
I n t r o d u c t i o n 1

Delphi for Windows

Copyright
Agreement

I n t r o d u c t i o n

This manual is a reference for the Delphi Visual Component Library (VCL) and the
Delphi run-time library. Use it when you want to look up the details of a particular VCL
object, component, variable, property, method, event, routine, or type and find out how
to use it.

Note See online Help for documentation of the Object Pascal Language Definition and
Reference.

Manual conventions
The printed manuals for Delphi use the typefaces and symbols described in
Table Intro.1 to indicate special text.

Contacting Borland
The Borland Assist program offers a range of technical support plans to fit the different
needs of individuals, consultants, large corporations, and developers. To receive help
with this product send in the registration card and select the Borland Assist plan that
best suits your needs. North American customers can register by phone 24 hours a day
by calling 1-800-845-0147. For additional details on these and other Borland services, see
the Borland Assist Support and Services Guide included with this product.

Table Intro.1 Typefaces and symbols in these manuals

Typeface or symbol Meaning

Monospace type Monospaced text represents text as it appears onscreen or in Object Pascal code.
It also represents anything you must type.

Boldface Boldfaced words in text or code listings represent Object Pascal reserved words
or compiler directives.

Italics Italicized words in text represent Object Pascal identifiers, such as variable or
type names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to exit a
menu.”
This symbol indicates a key, or important property, method, or event.
This symbol indicates a run-time only property, method or event.

Visual Component Library
Reference

Copyright Agreement
Borland may have patents and/or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents.

Copyright © 1995 Borland International. All rights reserved. All Borland product names are trademarks or registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered trademarks of their respective holders.

Printed in the U.S.A.

1E0R395
9596979899-987654321
W1

2 D e l p h i V i s u a l C o m p o n e n t L i b r a r y

Delphi Visual Component Library
The VCL is made up of objects, most of which are also components. Using the objects
and components of VCL, you are unlimited in the range of Windows programs you can
develop rapidly. Delphi itself was built using VCL.

Delphi objects contain both code and data. The data is stored in the fields and properties
of the objects, and the code is made up of methods that act upon the field and property
values. All objects descend from the ancestor object TObject.

Components are visual objects that you can manipulate at design time. All components
descend from the TComponent object. To program with a component, this is the model
you will use most frequently:

1 Select a component from Delphi’s Component palette and add it to a form.

2 Set property values of the component using the Object Inspector.

3 Respond to events that might occur to the component at run time. To respond to an
event, you write code within an event handler. Your code modifies property values
and calls methods.

For detailed information on how to perform these three steps, see the Delphi User’s
Guide.

You can create your own objects and components by deriving them from the existing
Delphi objects and components. For information about writing your own components,
see the Delphi Component Writer’s Guide.

Visual Component Library objects
Objects are the fundamental elements of the VCL. In fact, all components and controls
are based on objects.

Objects differ from controls in that you can access them only at run time. Unlike most
components, objects do not appear on the Component palette. Instead, a default
instance variable is declared in the unit of the object or you have to declare one yourself.

For example, the Clipboard variable is declared in the Clipbrd unit. To use a TClipboard
object, add the Clipbrd unit to the uses clause of the unit, then refer to the Clipboard
variable. However, to use a TBitmap object, add the Graphics unit to the uses clause of
the unit, then execute the following code at run time to declare an instance variable:

var
Bitmap1: TBitmap;

begin
Bitmap1 := TBitmap.Create;

end;

Note The memory allocated for objects that you explicitly declare should be released when
you are finished with the object. For example, call the Free method of the bitmap:

Bitmap1.Free;

I n t r o d u c t i o n 3

The properties, methods, and events that all objects have in common are inherited from
an abstract object type called TObject. You need to understand the internal details of
TObject only if you are creating a new object based on TObject.

The following is a list of all objects in the VCL that directly descend from TObject.:

Note In addition to these objects, all VCL components also descend from TObject, although
not directly.

The TObject object introduces the following methods that all objects and components
inherit:

Visual Component Library components
Components are the building blocks of Delphi applications. You build an application by
adding components to forms and using the properties, methods, and events of the
components.

The properties, methods, and events that all components have in common are inherited
from an abstract component type called TComponent. You need to understand the
internal details of TComponent only if you are writing a component based on
TComponent.

The following is a list of all components in the VCL:

Table Intro.2 VCL objects

TBitmap TGraphic TOutlineNode

TBlobStream TGraphicsObject TParam

TBrush TIcon TParams

TCanvas TIndexDef TPen

TClipboard TIndexDefs TPicture

TControlScrollBar TIniFile TPrinter

TFieldDef TList TStringList

TFieldDefs TMetafile TStrings

TFont TOLEDropNotify

Table Intro.3 Object methods

ClassName ClassType Destroy

ClassParent Create Free

Table Intro.4 VCL components

TApplication TDDEClientItem TOutline

TBatchMove TDDEServerConv TPaintBox

TBCDField TDDEServerItem TPanel

TBevel TDirectoryListBox TPopupMenu

TBitBtn TDrawGrid TPrintDialog

TBlobField TDriveComboBox TPrinterSetupDialog

TBooleanField TEdit TQuery

4 D e l p h i V i s u a l C o m p o n e n t L i b r a r y

Most components are available from the Component palette. You will not find the
following components on the Component palette, however:

The TComponent component introduces the following properties that all components
inherit:

TButton TField TRadioButton

TBytesField TFileListBox TRadioGroup

TCheckBox TFilterComboBox TReplaceDialog

TColorDialog TFindDialog TReport

TComboBox TFloatField TSaveDialog

TCurrencyField TFontDialog TScreen

TDatabase TForm TScrollBar

TDataSource TGraphicField TScrollBox

TDateField TGroupBox TSession

TDateTimeField THeader TShape

TDBCheckBox TImage TSmallIntField

TDBComboBox TIntegerField TSpeedButton

TDBEdit TLabel TStoredProc

TDBGrid TListBox TStringField

TDBImage TMainMenu TStringGrid

TDBListBox TMaskEdit TTabbedNotebook

TDBLookupCombo TMediaPlayer TTable

TDBLookupList TMemo TTabSet

TDBMemo TMemoField TTimeField

TDBNavigator TMenuItem TTimer

TDBRadioGroup TNotebook TVarBytesField

TDBText TOLEContainer TWordField

TDDEClientConv TOpenDialog

Table Intro.5 Components not on the Component palette

TApplication TDateTimeField TScreen

TBCDField TField TSession

TBlobField TFloatField TSmallIntField

TBooleanField TGraphicField TStringField

TBytesField TIntegerField TTimeField

TCurrencyField TMemoField TVarBytesField

TDateField TMenuItem TWordField

Table Intro.6 Component properties

ComponentCount Components Owner

ComponentIndex Name Tag

Table Intro.4 VCL components (continued)

I n t r o d u c t i o n 5

In addition to the methods components inherit from the TObject object, the TComponent
component introduces the following:

Visual Component Library controls
Controls are visual components; that is, they are components you can see when your
application is running. All controls have properties in common that specify the visual
attributes of controls, such as Left, Top, Height, Width, Cursor, and Hint.

The properties, methods, and events that all controls have in common are inherited
from an abstract component type called TControl. You need to understand the internal
details of TControl only if you are writing a component based on TControl.

The following is a list of all controls in the VCL.

In addition to the properties controls inherit from the TComponent component, the
TControl component introduces the following:

Table Intro.7 Component methods

FindComponent InsertComponent RemoveComponent

Table Intro.8 VCL controls

TBevel TDBText TNotebook

TBitBtn TDirectoryListBox TOLEContainer

TButton TDrawGrid TOutline

TCheckBox TDriveComboBox TPaintBox

TComboBox TEdit TPanel

TDBCheckBox TFileListBox TRadioButton

TDBComboBox TFilterComboBox TRadioGroup

TDBEdit TForm TScrollBar

TDBGrid TGroupBox TScrollBox

TDBImage THeader TShape

TDBListBox TImage TSpeedButton

TDBLookupCombo TLabel TStringGrid

TDBLookupList TListBox TTabbedNotebook

TDBMemo TMaskEdit TTabSet

TDBNavigator TMediaPlayer

TDBRadioGroup TMemo

Table Intro.9 Control properties

Align Cursor ShowHint

BoundsRect Enabled Top

ClientHeight Height Visible

ClientOrigin Hint Width

ClientRect Left

ClientWidth Parent

6 D e l p h i V i s u a l C o m p o n e n t L i b r a r y

In addition to the methods controls inherit from the TComponent component, the
TControl component introduces the following methods:

Visual Component Library windowed controls
Windowed controls are controls that:

• Can receive focus while your application is running
• Can contain other controls
• Have a window handle

All windowed controls have properties in common that specify their focus attributes,
such as HelpContext, TabStop, and TabOrder. Windowed controls also provide the
OnEnter and OnExit events.

The properties, methods, and events that all windowed controls have in common are
inherited from an abstract component type called TWinControl. You need to understand
the internal details of TWinControl only if you are writing a component based on
TWinControl.

The following is a list of all windowed controls in the VCL:

Table Intro.10 Control methods

BeginDrag GetTextBuf Repaint

BringToFront GetTextLen ScreenToClient

ClientToScreen Hide SetBounds

ControlAtPos Invalidate SetTextBuf

Dragging Refresh Show

EndDrag SendToBack Update

Table Intro.11 VCL windowed controls

TBitBtn TDBNavigator TMediaPlayer

TButton TDBRadioGroup TMemo

TCheckBox TDirectoryListBox TNotebook

TComboBox TDrawGrid TOLEContainer

TDBCheckBox TDriveComboBox TOutline

TDBComboBox TEdit TPanel

TDBEdit TFileListBox TRadioButton

TDBGrid TFilterComboBox TRadioGroup

TDBImage TForm TScrollBar

TDBListBox TGroupBox TScrollBox

TDBLookupCombo THeader TStringGrid

TDBLookupList TListBox TTabbedNotebook

TDBMemo TMaskEdit TTabSet

I n t r o d u c t i o n 7

In addition to the properties windowed controls inherit from the TControl component,
the TWinControl component introduces the following properties:

In addition to the methods windowed controls inherit from the TControl component, the
TWinControl component introduces the following methods:

The TWinControl component introduces the following events:

Visual Component Library nonwindowed controls
Nonwindowed controls are controls that:

• Cannot receive focus while your application is running
• Cannot contain other controls
• Do not have a window handle

The properties, methods, and events that all windowed controls have in common are
inherited from an abstract component type called TGraphicControl. You need to
understand the internal details of TGraphicControl only if you are writing a component
based on TGraphicControl.

The following is a list of all nonwindowed controls in the VCL:

Visual Component Library procedures and functions
These procedures and functions are part of the VCL, but they aren’t methods of any
components or objects. They are categorized here by how they are used.

Table Intro.12 Windowed control properties

Brush Handle TabOrder

Controls HelpContext TabStop

ControlCount Showing

Table Intro.13 Windowed control methods

CanFocus Focused RemoveControl

ClientOrigin HandleAllocated ScaleBy

Create HandleNeeded ScrollBy

Destroy InsertControl SetFocus

Table Intro.14 Windowed control events

OnEnter OnExit

Table Intro.15 VCL nonwindowed controls

TBevel TLabel TSpeedButton

TDBText TPaintBox

TImage TShape

8 D e l p h i V i s u a l C o m p o n e n t L i b r a r y

The following routines are used to display messages in dialog boxes:

The following routines are used to define menu command short cuts.

The following routines are used to determine the parent form of components:

The following routines are used to create graphical points and rectangles:

The following routines are used to control Object Linking and Embedding (OLE)
container applications:

Library reference
The alphabetical reference following the sample entry in the next section contains a
detailed description of the Delphi VCL objects, components, variables, properties,
methods, events, routines, and types you use to develop Windows applications. The
reference also contains the procedures, functions, types, variables, and constants that
make up the Delphi run-time library and are declared in the System and SysUtils units.
These procedures and functions are useful routines that exist outside of the objects of
VCL. They are presented here so that you only need to search one reference source for
the information you need about programming Delphi applications.

Each alphabetically listed entry contains the declaration format and a description of the
entry. If the entry is an object, component, routine, or type, the unit that contains the
entry is listed at the beginning of the entry. (The unit that corresponds to a variable,
property, method, or event is the unit that contains the object or component to which the
entry belongs.) If the entry applies to specific objects or components, they are listed. The

Table Intro.16 Message dialog box routines

InputBox MessageDlg

InputQuery MessageDlgPos

Table Intro.17 Menu shortcut routines

ShortCut ShortCutToText

ShortCutToKey TextToShortCut

Table Intro.18 Parent form routines

GetParentForm ValidParentForm

Table Intro.19 Point and rectangle routines

Bounds Point Rect

Table Intro.20 OLE routines

BOLEMediumCalc LinksDlgEnabled ReleaseOLEInitInfo

ClearFormOLEDropFormats PasteSpecialDlg SetFormOLEDropFormats

InsertOLEObjectDlg PasteSpecialEnabled

LinksDlg RegisterFormAsOLEDropTarget

I n t r o d u c t i o n 9

cross-referenced entries and examples provide additional information about how to use
the specified entry. The following sample illustrates this format.

Sample entry Unit it occupies (if applicable)

Applies to
Listing of the objects and components the entry applies to, if any.

Declaration

{ The declaration of the entry from the unit it occupies }

A description containing specific information about the entry.

Note Any special notes that apply to the entry

Example
A description of the example code that follows.

{ Example code which illustrates the use of the entry }

See also
Related entries that are also listed in the VCL Reference.

10 D e l p h i V i s u a l C o m p o n e n t L i b r a r y

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 11

Chapter 0Delphi Library Reference

Abort method

Applies to
TPrinter object

Declaration

procedure Abort;

The Abort procedure terminates the printing of a print job, dropping all unprinted data.
The device is then set for the next print job. Use Abort to terminate the print job before it
completes; otherwise, use the EndDoc method.

To use the Abort method, you must add the Printers unit to the uses clause of your unit.

Example
The following code aborts a print job if the user presses Esc. Note that you should set
KeyPreview to True to ensure that the OnKeyDown event handler of Form1 is called.

procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;
 Shift: TShiftState);
begin
 if (Key=VK_ESCAPE) and Printer.Printing then
 begin

Printer.Abort;
MessageDlg('Printing aborted', mtInformation, [mbOK],0);

end;
end;

See also
BeginDoc method, EndDoc method, Printer variable, Printing property

Abort procedure SysUtils

Declaration

procedure Abort;

The Abort procedure raises a special “silent exception” which operates like any other
exception, but does not display an error message to the end user.

Use Abort to escape from an execution path without reporting an error.

12 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A b o r t e d p r o p e r t y

Aborted property

Applies to
TPrinter object

Declaration

property Aborted: Boolean;

Run-time and read-only. The Aborted property determines if the user aborted the print
job, thereby calling the Abort method. If Aborted is True, the print job was aborted. If it is
False, the user did not abort the print job.

Example
The following code displays a dialog box if the print job was aborted:

if Printer.Aborted then
MessageDlg(‘The print job did not finish printing’), mtInformation, [mbOK], 0);

See also
Abort method, Printer variable, Printing property

AbortOnKeyViol property

Applies to
TBatchMove component

Declaration

property AbortOnKeyViol: Boolean;

If AbortOnKeyViol is True (the default) and an integrity (key) violation occurs during the
batch move operation, the Execute method will immediately terminate the operation. If
you prefer to have the operation continue, with all key violations posted to the key
violations table, set AbortOnKeyViol to False.

Note If you set AbortOnKeyViol to False, you should provide a KeyViolTableName to hold the
records with errors.

Example

BatchMove1.AbortOnKeyViol := False;

See also
KeyViolCount property, KeyViolTableName property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 13

A b o r t O n P r o b l e m p r o p e r t yA
AbortOnProblem property

Applies to
TBatchMove component

Declaration

property AbortOnProblem: Boolean;

If AbortOnProblem is True (the default) and it would be necessary to discard data from a
source record to place it into the Destination, the Execute method will immediately
terminate the batch move operation. If you prefer to have the operation continue, with
all problems posted to the problems table, set AbortOnProblem to False.

Note If you set AbortOnProblem to False, you should provide a ProblemTableName to hold the
records with problems.

Example

BatchMove1.AbortOnProblem := False;

See also
ProblemCount property, ProblemTableName property

Abs function System

Declaration

function Abs(X);

The Abs function returns the absolute value of the argument.

X is an integer-type or real-type expression.

Example

var
 r: Real;
 i: Integer;
begin
 r := Abs(-2.3); { 2.3 }
 i := Abs(-157); { 157 }
end;

Abstract procedure System

Declaration

procedure Abstract;

14 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A c t i v e p r o p e r t y

A call to this procedure terminates the program with a run-time error.

When implementing an abstract object type, use calls to Abstract in virtual methods that
must be overridden in descendant types. This ensures that any attempt to use instances
of the abstract object type will fail.

Active property

Applies to
TOLEContainer, TQuery, TStoredProc, TTable components

For tables, queries, and stored procedures

Declaration

property Active: Boolean;

Set the Active property to True to open a dataset and put it in Browse state. Set it to False
to close the dataset and put it in Inactive state. Changing the Active property is
equivalent to calling the Open or Close method.

For TQuery and TStoredProc, if the SQL statement or stored procedure does not return a
result set, then setting Active to True will raise an exception because Delphi expects to
get a cursor.

Note Post is not called implicitly by setting Active to False. Use the BeforeClose event to post any
pending edits explicitly.

Example

{ Close the dataset }
Table1.Active := False;
{ Open the dataset }
Table1.Active := True;

For OLE containers

Declaration

property Active: Boolean;

Run-time only. The Active property specifies whether the OLE object in an OLE
container is active. Set Active to True to activate the OLE object. Set Active to False to
deactivate the OLE object.

Note Setting Active to False only deactivates in-place active OLE objects. If the object is
activated within its own window, you must deactivate the object by executing a File |
Exit command (or its equivalent in the command structure) from the OLE server
application.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 15

A c t i v e C o n t r o l p r o p e r t yA
Example
The following code activates OLEContainer1 if it contains an OLE object.

OLEContainer1.Active := OLEContainer1.OLEObjAllocated;

See also
AutoActivate property, InPlaceActive property, OnActivate event

ActiveControl property

Applies to
TForm, TScreen components

Declaration

property ActiveControl: TWinControl;

For forms, the ActiveControl property indicates which control has focus, or has focus
initially when the form becomes active. Your application can use the ActiveControl
property to access methods of the active control. Only one control, the active control, can
have focus at a given time in an application.

For the screen, ActiveControl is a read-only property. The value of ActiveControl is the
control that currently has focus on the screen.

Note When focus shifts to another control, the ActiveControl property is updated before the
OnExit event of the original control with focus occurs.

Example
The following event handler responds to timer events by moving the active control one
pixel to the right:

procedure TForm1.Timer1Timer(Sender: TObject);
begin
ActiveControl.Left := ActiveControl.Left + 1;

end;

See also
ActiveForm property, OnActiveControlChange event, OnEnter event, OnExit event

ActiveForm property

Applies to
TScreen component

Declaration

property ActiveForm: TForm;

16 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A c t i v e M D I C h i l d p r o p e r t y

Run-time and read only. The ActiveForm property indicates which form currently has
focus, or will have focus when the application becomes active again after another
Windows application has been active.

Example
This example changes the color of the current form.

procedure TForm1.Button1Click(Sender: TObject);
begin
Screen.ActiveForm := clBlue;

end;

See also
ActiveControl property, ActiveMDIChild property, OnActivate event,
OnActiveFormChange event, Screen variable

ActiveMDIChild property

Applies to
TForm component

Declaration

property ActiveMDIChild: TForm;

Run-time and read only. The value of the ActiveMDIChild property is the form that
currently has focus in an MDI application.

Example
This code uses a button on an MDI application. When the user clicks the button, the
active MDI child form turns blue.

procedure TForm1.Button1Click(Sender: TObject);
var
 BlueForm: TForm;
begin
 BlueForm := Form1.ActiveMDIChild;
 BlueForm.Color := clBlue;
end;

See also
ActiveForm property, FormStyle property, MDIChildCount property, MDIChildren
property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 17

A c t i v e P a g e p r o p e r t yA
ActivePage property

Applies to
TNotebook, TTabbedNotebook components

Declaration

property ActivePage: string;

The ActivePage property determines which page displays in the notebook or tabbed
notebook control. The value of ActivePage must be one of the strings contained in the
Pages property.

Example
This example uses a notebook control and a button on the form. The notebook has
multiple pages, including one called Graphics options. When the user clicks the button,
the Graphics options page displays in the notebook control.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Notebook1.ActivePage := 'Graphics options’;
end;

See also
PageIndex property, TTabSet component

Add method

Applies to
TFieldDefs, TIndexDefs, TList, TStringList, TStrings objects; TMenuItem, TOutline
components

For field definitions

Declaration

procedure Add(const Name: string; DataType: TFieldType; Size: Word; Required: Boolean);

The Add method creates a new TFieldDef object using the Name, DataType, and Size
parameters, and adds it to Items. Except for special purposes, you do not need to use this
method because the Items is filled for you when you open the dataset, or because Update
fills Items without opening the dataset.

The value of the Required parameter determines whether the newly added field
definition is a required field. If the Required parameter is True, the value of the Required
property of the TFieldDef object is also True. If the Required parameter is False, the value
of the Required property is also False.

18 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A d d m e t h o d

For index definitions

Declaration

procedure Add(const Name, Fields: string; Options: TIndexOptions);

The Add method creates a new TIndexDef object using the Name, Fields, and Options
parameters, and adds it to Items. Generally you will never need to use this method since
the dataset will have already filled Items for you when it is open, or the Update method
will fill Items without opening the dataset.

For list objects

Declaration

function Add(Item: Pointer): Integer;

The Add method adds a new item to the end of a list. Add returns the position of the item
in the list stored in the Items property; the first item in the list has a value of 0. Specify the
item you want added to the list as the value of the Item parameter.

Example
This example adds a new object to a list in a list object:

type
 TMyClass = class
 MyString: string;
 constructor Create(S: string);
 end;

constructor TMyClass.Create(S: string);
begin
 MyString := S;
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 MyList: TList;
 MyObject, SameObject: TMyClass;
begin
 MyList := TList.Create; { create the list }
 try
 MyObject := TMyClass.Create('Semper Fidelis!'); { create a class instance }
 try
 MyList.Add(MyObject); { add instance to list }
 SameObject := TMyClass(MyList.Items[0]); { get first element in list }
 MessageDlg(SameObject.MyString, mtInformation, [mbOk], 0); { show it }
 finally
 MyObject.Free;
 end; { don't forget to clean up! }
 finally
 MyList.Free;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 19

A d d m e t h o dA
 end;
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 MyList: TList;
 MyObject, SameObject: TMyClass;
begin
 MyList := TList.Create; { create the list }
try

 MyObject := TMyClass.Create('Semper Fidelis!'); { create a class instance }
try

 MyList.Add(MyObject); { add instance to list }
 SameObject := TMyClass(MyList.Items[0]); { get first element in list }
 MessageDlg(SameObject.MyString, mtInformation, [mbOk], 0); { show it }

finally
 MyObject.Free; { don't forget to clean up! }
finally

 MyList.Free;
end;

See also
Capacity property, Clear method, Delete method, Expand method, First method, IndexOf
method, Insert method, Last method, Remove method

For string and string list objects

Declaration

function Add(const S: string): Integer;

The Add method adds a new string to a string list. The S parameter is the new string. Add
returns the position of the item in the list; the first item in the list has a value of 0.

For TStrings objects, such as the Items property of a list box, the new string is appended
to the end of the list unless the Sorted property of the list box or combo box is True. In
such a case the string is inserted into the list of strings so as to maintain the sort order.

For TStringList objects, the value of the Sorted property determines how a string is
added. If Sorted is False, the string is appended to the list. If Sorted is True, the new string
is inserted into the list of strings so as to maintain the sort order.

Example
This code uses a button and a list box on a form. When the user clicks the button, the
code adds a new string to a list box.

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items.Add('New string');
end;

20 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A d d m e t h o d

This code uses a list box, a button, and a label on a form. When the user clicks the
button, the code adds a new string to the list box and reports its position in the list box as
the caption of the label.

procedure TForm1.Button1Click(Sender: TObject);
var
Position: Integer;

begin
Position:= ListBox1.Items.Add('New item');

 Label1.Caption := IntToStr(Position);
end;

See also
AddObject method, AddStrings method, Clear method, Delete method, Duplicates
property, Exchange method, Insert method, Items property, Lines property, Move method,
Sorted property

For menu items

Declaration

procedure Add(Item: TMenuItem);

The Add method adds a menu item to the end of a menu. Specify the menu item you
want added as the value of the Item parameter.

Example
This code adds a menu item to a File menu:

procedure Form1.Button1Click(Sender: TSender);
var
NewItem: TMenuItem;

begin
NewItem := TMenuItem.Create(Self);
NewItem.Caption := ‘New item’;
File.Add(NewItem);

end;

See also
Delete method, Insert method

For outlines

Declaration

function Add(Index: LongInt; const Text: string): LongInt;

The Add method adds an outline item (TOutlineNode object) to an outline. The value of
the Index parameter specifies where to add the new item. The Text parameter specifies

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 21

A d d C h i l d m e t h o dA
the Text property value of the new item. Add returns the Index property value of the
added item.

The added item is positioned in the outline as the last sibling of the outline item
specified by the Index parameter. The new item shares the same parent as the item
specified by the Index parameter. Outline items that appear after the added item are
moved down one row and reindexed with valid Index values. This is done automatically
unless BeginUpdate was called.

Note To add items to an empty outline, specify zero (0) as the Index parameter.

Example
The following code adds a new item at the top level of the outline. The new item is
identified by the text ‘New item’:

Outline1.Add(0, 'New item');

See also
AddChild method, AddChildObject method, AddObject method, Insert method, MoveTo
method

AddChild method

Applies to
TOutline component

Declaration

function AddChild(Index: LongInt; const Text: string): LongInt;

The AddChild method adds an outline item (TOutlineNode object) to an outline as a child
of an existing item. The value of the Index parameter specifies where to add the new
item. The Text parameter specifies the Text property value of the new item. AddChild
returns the Index property value of the added item.

The added item is positioned in the outline as the last child of the outline item specified
by the Index parameter. Outline items that appear after the added item are moved down
one row and reindexed with valid Index values. This is done automatically unless
BeginUpdate was called.

Note To add items to an empty outline, specify zero (0) as the Index parameter.

Example
The following code adds a new child to the selected item of the outline. The new item is
identified by the text ‘New child’:

Outline1.AddChild(Outline1.SelectedItem, 'New child');

See also
Add method, AddChildObject method, AddObject method, Insert method, MoveTo method

22 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A d d C h i l d O b j e c t m e t h o d

AddChildObject method

Applies to
TOutline component

Declaration

function AddChildObject(Index: LongInt; const Text: string; const Data: Pointer): LongInt;

The AddChildObject method adds an outline item (TOutlineNode object) containing data
to an outline as a child of an existing item. The value of the Index parameter specifies
where to add the new item. The Text parameter specifies the Text property value of the
new item. The Data parameter specifies the Data property value of the new item.
AddChild returns the Index property value of the added item.

The added item is positioned in the outline as the last child of the outline item specified
by the Index parameter. Outline items that appear after the added item are moved down
one row and reindexed with valid Index values. This is done automatically unless
BeginUpdate was called.

Note To add items to an empty outline, specify zero (0) as the Index parameter.

Example
The following code adds a new child to the selected item of the outline. The new item is
identified by the text ‘New child’. The TBitmap object named Bitmap1 is attached to the
new item:

Outline1.AddChildObject(Outline1.SelectedItem, 'New child', Bitmap1);

See also
Add method, AddChild method, AddObject method, Insert method, MoveTo method

AddExitProc procedure SysUtils

Declaration

procedure AddExitProc(Proc: TProcedure);

AddExitProc adds the given procedure to the run-time library's exit procedure list. When
an application terminates, its exit procedures are executed in reverse order of definition,
i.e. the last procedure passed to AddExitProc is the first one to get executed upon
termination.

AddFieldDesc method

Applies to
TFieldDefs object

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 23

A d d I n d e x m e t h o dA
Declaration

procedure AddFieldDesc(FieldDesc: FLDDesc; FieldNo: Word);

AddFieldDesc creates a new TFieldDef object using the information provided by the
Borland Database Engine in the FieldDesc parameter, and adds it to Items. Except for
special purposes, you do not need to use this method because the Items is filled for you
when you open the dataset, or because Update fills Items without opening the dataset.

AddIndex method

Applies to
TTable component

Declaration

procedure AddIndex(const Name, Fields: string; Options: TIndexOptions);

The AddIndex method creates a new index for the TTable. Name is the name of the new
index. Fields is a list of the fields to include in the index. Separate the field names by a
semicolon. Options is a set of values from the TIndexOptions type.

Example

Table1.AddIndex(‘NewIndex’, ‘CustNo;CustName’, [ixUnique, ixCaseInsensitive]);

See also
DeleteIndex method, IndexDefs property, IndexName property

AddObject method

Applies to
TStringList, TStrings objects; TOutline component

For string and string list objects

Declaration

function AddObject(const S: string; AObject: TObject): Integer;

The AddObject method adds both a string and an object to a string or string list object.
The string and the object are appended to the list of strings. Specify the string to be
added as the value of the S parameter, and specify the object to be added as the value of
the AObject parameter.

Example
This code adds the string ‘Orange’ and a bitmap of an orange to an owner-draw list box:

24 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A d d O b j e c t m e t h o d

procedure TForm1.Button1Click(Sender: TSender);
var
Icon: TIcon;

begin
Icon := TIcon.Create;
Icon.LoadFromFile(‘ORANGE.ICO’);
ListBox1.Items.AddObject(‘Orange’, Icon);

end;

See also
Add method, AddStrings method, IndexOf method, IndexOfObject method, InsertObject
method, Objects property, Strings property

For outlines

Declaration

function AddObject(Index: LongInt; const Text: string; const Data: Pointer): LongInt;

The AddObject method adds an outline item (TOutlineNode object) containing data to an
outline. The value of the Index parameter specifies where to add the new item. The Text
parameter specifies the Text property value of the new item. The Data parameter
specifies the Data property value of the new item. Add returns the Index property value
of the added item.

The added item is positioned in the outline as the last sibling of the outline item
specified by the Index parameter. The new item shares the same parent as the item
specified by the Index parameter. Outline items that appear after the added item are
moved down one row and reindexed with valid Index values. This is done automatically
unless BeginUpdate was called.

Note To add items to an empty outline, specify zero (0) as the Index parameter.

Example
The following code defines a record type of TMyRec and a record pointer type of
PMyRec.

type
PMyRec = ^TMyRec;

 TMyRec = record
FName: string;
LName: string;

end;

Assuming these types are used, the following code adds an outline node to Outline1. A
TMyRec record is associated with the added item. The FName and LName fields are
obtained from edit boxes Edit1 and Edit2. The Index parameter is obtained from edit box
Edit3. The item is added only if the Index is a valid value.

var
 MyRecPtr: PMyRec;
 OutlineIndex: LongInt;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 25

A d d P a r a m m e t h o dA
begin
 New(MyRecPtr);
 MyRecPtr^.FName := Edit1.Text;
 MyRecPtr^.LName := Edit2.Text;
 OutlineIndex := StrToInt(Edit3.Text);
 if (OutlineIndex <= Outline1.ItemCount) and (OutlineIndex >= 0) then
 Outline1.AddObject(OutlineIndex, 'New item', MyRecPtr);
end;

After an item containing a TMyRec record has been added, the following code retrieves
the FName and LName values associated with the item and displays the values in labels.

Label4.Caption := PMyRec(Outline1.Items[Outline1.SelectedItem].Data)^.FName;
Label5.Caption := PMyRec(Outline1.Items[Outline1.SelectedItem].Data)^.LName;

See also
Add method, AddChild method, AddChildObject method, Insert method, MoveTo method

AddParam method

Applies to
TParams object

Declaration

procedure AddParam(Value: TParam);

AddParam adds Value as a new parameter to the Items property.

Example

{ Move all parameter info from Params2 to Params1 }
while Params2.Count <> 0 do
begin

{ Grab the first parameter from Params2 }
TempParam := Params2[0];

{ Remove it from Params2 }
Params2.RemoveParam(TempParam);

{ And add it to Params1 }
Params1.AddParam(TempParam);
end;

See also
RemoveParam method

AddPassword method

Applies to
TSession component

26 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A d d r f u n c t i o n

Declaration

procedure AddPassword(const Password: string);

The AddPassword method is used to add a new password to the current TSession
component for use with Paradox tables. When an application opens a Paradox table that
requires a password, the user will be prompted to enter a password unless the Session
has a valid password for the table.

Example

Session.AddPassword(‘ASecret’);

See also
Session variable

Addr function System

Declaration

function Addr(X): pointer;

The Addr function returns the address of a specified object.

X is any variable, procedure or function identifier. The result is a pointer to X.

The result of Addr is of the predefined type Pointer, which means that it is assignment-
compatible with all pointer types but can’t be dereferenced directly without a typecast.

Example

var
 P: Pointer;
begin
 P := Addr(P); { Now points to itself }
end;

See also
Ofs function, Ptr function, Seg function

AddStrings method

Applies to
TStringList, TStrings objects

Declaration

procedure AddStrings(Strings: TStrings);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 27

A f t e r C a n c e l e v e n tA
The AddStrings method adds a group of strings to the list of strings in a string or string
list object. The new strings are appended to the existing strings. Specify a string object
containing the list of strings you want added as the value of the Strings parameter.

Example
This code appends the contents of a file to the end of a memo control:

procedure TForm1.Button1Click(Sender: TSender);
var
Contents: TStringList;

begin
Contents.LoadFromFile(‘NEWSTUFF.TXT’);
Memo1.Lines.AddStrings(Contents);

finally
Contents.Free;

end;

This code adds the list of strings contained in ListBox1.Items to the end of the
ListBox2.Items list of strings:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox2.Items.AddStrings(ListBox1.Items);
end;

See also
Add method, AddObject method, Strings property

AfterCancel event

Applies to
TTable, TQuery, TStoredProc components

Declaration

property AfterCancel: TDataSetNotifyEvent;

The AfterCancel event is activated when the dataset finishes a call to the Cancel method.
This event is the last action before Cancel returns to the caller. If the dataset is not in Edit
state or there are no changes pending, then Cancel will not activate the AfterCancel event.

By assigning a method to this property, you can take any special actions required by the
event.

See also
BeforeCancel event

28 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A f t e r C l o s e e v e n t

AfterClose event

Applies to
TTable, TQuery, TStoredProc components

Declaration

property AfterClose: TDataSetNotifyEvent;

The AfterClose event is activated after a dataset is closed, either by calling the Close
method or by setting the Active property to False. This event is the last action before Close
returns to the caller. Typically, the AfterClose event handler closes any private lookup
tables opened by the BeforeOpen event.

By assigning a method to this property, you can take any special actions required by the
event.

See also
BeforeClose event

AfterDelete event

Applies to
TTable, TQuery, TStoredProc components

Declaration

property AfterDelete: TDataSetNotifyEvent;

The AfterDelete event is activated when the dataset finishes a call to the Delete method.
This event is the last action before Delete returns to the caller. When AfterDelete is called,
the deleted record has already been removed from the dataset, and the dataset cursor
will be positioned on the following record.

By assigning a method to this property, you can take any special actions required by the
event.

See also
BeforeDelete event

AfterEdit event

Applies to
TTable, TQuery, TStoredProc components

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 29

A f t e r I n s e r t e v e n tA
Declaration

property AfterEdit: TDataSetNotifyEvent;

The AfterEdit event is activated when a dataset finishes a call to the Edit method. This
event is the last action before Edit returns to the caller.

Note The event occurs before any changes have been made to the current record.

By assigning a method to this property, you can take any special actions required by the
event.

See also
BeforeEdit event

AfterInsert event

Applies to
TTable, TQuery, TStoredProc components

Declaration

property AfterInsert: TDataSetNotifyEvent;

The AfterInsert event is activated when a dataset finishes a call to the Insert or Append
methods. This event is the last action before Insert or Append returns to the caller.

Note This event occurs before a new record has been added to the component.

By assigning a method to this property, you can take any special actions required by the
event.

See also
BeforeInsert event

AfterOpen event

Applies to
TTable, TQuery, TStoredProc components

Declaration

property AfterOpen: TDataSetNotifyEvent;

The AfterOpen event is activated after a dataset is opened, either by calling the Open
method or by setting the Active property to True. This event is the last action before Open
returns to the caller.

By assigning a method to this property, you can take any special actions required by the
event.

30 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A f t e r P o s t e v e n t

See also
BeforeOpen event

AfterPost event

Applies to
TTable, TQuery, TStoredProc components

Declaration

property AfterPost: TDataSetNotifyEvent;

The AfterPost event is activated after a call to the Post method. This event is the last
action before Post returns to the caller.

If a TTable has a range filter (set with ApplyRange) in effect, and if the key value of the
newly posted record falls outside the range, then in the AfterPost event, the cursor will
not be positioned on the newly posted record.

By assigning a method to this property, you can take any special actions required by the
event.

See also
BeforePost event

AliasName property

Applies to
TDataBase component

Declaration

property AliasName: TSymbolStr;

AliasName is the name of an existing BDE alias defined with the BDE Configuration
Utility. This is where the TDatabase component gets its default parameter settings. This
property will be cleared if DriverName is set. If you try to set AliasName of a TDatabase for
which Connected is True, Delphi will raise an exception.

Example

Database1.AliasName := ‘DBDEMOS’;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 31

A l i g n p r o p e r t yA
Align property

Applies to
At design time: TBevel, TDBGrid, TDBRadioGroup, TDirectoryListBox, TDrawGrid,
TFileListBox, THeader, TImage, TLabel, TListBox, TMaskEdit, TMemo, TNotebook,
TOLEContainer, TOutline, TPaintBox, TPanel, TRadioGroup, TScrollBox, TStringGrid,
TTabbedNotebook, TTabSet components

At run time: All controls

Declaration

property Align: TAlign;

The Align property determines how the controls align within their container (or parent
control). These are the possible values:

If the form or a component containing other components is resized, the components
realign within the form or control.

Using the Align property is useful when you want a control to stay in one position on
the form, even if the size of the form changes. For example, you could use a panel
component with a various controls on it as a tool palette. By changing Align to alLeft, you
guarantee that the tool palette always remains on the left side of the form and always
equals the client height of the form.

Example
This example moves a panel control named Panel1 to the bottom of the form and resizes
it to fill the width of the form:

procedure TForm1.Button1Click(Sender: TObject);
begin
Panel1.Align := alBottom;

end;

See also
Alignment property

Value Meaning

alNone The component remains where you place it in the form. This is the default value.
alTop The component moves to the top of the form and resizes to fill the width of the form. The

height of the component is not affected.
alBottom The component moves to the bottom of the form and resizes to fill the width of the form.

The height of the component is not affected.
alLeft The component moves to the left side of the form and resizes to fill the height of the form.

The width of the component is not affected.
alRight The component moves to the right side of the form and resizes to fill the height of the

form. The width of the component is not affected.
alClient The component resizes to fill the client area of a form. If a component already occupies

part of the client area, the component resizes to fit within the remaining client area.

32 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A l i g n m e n t p r o p e r t y

Alignment property

Applies to
TBCDField, TBooleanField, TCheckBox, TCurrencyField, TDateField, TDateTimeField,
TDBCheckBox, TDBMemo, TDBText, TFloatField, TIntegerField, TLabel, TMemo, TPanel,
TPopupMenu, TRadioButton, TSmallintField, TStringField, TTimeField, TWordField
components

For labels, memos, and panels

Declaration

property Alignment: TAlignment;

The Alignment property specifies how text is aligned within the component.

These are the possible values:

Example
This code aligns text to the right side of a label named Label1 in response to a click on a
button named RightAlign:

procedure TForm1.RightAlignClick(Sender: TObject);
begin
Label1.Alignment := taRightJustify;

end;

See also
Caption property, Text property

For check boxes and radio buttons

Declaration

property Alignment: TLeftRight;

For check boxes and radio buttons, the control’s caption is always left-aligned within the
text area. If the check box is two-dimensional (its Ctl3D property is False), Alignment
determines the placement of that caption area relative to the control’s check box or radio
button. If the check box is three dimensional (its Ctl3D property is True), the value of the
Alignment property has no effect on the check box.

Value Meaning

taLeftJustify Align text to the left side of the control
taCenter Center text horizontally in the control
taRightJustify Align text to the right side of the control

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 33

A l i g n m e n t p r o p e r t yA
These are the possible values:

Example
This code makes the check box two-dimensional and puts the check box on the left side
of the text:

procedure TForm1.Button1Click(Sender: TObject);
begin
CheckBox1.Ctl3D := False;
CheckBox1.Alignment := taLeftJustify;

end;

See also
Caption property

For pop-up menus

Declaration

property Alignment: TPopupAlignment;

The Alignment property determines where the pop-up menu appears when the user
clicks the right mouse button. These are the possible values and their meanings:

The default value is paLeft.

Example
This example uses a pop-up menu component and a button on a form. The code places
the top right corner of a pop-up menu under the mouse pointer when the menu
appears:

procedure TForm1.AlignPopupMenuClick(Sender: TObject);
begin
 PopupMenu1.Alignment := paRight;
end;

See also
AutoPopup property, OnPopup event

Value Meaning

taLeftJustify The caption appears to the left of the check box or radio button.
taRightJustify The caption appears to the right of the check box or radio button.

Value Meaning

paLeft The pop-up menu appears with its top left corner under the mouse pointer.
paCenter The pop-up menu appears with the top center of the menu under the mouse pointer.
paRight The pop-up menu appears with its top right corner under the mouse pointer.

34 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A l l o c M e m f u n c t i o n

For field components

Declaration

property Alignment: TAlignment;

The Alignment property is used by some data-aware controls to center, left-, or right-
align the data in a field. Data-aware controls that support alignment include TDBGrid
and TDBEdit.

AllocMem function SysUtils

Declaration

function AllocMem(Size: Cardinal): Pointer;

AllocMem allocates a block of the given size on the heap. Each byte in the allocated
buffer is set to zero. To dispose the buffer, use the FreeMem standard procedure.

See also
ReAllocMem function

AllowAllUp property

Applies to
TSpeedButton component

Declaration

property AllowAllUp: Boolean;

The AllowAllUp property determines if all speed buttons in a group this speed button
belongs to can be unselected (in their up state) at the same time. AllowAllUp should be
used only with speed buttons in a group (that is, the value of the button’s GroupIndex
property is not zero). See the GroupIndex property for information on how to create a
group of speed buttons. If GroupIndex is zero, AllowAllUp has no effect.

If AllowAllUp is True, all of the speed buttons in a group can be unselected. All buttons
can appear in their up state.

If AllowAllUp is False, one of the speed buttons belonging to a group must be selected (in
its down state) at all times. Clicking a down button won’t return the button to its up
state. The button only becomes unselected when the user clicks one of the other buttons
in the group. In such a group, one button must always be selected. Determine which
speed button will be initially down by setting its Down property to True.

The default value is False.

Changing the value of the AllowAllUp property for one speed button in a group changes
the AllowAllUp value for all buttons in the group.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 35

A l l o w G r a y e d p r o p e r t yA
You can use AllowAllUp with a single bitmap button in its own group (with a
GroupIndex value greater than 0) so that the button can be selected and remain selected
until the user clicks the button again—at which time it becomes unselected. In other
words, the button can work much like a check box. To make a single speed button
behave this way, set its GroupIndex property to a value greater than 0 (but different from
any other GroupIndex value of any other speed buttons you have), and set AllowAllUp to
True.

Example
In this example, there are three speed buttons on a form. All three belong to the same
group as all three have a GroupIndex value of 1. This line of code changes the AllowAllUp
property to True for all three speed buttons, so it’s possible that all the speed buttons in
the group can be unselected at the same time:

SpeedButton3.AllowAllUp := True;

See also
Down property, Glyph property, GroupIndex property

AllowGrayed property

Applies to
TCheckBox, TDBCheckBox components

Declaration

property AllowGrayed: Boolean;

The value of the AllowGrayed property determines if a check box can have two or three
possible states. If AllowGrayed is False, the default value, clicking a check box alternately
checks and unchecks it. If AllowGrayed is True, clicking a check box either checks, grays,
or unchecks it.

Example
This example uses a check box on a form. When the application runs, the check box is
initially checked. When the user clicks it, the check box is unchecked. Clicking it again
grays the check box.

procedure TForm1.FormCreate(Sender: TObject);
begin
 CheckBox1.AllowGrayed := True;
 CheckBox1.State := cbChecked;
end;

See also
Checked property, State property

36 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A l l o w I n P l a c e p r o p e r t y

AllowInPlace property

Applies to
TOLEContainer component

Declaration

property AllowInPlace: Boolean;

The AllowInPlace property specifies whether an OLE object can be activated in place. If
AllowInPlace is True, in-place activation is allowed. If AllowInPlace is False, in-place
activation is not allowed and the OLE object is activated in its own window (OLE 1.0-
style).

Note To support in-place activation, the OLE container application must include a
TMainMenu component.

Example
The following code sets AllowInPlace to False.

OLEContainer1.AllowInPlace := False;

See also
AutoActivate property

AllowResize property

Applies to
THeader component

Declaration

property AllowResize: Boolean;

The value of the AllowResize property determines if the user can modify the size of the
header at run time with the mouse. If AllowResize is False, the sections within a header
can’t be resized. If AllowResize is True, clicking a border of a header section and dragging
it left or right changes the width of the section. The default value is True.

Example
The following code allows the resizing of the sections of Header1.

Header1.AllowResize := True;

See also
OnSized event, Sections property, SectionWidth property, Sizing event

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 37

A n s i C o m p a r e S t r f u n c t i o nA
AnsiCompareStr function SysUtils

Declaration

function AnsiCompareStr(const S1, S2: string): Integer;

AnsiCompareStr compares S1 to S2, with case sensitivity. The compare operation is
controlled by the currently installed language driver. The return value is the same as for
CompareStr.

See also
AnsiCompareText function

AnsiCompareText function SysUtils

Declaration

function AnsiCompareText(const S1, S2: string): Integer;

AnsiCompareText compares S1 to S2, without case sensitivity. The compare operation is
controlled by the currently installed language driver. The return value is the same as for
CompareStr.

See also
AnsiCompareStr function

AnsiLowerCase function SysUtils

Declaration

function AnsiLowerCase(const S: string): string;

AnsiLowerCase converts all characters in the given string to lower case. The conversion
uses the currently installed language driver.

See also
AnsiUpperCase function, LowerCase function

AnsiToNative function DB

Declaration

function AnsiToNative(Locale: TLocale; const AnsiStr: string; NativeStr: PChar;
MaxLen: Word): PChar;

The AnsiToNative function translates the ANSI characters in AnsiStr (or the first MaxLen
characters) to the native character set according to Locale by calling DBIAnsiToNative.

38 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A n s i U p p e r C a s e f u n c t i o n

The translated characters are returned in NativeStr with a null terminator. AnsiToNative
returns NativeStr.

AnsiUpperCase function SysUtils

Declaration

function AnsiUpperCase(const S: string): string;

AnsiUpperCase converts all characters in the given string to upper case. The conversion
uses the currently installed language driver.

See also
AnsiLowerCase function, UpperCase function

Append method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure Append;

The Append method moves the cursor to the end of the dataset, puts the dataset into
Insert state , and opens a new, empty record. When an application calls Post, the new
record will be inserted in the dataset in a position based on its index, if defined. To
discard the new record, use Cancel.

This method is valid only for datasets that return a live result set.

Note For indexed tables, the Append and Insert methods will both put the new record in the
correct location in the table, based on the table’s index. If no index is defined on the
underlying table, then the record will maintain its position—Append will add the record
to the end of the table, and Insert will insert it at the current cursor position. In either
case, posting a new record may cause rows displayed in a data grid to change as the
dataset follows the new row to its indexed position and then fetches data to fill the data
grid around it.

Example

with Table1 do
begin
Append;
FieldByName(‘CustNo’).AsString := ‘9999’;
{ Fill in other fields here }
if { you are sure you want to do this} then Post
else { if you changed your mind } Cancel;
end.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 39

A p p e n d p r o c e d u r eA
See also
TField component

Append procedure System

Declaration

procedure Append(var f: Text);

The Append procedure opens an existing file with the name assigned to F, so that new
text can be added.

F is a text file variable and must be associated with an external file using AssignFile.

If no external file of the given name exists, an error occurs.

If F is already open, it is closed, then reopened. The current file position is set to the end
of the file.

If a Ctrl+Z (ASCII 26) is present in the last 128-byte block of the file, the current file
position is set so that the next character added to the file overwrites the first Ctrl+Z in the
block. In this way, text can be appended to a file that terminates with a Ctrl+Z.

If F was not assigned a name, then, after the call to Append, F refers to the standard
output file (standard handle number 1).

After calling Append, F is write-only, and the file pointer is at the end of the file.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

Example

var F: TextFile;
begin
 if OpenDialog1.Execute then { Bring up open file dialog }
 begin
 AssignFile(F, OpenDialog1.FileName);
 { Open file selected in dialog }
 Append(F); { Add more text onto end }
 Writeln(F, 'appended text');
 CloseFile(F); { Close file, save changes }
 end;
end;

See also
AssignFile procedure, FileClose procedure, Reset procedure, Rewrite procedure

40 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A p p e n d R e c o r d m e t h o d

AppendRecord method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure AppendRecord(const Values: array of const);

The AppendRecord method appends a new record to the dataset using the field values
passed in the Values parameter. The assignment of the elements of Values to fields in the
record is sequential; the first element is assigned to the first field, the second to the
second, etc. The number of field values passed in Values may be fewer than the number
of actual fields in the record; any remaining fields are left unassigned and are NULL.
The type of each element of Values must be compatible with the type of the field in that
the field must be able to perform the assignment using AsString, AsInteger, and so on,
according the type of the Values element.

This method is valid only for datasets that return a live result set.

Note For indexed tables, the AppendRecord and InsertRecord methods will both put the new
record in the correct location in the table, based on the table’s index. If no index is
defined on the underlying table, then the record will maintain its position—
AppendRecord will add the record to the end of the table, and InsertRecord will insert it at
the current cursor position. In either case, posting a new record in a data grid may cause
all the rows before and after the new record to change as the dataset follows the new
row to its indexed position and then fetches data to fill the grid around it.

Example

Table1.AppendRecord([9999, ‘Doe‘, ‘John‘]);

See also
TField component.

AppendStr procedure SysUtils

Declaration

procedure AppendStr(var Dest: string; const S: string);

AppendStr appends S to the end of Dest. AppendStr corresponds to the statement "Dest :=
Dest + S", but is more efficient.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 41

A p p l i c a t i o n v a r i a b l eA
Application variable Forms

Declaration

Application: TApplication;

The Application variable declares an instance of your application for your project. By
default, when you create a new project, Delphi constructs an application object and
assigns it to Application. Application has several properties you can use to get information
about your application while it runs; see the TApplication component for the list of
properties.

Example
This code displays the name of your project in an edit box:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Edit1.Text := Application.Title;
end;

See also
Icon property, Run method, Title property

ApplyFilePath method

Applies to
TFileListBox component

Declaration

procedure ApplyFilePath(const EditText: string);

ApplyFileEditText is intended to be used in a dialog box that approximates the utility and
behavior of an Open dialog box. Such a dialog box would contain a file list box
(TFileListBox), a directory list box (TDirectoryListBox), a drive combo box
(TDriveComboBox), a filter combo box TFilterComboBox, a label, and an edit box where
the user can type a file name including a full directory path. When the user then chooses
the OK button, you would like all the controls to update with the information the user
entered in the edit box. For example, you would want the directory list box to change to
the directory specified in the path the user typed, and you want the drive combo box to
change to the correct drive if the path included a different drive letter.

If the file list box, directory list box, drive combo box, filter combo box, label, and edit
box are connected using the FileEdit, FileList, DirLabel, and DirList properties, your
application can call ApplyFilePath to update the controls with the text the user entered in
the edit box.

The user can enter any of these strings in the edit box: a file name, with or without a
path, a drive only, a drive and directory only, relative paths, or a file mask using
wildcard characters. In all cases, the ApplyFilePath method updates the controls as you

42 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A p p l y R a n g e m e t h o d

would expect. For example, if the user includes a directory name, the directory list box
makes that directory the current one.

The EditText parameter is the text within the edit box.

Example
This example uses a file list box, a directory list box, a filter combo box, a drive combo
box, a label, an edit box, and a button on a form. When the user runs the application and
enters a path or file name in the edit box, all the controls update:

procedure TForm1.FormCreate(Sender: TObject);
begin
 FileListBox1.FileEdit := Edit1;
 FilterComboBox1.FileList := FileListBox1;
 DirectoryListBox1.FileList := FileListBox1;
 DirectoryListBox1.DirLabel := Label1;
 DriveComboBox1.DirList := DirectoryListBox1;
 Button1.Default := True;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 FileListBox1.ApplyFilePath(Edit1.Text);
end;

See also
Directory property, Drive property

ApplyRange method

Applies to
TTable component

Declaration

procedure ApplyRange;

The ApplyRange method is used to apply the start and end ranges established with the
SetRangeStart and SetRangeEnd methods or the EditRangeStart and EditRangeEnd
methods. This will filter the set of records from the database table accessible to the
application.

Note When comparing fields for range purposes, a NULL field is always less than any other
possible value.

Example

{ Limit the range from ‘Goleta’ to ‘Santa Barbara’}
with Table1 do
begin
EditRangeStart; { Set the beginning key }

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 43

A r c m e t h o dA
FieldByName(‘City’).AsString := ‘Goleta‘;
EditRangeEnd; { Set the ending key }
FieldByName(‘City’).AsString := ‘Santa Barbara‘;
ApplyRange; { Tell the dataset to establish the range }

end;

See also
CancelRange method, KeyExclusive property, KeyFieldCount property, SetRange method

Arc method

Applies to
TCanvas object

Declaration

procedure Arc(X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer);

The Arc method draws an arc on the canvas along the perimeter of the ellipse bounded
by the specified rectangle. Coordinates (X1, Y1 and X2, Y2) define the enclosing
rectangle for the arc. The arc starts at the intersection of the ellipse edge and the line
from the center of the ellipse to the specified starting point (X3, Y3). The arc is drawn
counterclockwise until it reaches the position where the ellipse edge intersects the line
from the center of the ellipse to the specified ending point (X4, Y4).

Example
The following lines of code draw the top quarter of an arc bounded by the current
window:

TForm1.FormPaint(Sender: TObject);
var
R: TRect;

begin
R := GetClientRect; {Gets the rectangular coordinates of the current window}
Canvas.Arc(R.Left, R.Top, R.Right, R.Bottom, R.Right, R.Top, R.Left, R.Top);

end;

See also
Chord method, Draw method, DrawFocusRect method, Ellipse method, Pie method

ArcTan function System

Declaration

function ArcTan(X: Real): Real;

The ArcTan function returns the resulting arctangent of the argument.

44 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A r r a n g e I c o n s m e t h o d

You can calculate other trigonometric functions using Sin, Cos, and ArcTan in the
following expressions:

Tan(x) = Sin(x) / Cos(x)
ArcSin(x) = ArcTan (x/sqrt (1–sqr (x)))
ArcCos(x) = ArcTan (sqrt (1–sqr (x)) /x)

Example

var
 R: Real;
begin
 R := ArcTan(Pi);
end;

See also
Cos function, Sin function

ArrangeIcons method

Applies to
TForm component

Declaration

procedure ArrangeIcons;

The ArrangeIcons method arranges the icons of minimized forms so that they are evenly
spaced and don’t overlap. The ArrangeIcons method applies only to forms that are MDI
parent forms (have a FormStyle property value of fsMDIForm).

Example
This code runs when the user chooses a menu item called Window|Arrange Icons:

procedure TForm1.WindowArrangeIconsClick(Sender: TObject);
begin
Form1.ArrangeIcons;

end;

See also
Cascade method, Next method, Previous method, Tile method

AsBCD property

Applies to
TParam object

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 45

A s B o o l e a n p r o p e r t yA
Declaration

property AsBCD: Double;

Assigning a value to the AsBCD property sets the DataType property to ftBCD and saves
the value as the current data for the parameter.

See also
TFieldType type

AsBoolean property

Applies to
TParam object; TBooleanField, TStringField components

For TParam objects

Declaration

property AsBoolean: Boolean;

Assigning a value to the AsBoolean property sets the DataType property to ftBoolean and
saves the value as the current data for the parameter. Accessing the AsBoolean property
attempts to convert the current data to a Boolean value and returns that value.

For Boolean and string field components

Declaration

property AsBoolean: Boolean;

Run-time only. This is a conversion property. For a TBooleanField, AsBoolean can be used
to read or set the value of the field, but Value should be used for this purpose instead.

For a TStringField, AsBoolean returns True on reading the value of the field if its text
begins with the letters “Y”, “y”, “T” or “t” (for “Yes” or “True”), and False otherwise.
Using AsBoolean to write a TStringField’s value sets the string to ‘T’ or ‘F’.

Example
if Table1.FieldByName('BackOrdered').AsBoolean then ...

AsCurrency property

Applies to
TParam object

46 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A s D a t e p r o p e r t y

Declaration

property AsCurrency: Double;

Assigning a value to the AsCurrency property sets the DataType property to ftCurrency
and saves the value as the current data for the parameter. Accessing the AsCurrency
property attempts to convert the current data to a Double value and returns that value.

See also
TFieldType type

AsDate property

Applies to
TParam object

Declaration

property AsDate: TDateTime;

Assigning a value to the AsDate property sets the DataType property to ftDate and saves
the value as the current data for the parameter. Accessing the AsDate property attempts
to convert the current data to a TDateTime value and returns that value.

See also
StrToDateTime function, TFieldType type

AsDateTime property

Applies to
TParam object; TDateField, TDateTimeField, TStringField, TTimeField components

For TParam objects

Declaration

property AsDateTime: TDateTime;

Assigning a value to the AsDateTime property sets the DataType property to ftDateTime
and saves the value as the current data for the parameter. Accessing the AsDateTime
property attempts to convert the current data to a TDateTime value and returns that
value.

See also
StrToDateTime function, TFieldType type

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 47

A s F l o a t p r o p e r t yA
For date, date-time, time, and string field components

Declaration

property AsDateTime: TDateTime;

Run-time only. This is a conversion property. For TDateField, TDateTimeField or
TTimeField, AsDateTime can be used to read or set the value of the field, but Value should
be used for this purpose instead.

For a TStringField, AsDateTime converts a date to a string on assigning a value to the
string field, and converts a string to a date when reading from the field.

Example
The following statement converts a string to a date for insertion into a date field:

Table1.FieldByName(TimeStamp).AsDateTime := StrToDateTime(Now);

See also
DateToStr function, StrToDate function, StrToDateTime function, DateTimeToStr function,
TimeToStr function, StrToTime function, Value property

AsFloat property

Applies to
TParam object; TBCDField, TCurrencyField, TFloatField, TStringField components

For TParam objects

Declaration

property AsFloat: Double;

Assigning a value to the AsFloat property sets the DataType property to ftFloat and saves
the value as the current data for the parameter. Accessing the AsFloat property attempts
to convert the current data to a Double value and returns that value.

See also
TFieldType type

For field components

Declaration

property AsFloat: Double;

48 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A s I n t e g e r p r o p e r t y

Run-time only. This is a conversion property. For a TFloatField, TBCDField or
TCurrencyField, AsFloat can be used to read or set the value of the field as a Double, but
Value should be used for this purpose instead.

For a TStringField, AsFloat converts a float to a string on assigning a value to the field,
and converts a string to a float when reading from the field.

See also
FloatToStr function, StrToFloat function

AsInteger property

Applies to
TParam object; TIntegerField, TSmallintField, TStringField, TWordField components

For TParam objects

Declaration

property AsInteger: LongInt;

Assigning a value to the AsInteger property sets the DataType property to ftInteger and
saves the value as the current data for the parameter. Accessing the AsInteger property
attempts to convert the current data to a Longint value and returns that value.

See also
TFieldType type

For field components

Declaration

property AsInteger: Longint;

Run-time only. This is a conversion property. For a TIntegerField, TSmallintField or
TWordField, AsInteger can be used to read or set the value of the field as a Longint, but
Value should be used for this purpose instead.

For a TStringField, AsInteger converts an integer to a string on assigning a value to the
field, and converts a string to an integer when reading from the field.

See also
Data Access Components Hierarchy, IntToStr function, StrToInt function, Value
property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 49

A s s i g n m e t h o dA
Assign method

Applies to
TBitmap, TBrush, TClipboard, TControlScrollBar, TFieldDef, TFieldDefs, TFont, TIcon,
TIndexDef, TIndexDefs, TMetafile, TParam, TParams, TPen, TPicture, TStringList, TStrings
objects

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

For the Clipboard

Declaration:

procedure Assign(Source: TPersistent);

The Assign method assigns the object specified by the Source parameter to the Clipboard.
If the object is a TGraphic, TBitmap, TPicture or TMetafile, the image will be copied to the
Clipboard in the corresponding format (either CF_BITMAP or CF_METAFILE). For
example, the following code copies the bitmap from a bitmap object named Bitmap1 to
the Clipboard:

Clipboard.Assign(Bitmap1);

To retrieve an object from the Clipboard, simply use the Assign method of an
appropriate object. For example, if a bitmap is on the Clipboard, the following code
copies it to a bitmap object named Bitmap1:

Bitmap1.Assign(Clipboard);

Example
The following code copies the bitmap of a speed button named SpeedButton1 to the
Clipboard:

Clipboard.Assign(SpeedButton1.Glyph);

See also
AsText property, Clipboard variable, HasFormat property

For field definitions

Declaration

procedure Assign(FieldDefs: TFieldDefs);

Assign creates a new set of TFieldDef objects in Items from the FieldDefs parameter. Any
previously entries in Items are freed.

50 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A s s i g n m e t h o d

For index definitions

Declaration

procedure Assign(IndexDefs: TIndexDefs);

Assign creates a new set of TIndexDef objects in Items from the IndexDefs parameter. Any
previously entries in Items are freed.

For field components

Declaration

procedure Assign(Source: TPersistent);

Assign copies data from one field to another. Both fields must be valid and have the
same DataType and Size, and the DataSize of Source must be 255 bytes or less.

The restrictions on type compatibility and size do not apply to TBlobField, TBytesField,
TGraphicField, TMemoField, and TVarBytesField. For a TBlobField, TBytesField or
TVarBytesField, the source can be a TBlobField, TBytesField, TVarBytesField, TMemoField
component, TGraphicField component, TMemoField component, TStrings object, TPicture
or TGraphicField.

Examples

{ Copy one date-time field to another }
DateTimeField1.Assign(DateTimeField2);

{ Copy a graphic field to a blob field }
BlobField1.Assign(GraphicField1);

{Copy strings in a TMemo to a TMemoField}
MemoField1.Assign(Memo1.Lines);

See also
DataType property, Size property

For TParam objects

Declaration

procedure Assign(Param: TParam);

The Assign method transfers all of the data contained in the Param parameter to the
TParam object that calls it. If, however, you have specified a value for the ParamType
property of the TParam object that calls Assign, the data in the Param parameter will not
be assigned to the TParam object.

Example

{ Copy the CustNo parameter from Query1 to Query2 }

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 51

A s s i g n m e t h o dA
Query2.ParamByName(‘CustNo’).Assign(Query1.ParamByName(‘CustNo’));

See also
ParamType property, DataType property, AssignField method

For TParams objects

Declaration

procedure Assign(Source: TPersistent);

If Source is another TParams object, Assign discards any current parameter information
and replaces it with the information from Source. If Source is any other type of object,
Assign calls its inherited method. Use this method to save and restore a set of parameter
information or copy another object’s information.

Example

var SavedParams: TParams;
...
{ Initialize SavedParams }
SavedParams := TParams.Create;
{ Save the parameters for Query1 }
SavedParams.Assign(Query1.Parameters);
{ Do something with Query1 }
...
{ Restore the parameters to Query1 }
Query1.Parameters.Assign(SavedParams);
SavedParams.Free;

See also
AssignValues method

For other objects

Declaration

procedure Assign(Source: TPersistent);

The Assign method assigns one object to another. The general form of a call to Assign is

Destination.Assign(Source);

which tells the Destination object to assign the contents of the Source object to itself.

In general, the statement “Destination := Source” is not the same as the statement
“Destination.Assign(Source)”. The statement “Destination := Source” makes Destination
reference the same object as Source, whereas "Destination.Assign(Source)" copies the
contents of the object references by Source into the object referenced by Destination.

52 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A s s i g n C r t p r o c e d u r e

If Destination is a property of some object, however, and that property is not a reference
to another object (such as the ActiveControl property of a form, or the DataSource
property of a data-aware control), then the statement "Destination := Source" is the same
as "Destination.Assign(Source)". Consider these statements:

Button1.Font := Button2.Font;
ListBox1.Items := Memo1.Lines;
Table1.Fields[0] := Query1.Fields[2];

They correspond to these statements:

Button1.Font.Assign(Button2.Font);
ListBox1.Items.Assign(Memo1.Lines);
Table1.Fields[0].Assign(Query1.Fields[2]);

The actions performed by Assign depend on the actual types of Destination and Source.
For example, if Destination and Source are string objects (TStrings), the strings contained
in Source are copied into Destination. Likewise, if Destination and Source are bitmaps
(TBitmap), the bitmap contained in Source is copied into Destination.

Although the compiler allows any two TPersistent objects to be used in a call to Assign,
the call succeeds at run time only if the objects involved "know" how to perform an
assignment. For example, if Destination is a button (TButton) and Source is an edit box
(TEdit), the call to Assign raises an EConvertError exception at run time.

An object of one type can always be assigned to another object of the same type. In
addition, Assign supports the following special cases:

• If Destination is of type TPicture then Source can be of type TBitmap, TIcon, or TMetafile.

• If Destination is of type TBitmap, TIcon, or TMetafile then Source can be of type TPicture
if the Graphic property of the picture is of the same type as Destination.

• If Destination is of type TBlobField then Source can be of type TBitmap, TPicture, or
TStrings.

Example
The following code changes the properties of a label’s font so that they match the
properties of the button’s font when the user clicks the button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Font.Assign(Button1.Font);
end;

AssignCrt procedure WinCrt

Declaration

procedure AssignCrt(var f: Text);

The AssignCrt procedure associates a text file with the CRT window.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 53

A s s i g n e d f u n c t i o nA
AssignCrt works exactly like the Assign standard procedure except that no file name is
specified. Instead, the text file associates with the CRT window, which emulates a text-
based CRT in the Windows environment. Subsequent Write and Writeln operations on
the file write to the CRT window, and Read and Readln operations read from the CRT
window.

This allows faster output (and input) than would normally be possible using standard
output (or input).

See also
AssignFile procedure, Read procedure, Readln procedure, Write procedure, Writeln
procedure

Assigned function System

Declaration

function Assigned(var P): Boolean;

The Assigned function tests if a pointer or procedural variable is nil (unassigned).

P must be a variable reference of a pointer or procedural type. Assigned(P) corresponds
to the test P<> nil for a pointer variable, and @P <> nil for a procedural variable.

Assigned returns True if P is nil, False otherwise.

Note Assigned can’t detect a “stale” pointer—that is, one that isn’t nil but no longer points to
valid data. For example, in the following code, Assigned won’t detect the fact that P isn’t
valid.

Example

var P: Pointer;
begin
 P := nil;
 if Assigned (P) then Writeln ('You won''t see this');
 P := @P;
 if Assigned (P) then Writeln ('You''ll see this');
end;

AssignField method

Applies to
TParam object

Declaration

procedure AssignField(Field: TField);

54 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A s s i g n F i l e p r o c e d u r e

The AssignField method transfers the DataType value and Name from Field. Use
AssignField to set a parameter from a TField component.

Example

{ Copy the CustNo field value from Query1 to the CustNo parameter of Query2 }
Query2.ParamByName(‘CustNo’).AssignField(Query1.FieldNyName(‘CustNo’));

AssignFile procedure System

Declaration

procedure AssignFile(var F, String);

To avoid scope conflicts, AssignFile replaces Assign in Delphi. However, for backward
compatibility you can still use Assign.

The AssignFile procedure associates the name of an external file with a file variable.

F is a file variable of any file type, and string is a string-type expression or an expression
of type PChar if extended syntax is enabled. All further operations on F operate on the
external file name.

After calling AssignFile, F is associated with the external file until F is closed.

When the String parameter is empty, F associates with the standard input or standard
output file.

If assigned an empty name, after a call to Reset (F), F refers to the standard input file, and
after a call to Rewrite (F), F refers to the standard output file.

Do not use AssignFile on a file variable that is already open.

A file name consists of a path of zero or more directory names separated by backslashes,
followed by the actual file name:

Drive:\DirName\...\DirName\FileName

If the path begins with a backslash, it starts in the root directory; otherwise, it starts in
the current directory.

Drive is a disk drive identifier (A–Z). If Drive and the colon are omitted, the default drive
is used. \DirName\...\DirName is the root directory and subdirectory path to the file
name. FileName consists of a name of up to eight characters, optionally followed by a
period and an extension of up to three characters. The maximum length of the entire file
name is 79 characters.

Example

var
 F: TextFile;
 S: string;
begin
 if OpenDialog1.Execute then { Display Open dialog box }

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 55

A s s i g n P r n p r o c e d u r eA
 begin
 AssignFile(F, OpenDialog1.FileName); { File selected in dialog box }
 Reset(F);
 Readln(F, S); { Read the first line out of the file }
 Edit1.Text := S; { Put string in a TEdit control }
 CloseFile(F);
 end;
end;

See also
Append procedure, FileClose procedure, Reset procedure, Rewrite procedure

AssignPrn procedure Printers

Declaration

procedure AssignPrn(var F: Text);

The AssignPrn procedure assigns a text-file variable to the printer. After the variable is
assigned, your application must call the Rewrite procedure. Then any time an
application writes data to F, the text-file variable, the data is sent to the printer using the
pen and font of the Canvas property.

Example
This code prints a line of text on the printer when the user clicks the button on the form:

procedure TForm1.Button1Click(Sender: TObject);
var
 MyFile: TextFile;
begin
 AssignPrn(MyFile);
 Rewrite(MyFile);
 Writeln(MyFile, ‘Print this text’);
 System.CloseFile(MyFile);
end;

AssignStr procedure SysUtils

Declaration

procedure AssignStr(var P: PString; const S: string);

AssignStr assigns a new dynamically allocated string to the given string pointer.
AssignStr corresponds to the statement DisposeStr(P) followed by the statement P :=
NewStr(S). Note that P must be NIL or contain a valid string pointer before calling
AssignStr. In other words, AssignStr cannot be used to initialize a string pointer variable.

56 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A s s i g n V a l u e m e t h o d

Example

var
P: PString;

begin
P := NewStr('First string'); { Allocate and point to 'First string' }
AssignStr(P, 'Second string'); { Dispose of 'First string', allocate and point to }

{ 'Second string' }
DisposeStr(P); { Dispose of 'Second string' }

end;

See also
DisposeStr procedure

AssignValue method

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

procedure AssignValue(const Value: TVarRec);

The AssignValue method sets the field to Value using one of the AsInteger, AsBoolean,
AsString or AsFloat properties, depending on the type of Value. If Value is of type TObject
or a TObject descendant, AssignValue uses the Assign method to transfer the information.

Example

Field1.AssignValue(‘new string’);

AssignValues method

Applies to
TParams object

Declaration

procedure AssignValues(Value: TParams);

For each entry in Items, the AssignValues method attempts to find a parameter with the
same Name property in Value. If successful, the parameter information (type and current
data) from the Value parameter is assigned to the Items entry. Entries in Items for which
no match is found are left unchanged.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 57

A s S m a l l I n t p r o p e r t yA
Example

var SavedParams: TParams;
...
{ Initialize SavedParams }
SavedParams := TParams.Create;
{ Save the parameters for Query1 }
SavedParams.Assign(Query1.Parameters);
{ Do something with Query1 }
...
{ Restore the parameters to Query1 }
Query1.Parameters.AssignValues(SavedParams);
SavedParams.Free;

AsSmallInt property

Applies to
TParam object

Declaration

procedure SetAsSmallInt(Value: Longint);

Assigning a value to the AsSmallInt property sets the DataType property to fsSmallInt
and save the value as the current data for the parameter. Accessing the AsSmallInt
property attempts to convert the current data to a SmallInt value and returns that value.

AsString property

Applies to
TParam object; TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField,
TDateField, TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField,
TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

For TParam objects

Declaration

property AsString: string;

Assigning a value to the AsString property sets the DataType property to ftString and
saves the value as the current data for the parameter. Accessing the AsString property
attempts to convert the current data to a string value and returns that value.

See also
DateToStr function, DateTimeToStr function, FloatToStr function, IntToStr function,
TFieldType type, TimeToStr function

58 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A s T e x t p r o p e r t y

For field components

Declaration

property AsString: string;

Run-time only. This a conversion property. For a TStringField, AsString can be used to
read or set the value of the field as a string, but Value should be used for this purpose
instead.

For TBCDField, TCurrencyField, TDateField, TDateTimeField, TFloatField, TIntegerField,
TSmallintField, TTimeField, and TWordField, AsString converts a string to the appropriate
type on inserting to or updating the field, and converts the type to a string when reading
from the field.

For TBooleanField, on insert or update AsString sets the value to True if the text begins
with the letter “Y”, “y”, “T” or “t” and to False otherwise. When reading from a Boolean
field, AsString returns ‘T’ or ‘F’.

For a TMemoField, AsString should only be used to read from the field. It sets the string
value to ‘(Memo)’. An exception is raised if AsString is used to write to a TMemoField.

For a TGraphicField, AsString should only be used to read from the field. It sets the string
value to ‘(Graphic)’. An exception is raised if AsString is used to write to a TGraphicField.

For a TBlobField, AsString should only be used to read from the field. It sets the string
value to ‘(Blob)’. An exception is raised if AsString is used to write to a TBlobField.

For a TBytesField, AsString should only be used to read from the field. It sets the string
value to ‘(Bytes)’. An exception is raised if AsString is used to write to a TBytesField.

For a TVarBytesField, AsString should only be used to read from the field. It sets the
string value to ‘(Var Bytes)’. An exception is raised if AsString is used to write to a
TVarBytesField.

Note When working with TMemoField, TGraphicField, or TBlobField, use the Assign,
LoadFromFile, or LoadFromStream methods to write to a field, and Assign, SaveToFile, or
SaveToStream methods to read from a field.

AsText property

Applies to
TClipboard object

Declaration

property AsText: String;

Run-time only. The AsText property returns the current contents of the Clipboard as a
string. The Clipboard must contain a string or an exception occurs.

You can also use the AsText property to place a copy of a string on the Clipboard. Assign
a string as the value of AsText.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 59

A s T i m e p r o p e r t yA
The string value of the AsText property is limited to 255 characters. If you need to set
and retrieve more than 255 characters, use the SetTextBuf and GetTextBuf Clipboard
methods.

If the Clipboard contains a string, this expression is True:

Clipboard.HasFormat(CF_TEXT)

Example
The following code retrieves the contents of the Clipboard as a string and displays the
value in a label:

begin
Label1.Caption := Clipboard.AsText;

end;

See also
Clipboard variable, HasFormat method

AsTime property

Applies to
TParam object

Declaration

property AsTime: TDateTime;

Assigning a value to the AsTime property sets the DataType property to ftTime and saves
the value as the current data for the parameter. Accessing the AsTime property attempts
to convert the current data to a TDateTime value and returns that value.

See also
StrToDateTime function, TDateTime type, TFieldType type

AsWord property

Applies to
TParam object

Declaration

property AsWord: Longint;

Assigning a value to the AsWord property sets the DataType property to ftWord and
saves the value as the current data for the parameter. Accessing the AsWord property
attempts to convert the current data to a Longint value and returns that value.

60 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A u t o A c t i v a t e p r o p e r t y

See also
TFieldType type

AutoActivate property

Applies to
TOLEContainer component

Declaration

property AutoActivate: TAutoActivate;

AutoActivate determines how an object in an OLE container can be activated. These are
the possible values:

Example
The following code sets the activation method of OLEContainer1 to aaManual, then
activates OLEContainer1:

OLEContainer1.AutoActivate := aaManual;
OLEContainer1.Active := True;

See also
OnActivate event

AutoCalcFields property

Applies to
TTable, TQuery, TStoredProc components

Declaration

property AutoCalcFields: Boolean;

The AutoCalcFields property determines when OnCalcFields is called. OnCalcFields is
always called whenever an application retrieves a record from the database. If
AutoCalcFields is True, then OnCalcFields is called also whenever a field in a dataset is
edited.

Value Meaning

aaManual The OLE object must be manually activated. To activate the OLE object manually,
set the Active property to True.

aaGetFocus The user activates the OLE object by clicking the OLE container or pressing Tab
until focus shifts to the OLE container. If the OLE container has a TabOrder of 0,
the OLE container initially receives focus but the OLE object won’t be activated.

aaDoubleClick The user activates the OLE object by double-clicking the OLE container, or
pressing Enter when the container has focus. An OnDblClick event is generated
immediately after the OLE server application is activated.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 61

A u t o D i s p l a y p r o p e r t yA
If AutoCalcFields is True, OnCalcFields should not perform any actions that modify the
dataset (or the linked dataset if it is part of a master-detail relationship), because this can
lead to recursion. For example, if OnCalcFields performs a Post, and AutoCalcFields is
True, then OnCalcFields will be called again, leading to another Post, and so on.

AutoDisplay property

Applies to
TDBImage, TDBMemo component

Declaration

property AutoDisplay: Boolean;

The value of the AutoDisplay property determines whether to automatically display the
contents of a memo or graphic BLOB in a database memo (TDBMemo) or database
image (TDBImage) control.

If AutoDisplay is True (the default value), the control automatically displays new data
when the underlying BLOB field changes (such as when moving to a new record).

If AutoDisplay is False, the control clears whenever the underlying BLOB field changes.
To display the data, the user can double-click on the control or select it and press Enter.
In addition, by calling the LoadMemo method of a database memo or the LoadPicture
method of a database image you can ensure that the control is showing data.

You might want to change the value of AutoDisplay to False if the automatic loading of
BLOB fields seems to take too long.

Example
The following code displays the text BLOB in DBMemo1.

DBMemo1.AutoDisplay := True;

See also
LoadMemo method, LoadPicture method

AutoEdit property

Applies to
TDataSource component

Declaration

property AutoEdit: Boolean;

AutoEdit determines if data-aware controls connected to TDataSource automatically
place the current record into edit mode by calling the table’s Edit method when the user
begins typing within one of them. AutoEdit is True by default; set it to False to protect the

62 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A u t o E n a b l e p r o p e r t y

data from being unintentionally modified. When AutoEdit is False, you can still call the
Edit method to modify a field.

AutoEnable property

Applies to
TMediaPlayer component

Declaration

property AutoEnable: Boolean;

The AutoEnable property determines whether the media player automatically enables
and disables individual buttons in the component.

If AutoEnable is True, the media player automatically enables or disables its control
buttons. The media player determines which buttons to enable or disable by the current
mode specified in the Mode property, and the current multimedia device type specified
in the DeviceType property.

AutoEnable overrides the EnabledButtons property. The buttons enabled or disabled
automatically by the media player supersede any buttons enabled or disabled with
EnabledButtons.

If AutoEnable is False, the media player does not enable or disable buttons. You must
enable or disable buttons with the EnabledButtons property.

The following table shows whether buttons are automatically enabled or disabled for
each device mode:

Example
The following code causes all of the buttons of MediaPlayer1 to become disabled when a
bitmap button is clicked:

procedure TForm1.BitBtn1Click(Sender: TObject);
begin
 with MediaPlayer1 do begin
 AutoEnable := False;

Button Play Record Pause Stop Not Open

Back Enabled Enabled Enabled Enabled Disabled
Eject Enabled Enabled Enabled Enabled Disabled
Next Enabled Enabled Enabled Enabled Disabled
Pause Enabled Enabled Enabled Disabled Disabled
Play Disabled Disabled Enabled Enabled Disabled
Prev Enabled Enabled Enabled Enabled Disabled
Record Disabled Disabled Enabled Enabled Disabled
Step Enabled Enabled Enabled Enabled Disabled
Stop Enabled Enabled Disabled Disabled Disabled

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 63

A u t o M e r g e p r o p e r t yA
 EnabledButtons := [];
 end;
end;

See also
AutoOpen property

AutoMerge property

Applies to
TMainMenu component

Declaration

property AutoMerge: Boolean;

The AutoMerge property determines if the main menus (TMainMenu) of forms other
than the main form merge with the main menu of the main form in non-MDI
applications at run time. The default value is False. To merge the form’s menus with the
main menu in the main form, set the AutoMerge property of each main menu you want
merged to True. Make sure that the AutoMerge property of the main menu you are
merging with other menus remains False. How menus merge depends on the value of
the GroupIndex property for each menu item.

If the application is an MDI application (the FormStyle properties are set so the main
form is a parent form and subsequent forms are child forms), menu merging occurs
automatically and you don’t need to use the AutoMerge property. In an MDI application,
you should be sure that the AutoMerge value for the main menu of the parent form is
False, or else the menu bar of the parent form disappears when a child form appears.

Example
This example uses two forms with a main menu and a button on each form. Using the
Object Inspector, set the GroupIndex value for each menu item on the menu bar in the
second form to a number greater than 0. When the application runs and the user clicks
the button on the first form, the main menu on the second form merges with the main
menu of the first form. When the user clicks the button on the second form, the form
closes.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Form2.MainMenu1.AutoMerge := True;
 Form2.Show;
end;

This is the code for the button-click event handler on the second form:

procedure TForm2.Button1Click(Sender: TObject);
begin
 Close;
end;

64 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A u t o O p e n p r o p e r t y

To run this example, you must add Unit2 to the uses clause of Unit1.

See also
GroupIndex property, Merge method, Unmerge method

AutoOpen property

Applies to
TMediaPlayer component

Declaration

property AutoOpen: Boolean;

The AutoOpen property determines if the media player is opened automatically when
the application is run. If AutoOpen is True, the media player attempts to open the
multimedia device specified by the DeviceType property (or FileName if DeviceType is
dtAutoSelect) when the form containing the media player component is created at run
time. If AutoOpen is False, the device must be opened with a call to the Open method.
AutoOpen defaults to True.

If an error occurs when opening the device, an exception of type EMCIDeviceError is
raised which contains the error message. Upon completion, a numerical error code is
stored in the Error property, and the corresponding error message is stored in the
ErrorMessage property.

The Wait property determines whether control is returned to the application before
opening the multimedia device. The Notify property determines whether opening the
device generates an OnNotify event.

Example
The following code opens MediaPlayer1 if AutoOpen was not set to True. This code
assumes that an appropriate value was specified for FileName at design time.

with MediaPlayer1 do
if not AutoOpen then

Open;

See also
Close method

AutoPopup property

Applies to
TPopupMenu component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 65

A u t o R e w i n d p r o p e r t yA
Declaration

property AutoPopup: Boolean;

The AutoPopup property determines if the pop-up menu appears when the user clicks
the right mouse button on the component that has this menu specified as the value of its
PopupMenu property. If AutoPopup is True, a right click displays the pop-up menu. If
AutoPopup is False, the menu won’t appear when the user clicks the right mouse button.
The default value is True.

To display a pop-up menu when AutoPopup is False, you must use the Popup method.

Example
The following prevents the pop-up menu from appearing when the user clicks the right
mouse button:

PopupMenu1.AutoPopup := False;

See also
OnPopup event, Popup method

AutoRewind property

Applies to
TMediaPlayer component

Declaration

property AutoRewind: Boolean;

The AutoRewind property determines if the media player control rewinds before playing
or recording.

If AutoRewind is True and the current position is at the end of the medium, Play or
StartRecording moves the current position to the beginning of the medium before
playing or recording. If AutoRewind is False, the user must click the Prev button or your
code must call Previous to move to the beginning.

Note If values have been assigned to StartPos or EndPos or if the multimedia device uses
tracks, AutoRewind has no effect on playing or recording. When you call Play or
StartRecording, the current position remains at the end of the medium.

Example
The following code plays MediaPlayer. If AutoRewind is False, Previous is called to rewind
after Play is finished.

MediaPlayer.Wait := True;
MediaPlayer.Play;
if not MediaPlayer.AutoRewind then MediaPlayer.Previous;

66 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A u t o S c r o l l p r o p e r t y

See also
Rewind method

AutoScroll property

Applies to
TForm, TScrollBox, TTabSet components

For tab set controls

Declaration

property AutoScroll: Boolean;

The AutoScroll property determines if scroll buttons automatically appear in a tab set
control if there isn’t room in the control to display all the tabs.

If AutoScroll is False, your application can still access tabs that aren’t visible by using the
FirstIndex or TabIndex properties at design time or run time, but the user can’t click on
the tabs with the mouse at run time.

Example
This code displays scroll buttons in the tab set control if all the tabs aren’t visible:

TabSet11.AutoScroll := True;

See also
FirstIndex property, TabIndex property

For forms and scroll boxes

Declaration

property AutoScroll: Boolean;

The AutoScroll property determines if scroll bars appear on the form when the form is
not large enough to display all the controls it contains. If AutoScroll is True, the scroll
bars appear automatically when necessary. For example, if the user resizes the form so
that it is smaller and some controls are partially obscured, scroll bars appear. If
AutoScroll is False, no scroll bars appear.

Example
This example uses a label on a form. When the form becomes active, the label displays a
message informing the user whether scroll bars will be available if the form is resized so
that not all controls are fully visible.

procedure TForm1.FormActivate(Sender: TObject);
begin

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 67

A u t o S e l e c t p r o p e r t yA
 if AutoScroll then
 Label1.Caption := 'Scroll bars might appear!'
 else
 Label1.Caption := 'No scroll bars will appear';
end;

See also
HorzScrollBar property, ScrollInView method, VertScrollBar property

AutoSelect property

Applies to
TDBEdit, TDBLookupCombo, TEdit, TMaskEdit components

Declaration

property AutoSelect: Boolean;

The value of the AutoSelect property determines if the text in the edit box or combo box
is automatically selected when the user tabs to the control. If AutoSelect is True, the text is
selected. If AutoSelect is False, the text is not selected.

The default value is True.

Example
This example uses an edit box and a check box on a form. Set the caption of the check
box to ‘AutoSelect text’. When the user checks the check box, text is automatically
selected each time the user tabs to the edit box. If the user unchecks the check box, text is
no longer selected automatically when the user tabs to the edit box.

procedure TForm1.CheckBox1Click(Sender: TObject);
begin
 if CheckBox1.Checked then

Edit1.AutoSelect := True
else

Edit1.AutoSelect := False;
 end;
end;

See also
AutoSize property, SelLength property, SelStart property, SelText property, Text property

AutoSize property

Applies to
TDBEdit, TDBText, TEdit, TImage, TLabel, TMaskEdit, TOLEContainer components

68 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A u t o S i z e p r o p e r t y

The AutoSize property determines if the component automatically resizes to match the
size of its contents.

For images

Declaration

property AutoSize: Boolean;

When the AutoSize property is True, the image control resizes to accommodate the
image it contains (specified by the Picture property). When AutoSize is False, the image
control remains the same size, regardless of the size of the image. If the image control is
smaller than the image, only the portion of the picture that fits inside the image
component will be visible.

The default value is False.

Note You must remember to set the AutoSize property to True before loading the picture, or
AutoSize has no effect.

To resize the image to fill an image control completely when the control is larger than
the native size of the image, use the Stretch property.

Example
This example uses an image control and a button. Resize the image control so that it is
too small to display the entire bitmap. When the user clicks the button, the bitmap is
loaded into the image control, and the image control resizes to display the bitmap in its
entirety.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Image1.AutoSize := True;
 Image1.Picture.LoadFromFile('c:\windows\arches.bmp');
end;

See also
LoadFromFile method, Stretch property

For edit boxes and database lookup combo boxes

Declaration

property AutoSize: Boolean;

When the AutoSize property is True, the height of the edit box changes to accommodate
font size changes to the text. When AutoSize is False, the edit box remains the same size,
regardless of any font changes. The default value is True.

If an edit box has no border, changing the value of AutoSize has no effect. In other
words, the BorderStyle property must have a value of bsSingle.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 69

A u t o S i z e p r o p e r t yA
Example
This example uses an edit box, a label, and a button on a form. When the user clicks the
button, the font in the edit box enlarges, and the edit box enlarges also to accommodate
the larger font size.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Edit1.AutoSize := True;
 Edit1.Font.Size := 20;
 Label1.Caption := 'The edit box is bigger now';
end;

See also
Font property

For label and database text components

Declaration

property AutoSize: Boolean;

When the AutoSize property is True, the label component resizes to the width and length
of the current string in the label’s Caption property. If you type text for a label while
AutoSize is True, the label grows for each character you type. If you change the font size
of the text, the label resizes to the new font size. When AutoSize is False, the size of the
label is not affected by the length of the string in its Caption property.

The default value of AutoSize is True.

Example
The following code keeps the size of the label control constant, even though the length
of the label’s caption changes. As a result, the caption of the label is probably too long to
display in the label when the user clicks the button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.AutoSize := False;
 Label1.Caption := 'This string is too long as the caption of this label';
end;

See also
WordWrap property

For OLE containers

Declaration

property AutoSize: Boolean;

70 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

A u t o T r a c k i n g t y p e d c o n s t a n t

Autosize determines whether the OLE container automatically resizes to the size of the
OLE object it contains.

If Autosize is True, the OLE container adopts the shape of the OLE object at run time. If
the user activates the object and changes its size, the OLE container resizes to the new
size. Setting Autosize to True may unintentionally cause the OLE container to resize to a
shape that exists outside the client area of the form or over other controls.

If Autosize is False, the shape of the OLE container remains constant. The picture of the
OLE object is clipped to fit in the shape of the OLE container when deactivated. This
clipping does not affect the OLE object itself, however. The user can still access the entire
OLE object when it is activated.

Example
The following code resizes OLEContainer1 automatically when activated:

OLEContainer1.AutoSize := True;

AutoTracking typed constant WinCrt

Declaration

const AutoTracking: Boolean = True;

The AutoTracking typed constant controls automatic cursor tracking in the CRT window.

When AutoTracking is True, the CRT window automatically scrolls to ensure that the
cursor is visible after each Write and Writeln.

If AutoTracking is False, the CRT window will not scroll automatically, and text written
to the window might not be visible to the user.

AutoUnload property

Applies to
TReport component

Declaration

property AutoUnload: Boolean;

The AutoUnload property determines whether ReportSmith Runtime unloads from
memory when you have finished running a report.

If AutoUnload is True, ReportSmith Runtime unloads as soon as the report is finished
running.

If AutoUnload is False, ReportSmith Runtime remains in memory. For example, you can
create an application that includes a menu item that runs a report. After the report runs,
you want ReportSmith Runtime to stay in memory so the report can be quickly rerun

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 71

B a c k m e t h o d+
B

again. To remove ReportSmith Runtime from memory when AutoUnload is False, you
must then call the CloseApplication method.

Example
The following code sets AutoUnload to False, so that Report1 can be run twice using two
different variables. After the second run, ReportSmith is unloaded by a call to
CloseApplication.

Report1.AutoUnload := False;
if Report1.SetVariable(‘FName’, ‘Linda’) then
Report1.Run;

if Report1.SetVariable(‘LName’, ‘King’) then
Report1.Run;

Report1.CloseApplication(False);

Back method

Applies to
TMediaPlayer component

Declaration

procedure Back;

The Back method steps backward a number of frames (determined by the value of the
Frames property) in the currently loaded medium. Back is called when the Back button
on the media player control is clicked at run time.

Upon completion, Back stores a numerical error code in the Error property and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Back method has been completed. The Notify property determines whether Back
generates an OnNotify event.

Example
The following example lets the user pick an .AVI video file using OpenDialog1 and
opens that file in MediaPlayer1. Then, the Back button can be used to step backward
through the .AVI clip. You could use this to hide MediaPlayer1 and design your own
user interface for the media player.

procedure TForm1.OpenClick(Sender: TObject);
begin
 OpenDialog1.Filename := '*.*';
 if OpenDialog1.Execute then
begin

 MediaPlayer1.Filename := OpenDialog1.Filename;
 MediaPlayer1.Open;
 end;
end;

72 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

B a c k g r o u n d C o l o r p r o p e r t y

procedure TForm1.BackClick(Sender: TObject);
begin
 MediaPlayer1.Back;
end;

See also
Capabilities property, OnClick event, Rewind method, Step method

BackgroundColor property

Applies to
TTabSet component

Declaration

property BackgroundColor: TColor;

The BackgroundColor property determines the background color of the tab set control.
The background area of the tab set control is the area between the tabs and the border of
the control. For a list of possible color values, see the Color property.

Example
This code changes the background color of the tab set control:

TabSet1.BackgroundColor := clBackground;

See also
DitherBackground property

BatchMove method

Applies to
TTable component

Declaration

function BatchMove(ASource: TDataSet; AMode: TBatchMode): Longint;

The BatchMove method copies, appends, updates, or deletes records in the TTable.
ASource is a TTable linked to a database table containing the source records. AMode is the
copy mode; it can be any of the elements of TBatchMode: batAppend, batUpdate,
batAppendUpdate, batDelete, or batCopy.

BatchMove returns the number of records operated on.

Example

Table1.BatchMove(Table2, batAppend);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 73

B e f o r e C a n c e l e v e n t+
B

See also
TBatchMove component

BeforeCancel event

Applies to
TTable, TQuery, TStoredProc components

Declaration

property BeforeCancel: TDataSetNotifyEvent;

The BeforeCancel event is activated at the beginning of a call to the Cancel method. This
event is the first action taken by Cancel. If the dataset is not in Edit state or there are no
changes pending, then Cancel will not activate the BeforeCancel event.

By assigning a method to this property, you can take any special actions required by the
event. By raising an exception in this event handler, you can prevent the Cancel
operation from occurring.

See also
AfterCancel event

BeforeClose event

Applies to
TTable, TQuery, TStoredProc components

Declaration

property BeforeClose: TDataSetNotifyEvent;

The BeforeClose event is activated before the dataset is closed, either by calling the Close
method or by setting the Active property to False. This event is the first action taken by
Close.

By assigning a method to this property, you can take any special actions required by the
event. By raising an exception in this event handler, you can prevent the Close operation
from occurring.

See also
AfterClose event

74 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

B e f o r e D e l e t e e v e n t

BeforeDelete event

Applies to
TTable, TQuery, TStoredProc components

Declaration

property BeforeDelete: TDataSetNotifyEvent;

The BeforeDelete event is activated when the dataset begins a call to Delete. This event is
the first action taken by the Delete method.

By assigning a method to this property, you can take any special actions required by the
event. By raising an exception in this event handler, you can prevent the Delete
operation from occurring.

See also
AfterDelete event

BeforeEdit event

Applies to
TTable, TQuery, TStoredProc components

Declaration

property BeforeEdit: TDataSetNotifyEvent;

The BeforeEdit event is activated when the dataset begins a call to the Edit method. This
event is the first action taken by Edit.

By assigning a method to this property, you can take any special actions required by the
event. By raising an exception in this event handler, you can prevent the Edit operation
from occurring.

See also
AfterEdit event

BeforeInsert event

Applies to
TTable, TQuery, TStoredProc components

Declaration

property BeforeInsert: TDataSetNotifyEvent;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 75

B e f o r e O p e n e v e n t+
B

The BeforeInsert event is activated when the dataset begins a call to the Insert or Append
methods. This event is the first action taken by Insert or Append.

By assigning a method to this property, you can take any special actions required by the
event. By raising an exception in this event handler, you can prevent the Insert operation
from occurring.

See also
AfterInsert event

BeforeOpen event

Applies to
TTable, TQuery, TStoredProc components

Declaration

property BeforeOpen: TDataSetNotifyEvent;

The BeforeOpen event is activated before the dataset is opened, either by calling the Open
method or by setting the Active property to True. This event is the first action taken by
the Open method. Typically, the BeforeOpen event handler opens any private lookup
tables used by other event handlers in the dataset.

By assigning a method to this property, you can take any special actions required by the
event. By raising an exception in this event handler, you can prevent the Open operation
from occurring.

See also
AfterOpen event

BeforePost event

Applies to
TTable, TQuery, TStoredProc components

Declaration

property BeforePost: TDataSetNotifyEvent;

The BeforePost event is activated at the beginning of a call to the Post method. This event
is the first action taken by the Post method, after it calls the UpdateRecord method to
reflect any changes made to the record by data controls. The BeforePost event can be
used to validate a record before it is posted. By raising an exception, a BeforePost event
handler can prevent the posting of an invalid record.

76 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

B e g i n D o c m e t h o d

By assigning a method to this property, you can take any special actions required by the
event. By raising an exception in this event handler, you can prevent the Post operation
from occurring.

See also
AfterPost event

BeginDoc method

Applies to
TPrinter object

Declaration

procedure BeginDoc;

The BeginDoc method sends a print job to the printer. If the print job is sent successfully,
the application should call EndDoc to end the print job. The print job won’t actually start
printing until EndDoc is called.

To use the BeginDoc method, you must add the Printers unit to the uses clause of your
unit.

Example
This code prints a rectangle on the default printer:

begin
Printer.BeginDoc; { begin to send print job to printer }
Printer.Canvas.Rectangle(20,20,1000,1000); { draw rectangle on printer's canvas }
Printer.EndDoc; { EndDoc ends and starts printing print job }

end;

To use the BeginDoc method, you must add the Printers unit to the uses clause of your
unit.

See also
Abort method, Printer variable

BeginDrag method

Applies to
All controls

Declaration

procedure BeginDrag(Immediate: Boolean);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 77

B e g i n U p d a t e m e t h o d+
B

The BeginDrag method starts the dragging of a control. If the Immediate parameter is
True, the mouse pointer changes to the value of the DragCursor property and dragging
begins immediately. If Immediate is False, the mouse pointer doesn’t change to the value
of the DragCursor property and dragging doesn’t begin until the user moves the mouse
pointer a short distance (5 pixels). This allows the control to accept mouse clicks without
beginning a drag operation.

Your application needs to call the BeginDrag method to begin dragging only when the
DragMode property value for the control is dmManual.

Example

procedure TForm1.Button1Click(Sender: TObject);
begin
 if Button1.DragMode = dmManual then
 Button1.BeginDrag(True);
end;

See also
DragMode property, EndDrag method, OnDragDrop event, OnDragOver event,
OnEndDrag event

BeginUpdate method

Applies to
TStringList, TStrings objects; TOutline component

Declaration

procedure BeginUpdate;

The BeginUpdate method prevents the updating of the outline or string object until the
EndUpdate method is called. For string objects, BeginUpdate prevents the screen from
being repainted when new strings are added. For outlines, BeginUpdate prevents the
screen from being repainted and prevents outline items from being reindexed when
new items are added, deleted, or inserted. Outline items affected by the changes will
have invalid Index values until EndUpdate is called.

For example, the Lines property of a memo component is of type TStrings. If your
application calls the AddStrings method to add several strings at once to the Lines
property, AddStrings calls BeginUpdate before the strings are added. After the strings are
added, AddStrings calls EndUpdate and the screen repaints, displaying the new list of
strings.

Use BeginUpdate to prevent screen repaints and to speed processing time while you are
rebuilding your list.

78 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

B e v e l I n n e r p r o p e r t y

Example
BeginUpdate and EndUpdate should always be used in conjunction with a try...finally
statement to ensure that EndUpdate is called if an exception occurs. A block that uses
BeginUpdate and EndUpdate typically looks like this:

ListBox1.Items.BeginUpdate;
try
 ListBox1.Items.Clear;
 ListBox1.Items.Add(...);
 ...
 ListBox1.Items.Add(...);
finally
 ListBox1.Items.EndUpdate; { Executed even in case of an exception }
end;

See also
EndUpdate method

BevelInner property

Applies to
TPanel component

Declaration

property BevelInner: TPanelBevel;

A panel component has two bevels, an outer bevel drawn next to the border of the
control, and an inner bevel drawn inside the outer bevel the number of pixels specified
in the BorderWidth property.

The BevelInner property determines the style of the inner bevel of a panel component.
These are the possible values:

Example
This example uses a panel component and a button named CreateStatusLine on a form.
The code moves the panel to the bottom of the form when the user clicks the button and
gives the panel the appearance of a status line by changing the value of the BevelInner,
BevelOuter, BevelWidth, and BorderWidth properties.

procedure TForm1.CreateStatusLineClick(Sender: TObject);
begin
with Panel1 do
begin

Value Meaning

bvNone No inner bevel exists.
bvLowered The inner bevel is lowered.
bvRaised The inner bevel is raised.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 79

B e v e l O u t e r p r o p e r t y+
B

Align := alBottom;
BevelInner := bvLowered;
BevelOuter := bvRaised;
BorderWidth := 1;
BevelWidth := 1;

end;
end;

See also
BevelOuter property, BevelWidth property, BorderWidth property, TPanelBevel type

BevelOuter property

Applies to
TPanel component

Declaration

property BevelOuter: TPanelBevel;

A panel component has two bevels, an outer bevel drawn next to the border of the
control, and an inner bevel drawn inside the outer bevel. The width of the inner bevel is
specified in the BorderWidth property in pixels.

The BevelOuter property determines the style of the outer bevel of a panel component.
These are the possible values:

Example
This code creates a lowered frame 10 pixels wide around a panel component named
Panel1:

Panel1.BorderWidth := 10;
Panel1.BevelInner := bvRaised;
Panel1.BevelOuter := bvLowered;

See also
BevelInner property, BevelWidth property, BorderWidth property

BevelWidth property

Applies to
TPanel component

Value Meaning

bvNone No outer bevel exists.
bvLowered The outer bevel is lowered.
bvRaised The outer bevel is raised.

