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Chapter 2 

 

System Design for Visualizing Scientific Computations 

 

 In Section 1.1 we defined five broad goals for scientific visualization.  

Specifically, we seek visualization techniques that 

 

1. Can be applied to the data of a wide variety of scientific applications. 

 

2. Can produce a wide variety of different visualizations of data appropriate for 

different needs. 

 

3. Enable users to interactively alter the ways data are viewed. 

 

4. Require minimal effort by scientists. 

 

5. Can be integrated with a scientific programming environment. 

 

 In this chapter we develop a system architecture for visualizing scientific 

computations based on these goals.  This architecture is implemented in a system called 

VisAD (Visualization for Algorithm Development). 

 

2.1 A Scientific Computing Environment 

 The purpose of scientific visualization is to make invisible computations visible.  

Thus, for example, Figure 1.2 is a visualization of a simulation of the Earth's atmosphere.  
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This image includes depictions of heat (the red and green vertical slice), air flow (the 

yellow ribbons), precipitated cloud ice (the blue-green iso-surface), and a chimney-

shaped balloon (the white object) floating over a patch of tropical ocean (the blue 

square).  This image shows just one instant from the sequence of changing atmospheric 

states produced by the simulation.  The total volume of data produced by this simulation 

is enormous, and would be impossible to understand without such visualizations. 

 In order to make such complex computations visible, our fifth goal was to 

develop visualization techniques that "Can be integrated with a scientific programming 

environment."  Our design meets this goal by including a scientific programming 

language as part of the visualization system.  This goal could be met in other ways, for 

example by providing a library of functions for displaying data that is callable from 

common scientific programming languages.  However, the size and complexity of 

scientific computations and data motivated our third goal that visualization techniques 

"Enable users to interactively alter the ways data are viewed."  In particular we noted in 

Section 1.1 that the user feedback cycle illustrated in Figure 2.1 may be applied 

interactively to running computations.  This argues for a system architecture that can 

flexibly and intimately integrate the user interfaces for programming, computation and 

display.  This can best be achieved by integrating a scientific programming language with 

a visualization system. 
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Figure 2.1 The place of visualization in the computational process (this is a copy 

of Figure 1.3). 

 

 Robert Aune's simulation of a two-dimensional shallow fluid (Haltiner and 

Williams, 1980) illustrates how the integration of visualization with a programming 

language enables the feedback loop in Figure 2.1 to be applied to running computations.  

The VisAD implementation of the shallow fluid model is described by the following 

pseudo-code: 
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loop over model time steps { 

/* get the user's interactive controls of the model */ 

parameter1 = slider("name1", low1, high1, default1); 

. . . 

parameterN = slider("nameN", lowN, highN, defaultN); 

/* compute the next state of the model */ 

new = shalstep(oldest, old, parameter1, ..., parameterN); 

oldest = old; /* save previous model state */ 

old = new; 

} /* end of loop for simulation time steps */ 

 

 Figure 2.2 shows a screen snapshot of the VisAD system running this program.  

The system generates the icons seen in the lower-left corner of the screen based on the 

calls to the slider function.  As the program runs, the user is free to set values on these 

icons, which are returned by the calls to the slider function.  These values are passed to 

the Fortran function shalstep, which computes a new fluid state from the states for the 

previous two time steps.  The window in the lower-right corner of the screen is a 

visualization of the current state of the simulated fluid.  Together, slider icons and this 

visualization enable the user feedback loop illustrated in Figure 2.1 to be applied to the 

running shallow fluid simulation. 
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Figure 2.2. A snapshot of an executing shallow fluid simulation model.  Part of a 

VisAD program is seen in the text window on the left, slider icons used to interact 

with the simulation are seen in the lower-left, and a visualization of the data 

object new is seen in the lower-right window.  (color original) 

 



30 

 Figure 2.2 also illustrates the integration of user interfaces for programming, 

computation and display.  The white window on the left side of the screen contains the 

text of the fluid simulation program.  The long dark horizontal bar highlights the program 

statement currently being executed, and the short dark horizontal bars highlight 

occurrences of the name of the data object being displayed (in this case, the name is 

new).  The user selects data objects for display by picking their names in this text 

window (i.e., pointing and clicking at their names with the mouse).  The user similarly 

sets program execution breakpoints by picking program statements in this window. 

