≤ y & y ≤ x ⇒ x = y  "anti-symmetric" 

(c) x ≤ y & y ≤ z ⇒ x ≤ z  "transitive" 

 

 Def. An upper bound for a set M ⊆ D is an element x D∈  such that 

∀y ∈ M. y ≤ x. 

 

 Def. The least upper bound of a set M ⊆ D, if it exists, is an upper bound x for M 

such that if y is another upper bound for M, then  x ≤ y.  The least upper bound of M is 

denoted sup M or \/M.  sup{x,y} is written x ∨ y. 

 

 Def. A lower bound for a set M ⊆ D is an element x D∈  such that ∀y ∈ M. x ≤ y. 
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 Def. The greatest lower bound of a set M ⊆ D, if it exists, is a lower bound x for 

M such that if y is another lower bound for M, then  y ≤ x.  The greatest lower bound of M 

is denoted inf M or /\M.  inf{x,y} is written x ∧ y. 

 

 Def. A subset M ⊆ D is a down set if ∀x ∈ M.∀y ∈ D. y ≤ x ⇒ y ∈ M.  Given 

M ⊆ D, define ↓M = {y ∈ D | ∃x ∈ M. y ≤ x}, and given x ∈ D, define 

↓x = {y ∈ D | y ≤ x}. 

 

 Def. A subset M ⊆ D is an up set if ∀x ∈ M. ∀y ∈ D. x ≤ y ⇒ y ∈ M.  Given 

M ⊆ D, define ↑M = {y ∈ D | ∃x ∈ M. x ≤ y}, and given x ∈ D, define 

↑x = {y ∈ D | x ≤ y}. 

 

 Def. A subset M ⊆ D is directed if, for every finite subset A ⊆ M, there is an 

x ∈ M such that ∀y ∈ A. y ≤ x. 

 

 Def. If D and E are posets, we use the notation (D → E) to denote the set of all 

functions from D to E. 

 

 Def. If D and E are posets, a function f:D→E is monotone if 

∀x, y ∈ D. x ≤ y ⇒ f(x) ≤ f(y).  We use the notation MON(D → E) to denote the set of all 

monotone functions from D to E. 

 

 Def. If D and E are posets, a function f:D→E is an order embedding if 

∀x, y ∈ D. x ≤ y ⇔ f(x) ≤ f(y). 
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 Def. Given posets D and E, a function f:D→E, and a set M ⊆ D, we use the 

notation f(M) to denote {f(d) | d ∈ M}. 

 

 Def. A poset D is a lattice if for all x, y ∈ D, x ∨ y and x ∧ y exist in D. 

 

 Def. A poset D is a complete lattice if for all M ⊆ D, \/M and /\M exist in D. 

 

 Def. If D and E are lattices, a function f:D→E is a lattice homomorphism if for all 

x, y ∈ D, f(x ∧ y) = f(x) ∧ f(y) and f(x ∨ y) = f(x) ∨ f(y).  If f:D→E is also a bijection then 

it is a lattice isomorphism. 

 

3.1.2 Scientific Data Objects as Approximations of Mathematical Objects 

 In Section 2.2 we described the nature of scientific data as representing 

mathematical objects.  We noted that data objects are usually approximations to 

mathematical objects, as for example floating point numbers approximate real numbers 

and arrays are finite samplings of functions of a real variable. 

 The importance of the approximate nature of scientific data is reflected in the 

common use of semantic metadata to document the how scientific data approximate 

mathematical variables and functions.  For example, in Section 2.2 we defined a data 

type: 

 

type temperature-field = 

 array [latitude] of array [longitude] of array [altitude] of temperature; 
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Data objects of type temperature-field are approximate representations of the 

mathematical function: 

 

temperature = temperature-field(latitude, longitude, altitude) 

 

One important form of scientific metadata describes the locations of samples of 

temperature-field arrays.  Furthermore, temperature values in the array are represented by 

finite numbers of bits, and another important form of metadata describes the 

correspondence between finite bit patterns and real numbers.  Such metadata may be 

implicit in the specification of a floating point number standard, but may also be explicit, 

as in the case of coded 8-bit or 10-bit satellite radiances.  Metadata may describe how 

data values are spatial or temporal averages of physical variables; this metadata 

quantifies how data values approximate mathematical values.  Metadata may explicitly 

document numerical precision by providing error bounds for values that approximate real 

numbers.  Metadata may define missing data codes used to indicate failures of observing 

instruments or numerical exceptions; we view such missing data codes as documenting 

values that have the least possible precision. 

 Other metadata provide indirect information about how precisely data objects 

approximate mathematical objects.  Values produced by simulations may include 

metadata about the name and version number of the model that produced them, about the 

data used to initialize the model, about parameter settings of the model, and so on.  

Values produced by observations may include metadata about which sensors produced 

them, and may also include, for example, observations of the instruments themselves for 

calibration, sensor temperatures, angles to the sun or other navigation landmarks, and so 
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on.  These detailed metadata are often the basis of complex computations for estimating 

sampling and accuracy characteristics of values. 

 The approximate nature of scientific data is a fundamental property of that data 

that can serve as the basis for a mathematical order structure on a scientific data model.  

As explained in the next section, data objects can be ordered based on how precisely they 

approximate mathematical objects.  This order relation provides us with a mathematical 

structure on data and display models that can be used as the basis for defining analytic 

conditions on visualization mappings. 

 

3.1.3 A Mathematical Structure Based on the Precision of Scientific Data 

 We assume a set U' of mathematical objects and a set U of data objects.  There are 

only a countable number of data objects (objects that can be stored inside a computer are 

limited to finite strings over finite alphabets) but an uncountable number of mathematical 

objects.  Thus each data object generally represents a large set of mathematical objects.  

Given a data object u ∈ U, let math(u) ⊆ U' be the set of mathematical objects 

represented by u.  Given two data objects u and u', if math(u') ⊆ math(u) then u' 

represents a more restricted set of mathematical objects than u does and we can say that 

u' is more precise than u.  Thus we define an order relation on U by: 

 

(3.2) u ≤ u' ⇔ math(u') ⊆ math(u) 

 

For example, a missing value (which we indicate by the symbol ⊥) can represent (i.e., is 

consistent with) all mathematical values, so ⊥ ≤ x where x is any data value. 

 Similar order relations have been defined for reasoning about partial information 

in data base management systems (Read, Fussell and Silberschatz, 1993) and in the study 
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of programming language semantics (Scott, 1971).  There is no algorithmic way to 

separate non-terminating programs from terminating programs, so the set of meanings of 

programs must include an undefined value for non-terminating programs.  This value is 

less precise than any of the values that a program would produce if it did terminate so it 

is natural to define an order relation between program meanings where undefined ≤ x for 

all program values x.  In order to define a correspondence between the ways that 

programs are constructed, and the sets of meanings of programs, Scott elaborated this 

order relation into an elegant lattice theory for the meanings of programs (Scott, 1982).  

He equated 

"x ≤ y" with "x approximates y." 

 Thus Scott's order relation is similar to the order relation defined by Eq. (3.2), and 

the undefined value in programming language semantics is analogous with the missing 

value used in scientific computations.  (We note that the source of undefined values is 

non-terminating computations whereas the sources of missing values are sensor failures 

and numerical exceptions).  There are many other examples of how the order relation 

defined in Eq. (3.2) may be applied.  Metadata about accuracy often take the form of 

error bars, which are intervals around values.  Real intervals have been studied as a 

computational data model for real numbers (Moore, 1966), and have been applied to 

computer graphics (Duff, 1992; Snyder, 1992).  An interval represents any real number it 

contains, so Eq. (3.2) indicates that smaller intervals are "greater than" containing 

intervals.  We can combine the missing value and real intervals in a simple data model for 

approximations of real numbers.  The order relation on this data model is illustrated in 

Figure 3.1.  Note that the set of real intervals is not countable, but an implementation of 

the real interval data model could be restricted to the set of rational intervals.  From now 
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on we will not require that U be countable, but will recognize that an actual 

implementation of U can only include a countable number of data objects. 