80 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

B i t m a p p r o p e r t y

Declaration

property BevelWidth: TBevelWidth;

The BevelWidth property determines the width in pixels between the inner and the outer
bevels of a panel. The BevelInner property determines how the inner bevel appears, and
the BevelOuter property determines how the outer bevel appears. By changing these
properties, you change the appearance of the panel.

Example
This code alternately displays and hides the bevels of a panel when the user clicks the
Button1 button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 with Panel1 do
begin

BevelInner := bvLowered;
BevelOuter := bvRaised;

 if BevelWidth = 0 then
BevelWidth := 2

else
BevelWidth := 0;

end;
end;

See also
BorderWidth property

Bitmap property

Applies to
TBrush, TPicture objects

For brushes

Declaration

property Bitmap: TBitmap;

Run-time only. The Bitmap property enables a brush to use a bitmap image for painting
with the ability to produce special painting effects such as patterns. The bitmap must be
8 pixels high and 8 pixels wide.

Example
The following code loads a bitmap from a file and assigns it to the Brush of the Canvas of
Form1:

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 81

B l o c k R e a d p r o c e d u r e+
B

begin
Form1.Canvas.Brush.Bitmap.LoadFromFile(‘MYBITMAP.BMP’);

end;

For pictures

Declaration

property Bitmap: TBitmap;

The Bitmap property specifies the contents of the TPicture object as a bitmap graphic
(.BMP file format). If Bitmap is referenced when the TPicture contains a Metafile or Icon
graphic, the graphic won’t be converted. Instead, the original contents of the TPicture are
discarded and Bitmap returns a new, blank bitmap.

Example
The following code copies the bitmap in Picture1 to the Glyph of BitBtn1.

BitBtn1.Glyph := Picture1.Bitmap;

See also
Graphic property

BlockRead procedure System

Declaration

procedure BlockRead(var F: File; var Buf; Count: Word [; var Result: Word]);

The BlockRead procedure reads one or more records from an open file into a variable.

F is an untyped file variable, Buf is any variable, Count is an expression of type Word,
and Result is an optional variable of type Word.

BlockRead reads Count or fewer records from the file F into memory, starting at the first
byte occupied by Buf. The actual number of complete records read (less than or equal to
Count) is returned in Result.

The entire transferred block occupies at most Count * RecSize bytes. RecSize is the record
size specified when the file was opened (or 128 if the record size was not specified). An
error occurs if Count * RecSize is greater than 65,535 (64K). You can handle this error
using exceptions.

If the entire block was transferred, Result is equal to Count.

If Result is less than Count, ReadBlock reached the end of the file before the transfer was
complete. If the file’s record size is greater than 1, Result returns the number of complete
records read.

If Result isn’t specified, an I/O error occurs if the number of records read isn’t equal to
Count. You can use the EInOutError exception to handle this error.

82 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

B l o c k W r i t e p r o c e d u r e

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

Example

var
 FromF, ToF: file;
 NumRead, NumWritten: Word;
 Buf: array[1..2048] of Char;
begin
 if OpenDialog1.Execute then { Display Open dialog box }
 begin
 AssignFile(FromF, OpenDialog1.FileName);
 Reset(FromF, 1); { Record size = 1 }
 if SaveDialog1.Execute then { Display Save dialog box}
 begin
 AssignFile(ToF, SaveDialog1.FileName); { Open output file }
 Rewrite(ToF, 1); { Record size = 1 }
 Canvas.TextOut(10, 10, 'Copying ' + IntToStr(FileSize(FromF))

+ ' bytes...');
 repeat
 BlockRead(FromF, Buf, SizeOf(Buf), NumRead);
 BlockWrite(ToF, Buf, NumRead, NumWritten);
 until (NumRead = 0) or (NumWritten <> NumRead);

CloseFile(FromF);
CloseFile(ToF);

 end;
 end;
end;

See also
BlockWrite procedure

BlockWrite procedure System

Declaration

procedure BlockWrite(var f: File; var Buf; Count: Word [; var Result: Word]);

The BlockWrite procedure writes one or more records from a variable to an open file.

F is an untyped file variable, Buf is any variable, Count is an expression of type Word,
and Result is an optional variable of type Word.

BlockWrite writes Count or fewer records to the file F from memory, starting at the first
byte occupied by Buf. The actual number of complete records written (less than or equal
to Count) is returned in Result.

The entire block transferred occupies at most Count * RecSize bytes. RecSize is the record
size specified when the file was opened (or 128 if the record size was unspecified). An

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 83

B l o c k W r i t e p r o c e d u r e+
B

error occurs if Count * RecSize is greater than 65,535 (64K). You can use the exception
handler EInOutError to deal with this error.

If the entire block is transferred, Result is equal to Count on return.

If Result is less than Count, the disk became full before the transfer was complete. In this
case, if the file’s record size is greater than 1, Result returns the number of complete
records written.

The current file position is advanced by Result records as an effect of the BlockWrite.

If Result isn’t specified, an I/O error occurs if the number written isn’t equal to Count.
You can use exception handler EInOutError to deal this error.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

Example

var
 FromF, ToF: file;
 NumRead, NumWritten: Word;
 Buf: array[1..2048] of Char;
begin
 if OpenDialog1.Execute then { Display Open dialog box }
 begin
 AssignFile(FromF, OpenDialog1.FileName);

Reset(FromF, 1); { Record size = 1 }
 if SaveDialog1.Execute then { Display Save dialog box }
 begin
 AssignFile(ToF, SaveDialog1.FileName); { Open output file }
 Rewrite(ToF, 1); { Record size = 1 }
 Canvas.TextOut(10, 10, 'Copying ' + IntToStr(FileSize(FromF))

+ ' bytes...');
 repeat
 BlockRead(FromF, Buf, SizeOf(Buf), NumRead);
 BlockWrite(ToF, Buf, NumRead, NumWritten);
 until (NumRead = 0) or (NumWritten <> NumRead);

CloseFile(FromF);
CloseFile(ToF);

 end;
 end;
end;

See also
BlockRead procedure

84 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

B O F p r o p e r t y

BOF property

Applies to
TTable, TQuery, TStoredProc components

Declaration

property BOF: Boolean;

Run-time and read only. BOF is a Boolean property that indicates whether a dataset is
known to be at its first row. The BOF property returns a value of True only after:

• An application first opens a table
• A call to a table’s First method
• A call to a table’s Prior method fails

Example

Table1.Last;
while not Table1.BOF do
begin
{DoSomething}
Table1.Prior;

end;

See also
MoveBy method

BOLEFormat type BOLEDefs

Declaration

BOleFormat = Record
fmtId: Word;
fmtName: array [0..31] of char;
fmtResultName: array [0..31] of char;
fmtMedium: BOleMedium;
fmtIsLinkable: Bool;

end;

BOLEFormat registers a format that allows drag-and-drop of OLE objects and other
types onto a form. Pass an array of BOLEFormat as a parameter to the
ClearFormOLEDropFormats, RegisterFormAsOLEDropTarget, and
SetFormOLEDropFormats procedures.

An array of BOLEFormat records is also used when pasting objects from the Clipboard
with the PasteSpecialDlg function. Each object type you want to be able to paste should
be registered as an element of the Fmts parameter of PasteSpecialDlg. To see if any objects
of a given type are on the Clipboard so that the Paste Special dialog box is enabled, pass
an array of BOLEFormats in the Fmts parameter of PasteSpecialEnabled.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 85

B O L E M e d i u m t y p e+
B

These are the fields of BOLEFormat:

BOLEMedium type BOLEDefs

Declaration

type BoleMedium = Integer;
const
BOLE_MED_NULL = 0;
BOLE_MED_HGLOBAL = 1; { used for most non-ole2 formats }
BOLE_MED_FILE = 2;
BOLE_MED_STREAM = 4; { used for ole2 linked objects }
BOLE_MED_STORAGE = 8; { used for ole2 embedded objects }
BOLE_MED_GDI = 16; { used for bitmaps and other gdi formats }
BOLE_MED_MFPICT = 32; { used for metafile format }

BOLEMedium is the type of the fmtMedium field of the BOLEFormat type. This is based
on the fmtId field in the same record. For linked OLE objects, the BOLEMedium should
be BOLE_MED_STREAM. For embedded OLE objects, the BOLEMedium should be
BOLE_MED_STORAGE. For other objects, the BOLEMedium should be one of the other
values, according to the comments in the declaration above. Use BOLEMediumCalc to
calculate the BOLEMedium for a given Clipboard format.

BOLEMediumCalc function Toctrl

Declaration

function BOleMediumCalc(fmtId: Word): BOleMedium;

The BOLEMediumCalc function returns the BOLEMedium value that should be used with
the Clipboard format ID passed in the fmtId parameter. BOLEMedium is the type of the
fmtMedium field of the BOLEFormat record.

Example
The following code calculates the BOLEMedium associated with CF_BITMAP and stores
it in the fmtMedium field of the first element of a BOLEFormat record array.

Field Description

fmtId Windows Clipboard format ID. For non-OLE data, fmtId should be a standard
Clipboard format such as CF_TEXT for text or CF_BITMAP for bitmap graphics.
For OLE objects, you should register new Clipboard formats with the Windows
API function RegisterClipboardFormat.

fmtName Name to appear in the list box of Paste Special dialog box.
fmtResultName Name to appear in the Results box of the Paste Special dialog box.
fmtMedium Based on the Clipboard format ID specified in fmtId. For linked OLE objects,

fmtMedium should be BOLE_MED_STREAM. For embedded OLE objects,
fmtMedium should be BOLE_MED_STORAGE.

fmtIsLinkable True if the object is linkable, False if not. For linked OLE objects, fmtIsLinkable
should be set to True. For embedded OLE objects, fmtIsLinkable should be False.

86 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

B o r d e r C o l o r p r o p e r t y

var
Fmts: array[0..2] of BOLEFormat;

begin
Fmts[0].fmtId := CF_BITMAP;
Fmts[0].fmtMedium := BOLEMediumCalc(CF_BITMAP);
Fmts[0].fmtIsLinkable := False;
StrPCopy (Fmts[0].fmtName, '%s');
StrPCopy (Fmts[0].fmtResultName, '%s');

end;

BorderColor property

Applies to
TShape component

Declaration

property BorderColor: TColor;

The BorderColor property is used to color the border of a shape component. For a
complete list of the values the BorderColor property can have, see the Color property.

Example
This example changes the border color of a shape component at run time:

Shape1.BorderColor := clBlack;

BorderIcons property

Applies to
TForm component

Declaration

property BorderIcons: TBorderIcons;

The BorderIcons property is a set whose values determine which icons appear on the title
bar of a form. These are the possible values that the BorderIcons set can contain:

Example
The following code removes a form’s Maximize button when the user clicks a button:

procedure TForm1.Button1Click(Sender: TObject);

Value Meaning

biSystemMenu The form has a Control menu (also known as a System menu)
biMinimize The form has a Minimize button
biMaximize The form has a Maximize button

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 87

B o r d e r S t y l e p r o p e r t y+
B

begin
BorderIcons := BorderIcons - [biMaximize];

end;

See also
BorderStyle property

BorderStyle property

Applies to
TDBEdit, TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBLookupList,
TDBMemo, TDrawGrid, TEdit, TForm, THeader, TListBox, TMaskEdit, TMemo,
TOLEContainer, TOutline, TPanel, TScrollBox, TStringGrid components

For forms

Declaration

property BorderStyle: TFormBorderStyle;

The BorderStyle property for forms specifies both the appearance and the behavior of the
form border. You normally set BorderStyle at design time, but you can also change it at
run time.

BorderStyle can have any of the following values:

Changing the border style of an MDI child form to bsDialog or bsNone has no effect.

Example
This example creates a form with a single-line border that the user can’t resize:

Form1.BorderStyle := bsSingle;

See also
BorderIcons property

Value Meaning

bsDialog Not resizeable; standard dialog box border
bsSingle Not resizeable; single-line border
bsNone Not resizeable; no visible border line, Minimize or Maximize

buttons, or Control menu
bsSizeable Standard resizeable border

88 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

B o r d e r W i d t h p r o p e r t y

For controls

Declaration

property BorderStyle: TBorderStyle;

The BorderStyle property of edit boxes, list boxes, memo controls, grid controls, outlines,
and scroll boxes determines whether these components have a border. These are the
possible values:

If you set the AutoSize property of an edit box to True, the edit box resizes automatically
when the font size of the text changes. You must set the value of the BorderStyle property
to fsSingle, or else AutoSize has no effect.

Example
The following example puts a single-line border around the edit box, Edit1.

Edit1.BorderStyle := bsSingle;

See also
Ctl3D property

BorderWidth property

Applies to
TPanel component

Declaration

property BorderWidth: TBorderWidth;

The BorderWidth property determines the width in pixels of the border around a panel.
The default value is 0, which means no border.

Example
This example uses a panel component and a button named CreateStatusLine on a form.
The code moves the panel to the bottom of the form when the user clicks the button, and
gives the panel the appearance of a status line by changing the value of the BevelInner,
BevelOuter, BevelWidth, and BorderWidth properties:

procedure TForm1.CreateStatusLineClick(Sender: TObject);
begin
with Panel1 do

Align := alBottom;

Value Meaning

bsNone No visible border
bsSingle Single-line border

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 89

B o u n d s f u n c t i o n+
B

BevelInner := bvLowered;
BevelOuter := bvRaised;
BorderWidth := 1;
BevelWidth := 1;

end;
end;

See also
BevelInner property, BevelOuter property, BevelWidth property

Bounds function Classes

Declaration

function Bounds(ALeft, ATop, AWidth, AHeight: Integer): TRect;

The Bounds function returns a rectangle with the given dimensions. The statement

R := Bounds(X, Y, W, H);

corresponds to

R := Rect(X, Y, X + W, Y + H);

Example
This example returns a TRect record that defines a rectangle that is 100 pixels long on
each side with the top left corner at coordinate 10, 10.

var
R: TRect;

begin
R := Bounds(10, 10, 100, 100);

end;

See also
BoundsRect property

BoundsRect property

Applies to
All controls

Declaration

property BoundsRect: TRect;

The BoundsRect property returns the bounding rectangle of the control, expressed in the
coordinate system of the parent control. The statement

R := Control.BoundsRect;

90 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

B r e a k p r o c e d u r e

corresponds to

R.Left := Control.Left;
R.Top := Control.Top;
R.Right := Control.Left + Control.Width;
R.Bottom := Control.Top + Control.Height;

Example
This code resizes a button control to twice as wide and half as high:

procedure TForm1.Button1Click(Sender: TObject);
var
 MyRect: TRect;
begin
 MyRect := Button2.BoundsRect;
 MyRect.Right := MyRect.Left + 2 * (MyRect.Right - MyRect.Left);
 MyRect.Bottom := MyRect.Top + (MyRect.Bottom - MyRect.Top) div 2;
 Button2.BoundsRect := MyRect;
end;

See also
Bounds function

Break procedure System

Declaration

procedure Break;

The Break procedure causes the flow of control to exit a for, while, or repeat statement
and continue at the next statement following the loop statement.

The compiler reports an error if a call to Break isn’t in a for, while, or repeat statement.

Example

uses WinCRT;

var
 S: string;
begin
 while True do
 begin
 ReadLn(S);
 if S = '' then Break;
 WriteLn(S);
 end;
end;

See also
Continue procedure, Exit procedure, Halt procedure

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 91

B r e a k p r o p e r t y+
BBreak property

Applies to
TMenuItem component

Declaration

property Break: TMenuBreak;

The Break property lets you break a long menu into columns. These are the possible
values:

The default value is mbNone.

Example
This example uses a button and a main menu component with several subitems on it,
including one labeled Save As, so that Delphi automatically names that menu item
SaveAs1. When the user clicks the button on the form, the menu breaks so Save As
appears in a second column with a bar between the two columns. The change to the
menu is visible when the menu displays.

procedure TForm1.Button1Click(Sender: TObject);
begin
 SaveAs1.Break := mbBarBreak;
end;

See also
Checked property, Enabled property

BringToFront method

Applies to
All controls; TForm component

Declaration

procedure BringToFront;

The BringToFront method puts the component or form in front of all other components
or forms within its parent component or form. BringToFront is especially useful for

Value Meaning

mbNone No menu breaking occurs.
mbBarBreak The menu breaks into another column with the menu item appearing at the top of the

new column. A bar separates the new and the old columns.
mbBreak The menu breaks into another column with the menu item appearing at the top of the

new column. Only space separates the new and the old columns.

92 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

B r u s h p r o p e r t y

making certain that a form is visible. You can also use it to reorder overlapping
components within a form.

The order in which controls stack on top of each order (also called the Z order) depends
on whether the controls are windowed or non-windowed controls. For example, if you
put a label and an image on a form so that one is on top of the other, the one you placed
first on the form is the one on the bottom. Because both the label and the image are non-
windowed controls, they “stack” as you would expect them to. Suppose that the label is
on the bottom. If you call the BringToFront method for the label, the label then appears
on top of the image.

The stacking order of windowed controls is the same. For example, if you put a memo
on a form, then put a check box on top of it, the check box remains on top. If you call
BringToFront for the memo, the memo appears on top.

The stacking order of windowed and non-windowed controls cannot be mingled. For
example, if you put a memo, a windowed control, on a form, and then put a label, a non-
windowed control, on top of it, the label disappears behind the memo. Windowed
controls always stack on top of non-windowed controls. In this example, if you call the
BringToFront method of the label, it remains behind the memo.

Example
The following code uses two forms. Form1 has a button on it. The second form is used as
a tool palette. This code makes the palette form visible, and ensures it is the top form by
bringing it to the front.

To run this example, you must put Unit2 in the uses clause of your unit.

procedure TForm1.ShowPaletteButtonClick(Sender: TObject);
begin
if Form2.Visible = False then Form2.Visible := True;
Form2.BringToFront;

end;

See also
SendToBack method

Brush property

Applies to
All controls; TCanvas object; TForm, TShape components

Declaration

property Brush: TBrush;

A canvas or shape object’s Brush property determines what kind of color and pattern the
canvas uses for filling graphical shapes and backgrounds. Controls also specify an
additional brush in their Brush properties, which they use for painting their
backgrounds.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 93

B r u s h C o p y m e t h o d+
B

For controls, Brush is a read only and run-time only property.

Example
The following code sets the color of the brush used by Form1 to fill shapes drawn on it
with red:

procedure TForm1.MakeRedButtonClick(Sender: TObject);
begin
Canvas.Brush.Color := clRed;

end;

This code changes the shape, color, and pattern of a shape component:

procedure TForm1.ChangeShapeClick(Sender: TObject);
begin
 Shape1.Shape := stEllipse;
 Shape1.Brush.Color := clMaroon;
 Shape1.Brush.Style := bsFDiagonal;
end;

See also
BrushCopy method, Canvas property, Font property, Pen property, TCanvas object

BrushCopy method

Applies to
TCanvas object

Declaration

procedure BrushCopy(const Dest: TRect; Bitmap: TBitmap; const Source: TRect; Color: TColor);

The BrushCopy method copies a portion of a bitmap onto a portion of a canvas, replacing
one of the colors of the bitmap with the brush of the destination canvas. Dest specifies
the rectangular portion of the destination canvas to copy to. Bitmap specifies the graphic
to copy from. Source specifies the rectangular area of the bitmap to copy. Color specifies
the color in Bitmap to replace with the brush of the canvas (specified in the Brush
property).

You could use BrushCopy to make the copied image partially transparent, for example.
To do this, you would specify the color of the surface being copied to (clBackground for
example) as the Color of the Brush property of the destination canvas, then call
BrushCopy.

Example
The following code illustrates the differences between CopyRect and BrushCopy. The
bitmap graphic ‘TARTAN.BMP’ is loaded into Bitmap and displayed on the Canvas of
Form1. BrushCopy replaces the color black in the graphic with the brush of the canvas,
while CopyRect leaves the colors intact.

94 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

B t n C l i c k m e t h o d

var
 Bitmap: TBitmap;
 MyRect, MyOther: TRect;
begin
 MyRect.Top := 10;
 MyRect.Left := 10;
 MyRect.Bottom := 100;
 MyRect.Right := 100;
 MyOther.Top := 111; {110}
 MyOther.Left := 10;
 MyOther.Bottom := 201; {210}
 MyOther.Right := 100;
 Bitmap := TBitmap.Create;
 Bitmap.LoadFromFile('c:\windows\tartan.bmp');
 Form1.Canvas.BrushCopy(MyRect,Bitmap, MyRect, clBlack);
 Form1.Canvas.CopyRect(MyOther,Bitmap.Canvas,MyRect);
Bitmap.Free;

end;

See also
Brush property, CopyRect method

BtnClick method

Applies to
TDBNavigator component

Declaration

procedure BtnClick(Index: TNavigateBtn);

The BtnClick method simulates a button click on the database navigator, invoking the
action of the button. Specify which button BtnClick should operate on as the value of the
Index parameter.

Example
This line of code simulates the clicking of the Next button on a database navigator
control, which makes the next record in the dataset the current record:

DBNavigator1.BtnClick(nbNext);

Buttons property

Applies to
TDBRadioGroup, TRadioGroup components

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 95

C a l c u l a t e d p r o p e r t y+
+
C

Declaration

property Buttons: TList;

Run-time and read only. The Buttons property lets your application access the list of
radio buttons in the database radio button group box. Use the properties and methods
of a list object (TList) to manipulate the list of buttons.

Example
The following code disables the first button in DBRadioGroup1.

TRadioButton(DBRadioGroup1.Buttons.First).Enabled := False;

Calculated property

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

property Calculated: Boolean;

Calculated is True if the value of the field is calculated by the OnCalcFields event handler.
Calculated fields can be created with the Fields Editor, but are not stored in or retrieved
from the physical tables underlying a dataset. Instead they are calculated for each record
in the table by the dataset’s OnCalcFields event handler, which typically uses expressions
involving values from other fields in the record to generate a value for each calculated
field. For example, a table might have non-calculated fields for Quantity and UnitPrice,
and a calculated field for ExtendedPrice, which would be calculated by multiplying the
values of the Quantity and UnitPrice fields. Calculated fields are also useful for
performing lookups in other tables. For example, a part number can be used to retrieve a
part description for display in an invoice line item.

Cancel method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure Cancel;

The Cancel method returns the dataset to Browse state and discards any changes to the
current record.

96 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C a n c e l p r o p e r t y

See also
Append method, Insert method, Post method

Cancel property

Applies to
TBitBtn, TButton components

Declaration

property Cancel: Boolean;

The Cancel property indicates whether a button or a bitmap button is a Cancel button. If
Cancel is True, any time the user presses Esc, the OnClick event handler for the button
executes. Although your application can have more than one button designated as a
Cancel button, the form calls the OnClick event handler only for the first button in the
tab order that is visible.

Example
The following code designates a button called Button1 as a Cancel button:

Button1.Cancel := True;

See also
Default property, OnClick event

CancelRange method

Applies to
TTable component

Declaration

procedure CancelRange;

The CancelRange method removes any range limitations for the TTable which were
previously established by calling the ApplyRange or SetRange methods.

Example

Table1.CancelRange;

CanFocus method

Applies to
All controls

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 97

C a n M o d i f y p r o p e r t y+
+
C

Declaration

function CanFocus: Boolean;

The CanFocus method determines whether a control can receive focus. CanFocus returns
True if both the control and its parent(s) have their Visible and Enabled properties set to
True. If all the Visible and Enabled properties of the control and the components from
which the control descends are not True, then CanFocus returns False.

Example
This example uses a group box, a label, and a button on a form. The group box contains
a check box. When the application runs, the group box is disabled (Enabled is set to
False). Because the group box is the parent of the check box, the user can never tab to the
check box. When the user clicks the button, the caption of the label reports that the check
box can not receive the input focus:

procedure TForm1.FormCreate(Sender: TObject);
begin
 GroupBox1.Enabled := True;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 if CheckBox1.CanFocus then
 Label1.Caption := 'The check box can focus'
 else
 Label1.Caption := 'The check box cannot focus';
end;

See also
Parent property

CanModify property

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStoredProc, TStringField, TQuery, TTable, TTimeField, TVarBytesField, TWordField
components

For tables, queries, and stored procedures

Declaration

property CanModify: Boolean;

Run-time and read only. CanModify specifies whether an application can modify the
data in a dataset. When CanModify is False, then the dataset is read-only, and cannot be

98 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C a n v a s p r o p e r t y

put into Edit or Insert state. When CanModify is True, the dataset can enter Edit or Insert
state.

Even if CanModify is True, it is not a guarantee that a user will be able to insert or update
records in a table. Other factors may come in to play, for example, SQL access privileges.

TTable has a ReadOnly property that requests write privileges when set to False. When
ReadOnly is True, CanModify will automatically be set to False. When ReadOnly is False,
CanModify will be True if the database allows read and write privileges for the dataset
and the underlying table.

Example
if Table1.CanModify then
{ Do this only if the dataset can be modified }
Table1.CustNo := 1234;

See also
Active property

For field components

Declaration

property CanModify: Boolean;

Run-time and read only. Specifies if a field can be modified for any reason, such as
during a SetKey operation. CanModify is True if the value of the field can be modified. If
the ReadOnly property of the field is True, or the ReadOnly property of the dataset is True,
then CanModify is False.

See also
DataSet property

Canvas property

Applies to
TBitmap, TComboBox, TDBComboBox, TDBGrid, TDBListBox, TDirectoryListBox,
TDrawGrid, TFileListBox, TForm, TImage, TListBox, TOutline, TPaintBox, TPrinter,
TStringGrid components

For forms, images, and paint boxes

Declaration

property Canvas: TCanvas;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 99

C a n v a s p r o p e r t y+
+
C

Run-time only. The Canvas property gives you access to a drawing surface that you can
use when implementing a handler for the OnPaint event of a form, an image, or a paint
box.

The Canvas property of an image or a form is read only.

Example
The following code sets the Color of the Pen of the Canvas of Bitmap1 to clBlue.

Bitmap1.Canvas.Pen.Color := clBlue;

See also
 Search for Graphics in online Help and choose the topic Drawing Graphics at Run Time

For list boxes, combo boxes, and outlines

Declaration

property Canvas: TCanvas;

Run-time and read only. The Canvas property gives you access to a drawing surface that
you can use when implementing a handler for the OnDrawItem event of an owner-draw
list box, combo box, or outline control.

Example
The following code draws a graphic stored in the Objects property of the Items list of
ListBox1. This code should be attached to the OnDrawItem event handler of ListBox1, and
the Style property of ListBox1 should be lbOwnerDrawFixed.

procedure TForm1.ListBox1DrawItem(Control: TWinControl; Index: Integer;
 Rect: TRect; State: TOwnerDrawState);
var
 SourceRect: TRect;
begin
 SourceRect.Top := 0;
 SourceRect.Left := 0;
 SourceRect.Bottom := TBitmap(ListBox1.Items.Objects[Index]).Height;
 SourceRect.Right := TBitmap(ListBox1.Items.Objects[Index]).Width;
 ListBox1.Canvas.CopyRect(Rect, TBitmap(ListBox1.Items.Objects[Index]).Canvas,
 SourceRect);
end;

The following code draws a graphic stored in the Data property of the Items list of
Outline1. This code should be attached to the OnDrawItem event handler of Outline1,
and the Style property of Outline1 should be otOwnerDraw.

procedure TForm1.Outline1DrawItem(Control: TWinControl; Index: Integer;
 Rect: TRect; State: TOwnerDrawState);
var
 SourceRect: TRect;
begin
 SourceRect.Top := 0;

100 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C a n v a s p r o p e r t y

 SourceRect.Left := 0;
 SourceRect.Bottom := TBitmap(Outline1.Items[Index].Data).Height;
 SourceRect.Right := TBitmap(Outline1.Items[Index].Data).Width;
 Outline1.Canvas.CopyRect(Rect, TBitmap(Outline1.Items[Index].Data).Canvas,
 SourceRect);
end;

See also
ItemHeight property, OnDrawCell event, OnDrawDataCell event, OnDrawItem event,
OnPaint event

For grids

Declaration

property Canvas: TCanvas;

Run-time and read only. The Canvas property gives you access to a drawing surface that
you can use when implementing a handler for the OnDrawCell or OnDrawDataCell event
of a grid control.

For printer objects

Declaration

property Canvas: TCanvas;

Run-time only and read only. The Canvas property for a printer object represents the
surface of the currently printing page.

Note Some printers do not support graphics. Therefore, the Draw, StretchDraw, or CopyRect
methods might fail on these printers.

Example
The following code prints the text ‘Hello, world!’:

Printer.BeginDoc;
Printer.Canvas.TextOut(0, 0, 'Hello, world');
Pritner.EndDoc;

See also
Brush property, Font property, Pen property, TextOut method

For bitmap objects

Applies to
TBitmap object

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 101

C a p a b i l i t i e s p r o p e r t y+
+
C

Declaration

property Canvas: TCanvas;

Run-time and read only. The Canvas property gives you access to a drawing surface that
represents the bitmap. When you draw on the canvas you are in effect modifying the
underlying bitmap.

See also
Draw method

Capabilities property

Applies to
TMediaPlayer component

Declaration

property Capabilities: TMPDevCapsSet;

Run-time and read only. The Capabilities property determines the capabilities of the
open multimedia device.

The various capabilities specified in Capabilities are determined when the device is
opened with the Open method. The following table lists the capabilities a device can
have:

Note Currently, there is no way to check whether a device can step forward or backward.
Capabilities includes mpCanStep only if the device type (specified in the DeviceType
property) is Animation, AVI Video, Digital Video, Overlay, or VCR.

Example
The following code determines whether the device opened by the media player control
MediaPlayer1 uses a window to display output. If so, the output displays in a form
named Form2:

if mpUsesWindows in MediaPlayer1.Capabilities then
MediaPlayer1.Display := Form2;

Value Capability

mpCanEject Can eject media
mpCanPlay Can play media
mpCanRecord Can record media
mpCanStep Can step forward or backward within media
mpUsesWindows Uses a window for displaying output

102 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C a p a c i t y p r o p e r t y

See also
Back method, Display property, Eject method, Play method, StartRecording method, Step
method

Capacity property

Applies to
TList object

Declaration

property Capacity: Integer;

Run time only. The Capacity property contains the allocated size of the array of pointers
maintained by a TList object. This is different from the Count property, which contains
the number of entries that are actually in use. The value of the Capacity property is
always greater than or equal to the value of the Count property.

When setting the Capacity property, an EListError exception occurs if the specified value
is less than the Count property or greater than 16380 (the maximum number of elements
a list object can contain). Also, an EOutOfMemory exception occurs if there is not enough
memory to expand the list to its new size.

When an element is added to a list whose Capacity and Count are equal (indicating that
all allocated entries are in use), the Capacity is automatically increased by 16 elements. In
situations where you are going to be adding a known number of elements to a list, you
can reduce memory reallocations by first increasing the list's capacity. For example,

List.Clear;
List.Capacity := Count;
for I := 1 to Count do List.Add(...);

The assignment to Capacity before the for loop ensures that each of the following Add
operations doesn’t cause the list to be reallocated, which in turn means that the Add
operations are guaranteed to never raise an exception.

Example
The following code sets the Capacity of List1 to 5.

List1.Capacity := 5;

See also
Count property, Expand method, Items property, Pack method

Caption property

Applies to
TBitBtn, TButton, TCheckBox, TDBCheckBox, TDBRadioGroup, TForm, TGroupBox, TLabel,
TMenuItem, TPanel, TRadioButton, TSpeedButton components

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 103

C a p t i o n p r o p e r t y+
+
C

The Caption property specifies text that will appear in a component.

For forms

Declaration

property Caption: string;

The Caption property is the text that appears in the form’s title bar; this text also appears
as the icon label when the form is minimized.

Example
The following code creates a caption that says “Hello, World!” on a form called MyForm:

MyForm.Caption := ‘Hello, World!’;

See also
BorderStyle property

For all other components

Declaration

property Caption: string;

For components other than forms, the Caption property contains the text string that
labels the component. To underline a character in a string, include an ampersand (&)
before the character. This type of character is called an accelerator character. The user
can then select the control or menu item by pressing Alt while typing the underlined
character. The default value is the name of the component.

For menu items, you can use the Caption property to include a line that separates the
menu into parts. Specify a hyphen character (-) as the value of Caption for the menu
item.

The Caption property of a data grid is available at run time only.

Example
This code changes the caption of a group box:

procedure TForm1.Button1Click(Sender: TObject);
begin
 GroupBox1.Caption := ’Fancy options’;
end;

See also
FocusControl property, ShowAccelChar property, Text property

104 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C a s c a d e m e t h o d

Cascade method

Applies to
TForm component

Declaration

procedure Cascade;

The Cascade method rearranges the child forms in your application so they overlap. The
top of each form remains visible so that you can easily select one of the forms. The
Cascade method applies only to MDI parent forms (with a FormStyle property value of
fsMDIForm).

Example
This code arranges all MDI children of the current MDI parent form in a cascade pattern
when the user chooses the Cascade menu command:

 procedure TForm1.Cascade1Click(Sender: TObject);
 begin
 Cascade;
 end;

See also
ArrangeIcons method, Next method, Previous method, Tile method

CellRect method

Applies to
TDrawGrid, TStringGrid components

Declaration

function CellRect(ACol, ARow: Longint): TRect;

The CellRect method creates a rectangle of type TRect for the cell defined by the column
ACol and the row ARow. If the cell indicated by ACol and ARow is not visible, CellRect
returns an empty rectangle.

Example
This example uses a string grid, four labels, and a button on a form. When the user clicks
the button, the coordinates of the cell in the second column and first row appear in the
label captions:

procedure TForm1.Button1Click(Sender: TObject);
var
 Rectangle: TRect;
begin
 Rectangle := StringGrid1.CellRect(3, 2);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 105

C e l l s p r o p e r t y+
+
C

 Label1.Caption := IntToStr(Rectangle.Top) + ' is the top';
 Label2.Caption := IntToStr(Rectangle.Bottom) + ' is the bottom';
 Label3.Caption := IntToStr(Rectangle.Left) + ' is the left side';
 Label4.Caption := IntToStr(Rectangle.Right) + ' is the right side';
end;

See also
MouseToCell method

Cells property

Applies to
TStringGrid component

Declaration

property Cells[ACol, ARow: Integer]: string;

Run-time only. The Cells property is an array of strings, one string for each cell in the
grid. Use the Cells property to access a string within a particular cell. ACol is the column
coordinate of the cell, and ARow is the row coordinate of the cell. The first row is row
zero, and the first column is column zero.

The ColCount and RowCount property values define the size of the array of strings.

Example
This code fills each cell of a grid with the same string.

procedure TForm1.Button1Click(Sender: TObject);
var
 I, J: Integer;
begin
 with StringGrid1 do
 for I := 0 to ColCount - 1 do
 for J:= 0 to RowCount - 1 do
 Cells[I,J] := 'Delphi';
end;

See also
Cols property, Objects property, Rows property

Center property

Applies to
TDBImage, TImage components

106 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C h a n g e d C o u n t p r o p e r t y

Declaration

property Center: Boolean;

The Center property determines whether an image is centered in the image control. If
Center is True, the image is centered. If Center is False, the image aligns with the top left
corner of the control. The default value is True.

Example
The following code centers the image in Image1 when the user checks CheckBox1:

procedure TForm1.CheckBox1Click(Sender: TObject);
begin
 Image1.Center := CheckBox1.Checked;
end;

See also
AutoSize property, Stretch property

ChangedCount property

Applies to
TBatchMove component

Declaration

property ChangedCount: Longint;

Run-time and read only. ChangedCount is the number of records added to the table
specified by ChangedTableName. If ChangedTableName is not specified, the count is still
valid.

Example

with BatchMove1 do
begin
Execute;
if ChangedCount <> Source.RecordCount then { something went wrong };
end;

See also
ChangedTableName property

ChangedTableName property

Applies to
TBatchMove component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 107

C h a n g e F i l e E x t f u n c t i o n+
+
C

Declaration

property ChangedTableName: TFileName;

ChangedTableName, if specified, creates a local (Paradox) table containing all records in
the destination table that changed as a result of the batch operation. The number of
records placed in the new table is reported in the ChangedCount property.

Example
BatchMove1.ChangedTableName := ‘oldrecs.db’;

ChangeFileExt function SysUtils

Declaration

function ChangeFileExt(const FileName, Extension: string): string;

The ChangeFileExt function takes the file name passed in FileName and changes the
extension of the file name to the extension passed in Extension.

Example
The following code generates the name of an .INI file based on the name of the program:

function INIFileName: string;
begin
 Result := ChangeFileExt(ParamStr(0), '.INI');
end;

ChangeLevelBy method

Applies to
TOutlineNode object

Declaration

procedure ChangeLevelBy(Value: TChangeRange);

The ChangeLevelBy method changes the level of an outline item. Specify a Value
parameter value of -1 to move up (toward the root) one level. Specify a Value parameter
value of 1 to move down (away from the root) one level.

When moving up one level, an item becomes the next sibling of its former parent. When
moving down one level, an item becomes the last child of its former prior sibling.
Therefore, you can not change the level of the first item in the outline, as it has no parent
or prior sibling. Also, you can not move items that are already on the first level up one
level.

ChangeLevelBy modifies the value of the Level property to reflect the new level. You can
only move an item up or down one level at a time.

108 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C h a r C a s e p r o p e r t y

Example
Attach the following code to the OnClick event handlers of two buttons to allow the user
to move the selected outline item up or down. The code for UpBtn checks to see if the
selected item is not already on the first level before moving it up. The code for DownBtn
checks to see if the selected item has a prior sibling before moving it down.

procedure TForm1.UpBtnClick(Sender: TObject);
begin
 with Outline1[Outline1.SelectedItem] do
 if Level > 1 then ChangeLevelBy(-1);
end;

procedure TForm1.DownBtnClick(Sender: TObject);
begin
 with Outline1[Outline1.SelectedItem] do
 if Outline1[Parent.GetPrevChild(Index)] <> -1 then
 ChangeLevelBy(1);
end;

See also
Level property, MoveTo method

CharCase property

Applies to
TDBEdit, TEdit, TMaskEdit components

Declaration

property CharCase: TEditCharCase;

The CharCase property determines the case of the Text property of the edit box. These are
the possible values:

If the user tries to enter a different case than the current value of CharCase, the characters
the user enters appear in the case specified by CharCase. For example, if the value of
CharCase is ecLowerCase, only lowercase characters appear in the edit box, even if the
user tries to enter uppercase characters.

Example
This example uses an edit box and group box containing three radio buttons. When the
user selects the first radio button, the text in the edit box becomes lowercase, and any
text the user types in the edit box also appears in lowercase. When the user selects the

Value Meaning

ecLowerCase The text of the edit box displays in lowercase
ecNormal The text of the edit box displays in mixed case
ecUpperCase The text of the edit box displays in uppercase

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 109

C h D i r p r o c e d u r e+
+
C

second radio button, the text in the edit box becomes uppercase, and any text the user
types in the edit box also appears in uppercase. When the user selects the third radio
button, the text in the edit box remains unchanged, but the user can type using either
upper- or lowercase characters:

procedure TForm1.RadioButton1Click(Sender: TObject);
begin
 Edit1.CharCase := ecLowerCase;
end;

procedure TForm1.RadioButton2Click(Sender: TObject);
begin
 Edit1.CharCase := ecUpperCase;
end;

procedure TForm1.RadioButton3Click(Sender: TObject);
begin
 Edit1.CharCase := ecNormal;
end;

ChDir procedure System

Declaration

procedure ChDir(S: string);

The ChDir procedure changes the current directory to the path specified by S.
If S specifies a drive letter, the current drive is also changed.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors. IOResult returns 0 if
the operation was successful; otherwise, it returns a nonzero error code.

Example

begin
 {$I–}
 { Change to directory specified in Edit1 }
 ChDir(Edit1.Text);
 if IOResult <> 0 then
 MessageDlg('Cannot find directory', mtWarning, [mbOk], 0);
end;

See also
GetDir procedure, MkDir procedure, RmDir procedure

110 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C h e c k p r o c e d u r e

Check procedure DB

Declaration

procedure Check(Status: Integer);

The Check procedure tests Status for a nonzero value and calls DbiError passing Status.

CheckBreak typed constant WinCrt

Declaration

const CheckBreak: Boolean = True;

The CheckBreak typed constant controls user termination of an application using the CRT
window.

When CheckBreak is True, the user can terminate the application at any time by

• Choosing the Close command on the CRT window’s Control menu
• Double-clicking the window's Control-menu box
• Pressing Alt+F4
• Pressing Ctrl+Break

The user can also press Ctrl+C or Ctrl+Break at any time to halt the application and force
the CRT window into its inactive state.

All these features are disabled when CheckBreak is False.

At run time, Crt stores the old Ctrl+Break interrupt vector, $1B, in a global pointer called
SaveInt1B.

CheckBrowseMode method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure CheckBrowseMode;

The CheckBrowseMode method verifies that the dataset is open and has no pending
changes. If the dataset’s State property is dsEdit, dsInsert or dsSetKey, the Post method is
called to post any pending changes. If the dataset is closed, an EDataBaseError exception
will be raised.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 111

C h e c k e d p r o p e r t y+
+
C

Checked property

Applies to
TCheckBox, TDBCheckBox, TMenuItem, TRadioButton components

Declaration

property Checked: Boolean;

Run-time only. The Checked property determines whether an option is selected. These
are the possible values:

Example
This example fills in a radio button at run time:

RadioButton1.Checked := True;

This example uses a main menu component that contains a menu item named
SnapToGrid1 on a form. When the user chooses the Snap To Grid command, a check
mark appears next to the command. When the user chooses the Snap To Grid command
again, the check marks disappears:

procedure TForm1.SnapToGrid1Click(Sender: TObject);
begin
 SnapToGrid1.Checked := not SnapToGrid1.Checked;
end;

See also
AllowGrayed property, State property

CheckEOF typed constant WinCrt

Declaration

const CheckEOF: Boolean = False;

Component Value Meaning

Check box True A check mark appears in the check box, indicating the option is selected.
False No check mark appears, indicating the option is not selected. The value of

the Checked property is False if the State of the check box is cbGrayed (the
check box is grayed) or cbUnChecked (the check box is unchecked).

Radio button True A black circle appears in the radio button, indicating that the option is
selected.

False No black circle appears in the radio button, indicating the option is not
selected.

Menu item True A check mark appears next to the menu item in the menu, indicating the
item is selected.

False No check mark appears, indicating the item is not selected.

112 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C h o r d m e t h o d

The CheckEOF typed constant controls the end-of-file character checking in the CRT
window.

When CheckEOF is True, an end-of-file marker is generated when the user presses Ctrl+Z
while reading from a file assigned to the CRT window.

When CheckEOF is False, pressing Ctrl+Z has no effect.

CheckEOF is False by default.

Chord method

Applies to
TCanvas object

Declaration

procedure Chord(X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer);

The Chord method draws a line on the canvas connecting two points on the ellipse
bounded by the specified rectangle. The screen pixel coordinates (X1, Y1) and (X2, Y2)
define the enclosing rectangle for the chord. (X3,Y3) is the starting point for the line, and
(X4, Y4) is the ending point.

Example
This code draws a chord on the top of an ellipse bounded by the current window:

var
R: TRect;

begin
R := GetClientRect; {Gets the rectangular coordinates of the current window}
Canvas.Chord(R.Left, R.Top, R.Right, R.Bottom, R.Right, R.Top, R.Left, R.Top);

end;

See also
Arc method, Draw method, Ellipse method, Pie method

Chr function System

Declaration

function Chr(X: Byte): Char;

The Chr function returns the character with the ordinal value (ASCII value) of the byte-
type expression, X.

Example

begin
 Canvas.TextOut(10, 10, Chr(65)); { The letter ‘A’}

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 113

C l a s s N a m e m e t h o d+
+
C

end;

See also
Ord function

ClassName method

Applies to
All objects and components

Declaration

class function ClassName: string;

The ClassName function returns the name of an object or a class. For example,
TButton.ClassName returns the string ‘TButton’.

The name returned by ClassName is the name of the actual class of the object, as opposed
to the object’s declared class. For example, the following code assigns ’TButton’ to S, not
’TObject’:

var
 MyObject: TObject;
 S: string;
begin
 MyObject := TButton.Create(Application);
 S := MyObject.ClassName;
 ...
 MyObject.Free;
end;

Example
This example uses a button, a label, a list box, a check box, and an edit box on a form.
When the user clicks one of the controls, the name of the control’s class appears in the
edit box.

procedure FindClassName(AControl:TObject);
begin
 Form1.Edit1.Text := AControl.ClassName;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 FindClassName(Button1);
end;

procedure TForm1.Label1Click(Sender: TObject);
begin
 FindClassName(Label1);
end;

procedure TForm1.CheckBox1Click(Sender: TObject);

114 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C l a s s P a r e n t m e t h o d

begin
 FindClassName(CheckBox1);
end;

procedure TForm1.ListBox1Click(Sender: TObject);
begin
 FindClassName(ListBox1);
end;

See also
ClassParent method, ClassType method

ClassParent method

Applies to

All objects and components

Declaration

class function ClassParent: TClass;

The ClassParent method returns the parent class of an object or a class. The returned
value is the immediate ancestor of the object or class. For example, TScrollBar.
ClassParent returns TWinControl as TScrollBar is derived from TWinControl.

Note that TObject.ClassParent returns nil because TObject has no parent.

Example
This code example uses a button and a list box on a form. When the user clicks the
button, the name of the button’s class and the names of its parent classes are added to
the list box.

procedure TForm1.Button1Click(Sender: TObject);
var
 ClassRef: TClass;
begin
 ListBox1.Clear;
 ClassRef := Sender.ClassType;
 while ClassRef <> nil do
 begin
 ListBox1.Items.Add(ClassRef.ClassName);
 ClassRef := ClassRef.ClassParent;
 end;
end;

The list box contains the following strings after clicking the button:

TButton
TButtonControl
TWinControl
TControl

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 115

C l a s s T y p e m e t h o d+
+
C

TComponent
TPersistent
TObject

See also
ClassName method, ClassType method

ClassType method

Applies to
All objects and components

Declaration

function ClassType: TClass;

The ClassType function returns the class of an object.

Example
This example uses a button and a label on a form. When the user clicks the button, the
type of the button component (TButton) appears in the caption of the label.

procedure TForm1.Button1Click(Sender: TObject);
var
 ButtonClassType: TClass;
begin
 ButtonClassType := Button1.ClassType;
 Label1.Caption := ButtonClassType.ClassName;
end;

See also
ClassName method, ClassParent method

Clear method

Applies to
TClipboard, TFieldDefs, TIndexDefs, TList, TParam, TParams, TStringList, TStrings objects;
TBCDField, TBlobField, TBooleanField, TBytesField, TComboBox, TDBComboBox,
TCurrencyField, TDateField, TDateTimeField, TDBEdit, TDBListBox, TDBMemo,
TDirectoryListBox, TDriveComboBox, TEdit, TFileListBox, TFilterComboBox, TFloatField,
TGraphicField, TIndexDefs, TIntegerField, TListBox, TMaskEdit, TMemo, TMemoField,
TOutline, TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField
components

116 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C l e a r m e t h o d

For TParams objects

Declaration

procedure Clear;

The Clear method deletes all parameter information from Items.

Example

Params1.Clear;

For TParam objects

Declaration

procedure Clear;

The Clear method sets the parameter to NULL, erasing all previously assigned data. The
Name, DataType and ParamType properties are not altered.

Example

{ Clear the CustNo parameter for Query 1 }
Query1.ParamByName(‘CustNo’).Clear;

For TIndexDefs objects

Declaration

procedure Clear;

The Clear method frees all of the entries in the Items property.

For TFieldsDefs objects

Declaration

procedure Clear;

The Clear method frees all of the entries in the Items property, effectively removing all
TFieldDef objects from TFieldDefs.

For fields

Declaration

procedure Clear;

Clear sets the value of the field to NULL.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 117

C l e a r F i e l d s m e t h o d+
+
C

For other objects and components

Declaration

procedure Clear;

The Clear method deletes all text from the control, or, in the case of list and string objects
or outlines, deletes all items. For the Clipboard object, Clear deletes the contents of the
Clipboard; this happens automatically each time data is added to the Clipboard (cut and
copy operations).

Example
The following code removes the text from an edit box control called NameField:

NameField.Clear;

This example uses a list box and a button on a form. When the form is created, strings
are added to the list box. When the user clicks the button, all the strings contained in the
Items property, a TStrings object, are cleared.

procedure TForm1.FormCreate(Sender: TObject);
begin
 ListBox1.Items.Add('One');
 ListBox1.Items.Add('Two');
 ListBox1.Items.Add('Three');
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items.Clear;
end;

See also
CopyToClipboard method, CutToClipboard method, Items property, Pack method,
PasteFromClipboard method, Text property, Strings property

ClearFields method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure ClearFields;

The ClearFields method clears all fields of the current record to their default values
(normally NULL.) The dataset must be in Edit state or an EDatabaseError exception will
be raised.

118 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C l e a r F o r m O L E D r o p F o r m a t s p r o c e d u r e

See also
Edit method, State property, TField component

ClearFormOLEDropFormats procedure Toctrl

Declaration

procedure ClearFormOleDropFormats(Form: TForm);

ClearFormOLEDropFormats deletes the object formats that can be dropped on a form that
is registered for drag-and-drop by the RegisterFormAsOLEDropTarget procedure. If the
form is cleared of OLE drag-and-drop formats, no OLE objects can be dropped into a
TOLEContainer component.

Example
The following code clears Form1 of object formats:

ClearFormOLEDropFormats(Form1);

See also
SetFormOLEDropFormats procedure, TOLEDropNotify object

ClearSelection method

Applies to
TDBEdit, TDBMemo, TEdit, TMaskEdit, TMemo components

Declaration

procedure ClearSelection;

The ClearSelection method deletes text selected in an edit box or memo control. If no text
is selected in the control when ClearSelection is called, nothing happens.

Example
This code uses a memo control named MyMemo and a button on a form. When the user
clicks the button, the text the user selected in the memo control is deleted.

procedure TForm1.Button1Click(Sender: TObject);
begin
 MyMemo.ClearSelection;
end;

See also
Clear method, CopyToClipboard method, CutToClipboard method, PasteFromClipboard
method

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 119

C l i c k m e t h o d+
+
C

Click method

Applies to
TBitBtn, TButton, TDBNavigator, TMenuItem, TSpeedButton components

For menu items and buttons

Declaration

procedure Click;

The Click method simulates a mouse click, as if the user had clicked a menu item or
button, executing any code attached to the OnClick event.

Example
This example uses a main menu component and a button named Print. The main menu
component has a Print1 menu item on it. When the user clicks the button, the code
attached to the OnClick event of the Print1 menu item runs.

procedure TForm1.PrintClick(Sender: TObject);
begin
Print1.Click;

end;

See also
OnClick event

For database navigator controls

Declaration

procedure Click(Button: TNavigateBtn);

The Click method simulates a mouse click, as if the user had clicked a button on the
database navigator, executing any code attached to the OnClick event. Specify which
button the Click method applies to using the Button parameter.

Example
The following code simulates a click on the Next button of DBNavigator1.

DBNavigator1.Click(nbNext);

ClientHandle property

Applies to
TForm component

120 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C l i e n t H e i g h t p r o p e r t y

Declaration

property ClientHandle: HWND;

Read only. The ClientHandle property value is the handle to the internal MDI (Multiple
Document Interface) client window. The property value is meaningful only if the form
is an MDI parent form with its FormStyle property set to fsMDIForm.

ClientHeight property

Applies to
All controls; TForm component

Declaration

property ClientHeight: Integer;

The ClientHeight property is the height of the control’s client area in pixels. For most
controls, ClientHeight is exactly the same as Height. For forms, however, ClientHeight
represents the height of the usable area inside the form’s frame.

ClientHeight is a run-time only property for all controls except forms.

Example
This example reduces the height of the form’s client area by half when the user clicks the
button on the form:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Form1.ClientHeight := Form1.ClientHeight div 2;
end;

Note that only the client area is halved, not the entire form.

See also
ClientWidth property, Height property

ClientOrigin property

Applies to
All controls; TForm component

Declaration

property ClientOrigin: TPoint;

Run-time and read only. The ClientOrigin property is used to determine the screen
coordinates (in pixels) of the top left corner of a control or form client area. ClientOrigin
returns X and Y coordinates in a record of type Point.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 121

C l i e n t R e c t p r o p e r t y+
+
C

Example
This example displays the Y screen coordinate of the top right corner of the Button1
button client area:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Edit1.Text := IntToStr(Button1.ClientOrigin.Y);
end;

See also
ClientRect property

ClientRect property

Applies to
All controls; TForm component

Declaration

property ClientRect: TRect;

Run-time and read only. The ClientRect property is used to determine the size (in pixels)
of a control or form client area. ClientRect returns the Top, Bottom, Left, and Right
coordinates in one record of type TRect.

Example
The following code uses ClientRect to find and draw a line from the top left to the bottom
right of the current form:

with ClientRect do
begin
Canvas.MoveTo(Left,Top);
Canvas.LineTo(Right, Bottom);

end;

See also
ClientOrigin property

ClientToScreen method

Applies to
All controls

Declaration

function ClientToScreen(Point: TPoint): TPoint;

122 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C l i e n t W i d t h p r o p e r t y

The ClientToScreen method translates the given point from client area coordinates to
global screen coordinates. In client area coordinates (0, 0) corresponds to the upper left
corner of the control’s client area. In screen coordinates (0, 0) corresponds to the upper
left corner of the screen.

Using the ClientToScreen and ScreenToClient methods you can convert from one control’s
coordinate system to another control’s coordinate system. For example,

P := TargetControl.ScreenToClient(SourceControl.ClientToScreen(P));

which converts P from coordinates in SourceControl to coordinates in TargetControl.

Example
This example uses two edit boxes on a form. When the user clicks a point on the form,
the X screen coordinate appears in Edit1, and the Y screen coordinate appears in Edit2.

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
var
 P, Q : TPoint;
begin
 P.X := X; { P is the TPoint record for the form}
 P.Y := Y;
 Q := ClientToScreen(P); { Q is the TPoint for the screen }
 Edit1.Text := IntToStr(Q.X) + ' is the X screen coordinate';
 Edit2.Text := IntToStr(Q.Y) + ' is the Y screen coordinate';
end;

See also
ScreenToClient method

ClientWidth property

Applies to
All controls

Declaration

property ClientWidth: Integer;

The ClientWidth property is the horizontal size of the control’s client area in pixels. For
most controls, ClientWidth is exactly the same as Width. For forms, however, ClientWidth
represents the width of the usable area inside the form’s frame.

ClientWidth is a run-time only property for all components except forms.

Example
This example uses a button on a form. Each time the user clicks the button, the button
grows 10 pixels wider.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 123

C l i p b o a r d v a r i a b l e+
+
C

procedure TForm1.Button1Click(Sender: TObject);
begin
 Button1.ClientWidth := Button1.ClientWidth + 10;
end;

See also
ClientHeight property, Width property

Clipboard variable Clipbrd

Declaration

Clipboard: TClipboard;

The Clipboard variable declares an instance of the TClipboard object. Use Clipboard when
you want to use the TClipboard object.

Clipboard is declared in the Clipbrd unit. Whenever you use Clipboard and the TClipboard
object you must add Clipbrd to the uses clause of your unit.

ClipRect property

Applies to
TCanvas object

Declaration

property ClipRect: TRect;

Read only. The ClipRect property specifies a bounding clipping rectangle. The rectangle
specified by ClipRect defines the outer boundaries of the drawing area of the canvas.
Any drawing that occurs at coordinates outside the ClipRect are clipped and don’t
appear onscreen. For example, the ClipRect of the canvas of a form is the same size as the
client area of the form.

See also
ClientRect property

Close method

Applies to
TClipboard object; TDataBase, TForm, TMediaPlayer, TQuery, TStoredProc, TTable
components

124 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C l o s e m e t h o d

For forms

Declaration

procedure Close;

The Close method closes a form. Calling the Close method on a form corresponds to the
user selecting the Close menu item on the form’s System menu. The Close method first
calls the CloseQuery method to determine if the form can close. If CloseQuery returns
False, the close operation is aborted. Otherwise, if CloseQuery returns True, the code
attached to the OnClose event is executed. The CloseAction parameter of the OnClose
event controls how the form is actually closed.

Example
The following method closes a form when a button called Done is clicked:

procedure TForm1.DoneButtonClick(Sender: TObject);
begin
Close;

end;

See also
Hide method, Open method

For Clipboard objects

Declaration

procedure Close;

For Clipboard objects, Close closes the Clipboard if it is open. The Clipboard can be
opened with a call to Open multiple times before being closed. Because the Clipboard
object counts each time it is opened, your application must close it the same number of
times it was opened before the Clipboard is actually closed.

Example
The following code closes the Clipboard:

Clipboard.Close;

See also
Clipboard variable

For media player controls

Declaration

procedure Close;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 125

C l o s e p r o c e d u r e+
+
C

The Close method closes the open multimedia device.

Upon completion, Close stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Close method is completed. The Notify property determines whether Close generates an
OnNotify event.

Close is called automatically when the application is terminated.

See also
Open method

For tables, queries, and stored procedures

Declaration

procedure Close;

The Close method closes the dataset, returning it to Inactive state. Calling Close is
equivalent to setting the Active property to False.

Note Post is not called implicitly by the Close method. Use the BeforeClose event to post any
pending edits explicitly.

For databases

Declaration

procedure Close;

The Close method closes the TDatabase component and all the dataset components
linked to it. This is the same as setting the Connected property to False.

Example
Database1.Close;

See also
CloseDatasets method

Close procedure System

Declaration

procedure Close(var F);

The Close procedure provides compatibility with existing Borland Pascal code. When
writing applications for Delphi, you should use CloseFile.

126 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C l o s e A p p l i c a t i o n m e t h o d

The Close procedure terminates the association between the file variable and an external
disk file.

F is a file variable of any file type opened using Reset, Rewrite, or Append. The external
file associated with F is completely updated and then closed, freeing the file handle for
reuse.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

Example

var
 F: TextFile;
begin
 if OpenDialog1.Execute then { Bring up open file dialog }
 begin
 AssignFile(F, OpenDialog1.FileName);
 { File selected in dialog }
 Reset(F);
 Edit1.Text := IntToStr(FileSize(F);
 { Put file size string in a TEdit control }
 CloseFile(F); { Close file }
 end;
end;

See also
Append procedure, AssignFile procedure, Reset procedure, Rewrite procedure

CloseApplication method

Applies to
TReport component

Declaration

function CloseApplication(ShowDialogs: Boolean): Boolean;

The CloseApplication method stops ReportSmith Runtime, if it is running.
CloseApplication sends a DDE message to terminate ReportSmith Runtime and looks for
a DDE message from ReportSmith in return. If CloseApplication returns True, the
ReportSmith Runtime received the message to terminate successfully; if it returns False,
ReportSmith Runtime was not able to receive the message at the current time.

The value of the ShowDialogs parameter determines whether ReportSmith displays
dialog boxes prompting users to save the existing report before closing, and so on. If
ShowDialogs is True, the dialog boxes appear before ReportSmith closes. If the parameter
is False, no dialog boxes appear.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 127

C l o s e D a t a b a s e m e t h o d+
+
C

See also
CloseReport method

CloseDatabase method

Applies to
TSession component

Declaration

procedure CloseDatabase(Database: TDatabase);

The CloseDatabase method closes a TDatabase component. The parameter Database
specifies the TDatabase component to close. Normally, this is handled automatically
when an application closes the last table in the database associated with a TDatabase
component. CloseDatabase decrements the Session’s reference count of the number of
open database connections.

You should always use CloseDatabase with OpenDatabase, typically in a try...finally block
to ensure that database connections are handled properly.

Example

Database := Session.OpenDatabase(‘DBDEMOS’);
try
begin
{Do Something}

finally
Session.CloseDatabase(‘DBDEMOS’);

end;

See also
Session variable

CloseDatasets method

Applies to
TDataBase component

Declaration

procedure CloseDatasets;

The CloseDatasets method closes all of the dataset components linked to the TDatabase
component, but does not close the database connection itself.

128 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C l o s e D i a l o g m e t h o d

Example

Database1.CloseDatasets;

See also
Close method

CloseDialog method

Applies to
TFindDialog, TReplaceDialog components

Declaration

procedure CloseDialog;

The CloseDialog method closes the Find and Replace dialog boxes.

See also
Execute method

CloseFile procedure System

Declaration

procedure CloseFile(var F);

Due to naming conflicts, the CloseFile procedure replaces the Borland Pascal Close
procedure. Use the CloseFile procedure instead of Close to terminate the association
between the file variable and an external disk file.

F is a file variable of any file type opened using Reset, Rewrite, or Append. The external
file associated with F is completely updated and then closed, freeing the file handle for
reuse.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

CloseLink method

Applies to
TDDEClientConv component

Declaration

function CloseLink;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 129

C l o s e Q u e r y m e t h o d+
+
C

The CloseLink method terminates an ongoing DDE conversation. After a link is closed,
no DDE communication can take place between the DDE client and server until another
link is opened.

Example
The following code terminates the DDE conversation.

DDEClientConv1.CloseLink;

See also
OnClose event, OpenLink method

CloseQuery method

Applies to
TForm component

Declaration

function CloseQuery: Boolean;

The CloseQuery method is called as part of a form’s Close method processing to
determine if the form can actually close. CloseQuery executes the code attached to the
OnCloseQuery event. If the OnCloseQuery event handler assigns False to its CanClose
parameter, CloseQuery will return False indicating that the form cannot close. Otherwise
CloseQuery returns True, indicating that the form is ready to close.

The CloseQuery method of the main form of an MDI application automatically calls the
CloseQuery method of each MDI child form before executing its own OnCloseQuery
event. If any of the child forms return False, the main form’s CloseQuery stops and also
returns False. Your application can use the OnCloseQuery event to ask users if they want
special processing to occur, such as saving information on the form, before the form is
closed.

Example
When the user attempts to close the form in this example, a message dialog appears that
asks if it is OK to close the form. If the user chooses No, the form doesn’t close. If the
user chooses OK, the form closes.

procedure TForm1.FormCloseQuery(Sender: TObject; var CanClose: Boolean);
var
 ButtonSelected: Word;
begin
 ButtonSelected := MessageDlg('Is it OK to close the form?', mtInformation,
 [mbOk, mbNo], 0);
 if ButtonSelected = mrOk then
 CanClose := True
 else
 CanClose := False;
end;

130 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C l o s e R e p o r t m e t h o d

See also
Close method, OnCloseQuery event

CloseReport method

Applies to
TReport component

Declaration

function CloseReport(ShowDialogs: Boolean): Boolean;

The CloseReport method determines whether the running of a ReportSmith report
terminates. CloseReport sends a DDE message to ReportSmith Runtime and looks for a
DDE message from ReportSmith Runtime in return. If CloseReport returns True,
ReportSmith Runtime received the message to terminate the report. If CloseReport
returns False, ReportSmith Runtime could not receive the DDE message at the current
time.

The ShowDialogs parameter determines whether dialog boxes that prompt the user
about saving the report appear before the report closes, and so on. If ShowDialogs is True,
the dialog boxes appear. If it is False, the dialog boxes are not shown.

Example
The following code terminates the running report if the user chooses Yes from a dialog
box:

if MessageDlg('Do you want to stop running ' + Report1.ReportName + ' ?',
mtConfirmation, [mbYes, mbNo], 0) = mrYes then
if Report1.CloseReport(False) then MessageDlg(Report1.ReportName + ' canceled.',

mtInformation, [mbOK], 0);

See also
CloseApplication method

CloseUp method

Applies to
TDBLookupCombo component

Declaration

procedure CloseUp;

The CloseUp method closes an opened or “dropped-down” database lookup combo box.

See also
DropDown method

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 131

C l r E o l p r o c e d u r e+
+
C

ClrEol procedure WinCrt

Declaration

procedure ClrEol;

The ClrEol procedure clears all characters from the cursor position to the end of the line
without moving the cursor.

ClrEol sets all character positions to blanks with the currently defined text attributes.

Example

uses WinCrt;

begin
 ClrScr;
 Writeln('Hello there, how are you today?');
 Writeln('Press <enter> key...');
 Readln;
 GotoXY(1,2);
 ClrEol;
 Writeln ('Glad to hear it!');
end;

See also
ClrScr procedure

ClrScr procedure WinCrt

Declaration

procedure ClrScr;

The ClrScr procedure clears the active windows and returns the cursor to the upper left
corner.

ClrScr sets all character positions to blanks with the currently defined text attributes.

Example

uses WinCrt;

begin
 Writeln('Hello. Please the <enter> key...');
 Readln;
 ClrScr;
end;

See also
ClrEol procedure

132 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C m d L i n e v a r i a b l e

CmdLine variable System

Declaration

var CmdLine: PChar;

In a program, the CmdLine variable contains a pointer to a null-terminated string that
contains the command-line arguments specified when the application was started.

In a library, CmdLine is nil.

CmdShow variable System

Declaration

var CmdShow: Integer;

In a program, the CmdShow variable contains the parameter value that Windows expects
to be passed to ShowWindow when the application creates its main window.

In a library, CmdShow is always zero.

Col property

Applies to
TDrawGrid, TStringGrid components

Declaration

property Col: Longint;

Run-time only. The value of the Col property indicates the current column of the cell that
has input focus. You can use the Col property along with the Row property to determine
which cell is selected at run time.

Example
This example uses a string grid with a label above it on a form. When the user clicks a
cell in the grid, the location of the cursor is displayed in the label caption.

procedure TForm1.StringGrid1Click(Sender: TObject);
begin
 Label1.Caption := 'The cursor is in column ' + IntToStr(StringGrid1.Col + 1)
 + ', row ' + IntToStr(StringGrid1.Row + 1);
end;

See also
ColCount property, ColWidths property, DefaultColWidth property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 133

C o l C o u n t p r o p e r t y+
+
C

ColCount property

Applies to
TDrawGrid, TStringGrid components

Declaration

property ColCount: Longint;

Run-time only. The value of the ColCount property determines the number of columns
in the grid. The default value is 5.

Example
The following line of code adds one column to a string grid named MyStrngGrd:

MyStrngGrd.ColCount := MyStrngGrd.ColCount + 1;

See also
Col property, ColWidths property, RowCount property

Collapse method

Applies to
TOutlineNode object

Declaration

procedure Collapse;

The Collapse method collapses an outline item by assigning False to its Expanded
property. When an outline item is collapsed, its sub-items are hidden and the plus
picture or closed picture might be displayed, depending on the outline style specified in
the OutlineStyle property of the TOutline component.

Example
The following code collapses the first outline item.

Outline1.Items[1].Collapse;

See also
Expand method, FullCollapse method, FullExpand method, PictureClosed property,
PicturePlus property

Collate property

Applies to
TPrintDialog component

134 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C o l o r p r o p e r t y

Declaration

property Collate: Boolean;

The Collate property determines if the Collate check box is checked and, therefore, if
collating is selected. Regardless of the initial setting of the Collate property, the user can
always check or uncheck the Collate check box (and change the Collate property) to
choose or not choose to collate the print job. The default setting is False.

Color property

Applies to
TBrush, TFont, TPen objects; TBitBtn, TCheckBox, TColorDialog, TComboBox,
TDBCheckBox, TDBComboBox, TDBEdit, TDBGrid, TDBImage, TDBListBox,
TDBLookupCombo, TDBLookupList, TDBMemo, TDBRadioGroup, TDBText,
TDirectoryListBox, TDrawGrid, TDriveComboBox, TEdit, TFileListBox, TForm, TGroupBox,
TLabel, TListBox, TMaskEdit, TMemo, TNotebook, TOutline, TPaintBox, TPanel,
TRadioButton, TScrollBox, TStringGrid components

Declaration

property Color: TColor;

For all components or objects except the Color dialog box, the Color property determines
the background color of a form or the color of a control or graphics object.

If a control’s ParentColor property is True, then changing the Color property of the
control’s parent automatically changes the Color property of the control. When you
assign a value to a control’s Color property, the control’s ParentColor property is
automatically set to False. These are the possible values of Color:

Value Meaning

clBlack Black
clMaroon Maroon
clGreen Green
clOlive Olive green
clNavy Navy blue
clPurple Purple
clTeal Teal
clGray Gray
clSilver Silver
clRed Red
clLime Lime green
clBlue Blue
clFuchsia Fuchsia
clAqua Aqua
clWhite White
clBackground Current color of your Windows background

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 135

C o l o r p r o p e r t y+
+
C

The second half of the colors listed here are Windows system colors. The color that
appears depends on the color scheme users are using for Windows. Users can change
these colors using the Control Panel in Program Manager. The actual color that appears
will vary from system to system. For example, the color fuchsia may appear more blue
on one system than another.

For the Color dialog box

When you use the Color dialog box to select a color, you are assigning a new color value
to the dialog box’s Color property. You can then use the value within the Color property
and assign it to the Color property of another control.

Example
This code colors a form red:

Form1.Color := clRed;

The following code changes the color of an edit box control using the Color dialog box.
The example displays the Color dialog box when the Button1 button is clicked, allowing
the user to select a color with the dialog box. The example then assigns the color value
selected with the dialog box to the Color property of the edit box control:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if ColorDialog1.Execute then

clActiveCaption Current color of the title bar of the active window
clInactiveCaption Current color of the title bar of inactive windows
clMenu Current background color of menus
clWindow Current background color of windows
clWindowFrame Current color of window frames
clMenuText Current color of text on menus
clWindowText Current color of text in windows
clCaptionText Current color of the text on the title bar of the active window
clActiveBorder Current border color of the active window
clInactiveBorder Current border color of inactive windows
clAppWorkSpace Current color of the application workspace
clHighlight Current background color of selected text
clHightlightText Current color of selected text
clBtnFace Current color of a button face
clBtnShadow Current color of a shadow cast by a button
clGrayText Current color of text that is dimmed
clBtnText Current color of text on a button
clInactiveCaptionText Current color of the text on the title bar of an inactive window
clBtnHighlight Current color of the highlighting on a button

Value Meaning

136 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C o l o r e d B u t t o n s p r o p e r t y

 Edit1.Color := ColorDialog1.Color;
end;

See also
ColorToRGB function, ParentColor property, TColorDialog component

ColoredButtons property

Applies to
TMediaPlayer component

Declaration

property ColoredButtons: TButtonSet;

The ColoredButtons property determines which of the buttons on the media player
control has color. If a button is not colored with ColoredButtons, it appears in black-and-
white when visible. All media player control buttons are colored by default.

Example
The following example displays all of the media player component’s buttons in color:

TMediaPlayer1.ColoredButtons := [btPlay, btPause, btStop, btNext, btPrev, btStep, btBack,
btRecord, btEject]

See also
EnabledButtons property, VisibleButtons property

ColorToRGB function Graphics

Declaration

function ColorToRGB(Color: TColor): Longint;

Button Value Action

Play btPlay Plays the media player
Record btRecord Starts recording
Stop btStop Stops playing or recording
Next btNext Skips to the next track, or to the end if the medium doesn’t use

tracks
Prev btPrev Skips to the previous track, or to the beginning if the medium

doesn’t use tracks
Step btStep Moves forward a number of frames
Back btBack Moves backward a number of frames
Pause btPause Pauses playing or recording. If already paused when clicked,

resumes playing or recording.
Eject btEject Ejects the medium

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 137

C o l s p r o p e r t y+
+
C

The ColorToRGB function returns the RGB value that Windows uses from a TColor type
used by Delphi. If the color represents a system color, the current RGB value for that
system color is returned.

Example
The following code converts the color of the current form, Form1, to a Windows RGB
value:

var
L : Longint;

begin
L := ColorToRGB(Form1.Color);

end;

See also
Color property

Cols property

Applies to
TStringGrid component

Declaration

property Cols[Index: Integer]: TStrings;

The Cols property is an array of the strings and their associated objects in a column. The
number of strings and associated objects is always equal to the value of the ColCount
property, the number of columns in the grid. Use the Cols property to access the strings
and their associated objects within a particular column in the grid. The Index parameter
is the number of the column you want to access; the Index value of the first column in the
grid is zero.

Example
The following line of code adds the string ’Hello’ to the end of the list of strings in
column four of the string grid named StringGrid1:

 StringGrid1.Cols[3].Add('Hello');

See also
Cells property, Objects property, Rows property

Columns property

Applies to
TDBRadioGroup, TDirectoryListBox, TListBox, TRadioGroup components

138 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C o l W i d t h s p r o p e r t y

Declaration

property Columns: Longint;

The Columns property denotes the number of columns in the list box or radio group box.
Specify the number of columns you want for the list box or radio group box as the value
of Columns.

Example
This example uses a list box and a button on a form. Each time the user clicks the button,
the string ‘Hello’ is added to the list box. When the list box is filled, a new column is
created and subsequent new strings are added to the new column:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if ListBox1.Columns < 1 then
 ListBox1.Columns := 1;
Listbox1.Items.Add('Hello');
if Listbox1.Height <= ((Listbox1.ItemHeight * Listbox1.Items.Count)

 / ListBox1.Columns) then
 Listbox1.Columns := Listbox1.Columns + 1;
end;

ColWidths property

Applies to
TDrawGrid, TStringGrid components

Declaration

property ColWidths[Index: Longint]: Integer;

Run-time only. The ColWidths property determines the width in pixels of all the cells
within the column referenced by the Index parameter.

By default, all the columns are the same width, the value of the DefaultColWidth
property. To change the width of all columns within a grid, change the DefaultColWidth
property value.

To change the width of one column without affecting others, change the ColWidths
property. Specify the column you want to change as the value of the Index parameter.
Remember the first column always has an Index value of 0.

Example
The following code changes the width of column 0 in the string grid called StringGrid1
to twice the default value.

StringGrid1.ColWidths[0] := StringGrid1.DefaultColWidth * 2;

See also
RowHeights property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 139

C o m m a n d p r o p e r t y+
+
C

Command property

Applies to
TMenuItem component

Declaration

property Command: Word;

Run-time and read only. The Command property value is the command number passed
to Windows and the number that arrives in the WM_COMMAND message sent by
Windows to the form when the user chooses this menu item on the menu. Command is
useful only if you are handling WM_COMMAND messages directly.

Example
The following procedure is a WM_COMMAND message handler. It checks the ItemID
field of Msg to see if the message was generated by a menu item called MenuThink. If so,
it displays a message dialog box. When writing message handlers, remember to call
Inherited afterward, if necessary, so Windows can perform default message processing.

procedure TForm1.WMCommand(var Msg: TWMCommand);
begin
if Msg.ItemID = MenuThink.Command then

MessageDlg(‘This is the Think command’, mtInformation, [mbOk], 0);
Inherited;

end;

Commit method

Applies to
TDataBase component

Declaration

procedure Commit;

The Commit method commits the current transactions and thus all modifications made
to the database since the last call to StartTransaction. If no transaction is active, Delphi
will raise an exception. Use this method only when connected to a server database.

Example

with Database1 do
begin
StartTransaction;

{ Update one or more records in tables linked to Database1 }
...
Commit;
end;

140 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C o m p a r e S t r f u n c t i o n

See also
Rollback method

CompareStr function SysUtils

Declaration

function CompareStr(const S1, S2: string): Integer;

CompareStr compares S1 to S2, with case-sensitivity. The return value is less than 0 if S1
is less than S2, 0 if S1 equals S2, or greater than 0 if S1 is greater than S2. The compare
operation is based on the 8-bit ordinal value of each character and is not affected by the
currently installed language driver.

Example
The following code compares String1, 'STEVE', to String2, 'STEVe'. Note that CompareStr
returns a number less than 0 because the value of 'e' is greater than the value of 'E'.

var
 String1, String2 : string;
 I : integer;
begin
 String1 := 'STEVE';
 String2 := 'STEVe';
 I := CompareStr(String1, String2); { the value of I is < 0 }
 if I < 0 then
 MessageDlg('The strings are not equal', mtWarning, [mbOK], 0)
end;

See also
CompareText function

CompareText function SysUtils

Declaration

function CompareText(const S1, S2: string): Integer;

The CompareText function compares the strings S1 and S2 and returns 0 if they are equal.
If S1 is greater than S2, CompareText returns an integer greater than 0. If S1 is less than
S2, CompareText returns an integer less than 0. The CompareText function is not case
sensitive. For example, CompareText finds 'object pascal' and 'Object Pascal' to be equal.

Example
The following code compares String1, 'ABC, to String2, 'aaa'. Because CompareText is
case insensitive, String2 is larger.

var
 String1, String2 : string;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 141

C o m p o n e n t C o u n t p r o p e r t y+
+
C

 I : integer;
begin
 String1 := 'ABC';
 String2 := 'aaa';
 I := CompareStr(String1, String2); { the value of I is < 0 }
 if I < 0 then
 MessageDlg('The strings are not equal', mtWarning, [mbOK], 0)
end;

See also
CompareStr function

ComponentCount property

Applies to
All components

Declaration

property ComponentCount: Integer;

Run-time and read only. The ComponentCount property indicates the number of
components owned by the component as listed in the Components array property. For
example, ComponentCount of a form contains the same number of items as in the
Components list of a form.

Note ComponentCount is always 1 more than the highest Components index, because the first
Components index is always 0.

Example
This code uses several controls on a form, including a button and an edit box. When the
user clicks the button, the code counts all the components on the form and displays the
number in the Edit1 edit box. While the components are being counted, each is
evaluated to see if it is a button component. If the component is a button, the code
changes the font on the button face.

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to ComponentCount -1 do
 if Components[I] is TButton then
 TButton(Components[I]).Font.Name := 'Courier';
 Edit1.Text := IntToStr(ComponentCount) + ' components';
end;

See also

ComponentIndex property, Components property

142 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C o m p o n e n t I n d e x p r o p e r t y

ComponentIndex property

Applies to
All components

Declaration

property ComponentIndex: Integer;

Run-time and read only. The ComponentIndex property indicates the position of the
component in its owner’s Components property list. The first component in the list has a
ComponentIndex value of 0, the second has a value of 1, and so on.

Example
The following code uses a button and a wide edit box on a form. When the user clicks
the button, the edit box displays the index value of the button component:

procedure TForm1.Button1Click(Sender: TObject);
begin
Edit1.Text := 'The index of the button is ' + IntToStr(Button1.ComponentIndex);

end;

See also
ComponentCount property, Components property

Components property

Applies to
All components

Declaration

property Components[Index: Integer]: TComponent;

Run-time and read only. The Components array property is a list of all components
owned by the component. You can use the Components property to access any of these
owned components, such as the controls owned by a form. The Components property is
most useful if you need to refer to owned components by number rather than name.

Don’t confuse the Components property with the Controls property. The Components
property lists all components that are owned by the component, whereas the Controls
property lists all the controls that are child windows of this control. All components on a
form are owned by the form, and therefore, they appear in the form’s Components
property list.

Consider this example. If you put a control in a group box, the form still owns the
control, but the control’s window parent is the group box control, and therefore, is listed
in the group box’s Controls property array.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 143

C o n c a t f u n c t i o n+
+
C

Example
This code uses several controls on a form, including a button and an edit box. When the
user clicks the button, the code counts all the components on the form and displays the
number in the Edit1 edit box. While the components are being counted, each is
evaluated to see if it is a button component. If the component is a button, the code
changes the font on the button face.

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to ComponentCount -1 do
 if Components[I] is TButton then
 TButton(Components[I]).Font.Name := 'Courier';
 Edit1.Text := IntToStr(ComponentCount) + ' components';
end;

See also
ComponentCount property, ComponentIndex property, Owner property, Parent property,
TabOrder property

Concat function System

Declaration

function Concat(s1 [, s2,..., sn]: string): String;

The Concat function merges two or more strings into one large string.

Each parameter is a string-type expression. The result is the concatenation of all the
string parameters. If the resulting string is longer than 255 characters, it is truncated
after the 255th character.

Using the plus (+) operator has the same effect on two strings as using the Concat
function:

S := 'ABC' + 'DEF';

Example

 var
 S: string;
begin
 S := Concat('ABC', 'DEF'); { 'ABCDE' }
end;

See also
Copy function, Delete procedure, Insert procedure, Length function, Pos function

144 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C o n f i r m D e l e t e p r o p e r t y

ConfirmDelete property

Applies to
TDBNavigator component

Declaration

property ConfirmDelete: Boolean;

The ConfirmDelete property determines whether a message box asking you to confirm
the deletion when the user uses the database navigator to delete the current record in
the dataset. If ConfirmDelete is True, a prompting message box appears and the record
isn’t deleted unless the user chooses the OK button. If ConfirmDelete is False, no message
box appears and the record is deleted.

The default value is True.

See also
VisibleButtons property

Connect method

Applies to
TReport component

Declaration

function Connect(ServerType: Word; const ServerName, UserName, Password,
DatabaseName: string): Boolean;

The Connect method connects the report to a database, bypassing the ReportSmith log in
dialog box. Specify the server type and name with the ServerType and ServerName
parameters. Specify the user name, the log-in password, and the name of the database
using the UserName, Password, and DatabaseName parameters.

Connected property

Applies to
TDataBase component

Declaration

property Connected: Boolean;

The Connected property indicates whether the TDatabase component has established a
connection to a database. Connected will be set to True when an application opens a table
in a database (logging in to a server, if required). It will be set back to False when the
table is closed (unless KeepConnection is True). Set Connected to True to establish a

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 145

C o n n e c t M o d e p r o p e r t y+
+
C

connection to a database without opening a table. Set Connected to False to close a
database connection.

The KeepConnection property of TDatabase specifies whether to maintain database
connections when no tables in the database are open. The KeepConnections property of
TSession specifies whether to maintain database connections when there is no explicit
TDatabase component for the database.

Example

Database1.Connected := True;

ConnectMode property

Applies to
TDDEClientConv component

Declaration

property ConnectMode: TDataMode;

The ConnectMode property determines the type of connection to establish when
initiating a link with a DDE server application. These are the possible values:

Example
The following code sets the connect mode of DDEClientConv1 to manual.

DDEClientConv1.ConnectMode := ddeManual;

ContainsControl method

Applies to
All windowed controls

Declaration

function ContainsControl(Control: TControl): Boolean;

The ContainsControl method indicates whether a specified control exists within a control.
If the method returns True, the control specified as the value of the Control parameter
exists within the control. If the method returns False, the specified control is not within
the control.

Value Meaning

ddeAutomatic The link is automatically established when the form containing the TDDEClient
component is created at run time. This is the default value.

ddeManual The link is established only when the OpenLink method is called.

146 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C o n t i n u e p r o c e d u r e

Example
This example uses a label, a list box, and a button on a form. When the user clicks the
button, the caption of the label reports that the form contains the list box:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if ContainsControl(ListBox1) then
 Label1.Caption := 'The form contains ListBox1';
end;

Continue procedure System

Declaration

procedure Continue;

The Continue procedure has the flow of control proceed to the next iteration of the
calling for, while, or repeat statement.

The compiler reports an error if a call to Continue isn’t enclosed by a for, while, or repeat
statement.

Example

var
 F: File;
 i: integer;
begin
 for i := 0 to (FileListBox1.Items.Count – 1) do begin
 if FileListBox1.Selected[i] then begin
 if not FileExists(FileListBox1.Items.Strings[i]) then begin
 MessageDlg('File: ' + FileListBox1.Items.Strings[i] +
 ' not found', mtError, [mbOk], 0);
 Continue;
 end;
 AssignFile(F, FileListBox1.Items.Strings[i]);
 Reset(F, 1);
 ListBox1.Items.Add(IntToStr(FileSize(F)));

CloseFile(F);
 end;
 end;
end;

See also
Break procedure, Exit procedure, Halt procedure

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 147

C o n t r o l A t P o s m e t h o d+
+
C

ControlAtPos method

Applies to
All windowed controls

Declaration

function ControlAtPos(Pos: TPoint; AllowDisabled: Boolean): TControl;

The ControlAtPos method returns the windowed control’s child control (from those in
the Controls array property) located at the screen coordinates passed in Pos. If there is no
control at the specified position, ControlAtPos returns nil. The AllowDisabled parameter
controls whether the search for controls includes disabled controls.

ControlCount property

Applies to
All controls

Declaration

property ControlCount: Integer;

Run-time and read only. The ControlCount property indicates the number of controls
that are children of the control. The children are listed in the Controls property array.

Note The value of ControlCount is always 1 greater than the highest Controls index, because
the first Controls index is 0.

Example
This example uses a group box on a form, with several controls contained within the
group box. The form also has an edit box and a button outside of the group box. The
code counts each control’s child controls turning each of them invisible as they are
counted. The total number of controls counted appears in the edit box.

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 for I:= 0 to GroupBox1.ControlCount -1 do
 GroupBox1.Controls[I].Visible := False;
 Edit1.Text := IntToStr(GroupBox1.ControlCount) + ' controls';
end;

See also
Controls property

148 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C o n t r o l s p r o p e r t y

Controls property

Applies to
All controls

Declaration

property Controls[Index: Integer]: TControl;

Run-time and read only. The Controls property is an array of all controls that are
children of the control. The Controls property is most useful if you have a need to refer to
the children of a control by number rather than name.

Don’t confuse the Controls property with the Components property. The Components
property lists all components that are owned by the component, while the Controls
property lists all the controls that are child windows of the control. All components put
on a form are owned by the form, and therefore, they appear in the form’s Components
property list.

For example, if you put a control in a group box, the form still owns the control, but the
control’s window parent is the group box control, and therefore, is listed in the group
box’s Controls property array.

Example
This example uses a group box on a form, with several controls contained within the
group box. The form also has an edit box and a button outside of the group box. The
code counts each control’s child controls turning each of them invisible as they are
counted. The total number of controls counted displays in the edit box.

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 for I:= 0 to GroupBox1.ControlCount -1 do
 GroupBox1.Controls[I].Visible := False;
 Edit1.Text := IntToStr(GroupBox1.ControlCount) + ' controls';
end;

See also
ControlCount property, Owner property, Parent property

ConvertDlgHelp property

Applies to
TOLEContainer component

Declaration

property ConvertDlgHelp: THelpContext;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 149

C o p i e s p r o p e r t y+
+
C

The ConvertDlgHelp property specifies the context-sensitive help identification number
for the Convert dialog box. If your application is programmed for online help, specify
an integer value for ConvertDlgHelp to identify the online help topic to be called when
the user chooses Help from the Convert dialog box. If the application is not
programmed for context-sensitive online Help, or if zero is specified for ConvertDlgHelp,
choosing Help from the Convert dialog box will have no effect.

The Convert dialog box enables the user to convert an OLE object to another object type.
To enable the Convert dialog box, a menu item but be designated the OLE object menu
item in the ObjectMenuItem property of a form. Then, when an OLE container containing
an OLE object is selected at run time, the OLE Object menu item will be available on the
menu bar of the form. If the OLE server application supports object conversion, choose
Convert from the OLE object menu item to display the Convert dialog box.

Note You don’t need to program your application to provide the functionality of the Convert
dialog box and the OLE object menu item. This functionality comes from the OLE server
application automatically when an OLE container has focus. The only step required is to
identify the name of a menu item in the ObjectMenuItem property.

Example
The following code assigns 531 to the context-sensitive Help identification number of
the OLE Convert dialog box.

OLEContainer1.ConvertDlgHelp := 531;

Copies property

Applies to
TPrintDialog component

Declaration

property Copies: Integer;

The value of the Copies property determines the number of copies of the print job to
print. If you change the value of Copies at design time, the value you specify is the
default value in the edit box control when the Print dialog box appears. The default
value is 0.

Example
The following code sets the default number of copies for the print dialog box,
PrintDialog1, to 3 before displaying the dialog box:

PrintDialog1.Copies := 3;
PrintDialog1.Execute;

150 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C o p y f u n c t i o n

Copy function System

Declaration

function Copy(S: string; Index, Count: Integer): string;

The Copy function returns a substring of a string.

S is a string-type expression. Index and Count are integer-type expressions. Copy returns
a string containing Count characters starting with at S[Index].

If Index is larger than the length of S, Copy returns an empty string.

If Count specifies more characters than are available, the only the characters from
S[Index] to the end of S are returned.

Example

 var S: string;
begin
 S := 'ABCDEF';
 S := Copy(S, 2, 3); { 'BCD' }
end;

See also
Concat function, Delete procedure, Insert procedure, Length function, Pos function

CopyMode property

Applies to
TCanvas object

Declaration

property CopyMode: TCopyMode;

The CopyMode property determines how a canvas treats an image copied from another
canvas. By default, CopyMode is cmSrcCopy, meaning that pixels from the other canvas
are copied to the canvas, overwriting any image already there. By changing CopyMode,
you can create many different effects. The following table shows possible values of
CopyMode and describes each:

Value Meaning

cmBlackness Turns all output black.
cmDstInvert Inverts the destination bitmap.
cmMergeCopy Combines the pattern and the source bitmap by using the Boolean AND operator.
cmMergePaint Combines the inverted source bitmap with the destination bitmap by using the

Boolean OR operator.
cmNotSrcCopy Copies the inverted source bitmap to the destination.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 151

C o p y P a r a m s m e t h o d+
+
C

Example
The following code copies the the inverted source bitmap to the Canvas of Form2:

Form2.Canvas.CopyMode := cmNotSrcCopy;
Form2.Canvas.CopyRect(ClientRect, Canvas, ClientRect);

See also
CopyRect method

CopyParams method

Applies to
TStoredProc component

Declaration

procedure CopyParams(Value: TParams);

The CopyParams method copies all of the parameter information from the stored
procedure component to Value. Use this method to copy parameters from one stored
procedure component to another.

Example
{ Copy all parameters from StoredProc1 to StoredProc2 }
StoredProc1.CopyParams(StoredProc2.Params);

cmNotSrcErase Inverts the result of combining the destination and source bitmaps by using the
Boolean OR operator.

cmPatCopy Copies the pattern to the destination bitmap with the pattern by using the Boolean
XOR operator.

cmPatInvert Combines the destination bitmap with the pattern by using the Boolean XOR operator
cmPatPaint Combines the inverted source bitmap with the pattern by using the Boolean OR

operator. Combines the result of this operation with the destination bitmap by using
the Boolean OR operator.

cmSrcAnd Combines pixels from the destination and source bitmaps by using the Boolean AND
operator.

cmSrcCopy Copies the source bitmap to the destination bitmap.
cmSrcErase Inverts the destination bitmap and combines the result with the source bitmap by

using the Boolean AND operator.
cmSrcInvert Combines pixels from the destination and source bitmaps by using the Boolean XOR

operator.
cmSrcPaint Combines pixels from the destination and source bitmaps by using the Boolean OR

operator.
cmWhiteness Turns all output white.

Value Meaning

152 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C o p y R e c t m e t h o d

CopyRect method

Applies to
TCanvas object

Declaration

procedure CopyRect(Dest: TRect; Canvas: TCanvas; Source: TRect);

The CopyRect method copies part of an image from another canvas into the canvas
object. The Dest property specifies the destination rectangle on the destination canvas
where the image will be copied. The Canvas property specifies the source canvas. The
Source property specifies the source rectangle from the source canvas that will be copied.

Example
The following code copies the the inverted source bitmap to the Canvas of Form2:

Form2.Canvas.CopyMode := cmNotSrcCopy;
Form2.Canvas.CopyRect(ClientRect, Canvas, ClientRect);

See also
CopyMode property

CopyToClipboard method

Applies to
TDBEdit, TDBImage, TDBMemo, TDDEServerItem, TEdit, TMemo, TOLEContainer
components

For edit boxes and memos

Declaration

procedure CopyToClipboard;

The CopyToClipboard method copies the text selected in the control to the Clipboard,
replacing any text that exists there. If no text is selected, nothing is copied.

Example
The following method copies the selected text from the memo control named Memo1 to
the Clipboard and pastes it into an edit box named Edit1 when the user clicks the button
named Button1:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Memo1.CopyToClipboard;
 Edit1.PasteFromClipboard;
end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 153

C o p y T o C l i p b o a r d m e t h o d+
+
C

See also
Clear method, ClearSelection method, CutToClipboard method, PasteFromClipboard
method

For OLE containers

Declaration

procedure CopyToClipboard(Clear: Boolean);

The CopyToClipboard method copies the OLE object contained in an OLE container to the
Clipboard, as well as OLE information. You can then create a link by activating an OLE
container application and executing an Edit|Paste Special command, or its equivalent in
the command structure of the OLE container application. To paste an object into a
TOLEContainer component, call the PasteSpecialDlg function.

For example, after your application calls the CopyToClipboard method of a OLE container
component, you can manually activate Quattro Pro for Windows. Select a location in the
worksheet and choose Paste Format from the Edit menu of Quattro Pro for Windows to
embed the OLE object in the worksheet.

If the Clear parameter is True, the prior contents of the Clipboard are deleted before
CopyToClipboard places its data on the Clipboard. If Clear is False, the Clipboard won’t be
cleared before the copy.

Example
The following code copies the OLE object in OLEContainer1 to the Clipboard without
clearing the contents first.

OLEContainer1.CopyToClipboard(False);

See also
Clear method

For DDE server items

Declaration

procedure CopyToClipboard;

The CopyToClipboard method copies the text data specified in the Text or Lines property
of a DDE server item component to the Windows Clipboard, as well as DDE link
information. You can then create a link by activating the DDE client application,
selecting the topic and item of the DDE conversation, and executing an Edit|Paste Link
command, or its equivalent in the command structure of the DDE client application.

CopyToClipboard can be used to create a DDE link at run-time only. To create a link at
design time, select the DDE server item component and choose Edit|Copy from the
menu. Then, activate the DDE server application and paste the link according to the

154 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C o s f u n c t i o n

rules of the DDE server application. See the documentation for the DDE server
application for specific information about pasting the link.

If the Clear parameter is True, the prior contents of the Clipboard are deleted before
CopyToClipboard places its data on the Clipboard. If Clear is False, the Clipboard won’t be
cleared before the copy.

Example
The following code copies the DDE link information of DDEServerItem1 to the
Clipboard, clearing the contents of the Clipboard before the copy.

DDEServerItem1.CopyToClipboard;

See also
Clear method

For database images

Declaration

procedure CopyToClipboard;

The CopyToClipboard method copies the image of the database image component to the
Clipboard.

Example
The following code copies the contents of DBImage1 to the Clipboard without clearing
the contents of the Clipboard first.

DBImage1.CopyToClipboard(False);

See also
CutToClipboard method, PasteFromClipboard method

Cos function System

Declaration

function Cos(X: Real): Real;

The Cos function returns the cosine of the angle X, in radians.

Example

 var R: Real;
begin
 R := Cos(Pi);
end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 155

C o u n t p r o p e r t y+
+
C

See also
ArcTan function, Sin function

Count property

Applies to
TIndexDefs, TFieldDefs, TList, TParams, TStringList, TStrings objects; TMenuItem
component

For lists and menu items

Declaration

property Count: Integer;

Run-time and read only. The Count property contains the number of items in a list or in
a menu item.

For string and string list objects, Count is the number of strings in the list of strings. For
list objects, Count is the number of items in the list.

For menu items, Count contains the number of subitems that belongs to a menu item.
Subitems can be the menu items in a drop-down or pop-up menu, or the items in a
submenu.

For example, if you have a File menu item on the main menu bar, but haven’t added any
commands to the File menu yet, the File menu’s Count property value is 0. If you add
New and Open commands to the File menu, the Count property value is 2. Because New
and Open are also menu items, they too have Count property values. Unless either of
these menu items have submenus, their Count property values are 0.

Example
The following code displays the number of items in a list box in the caption of a label
when the user clicks the CountItems button:

procedure TForm1.CountItemsClick(Sender: TObject);
begin
 Label1.Caption := 'There are ' + IntToStr(ListBox1.Items.Count) +
 ' items in the listbox.';
end;

The following example assumes the form contains a main menu component, which
includes a File menu and a label. This code displays the number of menu items that
make up the File menu.

procedure TForm1.Button1Click(Sender: TObject);
begin
Label1.Caption := IntToStr(FileMenu.Count):

end;

156 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C r e a t e m e t h o d

See also

Items property, List property, Strings property

For TParams objects

Declaration

function Count: Integer;

The Count method returns the number of entries in Items.

Example

{ Assign 99999 to any integer parameter which does not have a value }
for I := 0 to Params.Count - 1 do
if (Params.Items[I].IsNull) and (Params.Items[I].DataType = ftInteger) then

{ Items is the default property, so you can omit its name }
Params[I].AsInteger := 99999;

For TFieldDefs objects

Declaration

property Count: Integer;

The Count property specifies the total number of TFieldDef objects in this TFieldDefs
object.

See also
Items property

For TIndexDefs objects

Declaration

property Count: Integer;

Run-time and read only. The Count property holds the number of entries in the Items
property.

Create method

Applies to
All objects and components

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 157

C r e a t e m e t h o d+
+
C

For TIniFile objects

Declaration

constructor Create(const FileName: string);

The Create method allocates memory to create a TIniFile object and passes it the file
name of the .INI file. Delphi looks for the specified .INI file in the Windows directory
unless you include a path in the file name.

Example
This code creates an .INI file object and passes it the name of the .INI file,
SUPERAPP.INI:

var
IniFile: TIniFile;

begin
IniFile := TIniFile.Create(‘SUPERAPP.INI’);
IniFile.Free;

end;

For outline nodes

Declaration

constructor Create(AOwner: TCustomOutline);

The Create method creates a new outline node owned by the outline passed in the
AOwner parameter. You shouldn’t need to call Create, as this is done for you when you
add a new subitem to the outline with the Add method.

For control scroll bars

Declaration

constructor Create(AControl: TScrollingWinControl; AKind: TScrollBarKind);

The Create method creates a new control scroll bar. AControl specifies the component
that owns the control scroll bar. AControl is of type TScrollingWinControl, which is
simply a base class for TForm and TScrollBox components. AKind specifies the type of
scroll bar, either sbHorizontal or sbVertical.

For TIndexDef objects

Declaration

constructor Create(Owner: TIndexDefs; const Name, Fields: string; Options: TIndexOptions);

The Create constructor creates a new TIndexDef object using the Name, Fields, and Options
parameters and adds it to the Items property of the Owner parameter.

158 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C r e a t e m e t h o d

For TIndexDefs objects

Declaration

constructor Create(Table: TTable);

The Create constructor creates a new TIndexDefs object for the Table parameter.

For blob streams

Declaration

constructor Create(Field: TBlobField; Mode: TBlobStreamMode);

The Create method links a TBlobField, TBytesField or TVarBytesField to the TBlobStream.
Mode may be one of the following elements of TBlobStreamMode: bmRead to access existing
data in the field; bmWrite to clear the contents of the field and assign a new value; bmReadWrite
to modify an existing value

Example

{ Link BlobStream1 to MyBlobField for data access only }
BlobStream1 := TBlobStream.Create(MyBlobField, bmRead);

For all other components

Declaration

constructor Create(AOwner: TComponent);

The Create method allocates memory to create the component and initializes its data as
needed. Each object can have a Create method customized to create that particular kind
of object. The owner of the created component is passed in the AOwner parameter.

Usually you don’t need to create objects manually. Objects you design in Delphi are
automatically created for you when you run the application and destroyed when you
close the application.

If you construct a component by calling Create, and give it an owner, the owner disposes
of the component when the owner is destroyed. If you don’t want another component to
own the created component, pass Self in the AOwner parameter.

Example
The following code creates a TButton and makes Form1 the owner.

var
Button1: TButton;

begin
Button1 := TButton.Create(Form1);

end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 159

C r e a t e F i e l d m e t h o d+
+
C

See also
Free method

For all other objects

Declaration

constructor Create;

The Create method allocates memory to create the object and initializes its data as
needed. Each object can have a Create method customized to create that particular kind
of object.

Example
The following code creates a TBitmap and loads the bitmap graphic file C:\WINDOWS\
256COLOR.BMP into it. Then, the bitmap is drawn in a paint box by the OnPaint event
handler of PaintBox1.

procedure TForm1.PaintBox1Paint(Sender: TObject);
var
 Bitmap1: TBitmap;
begin
 Bitmap1 := TBitmap.Create;
 Bitmap1.LoadFromFile('c:\windows\256color.bmp');
 PaintBox1.Canvas.Draw(0, 0, Bitmap1);
Bitmap1.Free;

end;

See also
Free method

CreateField method

Applies to
TFieldDef object

Declaration

function CreateField(Owner: TComponent): TField;

CreateField creates a TField component of the appropriate type that corresponds to the
TFieldDef object itself. Owner is the dataset component containing the field.

CreateForm method

Applies to
TApplication component

160 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C r e a t e N e w m e t h o d

Declaration

procedure CreateForm(FormClass: TFormClass; var Reference);

The CreateForm method creates a new form of the type specified by the FormClass
parameter and assigns it to the variable given by the Reference parameter. The owner of
the new form is the Application object. The form created by the first call to CreateForm in a
project becomes the project's main form.

A Delphi project typically contains one or more calls to CreateForm in the project's main
statement part, but there is seldom any need for you to call CreateForm yourself.

Example
The following code creates Form1 of type TForm1.

Application.CreateForm(TForm1, Form1);

CreateNew method

Applies to
TForm component

Declaration

constructor CreateNew(AOwner: TComponent);

The CreateNew method creates a new instance of the current form type.

CreateParam method

Applies to
TParams object

Declaration

function CreateParam(FldType: TFieldType; const ParamName: string;
ParamType: TParamType): TParam;

The CreateParam method attempts to create a new entry in Items, using the FieldType,
ParamName, and ParamType parameters.