 Our visualization system design provides an interactive interpreted language in 

order to let scientists perform visual experiments with their algorithms and computations.  

However, an interpreted language is relatively inefficient.  Furthermore, scientists may 

already have large amounts of software written in Fortran and C.  Thus the VisAD 

system supports dynamic linking between its interpreted language and these common 

compiled languages. 

 We considered a visual programming language for our system, similar to those 

used in data flow visualization systems.  Such languages provide a graphical user 

interface for designing the data and control flow of programs.  However, we chose a text 

based user interface for an interpreted language because it is more familiar to scientists 

and can express large and complex algorithms more compactly.  Our choice is supported 

by the relative popularity of the IDL (Interactive Data Language) system among physical 

scientists, compared to the data flow visualization systems.  In fact, if the source code of 

the IDL system was freely available we would have strongly considered using it as the 

scientific programming environment integrated for the VisAD system. 

 One powerful effect of integrating visualization with a scientific programming 

language is the ability to visually trace computations by watching displays of many 
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different data objects.  If an algorithm is not producing correct results, such integration 

allows users to step through their computations, visually comparing the inputs and 

outputs of short segments of code in order to find a bug.  This capability requires that 

visualization be applied to any selected data object occurring in a program, and thus 

provides additional motivation for our first goal that scientific visualization techniques 

"Can be applied to the data of a wide variety of scientific applications."  Thus in the next 

section we study the nature of scientific data. 

 

2.2 Scientific Data 

 Physical scientists formulate mathematical models of nature to simulate complex 

events and to analyze observations.  Models of the Earth's atmosphere and oceans 

provide one good class of examples.  Temperatures, pressures, latitudes, altitudes and 

times are expressed as numbers.  The primitive elements of mathematical models are 

numerical variables used to represent such physical quantities.  These primitive variables 

are then combined in various ways to build the complex objects of mathematical models.  

For example, the state of a infinitesimal parcel of air may be described by the vector: 

 

parcel = {temperature, pressure, water-concentration, 

   wind-velocity-x, wind-velocity-y, wind-velocity-z} 

 

The values of temperature and other primitive variables vary over space, and may be 

described by the functions: 

 

temperature = temperature-field(latitude, longitude, altitude) 

pressure = pressure-field(latitude, longitude, altitude) 
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water-concentration = water-concentration-field(latitude, longitude, altitude) 

wind-velocity-x = wind-velocity-x-field(latitude, longitude, altitude) 

wind-velocity-y = wind-velocity-y-field(latitude, longitude, altitude) 

wind-velocity-z = wind-velocity-z-field(latitude, longitude, altitude) 

 

The state of the atmosphere may be described by the vector of functions: 

 

state = {temperature-field(latitude, longitude, altitude), 

   pressure-field(latitude, longitude, altitude), 

   water-concentration-field(latitude, longitude, altitude), 

   wind-velocity-x-field(latitude, longitude, altitude), 

   wind-velocity-y-field(latitude, longitude, altitude), 

   wind-velocity-z-field(latitude, longitude, altitude)} 

 

Finally, the state of the atmosphere varies over time, and a history of the atmosphere may 

be described by the function: 

 

state = state-history(time) 

 

We refer to these mathematical variables, vectors and functions as mathematical objects.  

The dynamics of the Earth's atmosphere may be modeled by sets of (partial differential) 

equations involving these mathematical objects, and, in general, physical scientists' 

mathematical models are expressed in terms of such mathematical objects. 