 

⊥

[0.0, 1.0]

[0.0, 0.1] [0.9, 1.0]

[0.0, 0.01]

[0.0, 0.0] [0.01, 0.01]

[0.93, 0.95]

[0.5, 0.5] [0.945, 0.945]

[0.94, 0.97]

 

 

Figure 3.1. Order relation of a continuous scalar.  Closed real intervals are used 

as approximate representations of real numbers, ordered by the inverse of 

containment (that is, containing intervals are "less than" contained intervals).  We 

also include a least element ⊥ that corresponds to a missing data indicator.  This 

figure shows a few intervals, plus the order relations among those intervals.  The 

intervals in the top row are all maximal, since they contain no smaller interval. 

 

 We can extend the data model in Figure 3.1 to real functions by defining array 

data objects that are sets of pairs of real intervals.  The first interval in a pair represents a 

domain value of the function, and the second interval represents the corresponding range 

value.  The two intervals define a rectangle that contains at least one sample from the 

graph of the represented function.  For example, the set of pairs 

 

(3.3) {([1.1, 1.6], [3.1, 3.4]), ([3.6, 4.1], [5.0, 5.2]), ([6.1, 6.4], [6.2, 6.5])} 
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contains three samples of a function.  The domain value of a sample lies in the first 

interval of a pair and its range value lies in the second interval of a pair, as illustrated in 

Figure 3.2. 

 

[3.1, 3.4]

[5.0,5.2]

[6.2, 6.5]

[1.1, 1.6] [3.6, 4.1] [6.1, 6.4]  

 

Figure 3.2. Approximating real functions by arrays. 

 

 An array represents any function whose graph contains a point in each of the 

rectangles defined by its pairs.  Adding more samples to an array restricts the set of 

functions that the array can represent.  Similarly, replacing pairs of intervals by pairs of 

more precise intervals restricts the set of functions that the array can represent.  Thus we 

can define an order relation between arrays, as illustrated in Figure 3.3.  Note that the 

empty set is the least value of this data model since it can represent any real function. 
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{([1.1, 1.6], [3.1, 3.4]),
([3.6, 4.1], [5.0, 5.2]),
([6.1, 6.4], [6.2, 6.5])}

([3.6, 4.1], [5.0, 5.2]),
{([1.1, 1.6], ⊥ ),

([6.1, 6.4],⊥ )}

{([1.33, 1.40], [3.21, 3.24]),
([3.72, 3.73], [5.09, 5.12]),
([6.21, 6.23], [6.31, 6.35])}

{([1.1, 1.6], [3.1, 3.4]),
([3.6, 4.1], [5.0, 5.2]),
([6.1, 6.4], [6.2, 6.5]),
([7.3, 7.5], [8.1, 8.4])}

φ (the empty set)  

 

Figure 3.3. Order relation of arrays. 

 

 The sequence of satellite images in Figures 3.4 through 3.7 provides a practical 

illustration of an order relation based on precision.  Each of these images contains a finite 

number of pixels that are samples of a continuous Earth radiance field.  The higher 

resolution images are more precise approximations to the radiance field, and the 

sequence of images form an ascending chain in the order relation. 
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Figure 3.4. Least precise image in sequence of four.  (color original) 
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Figure 3.5. Second image in sequence of four, ordered by precision.  (color 

original) 
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Figure 3.6. Third image in sequence of four, ordered by precision.  (color original) 
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Figure 3.7. Most precise image in sequence of four.  (color original) 
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 These examples of data models for approximating two simple types of 

mathematical objects, real numbers and real functions, show how Eq. (3.2) can be used to 

define order relations.  In these examples we defined different sets of data objects to 

represent different mathematical types.  However, a scientific application may include 

many data types, and it is impractical to provide a separate data model U and a separate 

analysis of visualization functions D : U → V for each different data type.  Thus it is 

desirable to define data models that include many different data types. 

 In the study of programming language semantics, objects of many different types 

have been embedded in lattices called universal domains (Scott, 1976).  In Section 3.2 

we will show how scientific data objects of many different types can be embedded in a 

single lattice.  Thus we assume that our data model U is a lattice.  We further assume that 

U is a complete lattice.  Any ordered set can be embedded in a complete lattice by the 

Dedekind-MacNeille completion (Davey and Priestly, 1990), so this is not a very strong 

assumption.  Scott showed how to define a topology on ordered sets (Gunter and Scott, 

1990) and in this topology least upper bounds play a role analogous to limits.  Thus we 

can think of the assumption that U is complete as meaning that it contains the 

mathematical objects that are the limits of sets of approximating finite data objects.  

Complete lattices are a convenient mathematical context for studying visualization 

functions, as long as we remember that actual implementations of data models are 

restricted to countable subsets of U. 

 The notion of precision of approximation also applies to displays.  Displays have 

finite resolution in space, color and time (that is, animation).  Two-dimensional images 

and three-dimensional volume renderings are composed of finite numbers of pixels and 

voxels, each implemented with a finite number of bits, and changing in discrete steps 

over time.  Computer displays are finite approximations to idealized mathematical 
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displays (that is, displays defined in terms of real-valued functions) and it is possible to 

define an order relation between displays based on the precision of these approximations.  

Thus we assume that our display model V is also a complete lattice. 

 

3.1.4 Data Display as a Mapping Between Lattices 

 Data objects provide information about mathematical objects, and Eq. (3.2) says 

that the order relations on U and V provide measures of the information in data objects 

and displays (that is, how precisely they specify mathematical objects).  The purpose of 

visualization is to communicate information about data objects, and we will express this 

purpose as conditions on D : U → V defined in terms of the order relations on U and V.  

In order to define conditions on D we draw on the work of Mackinlay (Mackinlay, 1986).  

He studied the problem of automatically generating displays of relational information and 

defined expressiveness conditions on the mapping from relational data to displays.  His 

conditions specify that a display expresses a set of facts (that is, an instance of a set of 

relations) if the display encodes all the facts in the set, and encodes only those facts. 

 In order to interpret the expressiveness conditions we define a fact about data 

objects as a logical predicate applied to U (that is, a function of the form 

P : U → {false, true}).  However, since data objects are approximations to mathematical 

objects, we limit facts about data objects to approximations of facts about mathematical 

objects.  In particular, we would like to avoid predicates that define inconsistent 

information about mathematical objects.  For example, if u1 ≤ u2 then u1 and u2 are 

approximations to the same mathematical object (or objects), so we will disallow any 

predicates that define P(u1) = true and P(u2) = false.  We can do this by restricting our 

interpretations of facts about data objects to monotone predicates of the form 
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P: U → {undefined, false, true}, where undefined < false and undefined < true.  

Furthermore, a monotone predicate of the form P: U → {undefined, false, true} can be 

expressed in terms of two monotone predicates of the form P: U → {undefined, true}, so 

we will limit facts about data objects to monotone predicates of the form 

P: U → {undefined, true}. 

 The first part of the expressiveness conditions says that every fact about data 

objects is encoded by a fact about their displays.  We interpret this as follows: 

 

 Condition 1. For every monotone predicate P: U → {undefined, true}, there is a 

monotone predicate Q: V → {undefined, true} such that P(u) = Q(D(u)) for each u ∈ U. 

 

 This requires that D be injective [if u1 ≠ u2 then there are P such that P(u1) ≠ 

P(u2), but if D(u1) = D(u2) then Q(D(u1)) = Q(D(u2)) for all Q, so we must have D(u1) ≠ 

D(u2)]. 

 The second part of the expressiveness conditions says that every fact about 

displays encodes a fact about data objects.  We interpret this as follows: 

 

 Condition 2. For every monotone predicate Q: V → {undefined, true}, there is a 

monotone predicate P: U → {undefined, true} such that Q(v) = P(D-1(v)) for each v ∈ V. 

 

 We show in Appendix B that Condition 2 implies that D is a monotone bijection 

(that is, one-to-one and onto) from U onto V.  Thus Condition 2 is too strong since it 

requires that every display in V is the display of some data object in U, under D.  Since U 

is a complete lattice it contains a maximal data object X (the least upper bound of all 

members of U).  For all data objects u ∈ U, u ≤ X.  Since D is monotone this implies 
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D(u) ≤ D(X).  We use the notation ↓D(X) for the set of all displays less than D(X).  ↓D(X) 

is itself a complete lattice and for all data objects u ∈ U, D(u) ∈ ↓D(X).  Hence we can 

replace V by ↓D(X) in Condition 2 in order to not require that every v ∈ V is the display 

of some data object.  We modify Condition 2 as follows: 

 

 Condition  2'. For every monotone predicate Q: ↓D(X) → {undefined, true}, 

there is a monotone predicate P: U → {undefined, true} such that Q(v) = P(D-1(v)) for 

each v ∈ ↓D(X). 