Example

{ Create a new parameter for CustNo and assign a value of 999 to it }
with Params.CreateParam(ftInteger, ‘CustNo’, ptInput) do
AsInteger := 999;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 161

C r e a t e T a b l e m e t h o d+
+
C

CreateTable method

Applies to
TTable component

Declaration

procedure CreateTable;

The CreateTable method creates a new empty database table. Before calling this method,
the DatabaseName, TableName, TableType, FieldDefs and IndexDefs properties must be
assigned values.

Example

with Table1 do
begin
Active := False;
DatabaseName := ‘Delphi_Demos’;
TableName := ‘CustInfo’;
TableType := ttParadox;
with FieldDefs do

begin
Clear;
Add(‘Field1’, ftInteger, 0);
Add(‘Field2’, ftInteger, 0);
end;

with IndexDefs do
begin
Clear;
Add(‘Field1Index’, ‘Field1’, [ixPrimary, ixUnique]);
end;

CreateTable;
end;

CSeg function System

Declaration

function CSeg: Word;

The CSeg function returns the current value of the CS register.

The result is the segment address of the code segment that called CSeg.

Example

function MakeHexWord(w: Word): string;
const
hexChars: array [0..$F] of Char = '0123456789ABCDEF';

var

162 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C t l 3 D p r o p e r t y

HexStr : string;
begin
HexStr := '';
HexStr := HexStr + hexChars[Hi(w) shr 4];
HexStr := HexStr + hexChars[Hi(w) and $F];
HexStr := HexStr + hexChars[Lo(w) shr 4];
HexStr := HexStr + hexChars[Lo(w) and $F];
MakeHexWord := HexStr;

end;

procedure TForm1.Button1Click(Sender: TObject);
var
 i: Integer;
 Y: Integer;
 S: string;
begin
 Y := 10;
 S := 'The current code segment is $' + MakeHexWord(CSeg);
 Canvas.TextOut(5, Y, S);
 Y := Y + Canvas.TextHeight(S) + 5;
 S := 'The global data segment is $' + MakeHexWord(DSeg);
 Canvas.TextOut(5, Y, S);
 Y := Y + Canvas.TextHeight(S) + 5;
 S := 'The stack segment is $' + MakeHexWord(SSeg);
 Canvas.TextOut(5, Y, S);
 Y := Y + Canvas.TextHeight(S) + 5;
 S := 'The stack pointer is at $' + MakeHexWord(SPtr);
 Canvas.TextOut(5, Y, S);
 Y := Y + Canvas.TextHeight(S) + 5;
 S := 'i is at offset $' + MakeHexWord(Ofs(i));
 Canvas.TextOut(5, Y, S);
 Y := Y + Canvas.TextHeight(S) + 5;
 S := 'in segment $' + MakeHexWord(Seg(i));
 Canvas.TextOut(5, Y, S);
end;

See also
DSeg function, SSeg function

Ctl3D property

Applies to
TBitBtn, TButton, TCheckBox, TColorDialog, TComboBox, TDBCheckBox, TDBComboBox,
TDBEdit, TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBLookupList,
TDBMemo, TDBNavigator, TDBRadioGroup, TDirectoryListBox, TDrawGrid,
TDriveComboBox, TEdit, TFileListBox, TFindDialog, TFilterComboBox, TFontDialog, TForm,
TGroupBox, TListBox, TMaskEdit, TMemo, TNotebook, TOLEContainer, TOpenDialog,
TOutline, TPanel, TRadioButton, TReplaceDialog, TSaveDialog, TScrollBar, TScrollBox,
TStringGrid components

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 163

C u r r e n c y a n d d a t e / t i m e f o r m a t t i n g v a r i a b l e s+
+
C

Declaration

property Ctl3D: Boolean;

The Ctl3D property determines whether a control has a three-dimensional (3-D) or two-
dimensional look. If Ctl3D is True, the control has a 3-D appearance. If Ctl3D is False, the
control appears normal or flat. The default value of Ctl3D is True.

For dialog boxes, the value of Ctl3D affects the dialog box and all the controls it contains.

If a control's ParentCtl3D property is True, then changing in the Ctl3D property of the
control's parent automatically changes the Ctl3D property of the control. When you
assign a value directly to a control's Ctl3D property, the control's ParentCtl3D property
is automatically set to False.

Note For Ctl3D to work with radio buttons, check boxes, and any of the common dialog
boxes, the CTL3DV2.DLL dynamic-link library must be present on the path.

Example
The following code toggles the 3-D look of a memo control when the user clicks a button
named Toggle:

procedure TForm1.ToggleClick(Sender: TObject);
begin
 Memo1.Ctl3D := not Memo1.Ctl3D; {Toggles the Ctl3D property of Memo1}
end;

See also
ParentCtl3D property

Currency and date/time formatting variables SysUtils

Declaration

CurrencyString: string[7];

CurrencyFormat: Byte;

NegCurrFormat: Byte;

ThousandSeparator: Char;

DecimalSeparator: Char;

CurrencyDecimals: Byte;

DateSeparator: Char;

ShortDateFormat: string[15];

LongDateFormat: string[31];

TimeSeparator: Char;

TimeAMString: string[7];

164 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C u r r e n c y a n d d a t e / t i m e f o r m a t t i n g v a r i a b l e s

TimePMString: string[7];

ShortTimeFormat: string[15];

LongTimeFormat: string[31];

ShortMonthNames: array[1..12] of string[3];

LongMonthNames: array[1..12] of string[15];

ShortDayNames: array[1..7] of string[3];

LongDayNames: array[1..7] of string[15];

The SysUtils unit includes a number of variables that are used by the date and time
routines. You can assign new values to these variables to change the formats of date and
time strings.

Typed constant Defines

CurrencyString The currency symbol used in floating-point to decimal conversions. The initial
value is fetched from the sCurrency variable in the [intl] section of WIN.INI.

CurrencyFormat The currency symbol placement and separation used in floating-point to decimal
conversions. Possible values are:

0 = '$1'
1 = '1$'
2 = '$ 1'
3 = '1 $'

The initial value is fetched from the iCurrency variable in the [intl] section of
WIN.INI.

NegCurrFormat The currency format for used in floating-point to decimal conversions of
negative numbers. Possible values are:

0 = ($1) 4 = (1$)
1 = -$1 5 = -1$
2 = $-1 6 = 1-$
3 = $1- 7 = 1$-

The initial value is fetched from the iNegCurr variable in the [intl] section of
WIN.INI.

ThousandSeparator The character used to separate thousands in numbers with more than three digits
to the left of the decimal separator. The initial value is fetched from the
sThousand variable in the [intl] section of WIN.INI.

DecimalSeparator The character used to separate the integer part from the fractional part of a
number. The initial value is fetched from the sDecimal variable in the [intl]
section of WIN.INI.

CurrencyDecimals The number of digits to the right of the decimal point in a currency amount. The
initial value is fetched from the sCurrDigits variable in the [intl] section of
WIN.INI.

DateSeparator The character used to separate the year, month, and day parts of a date value.
The initial value is fetched from the sDate variable in the [intl] section of
WIN.INI.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 165

C u r r e n c y a n d d a t e / t i m e f o r m a t t i n g v a r i a b l e s+
+
C

Example
This example uses a label and a button on a form. When the user clicks the button, the
current date displays in the caption of the label. Because some of the date variables are
assigned new values, the format of the date in the label changes. For example, if the date
is 9/15/94, the date displays as 15-09-1994.

procedure TForm1.Button1Click(Sender: TObject);
begin
 DateOrder := doDMY;
 DateSeparator := '-';
 DateFullYear := True;
 DateLeadZero := True;
 Label1.Caption := DateToStr(Date);
end;

ShortDateFormat The format string used to convert a date value to a short string suitable for
editing. For a complete description of date and time format strings, refer to the
documentation for the FormatDateTime function. The short date format should
only use the date separator character and the m, mm, d, dd, yy, and yyyy format
specifiers. The initial value is fetched from the sShortDate variable in the [intl]
section of WIN.INI.

LongDateFormat The format string used to convert a date value to a long string suitable for display
but not for editing. For a complete description of date and time format strings,
refer to the documentation for the FormatDateTime function. The initial value is
fetched from the sLongDate variable in the [intl] section of WIN.INI.

TimeSeparator The character used to separate the hour, minute, and second parts of a time
value. The initial value is fetched from the sTime variable in the [intl] section of
WIN.INI.

TimeAMString The suffix string used for time values between 00:00 and 11:59 in 12-hour clock
format. The initial value is fetched from the s1159 variable in the [intl] section of
WIN.INI.

TimePMString The suffix string used for time values between 12:00 and 23:59 in 12-hour clock
format. The initial value is fetched from the s2359 variable in the [intl] section of
WIN.INI.

ShortTimeFormat The format string used to convert a time value to a short string with only hours
and minutes. The default value is computed from the iTime and iTLZero
variables in the [intl] section of WIN.INI.

LongTimeFormat The format string used to convert a time value to a long string with hours,
minutes, and seconds. The default value is computed from the iTime and
iTLZero variables in the [intl] section of WIN.INI.

ShortMonthNames Array of strings containing short month names. The mmm format specifier in a
format string passed to FormatDateTime causes a short month name to be
substituted.

LongMonthNames Array of strings containing long month names. The mmmm format specifier in a
format string passed to FormatDateTime causes a long month name to be
substituted.

ShortDayNames Array of strings containing short day names. The ddd format specifier in a
format string passed to FormatDateTime causes a short day name to be
substituted.

LongDayNames Array of strings containing long day names. The dddd format specifier in a
format string passed to FormatDateTime causes a long day name to be
substituted.

Typed constant Defines

166 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C u r r e n c y p r o p e r t y

Currency property

Applies to
TBCDField, TCurrencyField, TFloatField components

Declaration

property Currency: Boolean;

Run-time only. The Currency property is used to control the format of the value of a
TBCDField, TCurrencyField, and TFloatField when both DisplayFormat and EditFormat
properties are not assigned.

Currency is True by default for TCurrencyField and False for TFloatField and TBCDField.
When Currency is True formatting is performed by FloatToText using ffCurrency for
display text or ffFixed for editable text. When Currency is False, the formatting is
performed by FloatToTextFmt.

See also
DisplayFormat property, EditFormat property, FloatToText function, FloatToTextFmt
function

Cursor property

Applies to
All controls, TScreen component

For all controls

Declaration

property Cursor: TCursor;

The Cursor property is the image used when the mouse passes into the region covered
by the control. These are the possible images:

Value Image Value Image Value Image

crDefault crSizeNESW crHourglass

crArrow crSizeNS crDrag

crCross crSizeNWSE crNoDrop

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 167

C u r s o r p r o p e r t y+
+
C

To learn how to make a custom cursor available to your application, see the Cursors
property.

Example

This line of code changes the display of the image to the cross cursor when the user
moves the mouse pointer over Button1:

Button1.Cursor := crCross;

See also
Cursors property, DragCursor property

For screen objects

Declaration

property Cursor: TCursor;

The Screen object's Cursor property controls the mouse cursor shape at a global level.
Assigning any value but crDefault to the Screen object's Cursor property sets the mouse
cursor shape for all windows belonging to the application. The global mouse cursor
shape remains in effect until you assign crDefault to the Screen object's Cursor property,
at which point normal cursor behavior is restored.

To see a list of possible cursor shapes, see the Cursor property for all controls.

Example
Assignments to the Screen object's cursor property are typically guarded by a
try...finally statement to ensure that normal cursor behavior is restored, for example:

Screen.Cursor := crHourglass; { Show hourglass cursor }
try
 { Do some lengthy operation }
finally
 Screen.Cursor := crDefault; { Always restore to normal }
end;

crIBeam crSizeWE crHSplit

crSize crUpArrow crVSplit

Value Image Value Image Value Image

168 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C u r s o r t y p e d c o n s t a n t

Cursor typed constant WinCrt

Declaration

const Cursor: TPoint = (X: 0; Y: 0);

The Cursor variable contains the current position of the cursor within the virtual screen.

The upper left corner corresponds to (0, 0). Cursor is a read-only variable; do not assign
values to it.

CursorPosChanged method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure CursorPosChanged;

The CursorPosChanged method is needed only if you use the Handle property to make
direct calls to the Borland Database Engine (BDE) API which cause the cursor position
to change. To notify the dataset that the underlying BDE cursor’s position has changed,
call CursorPosChanged after the direct calls to the BDE.

See also
UpdateCursorPos method

Cursors property

Applies to
TScreen component

Declaration

property Cursors[Index: Integer]: HCursor;

Run-time only. The Cursors property gives you access to the list of cursors available for
your application. To access a particular cursor, specify its position in the list of cursors as
the value of the Index parameter with the first position in the list having an index of 0,
the second having an index of 1, and so on.

Using the Cursors property, you can make custom cursors available to your application.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 169

C u r s o r T o p r o c e d u r e+
+
C

These are the cursor constants and their position in the Cursors property array:

To make a custom cursor available to your application,

1 Create the cursor resource using a resource editor.

2 Declare a cursor constant with a value that does not conflict with an existing cursor
constant.

3 Use the WinAPI function LoadCursor to make your cursor available to your
application, specifying the newly declared cursor constant as the value of the Index
parameter for the Cursors property array.

Note You don’t need to call the WinAPI function DestroyCursor when you are finished using
the custom cursor; Delphi does this automatically.

Example
This example assumes you have created a cursor resource with the name NewCursor.
The code loads the new cursor into the Cursors property array and makes the newly
loaded cursor the cursor of the form:

const
 crMyCursor = 5;

procedure TForm1.FormCreate(Sender: TObject);
begin
 Screen.Cursors[crMyCursor] := LoadCursor(HInstance, 'NewCursor');
 Cursor := crMyCursor;
end;

See also
Cursor property, DragCursor property

CursorTo procedure WinCrt

Declaration

procedure CursorTo(X, Y: Integer);

Cursor Value Cursor Value

crDefault 0 crSizeWE –9
crNone –1 crUpArrow –10
crArrow –2 crHourglass –11
crCross –3 crDrag –12
crIBeam –4 crNoDrop –13
crSize –5 crHSplit –14
crSizeNESW –6 crVSplit –15
crSizeNS –7 crMultiDrag –16
crSizeNWSE –8 crSQLWait –17

170 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

C u s t o m C o l o r s p r o p e r t y

The CursorTo procedure moves the cursor to the given coordinates (X, Y) within the
virtual screen.

The coordinates of the upper left corner of the CRT window are (0, 0). CursorTo sets the
Cursor variable to (X, Y).

See also
GoToXY procedure

CustomColors property

Applies to
TColorDialog component

Declaration

property CustomColors: TStrings;

The value of the CustomColors property determines the custom colors that are available
in the Color dialog box. Each custom color is represented as a string that follows this
format:

ColorX=HexValue

For example, this string could indicate that the first custom color box in the Color dialog
box:

ColorA=808022

This is the same format that your CONTROL.INI file uses to specify the custom colors
that are available in the Windows Color dialog box.

You can have up to 16 custom colors, ColorA through ColorP.

Use the string list of custom colors to save the custom colors specified in the dialog box
so you can use them elsewhere. For example, you might save them to an .INI file for
your application so your application can use the custom colors.

Example
This example displays the Color dialog box, allowing the user to create custom colors,
then displays the custom color strings in a list box:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if ColorDialog1.Execute then
 ListBox1.Items.AddStrings(ColorDialog1.CustomColors);
end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 171

C u t T o C l i p b o a r d m e t h o d+
+
C

CutToClipboard method

Applies to
TDBEdit, TDBImage, TDBMemo, TEdit, TMaskEdit, TMemo components

Declaration

procedure CutToClipboard;

The CutToClipboard method deletes the text selected in the control and copies it to the
Clipboard, replacing any text that exists there. If no text is selected, nothing is copied.

For database images, CutToClipboard deletes the image in the control and copies it to the
Clipboard, replacing the contents of the Clipboard.

Example
The following method cuts the text the user selects in Memo1 to the Clipboard and
pastes it from the Clipboard in an edit box control when the user clicks the button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Memo1.CutToClipboard;
 Edit1.PasteFromClipboard;
end;

See also
Clear method, ClearSelection method, CopyToClipboard method, PasteFromClipboard
method

Data property

Applies to
TOutlineNode component

Declaration

property Data: Pointer;

Run-time only. The Data property specifies any data you want associated with an
outline item.

Example
The following code creates a TBitmap and adds it to the Data of the selected outline item.

var
Bitmap: TBitmap;

begin
Bitmap := TBitmap.Create;

172 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D a t a b a s e p r o p e r t y

Outline1.Items[Outline1.SelectedItem].Data := Bitmap;
end;

See also
GetDataItem method, Text property

Database property

Applies to
TTable, TQuery component

Declaration

property Database: TDatabase;

Run-time and read only. Database specifies the database (TDatabase) component
associated with the dataset component. If you did not create a TDatabase at design time,
then Delphi will create one at run time. Use the Database property to reference the
properties and methods of the database.

Example

{ Do a transaction }
with Table1.Database do
begin
StartTransAction;

{ Post some records with Table1 }
Commit;
end;

DatabaseCount property

Applies to
TSession component

Declaration

property DatabaseCount: Integer;

Run-time and read only. DatabaseCount is the number of TDataBase components
currently attached to Session.

Example

{ Close all databases }
with Session do
while DatabaseCount <> 0 do

Databases[0].Close;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 173

D a t a b a s e E r r o r p r o c e d u r e+
+
+
D

See also
Databases property

DatabaseError procedure DB

Declaration

procedure DatabaseError(const Message: string);

The DatabaseError procedure creates and raises the EDatabaseError exception object,
using Message as the text for the exception.

Example

{ Test for an error and raise an exception if so }
if { some error has occured } then DatabaseError(‘Some error has occured’);

DatabaseName property

Applies to
TDataBase, TQuery, TStoredProc, TTable components

For database components

Declaration

property DatabaseName: TFileName;

Set the DatabaseName property to define an application-specific alias. Dataset
components can reference this name instead of a BDE alias, directory path, or database
name. In other words, this is the name of an application-specific alias defined by the
dataset component that will show up in the DatabaseName drop-down list of TTable,
TQuery, and TStoredProc components.

If you try to set DatabaseName of a TDatabase for which Connected is True, Delphi will
raise an exception.

Example

Database1.DatabaseName := ‘Delphi_Demos’;

For tables, queries, and stored procedures

Declaration

property DatabaseName: TFileName;

174 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D a t a b a s e s p r o p e r t y

Set the DatabaseName property to specify the database to access. This property can
specify:

• A defined BDE alias,
• A directory path for desktop database files,
• A directory path and file name for a Local InterBase Server database,
• An application-specific alias defined by a TDatabase component

Note Use the Close method to put a dataset in Inactive state before changing DatabaseName.

Example

{ Close the DBDataSet }
Table1.Active := False;
try
{ First try to use an alias }
Table1.DatabaseName := ‘Delphi_Demos’;
Table1.Active := True;

except
on EDatabaseError do

{ If that fails, try to use the drive and directory }
Table1.DatabaseName := ‘c:\delphi\demos\database’;
Table1.Active := True;

See also
Active property

Databases property

Applies to
TSession component

Declaration

property Databases[Index: Integer]: TDatabase;

Run-time and read only. The Databases property holds a list of all of the currently active
TDatabase components.

Example

{ Close all databases }
with Session do
while DatabaseCount <> 0 do

Databases[0].Close;

See also
DatabaseCount property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 175

D a t a F i e l d p r o p e r t y+
+
+
D

DataField property

Applies to
TDBCheckBox, TDBComboBox, TDBEdit, TDBImage, TDBListBox, TDBLookupCombo,
TDBLookupList, TDBMemo, TDBRadioGroup, TDBText components

Declaration

property DataField: string;

The DataField property identifies the field from which the data-aware control displays
data. The dataset the field is located in is specified in a data source component
(TDataSource). The DataSource property of the data-aware control specifies which data
source component.

If the DataField value of a database edit box (TDBEdit) is an integer or floating-point
value, only characters that are valid in such a field can be entered in the edit box.
Characters that are not legal are not accepted.

Example
The following code specifies that the DataField of DBEdit1 is ‘FNAME’.

DBEdit1.DataField := ‘FNAME’;

DataFormat property

Applies to
TOLEDropNotify object

Declaration

property DataFormat: Word;

The DataFormat property specifies the Clipboard format of data dropped on a form. The
form must be registered with the RegisterFormAsOLEDropTarget function for a
TOLEDropNotify object to be the Source in an OnDragDrop event handler. If DataFormat
specifies an OLE object format, the PInitInfo property points to initialization information
for the dropped OLE object. If the dropped data is not an OLE object, DataFormat
specifies some other format (such as CF_BITMAP for bitmap graphic data) and PInitInfo
won’t point to valid OLE initialization information and can’t be used to initialize a
TOLEContainer component.

Example
The following code is the OnDragDrop event handler for a form that is registered as an
OLE drop target with RegisterFormAsOLEDropTarget. If a text object is dropped, a label is
created to display the data. If a metafile object is dropped, an image is created to display
the data. Otherwise, it is assumed that an OLE object was dropped and an OLE
container is created to contain the object.

176 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D a t a F o r m a t p r o p e r t y

procedure TXMdiX.DoDrop(DragTgt, DragSource: TObject; X, Y: Integer);
var
Ctrl : TOleContainer;
Image : TImage;
Pict : TPicture;
ClipPict : TPicture;
FLabel : TLabel;
Ptr : PChar;
Str : String;
Dropper : TOleDropNotify;

begin
if DragSource is TOleDropNotify then
begin

Dropper := TOleDropNotify (DragSource);
if Dropper.DataFormat = CF_TEXT then
begin
FLabel := TLabel.Create (TForm(DragTgt));
FLabel.Left := X;
FLabel.Top := Y;
FLabel.Width := 30;
FLabel.Height := 10;
Ptr := GlobalLock (Dropper.DataHandle);
Str := StrPas (Ptr);
GlobalUnlock (Dropper.DataHandle);
Str := Format('DropText = %s', [@Str]);
FLabel.Caption := Str;
GlobalFree (Dropper.DataHandle);
FLabel.visible := True;
FLabel.enabled := True;
TForm (DragTgt).InsertControl (FLabel);

end
else if Dropper.DataFormat = CF_METAFILEPICT then
begin
Image := TImage.Create (TForm(DragTgt));
Image.Left := X;
Image.Top := Y;
Image.Width := 30;
FLabel.Height := 10;
Pict := TPicture.Create;
Pict.LoadFromClipboardFormat(Dropper.DataFormat, Dropper.DataFormat, 0);
Image.Picture := Pict;
GlobalFree (Dropper.DataHandle);
Image.visible := True;
Image.enabled := True;
TForm (DragTgt).InsertControl (Image);

end;
else if Dropper.PInitInfo <> Nil then
begin
Ctrl := TOleContainer.Create (TForm(DragTgt));
Ctrl.top := Y;
Ctrl.left := X;
Ctrl.Width := 100;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 177

D a t a H a n d l e p r o p e r t y+
+
+
D

Ctrl.Height := 100;
Ctrl.visible := True;
Ctrl.enabled := True;
Ctrl.AutoSize := True;
TForm (DragTgt).InsertControl (Ctrl);
Ctrl.PInitInfo := Dropper.PInitInfo;

end;
end;

end;

See also
DataHandle property

DataHandle property

Applies to
TOLEDropNotify object

Declaration

property DataHandle: THandle;

The DataHandle property specifies a handle to the data dropped on a form. The form
must have been registered with the RegisterFormAsOLEDropTarget function for a
TOLEDropNotify object to be the Source in an OnDragDrop event handler. If the data is
any type other than an OLE object, you can use DataHandle to access the data.

Example
The following code locks the data handle of a TOLEDropNotify object named Dropper.

Ptr := GlobalLock (Dropper.DataHandle);

See also
DataFormat property

DataSet property

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDataSource,
TDateField, TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField,
TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

For data source components

Declaration

property DataSet: TDataSet

178 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D a t a s e t C o u n t p r o p e r t y

DataSet specifies the dataset component (TTable, TQuery, and TStoredProc) that is
providing data to the data source. Usually you set DataSet at design time with the Object
Inspector, but you can also set it programmatically. The advantage of this interface
approach to connecting data components is that the dataset, data source, and data-
aware controls can be connected and disconnected from each other through the
TDataSource component. In addition, these components can belong to different forms.

Example

DataSource1.DataSet := Table1; {get data from this form’s Table1}
DataSource1.DataSet := Form2.Table1; {get data from Form2’s Table1}

For field components

Declaration

property DataSet: TDataSet;

Run-time only. DataSet identifies the dataset to which a TField component belongs. Only
assign a value to this property if you are programmatically creating TField component .

DatasetCount property

Applies to
TDataBase component

Declaration

property DatasetCount: Integer;

DatasetCount is the number of dataset components (TTable, TQuery, and TStoredProc)
that are currently using the TDatabase component. Read-only and run time only.

Example
{ Check to see if any record associated with this database has pending updates }
Changed := False;
with Database1 do
for I := 0 to DatasetCount - 1 do

Changed := Changed or DataSets[I].Modified;

See also
Datasets property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 179

D a t a s e t s p r o p e r t y+
+
+
D

Datasets property

Applies to
TDataBase component

Declaration

property Datasets[Index: Integer]: TDBDataSet;

Run-time and read only. Datasets is the set of dataset components that are currently
sharing the TDatabase component.

Example

{ Check to see if any record associated with this database has pending updates }
Changed := False;
with Database1 do
for I := 0 to DatasetCount - 1 do

Changed := Changed or DataSets[I].Modified;

See also
DatasetCount property

DataSize property

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

property DataSize: Word;

Run-time and read only. The value of DataSize is the number of bytes required to store
the field in memory.

For TBoolean, TSmallint, and TWordField, the value is two bytes. For TDateField,
TIntegerField, and TTimeField, the value is four bytes. For TCurrencyField, TDateTimeField,
and TFloatField, the value is eight bytes. For TBCDField, the value is eighteen bytes. For
TStringField, the value is the maximum size of the text plus one (not more than 255
characters). For TBlobField, TBytesField, TGraphicField, TMemoField, and TVarBytesField,
the value is the size of the field as stored in the record buffer.

180 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D a t a S o u r c e p r o p e r t y

DataSource property

Applies to
TDBCheckBox, TDBComboBox, TDBEdit, TDBGrid, TDBImage, TDBListBox,
TDBLookupCombo, TDBLookupList, TDBMemo, TDBNavigator, TQuery, TDBRadioGroup,
TDBText components

For data-aware controls

Declaration

property DataSource: TDataSource;

The DataSource property determines where the component obtains the data to display.
Specify the data source component that identifies the dataset the data is found in.

Example
The following code specifies DataSource1 to be the DataSource of DBGrid1.

DBGrid1.DataSource := DataSource1;

See also
DataField property, SQL property

For queries

Declaration

property DataSource: TDataSource;

Set the DataSource property to the name of a TDataSource component in the application
to assign values to parameters not bound to values programmatically with Params or
ParamByName. If the unbound parameter names match any column names in the
specified data source, Delphi binds the current values of those fields to the
corresponding parameters. This capability enables applications to have linked queries.

Example
The LINKQRY sample application illustrates the use of the DataSource property to link a
query in a master-detail form. The form contains a TQuery component (named Orders)
with the following in its SQL property:

SELECT Orders.CustNo, Orders.OrderNo, Orders.SaleDate
FROM Orders
WHERE Orders.CustNo = :CustNo

The form also contains:

• A TDataSource named OrdersSource, linked to Orders by its DataSet property.
• A TTable component (named Cust).

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 181

D a t a T y p e p r o p e r t y+
+
+
D

• A TDataSource named CustSource linked to Cust.
• Two data grids; one linked to CustSource and the other to OrdersSource.

Orders’ DataSource property is set to CustSource. Because the parameter :CustNo does
not have any value assigned to it, at run time Delphi will try to match it with a column
name in CustSource, which gets its data from the Customer table through Cust. Because
there is a CustNo column in Cust, the current value of CustNo in the Cust table is
assigned to the parameter, and the two data grids are linked in a master-detail
relationship. Each time the Cust table moves to a different row, the Orders query
automatically re-executes to retrieve all the orders for the current customer.

See also
SQL property

DataType property

Applies to
TFieldDef, TParam objects; TBCDField, TBlobField, TBooleanField, TBytesField,
TCurrencyField, TDateField, TDateTimeField, TFloatField, TGraphicField, TIntegerField,
TMemoField, TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField
components

For field definition objects

Declaration

property DataType: TFieldType;

Run-time and read only. Read DataType to determine a physical field’s type. Possible
values are those of the TFieldType type: ftUnknown, ftString, ftSmallint, ftInteger, ftWord,
ftBoolean, ftFloat, ftCurrency, ftBCD, ftDate, ftTime, ftDateTime, ftBytes, ftVarBytes, ftBlob,
ftMemo or ftGraphic.

For field definitions

Declaration

property DataType: TFieldType;

Run-time and read only. DataType identifies the data type of the TField. Possible values
are those of the TFieldType type: ftBoolean, ftBCD, ftBlob, ftBytes, ftCurrency, ftDate,
ftDateTime, ftFloat, ftGraphic, ftInteger, ftMemo, ftSmallint, ftString, ftTime, ftUnknown,
ftVarBytes, and ftWord.

182 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D a t e f u n c t i o n

For TParam objects

Declaration

property DataType: TFieldType;

The DataType property is the type of the parameter. Possible values are those of the
TFieldType type: ftUnknown, ftString, ftSmallint, ftInteger, ftWord, ftBoolean, ftFloat,
ftCurrency, ftBCD, ftDate, ftTime, ftDateTime, ftBytes, ftVarBytes, ftBlob, ftMemo or
ftGraphic.

Example

with Query1.Parameters do
for I := 0 to Count - 1 do

if Params[I].DataType = ftUnknown then
MessageDlg(‘Parameter ‘ + IntToStr(I) + ‘ is undefined’, mtWarning, [mbOK], 0);

Date function SysUtils

Declaration

function Date: TDateTime;

The Date function returns the current date.

Example
This example uses a label and a button on a form. When the user clicks the button, the
current date is displayed in the caption of the label:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := 'Today is ' + DateToStr(Date);
end;

See also
DateToStr function, DayOfWeek function, DecodeDate procedure, Now function, Time
function

DateTimeToFileDate function SysUtils

Declaration

function DateTimeToFileDate(DateTime: TDateTime): Longint;

DateTimeToFileDate converts a TDateTime value to a DOS date-and-time value. The
FileAge, FileGetDate, and FileSetDate routines operate on DOS date-and-time values, and
the Time field of a TSearchRec used by the FindFirst and FindNext functions contains a
DOS date-and-time value.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 183

D a t e T i m e T o S t r i n g p r o c e d u r e+
+
+
D

See also
FileDateToDateTime function

DateTimeToString procedure SysUtils

Declaration

procedure DateTimeToString(var Result: string; const Format: string; DateTime: TDateTime);

DateTimeToString converts the date and time value given by DateTime using the format
string given by Format into the string variable given by Result. For further details, see the
description of the FormatDateTime function.

See also
TDateTime type

DateToStr function SysUtils

Declaration

function DateToStr(Date: TDateTime): string;

The DateToStr function converts a variable of type TDateTime to a string. The conversion
uses the format specified by the ShortDateFormat global variable.

Example
This example uses a label and a button on a form. When the user clicks the button, the
current date is converted to a string and displayed as the caption of the label:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := DateToStr(Date);
end;

See also
Date function, DateTimeToStr function, StrToDate function, TimeToStr function

DateTimeToStr function SysUtils

Declaration

function DateTimeToStr(DateTime: TDateTime): string;

The DateTimeToStr function converts a variable of type TDateTime to a string. If DateTime
parameter does not contain a date value, the date displays as 00/00/00. If the DateTime
parameter does not contain a time value, the time displays as 00:00:00 AM. You can

184 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D a y O f W e e k f u n c t i o n

change how the string is formatted by changing some of the date and time typed
constants.

Example
This example uses a label and a button on a form. When the user clicks the button, the
current date and time is converted to a string and displayed as the caption of the label:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := DateTimeToStr(Now);
end;

See also
Date function, DateToStr function, Now function, StrToDate function, Time function,
TimeToStr function

DayOfWeek function SysUtils

Declaration

function DayOfWeek(Date: TDateTime): Integer;

The DayOfWeek function returns the day of the week of the specified date as an integer
between 1 and 7. Sunday is the first day of the week and Saturday is the seventh.

Example
This example uses a button, an edit box, and a label on a form. When the user enters a
date in the edit box using the Month/Day/Year format, the caption of the label reports
the day of the week for the specified date.

procedure TForm1.Button1Click(Sender: TObject);
var
 ADate: TDateTime;
begin
 ADate := StrToDate(Edit1.Text);
 Label1.Caption := 'Day ' + IntToStr(DayOfWeek(ADate)) + ' of the week';
end;

See also
Date function, EncodeDate function, Now function, StrToDate function, StrToDateTime
function

DBHandle property

Applies to
TTable, TQuery, TStoredProc components

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 185

D b i E r r o r p r o c e d u r e+
+
+
D

Declaration

property DBHandle: HDBIDB;

Run-time and read only. The DBHandle property enables an application to make direct
calls to the Borland Database Engine (BDE) API. Many BDE function calls require a
database handle. This property provides the requisite database handle.

Under most circumstances you should not need to use this property, unless your
application requires some functionality not encapsulated in the VCL.

DbiError procedure DB

Declaration

procedure DbiError(ErrorCode: Integer);

The DbiError procedure creates an error message by querying the Borland Database
Engine for the last error number and text and calls DatabaseError passing the result.
ErrorCode is used to obtain a text message from the engine if the error has already been
cleared.

DBLocale property

Applies to
TTable, TQuery, TStoredProc components

Declaration

property DBLocale: TLocale;

Run-time and read only. The DBLocale property allows you to make direct calls to the
Borland Database Engine using this specification of the language driver. Under most
circumstances you should not need to use this property, unless your application
requires some functionality not encapsulated in the VCL.

DDEConv property

Applies to
TDDEClientItem component

Declaration

property DdeConv: TDdeClientConv;

The DDEConv property specifies the DDE client conversation component to associate
with the DDE client item component. The value of DDEConv is the name of the DDE
client conversation component that defines the DDE conversation.

186 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D D E I t e m p r o p e r t y

Example
The following code specifies DDEClientConv1 as the conversation of DDEClientItem1.

DDEClientItem1.DDEConv := DDEClientConv1.

See also
Name property

DDEItem property

Applies to
TDDEClientItem component

Declaration

property DDEItem: String;

The DDEItem property specifies the item of a DDE conversation. The value of DDEItem
depends on the linked DDE server application. DDEItem is typically a selectable portion
of text, such as a spreadsheet cell or a database field in an edit box. If the DDE server is a
Delphi application, DDEItem is the name of the linked DDE server component. For
example, to link to a DDE server component named DDEServer1, set DDEItem to
‘DDEServer1’.

See the documentation for the DDE server application for the specific information about
specifying DDEItem.

At design time, you can specify DDEItem either by typing the item string in the object
inspector or by pasting a link using the DDE Info dialog box, which appears if you click
the ellipsis (...) button for DDEService or DDETopic in the Object Inspector. After you
choose Paste Link in the DDE Info dialog box, you can choose the item from a list of
possible items for DDEItem in the object inspector if link information is still on the
Clipboard.

Example
The following code specifies a DDE item of ‘DDEServer1’.

DDEClientItem1.DDEItem := 'DDEServer1';

See also
DDEService property, DDETopic property

DDEService property

Applies to
TDDEClientConv component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 187

D D E T o p i c p r o p e r t y+
+
+
D

Declaration

property DDEService: string;

The DDEService property specifies the DDE server application to be linked to a DDE
client. Typically, DDEService is the file name (and path, if necessary) of the DDE server
application’s main executable file without the .EXE extension. If the DDE server is an
Delphi application, DDEService is the project name without the .DPR or .EXE extension.
For example, to link to a TDDEServerConv component in PROJ1.DPR, set DDEService to
‘PROJ1’.

See the documentation for the DDE server application for the specific information about
specifying DDEService.

At design time, you can specify DDEService either by typing the DDE server application
name in the object inspector or by choosing Paste Link in the DDE Info dialog box.

Example
The following code specifies a DDE service of ‘Project1’.

DDEClientConv1.DDEService := 'Project1';

See also
DDEItem property, DDETopic property

DDETopic property

Applies to
TDDEClientConv component

Declaration

property DDETopic: string;

The DDETopic property specifies the topic of a DDE conversation. Typically, DDETopic
is a file name (and path, if necessary) used by the application specified in DDEService. If
the DDE server is an Delphi application, by default DDETopic is the caption of the form
containing the linked component. For example, to link to a component on a form named
Form1, set DDETopic to ‘Form1’. However, if the DDE client is linked to a
TDDEServerConv component, DDETopic is the name of the server conversation
component instead of the form caption. For example, to link to DDEServerConv1, set
DDETopic to ‘DDEServerConv1’.

See the documentation for the DDE server application for the specific information about
specifying DDETopic.

At design time, you can specify DDETopic either by typing the DDE server application
name in the object inspector or by choosing Paste Link in the DDE Info dialog box.

Example
The following code spGecifies a DDE topic of ‘Form1’.

188 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D e c p r o c e d u r e

DDEClientConv1.DDETopic := 'Form1';

See also
DDEItem property

Dec procedure System

Declaration

procedure Dec(var X[; N: Longint]);

The Dec procedure subtracts one or N from a variable.

Dec(X) corresponds to X := X – 1, and Dec(X, N) corresponds to X := X – N.

X is an ordinal-type variable or a variable of type PChar if the extended syntax is
enabled, and N is an integer-type expression.

Dec generates optimized code and is especially useful in a tight loop.

Example

 var
 IntVar: Integer;
 LongintVar: Longint;
begin
 Intvar := 10;
 LongintVar := 10;
 Dec(IntVar); { IntVar := IntVar – 1 }
 Dec(LongintVar, 5); { LongintVar := LongintVar – 5 }
end;

See also
Inc procedure, Pred function, Succ function

DecodeDate procedure SysUtils

Declaration

procedure DecodeDate(Date: TDateTime; var Year, Month, Day: Word);

The DecodeDate procedure breaks the value specified as the Date parameter into Year,
Month, and Day values. If the given TDateTime value is less than or equal to zero, the
year, month, and day return parameters are all set to zero.

Example
This example uses a button and two labels on a form. When the user clicks the button,
the current date and time are reported in the captions of the two labels.

procedure TForm1.Button1Click(Sender: TObject);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 189

D e c o d e T i m e p r o c e d u r e+
+
+
D

var
 Present: TDateTime;
 Year, Month, Day, Hour, Min, Sec, MSec: Word;
 begin
 Present:= Now;
 DecodeDate(Present, Year, Month, Day);
 Label1.Caption := 'Today is Day ' + IntToStr(Day) + ' of Month '
 + IntToStr(Month) + ' of Year ' + IntToStr(Year);
 DecodeTime(Present, Hour, Min, Sec, MSec);
 Label2.Caption := 'The time is Minute ' + IntToStr(Min) + ' of Hour '
 + IntToStr(Hour);
end;

See also
DecodeTime procedure

DecodeTime procedure SysUtils

Declaration

procedure DecodeTime(Time: TDateTime; var Hour, Min, Sec, MSec: Word);

The DecodeTime procedure breaks the value specified as the Time parameter into hours,
minutes, seconds, and milliseconds.

Example
This example uses a button and two labels on a form. When the user clicks the button,
the current date and time are reported in the captions of the two labels.

procedure TForm1.Button1Click(Sender: TObject);
var
 Present: TDateTime;
 Year, Month, Day, Hour, Min, Sec, MSec: Word;
 begin
 Present:= Now;
 DecodeDate(Present, Year, Month, Day);
 Label1.Caption := 'Today is Day ' + IntToStr(Day) + ' of Month '
 + IntToStr(Month) + ' of Year ' + IntToStr(Year);
 DecodeTime(Present, Hour, Min, Sec, MSec);
 Label2.Caption := 'The time is Minute ' + IntToStr(Min) + ' of Hour '
 + IntToStr(Hour);
end;

See also
DecodeDate procedure, EncodeTime function, Time function

190 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D e f a u l t p r o p e r t y

Default property

Applies to
TBitBtn, TButton components

Declaration

property Default: Boolean;

The Default property indicates whether a push or bitmap button is the default button. If
Default is True, any time the user presses Enter, the OnClick event handler for that button
runs. The only exception to this is if the user selects another button before pressing Enter,
in which case the OnClick event handler for that button runs. Although your application
can have more than one button designated as a default button, the form calls the OnClick
event handler for the first button in the tab order.

Whenever any button has focus, it becomes the default button temporarily. When the
focus moves to a control that isn’t a button, the button with its Default property set to
True becomes the default button once again.

Example
This example makes the button named OK the default button:

procedure TForm1.FormCreate(Sender: TObject);
begin
 OK.Default := True;
end;

See also
Cancel property

DefaultColWidth property

Applies to
TDrawGrid, TStringGrid components

Declaration

property DefaultColWidth: Integer;

The DefaultColWidth property determines the width of all the columns within the grid.

If you want to change the width of a single column within a grid without changing
other columns, use the ColWidths property during run time. If you change the
DefaultColWidth property value after changing the width of specified columns, all the
columns become the height specified in the DefaultColWidth property once again.

The default value is 64 pixels.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 191

D e f a u l t D r a w i n g p r o p e r t y+
+
+
D

Example
The following line of code changes the default width of the columns in a string grid to
twice the original value:

StringGrid1.DefaultColWidth := StringGrid1.DefaultColWidth * 2;

See also
ColWidth property, DefaultRowHeight property

DefaultDrawing property

Applies to
TDBGrid, TDrawGrid, TStringGrid components

Declaration

property DefaultDrawing: Boolean;

The DefaultDrawing property determines if the cell is painted and the item it contains is
drawn automatically. If True, the default drawing occurs. If False, your application must
handle all the drawing details in the OnDrawCell event handler, or in the
OnDrawDataCell event handler for the data grid.

When DefaultDrawing is True, the Paint method initializes the Canvas’ font and brush to
the control font and the cell color. The cell is prepainted in the cell color and a focused
TRect object is drawn in the cell. The state of the cell is returned. The possible states are a
fixed cell, a focused cell, or a cell within the area the user has selected.

Example
The following code sets DefaultDrawing to False for DrawGrid1.

DrawGrid1.DefaultDrawing := False;

See also
OnDrawCell event, OnDrawDataCell event

DefaultExt property

Applies to
TOpenDialog, TSaveDialog components

Declaration

property DefaultExt: TFileExt;

The DefaultExt property specifies the extension that is added to the file name the user
types in the File Name edit box if the user doesn’t include a file-name extension in the
file name. If the user specifies an extension for the file name, the value of the DefaultExt

192 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D e f a u l t R o w H e i g h t p r o p e r t y

property is ignored. If the DefaultExt value remains blank, no extension is added to the
file name entered in the File Name edit box.

Legal property values include strings up to 3 characters in length. Don’t include the
period (.) that divides the file name and its extension.

Example
This example sets the default file extension to TXT, displays the Open dialog box, then
assigns the file name the user selects with the dialog box to a variable the application can
use to open a file:

procedure TForm1.Button1Click(Sender: TObject);
var
 NameOfFile : TFileName;
begin
 OpenDialog1.DefaultExt := ’TXT’;
 if OpenDialog1.Execute then
 NameOfFile := OpenDialog1.FileName;
end;

When this code runs, if the user types a file name in the File Name edit box in the Open
dialog box, but doesn’t specify an extension, the TXT extension is added to the file name,
and the entire file name is saved in the NameOfFile variable. For example, if the user
types MYNOTES as the file name, the string saved in the NameOfFile variable is
MYNOTES.TXT.

See also
FileName property, TOpenDialog component, TSaveDialog component

DefaultRowHeight property

Applies to
TDrawGrid, TStringGrid components

Declaration

property DefaultRowHeight: Integer;

The DefaultRowHeight property determines the height of all the rows within the grid.
The default value is 24 pixels.

If you want to change the height of a single row within a grid without changing other
rows, use the RowHeights property during run time. If you change the DefaultRowHeight
property value after changing the height of specified rows, all the rows become the
height specified in the DefaultRowHeight property once again.

Example
The following line of code changes the default height of the rows in a string grid control
to 10 pixels more than the original value:

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 193

D e l e t e m e t h o d+
+
+
D

StringGrid1.DefaultRowHeight := StringGrid1.DefaultRowHeight + 10;

See also
DefaultColWidth property, RowHeights property

Delete method

Applies to
TList, TStringList, TStrings objects; TMenuItem, TOutline, TQuery, TTable components

For list and string objects and menu items

Declaration

procedure Delete(Index: Integer);

The Delete method removes the item specified with the Index parameter. The item can be
deleted from

• the list of a list object
• the strings and their associated objects of a string or string list object
• a menu

In all cases, the index is zero-based, so the first item has an Index value of 0, the second
item has an Index value of 1, and so on.

If a string is deleted from a string object, the reference to its associated object is also
deleted.

If the item deleted is a menu item that has a submenus, the submenus are also deleted.

If the item is deleted in a list object, the list contains a nil value in the item’s position in
the list.

Example
FileMenu in the following code is a menu that contains four menu items (menu
commands). They are New, Open, Save, and Save As, in that order. This event handler
deletes the Save command from the menu:

procedure TForm1.Button1Click(Sender: TObject);
begin
 FileMenu.Delete(2);
end;

This example uses a list box and a button on a form. When the form appears, five items
are in the list box. When the user clicks the button, the second item in the list box is
deleted:

procedure TForm1.FormCreate(Sender: TObject);
var
 I: Integer;

194 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D e l e t e m e t h o d

begin
 for I := 1 to 5 do
 ListBox1.Items.Add('Item ' + IntToStr(I));
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items.Delete(1);
end;

See also
Add method, Clear method, Insert method, Remove method

For outlines

Declaration

procedure Delete(Index: LongInt);

The Delete method removes the outline item with an Index property value equal to the
Index parameter from the list outline. If that item is has subitems, the subitems are also
deleted.

Outline items that appear after the deleted item are moved up and reindexed with valid
Index values. This is done automatically unless BeginUpdate has been called.

Example
The following code deletes the selected item from Outline1.

Outline1.Delete(Outline1.SelectedItem);

See also
Add method, AddChild method, Insert method

For queries and tables

Declaration

procedure Delete;

The Delete method deletes the current record from the dataset. The next record then
becomes the new current record. If the record deleted was the last record in the dataset,
then the previous record becomes the current record.

This method is valid only for datasets that return a live result set.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 195

D e l e t e p r o c e d u r e+
+
+
D

Delete procedure System

Declaration

procedure Delete(var S: string; Index, Count:Integer);

The Delete procedure removes a substring of Count characters from string S starting at
S[Index].

S is a string-type variable. Index and Count are integer-type expressions.

If Index is larger than the length of S, no characters are deleted. If Count specifies more
characters than remain starting at the S[Index], Delete removes the rest of the string.

Example

 var
 s: string;
 begin
 s := 'Honest Abe Lincoln';
 Delete(s,8,4);
 Canvas.TextOut(10, 10, s); { 'Honest Lincoln' }
 end;

See also
Concat function, Copy function, Insert procedure, Length function, Pos function

DeleteFile function SysUtils

Declaration

function DeleteFile(const FileName: string): Boolean;

The DeleteFile function erases the file named by FileName from the disk.

If the file cannot be deleted or does not exist, the function returns False but does not raise
an exception.

Example
The following code erases the file DELETE.ME in the current directory:

DeleteFile('DELETE.ME');

DeleteIndex method

Applies to
TTable component

196 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D e l e t e T a b l e m e t h o d

Declaration

procedure DeleteIndex(const Name: string);

The DeleteIndex method deletes a secondary index for a TTable. Name is the name of the
index. You must have opened the table with exclusive access (Exclusive = True).

Example

Table1.DeleteIndex(‘NewIndex’);

See also
AddIndex method

DeleteTable method

Applies to
TTable component

Declaration

procedure DeleteTable;

The DeleteTable method deletes an existing database table. Before calling this method,
the DatabaseName, TableName and TableType properties must be assigned values. The
table must be closed.

Example

with Table1 do
begin
Active := False;
DatabaseName := ‘DBDEMOS’;
TableName := ‘Customer’;
TableType := ttParadox;
DeleteTable;

end;

DescriptionsAvailable method

Applies to
TStoredProc component

Declaration

function DescriptionsAvailable: Boolean;

The DescriptionsAvailable method indicates whether stored procedure parameter
information is available from the server. If the information is available, it returns True.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 197

D e s t i n a t i o n p r o p e r t y+
+
+
D

Otherwise, it returns False. Different servers may require additional information to
obtain the parameter information. If DescriptionsAvailable returns False, you will have to
specify parameters either with the Parameters Editor or with explicit code.

Example
if not StoredProc1.DescriptionsAvailable then
begin
{ Build the Parameters property explicitly }
end;

See also
Overload property, StoredProcName property

Destination property

Applies to
TBatchMove component

Declaration

property Destination: TTable;

Destination specifies a TTable component corresponding to the database table that will be
the destination of the batch move operation. The destination table may or may not
already exist.

Example

BatchMove1.Destination := Table1;

Destroy method

Applies to
All objects and components

Declaration

destructor Destroy;

The Destroy method destroys the object, component, or control and releases the memory
allocated to it.

You seldom need to call Destroy. Objects designed with Delphi create and destroy
themselves as needed, so you don’t have to worry about it. If you construct an object by
calling the Create method, you should call Free to release memory and dispose of the
object.

198 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D e v i c e p r o p e r t y

See also
Free method, Release method

Device property

Applies to
TFontDialog component

Declaration

property Device: TFontDialogDevice;

The Device property determines which device the returned font affects. These are the
possible values:

Example
This example lets the user select a font to use for printing a file:

procedure TForm1.Button1Click(Sender: TObject);
var
FontName: TFont;

begin
 FontDialog1.Device := fdPrinter;
 FontDialog1.Execute;
FontName := FontDialog1.Font;

end;

See also
TFont object

DeviceID property

Applies to
TMediaPlayer component

Declaration

property DeviceID: Word;

Run-time and read only. The DeviceID property specifies the device ID for the currently
open multimedia device.

Value Meaning

fdScreen Affects the screen
fdPrinter Affects the printer
fdBoth Affects both the screen and the printer

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 199

D e v i c e T y p e p r o p e r t y+
+
+
D

The value of DeviceID is determined when an device is opened with the Open method. If
no device is open, DeviceID is 0.

Example
The following code opens MediaPlayer1 and displays the DeviceID in Edit1. If an
exception occurs, a message window displays the error number and string.

procedure TForm1.BitBtn1Click(Sender: TObject);
var
 MyErrorString: string;
begin
 try
 MediaPlayer1.Open;

Edit1.Text := IntToStr(MediaPlayer1.DeviceID);
except

 MyErrorString := 'ErrorCode: ' + IntToStr(Error) + #13#10;
MessageDlg(MyErrorString + MediaPlayer1.ErrorMessage, mtError, [mbOk], 0);

end;
end;

DeviceType property

Applies to
TMediaPlayer component

Declaration

property DeviceType: TMPDeviceTypes;

The DeviceType property specifies a multimedia device type to open with the Open
method. The default is dtAutoSelect. The valid values for DeviceType are dtAutoSelect,
dtAVIVideo, dtCDAudio, dtDAT, dtDigitalVideo, dtMMMovie, dtOther, dtOverlay,
dtScanner, dtSequencer, dtVCR, dtVideodisc, or dtWaveAudio.

If DeviceType is dtAutoSelect, the device type is determined by the file extension specified
in the FileName property. If no device type is associated with the extension, you must
explicitly specify the correct device type by setting DeviceType to a value other than
dtAutoSelect.

A multimedia device is typically associated with an appropriate file-name extension
when you install the device. Associations are specified in the [mci extensions] section of
the Windows WIN.INI file. See the documentation for your specific device for
instructions about how to associate file-name extensions with the device.

Example
The following code checks to make sure that a filename is specified for MediaPlayer1 if
the DeviceType is set to dtAutoSelect before opening the device.

procedure TForm1.FormCreate(Sender: TObject);
begin

200 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D i r e c t o r y p r o p e r t y

 with MediaPlayer1 do
if (DeviceType = dtAutoSelect) and (FileName = '') then

 MessageDlg('You must specify a filename for the MediaPlayer', mtError, [mbOk], 0)
 else
 Open;
end;

Directory property

Applies to
TDirectoryListBox, TFileListBox components

Declaration

property Directory: string;

The value of the Directory property determines the current directory for the file list box
and directory list box components. The file list box displays the files in the directory
specified in the Directory property. The directory list box displays the value of the
Directory property as the current directory in the list box.

Examine the example to see how a directory list box and a file list box can work together
through their Directory properties.

Example
If you have a file list box and a directory list box on a form, this code changes the current
directory in the directory list box and displays the files in that directory in the file list
box when the user changes directories using the directory list box:

procedure TForm1.DirectoryListBox1Change(Sender: TObject);
begin
 FileListBox1.Directory := DirectoryListBox1.Directory;
end;

See also
DirLabel property, Drive property, FileList property

DirectoryExists function FileCtrl

Declaration

function DirectoryExists(Name: string): Boolean;

The DirectoryExists function determines whether the directory specified as the value of
the Name parameter exists. If the directory exists, the function returns True. If the
directory does not exist, the function returns False.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 201

D i r L a b e l p r o p e r t y+
+
+
D

If only a directory name is entered as the value of Name, DirectoryExists searches for the
directory within the current directory. If a full path name is entered, DirectoryExists
searches for the directory along the designated path.

Example
This example uses an edit box, a label, and a button on a form. When the user enters a
directory name in the edit box and clicks the button, whether or not the directory exists
is reported in the caption of the label:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if DirectoryExists(Edit1.Text) then
 Label1.Caption := Edit1.Text + ' exists'
 else
 Label1.Caption := Edit1.Text + ' does not exist';
end;

See also
ForceDirectories procedure, SelectDirectory function

DirLabel property

Applies to
TDirectoryListBox component

Declaration

property DirLabel: TLabel;

The DirLabel property provides a simple way to display the current directory as the
caption of a label control. When the current directory changes in the directory list box,
the change is reflected in the caption of the label.

Specify the label you want updated with the current directory as the value of the
DirLabel property.

Example
This example uses a button, an edit box, a label, a drive combo box, a directory list box, a
file list box, and a filter combo box on a form. When the user clicks the button, the rest of
the controls of the form begin working together like the controls in an Open or Save
dialog box.

procedure TForm1.Button1Click(Sender: TObject);
begin
 DriveComboBox1.DirList := DirectoryListBox1;
 DirectoryListBox1.FileList := FileListBox1;
 DirectoryListBox1.DirLabel := Label1;
 FileListBox1.FileEdit := Edit1;
 FilterComboBox1.FileList := FileListBox1;
end;

202 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D i r L i s t p r o p e r t y

See also
Caption property, Directory property, DirList property, FileEdit property, FileList
property

DirList property

Applies to
TDriveComboBox component

Declaration

property DirList: TDirectoryListBox;

The DirList property provides a simple way to connect a drive combo box with a
directory list box. When a new drive is selected in the drive combo box, the specified
directory list box updates to display the directory structure and the current directory on
the new drive.

Specify the directory list box you want updated as the value of DirList.

Example
This example uses a button, an edit box, a label, a drive combo box, a directory list box, a
file list box, and a filter combo box on a form. When the user clicks the button, the rest of
the controls of the form begin working together as the controls in an open or save dialog
box do.

procedure TForm1.Button1Click(Sender: TObject);
begin
 DriveComboBox1.DirList := DirectoryListBox1;
 DirectoryListBox1.FileList := FileListBox1;
 DirectoryListBox1.DirLabel := Label1;
 FileListBox1.FileEdit := Edit1;
 FilterComboBox1.FileList := FileListBox1;
end;

See also
Directory property, DirLabel property, Drive property, FileEdit property, FileList property

DisableControls method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure DisableControls;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 203

D i s k F r e e f u n c t i o n+
+
+
D

The DisableControls method temporarily disconnects the dataset from all TDataSource
components. While the data sources are disconnected, associated data-aware controls
will not reflect changes to datasets. When iterating over a dataset with Next or Prior
methods, calling DisableControls first will speed the process, eliminating the need to
update the screen each time.

Use EnableControls to restore the connection. The dataset maintains a count of the
number of calls to DisableControls and EnableControls, so only the last call to
EnableControls will actually update the data sources.

Example

with Table1 do
begin
DisableControls;

{ Move forward five records }
try

for I := 1 to 5 do Next;
finally

{ Update the controls to the current record }
EnableControls;

end;

DiskFree function SysUtils

Declaration

function DiskFree(Drive: Byte): Longint;

DiskFree returns the number of free bytes on the specified drive number, where 0 =
Current, 1 = A, 2 = B, and so on.

DiskFree returns -1 if the drive number is invalid.

Example
var
 S: string;
begin
 S := IntToStr(DiskFree(0) div 1024) + ' Kbytes free.';
 Canvas.TextOut(10, 10, S);
end;

See also
DiskSize function

204 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D i s k S i z e f u n c t i o n

DiskSize function SysUtils

Declaration

function DiskSize(Drive: Byte): Longint;

DiskSize returns the size in bytes of the specified drive number, where 0 = Current, 1 =
A, 2 = B, etc. DiskSize returns -1 if the drive number is invalid.

Example

var
 S: string;
begin
 S := IntToStr(DiskSize(0) div 1024) + ' Kbytes capacity.';
 Canvas.TextOut(10, 10, S);
end;

See also
DiskFree function

Display property

Applies to
TMediaPlayer component

Declaration

property Display: TWinControl;

The Display property specifies the display window for an multimedia device that uses a
window for output. Assign the name of a windowed control such as a form or panel to
Display to display output in that control.

The default value of Display is nil. If the value of Display is nil, the device creates its own
window to display output. Also, if you Free the control assigned to Display after the
device has been opened, video output will be in its own default window.

Examples of multimedia devices that use a window to display output are Animation,
AVI Video, Digital Video, Overlay, and VCR.

Example
The following example displays the .AVI video file 'FOOTBALL.AVI' in the client area
of Form2.

procedure TForm1.BitBtn1Click(Sender: TObject);
begin
 with MediaPlayer1 do begin
 try
 FileName := 'football.avi';

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 205

D i s p l a y F o r m a t p r o p e r t y+
+
+
D

 Open;
 Display := Form2;
 Form2.Show;
 Play;
 except
 MessageDlg(MediaPlayer1.ErrorMessage, mtError, [mbOk], 0);
 end;
 end;
end;

See also
Capabilities property, DeviceType property, DisplayRect property, Open method

DisplayFormat property

Applies to
TDateField, TDateTimeField, TIntegerField, TSmallintField, TTimeField, TWordField
components

Declaration

property DisplayFormat: string

The DisplayFormat property is used to format the value of the field for display purposes.

For TIntegerField, TSmallintField, and TWordField, formatting is performed by
FloatToTextFmt. If DisplayFormat is not assigned a string, the value is formatted by Str.

For TDateField, TDateTimeField, and TTimeField, formatting is performed by
DateTimeToStr. If DisplayFormat is not assigned a string, the value is formatted according
to the default Windows specifications in the [International] section of the WIN.INI file.

For TBCDField, TCurrencyField, and TFloatField, formatting is performed by
FloatToTextFmt. If DisplayFormat is not assigned a string, the value is formatted
according to the value of the Currency property.

See also
FmtStr procedure, Format function, FormatBuf function, FormatDateTime function,
FormatFloat function, StrFmt function, StrLFmt function

DisplayLabel property

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

206 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D i s p l a y N a m e p r o p e r t y

Declaration

property DisplayLabel: string;

DisplayLabel contains the column heading for a field displayed by a TDBGrid
component. If DisplayLabel is null, the FieldName property is used to supply the column
heading.

DisplayName property

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

property DisplayName: Pstring;

Run-time and read only. DisplayName returns the name of the field for display purposes.
Use DisplayName in your code to use the same algorithm that other Delphi components
use when they need the DisplayLabel or FieldName of a field.

DisplayRect property

Applies to
TMediaPlayer component

Declaration

property DisplayRect: TRect;

Run-time only. The DisplayRect property specifies the rectangle area within the form
specified in the Display property used to display output from a multimedia device.
DisplayRect is ignored if Display is nil.

Assign a TRect record to DisplayRect to display output in a specific rectangle area on a
form. The Rect function can be used to create a TRect record.

Examples of multimedia devices that use a window to display output are Animation,
AVI Video, Digital Video, Overlay, and VCR.

Media that use a rectangle to display output usually perform best if the default
DisplayRect size is used. To set DisplayRect to the default size, use 0, 0 for the lower right
corner. Position the rectangle with the upper left corner.

Note You must set DisplayRect after the media device is opened.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 207

D i s p l a y T e x t p r o p e r t y+
+
+
D

Example
The following example positions the upper left corner of the display rectangle to 10, 10
and uses the default display size:

MediaPlayer1.DisplayRect := Rect(10, 10, 0, 0);

See also
Capabilities property, DeviceType property, Open method

DisplayText property

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

property DisplayText: string;

Run-time and read only. The string value for the field when it is displayed in a data-
aware control that is not in Edit mode. Data-aware controls such as TDBEdit rely on
DisplayText to provide the formatting for each field.

The default string depends on a field’s data type. You can control the strings returned
by DisplayText by specifying a DisplayFormat string or by providing an OnGetText event
handler.

For a TStringField, the contents of the field is formatted using the EditMask property.

For a TIntegerField, TSmallintField, or TWordField, if DisplayFormat has been assigned a
value, FloatToTextFmt is called with it; otherwise Str is called.

For a TFloatField or TBCDField, FloatToTextFmt is called with the DisplayFormat property.

For a TCurrencyField, if DisplayFormat has been assigned a value, FloatToTextFmt is called
with it; otherwise, FloatToTextFmt is called with the ffCurrency flag and CurrencyDecimals
variable.

For a TDateTimeField, DateTimeToStr is called with the DisplayFormat property. For a
TDateField, DateTimeToStr is called with the DisplayFormat property, except that the
ShortDateFormat variable will be substituted if DisplayFormat is unassigned. For a
TTimeField, DateTimeToStr is called with the DisplayFormat property, except that the
LongTimeFormat variable will be substituted if DisplayFormat is unassigned.

Example

{ Display a message that the current value is invalid }
MessageDlg(Field1.DisplayText + ‘ is invalid’, mtWarning, [mbOK], 0);

208 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D i s p l a y V a l u e p r o p e r t y

DisplayValue property

Applies to
TDBLookupCombo, TDBLookupList components

Declaration

property DisplayValue : string;

Run-time only. The DisplayValue is the string that appears in the database lookup combo
box or database lookup list box. Its value is contained in the field specified as the
LookupDisplay field. The current value of the Value property, which determines the
current record in the lookup table, also determines which string is the DisplayValue
string.

Example
The following code makes the caption of a button equal to the DisplayValue of
DBLookupCombo1.

Button1.Caption := DBLookupCombo1.DisplayValue;

See also
LookupField property

DisplayValues property

Applies to
TBooleanField component

Declaration

property DisplayValues: string;

DisplayValues controls the manner in which the TBooleanField is translated to and from
display format. Set DisplayValues to ‘T;F’ to use ‘T’ and ‘F’ for values of True and False.
You can use any pair of phrases you want, separated by a semicolon. If one phrase is
omitted, no text is displayed and a data-aware control with no text assigns the
corresponding value to the field. The default value is ‘True;False’.

Example

Field1.DisplayValues := 'Yes;No';
Field2.DisplayValues := 'Oui;Non';

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 209

D i s p l a y W i d t h p r o p e r t y+
+
+
D

DisplayWidth property

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

property DisplayWidth: Integer;

DisplayWidth specifies the number of characters that should be used to display a field in
a TDBGrid control. For TStringField, DisplayWidth is the number of characters in the
field. For all other fields the default value is 10.

See also
DisplayLabel property, DisplayText property

Dispose procedure System

Declaration

procedure Dispose(var P: Pointer);

The Dispose procedure releases memory allocated for a dynamic variable.

After a call to Dispose, the value of P is undefined and it is an error to reference P. If {$I+},
you can use exceptions to handle this error. For more information on handling run-time
library exceptions, see Handling RTL Exceptions in the Help system.

Example

type
 Str18 = string[18];
 var
 P: ^Str18;
begin
 New(P);
 P^ := 'Now you see it...';
 Dispose(P); { Now you don't... }
end;

See also
FreeMem procedure, GetMem procedure, New procedure

210 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D i s p o s e S t r p r o c e d u r e

DisposeStr procedure SysUtils

Declaration

procedure DisposeStr(P: PString);

The DisposeStr procedure disposes of the dynamically allocated string pointed to by P. P
must have been allocated previously with NewStr function. If the given pointer is nil or
points to an empty string, StrDispose does nothing.

Example
The following code allocates and frees heap space for a copy of string S pointed to by P,
then deallocates the heap space pointed to by P:

var
 P: PString;
 S: string;
begin
 S := 'Ask me about Blaise';
 P := NewStr(S);
 DisposeStr(P):
end;

See also
NewStr function

DitherBackground property

Applies to
TTabSet component

Declaration

property DitherBackground: Boolean;

The DitherBackground property determines whether the selected background color set
with the BackgroundColor property is dithered. Dithering means the background is
lightened by 50%, which is intended to make the tabs easier to see. If DitherBackground is
True, the tab set control background is dithered. If it is False, there is no dithering.

The default value is True.

Example
This event handler toggles the dithering of the tab set control’s background each time
the user clicks the form:

procedure TForm1.FormClick(Sender: TObject);
begin
 if TabSet1.DitherBackground = True then
 TabSet1.DitherBackground := False

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 211

D o n e W i n C r t p r o c e d u r e+
+
+
D

 else
 TabSet1.DitherBackground := True;
end;

See also
Color property

DoneWinCrt procedure WinCrt

Declaration

procedure DoneWinCrt;

The DoneWinCrt procedure destroys the CRT window.

Calling DoneWinCrt before the program ends prevents the CRT window from entering
the inactive state.

Down property

Applies to
TSpeedButton component

Declaration

property Down: Boolean;

The Down property of a speed button determines if the button appears in an up
(unselected) or down (selected) state. Speed buttons are initially in their up (unselected)
state. This occurs because the default setting of the Down property is False.

To initially display a speed button in its down state, set the Down property to True. For
example, if you use a panel component with several speed buttons to create a tools
palette, you might want one of the speed buttons selected when the palette first appears.

Although you can use a group of speed buttons with the AllowAllUp property set to
False to make the tool palette buttons work as a group, you must set the Down property
for the button you want to be selected initially. You can also use the Down property at
run time any time you want to put a button in a down state without the user clicking it
first.

Example
This code displays the speed button in a down state:

SpeedButton1.Down := True;

See also
AllowAllUp property, GroupIndex property

212 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D r a g C u r s o r p r o p e r t y

DragCursor property

Applies to
TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBEdit, TDBGrid, TDBImage,
TDBListBox, TDBLookupCombo, TDBLookupList, TDBMemo, TDBNavigator,
TDBRadioGroup, TDBText, TDirectoryListBox, TDriveComboBox, TEdit, TFileListBox,
TFilterComboBox, TGroupBox, TImage, TLabel, TListBox, TMaskEdit, TMemo, TOutline,
TPaintBox, TPanel, TRadioButton, TScrollBar, TScrollBox, TShape, TNotebook controls

Declaration

property DragCursor: TCursor;

The DragCursor property determines the shape of the mouse pointer when the pointer is
over a component that will accept an object being dragged. These are the possible
images:

Example
The following code changes the DragCursor of Memo1 to crIBeam.

Memo1.DragCursor := crIBeam;

See also
BeginDrag method, Cursor property, Cursors property, Dragging method, EndDrag
method, OnDragDrop event, OnDragOver event, OnEndDrag event

Dragging method

Applies to
All controls

Value Image Value Image Value Image

crDefault crSizeNESW crHourglass

crArrow crSizeNS crDrag

crCross crSizeNWSE crNoDrop

crIBeam crSizeWE crHSplit

crSize crUpArrow crVSplit

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 213

D r a g M o d e p r o p e r t y+
+
+
D

Declaration

function Dragging: Boolean;

The Dragging method specifies whether a control is being dragged. If Dragging returns
True, the control is being dragged. If Dragging is False, the control is not being dragged.

Example
This example uses three check boxes on a form. When the user begins dragging one of
the check boxes, the color of the form changes:

procedure TForm1.FormActivate(Sender: TObject);
begin
 CheckBox1.DragMode := dmAutomatic;
 CheckBox2.DragMode := dmAutomatic;
 CheckBox3.DragMode := dmAutomatic;
end;

procedure TForm1.FormDragOver(Sender, Source: TObject; X, Y: Integer;
 State: TDragState; var Accept: Boolean);
begin
if CheckBox1.Dragging then

 Color := clAqua;
 if CheckBox2.Dragging then
 Color := clYellow;
 if CheckBox3.Dragging then
 Color := clLime;
end;

See also
BeginDrag method, DragMode property, EndDrag method, OnDragDrop event,
OnDragOver event, TDragState type

DragMode property

Applies to
TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,
TDBGrid, TDBImage, TDBText, TDBListBox, TDBLookupCombo, TDBLookupList,
TDBMemo, TDBNavigator, TDBRadioGroup, TDirectoryListBox, TDrawGrid,
TDriveComboBox, TEdit, TFileListBox, TFilterComboBox, TGroupBox, TImage, TLabel,
TListBox, TMaskEdit, TMemo, TOLEContainer, TOutline, TPaintBox, TRadioButton,
TScrollBar, TScrollBox, TShape, TStringGrid, TNotebook controls

Declaration

property DragMode: TDragMode;

214 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D r a w m e t h o d

The DragMode property determines the drag and drop behavior of a control. These are
the possible values:

If a control’s DragMode property value is dmAutomatic, the application can disable the
drag and drop capability at run time by changing the DragMode property value to
dmManual.

Example
This example determines whether the drag mode of the button on the form is manual. If
it is, the dragging the button becomes possible.

procedure TForm1.Button1Click(Sender: TObject);
begin
 if Button1.DragMode = dmManual then
 Button1.BeginDrag(True);
end;

See also
BeginDrag method, EndDrag method

Draw method

Applies to
TCanvas object

Declaration

procedure Draw(X, Y: Integer; Graphic: TGraphic);

The Draw method draws the graphic specified by the Graphic parameter on the canvas at
the location given in the screen pixel coordinates (X, Y). Graphics can be bitmaps, icons,
or metafiles.

Example
The following code draws the graphic in C:\WINDOWS\TARTAN.BMP centered in
Form1 when the user clicks Button1. Attach this code to the OnClick event handler of
Button1.

procedure TForm1.Button1Click(Sender: TObject);
var
 Bitmap1: TBitmap;
begin
 Bitmap1 := TBitmap.Create;

Value Meaning

dmAutomatic If dmAutomatic is selected, the control is ready to be dragged; the user just
clicks and drags it.

dmManual If dmManual is selected, the control can’t be dragged until the application calls
the BeginDrag method.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 215

D r a w F o c u s R e c t m e t h o d+
+
+
D

 Bitmap1.LoadFromFile('c:\windows\tartan.bmp');
 Form1.Canvas.Draw((Form1.Width div 2)-(Bitmap1.Width div 2),

(Form1.Height div 2) - (Bitmap1.Height div 2), Bitmap1);
end;

See also
StretchDraw method, TBitmap object, TIcon object, TMetafile object

DrawFocusRect method

Applies to
TCanvas object

Declaration

procedure DrawFocusRect(const Rect: TRect);

The DrawFocusRect method draws a rectangle in the style used to indicate that the
rectangle has the focus. Because this is an XOR function, calling it a second time and
specifying the same rectangle removes the rectangle from the screen.

The rectangle this function draws cannot be scrolled. To scroll an area containing a
rectangle drawn by this function, call DrawFocusRect to remove the rectangle from the
screen, scroll the area, and then call DrawFocusRect to draw the rectangle in the new
position.

Example
This examples uses a radio button and a button on a form. When the user clicks the
button, the code draws a rectangle around the radio button.

procedure TForm1.Button1Click(Sender: TObject);
var
 NewRect: TRect;
begin
NewRect := RadioButton1.BoundsRect;

 with NewRect do
 begin
 Left := Left - 10;
 Top := Top - 10;
 Right := Right + 10;
 Bottom := Bottom + 10;
 end;
 Form1.Canvas.DrawFocusRect(NewRect);
end;

See also
Arc method, Chord method, Ellipse method, FrameRect method, Pie method, Rectangle
method

216 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D r i v e p r o p e r t y

Drive property

Applies to
TDirectoryListBox, TDriveComboBox, TFileListBox components

Declaration

property Drive: Char;

Run-time only. For the drive combo box, the Drive property determines which drive is
displayed in the edit control of the combo box. When the user uses the drive combo box
to select a new drive, the selected drive becomes the value of the Drive property. The
value of the Text property also changes to the new volume name when the Drive
property value changes.

For the directory list box, the Drive property determines which drive the list box
displays the directory structure on. When the value of Drive changes, the Directory value
changes also to the current directory on the specified drive.

For the file list box, the Drive property determines which drive the list box displayed the
files on. When the value of Drive changes, the Directory value also changes to the current
directory on the specified drive.

Example
The following example assumes that a drive combo box, a file list box, and a directory
list box are on a form. This code changes the drive displayed in the drive combo box,
displays the current directory of the selected drive in the directory list box, and displays
the files in the current directory of the selected drive in the file list box when the user
selects a drive in the drive combo box:

procedure TForm1.DriveComboBox1Change(Sender: TObject);
begin
 DirectoryListBox1.Drive := DriveComboBox1.Drive;
 FileListBox1.Directory := DirectoryListBox1.Directory;
end;

See also
Directory property, DirList property, Text property

DriverName property

Applies to
TDataBase component

Declaration

property DriverName: TSymbolStr;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 217

D r o p C o n n e c t i o n s m e t h o d+
+
+
D

DriverName is the name of a BDE driver, such as STANDARD (for dBASE and Paradox),
ORACLE, SYBASE, INFORMIX or INTERBASE. This property will be cleared if
AliasName is set, because an AliasName specifies a driver type. Conversely, setting this
property will clear AliasName.

If you try to set DriverName of a TDatabase for which Connected is True, Delphi will raise
an exception.

Example

Database1.DriverName := ‘STANDARD’;

DropConnections method

Applies to
TSession component

Declaration

procedure DropConnections;

The DropConnections method drops all inactive database connections. By default,
temporary database components keep their connections to the server open even when
not in use so that they do not have to log in to the server each time a dataset component
is opened.

Example

Session.DropConnections;

See also
Session variable, Temporary property

DropDown method

Applies to
TDBLookupCombo component

Declaration

procedure DropDown;

The DropDown method opens or “drops down” the database lookup combo box so that
the user has a list of values to choose from.

See also
CloseUp method

218 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D r o p D o w n C o u n t p r o p e r t y

DropDownCount property

Applies to
TComboBox, TDBComboBox, TDBLookupCombo components

Declaration

property DropDownCount: Integer;

The DropDownCount property determines how long the drop-down list of a combo box
is. By default, the drop-down list is long enough to contain eight items without
requiring the user to scroll to see them all. If you would like the drop-down list to be
smaller or larger, specify a number larger or smaller than eight as the DropDownCount
value.

If the DropDownCount value is larger than the number of items in the drop-down list, the
drop-down list is just large enough to hold all the items and no larger. For example, if
the list contains three items, the drop-down list is only long enough to display the three
items, even if the DropDownCount is eight.

Example
The following code assigns three to the DropDownCount property of ComboBox1. To see
more than three items in the drop-down list, the user must scroll.

ComboBox1.DropDownCount := 3;

See also
DropDownWidth property

DropDownWidth property

Applies to
TDBLookupCombo component

Declaration

property DropDownWidth: Integer;

The DropDownWidth property determines how wide the drop-down list of the combo
box is in pixels. The default value is 0, which means the drop-down list is the same
width as the combo box.

The DropDownWidth property is useful when you are displaying multiple fields, and
therefore, multiple columns in the database lookup combo box.

Example
This code displays three fields in the drop-down list of the database lookup combo box.
Each column has a title and is separated from the other columns by a line. The combo

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 219

D r o p p e d D o w n p r o p e r t y+
+
+
D

box displays ten items at a time; therefore, the user must scroll to view the rest of the
items. The drop-down list is 600 pixels wide so all the fields fit in the drop-down list.

procedure TForm1.FormCreate(Sender: TObject);
begin
 DBLookupCombo1.LookupDisplay := 'Company;City;Country';
 DBLookupCombo1.Options := [loColLines,loTitles];
 DBLookupCombo1.DropDownCount := 10;
 DBLookupCombo1.DropDownWidth := 600;
end;

See also
DropDownCount property, LookupDisplay property, Options property

DroppedDown property

Applies to
TComboBox, TDBComboBox components

Declaration

property DroppedDown: Boolean;

Run-time only. The DroppedDown property determines whether the drop-down list of
the combo box is open or closed. If DroppedDown is True, the drop-down list is visible. If
DroppedDown is False, the drop-down list is closed. The default value is False.

See also
DropDownCount property

dsEditModes const

Declaration

dsEditModes = [dsEdit, dsInsert, dsSetKey];

dsEditModes is the subset of TDataSetState elements which the State property of a dataset
component will have if the current record of the dataset is being modified. It is also uses
by the UpdateRecord of a dataset component.

DSeg function System

Declaration

function DSeg: Word;

The DSeg function returns the current value of the DS register.

220 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

D S e g f u n c t i o n

The result is the segment address of the data segment.

Example

function MakeHexWord(w: Word): string;
const
hexChars: array [0..$F] of Char = '0123456789ABCDEF';

var
HexStr : string;

begin
HexStr := '';
HexStr := HexStr + hexChars[Hi(w) shr 4];
HexStr := HexStr + hexChars[Hi(w) and $F];
HexStr := HexStr + hexChars[Lo(w) shr 4];
HexStr := HexStr + hexChars[Lo(w) and $F];
MakeHexWord := HexStr;

end;

procedure TForm1.Button1Click(Sender: TObject);
var
 i: Integer;
 Y: Integer;
 S: string;
begin
 Y := 10;
 S := 'The current code segment is $' + MakeHexWord(CSeg);
 Canvas.TextOut(5, Y, S);
 Y := Y + Canvas.TextHeight(S) + 5;
 S := 'The global data segment is $' + MakeHexWord(DSeg);
 Canvas.TextOut(5, Y, S);
 Y := Y + Canvas.TextHeight(S) + 5;
 S := 'The stack segment is $' + MakeHexWord(SSeg);
 Canvas.TextOut(5, Y, S);
 Y := Y + Canvas.TextHeight(S) + 5;
 S := 'The stack pointer is at $' + MakeHexWord(SPtr);
 Canvas.TextOut(5, Y, S);
 Y := Y + Canvas.TextHeight(S) + 5;
 S := 'i is at offset $' + MakeHexWord(Ofs(i));
 Canvas.TextOut(5, Y, S);
 Y := Y + Canvas.TextHeight(S) + 5;
 S := 'in segment $' + MakeHexWord(Seg(i));
 Canvas.TextOut(5, Y, S);
end;

See also
CSeg function, SSeg function

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 221

D u p l i c a t e s p r o p e r t y+
+
+
+
E

Duplicates property

Applies to
TStringList object

Declaration

property Duplicates: TDuplicates;

The Duplicates property determines whether duplicate strings are allowed in the sorted
list of strings of a string list object. If the list is not sorted, the value of Duplicates has no
effect. These are the possible values:

Example
The following code makes StringList1 ignore duplicate entries.

StringList1.Duplicates := dupIgnore;

See also
Sort method, Sorted property

EAbort object SysUtils

Declaration

EAbort = class(Exception)

The EAbort exception is Delphi’s “silent” exception. When it is raised, no message box
appears to inform the user. Your application can handle the exception without the user
ever knowing it occurred.

EBreakpoint object SysUtils

Declaration

EBreakpoint = class(EProcessorException);

The EBreakpoint exception is a hardware exception. It occurs when your application
generates a breakpoint interrupt. Usually Delphi’s integrated debugger handles
breakpoint exceptions.

Value Meaning

dupIgnore Attempts to add a duplicate string to a sorted string list are ignored
dupAccept Duplicate strings can be added to a sorted string list
dupError Adding a duplicate string results in an EListError exception

222 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E C l a s s N o t F o u n d o b j e c t

EClassNotFound object Classes

Declaration

EClassNotFound = class(EFilerError);

The EClassNotFound exception is raised when a component exists on a form, but it has
been deleted from the type declaration. For example, this form type declaration includes
two panel components:

type
 TForm1 = class(TForm)
 Panel1: TPanel;
 SpeedButton1: TSpeedButton;
 SpeedButton2: TSpeedButton;

Panel2: TPanel;
 private
 { Private declarations }
 public
 { Public declarations }
 end;

If you compile the application, then delete Panel2, for example, from the TForm1 type
declaration, the next time you attempt to run the application, the class not found
exception is raised.

EComponentError object Classes

Declaration

EComponentError = class(Exception);

The EComponentError exception is raised when an attempt is made to register a
component outside of the Register procedure. It is also raised when your application
changes the name of a component at run time so that it has the same name as another
component. It can also occur if the name of a component is changed to a name that is not
a valid Object Pascal identifier.

EConvertError object SysUtils

Declaration

EConvertError = class(Exception);

The EConvertError exception is raised when either the StrToInt or StrToFloat functions
are unable to convert the specified string to a valid integer or floating-point value,
respectively. For example, this code raises the convert error exception because 3.4 is not
a valid integer:

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 223

E D a t a b a s e E r r o r o b j e c t+
+
+
+
E

var
 X: Integer;
begin
 X := StrToInt('3.4');
end;

EDatabaseError object DB

Declaration

EDatabaseError = class(Exception);

The EDatabaseError type is the exception type raised when a database error is detected
by a component. Use EDatabaseError with an exception handling block or to create a
database exception. With an exception handling block, you can detect the condition and
handle it yourself. If something in your code encounters an error, you can create and
raise the exception yourself.

{ Try to open Tablel1 }
repeat { until successful or Cancel button is pressed }
try

Table1.Active := True; { See if it will open }
Break; { If no error, exit the loop }

except
on EDatabaseError do
{ Ask if it is OK to retry }
if MessageDlg(‘Could not open Table1 - check server’, mtError,

[mbOK, mbCancel], 0) <> mrOK then raise; { If not, reraise to abort }
{ Otherwise resume the repeat loop }

end;
until False;

{ Test for an error and raise an exception if so }
if { some error has occured } then
raise EDatabaseError.Create(‘Some error has occured’);

EDBEngineError object DB

EDBEngineError = class(EDatabaseError)
private
FErrors: TList;
function GetError(Index: Integer): TDBError;
function GetErrorCount: Integer;

public
constructor Create(ErrorCode: DBIResult);
destructor Destroy;
property ErrorCount: Integer;
property Errors[Index: Integer]: TDBError;

end;

224 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E D B E d i t E r r o r o b j e c t

Description

The EDBEngineError exception is raised whenever a BDE error occurs. The exception
contains two public properties of significance:

The objects contained in the Errors property are of type TDBError, which is declared like
this:

TDBError = class
private
FErrorCode: DBIResult;
FNativeError: Longint;
FMessage: TMessageStr;
function GetCategory: Byte;
function GetSubCode: Byte;

public
constructor Create(Owner: EDBEngineError; ErrorCode: DBIResult;

NativeError: Longint; Message: PChar);
property Category: Byte;
property ErrorCode: DBIResult;
property SubCode: Byte;
property Message: TMessageStr;
property NativeError: Longint;

end;

These are the public properties of the TDBError object:

EDBEditError object Mask

Declaration

EDBEditError = class(Exception);

The EDBEditError exception is raised when the data is not compatible with the mask
specified for the field.

Property How used

Errors A list of the entire Borland Database Engine error stack. The first error has an index value
of 0.

ErrorCount The total number of errors contained in the Errors property.

Property How used

ErrorCode The error code returned by the Borland Database Engine
Category The category of the error referenced by ErrorCode

SubCode The subcode of the error code
NativeError The remote error code returned from the server. If NativeError is 0, the error is not a

server error.
Message The server message for native errors, or the BDE message for non-server errors.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 225

E D D E E r r o r o b j e c t+
+
+
+
E

EDDEError object DDEMan

Declaration

EDDEError = class(Exception);

The EDDEError exception is raised when your application can’t find the specified server
or conversation, or when a session is unexpectedly terminated.

Edit method

Applies to
TDataSource, TQuery, TTable components

For tables and queries

Declaration

procedure Edit;

The Edit method prepares the current record of the dataset for changes and puts the
dataset in Edit state, setting the State property to dsEdit. Data-aware controls cannot
modify existing records unless the dataset is in Edit state.

Calling this method for a dataset that cannot be modified raises an exception. The
CanModify property will be True for datasets that can be modified. This method is valid
only for datasets that return a live result set.

Example

Table1.Edit;

See also
AutoEdit property

For datasource components

Declaration

procedure Edit;

Edit calls the dataset’s Edit method if AutoEdit is True and State is dsBrowse.

See also
DataSet property, Insert method

226 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E d i t F o r m a t p r o p e r t y

EditFormat property

Applies to
TIntegerField, TSmallintField, TWordField components

Declaration

property EditFormat: string;

EditFormat is used to format the value of the field for editing purposes.

For TIntegerField, TSmallintField, and TWordField, formatting is performed by
FloatToTextFmt. If EditFormat is not assigned a string, but DisplayFormat does have a
value, the DisplayFormat string is used. Otherwise, the value is formatted by to the
shortest possible string.

For TBCDField, TCurrencyField, and TFloatField, formatting is performed by
FloatToTextFmt. If EditFormat is not assigned a string but DisplayFormat does have a
value, the DisplayFormat string will be used. Otherwise, the value is formatted according
to the value of the Currency property.

EditKey method

Applies to
TTable component

Declaration

procedure EditKey;

Use the EditKey method to modify the contents of the search key buffer. This method is
useful only when searching on multiple fields after calling SetKey. Call GotoKey to move
the cursor to the record with the corresponding key.

EditKey differs from SetKey in that the latter clears all the elements of the search key
buffer to the default values (or NULL). EditKey leaves the elements of the search key
buffer with their current values.

Example

with Table1 do
begin
EditKey;
FieldByName(‘State’).AsString := ‘CA‘;
FieldByName(‘City’).AsString := ‘Santa Barbara‘;
GotoKey;
end;

See also
IndexFields property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 227

E d i t M a s k p r o p e r t y+
+
+
+
E

EditMask property

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMaskEdit, TMemoField,
TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

property EditMask: string;

The EditMask property is the mask that is used to limit the data that can be put into a
masked edit box or entered into a data field. A mask restricts the characters the user can
enter to valid characters and formats. If the user attempts to enter a character that is not
valid, the edit box does not accept the character. Validation is performed on a character-
by-character basis. Use an OnValidate event to validate the entire input.

For a TStringField, EditMask can be used to format output with the DisplayText property.

A mask consists of three fields with semicolons separating the fields. The first part of the
mask is the mask itself. The second part is the character that determines whether the
literal characters of a mask are saved as part of the data. The third part of the mask is the
character used to represent a blank in the mask.

These are the special characters used to create masks:

Character Meaning in mask

! If a ! character appears in the mask, leading blanks don’t appear in the data. If a ! character is
not present, trailing blanks don’t appear in the data.

> If a > character appears in the mask, all characters that follow are in uppercase until the end
of the mask or until a < character is encountered.

< If a < character appears in the mask, all characters that follow are in lowercase until the end
of the mask or until a > character is encountered.

<> If these two characters appear together in a mask, no case checking is done and the data is
formatted with the case the user uses to enter the data.

\ The character that follows a \ character is a literal character. Use this character when you
want to allow any of the mask special characters as a literal in the data.

L The L character requires only an alphabetic character only in this position. For the US, this is
A-Z, a-z.

l The l character permits only an alphabetic character in this position, but doesn’t require it.
A The A character requires an alphanumeric character only in this position. For the US, this is

A-Z, a-z, 0-9.
a The a character permits an alphanumeric character in this position, but doesn’t require it.
C The C character requires a character in this position.
c The c character permits a character in this position, but doesn’t require it.
0 The 0 character requires a numeric character only in this position.
9 The 9 character permits a numeric character in this position, but doesn’t require it.
The # character permits a numeric character or a plus or minus sign in this position, but

doesn’t require it.

228 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E d i t M a s k p r o p e r t y

These characters (already mentioned in previous table) are typed constants declared in
the Mask unit whose value you can change at run time, although the need for this should
be limited:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Mask.MaskFieldSeparator := ',';
 Mask.DefaultBlank := '@';
 MaskEdit1.EditMask := '999-999,1,@';
end;

Example
This example assigns an edit mask to the masked edit box on the form. The edit mask
makes it easy to enter American telephone numbers in the edit box.

procedure TForm1.FormCreate(Sender: TObject);
begin
 MaskEdit1.EditMask := '!\(999\)000-0000;1;
 MaskEdit1.Text := '';
 MaskEdit1.AutoSelect := False;
end;

See also
OnGetEditMask event, EditText property, Text property

: The : character is used to separate hours, minutes, and seconds in times. If the character that
separates hours, minutes, and seconds is different in the International settings of the Control
Panel utility on your computer system, that character is used instead of :.

/ The / character is used to separate months, days, and years in dates. If the character that
separates months, days, and years is different in the International settings of the Control
Panel utility on your computer system, that character is used instead of /.

; The ; character is used to separate masks.
_ The _ character automatically inserts a blank the edit box. When the user enters characters

in the field, the cursor skips the blank character. When using the EditMask property editor,
you can change the character used to represent blanks. You can also change this value
programmatically. See the following table.

Typed constant Initial value Meaning

DefaultBlank _ Blanks in the mask are represented by the _ character
MaskFieldSeparator ; The ; character separates the fields of a mask.
MaskNoSave 0 The 0 character means that the mask is not saved as part of

the data. The 1 character means that the mask is saved as part
of the data.
For example, a telephone number could have parentheses
around the area code as part of the mask. If MaskNoSave is 0,
the parentheses do not become part of the data, making the
size of the field slightly smaller.

Character Meaning in mask

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 229

E d i t M a s k P t r p r o p e r t y+
+
+
+
E

EditMaskPtr property

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

property EditMask: string;

Run-time and read only. EditMaskPtr is a pointer to the EditMask property of a string.

Example

Field1.EditMask := Field2.EditMaskPtr^;

EditorMode property

Applies to
TDBGrid, TDrawGrid, TStringGrid components

Declaration

property EditorMode: Boolean;

Run-time only. The EditorMode property determines whether the grid is in automatic
Edit mode. When the grid is in automatic edit mode, the user can type in a cell without
having to press Enter or F2 first. If the Options property set includes the value
goAlwaysShowEditor (goAlwaysShowEditor is True), the grid is in automatic edit mode,
just as if EditorMode is True. While you are most likely to set the Options property values
at design time, the EditorMode property makes it easy to control when editing is
permitted at run time.

If EditorMode is True, the grid is in automatic edit mode as long as the Options property
set includes the value goEditing (or dgEditing for the data grid). If goEditing or dgEditing is
not in the Options set (goEditing or dgEditing is False), setting EditorMode to True has no
effect, and the user cannot edit the contents of a cell.

If EditorMode is False and the Options property set includes the value goEditing or
dgEditing, but not the value goAlwaysShowEditor (or dgAlwaysShowEditor for the data
grid), the user can enter edit mode by pressing either Enter or F2 before editing the
contents of each cell.

Example
The following code sets EditorMode to True for StringGrid1.

StringGrid1.EditorMode := True;

230 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E d i t R a n g e E n d m e t h o d

See also
Options property

EditRangeEnd method

Applies to
TTable component

Declaration

procedure EditRangeEnd;

EditRangeEnd enables you to modify the beginning range of the dataset filter established
with SetRangeEnd. Subsequent assignments to field values will modify the values of the
ending field range previously set with SetRangeEnd. Call ApplyRange to apply the new
range and filter the dataset.

EditRangeEnd differs from SetRangeEnd in that the latter clears all the elements of the
search key buffer to the default values (NULL). EditRangeEnd leaves the elements of
search key buffer with their current values.

Note With Paradox or dBASE tables, these methods work only with indexed fields. With SQL
databases, they can work with any columns specified in the IndexFieldNames property.

Example

{ Limit the range from ‘Goleta’ to ‘Santa Barbara’}
with Table1 do
begin
EditRangeStart; { Set the beginning key }
FieldByName(‘City’).AsString := ‘Goleta‘;
EditRangeEnd; { Set the ending key }
FieldByName(‘City’).AsString := ‘Santa Barbara‘;
ApplyRange; { Tell the dataset to establish the range }
end;

See also
KeyExclusive property, KeyFieldCount property

EditRangeStart method

Applies to
TTable component

Declaration

procedure EditRangeStart;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 231

E d i t T e x t p r o p e r t y+
+
+
+
E

EditRangeStart enables you to modify the lower key limit established with SetRangeStart.
Call ApplyRange to apply the new range and filter the dataset.

EditRangeStart differs from SetRangeStart in that the latter clears all the elements of the
search key buffer to the default values (NULL). EditRangeStart leaves the elements of the
search key buffer with their current values.

Note With Paradox or dBASE tables, these methods work only with indexed fields. With SQL
databases, they can work with any columns specified in the IndexFieldNames property.

Example

{ Limit the range from ‘Goleta’ to ‘Santa Barbara’}
with Table1 do
begin
EditRangeStart; { Set the beginning key }
FieldByName(‘City’).AsString := ‘Goleta‘;
EditRangeEnd; { Set the ending key }
FieldByName(‘City’).AsString := ‘Santa Barbara‘;
ApplyRange; { Tell the dataset to establish the range }
end;

See also
KeyExclusive property, EditRangeEnd method, SetRange method, SetRangeEnd method

EditText property

Applies to
TDBEdit, TMaskEdit components

Declaration

property EditText: string;

Run-time only. The EditText property is the value of the Text property as it appears in
the edit box at run time with the mask specified in the EditMask property applied. If
literal mask characters are not saved and no character is substituted for blanks, the
values of EditText and Text are the same.

EditText is what the user actually sees in the edit box at run time.

See also
EditMask property, Text property

EDivByZero object SysUtils

Declaration

EDivByZero = class(EIntError);

232 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E F a u l t o b j e c t

The EDivByZero exception is an integer math exception. The exception occurs when
your application attempts to divide an integer type by zero. For example, this code
raises an EDivByZero exception:

var
 X, Y: Integer;
begin
 X := 0;
 Y := 10;
 Y := Y div X;
end;

EFault object SysUtils

Declaration

EFault = class(EProcessorException);

The EFault exception is the base exception object from which all other exception fault
objects descend. These are the fault exceptions:

EFCreateError object Classes

Declaration

EFCreateError = class(EStreamError);

The EFCreateError exception is raised when an error occurs as a file is being created. For
example, the specified file might have an invalid file name, or the file can’t be recreated
because it is read only.

EFilerError object Classes

Declaration

EFilerError = class(EStreamError);

Exception Meaning

EGPFault A general protect fault, which is usually caused by an uninitialized pointer or object.
EStackFault Illegal access to the processor’s stack segment.
EPageFault The Windows memory manager was unable to correctly use the Windows swap file.
EInvalidOpCode The processor encountered an undefined instruction. Usually this means the

processor was trying to execute data or uninitialized memory.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 233

E F O p e n E r r o r o b j e c t+
+
+
+
E

The EFilerError is raised when an attempt is made to register the same class twice. It is
also the parent of these exceptions that occur when reading or writing streams:

EFOpenError object Classes

Declaration

EFOpenError = class(EStreamError);

The EFOpenError exception is raised when an attempt is made to create a file stream
object and the specified file cannot be opened.

EGPFault object SysUtils

Declaration

EGPFault = class(EFault);

The EGPFault is a hardware exception that is raised when your application attempts to
access memory that isn’t legal for your application to access. These are the most
common causes of general protection faults (GPF):

1 Loading invalid values into segment registers
2 Accessing memory beyond a segment’s limit
3 Writing to read-only code segments
4 Attempting to access an uninitialized pointer or object

The most likely cause in Delphi programs is probably the fourth one: attempting to
access an uninitialized pointer or object.

EInOutError object SysUtils

Declaration

EInOutError = class(Exception)
public

ErrorCode: Integer;
end;

The EInOutError is raised any time an input/output MS-DOS error occurs. The resulting
error code is returned in the ErrorCode field.

Exception Description

EReadError The ReadBuf method cannot read the specified number of bytes
EWriteError The WriteBuf method cannot write the specified number of bytes
EClassNotFound A component on the form has been deleted from the form type declaration

234 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E I n t E r r o r o b j e c t

The $I+ directive must be in effect or input/output errors will not raise an exception. If
an I/O error occurs when your application is in the $I- state, your application must call
the IOResult function to clear the error.

EIntError object SysUtils

Declaration

EIntError = class(Exception);

Description

The EIntError exception is a generic integer math exception. Although it is never raised
in the run-time library, it is the base from which other integer math exceptions descend.
These are the integer math exceptions:

EIntOverflow object SysUtils

Declaration

EIntOverFlow = class(EIntError);

Description

The EIntOverFlow exception is an integer math exception. It occurs when a calculated
result is too large to fit within the register allocated for it and therefore, data is lost. For
example, this code results in an overflow condition as the calculation result overflows a
register:

var
 SmallNumber: Shortint;
 X, Y: Integer;
begin
 X := 127;
 Y := 127;
 SmallNumber := X * Y * 100;
end;

The EIntOverFlow occurs only if range checking is turned on (your code includes the
$O+ directive or you set the Overflow-checking option using the Options|Project dialog
box).

See also the ERangeError exception.

Exception Meaning

EDivByZero An attempt was made to divide by zero
ERangeError Number or expression out of range
EIntOverflow Integer operation overflowed

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 235

E I n v a l i d C a s t o b j e c t+
+
+
+
E

EInvalidCast object SysUtils

Declaration

EInvalidCast = class(Exception);

The EInvalidCast exception occurs when your application tries to typecast an object into
another type using the as operator, and the requested typecast is illegal. For example, an
invalid typecast exception is raised if in this expression AnObject is not of a type
compatible with TObjectType:

AnObject as TObjectType

EInvalidGraphic object Graphics

Declaration

EInvaldGraphic = class(Exception);

An EInvalidGraphic exception is raised when your application attempts to access a file
that is not a valid bitmap, icon, metafile, or user-defined graphic type when your
application expects it to be. For example, this code raises an invalid graphic exception:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Image1.Picture.LoadFromFile('README.TXT');
end;

Because the README.TXT file doesn’t contain a valid graphic, the exception is raised.

EInvalidGraphicOperation object Graphics

Declaration

EInvalidGraphicOperation = class(Exception);

Description

An EInvalidGraphicOperation is raised when an illegal operation is attempted on a
graphic. For example, if your application attempts to resize an icon, the invalid graphic
operation is raised:

var
AnIcon: TIcon;

begin
AnIcon := TIcon.Create;

 AnIcon.LoadFromFile('C:\WINDOWS\DIRECTRY.ICO');
 AnIcon.Width := 100; { an invalid graphic operation exception is raised }
...

236 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E I n v a l i d G r i d O p e r a t i o n o b j e c t

EInvalidGridOperation object Grids

Declaration

EInvalidGridOperation = class(Exception);

An EInvalidGridOperation is raised when an illegal operation is attempted on a grid. For
example, your application might try to access a cell that does not exist within the grid.

EInvalidImage object Classes

Declaration

EInvalidImage = class(EFilerError);

The EInvalidImage exception is raised when your application attempts to read a resource
file and the specified file is not a resource file. When your application calls the
ReadComponentRes method, it must also use the corresponding WriteComponentRes
method to write to a resource file. Similarly, when you application calls the
ReadComponent method, it must use the corresponding WriteComponent method.

EInvalidOp object SysUtils

Declaration

EInvalidOp = class(EMathError);

The EInvalidOp exception is a floating-point math exception. It occurs whenever the
processor encounters an undefined instruction. For example, if your application uses an
opcode that is not available to the 80287 floating-point unit and you run the application
on a 80286 computer, the invalid opcode exception is raised.

EInvalidOpCode object SysUtils

Declaration

EInvalidOpCode = class(EFault);

The EInvalidOpCode exception is a hardware fault exception. It occurs when the
processor encounters an undefined instruction. Usually this means the processor was
attempting to execute data or uninitialized memory. It could also happen if your
application jumps to the middle of an instruction somehow. An invalid opcode
exception represents a serious failure in the operating environment. Your application
should encounter it rarely.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 237

E I n v a l i d O p e r a t i o n o b j e c t+
+
+
+
E

EInvalidOperation object Controls

Declaration

EInvalidOperation = class(Exception);

Description

An EInvalidOperation exception is raised when your application does some operation
that requires a window handle and your component does not have a parent (Parent =
nil). It can also occur if you try to perform drag and drop operations from the form such
as Form1.BeginDrag.

EInvalidPointer object SysUtils

Declaration

EInvalidPointer = class(Exception);

The EInvalidPointer exception is raised when your application attempts an invalid
pointer operation. For example, it can occur if your application tries to dispose of the
same pointer twice, or your application calls the Free method twice to destroy an object.

Eject method

Applies to
TMediaPlayer component

Declaration

procedure Eject;

The Eject method ejects the loaded medium from the open multimedia device. Eject is
called when the Eject button on the media player control is clicked at run time.

Upon completion, Eject stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Eject method has been completed. The Notify property determines whether Eject
generates an OnNotify event.