 Recording and analyzing actual observations and predicting actual events require 

implementations of mathematical models by hand or automated computations.  Whereas 
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mathematical models include infinite precision real numbers and functions with infinite 

domains, computer memories are finite.  Thus computer implementations of 

mathematical models are approximations.  For example, real numbers are usually 

approximated by floating point numbers, and functions are usually approximated by 

finite arrays.  That is, values in the infinite set of real numbers are commonly 

approximated by values taken from a finite set of roughly 2 ^ 32 values between -10 ^ 38 

and +10 ^ 38 (the set of 32-bit floating point values) and the infinite sets of values of  

functions are commonly approximated by finite subsets of those values (for example, 

atmospheric models usually define discrete values for temperature, pressure and other 

state variables at finite grids of locations within the atmosphere). 

 Thus we interpret data objects as representing mathematical objects.  There are a 

variety of mathematical types (for example, primitive variables, vectors, functions, 

vectors of functions, and so on) so we define a variety of types of data objects 

appropriate for representing mathematical objects.  Specifically, we define primitive data 

types for representing primitive mathematical variables - these could be integer or 

floating point types.  We define vector types for representing mathematical vectors - 

these are called records, structures or tuples in different programming languages.  We 

define array types for representing mathematical functions - these are finite sets of 

samples of function values.  We use these as the data types of the scientific programming 

language that is integrated with our visualization system. 

 As an example, we define the following data types for representing the 

mathematical types defined earlier.  These types could be used for an implementation of 

an atmospheric model in the VisAD programming language. 
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type temperature = real; 

type pressure = real; 

type water-concentration = real; 

type wind-velocity-x = real; 

type wind-velocity-y = real; 

type wind-velocity-z = real; 

 

type parcel = structure{temperature; pressure; water-concentration; 

    wind-velocity-x; wind-velocity-y; wind-velocity-z;} 

 

type latitude = real; 

type longitude = real; 

type altitude = real; 

 

type temperature-field = 

 array [latitude] of array [longitude] of array [altitude] of temperature; 

type pressure-field = 

 array [latitude] of array [longitude] of array [altitude] of pressure; 

type water-concentration-field = 

 array [latitude] of array [longitude] of array [altitude] of water-concentration; 

type wind-velocity-x-field = 

 array [latitude] of array [longitude] of array [altitude] of wind-velocity-x; 

type wind-velocity-y-field = 

 array [latitude] of array [longitude] of array [altitude] of wind-velocity-y; 
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type wind-velocity-z-field = 

 array [latitude] of array [longitude] of array [altitude] of wind-velocity-z; 

 

type state = 

 structure {temperature-field; pressure-field; water-concentration-field; 

   wind-velocity-x-field; wind-velocity-y-field; wind-velocity-z-field;} 

 

type time = real; 

 

type state-history = array [time] of state; 

 

These examples illustrate the ways that data types are defined in the VisAD programming 

language. 

 As in Section 1.2.3, we let U denote the set of data objects used to represent 

mathematical objects in U'.  Scientific displays can be viewed as a special kind of data 

object so, as in Section 1.2.3, we let V denote a set of display objects.  Next we consider 

the nature of scientific displays. 

 

2.3 Scientific Displays 

 The same data may be visualized in many different ways, as illustrated in Figure 

1.1.  Thus our second goal was to develop visualization techniques that "Can produce a 

wide variety of different visualizations of data appropriate for different needs."  In order 

to satisfy this goal, our visualization system should include a flexible and general display 

model. 
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 Bertin's display model was limited to static two-dimensional images.  While his 

model was adequate as a description of the instantaneous contents of a workstation 

screen, it fails to express the dynamic, three-dimensional and interactive character of 

scientific displays.  Thus we distinguish between a set V' of static two-dimensional 

images (i.e., physical displays) and a set V of logical displays.  For a given physical 

display device, V' is a finite and fixed set of static two-dimensional images (for example, 

it may be the set of 1024 by 1024 arrays of pixels with 8 bits of intensity for each of red, 

green and blue).  Because V' is finite, a visualization mapping D : U → V' cannot be 

injective (i.e., one to one).  This would be a severe constraint on any effort to analyze 

mappings from data to displays.  On the other hand, we can define a infinite set V of 

logical displays that 

 

1. Are three-dimensional. 

 

2. Are animated. 

 

3. Have infinite extents in space and time. 

 

4. Have varying resolution in space and time. 

 

5. Are generated by a variety of rendering techniques. 

 

 The meaning of logical displays in V is defined by a function RENDER : V → V'.  