 

u4

u3

u2

u1

v4

v3

v2

v1

DP Q

⊥

⊥

true

true

⊥

⊥

true

true

VU⊥ , true{ } ⊥ , true{ }

 

 

Figure 3.8. The expressiveness conditions specify that D : U → V defines a 

correspondence between monotone predicates on U and V. 

 

 These two conditions quantify the relation between the information in data 

objects and the information in their displays.  Figure 3.8 shows D mapping the chain u1 < 

u2 < u3 < u4 in U to the chain v1 < v2 < v3 < v4 in V, and shows the values of the 

monotone predicates P and Q on these chains.  The expressiveness conditions define a 
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correspondence between such predicates.  We now use them to define a class of 

functions. 

 

 Definition.  A function D: U → V is a display function if it satisfies Conditions 1 

and 2'. 

 

 In Appendix B we prove the following result about the class of display functions: 

 

 Prop. B.3.  A function D: U → V is a display function if and only if it is a lattice 

isomorphism from U onto ↓D(X). 

 

 This result may be applied to any complete lattice model of data and displays.  In 

the rest of this chapter we will explore its consequences in a more specific setting. 

 

3.2 A Scientific Data Model 

 The scientific data model developed in Section 2.2 defined a set of data types for 

representing mathematical types.  We define scalar types for representing variables, tuple 

types for representing vectors, and array types for representing functions.  Based on the 

ideas developed in Section 3.1.3, metadata that describe how precisely data objects 

approximate the mathematical objects that they represent are integrated into this data 

model. 

 The data model defines two kinds of primitive values, one appropriate for 

representing real numbers and the other appropriate for representing integers or text 

strings.  We call these two kinds of primitive values continuous scalars and discrete 

scalars.  A continuous scalar takes the set of closed real intervals as values, ordered by 
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the inverse of containment.  Figure 3.1 illustrated the order relations between values of a 

continuous scalar.  A discrete scalar takes any countable (possible finite) set as values, 

without any order relation between them (since no integer is more precise than any 

other).  Figure 3.9 illustrates the order relations between values of a discrete scalar.  The 

value sets of continuous and discrete scalars also always include a minimal value ⊥ 

corresponding to a missing data indicator. 

 
0 1 2 3 .  .  .-1-2-3.  .  .

⊥  

 

Figure 3.9. Order relation of a discrete scalar. 

 

 The data model does not specify a particular set of scalars.  Rather the data model 

can be adapted to a particular scientific application by defining a finite set S of scalar 

types to represent the mathematical variables of the application (for example, time, 

latitude, temperature, pressure).  These scalar types are aggregated into a set T of 

complex data types according to three rules: 

 

1. Any continuous or discrete scalar in S is a data type in T. 

 

2. If t1, ..., tn are types in T defined from disjoint sets of scalars, then struct{t1;...;tn} is 

a tuple type in T with element types ti.  Data objects of tuple types (that is, data 

types constructed as tuples) contain one data object of each of their element types. 
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3. If w is a scalar type in S and r is a type in T such that w does not occur in the 

definition of r, then (array [w] of r) is an array type with domain type w and range 

type r.  Data objects of array types (that is, data types constructed as arrays) are 

finite samplings of functions from the primitive variable represented by their 

domain type w to the set of values represented by their range type r.  That is, a data 

object of an array type is a set of data objects of its range type, indexed by values 

of its domain type. 

 

 Each data type in T defines a set of data objects.  Continuous and discrete scalars 

define sets of values as described previously.  The set of objects of a tuple type is the 

cross product of the sets of objects of its element types.  A tuple of data objects 

represents a tuple of mathematical objects, and the precision of the approximation 

depends on the precision of each element of the tuple.  One tuple is more precise than 

another if each element is more precise.  That is, (x1, ..., xn) ≤ (y1, ..., yn) if  xi ≤ yi for 

each i.  Figure 3.10 illustrates the order relations between tuples. 
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(⊥, ⊥)

([0.3, 0.4], [2.3, 2.4])

([0.0, 0.9], [2.3, 2.4]) ([0.3, 0.4], [2.0, 2.9])

([0.0, 0.9], [2.0, 2.9])(⊥, [2.3, 2.4]) ([0.3, 0.4], ⊥)

([0.0, 0.9], ⊥)(⊥, [2.0, 2.9])

 

 

Figure 3.10. Order relation of tuples.  Tuples are members of cross products.  

This figure shows a few elements in a cross product of two sets of continuous 

scalar values, plus the order relations among those elements.  In a cross 

product, the least element is the tuple of least elements of the factor sets. 

 

 The set of objects of an array type is similar to a function space.  However, an 

array's domain type generally defines an infinite set of values, whereas arrays are limited 

to finite subsets of domain values.  For each finite subset of domain values, define the 

space of functions from this finite set to the set of objects of the array's range type.  Then 

the set of objects of an array type is the union of such function spaces taken over all finite 

subsets of the domain's value set.  We will make this definition rigorous in Section 3.2.3.  

The order relation between array objects was illustrated in Figure 3.3 and is precisely 

defined in Section 3.2.3. 
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 While the development of this data model is complex, it offers several advantages 

over more commonly used data models.  First, a wide variety of scientific data can be 

expressed in this data model by building hierarchies of tuples and arrays.  Thus a system 

based on this data model can be applied to a wide variety of scientific applications and 

can be used to combine data from different sources.  This is a significant advantage over 

most existing scientific visualization systems. 

 Second, this data model integrates several forms of scientific metadata, including: 

 

1. Each scalar type is identified by the name of the primitive mathematical variable 

that it represents. 

 

2. An array data object is a finite sampling of a mathematical function, and contains a 

set of objects of the array's range type, indexed by values of the array's domain 

scalar type.  These index values specify how the array samples the function being 

represented. 

 

3. The interval values of continuous scalars are approximations to real numbers in a 

mathematical model, and the sizes of these intervals provide accuracy metadata 

about the approximations. 

 

4. Any scalar object may take the value ⊥, corresponding to a missing data indicator. 

 

Most previous systems require users to store such metadata in separate data objects and 

to manage the relation between data and metadata explicitly in their programs.  A system 
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based on this data model can integrate metadata into the computation and display 

semantics of data, and thus reduce the burden on users. 

 In the next three sections we show how to define a lattice structure for this data 

model.  This lattice structure can be used to analyze visualization mappings from this 

data model to a lattice-structured display model and thus define a repertoire of 

visualization functions for a system based on this data model. 

 

3.2.1 Interpreting the Data Model as a Lattice 

 We treat the visualization process as a function from a set of data objects to a set 

of display objects.  Our data model defines a different set of data objects for each 

different data type, suggesting that a different visualization function must be defined for 

each different data type.  However, we can define a lattice of data objects and natural 

embeddings of data objects of all data types into this lattice.  This lattice provides us with 

a unified data model U for data objects of all data types in T.  Thus a visualization 

function D : U → V applies to all data types in T and our analysis of the properties of 

these visualization functions will be independent of particular data types. 

 In Section 1.2 we saw that many current visualization techniques achieve 

generality by enumerating sets of data types and display techniques.  The lattice U 

provides an alternative to this approach by defining a unified data model and enabling a 

unified analysis of visualization functions for different data types. 

 Define a tuple space X as the cross product of the sets of values of the scalar types 

in S, and define a member of the data lattice as a subset of the tuple space X.  In Section 

3.2.2 we show how to define an order relation on this lattice, and in Section 3.2.3 we 

show how the data objects of our scientific data model are embedded in this lattice. 
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 To get an intuition of how the embedding works, consider a data lattice U defined 

from the three scalars time, temperature and pressure.  Objects in the lattice U are sets of 

tuples of the form (time, temperature, pressure).  Consider the tuple data type 

struct{temperature; pressure}.  Data objects of this type are tuples of the form 

(temperature, pressure), and we can embed them in the lattice U as illustrated in Figure 

3.11. 