Example
This code ejects the CD from the CD-ROM player after 10 seconds. For the code to run
correctly, you must have your CD audio device installed correctly, and the device must
have software ejecting capabilities.

var
TimerOver: Word;

238 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E L i s t E r r o r o b j e c t

procedure TForm1.FormClick(Sender: TObject);
begin
MediaPlayer1.DeviceType := dtCDAudio;
MediaPlayer1.Open;
MediaPlayer1.Play;

end;

procedure TForm1.Timer1Timer(Sender: TObject);
begin
if TimeOver = 10 then
begin

MediaPlayer1.Eject;
MediaPlayer1.Close;
Timer1.Enabled := False;

end
else

Inc(TimeOver);
end;

See also
Capabilities property

EListError object Classes

Declaration

EListError = class(Exception);

The EListError is an exception that is raised when an error is made in a list, string, or
string list object. List error exceptions commonly occur when your application refers to
an item in a list that is out of the list’s range. For example, the following code is an event
handler that attempts to access an item in a list box that does not exist. The EListError is
raised and handled:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items.Add('First item'); { Items[0] }
 ListBox1.Items.Add('Another item'); { Items{1] }
 ListBox1.Items.Add('Still another item'); { Items[2] }
 try
 ListBox1.Items[3] := 'This item does not exist';
 except
 on EListError do
 MessageDlg('List box contains fewer than 4 strings', mtWarning, [mbOK], 0);
 end;
end;

Also, a list error occurs when your application tries to add a duplicate string to a string
list object when the value of the Duplicates property is dupError.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 239

E l l i p s e m e t h o d+
+
+
+
E

A list error exception is raised when you insert a string into a sorted string list, as the
string you insert at the specified position may put the string list out of sorted order. For
example, this code raises the list error exception:

procedure TForm1.FormCreate(Sender: TObject);
var
 I: Integer;
begin
 for I := 1 to 5 do
 ListBox1.Items.Add('Item ' + IntToStr(I));
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
try

 ListBox1.Items.Insert(0, 'Try to insert here');
except

on EListError do
MessageDlg(‘Attempt to insert into a sorted list’, mtWarning, [mbOK], 0);

end;
end;

Ellipse method

Applies to
TCanvas object

Declaration

procedure Ellipse(X1, Y1, X2, Y2: Integer);

The Ellipse method draws an ellipse defined by a bounding rectangle on the canvas. The
top left point of the bounding rectangle is at pixel coordinates (X1, Y1) and the bottom
right point is at (X2, Y2). If the points of the rectangle form a square, a circle is drawn.

Example
The following code draws an ellipse filling the background of a form:

procedure TForm1.FormPaint(Sender: TObject);
begin
Canvas.Ellipse(0, 0, ClientWidth, ClientHeight);

end;

See also
Arc method, Chord method, Draw method, DrawFocusRect method, Pie method,
StretchDraw method

240 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E M a t h E r r o r o b j e c t

EMathError object SysUtils

Declaration

EMathError = class(Exception);

The EMathError exception is never raised on its own, but it provides a base exception
object from which all the specific floating-point math exceptions descend. These are the
floating-point math exceptions:

EMCIDeviceError object MPlayer

Declaration

EMCIDeviceError = class(Exception);

Description

The EMCIDeviceError exception is raised if an error occurs when accessing a multimedia
device. The most common cause for the exception is trying to access a multimedia
device before it has been opened with the Open method.

EMenuError object Menus

Declaration

EMenuError = class(Exception);

The EMenuError exception is raised if an error occurs when your application is working
with menu items. For example, if you application attempts to delete a menu item that
doesn’t exist, a menu error exception occurs.

EMPNotify type MPlayer

Declaration

EMPNotify = procedure (Sender: TObject; Button: TMPBtnType; var DoDefault: Boolean) of object;

The EMPNotify type is used for the OnClick event for TMediaPlayer components.

Exception Meaning

EInvalidOp Processor encountered an undefined instruction
EZeroDivide Attempt to divide by zero
EOverflow Floating-point operation overflowed
EUnderflow Floating-point operation underflowed

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 241

E M P P o s t N o t i f y t y p e+
+
+
+
E

The Button argument can be one of the following values: btBack, btEject, btNext, btPause,
btPlay, btPrev, btRecord, btStep, or btStop.

The default value of the DoDefault argument is True. If DoDefault is True, the media
player control calls the method that corresponds to the clicked button. For example, if
the user clicks the Play button (btPlay), the Play method is called.

If DoDefault is False, you must supply the code that executes when a media player
control button is clicked in the OnClick event handler. The following table lists the
default methods corresponding to the media player control buttons:

EMPPostNotify type MPlayer

Declaration

EMPPostNotify = procedure (Sender: TObject; Button: TMPBtnType) of object;

The EMPPostNotify type is used for the OnPostClick event for TMediaPlayer components.

The Button argument can be one of the following values: btBack, btEject, btNext, btPause,
btPlay, btPrev, btRecord, btStep, or btStop.

Empty property

Applies to
TBitmap, TGraphic, TIcon, TMetafile objects

Declaration

property Empty: Boolean;

Read-only. The Empty property specifies whether the graphics object contains a graphic.
If Empty is True, no graphic has been loaded into the graphics object. If Empty is False, a
graphic is contained by the graphics object.

Control button Button value Method called

Play btPlay Play

Record btRecord StartRecording

Stop btStop Stop

Next btNext Next

Prev btPrev Previous

Step btStep Step

Back btBack Back

Pause btPause Pause

Eject btEject Eject

242 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E m p t y S t r c o n s t a n t

Example
The following loads a file into Graphic1 if it does not already contain a graphic.

if Graphic1.Empty then Graphic1.LoadFromFile('myfile.bmp');

See also
LoadFromFile method

EmptyStr constant SysUtils

Declaration

EmptyStr: string[1] = '';

EmptyStr declares an empty string.

EmptyTable method

Applies to
TTable component

Declaration

procedure EmptyTable;

The EmptyTable method deletes all records from the database table specified by
TableName. Before calling this method, the DatabaseName, TableName and TableType
properties must be assigned values.

Note If the table is open, it must have been opened with the Exclusive property set to True.

Example

with Table1 do
begin
Active := False;
DatabaseName := ‘Delphi_Demos’;
TableName := ‘CustInfo’;
TableType := ttParadox;
EmptyTable;
end;

EnableControls method

Applies to
TTable, TQuery, TStoredProc components

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 243

E n a b l e d p r o p e r t y+
+
+
+
E

Declaration

procedure EnableControls;

The EnableControls method restores the connections from the dataset to all TDataSource
components that were disconnected by a call to the DisableControls method. While the
data sources are disconnected, changes in the active record will not be reflected in them.
The dataset maintains a count of the number of calls to DisableControls and
EnableControls, so only the last call to EnableControls will actually update the data
sources.

Example

with Table1 do
begin
DisableControls;

{ Move forward five records }
try

for I := 1 to 5 do Next;
finally

{ Update the controls to the current record }
EnableControls;

end;

See also
Enabled property

Enabled property

Applies to
All controls; TDataSource, TForm, TMenuItem, TTimer components

The Enabled property determines if the control responds to mouse, keyboard, or timer
events, or if the data-aware controls update each time the dataset they are connected to
changes.

For all controls, menu items, and timers

Declaration

property Enabled: Boolean;

The Enabled property controls whether the control responds to mouse, keyboard, and
timer events. If Enabled is True, the control responds normally. If Enabled is False, the
control ignores mouse and keyboard events, and in the case of a timer control, the
OnTimer event. Disabled controls appear dimmed.

Example
To disable a button called FormatDiskButton,

244 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E n a b l e d B u t t o n s p r o p e r t y

FormatDiskButton.Enabled := False;

This code alternately dims or enables a menu command when a user clicks the button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if OpenCommand.Enabled then
 OpenCommand.Enabled := False
 else
 OpenCommand.Enabled := True;
end;

For data source components

Declaration

property Enabled: Boolean;

Description

Enabled specifies if the display in data-aware controls connected to TDataSource is
updated when the current record in the dataset changes. For example, when Enabled is
True and the Next method of a dataset component is called many times, each call
updates all controls. Setting Enabled to False allows the Next calls to be made without
performing updates to the controls. Once you reach the desired record, set Enabled to
True to update the controls to that record.

Note Setting Enabled to False clears the display in data-aware controls until you set it to True
again. If you want to leave the controls with their current contents while moving
through the table or query, call the DisableControls and EnableControls.

Example

DataSource1.Enabled := False;
while not DataSource1.DataSet.EOF do DataSource1.DataSet.Next;
DataSource1.Enabled := True;

EnabledButtons property

Declaration

property EnabledButtons: TButtonSet;

The EnabledButtons property determines which buttons on the media player are enabled.
An enabled button is colored and usable. A disabled button is dimmed and not usable.
If a button is not enabled with EnabledButtons, it is disabled. By default, all buttons are
enabled.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 245

E n a b l e E x c e p t i o n H a n d l e r p r o c e d u r e+
+
+
+
E

If the AutoEnable property is True, AutoEnable supersedes EnabledButtons. The buttons
automatically enabled or disabled by the media player override any buttons enabled or
disabled with the EnabledButtons property.

Example
The following example enables all of the media player component’s buttons:

TMediaPlayer1.EnabledButtons := [btPlay, btPause, btStop, btNext, btPrev, btStep, btBack,
btRecord, btEject]

See also
ColoredButtons property, VisibleButtons property

EnableExceptionHandler procedure SysUtils

Declaration

procedure EnableExceptionHandler(Enable: Boolean);

The EnableExceptionHandler procedure enables or disables the standard processing of
hardware exceptions or language exceptions. This requires setting notification hooks
using the ToolHelp DLL. If you want to implement your own hardware exception
processing, you should disable the default exception handler.

ENavClick type DBCtrls

Declaration

ENavClick = procedure (Sender: TObject; Button: TNavigateBtn) of object;

The ENavClick type is the type of the OnClick event for a database navigator component
(TDBNavigator).

Button Value Action

Play btPlay Plays the media player
Record btRecord Starts recording
Stop btStop Stops playing or recording
Next btNext Skips to the next track, or to the end if the medium doesn’t use

tracks
Prev btPrev Skips to the previous track, or to the beginning if the medium

doesn’t use tracks
Step btStep Moves forward a number of frames
Back btBack Moves backward a number of frames
Pause btPause Pauses playing or recording. If already paused when clicked,

resumes playing or recording.
Eject btEject Ejects the medium

246 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E n c o d e D a t e f u n c t i o n

EncodeDate function SysUtils

Declaration

function EncodeDate(Year, Month, Day: Word): TDateTime;

The EncodeDate function returns a TDateTime type from the values specified as the Year,
Month, and Day parameters.

The year must be between 1 and 9999.

Valid Month values are 1 through 12.

Valid Day values are 1 through 28, 29, 30, or 31, depending on the Month value. For
example, the possible Day values for month 2 (February) are 1 through 28 or 1 through
29, depending on whether or not the Year value specifies a leap year.

If the specified values are not within range, an EConvertError exception is raised. The
resulting value is one plus the number of days between 1/1/0001 and the given date.

Example
This example uses a button and a label on a form. When the user clicks the button, a
specified date is encoded as a MyDate variable of type TDateTime. MyDate is then
displayed as a string in the caption of the label.

procedure TForm1.Button1Click(Sender: TObject);
var
 MyDate: TDateTime;
begin
 MyDate := EncodeDate(83, 12, 31);
 Label1.Caption := DateToStr(MyDate);
end;

See also
DateToStr function, DecodeDate procedure, EncodeTime function

EncodeTime function SysUtils

Declaration

function EncodeTime(Hour, Min, Sec, MSec: Word): TDateTime;

The EncodeTime function returns a TDateTime type from the values specified as the Hour,
Min, Sec, and MSec parameters.

If the value of the Time24Hour typed constant is False, valid Hour values are 0 through
12. If the value of Time24Hour is True, valid Hour values are 0 through 23.

Valid Min and Sec values are 0 through 59. Valid MSec values are 0 through 999.

If the specified values are not within range, an EConvertError exception is raised. The
resulting value is a number between 0 (inclusive) and 1 (not inclusive) that indicates the

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 247

E n d D o c m e t h o d+
+
+
+
E

fractional part of a day given by the specified time. The value 0 corresponds to
midnight, 0.5 corresponds to noon, 0.75 corresponds to 6:00 pm, etc.

Example

procedure TForm1.Button1Click(Sender: TObject);
var
 MyTime: TDateTime;
 Hour, Min, Sec, MSec: Word;
begin
 MyTime := EncodeTime(0, 45, 45, 7);
 Label1.Caption := TimeToStr(MyTime);
 Time24Hour := True;
 Label2.Caption := TimeToStr(MyTime);
end;

See also
DecodeTime procedure, EncodeDate function

EndDoc method

Applies to
TPrinter object

Declaration

procedure EndDoc;

The EndDoc method ends the current print job and closes the text file variable. After the
application calls EndDoc, the printer begins printing. Use EndDoc after successfully
sending a print job to the printer. If the print job isn’t successful, use the Abort method.

The Close procedure calls the EndDoc method.

Example
This example uses a button on a form. When the user clicks it, the event handler prints a
rectangle on the printer and displays a message on the form.

procedure TForm1.Button1Click(Sender: TObject);
begin
with Printer do
begin

BeginDoc;
Canvas.Rectangle(20, 20, 400, 300);
EndDoc;

end;
 Canvas.TextOut(10, 10, 'Printed');
end;

248 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E n d D r a g m e t h o d

To use the EndDoc method, you must add the Printers unit to the uses clause of your
unit.

See also
BeginDoc method

EndDrag method

Applies to
All controls

Declaration

procedure EndDrag(Drop: Boolean);

The EndDrag method stops an object from being dragged any further. If the Drop
parameter is True, the object being dragged is dropped. If the Drop parameter is False,
the object is not dropped and dragging is canceled.

Example
The following code cancels the dragging of Label1 without dropping the object.

Label1.EndDrag(False);

See also
BeginDrag method, DragMode property, OnEndDrag event

EndMargin property

Applies to
TTabSet component

Declaration

property EndMargin: Integer;

The EndMargin property determines how far in pixels the rightmost tab appears from
the right edge of the tab set control. The default value is 5. Together with the StartMargin
property, EndMargin can play a role in determining how many tabs can fit within the tab
set control.

If AutoScroll is True and scroll buttons appear in the tab set control, EndMargin
determines how far in pixels the rightmost tab appears from the left edge of the scroll
buttons, rather than the edge of the tab set control.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 249

E n d P a g e p r o p e r t y+
+
+
+
E

Example
This example displays the tab set control so the tabs are no closer than 20 pixels from the
edge of the tab control on the left and from the scroll buttons on the right:

procedure TForm1.FormCreate(Sender: TObject);
begin
 with TabSet1 do
 begin
 AutoScroll := True;
 StartMargin := 20;
 EndMargin := 20;
 end;
end;

See also
StartMargin property

EndPage property

Applies to
TReport component

Declaration

property EndPage: Word;

The value of the EndPage property specifies the last page of the report that is printed.
The default value is 9999. If the report is fewer than 9999 pages and you don’t change
the value of EndPage, your entire report is printed.

Example
The following code prints only the first page of Report1.

Report1.EndPage := 1;
Report1.Run;

See also
PrintCopies property, StartPage property

EndPos property

Applies to
TMediaPlayer component

Declaration

property EndPos: Longint;

250 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E n d U p d a t e m e t h o d

Run-time only. The EndPos property specifies the position within the currently loaded
medium at which to stop playing or recording. EndPos is specified using the current
time format, which is specified in the TimeFormat property.

The EndPos property affects only the next Play or StartRecording method called after
setting EndPos. You must reset EndPos to affect any subsequent calls to Play or
StartRecording.

Example
The following procedure begins playing the .WAV audio file from the beginning of the
file to middle only.

procedure TForm1.Button1Click(Sender: TObject);
begin
 with MediaPlayer1 do
begin

 FileName := 'D:\WINAPPS\SOUNDS\CARTOON.WAV';
 Open;

EndPos := TrackLength[1] div 2;
 Play;
 end;
end;

See also
StartPos property

EndUpdate method

Applies to
TStringList, TStrings objects; TOutline component

Declaration

procedure EndUpdate;

The EndUpdate method re-enables screen repainting and outline item reindexing that
was turned off with the BeginUpdate method.

Example
BeginUpdate and EndUpdate should always be used in conjunction with a try...finally
statement to ensure that EndUpdate is called if an exception occurs. A block that uses
BeginUpdate and EndUpdate typically looks like this:

ListBox1.Items.BeginUpdate;
try
 ListBox1.Items.Clear;
 ListBox1.Items.Add(...);
 ...
 ListBox1.Items.Add(...);
finally

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 251

E o f f u n c t i o n+
+
+
+
E

 ListBox1.Items.EndUpdate; { Executed even in case of an exception }
end;

See also
BeginUpdate method

Eof function System

Declaration

Typed or untyped files:

function Eof(var F): Boolean;

Text files:

function Eof [(var F: Text)]: Boolean;

The Eof function tests whether or not the current file position is the end-of-file.

F is a text file variable. If F is omitted, the standard file variable Input is assumed.

Eof(F) returns True if the current file position is beyond the last character of the file or if
the file contains no components; otherwise, Eof(F) returns False.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

Example

var
 F1, F2: TextFile;
 Ch: Char;
begin
 if OpenDialog1.Execute then begin
 AssignFile(F1, OpenDialog1.Filename);
 Reset(F1);
 if SaveDialog1.Execute then begin
 AssignFile(F2, OpenDialog1.Filename);
 Rewrite(F2);
 while not Eof(F1) do
 begin
 Read(F1, Ch);
 Write(F2, Ch);
 end;
 CloseFile(F2);
 end;
 CloseFile(F1);
 end;
end;

252 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E O F p r o p e r t y

See also
Eoln function, SeekEof function

EOF property

Applies to
TTable, TQuery, TStoredProc components

Declaration

property EOF: Boolean;

Run-time and read only. EOF is a Boolean property that indicates whether a dataset is
known to be at its last row. The EOF property returns a value of True after:

• An application opens an empty dataset
• A call to a table’s Last method
• A call to a table’s Next fails because the cursor is on the last row

Example

Table1.First;
while not Table1.EOF do
begin
{Do Something}
Table1.Next;

end;

See also
MoveBy method

Eoln function System

Declaration

function Eoln [(var F: Text)]: Boolean;

The Eoln function test whether the current file position is the end-of-line of a text file.

F, if specified, is a text file variable. If F is omitted, the standard file variable Input is
assumed.

Eoln(F) returns True if the current file position is at an end-of-line or if Eof(F) is True;
otherwise, Eoln(F) returns False.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 253

E O u t l i n e C h a n g e t y p e+
+
+
+
E

Example

uses WinCrt;

 begin
 { Tells program to wait for keyboard input }
 WriteLn(Eoln);
 end;

See also
Eof function, SeekEoln function

EOutlineChange type Outline

Declaration

EOutlineChange = procedure (Sender: TObject; Index: LongInt) of object;

EOutlineChange is the type of the events which occur when an item in a TOutline
component is changed by being expanded (OnExpand) or collapsed (OnCollapse). The
Index parameter specifies the Index property value of the changed item.

EOutlineError object Outline

Declaration

EOutlineError = class(Exception);

The EOutlineError exception is raised when an error occurs as your application works
with an outline component.

EOutOfMemory object SysUtils

Declaration

EOutOfMemory = class(Exception);

The EOutOfMemory exception is a heap exception. It occurs when your application
attempts to allocate dynamic memory, but there wasn’t enough free memory in the
system to complete the requested operation.

EOutOfResources object Controls

Declaration

EOutOfResources = class(Exception);

254 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E O v e r f l o w o b j e c t

The EOutOfResources exception occurs when your application attempts to create a
Windows handle and Windows has no more handles to allocate.

EOverflow object SysUtils

Declaration

EOverflow = class(EMathError);

Description

The EOverflow exception is a floating-point math exception. It occurs when a calculated
result is too large to fit within the register allocated for it and therefore, data is lost. For
example, this code results in an overflow condition:

var
 X, Y: Single;
begin
 X := 3.3e37;
 Y := 2.4e36;
 X := X * Y;
end;

EPageFault object SysUtils

Declaration

EPageFault = class(EFault);

The EPageFault exception is a hardware fault exception. It occurs when the Windows
memory manager is unable to use the Windows swap file correctly. A page fault
exception indicates a serious failure in the operating environment. Your applications
should encounter it rarely.

EParserError object Classes

Declaration

EParser = class(Exception);

The EParserError is raised when your application attempts to read from a text form and
it is unable to read some part of it, due to a “syntax error.”

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 255

E P r i n t e r o b j e c t+
+
+
+
E

EPrinter object Printers

Declaration

EPrinter = class(Exception);

The EPrinter exception is raised when a printing error occurs. For example, if your
application attempts to print to a printer that doesn’t exist, or if the print job can’t be sent
to the printer for some reason, a printer exception occurs.

EProcessorException object

Declaration

EProcessorException = class(Exception);

The EProcessorException is a hardware exception. Although the EProcessorException is
never called by the run-time library, it provides a base from which specific hardware
exceptions descend. Hardware exception handling is not compiled into DLLs, only into
standalone applications. These are the descendants of EProcessorException:

You should rarely encounter the fault exceptions, other than the general protection fault,
because they represent serious failures in the operating environment. The breakpoint
and single-step exceptions are usually handled by Delphi’s integrated debugger.

ERangeError object SysUtils

Declaration

ERangeError = class(EIntError);

Description

The ERangeError exception is an integer math exception. It occurs when an integer
expression evaluates to a value that exceeds the bounds of the specified integer type to
which it is assigned. For example, this code raises an ERangeError exception:

var

Exception Meaning

EFault The base exception object from which all fault objects descend.
EGPFault A general protect fault, which is usually caused by an uninitialized pointer or object.
EStackFault Illegal access to the processor’s stack segment.
EPageFault The Windows memory manager was unable to correctly use the Windows swap file.
EInvalidOpCode The processor encountered an undefined instruction. Usually this means the

processor was trying to execute data or uninitialized memory.
EBreakpoint Your application generated a breakpoint interrupt.
ESingleStep Your application generated a single-step interrupt.

256 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E r a s e p r o c e d u r e

 SmallNumber: Shortint;
 X, Y: Integer;
begin
 X := 100;
 Y := 75;
 SmallNumber := X * Y;
end;

Attempting to access an item in an array with an index value that is not within the
defined array results in a range error exception. For example, this code attempts to
assign a value to Values[11] when the highest index of the Values array is 10:

var
 Values: array{1..10] of Integer;
 I: Integer;
begin
 for I := 1 to 11 do
 Values[I] := I; { on the last loop a range error exception is raised }
end;

The ERangeError exception is raised only if range checking is turned on (your code
includes the $R+ directive or you set the Range-checking option using the Options|
Project dialog box).

Erase procedure System

Declaration

procedure Erase(var F);

The Erase procedure deletes the external file associated with F.

F is a file variable of any file type.

Always close a file before erasing it.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

Example

procedure TForm1.Button1Click(Sender: TObject);
var
 F: Textfile;
begin
 OpenDialog1.Title := 'Delete File';
 if OpenDialog1.Execute then begin
 AssignFile(F, OpenDialog1.FileName);
 try
 Reset(F);
 if MessageDlg('Erase ' + OpenDialog1.FileName + '?',

mtConfirmation, [mbYes, mbNo], 0) = mrYes then

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 257

E r a s e S e c t i o n m e t h o d+
+
+
+
E

 begin
 CloseFile(F);
 Erase(F);
 end;
 except
 on EInOutError do
 MessageDlg('File I/O error.', mtError, [mbOk], 0);
 end;
 end;
end;

See also
Rename procedure

EraseSection method

Applies to
TIniFile object

Declaration

procedure EraseSection(const Section: string);

The EraseSection method erases an entire section of an .INI file.

The Section constant identifies the section of the .INI file to erase. For example, the
WIN.INI for Windows contains a [Desktop] section.

Example
This examples erases the SaveSettings section in the MYAPP.INI file when the user
clicks the button on the form:

procedure TForm1.Button1Click(Sender: TObject);
var
 MyAppIni: TIniFile;
begin
 MyAppIni := TIniFile.Create('MYAPPINI.INI');
 MyAppIni.EraseSection('SaveSettings');
 MyAppIni.Free;
end;

See also
ReadSection method

258 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E R e a d E r r o r o b j e c t

EReadError object Classes

Declaration

EReadError = class(EFilerError);

The EReadError is raised when your application attempts to read data from a stream by
calling the ReadBuffer method, but the number of bytes specified in the Count parameter
of the method cannot be read.

A read error exception can also occur if Delphi is unable to read a property.

EReportError object Report

Declaration

EReportError = class(Exception);

The EReportError exception is raised when the Connect method of a report component
(TReport) cannot connect the report to a database because the specified server is invalid.

EResNotFound object Classes

Declaration

EResNotFound = class(Exception);

The EResNotFound exception is raised when the ReadComponentRes method cannot find
the name of the specified resource in the resource file.

Error property

Applies to
TMediaPlayer component

Declaration

property Error: Longint;

Run-time and read only. The Error property specifies the MCI error code returned by
the most recent media control method (Back, Close, Eject, Next, Open, Pause, PauseOnly,
Play, Previous, StartRecording, Resume, Rewind, Step, or Stop).

The error codes returned by media control methods are the same error codes returned
by the mciSendCommand function, which is documented in MMSYSTEM.HLP. The
message describing the error code is stored in the ErrorMessage property.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 259

E r r o r A d d r v a r i a b l e+
+
+
+
E

The value of Error is zero if the most recent media control method didn’t cause an error.
If a method results in an error, a value other than zero is stored in Error. If the error
occurs during the opening of the device, an EMCIDeviceError exception occurs.

Example
The following code opens, closes, then plays MediaPlayer1. If an error occurs, a message
window displays the error number.

procedure TForm1.BitBtn1Click(Sender: TObject);
var
 MyErrorString: String;
begin
MediaPlayer1.Open;
MediaPlayer1.Close;
MediaPlayer1.Play;
MyErrorString := 'ErrorCode: ' + IntToStr(Error);
MessageDlg(MyErrorString, mtError, [mbOk], 0);

end;

ErrorAddr variable System

Declaration

var ErrorAddr: Pointer;

The ErrorAddr variable contains the address of the statement causing a run-time error.

If a program terminates normally or stops due to a call to Halt, ErrorAddr is nil.

If a program ends because of a run-time error, ErrorAddr contains the address of the
statement in error.

See also
ExitCode variable, ExitProc variable

ErrorMessage property

Applies to
TMediaPlayer component

Declaration

property ErrorMessage: String;

Run-time and read only. The ErrorMessage property specifies the error message that
describes the error code returned from the most recent media control method (Back,
Close, Eject, Next, Open, Pause, PauseOnly, Play, Previous, StartRecording, Resume, Rewind,
Step, or Stop). The error code described by the message is stored in the Error property.

260 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E r r o r P r o c t y p e d c o n s t a n t

Example
The following code opens MediaPlayer1. If an exception occurs, a message window
displays the error number and string.

procedure TForm1.BitBtn1Click(Sender: TObject);
var
 MyErrorString: String;
begin
 try
 MediaPlayer1.Open;
except

 MyErrorString := 'ErrorCode: ' + IntToStr(Error) + #13#10;
MessageDlg(MyErrorString + MediaPlayer1.ErrorMessage, mtError, [mbOk], 0);

end;
end;

ErrorProc typed constant System

Declaration

const ErrorProc: Pointer = nil;

ErrorProc is a procedure variable pointing to the RTL run-time error handler. The
standard RTL ErrorProc reports the run-time error and terminates the program.
However, if you use SysUtils in your program, it will force ErrorProc to its own routine
and convert the run-time error into an exception.

ESingleStep object SysUtils

Declaration

ESingleStep = class(EProcessorException);

The ESingleStep exception is a hardware exception. It occurs when your application
generates a single-step interrupt. Usually Delphi’s integrated debugger handles single-
step exceptions.

EStackFault object SysUtils

Declaration

EStackFault = class(EFault);

Description

The EStackFault exception is a hardware fault exception. It occurs when an illegal
attempt to access the processor’s stack is made. Usually a stack fault represents a serious
failure in the operating environment.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 261

E S t r e a m E r r o r o b j e c t+
+
+
+
E

If you have stack checking turned on {$S+}, you are not likely to reach a point where a
stack fault occurs because each procedure or function call checks to be sure there is
enough stack space for local variables before it runs. If stack checking is off {$S-}, this
checking does not occur, and the stack fault exception could be raised.

EStreamError object Classes

Declaration

EStreamError = class(Exception);

The EStreamError exception is raised when an error occurs when a stream is read with
the LoadFromStream method. It also is the parent of these two stream exceptions:

EStringListError object Classes

Declaration

EStringListError = class(Exception);

The EStringListError exception occurs when an error is made in a string list object. String
list error exceptions commonly occur when your application refers to an item in a list
that is out of the string list’s range.

EUnderflow object SysUtils

Declaration

EUnderflow = class(EMathError);

The EUnderflow exception is a floating-point math exception. It occurs when the result of
a calculation is too small to be represented in the size register allocated for it. For
example, a 16-bit precision result that has a significant digit only in the 16th bit would
underflow a register that was expecting only a Byte value.

EWriteError object Classes

Declaration

EWriteError = class(EFilerError);

Exception Description

EFCreateError An error occurred while creating a file
EFOpenError An error occurred while opening a file

262 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E x c e p t i o n o b j e c t

The EWriteError exception is raised when the WriteBuffer method of a stream object is
unable to write the number of bytes specified in its Count parameter.

Exception object SysUtils

Declaration

Exception = class(TObject)
 private
 FMessage: PString;

FHelpContext: Longint;
 function GetMessage: string;
 procedure SetMessage(const Value: string);
 public
 constructor Create(const Msg: string);
 constructor CreateFmt(const Msg: string; const Args: array of const);
 constructor CreateRes(Ident: Word);
 constructor CreateResFmt(Ident: Word; const Args: array of const);

constructor CreateHelp(const Msg: string; AHelpContext: Longint);
 constructor CreateFmtHelp(const Msg: string; const Args: array of const;
 AHelpContext: Longint);
 constructor CreateResHelp(Ident: Word; AHelpContext: Longint);
 constructor CreateResFmtHelp(Ident: Word; const Args: array of const;
 AHelpContext: Longint);
 destructor Destroy; override;

property HelpContext: Longint
 property Message: string;
 property MessagePtr: PString;
 end;

The Exception object is the base class for all exceptions. Therefore, all exceptions inherit
the methods and properties declared within Exception.

The Message property is the message displayed when the exception occurs.

The CreateFmt method allows you to create a formatted message as the value of Message.
The Msg constant is the string you specify, and the Args constant is an array of format
specifiers used to format the message. CreateFmt uses the Format function to format the
message.

The CreateRes method obtains the string that becomes the value of the Message property
from a resource file. Specify the string as the value of the Ident parameter.

The CreateResFmt method obtains the string that becomes the value of the Message
property and formats it using the Format function.

The CreateHelp method creates an exception object with an help context ID number.

The CreateFmtHelp method allows you to create a formatted message as the value of
Message with a context-sensitive ID help number. The Msg constant is the string you
specify, and the Args constant is an array of format specifiers used to format the
message. The AHelpContext parameter is the context- sensitive help ID number.
CreateFmt uses the Format function to format the message.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 263

E x c h a n g e m e t h o d+
+
+
+
E

The CreateResHelp method obtains the string that becomes the value of the Message
property from a resource file. Specify the string as the value of the Ident parameter. The
AHelpContext parameter is for a context-sensitive ID number.

The CreateResFmtHelp method obtains the string that becomes the value of the Message
property and formats it using the Format function. The AHelpContext parameter is for a
context-sensitive ID number.

Exchange method

Applies to
TList, TStringList, TStrings objects

Declaration

procedure Exchange(Index1, Index2: Integer);

The Exchange method exchanges the position of two items in the list of a list object, or in
the list of strings of a string or string list object. The items are specified with their index
values in the Index1 and Index2 parameters. Because the indexes are zero-based, the first
item in the list has an index value of 0,the second item has an index value of 1, and so on.

If a string in a string or string list object has an associated object, Exchange changes the
position of both the string and the object.

Example
This example uses a list box that contains several strings as the value of the Items
property, and a button. When the user clicks the button, the second and third items in
the list box switch places in the list box.

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items.Exchange(1, 2);
end;

See also
Add method, AddStrings method, Delete method, IndexOf method, Insert method, Move
method

Exclude procedure System

Declaration

procedure Exclude(var S: set of T;I:T);

The Exclude procedure removes element I from set S.

S is a set type variable, and I is an expression of a type compatible with the base type
of S.

264 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E x c l u s i v e p r o p e r t y

The construct Exclude (S, I) corresponds to S := S – (I) but the Exclude procedure
generates more efficient code.

See also
Include procedure

Exclusive property

Applies to
TTable component

Declaration

property Exclusive: Boolean;

Set the Exclusive property to True to prevent any other user from accessing the table. If
other users are accessing the table when you try to open it, your exception handler will
have to wait for those users to release it. If you do not provide an exception handler and
another user already has the table open, your application will be terminated.

Note Set the Active property to False before changing Exclusive to prevent an exception.

Do not set Active and Exclusive to True in the Object Inspector Window. Since the Object
Inspector will have the table open, that will prevent your program from opening it.

Set Exclusive to True only when you must have complete control over the table.

Example

{ Try to open Table1 with Exclusive True }
{ First, close Table1 }
Table1.Active := False;
repeat { until successful or Cancel button is pressed }
try

Table1.Exclusive := True; { See if it will open }
Table1.Active := True;
Break; { If no error, exit the loop }

except
on EDatabaseError do
{ Ask if it is OK to retry }
if MessageDlg(‘Could not open Table1 exclusively - OK to retry?’, mtError,

[mbOK, mbCancel], 0) <> mrOK then raise; { If not, reraise to abort }
{ Otherwise resume the repeat loop }

end;
until False;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 265

E x e c P r o c m e t h o d+
+
+
+
E

ExecProc method

Applies to
TStoredProc component

Declaration

procedure ExecProc;

The ExecProc method executes the stored procedure on the server.

Example

{ Execute the stored procedure }
StoredProc1.ExecProc;

ExecSQL method

Applies to
TQuery component

Declaration

procedure ExecSQL;

Use the ExecSQL method to execute an SQL statement assigned to the SQL property of a
TQuery if the statement does not return a result set. If the SQL statement is an INSERT,
UPDATE, DELETE, or any DDL statement, then use this method.

If the SQL statement is a SELECT statement, use Open instead.

Example

Query1.Close;
Query1.SQL.Clear;
Query1.SQL.Add(‘Delete from Country where Name = ‘Argentina’);
Query1.ExecSQL;

Execute method

Applies to
TBatchMove, TColorDialog, TFindDialog, TFontDialog, TOpenDialog, TPrintDialog,
TPrinterSetupDialog, TReplaceDialog, TSaveDialog components

266 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E x e c u t e m e t h o d

For Color, Font, Open, Save, Print, Find, and Replace dialog boxes

Declaration

function Execute: Boolean;

The Execute method displays the dialog box in the application and returns True when it
is displayed. This allows your code to determine whether the user has displayed and
used the dialog box by choosing its OK button.

Example
This example uses a main menu component, a memo, an Open dialog box, and a Save
dialog box on a form. To use it, you need to create a File menu that includes an Open
command. This code is an event handler for the OnClick event of the Open command on
the File menu. If the user has selected a file name by choosing the Open dialog box’s OK
button, the code sets the Save dialog box Filename property to the same file name, and
displays the selected file name as the caption of the form.

procedure TForm1.Open1Click(Sender: TObject);
begin
 if OpenDialog1.Execute then
 begin
 Memo1.Lines.LoadfromFile(OpenDialog1.FileName);
 SaveDialog1.Filename := OpenDialog1.FileName;
 Caption := OpenDialog1.FileName;
 end;
end;

For Printer Setup dialog boxes

Declaration

procedure Execute;

The Execute method displays the Printer Setup dialog box.

Example
This code displays the Printer Setup dialog box when the user clicks the button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 PrinterSetupDialog1.Execute;
end;

For batch move components

Declaration

procedure Execute;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 267

E x e c u t e M a c r o m e t h o d+
+
+
+
E

The Execute method performs the batch move operation specified by Mode from the
Source table to the Destination table.

Example

BatchMove1.Execute;

ExecuteMacro method

Applies to
TDDEClientConv component

Declaration

function ExecuteMacro(Cmd: PChar; WaitFlg: Boolean): Boolean;

The ExecuteMacro method attempts to send a macro command string to a DDE server
application. ExecuteMacro returns True if the macro was successfully passed to the DDE
server application. If ExecuteMacro was unable to send a command string, ExecuteMacro
returns False.

Cmd is a null-terminated string that contains the macro to be executed by the DDE
server application. The actual value of Cmd depends on the DDE server application. See
the documentation of the DDE server application for the command strings it will accept.

WaitFlg determines if your application should wait until the DDE server application
finishes executing the macro before allowing another successful call to ExecuteMacro or
the ExecuteMacroLines, PokeData, or PokeDataLines methods. If WaitFlg is set to True,
subsequent calls to these methods before the DDE server application completes the first
macro do not send data to the DDE server and return False. If WaitFlg is set to False,
subsequent calls to these methods before the DDE server application completes the first
macro do attempt to send data to the DDE server.

If you need to send a macro command string list rather than a single string, use the
ExecuteMacroLines method.

Note Depending on the DDE server, attempting to execute a macro or poke data before the
DDE server application completes the first macro might cause the first macro to execute
unsuccessfully or produce unpredictable results. See the documentation of the DDE
server application for the results of sending command strings or poking data before
macro execution has completed.

Example
The following code executes the macro that is specified by the Text of Edit1. The macro
sets WaitFlg to True to wait until the server has completed macro execution.

var
TheMacro: PChar;

begin
StrPCopy(TheMacro, Edit1.Text);

268 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E x e c u t e M a c r o L i n e s m e t h o d

DDEClientConv1.ExecuteMacro(TheMacro, True);
end;

See also
StrPCopy function

ExecuteMacroLines method

Applies to
TDDEClientConv component

Declaration

function ExecuteMacroLines(Cmd: TStrings; WaitFlg: Boolean): Boolean;

The ExecuteMacroLines method attempts to send a macro command string list to a DDE
server application. ExecuteMacroLines returns True if the macro was successfully passed
to the DDE server application. If ExecuteMacroLines was unable to send a command
string list, ExecuteMacroLines returns False.

Cmd contains the macro to be executed by the DDE server application. WaitFlg
determines if your application should wait until the DDE server application finishes
executing the macro before allowing another successful call to ExecuteMacroLines or the
ExecuteMacro, PokeData, or PokeDataLines methods.

Use ExecuteMacroLines to execute a macro command string list rather than a single
macro command string (which is what the ExecuteMacro method passes for its Cmd
parameter).

Example
The following code executes the macro that exists in the Lines of Memo1. Wait is a
boolean variable that specifies whether to wait for the server to complete macro
processing before sending more data to the server.

DDEClientConv1.ExecuteMacroLines(Memo1.Lines, Wait);

ExeName property

Applies to
TApplication component

Declaration

property ExeName: string;

Run-time and read only. The ExeName property contains the name of the executable
application including path information. The name of the application is the name you
gave the project file with an .EXE extension. If you haven’t specified a name, the default
name is PROJECT1.EXE.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 269

E x c e p t i o n C l a s s t y p e d c o n s t a n t+
+
+
+
E

Example
This code displays the current name of the application’s .EXE file in a label control when
the user clicks the button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := Application.ExeName;
end;

For example, if the application name is C:\DELPHI\WORK\MYAPP.EXE, that entire
string appears in the label control.

See also
Title property

ExceptionClass typed constant System

Declaration

const ExceptionClass: TClass = nil;

ExceptionClass is a class reference variable that determines what exception classes will be
reported by the debugger. ExceptionClass is set to Exception by default, so only objects
descended from Exception and raised in the Raise statement will be reported by the
debugger during a debug session.

ExceptProc typed constant System

Declaration

const ExceptProc: Pointer = nil;

ExceptProc is a pointer that points to the lowest-level RTL exception handler. Unhandled
exceptions are handled by ExceptProc. You can hook into ExceptProc to change how
unhandled exceptions are reported, much like hooking into ExitProc.

Exit procedure System

Declaration

procedure Exit;

The Exit procedure immediately passes control away from the current block.

If the current block is the main program, Exit causes the program to terminate.

If the current block is nested, Exit causes the next outer block to continue with the
statement immediately after the statement that passed control to the nested block.

270 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E x i t C o d e v a r i a b l e

If the current block is a procedure or function, Exit causes the calling block to continue
with the statement after the point which the block was called.

Example

uses WinCrt;

procedure TForm1.Button1Click(Sender: TObject);
begin
 repeat
 if Keypressed then Exit;
 Write('Xx');
 until False;
end;

See also
Halt procedure

ExitCode variable System

Declaration

var ExitCode: Integer;

The ExitCode variable contains the application's exit code.

An exit procedure can learn the cause of termination by examining ExitCode.

If the program terminates normally, ExitCode is zero.

If the program terminates due to a call to Halt, ExitCode contains the value passed to
Halt.

If the program terminates due to a run-time error, ExitCode contains the error code.

See also
ErrorAddr variable, ExitProc variable

ExitProc variable System

Declaration

var ExitProc: Pointer;

The ExitProc pointer variable enables you to install an exit procedure. The exit
procedure always gets called as part of a program's termination.

An exit procedure takes no parameters and must be compiled with a far procedure
directive to force it to use the far call model.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 271

E x p f u n c t i o n+
+
+
+
E

When implemented properly, an exit procedure actually becomes part of a chain of exit
procedures. The procedures on the exit chain get executed in reverse order of
installation.

To keep the exit chain intact, you need to save the current contents of ExitProc before
changing it to the address of your own exit procedure.

The first statement in your exit procedure must reinstall the saved value of ExitProc.

See also
ErrorAddr variable, ExitCode variable

Exp function System

Declaration

function Exp(X: Real): Real;

Return Value

The Exp function returns the exponential of X.

The return value is e raised to the power of X, where e is the base of the natural
logarithms.

Example

 var
 S: string;
begin
 S := ‘e = ‘ + IntToStr(Exp(1.0));
 TextOut(10, 10, S);
end;

See also
Ln function

Expand method

Applies to
TList, TOutlineNode objects

For lists

Declaration

function Expand: TList;

272 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E x p a n d e d p r o p e r t y

The Expand method increases the maximum size of the list maintained by a list object,
creating more space to add new list items and incrementing the value of the Capacity
property. If the value of the Capacity property is greater than 8, the Expand method
increases the capacity of the list by 16. If the value of Capacity is greater than 4, but less
than 9, then the capacity of the list increases by 8. Finally if the value of Capacity is less
than 4, then the capacity of the list grows by 4.

The returned value is the expanded list.

Example
The following code expands List1.

List1.Expand;

See also
Capacity property

For outline nodes

Declaration

procedure Expand;

The Expand method expands an outline item by assigning True to its Expanded property.
When an outline item is expanded, its sub-items are displayed and the minus picture or
open picture might be displayed, depending on the outline style specified in the
OutlineStyle property of the TOutline component.

Example
The following code expands the first child of the first outline item, if it has children.

with Outline1.Items[1] do
if HasItems then

Outline1.Items[GetFirstChild].Expand;

See also
Collapse method, FullCollapse method, FullExpand method, PictureMinus property,
PictureOpen property

Expanded property

Applies to
TOutlineNode object

Declaration

property Expanded: Boolean;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 273

E x p a n d F i l e N a m e f u n c t i o n+
+
+
+
E

Run-time only. The Expanded property specifies whether the outline item is expanded or
not. When an outline item is expanded, its subitems are displayed and the minus picture
or open picture might be displayed, depending on the outline style specified in the
OutlineStyle property of the TOutline component.

Expanded is True if the item is expanded, False if it isn’t expanded.

Example
The following code toggles the state of the selected outline item.

with Outline1 do
Items[SelectedItem].Expanded := not Items[SelectedItem].Expanded;

See also
Collapse method, Expand method, FullCollapse method, FullExpand method, PictureMinus
property, PictureOpen property

ExpandFileName function SysUtils

Declaration

function ExpandFileName(const FileName: string): string;

The ExpandFileName function returns a string containing a fully qualified path name for
the file passed in the FileName. A fully qualified path name includes the drive letter and
any directory and subdirectories in addition to the file name and extension.

Example
The following code converts a file name into a fully-expanded file name:

MyFileName := ExpandFileName(MyFileName);

See also
ExtractFileName function

Expression property

Applies to
TIndexDef object

Declaration

property Expression: string;

Run-time and read only. Read expressions in dBASE indexes.

274 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E x t e n d e d S e l e c t p r o p e r t y

ExtendedSelect property

Applies to
TListBox component

Declaration

property ExtendedSelect: Boolean;

The ExtendedSelect property determines if the user can select an range of items in the list
box. ExtendedSelect works in conjunction with the MultiSelect property. If MultiSelect is
False, the setting of ExtendedSelect has no effect as the user will not be able to select more
than one item at a time in the list box.

If MultiSelect is True and ExtendedSelect is True, the user can select an item then hold
down the Shift key and select another and all the items in between the two selected items
also become selected. If the user doesn’t hold down the Shift or Ctrl key while selecting a
second item, the first selected item becomes unselected—in other words, the user must
use the Ctrl key to select multiple noncontiguous items, or the Shift key to select a range of
items. If ExtendedSelect is False, the user can select multiple items without using the Shift
or Ctrl key, but they can’t select a range of items in one operation.

See also
MultiSelect property

ExtractFileExt function SysUtils

Declaration

function ExtractFileExt(const FileName string): string;

The ExtractFileExt function takes a fully qualified FileName and returns a string
containing the three-character extension.

Example
The following code returns the extension from a file name:

MyFilesExtension := ExtractFileExt(MyFileName);

See also
ExtractFileName function

ExtractFileName function SysUtils

Declaration

function ExtractFileName(const FileName: string): string;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 275

E x t r a c t F i l e P a t h f u n c t i o n+
+
+
+
E

The ExtractFileName function takes a fully or partially qualified path name in FileName
and returns a string containing only the file name part, including the name and
extension.

Example
The following code changes the caption of Form1 to read "Editing <FileName>".

Form1.Caption := 'Editing '+ ExtractFileName(FileName);

See also
ExpandFileName function, ExtractFilePath function

ExtractFilePath function SysUtils

Declaration

function ExtractFilePath(const FileName: string): string;

The ExtractFilePath function takes a fully or partially qualified path name in FileName
and returns a string containing only the path part (drive letter and directories).

Example
The following code changes the current directory to the location of FileName.

ChDir(ExtractFilePath(FileName));

See also
ExtractFileName function

ExceptObject function SysUtils

Declaration

function ExceptObject: TObject;

The ExceptObject function returns a reference to the current exception object — that is,
the object associated with the currently raised exception. If there is no current exception,
ExceptObject returns nil. In most cases, you do not need to call ExceptObject explicitly;
instead, you can use the language construct

on E: ExceptionType do

This constructs maps the identifier E onto the object instance of the current exception
statement that follows if the current exception is of ExceptionType. However, if you
create a default exception handler by using an else in your exception block, the only
way to access the current exception object is by calling ExceptObject.

276 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

E x c e p t A d d r f u n c t i o n

ExceptAddr function SysUtils

Declaration

function ExceptAddr: Pointer;

The ExceptAddr function returns the address at which the current exception was raised.
If there is no current exception, ExceptAddr returns nil.

EZeroDivide object SysUtils

Declaration

EZeroDivide = class(EMathError);

Description
The EZeroDivide exception is a floating-point math exception. It occurs when your
application attempts to divide a floating-point value by zero. For example, this code
raises a EZeroDivide exception:

var
 X, Y: Double;
begin
 X := 0.0;
 Y := 10.11111;
 Y := Y / X;
end;

Fail procedure System

Declaration

procedure Fail;

The Fail procedure called from within a constructor causes the constructor to deallocate
a dynamic object it has just allocated.

Fail should be called only if one of the constructor operations fails. However, a better
way to handle a failed constructor operation is to use exception handling; see the Help
system for more information.

See also
New procedure

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 277

F i e l d p r o p e r t y+
+
+
+
+
F

Field property

Applies to
TDBCheckBox, TDBComboBox, TDBEdit, TDBImage, TDBListBox, TDBMemo,
TDBRadioGroup, TDBText components

Declaration

property Field: TField;

Read and run-time only. The Field property returns the TField object the data-aware
control is linked to. Use the Field object when you want to change the value of the data in
the field programmatically.

FieldByName method

Applies to
TTable, TQuery, TStoredProc components

Declaration

function FieldByName(const FieldName: string): TField;

The FieldByName method returns the TField with the name passed as the argument in
FieldName. Using FieldByName protects your application from a change in the order of
the fields in the dataset. If the field can not be found, FieldByName raises an exception. If
you are not certain whether a field with the requested name exists, use the FindField
method.

Example

with Table1 do
begin
{ This is the safe way to change ‘CustNo’ field }

FieldByName(‘CustNo’).AsString := ‘1234’;
{ This is *not* the safe way to change ‘CustNo’ field }

Fields[0].AsString := ‘1234’;
end;

FieldClass property

Applies to
TFieldDef object

Declaration

property FieldClass: TFieldClass;

278 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i e l d C o u n t p r o p e r t y

Run-time and read only. Read FieldClass to determine the type of the TField component
that corresponds to this TFieldDef object.

FieldCount property

Applies to
TDBGrid, TDBLookupList, TQuery, TStoredProc, TTable components

Declaration

property FieldCount: Integer;

Run-time and read only. The FieldCount property specifies the number of fields
(columns) in a dataset. It may not be the same as the number of fields in the underlying
database table, since you can add calculated fields and remove fields with the Fields
Designer.

For the data grid and database lookup list box, the value of the FieldCount property is the
number of fields in the dataset displayed in the control.

Example

The following code displays the number of fields in DBGrid1 in a label.

Label1.Caption := IntToStr(DBGrid1.FieldCount);

See also
Fields property, SelectedField property

FieldDefs property

Applies to
TTable, TQuery, TStoredProc components

Declaration

property FieldDefs: TFieldDefs;

Run-time only. The FieldDefs property holds information about each TFieldDef in the
dataset. You can use this property to determine which fields are in the dataset, their
name, type, and size.

See also
Fields property, TField component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 279

F i e l d N a m e p r o p e r t y+
+
+
+
+
F

FieldName property

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

property FieldName: string;

FieldName is the name of the physical column in the underlying dataset to which a TField
component is bound. FieldName is used as a default column heading by the data grid
when the DisplayLabel property is null. For calculated fields, supply a FieldName when
you define the field. For non-calculated fields, an exception occurs if a FieldName is not a
column name in the physical table.

See also
DisplayName property

FieldNo property

Applies to
TFieldDef object; TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField,
TDateField, TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField,
TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

For TFieldDef objects

Declaration

property FieldNo: Integer;

Run-time and read only. FieldNo is the physical field number used by the Borland
Database Engine to reference the field.

Example
{ Display the field name and number }
with FieldDef1 do
MessageDlg(Name + ' is field ’ + IntToStr(FieldNo), mtInformation, [mbOK], 0);

See also
TField component

280 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i e l d s p r o p e r t y

For fields

Declaration

property FieldNo: Integer;

Run-time and read only. FieldNo is the ordinal of the TField component in its dataset.
This property is available for programs that make direct calls to the Borland Database
Engine.

Fields property

Applies to
TIndexDef object; TDBGrid, TDBLookupList, TQuery, TStoredProc, TTable components

For grids, lookup lists, queries, stored procedures, and tables

Declaration

property Fields[Index: Integer]: TField;

Run-time and read only. The Fields property returns a specific field in the dataset.
Specify the field using the Index parameter, with the first field in the dataset having an
Index value of 0.

Example
The following code left justifies the first field in DBGrid1.

DBGrid1.Fields[0].Alignment := taLeftJustify;

See also
FieldCount property, FieldDefs property, SelectedField property, SelectedIndex property

For index definitions

Declaration

property Fields: string;

Run-time and read only. Fields is a string consisting of the names or numbers of the
fields comprising the index, separated by semicolons (“;”). When numbers are used,
they are the physical field numbers in the table; for example, 1..N.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 281

F i l e m o d e c o n s t a n t s+
+
+
+
+
F

File mode constants SysUtils

Declaration

fmClosed = $D7B0;
fmInput = $D7B1;
fmOutput = $D7B2;
fmInOut = $D7B3;

Use the file mode constants when opening and closing disk files. The Mode field of
TFileRec and TTextRec will contain one of these values.

File open mode constants SysUtils

Declaration

fmOpenRead = $0000;
fmOpenWrite = $0001;
fmOpenReadWrite = $0002;
fmShareCompat = $0000;
fmShareExclusive = $0010;
fmShareDenyWrite = $0020;
fmShareDenyRead = $0030;
fmShareDenyNone = $0040;

The file open mode constants are used to control the shareability of a file or stream when
you open it.

TFileStream.Create has a Mode parameter that you can set to one of these constants:

FileAge function SysUtils

Declaration

function FileAge(const FileName: string): Longint;

The FileAge function returns the age of the file named by FileName as a Longint.

Constant Definition

fmOpenRead Open for read access only.
fmOpenWrite Open for write access only.
fmOpenReadWrite Open for read and write access.
fmShareCompat Compatible with the way FCBs are opened.
fmShareExclusive Read and write access is denied.
fmShareDenyWrite Write access is denied.
fmShareDenyRead Read access is denied.
fmShareDenyNone Allows full access for others.

282 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i l e C l o s e p r o c e d u r e

FileClose procedure SysUtils

Declaration

procedure FileClose(Handle: Integer);

The FileClose procedure closes the specified file.

The FileClose routine exists to prevent a name conflict between the standard Close
procedure and the Close method of an object.

Example
The following code closes a file opened with FileOpen:

FileClose(MyFileHandle);

See also
FileCreate function, FileOpen procedure

FileCreate function SysUtils

Declaration

function FileCreate(const FileName: string): Integer;

FileCreate creates a new file by the specified name. If the return value is positive, the
function was successful, and the value is the file handle of the new file. If the return
value is negative, an error occurred, and the value is a negative DOS error code.

Example
The following example creates a new file and assigns it to the identifier MyFileHandle.

MyFileHandle := FileCreate('NEWFILE.TXT');

See also
FileClose procedure, FileOpen procedure

FileEdit property

Applies to
TFileListBox component

Declaration

property FileEdit: TEdit;

The FileEdit property provides a simple way to display a file selected in a file list box as
the text of an edit box, as is commonly done in Open and Save dialog boxes. If no file is

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 283

F i l e E d i t S t y l e p r o p e r t y+
+
+
+
+
F

selected in the file list box, the text of the edit box is the current value of the file list box’s
Mask property.

Specify the edit box you want the mask or selected file to appear in as the value of the
FileEdit property.

Example
This example uses a button, an edit box, a label, a drive combo box, a directory list box, a
file list box, and a filter combo box on a form. When the user clicks the button, the rest of
the controls of the form begin working together like the controls in an Open or Save
dialog box.

procedure TForm1.Button1Click(Sender: TObject);
begin
 DriveComboBox1.DirList := DirectoryListBox1;
 DirectoryListBox1.FileList := FileListBox1;
 DirectoryListBox1.DirLabel := Label1;
 FileListBox1.FileEdit := Edit1;
 FilterComboBox1.FileList := FileListBox1;
end;

See also
DirLabel property, DirList property, FileList property, Mask property, Text property

FileEditStyle property

Applies to
TOpenDialog, TSaveDialog components

Declaration

property FileEditStyle: TFileEditStyle;

The FileEditStyle property determines if the Open or Save dialog box contains an edit
box or combo box control for the user to enter a file name. These are the possible values:

The default value is fsEdit.

If the FileEditStyle is fsComboBox, you can specify which files names appear in the combo
box. Use the List property to enter a list of file names, either during design time with the
Object Inspector, or at run time.

Your application can also keep a history list for the combo box, a list of previous file
names the user has entered. To implement a history list, follow these suggested steps:

Value Meaning

fsEdit Edit box to enter a file name.
fsComboBox Drop-down combo box to enter a file name. The combo box can be used to display a

list of file names.

284 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i l e E x i s t s f u n c t i o n

1 Add a TStringList object to your application to keep the list of file names the user
enters.

2 Before your application calls the Execute method to display the Open or Save dialog
box, assign the TStringList object to the HistoryList property. For example,

var
MyHistoryList: TStringList;

begin
OpenDialog1.HistoryList := MyHistoryList;
if OpenDialog1.Execute then
...

3 Use the returned FileName property value to update your history list. For example:

MyHistoryList.Insert(0, OpenDialog1.FileName);

Example
This examples uses a Save dialog box, an edit box, and a button on a form. When the
user clicks the button, the Save dialog box appears with a combo box control to allow
the user to type a file name, select a file name from the list box, or drop down a list to
choose a file name from a history list. For this example, no history list exists. Once the
user selects a file name, the selected name appears in the edit box on the form.

procedure TForm1.Button1Click(Sender: TObject);
begin
 SaveDialog1.FileEditStyle := fsComboBox;
 SaveDialog1.Filter := 'Text Files(*.TXT) | *.TXT';
 if SaveDialog1.Execute then
 Edit1.Text := SaveDialog1.FileName;
end;

See also
HistoryList property, TFilterComboBox component

FileExists function SysUtils

Declaration

function FileExists(const FileName: string): Boolean;

The FileExists function returns True if the file specified by FileName exists. If the file does
not exist, FileExists returns False.

Example
The following code prompts you for confirmation before deleting a file:

if FileExists(FileName) then
MsgBox('Do you really want to delete ' + ExtractFileName(FileName)
+ '?'), []) = IDYes then FileDelete(FileName);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 285

F i l e D a t e T o D a t e T i m e f u n c t i o n+
+
+
+
+
F

See also
FileSearch function

FileDateToDateTime function SysUtils

Declaration

function FileDateToDateTime(FileDate: Longint): TDateTime;

FileDateToDateTime converts a DOS date-and-time value to a TDateTime value. The
FileAge, FileGetDate, and FileSetDate routines operate on DOS date-and-time values, and
the Time field of a TSearchRec used by the FindFirst and FindNext functions contains a
DOS date-and-time value.

See also
DateTimeToFileDate function

FileGetAttr function SysUtils

Declaration

function FileGetAttr(const FileName: string): Integer;

FileGetAttr returns the file attributes of the file given by FileName. The attributes can be
examined by AND-ing with the faXXXX constants. If the return value is negative, an
error occurred and the value is a negative DOS error code.

See also
FileSetAttr function

FileGetDate function SysUtils

Declaration

function FileGetDate(Handle: Integer): Longint;

The FileGetDate function returns the date when a file was created or last modified in
DOS internal format.

See also
FileSetDate procedure

286 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i l e L i s t p r o p e r t y

FileList property

Applies to
TDirectoryListBox, TFilterComboBox components

Declaration

property FileList: TFileListBox;

The FileList property is used for two different purposes, depending on the type of
control it is a property of.

For directory list boxes, FileList provides a simple way to connect a directory list box
with a file list box. Once the two controls are connected and new directory is selected as
the current directory using a directory list box, the file list box displays the files in the
current directory. Specify the file list box in which you want to display the files in the
directory selected in the directory list box as the value of the FileList property.

For filter combo boxes, FileList provides a simple way to connect a filter combo box with
a file list box. Once the two controls are connected and a new filter is selected using a
filter combo box, the file list box displays the files that match the selected filter. Specify
the file list box you want to display the files matching the selected filter as the value of
the FileList property.

Example
This example uses a button, an edit box, a label, a drive combo box, a directory list box, a
file list box, and a filter combo box on a form. When the user clicks the button, the rest of
the controls on the form begin working together like the controls in an open or save
dialog box.

procedure TForm1.Button1Click(Sender: TObject);
begin
 DriveComboBox1.DirList := DirectoryListBox1;
 DirectoryListBox1.FileList := FileListBox1;
 DirectoryListBox1.DirLabel := Label1;
 FileListBox1.FileEdit := Edit1;
 FilterComboBox1.FileList := FileListBox1;
end;

See also
DirLabel property, Directory property, DirList property, FileEdit property, FileList
property, Filter property, Mask property

FileMode variable System

Declaration

var FileMode: Byte;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 287

F i l e N a m e p r o p e r t y+
+
+
+
+
F

The FileMode variable determines the access code to pass to DOS when typed and
untyped files (not text files) are opened using the Reset procedure.

The default FileMode is 2. Assigning another value to FileMode causes all subsequent
Resets to use that mode.

The range of valid FileMode values depends on the version of DOS in use. For all
versions, these modes are defined:

DOS version 3.x and later defines additional modes, which are primarily concerned
with file sharing on networks.

See also
Rewrite procedure

FileName property

Applies to
TFileListBox, TMediaPlayer, TOpenDialog, TSaveDialog components; TIniFile object

For Open and Save dialog boxes

Declaration

property FileName: TFileName;

The FileName property specifies the file name that appears in the File Name edit box
when the dialog box opens. The user can then select that file name or specify any other.
Once the user specifies a file name and chooses OK, the value of the FileName property
becomes the name of the file the user selected.

The path name can include a path. For example, to open the file README.TXT in the
directory C:\TEMP, set FileName to C:\TEMP\README.TXT.

The FileName property can be set to the name of a file that doesn’t exist in the current
directory. In an Open dialog box, you can use this capability to let the user open a new
file, and in a Save dialog box, the user can save a file that hasn’t been saved before.

Example
This example displays an Open dialog box and suggests the file name LIST.PAS to the
user. Once the user selects a file name, the code displays that name in a label on the
form:

procedure TForm1.Button1Click(Sender: TObject);
begin

0 Read only
1 Write only
2 Read/Write

288 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i l e N a m e p r o p e r t y

 OpenDialog1.FileName := ’LIST.PAS’;
 if OpenDialog1.Execute then
 Label1.Caption := OpenDialog1.FileName;
end;

See also
Files property

For media player components

Declaration

property FileName: string;

The FileName property specifies the media file to be opened by the Open method, or the
file to save by the Save method. At design time, you can use a file open dialog box to
specify the FileName property by clicking the ellipses button (...) in the Object Inspector.

Example
The following code determines what type of media device to open from the results of an
Open dialog box, then opens the file.

if OpenDialog1.Execute then
begin
MediaPlayer1.DeviceType := dtAutoSelect;
MediaPlayer1.FileName := OpenDialog1.FileName;
MediaPlayer1.Open;

end;

For the file list boxes

Declaration

property FileName: string;

Run-time only. The FileName property contains the name of the selected file in the list
box, including the path name.

Example
This example uses a file list box and a label on a form. When the user selects a file in the
file list box, the name of the file appears as the caption of the label.

procedure TForm1.FileListBox1Click(Sender: TObject);
begin
 Label1.Caption := FileListBox1.FileName;
end;

See also
FileList property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 289

F i l e P o s f u n c t i o n+
+
+
+
+
F

For TIniFile objects

Declaration

property FileName: string;

Run-time and read only. The FileName property contains the name of the .INI file the
TIniFile object encapsulates.

FilePos function System

Declaration

function FilePos(var F): Longint;

The FilePos function returns the current file position within a file.

To use FilePos the file must be open and it can’t be used on a text file.

F is a file variable.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

Example

var
 f: file of Byte;
 size : Longint;
 S: string;
 y: integer;
 begin
 if OpenDialog1.Execute then begin
 AssignFile(f, OpenDialog1.FileName);
 Reset(f);
 size := FileSize(f);
 S := 'File size in bytes: ' + IntToStr(size);
 y := 10;
 Canvas.TextOut(5, y, S);
 y := y + Canvas.TextHeight(S) + 5;
 S := 'Seeking halfway into file...';
 Canvas.TextOut(5, y, S);
 y := y + Canvas.TextHeight(S) + 5;

Position Result

Beginning of file FilePos(F) = 0
Middle of file FilePos(F) = current file position
End of file Eof(F) = True

290 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i l e R e a d f u n c t i o n

 Seek(f,size div 2);
 S := 'Position is now ' + IntToStr(FilePos(f));
 Canvas.TextOut(5, y, S);
 CloseFile(f);
 end;
 end;

See also
FileSize function, Seek procedure

FileRead function SysUtils

Declaration

function FileRead(Handle: Integer; var Buffer; Count: Longint): Longint;

The FileRead function reads Count bytes from the Handle into the buffer. The function
result is the actual number of bytes read, which may be less than Count.

Example
The following code fills a buffer from a file.

ActualRead := FileRead(MyFileHandle, Buffer, SizeOf(Buffer));

See also
FileSeek function, FileWrite function

Files property

Applies to
TOpenDialog, TSaveDialog components

Declaration

property Files: TStrings;

Run-time and read only. The Files property value contains a list of all the file names
selected in the Open or Save dialog box including the path names.

To let users select multiple file names in the dialog box, include ofAllowMultiSelect in the
Options property set (set ofAllowMultiSelect to True).

The entire list of names is returned as the value of the FileName property. If the list of
names is long, FileName contains only the first 127 characters.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 291

F i l e S e a r c h f u n c t i o n+
+
+
+
+
F

Example
This example uses an Open dialog box, a list box, and a button on a form. When the user
clicks the button, the Open dialog box appears. When the user selects files in the dialog
box and chooses the OK button, the list of selected files appears in the list box.

procedure TForm1.Button1Click(Sender: TObject);
begin
OpenDialog1.Options := [ofAllowMultiSelect];
OpenDialog1.Filter := 'All files (*.*)|*.*';

 if OpenDialog1.Execute then
 ListBox1.Items := OpenDialog1.Files;
end;

See also
Filter property, Options property

FileSearch function SysUtils

Declaration

function FileSearch(const Name, DirList: string): string;

The FileSearch function searches through the directories passed in DirList for a file
named Name. DirList should be in the same format as a DOS path: directory names
separated by semicolons. If FileSearch locates a file matching Name, it returns a string
containing a fully-qualified path name for that file. If no matching file exists, FileSearch
returns an empty string.

Example
The following code searches for FINDME.DLL in a series of directories:

FoundIt := FileSearch('FINDME.DLL', MyAppDir+’\';'+WinDir+';'+WinDir+'\SYSTEM');

See also
FileExists function

FileSeek function SysUtils

Declaration

function FileSeek(Handle: Integer; Offset: Longint; Origin: Integer): Longint;

The FileSeek function positions the current file pointer within a previously opened file.
Handle contains the file handle. Offset specifies the number of bytes from Origin where
the file pointer should be positioned. Origin is a code with three possible values,

292 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i l e S e t A t t r f u n c t i o n

denoting the beginning of the file, the end of the file, and the current position of the file
pointer.

If FileSeek is successful, it returns the new position of the file pointer; otherwise, it
returns the Windows constant HFILE_ERROR.

Example
The following code positions the file pointer at the end of a file:

if FileSeek(MyFileHandle,0,2) = HFILE_ERROR then
 HandleFileError
else
 AppendStuff;

See also
FileRead function, FileWrite function

FileSetAttr function SysUtils

Declaration

function FileSetAttr(const FileName: string; Attr: Integer): Integer;

FileSetAttr sets the file attributes of the file given by FileName to the value given by Attr.
The attribute value is formed by OR-ing the appropriate faXXXX constants. The return
value is zero if the function was successful. Otherwise the return value is a negative
DOS error code.

See also
FileGetAttr function

FileSetDate procedure SysUtils

Declaration

procedure FileSetDate(Handle: Integer; Age: Longint);

FileSetDate sets the DOS date-and-time stamp of the file given by Handle to the value
given by Age. The DateTimeToFileDate function can be used to convert a TDateTime value
to a DOS date-and-time stamp.

Origin Action

 0 The file pointer is positioned Offset bytes from the beginning of the file.
 1 The file pointer is positioned Offset bytes from its current position.
 2 The file pointer is positioned Offset bytes from the end of the file.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 293

F i l e S i z e f u n c t i o n+
+
+
+
+
F

See also
FileGetDate function

FileSize function System

Declaration

function FileSize(var F): Longint;

The FileSize function returns the size in bytes of file F. However, if F is a record file
FileSize will return the number of records in the file.

To use FileSize the file must be open and it can’t be used on a text file.

F is a file variable.

If the file is empty, FileSize(F) returns 0.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

Example

var
 f: file of Byte;
 size : Longint;
 S: string;
 y: integer;
 begin
 if OpenDialog1.Execute then begin
 AssignFile(f, OpenDialog1.FileName);
 Reset(f);
 size := FileSize(f);
 S := 'File size in bytes: ' + IntToStr(size);
 y := 10;
 Canvas.TextOut(5, y, S);
 y := y + Canvas.TextHeight(S) + 5;
 S := 'Seeking halfway into file...';
 Canvas.TextOut(5, y, S);
 y := y + Canvas.TextHeight(S) + 5;
 Seek(f,size div 2);
 S := 'Position is now ' + IntToStr(FilePos(f));
 Canvas.TextOut(5, y, S);
 CloseFile(f);
 end;
 end;

See also
FilePos function

294 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i l e T y p e p r o p e r t y

FileType property

Applies to
TFileListBox component

Declaration

property FileType: TFileType;

The FileType property determines which files are displayed in the file list box based on
the attributes of the files. Because FileType is of type TFileType, which is a set of file
attributes, FileType can contain multiple values. For example, if the value of FileType is a
set containing the values ftReadOnly and ftHidden, only files that have the read-only and
hidden attributes are displayed in the list box. These are the values that can occur in the
FileType property:

If you use the Object Inspector to change the value of FileType, click the FileType
property to see the attribute values. Then you can set each value to True or False, which
builds the FileType set.

Example
This example uses a file list box on a form. When the application runs, only read-only
files, directories, volume IDs, and files with no attributes appear in the list box.

procedure TForm1.FormCreate(Sender: TObject);
begin
 FileListBox1.FileType := [ftReadOnly, ftDirectory, ftVolumeID, ftNormal];
end;

See also
Mask property, TFileType type

FileWrite function SysUtils

Declaration

function FileWrite(Handle: Integer; const Buffer; Count: Longint): Longint;

Value Meaning

ftReadOnly When ftReadOnly is True, the list box can display files with the read-only attribute.
ftHidden When ftHidden is True, the list box can display files with the hidden attribute.
ftSystem When ftSystem is True, the list box can display files with the system attribute.
ftVolumeID When ftVolumeID is True, the list box can display the volume name.
ftDirectory When ftDirectory is True, the list box can display directories.
ftArchive When ftArchive is True, the list box can display files with archive attribute.
ftNormal When ftNormal is True, the list box can display files with no attributes.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 295

F i l l C h a r p r o c e d u r e+
+
+
+
+
F

This is an internal routine, and you will not need to use it.

The FileWrite function writes Count bytes from Buffer to the file indicated by Handle. The
actual number of bytes written is returned. If the return value is not equal to Count, it is
usually because the disk is full.

Example

if FileWrite(MyFileHandle, Buffer, SizeOf(Buffer)) <> SizeOf(Buffer) then
ErrorMsg('Disk full while writing to file!');

See also
FileRead function, FileSeek function

FillChar procedure System

Declaration

procedure FillChar(var X; Count: Word; value);

The FillChar procedure fills Count number of contiguous bytes with a specified value
(can be type Byte or Char).

This function does not perform any range checking.

Example

 var
 S: string[80];
begin
 { Set a string to all spaces }
 FillChar(S, SizeOf(S), ' ');
 S[0] := #80; { Set length byte }
end;

See also
Move procedure

FillRect method

Applies to
TCanvas object

Declaration

procedure FillRect(const Rect: TRect);

The FillRect method fills the specified rectangle on the canvas using the current brush.

296 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i l t e r p r o p e r t y

Example
This code creates a rectangle on the form’s canvas and colors it red by changing the
canvas Brush property to clRed.

procedure TForm1.ColorRectangleClick(Sender: TObject);
var
 NewRect: TRect;
begin
 NewRect := Rect(20, 30, 50, 90);
 Form1.Canvas.Brush.Color := clRed;
 Form1.Canvas.FillRect(NewRect);
end;

See also
Brush property, Rect function

Filter property

Applies to
TFilterComboBox, TOpenDialog, TSaveDialog components

For Open and Save dialog boxes

Declaration

property Filter: string;

The Filter property determines the file masks available to the user for use in determining
which files display in the dialog box’s list box.

A file mask or file filter is a file name that usually includes wildcard characters (*.PAS,
for example). Only files that match the selected file filter are displayed in the dialog
box’s list box, and the selected file filter appears in the File Name edit box. To specify a
file filter, assign a filter string as the value of Filter. To create the string, follow these
steps:

1 Type some meaningful text that indicates the type of file.
2 Type a | character (this is the “pipe” or “or” character).
3 Type the file filter.

Don’t put in any spaces around the | character in the string.

Here’s an example:

OpenDialog1.Filter := ’Text files|*.TXT’

If you entered the preceding example as the Filter of an Open or Save dialog box, the
string “Text files” appears in the List Files of Type drop-down list box when the dialog
box appears in your application, the file filter appears in the File Name edit box, and
only .TXT files appear in the list box. You can specify multiple file filters so that a list of
filters appears in the List Files of Type drop-down list box or in the filter combo box.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 297

F i l t e r p r o p e r t y+
+
+
+
+
F

This allows the user to select from a number of file filters and determine which files are
displayed in the list box.

To specify multiple file filters,

1 Create a file filter string as previously shown.

2 Type another file filter in the same way, but separate the second file filter from the
first with the | character.

3 Continue adding as many file filters as you like, separating them with the | character.
The string can be up to 255 characters.

Here’s an example of three file filters specified as the value of the Filter property:

’Text files (*.TXT)|*.TXT|Pascal files (*.PAS)|*.PAS|Quattro Pro files (*.WB1)|*.WB1’

Now when the dialog box appears, the user can choose from three file filters that appear
in the List Files of Type drop-down list box.

Note that the previous example includes the file filters in parentheses in the text parts.
This isn’t required, but it’s a common convention that helps users understand what to
expect when they select a file filter.

You can string multiple wildcard file filters together if you separate them with
semicolons:

OpenDialog1.Filter := ’All files|*.TXT;*.PAS;*.WB1’;

Example
This code sets the value of the Filter property, displays the dialog box, and assigns the
file name the user selects to a variable:

procedure TForm1.Button1Click(Sender: TObject);
var
 NameOfFile : TFileName;
begin
 OpenDialog1.Filter := 'Text files (*.TXT)|*.TXT|Pascal files (*.PAS)' +

‘|*.PAS|Quattro Pro files (*.WB1)|*.WB1';
if OpenDialog1.Execute then

 NameOfFile := OpenDialog1.FileName;
...

end;

See also
FileName property, FilterIndex property

For filter combo boxes

Declaration

property Filter: string;

The Filter property determines the file masks displayed in the filter combo box.

298 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i l t e r p r o p e r t y

A file mask or file filter is a file name that usually includes wildcard characters (*.PAS,
for example). When your application runs, the file filter the user selects in the filter
combo box becomes the value of the Mask property. To specify a file filter, assign a filter
string as the value of Filter. To create the string, follow these steps:

1 Type some meaningful text to indicate the type of file.
2 Type a | character (this is the “pipe” or “or” character).
3 Type the file filter.

Don’t put in any spaces around the | character in the string.

Here’s an example:

FilterComboBox1.Filter := ’Text files|*.TXT’;

If you entered this string, the string “Text files” appears in the filter combo box.

You can specify multiple file filters so that a list of filters appears in the filter combo box
from which the user can select. To specify multiple file filters,

1 Type a file filter as shown previously.

2 Type another file filter in the same way, but separate the second file filter from the
first with the | character.

3 Continue adding as many file filters as you like, separating them with the | character.
The string can be up to 255 characters.

Here’s an example of three file filters specified as the value of the Filter property:

’Text files (*.TXT)|*.TXT|Pascal files (*.PAS)|*.PAS|Quattro Pro files (*.WB1)|*.WB1’

Note that the previous example includes the file filters in parentheses in the text parts.
This isn’t required, but it’s a common convention that helps users understand what to
expect when they select a file filter.

You can string multiple wildcard file filters together if you separate them with
semicolons:

FilterComboBox1.Filter := ’All files|*.TXT;*.PAS;*.WB1’;

Examples
This example uses a filter combo box on a form. When the application runs, three filters
appear in the filter combo box:

procedure TForm1.FormCreate(Sender: TObject);
begin
 FilterComboBox1.Filter := 'Text files (*.TXT)|*.TXT|Pascal files (*.PAS)' +
 '|*.PAS|Quattro Pro files (*.WB1)|*.WB1';
end;

This example uses a filter combo box, a file list box, and an edit box on a form. The code
connects the three controls through the FileList and FileEdit properties. When the user
selects a filter in the filter combo box, the filter is applied to the files in the list box so the
list box displays only the files that match the filter. The filter in effect on the file list box
appears in the edit box. When the user selects a file in the file list box, the selected file
appears in the edit box.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 299

F i l t e r I n d e x p r o p e r t y+
+
+
+
+
F

procedure TForm1.FormCreate(Sender: TObject);
begin
 FilterComboBox1.Filter := 'All files (*.*)|*.*|Pascal files (*.pas)|' +
 '*.PAS|DLLs (*.dll)|*.DLL';
 FilterComboBox1.FileList := FileListBox1;
 FileListBox1.FileEdit := Edit1;
end;

See also
FileList property, FileName property, Mask property

FilterIndex property

Applies to
TOpenDialog, TSaveDialog components

Declaration

property FilterIndex: Integer;

The FilterIndex property determines which file filter specified in the Filter property
appears as the default file filter in the List Files of Type drop-down list box. For
example, if you set the FilterIndex value to 2, the second file filter listed in the Filter
property becomes the default filter when the dialog box appears. The default FilterIndex
value is 1. If you specify a value greater than the number of file filters in the Filter
property, the first filter is chosen.

The default value is 1.

Example
This code specifies three file filters as the value of the Filter property, sets the FilterIndex
to 2 so that the second file filter is the default file filter, and displays the Open dialog
box. Once the user selects a file with the dialog box and chooses OK, the file name the
user selected appears in a label on the form.

procedure TForm1.Button1Click(Sender: TObject);
begin
 OpenDialog1.Filter := 'Text files (*.TXT)|*.TXT|Pascal files (*.PAS)' +

‘|*.PAS|dBASE program files (*.PRG)|*.PRG';
 OpenDialog1.FilterIndex := 2;
 if OpenDialog1.Execute then
 Label1.Caption := OpenDialog1.FileName;
end;

See also
Filter property

300 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i n d m e t h o d

Find method

Applies to
TFieldDefs, TStringList objects

For string list objects

Declaration

function Find(const S: string; var Index: Integer): Boolean;

The Find method searches for a specified string in the list of strings kept in a string list
object. If the string specified as the value of the S parameter is found, Find returns True
and the position of the string in the string list is stored as the value of the Index
parameter. Because the index is zero-based, the first string in the string list has an index
value of 0, the second string has an index value of 1, and so on.

Find returns False if the specified string is not found.

Example
This example uses a list box and a label on a form. When the application runs, a string
list object is created and three strings are added to it. The Find method searches the
strings to look for a match with the string ’Flowers’. If the string is found, all the strings
in the string list are added to the list box, and the index value of the ’Flowers’ string
appears in the caption of the label control.

procedure TForm1.FormCreate(Sender: TObject);
var
 MyList: TStringList;
 Index: Integer;
begin
 MyList := TStringList.Create;
 MyList.Add('Animals');
 MyList.Add('Flowers');
 MyList.Add('Cars');
 if MyList.Find('Flowers', Index) then
 begin
 ListBox1.Items.AddStrings(MyList);
 Label1.Caption := 'Flowers has an index value of ' + IntToStr(Index);
 end;
 MyList.Free;
end;

See also
Add method, Clear method, IndexOf method, Strings property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 301

F i n d C l o s e p r o c e d u r e+
+
+
+
+
F

For TFieldDefs objects

Declaration

function Find(const Name: string): TFieldDef;

The Find method returns a pointer to an entry in the Items property whose Name
property matches the Name parameter. Use this method to obtain information about a
particular TFieldDef object.

Example

{ Display the field name and number }
MessageDlg('CustNo is field ' + IntToStr(FieldDefs.Find('CustNo').FieldNo),
mtInformation, [mbOK], 0);

See also
Name property

FindClose procedure SysUtils

Declaration

procedure FindClose(var SearchRec: TSearchRec);

FindClose terminates a FindFirst/FindNext sequence. FindClose does nothing in the 16-bit
version of Windows, but is required in the 32-bit version, so for maximum portability
every FindFirst/FindNext sequence should end with a call to FindClose.

See also
FindFirst function, FindNext function

FindComponent method

Applies to
All components

Declaration

function FindComponent(const AName: string): TComponent;

The FindComponent method returns the component in the Components array property
with the name that matches the string in the AName parameter. FindComponent is not
case sensitive.

302 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i n d D a t a b a s e m e t h o d

Example
To set up this example, place several components on a form, including an edit box and a
button. When the user clicks the button, the code displays the value of the
ComponentIndex of the edit box in the edit box.

procedure TForm1.Button1Click(Sender: TObject);
var
 TheComponent: TComponent;
begin
 TheComponent := FindComponent('Edit1');
 Edit1.Text := IntToStr(TheComponent.ComponentIndex);
end;

See also
ComponentCount property, ComponentIndex property, Components property

FindDatabase method

Applies to
TSession component

Declaration

function FindDatabase(const DatabaseName: string): TDatabase;

The FindDatabase method attempts to find a TDatabase component in the Databases
collection with a DatabaseName property which matches the DatabaseName parameter. If
there is no such database, FindDatabase returns nil.

Example

MyDatabase := Session.FindDatabase(‘MYDB’);

See also
Session variable

FindField method

Applies to
TTable, TQuery, TStoredProc components

Declaration

function FindField(const FieldName: string): TField;

The FindField method returns the field with the name passed in FieldName. While calling
FindField is slightly slower than a direct reference to the Fields property, using FindField

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 303

F i n d F i r s t f u n c t i o n+
+
+
+
+
F

protects your application from a change in the order of the fields in the component. If
the field can not be found, FindField returns nil.

Example

with Table1 do
begin

{ This is the safe way to change ‘CustNo’ field }
FindField(‘CustNo’).AsString := ‘1234’;

{ This is *not* the safe way to change ‘CustNo’ field }
Fields[0].AsString := ‘1234’;
end;

See also
FieldByName method

FindFirst function SysUtils

Declaration

function FindFirst(const Path: string; Attr: Word; var F: TSearchRec): Integer;

The FindFirst function searches the specified directory for the first entry matching the
specified file name and set of attributes.

The Path constant parameter is the directory and file name mask, including wildcard
characters. For example, 'c:\test*.*' specifies all files in the C:\TEST directory).

The Attr parameter specifies the special files to include in addition to all normal files.
Choose from these file attribute constants when specifying the Attr parameter:

You can combine attributes by adding their constants or values. For example, to search
for read-only and hidden files in addition to normal files, pass (faReadOnly + faHidden)
the Attr parameter.

FindFirst returns the results of the directory search in the search record you specify in
the F parameter. You can then use the fields of the search record to extract the
information you want.

Constant Value Description

faReadOnly $01 Read-only files
faHidden $02 Hidden files
faSysFile $04 System files
faVolumeID $08 Volume ID files
faDirectory $10 Directory files
faArchive $20 Archive files
faAnyFile $3F Any file

304 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i n d I n d e x F o r F i e l d s m e t h o d

The return value is zero if the function was successful. Otherwise the return value is a
negative DOS error code; a value of -18 indicates that there are no more files matching
the search criteria.

Example
This example uses a label and a button named Search on a form. When the user clicks
the button, the first file in the specified path is found and the name and number of bytes
in the file appear in the label's caption:

var
 SearchRec: TSearchRec;
procedure TForm1.SearchClick(Sender: TObject);
begin
 FindFirst('c:\delphi\bin*.*', faAnyFile, SearchRec);
 Label1.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) +
 ' bytes in size';
end;

See also
FindNext function

FindIndexForFields method

Applies to
TIndexDefs object

Declaration

function FindIndexForFields(const Fields: string): TIndexDef;

Run-time and read only. Returns the TIndexDef object that is present in Items
corresponding to a semicolon-separated list of fields.

FindItem method

Applies to
TMainMenu component

Declaration

function FindItem(Value: Word; Kind: TFindItemKind): TMenuItem;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 305

F i n d K e y m e t h o d+
+
+
+
+
F

The FindItem method returns the menu item owned by the menu that has either a menu
handle, menu command, or menu shortcut matching the value of the Value parameter.
The Kind parameter can be any of these values:

Example
This example uses a label, a button, and a main menu component. The menu is a File
menu that contains Open, Save, and Close commands. Delphi automatically names the
menu items that are the commands, Open1, Save1, and Close1. The Open1 menu item has
a ShortCut value of F3. The code locates the menu item that has the specified shortcut
and reports the name of the menu item in the caption of the label. Note that the shortcut
is specified as a virtual key code. You can find a list of virtual key codes in the Help
system. Search for the Virtual Key Codes topic.

procedure TForm1.Button1Click(Sender: TObject);
var
 ItemName: TMenuItem;
begin
 ItemName := MainMenu1.FindItem(VK_F3, fkShortCut);
 Label1.Caption := ItemName.Name;
end;

See also
Command property, ShortCut property, TMenuItem component

FindKey method

Applies to
TTable component

Declaration

function FindKey(const KeyValues: array of const): Boolean;

The FindKey method searches the database table to find a record whose index fields match
those passed in KeyValues. FindKey takes a comma-delimited array of values as its
argument, where each value corresponds to a index column in the underlying table. The
values can be literals, variables, null, or nil. If the number of values supplied is less than
the number of columns in the database table, then the remaining values are assumed to
be null. FindKey will search for values specified in the array in the current index.

FindKey does the following:

• Puts the TTable in SetKey state.

Value Meaning

fkCommand Menu command number used by Windows WM_COMMAND message
fkHandle Menu handle
fkShortCut Menu shortcut

306 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i n d N e a r e s t m e t h o d

• Finds the record in the table that matches the specified values. If a matching record is
found, it moves the cursor there, and returns True.

• If a matching record is not found, it does not move the cursor, and returns False.

Example

{ Search for CustNo = ‘1234’ }
if Table1.FindKey([‘1234’]) then

ShowMessage(‘Customer Found’);

See also
FindNearest method, GotoKey method

FindNearest method

Applies to
TTable component

Declaration

procedure FindNearest(const KeyValues: array of const);

The FindNearest method moves the cursor to the first record whose index fields’ values
are greater than or equal to those passed in KeyValues. The search begins at the first
record, not at the current cursor position. This method can be used to match columns of
string data type only. If you do not supply values for each field in the index key, any
unassigned fields will use a null value.

FindNearest works by default on the primary index column. To search the table for
values in other indexes, you must specify the field name in the table’s IndexFieldNames
property or the name of the index in the IndexName property.

The KeyExclusive property indicates whether a search will position the cursor on or after
the specified record being searched for.

Note With Paradox or dBASE tables, FindNearest works only with indexed fields. With SQL
databases, it can work with any columns specified in the IndexFieldNames property.

Example

{ Search for CustNo >= ‘1234’ }
Table1.FindNearest([‘1234’]);

See also
FindKey method, GotoKey method, GotoNearest method, TField component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 307

F i n d N e x t f u n c t i o n+
+
+
+
+
F

FindNext function SysUtils

Declaration

function FindNext(var F: TSearchRec): Integer;

The FindNext function returns the next entry that matches the name and attributes
specified in the previous call to the FindFirst function.

The search record must be the same one you passed to the FindFirst function.

The return value is zero if the function was successful. Otherwise the return value is a
negative DOS error code; a value of -18 indicates that there are no more files matching
the search criteria.

Example
This example uses a label, a button named Search, and a button named Again on a form.
When the user clicks the Search button, the first file in the specified path is found, and
the name and the number of bytes in the file appear in the label's caption. Each time the
user clicks the Again button, the next matching file name and size is displayed in the
label:

var
 SearchRec: TSearchRec;
procedure TForm1.SearchClick(Sender: TObject);
begin
 FindFirst('c:\delphi\bin*.*', faAnyFile, SearchRec);
 Label1.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) +
 ' bytes in size';
end;
procedure TForm1.AgainClick(Sender: TObject);
begin
 FindNext(SearchRec);
 Label1.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) +
 ' bytes in size';
end;

See also
FindFirst function

FindText property

Applies to
TFindDialog, TReplaceDialog components

Declaration

property FindText: string;

308 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i r s t m e t h o d

The FindText property contains the string your application can search for if it uses the
Find dialog box.

You can specify a FindText value before the user displays the Find dialog box so that
when it appears, the FindText value appears in the Find What edit box. The user can
then either accept or change the FindText value before choosing the Find Next button in
the dialog box.

Example
The following OnFind event handler searches a memo component for the text specified
in the FindText property of a find dialog component. If found, the first occurrence of the
text in Memo1 is selected. The code uses the Pos function to compare strings, and stores
the number of characters to skip when determining the selection position in the
SkipChars variable. Because there is no handling of case, whole word, or search direction
in this algorithm, it is assumed that the Options property of FindDialog1 was set to
[frHideMatchCase, frHideWholeWord, frHideUpDown].

procedure TForm1.FindDialog1Find(Sender: TObject);
var
 I, J, PosReturn, SkipChars: Integer;
begin
 For I := 0 to Memo1.Lines.Count do
 begin
 PosReturn := Pos(FindDialog1.FindText,Memo1.Lines[I]);
 if PosReturn <> 0 then {found!}
 begin

 Skipchars := 0;
 for J := 0 to I - 1 do

Skipchars := Skipchars + Length(Memo1.Lines[J]);
 SkipChars := SkipChars + (I*2);
 SkipChars := SkipChars + PosReturn - 1;
 Memo1.SetFocus;
 Memo1.SelStart := SkipChars;
 Memo1.SelLength := Length(FindDialog1.FindText);
 end;
 end;
end;

See also
ReplaceText property

First method

Applies to
TList object; TQuery, TStoredProc, TTable components

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 309

F i r s t I n d e x p r o p e r t y+
+
+
+
+
F

For list objects

Declaration

function First: Pointer;

The First method returns a pointer that points to the first item referenced in the List
property, which is indexed by Items[0].

Example
The following code assumes that the items in MyList are objects that have a text field
named Desc. If the Desc of the first item in the list is ’Blue’, the following code changes it
to ’Green’.

if MyList.First.Desc = ’Blue’ then MyList.First.Desc := ’Green’;

See also
IndexOf method, Last method

For tables, queries, and stored procedures

Declaration

procedure First;

The First method moves the cursor to the first record in the active range of records of the
dataset. The active range of records is affected by the filter established with ApplyRange.

If the dataset is in Edit or Insert state, First will perform an implicit Post of any pending
data.

See also
Last method, MoveBy method, Next method, Prior method, SetRange method,
SetRangeStart method

FirstIndex property

Applies to
TTabSet component

Declaration

property FirstIndex: Integer;

Run-time only. The value of the FirstIndex property is the tab that appears in the leftmost
visible position in the tab set control. Any tabs with a lower value in the FirstIndex
property scroll to the left in the tab set control and don’t appear until the user scrolls the
tabs.

310 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i x e d C o l o r p r o p e r t y

The default value of FirstIndex is 0 indicating that the tab with an index of 0 is in the
leftmost position. For example, if you have three tabs labeled First, Second, and Third
with TabIndex values of 0, 1, and 2, respectively, First appears first, by default, because it
has an index value of 0. If you want to shift the tabs so the Second or Third tab appears
leftmost in the tab set control, change the FirstIndex value to 1 or 2.

Example
This example uses a tab set control, a label, and a button on a form.

This code in an event handler creates 20 tabs labeled Tab 1 through Tab 20 when Form1
is created:

procedure TForm1.FormCreate(Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to 19 do
 TabSet11.Tabs.Add('Tab ' + IntToStr(I));
end;

Users can scroll through the tabs. When they click the button, the caption of the first tab
visible in the tab set control is displayed in the label control.

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 Label1.Caption := IntToStr(TabSet11.FirstIndex);
end;

See also
TabIndex property, Tabs property

FixedColor property

Applies to
TDBGrid, TDrawGrid, TStringGrid components

Declaration

property FixedColor: TColor;

The value of the FixedColor property determines the color of nonscrolling or fixed
columns and rows within the grid. Refer to the Color property for a list of the possible
values for FixedColor.

The default color is clBtnFace, the color of the face of a button.

Example
This example uses a draw grid and a button on a form. When the user clicks the button,
the color of the nonscrolling (fixed) rows and columns of the draw grid changes color.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 311

F i x e d C o l s p r o p e r t y+
+
+
+
+
F

procedure TForm1.Button1Click(Sender: TObject);
begin
 if DrawGrid1.FixedColor = clBlue then
 DrawGrid1.FixedColor := clLime
 else
 DrawGrid1.FixedColor := clMaroon;
end;

See also
Color property, FixedCols property, FixedRows property

FixedCols property

Applies to
TDrawGrid, TStringGrid components

Declaration

property FixedCols: Integer;

The FixedCols property determines the number of nonscrolling columns within a grid.
The default value is 1. Nonscrolling columns remain fixed at the far left of the grid, even
when the user scrolls the other columns. Nonscrolling columns are useful for displaying
row titles that need to remain visible in the grid at all times.

Each grid must have a least one column that isn’t fixed. In other words, the value of the
FixedCols property must always be at least one less than the value of the ColCount
property, which contains the number of columns in the grid.

Example
This example uses a string grid and a button. When the user clicks the button, a message
dialog box appears informing the user that a fixed column number of 2 is
recommended. The dialog box also offers the user an opportunity to accept the
recommended number if the number of fixed columns isn’t already 2. If the user
chooses Yes, the number of fixed columns changes to 2.

procedure TForm1.Button1Click(Sender: TObject);
var
 Check: Integer;
begin
 if StringGrid1.FixedCols <> 2 then
 begin
 Check := MessageDlg('2 fixed columns are recommended! Change?',
 mtWarning, mbYesNoCancel, 0);
 if Check = IdYes then
 StringGrid1.FixedCols := 2;
 end;
end;

312 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F i x e d R o w s p r o p e r t y

See also
FixedColor property, FixedRows property, LeftCol property

FixedRows property

Applies to
TDrawGrid, TStringGrid components

Declaration

property FixedRows: Integer;

The FixedRows property determines the number of nonscrolling rows within a grid. The
default value is 1. Nonscrolling rows remain fixed at top of the grid, even when the user
scrolls the other rows. Nonscrolling rows are useful for displaying column titles that
need to remain visible in the grid at all times.

Each grid must have a least one row that isn’t fixed. In other words, the value of the
FixedRows property must always be at least one less than the value of the RowCount
property, which contains the number of rows in the grid.

Example
This example uses a string grid and three radio buttons on a form. With the Object
Inspector, specify the following event handler for all OnClick events of the three radio
buttons. As the user selects different radio buttons, the number of fixed rows in the
string grid changes.

procedure TForm1.RadioButton1Click(Sender: TObject);
begin
 if RadioButton1.Checked then
 StringGrid1.FixedRows := 1
 else if RadioButton2.Checked then
 StringGrid1.FixedRows := 2
 else if RadioButton3.Checked then
 StringGrid1.FixedRows := 3;
end;

See also
FixedColor property, FixedCols property, TopRow property

FloatToDecimal procedure SysUtils

Declaration

procedure FloatToDecimal(var Result: TFloatRec; Value: Extended; Precision, Decimals:
Integer);

FloatToDecimal converts a floating-point value to a decimal representation that is suited
for further formatting.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 313

F l o a t T o S t r f u n c t i o n+
+
+
+
+
F

The Precision parameter specifies the requested number of significant digits in the
result—the allowed range is 1..18.

The Decimals parameter specifies the requested maximum number of digits to the left of
the decimal point in the result.

Precision and Decimals together control how the result is rounded. To produce a result
that always has a given number of significant digits regardless of the magnitude of the
number, specify 9999 for the Decimals parameter.

The result of the conversion is stored in the specified TFloatRec record as follows:

FloatToStr function SysUtils

Declaration

function FloatToStr(Value: Extended): string;

FloatToStr converts the floating-point value given by Value to its string representation.
The conversion uses general number format with 15 significant digits.

For further details, see the description of the FloatToStrF function.

FloatToStrF function SysUtils

Declaration

function FloatToStrF(Value: Extended; Format: TFloatFormat; Precision,
Digits: Integer): string;

FloatToStrF converts the floating-point value given by Value to its string representation.

The Format parameter controls the format of the resulting string.

The Precision parameter specifies the precision of the given value. It should be 7 or less
for values of type Single, 15 or less for values of type Double, and 18 or less for values of
type Extended.

The meaning of the Digits parameter depends on the particular format selected.

Field Value

Exponent Contains the magnitude of the number, i.e. the number of significant digits to the right of
the decimal point. The Exponent field is negative if the absolute value of the number is
less than one. If the number is a NAN (not-a-number), Exponent is set to -32768. If the
number is INF or -INF (positive or negative infinity), Exponent is set to 32767.

Negative True if the number is negative, False if the number is zero or positive.
Digits Contains up to 18 significant digits followed by a null terminator. The implied decimal

point (if any) is not stored in Digits. Trailing zeros are removed, and if the resulting
number is zero, NAN, or INF, Digits contains nothing but the null terminator.

314 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F l o a t T o T e x t f u n c t i o n

The possible values of the Format parameter, and the meaning of each, are described
below.

For all formats, the actual characters used as decimal and thousand separators are
obtained from the DecimalSeparator and ThousandSeparator global variables.

If the given value is a NAN (not-a-number), the resulting string is 'NAN'. If the given
value is positive infinity, the resulting string is 'INF'. If the given value is negative
infinity, the resulting string is '-INF'.

FloatToText function SysUtils

Declaration

function FloatToText(Buffer: PChar; Value: Extended; Format: TFloatFormat;
Precision, Digits: Integer): Integer;

FloatToText converts the given floating-point value to its decimal representation using
the specified format, precision, and digits. The resulting string of characters is stored in
the given buffer, and the returned value is the number of characters stored. The
resulting string is not null-terminated.

For further details, see the description of the FloatToStrF function.

Value Meaning

ffGeneral General number format. The value is converted to the shortest possible decimal string
using fixed or scientific format. Trailing zeros are removed from the resulting string, and a
decimal point appears only if necessary. The resulting string uses fixed point format if the
number of digits to the left of the decimal point in the value is less than or equal to the
specified precision, and if the value is greater than or equal to 0.00001. Otherwise the
resulting string uses scientific format, and the Digits parameter specifies the minimum
number of digits in the exponent (between 0 and 4).

ffExponent Scientific format. The value is converted to a string of the form "-d.ddd...E+dddd". The
resulting string starts with a minus sign if the number is negative, and one digit always
precedes the decimal point. The total number of digits in the resulting string (including
the one before the decimal point) is given by the Precision parameter. The "E" exponent
character in the resulting string is always followed by a plus or minus sign and up to four
digits. The Digits parameter specifies the minimum number of digits in the exponent
(between 0 and 4).

ffFixed Fixed point format. The value is converted to a string of the form "-ddd.ddd...". The
resulting string starts with a minus sign if the number is negative, and at least one digit
always precedes the decimal point. The number of digits after the decimal point is given
by the Digits parameter—it must be between 0 and 18. If the number of digits to the left of
the decimal point is greater than the specified precision, the resulting value will use
scientific format.

ffNumber Number format. The value is converted to a string of the form "-d,ddd,ddd.ddd...". The
ffNumber format corresponds to the ffFixed format, except that the resulting string contains
thousand separators taken from WIN.INI.

ffCurrency Currency format. The value is converted to a string that represents a currency amount.
The conversion is controlled by the CurrencyString, CurrencyFormat, NegCurrFormat,
ThousandSeparator, and DecimalSeparator global variables, all of which are initialized from
the Currency Format in the International section of the Windows Control Panel and
WIN.INI. The number of digits after the decimal point is given by the Digits parameter—it
must be between 0 and 18.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 315

F l o a t T o T e x t F m t f u n c t i o n+
+
+
+
+
F

FloatToTextFmt function SysUtils

Declaration

function FloatToTextFmt(Buffer: PChar; Value: Extended; Format: PChar): Integer;

FloatToTextFmt converts the given floating-point value to its decimal representation
using the specified format. The resulting string of characters is stored in the given
buffer, and the returned value is the number of characters stored. The resulting string is
not null-terminated.

For further details, see the description of the FormatFloat function.

FloodFill method

Applies to
TCanvas object

Declaration

procedure FloodFill(X, Y: Integer; Color: TColor; FillStyle: TFillStyle);

The FloodFill method fills an area of the screen surface using the current brush specified
by the Brush property. The FloodFill method begins at the point at coordinates (X, Y) and
continues in all directions to the color boundary.

The way in which the area is filled is determined by the FillStyle parameter. If FillStyle is
fsBorder, the area fills until a border of the color specified by the Color parameter is
encountered. If FillStyle is fsSurface, the area fills as long as the color specified by the
Color parameter is encountered. fsSurface fills are useful to fill an area with a
multicolored border.

Example
The following code floodfills from the center point of Form1’s client area until the color
black is encountered.

Form1.Canvas.FloodFill(ClientWidth/2, ClientHeight/2, clBlack, fsBorder);

See also
Ellipse method, FillRect method, Polygon method, Rectangle method

Flush procedure System

Declaration

procedure Flush(var F: Text);

The Flush procedure clears the buffer of a text file open for output.

316 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F m t L o a d S t r f u n c t i o n

F is a text file variable.