The RENDER function projects three-dimensional displays onto a two-dimensional 

screen, removes hidden objects during this projection process, clips displays to finite 
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screen boundaries, simulates scene lighting, simulates transparency and reflection, 

animates sequences of static images, and so on.  The logical display model may include 

generic scalar and vector fields, in which case the RENDER function may implement the 

calculation of iso-surfaces and plane slices to represent scalar fields, and of arrows and 

streamlines to represent vector fields.  We note that there are many possible functions 

RENDER : V → V', depending on parameters of the projection from three to two 

dimensions, on parameters of simulated lighting, on the place in an animation sequence, 

and so on.  By giving users control over these parameters, and thus control over the 

choice of the function RENDER : V → V', we define the interactive nature of logical 

displays in V.  For example, control over the projection from three to two dimensions lets 

users interactively rotate, pan and zoom logical displays. 

 The RENDER function implements the traditional operations of computer 

graphics which have been extensively studied (Foley and Van Dam, 1982; Wyvill, 

McPheeters and Wyvill, 1986; Lorensen and Cline, 1987). 

 

2.4 Mapping Data to Displays 

 We have described a scientific data model U containing data objects of various 

types, and a display model V containing interactive, animated, three-dimensional 

displays.  Visualization is a computational process that transforms data into displays and 

can be described as a function of the form D : U → V.  The visualization repertoire of 

our system can be described as a set of functions of this form.  In order to satisfy the goal 

of developing visualization techniques that "Can produce a wide variety of different 

visualizations of data appropriate for different needs" we seek to define a broad 

visualization repertoire.  As described in Section 1.2, current systems define visualization 

repertoires by enumerating such sets of functions.  However, with an enumerated 
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repertoire there is no way to be sure that it includes all useful ways of displaying data.  

An enumerated repertoire is justified only by the tastes and experience of those who 

decide what functions to include in the enumeration. 

 In contrast, we seek to define a visualization repertoire as the set of all functions 

satisfying Mackinlay's expressiveness conditions (Mackinlay, 1986).  These conditions 

say that displays express all facts about data objects, and only those facts.  In the next 

chapter we show how these conditions can be rigorously interpreted in terms of lattice 

structures defined on data and display models.  We have noted that scientific data objects 

are approximate representations of mathematical objects.  We define a lattice structure on 

our data model U based on a way of comparing how data objects approximate 

mathematical objects, and define a similar lattice structure on our display model V.  We 

then define our system's visualization repertoire as the set of visualization functions D : U 

→ V that satisfy the expressiveness conditions, as interpreted in the lattice structure. 

 This approach to defining a visualization repertoire has a number of advantages, 

including: 

 

1. The repertoire is complete, in the sense that it includes all visualization functions 

satisfying the expressiveness conditions. 

 

2. A single function D : U → V can be applied to display data objects of any type in 

the unified data model U, simplifying the user interface for controlling displays.  

That is, one set of display controls can be applied to display any data object defined 

in a program.  Because display controls are independent of data type, they are 

naturally separate from a user's scientific algorithms.  This is a clear distinction 

from previous visualization systems that require calls to visualization functions to 
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be embedded into scientific programs.  In Chapter 3 we show that selection of a 

function satisfying the expressiveness conditions can be controlled by a 

conceptually simple user interface. 

 

3. Lattice structures can be defined for a wide variety of data and display models, so 

our approach can easily be extended to other scientific data and display models.  In 

Chapter 5 we outline how the approach may even be extended to a data model 

appropriate for a general-purpose programming language. 

 

4. A lattice-structured data model provides a natural way to integrate various forms of 

scientific metadata into the computational and display semantics of scientific data.  

This reduces the user's need to explicitly manage the relation between data and 

associated metadata. 

 

 