 

(temp1, pres1) ⊥{( , temp1, pres1)}

an element of the tuple type
(temperature, pressure)

a member of the lattice of sets of tuples
of the form (time, temperature, pressure)

embedding of a tuple type
into a lattice

 

 

Figure 3.11. Embedding a tuple type into a lattice of sets of tuples. 

 

 Similarly, we can embed array data types in the data lattice.  For example, 

consider the same lattice U defined from the three scalars time, temperature and 

pressure, and consider an array data type (array [time] of temperature).  A data object of 

this type is a set of pairs of the form (time, temperature).  We can embed such data 

objects into the lattice U as illustrated in Figure 3.12. 

 The basic ideas presented in Figures 3.11 and 3.12 can be combined to embed 

complex data types, defined as hierarchies of tuples and arrays, in data lattices.  This will 

be formalized in Section 3.2.3.  These embeddings enable a unified, lattice-structured 

data model so that visualization mappings apply to data objects of all data types.  This is 

important for a visualization system based on this lattice model because it implies that the 

user interface for controlling how data are displayed is independent of data type. 
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time1: temp1
time2: temp2
time3: temp3

timeN: tempN

.

.

.

array of temperature values
indexed by time values

⊥{(time1, temp1, ),
⊥ (time2, temp2, ),
⊥ (time3, temp3, ),

⊥ (timeN, tempN, )}

.  .  .

embedding of an
array type into
a lattice

set of tuples with ⊥ pressure values
and with no two time values equal  

 

Figure 3.12. Embedding an array type into a lattice of sets of tuples. 

 

3.2.2 Defining the Lattice Structure 

 Now we can develop a rigorous definition of our lattice model for scientific data.  

We will define lattices of data objects and displays in terms of scalar types.  We use the 

symbol R to denote the real numbers.  A scalar type s is either discrete or continuous and 

defines a set Is of values of type s. 

 

 Def. A discrete scalar s defines a countable value set Is that includes a least 

element ⊥ and that has discrete order.  That is, ∀x, y ∈ Is. (x ≤ y ⇒ x = ⊥).  Figure 3.9 

illustrates the order relation on Is. 

 

 Def. A continuous scalar s defines a value set 

Is = {⊥} ∪ {[x, y] | x, y ∈ R & x ≤ y} (that is, the set of closed real intervals, plus ⊥) with 

the order defined by: ⊥ < [x, y] and [u, v] ⊆ [x, y] ⇔ [x, y] ≤ [u, v].  Figure 3.1 illustrates 

the order relation on Is. 
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 Given a continuous scalar s, the closed real intervals in Is represent real numbers 

with limited accuracy.  A real interval is "less than" its sub-intervals since sub-intervals 

give more precise information.  Given a set A of closed real intervals, if the intersection 

IA is non-empty then \/A is equal to that intersection (it is a closed interval), otherwise 

\/A is undefined.  /\A is the smallest closed interval containing the union UA, or ⊥ if the 

union is unbounded. 

 It is interesting to note that, given a continuous scalar s, the order relation on Is 

encodes information about the ordering and topology of real numbers through the 

containment structure of intervals. 

 We use the notation XA for the cross product of members of the set A.  We can 

now define an ordered set of tuples of scalar values, as follows: 

 

 Def. Let S be a finite set of scalars.  Then the cross product X = X{Is | s ∈ S} is 

the set of tuples with an element from each Is.  Let as denote the s component of a tuple 

a ∈ X.  Define an order relation on X by: for a, b ∈ X, a ≤ b if ∀s ∈ S. as ≤ bs.  Figure 

3.10 illustrates this order relation on tuples. 

 

 Let POWER(X) = {A | A ⊆ X} denote the power set of X (that is, the set of all 

subsets of X).  As discussed briefly in Section 3.2.1, we use the sets of tuples in 

POWER(X) as models for scientific data objects.  It is well known that it is difficult to 

define an order relation on POWER(X) that is consistent with the order relation on X and 

is consistent with set inclusion (Schmidt, 1986).  For example, if a, b ∈ X and a < b, we 

would expect that {a} < {b}.  Thus we might define an order relation between subsets of 

X by: 
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(3.4) ∀A, B ⊆ X. (A ≤ B ⇔ ∀a ∈ A. ∃b ∈ B. a ≤ b) 

 

However, given a < b, Eq. (3.4) implies that {b} ≤ {a, b} and {a, b} ≤ {b} are both true, 

which contradicts {b} ≠ {a, b}.  As explained by Schmidt, this problem can be resolved 

by defining an equivalence relation on POWER(X).  The equivalence relation is defined 

in terms of the Scott topology, which defines open and closed sets as follows: 

 

 Def. A set A ⊆ X is open if ↑A ⊆ A and, for all directed subsets 

C ⊆ X, \/C ∈ A ⇒ C ∩ A ≠ φ. 

 

 Def. A set A ⊆ X is closed if ↓A ⊆ A and, for all directed subsets C ⊆ A, \/C ∈ A.  

We use CL(X) to denote the set of all closed subsets of X. 

 

 Note that the complement of an open set is closed, and vice versa.  Also, X and φ 

are both open and closed. 

 

 Def. Define a relation ≤R on POWER(X) as: A ≤R B if for all open C ⊆ X, 

A ∩ C ≠ φ ⇒ B ∩ C ≠ φ.  Also define a relation ≡R on POWER(X) as: A ≡R B if A ≤R B 

and B ≤R A. 

 

 As we show in Appendix C, ≡R is an equivalence relation.   Clearly, if A ≡R B 

and C ≡R D, then A ≤R C ⇔ B ≤R D, so the equivalence classes of ≡R are ordered by ≤R.  

In Appendix C we also show that the equivalence classes of ≡R form a complete lattice, 

ordered by ≤R.  These equivalence classes are our models for data objects.  However, it is 
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not necessary to work directly with equivalence classes.  Given an equivalence class E of 

the ≡R relation, let ME = UE.  As shown in Appendix C, ME is closed and E ↔ ME 

defines a one-to-one correspondence between equivalence classes of ≡R and closed sets.  

Thus we use U = CL(X) as our data lattice.  The following proposition from Appendix C 

explains how sups and infs are calculated in this lattice. 

 

 Prop. C.8. If W is a set of equivalence classes of the ≡R relation, then /\W is 

defined and equals E such that ME = I{Mw | w ∈ W}.  Similarly \/W is defined and 

equals E such that ME is the smallest closed set containing U{Mw | w ∈ W}.  Thus the 

equivalence classes of the ≡R relation form a complete lattice and, equivalently, CL(X) is 

a complete lattice.  If W is finite and E = \/W, then ME = U{Mw | w ∈ W}. 

 

 To summarize, U = CL(X) is a complete lattice whose members are in one to one 

correspondence with the equivalence classes of ≡R.  The lattice U is our data model.  

Figure 3.13 illustrates the order relation on CL(X).  In the next section we show that the 

data types of a scientific programming language can be naturally embedded in U. 
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⊥= the empty set (also denoted by

{(⊥, ⊥, ⊥)}

{(Α, ⊥, ⊥), (⊥, ⊥, ⊥)} {(⊥, Β, ⊥), (⊥, ⊥, ⊥)}

{(Α, ⊥, ⊥), (⊥, Β, ⊥), (⊥, ⊥, ⊥)}

{(Α, Β, ⊥), (Α, ⊥, ⊥), (⊥, Β, ⊥), (⊥, ⊥, ⊥)}

φ )  

 

Figure 3.13. Defining an order relation on sets of tuples.  The sets are all down 

sets and are ordered by set containment.  We assume that the three scalars that 

define these tuples are discrete, so that the down sets in this figure are all finite. 

 

3.2.3 Embedding Scientific Data Types in the Data Lattice 

 In this section we formalize the data model presented in Section 3.2.1. 

 

 Def. A set T of data types can be defined from the set S of scalars as follows.  