When a text file is opened for output using Rewrite or Append, Flush empties the file’s
buffer. This guarantees that all characters written to the file at that time have actually
been written to the external file. Flush has no effect on files opened for input.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

Example

var
 f: TextFile;
begin
 if OpenDialog1.Execute then
begin { open a text file }

 AssignFile(f, OpenDialog1.FileName);
 Append(f);
 Writeln(f, 'I am appending some stuff to the end of the file.');
 Flush(f); { ensures that the text was actually written to file }
 CloseFile(f);
 end;
end;

FmtLoadStr function SysUtils

Declaration

function FmtLoadStr(Ident: Word; const Args: array of const): string;

FmtLoadStr loads a string from a program's resource string table and uses that string,
plus the Args array, as a parameter to Format. Ident is the string resource ID of the
desired format string. Result is the output of Format.

See also
Format function

FmtStr procedure SysUtils

Declaration

procedure FmtStr(var Result: string; const Format: string; const Args: array of const);

This function formats the series of arguments in the open array Args. Formatting is
controlled by the Pascal format string Format; the results are returned in the parameter
Result.

For information on the format strings, see Format Strings.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 317

F o c u s C o n t r o l m e t h o d+
+
+
+
+
F

See also
FormatBu f function, StrFmt function, StrLFmt function

FocusControl method

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

function FocusControl;

Sets a form’s focus to the first data-aware component associated with a TField. Use this
method when doing record-oriented validation (for example, in the BeforePost event)
since a field may be validated whether its associated data-aware components have
focus.

Example

{ Set focus to first data-aware component associated with Field1 }
Field1.FocusControl;

FocusControl property

Applies to
TLabel component

Declaration

property FocusControl: TWinControl;

The FocusControl links the label control with another control on the form. If the Caption
of a label includes an accelerator key, the control specified as the value of the
FocusControl property becomes the focused control when the user uses the accelerator
key.

The caption of a label often identifies the purpose of another control on the form, or
directs the user to interact with it. For example, a label placed right above an edit box
might have the caption ’File Name’, indicating the user should type a file name in the
edit box. In this case, making that edit box the value of the label’s FocusControl property
gives the edit box the focus when the user presses Alt+F.

Example
This code displays a line of text in a label on the form and associates the label with an
edit box control. Note that the label caption includes an accelerator key. When the user
presses Alt+N, the edit box control receives the focus:

318 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F o c u s e d m e t h o d

Label1.Caption := ‘&Name';
Label1.FocusControl := Edit1;

For this example, you need to place the label and edit box control close together to make
sure that users understand that they should enter text in the edit box.

See also
ShowAccelChar property, TabStop property

Focused method

Applies to
All windowed controls

Declaration

function Focused: Boolean;

The Focused method is used to determine whether a windowed control has the focus and
is therefore is the ActiveControl.

Example
This example uses an edit box and a memo on a form. When the user switches the focus
between the two controls, the control that currently has the focus becomes red:

type
 TForm1 = class(TForm)
 Edit1: TEdit;
 Memo1: TMemo;

Button1: TButton;
 procedure FormCreate(Sender: TObject);
 private
 { Private declarations }
 public
 procedure ColorControl(Sender: TObject);
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.ColorControl(Sender: TObject);
begin
 if Edit1.Focused then

Edit1.Color := clRed
 else

Edit1.Color := clWindow;
 if Memo1.Focused then
 Memo1.Color := clRed

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 319

F o n t p r o p e r t y+
+
+
+
+
F

 else
 Memo1.Color := clWindow;

procedure TForm1.FormCreate(Sender: TObject);
begin
 Screen.OnActiveControlChange := ColorControl;
end;

See also
ActiveControl property, OnActiveControlChange event, SetFocus method

Font property

Applies to
TCanvas object; TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox,
TDBEdit, TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBLookupList,
TDBMemo, TDBRadioGroup, TDBText, TDirectoryListBox, TDrawGrid, TDriveComboBox,
TEdit, TFileListBox, TFilterComboBox, TFontDialog, TForm, TGroupBox, THeader, TLabel,
TListBox, TMaskEdit, TMemo, TNotebook, TOutline, TPaintBox, TPanel, TRadioButton,
TScrollBox, TSpeedButton, TStringGrid, TTabbedNotebook, TTabSet components

Declaration

property Font: TFont;

The Font property is a font object that controls the attributes of text written on or in the
component or object or sent to the printer. To modify a font, you change the value of the
Color, Name, Size, or Style properties of the font object.

Example
This code changes color of text in a memo control to dark blue:

Memo1.Font.Color := clNavy;

See also
ParentFont property

For Font dialog boxes

Declaration

property Font: TFont;

The Font property is the font the Font dialog box returns when the user uses the Font
dialog box. Your application can then use this returned Font value for further
processing.

You can also specify a default font before displaying the Font dialog box; the font name
then appears selected in the Font combo box. Use the Object Inspector to specify a Font

320 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F o n t s p r o p e r t y

property, or assign a value to Font before using the Execute method to display the dialog
box.

Example
This example uses a button, a Font dialog box, and a label on a form. When the user
clicks the button, the Font dialog box appears. If the user uses the dialog box to change
the font and chooses OK, the caption of the label changes to reflect the user’s font
selection.

procedure TForm1.Button1Click(Sender: TObject);
begin
 FontDialog1.Font.Name := 'System';
 FontDialog1.Font.Size := 10;
 if FontDialog1.Execute then
 Label1.Font := FontDialog1.Font;
end;

See also
Color property, Name property, Size property

Fonts property

Applies to
TPrinter object; TScreen component

Declaration

property Fonts: TStrings;

Run-time and read only. The Fonts property for the screen component returns a list of
fonts supported by the screen.

The Fonts property for a printer object holds a list of fonts supported by the printer. The
list contains TrueType fonts even if the printer doesn’t support them natively because
the Windows Graphics Device Interface (GDI) can draw TrueType fonts accurately
when a print job uses them.

Example
This code displays the fonts supported by the screen in a FontList list box when the user
clicks the ListFonts button:

procedure TForm1.ListFontsClick(Sender: TObject);
var
 FontIndex: Integer;
begin
FontList.Clear;
FontList.Sorted := True;
FontList.Items := Screen.Fonts;

end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 321

F o r c e D i r e c t o r i e s p r o c e d u r e+
+
+
+
+
F

See also
Canvas property, Screen variable, Printer variable

ForceDirectories procedure FileCtrl

Declaration

procedure ForceDirectories(Dir: string);

Whenever you create directories using DOS and Windows, you must create one at a
time. For example, if you want to create the C:\APPS\SALES\LOCAL directory, the
APPS and SALES directories must exist before you can create the LOCAL directory.

The ForceDirectories can create all the directories specified along a directory path all at
once if they don’t exist. If the first directories in the path do exist, but the latter ones
don’t, ForceDirectories creates just the ones that don’t exist.

Example
This example uses a label and a button on a form. When the user clicks the button, all the
directories along the specified path that don’t exist are created. The results are reported
in the caption of the label:

procedure TForm1.Button1Click(Sender: TObject);
var
 Dir: string;
begin
 Dir := 'C:\APPS\SALES\LOCAL';
 ForceDirectories(Dir);
 if DirectoryExists(Dir) then
 Label1.Caption := Dir + ' was created'
end;

See also
DirectoryExists function, SelectDirectory function

Format function SysUtils

Declaration

function Format(const Format: string; const Args: array of const): string;

This function formats the series of arguments in the open array Args. Formatting is
controlled by the Object Pascal format string Format; the results are returned in the
function result as a Pascal string.

For information on the format strings, see Format Strings.

322 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F o r m a t s t r i n g s

Format strings
Format strings passed to the string formatting routines contain two types of objects—
plain characters and format specifiers. Plain characters are copied verbatim to the
resulting string. Format specifiers fetch arguments from the argument list and apply
formatting to them.

Format specifiers have the following form:

"%" [index ":"] ["-"] [width] ["." prec] type

A format specifier begins with a % character. After the % come the following, in this
order:

• An optional argument index specifier, [index ":"]
• An optional left justification indicator, ["-"]
• An optional width specifier, [width]
• An optional precision specifier, ["." prec]
• The conversion type character, type

The following table summarizes the possible values for type:

Value What it specifies

 d Decimal. The argument must be an integer value. The value is converted to a string of
decimal digits. If the format string contains a precision specifier, it indicates that the
resulting string must contain at least the specified number of digits; if the value has less
digits, the resulting string is left-padded with zeros.

 e Scientific. The argument must be a floating-point value. The value is converted to a string
of the form "-d.ddd...E+ddd". The resulting string starts with a minus sign if the number is
negative. One digit always precedes the decimal point.

 The total number of digits in the resulting string (including the one before the decimal
point) is given by the precision specifer in the format string—a default precision of 15 is
assumed if no precision specifer is present. The "E" exponent character in the resulting
string is always followed by a plus or minus sign and at least three digits.

 f Fixed. The argument must be a floating-point value. The value is converted to a string of
the form "-ddd.ddd...". The resulting string starts with a minus sign if the number is
negative.

 The number of digits after the decimal point is given by the precision specifier in the format
string—a default of 2 decimal digits is assumed if no precision specifier is present.

 g General. The argument must be a floating-point value. The value is converted to the
shortest possible decimal string using fixed or scientific format. The number of significant
digits in the resulting string is given by the precision specifier in the format string—a
default precision of 15 is assumed if no precision specifier is present.

 Trailing zeros are removed from the resulting string, and a decimal point appears only if
necessary. The resulting string uses fixed point format if the number of digits to the left of
the decimal point in the value is less than or equal to the specified precision, and if the
value is greater than or equal to 0.00001. Otherwise the resulting string uses scientific
format.

 n Number. The argument must be a floating-point value. The value is converted to a string of
the form "-d,ddd,ddd.ddd...". The "n" format corresponds to the "f" format, except that the
resulting string contains thousand separators.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 323

F o r m a t s t r i n g s+
+
+
+
+
F

Conversion characters may be specified in upper case as well as in lower case—both
produce the same results.

For all floating-point formats, the actual characters used as decimal and thousand
separators are obtained from the DecimalSeparator and ThousandSeparator global
variables.

Index, width, and precision specifiers can be specified directly using decimal digit string
(for example "%10d"), or indirectly using an asterisk character (for example "%*.*f").
When using an asterisk, the next argument in the argument list (which must be an
integer value) becomes the value that is actually used. For example,

Format('%*.*f', [8, 2, 123.456])

is the same as

Format('%8.2f', [123.456]).

A width specifier sets the minimum field width for a conversion. If the resulting string is
shorter than the minimum field width, it is padded with blanks to increase the field
width. The default is to right-justify the result by adding blanks in front of the value, but
if the format specifier contains a left-justification indicator (a "-" character preceding the
width specifier), the result is left-justified by adding blanks after the value.

An index specifier sets the current argument list index to the specified value. The index
of the first argument in the argument list is 0. Using index specifiers, it is possible to
format the same argument multiple times. For example "Format('%d %d %0:d %d', [10,
20])" produces the string '10 20 10 20'.

The format strings are used by the following routines:

Format function

FormatBuf function

FmtStr procedure

StrFmt function

 m Money. The argument must be a floating-point value. The value is converted to a string
that represents a currency amount. The conversion is controlled by the CurrencyString,
CurrencyFormat, NegCurrFormat, ThousandSeparator, DecimalSeparator, and CurrencyDecimals
global variables, all of which are initialized from the Currency Format in the International
section of the Windows Control Panel. If the format string contains a precision specifier, it
overrides the value given by the CurrencyDecimals global variable.

 p Pointer. The argument must be a pointer value. The value is converted to a string of the
form "XXXX:YYYY" where XXXX and YYYY are the segment and offset parts of the pointer
expressed as four hexadecimal digits.

 s String. The argument must be a character, a string, or a PChar value. The string or character
is inserted in place of the format specifier. The precision specifier, if present in the format
string, specifies the maximum length of the resulting string. If the argument is a string that
is longer than this maximum, the string is truncated.

 x Hexadecimal. The argument must be an integer value. The value is converted to a string of
hexadecimal digits. If the format string contains a precision specifier, it indicates that the
resulting string must contain at least the specified number of digits; if the value has fewer
digits, the resulting string is left-padded with zeros.

Value What it specifies

324 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F o r m a t B u f f u n c t i o n

StrLFmt function

FormatBuf function SysUtils

Declaration

function FormatBuf(var Buffer; BufLen: Word; const Format; FmtLen: Word; const Args: array
of const): Word;

This function formats the series of arguments in the open array Args. Formatting is
controlled by the format string Format (whose length is given by FmtLen); the results are
returned in Buffer (whose length is given by BufLen). The function result contains the
number of bytes in the Result buffer.

For information on the format strings, see Format Strings.

FormatChars property

Applies to
TDDEClientConv component

Declaration

property FormatChars: Boolean;

The FormatChars property determines if certain characters are filtered out of text data
transferred from a DDE server application. Some DDE server applications transfer
backspaces, linefeeds, carriage returns, and tabs with the text data. Sometimes, this can
cause incorrect spacing, line breaks, or characters in the DDE client data. If this is the
case, the characters should be filtered. The default value of FormatChars is False.

If False, all text characters of the linked data from the DDE server appear in the linked
data in the DDE client. If True, ASCII characters 8 (backspace), 9 (tab), 10 (linefeed), and
13 (carriage return) are filtered out and won’t appear in the DDE client data.

Example
The following code formats characters if the DDE service name is “SuperWrd”.

if DDEClientConv.DDEService = ’SuperWrd’ then
DDEClientConv.FormatChars := True;

FormatCount property

Applies to
TClipboard object

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 325

F o r m a t D a t e T i m e f u n c t i o n+
+
+
+
+
F

Declaration

property FormatCount: Integer;

Run-time and read only. The FormatCount property value is the number of formats
contained in the Formats array property of a Clipboard object.

Example
The following code adds each format on the Clipboard to ListBox1 when Button1 is
clicked:

procedure TForm1.Button1Click(Sender: TObject);
var
I: Integer;

begin
for I := 0 to Clipboard.FormatCount-1 do

 ListBox1.Items.Add(IntToStr(Clipboard.Formats[I]));
end;

See also
Assign method, AsText property, Clipboard variable, GetComponent method, HasFormat
method, SetComponent method

FormatDateTime function SysUtils

Declaration

function FormatDateTime(const Format: string; DateTime: TDateTime): string;

FormatDateTime formats the date-and-time value given by DateTime using the format
given by Format. The following format specifiers are supported:

Specifier Displays

c Displays the date using the format given by the ShortDateFormat global variable, followed
by the time using the format given by the LongTimeFormat global variable. The time is not
displayed if the fractional part of the DateTime value is zero.

d Displays the day as a number without a leading zero (1-31).
dd Displays the day as a number with a leading zero (01-31).
ddd Displays the day as an abbreviation (Sun-Sat) using the strings given by the

ShortDayNames global variable.
dddd Displays the day as a full name (Sunday-Saturday) using the strings given by the

LongDayNames global variable.
ddddd Displays the date using the format given by the ShortDateFormat global variable.
dddddd Displays the date using the format given by the LongDateFormat global variable.
m Displays the month as a number without a leading zero (1-12). If the m specifier

immediately follows an h or hh specifier, the minute rather than the month is displayed.
mm Displays the month as a number with a leading zero (01-12). If the mm specifier

immediately follows an h or hh specifier, the minute rather than the month is displayed.
mmm Displays the month as an abbreviation (Jan-Dec) using the strings given by the

ShortMonthNames global variable.

326 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F o r m a t F l o a t f u n c t i o n

Format specifiers may be written in upper case as well as in lower case letters—both
produce the same result.

If the string given by the Format parameter is empty, the date and time value is
formatted as if a 'c' format specifier had been given.

Example
The following example assigns 'The meeting is on Wednesday, February 15, 1995 at
10:30 AM' to the string variable S.

S := FormatDateTime('"The meeting is on" dddd, mmmm d, yyyy, ' +
'"at" hh:mm AM/PM', StrToDateTime('2/15/95 10:30am'));

FormatFloat function SysUtils

Declaration

function FormatFloat(const Format: string; Value: Extended): string;

mmmm Displays the month as a full name (January-December) using the strings given by the
LongMonthNames global variable.

yy Displays the year as a two-digit number (00-99).
yyyy Displays the year as a four-digit number (0000-9999).
h Displays the hour without a leading zero (0-23).
hh Displays the hour with a leading zero (00-23).
n Displays the minute without a leading zero (0-59).
nn Displays the minute with a leading zero (00-59).
s Displays the second without a leading zero (0-59).
ss Displays the second with a leading zero (00-59).
t Displays the time using the format given by the ShortTimeFormat global variable.
tt Displays the time using the format given by the LongTimeFormat global variable.
am/pm Uses the 12-hour clock for the preceding h or hh specifier, and displays 'am' for any hour

before noon, and 'pm' for any hour after noon. The am/pm specifier can use lower, upper,
or mixed case, and the result is displayed accordingly.

a/p Uses the 12-hour clock for the preceding h or hh specifier, and displays 'a' for any hour
before noon, and 'p' for any hour after noon. The a/p specifier can use lower, upper, or
mixed case, and the result is displayed accordingly.

ampm Uses the 12-hour clock for the preceding h or hh specifier, and displays the contents of the
TimeAMString global variable for any hour before noon, and the contents of the
TimePMString global variable for any hour after noon.

/ Displays the date separator character given by the DateSeparator global variable.
: Displays the time separator character given by the TimeSeparator global variable.
'xx'/"xx" Characters enclosed in single or double quotes are displayed as-is, and do not affect

formatting.

Specifier Displays

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 327

F o r m a t F l o a t f u n c t i o n+
+
+
+
+
F

FormatFloat formats the floating-point value given by Value using the format string
given by Format. The following format specifiers are supported in the format string:

The locations of the leftmost '0' before the decimal point in the format string and the
rightmost '0' after the decimal point in the format string determine the range of digits
that are always present in the output string.

The number being formatted is always rounded to as many decimal places as there are
digit placeholders ('0' or '#') to the right of the decimal point. If the format string contains
no decimal point, the value being formatted is rounded to the nearest whole number.

If the number being formatted has more digits to the left of the decimal separator than
there are digit placeholders to the left of the '.' character in the format string, the extra
digits are output before the first digit placeholder.

To allow different formats for positive, negative, and zero values, the format string can
contain between one and three sections separated by semicolons.

• One section: The format string applies to all values.

• Two sections: The first section applies to positive values and zeros, and the second
section applies to negative values.

• Three sections: The first section applies to positive values, the second applies to
negative values, and the third applies to zeros.

Specifier Represents

0 Digit placeholder. If the value being formatted has a digit in the position where the '0'
appears in the format string, then that digit is copied to the output string. Otherwise, a '0'
is stored in that position in the output string.

Digit placeholder. If the value being formatted has a digit in the position where the '#'
appears in the format string, then that digit is copied to the output string. Otherwise,
nothing is stored in that position in the output string.

. Decimal point. The first '.' character in the format string determines the location of the
decimal separator in the formatted value; any additional '.' characters are ignored. The
actual character used as a the decimal separator in the output string is determined by the
DecimalSeparator global variable. The default value of DecimalSeparator is specified in the
Number Format of the International section in the Windows Control Panel.

, Thousand separator. If the format string contains one or more ',' characters, the output
will have thousand separators inserted between each group of three digits to the left of the
decimal point. The placement and number of ',' characters in the format string does not
affect the output, except to indicate that thousand separators are wanted. The actual
character used as a the thousand separator in the output is determined by the
ThousandSeparator global variable. The default value of ThousandSeparator is specified in
the Number Format of the International section in the Windows Control Panel.

E+ Scientific notation. If any of the strings 'E+', 'E-', 'e+', or 'e-' are contained in the format
string, the number is formatted using scientific notation. A group of up to four '0'
characters can immediately follow the 'E+', 'E-', 'e+', or 'e-' to determine the minimum
number of digits in the exponent. The 'E+' and 'e+' formats cause a plus sign to be output
for positive exponents and a minus sign to be output for negative exponents. The 'E-' and
'e-' formats output a sign character only for negative exponents.

'xx'/"xx" Characters enclosed in single or double quotes are output as-is, and do not affect
formatting.

; Separates sections for positive, negative, and zero numbers in the format string.

328 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F o r m a t s p r o p e r t y

If the section for negative values or the section for zero values is empty, that is if there is
nothing between the semicolons that delimit the section, the section for positive values
is used instead.

If the section for positive values is empty, or if the entire format string is empty, the
value is formatted using general floating-point formatting with 15 significant digits,
corresponding to a call to FloatToStrF with the ffGeneral format. General floating-point
formatting is also used if the value has more than 18 digits to the left of the decimal
point and the format string does not specify scientific notation.

Example
The following table shows some sample formats and the results produced when the
formats are applied to different values:

Formats property

Applies to
TClipboard object

Declaration

property Formats[Index: Integer]: Word;

Run-time and read only. The Formats property array contains a list of all the formats the
Clipboard contains. Usually when an application copies or cuts something to the
Clipboard, it places it there in multiple formats.

Your application can place items of a particular format on the Clipboard and retrieve
items with a particular format from the Clipboard if the format is in the Formats array.
You can find out if a particular format is available on the Clipboard with the HasFormat
method.

The Index parameter of the Formats property lets you access a format by its position in
the array.

Format string– 1234 –1234 0.5 0
1234 –1234 0.5 0

0 1234 –1234 1 0
0.00 1234.00 –1234.00 0.50 0.00
#.## 1234 –1234 .5
#,##0.00 1,234.00 –1,234.00 0.50 0.00
#,##0.00;(#,##0.00) 1,234.00 (1,234.00) 0.50 0.00
#,##0.00;;Zero 1,234.00 –1,234.00 0.50 Zero
0.000E+00 1.234E+03 –1.234E+03 5.000E–01 0.000E+00
#.###E–0 1.234E3 –1.234E3 5E–1 0E0

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 329

F o r m C o u n t p r o p e r t y+
+
+
+
+
F

Example
The following code adds each format on the Clipboard to ListBox1 when Button1 is
clicked:

procedure TForm1.Button1Click(Sender: TObject);
var
I: Integer;

begin
for I := 0 to Clipboard.FormatCount-1 do

 ListBox1.Items.Add(IntToStr(Clipboard.Formats[I]));
end;

See also
Assign method, AsText property, Clipboard variable, FormatCount property, HasFormat
method

FormCount property

Applies to
TScreen component

Declaration

property FormCount: Integer;

Run-time and read only. The FormCount property value contains the number of forms
displayed on the screen.

Example
The following code adds the name of all forms on the screen to ListBox1 when Button1 is
clicked.

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 For I := 0 to Screen.FormCount-1 do
 ListBox1.Items.Add(Screen.Forms[I].Name);
end;

See also
Forms property, Screen variable

Forms property

Applies to
TScreen component

330 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F o r m S t y l e p r o p e r t y

Declaration

property Forms[Index: Integer]: TForm;

Description

Run-time and read only. The Forms property lets you access a form on the screen by
specifying its position in the list of forms kept by the TScreen component using its Index
value. The first form has an index value of 0, the second has an index value of 1, and so
on.

Example
The following code adds the name of all forms on the screen to ListBox1 when Button1 is
clicked.

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 For I := 0 to Screen.FormCount-1 do
 ListBox1.Items.Add(Screen.Forms[I].Name);
end;

See also
FormCount property, Screen variable

FormStyle property

Applies to
TForm component

Declaration

property FormStyle: TFormStyle;

The FormStyle property determines the style of the form. These are the possible values
and their meanings:

The default value is fsNormal.

All MDI (Multiple Document Interface) applications must have the FormStyle property
of the main form set to fsMDIForm. All forms specified as MDI child forms display as

Value Meaning

fsNormal The form is neither an MDI parent window nor an MDI child window.
fsMDIChild The form is an MDI child window.
fsMDIForm The form is an MDI parent window.
fsStayOnTop This form remains on top of other forms in the project, except any others that also have

FormStyle set to fsStayOnTop.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 331

F r a c f u n c t i o n+
+
+
+
+
F

forms contained within the MDI parent form. You must use the Object Inspector to set
the child form’s Visible property to True or your child form won’t appear. You can have
as many child forms as you like.

Example
This example ensures the main form of the application is an MDI parent form:

procedure TForm1.FormCreate(Sender: TObject);
begin
 if FormStyle <> fsMDIForm then
 FormStyle := fsMDIForm;
 if FormStyle = fsMDIForm then
 Edit1.Text := 'MDI form'
 else
 Edit1.Text := 'Not an MDI form'; {This line never runs}
end;

See also
CreateForm method, MainForm property, Visible property

Frac function System

Declaration

function Frac(X: Real): Real;

The Frac function returns the fractional part of the argument X.

X is a real-type expression. The result is the fractional part of X; that is,
Frac(X) = X – Int(X).

Example

 var
 R: Real;
begin
 R := Frac(123.456); { 0.456 }
 R := Frac(–123.456); { –0.456 }
end;

See also
Int function

FrameRect method

Applies to
TCanvas object

332 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F r a m e s p r o p e r t y

Declaration

procedure FrameRect(const Rect: TRect);

The FrameRect method draws a rectangle using the Brush of the canvas to draw the
border. FrameRect does not fill the interior of the rectangle with the Brush pattern.

Example
The following code displays the text “Hello, world!” in a rectangle defined by the
coordinates (10, 10) and (100, 100). After displaying the text with the TextRect method,
the code draws a black, vertical line frame around the rectangle.

var
TheRect: TRect;

begin
Form1.Canvas.Brush.Color := clBlack;

 Form1.Canvas.Brush.Style := bsVertical;
 TheRect.Top := 10;
 TheRect.Left := 10;
 TheRect.Bottom := 100;
 TheRect.Right := 100;
 Form1.Canvas.TextRect(TheRect,10,10,'Hello, world!');
 Form1.Canvas.FrameRect(TheRect);
end;

See also
Brush property, Rect function, TextRect method

Frames property

Applies to
TMediaPlayer component

Declaration

property Frames: Longint;

Run-time-only. The Frames property specifies the number of frames the Step method
steps forward or the Back method steps backward.

Frames defaults to ten percent of the length of the currently loaded medium, which is
specified by the Length property.

Note The definition of frame varies by multimedia device. For display media, a frame is one
still image.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 333

F r e e m e t h o d+
+
+
+
+
F

Free method

Applies to
All objects and components

Declaration

procedure Free;

The Free method destroys the object and frees its associated memory. If you created the
object yourself using the Create method, you should use Free to destroy and release
memory. Free is successful even if the object is nil, so if the object was never initialized,
for example, calling Free won’t result in an error.

Delphi automatically destroys Visual Component Library objects and frees memory
allocated to them.

You should never explicitly free a component within one of its own event handlers, nor
should you free a component from an event handler of a component the component
owns or contains. For example, you should avoid freeing a button in its OnClick event
handler. Nor should you free the form that owns the button from the button’s OnClick
event.

If you want to free the form, call the Release method, which destroys the form and
releases the memory allocated for it after all its event handlers and those of the
components it contains are through executing.

Example
The following code frees an object called MyObject:

MyObject.Free;

See also
Destroy method, Release method

Free procedure System

Declaration

procedure Free;

The Free procedure tests whether or not the instance of the caller is nil.

If it isn’t nil, Free calls Destroy.

If it is nil, the Free call is ignored.

334 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F r e e B o o k m a r k m e t h o d

FreeBookmark method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure FreeBookmark(Bookmark: TBookmark);

Use the FreeBookmark method in combination with the GetBookmark and GotoBookmark
methods. FreeBookmark releases the system resources reserved during a call to
GetBookmark.

Example

var MyBookmark: TBookmark;
...
with Table1 do
begin

{ Save the current record position in MyBookmark }
MyBookmark := GetBookmark;
... { Other code here }

{ Return to the record associated with MyBookmark }
GotoBookmark(MyBookmark);

{ Release the resources for MyBookmark }
FreeBookmark(MyBookmark);
end;

FreeMem procedure System

Declaration

procedure FreeMem(var P: Pointer; Size: Word);

The FreeMem procedure disposes of a dynamic variable of a given size.

P is a variable of any pointer type previously assigned by the GetMem procedure or
assigned a meaningful value using an assignment statement.

Size specifies the size in bytes of the dynamic variable to dispose of; it must be exactly
the number of bytes previously allocated to that variable by GetMem.

FreeMem destroys the variable referenced by P and returns its memory to the heap. If P
does not point to memory in the heap, a run-time error occurs.

After calling FreeMem, the value of P is undefined, and an error occurs if you
subsequently reference P^. You can use the exceptions to handle this error. For more
information on handling run-time library exceptions, see Handling RTL Exceptions in
the Help system.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 335

F r o m P a g e p r o p e r t y+
+
+
+
+
F

Example

type
 TFriendRec = record
 Name: string[30];
 Age : Byte;
 end;

 var
 p: pointer;
 begin
 if MaxAvail < SizeOf(TFriendRec) then
 MessageDlg('Not enough memory', mtWarning, [mbOk], 0);
 else
 begin
 { Allocate memory on heap }
 GetMem(p, SizeOf(TFriendRec));
 { ...}
 { ...Use the memory... }
 { ...}
 { then free it when done }
 FreeMem(p, SizeOf(TFriendRec));
 end;
 end;

See also
Dispose procedure, GetMem procedure, New procedure

FromPage property

Applies to
TPrintDialog component

Declaration

property FromPage: Integer;

The value of the FromPage property determines on which page the print job begins. The
default value is 0.

Example
This example uses a Print dialog box on a form. These lines set up the Print dialog box so
that when it appears, the default values of 1 and 1 are the default starting and ending
values for the Pages From and To edit boxes.

PrintDialog1.Options := [poPageNums];
PrintDialog1.FromPage := 1;
PrintDialog1.ToPage := 1;

336 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F u l l C o l l a p s e m e t h o d

See also
ToPage property

FullCollapse method

Applies to
TOutline component

Declaration

procedure FullCollapse;

FullCollapse collapses all the items within an outline. When an item is collapsed, its
Expanded property is set to False, its subitems are hidden, and the closed or plus pictures
might be displayed, depending on the outline style specified in the OutlineStyle
property.

Example
The following code collapses the outline if the selected item is visible.

if Outline[Outline1.SelectedItem].IsVisible then
 Outline1.FullCollapse;

See also
Collapse method, Expand method, FullExpand method, OnCollapse event, PictureClosed
property, PicturePlus property

FullExpand method

Applies to
TOutlineNode object; TOutline component

Declaration

procedure FullExpand;

FullExpand expands the items within an outline. If the FullExpand method belongs to a
TOutline component, all items in the outline are expanded. If the FullExpand method
belongs to a TOutlineNode object, only the items on the same branch as the outline node
are expanded. This means that all subitems are expanded, and all parents up to the top
item on level 1 (specified by the TopItem property) are expanded. No items on other
branches (with different level 1 parents) are expanded.

When an item is expanded, its Expanded property is set to True, its subitems are
displayed, and the open or minus pictures might be displayed, depending on the
outline style specified in the OutlineStyle property.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 337

F u l l P a t h p r o p e r t y+
+
+
+
+
F

Example
The following code expands the outline if the selected item is not visible:

if not Outline1.Items[Outline1.SelectedItem].IsVisible then
 Outline1.FullExpand;

See also
Collapse method, Expand method, FullCollapse method, OnExpand event, PictureMinus
property, PictureOpen property

FullPath property

Applies to
TOutlineNode object

Declaration

property FullPath: string;

Run-time and read only. The FullPath property specifies the path of outline items from
the top item on level 1 to the item contained by the TOutlineNode. The path consists of
the values of the Text properties of the outline items separated by the string specified in
the ItemSeparator property of the TOutline component.

Example
The following code displays the full path of the selected outline item in Label1:

Label1.Caption := Outline1.Items[Outline1.SelectedItem].FullPath;

See also
Items property, SelectedItem property

GetAliasNames method

Applies to
TSession component

Declaration

procedure GetAliasNames(List: TStrings);

The GetAliasNames method clears the parameter List and adds to it the names of all
defined BDE aliases. Application-specific aliases are not included.

Example

Session.GetAliasNames(MyStringList);

338 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

G e t A l i a s P a r a m s m e t h o d

See also
GetDataBaseNames method, Session variable

GetAliasParams method

Applies to
TSession component

Declaration

procedure GetAliasParams(const AliasName: string; List: TStrings);

The GetAliasParams method clears List and adds to it the parameters associated with the
BDE alias passed in AliasName.

Example

Session.GetAliasParams(MyStringList);

See also
Session variable

GetAsHandle method

Applies to
TClipboard object

Declaration

function GetAsHandle (Format: Word): THandle;

The GetAsHandle method returns the data from the Clipboard in a Windows handle for
the format specified in the Format parameter. See the Windows API Help file for
information about the available formats.

Your application doesn’t own the handle, so it should copy the data before using it.

Example
The following code locks the memory for text on the Clipboard, then converts the text to
a Pascal-style string.

var
TheClipboard: TClipboard;
MyHandle: THandle;
TextPtr: PChar;
MyString: string;

begin
MyHandle := TheClipboard.GetAsHandle(CF_TEXT);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 339

G e t B o o k m a r k m e t h o d+
+
+
+
+
+
G

TextPtr := GlobalLock(MyHandle);
MyString := StrPas(TextPtr);
GlobalUnlock(MyHandle);

end;

See also
FormatCount property, Formats property, HasFormat method, SetAsHandle method

GetBookmark method

Applies to
TTable, TQuery, TStoredProc components

Declaration

function GetBookmark: TBookmark;

The GetBookmark method saves the current record information of the dataset to allow you
to return to that record with a later call to the GotoBookmark method. The bookmark
should be eventually be passed to the FreeBookmark method to release the resources
reserved during the call to GetBookmark. If the dataset is empty or not in Browse state,
GetBookmark will return nil.

Note All bookmarks are invalidated when a dataset is closed and when a table’s index is
changed.

Example
var MyBookmark: TBookmark;
...
with Table1 do
begin

{ Save the current record position in MyBookmark }
MyBookmark := GetBookmark;
... { Other code here }

{ Return to the record associated with MyBookmark }
GotoBookmark(MyBookmark);

{ Release the resources for MyBookmark }
FreeBookmark(MyBookmark);
end;

GetComponent method

Applies to
TClipboard object

340 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

G e t D a t a m e t h o d

Declaration

function GetComponent(Owner, Parent: TComponent): TComponent;

The GetComponent method retrieves a component from the Clipboard and places it
according to the value of the Owner and Parent parameters. With Owner, specify the
component that becomes the owner of the retrieved component—usually this is a form.
With Parent, specify the component that becomes the parent of the component. Both
Owner and Parent can be nil.

Example
This example uses a button and a group box on a form. When the user clicks the button,
the button is copied to the Clipboard and then retrieved from the Clipboard and placed
in the new parent of the button, the group box. The name of the original button is
changed to an empty string to avoid having two components with the same name at the
same time.

implementation

uses Clipbrd;

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
begin
 Clipboard.SetComponent(Button1); { copies button to the Clipboard }
 Button1.Name := ''; { prevents having two components with the same name }
 Clipboard.GetComponent(Self, GroupBox1); { retrieves button from Clipboard and }
end; { places it in the group box }

initialization
 RegisterClasses([TButton]); { registers the TButton class }
end.

See also
AsText property, Owner property, Parent property, SetComponent method

GetData method

Applies to
TParam object; TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField,
TDateField, TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField,
TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

For fields

Declaration

function GetData(Buffer: Pointer): Boolean;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 341

G e t D a t a b a s e N a m e s m e t h o d+
+
+
+
+
+
G

GetData is the method used to obtain “raw” data from the field. Unlike the AsString,
DisplayText, and Text properties, GetData performs no translation or interpretation of the
data. Buffer must have sufficient space allocated for the data. Use the DataSize property
to determine the space required. If the data is NULL, GetData returns False and no data
is transferred to Buffer. Otherwise, it returns True.

Example

{ Retrieve the “raw” data from Field1 }
with Field1 do
begin

{ Allocate space }
GetMem(Buffer, DataSize);
if not Field1.GetData(Buffer) then

MessageDlg(FieldName + ' is NULL’, mtInformation, [mbOK], 0)
else { Do something with the data };

{ Free the space }
FreeMem(Buffer, DataSize);
end;

For Tparam objects

Declaration

procedure GetData(Buffer: Pointer);

The GetData method copies the current value of the parameter in native format to Buffer.
Buffer must have enough space to hold the information; use the GetDataSize method to
determine the requirement.

Example

var Buffer: Pointer;
{ Allocate enough space to hold the CustNo data }
GetMem(Buffer, Query1.ParamByName(‘CustNo’).GetDataSize);
{ Retrieve the data }
Query1.ParamByName(‘CustNo’).GetData(Buffer);

See also
SetData method

GetDatabaseNames method

Applies to
TSession component

Declaration

procedure GetDatabaseNames(List: TStrings);

342 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

G e t D a t a I t e m m e t h o d

The GetDatabaseNames method clears List and adds to it the names of all BDE aliases and
application-specific aliases.

Example

Session.GetDatabaseNames(MyStringList);

See also
GetAliasNames method, Session variable

GetDataItem method

Applies to
TOutline component

Declaration

function GetDataItem(Value: Pointer): Longint;

The GetDataItem method returns the Index value of the first outline item that contains the
data specified in the Value parameter in its Data property. Use GetDataItem when you
have a pointer to data and you want to know which outline item contains the data.

Example
The following code displays the Text of the outline item that points to the variable P3 in
its Data property. The text is displayed in a label.

Label1.Caption := Outline1.Items[GetDataItem(p3)].Text;

See also
GetItem method, GetTextItem method

GetDataSize method

Applies to
TParam object

Declaration

function GetDataSize: Word;

The GetDataSize method returns the number of bytes required to hold the parameter’s
value. Use GetDataSize in conjunction with the GetData method to allocate memory for
the parameter’s data.

Example

var Buffer: Pointer;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 343

G e t D i r p r o c e d u r e+
+
+
+
+
+
G

{ Allocate enough space to hold the CustNo data }
GetMem(Buffer, Query1.ParamByName(‘CustNo’).GetDataSize);
{ Retrieve the data }
Query1.ParamByName(‘CustNo’).GetData(Buffer);

GetDir procedure System

Declaration

procedure GetDir(D: Byte; var S: string);

The GetDir procedure returns the current directory of a specified drive.

D can be set to any of the following values:

Performs no error checking. If the drive specified by D is invalid, S returns X:\ as if it
were the root directory of the invalid drive.

Example

var
 s : string;
 begin
 GetDir(0,s); { 0 = Current drive }
 MessageDlg('Current drive and directory: ' + s, mtInformation, [mbOk] , 0);
 end;

See also
ChDir function, MkDir procedure, RmDir procedure

GetDriverNames method

Applies to
TSession component

Declaration

procedure GetDriverNames(List: TStrings);

The GetDriverNames method clears List and adds to it the names of all BDE drivers
currently installed. This will not include ‘PARADOX’ or ‘DBASE’, since these databases
are handled by the driver named ‘STANDARD’.

Value Drive

0 Default
1 A
2 B
3 C

344 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

G e t D r i v e r P a r a m s m e t h o d

Example

Session.GetDriverNames(MyStringList);

See also
Session variable

GetDriverParams method

Applies to
TSession component

Declaration

procedure GetDriverParams(const DriverName: string; List: TStrings);

The GetDriverParams method clears List and adds to it the default parameters for the
driver named in DriverName parameter. The driver named ‘STANDARD’ (used for
Paradox and dBASE tables) has only one parameter, ‘PATH=’. SQL drivers will have
varying parameters.

Example

Session.GetDriverParams(MyStringList);

See also
Session variable

GetFieldNames method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure GetFieldNames(List: TStrings);

The GetFieldNames method clears the TStrings argument, List, and then adds the name of
each field in the dataset to it.

Example

var FieldNames: TStringList;
...
{ Initialize FieldNames to hold the names }
FieldNames := TStringList.Create;

{ Get the names }
Table1.GetFieldNames(FieldNames);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 345

G e t F i r s t C h i l d m e t h o d+
+
+
+
+
+
G

{ Do something with them }
...
{ Free the TStringList }
FieldNames.Free;

GetFirstChild method

Applies to
TOutlineNode object

Declaration

function GetFirstChild: Longint;

The GetFirstChild method returns the Index value of the first subitem in an outline item.
If the item has no subitems, GetFirstChild returns -1.

Example
The following code expands the selected outline item if it has children and then selects
the first child.

with Outline1 do
if Items[SelectedItem].HasItems then
begin
Items[SelectedItem].Expanded := True;
SelectedItem := Items[Items[SelectedItem].GetFirstChild];

end;

See also
GetLastChild method, GetNextChild method, GetPrevChild method

GetFormatSettings procedure SysUtils

Declaration

procedure GetFormatSettings;

GetFormatSettings reloads all the date and number format preferences stored in the
WIN.INI file's International section. When a program, such as Control Panel, modifies
the WIN.INI file, it should notify other running applications by broadcasting a
WM_WININIFILEChanged message. Your application should call GetFormatSettings
when you receive this message.

GetFormImage method

Applies to
TForm component

346 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

G e t H e l p C o n t e x t m e t h o d

Declaration

function GetFormImage: TBitmap;

The GetFormImage returns a bitmap of the form as it appears when printed.

Example
This example uses an image, a button, and a shape component on a form. When the user
clicks the button, an image of the form is stored in the FormImage variable and copied to
the Clipboard. Then image of the form in then copied back to the image component,
producing an interesting result, especially if the button is clicked multiple times.

procedure TForm1.Button1Click(Sender: TObject);
var
 FormImage: TBitmap;
begin
 FormImage := GetFormImage;
 Clipboard.Assign(FormImage);
 Image1.Picture.Assign(Clipboard);
end;

procedure TForm1.FormCreate(Sender: TObject);
begin
 Shape1.Shape := stEllipse;
 Shape1.Brush.Color := clLime;
Image1.Stretch := True;

end;

See also
PrintScale property

GetHelpContext method

Applies to
TMainMenu component

Declaration

function GetHelpContext(Value: Word; ByCommand: Boolean): THelpContext;

The GetHelpContext method returns a help context number.

See also
HelpContext property, HelpContext method, HelpJump method, OnHelp event

GetIndexForPage method

Applies to
TTabbedNotebook component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 347

G e t I n d e x N a m e s m e t h o d+
+
+
+
+
+
G

Declaration

function GetIndexForPage(const PageName: string): Integer;

The GetIndexForPage method returns the PageIndex value of the specified page. The
PageIndex property value is determined by the page’s position in the Pages property
array. Specify the name of the page as the value of the PageName parameter. The name
you specify must be one of the strings in the Pages property.

Example
This example uses a tabbed notebook and a label on a form. When the form is created,
pages are added to the tabbed notebook. The PageIndex value of the Preferences page
appears in the caption of the label.

procedure TForm1.FormCreate(Sender: TObject);
begin
 with TabbedNotebook1 do
 begin
 Pages.Clear;
 Pages.Add('Styles');
 Pages.Add('Fonts');
 Pages.Add('Preferences');
 end;
 Label1.Caption := 'The Preferences page has an index of ' +
 IntToStr(TabbedNotebook1.GetIndexForPage('Preferences'));
end;

See also
SetTabFocus method

GetIndexNames method

Applies to
TTable component

Declaration

procedure GetIndexNames(List: TStrings);

The GetIndexNames method adds the names of all available indexes for the TTable to the
List parameter.

Example

var
MyList: TStringList;

...
MyList := TStringList.Create;
Table1.GetIndexNames(MyList);
{ Do something with the names }

348 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

G e t I t e m m e t h o d

MyList.Free;

See also
IndexName property

GetItem method

Applies to
TOutline component

Declaration

function GetItem(X, Y: Integer): Longint;

The GetItem method returns the Index value of the outline item that resides at the pixel
coordinates (X, Y). Use GetItem when you want to know which outline item is in a
specific screen location.

Example
The following code makes the item at screen coordinates (34,100) the selected item.

Outline1.SelectedItem := Outline1.GetItem(34,100);

See also
GetDataItem method, GetTextItem method

GetItemPath method

Applies to
TDirectoryListBox component

Declaration

function GetItemPath(Index : Integer): string;

The GetItemPath method returns as a string the path of a directory in a directory list box.
Specify the directory with the Index value using the first directory in the list that has an
index value of 0.

Example
This example uses a directory list box, a button, and a label on a form. When the user
selects a directory in the directory list box and clicks the button, the selected directory
opens, and the path of the second directory displayed in the list box appears as the
caption of the label.

procedure TForm1.Button1Click(Sender: TObject);
begin
 DirectoryListBox1.OpenCurrent;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 349

G e t L a s t C h i l d m e t h o d+
+
+
+
+
+
G

 Label1.Caption := DirectoryListBox1.GetItemPath(1);
end;

See also
Directory property, Drive property, OpenCurrent method

GetLastChild method

Applies to
TOutlineNode object

Declaration

function GetLastChild: Longint;

The GetLastChild method returns the Index value of the last subitem in an outline item. If
the item has no subitems, GetLastChild returns -1.

Example
The following code expands the selected outline item if it has children and then selects
the last child.

with Outline1 do
if Items[SelectedItem].HasItems then
begin
Items[SelectedItem].Expanded := True;
SelectedItem := Items[Items[SelectedItem].GetLastChild];

end;

See also
GetFirstChild method, GetNextChild method, GetPrevChild method

GetLongHint function Controls

Declaration

function GetLongHint(const Hint: string): string;

The GetLongHint function returns the second part of the two-part string specified as the
value of the Hint property. The second part of the string is the text following the |
character. If the Hint string value is not separated into two parts, GetLongHint returns
the entire Hint string.

Example
This code assigns a two-part string as to the Hint property of an edit box and then
displays the “long” or second part of the string as the text of the edit box:

procedure TForm1.BitBtn1Click(Sender: TObject);

350 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

G e t M e m p r o c e d u r e

begin
 Edit1.Hint := 'Name|Enter full name';
 Edit1.Text := GetLongHint(Edit1.Hint);
end;

See also
GetShortHint function, OnHint event, ShowHint property

GetMem procedure System

Declaration

procedure GetMem(var P: Pointer; Size: Word);

The GetMem procedure creates a dynamic variable of the specified size and puts the
address of the block in a pointer variable.

P is a variable of any pointer type. Size is an expression specifying the size in bytes of the
dynamic variable to allocate. You should reference the newly created variable as P^.

If there isn’t enough free space in the heap to allocate the new variable, a run-time error
occurs. When {$I+}, you can use the exceptions to handle the error. For more
information on handling run-time library exceptions, see Handling RTL Exceptions in
the Help system.

The largest single block that can be safely allocated on the heap at one time is 65,528
bytes.

Example
type
 TFriendRec = record
 Name: string[30];
 Age : Byte;
 end;

 var
 p: pointer;
 begin
 if MaxAvail < SizeOf(TFriendRec) then
 MessageDlg('Not enough memory', mtWarning, [mbOk], 0);
 else
 begin
 { Allocate memory on heap }
 GetMem(p, SizeOf(TFriendRec));
 { ...}
 { ...Use the memory... }
 { ...}
 { then free it when done }
 FreeMem(p, SizeOf(TFriendRec));
 end;
 end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 351

G e t N e x t C h i l d m e t h o d+
+
+
+
+
+
G

See also
Dispose procedure, FreeMem procedure, New procedure

GetNextChild method

Applies to
TOutlineNode object

Declaration

function GetNextChild(Value: Longint): Longint;

The GetNextChild method returns the Index value of the next outline item that shares the
same parent item as the item that has an Index value equal to the Value parameter. This is
useful when the item indexed by Value has subitems, thus the index of its next sibling is
not simply one more than Value. If the item indexed by Value has no next sibling,
GetNextChild returns -1.

Example
The following code selects the next sibling of the selected item.

with Outline1 do
SelectedItem := Items[SelectedItem].GetNextChild(SelectedItem);

See also
GetFirstChild method, GetLastChild method, GetPrevChild method

GetParentForm function Forms

Declaration

function GetParentForm(Control: TControl): TForm;

The GetParentForm function returns the form that contains the control specified in the
Control parameter. If the specified control is not on a form, GetParentForm returns nil.

If you’d rather have the function return an exception when the specified control is not
on a form, use the ValidParentForm function.

Example
The following code shows the form that contains Button2:

GetParentForm(Button2).Show;

See also
ValidParentForm function

352 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

G e t P a s s w o r d m e t h o d

GetPassword method

Applies to
TSession component

Declaration

function GetPassword: Boolean;

The GetPassword method invokes the OnPassword event (if any) or displays the default
password dialog box. It then returns True if the user chose the OK button and False if the
user chose the Cancel button.

Example

Session.GetPassword;

See also
Session variable

GetPrevChild method

Applies to
TOutlineNode object

Declaration

function GetPrevChild(Value: Longint): Longint;

The GetPrevChild method returns the Index value of the previous outline item that shares
the same parent item as the item that has an Index value equal to the Value parameter.
This is useful when the previous sibling has subitems, thus its index is not simply one
less than Value. If the item indexed by Value has no previous sibling, GetPrevChild
returns -1.

Example
The following code tests to determine if the selected item has a previous sibling. The
results are displayed in a label.

with Outline1 do
if (Items[SelectedItem].GetPrevChild > -1) then

Label1.Caption := ’Has a prior sibling’
else

Label1.Caption := ’Has no prior sibling’;

See also
GetFirstChild method, GetLastChild method, GetNextChild method

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 353

G e t P r i n t e r m e t h o d+
+
+
+
+
+
G

GetPrinter method

Applies to
TPrinter object

Declaration

procedure GetPrinter (ADevice, ADriver, APort: PChar; var ADeviceMode: THandle);

The GetPrinter method retrieves the current printer. You should rarely need to call this
method and should instead access the printer you want in the Printers property array.
For more information, see the Windows API CreateDC function.

See also
SetPrinter method

GetProfileChar function SysUtils

Declaration

function GetProfileChar(Section, Entry: PChar; Default: Char): Char;

GetProfileChar loads a single character from the given section and item of WIN.INI.

GetProfileStr function SysUtils

Declaration

function GetProfileStr(Section, Entry: PChar; const Default: string): string;

GetProfileStr loads a string value from the given section and item of WIN.INI. This
function is used by GetFormatSettings.

GetResults method

Applies to
TParam object

Declaration

procedure GetResults;

You only need to call this method with a Sybase stored procedure that returns a result
set. GetResults returns the output parameter values from the stored procedure. Usually,
TStoredProc does this automatically, but Sybase stored procedures do not return the

354 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

G e t S e l T e x t B u f m e t h o d

values until the cursor reaches the end of the result set, so you must call GetResults
explicitly.

Example

StoredProc1.Open
while not EOF do
begin
StoredProc1.Next;
{Do Something}

end;
StoredProc1.GetResults;
Edit1.Text := StoredProc1.ParamByName(‘Output’);

GetSelTextBuf method

Applies to
TDBEdit, TDBMemo, TEdit, TMaskEdit, TMemo components

Declaration

function GetSelTextBuf(Buffer: PChar; BufSize: Integer): Integer;

The GetSelTextBuf method copies the selected text from the edit box or memo control
into the buffer pointed to by Buffer, up to a maximum of BufSize characters, and returns
the number of characters copied.

You should need to use the GetSelTextBuf method only if you are working with strings
longer than 255 characters. Because an Object Pascal style string has a limit of 255
characters, such properties as Text for an edit box, Items for a list box, and Lines for a
memo control do not allow you to work with strings longer than 255 characters.
GetSelTextBuf and the corresponding SetSelTextBuf methods use null-terminated strings
that can be up to 64K in length.

Example

procedure TForm1.Button1Click(Sender: TObject);
var
 Buffer: PChar;
 Size: Integer;
begin
 Size := Edit1.SelLength; {Get length of selected text in Edit1}
 Inc(Size); {Add room for null character}
 GetMem(Buffer, Size); {Creates Buffer dynamic variable}
 Edit1.GetSelTextBuf(Buffer,Size); {Puts Edit1.Text into Buffer}
 Edit2.Text := StrPas(Buffer); {Converts string in Buffer into Pascal-style string}
 FreeMem(Buffer, Size); {Frees memory allocated to Buffer}
end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 355

G e t S h o r t H i n t f u n c t i o n+
+
+
+
+
+
G

See also
GetTextBuf method, SelText property, SetSelTextBuf method

GetShortHint function Controls

Declaration

function GetShortHint(const Hint: string): string;

The GetShortHint function returns the first part of the two-part string specified as the
value of the Hint property. The first part of the string is the text following the |
character. If the Hint string value is not separated into two parts, GetShortHint returns
the entire Hint string.

Example
This code assigns a two-part string as the Hint property of an edit box and then displays
the “short” or first part of the string as the text of the edit box:

procedure TForm1.BitBtn1Click(Sender: TObject);
begin
 Edit1.Hint := 'Name|Enter full name';
 Edit1.Text := GetShortHint(Edit1.Hint);
end;

See also
GetLongHint function, OnHint event, ShowHint property

GetStoredProcNames method

Applies to
TSession component

Declaration

procedure GetStoredProcNames(const DatabaseName: string; List: TStrings);

GetStoredProcNames returns a list of all stored procedures defined for the specified SQL
database. This method is not valid for Paradox or dBASE databases.

Example

Session.GetStoredProcNames(‘IB_EMPLOYEE’, MyStringList);

See also
Session variable

356 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

G e t T a b l e N a m e s m e t h o d

GetTableNames method

Applies to
TSession component

Declaration

procedure GetTableNames(const DatabaseName, Pattern: string;
Extensions, SystemTables: Boolean; List: TStrings);

The GetTableNames method clears List and then adds to it the names of all the tables in
the database referenced by DatabaseName. The Pattern parameter will limit the table
names to those matching Pattern.

For SQL servers, set SystemTables to True to obtain system tables in addition to user
tables. For desktop (non-SQL) databases, set Extensions to True to include file-name
extensions in the table names.

Example

Session.GetTableNames(‘DBDEMOS‘, False, False, MyStringList);

See also
Session variable

GetText method

Applies to
TStrings, TStringList objects
Declaration

function GetText: PChar;

The GetText method returns a string list as a null-terminated string. GetText is useful
when working with components that contain blocks of text made up of more than one
string. For example, a memo component (TMemo) can contain multiple strings. When
you want to return the entire list of strings in a memo component all at once, use the
GetText method.

Example
The following code returns the text in the items of an outline to one variable called
MyVar.

MyVar := Outline1.Lines.GetText;

See also
SetText method

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 357

G e t T e x t B u f m e t h o d+
+
+
+
+
+
G

GetTextBuf method

Applies to
All controls; TClipboard object

Declaration

function GetTextBuf(Buffer: PChar; BufSize: Integer): Integer;

The GetTextBuf method retrieves the control’s text and copies it into the buffer pointed
to by Buffer, up to the number of characters given by BufSize, and returns the number of
characters copied.

The resulting text in Buffer is a null-terminated string.

To find out how many characters the buffer needs to hold the entire text, you can call the
GetTextLen method before calling GetTextBuf.

Usually you need to use GetTextBuf and the corresponding SetTextBuf only when
working with strings longer than 255 characters. Because Object Pascal strings have a
limit of 255 characters, such properties as Text for an edit box, Items for a list box, and
Lines for a memo control only allow you to work with strings up to 255 characters.
GetTextBuf and SetTextBuf use null-terminated strings that can be up to 64K in length.

Example
This example copies the text in an edit box into a null-terminated string, and puts this
string in another edit box when the user clicks the button on the form.

procedure TForm1.Button1Click(Sender: TObject);
var
 Buffer: PChar;
 Size: Byte;
begin
 Size := Edit1.GetTextLen; {Get length of string in Edit1}
 Inc(Size); {Add room for null character}
 GetMem(Buffer, Size); {Creates Buffer dynamic variable}
 Edit1.GetTextBuf(Buffer,Size); {Puts Edit1.Text into Buffer}
 Edit2.Text := StrPas(Buffer); {Converts Buffer to a Pascal-style string]
 FreeMem(Buffer, Size); {Frees memory allocated to Buffer}
end;

See also
GetSelTextBuf method, SetTextBuf method

GetTextItem method

Applies to
TOutline component

358 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

G e t T e x t L e n m e t h o d

Declaration

function GetTextItem(Value: string): Longint;

The GetTextItem method returns the Index value of the first outline item that contains the
string specified in the Value parameter in its Text property. Use GetTextItem when you
want to know which outline item is identified by a string.

Example
The following code returns the index of the outline item that contains the text ’Perry’ to
a variable called PerryIndex.

PerryIndex := Outline1.GetTextItem(’Perry’);

See also
GetDataItem method, GetItem method

GetTextLen method

Applies to
All controls

Declaration

function GetTextLen: Integer;

The GetTextLen method returns the length of the control’s text. The most common use of
GetTextLen is to find the size needed for a text buffer in the GetTextBuf method.

Example
This example uses two edit boxes and a button on a form. When the user clicks the
button, the length of the text in the Edit1 is displayed in Edit2.

procedure TForm1.Button1Click(Sender: TObject);
var
 Size: Integer;
begin
 Size := Edit1.GetTextLen;
 Edit2.Text := ('Edit1 has ' + IntToStr(Size) + 'characters in it');
end;

See also
GetTextBuf method

Glyph property

Applies to
TBitBtn, TSpeedButton controls

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 359

G l y p h p r o p e r t y+
+
+
+
+
+
G

Declaration

property Glyph: TBitmap;

The Glyph property specifies the bitmap that appears on the selected bitmap button or
on a speed button. Use the Open dialog box that appears as an editor in the Object
Inspector to choose a bitmap file (with a .BMP extension) to use on the button, or specify
a bitmap file at run time.

You can provide up to four images on a bitmap button or speed button with a single
bitmap. Delphi then displays one of these images depending on the state of the button.

If only one image is present, Delphi attempts to represent the other states by altering the
image slightly for the different states, although the stay down state is always the same as
the up state. If you aren’t satisfied with the results, you can provide one or more
additional images in the bitmap.

If you have multiple images in a bitmap, you must specify the number of images that
are in the bitmap with the NumGlyphs property. All images must be the same size and
next to each other in a horizontal row.

Example
This example uses a bitmap button on a form. When the application runs and the form is
created, a bitmap is placed on the bitmap button.

procedure TForm1.FormCreate(Sender: TObject);
begin
 BitBtn1.Glyph.LoadFromFile('TARTAN.BMP');
end;

These lines of code load a four-image bitmap into the Glyph property of a speed button,
and specify the appropriate value for the NumGlyphs property:

SpeedButton1.Glyph.LoadFromFile(‘MYBITMAP.BMP’);
SpeedButton1.NumGlyphs := 4;

See also
Kind property, Layout property, Margin property, ModalResult property, NumGlyphs
property, Spacing property, TBitmap object

Image position
in bitmap Button state Description

First Up This image appears when the button is unselected. If no other
images exist in the bitmap, Delphi also uses this image for all
other images.

Second Disabled This image usually appears dimmed to indicate that the button
can’t be selected.

Third Down This image appears when a button is clicked. The up state image
reappears when the user releases the mouse button.

Fourth Stay down This image appears when a button stays down indicating that it
remains selected. (This fourth state applies only to speed
buttons.)

360 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

G o t o B o o k m a r k m e t h o d

GotoBookmark method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure GotoBookmark(Bookmark: TBookmark);

The GotoBookmark method moves the cursor to the record corresponding to the
bookmark obtained through a call to GetBookmark. While you must eventually call the
FreeBookmark method to release the resources reserved during the call to GetBookmark,
you are free to make as many calls to GotoBookmark as you wish before calling
FreeBookmark. If the Bookmark parameter is nil, GotoBookmark does nothing.

Example

var MyBookmark: TBookmark;
...
with Table1 do
begin

{ Save the current record position in MyBookmark }
MyBookmark := GetBookMark;
... { Other code here }

{ Return to the record associated with MyBookmark }
GotoBookMark(MyBookMark);

{ Release the resources for MyBookmark }
FreeBookmark(MyBookmark);
end;

GotoCurrent method

Applies to
TTable component

Declaration

procedure GotoCurrent(Table: TTable);

Use the GotoCurrent method to synchronize the positions of two TTable components that
use the same database table. GotoCurrent changes the position of the table to match that
of the Table parameter.

Note Both tables must have the same DatabaseName and TableName or a “table mismatch”
exception will be raised.

Example

Table1.GotoCurrent(Table2);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 361

G o t o K e y m e t h o d+
+
+
+
+
+
G

GotoKey method

Applies to
TTable component

Declaration

function GotoKey: Boolean;

The GotoKey method is used with the SetKey or EditKey method to move to a specific
record in a TTable. Call SetKey to put the table in SetKey state. In SetKey state,
assignments to fields indicate values to search for in indexed fields. GoToKey then moves
the cursor to the first row in the table that matches those field values.

GoToKey is a Boolean function that moves the cursor and returns True if the search is
successful. If the search is unsuccessful, it returns False and does not change the position
of the cursor.

Note If you want to search on a subset of fields in a multiple-field key, you must set the
KeyFieldCount property to the number of fields on which you want to search.

Example

with Table1 do
begin
EditKey;
FieldByName(‘CustNo’).AsFloat := 610;
GotoKey;
end;

See also
FindKey method

GotoNearest method

Applies to
TTable component

Declaration

procedure GotoNearest;

The GotoNearest method is used with the EditKey or SetKey method to move to a record
in the dataset whose index fields are greater than or equal to the IndexFields property.
Call SetKey first to put the TTable in SetKey state, modify the fields of the key, and finally
call GotoNearest to perform the move.

The KeyExclusive property indicates whether a search will position the cursor on or after
the specified record being searched for.

362 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

G o t o X Y p r o c e d u r e

Note You do not have to assign a value for each field in the index key. Any unassigned field
will use a NULL value.

The search begins at the first record in the table, not at the current cursor position.

Example

with Table1 do
begin
SetKey;
FieldByName(‘State’).AsString := ‘CA‘;
FieldByName(‘City’).AsString := ‘Santa‘;
GotoNearest;
end;

See also
GotoKey method, KeyFieldCount property, SetKey method

GotoXY procedure WinCrt

Declaration

procedure GotoXY(X, Y: Byte);

The GotoXY procedure moves the cursor to specified coordinates (X,Y) within the
virtual screen.

The upper left corner of the virtual screen corresponds to (1, 1).

Use CursorTo instead of GotoXY when developing new applications.

Example
uses WinCrt;

var
 C: PChar;

begin
 GotoXY(10,10);
 Writeln('Hello');
end;

See also
CursorTo procedure, WhereX function, WhereY function

Graphic property

Applies to
TPicture object

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 363

G r a p h i c E x t e n s i o n f u n c t i o n+
+
+
+
+
+
G

Declaration

property Graphic: TGraphic;

The Graphic property specifies the graphic that the picture contains. The graphic can be a
bitmap, icon, or metafile.

Example
The following code draws the graphic in Picture1 in the top-left corner of the canvas of
Form1.

Form1.Canvas.Draw(0,0 Picture1.Graphic);

See also
Bitmap property, Icon property, Metafile property

GraphicExtension function Graphics

Declaration

function GraphicExtension(GraphicClass: TGraphicClass): string;

The GraphicExtension function returns the file-name extension of the graphics object
specified by the GraphicClass parameter. The TGraphicClass type is simply a container
class for the TBitmap, TGraphic, TIcon, and TMetafile objects. These are the file extensions
returned for each graphics class:

Example
The following code tests to determine if the graphic in Picture1 is an icon. If so, the
minimized icon of Form1 is set to the graphic.

if GraphicExtension(Picture1.Graphic)=’.ICO’ then
Form1.Icon := Picture1.Graphic;

See also
GraphicFilter function

GraphicFilter function Graphics

Declaration

function GraphicFilter(GraphicClass: TGraphicClass): string;

Graphic class File extension returned

TGraphic .BMP, .ICO, or .WFM
TBitmap .BMP
TIcon .ICO
TMetafile .WFM

364 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

G r i d H e i g h t p r o p e r t y

The GraphicFilter function returns a filter string compatible with the Filter property value
of an Open or Save dialog box. The GraphicClass parameter can be one of these values:
TBitmap, TGraphic, TIcon, or TMetafile. These are the strings that are returned for each
class:

Example
This code displays an Open dialog box with the TBitmap filter string in the List Files of
Type combo box:

OpenDialog1.DefaultExt := GraphicExtension(TBitmap);
OpenDialog1.Filter := GraphicFilter(TBitmap);
if OpenDialog1.Execute then
...

See also
GraphicExtension function, TOpenDialog component, TSaveDialog component

GridHeight property

Applies to
TDrawGrid, TStringGrid components

Declaration

property GridHeight: Integer;

Run-time and read only. The GridHeight property is the height of the grid in pixels. If the
grid is too tall to be fully displayed causing the user to scroll to see its entire contents, the
value of GridHeight is the same as the ClientHeight property value for the grid.

Example
This example uses a string grid and a label on a form. The height of the grid appears in
the caption of the label.

procedure TForm1.FormCreate(Sender: TObject);
var
 ARow, ACol: Integer;
begin
 with StringGrid1 do
 begin
 for ARow := 1 to RowCount - 1 do

Graphic class Filter string returned

TBitmap Bitmaps (*.BMP)|*.BMP
TIcon Icons (*.ICO)|*.ICO
TMetafile Metafiles (*.WMF)|*.WMF
TGraphic All (*.BMP; *.WMF; *.ICO)|*.BMP; *.WMF; *.ICO|Bitmaps (*.BMP|*.BMP|Metafiles

(*.WFM|*.WMF|Icons (*.ICO)|*.ICO

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 365

G r i d L i n e W i d t h p r o p e r t y+
+
+
+
+
+
G

 for ACol := 1 to ColCount - 1 do
 Cells[ARow, ACol] := 'Delphi';
 end;
 Label1.Caption := IntToStr(StringGrid1.GridHeight) + ' pixels';
end;

See also
GridWidth property

GridLineWidth property

Applies to
TDrawGrid, TStringGrid components

Declaration

property GridLineWidth: Integer;

The GridLineWidth property determines the width of the lines between the cells in the
grid. The default value is 1 pixel. Larger values create heavier lines.

Example
This example includes a draw grid on a form. When the application runs and the form is
created, the width of the lines on the draw grid changes if the default column width of
the grid is over 90 pixels wide:

procedure TForm1.FormCreate(Sender: TObject);
begin
 with DrawGrid1 do
 begin
 if DefaultColWidth > 90 then
 GridLineWidth := 2
 else
 GridLineWidth := 1;
 end;
end;

See also
ColWidths property, DefaultColWidth property, GridHeight property, GridWidth property,
RowHeights property

GridWidth property

Applies to
TDrawGrid, TStringGrid components

366 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

G r o u p I n d e x p r o p e r t y

Declaration

property GridWidth: Integer;

Run-time and read only. The GridWidth property is the width of the grid in pixels. If the
grid is too wide to be fully displayed causing the user to scroll it to see its entire
contents, the value of GridWidth is the same as the ClientWidth property value for the
grid.

Example
This example uses a string grid and a label on a form. The label reports the width of the
grid.

procedure TForm1.FormCreate(Sender: TObject);
var
 ARow, ACol: Integer;
begin
 with StringGrid1 do
 begin
 for ARow := 1 to RowCount - 1 do
 for ACol := 1 to ColCount - 1 do
 Cells[ARow, ACol] := 'Pascal';
 end;
 Label1.Caption := IntToStr(StringGrid1.GridWidth) + ' pixels';
end;

See also
GridHeight property

GroupIndex property

Applies to
TMenuItem, TSpeedButton components

For speed button controls

Declaration

property GroupIndex: Integer;

The GroupIndex property determines which speed buttons work together as a group.

By default, speed buttons have a GroupIndex property value of 0, indicating that they do
not belong to a group. When the user clicks such a speed button, the button appears
“pressed,” or in its down state, then the button returns to its normal up state when the
user releases the mouse button.

Speed buttons with the same GroupIndex property value (other than 0), work together as
a group. When the user clicks one of these speed buttons, it remains “pressed,” or in its

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 367

G r o u p I n d e x p r o p e r t y+
+
+
+
+
+
G

down state, until the user clicks another speed button belonging to the same group.
Speed buttons used in this way can present mutually exclusive choices to the user.

Example
This code assures that the three speed buttons work together as a group:

SpeedButton1.GroupIndex := 1;
SpeedButton2.GroupIndex := 1;
SpeedButton3.GroupIndex := 1;

See also
AllowAllUp property, Down property

For menu items

Declaration

property GroupIndex: Byte;

If your application has multiple forms, you’ll probably want your application’s main
menu to change as different forms become active. The alternative is for each form to
display its own menu within itself. MDI applications always merge the menus of child
windows with the main menu of the parent window. By using the GroupIndex property
for menu items, you can determine how menus are merged. You can choose to replace
or insert menu items in a menu bar.

Each menu item has a GroupIndex property value. By default, all menu items in a menu
bar have the same GroupIndex value, unless you explicitly change them. Each successive
menu item in a menu bar must have a GroupIndex value equal to or greater than the
previous menu item.

Replacing menu items in a menu bar
If a menu item in a menu bar on a form other than the main form has the same
GroupIndex value as a menu item in a menu bar on the main form, the menu item
replaces the menu item in the menu bar of the main form when that form becomes
active.

If multiple menu items in the menu bar on the main form have the same GroupIndex
value, and all menu items of another form also have the same GroupIndex value, then the
other form’s menu items replace all menu items on the menu bar on the main form.

For example, imagine that the menu bar on Form1 has three items: One, Two, and Three,
and all have a GroupIndex value of 0. If Form2 has a menu bar with one menu item, Four,
with a GroupIndex value of 0, when Form2 becomes active, only the menu item Four
appears in the menu bar on Form1.

Inserting menu items in a menu bar
If one or more menu items in a menu bar on a form that isn’t the main form have a
GroupIndex value greater than a menu item in the menu bar on the main form, those
menu items are inserted into the menu bar on the main form when the menus merge. If

368 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

H a l t p r o c e d u r e

the item’s GroupIndex value is greater than all other GroupIndex values in the main
form’s menu bar, the item appears at the end of the menu. If the GroupIndex value is
between other GroupIndex values in the menu bar on the main form, the menu item
appears between other menu items, depending on the value.

For example, an item with a GroupIndex value of 2 would be inserted between items
with GroupIndex values of 1 and 3. An item with a GroupIndex value of 4 would appear
after all the other items.

Note The GroupIndex value must be different from all others in the menu bar on the main
form, or else the new menu item will replace one or more menu items with the same
GroupIndex value, which you may or may not want to do.

OLE application menus
When you activate an object created by an OLE 2.0 server application, the server might
try to merge its menus with the menus of your container application, depending on the
OLE server application. The GroupIndex property of each of the container application’s
menus determines where the merging menu items appear in the container’s menu bar.
Merged menu items from the OLE server might replace those on the main menu bar, or
they might be inserted beside existing container application menu items.

Note See the documentation for the OLE server for information about whether it attempts
menu merge during in-place activation.

The OLE server can merge up to three groups of menu items. Each group is
distinguished by a unique group index and can contain any number of menu
commands. The following table summarizes the menu item groups that the OLE server
application can merge:

Any menu items in your container application with values of 1, 3, or 5 for their
GroupIndex properties are replaced by menu items with corresponding index values
from the OLE server application. The menu items from your OLE container with a
GroupIndex value other than 1, 3, or 5 won’t be replaced by menus from the server.

See also
AutoMerge property, FormStyle property

Halt procedure System

Declaration

procedure Halt [(Exitcode: Word)];

Group Index Description

Edit 1 Menu item(s) from the server for editing the active OLE object
View 3 Menu item(s) from the server for modifying the view of the OLE object.
Help 5 Menu item(s) from the server for accessing the server’s online Help

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 369

H a n d l e p r o p e r t y+
+
+
+
+
+
+
H

The Halt procedure stops the program and returns to the operating system. Exitcode is
an optional expression that specifies the exit code of your program.

Example

begin
 if 1 = 1 then
 begin
 if 2 = 2 then
 begin
 if 3 = 3 then
 begin
 Halt(1); { Halt right here! }
 end;
 end;
 end;
 Canvas.TextOut(10, 10, 'This will not be executed');
 end;

See also
Exit procedure, RunError procedure

Handle property

Applies to
All windowed controls; TApplication, TBitmap, TBrush, TCanvas, TFont, TIcon, TMetafile,
TPen, TPrinter objects; TDatabase, TFindDialog, TMainMenu, TMenuItem, TPopupMenu,
TQuery, TSession, TStoredProc, TTable components

For graphics objects

Declaration

property Handle: HBitmap; {for TBitmap objects}

property Handle: HBrush; {for TBrush objects}

property Handle: HDC; {for TCanvas objects}

property Handle: HFont; {for TFont objects}

property Handle: HIcon; {for TIcon objects}

property Handle: HMetafile; {for TMetafile objects}

property Handle: HPen; {for TPen objects}

The Handle property lets you access the Windows GDI object handle, so you can access
the GDI object. If you need to use a Windows API function that requires the handle of a
pen object, you could pass the handle from the Handle property of a TPen object.

370 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

H a n d l e p r o p e r t y

For applications, Find and Replace dialog boxes, windowed controls

Declaration

property Handle: HWND;

Read and run-time only. The Handle property gives you access to window handle of the
application, the Find and Replace dialog boxes, and all controls in case you need to call a
Windows API function that requires a handle.

Example
The following code uses the Windows API function ShowWindow to display Form2 as an
icon, but does not activate it.

ShowWindow(Form2.Handle, SW_SHOWWINMINNOACTIVE);

See also
HandleAllocated method, HandleNeeded method

For menu items, main menus, and pop-up menus

Declaration

property Handle: HMENU;

Read and run-time only. The Handle property lets you access the menu or menu item’s
window handle, so you can call a Windows API function that requires a menu handle.

Example
The following code uses the Windows API function HiliteMenuItem to highlight the first
menu item in MainMenu1 on Form1.

HiliteMenuItem(Form1.Handle, MainMenu1.Handle, 0, MF_BYPOSITION+MF_HILITE);

For printer objects

Declaration

property Handle: HDC;

Read and run-time only. The Handle property give you access to the handle of the
printer object.

For sessions

Declaration

property Handle: HDBISES;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 371

H a n d l e A l l o c a t e d m e t h o d+
+
+
+
+
+
+
H

Run-time and read only. The Handle property allows you to make direct calls to the
Borland Database Engine using this handle to the session (TSession). Under most
circumstances you should not need to use this property, unless your application
requires some functionality not encapsulated in the VCL.

For tables, queries, and stored procedures

Declaration

property Handle: HDBICur;

Run-time and read only. The Handle property enables an application to make direct calls
to the Borland Database Engine API using this handle of a dataset component.

Under most circumstances you should not need to use this property, unless your
application requires some functionality not encapsulated in the VCL.

For databases

Declaration

property Handle: HDBIDB;

Run-time and read only. Use the Handle property to make direct calls to the Borland
Database Engine (BDE) API that require a database handle. Under most circumstances
you should not need to use this property, unless your application requires some
functionality not encapsulated in the VCL.

HandleAllocated method

Applies to
All controls

Declaration

function HandleAllocated: Boolean;

The HandleAllocated method returns True if a window handle for the control exists. If no
window handle exists, HandleAllocated returns False. If you query the Handle property of
a control directly, a handle is automatically created if it didn’t previously exist.
Therefore, you should call the HandleAllocated method if you don’t want a handle
created automatically for the control, but simply want to know if one exists.

Example
The following code displays the value of the handle of GroupBox1 if it exists. If not, it
displays a message.

var
TheValue: string;

372 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

H a n d l e E x c e p t i o n m e t h o d

begin
if GroupBox1.HandleAllocated then

TheValue := IntToStr(GroupBox1.Handle)
else TheValue := ’Handle not allocated.’;
Label1.Caption := TheValue;

end;

See also
HandleNeeded method

HandleException method

Applies to
TApplication component

Declaration

procedure HandleException(Sender: TObject);

The HandleException method handles the exceptions for the application. If an exception
passes through all the try blocks in your application code, your application
automatically calls the HandleException method, which displays a dialog box indicating
an error occurred. To assign other exception handling code for the application, use the
OnException event handler.

Example
The following code uses the default error handling:

try
{ Some code that may produce an exception goes here }

except
Application.HandleException(Self);

end;

See also
Application variable, OnException event

HandleNeeded method

Applies to
All controls

Declaration

procedure HandleNeeded;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 373

H a s F o r m a t m e t h o d+
+
+
+
+
+
+
H

The HandleNeeded method creates a window handle for the control if one doesn’t
already exist.

Example
The following code creates a window handle for Button1:

Button1.HandleNeeded;

See also
Handle property, HandleAllocated method

HasFormat method

Applies to
TClipboard object

Declaration

procedure HasFormat(Format: Word): Boolean;

The HasFormat method determines if the Clipboard object contains a particular format.
If HasFormat is True, the format is present; if False, the format is absent. The Clipboard
object keeps a list of available formats in the Formats array property.

These are the possible values of the Format parameter:

Example
This example uses a button on a form. When the user clicks the button, a message box
appears if there is no text on the Clipboard; otherwise, you don’t see anything happen.

procedure TForm1.Button1Click(Sender: TObject);
begin
if not Clipboard.HasFormat(CF_TEXT) then

 MessageDlg('There is no text on the Clipboard', mtInformation,
 [mbOK],0);
end;

See also
Assign method, FormatCount property, Formats property, GetComponent method,
SetComponent method

Value Meaning

CF_TEXT Text with each line ending with a CR-LF combination. A null character identifies
the end of the text.

CF_BITMAP A Windows bitmap graphic.
CF_METAFILE A Windows metafile graphic.
CF_PICTURE An object of type TPicture.
CF_OBJECT Any persistent object.

374 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

H a s I t e m s p r o p e r t y

HasItems property

Applies to
TOutlineNode object

Declaration

property HasItems: Boolean;

Run-time and read only. The HasItems property determines if an outline item has any
subitems. Subitems appear below and indented from their parent item when the parent
is expanded. The Index value of the parent item is one less than the Index value of its first
subitem. HasItems is True if the item has subitems, or False if the item has no subitems.

Example
The following code expands the selected item of Outline1 if it has subitems:

with Outline1[Outline1.SelectedItem] do
if HasItems then Expand;

See also
GetFirstChild method, GetLastChild method, GetNextChild method, GetPrevChild method

Heap variables System

Declaration

var HeapAllocFlags: Word;

var HeapBlock: Word;

var HearLimit: Word;

var HeapError: Pointer;

var HeapCheck: Pointer;

The heap manager uses the variables HeapList, HeapLimit, HeapBlock, HeapError,
HeapCheck to implement dynamic memory allocation routines.

Heap variable Description

HeapAllocFlags Defines the attribute flags passed to GlobalAlloc when the heap manager allocates
global blocks. Used with gmem_Moveable.

HeapError Contains the address of a heap-error function that is called whenever the heap
manager cannot complete an allocation request.

HeapLimit Defines the threshold between small and large heap blocks. The default value is
1024.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 375

H e i g h t p r o p e r t y+
+
+
+
+
+
+
H

You should have no reason to change the values of HeapLimit and HeapBlock, but should
you decide to do so, make sure that HeapBlock is at least 4 times the size of HeapLimit.

HeapError is a pointer that points to a function with this header:

function HeapFunc (Size: Word): Integer; far;

Install the heap-error function by assigning its address to the HeapError variable as
follows:

HeapError := @HeapFunc;

The heap-error function gets called whenever a call to New or GetMem cannot complete
the request.

The Size parameter contains the size of the block that could not be allocated, and the
heap error function should attempt to free a block of a least that size.

Before calling the heap-error function, the heap manager attempts to allocate the block
within its sub-allocation free space as well as through a direct call to the Windows
GlobalAlloc function.

The HeapError function returns

• 0 to indicate failure, and causes a run-time error to occur immediately

• 1 to indicate failure, and causes New or GetMem to return a nil pointer

• 2 to indicate success, and causes a retry (which could also cause another call to the
heap error function)

See also
GlobalAlloc function, GlobalLock function

Height property

Applies to
All controls; TBitmap, TFont, TGraphic, TIcon, TMetafile, TPicture objects; TForm, TScreen
components

Declaration

property Height: Integer;

HeapBlock Defines the size the heap manager uses when allocating blocks assigned to the sub-
allocator. The default value is 8192.

HeapCheck Contains the address of the heap integrity checking hook. If this pointer is non-nil,
the allocator/deallocator will call this each time a block is allocated and a block is
freed. It is called before the actual allocation or deallocation occurs.

Heap variable Description

376 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

H e i g h t p r o p e r t y

For controls, forms, and graphics

The Height property of a control is the vertical size of the control, form, or graphic in
pixels.

Example
The following code doubles the height of a list box control:

ListBox1.Height := ListBox1.Height * 2;

See also
ClientHeight property, SetBounds method, Width property

For the screen

Read and run-time only. The Height property of a screen component contains the
vertical size of the screen device in pixels.

Example
To following code sets a form’s height to half the height of the screen:

Form1.Height := Screen.Height div 2;

See also
Screen variable, Width property

For fonts

The Height property is the height of the font in pixels. It is the size of the font plus the
font’s internal leading. If you are concerned with the size of the font on the screen—the
number of pixels the font needs—use the Height property. If you want to specify a font‘s
size using points, use the Size property instead.

Delphi calculates Height using this formula:

Font.Height = -Font.Size * Font.PixelsPerInch / 72

Therefore, whenever you enter a point size in the Height property, you’ll notice the Size
property changes to a negative value. Conversely, if you enter a positive Size value, the
Height property value changes to a negative value.

Example
This example uses button and a label on a form. When the user clicks the button, the
height of the font changes to 36 pixels on the screen:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Font.Height := 36;
end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 377

H e l p C o m m a n d m e t h o d+
+
+
+
+
+
+
H

See also
Font property, PixelsPerInch property, Size property

HelpCommand method

Applies to
TApplication component

Declaration

function HelpCommand(Command: Word; Data: Longint): Boolean;

The HelpCommand method gives you quick access to any of the Help commands in the
WinHelp API (application programming interface). For information about the
commands you can call and the data passed to them, see the WinHelp topic in the Help
system.

Example
This example uses a bitmap button on a form. When the user clicks the button, the Help
contents screen of the specified Help file appears.

procedure TForm1.BitBtn1Click(Sender: TObject);
begin
 Application.HelpFile := 'MYHELP.HLP';
 Application.HelpCommand(HELP_CONTENTS, 0);
end;

See also
Application variable, HelpContext method, HelpContext property, HelpFile property,
HelpJump method

HelpContext method

Applies to
TApplication component

Declaration

function HelpContext(Context: THelpContext): Boolean;

The HelpContext method calls WinHelp, the Windows Help system program, if the
HelpFile property is assigned a file to use for Help. HelpContext passes the file name
contained in HelpFile and the context number passed in Context parameter. For example,
if you specify the Context value as 714, the HelpContext method displays the screen with
the context help ID of 714 in the Help file.

HelpContext returns False if HelpFile is an empty string, meaning the application has no
Help file assigned. In all other cases, HelpContext returns True.

378 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

H e l p C o n t e x t p r o p e r t y

Example
This example uses a bitmap button on a form. When the user clicks the button, the
screen with the context number of 714 in the DATA.HLP Help file appears:

procedure TForm1.BitBtn1Click(Sender: TObject);
begin
 Application.HelpFile := 'DATA.HLP';
 Application.HelpContext(714);
end;

See also
Application variable, HelpFile property, OnHelp event

HelpContext property

Applies to
All controls; Exception, TColorDialog, TFindDialog, TFontDialog, TMenuItem, TPopupMenu,
TOpenDialog, TPrintDialog, TPrinterSetupDialog, TReplaceDialog, TSaveDialog
components

Declaration

property HelpContext: THelpContext;

The HelpContext property provides a context number for use in calling context-sensitive
online Help. Each screen in the Help system should have a unique context number.
When a component is selected in the application, pressing F1 displays a Help screen.
Which Help screen appears depends on the value of the HelpContext property.

Example
The following code associates a Help file with the application, and makes the screen
with a context number of 7 the context-sensitive Help screen for the Edit1 edit box:

procedure TForm1.FormActivate(Sender: TObject);
begin
Application.HelpFile := ’MYHELP.HLP’;
Edit1.HelpContext := 7;

end;

See also
HelpContext method, HelpFile property, HelpJump method, OnHelp event

HelpFile property

Applies to
TApplication component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 379

H e l p J u m p m e t h o d+
+
+
+
+
+
+
H

Declaration

property HelpFile: string;

Run-time only. The HelpFile property holds the name of the file the application uses to
display online Help. By default, HelpFile is a null string, and the application’s Help
method ignores attempts to display Help. If HelpFile contains anything, the HelpContext
method passes it to the Windows Help system as the name of the file to use for Help.

Example
To specify the MYHELP.HLP file as the Help file for your application, use this line of
code:

Application.HelpFile := ‘MYHELP.HLP';

See also
HelpContext method

HelpJump method

Applies to
TApplication component

Declaration

function HelpJump(const JumpID: string): Boolean;

The HelpJump method calls WinHelp, the Windows Help system program, if the HelpFile
property is assigned a file to use for Help. HelpJump passes the file name contained in
HelpFile and the context string specified in the JumpID parameter. For example, if you
specify the JumpID value as ‘vclDefaultProperty', the HelpJump method displays the
screen in the Help file that has the context string ‘vclDefaultProperty'.

HelpJump returns False if HelpFile is an empty string, meaning the application has no
Help file assigned. In all other cases, HelpJump returns True.

Example
This example uses a bitmap button on a form. When the user clicks the button, the Help
screen describing the Default property in the DELPHI.HLP file appears, because the
Default property screen has the a JumpID string of ‘vclDefaultProperty'.

procedure TForm1.BitBtn1Click(Sender: TObject);
begin
 Application.HelpFile := 'DELPHI.HLP';
 Application.HelpJump('vclDefaultProperty');
end;

See also
Application variable, HelpCommand method, HelpContext method, HelpContext property,
HelpFile property, OnHelp event

380 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

H i f u n c t i o n

Hi function System

Declaration

function Hi(X): Byte;

The Hi function returns the high-order byte of X as an unsigned value. X is an
expression of type Integer or Word.

Example

var B: Byte;
begin
 B := Hi($1234); { $12 }
end;

See also
Lo function, Swap function

Hide method

Applies to
TForm component, All controls

Declaration

procedure Hide;

The Hide method makes a form or control invisible by setting the Visible property of the
form or control to False. Although a form or control that is hidden is not visible, you can
still set the properties of the form or control, or call its methods.

Example
This code uses a button and a timer on a form. When the user clicks the button, the form
disappears for the period of time specified in the Interval property of the timer control,
then the form reappears:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Timer1.Enabled := True;
 Hide;
end;

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 Visible := True;
 Timer1.Enabled := False;
end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 381

H i d e S e l e c t i o n p r o p e r t y+
+
+
+
+
+
+
H

See also
Close method, Show method, ShowModal method

HideSelection property

Applies to
TEdit, TMemo components

Declaration

property HideSelection: Boolean;

The HideSelection property determines whether text that is selected in an edit or memo
remains selected when the focus shifts to another control. If True, the text is no longer
selected until the focus returns to the control. If False, the text remains selected. The
default value is True.

Example
This example uses an edit box and a memo on a form. When the user jumps from one
control to the other, selected text remains selected in the memo, but not in the edit box.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Edit1.HideSelection := True;
 Memo1.HideSelection := False;
end;

See also
AutoSelect property

High function System

Declaration

function High(X);

The High function returns the highest value in the range of the argument.

The result type is X, or the index type of X.

X is either a type identifier or a variable reference. The type denoted by X, or the type of
the variable denoted by X, must be one of the following types.

For this type High returns

Ordinal type The highest value in the range of the type
Array type The highest value within the range of the index type of the array
String type The declared size of the string

382 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

H I n s t a n c e a n d H P r e v I n s t v a r i a b l e s

Example

function Sum(var X: array of Double): Double;
var
 I: Word;
 S: Double;
begin
 S := 0; { Note that open array index range is always zero-based. }
 for I := 0 to High(X) do S := S + X[I];
 Sum := S;
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 List1: array[0..3] of Double;
 List2: array[5..17] of Double;
 X: Word;
 S, TempStr: string;
begin
for X := Low(List1) to High(List1) do

List1[X] := X * 3.4;
for X := Low(List2) to High(List2) do
List2[X] := X * 0.0123;

Str(Sum(List1):4:2, S);
S := 'Sum of List1: ' + S + #13#10;
S := S + 'Sum of List2: ';
Str(Sum(List2):4:2, TempStr);
S := S + TempStr;
MessageDlg(S, mtInformation, [mbOk], 0);

end;

See also
Low function

HInstance and HPrevInst variables System

Declaration

var HInstance: Word;

The HInstance variable contains the instance handle of the application or library as
provided by the Windows environment.

Open array The value, of type Word, giving the number of elements in the actual parameter
minus one

String parameter The value, of type Word, giving the number of elements in the actual parameter
minus one

For this type High returns

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 383

H i n t p r o p e r t y+
+
+
+
+
+
+
H

Hint property

Applies to
All controls; TApplication, TMenuItem components

Declaration

property Hint: string;

Description

The Hint property is the text string that can appear when the OnHint event occurs,
which happens when the user moves the mouse pointer over a control or menu item.
The code within the OnHint event handler determines how the string is displayed. A
common use of an OnHint event handler is to display the hint as the caption of a panel
component that is being used as a status bar.

You can have a Help Hint, a box containing help text, appear for a control when the user
moves the mouse pointer over the control and pauses momentarily. This is how:

1 Specify a Hint value for each control you want a Help Hint to appear for.
2 Set the ShowHint property of each control to True.
3 At run time, set the value of application’s ShowHint property to True.

You can specify a hint to be used for both for a Help Hint box and in an OnHint handler
(as the application’s Hint property value) by specifying two values separated by a |
character (the “or” or “pipe” symbol). For example,

Edit1.Hint := ’Name|Enter Name in the edit box’;

The ’Name’ string appears in the Help Hint box, and the ’Enter full name’ string appears
as specified in the OnHint event handler.

If you specify just one value, it can be used both as a Help Hint and as the Hint property
of the application. If the application’s ShowHint property is False, the Help Hint won’t
appear, but the other hint still will.

If a control has no Hint value specified, but its parent control does, the control uses the
Hint value of the parent control as long as the control’s ShowHint property is True.

Example
This example uses an edit box and a list box on a form. Items are added to the list box
and a Help Hint is assigned to both controls. The last statement enables the Help Hints
for the entire application.

procedure TForm1.FormCreate(Sender: TObject);
var
 I: Integer;
begin
 Edit1.Hint := 'Enter your name';
 Edit1.ShowHint := True;
 with ListBox1 do
 begin

384 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

H i n t C o l o r p r o p e r t y

 for I := 1 to 10 do
 Items.Add('Item ' + IntToStr(I));
 Hint := 'Select an item';
 ShowHint := True;
 end;
 Application.ShowHint := True;
end;

To see a example that displays the hints of controls in some place other than in a Help
Hint box, see the OnHint example.

See also
GetLongHint function, GetShortHint function, HintColor property, HintPause property,
ShowHint property for controls, ShowHint property for the application

HintColor property

Applies to
TApplication component

Declaration

property HintColor: TColor

Description

Run time only. The HintColor property determines the color of the hint boxes for the
Help Hints of the controls in the application. For a table of possible color values, see the
Color property.

Example
This example includes an control that has a Hint property value and has its ShowHint
property value set to True. When the application runs and the user places the mouse
cursor over the control, a Help Hint appears for the control in an aqua hint box after a
delay of 1000 milliseconds:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.ShowHint := True;
 Application.HintColor := clAqua;
 Application.HintPause := 1000;
end;

See also
Application variable, Hint property, HintPause property, ShowHint property, TColor type

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 385

H i n t P a u s e p r o p e r t y+
+
+
+
+
+
+
H

HintPause property

Applies to
TApplication component

Declaration

property HintPause: Integer;

The HintPause property determines the time interval that passes when the user places
the mouse pointer on a control before the control’s Help Hint specified in its Hint
property appears. The interval is in milliseconds. The default value is 800 milliseconds.

Example
This example includes an control that has a Hint property value and has its ShowHint
property value set to True. When the application runs and the user places the mouse
cursor over the control, a Help Hint appears for the control in an aqua hint box after a
delay of 1000 milliseconds:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.ShowHint := True;
 Application.HintColor := clAqua;
 Application.HintPause := 1000;
end;

See also
Application variable, Hint property, HintColor property, ShowHint property

Hints property

Applies to
TDBNavigator component

Declaration

property Hints: TStrings;

The Hints property allows you to customize the Help Hints for the buttons on the
database navigator. Each hint is a string. The first string in the string object becomes the
Help Hint for the first button on the navigator. The seventh hint becomes the Help Hint
for the seventh button (the Edit button).

If you don’t want to change the Help Hint for every button, enter an empty string (‘’) for
the Help Hint you want to stay the same, or simply leave the line blank if you are using
the string list property editor of the Object Inspector for the Hints property.

386 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

H i s t o r y L i s t p r o p e r t y

Example
This example uses a database navigator and a button on a form. When the user clicks the
button, the Help Hints for the navigator are modified.

procedure TForm1.Button1Click(Sender: TObject);
var
 NewStrings: TStringList;
begin
 NewStrings := TStringList.Create;
 with NewStrings do
 begin
 Add('Beginning of dataset');
 Add('Previous record');
 Add('');
 Add('End of dataset');
 end;
 DBNavigator1.Hints := NewStrings;
 DBNavigator1.ShowHint := True;
end;

See also
Hint property, HintColor property, HintPause property

HistoryList property

Applies to
TOpenDialog, TSaveDialog components

Declaration

property HistoryList: TStrings ;

The HistoryList property contains strings that appear in the File Name drop-down
combo box of an Open or Save dialog box when the user opens it. Because only a File
Name combo box can have a value for the HistoryList property, the FileEditStyle
property value of the dialog box must be fsComboBox. If the FileEditStyle property value
is fsEdit, the strings in the HistoryList property aren’t used by the dialog box.

Your application can use the HistoryList property to create a list of previous files names
opened or saved with the dialog box. Use a TStringList object to keep a list of file names,
and assign this object to the HistoryList property.

Note When an Open or Save dialog box is open, your application won’t be able to access the
HistoryList property. Therefore, your application must work with HistoryList before the
dialog box opens or after it closes.

Example
This example uses an Open dialog box and a button. The code creates a string list object
and stores each file the user selects in the Open dialog box in it. Each time the clicks the
button to open the dialog box, the string list is assigned to the HistoryList property.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 387

H M e t a f i l e t y p e+
+
+
+
+
+
+
H

var
 OldFiles: TStringList;

procedure TForm1.Button1Click(Sender: TObject);
var
 SelectedFile: string;
begin
 if OpenDialog1.Execute then
 SelectedFile := OpenDialog1.FileName;
 OldFiles.Add(SelectedFile);
 OpenDialog1.HistoryList := OldFiles;
end;

initialization
 OldFiles := TStringList.Create;
end.

HMetafile type Graphics

Declaration

HMETAFILE = THandle;

HMetafile is the handle of a TMetafile object.

HorzScrollBar property

Applies to
TForm, TScrollBox components

Declaration

property HorzScrollBar: TControlScrollBar;

The HorzScrollBar property is the form’s or scroll box’s horizontal scroll bar. The values
of HorzScrollBar’s nested properties determines how the horizontal scroll bar behaves.

To make a horizontal scroll bar appear on a form or scroll box, the nested properties of
HorzScrollBar must be set like this:

• Visible must be True.

• The value of the Range property must be greater than the value of the ClientWidth
property of the form or the Width property of the scroll box.

Example
This example implements a horizontal scroll bar on the form. The scroll bar scrolls the
form 100 pixels more than the form width:

procedure TForm1.FormCreate(Sender: TObject);
begin

388 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

H P r e v I n s t v a r i a b l e

ClientWidth := 300;
 with HorzScrollBar do
 begin

Increment := 4;
Position := 0;

 Range := ClientWidth + 100; {Range must be greater than the form’s client width}
 Visible := True;
 end;
end;

See also
AutoScroll property, Increment property, Position property, Range property, ScrollPos
property, VertScrollBar property, Visible property

HPrevInst variable System

Declaration

var HPrevInst: Word;

In a program, the HPrevInst variable contains the handle of the previous instance of the
application, or 0 if there are no previous instances. In a library, HPrevInst is always zero.

Icon property

Applies to
TPicture object; TApplication, TForm components

For forms

Declaration

property Icon: TIcon

The Icon property determines the icon that is displayed when the window or form is
minimized. If you don’t assign a specific icon to Icon, the form uses the application’s
icon.

Example
This code assigns an icon to a form when the form is created:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Icon.LoadFromFile('MYICON.ICO');
end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 389

I c o n p r o p e r t y+
+
+
+
+
+
+
+
I

See also
LoadFromFile method, SaveToFile method

For picture objects

Declaration

property Icon: TIcon

The Icon property specifies the contents of the TPicture object as an icon graphic (.ICO
file format). If Icon is referenced when the TPicture contains a Bitmap or Metafile graphic,
the graphic won’t be converted. Instead, the original contents of the TPicture are
discarded and Icon returns a new, blank icon.

Example
The following code allows the user to use a dialog box to redefine the icon for the
application at run time. When the user clicks Button1, OpenDialog1 executes and the user
specifies an icon file name. The file is loaded into the Icon property of the TheIcon picture
object. Then, the Icon of TheIcon is assigned to the Icon of Form1.

procedure TForm1.Button1Click(Sender: TObject);
var TheIcon: TPicture;
begin
 OpenDialog1.FileName := '*.ICO';
if OpenDialog1.Execute then

 begin
 TheIcon := TPicture.Create;
 TheIcon.LoadFromFile(OpenDialog1.FileName);
 Form1.Icon := TheIcon.Icon;
 end;
end;

See also
Graphic property

For an application

Declaration

property Icon: TIcon;

The value of the Icon property determines which icon represents the application when it
is minimized or displayed in the Program Manager.

Example
This line of code uses the icon in the MYAPP.ICO files for the application’s icon:

Application.Icon.LoadFromFile('MYAPP.ICO');

390 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I n a c t i v e T i t l e t y p e d c o n s t a n t

See also
Application variable, LoadFromFile method, Minimize method, SaveToFile method

InactiveTitle typed constant WinCrt

Declaration

const InactiveTitle: PChar = '(Inactive %s)';

The InactiveTitle typed constant points to a null-terminated string to use when
constructing the title of an inactive CRT window.

The string is used as the format-control parameter of a call to the Windows WVSPrintF
function. The %s specifier, if present, indicates where to insert the existing window title.

Inc procedure System

Declaration

procedure Inc(var X [; N: Longint]);

The Inc procedure adds one or N to the variable X.

X is an ordinal-type variable or a variable of type PChar if the extended syntax is
enabled and N is an integer-type expression.

X increments by 1, or by N if N is specified; that is, Inc(X) corresponds to the statement
X := X + 1, and Inc(X, N) corresponds to the statement X := X + N.

Inc generates optimized code and is especially useful in tight loops.

Example

var
 IntVar: Integer;
 LongintVar: Longint;
begin
 Inc(IntVar); { IntVar := IntVar + 1 }
 Inc(LongintVar, 5); { LongintVar := LongintVar + 5 }
end;

See also
Dec procedure, Pred function, Succ function

Inch property

Applies to
TMetafile object

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 391

I n c l u d e p r o c e d u r e+
+
+
+
+
+
+
+
I

Declaration

property Inch: Word;

The Inch property value is the number of pixels per inch that are used for the metafile’s
coordinate mapping. For example, if the metafile was created in a Twips coordinate
system (using MM_TWIPS mapping), the value of Inch is 1440.

Include procedure System

Declaration

procedure Include(var S: set of T; I:T);

The Include procedure adds the element I to the set S.

S is a set type variable, and I is an expression of a type compatible with the base
type of S.

The construct Include(S,I) corresponds to S := S + (I) but the Include procedure
generates more efficient code.

See also
Exclude procedure

Increment property

Applies to
TControlScrollBar component

Declaration

property Increment: Integer;

The Increment property determines how many positions the scroll box in a form scroll
bar moves when the user clicks one of the small end arrows. The default value is 8.

Example
This example implements a horizontal scroll bar on the form. The scroll bar scrolls the
form 100 pixels more than the form width. Each time the user clicks a scroll arrow on the
scroll bar, the form scrolls 7 pixels:

procedure TForm1.FormCreate(Sender: TObject);
begin
ClientWidth := 300;

 with HorzScrollBar do
 begin

Position := 0;
Increment := 7;

 Range := ClientWidth + 100; {Range must be greater than the form’s client width}

392 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I n d e x p r o p e r t y

 Visible := True;
 end;
end;

See also
HorzScrollBar property, Position property, Range property, ScrollPos property,
VertScrollBar property

Index property

Applies to
TOutlineNode object; TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField,
TDateField, TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField,
TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

For outline nodes

Declaration

property Index: Longint;

The Index property uniquely identifies each item of an outline. The first outline item has
an Index value of 1, and subsequent items are indexed sequentially. If an item has
subitems, the Index value of the parent item is one less than the Index value of its first
subitem.

The value of the Index property corresponds to the index in the Items property array of
the TOutline component. When an item is added, inserted, or deleted from the outline,
the values of the Index properties of all subsequent items must be recalculated to be
valid. This happens automatically, unless the BeginUpdate method has been called.

Example
The following code tests to determine if the selected item is the top item in the outline.

with Outline1 do
if Items[SelectedItem].Index = 1 then

{ The selected item is the top item }
else

{ The selected item is not the top item };

See also
Add method, Delete method, EndUpdate method, Insert method

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 393

I n d e x D e f s p r o p e r t y+
+
+
+
+
+
+
+
I

For fields

Declaration

property Index: Integer;

Index is a field’s index number into the Fields property of the dataset. It corresponds to
the order of the field in the dataset. You can change the order of a field’s position in the
dataset by changing its Index property. A better way to change field order, however, is
by dragging and dropping fields in the Fields Editor at design time.