Two functions, SC : T → POWER(S) and DOM : T → POWER(S), are defined with T, as 

follows: 

 

(3.5) s ∈ S ⇒ s ∈ T (that is, S ⊂ T) 

 SC(s) = {s} 

 DOM(s) = φ. 
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(3.6) (for i = 1,...,n. ti ∈ T) & (i ≠ j ⇒ SC(ti) ∩ SC(tj) = φ) ⇒ struct{t1;...;tn} ∈ T 

 SC(struct{t1;...;tn}) = UiSC(ti) 

 DOM(struct{t1;...;tn}) = UiDOM(ti) 

 

(3.7) w ∈ S & r ∈ T & w ∉ SC(r) ⇒ (array [w] of r) ∈ T 

 SC((array [w] of r)) = {w} ∪ SC(r) 

 DOM((array [w] of r)) = {w} ∪ DOM(r) 

 

 The type struct{t1;...;tn} is a tuple with element types ti, and the type 

(array [w] of r) is an array with domain type w and range type r.  SC(t) is the set of 

scalars occurring in t, and DOM(t) is the set of scalars occurring as array domains in t.  

Note that each scalar in S may occur at most once in a type in T. 

 In an actual implementation of a programming language, data objects must be 

represented as finite strings over finite alphabets, so only a countable number of data 

objects can be defined.  Thus we define countable sets of values for scalar types and 

complex data types. 

 

 Def. For each scalar s ∈ S, define a countable set Hs ⊆ Is such that, for all 

a, b ∈ Hs, a ∧ b ∈ Hs, a ∨ b ∈ Is ⇒ a ∨ b ∈ Hs, and for all a ∈ Is there exists A ⊆ Hs 

such that a = \/A (that is, Hs is closed under infs and under sups that belong to Is, and any 

member of Is is a sup of a set of members of Hs).  For discrete s this implies that Hs = Is 

(recall that we defined discrete scalars as having countable value sets).  For continuous s, 

Hs may be the set of rational intervals plus ⊥.  Note that, for continuous s, Hs cannot be a 

cpo. 

 

 



72 

 We can use the sets Hs to define countable sets of finite data objects of all types.  

We define a tuple data object as a set containing one object of each of its element types.  

We define an array data object as a function from a finite set of data objects of its domain 

type (which is a scalar type), to the set of data objects of its range type.  Now we define 

countable sets of data objects of each type in T, and define functions that embed these 

data objects into the lattice U. 

 

 Def. Given a scalar w, let 

FIN(Hw) = {A ⊆ Hw\{⊥} | A finite and ∀a, b ∈ A. ¬(a ≤ b)}. 

 

 If w is a discrete scalar, then a member of FIN(Hw) is any finite subset of Hw not 

containing ⊥.  If w is a continuous scalar, then a member of FIN(Hw) is any finite set of 

closed real intervals such that no interval contains another. 

 

 Def. For complex types t ∈ T define Ht by: 

 
H Ht tn1

× ×...(3.8) t = struct{t1;...;tn} ⇒ Ht =  

(3.9) t = (array [w] of r) ⇒ Ht = U{(A → Hr) | A ∈ FIN(Hw)} 

 

 Def. Define an embedding Et : Ht → U by: 

 

(3.10) t ∈ S ⇒ Et(a) = ↓(⊥,...,a,...,⊥) 
(3.11) t = struct{t1;...;tn} ⇒ Et((a1,...,an)) = {b1∨...∨bn | ∀i. bi ∈ Eti (ai)} 

(3.12) t = (array [w] of r) ⇒ 

  [a ∈ (A → Hr) ⇒ Et(a) = {b∨c | x ∈ A & b ∈ Ew(x) & c ∈ Er(a(x))}] 
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 Def. For t ∈ T define Ft = Et(Ht). 

 

 In Appendix D we show that Et does indeed map members of Ht to members of 

U, and that this mapping is injective. 

 Recall that we use the notation as for the s scalar component of a tuple 

a ∈ X{Is | s ∈ S}.  Now X{Is | s ∈ S} is not a lattice, so it is not obvious that b1∨...∨bn in 

Eq. (3.11) and b∨c in Eq. (3.12) exist.  However, as shown in Appendix D, for all a ∈ Ht 

and for all b ∈ Et(a), bs = ⊥ unless s ∈ SC(t).  Thus b1∨...∨bn in Eq. (3.11) exists since 

the types ti in Eq. (3.11) are defined from disjoint sets of scalars, and b∨c in Eq. (3.12) 

exists since the scalar w does not occur in the type r. 

 Because Et : Ht → U is injective, we can define an order relation between the 

members of Ht simply by assuming that Et is an order embedding.  (If Et were not 

injective, it would map a pair of members of Ht to the same member of U, and the 

assumption that Et is an order embedding would imply that the order relation on Ht is not 

symmetric.) 

 

 Def. Given a, b ∈ Ht, we say that a ≤ b if and only if Et(a) ≤ Et(b). 

 

 Appendix D shows that the order relations on the sets Ht implied by this 

definition have simple and intuitive structure.  If t is a scalar, then this is the same as the 

order relation on It.  If t = struct{t1;...;tn} and if (a1,...,an), (b1,...,bn) ∈ Ht, then 

(a1,...,an) ≤ (b1,...,bn) if ∀i. ai ≤ bi (that is, the order relation between tuples is defined 

element-wise).  If t = (array [w] of r), if a, b ∈ Ht and if a ∈ (A → Hr) and b ∈ (B → Hr), 

then 
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a ≤ b if ∀x ∈ A. Er(a(x)) ≤ \/{Er(b(y)) | y ∈ B & x ≤ y} (that is, an array a is less than an 

array b if the embedding of the value of a at any sample x is less than the sup of the 

embeddings of the set of values of b at its samples greater than x). 

 In summary, in this section we have shown that data types appropriate for a 

scientific programming language can be embedded in our data model U.  Thus, results 

about displaying data objects in U can be applied to the display of data objects of 

scientific algorithms. 

 

3.2.4 A Finite Representation of Data Objects 

 If S contains any continuous scalars, then most elements of U = CL(X) contain 

infinite numbers of tuples.  However, a closed set of tuples is only one member of an 

equivalence class of ≡R as defined in Section 3.2.2.  We can define an alternate 

representation of a data object as the set of maximal elements of a closed set, as follows: 

 

 Def. Given A ∈ U, define MAX(A) = {a ∈ A | ∀b ∈ A. ¬(a < b)}.  That is, 

MAX(A) consists of the maximal elements of A. 

 

 The following proposition from Appendix E tells us that the equivalence relation 

≡R defines a one-to-one correspondence between the closed sets in U and the sets of their 

maximal elements. 

 

 Prop. E.3. ∀A ∈ U. A ≡R MAX(A). 

 

Thus, data objects in our data model can either be represented by closed sets, or by the 

sets of maximal elements of closed sets.  As the following proposition from Appendix E 
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shows, if t is a data type in T, and if A ∈ Ft is the embedding in U of a data object of type 

t, then MAX(A) is finite. 

 

 Prop. E.5. For all types t ∈ T and all A ∈ Ft, MAX(A) is finite. 

 

 Our lattice model of data is motivated by the observation that data objects are 

approximations to mathematical objects that may contain infinite amounts of information.  

Since our data lattice is complete it contains objects, definable as limits of objects of 

types in T, that are models for mathematical objects containing infinite amounts of 

information.  The sets of maximal tuples in these objects are generally not finite, so we 

cannot make the assumption that MAX(A) is finite when we apply Prop. B.3 to our 

scientific data model in Section 3.4.  Thus working with sets of maximal tuples offers no 

real advantage over working with closed sets. 

 

3.3 A Scientific Display Model 

 For our scientific display model we start with Bertin's analysis of static two-

dimensional displays (Bertin, 1983).  He modeled displays as sets of graphical marks, 

where each mark was described by an 8-tuple of graphical primitive values (that is, two 

screen coordinates, size, value, texture, color, orientation and shape).  His idea of 

modeling a display as a set of tuple values is quite similar to the way we constructed the 

data lattice U.  Therefore we define a finite set DS of display scalars to represent 

graphical primitives, we define Y = X{Id | d ∈ DS} as the cross product of the value sets 

of the display scalars in DS, and we define V as the complete lattice of all closed subsets 

of Y.  We interpret the maximal tuples of members of V as representing graphical marks 

(we show in Section 3.4.4 that for any type t ∈ T and any data object a ∈ Ht, the display 

 



76 

D(a) contains a finite number of maximal tuples), and we interpret the display scalar 

values in these maximal tuples as defining the graphical primitives of those graphical 

marks. 