IndexDefs property

Applies to
TTable component

Declaration

property IndexDefs: TIndexDefs;

Run-time and read only. The IndexDefs property holds information about all the indexes
for the TTable.

Note The IndexDefs property may not always reflect the current set of indexes. Before
examining any property of IndexDefs, call its Update method to ensure that it has the
most recent set of information.

Example

{ Get the current available indicies }
Table1.IndexDefs.Update;
{ Find one which combines Customer Number (‘CustNo’) and Order Number (‘OrderNo’) }
for I := 0 to Table1.IndexDefs.Count - 1 do
if Table1.IndexDefs.Items[I].Fields = ‘CustNo;OrderNo’ then

IndexFieldCount property

Applies to
TTable component

Declaration

property IndexFieldCount: Integer;

Run-time only. The IndexFieldCount property is the number of actual fields for the
current index. If you are using the primary index for the component, this value will be
one. If the component is not Active, the value of IndexFieldCount will be zero.

394 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I n d e x F i e l d N a m e s p r o p e r t y

Example

TotalLen := 0;
with Table1 do
{ Calculate the total length of the index }
for I := 0 to IndexFieldCount - 1 do

Inc(TotalLen, IndexFields[I].FieldDef.DataSize);

IndexFieldNames property

Applies to
TTable component

Declaration

property IndexFieldNames: string;

The IndexFieldNames property is used with an SQL server to identify the columns to be
used as an index for the TTable. Separate the column names with semicolon characters
(“;”). If you have too many column names or the names are too long to fit within the 255
character limit, use column numbers instead of names.

Note IndexFieldNames and IndexName are mutually exclusive. Setting one will clear the other.

Example

Query1.IndexFieldNames := ‘CustNo;OrderNo’;

IndexFields property

Applies to
TTable component

Declaration

property IndexFields[Index: Integer]: TField;

Run-time only. The IndexFields property gives you access to information about each field
of the current index for the dataset. The Active property must be True or the information
will not be valid.

Example

S := '';
with Table1 do
{ Create a composite string with the index’s names separated by “@” }
for I := 0 to IndexFieldCount - 1 do
 S := S + '@' + IndexFields[I].FieldName;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 395

I n d e x N a m e p r o p e r t y+
+
+
+
+
+
+
+
I

See also
IndexFieldCount property

IndexName property

Applies to
TTable component

Declaration

property IndexName: string;

The IndexName property identifies a secondary index for the TTable. If no value is
assigned to IndexName, the table’s primary index will be used to order the records.

For dBASE tables, the index must reside in the table’s master index file. The master
index file is determined by taking the TableName property and replacing any file
extension with “MDX”. Non-maintained indexes are not supported.

Note IndexFieldNames and IndexName are mutually exclusive. Setting one will clear the other.

Example

Table1.IndexName := ‘CustNoIndex’;

See also
MasterFields property, MasterSource property

IndexOf method

Applies to
TList, TStringList, TStrings objects; TFieldDefs, TIndexDefs, TMenuItem components

For menu items

Declaration

function IndexOf(Item: TMenuItem): Integer;

The IndexOf method returns the position of a menu item within a menu. The first
position in a menu is 0. If a menu item is not in the menu, IndexOf returns -1.

Example
This example uses a main menu named File1, a button, and a label on a form. The File1
menu contains three menu commands, Open, Save, and Close. Delphi automatically
names these menu items Open1, Save1, and Close1. This code returns the position of the
Close command in the File menu and reports it as the caption of the label.

396 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I n d e x O f m e t h o d

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := IntToStr(File1.IndexOf(Close1));
end;

The label displays the number 2, indicating that Close is the third menu command in the
File menu. The first menu item, Open, has an index value of 0.

See also
FindItem method

For list objects

Declaration

function IndexOf(Item: Pointer): Integer;

The IndexOf method returns the position of an item in a list kept by the List property.
The first position in a list is 0. If an item is not in the list, IndexOf returns -1.

Example
The following code adds an object to MyList if it isn’t already in the list.

if MyList.IndexOf(MyObject)=-1 then MyList.Add(MyObject);

See also
Add method, Count property

For string objects

Declaration

function IndexOf(const S: string): Integer;

The IndexOf method returns the position of a string in a list of strings in a string or string
list object. Specify the string you want to locate as the value of the S parameter. The first
position in the list of strings is 0. If the string is not in the string list, IndexOf returns -1.

Example
This example uses a combo box that contains five strings (enter them as the value of the
Items property with the Object Inspector) and a label. When the user selects a string in
the combo box, the index of the selected string appears as the caption of the label.

procedure TForm1.ComboBox1Click(Sender: TObject);
begin
 Label1.Caption := IntToStr(ComboBox1.Items.IndexOf(ComboBox1.SelText));
end;

This example uses a file list box, a directory list box, and a label on a form. When the
user uses the directory list box to change directories, a message appears and the color of

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 397

I n d e x O f O b j e c t m e t h o d+
+
+
+
+
+
+
+
I

the form changes if the file AUTOEXEC.BAT is in the new directory. The code is written
in the OnChange event of the directory list box:

procedure TForm1.DirectoryListBox1Change(Sender: TObject);
begin
 FileListBox1.Directory := DirectoryListBox1.Directory;
 if FileListBox1.Items.IndexOf('AUTOEXEC.BAT') > -1 then
 begin
 Color := clYellow;
 Label1.Caption := 'You are in the root directory!';
 end;
end;

See also
IndexOfObject method, Strings property

For TIndexDefs objects

Declaration

function IndexOf(const Name: string): Integer;

The IndexOf method returns the index of the entry in Items whose Name property
matches the Name parameter.

For TFieldDefs objects

Declaration

function IndexOf(const Name: string): Integer;

The IndexOf method returns the index number of the entry in Items whose Name
property matches the Name parameter.

IndexOfObject method

Applies to
TStringList, TStrings objects

Declaration

function IndexOfObject(AObject: TObject): Integer;

The IndexOfObject method returns the position of an object stored in the Objects property
of a string object. Specify the object you want to locate as the value of the AObject
parameter. The first position in the list of objects is 0. If the object is not in the list of
objects, IndexOfObject returns -1.

398 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I n i t i a l D i r p r o p e r t y

Example
The following code determines if MyObject is the first object in MyStringList.

if MyStringList.IndexOfObject(MyObject)=0 then
{ MyObject is the first object in the list };

See also
AddObject method, IndexOf method, InsertObject method

InitialDir property

Applies to
TOpenDialog, TSaveDialog components

Declaration

property InitialDir: string;

The InitialDir property determines the current directory when the dialog box first
appears and value of the InitialDir property is shown as the current directory in the
directory tree. Only files in the current directory appear in the dialog box’s list box of file
names. After the dialog box appears, users can then use the directory tree to change to
another directory if they want.

When specifying the initial directory, include the full path name. For example,

C:\WINDOWS\SYSTEM

If no initial directory is specified, the directory that is current when the dialog box
appears remains the current directory. The same is true if you specify a directory that
does not exist.

Example
This code specifies C:\WINDOWS as the initial directory when the dialog box appears,
displays the dialog box, and displays the name of the file the user selects with the dialog
box in a label on the form:

procedure TForm1.Button1Click(Sender: TObject);
begin
 OpenDialog1.InitialDir := 'C:\WINDOWS';
 if OpenDialog1.Execute then

Label1.Caption := OpenDialog1.FileName;
end;

See also
Filter property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 399

I n i t i a l V a l u e s p r o p e r t y+
+
+
+
+
+
+
+
I

InitialValues property

Applies to
TReport component

Declaration

property InitialValues: TStrings;

The InitialValues property is a list of report variable strings the specified report uses to
run. By specifying these initial values, your application can bypass the dialog boxes that
prompt you for these values when the report runs.

Example
The following code adds two report variable values and runs the report.

Report1.InitialValues.Add('@Report1=<35>');
Report1.InitialValues.Add('@Report2=<test>');
Report1.Run;

See also
SetVariable method, SetVariableLines method

InitWinCrt procedure WinCrt

Declaration

procedure InitWinCrt;

The InitWinCrt procedure creates a WinCRT window.

If you do not explicitly call InitWinCrt, it is automatically called when you use Read,
Readln, Write, or Writeln on a file assigned to the CRT.

InitWinCrt uses the WindowOrg, WindowSize, and ScreenSize constants, and the
WindowTitle variable to determine the characteristics of the CRT window.

See also
ScreenSize typed constant, WindowOrg typed constant, WindowSize typed constant,
WindowTitle variable

InOutRes variable System

Declaration

var InOutRes: Integer;

The built-in I/O routines use the InOutRes variable to store the value that the next call to
the IOResult standard function will return.

400 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I n P l a c e A c t i v e p r o p e r t y

InOutRes is used by the built-in I/O functions.

InPlaceActive property

Applies to
TOLEContainer component

Declaration

property InPlaceActive: Boolean;

Run-time and read only. The InPlaceActive property specifies whether the OLE object in
an OLE container is active in-place. If so, the value of InPlaceActive is True. If the object is
deactivated, or activated in its own window (not in place), the value of InPlaceActive is
False.

When an OLE object is active in-place, the OLE server application controls the editing of
the OLE object from within the OLE container application. The OLE server might
replace menu items and the status bar of the OLE container.

Example
The following code waits until an OLE object is activated in place before unlocking
Panel1. Attach this code to the OnActivate event handler of OLEContainer1.

procedure TForm1.OleContainer1Activate(Sender: TObject, Activating:Boolean);
begin
 if OLEContainer1.InPlaceActive then

Panel1.Locked := False;
end;

See also
Active property, GroupIndex property

Input variable System

Declaration

var Input: Text;

The Input variable is a read-only file associated with the operating system's standard
input device, which is usually the keyboard.

In many of Delphi's standard file-handling routines, the file variable parameter can be
omitted. Instead the routine operates on the Input or Output file variable. The following
standard file-handling routines operate on the Input file when no file parameter is
specified:

• Eof
• Eoln

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 401

I n p u t B o x f u n c t i o n+
+
+
+
+
+
+
+
I

• Read
• Readln
• SeekEof
• SeekEoln

Since Windows does not support text-oriented input and output, Input and Output files
are unassigned by default in a Windows application. Any attempt to read or write to
them will produce an I/O error.

If the application uses the WinCrt unit, Input and Output will refer to a scrollable text
window.

See also
Output variable, TextFile type

InputBox function Dialogs

Declaration

function InputBox(const ACaption, APrompt, ADefault: string): string;

The InputBox function displays an input dialog box ready for the user to enter a string in
its edit box. The ACaption parameter is the caption of the dialog box, the APrompt
parameter is the text that prompts the user to enter input in the edit box, and the
ADefault parameter is the string that appears in the edit box when the dialog box first
appears.

If the user chooses the Cancel button, the default string is the value returned. If the user
chooses the OK button, the string in the edit box is the value returned.

Use the InputBox function when it doesn’t matter if the user chooses either the OK
button or the Cancel button (or presses Esc) to exit the dialog box. When your
application needs to know if the user chooses OK or Cancel (or presses Esc), use the
InputQuery function.

Example
This example displays an input dialog box when the user clicks the button on the form.
The input dialog box includes a prompt string and a default string. The string the user
enters in the dialog box is stored in the InputString variable.

uses Dialogs;

procedure TForm1.Button1Click(Sender: TObject);
var
InputString: string;

begin
InputString:= InputBox('Input Box', 'Prompt', 'Default string');

end;

See also
MessageDlg function, MessageDlgPos function

402 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I n p u t Q u e r y f u n c t i o n

InputQuery function Dialogs

Declaration

function InputQuery(const ACaption, APrompt: string; var Value: string): Boolean;

The InputQuery function displays an input dialog box ready for the user to enter a string
in its edit box. The ACaption parameter is the caption of the dialog box, the APrompt
parameter is the text that prompts the user to enter input in the edit box, and the Value
parameter is the string that appears in the edit box when the dialog box first appears. If
the user enters a string in the edit box and chooses OK, the Value parameter changes to
the new value.

The InputQuery function returns True if the user chooses OK, and False if the user
chooses Cancel or presses the Esc key.

If your application doesn’t need to know whether the user chooses OK or Cancel, use
the InputBox function.

Example
This example uses a button and a label on the form. When the user clicks the button, a
the input box displays. If the user chooses OK, the string that appears in the edit box of
the dialog box displays as the caption of the label on the form. If the user chooses
Cancel, the dialog box closes and the caption of the label remains unchanged.

procedure TForm1.Button1Click(Sender: TObject);
var
 NewString: string;
 ClickedOK: Boolean;
begin
 NewString := 'Default String';
Label1.Caption := NewString;

 ClickedOK := InputQuery('Input Box', 'Prompt', NewString);
 if ClickedOK then { NewString contains new input string }
 Label1.Caption := 'The new string is ''' + NewString + '''';
end;

See also
MessageDlg function, MessageDlgPos function

Insert method

Applies to
TList, TMenuItem, TStringList, TStrings objects; TOutline, TTable, TQuery components

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 403

I n s e r t m e t h o d+
+
+
+
+
+
+
+
I

For list objects

Declaration

procedure Insert(Index: Integer; Item: Pointer);

The Insert method inserts an item into the list of items stored in the List property of a list
object. Specify the item to insert as the value of the Item parameter. Specify the position
in the list where you want the item inserted as the value of the Index parameter. The
index is zero-based, so the first position in the list has an index value of 0.

If your application calls Insert when the list of items is sorted, an EListError exception is
raised.

Example
The following code inserts MyObject into MyList at the position immediately following
the position of MyOtherObject.

MyList.Insert(IndexOf(MyOtherObject)+1, MyObject);

See also
Add method, Clear method, Count property, Delete method, First method, IndexOf
method, Last method

For string objects

Declaration

procedure Insert(Index: Integer; const S: string);

The Insert method inserts a string into the list of strings in a string or string list object.
The string S is inserted into the position in the list indicated by the value of Index. The
index is zero-based, so the first position in the list has an index value of 0.

Example
This example uses a list box and a button on a form. When the form appears, it contains
five items. When the user clicks the button, another string is inserted at the top of the list
of items:

procedure TForm1.FormCreate(Sender: TObject);
var
 I: Integer;
begin
 for I := 1 to 5 do
 ListBox1.Items.Add('Item ' + IntToStr(I));
end;

procedure TForm1.Button1Click(Sender: TObject);
begin

404 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I n s e r t m e t h o d

ListBox1.Items.Insert(0, 'Inserted here');
end;

See also
Add method, AddStrings method, Clear method, Delete method, IndexOf method,
InsertObject method

For menu items

Declaration

procedure Insert(Index: Integer; Item: TMenuItem);

The Insert method inserts a menu item in a menu at the position indicated by the value
of Index.

Example
This example inserts a new menu item after the first item in a menu named FileMenu:

procedure TForm1.Button1Click(Sender: TObject);
var
 NewItem: TMenuItem;
begin
 NewItem := TMenuItem.Create(FileMenu);
 NewItem.Caption := 'Do this';
 FileMenu.Insert(1, NewItem);
end;

See also
Add method, Count property, Delete method

For outlines

Applies to
TOutline component

Declaration

function Insert(Index: Longint; const Text: string): Longint;

Description

The Insert method inserts an outline item (TOutlineNode object) into an outline. The
value of the Index and Text parameters are stored in the Index and Text properties of the
inserted item. Insert returns the Index property value of the inserted item.

The inserted item appears in the outline position determined by the Index parameter. It
is inserted at the same level as the item that previously resided at this position.
Therefore, the inserted item and the original item are siblings and share the same parent.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 405

I n s e r t m e t h o d+
+
+
+
+
+
+
+
I

The original item and all other outline items that appear after the inserted item are
moved down one row and are reindexed with valid Index values. This happens
automatically unless the BeginUpdate method was called.

Note To insert an item as the last top-level item in an outline, pass zero (0) in the Index
parameter.

Example
The following code inserts an item as a sibling of the selected item.

begin
 Outline1.Insert(Outline1.SelectedItem, 'New item');
end;

See also
Add method, AddChild method, AddChildObject method, InsertObject method, MoveTo
method

For tables and queries

Declaration

procedure Insert;

The Insert method puts the dataset into Insert state and opens a new, empty record at the
current cursor location. When an application calls Post, the new record will be inserted
in the dataset in a position based on its index, if defined. To discard the new record, use
Cancel.

This method is valid only for datasets that return a live result set.

Note For indexed tables, the Append and Insert methods will both put the new record in the
correct location in the table, based on the table’s index. If no index is defined on the
underlying table, then the record will maintain its position—Append will add the record
to the end of the table, and Insert will insert it at the current cursor position. In either
case, posting a new record may cause rows displayed in a data grid to change as the
dataset follows the new row to its indexed position and then fetches data to fill the data
grid around it.

Example

with Table1 do
begin

{ Move to the end ot the component }
Last;
Insert;
FieldByName(‘CustNo’).AsString := ‘9999’;
{ Fill in other fields here }
if { you are sure you want to do this} then Post
else { if you changed your mind } Cancel;
end.

406 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I n s e r t p r o c e d u r e

Insert procedure System

Declaration

procedure Insert(Source: string; var S: string; Index: Integer);

The Insert procedure merges a substring into a string beginning at a specified point.

Source is a string-type expression. S is a string-type variable of any length. Index is an
integer-type expression.

Insert merges Source into S at the position S[index]. If the resulting string is longer than
255 characters, it is truncated after the 255th character.

Example

 var
 S: string;
begin
 S := 'Honest Lincoln';
 Insert('Abe ', S, 8); { 'Honest Abe Lincoln' }
end;

See also
Concat function, Copy function, Delete procedure, Length function, Pos function

InsertComponent method

Applies to
All components

Declaration

procedure InsertComponent(AComponent: TComponent);

The InsertComponent method makes the component own the component passed in the
AComponent parameter. The component is added to the end of the Components array
property. The inserted component must have no name (no specified Name property
value), or the name must be unique among all others in the Components list.

When the owning component is destroyed, AComponent is destroyed also.

Example
The following code inserts NewButton into the Components array of Form1.

Form1.InsertComponent(NewButton);

See also
RemoveComponent method

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 407

I n s e r t C o n t r o l m e t h o d+
+
+
+
+
+
+
+
I

InsertControl method

Applies to
All controls

Declaration

procedure InsertControl(AControl: TControl);

The InsertControl method inserts a control within the Controls property of a windowed
control, making the inserted control a child, and the containing control the parent. The
inserted control is the value of the AControl parameter.

Example
This example uses a button placed next to a group box. When the user clicks the button,
the group box becomes the parent of the button, so the button moves inside the group
box.

procedure TForm1.Button1Click(Sender: TObject);
begin
 RemoveControl(Button1);
 GroupBox1.InsertControl(Button1);
end;

Note that it was necessary to remove the button from the Controls property of the form
before the button actually moves into the group box.

This code accomplishes the same thing:

procedure TForm1.Button1Click(Sender: TObject);
begin
Button1.Parent := GroupBox1;

end;

See also
Parent property, RemoveControl method

InsertObject method

Applies to
TStringList, TStrings objects, TOutline component

For string and string list objects

Declaration

procedure InsertObject(Index: Integer; const S: string; AObject: TObject);

408 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I n s e r t O b j e c t m e t h o d

The InsertObject method inserts a string into the list of strings and an object into the list
of objects in a string or string list object. Specify the string you want to insert as the value
of the S parameter, and the object you want to insert as the value of the AObject
parameter. The Index parameter identifies the position of the string and object in their
respective string and object lists. Because the index is zero-based, the first position in
each list has an Index value of 0.

If your application calls InsertObject when the list of items is sorted, an EListError
exception is raised.

Example
The following code inserts the components of Form1 into the first position of the Lines
list of Memo1.

var
 I: Integer;
begin
 for I := 0 to Form1.ComponentCount-1 do
 begin
 with Form1.Components[i] as TComponent do
 Memo1.lines.InsertObject(0, Name, Self);
 end;
end;

See also
AddObject method, IndexOfObject method, Insert method, Objects property, Strings
property

For outlines

Applies to
TOutline component

Declaration

function InsertObject(Index: Longint; const Text: string; const Data: Pointer): Longint;

Description

The InsertObject method inserts an outline item (TOutlineNode object) containing data
into an outline. The value of the Index and Text parameters are stored in the Index and
Text properties of the inserted item. The Data parameter specifies the Data property
value of the new item. Insert returns the Index property value of the inserted item.

The inserted item appears in the outline position determined by the Index parameter. It
will be inserted at the same level as the item that previously resided at this position.
Therefore, the inserted item and the original item will be siblings and share the same
parent. The original item and all other outline items that appear after the inserted item
are moved down one row and are reindexed with valid Index values. This is done
automatically unless the BeginUpdate method was called.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 409

I n s e r t O L E O b j e c t D l g f u n c t i o n+
+
+
+
+
+
+
+
I

Note To insert an item as the last top-level item in an outline, pass zero (0) in the Index
parameter.

Example
The following code creates a bitmap object named Bitmap1 and inserts an outline item
containing Bitmap1 into the first level of Outline1.

var
Bitmap1: TBitmap;

begin
Bitmap1 := TBitmap.Create;
Outline1.InsertObject(1, 'New item', Bitmap1);

end;

See Also
Add method, AddChild method, AddChildObject method, Insert method, MoveTo method

InsertOLEObjectDlg function Toctrl

Declaration

function InsertOleObjectDlg(Form: TForm; HelpContext: THelpContext;
var PInitInfo: Pointer): Boolean;

InsertOLEObjectDlg displays the Insert Object dialog box. Use this function to allow the
user to specify the OLE object initialization information by using the Insert Object dialog
box.

InsertOLEObjectDlg returns True if the user specifies an OLE object and chooses OK from
the Insert Object dialog box. InsertOLEObjectDlg returns False if the user doesn’t specify
an OLE object or chooses Cancel in the dialog box.

These are the parameters of InsertOLEObjectDlg:

Example
The following code displays the Insert Object dialog box. If the user specifies an object
and chooses OK, OLEContainer1 is initialized. After initialization, the OLE information is
released.

Field Description

Form The form that owns the Insert Object dialog box.
HelpContext A Help context identification number that is used if the user chooses Help from within

the Insert Object dialog box. If you pass 0 for HelpContext, no Help button appears in
the Insert Object dialog box. Pass a number other than 0 if you want to provide
context-sensitive online Help.

PInitInfo If InsertOLEObject returns True, InsertOLEObjectDlg modifies the PInitInfo pointer
parameter to point to OLE initialization information. Initialize the OLE object by
assigning this pointer to the PInitInfo property. When your application is finished with
the PInitInfo pointer, it should be released with ReleaseOLEInitInfo.

410 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I n s e r t R e c o r d m e t h o d

var
Info: Pointer;

begin
if InsertOLEObjectDlg(Form1, 0, Info) then
begin

OLEContainer1.PInitInfo := Info;
ReleaseOLEInitInfo(Info);

end;
end;

See also
LinksDlg function, PasteSpecialDlg function

InsertRecord method

Applies to
TTable, TQuery components

Declaration

procedure InsertRecord(const Values: array of const);

The InsertRecord method inserts a new record into the dataset using the field values
passed in the Values parameter. The assignment of the elements of Values to fields in the
record is sequential; the first element is assigned to the first field, the second to the
second, etc. The number of field values passed in Values may be fewer than the number
of actual fields in the record; any remaining fields are left unassigned and are NULL.
The type of each element of Values must be compatible with the type of the field in that
the field must be able to perform the assignment using AsString, AsInteger, etc.,
according the type of the Values element.

This method is valid only for datasets that return a live result set.

Note For indexed tables, the AppendRecord and InsertRecord methods will both put the new
record in the correct location in the table, based on the table’s index. If no index is
defined on the underlying table, then the record will maintain its position—
AppendRecord will add the record to the end of the table, and InsertRecord will insert it at
the current cursor position. In either case, posting a new record in a data grid may cause
all the rows before and after the new record to change as the dataset follows the new
row to its indexed position and then fetches data to fill the grid around it.

Example

Table1.InsertRecord([9998, ‘Lesh’, ‘Phil’]);

See also
TField component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 411

I n t f u n c t i o n+
+
+
+
+
+
+
+
I

Int function System

Declaration

function Int(X: Real): Real;

The Int function returns the integer part of the argument.

X is a real-type expression. The result is the integer part of X; that is, X rounded toward
zero.

Example

var
R: Real;

begin
 R := Int(123.456); { 123.0 }
 R := Int(–123.456); { –123.0 }
end;

See also
Frac function, Round function, Trunc function

IntegralHeight property

Applies to
TDBListBox, TDirectoryListBox, TFileListBox, TListBox component

Declaration

property IntegralHeight: Boolean;

The IntegralHeight property controls the way the list box represents itself on the form. If
IntegralHeight is True, the list box shows only entries that fit completely in the vertical
space, and the bottom of the list box moves up to the bottom of the last completely
drawn item in the list. If IntegralHeight is False, the bottom of the list box is at the location
determined by its ItemHeight property, and the bottom item visible in the list might not
be complete.

If the list box has a Style property value of lbOwerDrawVariable, setting the IntegralHeight
property to True has no effect.

If the Style property value of the list box is lsOwnerDrawFixed, the height of the list box at
design time is always an increment of the ItemHeight value.

Example
This example uses a list box on a form. To try it, enter as many strings in the Items
property as you like using the Object Inspector. When the application runs, the list box
displays only entries that fit completely in the vertical space, and the bottom of the list

412 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I n t e r v a l p r o p e r t y

box moves up to the bottom of the last string in the list box if the form is less than 300
pixels in height:

procedure TForm1.FormCreate(Sender: TObject);
begin
 if Height < 300 then
 ListBox1.IntegralHeight := True
 else
 ListBox1.IntegralHeight := False;
end;

See also
ItemHeight property, Items property

Interval property

Applies to
TTimer component

Declaration

property Interval: Word;

The Interval property determines in milliseconds the amount of time that passes before
the timer component initiates another OnTimer event.

You can specify any value between 0 and 65,535 as the interval value, but the timer
component won’t call an OnTimer event if the value is 0. The default value is 1000 (one
second).

Example
The code in this OnTimer event handler moves a ball, the shape component (TShape)
slowly across a form.

procedure TForm1.Timer1Timer(Sender: TObject);
begin
Timer1.Interval := 100;
Shape1.Shape := stCircle;
Shape1.Left := Shape1.Left + 1;

end;

IntToHex function SysUtils

Declaration

function IntToHex(Value: Longint; Digits: Integer): string;

The IntToHex function converts a number into a string containing the number's
hexadecimal (base 16) representation with a specific number of digits.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 413

I n t T o S t r f u n c t i o n+
+
+
+
+
+
+
+
I

Example
When the user clicks the button on the form, this code converts the number entered in
Edit1 to a hexadecimal string. The string displays in Edit2.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Edit2.Text := IntToHex(StrToInt(Edit1.Text), 6);
end;

See also
IntToStr function

IntToStr function SysUtils

Declaration

function IntToStr(Value: Longint): string;

The IntToStr function converts an integer into a string containing the decimal
representation of that number.

Example
This example uses a button and an edit box on a form. The code assigns a value to the
Value variable and displays the string representation of the Value variable in the edit
box.

procedure TForm1.Button1Click(Sender: TObject);
var
 Value: Integer;
begin
 Value := 1234;
 Edit1.Text := IntToStr(Value);
end;

See also
IntToHex function, StrToInt function

Invalidate method

Applies to
All controls; TForm component

Declaration

procedure Invalidate;

The Invalidate method forces a control to repaint as soon as possible.

414 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I O R e s u l t f u n c t i o n

Example
The following code invalidates Form1.

Form1.Invalidate;

See also
Refresh method, Update method

IOResult function System

Declaration

function IOResult: Integer;

The IOResult function returns the status of the last I/O operation performed.

I/O-checking must be off—{$I–}—to trap I/O errors using IOResult.

If an I/O error occurs and I/O-checking is off, all subsequent I/O operations are
ignored until a call is made to IOResult. Calling IOResult clears the internal error flag.

An alternative way to handle I/O errors is to use exception handling. For more
information on handling run-time library exceptions, see Handling RTL Exceptions in
the Help system.

Example

var
 F: file of Byte;
begin
 if OpenDialog1.Execute then begin
 AssignFile(F, OpenDialog1.FileName);
 {$I–}
 Reset(F);
 {$I+}
 if IOResult = 0 then
 MessageDlg('File size in bytes: ' + IntToStr(FileSize(F)),

mtInformation, [mbOk], 0);
 else
 MessageDlg('File access error', mtWarning, [mbOk], 0);
 end;
end;

IsIndexField property

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 415

I s M a s k e d p r o p e r t y+
+
+
+
+
+
+
+
I

Declaration

property IsIndexField: Boolean;

Run-time and read only. The IsIndexField property specifies whether or not a field is
indexed. If True, a field is indexed.

IsMasked property

Applies to
TDBEdit, TMaskEdit components

Declaration

property IsMasked: Boolean;

The IsMasked property determines if a mask exists (the EditMask property has a value)
for the data displayed in the database edit box or mask edit box. If IsMasked is True, a
mask exists. If IsMasked is False, no mask exists.

Example
This example tests the masked edit box to determine if it has an edit mask. If it doesn’t
an edit mask is assigned. The edit mask is one for dates in the MM/DD/YY format:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if not MaskEdit1.IsMasked then
 MaskEdit1.EditMask := '!99/99/00;1;_';
end;

See also
EditMask property

IsNull property

Applies to
TParam object; TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField,
TDateField, TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField,
TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

For TParam objects

Declaration

property IsNull: Boolean;

IsNull is a read only property that returns True if the parameter has no data assigned to
it. This should only occur if an application has called:

416 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I s S Q L B a s e d p r o p e r t y

• Assign with another parameter that has no data assigned.
• AssignField with a TField whose data is null.
• The Clear method.

Example

{ Set the CustNo parameter to 999 if it is null }
with Params.ParamByName(‘CustNo’) do
if IsNull then AsInteger := 999;

For fields

Declaration

property IsNull: Boolean;

Run-time and read only. IsNull returns True if the value of the field is NULL.

See also
Required property

IsSQLBased property

Applies to
TDataBase component

Declaration

property IsSQLBased: Boolean;

Run-time and read only. IsSQLBased is True if the TDatabase component uses any driver
other than ‘STANDARD’. If you are accessing a dBASE or Paradox database or ASCII
file, IsSQLBased will be False.

IsValidChar method

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

function IsValidChar(InputChar: Char): Boolean; virtual;

IsValidChar is used by data-aware controls to determine if a particular character entered
in the field is valid for the field. TIntegerField, TSmallintField and TWordField allow ‘+’, ‘-’

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 417

I s V a l i d I d e n t f u n c t i o n+
+
+
+
+
+
+
+
I

and ‘0’ to ‘9’. TBCDField and TFloatField also allow ‘E’, ‘e’, and the DecimalSeparator
character. All other fields accept all characters.

See also
DecimalSeparator variable

IsValidIdent function SysUtils

Declaration

function IsValidIdent(const Ident: string): Boolean;

IsValidIdent returns True if the given string is a valid identifier. An identifier is defined as
a character from the set ['A'..'Z', 'a'..'z', '_'] followed by zero or more characters from the
set ['A'..'Z', 'a'..'z', '0..'9', '_'].

Note All component names must be valid Object Pascal identifiers.

IsVisible property

Applies to
TOutlineNode object

Declaration

property IsVisible: Boolean;

Run-time and read only. The IsVisible property indicates whether the outline item is
visible within the TOutline component. An item is visible if it is on level 1 or if all its
parents are expanded.

Example
The following code expands the branch of the selected outline item if it isn’t visible.

with Outline1.Items[Outline1.SelectedItem] do
if not IsVisible then FullExpand;

See also
Expanded property, Level property

ItemAtPos method

Applies to
TDBListBox, TDirectoryListBox, TFileListBox, TListBox, TTabSet components

418 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I t e m A t P o s m e t h o d

For list boxes

Applies to
TDBListBox, TDirectoryListBox, TFileListBox, TListBox components

Declaration

function ItemAtPos(Pos: TPoint; Existing: Boolean): Integer;

The ItemAtPos method returns the index of the list box indicated by the coordinates of a
point on the control. The Pos parameter is the point in the control in window
coordinates.

If Pos is beyond the last item in the list box, the value of the Existing variable determines
the returned value. If you set Existing to True, ItemAtPos returns -1, indicating that no
item exists at that point. If you set Existing to False, ItemAtPos returns the position of the
last item in the list box.

ItemAtPos is useful for detecting if an item exists at a particular point in the control.

Example
This example uses a list box, and edit box, and a button on a form. When the user clicks
the button, the index value of the item in the list box which contains the point specified
in the code appears in the edit box:

procedure TForm1.Button1Click(Sender: TObject);
var
 Value: Integer;
 APoint: TPoint;
begin
 APoint.X := 30;
 APoint.Y := 50;
 Value := ListBox1.ItemAtPos(APoint, False);
 Edit1.Text := IntToStr(Value);
end;

See also
ItemIndex property, Items property

For tab sets

Applies to
TTabSet component

Declaration

function ItemAtPos(Pos: TPoint): Integer;

The ItemAtPos method returns the index of the tab indicated by the coordinates of a
point on the control. The Pos parameter is the point in the control in window

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 419

I t e m C o u n t p r o p e r t y+
+
+
+
+
+
+
+
I

coordinates. If the returned index is 0, the tab is the first tab in the tab set, if the index is
1, the tab is the second tab, and so on.

ItemAtPos is useful for determining which tab is located at a particular position in the tab
set control.

Example
The following code selects the tab that is at client coordinates (100, 10) in TabSet1.

TabSet1.TabIndex := TabSet1.ItemAtPos(Point(100, 10);

See also
TabIndex property, Tabs property

ItemCount property

Applies to
TOutline component

Declaration

property ItemCount: Longint;

Run-time and read only. The ItemCount property specifies the total number of items in
an outline.

Example
The following code turns off automatic reindexing before inserting a new item into the
index if the index includes more than 100 items. Otherwise, automatic reindexing
remains active.

Outline1.SetUpdateState(Outline1.ItemCount > 100)
Outline1.Insert(1, ’NewItem’, MyData);
Outline1.EndUpdate

See also
Items property

ItemHeight property

Applies to
TComboBox, TDBComboBox, TDBListBox, TDirectoryListBox, TFileListBox, TListBox,
TOutline components

Declaration

property ItemHeight: Integer;

420 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I t e m I n d e x p r o p e r t y

For list boxes, the ItemHeight property is the height of an item in the list box in pixels
when the list box’s Style property is lsOwnerDrawFixed. If the Style property is lsStandard
or lsOwnerDrawVariable, the value of ItemHeight is ignored. You can control the height of
an item in a fixed owner-draw list box by changing the height of ItemHeight.

For combo boxes, the ItemHeight property is the height of an item in the combo box list
in pixels when the combo box’s Style property is csOwnerDrawFixed. If the Style property
is any other setting, the value of ItemHeight is ignored. You can control the height of an
item in a fixed owner-draw combo box by changing the height of ItemHeight.

For outlines, the ItemHeight property is the height of an item in the outline in pixels
when the outline’s Style property is osOwnerDraw. If the Style property is osStandard, the
value of ItemHeight is ignored. You can control the height of an item in an owner-draw
outline by changing the height of ItemHeight.

Example
This example uses a list box and a button on a form. Enter as many strings in the list box
as you like using the property editor of the Items property in the Object Inspector. When
the user clicks the button on the form, the amount of vertical space allotted to each item
in the list box changes.

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Style := lbOwnerDrawFixed;
 ListBox1.ItemHeight := 30;
end;

See also
Items property, IntegralHeight property, OnDrawItem event

ItemIndex property

Applies to
TComboBox, TDBComboBox, TDBRadioGroup, TDirectoryListBox, TDriveComboBox,
TFileListBox, TFilterComboBox, TListBox, TRadioGroup components

Declaration

property ItemIndex: Integer;

Run-time only. The value of the ItemIndex property is the ordinal number of the selected
item in the control’s item list. If no item is selected, the value is -1, which is the default
value unless MultiSelect is True. To select an item at run time, set the value of ItemIndex
to the index of the item in the list you want selected, with 0 being the first item in the list.

For list boxes and combo boxes, if the value of the MultiSelect property is True and the
user selects more than one item in the list box or combo box, the ItemIndex value is the
index of the selected item that has focus. If MultiSelect is True, ItemIndex defaults to 0.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 421

I t e m R e c t m e t h o d+
+
+
+
+
+
+
+
I

Example
This example uses a drive combo box on a form. When the user selects a drive in the
combo box, the index value of the selected item appears in the caption of the label:

procedure TForm1.DriveComboBox1Change(Sender: TObject);
begin
 Label1.Caption := 'Index value ' + IntToStr(DriveComboBox1.ItemIndex);
end;

See also
Items property

ItemRect method

Applies to
TDBListBox, TDirectoryListBox, TDrawGrid, TFileListBox, TListBox, TStringGrid, TTabSet
components

Declaration

function ItemRect(Item: Integer): TRect;

The ItemRect method returns the rectangle that surrounds the item specified in the Item
parameter.

Example
This example uses a list box and four labels on a form. When the application runs, three
strings are added to the list box. When the user selects one of the strings in the list box,
the coordinates of the rectangle taken up by the selected string appear in the four labels:

procedure TForm1.FormCreate(Sender: TObject);
begin
 with ListBox1 do
 begin
 Items.Add('Hello');
 Items.Add('New');
 Items.Add('World');
 end;
end;

procedure TForm1.ListBox1Click(Sender: TObject);
var
 ListBoxItem: TRect;
begin
 ListBoxItem := ListBox1.ItemRect(ListBox1.ItemIndex);
 Label1.Caption := ’Left ’ + IntToStr(ListBoxItem.Left);
 Label2.Caption := 'Top ' + IntToStr(ListBoxItem.Top);
 Label3.Caption := 'Right ' + IntToStr(ListBoxItem.Right);
 Label4.Caption := 'Bottom ' + IntToStr(ListBoxItem.Bottom);
end;

422 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I t e m s p r o p e r t y

See also
TRect type

Items property

Applies to
TFieldDefs, TIndexDefs, TList, TParams objects; TComboBox, TDBComboBox, TDBListBox,
TDBRadioGroup, TDirectoryListBox, TDriveComboBox, TFileListBox, TFilterComboBox,
TListBox, TMainMenu, TMenuItem, TOutline, TPopupMenu, TRadioGroup components

For list boxes, combo boxes, and radio group boxes

Declaration

property Items: TStrings;

The Items property contains the strings that appear in the list box or combo box, or as
radio buttons in a radio group box. Because Items is an object of type TStrings, you can
add, delete, insert, and move items using the Add, Delete, Insert, Exchange, and Move
methods of the TStrings object.

The ItemIndex property determines which item is selected, if any.

To determine if a particular item in the list of strings that makes up the Items property
for a list box or combo box is selected, use the Selected property.

Example
This example uses an edit box, a list box, and a button on a form. When the user clicks
the button, the text in the edit box is added to the list box:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items.Add(Edit1.Text);
end;

See also
Add method, Delete, method, Exchange method, Insert method, ItemIndex property, Move
method, Selected property

For menu items, main menus, and pop-up menus

Declaration

property Items[Index: Integer]: TMenuItem;

Read-only property.

For menu items, the Items array property provides access to a subitem of a menu item
(TMenuItem) by its position in the list of subitems. The value of Index is the position of

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 423

I t e m s p r o p e r t y+
+
+
+
+
+
+
+
I

the subitem within the Items array. For example, if an application has a File drop-down
menu that contains the menu items New, Open, and Save, in that order,
FileMenu.Items[2] refers to the Save command. For menu items, Items is run-time only
property.

For main menus, the Items property provides access to a menu item on the main menu
bar, and is available at both design time and run time.

For pop-up menus, the Items property provides access to a menu item on the pop-up
menu, and is available at both design time and run time.

Example
The following code disables all the subitems of MenuItem1.

var
I: Integer;

begin
for I := 0 to MenuItem1.ItemCount-1 do

MenuItem1.Items[I].Enabled := False;
end;

See also
Count property

For outlines

Declaration

property Items[Index: Longint]: TOutlineNode;

Run-time and read only. For outlines, the Items array property provides access to a
outline node by its row position. The value of the Index parameter corresponds to the
Index property and represents the position of the item within the Items array. For
example, if an outline has three items with Index property values of 1, 2, and 3 and Text
property values of ’Orange’, ’Apple’, and ’Banana’, respectively, Items[2] refers to the
’Apple’ item.

Example
The following code collapses the selected item of Outline1.

Outline1.Items[Outline1.SelectedItem].Expanded := False;

See also
SelectedItem property

For list objects

Declaration

property Items[Index: Integer]: Pointer;

424 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

I t e m s p r o p e r t y

Run-time only. The Items array property lets you access a specific pointer kept in the List
property of a list object. Using the Index parameter of Items you can access a list item by
its position in the list.

Example
This example creates a list object and inserts two records into it. The value of the record
fields are written on the form:

procedure TForm1.FormActivate(Sender: TObject);
type
PMyList = ^AList;
AList = record

I: Integer;
C: Char;

end;

var
MyList: TList;
ARecord: PMyList;
B: Byte;
Y: Word;

begin
MyList := TList.Create;
New(ARecord);
ARecord^.I := 100;
ARecord^.C := 'Z';
MyList.Add(ARecord); {Add integer 100 and character Z to list}
New(ARecord);
ARecord^.I := 200;
ARecord^.C := 'X';
MyList.Add(ARecord); {Add integer 200 and character X to list}
Y := 10; {Variable used in TextOut function}

{Go through the list until the end is reached}
for B := 0 to (MyList.Count - 1) do
begin

Y := Y + 30; {Increment Y Value}
ARecord := MyList.Items[B];
Canvas.TextOut(10, Y, IntToStr(ARecord^.I)); {Display I}
Y := Y + 30; {Increment Y Value again}
Canvas.TextOut(10, Y, ARecord^.C); {Display C}

end;
MyList.Free;

end;

See also
Add method, Expand method, First method, IndexOf method, Last method, Remove
method

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 425

I t e m S e p a r a t o r p r o p e r t y+
+
+
+
+
+
+
+
I

For TIndexDefs objects

Declaration

property Items[Index: Integer]: TIndexDef;

Run-time and read only. Items holds the TIndexDef objects that describe each index of the
dataset. The number of entries is given by the Count property; there will be one entry for
each index of the dataset.

For TParams objects

Declaration

property Items[Index: Word]: TParam;

Read and run-time only. The Items array property holds the parameters (TParam
objects). Use this property when you want to work with the entire set. While you can
use Items to reference a particular parameter by its index, the ParamByName method is
recommended to avoid depending on the order of the parameters.

Example

{ Assign 99999 to any integer parameter which does not have a value }
for I := 0 to Params.Count - 1 do
if (Params.Items[I].IsNull) and (Params.Items[I].DataType = ftInteger) then

{ Items is the default property, so you can omit its name }
Params[I].AsInteger := 99999;

For TFieldDefs objects

Declaration

property Items[Index: Integer]: TFieldDef;

Items is an array of pointers to the TFieldDef objects that describe each field in the dataset.
There is one pointer for each component in the dataset.

See also
Count property

ItemSeparator property

Applies to
TOutline component

426 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

K e e p C o n n e c t i o n p r o p e r t y

Declaration

property ItemSeparator: string;

The ItemSeparator property determines the separator string used between the outline
item Text values in the FullPath property of the TOutlineNode object. The default value of
ItemSeparator is ’\’.

For example, if the top-level outline item has a Text value of ’Animals’ and a child item
with the Text value of ’Dogs’, the FullPath property of the ’Dogs’ item would have the
value ’Animals\Dogs’ by default. If the string ’->’ were assigned to the ItemSeparator
property, the FullPath property of the ’Dogs’ item would be ’Animals->Dogs’.

Example
The following code changes the item separator to ’:’.

Outline1.ItemSeparator := ’:’;

See also
FullPath property, Text property, TOutlineNode object

KeepConnection property

Applies to
TDataBase component

Declaration

property KeepConnection: Boolean;

The KeepConnection property specifies whether an application remains connected to a
database server even when no tables are open. If an application needs to open and close
several tables in a single database, it will be more efficient to set KeepConnection to True.
That way, the application will remain connected to the database even when it does not
have any tables open. It can then open and close tables repeatedly without incurring the
overhead of connecting to the database each time. If KeepConnection is False, the database
must repeat the login process to the server each time the Connected property is set to
True.

The TSession component has an application-wide KeepConnections property that
determines the initial state of the KeepConnection property for temporary (automatically-
created) TDatabase components.

Example

Database1.KeepConnection := False;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 427

K e e p C o n n e c t i o n s p r o p e r t y+
+
+
+
+
+
+
+
+
K

KeepConnections property

Applies to
TSession component

Declaration

property KeepConnections: Boolean;

Run-time only. KeepConnections specifies whether virtual TDatabase components will
maintain database connections even if no tables in the database are open. Databases that
have an explicit TDatabase component will use TDatabase’s KeepConnection property
instead to determine if connections are persistent.

If KeepConnections is True (the default), the application will maintain database
connections until the application exits or calls the DropConnections method. If
KeepConnections is False, then the application will disconnect from the database when all
datasets connected to tables in the database are closed.

Note KeepConnections has no effect on connections to databases for which an application has
an explicit TDatabase component.

Example

Session.KeepConnections := False;

See also
Session variable

KeyExclusive property

Applies to
TTable component

Declaration

property KeyExclusive: Boolean;

The KeyExclusive property indicates whether range and search functions will exclude
the matching records specified by the functions. KeyExclusive is False by default.

For the SetRangeStart and SetRangeEnd methods, KeyExclusive determines whether the
filtered range excludes the range boundaries. The default is False, which means rows
will be in the filtered range if they are greater than or equal to the start range specified
and less than or equal to the end range specified. If KeyExclusive is True, the methods
will filter strictly greater than and less than the specified values.

For the GotoNearest and FindNearest methods, KeyExclusive indicates whether a search
will position the cursor on or after the record being searched for. If KeyExclusive is False,
then GoToNearest and FindNearest will move the cursor to the record that matches the

428 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

K e y F i e l d C o u n t p r o p e r t y

specified values, if found. If True, then the methods will go the record immediately
following the matching record, if found.

Example

{ Limit the range from 1351 to 1356, excluding both 1351 and 1356 }
with Table1 do
begin

{ Set the beginning key }
EditRangeStart;
IndexFields[0].AsString := '1351';

{ Exclude 1351 itself }
KeyExclusive := True;

{ Set the ending key }
EditRangeEnd;
IndexFields[0].AsString := '1356';

{ Exclude 1356 itself }
KeyExclusive := True;

{ Tell the dataset to establish the range }
ApplyRange;
end;

See also
ApplyRange method, EditRangeStart method, EditRangeEnd method, KeyFieldCount
property

KeyFieldCount property

Applies to
TTable component

Declaration

property KeyFieldCount: Integer;

KeyFieldCount specifies the number of key fields to use with search functions (GotoKey,
FindKey, EditKey, and so on) if you don’t want to search on all the fields in the key.

See also
GotoKey method, GotoNearest method, EditKey method, FindKey method, FindNearest
method, SetKey method

KeyPressed function WinCrt

Declaration

function KeyPressed: Boolean;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 429

K e y P r e v i e w p r o p e r t y+
+
+
+
+
+
+
+
+
K

The KeyPressed function returns True if a key has been pressed on the keyboard

The key can be read using the ReadKey function.

Example

uses WinCrt;

begin
 repeat
 Write('Xx');
 until KeyPressed;
end;

See also
ReadKey function

KeyPreview property

Applies to
TForm component

Declaration

property KeyPreview: Boolean;

When the KeyPreview property is True, most key events (OnKeyDown event, OnKeyUp
event, and OnKeyPress event) go to the form first, regardless of which control is selected
on the form. This allows your application to determine how to process key events. After
going to the form, key events are then passed to the control selected on the form. When
KeyPreview is False, the key events go directly to the controls. The default value is False.

The exceptions are the navigation keys, such as Tab, BackTab, the arrow keys, and so on.
If the selected control processes such keys, you can use KeyPreview to intercept them;
otherwise, you can’t.

If KeyPreview is False, all key events go to the selected control.

Example
This example changes a form’s color to aqua when the user presses a key, even when a
control on the form has the focus. When the user releases the key, the form returns to its
original color.

var
 FormColor: TColor;

procedure TForm1.FormCreate(Sender: TObject);
begin
 KeyPreview := True;
end;

procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;

430 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

K e y V i o l C o u n t p r o p e r t y

 Shift: TShiftState);
begin
 FormColor := Form1.Color;
 Form1.Color := clAqua;
end;

procedure TForm1.FormKeyUp(Sender: TObject; var Key: Word;
 Shift: TShiftState);
begin
 Form1.Color := FormColor;
end;

KeyViolCount property

Applies to
TBatchMove component

Declaration

property KeyViolCount: Longint;

Run-time and read only. KeyViolCount reports the number of records which could not be
replaced, added, or deleted from Destination because of an integrity (key) violations. If
AbortOnKeyViol is True, KeyViolCount will never be greater than one, since the first
violation will cause the move to terminate.

Example

with BatchMove1 do
begin

Execute;
if KeyViolCount <> 0 then { something went wrong };

end;

KeyViolTableName property

Applies to
TBatchMove component

Declaration

property KeyViolTableName: TFileName;

KeyViolTableName, if specified, creates a local (Paradox) table containing all records from
the source table that caused an integrity violation (such as a key violation) as a result of
the batch operation.

If AbortOnKeyViol is True, then there will be at most one record in this table since the
operation will be aborted with that first record. KeyViolCount will have the number of
records placed in the new table.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 431

K i n d p r o p e r t y+
+
+
+
+
+
+
+
+
K

Example

BatchMove1.KeyViolTableName := ‘KeyViol’;

See also
Destination property

Kind property

Applies to
TBitBtn, TScrollBar components

The Kind property specifies the style or type of component.

For bitmap buttons

Declaration

property Kind: TBitBtnKind;

The Kind property determines the kind of bitmap button. These are the possible values
and their meanings:

Value Meaning

bkCustom You indicate which bitmap you want the bitmap button to have by setting the value of
the Glyph property to the bitmap of your choice. Like push buttons, you can either
select a ModalResult for the button, or you can supply the code to respond to an
OnClick event.

bkOK A green check mark and the text “OK” appears on the button face. The button
becomes the default button (the Default property is automatically set to True). When
the user chooses the button, the dialog box closes. The resulting ModalResult value of
the bitmap button is mrOK.

bkCancel A red X and the text “Cancel” appears on the button face. The button becomes the
Cancel button (the Cancel property is automatically set to True). When the user
chooses the button, the dialog box closes. The resulting ModalResult value of the
bitmap button is mrCancel.

bkYes A green check mark and the text “Yes” appears on the button face. The button
becomes the default button (the Default property is automatically set to True). When
the user chooses the button, any changes the user made in the dialog box are accepted
and the dialog box closes. The resulting ModalResult value of the bitmap button is
mrYes.

bkNo A red no symbol and the text “No” appears on the button face. The button becomes
the Cancel button (the Cancel property is automatically set to True). When the user
chooses the button, any changes the user made in the dialog box are canceled and the
dialog box closes. The resulting ModalResult value of the bitmap button is mrNo.

bkHelp A cyan question mark and the text “Help” appears on the button face. When the user
chooses the button, a Help screen in the application’s Help file appears. The Help file
that appears is the file specified as the value of the application’s HelpFile property. The
value of the HelpContext property of the button specifies which Help screen in the
Help file appears.

432 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

K i n d p r o p e r t y

Example
This example uses three bitmap buttons on a form. When the application runs, the Kind
property for each bitmap button is set, and the BitBtn1 button (the OK button) becomes
the default button.

procedure TForm1.FormCreate(Sender: TObject);
begin
 BitBtn1.Kind := bkOK;
 BitBtn2.Kind := bkCancel;
 BitBtn3.Kind := bkHelp;
end;

See also
Cancel property, Default property, ModalResult property

For scroll bars

Declaration

property Kind: TScrollBarKind ;

The Kind property determines if a scroll bar is horizontal or vertical. These are the
possible values:

For scroll bars of type TControlScrollBar (form and scroll box scroll bars accessed
through the HorzScrollBar and VertScrollBar properties), Kind is a read- and run-time-
only property.

Example
This example uses a radio group box and a scroll bar on a form. When the user selects
one of the radio buttons, the scroll bar changes orientation accordingly.

procedure TForm1.FormCreate(Sender: TObject);

bkClose A door with a green exit sign over it (use your imagination) and the text “Close”
appear on the button face. When the user chooses the button, the form closes. The
Default property of the button is True.

bkAbort A red X and the text “Abort” appears on the button face. The Cancel property of the
button is automatically set to True.

bkRetry A green circular arrow and the text “Retry” appear on the button face.
bkIgnore A green man walking away and the text “Ignore” appears on the button face. Use it to

allow the user to continue after an error has occurred.
bkAll A double green check mark and the text “Yes to All” appears on the button face. The

Default property of the button is automatically set to True.

Value Meaning

sbHorizontal Scroll bar is horizontal
sbVertical Scroll bar is vertical

Value Meaning

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 433

L a r g e C h a n g e p r o p e r t y+
+
+
+
+
+
+
+
+
+
L

begin
 RadioGroup1.Items.Add('Vertical');
 RadioGroup1.Items.Add('Horizontal');
 RadioGroup1.ItemIndex := 2;
end;

procedure TForm1.RadioGroup1Click(Sender: TObject);
begin
 if RadioGroup1.Items[RadioGroup1.ItemIndex] = 'Vertical' then
 ScrollBar1.Kind := sbVertical;
 if RadioGroup1.Items[RadioGroup1.ItemIndex] = 'Horizontal' then
 ScrollBar1.Kind := sbHorizontal;
end;

LargeChange property

Applies to
TScrollBar component

Declaration

property LargeChange: TScrollBarInc;

The LargeChange property determines how far the scroll box moves when the user clicks
the scroll bar on either side of the scroll box or presses PgUp or PgDn. The default value is
1 position.

For example, if the LargeChange property setting is 1000, each time the user clicks the
scroll bar, the scroll box moves 1000 positions. How big the change from one position to
another depends on the difference between the Max property value and the Min
property value. If Max is 3000 and Min is 0, the user needs to click the scroll bar three
times to move the scroll box from one end of the scroll bar to the other.

Example
This code determines that when the user clicks the scroll bar on either side of the scroll
box, the scroll box moves 100 positions on the scroll bar:

ScrollBar1.LargeChange := 100;

See also
Max property, Min property, Position property, SmallChange property

Last method

Applies to
TList object; TQuery, TStoredProc, TTable components

434 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

L a s t m e t h o d

For list objects

Declaration

function Last: Pointer;

The Last method returns a pointer that points to the last item referenced in the List
property of a list object.

Example
This example inserts two records into a list object and displays the contents of the last
record in the list on the form:

procedure TForm1.FormActivate(Sender: TObject);
type
PMyList = ^AList;
AList = record

I: Integer;
C: Char;

end;

var
MyList: TList;
ARecord: PMyList;

begin
MyList := TList.Create;
New(ARecord);
ARecord^.I := 100;
ARecord^.C := 'Z';
MyList.Add(ARecord); {Add integer 100 and character Z to list}
New(ARecord);
ARecord^.I := 200;
ARecord^.C := 'X';
MyList.Add(ARecord); {Add integer 200 and character X to list}
ARecord := MyList.Last;
Canvas.TextOut(10, 10, IntToStr(ARecord^.I)); {Display I}
Canvas.TextOut(10, 40, ARecord^.C); {Display C}
MyList.Free;

end;

See also
Capacity property, First method, IndexOf method, Items property

For tables, queries, and stored procedures

Declaration

procedure Last;

The Last method moves the cursor to the last record in the active range of records of the
dataset. The active range of records is affected by the filter established with SetRangeEnd.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 435

L a y o u t p r o p e r t y+
+
+
+
+
+
+
+
+
+
L

If the dataset is in Insert or Edit state, Last will perform an implicit Post of any pending
data.

Example

Table1.Last;

See also
First method, MoveBy method, Next method, Prior method, SetRangeEnd method

Layout property

Applies to
TBitBtn, TSpeedButton components

Declaration

property Layout: TButtonLayout;

The Layout property determines where the image appears on the bitmap button or a
speed button. These are the possible values:

Example
This example uses a bitmap button on a form that has a bitmap specified as the value of
its Glyph property. When the user clicks the bitmap button, the bitmap randomly
changes its position on the button:

procedure TForm1.BitBtn1Click(Sender: TObject);
begin
Randomize;
case Random(4) of

 0: BitBtn1.Layout := blGlyphLeft;
 1: BitBtn1.Layout := blGlyphRight;
 2: BitBtn1.Layout := blGlyphTop;
 3: BitBtn1.Layout := blGlyphBottom;
 end;
end;

See also
Margin property, Spacing property

Value Meaning

blGlyphLeft The image appears near the left side of the button.
blGlyphRight The image appears near the right side of the button.
blGlyphTop The image appears near the top of the button.
blGlyphBottom The image appears near the bottom of the button.

436 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

L e f t p r o p e r t y

Left property

Applies to
All controls; TFindDialog, TReplaceDialog components

Declaration

property Left: Integer;

The Left property determines the horizontal coordinate of the left edge of a component
relative to the form in pixels. For forms, the value of the Left property is relative to the
screen in pixels. The default value is -1.

The Left property for the Find and Replace dialog boxes is available at run-time only.

Example
The following example moves the button 10 pixels to the right each time a user clicks it:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Button1.Left := Button1.Left + 10;
end;

See also
SetBounds method, Top property

LeftCol property

Applies to
TDrawGrid, TStringGrid components

Declaration

property LeftCol: Longint;

Run-time only. The LeftCol property determines which column in the grid appears at the
far left side of the grid.

If you have one or more nonscrolling columns in the grid, they remain at the far left,
regardless of the value of the LeftCol property. In this case, the column you specify as the
far left column is the first column to the immediate right of the nonscrolling columns.

Example
This line of code positions the fourth column of a string grid at the left edge of the grid:

StringGrid1.LeftCol := 3;

See also
FixedCols property, TopRow property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 437

L e n g t h f u n c t i o n+
+
+
+
+
+
+
+
+
+
L

Length function System

Declaration

function Length(S: string): Integer;

The Length function returns the dynamic length of the string S.

Example

var
 S: string;
begin
 S := 'The Black Knight';
 Canvas.TextOut(10, 10, 'String Length = ' + IntToStr(Length(S)));
end;

See also
Concat function, Copy function, Delete procedure, Insert procedure, Pos function

Length property

Applies to
TMediaPlayer component

Declaration

property Length: Longint;

Run-time and read only. The Length property specifies the length of the medium in the
open multimedia device. Length is specified using the current time format, which is
specified by the TimeFormat property.

Example
The following code sets Wait to False if the Length of the media is over 10,000. If
TimeFormat is tfMilliseconds, Wait is set to False if the media is over 10 seconds long.

MediaPlayer1.Wait := (MediaPlayer1.Lenth > 10000);

See also
Position property, Start property, TrackLength property

Level property

Applies to
TOutlineNode object

438 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

L i n e s p r o p e r t y

Declaration

property Level: Word;

Run-time and read only. The Level property indicates the level of indentation of an item
within the TOutline component. The value of Level is 1 for items on the top level. The
value of Level is 2 for their children, and so on.

Example
The following code tests to determine if the fifth outline item is on the same level as the
selected outline item.

if Outline1.Items[5].Level = Outline1.Items[Outline1.SelectedItem].Level then
{ The selected item is on the same level as the fifth item };

See also
ChangeLevelBy method, TopItem property

Lines property

Applies to
TDBMemo, TDDEClientItem, TDDEServerItem, TMemo, TOutline components

Lines property for memos

Declaration

property Lines: TStrings;

The Lines property contains the text lines in a memo component.

For a database memo control, the Lines property is a run-time property only.

Example
This example uses a button and a memo control on a form. When the user clicks the
button, the contents of the system’s AUTOEXEC.BAT file is loaded into the memo, and
the sixth line of the file is written across the top of the form.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Memo1.Lines.LoadFromFile('C:\AUTOEXEC.BAT');
 Writeln('The 6th line of AUTOEXEC.BAT is: ', Memo1.Lines[5]);
end;

See also
GetTextBuf method, SetTextBuf method, Text property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 439

L i n e s p r o p e r t y+
+
+
+
+
+
+
+
+
+
L

Lines property for outlines

Declaration

property Lines: TStrings;

The Lines property contains the Text property values of the individual items in an
outline.

If the Lines property is of an outline component, each line becomes an outline item in a
TOutlineNode object. Leading tabs and spaces are converted into levels of the outline.
Text without any leading tabs or spaces become level 1 items. For example, to create a
level 2 item, lead the text of the item with one tab or space.

The Lines property of outlines is primarily useful for stuffing an outline with items at
design time. While you can access the individual items with the Lines property at run
time, it is much quicker to access an item with the Items property.

Example
The following two lines of code each produce the same result. In the first line, Lines is
used to access the Strings value of the third outline node. In the second line, Items is used
to access the Text value of the third outline node. Note that the index used with Items is
one more than the index used with Lines.Strings.

Edit1.text := Outline1.Lines.Strings[2];
Edit2.Text := Outline1.Items[3].Text;

Lines property for DDE items

Declaration

property Lines: TStrings;

The Lines property contains the text data to exchange in a DDE conversation. For
TDDEClientItem components, Lines specifies the text that is updated by the DDE server
application. For TDDEServerItem components, Lines specifies the text that is sent to any
DDE clients when the value of Lines changes or when a client requests to be updated.
When Lines is changed, an OnChange event occurs.

Lines corresponds to the Text property. Whenever the value of Lines or Text is changed,
the other is updated so that the first line of Lines is always equal to Text. Use Lines to
contain text values longer than 255 characters (which is the limit of the Text property).
For shorter strings, use the Text property.

If the Lines property is of a TDDEClientItem component, you can also send the text in
Lines directly to the DDE server by poking data with the PokeDataLines method.

If the Lines property is of a TDDEServerItem component, the DDE client can change Lines
by poking data. The poked data replaces the contents of Lines and an OnChange event
occurs.

440 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

L i n e T o m e t h o d

Example
The following code assigns the value to the Lines property of DDEClientItem1 to the
Lines of Memo1. This code is executed in the OnChange event handler of
DDEClientItem1, so whenever the client is updated, the new data from the server is
displayed.

procedure TForm1.DdeClientItem1Change(Sender: TObject);
begin
Memo1.Lines := DDEClientItem1.Lines

end;

LineTo method

Applies to
TCanvas object

Declaration

procedure LineTo(X, Y: Integer);

The LineTo method draws a line on the canvas from the current drawing position
(specified by the PenPos property) to the point specified by X and Y and sets the pen
position to (X, Y).

Example
The following code draws a line from the upper left corner of a form to the point clicked
with the mouse.

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.MoveTo(0, 0);
 Canvas.LineTo(X, Y);
end;

See also
MoveTo method

LinksDlg procedure Toctrl

Declaration

procedure LinksDlg(Form: TForm; HelpContext: THelpContext);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 441

L i n k s D l g E n a b l e d f u n c t i o n+
+
+
+
+
+
+
+
+
+
L

LinksDlg displays the Links dialog box. Use the Links dialog box to view and edit the
current OLE links in your application. These are the parameters of LinksDlg:

Example
The following code activates the Links dialog with a context-sensitive Help ID number
of 1000.

LinksDlg(Form1, 1000);

See also
InsertOLEObjectDlg function, LinksDlgEnabled function, PasteSpecialDlg function

LinksDlgEnabled function Toctrl

Declaration

function LinksDlgEnabled(Form: TForm): Boolean;

LinksDlgEnabled determines if the Links dialog box is enabled. If so, LinksDlgEnabled
returns True and LinksDlg can be successfully called. If not, LinksDlgEnabled returns False
and nothing happens if you call LinksDlg.

The Form parameter specifies the form that owns the Links dialog box.

Example
The following code activates the Links dialog box if it is enabled.

if LinksDlgEnabled(Form1) then LinksDlg(Form1, 0);

List property

Applies to
TList object

Declaration

property List: PPointerList;

Run-time and read only. The List property stores a list of pointers that reference objects
of any type. The declaration of PPointerList is

PPointerList = ^TPointerList;

Field Description

Form The form that owns the Links dialog box.
HelpContext A Help context ID number to be used if the user chooses Help from within the Links

dialog box. If you pass 0 for HelpContext, no Help button appears in the Links dialog
box. Pass a number other than 0 if you want to provide context-sensitive online Help.

442 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

L n f u n c t i o n

The declaration of TPointerList is

TPointerList = array[0..MaxListSize-1] of Pointer;

The elements of the TPointerList array each point to an item of the list.

Example
The following code creates List1 and Object1, then adds Object1 to List1. If the first item
in the List property List1 differs from the first item of the Items property of List1 (which
shouldn’t happen), a message is displayed.

var
 List1: TList;
 Object1: TObject;
begin
 List1 := TList.Create;
 Object1 := TObject.Create;
 List1.Add(Object1);
 if List1.List^[0]<>List1.Items[0] then
 MessageDlg('Something is wrong here', mtInformation, [mbOK], 0);
List1.Free;
Object1.Free;

end;

See also
FileEditStyle property, TStrings object

Ln function System

Declaration

function Ln(X: Real): Real;

The Ln function returns the natural logarithm (Ln(e) = n) of the real-type expression X.

Example
var
 e : real;
 S : string;
begin
 e := Exp(1.0);
 Str(ln(e):3:2, S);
 S := 'ln(e) = ' + S;
 Canvas.TextOut(10, 10, S);
end;

See also
Exp function

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 443

L o f u n c t i o n+
+
+
+
+
+
+
+
+
+
L

Lo function System

Declaration

function Lo(X): Byte;

The Lo function returns the low-order Byte of the argument X as an unsigned value. X is
an expression of type Integer or Word.

Example

var B: Byte;
begin
 B := Lo($1234); { $34 }
end;

See also
Hi function, Swap function

LoadFromFile method

Applies to
TBitmap, TGraphic, TIcon, TMetafile, TPicture, TStringList, TStrings objects; TBlobField,
TGraphicField, TMemoField, TOLEContainer, TOutline components

For graphics objects and outlines

Declaration

procedure LoadFromFile(const FileName: string);

The LoadFromFile method reads the file specified in FileName and loads the data into the
object or component. The graphics objects load graphics, the OLE container loads an
OLE object, and the outline and string objects load text.

Example
This example uses a bitmap button on a form. When the application runs and the form is
created, a bitmap is placed on the bitmap button:

procedure TForm1.FormCreate(Sender: TObject);
begin
 BitBtn1.Glyph.LoadFromFile('TARTAN.BMP');
end;

See also
SaveToFile method, Strings property

444 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

L o a d F r o m S t r e a m m e t h o d

For blob, graphic, and memo fields

Declaration

procedure LoadFromFile(const FileName: string);

The LoadFromFile method reads a file with the name passed in FileName and loads the
contents in TBlobField, TMemoField, or TGraphicField.

Note For TMemoField and TGraphicField, the file should have been created by the SaveToFile or
SaveToStream method.

Example

{ Load a blob field with the contents of autoexec.bat }
BlobField1.LoadFromFile(‘c:\autoexec.bat’);

LoadFromStream method

Applies to
TBlobField, TGraphicField, TMemoField components

Declaration

procedure LoadFromStream(Stream: TStream);

The LoadFromStream method reads Stream and stores the contents in TBlobField,
TMemoField or TGraphicField.

Note For a TMemoField or TGraphicField, the file should have been created by the SaveToFile or
SaveToStream method.

Example

{ Load a blob field from an existing STream1 }
BlobField1.LoadFromStream(Stream1);

See also
LoadFromFile method, SaveToStream method

LoadMemo method

Applies to
TDBMemo component

Declaration

procedure LoadMemo;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 445

L o a d P i c t u r e m e t h o d+
+
+
+
+
+
+
+
+
+
L

The LoadMemo method loads a text BLOB into the database memo control. If the value of
the AutoDisplay property is False, the text of a memo is not automatically loaded. If
AutoDisplay is False, you can control when the text is loaded at run time by calling
LoadMemo when you want the text to appear in the control.

Example
This example uses a database memo that is connected to a BLOB text field in the dataset.
It also contains a button. When the user clicks the button, the BLOB loads into the
memo.

procedure TForm1.FormCreate(Sender: TObject);
begin
 DBMemo1.AutoDisplay := False;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 DBMemo1.LoadMemo;
end;

See also
LoadPicture method

LoadPicture method

Applies to
TDBImage component

Declaration

procedure LoadPicture;

The LoadPicture method loads the image specified as the value of the Picture property
into the database image control.

If the value of the AutoDisplay property is False, the image of a database image control is
not automatically loaded. If AutoDisplay is False, you can control when the image is
loaded at run time by calling LoadPicture when you want the image to appear in the
control.

Example
The following code loads the picture into DBImage1.

DBImage1.LoadPicture;

See also
LoadMemo method

446 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

L o a d S t r f u n c t i o n

LoadStr function SysUtils

Declaration

function LoadStr(Ident: Word): string;

LoadStr loads the string resource given by Ident from the application's executable file. If
the string resource does not exist, an empty string is returned.

Moving display strings into string resources makes your application easier to localize
without rewriting your program.

Local property

Applies to
TQuery component

Declaration

property Local: Boolean;

Run-time and read only. The Local property specifies if the table referenced by the
TQuery is a local dBASE or Paradox table or an SQL server table. If Local is True, then the
table is a dBASE or Paradox table. If Local is False, the table is a SQL table.

For remote SQL tables, some operations (such as record counts) may take longer than
for local tables, owing to network constraints.

Example

{ If the table is local, allow the data-aware controls to display the changes }
DataSource1.Enabled := Query1.Local;

Locale property

Applies to
TDataBase, TTable, TQuery, TSession, TStoredProc components

For tables, queries, and stored procedures

Declaration

property Locale: TLocale;

Run-time and read only. The Locale property identifies the language driver used with
the dataset for use with direct calls to the Borland Database Engine API.

Under most circumstances you should not need to use this property, unless your
application requires some functionality not encapsulated in the VCL.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 447

L o c k e d p r o p e r t y+
+
+
+
+
+
+
+
+
+
L

For sessions

Declaration

property Locale: TLocale;

Run-time and read only. The Locale property identifies the language driver used with
the TSession component. It enables you to reference the language driver when making
direct calls to the Borland Database Engine API. Under most circumstances you should
not need to use this property, unless your application requires some functionality not
encapsulated in the VCL.

See also
Session variable

For database components

Declaration

property Locale: TLocale;

Run-time and read only. The Locale property identifies the language driver used with
the TDatabase component. It allows you to make direct calls to the Borland Database
Engine API. Under most circumstances you should not need to use this property, unless
your application requires some functionality not encapsulated in the VCL.

Locked property

Applies to
TPanel component

Declaration

property Locked: Boolean;

The Locked property determines whether a panel is replaced by an in-place active OLE
object. If Locked is False, the OLE server can replace the panel. If Locked is True and the
panel is aligned to one of the edges of the form (its Align property is alTop, alBottom,
alLeft, or alRight), then the panel remains when an OLE object in a TOLEContainer
component is activated in place.

Use Locked to prevent status bars and the like from being replaced.

Example
The following code sets Locked to True for a panel named StatusBar.

StatusBar.Locked := True;

448 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

L o g i n P r o m p t p r o p e r t y

See also
InPlaceActive property

LoginPrompt property

Applies to
TDataBase component

Declaration

property LoginPrompt: Boolean;

The LoginPrompt property is used to control how security is handled for SQL databases.

If True, (the default), the standard Delphi Login dialog box will be opened when the
application attempts to establish a database connection. The user must then enter a
proper user name and password to connect to a database on the server.

If False, then an application will look for login parameters in the Params property of the
TDatabase component. These are the USERNAME and PASSWORD parameters. For
example,

USERNAME = SYSDBA
PASSWORD = masterkey

This is generally not recommended since it compromises server security.

Example

{ Do not display the login prompt }
Database1.LoginPrompt := False;

See also
OnLogin event

LongRec SysUtils

Declaration

LongRec = record
Lo, Hi: Word;

end;

LongRec declares a utility record that stores the high and low order bytes of the specified
variable as type Word.

LongRec is useful in handling double-word length variables.

See also
Hi function, Lo function

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 449

L o o k u p D i s p l a y p r o p e r t y+
+
+
+
+
+
+
+
+
+
L

LookupDisplay property

Applies to
TDBLookupCombo, TDBLookupList components

Declaration

property LookupDisplay : string;

The LookupDisplay property determines which field in the lookup table displays in the
database lookup combo box or database lookup list box. Before you specify a
LookupDisplay field, link the two datasets using the LookupField property.

You can choose to display multiple fields from the lookup dataset. Each field appears in
a separate column. To specify more than one field to display, separate each field name
with a semicolon. For example, this line of code displays three columns in the drop-
down list of a database lookup combo box. Column 1 is the name of the company,
column 2 is the city where the company is located, and column 3 is the country.

DBLookupCombo1.LookupDisplay := ’Company;City;Country’;

You can choose to include titles for the field columns and you can choose to have lines
between the rows and columns using the Options property.

Example
The following code specifies that the ’Company’ field is displayed in DBLookupCombo1.

DBLookupCombo1.LookupDisplay := ’Company’;

See also
LookupField property, Options property

LookupField property

Applies to
TDBLookupCombo, TDBLookupList components

Declaration

property LookupField: string;

The LookupField property links the dataset the database lookup combo box or database
lookup list box uses to “look up” data to the primary dataset you are working with.

Although the name of the field specified as the LookupField does not have to be the same
as the name of the field specified as the DataField, the two fields must contain the same
values. For example, the LookupField value can be CustomerNumber and the DataField
value can be CustNo, as along as both fields use the same number to identify a particular
customer. When you specify a LookupField, the current value of that field appears in the
control, if the Active property of both datasets is True.

450 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

L o o k u p S o u r c e p r o p e r t y

After you specify a LookupField field, you can choose which field you prefer to display in
the control with the LookupDisplay property.

Example
The following code designates that DBLookupCombo1 looks up data in the
’CustomerNumber’ field.

DBLookupCombo1.LookupField := ’CustomerNumber’;

See also
DataSource property, LookupSource property

LookupSource property

Applies to
TDBLookupCombo, TDBLookupList components

Declaration

property LookupSource: TDataSource;

The LookupSource of a database lookup combo box or lookup list box is the data source
component (TDataSource) that identifies the dataset you want the control to use to “look
up” the information you want displayed in the control.

Example
The following code specifies that DataSource1 is the lookup source for DBLookupCombo1.

DBLookupCombo1.LookupSource := DataSource1;

See also
LookupDisplay property, LookupField property

Low function System

Declaration

function Low(X);

The Low function returns the lowest value in the range of the argument.

Result type is X, or the index type of X where X is either a type identifier or a variable
reference.

Type Low returns

Ordinal type The lowest value in the range of the type
Array type The lowest value within the range of the index type of the array

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 451

L o w e r C a s e f u n c t i o n+
+
+
+
+
+
+
+
+
+
L

Example
function Sum(var X: array of Double): Double;
var
 I: Word;
 S: Real;
begin
 S := 0; { Note that open array index range is always zero-based. }
 for I := 0 to High(X) do S := S + X[I];
 Sum := S;
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 List1: array[0..3] of Double;
 List2: array[5..17] of Double;
 X: Word;
 S, TempStr: string;
begin
 for X := Low(List1) to High(List1) do
 List1[X] := X * 3.4;
 for X := Low(List2) to High(List2) do
 List2[X] := X * 0.0123;
 Str(Sum(List1):4:2, S);
 S := 'Sum of List1: ' + S + #13#10;
 S := S + 'Sum of List2: ';
 Str(Sum(List2):4:2, TempStr);
 S := S + TempStr;
 MessageDlg(S, mtInformation, [mbOk], 0);
end;

See also
High function

LowerCase function SysUtils

Declaration

function LowerCase(const S: string): string;

The LowerCase function returns a string with the same text as the string passed in S, but
with all letters converted to lowercase. The conversion affects only 7-bit ASCII
characters between 'A' and 'Z'. To convert 8-bit international characters, use
AnsiLowerCase.

String type Returns 0
Open array Returns 0
String parameter Returns 0

Type Low returns

452 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

M a i n F o r m p r o p e r t y

Example
This example uses two edit boxes and a button on a form. When the user clicks the
button, the text in the Edit1 edit box displays in the Edit2 edit box in lowercase letters.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Edit2.Text := LowerCase(Edit1.Text);
end;

See also
AnsiLowerCase function, UpperCase function

MainForm property

Applies to
TApplication component

Declaration

property MainForm: TForm;

Run-time and read only. The MainForm property identifies which form in the
application is the main form, which is the form that is always created first. When the
main form closes, the application terminates.

When you create a new project, Form1 automatically becomes the value of the MainForm
property. If you want to make another form become the main form, use the Forms page
of the Options|Project Options dialog box.

See also
Application variable, CreateForm method, Run method

Mappings property

Applies to
TBatchMove component

Declaration

property Mappings: TStrings;

By default TBatchMove matches columns based on their position in the source and
destination tables. That is, the first column in the source is matched with the first column
in the destination, and so on.

To override the default column mappings, use the Mappings property. This is a list of
column mappings (one per line) in one of two forms. To map the column ColName in
the source table to the column of the same name in the destination table use:

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 453

M a r g i n p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
M

ColName

Or, to map the column named SourceColName in the source table to the column named
DestColName in the destination table:

DestColName = SourceColName

If source and destination column data types are not the same, TBatchMove will perform
a “best fit”. It will trim character data types, if necessary, and attempt to perform a
limited amount of conversion if possible. For example, mapping a CHAR(10) column to
a CHAR(5) column will result in trimming the last five characters from the source
column.

As an example of conversion, if a source column of character data type is mapped to a
destination of integer type, TBatchMove will convert a character value of ‘5’ to the
corresponding integer value. Values that cannot be converted will generate errors.

Fields in Destination which have no entry in Mappings will be set to NULL.

Example

var Maps: TStringList;
...
with Maps do
begin
Clear;

{ Map the CustomerNum field to CustNo }
Add(‘CustNo=CustomerNum’);
end;

MatchMove1.Mappings := Maps;

See also
Source property

Margin property

Applies to
TBitBtn, TControlScrollBar, TSpeedButton components

For bitmap buttons and speed buttons

Declaration

property Margin: Integer;

The Margin property determines the number of pixels between the edge of the image
(specified in the Glyph property) and the edge of the button. The edges that the margin
separates depends on the layout of the image and text (specified in the Layout property).
For example, if Layout is blGlyphLeft, the margin appears between the left edge of the
image and the left edge of the button. If Margin is 3, three pixels separates the image and

454 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

M a r g i n p r o p e r t y

the button edges. If Margin is 0, no distance in pixels separates the image and the button
edges.

If Margin is -1 (which it is by default), then the image and text (specified in the Caption
property) are centered. The number of pixels between the image and button edge is
equal to the number of pixels between the opposite edge of the button and the text.

Example
This example uses a moderately large bitmap button on a form. When the application
runs, a bitmap (or glyph) is loaded on to the button, the bitmap appears on the right side
of the button, and bitmap is placed 30 pixels from the right edge of the bitmap button.

procedure TForm1.FormCreate(Sender: TObject);
begin
with BitBtn1 do
 begin
 Glyph.LoadFromFile('C:WINDOWS\CARS.BMP');
 Layout := blGlyphRight;
 Margin := 30;
 end;
end;

See also
Caption property, Glyph property, Layout property

For form and scroll box scroll bars

Applies to
TControlScrollBar component

Declaration

procedure Margin: Word;

The Margin property value is the minimum number of pixels you want controls on a
form or in a scroll box to be from the edge of the form or scroll box. This number is
automatically added to the Range value to ensure that the user has a scroll bar whenever
the distance from a control and the edge of the form or scroll box becomes less than the
Margin value.

The default value is 0.

Example
This example uses a button and a label on a form. Place the label near the left side of the
form, and place the button somewhere near the middle of the form. When the user runs
the application, a horizontal scroll bar does not appear, because no control on the form is
close enough to the right edge. Each time the user clicks the button, the button moves 25
pixels to the right, and the calculated Range value is reported in the caption of the label.
Repeatedly clicking the button eventually moves the button close enough to the edge of
the form (within the Margin amount) so that a horizontal scroll bar appears:

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 455

M a s k p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
M

procedure TForm1.FormCreate(Sender: TObject);
begin
 with HorzScrollBar do
 begin

Margin:= 25;
Increment := 10;

 end;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 Button1.Left := Button1.Left + 25;
 Label1.Caption := IntToStr(HorzScrollBar.Range);
end;

See also
Align property, HorzScrollBar property, Range property, VertScrollBar property

Mask property

Applies to
TFileListBox, TFilterComboBox components

Declaration

property Mask: string

For filter combo boxes

Declaration

property Mask: string

Run-time and read only. The Mask property value is the string selected as the filter in the
filter combo box.

Example
This example uses a filter combo box and a label on a form. When the user selects a filter
in the filter combo box, the selected mask appears in the caption of the label:

procedure TForm1.FilterComboBox1Change(Sender: TObject);
begin
 Label1.Caption := 'The selected mask is ' + FilterComboBox1.Mask;
end;

procedure TForm1.FormCreate(Sender: TObject);
begin
 FilterComboBox1.Filter := 'All files (*.*)|*.*| Pascal files (*.pas)|*.pas';
end;

456 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

M a s t e r F i e l d s p r o p e r t y

See also
Filter property

For file list boxes

property Mask: string

The Mask property determines which files are displayed in the file list box. A file mask
or file filter is a file name that usually includes wildcard characters (*.PAS, for example).
Only files that match the mask are displayed in list box. The file mask *.* displays all
files, which is the default value.

You can specify multiple file masks. Separate the file mask specifications with
semicolons. For example, *.PAS; *.EXE.

Example
This example uses a file list box on a form. When the application runs, the list box
displays only files with a .PAS file extension:

procedure TForm1.FormCreate(Sender: TObject);
begin
 FileListBox1.Mask := '*.PAS';
end;

See also
Filter property

MasterFields property

Applies to
TTable component

Declaration

property MasterFields: string;

Use the MasterFields property to specify the column(s) to link a detail table with a master
table that is specified by the MasterSource property. MasterFields is a string consisting of
one or more column names that join the two tables. Separate multiple column names
with semicolons. Each time the current record in the master table changes, the new
values in those fields are used to select corresponding records from the detail table for
display. At design time, use the Field Link Designer to set this property.

Example
Suppose you have a master table named Customer that contains a CustNo field, and you
also have a detail table named Orders that also has a CustNo field. To display only those
records in Orders that have the same CustNo value as the current record in Customer,
write this code:

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 457

M a s t e r S o u r c e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
M

Customer.MasterFields := ‘CustNo’;

If you want to display only the records in the detail table that match more than one field
value in the master table, specify each field and separate them with a semicolon.

Customer.MasterFields := ‘CustNo;SaleDate’;

See also
IndexName property

MasterSource property

Applies to
TTable component

Declaration

property MasterSource: TDataSource;

When linking a detail table to a master table, use the MasterSource property to specify
the TDataSource from which the TTable will get data for the master table.

Example

Table2.MasterSource := DataSource1;

See also
IndexName property, MasterFields property

Max property

Applies to
TScrollBar component

Declaration

property Max: Integer;

The Max property along with the Min property determines the number of possible
positions the scroll box can have on the scroll bar. The LargeChange and SmallChange
properties use the number of positions to determine how far to move the scroll box
when the user uses the scroll bar.

For example, if Max is 30000 and Min is 0, the scroll box can assume 30,000 positions on
a horizontal scroll bar. If the LargeChange property setting is 10000 and the scroll box
position is at the far left of the scroll bar (Position is 0), the user can click the scroll bar
three times to the right of the scroll box before the scroll box is moved all the way to the
right of the scroll bar (30000/10000 = 3).

458 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

M a x A v a i l f u n c t i o n

If you want to change the Min, Max, and Position values all at once at run time, call the
SetParams method.

Example
This code changes the maximum position of the scroll bar from 100, the default value, to
30000:

ScrollBar1.Max := 30000;

See also
LargeChange property, Min property, Position property, SetParams method, SmallChange
property

MaxAvail function System

Declaration

function MaxAvail: Longint;

The MaxAvail function returns the size of the largest contiguous free block in the heap.

MaxAvail returns the larger of:

• The largest free blocks within the heap manager's sub-allocation space
• The Windows global heap

The value corresponds to the size of the largest dynamic variable that can be allocated at
that time.

To find the total amount of free memory in the heap, call MemAvail.

Example

uses Dialogs;

type
 FriendRec = record
 Name: string[30];
 Age: Byte;
 end;
var
 P: Pointer;
begin
 if MaxAvail < SizeOf(FriendRec) then
 MessageDlg('Not enough memory', mtWarning, [mtOk], 0)
 else
 begin
 { Allocate memory on heap }
 GetMem(P, SizeOf(FriendRec));
 { ... }
 end;
end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 459

M a x F o n t S i z e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
M

See also
MemAvail function

MaxFontSize property

Applies to
TFontDialog component

Declaration

property MaxFontSize: Integer;

The MaxFontSize property determines the largest font size available in the Font dialog
box. Use the MaxFontSize property when you want to limit the font sizes available to the
user. To limit the font sizes available, the Options set property of the Font dialog box
must also contain the value fdLimitSize. If fdLimitSize is False, setting the MaxFontSize
property has no affect on number of fonts available in the Font dialog box.

The default value is 0, which means there is no maximum font size specified.

Example
This example uses a Font dialog box, a button, and a label on a form. When the user
clicks the button, the Font dialog box appears. The font sizes available are within the
range of 10 to 14. When the user chooses OK, the selected font is applied to the caption
of the label.

procedure TForm1.Button1Click(Sender: TObject);
begin
 FontDialog1.Options := [fdLimitSize];
 FontDialog1.MaxFontSize := 14;
 FontDialog1.MinFontSize := 10;
 if FontDialog1.Execute then
 Label1.Font := FontDialog1.Font;
end;

See also
MinFontSize property

MaxLength property

Applies to
TComboBox, TDBEdit, TDBLookupCombo, TDBMemo, TEdit, TMaskEdit, TMemo
components

Declaration

property MaxLength: Integer;

460 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

M a x P a g e p r o p e r t y

The MaxLength property specifies the maximum number of characters the user can enter
in an edit box, memo, or combo box. The default setting for MaxLength is 0, which
means that there is no limit on the number of characters the control can contain. Any
other number limits the number of characters the control accepts.

Example
The following example sets the maximum number of characters for an edit box to 80:

Edit1.MaxLength := 80;

MaxPage property

Applies to
TPrintDialog component

Declaration

property MaxPage: Integer;

The MaxPage property determines the greatest page number the user can use when
specifying pages to print. If the user specifies a number greater than the value in
MaxPage, a warning message appears and the user must enter a valid number or close
the dialog box. The default value is 0.

Note The user can specify pages numbers only if the Options property set includes the value
poPageNums.

Example
This example uses a button and a Print dialog box on a form. When the user clicks the
button, the code makes page four the highest page number the user can select in the
Print dialog box and displays the dialog box:

procedure TForm1.Button1Click(Sender:TObject);
begin
PrintDialog1.Options := [poPageNums];
PrintDialog1.ToPage := 4;
PrintDialog1.MaxPage := 4;
if PrintDialog1.Execute then

...;
end;

See also
MinPage property

MaxRecords property

Applies to
TReport component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 461

M a x T a b N a m e L e n c o n s t a n t+
+
+
+
+
+
+
+
+
+
+
M

Declaration

property MaxRecords: Word;

The value of the MaxRecords property is the number of database records you want to use
to create the report. For example, if you just want to see a sample report and your
database contains 50,000 records, you can specify a MaxRecords value that limits the
number of records in the report to a much smaller number.

Example
The following code sets the maximum number of records to be used by Report1 to 3.

Report1.MaxRecords := 3;

MaxTabNameLen constant

Declaration

MaxTabNameLen = 20;

The MaxTabNameLen constant specifies that the longest string that can be displayed on a
tab set control (TTabSet) is 20 characters.

MaxValue property

Applies to
TCurrencyField, TFloatField, TIntegerField, TSmallintField, TWordField component

Declaration

property MaxValue: Longint;

The MaxValue property limits the maximum value in the field. Assigning a value greater
than MaxValue raises an exception.

Example

{ Limit a field to 1 to 10}
Field1.MaxValue := 10;
Field1.MinValue := 1;

See also
MinValue property

MDIChildCount property

Applies to
TForm component

462 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

M D I C h i l d r e n p r o p e r t y

Declaration

property MDIChildCount: Integer;

Run-time and read only. The value of the MDIChildCount property is the number of
child windows open in an MDI application.

Example
The following code closes Form1 if it has no MDI children open.

if Form1.MDIChildCount = 0 then Form1.Close;

See also
ActiveMDIChild property, FormStyle property, MDIChildren property

MDIChildren property

Applies to
TForm component

Declaration

property MDIChildren[I: Integer]: TForm;

Run-time and read only. The MDIChildren property array provides access to a child
window or form in an MDI application through an index value, I. The value of I is
determined by the order in which the window was created. For example, the first MDI
child window has an I value of 0.

Example
The following code closes all the MDI children of Form1.

var
I: Integer;

begin
with Form1 do

for I := 0 to MDIChildCount-1 do
MDIChildren[I].Close;

end;

See also
FormStyle property, MDIChildCount property

MemAvail function System

Declaration

function MemAvail: Longint;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 463

M e n u p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
M

The MemAvail function returns the amount of all free memory in the heap.

Note that a contiguous block of storage the size of the returned value is unlikely to be
available due to fragmentation of the heap. To find the largest free block, call MaxAvail.

Example

var
 S: string;
begin
 S := IntToStr(MemAvail) + ' bytes available' + #13#10;
 S := S + 'Largest free block is ' + IntToStr(MaxAvail) + ' bytes';
 Canvas.TextOut(10, 10, S);
end;

See also
MaxAvail function

Menu property

Applies to
TForm component

Declaration

property Menu: TMainMenu;

The Menu property designates the menu bar for the form.

Example
This code displays a new menu named NewMenu when the user clicks the button
ChangeMenu button.

procedure TForm1.ChangeMenuClick(Sender: TObject);
begin
 Menu := NewMenu;
end;

Merge method

Applies to
TMainMenu component

Declaration

procedure Merge(Menu: TMainMenu);

The Merge method merges a main menu of one form with a main menu of another for
non-MDI applications. For example, when your application uses the main menu of the

464 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

M e s s a g e B o x m e t h o d

first form as the main menu for the application, and your application displays a second
form, you can call Merge to merge the main menu on the second form with the main
menu of the application.

Specify the menu you want merged with this menu as the Menu parameter.

Depending on the value of the GroupIndex property of menu items on the main menu,
the merged menu items can replace menu items on the menu bar, or add or insert menu
items into the menu bar. See GroupIndex for information on how to do these things.

It you want merging and unmerging to occur automatically when another form is
displayed, change the value of the AutoMerge property to True.

Example
This example uses two forms, each containing a main menu created with the Menu
Designer. It also uses a button on Form1. When the user clicks the button, Form2 appears
and the main menu of Form2 merges with that of Form1.

Before running this example, add Unit2 to the uses clause of Unit1.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Form2.Show;
 MainMenu1.Merge(Form2.MainMenu1);
end;

See also
AutoMerge property, Unmerge method

MessageBox method

Applies to
TApplication component

Declaration

function MessageBox(Text, Caption: PChar; Flags: Word): Integer;

The MessageBox method is an encapsulation of the Windows API MessageBox function
except that you don’t need to supply a window handle.

The MessageBox method displays a generic dialog box that displays a message and one
or more buttons. The value of the Text parameter is the message, which can be longer
than 255 characters if necessary. Long messages are automatically wrapped in the
message box. The value of the Caption property is the caption that appears in the title bar
of the dialog box. Captions can be longer than 255 characters, but they don’t wrap. A
long caption results in a wide message box.

To see the possible values of the Flags parameter, see the MessageBox function in the
Windows API Help file (WinAPI.HLP). The corresponding parameter on that Help
screen is called TextType. The values determine the buttons that appear in the message

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 465

M e s s a g e D l g f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
M

box and the behavior of the message box. The values can be combined to obtain the
effect your want.

The return value of the MessageBox method is 0, if there wasn’t enough memory to
create the message box, or one of these values:.

Example
This example uses a button and a label on a form. When the user clicks the button, a
message box appears. When the user responds to the message box, the button selected is
reported in the caption of the label:

procedure TForm1.Button1Click(Sender: TObject);
var
 Button: Integer;
begin
 Button := Application.MessageBox('Welcome to Delphi!', 'Message Box', mb_OKCancel +
 mb_DefButton1);
 if Button = IDOK then
 Label1.Caption := 'You chose OK';
 if Button = IDCANCEL then
 Label1.Caption := 'You chose Cancel';
end;

See also
MessageDlg function, MessageDlgPos function, ShowMessage procedure, ShowMessagePos
procedure

MessageDlg function Dialogs

Declaration

function MessageDlg(const Msg: string; AType: TMsgDlgType; AButtons: TMsgDlgButtons;
HelpCtx: Longint): Word;

The MessageDlg function displays a message dialog box for your application in the
center of your screen. The message box displays the value of the Msg string constant.

Value Numeric value Meaning

IDABORT 3 The user chose the Abort button
IDCANCEL 2 The user chose the Cancel button
IDIGNORE 5 The user chose the Ignore button
IDNO 7 The user chose the No button
IDOK 1 The user chose the OK button
IDRETRY 4 The user chose the Retry button
IDYES 6 The user chose the Yes button

466 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

M e s s a g e D l g f u n c t i o n

The AType parameter determines the type of message box that appears. These are the
possible values:

The AButtons parameter determines which buttons appear in the message box. AButtons
is of type TMsgDlgBtns, which is a set, so you can include multiple buttons within the
set. These are the values you can include in the set:

In addition to the individual set values, VCL defines three constants that are predefined
sets that include common button combinations:

When using these constants, remember not to add the brackets [] to define the set. These
constants are already predefined sets.

The HelpCtx parameter determines which Help screen is available for the message box.
For more information about Help context values, see the HelpContext property.

The function returns the value of the button the user selected. These are the possible
return values:

Value Meaning

mtWarning A message box containing a yellow exclamation point symbol.
mtError A message box containing a red stop sign.
mtInformation A message box containing a blue “i”.
mtConfirmation A message box containing a green question mark.
mtCustom A message box containing no bitmap. The caption of the message box is the name of

the application’s executable file.

Value Meaning

mbYes A button with a green check mark and the text ‘Yes’ on its face
mbNo A button with a red circle and slash mark through the circle and the text ‘No’ on its face
mbOK A button with a green check mark and the text ‘OK’ on its face
mbCancel A button with a red X and the text ‘Cancel’ on its face
mbHelp A button with a cyan question mark and the text ‘Help’ on its face
mbAbort A button with a red check mark and the text ‘Abort’ on its face
mbRetry A button with two green circular arrows and the text ‘Retry’ on its face
mbIgnore A button with a green man walking away and the text ‘Ignore’ on its face
mbAll A button with a green double check marks and the text ‘All’ on its face

Value Meaning

mbYesNoCancel A set that puts the Yes, No, and Cancel buttons in the message box
mbOkCancel A set that puts the OK and Cancel buttons in the message box
mbAbortRetryIgnore A set that puts an Abort, Retry, and Ignore buttons in the message box

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 467

M e s s a g e D l g f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
M

The MsgDlgButtonStyle typed constant in the Dialogs unit is declared like this:

MsgDlgButtonStyle: TButtonStyle = bsAutoDetect;

This ensures that the style of the buttons matches the style used by the operating
environment your application is running under. If you prefer to always use a particular
style, change the value of the MsgDlgButtonStyle. See the Style property for bitmap
buttons for the possible values and their meanings.

The MsgDlgGlyphs typed constant in the Dialogs unit is declared like this:

MsgDlgGlyphs: Boolean = True;

This declaration ensures that bitmaps (or glyphs) appear on the message dialog box
buttons. If you prefer that the bitmaps are not present, change the value of
MsgDlgButtonStyle to False.

Example
This example uses a button on a form. When the user clicks the button, a message box
appears, asking if the user wants to exit the application. If the user chooses Yes, another
dialog box appears informing the user the application is about to end. When user
chooses OK, the application ends.

procedure TForm1.Button1Click(Sender: TObject);
begin
if MessageDlg('Welcome to my Object Pascal application. Exit now?',

mtInformation, [mbYes, mbNo], 0) = mrYes then
begin

MessageDlg('Exiting the Object Pascal application.', mtInformation,
[mbOk], 0);

Close;
end;

end;

This example uses a button on a form. When the user clicks the button, a message box
appears with a Yes, No, and Cancel button on it:

procedure TForm1.Button1Click(Sender: TObject);
begin
 MessageDlg('Are you there?', mtConfirmation, mbYesNoCancel, 0);
end;

See also
Kind property, MessageDlgPos function, ModalResult property, MessageBox method,
ModalResult property, ShowMessage procedure, ShowMessagePos procedure

Return values

mrNone mrAbort mrYes

mrOk mrRetry mrNo

mrCancel mrIgnore mrAll

468 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

M e s s a g e D l g P o s f u n c t i o n

MessageDlgPos function Dialogs

Declaration

function MessageDlgPos(const Msg: string; AType: TMsgDlgType;
AButtons: TMsgDlgButtons; HelpCtx: Longint; X, Y: Integer): Word;

The MessageDlg function displays a message dialog box in your application at the
position you specify. The message box displays the value of the Msg string constant.

The AType parameter determines the type of message box that appears. These are the
possible values:

The AButtons parameter determines which buttons appear in the message box. AButtons
is of type TMsgDlgBtns, which is a set, so you can include multiple buttons within the
set. These are the values you can include in the set:

In addition to the individual set values, VCL defines three constants that are predefined
sets which include common button combinations:

When using these constants, remember not to add the brackets [] to define the set. These
constants are already predefined sets.

Value Meaning

mtWarning A message box containing yellow exclamation point symbol.
mtError A message box containing a red stop sign.
mtInformation A message box containing a blue “i”.
mtConfirmation A message box containing a green question mark.
mtCustom A message box containing no bitmap. The caption of the message box is the

name of the application’s executable file.

Value Meaning

mbYes A button with a green check mark and the text ‘Yes’ on its button face
mbNo A button with a red circle and slash mark through the circle and the text ‘No’ on its button

face
mbOK A button with a green check mark and the text ‘OK’ on its button face
mbCancel A button with a red X and the text ‘Cancel’ on its button face
mbHelp A button with a cyan question mark and the text ‘Help’ on its button face
mbAbort A button with a red check mark and the text ‘Abort’ on its face
mbRetry A button with two green circular arrows and the text ‘Retry’ on its face
mbIgnore A button with a green man walking away and the text ‘Ignore’ on its face
mbAll A button with a green double check marks and the text ‘All’ on its face

Value Meaning

mbYesNoCancel A set that puts the Yes, No, and Cancel buttons in the message box
mbOkCancel A set that puts the OK and Cancel buttons in the message box
mbAbortRetryIgnore A set that puts an Abort, Retry, and Ignore buttons in the message box

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 469

M e s s a g e D l g P o s f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
M

The HelpCtx parameter determines which Help screen is available for the message box.
For more information about Help context values, see the HelpContext property.

The X and Y integer parameters are the screen coordinates in pixels where the top left
corner of the message box appears.

The function returns the value of the button the user selected. These are the possible
return values:

The MsgDlgButtonStyle constant in the Dialogs unit is declared like this:

MsgDlgButtonStyle: TButtonStyle = bsAutoDetect;

This ensures that the style of the buttons matches the style used by the operating
environment your application is running under. If you prefer to always use a particular
style, change the value of the MsgDlgButtonStyle. See the Style property for bitmap
buttons for the possible values and their meanings.

The MsgDlgGlyphs typed constant in the Dialogs unit is declared like this:

MsgDlgGlyphs: Boolean = True;

This declaration ensures that bitmaps (or glyphs) appear on the message dialog box
buttons. If you prefer that the bitmaps are not present, change the value of
MsgDlgButtonStyle to False.

Example
This example displays a confirmation style message box at screen coordinates 125, 25
that asks users if they want to color the form green. If the user chooses Yes, the form
turns bright green:

procedure TForm1.Button1Click(Sender: TObject);
var
 ButtonSelected: Word;
begin
if MessageDlgPos(‘Color the form green?', mtConfirmation,

 [mbYes, mbNo], 0, 125, 25) := mrYes then
Color := clLime;

end;

This example uses a button on a form. When the user clicks the button, a message box
appears with a Yes, No, and Cancel button on it:

procedure TForm1.Button1Click(Sender: TObject);
begin
 MessageDlgPos('Are you there?', mtConfirmation, mbYesNoCancel, 0, 200, 200);
end;

Return values

mrNone mrAbort mrYes

mrOk mrRetry mrNo

mrCancel mrIgnore mrAll

470 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

M e t a f i l e p r o p e r t y

See also
Kind property, MessageBox method, MessageDlg function, ModalResult property,
ShowMessage procedure, ShowMessagePos procedure

Metafile property

Applies to
TPicture object

Declaration

property Metafile: TMetafile

The Metafile property specifies the contents of the TPicture object as a Windows metafile
graphic (.WMF file format). If Metafile is referenced when the TPicture contains a Bitmap
or Icon graphic, the graphic won’t be converted. Instead, the original contents of the
TPicture are discarded and Metafile returns a new, blank metafile.

Example
The following line of code displays the pixels-per-inch of the coordinate mapping of a
metafile. The Inch property of the metafile stored in the MyGraphic is converted to text
and assigned to the Caption of Label1.