 Bertin first published his display model in 1967, and it is limited to static two-

dimensional displays.  However, we can define a specific lattice V to model animated 

three-dimensional displays in terms of a set of seven continuous display scalars: 

 

(3.13) DS = {x, y, z, red, green, blue, time} 

 

A tuple of values of these display scalars represents a graphical mark.  The interval 

values of x, y and z represent the locations and sizes of graphical marks in the volume, 

the interval values of red, green and blue represent the ranges of colors of marks, and the 

interval values of time represent the duration of marks in an animation sequence, as 

illustrated in Figure 3.14. 
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set of animation steps:

(time, x, y, z, red, green, blue)

location and size
of mark in volume

interval that mark
persists during
animation

x

red green blue

tuple of display
scalar values
for a graphical
mark

z

y

ranges of values
of mark's color
components

 

Figure 3.14. The roles of seven continuous display scalars (x, y, z, red, green, 

blue, time) in an animated three-dimensional display model. 

 

 The display lattice illustrated in Figure 3.14 models volume rendering and 

animation.  Displays in V are interactive in the sense that users control parameters to 

choose a function RENDER : V → V' that maps logical displays to physical displays (this 

function is described in Section 2.3).  For the display lattice illustrated in Figure 3.14, 

users control the projection from three dimensions to two dimensions, and control 

animation sequencing.  We can add more display scalars to DS to model other rendering 

techniques and other user interaction techniques.  For example, consider the display 

model defined by the following set of display scalars (where n and m are parameters of 

the display model): 
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(3.14) DS = {red, green, blue, transparency, reflectivity, vectorx, vectory, vectorz, 

  contour1, ..., contourn, x, y, z, animation, selector1, ..., selectorm} 

 

The transparency and reflectivity display scalars model parameters of volume rendering 

techniques.  The vectorx, vectory and vectorz, display scalars model flow rendering 

techniques, and possibly interactive placement of seed points for tracing and rendering 

flow trajectories (a three-dimensional flow field is defined by the values of these display 

scalars attached to graphical marks).  The contour1, ..., contourn display scalars model 

iso-surface rendering techniques (iso-surfaces are rendered through the three-dimensional 

field defined by the values of these display scalars attached to graphical marks).  The 

selector1, ..., selectorm display scalars explicitly model a user interaction technique.  

That is, a user interactively selects sets of values for each selectori (for i between 1 and 

m) and graphical marks are displayed only if their values for selectori overlap the user-

selected set of values. 

 Display scalars can be defined for a wide variety of attributes of graphical marks, 

and need not be limited to such primitive values as spatial coordinates, color components 

and animation indices.  For example, we may define a display model whose displays 

consist of sets of graphical icons (i.e., graphical shapes) distributed at various locations in 

a display screen.  This display model could be defined using three display scalars: 

horizontal screen coordinate, vertical screen coordinate, and an icon identifier.  In this 

display model a single value of the icon identifier display scalar would represent the 

potentially complex shape of a graphical icon.  We could define another display model in 

which a set of display scalars form the parameters of two-dimensional ellipses.  This 

display model would include five display scalars that represent the two-dimensional 
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center coordinates, the orientations, and the lengths of major and minor axes of the 

ellipses. 

 The possibility that logical displays may be interactive suggests that we have 

great flexibility in the way we define a logical display model V, as long as we can define 

a family of mappings RENDER : V → V' parameterized by user controls.  For example, 

we can build a display lattice V that models Beshers and Feiner's "worlds within worlds" 

visualization technique (Beshers and Feiner, 1992).  This technique is an attempt to 

overcome the limitation to three spatial dimensions by nesting small coordinate systems 

within larger coordinate systems.  Data are plotted as a set of small graphs, each 

including a small set of three axes.  The location of the origin of a small coordinate 

system within a containing coordinate system determines the values of the containing 

coordinates for the plotted data.  Users can interactively move the small graphs within the 

containing coordinate systems to see how plotted values change with respect to changes 

in the values of the containing coordinates.  We can model this technique by defining a 

display lattice V in terms of two or more sets of three-dimensional graphics locations.  

The mapping RENDER : V → V' would be paramterized by the user's controls over the 

locations of small graphs. 

 The examples described above indicate that it is possible to define a wide variety 

of display models in terms of tuples of display scalars.  Thus we do not focus on any 

particular display model.  Rather, we just assume that there is a set DS of display scalars, 

and that our display model V consists of displays that are sets of maximal tuples of values 

of these display scalars. 

 The important point here is that the lattice model and its theoretical results are 

easily extensible to a wide variety of different display models.  If a user can express 

rendering and interaction techniques in terms of a set of display scalars and user controls 
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for the choice of the mapping RENDER : V → V', then our lattice results are applicable to 

that model. 

 

3.4 Scalar Mapping Functions 

 So far, we have defined a particular lattice structure appropriate for scientific data 

and displays.  Now we apply the results of Section 3.1.4 to that structure. 

 

3.4.1 Structure of Display Functions 

 Display functions are lattice isomorphisms.  However, in the context of particular 

data and display models defined in the previous sections there is much more that we can 

say about them.  Data objects of scalar types can be naturally embedded in the lattice U 

(as we saw in Sections 3.3.2 and 3.3.3), and we can define similar embeddings of display 

scalar types in the lattice V.  These embeddings can be defined as: 

 

 Def. For each scalar s ∈ S, define an embedding  Es:Is → U by: 

∀b ∈ Is. Es(b) = ↓(⊥,...,b,...,⊥) (this notation indicates that all components of the tuple 

are ⊥ except b).  Also define Us = Es(Is) ⊆ U. 

 

 Def. For each display scalar d ∈ DS, define an embedding  Ed:Id → V by: 

∀b ∈ Id. Ed(b) = ↓(⊥,...,b,...,⊥).  Also define Vd = Ed(Id) ⊆ V. 

 

 These embedded scalars play a special role in the structure of display functions.  

As shown in Appendix F, a display function maps embedded scalar objects to embedded 

display scalar objects.  Furthermore, the values of a display function on all of U are 
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determined by the values of the embedded scalar objects.  The results of Appendix F are 

summarized by the following theorem about mappings from scalars to display scalars: 

 

 Theorem. F.14. If D : U → V is a display function, then we can define a mapping 

MAPD : S → POWER(DS) such that for all scalars s ∈ S and for all a ∈ Us, there is 

d ∈ MAPD(s) such that D(a) ∈ Vd.  The values of D on all of U are determined by the 

values of D on the scalar embeddings Us.  Furthermore, 

(a) If s is discrete and d ∈ MAPD(s) then d is discrete. 

(b) If s is continuous then MAPD(s) contains a single continuous display scalar. 

(c) If s ≠ s' then MAPD(s) ∩ MAPD(s') = φ. 

 

 This theorem tells us that mappings of data aggregates to display aggregates can 

always be factored into mappings of data primitives (e.g., time and temperature) to 

display primitives (e.g., screen axes and color components).  This has been accepted as 

intuitively true, as, for example, a time series of temperatures may be displayed by 

mapping time to one axis and temperature to another.  However, Proposition F.14 tells us 

that all mappings that satisfy the expressiveness conditions must factor in this way.  In 

Section 3.4.3 we present a precise statement of how such a factorization is a complete 

characterization of visualization mappings satisfying the expressiveness conditions. 

 Figure 3.15 provides examples of mappings from scalars to display scalars.  The 

upper-right window of Figure 1.1 shows a display defined by these mappings.  In this 

figure, time is mapped to animation so that the time sequence of images will be 

represented by animation (as opposed to being stacked up along a display axis, for 

example).  Line and element are mapped to the x and z display axes and ir is mapped to 

the y axis, so that an image in the time sequence is displayed as a terrain (i.e., as a surface 
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with y as a function of x and z).  vis is mapped to green, so that this image terrain is 

colored green with intensity as a function of visible radiance. 
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Figure 3.15. Mappings from scalars to display scalars. 

 

3.4.2 Behavior of Display Functions on Continuous Scalars 

 In the previous section we saw that display functions map embedded continuous 

scalar objects to embedded continuous display scalar objects.  Continuous scalar values 

are real intervals, so the values of display functions restricted to embedded continuous 

scalars can be analyzed in terms of their behavior as functions of real numbers.  First, we 

define the values of display functions on embedded continuous scalars in terms of 

functions of real numbers. 

 

 Def. Given a display function D:U → V and a continuous scalar s ∈ S, by Prop. 

F.14 there is a continuous d ∈ DS such that values in Us are mapped to values in Vd.  

Define functions gs : R × R → R and hs : R × R → R by: 

∀↓(⊥,...,[x, y],...,⊥) ∈ Us, D(↓(⊥,...,[x, y],...,⊥)) = ↓(⊥,...,[gs(x, y), hs(x, y)],...,⊥) ∈ Vd. 
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Since D({(⊥,...,⊥)}) = {(⊥,...,⊥)} and D is injective, D maps intervals in Is to intervals in 

Id, so gs(x, y) and hs(x, y) are defined for all z.  Also define functions g's : R → R and 

h's : R → R by g's(z) = gs(z, z) and h's(z) = hs(z, z). 

 

 As shown in Appendix G, the functions gs and hs can be defined in terms of the 

functions g's and h's, as follows.  Given a display function D:U → V, a continuous scalar 

s ∈ S, and [x, y] ∈ Is, then 

 

(3.15) gs(x, y) = inf{g's(z) | x ≤ z ≤ y} and 

(3.16) hs(x, y) = sup{h's(z) | x ≤ z ≤ y}. 

 

 In Appendix G we also show that the overall behavior of a display function on a 

continuous scalar must fall into one of two categories.  Specifically, given a display 

function D:U → V and a continuous scalar s ∈ S, then either 

 

(3.17) ∀x, y, z ∈ R. x < y < z implies that gs(x, z) = gs(x, y) & hs(x, y) < hs(x, z) and that 

 gs(x, z) < gs(y, z) & hs(y, z) = hs(x, z), 

 

or 

 

(3.18) ∀x, y, z ∈ R. x < y < z implies that gs(x, z) < gs(x, y) & hs(x, y) = hs(x, z) and that 

 gs(x, z) = gs(y, z) & hs(y, z) < hs(x, z). 

 

 If Eq. (3.17) applies, we say that D is increasing on s.  If Eq. (3.18) applies, we 

say that D is decreasing on s. 
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 Appendix G shows that these categories also apply to the functions g's and h's.  

Given a display function D:U → V, a continuous scalar s ∈ S, and z < z', if D is 

increasing on s then g's(z) < g's(z') and h's(z) < h's(z'), and if D is decreasing on s then 

g's(z) > g's(z') and h's(z) > h's(z'). 

 These categories enable us to prove (see Appendix G) that the functions g's and 

h's must be continuous (in terms of the topology of the real numbers), and that they 

satisfy a number of other conditions, summarized in the following definition. 

 

 Def. A pair of functions g's:R → R and h's:R → R is called a continuous display 

pair if: 

(a) g's has no lower bound and h's has no upper bound, 

(b) ∀z ∈ R. g's(z) ≤ h's(z), and 

(c) g's and h's are continuous, 

(d) either g's and h's are increasing: 

 ∀z, z' ∈ R. z < z' ⇒ g's(z) < g's(z') & h's(z) < h's(z'), 

 or g's and h's are decreasing: 

 ∀z, z' ∈ R. z < z' ⇒ g's(z) > g's(z') & h's(z) > h's(z'). 

 

 Given a display function D:U → V and a continuous scalar s ∈ S, then g's and h's 

are a continuous display pair.  If we draw the graphs of the functions g's and h's, these 

conditions tell us that their graphs must be smooth, both slanted up or both slanted down, 

with the graph of h's above the graph of g's, no upper bound on the graph of h's, and no 

lower bound on the graph of g's.  A display function maps closed real intervals in a 

continuous scalar to closed real intervals in a continuous display scalar, and the graphs of 
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functions g's and h's can be used to determine this mapping of intervals by applying Eqs. 

(3.15) and (3.16).  The behavior of g's and h's is illustrated in Figure 3.16. 

 

g's

sh'

no upper bound

no lower bound

interval in a
continuous
display scalar
determined by

andsh' g's

corresponding
abovesh' g's

andsh' g's both smooth
and increasing (could both
be decreasing)

interval in a
continuous scalar

 

Figure 3.16.  The behavior of a display function D on a continuous scalar 

interpreted in terms of the behavior of functions h's and g's. 

 

3.4.3 Characterizing Display Functions 

 The results of the last two sections describe a variety of necessary conditions on 

display functions.  Here we summarize those conditions, and show that they are also 

sufficient conditions for display functions. 

 

 Def. Given a finite set S of scalars, a finite set DS of display scalars, 

X = X{Is | s ∈ S}, Y = X{Id | d ∈ DS}, U = CL(X), and V = CL(Y), then a function 

D:U → V is a scalar mapping function if 
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(a) there is a function MAPD : S → POWER(DS) such that 

 ∀s, s' ∈ S. MAPD(s) ∩ MAPD(s') = φ, 

(b) for all continuous s ∈ S, MAPD(s) contains a single continuous d ∈ DS, 

(c) for all discrete s ∈ S, all d ∈ MAPD(s) are discrete, 

(d) D(φ) = φ and D({(⊥,...,⊥)}) = {(⊥,...,⊥)}, 

(e) for all continuous s ∈ S, g's and h's are a continuous display pair, 

 for all [u, v] ∈ Is, gs(u, v) = inf{g's(z) | u ≤ z ≤ v} and 

 hs(u, v) = sup{h's(z) | u ≤ z ≤ v}, 

 and, given {d} = MAPD(s), then for all [u, v] ∈ Is\{⊥}, 

 D(↓(⊥,...,[u, v],...,⊥)) = ↓(⊥,...,[gs(u, v), hs(u, v)],...,⊥) ∈ Vd, 

(f) for all discrete s ∈ S, for all a ∈ Is\{⊥}, 

 D(↓(⊥,...,a,...,⊥)) = b ∈ Vd for some d ∈ MAPD(s), where b ≠ {(⊥,...,⊥)}, 

 and, for all a, a' ∈ Is\{⊥}, a ≠ a' ⇒ D(↓(⊥,...,a,...,⊥)) ≠ D(↓(⊥,...,a',...,⊥)) 

(g) for all x ∈ X, D(↓x) = ↓\/{y | ∃s ∈ S. xs ≠ ⊥ & ↓y = D(↓(⊥,...,xs,...,⊥))}, 

 where xs represents tuple components of x, and using the values for D defined 

 in (e) and (f), and 

(h) for all u ∈ U, D(u) = \/{D(↓x) | x ∈ u}, using the values for D defined in (g). 

 

 This definition contains a variety of expressions for the value of D on various 

subsets of U.  Appendix H shows that these expressions are consistent where the subsets 

of U overlap, and shows that D is monotone.  This definition says that scalar mapping 

functions factor into mappings from scalars (data primitives) to display scalars 

(primitives), and that the factor mappings on continuous scalars are continuous real 

functions.  In Appendix H we also prove the following characterization of display 

functions: 
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 Theorem H.8. D : U → V is a display function if and only if it is a scalar 

mapping function. 

 

 Appendix H also shows that the values of a scalar mapping function D can be 

expressed in terms of an auxiliary function D' from X to Y.  Specifically, for all u ∈ U, 

 

(3.19) D(u) = {D'(x) | x ∈ u}. 

 

where D' is defined by 

 

(3.20) D'(x) = \/{(⊥,...,ad,...,⊥) | s ∈ S & xs ≠ ⊥ & D(↓(⊥,...,xs,...,⊥)) = 

   ↓(⊥,...,ad,...,⊥)} 

 

 This decomposition can be used as a basis for implementing scalar mapping 

functions, and scalar mapping functions can be used as the basis of a user interface for 

controlling the display process.  We will describe this further in Section 3.4.4. 