Label1.Caption := IntToStr(MyGraphic.Metafile.Inch);

See also
Graphic property

Min property

Applies to
TScrollBar component

Declaration

property Min: Integer;

The Min property along with the Max property determines the number of possible
positions the scroll box can have on the scroll bar. The LargeChange and SmallChange
properties use the number of positions to determine how far to move the scroll box
when the user uses the scroll bar.

For example, if Max is 3000 and Min is 0, the scroll box can assume 3000 positions on a
horizontal scroll bar. If the LargeChange property setting is 1000 and the scroll box
position is at the far left of the scroll bar (Position is 0), the user can click the scroll bar
three times to the right of the scroll box before the scroll box is moved all the way to the
right of the scroll bar (3000/1000 = 3).

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 471

M i n F o n t S i z e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
M

If you want to change the Min, Max, and Position values all at run time, call the
SetParams method.

Example
The following code sets the minimum position to the value specified in an edit box, and
sets the maximum position to 1000 more than the minimum position.

ScrollBar1.Min := StrToInt(Edit1.Text);
ScrollBar1.Max := ScrollBar1.Min + 1000;

See also
LargeChange property, Max property, Position property, SetParams method, SmallChange
property

MinFontSize property

Applies to
TFontDialog component

Declaration

property MinFontSize: Integer;

The MinFontSize property determines the smallest font size available in the Font dialog
box. Use the MinFontSize property when you want to limit the font sizes available to the
user. To limit the font sizes available, the Options set property of the Font dialog box
must also contain the value fdLimitSize. If fdLimitSize is False, setting the MinFontSize
property has no affect on number of fonts available in the Font dialog box.

The default value is 0, which means there is no minimum font size specified.

Example
This example uses a Font dialog box, a button, and a label on a form. When the user
clicks the button, the Font dialog box appears. The font sizes available are within the
range of 10 to 14. When the user chooses OK, the selected font is applied to the caption
of the label.

procedure TForm1.Button1Click(Sender: TObject);
begin
 FontDialog1.Options := [fdLimitSize];
 FontDialog1.MaxFontSize := 14;
 FontDialog1.MinFontSize := 10;
 if FontDialog1.Execute then
 Label1.Font := FontDialog1.Font;
end;

See also
MinFontSize property

472 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

M i n i m i z e m e t h o d

Minimize method

Applies to
TApplication component

Declaration

procedure Minimize;

The Minimize method shrinks your application into an icon on your Windows desktop.

Example
This example uses a button named Shrink on a form. When the user clicks the button, the
application minimizes to an icon:

procedure TForm1.ShrinkClick(Sender: TObject);
begin
 Application.Minimize;
end;

See also
Application variable, Icon property

MinPage property

Applies to
TPrintDialog component

Declaration

property MinPage: Integer;

The MinPage property determines the smallest page number the user can use when
specifying pages to print. If the user specifies a number less than the value of MinPage, a
warning message appears and the user must enter a valid number or close the dialog
box. The default value is 0.

Note The user can specify pages numbers only if the Options property set includes the value
poPageNums.

Example
This example uses a button and a Print dialog on a form. When the user clicks the
button, the code sets the lowest and the highest possible page numbers the user can
select and displays the dialog box:

procedure TForm1.Button1Click(Sender: TObject);
begin
with PrintDialog1 do
begin

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 473

M i n V a l u e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
M

Options := [poPageNums];
MinPage := 2;
FromPage := 2;
ToPage := 10;
MaxPage := 10;
PrintRange := prPageNums;
Execute;

end;
end;

See also
MaxPage property

MinValue property

Applies to
TCurrencyField, TFloatField, TIntegerField, TSmallintField, TWordField component

Declaration

property MinValue: Longint;

The MinValue property limits the minimum value in the field. Assigning a value less
than MinValue raises an exception.

Example

{ Limit the field to 1 to 10}
Field1.MaxValue := 10;
Field1.MinValue := 1;

See also
MaxValue property

MkDir procedure System

Declaration

procedure MkDir(S: string);

The MkDir procedure creates a new subdirectory with the path specified by string S.
The last item in the path cannot be an existing file name.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for an I/O error.

CreateDir performs the same function as MkDir, but it takes a null-terminated string
rather than a Pascal-style string.

474 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

M o d a l R e s u l t p r o p e r t y

Example

uses Dialogs;

begin
 {$I–}
 { Get directory name from TEdit control }
 MkDir(Edit1.Text);
 if IOResult <> 0 then
 MessageDlg('Cannot create directory', mtWarning, [mbOk], 0)
 else
 MessageDlg('New directory created', mtInformation, [mbOk], 0);
end;

See also
ChDir procedure, GetDir procedure, RmDir procedure

ModalResult property

Applies to
TBitBtn, TButton, TForm components

Declaration

property ModalResult: TModalResult;

Run-time only. The ModalResult property for forms is used to terminate a modal form.
By default, ModalResult is 0. Setting ModalResult to any nonzero value ends the form’s
modal state. When the user chooses to close a modal form, the button click sets
ModalResult to close the form. The value assigned to ModalResult becomes the return
value of the ShowModal function call which displayed the modal form.

Button controls have a ModalResult property also that is read only. Use a button’s
ModalResult property when you want a click of the button to close a modal form. For
example, if you create a dialog box with two buttons, OK and Cancel, set the
ModalResult property to mrOK for the OK button and mrCancel for the Cancel button.
When the user chooses either of these two buttons, the dialog box’s modal state ends
because ModalResult is greater than mrNone and the dialog box disappears. Using
ModalResult, you don’t have to write an event handler just to close the dialog box.

These constants are possible ModalResult values:

Constant Value

mrNone 0

mrOk idOK

mrCancel idCancel

mrAbort idAbort

mrRetry idRetry

mrIgnore idIgnore

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 475

M o d e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
M

Example
The following methods in a form are used as a modal dialog box. The methods cause the
dialog box to terminate when the user clicks either the OK or Cancel button, returning
mrOK or mrCancel from ShowModal, respectively:

procedure TMyDialogBox.OKButtonClick(Sender: TObject);
begin
ModalResult := mrOK;

end;

procedure TMyDialogBox.CancelButtonClick(Sender: TObject);
begin
ModalResult := mrCancel;

end;

You could also set the ModalResult value to mrOK for the OK button and mrCancel for
the Cancel button to accomplish the same thing. When the user clicks either button, the
dialog box closes.

See also
Kind property, ShowModal method

Mode property

Applies to
TPen object; TMediaPlayer component

For pen objects

Declaration

property Mode: TPenMode;

The Mode property determines how the pen draws lines on the canvas. The following
table describes the behavior for each pen mode.

mrYes idYes

mrNo idNo

mrAll mrNo + 1

Mode Pixel color

pmBlack Always black.
pmWhite Always white.
pmNop Unchanged.
pmNot Inverse of screen color.
pmCopy Pen color specified in Color property.

Constant Value

476 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

M o d e p r o p e r t y

Example
The following code sets the mode of the pen of the Canvas of Form1 to the inverse of the
pen Color.

Form1.Canvas.Pen.Mode := pmNotCopy;

See also
Pen property, TPen object

For media player controls

Declaration

property Mode: TMPModes;

Run-time and read only. The Mode property specifies the mode of the currently open
multimedia device. The following table lists the possible values for Mode:

Example
The following code declares an array of strings named ModeStr, indexed by the
TMPModes type. The Caption of a form is then set to the string describing the current
mode of the device:

const

pmNotCopy Inverse of pen color.
pmMergePenNot Combination of pen color and inverse of screen color.
pmMaskPenNot Combination of colors common to both pen and inverse of screen.
pmMergeNotPen Combination of screen color and inverse of pen color.
pmMaskNotPen Combination of colors common to both screen and inverse of pen.
pmMerge Combination of pen color and screen color.
pmNotMerge Inverse of pmMerge combination of pen color and screen color.
pmMask Combination of colors common to both pen and screen.
pmNotMask Inverse of pmMask combination of colors common to both pen and screen.
pmXor Combination of colors in either pen or screen, but not both.
pmNotXor Inverse of pmXor combination of colors in either pen or screen, but not both.

Value Mode

mpNotReady Not ready
mpStopped Stopped
mpPlaying Playing
mpRecording Recording
mpSeeking Seeking
mpPaused Paused
mpOpen Open

Mode Pixel color

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 477

M o d i f i e d p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
M

ModeStr: array[TMPModes] of string[10] = (‘Not ready', ‘Stopped', ‘Playing',
‘Recording', ‘Seeking', ‘Paused', ‘Open');

{Later in your code}
Caption := ModeStr[MediaPlayer1.Mode];

For batch move components

Declaration

property Mode: TBatchMode;

The Mode property specifies what the TBatchMove object will do:

Example

BatchMove1.Mode := batAppendUpdate;

Modified property

Applies to
TBitmap, TGraphic, TIcon, TMetafile objects, TDBEdit, TDBMemo, TEdit, TMaskEdit,
TMemo, TOLEContainer, TQuery, TStoredProc, TTable components

For graphics objects

Declaration

property Modified: Boolean;

The Modified property specifies if the graphics object has been changed or edited. If
Modified is True, the graphics object has changed. If Modified is False, the graphics object
is in the same state as when the object was loaded.

Note The Modified property only indicates if bitmap objects have been modified. Modified is
not True if the graphics object contains an icon or metafile graphic.

Property Purpose

batAppend Append records to the destination table. The destination table must already exist.
This is the default mode.

batUpdate Update records in the destination table with matching records from the source table.
The destination table must exist and must have an index defined to match records.

batAppendUpdate If a matching record exists in the destination table, update it. Otherwise, append
records to the destination table. The destination table must exist and must have an
index defined to match records.

batCopy Create the destination table based on the structure of the source table. The
destination table must not already exist—if it does, the operation will delete it.

batDelete Delete records in the destination table that match records in the source table. The
destination table must already exist and must have an index defined.

478 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

M o d i f i e d p r o p e r t y

If the graphics object was modified, you can save the changes to a file with the
SaveToFile method. The next time the application is run, the object can be loaded from
the file with the LoadFromFile method.

Example
The following code saves the bitmap object in Graphic1 to a file if it was modified.

if Graphic1.Modified then Graphic1.SaveToFile('myfile.bmp');

For OLE containers

Declaration

property Modified: Boolean;

The Modified property specifies if the OLE object in an OLE container component was
changed or edited since the OLE container was initialized. If Modified is True, the OLE
object was changed. If Modified is False, the OLE object is in the same state as when the
OLE container was initialized.

If the OLE object was modified, changes to the object are lost when the OLE container
application is closed unless the object is saved to a file with the SaveToFile method. The
next time the OLE container application is run, the object should be loaded from the file
with the LoadFromFile method.

Example
The following code saves the object in OLEContainer1 to the file OBJ.OLE if it was
modified.

if OLEContainer1.Modified then OLEContainer1.SaveToFile('OBL.OLE');

For edit boxes and memos

Declaration

property Modified: Boolean;

Run-time only. The Modified property determines whether the text of an edit box or
memo control was changed since it was created or since the last time the Modified
property was set to False. If Modified is True, the text was changed. If Modified is False, the
text was not changed.

Example

procedure TForm1.Button1Click(Sender: TObject);
begin
if Edit1.Modified = True then
begin

MessageDlg('Edit box text was modified',
mtInformation, [mbOK], 0);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 479

M o n o c h r o m e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
M

Edit1.Modified := False;
end
else

MessageDlg('Edit box text was not modified',
mtInformation, [mbOK], 0);

end;

See also
Text property

For tables, queries, and stored procedures

Declaration

property Modified: Boolean;

Run-time and read only. The Modified property is True if a field in the current record has
been changed. It is reset to False when the record is updated through a call to the Cancel
or Post methods.

See also
UpdateRecord method

Monochrome property

Applies to
TBitmap object

Declaration

property Monochrome: Boolean;

The Monochrome property determines if the bitmap displays in monochrome. If True, the
bitmap is monochrome. If False, the bitmap displays in color.

Example
The following code create Bitmap1 and sets its Monochrome property to True.

var
 Bitmap1: TBitmap;
begin
 Bitmap1 := TBitmap.Create;
 Bitmap1.Monochrome := True;
end;

480 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

M o u s e T o C e l l m e t h o d

MouseToCell method

Applies to
TDrawGrid, TStringGrid components

Declaration

procedure MouseToCell(X, Y: Integer; var ACol, ARow: Longint);

The MouseToCell method returns the column and row of the cell the mouse pointer is
positioned on. The X and Y parameters are the screen coordinates of the mouse pointer.
The ACol parameter is the number of the column where the mouse pointer is positioned,
and the ARow parameter is the number of the row.

Usually the MouseToCell method is used in a mouse event handler, which supplies the
mouse coordinates to the method call.

Example
This example uses a string grid on a form. When the user selects a cell in the grid and
releases the mouse button, the column and row coordinates for the cell appear in the
cell. The code for displaying the coordinates is written in the OnMouseUp event handler:

procedure TForm1.FormCreate(Sender: TObject);
begin
 StringGrid1.DefaultColWidth := 100;
end;

procedure TForm1.StringGrid1MouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
var
 Column, Row: Longint;
begin
 StringGrid1.MouseToCell(X, Y, Column, Row);
 StringGrid1.Cells[Column, Row] := 'Col ' + IntToStr(Column) +
 ',Row ' + IntToStr(Row);
end;

See also
CellRect method, OnMouseDown event, OnMouseMove event, OnMouseUp event

Move method

Applies to
TList, TStringList, TStrings objects

Declaration

procedure Move(CurIndex, NewIndex: Integer);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 481

M o v e p r o c e d u r e+
+
+
+
+
+
+
+
+
+
+
M

The Move method changes the position of an item in the list of a list object or in a list of
strings in a string object by giving the item a new index value. The CurIndex parameter is
the item’s current index, and the NewIndex parameter is the item’s new index value.

If a string in a string object has an associated object in the Objects property, Move moves
both the string and the object.

Example
This example uses a list box and a button on a form. The list box contains items when
the form appears. When the user clicks the button, the fifth item in the list box is moved
to the top of the list box:

procedure TForm1.FormCreate(Sender: TObject);
var
 I: Integer;
begin
 for I := 1 to 5 do
 ListBox1.Items.Add('Item ' + IntToStr(I));
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items.Move(4, 0);
end;

See also
Add method, Delete method, Exchange method, Objects property, Strings property

Move procedure System

Declaration

procedure Move(var Source, Dest; Count: Word);

The Move procedure copies Count bytes from a Source to Dest. No range-checking is
performed.

When the segment parts of Source and Dest are equal, Move compensates for overlaps
between the source and destination blocks. If the source and destination overlap but
their segment parts are not equal, Move will not compensate for overlaps and there is a
50% chance that Move will not work correctly. Borland Pascal’s static and dynamic
(heap) memory allocation schemes never create overlapping variables whose addresses
have different segment parts, so this problem can only occur if the addresses of Source
and Dest are modified or normalized by your program, or if they are provided by an
external source.

Whenever possible, use SizeOf to determine the count.

Example

var

482 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

M o v e B y m e t h o d

 A: array[1..4] of Char;
 B: Longint;
begin
 Move(A, B, SizeOf(A)); { SizeOf = safety! }
end;

See also
FillChar procedure, SizeOf function

MoveBy method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure MoveBy(Distance: Integer);

The MoveBy method moves the dataset cursor by Distance records. If Distance is
negative, the move is backward. If Distance is positive, the movement is forward. If
Distance is zero, no move is done.

If the dataset is in Insert or Edit state, MoveBy will perform an implicit Post of any
pending data.

Example

{ Skip three records forward }
Table1.MoveBy(3);

See also
First method, Last method, Next method, Prior method

MovedCount property

Applies to
TBatchMove component

Declaration

property MovedCount: Longint;

Run-time and read only. MovedCount is the number of records which were actually
processed by the Execute method. This includes any records which had integrity or data
size problems.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 483

M o v e T o m e t h o d+
+
+
+
+
+
+
+
+
+
+
M

Example

with BatchMove1 do
begin
Execute;
MessageDlg(IntToStr(MoveCount) + ‘ records read’, mtInformation, [mbOK], 0);
end;

See also
ChangedCount property, KeyViolCount property, ProblemCount property, RecordCount
property

MoveTo method

Applies to
TCanvas, TOutlineNode objects

For canvases

Applies to
TCanvas object

Declaration

procedure MoveTo(X, Y: Integer);

The MoveTo method changes the current drawing position to the coordinates passed in
X and Y. The current position is given by the PenPos property. You should use MoveTo
to set the current position rather than setting PenPos directly.

Example
The following code draws a line from the upper-eft corner of a form to the point clicked
with the mouse:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.MoveTo(0, 0);
 Canvas.LineTo(X, Y);
end;

See also
LineTo method

484 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

M o v e T o m e t h o d

For outline nodes

Applies to
TOutlineNode object

Declaration

procedure MoveTo(Destination: Longint; AttachMode: TAttachMode);

Description

The MoveTo method moves an outline item from one location to another within an
outline (TOutline component). The Destination parameter determines where to move the
item. Pass the Index value of another outline item in the Destination parameter. The
AttachMode parameter specifies how you want to attach the item to the destination
position. These are the possible values of AttachMode:

MoveTo returns the new Index value of the moved item.

Note When an item is moved, all its subitems move with it.

When an item (and any subitems) is moved, the other items in the outline are reindexed
to obtain new valid Index values. This happens automatically unless BeginUpdate has
been called.

Example
The following code moves the selected item to become the first item in the outline.

with Outline1.Items[Outline1.SelectedItem] do
MoveTo(0, oaInsert);

See also
ChangeLevelBy method

Value Meaning

oaAdd The item is attached as if added with the Add method. The moved item becomes the last
sibling of the item specified by the Destination parameter. The moved item will share the
same parent as the Destination item.

oaAddChild The item is attached as if added with the AddChild method. The moved item becomes the
last child of the item specified by the Destination parameter. The Destination item will
become the parent of the moved item.

oaInsert The item is attached as if inserted with the Insert method. The moved item replaces the
Destination item in the outline, while the Destination item and all other following items are
moved down one row.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 485

M S e c s P e r D a y c o n s t a n t+
+
+
+
+
+
+
+
+
+
+
+
N

MSecsPerDay constant SysUtils

Declaration

MSecsPerDay = 24 * 60 * 60 * 1000;

MSecsPerDay declares the number of milliseconds per day.

MultiSelect property

Applies to
TListBox, TFileListBox components

Declaration

property MultiSelect: Boolean;

The MultiSelect property determines whether the user can select more than one element
at a time from the list. If MultiSelect is True, the user can select multiple items. If
MultiSelect if False, multiple items can be selected in the list box at the same time. The
default value is False.

Example
This line of code ensures that the user can select multiple items in a list box:

ListBox1.MultiSelect := True;

See also
ExtendedSelect property, Selected property

Name property

Applies to
All components; TFieldDef, TFieldDefs, TIndexDef, TIndexDefs, TFont, TParam, TParams
objects

For components

Declaration

property Name: TComponentName;

The Name property contains the name of the component as referenced by other
components. By default, Delphi assigns sequential names based on the type of the
component, such as ‘Button1’, ‘Button2’, and so on. You may change these to suit your
needs.

486 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

N a m e p r o p e r t y

Note Change component names only at design time.

Example
The following code lists the names of all the components of Form1 in a list box.

var
 I: Integer;
begin
 for I := 0 to Form1.ComponentCount-1 do
 ListBox1.Items.Add(Form1.Components[I].Name);
end;

For font objects

Declaration

property Name: TFontName;

The Name property of a font object determines the name of the font contained within the
font object.

Example
This code sets the font for all text that appears on the form to Times New Roman. If the
controls on the form have their ParentFont property set to True, text on these controls
will also be in Times New Roman.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Font.Name := 'Times New Roman';
end;

See also
ParentFont property

For TIndexDef objects

Declaration

property Name: string;

Run-time and read only. Name is the name of the index.

For TParam objects

Declaration

property Name: string;

The Name property is the name of the parameter.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 487

N a t i v e T o A n s i p r o c e d u r e+
+
+
+
+
+
+
+
+
+
+
+
N

Example

{ Change the name of the first parameter column to ‘CustNo’ }
Params[0].Name := ‘CustNo’;

For TFieldDef objects

Declaration

property Name: string;

Run-time and read only. Name is the name of the physical field within the table.

Example

{ Display the field name and number }
with FieldDef1 do
MessageDlg(Name + ' is field ’ + IntToStr(FieldNo), mtInformation, [mbOK], 0);

See also
TField component

NativeToAnsi procedure DB

Declaration

procedure NativeToAnsi(Locale: TLocale; NativeStr: PChar; var AnsiStr: string);

The NativeToAnsi procedure translates native characters in NativeStr to the ANSI
character set according to Locale. NativeToAnsi returns the translated string in AnsiStr.

NetFileDir property

Applies to
TSession component

Declaration

property NetFileDir: string;

Run-time only. The NetFileDir property specifies the directory that contains the BDE
network control file, PDOXUSRS.NET. This property enables multiple users to share
Paradox tables on network drives. NetFileDir overrides the specification defined for the
Paradox driver in the BDE Configuration Utility.

All applications that need to share the same Paradox database must specify the same
directory, and all must have read/write/create rights for the directory.

488 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

N e w p r o c e d u r e

See also
Session variable

New procedure System

Declaration

procedure New(var P: Pointer);

function New(<pointer type>): Pointer;

The New procedure creates a new dynamic variable and sets a pointer variable to point
to it. Reference the newly created variable as P^.

If there is not enough space available in the heap to allocate to the new variable a run-
time error occurs. However, {$I+} lets you handle run-time errors using exceptions. For
more information on handling run-time library exceptions, see Handling RTL
Exceptions in the Help system.

The New function returns a pointer value and applies to all data types, not just object
types.

The parameter passed to New is the type of pointer pointing to the object, rather than the
pointer variable itself.

Example

type
 Str18 = string[18];
var
 P: ^Str18;
begin
 New(P);
 P^ := 'Now you see it...';
 Dispose(P); { Now you don't... }
end;

See also
Dispose procedure, FreeMem procedure, GetMem procedure

NewPage method

Applies to
TPrinter object

Declaration

procedure NewPage;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 489

N e w S t r f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
N

The NewPage method forces the current print job to begin printing on a new page in the
printer. It also increments the value of the PageNumber property and resets the value of
the Pen property of the Canvas back to (0, 0).

Example
This example uses a button on a form. When the user clicks the button, a rectangle is
printed twice, one per page.

To run this example successfully, you must add the Printers unit to the uses clause of
your unit.

procedure TForm1.Button1Click(Sender: TObject);
begin
 with Printer do
 begin
 BeginDoc;
 Canvas.Rectangle(10, 10, 200, 200);
 NewPage;
 Canvas.Rectangle(10, 10, 200, 200);
 EndDoc;
 end;
end;

See also
BeginDoc method, EndDoc method, Printer variable

NewStr function SysUtils

Declaration

function NewStr(const S: string): PString;

The NewStr function allocates a copy of the string S on the heap and returns a pointer to
the newly allocated string. When your application finishes using the allocated string,
you should use DisposeStr to dispose of the string on the heap.

Do not change the length of strings allocated with NewStr. Increasing the length of the
string overwrites other variables on the heap. Decreasing the length of the string
prevents some of the memory from being deallocated.

Example
The following code allocates space for and places the string ‘New String’ in memory.
The pointer S points to the new string:

var
 S: PString;
begin
 S := NewStr('New String');
.
.
DisposeStr(S);

490 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

N e x t m e t h o d

See also
DisposeStr procedure

Next method

Applies to
TForm, TMediaPlayer, TQuery, TStoredProc, TTable components

The Next method either activates the next form, media track, or record.

For forms

Declaration

procedure Next;

The Next method makes the next child form in the form sequence the active form.

For example, if you have three child forms within a parent form in your MDI
application and Form2 is the active form, the Next method makes Form3 the active form.
Calling Next again makes Form4 active. The next time your application calls Next, the
sequence starts over again and Form2 becomes the active form once again.

The Next method applies only to forms that are MDI parent forms (have a FormStyle
property value of fsMDIForm).

Example
The following code activates the next child of Form1.

Form1.Next;

See also
ArrangeIcons method, Cascade method, Previous method, Tile method

For media player controls

Declaration

procedure Next;

The Next method goes to the beginning of the next track of the currently loaded
medium. If the current position is at the last track when Next is called, Next makes the
current position the beginning of the last track. If the multimedia device doesn’t use
tracks, Next goes to the end of the medium. Next is called when the Next button on the
media player control is clicked at run time.

Upon completion, Next stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 491

N o r m a l i z e T o p M o s t s m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
N

The Wait property determines whether control is returned to the application before the
Next method has completed. The Notify property determines whether Next generates an
OnNotify event.

Example
The following code opens a WAV audio file and fast-forwards to the end of the
medium.

MediaPlayer1.DeviceType := dtWAVAudio;
MediaPlayer1.FileName := ’c:\chimes.wav’;
MediaPlayer1.Open;
MediaPlayer1.Next;

See also
Position property, Previous method, Tracks property

For tables, queries, and stored procedures

Declaration

procedure Next;

The Next method moves the cursor forward by one record. If the cursor is already on the
last record, it does not move. If the dataset is in Insert or Edit state, Next will perform an
implicit Post of any pending data.

Example

{ Move to the next record }
Table1.Next;
if Table1.Eof then { No more records };

See also
First method, Last method, MoveBy method, Prior method

NormalizeTopMosts method

Applies to
TApplication component

Declaration

procedure NormalizeTopMosts;

The NormalizeTopMosts method makes forms that have been designated as topmost
forms (their FormStyle is fsStayOnTop) behave as if they were not topmost forms. You’ll
find this method convenient to use if you want a message box or dialog box to appear
on top of a topmost form.

492 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

N o t i f y p r o p e r t y

For example, while you do not have to call NormalizeTopMosts to use the Delphi
methods and functions that display message boxes (such as MessageBox and
MessageDlg), you should call it if you want to call Windows API functions directly to
display a message box. If you neglect to call NormalizeTopMosts, the message box won’t
display on top of the form, but the form remains on top. Any time you call Windows
API functions to display a window on top of a form, call NormalizeTopMosts first.

To return the forms designated as fsStayOnTop to be topmost again, call
RestoreTopMosts.

Example
The following code normalizes topmost forms before calling the MessageBox function in
the WinProcs unit. After the message box is closed, the topmost forms are restored.

begin
 Application.NormalizeTopMosts;
 MessageBox(Form1.Handle, 'This should be on top.', 'Message Box', MB_OK);
 Application.RestoreTopMosts;
end;

See also
FormStyle property, RestoreTopMosts method

Notify property

Applies to
TMediaPlayer component

Declaration

property Notify: Boolean;

Run-time only. The Notify property determines whether the next call to a media control
method (Back, Close, Eject, Next, Open, Pause, PauseOnly, Play, Previous, StartRecording,
Resume, Rewind, Step, or Stop) generates an OnNotify event when the method has
completed.

If Notify is True, the next media control method generates OnNotify event upon
completion and stores the notification message in the NotifyValue property. If Notify is
False, the method does not generate an OnNotify event and NotifyValue remains
unchanged.

Notify affects only the next call to a media control method. After an OnNotify event,
Notify must be reset to affect any subsequent media control methods.

By default, Play and StartRecording function as if Notify is True. You must set Notify to
False before calling Play or StartRecording to prevent an OnNotify event from being
generated when playing or recording has finished. By default, all other media control
methods function as if Notify is False.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 493

N o t i f y V a l u e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
N

Note Set Notify to True if the next media control is expected to take a long time, so your
application is notified when the media control method has completed. If you set Notify
to True, you might want to set Wait to False so that control returns to the application
before the media control method is finished.

Note If you try to resume a device that doesn’t support Resume, the device is resumed as if
you called the Play method. If you have assigned True to Notify before calling Resume (or
any other media control method), Notify doesn’t affect the call to Resume. Resume does
not generate an OnNotify event upon completion, and NotifyValue remains unchanged.

Example
The following code sets Notify to True after opening and playing the Microsoft Video for
the Windows file named DUCK.AVI. When the Play method is completed, an OnNotify
event occurs, which displays a message.

procedure TForm1.BitBtn1Click(Sender: TObject);
begin
 with MediaPlayer1 do begin

FileName := 'duck.avi';
 Open;
 Play;
 Notify := True;
end;

end;
procedure TForm1.MediaPlayer1Notify(Sender: TObject);
begin
 if MediaPlayer1.NotifyValue=nvSuccessful then
 MessageDlg('Done playing video.', mtInformation, [mbOK], 0);
end;

NotifyValue property

Applies to
TMediaPlayer component

Declaration

property NotifyValue: TMPNotifyValues;

Run-time and read only. The NotifyValue property reports the result of the last media
control method (Back, Close, Eject, Next, Open, Pause, PauseOnly, Play, Previous,
StartRecording, Resume, Rewind, Step, or Stop) that requested a notification. Set Notify to
True before calling a media control method to request notification.

The following table lists the possible values for NotifyValue.

Value Result

nvSuccessful Command completed successfully
nvSuperseded Command was superseded by another command

494 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

N o w f u n c t i o n

Example
This example uses a media player component named MediaPlayer1. When the
application runs, the code attempts to play a CD in the CD audio device, and displays a
message dialog box indicating whether the attempt to play the CD was successful.

Before you can run this example, you must have a CD audio device installed correctly.

procedure TForm1.FormCreate(Sender: TObject);
begin
with MediaPlayer1 do
begin

DeviceType := dtCDAudio;
Open;
Play;
if NotifyValue <> nvSuccessful then

MessageDlg('Error playing CD audio', mtError, [mbOk], 0)
else

MessageDlg('Playing CD audio', mtInformation, [mbOk], 0);
Visible := False;

end;
end;

See also
OnNotify event

Now function SysUtils

Declaration

function Now: TDateTime;

The Now function returns the current date and time, corresponding to Date + Time.

Example
This example uses a label and a button on a form. When the user clicks the button, the
current date and time appear as the caption of the label.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := 'The date and time is ' + DateTimeToStr(Now);
end;

See also
Date function, DateTimeToStr function, Time function

nvAborted Command was aborted by the user
nvFailure Command failed

Value Result

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 495

N u l l S t r c o n s t a n t+
+
+
+
+
+
+
+
+
+
+
+
N

NullStr constant SysUtils

Declaration

NullStr: PString = @EmptyStr;

NullStr declares a pointer to EmptyStr.

NullStr is the return value for many string handling routines when the string is empty.

NumGlyphs property

Applies to
TBitBtn, TSpeedButton components

Declaration

property NumGlyphs: TNumGlyphs;

The NumGlyphs property indicates the number of images that are in the graphic
specified in the Glyph property for use on a bitmap button or speed button.

If you have multiple images in a bitmap, you must specify the number of images that
are in the bitmap with the NumGlyphs property. All images must be the same size and
next to each other in a row. Valid NumGlyphs values are 1 to 4. The default value is 1.

You can provide up to four images on a bitmap button or speed button with a single
bitmap. Delphi then displays one of these images depending on the state of the button.
Only one image is required in a bitmap.

If only one image is present, Delphi attempts to represent the other states by altering the
image slightly for the different states, although the stay down state is always the same as
the up state. If you aren’t satisfied with the results, you can provide additional images in
the bitmap.

Example
This example uses a speed button and a label on a form. When the example runs, the
number of images in the specified bitmap appears as the caption of the label.

Image position
in bitmap

Speed button
state Description

First Up This image appears when the button is unselected. If no other
images exist in the bitmap, Delphi uses this image for all other
images.

Second Disabled This image usually appears dimmed and indicates that the
button can’t be selected.

Third Down This image appears when a button is clicked. The up state image
then reappears when the user releases the mouse button.

Fourth Stay down This image appears when a button stays down indicating that it
remains selected.

496 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O b j C l a s s p r o p e r t y

procedure TForm1.FormActivate(Sender: TObject);
begin
 SpeedButton1.Glyph.LoadFromFile('C:\WINDOWS\CARS.BMP');
 Label1.Caption := IntToStr(SpeedButton1.NumGlyphs) + ' image(s)';
end;

See also
Glyph property

ObjClass property

Applies to
TOLEContainer component

Declaration

property ObjClass: string;

Specify the OLE class of an object in the ObjClass property. The class of an object is
typically the application name of the OLE server application without the .EXE
extension. See the documentation for the OLE server for specific information about its
OLE class.

At design time, specifying the ObjClass property displays the Insert Object dialog box
and initializes the OLE object. At run time, the ObjClass property is specified
automatically when you initialize the OLE object with the PInitInfo property.

Example
The following code tests to determine if “Paintbrush Picture” is the object class. If so, a
message is displayed in Label1 when Button1 is clicked.

procedure TForm1.Button1Click(Sender: TObject);
begin
 if OLEContainer1.ObjClass = 'Paintbrush Picture' then
 Label1.Caption := 'The object is a Paintbrush Picture';
end;

See also
ObjDoc property, ObjItem property

ObjDoc property

Applies to
TOLEContainer component

Declaration

property ObjDoc: string;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 497

O b j e c t M e n u I t e m p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
O

Specify the OLE document of an object in the ObjDoc property. The document of an
object is typically the name of the file containing the OLE information. See the OLE
server documentation for specific information about its OLE documents.

At design time, specifying the ObjDoc property displays the Insert Object dialog box and
initializes the OLE object. At run time, the ObjDoc property is specified automatically
when you initialize the OLE object with the PInitInfo property, if the object is linked to
data in a file.

Example
The following code tests to determine if ‘c:\windows\256color.bmp’ is the object
document. If so, a message is displayed in Label1 when Button1 is clicked.

procedure TForm1.Button1Click(Sender: TObject);
begin
 if OLEContainer1.ObjDoc = 'c:\windows\256color.bmp' then
 Label1.Caption := 'The object document is c:\windows\256color.bmp';
end;

See also
ObjClass property, ObjItem property

ObjectMenuItem property

Applies to
TForm component

Declaration

property ObjectMenuItem: TMenuItem;

ObjectMenuItem is used to specify the OLE object menu item. If you create a menu item
and specify it as the OLE object menu item with the ObjectMenuItem property, the item is
automatically enabled when an OLE object in an OLE container is selected.

The OLE object menu item can be used to activate or convert the selected object. All you
need to do is specify the menu item in the ObjectMenuItem component. The processing
of activating or converting the object is handled by the OLE server application.

Example
The following code assigns MyObject1 to the ObjectMenuItem property of Form1. When
an OLE container that contains an object is selected, the caption of the MyObject1 menu
item can be modified by the OLE server and the functionality of MyObject1 will be
handled by the server.

Form1.ObjectMenuItem := MyObject1;

498 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O b j e c t s p r o p e r t y

Objects property

Applies to
TStringList, TStrings objects; TStringGrid component

For string objects

Declaration

property Objects[Index: Integer]: TObject;

Run-time only. The Objects property gives you access to an object in the list of objects
associated with the list of strings. Each string in the list of strings can have an associated
object.

The most common use of objects in a string and string list objects is to associate bitmaps
with strings so that you can use the bitmaps in owner-draw controls. For example, if
you have an owner-draw list box, you can add a string ‘Banana’ and a bitmap of a
banana to the Items property of the list box using the AddObject method. You can then
access the ‘Banana’ string using the Strings property or the bitmap using the Objects
property.

Specify the object you want to access with its position in the list as the value of the Index
parameter. The index is zero-based, so the first object in the list of objects has a value of
0, the second object has a value of 1, and so on.

To associate an object with an existing string, assign the object to the Objects property
using the same index as that of the existing string in the Strings property. For example, if
a string object named Fruits contains the string ‘Banana’ and an existing bitmap of a
banana called BananaBitmap, you could make the following assignment:

Fruits.Objects[Fruits.IndexOf(‘Banana’)] := BananaBitmap;

Example
The following code allows the user to specify a bitmap file with the OpenDialog1 open
dialog box component when Form1 is created. Then, the bitmap file specified is added to
the Items list of ListBox1.

If ListBox1 is an owner-draw control (specified by a Style property of lbOwnerDrawFixed
or lbOwnerDrawVariable), the second procedure is the OnDrawItem event handler for
ListBox1. The bitmap in the Object property and the text of an item are retrieved and
displayed in Listbox1.

procedure TForm1.FormCreate(Sender: TObject);
var
 TheBitmap: TBitmap;
begin
 if OpenDialog1.Execute then
 begin
 TheBitmap := TBitmap.Create;
 TheBitmap.LoadFromFile(OpenDialog1.FileName);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 499

O b j I t e m p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
O

 ListBox1.Items.AddObject(OpenDialog1.FileName, TheBitmap);
end;

end;

procedure TForm1.ListBox1DrawItem(Control: TWinControl; Index: Integer;
 Rect: TRect; State: TOwnerDrawState);
var
 DrawBitmap: TBitmap;
begin
 DrawBitmap := TBitmap(ListBox1.Items.Objects[Index]);
 with ListBox1.Canvas do
 begin
 Draw(Rect.Left, Rect.Top + 4, DrawBitmap);
 TextOut(Rect.Left + 2 + DrawBitmap.Width, Rect.Top + 2, ListBox1.Items[Index]);
 end;
end;

See also
AddObject method, InsertObject method, IndexOf method, IndexOfObject method

For string grids

Declaration

property Objects[ACol, ARow: Integer]: TObject;

Run-time only. The Objects property is an array of objects, one for each cell in the grid.
The ColCount and RowCount values define the size of the array of objects. Use the Objects
property to access an object within a particular cell. ACol is the column coordinate of the
cell, and ARow is the row coordinate of the cell.

If you put an object into the Objects array, the object will still exist even if the string grid
is destroyed. You must destroy the object explicitly.

Example
The following code stores a TBitmap object called MyBitmap in row 3, column 10 of
StringGrid1.

StringGrid1.Objects[10, 3] := MyBitmap;

See also
Cells property, Cols property, Free method, Rows property

ObjItem property

Applies to
TOLEContainer component

500 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O d d f u n c t i o n

Declaration

property ObjItem: string;

Specify the OLE item of an object in the ObjItem property. The item of an object is a
discrete unit of data within the OLE document containing the OLE information. See the
OLE server documentation for specific information about its OLE documents.

At design time, specifying the ObjItem property displays the Paste Special dialog box
and initializes the OLE object. At run time, the ObjItem property is specified
automatically when you initialize the OLE object with the PInitInfo property, if the
object linked is a more specific piece of data than is specified by the ObjDoc property.

Example
The following code tests to determine if “29 8 337 96” is the object item (this could be the
item if you copied a portion of a Paintbrush picture to the Clipboard and wanted to link
to the bitmap defined by the coordinates (29, 8) and (337, 96)). If so, a message is
displayed in Label1 when Button1 is clicked.

procedure TForm1.Button1Click(Sender: TObject);
begin
 if OLEContainer1.ObjDoc = '29 8 337 96' then
 Label1.Caption := 'The object item is 29 8 337 96';
end;

See also
ObjClass property

Odd function System

Declaration

function Odd(X: Longint): Boolean;

The Odd function tests if the argument is an odd number.

Odd returns True if X is an odd number.

Example

begin
 if Odd(5) then
 Canvas.TextOut(10, 10, '5 is odd.')
 else
 Canvas.TextOut(10, 10, 'Something is odd!');
 end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 501

O E M C o n v e r t p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
O

OEMConvert property

Applies to
TEdit, TMemo components

Declaration

property OEMConvert: Boolean;

Description

The OEMConvert property determines whether the text in the control is converted to
OEM characters. If True, the text is converted. If False, the characters remain as ANSI
characters. The default value is False. You should have the text converted to OEM
characters if the text consists of file names.

Ofs function System

Declaration

function Ofs(X): Word;

The Ofs function returns the offset of a specified object.

X is any variable, or a procedure or function identifier. The result of type Word is the
offset part of the address of X.

Example

function MakeHexWord(w: Word): string;
const
hexChars: array [0..$F] of Char ='0123456789ABCDEF';

var
HexStr : string;

begin
HexStr := '';
HexStr := HexStr + hexChars[Hi(w) shr 4];
HexStr := HexStr + hexChars[Hi(w) and $F];
HexStr := HexStr + hexChars[Lo(w) shr 4];
HexStr := HexStr + hexChars[Lo(w) and $F];
MakeHexWord := HexStr;

end;

procedure TForm1.Button1Click(Sender: TObject);
var
 i: Integer;
 Y: Integer;
 S: string;
begin
 Y := 10;
 S := 'The current code segment is $' + MakeHexWord(CSeg);

502 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O L E O b j A l l o c a t e d m e t h o d

 Canvas.TextOut(5, Y, S);
Y := Y + Canvas.TextHeight(S) + 5;

 S := 'The global data segment is $' + MakeHexWord(DSeg);
 Canvas.TextOut(5, Y, S);
Y := Y + Canvas.TextHeight(S) + 5;

 S := 'The stack segment is $' + MakeHexWord(SSeg);
 Canvas.TextOut(5, Y, S);
Y := Y + Canvas.TextHeight(S) + 5;

 S := 'The stack pointer is at $' + MakeHexWord(SPtr);
 Canvas.TextOut(5, Y, S);
Y := Y + Canvas.TextHeight(S) + 5;

 S := 'i is at offset $' + MakeHexWord(Ofs(i));
 Canvas.TextOut(5, Y, S);
Y := Y + Canvas.TextHeight(S) + 5;

 S := 'in segment $' + MakeHexWord(Seg(i));
 Canvas.TextOut(5, Y, S);
end;

See also
Addr function, Seg function

OLEObjAllocated method

Applies to
TOLEContainer component

Declaration

function OleObjAllocated: Boolean;

The OLEObjAllocated method specifies whether an OLE container has been initialized
and therefore contains an OLE object. OLEObjAllocated returns True if an OLE object has
been allocated, or False if the OLE container is empty.

Example
The following code only initializes OLEContainer1 if it does not already contain an OLE
object, assuming TheInitInfo points to valid initialization information.

if not OLEContainer1.OLEObjAllocated then
OLEContainer1.PInitInfo := TheInitInfo;

See also
PInitInfo property

OnActivate event

Applies to
TApplication, TForm, TOLEContainer components

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 503

O n A c t i v a t e e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

For forms

Declaration

property OnActivate: TNotifyEvent;

The OnActivate event for a form occurs when the form becomes active. A form becomes
active when focus is transferred to it (when the user clicks on the form, for example).

For MDI child windows (forms with FormStyle property values of fsMDIChild),
OnActivate occurs only when focus is shifted from one child to another. If focus is shifted
from a non-MDI child window to an MDI child, the OnActivate event occurs for the MDI
parent form.

Note The OnActivate event of the application (TApplication), not the form, occurs when
Windows switches control from another application to your application.

Example
The following code adds the caption of Form2 to a list box in Form1 when a Form2 is
activated. To refer to Form1 in Form2’s OnActivate event handler you must include the
name of the unit in which Form1 is declared to a uses clause in Form2’s unit. To avoid a
circular unit reference (if Form2 is already referenced by Form1’s uses clause), put the
new uses clause in the implementation section of Form2’s unit.

procedure TForm2.FormActivate(Sender: TObject);
begin
 Form1.ListBox1.Items.Add(Screen.ActiveForm.Caption);
end;

See also
ActiveForm property, Show method, ShowModal method

For OLE containers

Declaration

property OnActivate: TNotifyEvent;

The OnActivate event for an OLE container occurs when the OLE object is activated as
specified by the AutoActivate property.

504 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n A c t i v a t e e v e n t

Example
The following code displays the number of times an OLE container has been activated in
Label1. The code assumes that TimesActivated is an Integer field of Form1 that is initialized
to 0 in the OnCreate event of Form1.

procedure TForm1.OleContainer1Activate(Sender: TObject);
begin
 TimesActivated := TimesActivated + 1;
 Form1.Label1.Caption := 'Times activated: '+IntToStr(TimesActivated);
end;

For an application

Declaration

property OnActivate: TNotifyEvent;

The OnActivate event for an application occurs when the application becomes active.
Your application becomes active when it is initially run or when focus is shifted from
another Windows application to your application.

Note Search Help for “Handling Application Events” for more information about creating
event handlers for application events.

Example
The following code is the entire unit which assigns the ApplicationActivate procedure to
the OnActivate event of the application. Note that ApplicationActivate is declared as a
method of Form1. The code that you add is notes with comments. The rest of the code is
generated by Delphi.

unit Unit1;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs;

type
 TForm1 = class(TForm)
 procedure ApplicationActivate(Sender: TObject); {Add this declaration line}
 procedure FormCreate(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 505

O n A c t i v e C o n t r o l C h a n g e e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

implementation

{$R *.DFM}

procedure TForm1.ApplicationActivate(Sender: TObject); {Write this procedure}
begin
 {Put code for your Application.OnActivate here}
end;

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnActivate := ApplicationActivate; {Write this line of code}
end;

end.

See also
Application variable, OnDeactivate event

OnActiveControlChange event

Applies to
TScreen component

Declaration

property OnActiveControlChange: TNotifyEvent;

The OnActiveControlChange event occurs when the focus on the screen shifts from one
control to another. This change in focus means that a new control is now the value of the
ActiveControl property of the screen. Use the OnActiveControlChange event to specify
special processing you want to occur just before the new control becomes the active
control.

Example
This example uses an edit box and a memo on a form. When the user switches the focus
between the two controls, the control that currently has the focus becomes red:

type
 TForm1 = class(TForm)
 Edit1: TEdit;
 Memo1: TMemo;

Button1: TButton;
 procedure FormCreate(Sender: TObject);
 private
 { Private declarations }
 public
 procedure ColorControl(Sender: TObject);
 end;

var
 Form1: TForm1;

506 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n A c t i v e F o r m C h a n g e e v e n t

implementation

{$R *.DFM}

procedure TForm1.ColorControl(Sender: TObject);
begin
 if Edit1.Focused then

Edit1.Color := clRed
 else

Edit1.Color := clWindow;
 if Memo1.Focused then
 Memo1.Color := clRed
 else
 Memo1.Color := clWindow;

procedure TForm1.FormCreate(Sender: TObject);
begin
 Screen.OnActiveControlChange := ColorControl;
end;

See also
ActiveControl property, ActiveForm property, OnActiveFormChange event

OnActiveFormChange event

Applies to
TScreen component

Declaration

property OnActiveFormChange: TNotifyEvent;

The OnActiveFormChange event occurs when a new form becomes the active form on the
screen (the form becomes the value of the ActiveForm property). Use the
OnActiveFormChange event to specify any special processing to occur just before a new
form becomes the active form.

Example
This example uses a two forms with a button on the first form. When the user clicks the
button, the second form appears. As the user switches between forms, the form that is
active is colored aqua:

type
 TForm1 = class(TForm)
 Button1: TButton;
 procedure FormCreate(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 procedure ColorForm(Sender: TObject);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 507

O n A p p l y e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

uses Unit2;

procedure TForm1.ColorForm(Sender: TObject);
begin
 Color := clBtnFace;
 Form2.Color := clBtnFace;
 Screen.ActiveForm.Color := clAqua;
end;

procedure TForm1.FormCreate(Sender: TObject);
begin
 Screen.OnActiveFormChange := ColorForm;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 Form2.Show;
end;

See also
ActiveForm property, OnActiveControlChange event

OnApply event

Applies to
TFontDialog component

Declaration

property OnApply: TFDApplyEvent

The OnApply event occurs when the user clicks the Apply button in the Font dialog box.
The Apply button won’t appear in the Font dialog box unless the form has an OnApply
event handler. The user can use the Apply button to apply the font selected in the dialog
box to a component immediately before the dialog box is closed.

Example
This code displays the Font dialog box and puts an Apply button in it. When the user
clicks the Apply button, the font selected in the dialog box is applied to the Button1
button while the dialog box is still open.

procedure TForm1.Button1Click(Sender: TObject);
begin
FontDialog1.Execute;

508 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n C a l c F i e l d s e v e n t

end;

procedure TForm1.FontDialog1Apply(Sender: TObject; Wnd: Word);
begin
 Button1.Font := FontDialog1.Font;
end;

See also
Execute method, Font property

OnCalcFields event

Applies to
TTable, TQuery, TStoredProc components

Declaration

property OnCalcFields: TDataSetNotifyEvent;

The OnCalcFields event is used to set the values of calculated fields. OnCalcFields is called
when a dataset reads a record from the database. In addition, if the dataset’s
AutoCalcFields property is True, OnCalcFields is called when a non-calculated field is
modified while the dataset is in Edit or Insert state.

Typically, the OnCalcFields event will be called often, so it should be kept short.
OnCalcFields should not perform any actions that modify the dataset (or the linked
dataset if it is part of a master-detail relationship), because this can lead to recursion.

While the OnCalcFields event is executed, a dataset will be put in CalcFields state. When a
dataset is in CalcFields state, you cannot set the values of any fields other than calculated
fields. After OnCalcFields is completed, the dataset will return to its previous state.

The first call to the OnCalcFields event handler may occur before all components in your
application have been initialized. If your handler requires access to another component,
use the Edit|Creation Order command to ensure that the components are created in the
correct order.

OnChange event

Applies to
TBitmap, TBrush, TCanvas, TFont, TGraphic, TGraphicsObject, TMetafile, TPen, TPicture,
TStringList objects; TComboBox, TDBComboBox, TDBEdit, TDBLookupCombo, TDBMemo,
TDBRadioGroup, TDDEClientItem, TDDEServerItem, TDirectoryListBox, TDriveComboBox,
TEdit, TFileListBox, TFilterComboBox, TMaskEdit, TMemo, TQuery, TScrollBar, TTable,
TTabSet, TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 509

O n C h a n g e e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

For tab set controls

Declaration

property OnChange: TTabChangeEvent;

The OnChange event occurs just before a new tab is selected (the TabIndex value is about
to change). To prevent the TabIndex value from changing, you need to write code in the
OnChange event handler to stop it from doing so.

Example
The following code uses a check box and a tab set control on a form. If the check box is
checked, another tab on the tab set can’t be selected.

procedure TForm1.TabSet1Change(Sender: TObject; NewTab: Integer;
 var AllowChange: Boolean);
begin
 AllowChange := not CheckBox1.Checked;
end;

For DDE client item and DDE server item controls

Declaration

property OnChange: TNotifyEvent;

An OnChange event occurs when the value of the Value property of a DDE client item or
DDE server item component changes.

If the value changed is that of a DDE client item component, the DDE server application
continuously updates the Value property of the DDE client item component.

If the value changed is that of a DDE server item component, your application can
change the Value property of the DDE server item component by assigning a new value
to it. The DDE client can change Value by poking data (transferring data from the DDE
client to the DDE server). See the documentation of the DDE client application for
information about how data is poked. Delphi DDE client applications poke data using
the PokeData method.

Example
The following code updates the contents of an edit box with the linked text from a DDE
server when the data is updated.

procedure TForm1.DdeClientItem1Change(Sender: TObject);
begin
 Edit1.Text := DDEClientItem1.Text;
end;

510 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n C h a n g e e v e n t

For data-aware components

Declaration

property OnChange: TNotifyEvent;

The OnChange event for data-aware controls occurs when the contents of the field the
control is accessing changes. Specify any special processing you want to occur at that
time in the OnChange event handler

Example
The following code displays a message if the data accessed by DBMemo1 changes.

procedure TForm1.DBMemo1Change(Sender: TObject);
begin
 MessageDlg('Data has changed',mtInformation,[mbOK],0);
end;

For fields

Declaration

property OnChange: TFieldNotifyEvent;

OnChange is activated when the contents of the field are modified. If a data-aware
control is linked to the field, OnChange is not activated until the control attempts to store
the changes into the current record.

You can take any special actions required by the event by assigning a method to this
property.

Example

Field1.OnChange := CapitalizeFirstLetter;

For other components and objects

Declaration

property OnChange: TNotifyEvent;

The OnChange event specifies which event handler should execute when the contents of
a component or object changes.

For graphics objects, OnChange occurs when the specific graphics item encapsulated by
the object changes. For example, the OnChange event for a pen occurs when the Color,
Mode, Style, or Width properties of the TPen object are modified.

For components, OnChange occurs when the main value or values of the component are
modified. For example, OnChange occurs when the Text property of an edit box is
modified.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 511

O n C h a n g i n g e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

For combo boxes, the OnChange event also occurs when an item is selected in the drop
down list.

For string list objects, the OnChange event occurs when a change to a string stored in the
list of strings changes.

Example
This example uses a color grid on a form. The color grid is a component on the Samples
page of the Component palette. When the user clicks a color rectangle or drags the
mouse cursor across the color grid, the color of the form changes.

procedure TForm1.ColorGrid1Change(Sender: TObject);
begin
 Color := ColorGrid1.ForegroundColor;
end;

See also
OnChanging event

OnChanging event

Applies to
TCanvas object

Declaration

property OnChanging: TNotifyEvent;

An OnChanging event occurs immediately before the graphic contained in the canvas is
modified.

OnClick event

Applies to
TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,
TDBImage, TDBListBox, TDBLookupCombo, TDBLookupList, TDBMemo, TDBNavigator,
TDBRadioGroup, TDBText, TDirectoryListBox, TDrawGrid, TDriveComboBox, TFileListBox,
TFilterComboBox, TForm, TGroupBox, TImage, TLabel, TListBox, TMaskEdit, TMediaPlayer,
TMemo, TMenuItem, TNotebook, TOutline, TPaintBox, TPanel, TRadioButton, TScrollBar,
TScrollBox, TSpeedButton, TStringGrid, TTabSet components

For the media player components

Declaration

property OnClick: EMPNotify;

512 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n C l i c k e v e n t

An OnClick event occurs when the user presses and releases the mouse button when the
mouse pointer is over one of the control buttons of the media player control, or when
the user presses Spacebar when the media player control has focus. When the media
player control has focus, the user can select which control button to click when the
Spacebar is pressed with the Left Arrow or Right Arrow keys.

Example
This example uses a label and a media player on a form. When the user clicks one of the
media player buttons, the caption of the label indicates which button was clicked. For
this example to run successfully, you must have a CD audio device installed correctly.

procedure TForm1.FormCreate(Sender: TObject);
begin
 MediaPlayer1.DeviceType := dtCDAudio;
 MediaPlayer1.Open;
 MediaPlayer1.Left := 20;
 MediaPlayer1.Top := 12;
 Label1.Top := 44;
 Label1.Left := 20;
 Label1.Color := clYellow;
 Label1.Font.Name := 'Arial';
 Label1.Caption := 'Click Me';
end;

procedure TForm1.MediaPlayer1Click(Sender: TObject; Button: TMPBtnType;
 var DoDefault: Boolean);
begin
case Button of

 btPlay :
 begin
 Label1.Caption := 'Playing';
 Label1.Left := 20;
 end;
 btPause:
 begin
 Label1.Caption := 'Paused';
 Label1.Left := 48;
 end;
 btStop:
 begin
 Label1.Caption := 'Stopped';
 Label1.Left := 76;
 end;
 btNext:
 begin
 Label1.Caption := 'Next';
 Label1.Left := 104;
 end;
 btPrev:
 begin
 Label1.Caption := 'Previous';
 Label1.Left := 132;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 513

O n C l i c k e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

 end;
 btEject:
 begin
 Label1.Caption := 'Eject';
 Label1.Left := 244;
 end;
 end;
end;

See also
OnPostClick event

For database navigators

Declaration

property OnClick: ENavClick;

The OnClick event occurs when the user presses and releases the mouse button with the
mouse pointer over one of the database navigator control buttons, or when the user
presses Spacebar while the database navigator has focus. Calling the Click method also
triggers OnClick.

Example
The following code determines which database navigator button was clicked and
displays a message identifying the name of the button.

procedure TForm1.DBNavigator1Click(Sender: TObject; Button: TNavigateBtn);
var
 BtnName: string;
begin
 case Button of
 nbFirst : BtnName := 'nbFirst';
 nbPrior : BtnName := 'nbPrior';
 nbNext : BtnName := 'nbNext';
 nbLast : BtnName := 'nbLast';
 nbInsert : BtnName := 'nbInsert';
 nbDelete : BtnName := 'nbDelete';
 nbEdit : BtnName := 'nbEdit';
 nbPost : BtnName := 'nbPost';
 nbCancel : BtnName := 'nbCancel';
 nbRefresh: BtnName := 'nbRefresh';
 end;
 MessageDlg(BtnName + ' button clicked.', mtInformation, [mbOK], 0);
end;

514 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n C l o s e e v e n t

For forms and other components

Declaration

property OnClick: TNotifyEvent;

The OnClick event occurs when the user clicks the component. Typically, this is when
the user presses and releases the primary mouse button with the mouse pointer over the
component. This event can also occur when

• The user selects an item in a grid, outline, list, or combo box by pressing an arrow
key.

• The user presses Spacebar while a button or check box has focus.

• The user presses Enter when the active form has a default button (specified by the
Default property).

• The user presses Esc when the active form has a cancel button (specified by the Cancel
property).

• The user presses the accelerator key for a button or check box. For example, if the
value of the Caption property of a check box is ‘&Bold’, the B is underlined at run time
and the OnClick event of the check box is triggered when the user presses Alt+B.

• The Checked property of a radio button is set to True.

• The value of the Checked property of a check box is changed.

• The Click method of a menu item is called.

The user presses the accelerator key for a button or check boxFor a form, an OnClick
event occurs when the user clicks a blank area of the form or on a disabled component.

Example
The form in this example changes color each time the user clicks it:

procedure TForm1.FormClick(Sender: TObject);
begin
 Randomize;
 Color := Random(65535);
end;

See also
Click method, OnDblClick event

OnClose event

Applies to
TDDEClientConv, TForm components

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 515

O n C l o s e e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

For forms

Declaration

property OnClose: TCloseEvent;

The OnClose event specifies which event handler to call when a form is about to close.
The handler specified by OnClose might, for example, test to make sure all fields in a
data-entry form have valid contents before allowing the form to close.

A form is closed by the Close method or when the user chooses Close from the form’s
system menu.

The TCloseEvent type of OnClose has an Action parameter. The value of Action
determines whether the form can actually close. These are the possible values of Action:

Example
This example displays a message dialog box when the user attempts to close the form. If
the user clicks the Yes button, the form closes; otherwise, the form remains open.

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
 if MessageDlg('Close application ?', mtConfirmation,

[mbYes, mbNo], 0) = mrYes then
Action := caFree

 else
 Action := caNone;
end;

See also
OnCloseQuery event, OnOpen event

For DDE components

Declaration

property OnClose: TNotifyEvent;

An OnClose event occurs when a DDE conversation is terminated. A conversation is
terminated when one of the applications involved is closed, or when the CloseLink
method is called.

Example
The following code displays a message when a conversation is closed.

Value Meaning

caNone The form is not allowed to close, so nothing happens.
caHide The form is not closed, but just hidden. Your application can still access a hidden form.
caFree The form is closed and all allocated memory for the form is freed.
caMinimize The form is minimized, rather than closed. This is the default action for MDI child forms.

516 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n C l o s e Q u e r y e v e n t

procedure TForm1.DdeClientConv1Close(Sender: TObject);
begin
 MessageDlg('This conversation is finished!', mtInformation, [mbOK],0);
end;

OnCloseQuery event

Applies to
TForm component

Declaration

property OnCloseQuery: TCloseQueryEvent;

The OnCloseQuery event occurs when an action to close the form takes place (when the
Close method is called or when the user chooses Close from the form’s System menu).
An OnCloseQuery event handler contains a Boolean CanClose variable that determines
whether a form is allowed to close. It’s default value is True. See the TCloseQueryEvent
type for more information about CanClose.

You can use an OnCloseQuery event handler to ask users if they are sure they really want
the form closed immediately. For example, you can use the handler to display a message
box that prompts the user to save a file before closing the form.

Example
When the user attempts to close the form in this example, a message dialog appears that
asks the user if it is OK to close the form. If the user chooses the OK button, the form
closes. If the user chooses Cancel, the form doesn’t close.

procedure TForm1.FormCloseQuery(Sender: TObject; var CanClose: Boolean);
begin
 if MessageDlg('Close the form?', mtConfirmation,

[mbOk, mbCancel], 0) = mrCancel then
 CanClose := False;
end;

See also
Close method, OnClose event

OnColEnter event

Applies to
TDBGrid component

Declaration

property OnColEnter: TNotifyEvent;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 517

O n C o l E x i t e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

The OnColEnter event occurs when the user clicks a cell in a column or moves to a
column with the Tab key within the data grid. Use the OnColEnter event to specify any
processing you want to occur as soon as a column is entered.

Example
The following code concatenates an asterisk to the display label of a field when the
column is entered.

procedure TForm1.DBGrid1ColEnter(Sender: TObject);
begin
 with DBGrid1.SelectedField do
 DisplayLabel := '* ' + DisplayLabel;
end;

See also
OnColExit event

OnColExit event

Applies to
TDBGrid component

Declaration

property OnColExit: TNotifyEvent;

The OnColExit event occurs when the user uses the Tab key to move out of a column or
clicks a cell in another column. Use the OnColExit event to specify any special processing
you want to occur when exiting the column.

Example
The following code deletes the first two characters from the display label of the selected
field when exiting a column. Note that FirstTime is a Boolean field that prevents
characters from being deleted the first time a column is exited. Use this code in
conjunction with code in the example of OnColEnter to modify the appearance of the
display label of columns while they are entered.

procedure TForm1.DBGrid1ColExit(Sender: TObject);
var
 TheLabel: string;
begin
 if FirstTime then
 FirstTime := False
 else
 begin
 with DBGrid1.SelectedField do
 begin
 TheLabel := DisplayLabel;
 Delete(TheLabel, 1, 2);

518 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n C o l l a p s e e v e n t

 DisplayLabel := TheLabel;
 end;
 end;
end;

See also
OnColExit event

OnCollapse event

Applies to
TOutline component

Declaration

property OnCollapse: EOutlineChange;

An OnCollapse event occurs when an expanded outline item that has subitems is
collapsed. An expanded outline item is collapsed when the user double-clicks it at run
time, when the FullCollapse method is called, or when its Expanded property is set to
False. When collapsed, the subitems no longer appear in the outline and the plus picture
or closed picture for the parent item is displayed if the appropriate OutlineStyle has been
selected.

Example
The following code displays the text from a collapsed outline item in a message dialog
box.

procedure TForm1.Outline1Collapse(Sender: TObject; Index: Longint);
var
 TheStr: string;
begin
 TheStr := Outline1.Items[Index].Text;
 MessageDlg(TheStr+' has collapsed.', mtInformation, [mbOK],0);
end;

See also
OnExpand event, PictureClosed property, PicturePlus property

OnColumnMoved event

Applies to
TDrawGrid, TStringGrid components

Declaration

property OnColumnMoved: TMovedEvent;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 519

O n C r e a t e e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

The OnColumnMoved event occurs when the user moves a column using the mouse. The
user can move a column only if the Options property set includes the value goColMoving.

Example
The following code permits one column to be moved (assuming [goColMoving] is
specified for the Options property at design time), then locks the columns by preventing
any more moves.

procedure TForm1.StringGrid1ColumnMoved(Sender: TObject; FromIndex, ToIndex: Longint);
begin
 StringGrid1.Options := StringGrid1.Options - [goColMoving];
end;

See also
OnRowMoved event

OnCreate event

Applies to
TForm component

Declaration

property OnCreate: TNotifyEvent;

The OnCreate event specifies which event handler to call when the form is first created.
You can write code in the event handler that sets initial values for properties and does
any processing you want to occur before the user begins interacting with the form.

Delphi creates a form when the application is run by calling the Create method.

Note When writing code in an OnCreate event handler, don’t fully qualify a component
reference by including the name of the form in the reference. For example, if the form is
named Form1 and contains an Edit1 edit box control, don’t refer to the edit box control
with the Form1.Edit1 name. Because Form1 doesn’t yet exist when this code executes,
your application would crash if you used the fully qualified name. Instead, simply use
the name Edit1.

When a form is being created and its Visible property is True, the following events occur
in the order listed:

• OnActivate
• OnShow
• OnCreate
• OnPaint

Example
This very simple OnCreate event handler assures that the form is the same color as the
Windows system color of your application workspace:

520 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n D a t a C h a n g e e v e n t

procedure TForm1.FormCreate(Sender: TObject);
begin
 Color := clAppWorkSpace;
end;

Note The Color property in this example is not prefaced with the name of the form. If you
write the statement like this,

Form1.Color := clAppWorkSpace;

the application won’t run without error, because Form1 does not yet exist at the time this
code is executed.

See also
OnActivate event, OnDestroy event, OnPaint event

OnDataChange event

Applies to
TDataSource component

Declaration

property OnDataChange: TDataChangeEvent;

The OnDataChange occurs when the State property changes from dsInactive, or when a
data-aware control notifies the TDataSource that something has changed.

Notification occurs when the following items change because of field modification or
scrolling to a new record: field component, record, dataset component, content, and
layout. The Field parameter to the method may be nil if more than one of the fields
changed simultaneously (as in a move to a different record). Otherwise, Field is the field
which changed.

See also
OnStateChange event, State property

OnDblClick event

Applies to
TComboBox, TDBComboBox, TDBEdit, TDBGrid, TDBImage, TDBListBox,
TDBLookupCombo, TDBLookupList, TDBMemo, TDBNavigator, TDBText,
TDirectoryListBox, TDrawGrid, TDriveComboBox, TEdit, TFileListBox, TFilterComboBox,
TForm, TGroupBox, TImage, TLabel, TListBox, TMaskEdit, TMemo, TNotebook,
TOLEContainer, TOutline, TPaintBox, TPanel, TRadioButton, TScrollBox, TSpeedButton,
TStringGrid components

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 521

O n D e a c t i v a t e e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

Declaration

property OnDblClick: TNotifyEvent;

The OnDblClick event occurs when the user double-clicks the mouse button while the
mouse pointer is over the component.

Example
This example notifies the user that the form was double-clicked.

procedure TForm1.FormClick(Sender: TObject);
begin
 MessageDlg('You double-clicked the form', mtInformation, [mbOk], 0);
end;

See also
OnClick event

OnDeactivate event

Applies to
TApplication component

Declaration

property OnDeactivate: TNotifyEvent;

The OnDeactivate event occurs when the user switches from your application to another
Windows application. Use the OnDeactive event to do any special processing you want
to occur before your application is deactivated.

Note Search Help for “Handling Application Events” for more information about creating
event handlers for application events.

Example
The following code minimizes an application when it’s deactivated. Note that
AppDeactivate should be declared a method of TForm1.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnDeactivate := AppDeactivate;
end;

procedure TForm1.AppDeactivate(Sender: TObject);
begin
 Application.Minimize;
end;

See also
OnActivate event

522 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n D e s t r o y e v e n t

OnDestroy event

Applies to
TForm component

Declaration

property OnDestroy: TNotifyEvent;

The OnDestroy event occurs when a form is about to be destroyed. A form is destroyed
by the Destroy, Free, or Release methods, or when the main form of the application is
closed.

Example
The following code explicitly allocates memory for a a pointer in the OnCreate event of
Form1, then releases the memory in the OnDestroy event. Assume that MyPtr is a Pointer
type field of TForm1.

procedure TForm1.FormCreate(Sender: TObject);
begin
New(MyPtr);

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
 Dispose(MyPtr);
end;

See also
OnCreate event

OnDragDrop event

Applies to
TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,
TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBLookupList, TDBMemo,
TDBNavigator, TDBText, TDBRadioGroup, TDirectoryListBox, TDrawGrid,
TDriveComboBox, TEdit, TFileListBox, TFilterComboBox, TForm, TGroupBox, TImage,
TListBox, TMaskEdit, TMemo, TNotebook, TOLEContainer, TOutline, TPaintBox, TPanel,
TRadioButton, TScrollBar, TScrollBox, TShape, TStringGrid, TTabSet components

Declaration

property OnDragDrop: TDragDropEvent;

The OnDragDrop event occurs when the user drops an object being dragged. Use the
OnDragDrop event handler to specify what you want to happen when the user drops an
object. The Source parameter of the OnDragDrop event is the object being dropped, and
the Sender is the control the object is being dropped on. The X and Y parameters are the
coordinates of the mouse positioned over the control.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 523

O n D r a g O v e r e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

Example
This code comes from an application that contains a list box and three labels, each with a
different font and color. The user can select a label and drag it to a list box and drop it.
When the label is dropped, the items in the list box assume the color and font of the
dropped label. This is the OnDragDrop event handler.

procedure TForm1.ListBox1DragDrop(Sender, Source: TObject; X, Y: Integer);
begin
if (Sender is TListBox) and (Source is TLabel) then

 begin
 (Sender as TListBox).Font := (Source as TLabel).Font;
 end;
end;

The Source in this example is the label, and the Sender is the list box.

See also
DragCursor property, DragMode property, OnDragOver event, OnEndDrag event

OnDragOver event

Applies to
TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,
TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBLookupList, TDBMemo,
TDBNavigator, TDBText, TDBRadioGroup, TDirectoryListBox, TDrawGrid,
TDriveComboBox, TEdit, TFileListBox, TFilterComboBox, TForm, TGroupBox, TImage,
TListBox, TMaskEdit, TMemo, TNotebook, TOLEContainer, TOutline, TPaintBox, TPanel,
TRadioButton, TScrollBar, TScrollBox, TShape, TStringGrid, TTabSet components

Declaration

property OnDragOver: TDragOverEvent;

The OnDragOver event occurs when the user drags an object over a component. Usually
you’ll use an OnDragOver event to accept an object so the user can drop it.

The OnDragOver event accepts an object when its Accept parameter is True.

Usually, you will want the cursor to change shape, indicating that the control can accept
the dragged object if the user drops it. You can change the shape of the cursor by
changing the value of the DragCursor property for the control at either design or run
time before an OnDragOver event occurs.

Example
This OnDragOver event handler permits the list box to accept a dropped label:

procedure TForm1.ListBox1DragOver(Sender, Source: TObject; X, Y: Integer;
 State: TDragState; var Accept: Boolean);
begin
Accept := Source is TLabel;

end;

524 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n D r a w C e l l e v e n t

The Source parameter identifies what is being dragged. The Sender is the control being
dragged over.

This code permits the list box to accept any dropped control:

procedure TForm1.ListBox1DragOver(Sender, Source: TObject; X, Y: Integer;
 State: TDragState; var Accept: Boolean);
begin
Accept := True;

end;

See also
DragMode property, OnDragDrop event, OnEndDrag event, TDragState type

OnDrawCell event

Applies to
TDrawGrid, TStringGrid components

Declaration

property OnDrawCell: TDrawCellEvent;

The OnDrawCell event occurs whenever the contents of a grid cell need to be
redisplayed. For example, it occurs when the user selects a cell or scrolls the grid. How a
cell is redrawn depends on the value of the DefaultDrawing property.

If DefaultDrawing is False, you must write the code that handles all drawing within the
cell in the OnDrawCell event handler.

Example
The following code draws a focus rectangle around each of the cells of StringGrid1.

procedure TForm1.StringGrid1DrawCell(Sender: TObject; Col, Row: Longint;
 Rect: TRect; State: TGridDrawState);
begin
 StringGrid1.Canvas.DrawFocusRect(Rect);
end;

OnDrawDataCell event

Applies to
TDBGrid component

Declaration

property OnDrawDataCell: TDrawDataCellEvent;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 525

O n D r a w I t e m e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

The OnDrawDataCell event occurs whenever the contents of a data grid cell need to be
redisplayed. For example, it occurs when the user selects a cell or scrolls the grid. How a
cell is redrawn depends on the value of the DefaultDrawing property.

If DefaultDrawing is False, you must write the code that handles all the drawing within
the cell in the OnDrawDataCell event handler.

Example
The following code fills the cells of DBGrid1 with the pattern defined by the Brush of the
Canvas of DBGrid1.

procedure TForm1.DBGrid1.DrawDataCell(Sender: TObject; Rect: TRect; Field: TField;
State: TGridDrawState)

begin
DBGrid1.Canvas.FillRect(Rect);

end;

OnDrawItem event

Applies to
TComboBox, TDBComboBox, TDBListBox, TListBox, TOutline components

Declaration

property OnDrawItem: TDrawItemEvent;

The OnDrawItem event occurs whenever an item in an owner-draw outline, list box, or
combo box needs to be redisplayed. For example, it occurs when the user selects an item
or scrolls the outline, list box, or combo box. OnDrawItem events occur only for outlines
with the Style value osOwnerDraw, list boxes with the Style values lbOwnerDrawFixed or
lbOwnerDrawVariable, and for combo boxes with the Style values csOwnerDrawFixed or
csOwnerDrawVariable.

OnDrawItem passes four parameters to its handler describing the item to be drawn:

• a reference to the control containing the item
• the index of the item in that control
• a rectangle in which to draw
• the state of the item (selected, focused, and so on)

The size of the rectangle that contains the item is determined either by the ItemHeight
property for fixed owner-draw controls or by the response to the OnMeasureItem event
for variable owner-draw controls.

Example
Here is a typical handler for an OnDrawItem event. In the example, a list box with the
lbOwnerDrawFixed style draws a bitmap to the left of each string.

procedure TForm1.ListBox1DrawItem(Control: TWinControl; Index: Integer; Rect: TRect;
State: TOwnerDrawState);

526 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n D r a w T a b e v e n t

var
Bitmap: TBitmap; { temporary variable for the item’s bitmap }
Offset: Integer; { text offset width }

begin
with (Control as TListBox).Canvas do { draw on the control canvas, not on the form }
begin

FillRect(Rect); { clear the rectangle }
Offset := 2; { provide default offset }
Bitmap := TBitmap(Items.Objects[Index]); { get the bitmap for this item }

 if Bitmap <> nil then
begin
BrushCopy(Bounds(Rect.Left + 2, Rect.Top, Bitmap.Width, Bitmap.Height), Bitmap,

Bounds(0, 0, Bitmap.Width, Bitmap.Height), clRed); { render the bitmap }
Offset := Bitmap.width + 6; { add four pixels between bitmap and text }

end;
 TextOut(Rect.Left + Offset, Rect.Top, Items[Index]) { display the text }
end;

end;

Note that the Rect parameter automatically provides the proper location of the item
within the control’s canvas.

See also
ItemHeight property, OnMeasureItem event

OnDrawTab event

Applies to
TTabSet component

Declaration

property OnDrawTab: TDrawTabEvent;

The OnDrawTab event occurs when a tab needs to redisplay only for tab set controls that
have the Style property value of tsOwnerDraw. For example, it happens when the user
selects a tab or scrolls the tabs using an owner-draw tab set control.

You must write the code in the OnDrawTab event handler to draw the tab.

OnDrawTab occurs just after the OnMeasureTab event, which contains the code to
calculate the width of the tab needed. The height of the tab is determined by the value of
the TabHeight property of the tab set control. The code you write in the OnDrawTab
event handler, therefore, must use the width determined with the OnMeasureTab event
to draw the tab.

Example
The following code loads a bitmap from the Objects property of the Tabs list of the
DriveTabSet tab set component. This bitmap is then drawn on the tab, along with the text
from the Tabs list.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 527

O n D r o p D o w n e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

procedure TFMForm.DriveTabSetDrawTab(Sender: TObject; TabCanvas: TCanvas;
 R: TRect; Index: Integer; Selected: Boolean);
var
 Bitmap: TBitmap;
begin
 Bitmap := TBitmap(DriveTabSet.Tabs.Objects[Index]);
 with TabCanvas do
 begin
 Draw(R.Left, R.Top + 4, Bitmap);
 TextOut(R.Left + 2 + Bitmap.Width, R.Top + 2, DriveTabSet.Tabs[Index]);
 end;
end;

See also
OnMeasureTab event, TabHeight property

OnDropDown event

Applies to
TComboBox, TDBListBox, TDBComboBox, TDBLookupCombo, TListBox components

Declaration

property OnDropDown: TNotifyEvent;

The OnDropDown event occurs when the user opens (drops down) a combo box or list
box.

Example
The following code doesn’t sort the items in a combo box until the user opens it.

procedure TForm1.ComboBox1DropDown(Sender: TObject);
begin
 ComboBox1.Sorted := True;
end;

OnEndDrag event

Applies to
TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,
TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBMemo, TDBNavigator,
TDBText, TDBRadioGroup, TDirectoryListBox, TDrawGrid, TDriveComboBox, TEdit,
TFileListBox, TFilterComboBox, TGroupBox, TImage, TListBox, TMaskEdit, TMemo,
TNotebook, TOLEContainer, TOutline, TPanel, TRadioButton, TScrollBar, TScrollBox,
TShape, TStringGrid, TTabSet components

528 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n E n t e r e v e n t

Declaration

property OnEndDrag: TEndDragEvent;

The OnEndDrag event occurs whenever the dragging of an object ends, either by
dropping the object or by canceling the dragging. Use the OnEndDrag event handler to
specify any special processing you want to occur when dragging stops. If the dragged
object was dropped and accepted by the control, the Target parameter of the OnEndDrag
event is True. If the object was not dropped successfully, the value of Target is nil.

Example
This code displays a message in a label named Status. The message displayed depends
on whether or not the dragged label control was dropped into and accepted by a list box
control successfully:

procedure TForm1.LabelEndDrag(Sender, Target: TObject; X, Y: Integer);
var
 S: string;
begin
S := (Sender as TLabel).Name + ' was dropped... and ';

 if Target <> nil then S := S + 'accepted!'
 else S := S + 'rejected!';
 Status.Caption := S;
end;

The Target parameter is the list box and Sender is the label.

See also
EndDrag method, OnDragDrop event

OnEnter event

Applies to
All windowed controls

Declaration

property OnEnter: TNotifyEvent;

The OnEnter event occurs when a component becomes active. Use the OnEnter event
handler to specify any special processing you want to occur when a component
becomes active.

Note The OnEnter event does not occur when switching between forms or between another
Windows application and your application.

Note The OnEnter event for a TPanel or THeader component never occurs as panels and
headers never receive focus.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 529

O n E x c e p t i o n e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

Example
This example uses an edit box and a memo control on a form. When either the edit box
or the memo is the active control, it is colored yellow. When the active control becomes
inactive, the color of the control returns to the Windows system color for a window.

procedure TForm1.Edit1Enter(Sender: TObject);
begin
 Edit1.Color := clYellow;
end;

procedure TForm1.Edit1Exit(Sender: TObject);
begin
 Edit1.Color := clWindow;
end;

procedure TForm1.Memo1Enter(Sender: TObject);
begin
 Memo1.Color := clYellow;
end;

procedure TForm1.Memo1Exit(Sender: TObject);
begin
 Memo1.Color := clWindow;
end;

See also
ActiveControl property, OnActivate event, OnExit event

OnException event

Applies to
TApplication component

Declaration

property OnException: TExceptionEvent;

The OnException event occurs when an unhandled exception occurs in your application.
By default, the HandleException method calls the OnException event handler, which calls
ShowException to display a message dialog box appears indicating an error occurred.
You can change this behavior by specifying what processing you want to occur in the
OnException event handler.

Note Search Help for “Handling Application Events” for more information about creating
event handlers for application events.

Example
The following code defines the default exception handling of the application, assuming
AppException is declared a method of TForm1.

procedure TForm1.FormCreate(Sender: TObject);
begin

530 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n E x e c u t e M a c r o e v e n t

 Application.OnException := AppException;
end;
procedure TForm1.AppException(Sender: TObject; E: Exception);
begin
Application.ShowException

end;

OnExecuteMacro event

Applies to
TDDEServerConv component

Declaration

property OnExecuteMacro : TMacroEvent;

The OnExecuteMacro event occurs when a DDE client application sends a macro to a
DDE server conversation component. Write code to process the macro in the
OnExecuteMacro event handler. See the DDE client application documentation for
information about how it sends macros. If the DDE client is a Delphi application, a
macro is sent with the ExecuteMacro method of the TDDEClientConv component.

Example
The following code clears the contents of a memo in the server application if the
appropriate message is sent from the client application.

procedure TForm1.DdeServerConv1ExecuteMacro(Sender: TObject; Msg: TStrings);
begin
 if Msg.Strings[0] = 'Edit|Clear' then
 Memo1.Clear;
end;

OnExit event

Applies to
All windowed controls

Declaration

property OnExit: TNotifyEvent;

The OnExit event occurs when the input focus shifts away from one control to another.
Use the OnExit event handler when you want special processing to occur when this
control ceases to be active.

Note The OnExit event does not occur when switching between forms or between another
Windows application and your application.

Note The OnExit event for a TPanel or THeader component never occurs as panels and headers
never receive focus.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 531

O n E x p a n d e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

Note The ActiveControl property is updated before an OnExit event occurs.

Example
This example uses an edit box and a memo control on a form. When either the edit box
or the memo is the active control, it is colored yellow. When the active control becomes
inactive, the color of the control returns to the Windows system color for a window.

procedure TForm1.Edit1Enter(Sender: TObject);
begin
 Edit1.Color := clYellow;
end;

procedure TForm1.Edit1Exit(Sender: TObject);
begin
 Edit1.Color := clWindow;
end;

procedure TForm1.Memo1Enter(Sender: TObject);
begin
 Memo1.Color := clYellow;
end;

procedure TForm1.Memo1Exit(Sender: TObject);
begin
 Memo1.Color := clWindow;
end;

See also
OnEnter event

OnExpand event

Applies to
TOutline component

Declaration

property OnExpand: EOutlineChange;

An OnExpand event occurs when a collapsed outline item having subitems is expanded.
A collapsed outline item is expanded when the user double-clicks on it at run time,
when its Expanded property is set to True, or when the FullExpand method of the
TOutlineNode object is called. When expanded, the subitems appear in the outline and
the minus picture or open picture for the parent item is displayed if the appropriate
OutlineStyle has been selected.

Example
The following code displays the text from a collapsed outline item in a message dialog
box.

procedure TForm1.Outline1Expand(Sender: TObject; Index: Longint);

532 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n F i n d e v e n t

var
 TheStr: string;
begin
 TheStr := Outline1.Items[Index].Text;
 MessageDlg(TheStr+' has expanded.', mtInformation, [mbOK],0);
end;

See also
OnCollapse event, PictureMinus property, PictureOpen property

OnFind event

Applies to
TFindDialog, TReplaceDialog components

Declaration

property OnFind: TNotifyEvent;

The OnFind event occurs whenever the user chooses the Find Next button in the Find or
Replace dialog box. Use the OnFind event to specify what you want to happen when the
user chooses the Find Next button.

Example
The following text compares the FindText to the Text of the Items of Outline1. If the string
is found, a message is displayed and I-1 specifies the index of the matching item.

procedure TForm1.FindDialog1Find(Sender: TObject);
var
 I: Integer;
Found: Boolean;

begin
 I := 1;
Found := False;

 repeat
 if Outline1.Items[I].Text = FindDialog1.FindText then

begin
 MessageDlg('Found!', mtInformation, [mbOK], 0);

Found := True;
end;

 I := I+1;
 until (I > Outline1.ItemCount) or (Found);
end;

See also
OnReplace event

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 533

O n G e t E d i t M a s k e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

OnGetEditMask event

Applies to
TDrawGrid, TStringGrid components

Declaration

property OnGetEditMask: TGetEditEvent;

The OnGetEditMask event occurs when the Options property set contains the value
goEditing and the grid needs to redisplay the text of a cell in the grid using a specified
edit mask. For example, the grid needs to redisplay the text when the user scrolls the
grid or the user changes the data.

You write the code to specify the edit mask for the cell in the OnGetEditMask event
handler.

Example
This example specifies an edit mask commonly used to display American telephone
numbers for the cell in column 2, row 3 of the string grid:

procedure TForm1.StringGrid1GetEditMask(Sender: TObject; ACol,
 ARow: Longint; var Value: OpenString);
begin
 if ACol = 2 then
 if ARow = 3 then
 Value := '!\(999\)000-0000;1';
end;

See also
EditMask property, OnGetEditText event

OnGetEditText event

Applies to
TDrawGrid, TStringGrid components

Declaration

property OnGetEditText: TGetEditEvent;

The OnGetEditText event occurs when the Options property set contains the value
goEditing and the grid needs to redisplay the text of a cell in the grid. For example, the
grid needs to redisplay the text when the user scrolls the grid or the user changes the
data.

You write the code to retrieve the text of the cell in the OnGetEditText event handler.

When the user edits data in a grid, the OnSetEditText event occurs to change the actual
data, then the OnGetEditText event occurs to display the changed data in the grid.

534 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n G e t T e x t e v e n t

Example
The following code appends ‘My ‘ to any text entered in StringGrid1.

procedure TForm1.StringGrid1GetEditText(Sender: TObject; ACol,
 ARow: Longint; var Value: OpenString);
begin
 Value := 'My ' + Value;
end;

See also
OnGetEditMask event, OnSetEditText event

OnGetText event

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

property OnGetText: TFieldGetTextEvent;

The OnGetText event is activated when the DisplayText or Text properties are referenced.
The DisplayText parameter indicates if the event should supply the text in display
format or in edit format for the Text property. If OnGetText has been assigned a method,
the default processing for DisplayText or Text does not occur; the event handler is
expected to perform any conversion required to display the value.

By assigning a method to this property, you can take any special actions required by the
event.

Example

Field1.OnGetText := MyFormatMethod;

OnHide event

Applies to
TForm component

Declaration

property OnHide: TNotifyEvent;

The OnHide event occurs just before the form is hidden on the screen. Use the OnHide
event to specify any special processing you want to happen just before the form
disappears.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 535

O n H i d e e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

A form that is an MDI child form (FormStyle is fsMDIChild) loses its window handle
when it is hidden. If your application performs some operation that causes the window
handle to come back, such as adding items to a list box on the form, an exception is
raised.

Example
This example uses two forms, each with a label and a button. When the user clicks a
button, the other form appears and the current form disappears. Also, a message
appears in the label of the form that is showing, indicating that the other form is hidden.
This is the implementation section of Unit1:

implementation

{$R *.DFM}

uses Unit2;

procedure TForm1.Button1Click(Sender: TObject);
begin
 Form2.Show;
 Hide;
end;

procedure TForm1.FormHide(Sender: TObject);
begin
 Form2.Label1.Caption := 'Form1 is hiding';
end;

end.

This is the implementation section of Unit2:

implementation

{$R *.DFM}

uses Unit1;

procedure TForm2.Button1Click(Sender: TObject);
begin
 Form1.Show;
 Hide;
end;

procedure TForm2.FormHide(Sender: TObject);
begin
 Form1.Label1.Caption := 'Form2 is hiding';
end;

end.

See also
OnShow event

536 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n H e l p e v e n t

OnHelp event

Applies to
TApplication component

Declaration

property OnHelp: THelpEvent;

The OnHelp event occurs when your application receives a request for help. Use the
OnHelp event handler to specify any special processing you want to occur when help is
requested.

The HelpContext and the HelpJump methods automatically trigger the OnHelp event.

Note Search Help for “Handling Application Events” for more information about creating
event handlers for application events.

Example
The following code changes the Help file for the application to the results of the Open
dialog component. AppHelp should be assigned to the OnHelp event handler of
Application in the OnCreate event of Form1.

function TForm1.AppHelp(Command: Word; Data: Longint): Boolean;
begin
if OpenDialog1.Execute then

Application.HelpFile := OpenDialog1.FileName;
end;

See also
HelpCommand method, HelpContext property, HelpFile property, THelpEvent type

OnHint event

Applies to
TApplication component

Declaration

property OnHint: TNotifyEvent;

The OnHint event occurs when the user positions the mouse pointer over a control with
a Hint property value other than an empty string (‘’). Use the OnHint event handler to
perform any special processing you want to happen when the OnHint event occurs.

A common use of the OnHint event is to display the value of a control or menu item’s
Hint property as the caption of a panel control (TPanel), thereby using the panel as a
status bar. Using the Hint property, you can specify a Help Hint and a usually longer
hint that appears elsewhere when the OnHint event occurs.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 537

O n H i n t e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

Note Search Help for “Handling Application Events” for more information about creating
event handlers for application events.

Example
This example uses a panel component, a menu, and an edit box on a form. You can
design the menu as you want, but remember to include a value for the Hint property for
each menu item in the menu. Also, specify a value for the Hint property of the edit box.
Align the panel at the bottom of the form (choose alBottom as the value of the Align
property), and left justify the caption of the panel (choose taLeftJustify as the value of the
Alignment property).

The OnHint event is an event of the TApplication component. You can’t use the Object
Inspector to generate an empty event handler for TApplication, so you will need to write
your own OnHint event handler. To accomplish this, you create a method of the TForm1
object and give it an appropriate name, such as DisplayHint. You write the method in the
implementation part of the unit, but you must also remember to declare the method in
the TForm1 type declaration in the public section.

In the DisplayHint method, you assign the Hint property of the application to the Caption
property of the panel component.

One task remains. The OnHint event is an event of TApplication, so you must assign the
new method you created as the method used by the OnHint event. You can do this in
the form’s OnCreate event handler.

This code shows the complete type declaration, the new method, and the OnCreate event
handler. When the user runs the application and positions the cursor over the edit box
or a menu item on the menu, the specified hint appears as the caption of the panel at the
bottom of the form:

type
 TForm1 = class(TForm)
 Button1: TButton;
 Panel1: TPanel;
 Edit1: TEdit;
 procedure FormCreate(Sender: TObject);
 private
 { Private declarations }
 public
 procedure DisplayHint(Sender: TObject);
 end;

var
 Form1: TForm1;

implementation

{$R *.FRM}

procedure TForm1.DisplayHint(Sender: TObject);
begin
 Panel1.Caption := Application.Hint;
end;

538 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n I d l e e v e n t

procedure TForm1.FormCreate(Sender: TObject);
begin
Application.OnHint := DisplayHint;

end;

See also
OnCreate event

OnIdle event

Applies to
TApplication component

Declaration

property OnIdle: TIdleEvent

The OnIdle event occurs whenever the application is idle. Use the OnIdle event handler
to specify any special processing to occur when your application is idle. Your
application is idle when it is processing code, for example, or when it is waiting for
input from the user.

The TIdleEvent type has a Boolean parameter Done that is True by default. When Done is
True, the Windows API WaitMessage function is called when OnIdle returns. WaitMessage
yields control to other applications until a new message appears in the message queue
of your application. If Done is False, WaitMessage is not called.

Note Search Help for “Handling Application Events” for more information about creating
event handlers for application events.

Example
The following code allows other applications to be processed while Application is idle.
AppIdle should be declared as a method of TForm1.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnIdle := AppIdle;
end;

procedure TForm1.AppIdle(Sender: TObject; var Done: Boolean);
begin
 Done := True;
end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 539

O n K e y D o w n e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

OnKeyDown event

Applies to
TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,
TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBMemo, TDirectoryListBox,
TDrawGrid, TDriveComboBox, TEdit, TFileListBox, TFilterComboBox, TForm, TListBox,
TMaskEdit, TMemo, TOLEContainer, TOutline, TRadioButton, TScrollBar, TStringGrid
components

Declaration

property OnKeyDown: TKeyEvent;

The OnKeyDown event occurs when a user presses any key while the control has focus.
Use the OnKeyDown event handler to specify special processing to occur when a key is
pressed. The OnKeyDown handler can respond to all keyboard keys including function
keys and keys combined with the Shift, Alt, and Ctrl keys and pressed mouse buttons. The
Key parameter of the OnKeyDown event handler is of type Word; therefore, you must use
virtual key codes to determine the key pressed. You can find a table of virtual key codes
in the Help system; search for the topic Virtual Key Codes.

Example
This event handler displays a message dialog when the user presses Alt+F10:

procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;
 Shift: TShiftState);
begin
 if ((Shift = [ssAlt]) and (Key = VK_F10)) then
 MessageDlg('Alt+F10 pressed down', mtInformation, [mbOK], 0);
end;

See also
KeyPreview property, OnKeyPress event, OnKeyUp event

OnKeyPress event

Applies to
TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,
TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBMemo, TDirectoryListBox,
TDrawGrid, TDriveComboBox, TEdit, TFileListBox, TFilterComboBox, TForm, TListBox,
TMaskEdit, TMemo, TOLEContainer, TOutline, TRadioButton, TScrollBar, TStringGrid
components

Declaration

property OnKeyPress: TKeyPressEvent;

540 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n K e y U p e v e n t

The OnKeyPress event occurs when a user presses a single character key. Use the
OnKeyPress event handler when you want something to happen as a result of pressing a
single key.

The Key parameter in the OnKeyPress event handler is of type Char; therefore, the
OnKeyPress event registers the ASCII character of the key pressed. Keys that don’t
correspond to an ASCII Char value (Shift or F1, for example) don’t generate an
OnKeyPress event. Key combinations (such as Shift+A), generate only one OnKeyPress
event (for this example, Shift+A results in a Key value of “A” if Caps Lock is off). If you
want to respond to non-ASCII keys or key combinations, use the OnKeyDown or
OnKeyUp event handlers.

Example
This event handler displays a message dialog box specifying which key was pressed:

procedure TForm1.FormKeyPress(Sender: TObject; var Key: Char);
begin
 MessageDlg(Key + ' has been pressed', mtInformation, [mbOK], 0)
end;

See also
KeyPreview property

OnKeyUp event

Applies to
TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,
TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBMemo, TDirectoryListBox,
TDrawGrid, TDriveComboBox, TEdit, TFileListBox, TFilterComboBox, TForm, TListBox,
TMaskEdit, TMemo, TOLEContainer, TOutline, TRadioButton, TScrollBar, TStringGrid
components

Declaration

property OnKeyUp: TKeyEvent;

The OnKeyUp event occurs when the user releases a key that has been pressed. Use the
OnKeyUp event handler when you want special processing to occur when a key is
released. The OnKeyUp handler can respond to all keyboard keys including function
keys and keys combined with the Shift, Alt, and Ctrl keys and pressed mouse buttons. The
Key parameter of the OnKeyUp event handler is of type Word; therefore, you must use
virtual key codes to determine the key pressed. You can find a table of virtual key codes
in the Help system; search for the topic Virtual Key Codes.

Example
The following code changes a form’s color to aqua when a key is pressed. When the key
is released, the form’s color reverts to the original color. Note that the KeyPreview
property of the form must be set to True to capture all key presses, even if a control has
focus:

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 541

O n L o g i n e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

{In the declarations section of the form}
var
FormColor: TColor;

(OnKeyDown event handler}
procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;
 Shift: TShiftState);
begin
FormColor := Form1.Color;
Form1.Color := clAqua;

end;

{OnKeyUp event handler}
procedure TForm1.FormKeyUp(Sender: TObject; var Key: Word;
 Shift: TShiftState);
begin
Form1.Color := FormColor;

end;

See also
KeyPreview property, OnKeyDown event, OnKeyPress event

OnLogin event

Applies to
TDataBase component

Declaration

property OnLogin: TLoginEvent;

The OnLogin event is activated whenever a TDatabase component assigned to an SQL
database is opened and the LoginPrompt property is True. Use the OnLogin event to set
login parameters. The OnLogin event gets a copy of the TDatabase's login parameters
array, Params. Use the Values property to change these parameters:

LoginParams.Values['SERVER NAME'] := 'MYSERVERNAME';
LoginParams.Values['USER NAME'] := 'MYUSERNAME';
LoginParams.Values['PASSWORD'] := 'MYPASSWORD';

When control returns from your OnLogin event handler, these parameters will be used
to establish a connection.

Note For Paradox, dBASE, and ASCII databases, the only possible parameter is PATH, so the
OnLogin event will not be activated.

OnMeasureItem event

Applies to
TComboBox, TDBComboBox, TDBListBox, TListBox components

542 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n M e a s u r e T a b e v e n t

Declaration

property OnMeasureItem: TMeasureItemEvent;

The OnMeasureItem event occurs whenever an application needs to redisplay an item in
an owner-draw list box or combo box with a variable style. That is, for a list box, the
Style property is lbOwnerDrawVariable, or for a combo box, the Style property is
csOwnerDrawVariable.

The OnMeasureItem event passes three parameters to its handler describing the item to
measure:

• The control containing the item
• The index of the item in the control
• The height of the item

The OnMeasureItem event handler should specify the height in pixels that the given item
will occupy in the control. The Height parameter is a var parameter, which initially
contains the default height of the item or the height of the item text in the control’s font.
The handler can set Height to a value appropriate to the contents of the item, such as the
height of a graphical image to be displayed within the item.

After the OnMeasureItem event occurs, the OnDrawItem event occurs, rendering the item
with the measured size.

Example
Here is a typical handler for an OnMeasureItem event. The example assumes that a
variable owner-draw list box already has bitmaps associated with each of its strings. It
sets the height of the item to the height of the associated bitmap if that height is greater
than the default height.

procedure TForm1.ListBox1MeasureItem(Control: TWinControl; Index: Integer;
var Height: Integer);

var
Bitmap: TBitmap;

begin
with Control as TListBox do
begin

Bitmap := TBitmap(Items.Objects[Index]);
if Bitmap <> nil then
if Bitmap.Height > Height then Height := Bitmap.Height;

end;
end;

OnMeasureTab event

Applies to
TTabSet component

Declaration

property OnMeasureTab: TMeasureTabEvent;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 543

O n M e s s a g e e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

The OnMeasureTab event occurs when the Style property of the tab set control is
tsOwnerDraw and an application needs to redisplay a tab in a tab set control. In the
OnMeasureTab event handler, you write the code to calculate the width needed to draw
the tab. After the OnMeasureTab event occurs, the OnDrawTab event occurs. You write
the code to draw the tab using the width calculated in OnMeasureTab in the OnDrawTab
event handler.

The Index parameter of the TMeasureTabEvent method pointer is the position of the tab in
the tab set control. The TabWidth parameter is the width of the tab.

Example
The following code measures the width of a bitmap stored in the Objects property of the
Tabs list of the DriveTabSet tab set component. It then makes the width of the tab two
pixels wider than the bitmap width.

procedure TFMForm.DriveTabSetMeasureTab(Sender: TObject; Index: Integer;
 var TabWidth: Integer);
var
 BitmapWidth: Integer;
begin
 BitmapWidth := TBitmap(DriveTabSet.Tabs.Objects[Index]).Width;
 Inc(TabWidth, 2 + BitmapWidth);
end;

OnMessage event

Applies to
TApplication component

Declaration

property OnMessage: TMessageEvent;

The OnMessage event occurs when your application receives a Windows message. By
creating an OnMessage event handler in your application, you can call other handlers
that respond to the message. If your application doesn’t have a specific handler for an
incoming message, the message is dispatched and Windows handles the message. An
OnMessage event handler lets your application trap a Windows message before
Windows itself processes it.

Note Search Help for “Handling Application Events” for more information about creating
event handlers for application events.

Example
The following code displays the time of the most recently received Windows message in
the Caption of Label1. AppMessage should be declared a method of TForm1.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnMessage := AppMessage;

544 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n M i n i m i z e e v e n t

end;

procedure TForm1.AppMessage(var Msg: TMsg; var Handled: Boolean);
begin
Label1.Caption := IntToStr(Msg.Time);

end;

See also
ProcessMessages method

OnMinimize event

Applies to
TApplication component

Declaration

property OnMinimize: TNotifyEvent;

The OnMinimize event occurs when the application is minimized, either because the
user minimizes the main window, or because of a call to the Minimize method. Use the
OnMinimize event handler to put code that performs any special processing you want to
happen when the application is minimized.

See also
OnRestore event, Restore method

OnMouseDown event

Applies to
TBitBtn, TButton, TCheckBox, TDBCheckBox, TDBEdit, TDBImage, TDBListBox,
TDBLookupCombo, TDBMemo, TDBNavigator, TDBText, TDirectoryListBox, TDrawGrid,
TEdit, TFileListBox, TForm, TGroupBox, TImage, TLabel, TListBox, TMaskEdit, TMemo,
TNotebook, TOLEContainer, TOutline, TPaintBox, TPanel, TRadioButton, TScrollBox,
TShape, TSpeedButton, TStringGrid, TTabSet components

Declaration

property OnMouseDown: TMouseEvent;

The OnMouseDown event occurs when the user presses a mouse button with the mouse
pointer over a control. Use the OnMouseDown event handler when you want some
processing to occur as a result of pressing a mouse button.

The Button parameter of the OnMouseDown event identifies which mouse button was
pressed. By using the Shift parameter of the OnMouseDown event handler, you can
respond to the state of the mouse buttons and shift keys. Shift keys are the Shift, Ctrl, and
Alt keys.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 545

O n M o u s e M o v e e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

Example
The following code creates and displays a label when a mouse button is pressed. If you
attach this event handler to the OnMouseDown event of a form, a label specifying the
coordinates of the mouse pointer appears when the user clicks the mouse button. Note
that the StdCtrls unit must be added to the uses clause of the interface section of the
form’s unit to be able to create labels dynamically.

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
var
 NewLabel: TLabel;
begin
 NewLabel := TLabel.Create(Form1);
 NewLabel.Parent := Self;
 NewLabel.Left := X;
 NewLabel.Top := Y;
 NewLabel.Caption := '(' + IntToStr(X) + ',' + IntToStr(Y) + ')';
 NewLabel.Visible := True;
end;

See also
OnMouseMove event, OnMouseUp event

OnMouseMove event

Applies to
TBitBtn, TButton, TCheckBox, TDBCheckBox, TDBEdit, TDBImage, TDBListBox,
TDBLookupCombo, TDBMemo, TDBNavigator, TDirectoryListBox, TDrawGrid, TEdit,
TFileListBox, TForm, TGroupBox, TImage, TLabel, TListBox, TMaskEdit, TMemo, TNotebook,
TOLEContainer, TOutline, TPaintBox, TPanel, TRadioButton, TScrollBox, TShape,
TSpeedButton, TStringGrid, TTabSet components

Declaration

property OnMouseMove: TMouseMoveEvent;

The OnMouseMove occurs when the user moves the mouse pointer when the mouse
pointer is over a control. Use the OnMouseMove event handler when you want
something to happen when the mouse pointer moves within the control.

By using the Shift parameter of the OnMouseDown event handler, you can respond to the
state of the mouse buttons and shift keys. Shift keys are the Shift, Ctrl, and Alt keys.