 Theorem H.8 can also be used as a precise definition of the search space of 

display functions for algorithms that attempt to automate the design of displays. 

 

3.4.4 Properties of Scalar Mapping Functions 

 There is a problem with the interpretation of display objects in a display lattice.  

Closed sets generally contain infinite numbers of tuples, so we cannot interpret each tuple 

as a graphical mark.  However, as described in Section 3.2.4, a closed set is just one 

member of an equivalence class of the ≡R relation.  A closed set v ∈ V and its set of 
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maximal tuples, MAX(v), are both members of the same equivalence class and thus either 

can represent a display object.  As shown in Appendix I, if D is a display function and if 

v ∈ D(Ft) for some data type t ∈ T, then MAX(v) contains a finite number of tuples.  

Thus, in order to physically render a display object v ∈ V, we interpret the finite set of 

tuples in MAX(v) as graphical marks, rather than the possibly infinite set of tuples of v.  

Clearly, it is necessary for an implementation of the function RENDER : V → V' to 

assume a finite number of input tuples. 

 In order to compute values of scalar mapping functions we use the auxiliary 

function D' from X to Y defined in Section 3.4.3.  The values of D' are determined by the 

function MAPD, by the values of the functions g's and h's for continuous scalars s ∈ S, 

and by the values of D on Us for discrete scalars s ∈ S.  As shown in Appendix I, given 

t ∈ T and a data object A ∈ Ft, maximal tuples of D(A) can be computed directly from the 

maximal tuples of A by 

 

(3.21) MAX(D(A)) = {D'(a) | a ∈ MAX(A)} 

 

 As shown in Appendix D, the maximal tuples of data objects of type t ∈ T are 

computed by 

 

(3.22) t ∈ S & A = ↓(⊥,...,a,...,⊥) ∈ Ft ⇒ 

  MAX(A) = {(⊥,...,a,...,⊥)} 

(3.23) t = struct{t1;...;tn} ∈ T & A = {(a1∨...∨an) | ∀i. ai ∈ Ai} ∈ Ft ⇒ 

  MAX(A) = {(a1∨...∨an) | ∀i. ai ∈ MAX(Ai)} 

(3.24) t = (array [w] of r) ∈ T & A = {a1∨a2 | g∈G & a1∈Ew(g) & a2∈Er(a(g))} ∈ Ft  

  ⇒ MAX(A) = {a1 ∨ a2 | g∈G & a1∈MAX(Ew(g)) & a2∈MAX(Er(a(g)))} 
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These expressions for sets of maximal tuples and the auxiliary function D' provide a basis 

for implementing scalar mapping functions.  Given a data object A, Eqs. (3.22) through 

(3.24) define a recursive procedure for calculating the maximal tuples of A, and Eq. 

(3.21) says that the function D' maps maximal tuples of A to maximal tuples of D(A). 

 In Section 3.3 we described displays as sets of graphical marks.  However, we can 

also think of displays as defining functional relations from graphical space and time to 

color.  That is, the color of a screen point is a function of its location on the screen and its 

place in an animation sequence.  These two views of displays, as sets of graphical marks 

and as functions, are not consistent.  For example, consider the display lattice illustrated 

in Figure 3.14.  If a display in this lattice includes two tuples (time, x, y, z, red1, green1, 

blue1) and (time, x, y, z, red2, green2, blue2) where red1 ≠ red2, green1 ≠ green2 or 

blue1 ≠ blue2, then these two tuples do not define a consistent function from space and 

time to color.  In order to analyze the circumstances under which these two views are 

consistent, we divide display scalars into two groups: those that take the role of 

dependent variables in this functional relation and those that take the role of independent 

variables.  For example, the set DS defined in Eq. (3.14) can be divided as follows: 

 

 Independent variables: x, y, z, animation, selector1, ..., selectorm 

 

 Dependent variables: red, green, blue, transparency, reflectivity, vectorx, vectory, 

    vectorz, contour1, ..., contourn, 

 

 Thus we can ask whether a display function generates displays that define 

functional relations between independent and dependent variables in DS.  Define a subset 
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Vdisplay ⊆ V consisting of those display objects that do not contain  multiple tuples with 

the same combination of values of independent variables.  We will study the conditions 

under which displays of data objects are members of Vdisplay. 

 First, define DOMDS = the independent variables in DS, and define 

YDOMDS = X{Id | d ∈ DOMDS} and Y = X{Id | d ∈ DS}.  Let PDOMDS :Y → YDOMDS 

be the natural projection from Y onto YD (that is, if a ∈ Y and b = PDOMDS(a), then for 

all d ∈ DOMDS, bd = ad).  Then we can define Vdisplay as follows: 

 

 Def. Vdisplay = {A ∈ V | ∀b, c ∈ MAX(A). PDOMDS(b) = PDOMDS(c) ⇒ b = c}.  

That is, if A is an object in Vdisplay, then multiple tuples in A do not share the same 

combinations of values for display scalars in DOMDS. 

 

 Appendix I defines conditions on t and D that ensure that displays of data objects 

of type t are in Vdisplay.  Specifically, D maps all data objects of type t to displays in 

Vdisplay if D maps all scalars in DOM(t) to display scalars in DOMDS.  Symbolically, 

MAPD(DOM(t)) ⊆ DOMDS ⇒ D(Ft) ⊆ Vdisplay. 

 The inverse of this relation is almost true - we only need to disallow degenerate 

cases.  Details are given in Appendix I. 

 In summary, in this section we have shown that the number of tuples in a display 

may be infinite, but that the number of maximal tuples is finite.  We concluded that only 

maximal tuples should be interpreted as graphical marks in an actual implementation.  

We have also described a recursive procedure for computing the set of maximal tuples in 

a data object and described how maximal tuples of displays are computed from maximal 

tuples of data objects.  This provides a basis for implementing display functions. 
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 We have also demonstrated conditions on data types and display functions so that 

display objects are consistent with a functional view of displays.  An implementation 

could enforce these conditions on scalar mappings defined by users.  We note, however, 

that the VisAD implementation described in Chapter 4 does not enforce these conditions.  

Rather, multiple tuples that are inconsistent with a functional view of display (i.e., 

occurring at the same location and time) are merged using a compositing operation (that 

is, the system computes the average colors of multiple tuples at the same location and 

time). 

 

3.5 Principles for Scientific Visualization 

 In this chapter we analyzed the repertoire of visualization mappings from a 

lattice-structured data model to a lattice-structured display model.  In this section we 

summarize the results of this analysis as a set of basic principles for visualization. 

 We showed how a lattice structure can express metadata about the ways that 

scientific data objects are approximate representations of mathematical objects.  We also 

showed that this idea can be applied to scientific displays.  Our first basic principle is that 

 

1. Lattice-structured data models provide a natural way to integrate common forms of 

scientific metadata as part of data objects. 

 

 We gave an example of how a lattice-structured data model includes data objects 

of many different types, and we will describe another example in Chapter 5.  Our second 

basic principle is that 
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2. Data objects of many different types can be unified into a single lattice-structured 

data model, so that visualization mappings (to a display model) are inherently 

polymorphic. 

 

 We have shown how lattice-structured data and display models can be adapted 

very generally by applying Eq. (3.2).  We have shown that Mackinlay's expressiveness 

conditions on the visualization mapping can be interpreted in terms of such models and 

that these conditions imply that visualization mappings are lattice isomorphisms.  Our 

third basic principle is that 

 

3. Lattice-structured data models and display models may be defined in a very general 

set of scientific situations, and the lattice isomorphism result can be broadly 

applied to analyze the repertoire of visualization mappings between them. 

 

 We have shown how to define a lattice-structured data model that allows data 

aggregates to be defined as hierarchies of tuples and arrays.  We have shown how a 

similar lattice structure can define a model for interactive, animated, three-dimensional 

displays.  By applying the lattice isomorphism result in this context, we have established 

our fourth basic principle that 

 

4. Mappings from data aggregates to display aggregates can be factored into 

mappings from data primitives to display primitives. 
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 While our fourth principle has been accepted as intuitive in the past, here we have 

shown that it completely characterizes all visualization mappings that satisfy the 

expressiveness conditions. 

 

 