Example
The following code updates two labels when the mouse pointer is moved. The code
assumes you have two labels on the form, lblHorz and lblVert. If you attach this code to
the OnMouseMove event of a form, lblHorz continually displays the horizontal position
of the mouse pointer, and lblVert continually displays the vertical position of the mouse
pointer while the pointer is over the form.

546 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n M o u s e U p e v e n t

procedure TForm1.FormMouseMove(Sender: TObject; Shift: TShiftState; X, Y: Integer);
begin
 lblHorz.Caption := IntToStr(X);
 lblVert.Caption := IntToStr(Y);
end;

See also
OnMouseDown event, OnMouseUp event

OnMouseUp event

Applies to
TBitBtn, TButton, TCheckBox, TDBCheckBox, TDBEdit, TDBImage, TDBListBox,
TDBLookupCombo, TDBMemo, TDBNavigator, TDBText, TDirectoryListBox, TDrawGrid,
TEdit, TFileListBox, TForm, TGroupBox, TImage, TLabel, TListBox, TMaskEdit, TMemo,
TNotebook, TOLEContainer, TOutline, TPaintBox, TPanel, TRadioButton, TScrollBox,
TShape, TSpeedButton, TStringGrid, TTabSet components

Declaration

property OnMouseUp: TMouseEvent;

The OnMouseUp event occurs when the user releases a mouse button that was pressed
with the mouse pointer over a component. Use the OnMouseUp event handler when you
want processing to occur when the user releases a mouse button.

The OnMouseUp event handler can respond to left, right, or center mouse button presses
and shift key plus mouse button combinations. Shift keys are the Shift, Ctrl, and Alt keys.

Example
The following code draws a rectangle when the user presses a mouse button, moves the
mouse, and releases the mouse button. When the mouse button is released, the rectangle
appears on the form’s canvas. Its top-left and bottom-right corners are defined by the
location of the mouse pointer when the user pressed and released the mouse button.

var
StartX, StartY: Integer; {Declare in interface section of form’s unit}

{Use this code as the OnMouseDown event handler of the form:}
procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 StartX := X;
 StartY := Y;
end;

{Use this code as the OnMouseUp event handler of the form:}
procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Form1.Canvas.Rectangle(StartX, StartY, X, Y);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 547

O n N e w R e c o r d e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

end;

See also
OnMouseDown event, OnMouseMove event

OnNewRecord event

Applies to
TTable, TQuery, TStoredProc components

Declaration

property OnNewRecord: TDataSetNotifyEvent;

The OnNewRecord event is activated whenever a new record is added to the dataset. The
event occurs after the BeforeInsert event and before the AfterInsert event. OnNewRecord
enables you to initialize any fields of the record without marking the record as Modified.
Any changes to the record after this event will cause Modified to be set.

See also
Append method, Insert method

OnNotify event

Applies to
TMediaPlayer component

Declaration

property OnNotify: TNotifyEvent;

An OnNotify event occurs upon the completion of a media control method (Back, Close,
Eject, Next, Open, Pause, PauseOnly, Play, Previous, Resume, Rewind, StartRecording, Step,
or Stop) when the Notify property is set to True before the call to the media control
method. After an OnNotify event, the Notify property must be reset to True for the next
OnNotify event to occur.

Example
Attach the following code to the OnNotify event handler of a media player named
MediaPlayer1. If the Notify property of MediaPlayer1 is set to True, this code displays the
value of the NotifyValue property in a message dialog box.

procedure TForm1.MediaPlayer1Notify(Sender: TObject);
var
 MyString: string;
begin
 case MediaPlayer1.NotifyValue of
 nvSuccessful : MyString := 'Success!';

548 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n O p e n e v e n t

 nvSuperseded : MyString := 'Superseded!';
 nvAborted : MyString := 'Aborted!';
 nvFailure : MyString := 'Failure!';
 end;
 MessageDlg('Notify value indicates: ' + MyString, mtInformation, [mbOk], 0)
end;

See also
NotifyValue property, Wait property

OnOpen event

Applies to
TDDEClientConv, TDDEServerConv components

Declaration

property OnOpen: TNotifyEvent;

An OnOpen event occurs when a DDE conversation is opened. A DDE conversation can
be initiated automatically or manually. Automatically open a conversation by setting
the value of the ConnectMode property to ddeAutomatic. When the form containing the
DDE client conversation component is created at run time, the DDE conversation opens.
Manually open a conversation by setting the value of ConnectMode to ddeManual and
calling the OpenLink method.

Example
The following code sends a macro to the server and closes the link immediately after
opening it.

procedure TForm1.DdeClientConv1Open(Sender: TObject);
begin
 with DDEClientConv1 do
 begin
 ExecuteMacro('File|New', False);
 CloseLink;
 end;
end;

See also
OnClose event

OnPageChanged event

Applies to
TNotebook component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 549

O n P a i n t e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

Declaration

property OnPageChanged: TNotifyEvent;

The OnPageChanged event occurs just after a new page becomes the active page. Use the
OnPageChanged event handler to specify special processing you want to happen at that
time.

Example
This example changes the color notebook page each time the OnPageChanged event
occurs. To set up the example, add pages to the notebook with the Object Inspector
using the Pages property.

var
 NewColor: TColor;

procedure TForm1.FormCreate(Sender: TObject);
begin
 TabSet1.Tabs := Notebook1.Pages;
end;

procedure TForm1.TabSet1Change(Sender: TObject; NewTab: Integer;
 var AllowChange: Boolean);
begin
 Notebook1.PageIndex := TabSet1.TabIndex;
end;

procedure TForm1.Notebook1PageChanged(Sender: TObject);
begin
 NewColor := Notebook1.Color + 3475;
 Notebook1.Color := NewColor;
end;

See also
ActivePage property, Pages property

OnPaint event

Applies to
TForm, TPaintBox component

Declaration

property OnPaint: TNotifyEvent;

The OnPaint event occurs when Windows requires the form or paint box to paint, such
as when the form or paint box receives focus or becomes visible when it wasn’t
previously. Your application can use this event to draw on the canvas of the form or
paint box.

550 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n P a s s w o r d e v e n t

Example
The following code is an entire unit that loads a background bitmap onto the Canvas of
the main form in the OnPaint event handler.

unit Unit1;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms, Dialogs;

type
 TForm1 = class(TForm)
 procedure FormPaint(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 private
 TheGraphic: TBitmap; { Add this declaration for the graphic}
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.FormPaint(Sender: TObject); { OnPaint event handler}
begin
 Form1.Canvas.Draw(0, 0, TheGraphic); { Draw the graphic on the Canvas }
end;

procedure TForm1.FormCreate(Sender: TObject); { OnCreate event handler }
begin
 TheGraphic := TBitmap.Create; { Create the bitmap object }
 TheGraphic.LoadFromFile('C:\APP\BKGRND.BMP'); { Load the bitmap from a file}
end;

end.

See also
Canvas property

OnPassword event

Applies to
TSession component

Declaration

property OnPassword: TPasswordEvent;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 551

O n P o k e D a t a e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

Run-time only. The OnPassword event is activated whenever a Paradox table is opened
and the Borland Database Engine reports that the application does not have sufficient
access rights. The value of Sender is the Session component. Continue determines whether
the caller will make another attempt to access the database. The procedure should add
any available additional passwords and set Continue to True. If there are no additional
passwords available, set Continue to False.

If no OnPassword event is defined, Session will create a default dialog box for the user to
enter a new password.

OnPokeData event

Applies to
TDDEServerItem component

Declaration

property OnPokeData: TNotifyEvent

The OnPokeData event occurs when the DDE client application pokes data to your DDE
server application. When a client pokes data, it sends text to the linked DDE server. The
Text and Lines properties will be updated to contain the poked data, then the
OnPokeData event occurs.

If the DDE client is a Delphi application that uses a TDDEClientConv component, data is
poked when the PokeData or PokeDataLines method is called.

Example
The following code uses a Boolean variable FInPoke to protect poked data from being
lost by a DDE server application. DoOnPoke is the OnPokeData event handler for the
DDE server item component named DDETestItem. When data is poked, FInPoke is set to
True, the poked data is stored in the Lines property of Memo2, and FInPoke is set back to
False.

The data should be protected because the server data is updated when the Lines of
Memo1 are updated by the user. DoOnChange, the OnChange event handler for Memo1,
tests FInPoke before updating the server data in DDETestItem. Otherwise, data poked
from the client could be lost when Memo1.Lines is changed.

var
FInPoke: Boolean;

.

.

.
procedure TDdeSrvrForm.doOnPoke(Sender: TObject);
begin
 FInPoke := True;
Memo2.Lines := DdeTestItem.Lines;

 FInPoke := False;
end;

552 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n P o p u p e v e n t

procedure TDdeSrvrForm.doOnChange(Sender: TObject);
begin
 if not FInPoke then
 DdeTestItem.Lines := Memo1.Lines;
end;

See also
OnExecuteMacro event

OnPopup event

Applies to
TPopupMenu component

Declaration

property OnPopup: TNotifyEvent;

The OnPopup event occurs whenever a pop-up menu appears either because the user
right-clicks the component when the pop-up menu’s AutoPopup is True or because the
Popup method executed. Use the OnPopup event handler when you want some special
processing to occur when the component’s pop-up menu appears.

Example
The following code enables the Paste item from the pop-up menu if the Clipboard has
text data.

procedure TForm1.PopupMenu1Popup(Sender: TObject);
begin
 Paste1.Enabled := Clipboard.HasFormat(CF_TEXT);
end;

See also
PopupMenu property

OnPostClick event

Applies to
TMediaPlayer component

Declaration

property OnPostClick: EMPPostNotify;

An OnPostClick event is generated after the code of the OnClick event handler has been
called. If Wait is True when the media player was clicked, OnPostClick won’t be called
until the completion of the OnClick code. If Wait is False, control can return to the

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 553

O n R e p l a c e e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

application before completion of the OnClick code; therefore, the OnPostClick event may
occur before the actions initiated by the OnClick event have completed.

For example, if the user clicks the Play button and the DoDefault parameter of the
OnClick event handler for the media player is True, the media is played. If the media is
long enough, it will still be playing when the OnPostClick event is generated if Wait is
True. If Wait is False, however, OnPostClick won’t occur until the media has finished
playing.

See also
OnClick event

OnReplace event

Applies to
TReplaceDialog components

Declaration

property OnReplace: TNotifyEvent;

The OnReplace event occurs whenever the user chooses either the Replace or the Replace
All button in the Replace dialog box. Use the OnReplace event to specify the processing
that replaces text.

Because the OnReplace event occurs when the user chooses either the Replace or Replace
All button, the code you write in the OnReplace event handler should determine which
button was chosen and supply the appropriate logic. Use the frReplace and frReplaceAll
values in the Options set to determine which button was chosen.

Example
The following code calls the user-defined routine DoReplace if the Replace button was
clicked, or calls the user-defined routine DoReplaceAll if the ReplaceAll button was
clicked.

procedure TForm1.ReplaceDialog1Replace(Sender: TObject);
begin
if (ReplaceDialog1.Options*[frReplace])=[frReplace] then DoReplace
else if (ReplaceDialog1.Options*[frReplaceAll])=[frReplaceAll] then DoReplaceAll;

end;

See also
OnFind event

OnResize event

Applies to
TDBNavigator, TForm, TPanel, TScrollBox components

554 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n R e s t o r e e v e n t

Declaration

property OnResize: TNotifyEvent;

The OnResize event occurs whenever the form is resized while an application is running.
Use the OnResize event handler when you want something to happen in your
application when the form is resized.

Example
The following code keeps the right edge on Button1 against the right edge of Form1
when Form1 is resized.

procedure TForm1.FormResize(Sender: TObject);
begin
 Button1.Left := (Form1.Width)-Button1.Width;
end;

OnRestore event

Applies to
TApplication component

Declaration

property OnRestore: TNotifyEvent;

The OnRestore event occurs when the previously minimized application is restored to its
normal size, either because the user restores the application, or because the application
calls the Restore method. Use the OnRestore event handler to put code that performs any
special processing you want to happen as the application is restored.

See also
Minimize method, OnMinimize event

OnRowMoved event

Applies to
TDrawGrid, TStringGrid components

Declaration

property OnRowMoved: TMovedEvent;

The OnRowMoved event occurs when the user moves a row using the mouse. The user
can move a row only if the Options property set includes the value goRowMoving.

Example
The following code displays the number of rows a row was moved in a label.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 555

O n S c r o l l e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

procedure TForm1.StringGrid1RowMoved(Sender: TObject; FromIndex, ToIndex: Longint);
begin
 Label1 := IntToStr(Abs(FromIndex-ToIndex));
end;

See also
OnColumnMoved event

OnScroll event

Applies to
TScrollBar component

Declaration

property OnScroll: TScrollEvent;

The OnScroll event occurs whenever the user uses the scroll bar control. Use the OnScroll
event handler if you want something to happen when the user uses the scroll bar
control. Within the handler, write the code that responds to the user using the scroll bar.

Example
The following code repositions the thumb tab position by varying amounts. If Page Up
was pressed, the box moves up only one. If Page Down was pressed, the box moves down
10. This shows how you can use the OnScroll event handler to move the thumb tab by
different increments than specified by the LargeChange and SmallChange properties.

procedure TForm1.ScrollBar1Scroll(Sender: TObject; ScrollCode: TScrollCode;
 var ScrollPos: Integer);
begin
if ScrollCode = scPageUp then ScrollPos := ScrollPos - 1

 else if ScrollCode = scPageDown then ScrollPos := ScrollPos + 10;
Label1.Caption := IntToStr(ScrollPos);

end;

OnSelectCell event

Applies to
TDrawGrid, TStringGrid component

Declaration

property OnSelectCell: TSelectCellEvent;

The OnSelectCell event occurs when the user selects a cell in a draw grid or string grid.
Use the OnSelectCell event handler to write the code that handles the selecting of a cell.
Using the CanSelect parameter of the event handler type, your code can determine
whether the user can select a cell or not.

556 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n S e t E d i t T e x t e v e n t

Example
The following code determines that the user cannot select a cell containing the text ‘No’.

procedure TForm1.StringGrid1SelectCell(Sender: TObject; Col, Row: Longint;
 var CanSelect: Boolean);
begin
 CanSelect := not (StringGrid1.Cells[Col,Row]='No')
end;

OnSetEditText event

Applies to
TDrawGrid, TStringGrid component

Declaration

property OnSetEditText: TSetEditTextEvent;

The OnSetEditText event occurs when the user edits the text in the grid. The user can edit
the text only if the Options property set contains the value goEditing. The OnSetEditText
event makes the actual changes to the data. Use the OnSetEditText event handler to write
the code to handle the changes to the text within a cell of the grid.

When the user edits data in a grid, the OnSetEditText event occurs to change the actual
data, then the OnGetEditText event occurs to display the changed data in the grid.

See also
OnGetEditText event

OnSetText event

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

property OnSetText: TFieldSetTextEvent;

The OnSetText event is activated when the Text property is assigned a value. If
OnSetText has been assigned a method, the default processing for Text does not occur.
The event handler must store the text provided by Text.

By assigning a method to this property, you can take any special actions required by the
event.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 557

O n S h o w e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

OnShow event

Applies to
TForm component

Declaration

property OnShow: TNotifyEvent;

The OnShow event occurs just before a form becomes visible. Use the OnShow event to
specify any special processing you want to happen before the form appears.

Example
This example colors the form and changes its caption when it becomes visible:

procedure TForm1.FormShow(Sender: TObject);
begin
 Color := clLime;
 Caption := 'I am showing';
end;

See also
OnHide event

OnShowHint event

Applies to
TApplication component

Declaration

property OnShowHint: TShowHintEvent;

The OnShowHint event occurs when the application is about to display a hint window
for a Help Hint for a particular control. By writing an event handler for OnShowHint,
you can change the appearance and behavior of the Help Hint. Use the HintStr,
CanShow, and HintInfo parameters of the TShowHintEvent method pointer to modify the
Help Hint and its window. The HintInfo parameter is of type THintInfo, a record.

Example
This example uses three speed buttons on a panel. The code changes the color, width,
and position of the text in the Help Hint for the third speed button.

You must declare the DoShow method in the type declaration of the form. Once it is
declared, write the code for the DoShow method in the implementation part of the unit.
Finally, in the OnCreate event handler for the form, assign the method to the
OnShowHint event of the application.

558 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n S i z e d e v e n t

type
 TForm1 = class(TForm)
 Panel1: TPanel;
 SpeedButton1: TSpeedButton;
 SpeedButton2: TSpeedButton;
 SpeedButton3: TSpeedButton;
 procedure FormCreate(Sender: TObject);
 private
 { Private declarations }
 public
 procedure DoShowHint(var HintStr: string; var CanShow: Boolean;

var HintInfo: THintInfo;
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.DoShowHint(var HintStr: string; var CanShow: Boolean;
 var HintInfo: THintInfo);

begin
if HintInfo.HintControl = SpeedButton3 then
begin

with HintInfo do
begin
HintColor := clAqua; { Changes only for this hint }
MaxHintWidth := 120; {Hint text word wraps if width is greater than 120 }
Inc(HintPos.X, SpeedButton3.Width); { Move hint to right edge }

end;
end;

end;

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnShowHint := DoShowHint;
end;

end.

See also
Hint property, OnHint event, ParentShowHint property, ShowHint property

OnSized event

Applies to
THeader component

Declaration

property OnSized: TSectionEvent;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 559

O n S i z i n g e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

An OnSized event is generated when a sizing operation of a header is complete. A user
can resize the header section at run time if the AllowResize property is set to True. Your
application can resize the header section at run time by assigning a new value to the
SectionWidth property.

Example
The following code displays the new width of the sized header section in a label.

procedure TForm1.Header1Sized(Sender: TObject; ASection, AWidth: Integer);
begin
 Label1.Caption := IntToStr(AWidth);
end;

See also
OnSizing event

OnSizing event

Applies to
THeader component

Declaration

property OnSizing: TSectionEvent;

An OnSizing event is generated for each mouse movement when a user is resizing a
header by clicking and dragging at run time.

Example
The following code displays the width of the header section that is being resized. As the
user drags the mouse pointer, the label is continuously updated.

procedure TForm1.Header1Sized(Sender: TObject; ASection, AWidth: Integer);
begin
 Label1.Caption := IntToStr(AWidth);
end;

See also
AllowResize property, OnSized event

OnStateChange event

Applies to
TDataSource component

560 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n S t a t u s L i n e E v e n t e v e n t

Declaration

property OnStateChange: TNotifyEvent;

OnStateChange is activated when the State property changes.

By assigning a method to this property, you can react programmatically to state
changes. For example, this event is useful for enabling or disabling buttons (for
example, enabling an edit button only when a table is in edit mode), or displaying
processing messages.

Note OnChangeState can occur even for nil datasets, so it is important to protect any reference
to the DataSet property with a nil test:

if DataSource1.Dataset <> nil then
ƒ

See also
OnDataChange event

OnStatusLineEvent event

Applies to
TOLEContainer component

Declaration

property OnStatusLineEvent: TStatusLineEvent;

An OnStatusLineEvent event occurs if an OLE server application has a message to
display in the status line of the OLE container application when an OLE object is
activated in place. Typically, your OLE container application handles an
OnStatusLineEvent event by displaying the message string in its own status bar.

Example
The following code displays the status line message from the OLE server in Panel1.

procedure TForm1.OleContainer1StatusLineEvent(Sender: TObject; Msg: string);
begin
 Panel1.Caption := Msg;
end;

OnTimer event

Applies to
TTimer component

Declaration

property OnTimer: TNotifyEvent;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 561

O n T o p L e f t C h a n g e d e v e n t+
+
+
+
+
+
+
+
+
+
+
+
+
O

The OnTimer event is used to execute code at regular intervals. Place the code you want
to execute within the OnTimer event handler.

The Interval property of a timer component determines how frequently the OnTimer
event occurs. Each time the specified interval passes, the OnTimer event occurs.

Example
Here is an example of an OnTimer event handler that moves a ball slowly across the
screen:

procedure TForm1.Timer1Timer(Sender: TObject);
begin
Timer1.Interval := 100;
Shape1.Left := Shape1.Left + 1;

end;

See also
Interval property

OnTopLeftChanged event

Applies to
TDrawGrid, TStringGrid components

Declaration

property OnTopLeftChanged: TNotifyEvent;

The OnTopLeftChanged event occurs whenever the value of either the TopRow property
or LeftCol property changes.

Example
The following code displays the latest top row and left column of StringGrid1.

procedure TForm1.StringGrid1TopLeftChanged(Sender: TObject);
begin
 with StringGrid1 do
 MessageDlg('The top row is now '+IntToStr(TopRow)+

' and the left col is now '+IntToStr(LeftCol), mtInformation, [mbOK],0);
end;

OnUpdateData event

Applies to
TDataSource component

562 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O n V a l i d a t e e v e n t

Declaration

property OnUpdateData: TNotifyEvent;

OnUpdateData is activated by the Post or UpdateRecord method of a dataset component
when the current record is about to be updated in the database. It causes all data-aware
controls connected to the data source to be notified of the pending update, allowing
them to change their associated fields to the current values in the controls. By assigning
a method to this property, you can react programmatically to updates.

See also
BeforePost event

OnValidate event

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

property OnValidate: TFieldNotifyEvent;

The OnValidate event is activated when a field is modified. If a data-aware control is
linked to the field, changes in the control do not activate OnValidate until the control
attempts to store the results of those changes into the current record.

By assigning a method to this property, you can perform any special validation required
for the field.

Example

Field1.OnValidate := ValidateFieldRange;

Open method

Applies to
TClipboard object; TDatabase, TMediaPlayer, TQuery, TStoredProc, TTable components

For the Clipboard

Declaration

procedure Open;

The Open method opens the Clipboard and prevents other applications from changing
its contents until the Clipboard is closed. If you are adding a single item to the

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 563

O p e n m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
O

Clipboard, your application doesn’t have to call Open. If you want to add a series of
items to the Clipboard, however, Open prevents the contents from being overwritten
with each addition.

When your application has added all items to the Clipboard, it should call the Close
method.

Example
The following code opens a Clipboard object before two items (text from an edit box and
an OLE object from an OLE container) are copied to the Clipboard. Then the Clipboard
is closed.

Clipboard.Open;
Edit1.CopyToClipboard;
OLEContainer1.CopyToClipboard;
Clipboard.Close;

See also
Clear method, Clipboard variable, Close method

For media player controls

Declaration

procedure Open;

The Open method opens a multimedia device. The multimedia device type must be
specified in the DeviceType property before you can open a device.

Upon completion, Open stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Open method is completed. The Notify property determines whether Open generates an
OnNotify event.

Example
This example begins playing an audio CD when the application begins running. When
the application is closed, the CD automatically stops playing. For this example to run
successfully, you must have an audio CD device installed correctly.

procedure TForm1.FormCreate(Sender: TObject);
begin
with MediaPlayer1 do
begin

DeviceType := dtCDAudio;
Visible := False;
Open;
Play;

end;
end;

564 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O p e n C u r r e n t m e t h o d

See also
AutoOpen property, Close method

For tables, queries, and stored procedures

Declaration

procedure Open;

The Open method opens the dataset, putting it in Browse state. It is equivalent to setting the
Active property to True.

For TQuery, Open executes the SELECT statement in the SQL property. If the statement
does not return a result set (for example, an INSERT or UPDATE statement), then use
ExecSQL instead of Open.

For TStoredProc, use Open to execute the stored procedure if the procedure returns a
result set. If the stored procedure returns a single row, use ExecProc instead.

Example

try
Table1.Open;

except
on EDataBaseError do { The dataset could not be opened };

end;

See also
Close method

For databases

Declaration

procedure Open;

The Open method connects the TDatabase component to the server (or BDE for Paradox
and dBASE databases). This is the same as setting Connected to True.

Example

Database1.Open;

OpenCurrent method

Applies to
TDirectoryListBox component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 565

O p e n D a t a b a s e m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
O

Declaration

procedure OpenCurrent;

The OpenCurrent method opens the directory selected in the directory list box, as if the
user had double-clicked the directory.

Example
This example uses a directory list box, a button, and a label on a form. When the user
selects a directory in the directory list box and clicks the button, the selected directory
opens, and the path of the second directory displayed in the list box appears as the
caption of the label.

procedure TForm1.Button1Click(Sender: TObject);
begin
 DirectoryListBox1.OpenCurrent;
 Label1.Caption := DirectoryListBox1.GetItemPath(1);
end;

OpenDatabase method

Applies to
TSession component

Declaration

function OpenDatabase(const DatabaseName: string): TDatabase;

The OpenDatabase method attempts to find a TDatabase component with a DatabaseName
property matching the DatabaseName parameter by calling the FindDatabase method. If
no such database can be found, it creates a new database component. OpenDatabase
returns either the found database component or the one created. The database returned
will be opened during this process. OpenDatabase increments the Session’s reference
count of the number of open database connections.

Use OpenDatabase with CloseDatabase in a try...finally block to ensure that database
connections are handled properly.

Example

Database := Session.OpenDatabase(‘DBDEMOS’);
try
begin
{Do Something}

finally
Session.CloseDatabase(‘DBDEMOS’);

end;

See also
Session variable

566 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O p e n L i n k m e t h o d

OpenLink method

Applies to
TDDEClientConv component

Declaration

function OpenLink: Boolean;

The OpenLink method initiates a new DDE conversation. If the conversation was
successfully opened, an OnOpen event occurs and OpenLink returns True. If the
conversation wasn’t successfully opened, OpenLink returns False.

Example
The following code requests data if a link is open.

if OpenLink then DDEClientConv1.RequestData(DDEClientItem1.DDEItem);

See also
CloseLink method

Options property

Applies to
TIndexDef object; TColorDialog, TDBGrid, TDBLookupCombo, TDBLookupList, TDrawGrid,
TFindDialog, TFontDialog, TOpenDialog, TOutline, TPrintDialog, TReplaceDialog,
TSaveDialog, TStringGrid components

The Options property is a set of options that affects how dialog boxes, outlines, and grids
appear and behave. The possible values contained within the set vary depending on the
type of dialog box or if the component is an outline or grid control.

For Color dialog boxes

Declaration

property Options: TColorDialogOptions;

These are the possible values that can be included in the Options set:

Value Meaning

cdFullOpen Displays the custom coloring options when the Color dialog opens
cdPreventFullOpen Disables the Create Custom Colors button in the Color dialog box so the user cannot

create their own custom colors.
cdShowHelp Adds a Help button to the Color dialog box.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 567

O p t i o n s p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
O

The default value is [], the empty set, meaning all of these values are False and none of
the options are in effect.

Example
This example displays the Color dialog box with a Help button and the Create Custom
Colors button dimmed. The form is colored whatever color the user chooses.

procedure TForm1.Button1Click(Sender: TObject);
begin
 ColorDialog1.Options := [cdPreventFullOpen, cdShowHelp];
 if ColorDialog1.Execute then

Color := ColorDialog1.Color;
end;

See also
Color property, CustomColors property

For Font dialog boxes

Declaration

property Options: TFontDialogOptions;

These are the possible values that can be included in the Options set for the Fonts dialog
box:

Value Meaning

fdAnsiOnly If True, the user can select fonts that use the Windows character set only; that is, the
user can’t choose a font that contains only symbols because they aren’t displayed in
the Font combo box.

fdEffects If True, the Effects check boxes and the Color list box appear in the Font dialog box.
The user uses the Effects check boxes to specify strikeout or underlined text and the
Color list box to select a color for the selected font. If fdEffects is False, the Effects check
boxes and Color list box don’t appear in the Font dialog box.

fdFixedPitchOnly If True, only monospaced fonts are displayed in the Font combo box.
fdForceFontExist If True and the user enters a font name in the Font combo box and chooses OK, a

message dialog box appears informing the user the font name is invalid.
fdLimitSize If True, the MinFontSize and MaxFontSize properties can limit the number of fonts

available in the dialog box.
fdNoFaceSel If True, when the dialog box appears, no font name is selected in the Font combo box.
fdNoOEMFonts If True, only fonts that aren’t vector fonts are displayed in the Font combo box.
fdScalableOnly If True, only fonts that can be scaled are displayed in the Font combo box.
fdNoSimulations If True, only fonts that aren’t GDI font simulations are displayed in the Font combo

box.
fdNoSizeSel If True, when the dialog box appears, no size is selected in the Size combo box.
fdNoStyleSel If True, when the dialog box appears, no style is selected in the Style combo box.
fdNoVectorFonts Same as fdNoOEMFonts.
fdShowHelp If True, a Help button appears in the dialog box.

568 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O p t i o n s p r o p e r t y

The default value is [fdEffects], meaning that only the fdEffects option is in effect.

Example
This example sets the options of the Font dialog box so that when the dialog box
displays, only TrueType fonts show in the list of fonts and no font size is selected:

procedure TForm1.Button1Click(Sender: TObject);
begin
 FontDialog1.Options := [fdTrueTypeOnly, fdNoSizeSel];
 if FontDialog1.Execute then
 Memo1.Font := FontDialog1.Font;
end;

See also
Font property

For Print dialog boxes

Declaration

property Options: TPrintDialogOptions;

These are the possible values that can be included in the Options set for the Print dialog
box:

The default value is [], the empty set, meaning that none of the possible options are in
effect.

fdTrueTypeOnly If True, only TrueType fonts are displayed in the Font list box.
fdWysiwyg If True, only fonts that are available to both the printer and the screen appear in the

Font combo box.

Value Meaning

poHelp If True, a Help button appears in the dialog box.
poPageNums If True, the Pages radio button is enabled and the user can specify a range of pages

to print.
poPrintToFile If True, a Print to File check box appears in the dialog box, giving the user the option

to print to a file rather than to a printer.
poSelection If True, the Selection radio button is enabled and the user can choose to print

selected text.
poWarning If True and if no printer is installed, a warning message appears when the user

chooses OK.
poDisablePrintToFile If True and poPrintToFile is True, the Print to File check box is dimmed when the

dialog box appears. If poPrintToFile is False, setting poDisablePrintToFile to True has
no effect because the dialog box won’t have a Print to File check box.

Value Meaning

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 569

O p t i o n s p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
O

Example
This example displays the Printer dialog box that includes a Help button. If users try to
print when no printer is installed, they will see a warning message.

procedure TForm1.Button1Click(Sender: TObject);
begin
 PrinterDialog1.Options := [poHelp, poWarning];
 if PrinterDialog1.Execute then

...
end;

See also
PrintRange property, PrintToFile property

For Open and Save dialog boxes

Declaration

property Options: TOpenOptions;

These are the possible values that can be included in the Options set for the Open and
Save dialog boxes:

Value Meaning

ofAllowMultiSelect When True, this option allows users to select more than one file in the File Name
list box.

ofCreatePrompt When True, this option displays a dialog box with a message if the user enters a
file name that doesn’t exist in the File Name edit box and chooses OK. The
message tells the user the file doesn’t exist and asks if the user wants to create a
new file with that name.

ofExtensionDifferent This option is set when the file name returned from the dialog box has an
extension that differs from the default file extension, the value in the DefaultExt
property. Your application can then use this information. Setting an
ofExtensionDifferent value with the Object Inspector has no meaning.

ofFileMustExist If True, this option displays a dialog box with a message if the user enters a file
that doesn’t exist in the File Name edit box and chooses OK. The message informs
the user the file can’t be found and asks the user to make sure they entered the
correct path and file name.

ofHideReadOnly If True, this option hides the Read Only check box in the dialog box.
ofNoChangeDir If True, this option sets the current directory to whatever the current directory

was when the dialog box first appeared and ignores any directory changes the
user made while using the dialog box.

ofNoReadOnlyReturn If True, a message box appears informing the user if the selected file is read-only.
ofNoTestFileCreate This option applies only when the user wants to save a file on a create-no-modify

network share point, which can’t be opened again once it has been opened. If
ofNoTestFileCreate is True, your application won’t check for write protection, a full
disk, an open drive door, or network protection when saving the file because
doing so creates a test file. Your application will then have to handle file
operations carefully so that a file isn’t closed until you really want it to be.

ofNoValidate If True, this option doesn’t prevent the user from entering invalid characters in a
file name. If ofNoValidate is False and the user enters invalid characters for a file
name in the File Name edit box, a message dialog box appears informing the user
the file name contains invalid characters.

570 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O p t i o n s p r o p e r t y

The default value is [], the empty set, meaning that none of the options are in effect.

Example
This example uses an Open dialog box and a button on a form. The code forces the user
to enter valid file name characters, prevents the read-only check box from appearing in
the dialog box, and let’s the user choose to overwrite a file if the user selects a file that
doesn’t exist; the selected file name appears in a label on the form:

procedure TForm1.Button1Click(Sender: TObject);
begin
 OpenDialog1.Options := [ofNoValidate, ofHideReadOnly, ofCreatePrompt];
 if OpenDialog1.Execute then
 Label1.Caption := OpenDialog1.FileName;
end;

For Find and Replace dialog boxes

Declaration

property Options: TFindOptions

The value of the Options property is the selected set of options that determine how the
Find and Replace dialog boxes appear and behave. These are the possible values that
can be contained in the Options set:

ofOverwritePrompt If True, this option displays a message dialog box if the user attempts to save a file
that already exists. The message informs the user the file exists and lets the user
choose to overwrite the existing file or not.

ofReadOnly If True, the Read Only check box is checked when the dialog box is displayed.
ofPathMustExist If this option is True, the user can type only existing path names as part of the file

name in the File Name edit box. If the user enters a path name that doesn’t exist, a
message box appears informing the user that the path name is invalid.

ofShareAware If True, the dialog box ignores all sharing errors and returns the name of the
selected file even though a sharing violation occurred. If ofShareAware is False, a
sharing violation results in a message box informing the user of the problem.

ofShowHelp If True, this option displays a Help button in the dialog box.

Value Meaning

frDisableMatchCase When True, the Match Case check box is dimmed and users cannot check it. When
it is False, users can check the Match Case check box.

frDisableUpDown When True, the Direction Up and Down buttons are dimmed and the user cannot
select either of them. When it is False, users can select one of the Direction Up and
Down buttons.

frDisableWholeWord When True, the Match Whole Word check box is dimmed and user cannot select it.
When it is False, users can check the check box.

frDown When True, the Down button is selected in the dialog box and the search direction
is down. When frDown is False, the Up button is selected, and the search direction
is up. frDown can be set a design time, or users can change its value at run time
when they use the dialog box.

Value Meaning

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 571

O p t i o n s p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
O

The default value is [frDown], meaning that only the frDown option is in effect.

Example
The following code calls the user-defined routine SearchDown if the Down button is
selected in FindDialog1 or it calls the user-defined routine SearchUp if the Up button is
selected.

if (FindDialog1.Options*[frDown])=[frDown] then SearchDown
else SearchUp;

For outlines

Declaration

property Options: TOutlineOptions;

The Options property determines how the items in an outline are drawn. These are the
possible values that can be contained in the Options set:

frFindNext This is a flag that is set when the user chooses the Find Next button. When
frFindNext is True, your application should search for the string in the FindText
property.

frHideMatchCase When True, the Match Case check box is not visible in the dialog box. When it is
False, the Match Case check box is visible.

frHideWholeWord When True, the Match Whole Word check box is not visible in the dialog box.
When it is False, the Match Whole Word check box is visible.

frHideUpDown When True, the Direction Up and Down buttons are not visible in the dialog box.
When it is False, the Direction Up and Down buttons are visible.

frMatchCase When True, the Match Case check box is checked. When it is False, the Match Case
check box is unchecked. You can set frMatchCase at design time, or users can
change the value at run time.

frReplace frReplace is a flag set by the system that indicates your application should replace
the current occurrence of the FindText string with the ReplaceText string. frReplace
applies only to the Replace dialog box.

frReplaceAll frReplaceAll is a flag set by the system that indicates your application should
replace all occurrences of the FindText string with the ReplaceText string.
frReplaceAll applies only to the Replace dialog box.

frShowHelp When True, a Help button appears in the dialog box when the dialog box displays.
When frShowHelp is False, no Help button is present.

frWholeWord When True, the Match Whole Word check box is checked in the dialog box. You
can set frWholeWord at design time, or users can change its value at run time as
they use the dialog box.

Value Meaning

ooDrawTreeRoot The first item (Index value of 1) is connected to the root item by the outline tree.
This means that the tree will extend from the top of the outline to all the first level
items. Without ooDrawTreeRoot, all first level items appear leftmost in the outline,
not connected by the tree.

Value Meaning

572 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O p t i o n s p r o p e r t y

Example
The following code draws the tree of the outline to the root (extending from the first
level items to the top of the outline).

Outline1.Options := [ooDrawTreeRoot];

See also
OutlineStyle property, Style property

For draw and string grids

Declaration

property Options: TGridOptions;

These are the possible values that can be included in the Options set for the draw and
string grid controls:

ooDrawFocusRect The outline draws a focus rectangle around the selected item.
ooStretchBitmaps The outline stretches the standard bitmaps (PictureLeaf, PictureOpen, PictureClosed,

PicturePlus, PictureMinus) to fit in the size of the item, determined by the size of the
Font of the Text. Without ooStretchBitmap, the bitmaps won’t be stretched. They will
be cropped if larger than the height of the item text, or won’t fill up the entire item
space if smaller than the text.

Value Meaning

goFixedHorzLine When True, horizontal lines appear between the rows within nonscrolling regions.
goFixedVertLine When True, vertical lines appear between the columns within nonscrolling

regions.
goHorzLine When True, horizontal lines appear between the rows.
goVertLine When True, vertical lines appear between the columns.
goRangeSelect When True, the user can select a range of cells at one time. When goEditing is True,

the user can no longer select a range of cells.
goDrawFocusSelected When True, the cell with the focus is colored the same as other cells in a selected

block are colored. When False, the cell with the focus remains the color of all
unselected cells, the color specified with the grid Color property.

goRowSizing When True, rows can be resized individually except for fixed or nonscrolling rows.
goColSizing When True, columns can be resized individually except for fixed or nonscrolling

columns.
goRowMoving When True, the user can move a row to a new location in the grid using the mouse.
goColMoving When True, the user can move a column to a new location in the grid using the

mouse.
goEditing When True, the user can edit the text in the grid. When goEditing is True, the user

cannot select a range of cells at one time.
goAlwaysShowEditor When True, the grid is in automatic edit mode if goEditing is also True. When the

grid is in automatic edit mode, the user does not have to press Enter or F2 before
editing the contents of a cell. When goAlwaysShowEditor is False and goEditing is
True, the user must press Enter or F2 before editing the contents of a cell. If
goEditing is False, setting goAlwaysShowEditor to True has no effect.

Value Meaning

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 573

O p t i o n s p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
O

Example
This code changes the look of the grid; only horizontal lines appear in both the body of
the grid and in the nonscrolling regions when the user clicks the ChangeGridStyle button:

procedure TForm1.ChangeGridStyleClick(Sender: TObject);
begin
DrawGrid1.Options := [goFixedHorzLine, goHorzLine];

end;

For data grids

Declaration

property Options: TDBGridOptions;

These are the possible values that can be included in the Options set for the data grid
control:

goTabs When True, the user can use the Tab and Shift-Tab keys to move from column to
column in the grid.

goRowSelect When True, the user can select only whole rows at a time instead of individual
cells.

goThumbTracking When True, the contents of the grid scrolls while the user is moving the thumb tab
of the grid scroll bar. When False, the contents of the grid doesn’t scroll until the
user releases the thumb tab in its new position.

Value Meaning

dgEditing When True, allows the user to edit data in the data grid. When the ReadOnly
property is True and dgEditing is True, users can still use the Insert key to insert a
blank row, or press the Down Arrow key when positioned at the bottom of the grid
to append a blank row, although they won’t be able to enter text in the new row.

dgAlwaysShowEditor When True, the grid is in automatic edit mode as long as gdEditing is also True.
When the grid is in automatic edit mode, the user does not have to press Enter or
F2 before editing the contents of a cell. When gdAlwaysShowEditor is False and
gdEditing is True, the user must press Enter or F2 before editing the contents of a
cell. If gdEditing is False, setting gdAlwaysShowEditor to True has no effect.

dgTitles When True, the column titles are visible.
dgIndicator When True, a small pointer is visible that indicates which column is the current

one.
dgColumnResize When True, the columns can be resized. A column can’t be resized, however, until

its field has been added to the grid. To add a field to the grid, choose Add from
the Fields editor.

dgColLines When True, lines between the columns appear.
dgRowLines When True, lines between the rows appear.
dgTabs When True, users press the Tab key and the Shift-Tab keys to move among the

columns of the data grid.
dgRowSelect When True, the user can select whole rows only instead of individual cells.
dgAlwaysShowSelection When True, the cell selected in the grid continues to display as selected even if the

data grid doesn’t have the focus.

Value Meaning

574 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O p t i o n s p r o p e r t y

Example
This line of code displays column titles, makes the column indicator visible, and permits
the user to edit the data displayed in the data grid:

procedure TForm1.FormClick(Sender: TObject);
begin
 DBGrid1.Options := [dgIndicator, dgEditing, dgTitles];
end;

See also
ReadOnly property

For database lookup combo boxes and list boxes

Applies to
TDBLookupCombo, TDBLookupList components

Declaration

property Options: TDBLookupListOptions;

The Options property determines how multiple columns in database lookup combo
boxes and database lookup list boxes appear. These are the possible values that can be
part of the Options set:

To display multiple columns, use the LookupDisplay property.

Example
This code displays three fields in a database lookup list box, displays the field names as
titles for the columns, and separates the columns with lines:

procedure TForm1.FormCreate(Sender: TObject);
begin
 DBLookupList1.LookupDisplay := 'Company;City;Country';

dgConfirmDelete When True, a message box appears if the user uses Ctrl+Delete to delete a row in
the grid. The message box asks for confirmation that the row should really be
deleted.

dgCancelOnExit When True, if an insert is pending and no modifications were made by the user,
the insert will be cancelled when the user exits the grid. This prevents the
inadvertent posting of partial or blank records.

Value Meaning

loColLines When True, lines separate the columns displayed in the control. When False, no lines appear
between the columns.

loRowLines When True, lines separate the rows displayed in the control. When False, no lines appear
between the rows.

loTitles When True, the field names appear as titles above the columns in the control. When False,
no titles appear.

Value Meaning

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 575

O r d f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
O

 DBLookupList1.Options := [loColLines,loTitles];
end;

See also
LookupDisplay property

For TIndexDef objects

Declaration

property Options: TIndexOptions;

Run-time and read only. Options is the set of characteristics of the index. Possible
elements are those of the TIndexOptions type: ixPrimary, ixUnique, ixDescending,
ixNonMaintained, and ixCaseInsensitive.

Ord function System

Declaration

function Ord(X): Longint;

The Ord function returns the ordinal value of an ordinal-type expression.

X is an ordinal-type expression. The result is of type Longint, and its value is the ordinal
position of X.

Example

uses Dialogs;

type
 Colors = (RED,BLUE,GREEN);

var
 S: string;
 begin
 S := 'BLUE has an ordinal value of ' + IntToStr(Ord(BLUE)) + #13#10;
 S := 'The ASCII code for "c" is ' + IntToStr(Ord('c')) + ' decimal';
 MessageDlg(S, mtInformation, [mbOk], 0);
 end;

See also
Chr function

Orientation property

Applies to
TPrinter object

576 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O r i g i n t y p e d c o n s t a n t

Declaration

property Orientation: TPrinterOrientation;

Run-time only. The value of the Orientation property determines if the print job prints
vertically or horizontally on a page. These are the possible values:

Example
This example uses two radio buttons on a form named Landscape and Portrait. The form
also includes a button. When the user selects an orientation by clicking one of the radio
buttons and then clicks the button to print one line of text, the print job prints using the
selected orientation:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Printer.BeginDoc;
 Printer.Canvas.TextOut(100,100,'Hi there');
 Printer.EndDoc;
end;

procedure TForm1.PortraitClick(Sender: TObject);
begin
 Printer.Orientation := poPortrait;
end;

procedure TForm1.LandscapeClick(Sender: TObject);
begin
 Printer.Orientation := poLandscape;
end;

See also
Printer variable

Origin typed constant WinCrt

Declaration

const Origin: TPoint = (X: 0; Y: 0);

The Origin typed constant contains the virtual screen coordinates of the character cell
displayed in the upper left corner of the CRT window.

Origin is a read-only variable; do not assign values to it.

Value Meaning

poPortrait The print job prints vertically on the page.
poLandscape The print job prints horizontally on the page.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 577

O u t l i n e S t y l e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
O

OutlineStyle property

Applies to
TOutline component

Declaration

property OutlineStyle: TOutlineStyle;

The OutlineStyle property determines how the outline structure is displayed within the
TOutline component. The following table describes the outline styles.

Example
The following code displays pictures only if they are monochrome. The first choice is
Open and Closed pictures. If they aren’t monochrome, the code tests Plus and Minus
pictures. The final resort is to simply display text.

with Outline1 do
if (PictureOpen.Monochrome and PictureClosed.Monochrome) then

OutlineStyle := osPictureText
else if (PicturePlus.Monochrome and PictureMinus.Monochrome) then

OutlineStyle := osPlusMinusText
else OutlineStyle := osText;

OutOfMemoryError procedure SysUtils

Declaration

procedure OutOfMemoryError;

OutOfMemoryError raises the EOutOfMemory exception.

Output variable System

Declaration

var Output: TextFile;

Style Description

osPictureText Displays open picture (specified in PictureOpen), closed picture (specified in
PictureClosed), leaf picture (specified in PictureLeaf) and item text (specified in
Text).

osPlusMinusPictureText Displays plus picture (specified in PicturePlus), minus picture (specified in
PictureMinus), open picture, closed picture, leaf picture, and item text.

osPlusMinusText Displays plus picture, minus picture, and item text.
osText Displays item text.
osTreePictureText Displays outline tree, open picture, closed picture, leaf picture, and item text.
osTreeText Displays outline tree and item text.

578 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

O v e r l o a d p r o p e r t y

The Output variable is a write-only file associated with the operating system’s standard
output file, which is usually the display.

In many of Delphi's standard file-handling routines, the file variable parameter can be
omitted. Instead the routine operates on the Input or Output file variable. The following
standard file-handling routines operate on the Output file when no file parameter is
specified:

• Write
• Writeln

Since Windows does not support text-oriented input and output, Input and Output files
are unassigned by default in a Windows application. Any attempt to read or write to
them will produce an I/O error.

If the application uses the WinCrt unit, Input and Output will refer to a scrollable text
window.

See also
Input variable, TextFile type

Overload property

Applies to
TStoredProc component

Declaration

property Overload: Word;

Oracle servers allow overloading of stored procedures in an Oracle package; that is,
different procedures with the same name.

Set the Overload property to specify the procedure to execute on an Oracle server. If
Overload is zero (the default), there is assumed to be no overloading. If Overload is one
(1), then Delphi will execute the first stored procedure with the overloaded name; if it is
two (2), it will execute the second, and so on.

See also
StoredProcName property

Owner property

Applies to
All components

Declaration

property Owner: TComponent;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 579

P a c k m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

Run-time and read only. The Owner property indicates which component owns the
component.

The form owns all components that are on it. In turn, the form is owned by the
application.

When one component is owned by another, the memory for the owned component is
freed when its owner’s memory is freed. This means that when a form is destroyed, all
the components on the form are destroyed also. Finally, when the memory for the
application itself is freed, the memory for the form (and all its owned components) is
also freed.

Don’t confuse ownership of a component with being the parent of a component. A
parent is a windowed control that contains a child window. The parent and the owner
of a windowed component can be different components.

Example
The example assumes there are two edit box controls on the form. When the form
displays, the code inserts the name of the Edit1 control’s owner (TForm1) into Edit1 itself,
and displays the size of the owner in bytes in the second edit box (Edit2).

procedure TForm1.FormCreate(Sender: TObject);
var
 TC: TComponent;
 Size: Word;
 SizeStr: string;

begin
 TC := Edit1.Owner;
 Edit1.Text := TC.ClassName;
 Size := TC.InstanceSize;
 Str(Size, SizeStr);
 Edit2.Text := SizeStr;
end;

See also
Components property, Destroy method, Free method, Parent property

Pack method

Applies to
TList object

Declaration

procedure Pack;

The Pack method deletes all nil items from the list of pointers kept by the List property of
a list object. Items become nil when the Delete or Remove’ method has been called to
delete them from the list.

580 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P a g e H e i g h t p r o p e r t y

Example
This example assumes there are two edit box controls on the form. The code creates a list
object and adds two strings to it. The second string in the list is a nil string. The code
counts the number of strings in the list and displays the number in the Edit1 control. The
code then packs the list, removing the nil string, and counts the strings in the list again.
The second count displays in the Edit2 control:

procedure TForm1.FormCreate(Sender: TObject);
var
 MyList: TList;
 I: Integer;
 Buffer: string;
begin
 MyList := TList.Create; {Create a list of TList}
 MyList.Add(PChar('Another string')); {Add a string}
 MyList.Add(PChar(NIL)); {Add a Nil string}
 Str(MyList.Count, Buffer);
 Edit1.Text := Buffer; {Put count into Edit1}
 Mylist.Pack; {Pack the list.}
 Str(MyList.Count, Buffer);
 Edit2.Text := Buffer; {Put count into Edit2}
 MyList.Free; {Free memory for list}
end;

See also
Expand method, Remove method, Capacity property

PageHeight property

Applies to
TPrinter object

Declaration

property PageHeight: Integer;

Run-time and read only. The PageHeight property contains the height of the currently
printing page in pixels.

Example
This code displays the page height of the currently printing page in an edit box.

To run this code successfully, you must add Printers to the uses clause of your unit.

Edit1.Text := IntToStr(Printer.PageHeight);

See also
PageNumber property, PageWidth property, Printer variable

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 581

P a g e I n d e x p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

PageIndex property

Applies to
TNotebook, TTabbedNotebook components

Declaration

property PageIndex: Integer;

The value of the PageIndex property determines which page displays in the notebook or
tabbed notebook component. Changing the PageIndex value changes the page in the
control.

Each string in the Pages property is automatically assigned a PageIndex value when the
page is created. The first page receives a value of 0, the second has a value of 1, and so
on. If you delete a string from the Pages property, the PageIndex values are reassigned so
that the values always begin with 0 and continue to increase without any gaps between
values.

Example
This example assumes that a notebook component and a tab set component are on a
form. It demonstrates how you can use the tab set and notebook component together to
allow the user to click on a tab to access a page in the notebook component.

This code assigns the strings in the Pages property of the notebook component to the
Tabs property of the tab set component. Because the code is in the OnCreate event
handler when the form first appears, the tab set component has one tab for each page in
the notebook component.

procedure TForm1.FormCreate(Sender: TObject);
begin
 TabSet1.Tabs := Notebook1.Pages;
end;

Changing the PageIndex value of a notebook or component changes the page displayed.
This code assigns the TabIndex value of the tab the user clicks on to the PageIndex
property of the notebook component. When the user clicks the tab labeled with a page
name, that page is displayed in the notebook component.

procedure TForm1.TabSet1Click(Sender: TObject);
begin
 Notebook1.PageIndex := TabSet1.TabIndex;
end;

See also
ActivePage property, TTabSet component

582 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P a g e N u m b e r p r o p e r t y

PageNumber property

Applies to
TPrinter object

Declaration

property PageNumber: Integer;

Run-time and read only. The PageNumber property contains the number of the current
page. Each time an application calls the NewPage method, NewPage increments the value
of PageNumber.

Example
This example uses a button on a form. When the user clicks the button, one line of text is
printed on six separate pages. As each page is printed, a message indicating the number
of the page being printed appears on the form.

To run this example successfully, you must add Printers to the uses clause of your unit.

procedure TForm1.Button1Click(Sender: TObject);
var
 I, X, Y: Integer;
begin
 Printer.BeginDoc;
 X := 10;
 Y := 10;
 for I := 1 to 6 do
 begin
 Printer.Canvas.TextOut(100, 100, 'Object Pascal is great');
 Canvas.TextOut(X, Y, 'Printing page ' + IntToStr(Printer.PageNumber));
 Printer.NewPage;
 Y := Y + 20;
 end;
 Printer.EndDoc;
end;

See also
NewPage method, Printer variable

Pages property

Applies to
TNotebook, TTabbedNotebook components

Declaration

property Pages: TStrings;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 583

P a g e W i d t h p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

The Pages property contains the strings that identify the individual pages of the
notebook or tabbed notebook control. Both these controls create a separate page for each
string in the Pages property. For example, if Pages contains three strings, First, Second,
and Third, the control has three separate pages.

You can access the various pages in a notebook or tabbed notebook control with either
the ActivePage or PageIndex property.

Example
The following code ensures that the Pages of Notebook1 correspond with the value of the
Tabs property of TabSet1.

Notebook1.Pages := TabSet1.Tabs;

See also
TTabSet component

PageWidth property

Applies to
TPrinter object

Declaration

property PageWidth: Integer;

Run-time and read only. The PageWidth property contains the value of width of the
currently printing page in pixels.

Example
The code uses an edit box on a form. The code creates a printer object and displays the
current width of a page in pixels in the edit box when the form first appears.

To run this example, you must add the Printers unit to the uses clause of your unit.

procedure TForm1.FormCreate(Sender: TObject);
begin
Edit1.Text := IntToStr(Printer.PageWidth) + ' pixels';

end;

See also
PageHeight property, PageNumber property, Printer variable

Palette property

Applies to
TBitmap object

584 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P a r a m B i n d M o d e p r o p e r t y

Declaration

property Palette: HPalette;

The Palette property controls a bitmap’s color mapping. The Palette of a bitmap contains
up to 256 colors that can be used to display the bitmap onscreen.

If the bitmap is drawn by an application running in the foreground, as many colors of
Palette as will be added to the Windows system palette. Any additional colors will be
mapped to the existing colors of the system palette. If the bitmap is drawn by an
application running in the background and another application has loaded the system
palette with its own colors, the bitmap’s colors will be mapped to the system palette.

Example
The following code selects the Palette from Form1 for Form2.

SelectPalette(Form2.Canvas.Handle, Form1.Canvas.Palette, True);

ParamBindMode property

Applies to
TStoredProc component

Declaration

property ParamBindMode; TParamBindMode;

ParamBindMode determines how the elements of the Params array will be matched with
stored procedure parameters. If ParamBindMode is set to pbByName (the default),
parameters will be bound based on their names in the stored procedure. If
ParamBindMode is set to pbByNumber, parameters will be bound based on the order in
which they are defined in the stored procedure. Use this setting if you are building your
parameters list, and you don’t want to use the parameter names defined in the stored
procedure.

Example

ParamBindMode := pbByName;

ParamByName method

Applies to
TParams object; TQuery, TStoredProc component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 585

P a r a m C o u n t f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

For TParam objects

Declaration

function ParamByName(const Value: string): TParam;

The ParamByName method finds a parameter with the name passed in Value. If a match
is found, ParamByName returns the parameter. Otherwise, an exception is raised. Use
this method rather than a direct reference to the Items property if you need to get a
specific parameter to avoid depending on the order of the entries.

Example

try
{ Assign a value of 999 to the CustNo parameter }
Params.ParamByName(‘CustNo’).AsInteger := 999;

except
{ If it doesn’t exist, then }
on EDatabaseError do

{ Create a new parameter for CustNo and assign a value of 999 to it }
with Params.CreateParam(ftInteger, ‘CustNo’, ptInput) do

AsInteger := 999;
end;

For queries and stored procedures

Declaration

function ParamByName(const Value: string): TParam;

The ParamByName method returns the element of the Params property whose Name
property matches Value. Use it to assign values to parameters in a dynamic query by
name.

Example

Query1.ParamByName(‘CustNo’).AsString := ‘1231’;

ParamCount function System

Declaration

function ParamCount: Word;

The ParamCount function returns the number of parameters passed to the program on
the command line. Separate parameters with spaces or tabs.

Example

begin
 if ParamCount = 0 then

586 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P a r a m C o u n t p r o p e r t y

 Canvas.TextOut(10, 10, 'No parameters on command line')
 else
 Canvas.TextOut(10, 10, IntToStr(ParamCount) + ' parameter(s)');
end;

See also
ParamStr function

ParamCount property

Applies to
TQuery, TStoredProc component

For query components

Declaration

property ParamCount: Word;

Run-time and read only. The ParamCount property specifies how many entries the
TQuery has in its Params array, that is, how many parameters the query has. Adding a
new item to Params will automatically increase the value; removing an item will
automatically decrease the value.

Example

for I := 0 to Query1.ParamCount - 1 do
Query1.Params[I].AsInteger := I;

See also
Params property

For stored procedures

Declaration

property ParamCount: Word;

Run-time and read only. ParamCount specifies the total number of input and output
parameters to the stored procedure, and is automatically maintained by changes to the
Params property. Use ParamCount to iterate over the Params.

Example

{ Set all parameters to an empty string }
with StoredProc1 do
for I := 0 to ParamCount - 1 do

Param[I].AsString := ‘’;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 587

P a r a m s p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

Params property

Applies to
TDatabase, TQuery, TStoredProc component

For stored procedures

Declaration

property Params: TParams;

The Params property holds the parameters to be passed to the stored procedure.

Example

{ Copy all parameters from StoredProc1 to StoredProc2 }
StoredProc1.CopyParams(StoredProc2.Params);

See also
CopyParams method, ParamCount property

For queries

Declaration

property Params[Index: Word]: TParam;

When you enter a query, Delphi creates a Params array for the parameters of a dynamic
SQL statement. Params is a zero-based array of TParam objects with an element for each
parameter in the query; that is, the first parameter is Params[0], the second Params[1],
and so on. The number of parameters is specified by ParamCount. Read-only and run
time only.

Note Use the ParamByName method instead of Params to avoid dependencies on the order of
the parameters.

Example
For example, suppose a TQuery component named Query2 has the following statement
for its SQL property:

INSERT
INTO COUNTRY (NAME, CAPITAL, POPULATION)
VALUES (:Name, :Capital, :Population)

An application could use Params to specify the values of the parameters as follows:

Query2.Params[0].AsString := 'Lichtenstein';
Query2.Params[1].AsString := 'Vaduz';
Query2.Params[2].AsInteger := 420000;

588 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P a r a m S t r f u n c t i o n

These statements would bind the value “Lichtenstein” to the :Name parameter,
“Vaduz” to the :Capital parameter, and 420000 to the :Population parameter.

For database components

Declaration

property Params: TStrings;

The Params property holds the parameters required to open a database on an SQL
server. By default, these parameters are specified in the BDE Configuration Utility. You
can customize these parameters for an application-specific alias with the Database
Parameters Editor.

For desktop databases, Params will specify only the directory path for the database. For
server databases, Params will specify a variety of parameters, including the server name,
database name, user name, and password.

ParamStr function System

Declaration

function ParamStr(Index): string;

The ParamStr function returns a specified command-line parameter.

Index is an expression of type Word. ParamStr returns the parameter from the command
line that corresponds to Index, or an empty string if Index is greater than ParamCount. For
example, an Index value of 2 returns the second command-line parameter.

ParamStr(0) returns the path and file name of the executing program (for example, C:\
BP\MYPROG.EXE).

Example

var
 I: Word;
 Y: Integer;
begin
 Y := 10;
 for I := 1 to ParamCount do begin
 Canvas.TextOut(5, Y, ParamStr(I));
 Y := Y + Canvas.TextHeight(ParamStr(I)) + 5;
 end;
end;

See also
ParamCount function

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 589

P a r a m T y p e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

ParamType property

Applies to
TParam object

Declaration

property ParamType: TParamType;

ParamType is used to identify the type of the parameter for a stored procedure. Possible
values are those of the TParamType type: ptUnknown, ptInput, ptOutput, ptInputOutput, or
ptResult. Normally Delphi will set this property, but if the server does not provide the
necessary information, you may have to set it yourself.

Example

StoredProc1.Params.ParamByName(‘CustNo’).ParamType := ptInput;

Parent property

Applies to
All controls; TMenuItem component; TOutlineNode object

For controls

Declaration

property Parent: TWinControl;

The Parent property contains the name of the parent of the control. The parent of a
control is the windowed control that contains the control. If one control (parent)
contains others, the contained controls are child controls of the parent. For example, if
your application includes three radio buttons in a group box, the group box is the parent
of the three radio buttons, and the radio buttons are the child controls of the group box.

Don’t confuse the Parent property with the Owner property. A form is the owner of all
the components on it, whether or not they are windowed controls. A child control is
always a windowed control contained within another windowed control (its parent). If
you put three radio buttons in a group box on a form, the owner of the radio buttons is
still the form, while the parent is the group box.

If you are creating a new control, you must assign a Parent property value for the new
control. Usually, this is a form, panel, group box, or some control that is designed to
contain another. It is possible to assign any windowed control as the parent, but the
contained control is likely to be painted over.

When the parent of a control is destroyed, all controls that are its children are also
destroyed.

590 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P a r e n t p r o p e r t y

Example
To set up the form for this example, put a group box on the form and add a radio button
to the group box. Put two labels and a button on the form. This code displays the name
of the parent of the radio button and the class name of the owner of the radio button in
the captions of the two labels when the user clicks the button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := RadioButton1.Parent.Name + ' is the parent';
 Label2.Caption := RadioButton1.Owner.ClassName +

' is the class name of the owner';
end;

This example uses a button and a group box on a form. When the user clicks the button,
the button moves inside the group box, because the group box is now the parent of the
button.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Button1.Parent := GroupBox1;
end;

See also
Controls property, Owner property

For menu items

Declaration

property Parent: TMenuItem;

Run-time and read only. The Parent property of a menu item identifies the parent menu
item of this menu item.

Example
This example assumes there are two edit boxes on a form as well as a main menu that
contains menu items. One of the menu items has Save as the value of its Caption
property, so the value of its Name property is Save1. The code displays the name of the
parent of the Save1 menu item in the Edit1 control, and it displays the class name of the
parent in the Edit2 control when the form first appears.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Edit1.Text := Save1.Parent.Name;
 Edit2.Text := Save1.Parent.ClassName;
end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 591

P a r e n t C o l o r p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

For outline nodes

Declaration

property Parent: TOutlineNode;

The Parent property of an outline node identifies the parent outline item of this outline
node. A parent outline item is one level higher and contains the child outline node as a
subitem.

Example
The following code tests to see if the currently selected item has a sibling. True will be
assigned to HasSibling if so.

var
HasSibling: Boolean;

begin
with Outline1[Outline1.SelectedItem] do

HasSibling := (Parent.GetPrevChild <> -1) or (Parent.GetNextChild <> -1);
end;

See also
TopItem property

ParentColor property

Applies to
TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit, TDBGrid, TDBText,
TDBListBox, TDBLookupCombo, TDBLookupList, TDBMemo, TDBRadioGroup,
TDirectoryListBox, TDrawGrid, TDriveComboBox, TEdit, TFileListBox, TFilterComboBox,
TGroupBox, TLabel, TListBox, TMaskEdit, TMemo, TNotebook, TOutline, TPaintBox, TPanel,
TRadioButton, TScrollBox, TStringGrid components

Declaration

property ParentColor: Boolean;

The ParentColor property determines where a control looks for its color information. If
ParentColor is True, the control uses the color in its parent component’s Color property. If
ParentColor is False, the control uses its own Color property. Except for the radio group,
database radio group, label and database text controls, the default value is False.

By using ParentColor, you can ensure that all the controls on a form have a uniform
appearance. For example, if you change the background color of your form to gray, by
default, the controls on the form will also have a gray background.

To specify a different color for a particular control, specify the desired color as the value
of that control’s Color property, and ParentColor becomes False automatically.

592 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P a r e n t C t l 3 D p r o p e r t y

Example
This code uses a label control and a timer component on the form. When the OnTimer
event occurs, the label turns red if the label’s ParentColor property is True. If the
ParentColor property is False, ParentColor is set to True. The result is the label flashes red
on and off. Every other time an OnTimer event occurs, the label turns red. The other
times, the label assumes the color of its parent, Form1.

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 if Label1.ParentColor then
 Label1.Color := clRed
 else
 Label1.ParentColor := True;
end;

See also
Color property, Parent property, ParentFont property

ParentCtl3D property

Applies to
TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit, TDBGrid, TDBImage,
TDBLookupCombo, TDBLookupList, TDBListBox, TDBNavigator, TDBMemo,
TDBRadioGroup, TDirectoryListBox, TDrawGrid, TDriveComboBox, TEdit, TFileListBox,
TFilterComboBox, TGroupBox, TListBox, TMaskEdit, TMemo, TNotebook, TOLEContainer,
TOutline, TPanel, TRadioButton, TScrollBox, TStringGrid components

Declaration

property ParentCtl3D: Boolean;

The ParentCtl3D property determines where a component looks to determine if it
should appear three dimensional. If ParentCtl3D is True, the component uses the
dimensionality of its parent component’s Ctl3D property. If ParentCtl3D is False, the
control uses its own Ctl3D property. The default value is True.

By using ParentCtl3D, you can ensure that all the components on a form have a uniform
appearance. For example, if you want all components on a form to appear three
dimensional, set the form’s Ctl3D property to True and each component’s ParentCtl3D
property to True. Not only will all components have a three-dimensional appearance,
but if you decide you prefer a two-dimensional appearance, you only have to change
the Ctl3D property of the form and all the components will become two dimensional.

To specify a different dimensionality for a particular component, specify the
dimensionality (True for 3D or False for 2D) as the value of that control’s Ctl3D property,
and ParentCtl3D becomes False automatically.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 593

P a r e n t F o n t p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

Example
This code uses a group box and a button on a form. The code displays the group box in
two dimensions when the user clicks the button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if GroupBox1.ParentCtl3d = True then
 begin
 GroupBox1.ParentCtl3d := False;
 GroupBox1.Ctl3d := False;
 end;
end;

See also
Ctl3D property, Parent property, ParentColor property, ParentFont property

ParentFont property

Applies to
TBitBtn, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit, TDBGrid,
TDBImage, TDBLookupCombo, TDBLookupList, TDBListBox, TDBMemo, TDBRadioGroup,
TDBText, TDirectoryListBox, TDrawGrid, TDriveComboBox, TEdit, TFileListBox,
TFilterComboBox, TForm, TGroupBox, THeader, TListBox, TMaskEdit, TMemo, TNotebook,
TOLEContainer, TOutline, TPaintBox, TPanel, TRadioButton, TScrollBox, TSpeedButton,
TStringGrid components

Declaration

property ParentFont: Boolean;

The ParentFont property determines where a control looks for its font information. If
ParentFont is True, the control uses the font in its parent component’s Font property. If
ParentFont is False, the control uses its own Font property.

By using ParentFont, you can ensure that all the controls on a form have a uniform
appearance. For example, if you want all the controls in a form to use 12-point Courier
for their font, you can set the form’s Font property to that font. By default, all the
controls on that form will use the same font.

To specify a different font for a particular control, specify the desired font as the value of
the control’s Font property, and ParentFont becomes False automatically.

When the ParentFont is True for a form, the form uses the value of the application’s Font
property.

Example
This example uses a timer component and a label control. When an OnTimer event
occurs and the label uses its parent’s font, the code changes the label’s ParentFont
property to False and changes the label’s font size to 30 points. When an OnTimer event
occurs and the label doesn’t use its parent’s font, the code sets its ParentFont to True. The

594 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P a r e n t S h o w H i n t p r o p e r t y

result is that the label’s font grows and shrinks alternately, each time an OnTimer event
occurs.

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 if Label1.ParentFont = True then

Label1.Font.Size := 30
else

 Label1.ParentFont := True;
end;

This example uses a button on a form. When the user clicks the button, the font type and
color change for all components on all forms in the application.

procedure TForm1.Button1Click(Sender: TObject);
begin
 ParentFont := True;
 if Application.Font.Name = 'System' then
 begin
 Application.Font.Color := clNavy;
 Application.Font.Name := 'New Times Roman';
 end
 else
 begin
 Application.Font.Color := clBlack;
 Application.Font.Name := 'System'
 end;
end;

See also
Application variable, Font property, Parent property, ParentColor property, ParentCtl3D
property, TApplication component

ParentShowHint property

Applies to
All controls

Declaration

property ParentShowHint: Boolean;

The ParentShowHint property determines where a control looks to find out if Help Hint,
specified as the value of the Hint property for the control, should be shown. If
ParentShowHint is True, the control uses the ShowHint property value of its parent. If
ParentShowHint is False, the control uses its own ShowHint property.

By using ParentShowHint, you can ensure that all the controls on a form either show
their Help Hints or don’t show them. By default, ParentShowHint is True.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 595

P a s s w o r d C h a r p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

If don’t want all the controls to have Help Hints, set the ShowHint property for those
controls you do want to have Help Hints to True, and ParentShowHint becomes False
automatically.

You can enable or disable all Help Hints for the entire application using the ShowHint
property of the application.

Example
This example uses an edit box, a memo, and a check box on a form. For each of these
controls, the ParentShowHint property is True, the default value. When the code runs, the
ShowHint property of the form is set to True and hints are assigned to each control.
Because each control looks to its parent, the form, to find out whether to display a Help
Hint, and because the form’s ShowHint property is True, the Help Hints are available.

procedure TForm1.FormCreate(Sender: TObject);
begin
 ShowHint := True;
 Edit1.Hint := 'Enter text';
 Memo1.Hint := 'Enter lots of text';
 CheckBox1.Hint := 'Check or uncheck me';
end;

See also
Hint property, ParentColor property, ParentCtl3D property, ParentFont property

PasswordChar property

Applies to
TDBEdit, TEdit, TMaskEdit components

Declaration

property PasswordChar: Char;

The PasswordChar property lets you create an edit box that displays special characters in
place of the entered text. By default, PasswordChar is the null character (ANSI character
zero), meaning that the control displays its text normally. If you set PasswordChar to any
other character, the control displays that character in place of each character in the
control’s text.

Example
The following code displays asterisks for each character in an edit box called
PasswordField:

PasswordField.PasswordChar := ’*’;

596 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P a s t e F r o m C l i p b o a r d m e t h o d

PasteFromClipboard method

Applies to
TDBEdit, TDBImage, TDBMemo, TEdit, TMaskEdit, TMemo components

Declaration

procedure PasteFromClipboard;

The PasteFromClipboard method copies the contents of the Clipboard to the control,
inserting the contents where the cursor is positioned.

Example
This example uses two edit boxes and a button on a form. When the user clicks the
button, text is cut from the Edit1 edit box and pasted into the Edit2 edit box:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Edit1.SelectAll;
 Edit1.CutToClipboard;
 Edit2.Clear;
 Edit2.PasteFromClipboard;
 Edit1.SetFocus;
end;

See also
Clear method, ClearSelection method, CopyToClipboard method, CutToClipboard method

PasteSpecialDlg function ToCtrl

Declaration

function PasteSpecialDlg (Form: TForm; const Fmts: array of BOleFormat;
HelpContext: THelpContext; var Format: Word; var Handle: THandle;
var PInitInfo: Pointer) : Boolean;

PasteSpecialDlg displays the Paste Special dialog box. Use this function to paste an OLE
object from the Windows Clipboard into a TOLEContainer component. Specify the OLE
object initialization information by using the Paste Special dialog box.

PasteSpecialDlg returns True if the user specifies an OLE object and chooses OK in the
Paste Special dialog box. PasteSpecialDlg returns False if the user doesn’t specify an OLE
object or chooses Cancel in the dialog box.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 597

P a s t e S p e c i a l D l g f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

These are the parameters of PasteSpecialDlg:

Example
The following code registers a new Clipboard format for embedded OLE objects and
creates a object formats array for FEmbedClipFmt. If an embedded OLE object is on the
Clipboard, the Paste Special Dialog box is displayed. If the user selects the object and
chooses OK, then OLEContainer1 is initialized.

var
FEmbedClipFmt: Word;
Fmts: array[0..0] of BOLEFormat;
TheFormat: Word;
TheHandle: THandle;
TheInfo: Pointer;

begin
FEmbedClipFmt := RegisterClipboardFormat('Embedded Object');
Fmts[0].fmtId := FEmbedClipFmt;
Fmts[0].fmtMedium := BOLEMediumCalc(FEmbedClipFmt);
Fmts[0].fmtIsLinkable := False;
StrPCopy (Fmts[0].fmtName, '%s');
StrPCopy (Fmts[0].fmtResultName, '%s');
if PasteSpecialEnabled(Self, Fmts) then

if PasteSpecialDlg(Form1, Fmts, 0, TheFormat, TheHandle, TheInfo) then
OLEContainer1.PInitInfo := TheInfo;

end;

Field Description

Form The form that will own the Paste Special dialog box
Fmts This is the array of object formats to register for pasting. An object format is specified in

a BOLEFormat record. Each type of data you want to allow to be pasted should be
passed as an element of the Fmts array.
To paste OLE objects, you should register a new Clipboard format for OLE objects with
the Windows API function RegisterClipboardFormat before calling PasteSpecialDlg. Then,
you should specify a BOLEFormat array element for OLE objects. To paste other data
types, such as text or bitmaps, specify a BOLEFormat array element for each other type
of data.

HelpContext A help context identification number to be used if the user chooses Help from within
the Paste Special dialog box. If you pass 0 for HelpContext, no Help button will appear in
the Paste Special dialog box. Pass a number other than 0 if you want to provide context-
sensitive online Help.

Format Format is modified by PasteSpecialDlg to specify the Clipboard format of the data
selected by the user in the Paste Special dialog box. If the object is an OLE object, Format
specifies the Clipboard format registered with RegisterClipboardFormat, prior to the call
to PasteSpecialDlg. If the object is a type other than an OLE object, Format specifies its
Clipboard format (for example, if the data is text, format specifies CF_TEXT).

Handle Handle is modified by PasteSpecialDlg to provide a handle to the data on the Clipboard.
If the data is a type other than an OLE object, use the THandle returned in the Handle
parameter to access the data.

PInitInfo If InsertOLEObject returns True, InsertOLEObjectDlg modifies the PInitInfo pointer
parameter to point to OLE initialization information. Initialize the OLE object by
assigning this pointer to the PInitInfo property. When your application is finished with
the PInitInfo pointer, it should be released with ReleaseOLEInitInfo.

598 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P a s t e S p e c i a l E n a b l e d f u n c t i o n

See also
InsertOLEObjectDlg function, LinksDlg procedure, PasteSpecialEnabled function

PasteSpecialEnabled function ToCtrl

Declaration

function PasteSpecialEnabled(Form: TForm; const Fmts: array of BOleFormat): Boolean;

PasteSpecialEnabled determines if the Paste Special dialog box is enabled. If so,
PasteSpecialEnabled returns True and PasteSpecialDlg can be successfully called. If not,
PasteSpecialEnabled returns False and nothing will happen if you call PasteSpecialDlg.

The Paste Special dialog box is enabled if any of the object formats specified by the Fmts
parameter is on the Clipboard.

Example
The following code calls PasteSpecialDlg if the Paste Special dialog box is enabled or
displays a message if it is not enabled.

var
Pasted: Boolean;

begin
if PasteSpecialEnabled(Self, Fmts) then

Pasted := PasteSpecialDlg(Form1, Fmts, 0, TheFormat, TheHandle, TheInfo)
else

MessageDlg(‘There are no OLE objects on the Clipboard’, mtInformation, [mbOK], 0);
end;

See also
HasFormat method

Pause method

Applies to
TMediaPlayer component

Declaration

procedure Pause;

The Pause method pauses the open multimedia device. If the device is already paused
when Pause is called, the device resumes playing or recording by calling the Resume
method. Pause is called when the Pause button on the media player control is clicked at
run time.

Upon completion, Pause stores a numerical error code in the Error property and the
corresponding error message in the ErrorMessage property.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 599

P a u s e m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

The Wait property determines whether control is returned to the application before the
Pause method has completed. The Notify property determines whether Pause generates
an OnNotify event.

Example
This example uses a media player, a timer, and a button on a form. Only the button is
visible when the application runs. When the user clicks the button, the .WAV file plays.
When the user clicks the button again, the .WAV file pauses. The caption of the button
changes, depending on whether the .WAV file is playing, paused, or stopped.

To run this example, you must have the CHIMES.WAV file in your Windows directory
and have a device that plays WAV audio files:

procedure TForm1.FormActivate(Sender: TObject);
var
 WinDir: PChar;
begin
 MediaPlayer1.Visible := False;
 GetMem(WinDir, 144);
 GetWindowsDirectory(WinDir, 144);
 StrCat(WinDir, '\chimes.wav');
 MediaPlayer1.FileName := StrPas(WinDir);
 MediaPlayer1.Open;
 FreeMem(WinDir, 144);
 Button1.Caption := 'Play';
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 if Button1.Caption = 'Play' then
 begin
 Button1.Caption := 'Pause';
 MediaPlayer1.Play;
 end
 else
 begin
 Button1.Caption := 'Play';
 MediaPlayer1.Pause;
 end;
end;

procedure TForm1.Timer1Timer(Sender: TObject);
begin
if MediaPlayer1.Mode = mpStopped then

Button1.Caption := ‘Play’;
end;

See also
PauseOnly method, Play method, StartRecording method, Stop method

600 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P a u s e O n l y m e t h o d

PauseOnly method

Applies to
TMediaPlayer component

Declaration

procedure PauseOnly;

The PauseOnly method only pauses the open multimedia device. If the device is already
paused when PauseOnly is called, the device will remain paused.

Upon completion, PauseOnly stores a numerical error code in the Error property and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
PauseOnly method has completed. The Notify property determines whether PauseOnly
generates an OnNotify event.

Example
The following code illustrates the difference between Pause and PauseOnly. After the
second call to Pause, MediaPlayer1 resumes playing. After the second call to PauseOnly,
MediaPlayer1 is still paused.

with MediaPlayer1 do begin
MediaPlayer1.Play;
MediaPlayer1.Pause;

{ Now its paused }
MediaPlayer1.Pause;

{ Now its playing }
MediaPlayer1.PauseOnly;

{ Now its paused }
MediaPlayer1.PauseOnly;

{ Now its still paused }
end;

See also
Pause method, Play method, Resume method, StartRecording method, Stop method

Pen property

Applies to
TCanvas object; TShape component

Declaration

property Pen: TPen;

A canvas object’s Pen property determines what kind of pen the canvas uses for
drawing lines and shape outlines.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 601

P e n P o s p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

Example
The following code prints a rectangle that uses a pen 40 pixels wide when the user clicks
the button on the form:

procedure TForm1.Button1Click(Sender: TObject);
begin
Printer.Canvas.Pen.Width := 40;
Printer.BeginDoc;
Printer.Canvas.Rectangle(30, 30, 400, 600);
Printer.EndDoc;

end;

Before running this code, you must add the Printers unit to the uses clause of your unit.

See also
TBrush object, TFont object

PenPos property

Applies to
TCanvas object

Declaration

property PenPos: TPoint;

The PenPos property is the current drawing position of the pen. You should use the
MoveTo method to set the drawing position, rather than changing PenPos directly.

See also
MoveTo method

Pi function System

Declaration

function Pi: Real;

The Pi function returns the value of Pi, which is defined as 3.1415926535897932385.

Precision varies, depending on whether the compiler is in 80x87 or software-only mode.

Example
var
 S: string;
begin
 Str(Pi:10:11, S);
 Canvas.TextOut(10, 10, 'Pi = ' + S);
end;

602 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P i c t u r e p r o p e r t y

Picture property

Applies to
TDBImage, TImage components

Declaration

property Picture: TPicture;

The Picture property determines the image that appears on the image control. The
property value is a TPicture object which can contain an icon, metafile, or bitmap
graphic.

Example
This example uses two picture components. When the form first appears, two bitmaps
are loaded into the picture components and stretched to fit the size of the components.
To try this code, substitute names of bitmaps you have available.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Image1.Stretch := True;
 Image2.Stretch := True;
 Image1.Picture.LoadFromFile('BITMAP1.BMP');
 Image2.Picture.LoadFromFile('BITMAP2.BMP');
end;

See also
Bitmap property, Icon property, Metafile property, LoadFromFile method, SaveToFile
method

PictureClosed property

Applies to
TOutline component

Declaration

property PictureClosed: TBitmap;

The PictureClosed property determines the picture displayed in the TOutline component
that represents an item, which contains subitems but is not expanded. By default, the
PictureClosed property contains a picture of a closed file folder. The OutlineStyle property
must be set to osPictureText, osPlusMinusPictureText, or osTreePictureText to display the
PictureClosed picture.

Example
The following code loads a new bitmap for the PictureClosed property of Outline1.

Outline1.PictureClosed.LoadFromFile('C:\closed.bmp');

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 603

P i c t u r e L e a f p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

See also
PictureLeaf property, PictureMinus property, PictureOpen property, PicturePlus property

PictureLeaf property

Applies to
TOutline component

Declaration

property PictureLeaf: TBitmap;

The PictureLeaf property determines the picture displayed in the TOutline component
that represents an item that contains no subitems. By default, the PictureLeaf property
contains a bitmap of a document. The OutlineStyle property must be set to osPictureText,
osPlusMinusPictureText, or osTreePictureText to display the PictureLeaf picture.

Example
The following code tests the Width of the leaf picture. If it is wider than ten pixels, the
OutlineStyle is changed so that the leaf picture is not displayed.

if Outline1.PictureLeaf.Width > 10 then
Outline1.OutlineStyle := osTreeText;

See also
PictureClosed property, PictureMinus property, PictureOpen property, PicturePlus
property

PictureMinus property

Applies to
TOutline component

Declaration

property PictureMinus: TBitmap;

The PictureMinus property determines the picture displayed in the TOutline component
that represents an item, which contains subitems and is expanded. By default, the
PictureMinus property contains a bitmap of a minus sign. The OutlineStyle property
must be set to osPlusMinusPictureText or osPlusMinusText to display the PictureMinus
picture.

Example
The following code displays the same picture for the plus and minus states of Outline1.
The same graphic appears whether an item is expanded or collapsed.

Outline1.PictureMinus := Outline1.PicturePlus;

604 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P i c t u r e O p e n p r o p e r t y

See also
PictureClosed property, PictureLeaf property, PictureOpen property, PicturePlus property

PictureOpen property

Applies to
TOutline component

Declaration

property PictureOpen: TBitmap;

The PictureOpen property determines the picture displayed in the TOutline component
that represents an item, which contains subitems and is expanded. By default, the
PictureOpen property contains a bitmap of an open file folder. The OutlineStyle property
must be set to osPictureText, osPlusMinusPictureText, or osTreePictureText to display the
PictureOpen picture.

Example
The following code copies text (‘Hello world’) into the PictureOpen bitmap.

Outline1.PictureOpen.Canvas.TextOut(0, 0, ‘Hello world’);

See also
PictureClosed property, PictureLeaf property, PictureMinus property, PicturePlus property

PicturePlus property

Applies to
TOutline component

Declaration

property PicturePlus: TBitmap;

The PicturePlus property determines the bitmap displayed in the TOutline component
that represents an item, which contains subitems but is not expanded. By default, the
PicturePlus property contains a bitmap of a plus sign. The OutlineStyle property must be
set to osPlusMinusPictureText or osPlusMinusText to display the PicturePlus picture.

Example
The following code allows the user to specify the graphic for the PicturePlus property of
Outline1 by using the Open dialog box .

if OpenDialog1.Execute then
Outline1.PicturePlus.LoadFromFile(OpenDialog1.FileName);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 605

P i e m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

See also
PictureClosed property, PictureLeaf property, PictureMinus property, PictureOpen
property

Pie method

Applies to
TCanvas object

Declaration

procedure Pie(X1, Y1, X2, Y2, X3, Y3, X4, Y4: Longint);

The Pie method draws the section of an ellipse bounded by the rectangle (X1, Y1) and
(X2, Y2) on the canvas. The section drawn is determined by two lines radiating from the
center of the ellipse through the points (X3, Y3) and (X4, Y4).

Example
This code draws a section of an ellipse on the form’s canvas when the user clicks the
button on the form:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Form1.Canvas.Pie(10, 10, 200, 200, 61, 3, 200, 61);
end;

See also
Ellipse method

PInitInfo property

Applies to
TOLEContainer component; TOLEDropNotify object

Declaration

property PInitInfo: Pointer;

PInitInfo specifies a pointer to the OLE object initialization information. Assigning a
pointer, which points to valid OLE initialization information, to the PInitInfo property
initializes the OLE object in the OLE container.

Typically, a valid PInitInfo pointer can be obtained by using the InsertOLEObjectDlg or
PasteSpecialDlg functions, or as a property of the TOLEDropNotify object passed in the
Source parameter of the OnDragDrop event when an OLE object is dropped on a form.

606 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P i t c h p r o p e r t y

Example
The following code initializes OLEContainer1 when an OLE object is dropped on the
Form1 at run time. Attach this code to the OnDragDrop event handler of Form1.

procedure TForm1.FormDragDrop(Sender, Source: TObject; X, Y: Integer);
begin
 if Source is TOLEDropNotify then

with Source as TOLEDropNotify do
OLEContainer1.PInitInfo := Source.PInitInfo;

end;

Pitch property

Applies to
TFont object

Declaration

property Pitch: TFontPitch;

The Pitch property specifies the pitch or width of the characters of a font. Characters
with variable pitch can have varying widths. For example, the following characters are
in a variable pitch font. Note that the width of ten ‘i’ characters is less than the width of
ten ‘M’ characters.

iiiiiiiiii
MMMMMMMMMM

The following characters are in a fixed-pitch font. Note that ten ‘i’ characters are the
same width as ten ‘M’ characters:

iiiiiiiiii
MMMMMMMMMM

Here are the possible values for Pitch:

Note Setting the Pitch of a fixed-width font to fpVariable or a variable-width font to fpFixed
might have no effect on the appearance of a font, or might cause another font to be
substituted. For example, setting the pitch of MS Serif (a variable-pitch font, by default)
to fpFixed causes Courier to be displayed.

Example
The following code toggles the pitch of the Font of Label1 from variable to fixed or from
fixed to variable.

Value Meaning

fpDefault The font pitch is set to the default value, which depends on the font specified in the Name
property.

fpFixed The font pitch is set to fixed. All characters in the font have the same width.
fpVariable The font pitch is set to variable. The characters in the font have different widths.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 607

P i x e l s p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

if Label1.Font.Pitch = fpFixed then
Label1.Font.Pitch := fpVariable

else
if Label1.Font.Pitch = fpVariable then

Label1.Font.Pitch := fpFixed;

See also
Font property

Pixels property

Applies to
TCanvas object

Declaration

property Pixels[X, Y: Longint]: TColor;

The Pixels array enables you to access any pixel on the canvas directly, to either set or
read the color there. Each element in Pixels contains the color of the corresponding pixel
in the canvas. The array indexes, X and Y, specify the horizontal and vertical
coordinates of the pixel, respectively.

Example
This example draws a red line when the form becomes active. Attach the following code
to the OnActivate event handler:

procedure TForm1.FormActivate(Sender: TObject);
var
 W: Word;
begin
 for W := 10 to 200 do
 Canvas.Pixels[W, 10] := clRed;
end;

PixelsPerInch property

Applies to
TFont object; TForm, TScreen components

Declaration

property PixelsPerInch: Integer;

There are three different properties called PixelsPerInch: one for forms, one for the
screen, and one for fonts.

608 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P i x e l s P e r I n c h p r o p e r t y

For forms

Declaration

property PixelsPerInch: Integer;

The PixelsPerInch property for a form determines how many pixels per inch are used to
display a form. A higher value displays a smaller form at run time, and a lower value
displays a larger form. This property is useful when your application runs on a
computer system that uses a screen resolution different than the one you used to create
the application. By specifying the pixels per inch used by the other computer system,
you can be assured that the form appears as you designed it when your application
runs.

Note Although you can change the PixelsPerInch value with the Object Inspector, you won’t
see the results until you run your application. Also, you must set the Scaled property to
be True, or a change in the PixelsPerInch value has no effect.

Example
This example adds 30 to the form’s PixelsPerInch property if the screen’s PixelsPerInch
property is greater than 100:

procedure TForm1.FormActivate(Sender: TObject);
begin
 Form1.Scaled := True;
 if Screen.PixelsPerInch > 100 then
 Form1.PixelsPerInch := Form1.PixelsPerInch + 30;
end;

See also
Scaled property

For the screen

Declaration

property PixelsPerInch: Integer;

Read and run-time only. The PixelsPerInch property determines how many pixels are in
an inch using the current video driver. The value in PixelsPerInch is retrieved from
Windows when Delphi loads.

Example
This example adds 30 to the form’s PixelsPerInch property if the screen’s PixelsPerInch
property is greater than 100:

procedure TForm1.FormActivate(Sender: TObject);
begin
 Form1.Scaled := True;
 if PixelsPerInch > 100 then

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 609

P l a y m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

 Form1.PixelsPerInch := Form1.PixelsPerInch + 30;
end;

See also
Screen variable

For fonts

Declaration

property PixelsPerInch: Integer;

The PixelsPerInch property affects printer fonts only and should not be modified. Delphi
uses the PixelsPerInch property to ensure that when a font is copied from the form’s
canvas to the printer, the font is the same size in points. For example, if the font is 8
points on the screen, Delphi makes sure the font is 8 points when it is printed.

If you want to modify the size of a font, use the Size and Height properties.

See also
Height property, Size property

Play method

Applies to
TMediaPlayer component

Declaration

procedure Play;

The Play method plays the media loaded in the open multimedia device. Play is called
when the Play button on the media player control is clicked at run time.

Upon completion, Play stores a numerical error code in the Error property and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Play method has completed. The Notify property determines whether Play generates an
OnNotify event.

If the StartPos property is set, playing starts at the position specified in StartPos.
Otherwise, playing starts at the current position, specified in the Position property.
Similarly, if the EndPos property is set, playing stops at the position specified in EndPos.
Otherwise, playing stops at the end of the medium.

Whether the medium (specified in the Position property) is rewound before playing
starts depends on the AutoRewind property.

610 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P o i n t f u n c t i o n

Example
This example uses a media player and a button on a form. When the application runs,
only the button is visible. When the user clicks the button, the .WAV file plays.

To run this example, the file CHIMES.WAV must be in your Windows directory.

procedure TForm1.FormActivate(Sender: TObject);
var
 WinDir: PChar;
begin
 MediaPlayer1.Visible := False;
 GetMem(WinDir, 144);
 GetWindowsDirectory(WinDir, 144);
 StrCat(WinDir, '\CHIMES.WAV');
 MediaPlayer1.FileName := StrPas(WinDir);
 MediaPlayer1.Open;
 FreeMem(WinDir, 144);
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
MediaPlayer1.Play;

end;

See also
Capabilities property, Pause method, PauseOnly method, StartRecording method, Stop
method

Point function

Declaration

function Point(AX, AY: Integer): TPoint;

The Point function takes the x- and y-coordinates passed in AX and AY and returns a
TPoint record. You’ll most often use Point to construct a parameter for a function that
requires one or more TPoint.

Example
The following code uses the Polygon method to draw a right triangle on a form called
Form1:

Polygon([Point(10, 10), Point(10, 20), Point(20, 20)]);

See also
Rect function

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 611

P o k e D a t a m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

PokeData method

Applies to
TDDEClientConv component

Declaration

function PokeData(Item: string; Data: PChar): Boolean;

The PokeData method sends data to a DDE server application. Text data from a linked
control in the DDE client application is transferred to the linked section of the DDE
server application. Item specifies the linked item in the DDE server. Data is a null-
terminated string that specifies the text data to transfer to the DDE server.

The usual direction of data flow is from the DDE server to the DDE client application.
Some DDE server applications won’t accept poked data. PokeData returns True if the
data was successfully transferred, or False if the data was not successfully transferred.

If you need to poke a string list rather than a single string, use the PokeDataLines method.

Note If either the ExecuteMacro or ExecuteMacroLines method was called with its WaitFlg
parameter set to True prior to calling PokeData, you must wait until the server
application has completed executing the macro before calling PokeData. Depending on
the DDE server application, calling PokeData before the DDE server application has
completed executing the macro might cause the macro to execute unsuccessfully or
produce unpredictable results.

Example
The following code pokes the data that is in Edit1 to the DDE server. The DDE item of
the conversation is specified in the DDEItem property of DDEClientItem1. TheData is a
PChar variable.

DDEClientConv1.PokeData(DDEClientItem1.DDEItem, StrPCopy(TheData, Edit1.Text));

See also
PokeDataLines method, StrPCopy function

PokeDataLines method

Applies to
TDDEClientConv component

Declaration

function PokeDataLines(Item: string; Data: TStrings): Boolean;

The PokeDataLines method sends data to a DDE server application. Text data from a
linked control in the DDE client application is transferred to the linked section of the
DDE server application. Item specifies the linked item in the DDE server. Data is a
TStrings object that specifies the text data to transfer to the DDE server.

612 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P o l y g o n m e t h o d

The usual direction of data flow is from the DDE server to the DDE client application.
Some DDE server applications won’t accept poked data. PokeDataLines returns True if
the data was successfully transferred, or False if the data was not successfully
transferred.

If you need to poke a single string rather than a string list, use the PokeData method.

Note If either the ExecuteMacro or ExecuteMacroLines method was called with its WaitFlg
parameter set to True prior to calling PokeDataLines, you must wait until the server
application has completed executing the macro before calling PokeDataLines. Depending
on the DDE server application, calling PokeDataLines before the DDE server application
has completed executing the macro might cause the macro to execute unsuccessfully or
produce unpredictable results.

Example
The following code pokes the data that is in Memo1 to the DDE server. The DDE item of
the conversation is specified in the DDEItem property of DDEClientItem1. TheData is a
PChar variable.

DDEClientConv1.PokeData(DDEClientItem1.DDEItem, Memo1.Lines));

See also
PokeData method

Polygon method

Applies to
TCanvas object

Declaration

procedure Polygon(Points: array of TPoint);

The Polygon method draws a series of lines on the canvas, connecting the points passed
to it in Points (much as the PolyLine method would), then closes the shape by drawing a
line from the last point to the first point. After drawing the complete shape, Polygon fills
the shape using the current brush.

Example
This example draws a polygon in the specified shape, and fills it with the color teal:

procedure TForm1.FormActivate(Sender: TObject);
begin
 Canvas.Brush.Color := clTeal;
 Canvas.Polygon([Point(10, 10), Point(30, 10),
 Point(130, 30), Point(240, 120)]);
end;

See also
PolyLine method

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 613

P o l y L i n e m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

PolyLine method

Applies to
TCanvas object

Declaration

procedure Polyline(Points: array of TPoint);

The PolyLine method draws a series of lines on the canvas with the current pen,
connecting each of the points passed to it in Points.

Example
This example paints a series of connected lines in the color red:

procedure TForm1.FormPaint(Sender: TObject);
begin
 Canvas.Pen.Color := clRed;
 Canvas.PolyLine([Point(5, 5), Point(100, 40), Point(150, 120),
 Point(140, 200), Point(80, 100), Point(5, 5)]);
end;

See also
Pen property, Polygon method

Popup method

Applies to
TPopupMenu component

Declaration

procedure Popup(X, Y: Integer);

The Popup method displays a pop-up menu onscreen at the coordinates indicated by the
values (in pixels) of X and Y.

Example
This example uses a pop-up menu. When the user presses the mouse button, the pop-up
menu appears near the upper left corner of the form:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 PopupMenu1.AutoPopup := False;
 PopupMenu1.Popup(Form1.Left + 10, Form1.Top + 40);
end;

614 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P o p u p C o m p o n e n t p r o p e r t y

See also
AutoPopup property, OnPopup event, PopupMenu property

PopupComponent property

Applies to
TPopupMenu component

Declaration

property PopupComponent: TComponent;

Run-time only. The PopupComponent property contains the name of the component the
user last clicked that displayed the pop-up menu. If your application has multiple
controls that share the same pop-up menu, you can use PopupComponent to determine
which of them last displayed the menu.

If you activate a pop-up menu by explicitly calling the Popup method, you should
specify the name of the component you want to associate with the pop-up menu in the
PopupComponent property

Example
This example uses two edit boxes, two memos, and one pop-up menu on a form. The
pop-up menu contains Cut, Copy, and Paste commands. This code makes the pop-up
menu available to both edit boxes and both memos:

procedure TForm1.FormCreate(Sender: TObject);
begin
 PopupMenu1.AutoPopup := True;
 Edit1.PopupMenu := PopupMenu1;
 Edit2.PopupMenu := PopupMenu1;
 Memo1.PopupMenu := PopupMenu1;
 Memo2.PopupMenu := PopupMenu1;
end;

These are the cut, copy, and paste OnClick events for the commands on the pop-up
menu. The code only allows the user to cut and copy text from the edit boxes, and to
paste text into the memo boxes.

procedure TForm1.Copy1Click(Sender: TObject);
begin
 if PopupMenu1.PopupComponent = Edit1 then
 Edit1.CopyToClipboard
 else
 if PopupMenu1.PopupComponent = Edit2 then
 Edit2.CopyToClipboard;
end;

procedure TForm1.Cut1Click(Sender: TObject);
begin
 if PopupMenu1.PopupComponent = Edit1 then

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 615

P o p u p M e n u p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

 Edit1.CutToClipboard
 else
 if PopupMenu1.PopupComponent = Edit2 then
 Edit2.CutToClipboard;
end;

procedure TForm1.Paste1Click(Sender: TObject);
begin
 if PopupMenu1.PopupComponent = Memo1 then
 Memo1.PasteFromClipboard
 else
 if PopupMenu1.PopupComponent = Memo2 then
 Memo2.PasteFromClipboard;
end;

See also
AutoPopup property, OnPopup event, PopupMenu property

PopupMenu property

Applies to
TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,
TDBGrid, TDBImage, TDBLookupCombo, TDBLookupList, TDBListBox, TDBMemo,
TDBNavigator, TDBText, TDBRadioGroup, TDirectoryListBox, TDrawGrid,
TDriveComboBox, TEdit, TFileListBox, TForm, TGroupBox, TImage, TLabel, TListBox,
TMaskEdit, TMemo, TNotebook, TPanel, TPaintBox, TRadioButton, TScrollBar, TScrollBox,
TStringGrid components

Declaration

property PopupMenu: TPopupMenu;

The PopupMenu property identifies the name of the pop-up menu that appears when the
user selects the component and presses the right mouse button (if the pop-up menu’s
AutoPopup property is True), or when the Popup method of the pop-up menu executes.

Example
This example assigns the pop-up menu named MyPopupMenu to the form:

procedure TForm1.FormActivate(Sender: TObject);
begin
PopupMenu := MyPopupMenu;

end;

See also
OnPopup event

616 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P o s f u n c t i o n

Pos function System

Declaration

function Pos(Substr: string; S: string): Byte;

The Pos function searches for a substring in a string.

Substr and S are string-type expressions.

Pos searches for Substr within S and returns an integer value that is the index of the first
character of Substr within S.

If Substr is not found, Pos returns zero.

Example

var S: string;
begin
 S := ' 123.5';
 { Convert spaces to zeroes }
 while Pos(' ', S) > 0 do
 S[Pos(' ', S)] := '0';
end;

See also
Concat function, Copy function, Delete procedure, Insert procedure, Length function

Position property

Applies to
TControlScrollBar, TForm, TMediaPlayer, TScrollBar components

The Position property determines the visual position of a component or the current
position within media loaded in a media player.

For forms

Declaration

property Position: TPosition;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 617

P o s i t i o n p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

The Position property determines the size and placement of the form when it appears in
your application. These are the possible values:

The default value is poDesigned.

Example
This code assures that the first form will appear centered on the screen:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Position := poScreenCenter;
end;

For scroll bars

Declaration

property Position: Integer;

The Position property determines the position of the thumb tab on a scroll bar. When the
user scrolls the scroll bar, the value of Position changes. You can also change where the
thumb tab appears on the scroll bar by changing the value of Position.

For TControlScrollBar components, the value of the Range property determines the
number of possible positions on a scroll bar that a thumb tab can assume. The default
value is 0, which positions the thumb tab at the far left.

For TScrollBar components, the number of possible positions on the scroll bar is
determined by the difference between the Max property and the Min property. If the
Min and Position values are both 0, the thumb tab is positioned to the far left on a
horizontal scroll bar and to the top of a vertical scroll bar. If Min is 10, Position can be no
less than 10.

Value Meaning

poDesigned The form appears positioned on the screen and with the same height and width as
it had at design time.

poDefault The form appears in a position on the screen and with a height and width
determined by Delphi. Each time you run the application, the form moves slightly
down and to the right. The right side of the form is always near the far right side
of the screen, and the bottom of the form is always near the bottom of the screen,
regardless of the screen’s resolution.

poDefaultPosOnly The form displays with the size you created it at design time, but Delphi chooses
its position on the screen. Each time you run the application, the form moves
slightly down and to the right. When the form can no longer move down and to
the right and keep the same size while remaining entirely visible on the screen, the
form displays at the top-left corner of the screen.

poDefaultSizeOnly The form appears in the position you left it at design time, but Delphi chooses its
size. The right side of the form is always near the far right side of the screen, and
the bottom of the form is always near the bottom of the screen, regardless of the
screen’s resolution.

poScreenCenter The form remains the size you left it at design time, but is positioned in the center
of the screen.

618 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P o s i t i o n p r o p e r t y

Example
This code places the thumb tab in the middle of the scroll bar:

ScrollBar1.Max := 1000;
ScrollBar1.Min := 500;
ScrollBar1.Position := 750;

See also
HorzScrollBar property, Increment property, LargeChange property, SmallChange
property, VertScrollBar property

For media player controls

Declaration

property Position: Longint;

Run-time only. The Position property specifies the current position within the currently
loaded medium. The value of Position is specified according to the current time format,
which is specified in the TimeFormat property.

Position defaults to the beginning of the medium. If the medium supports multiple
tracks, Position defaults to the beginning of the first track.

Example
The following code shows the position of the currently playing .WAV audio file
(CARTOON.WAV in this example) in the Caption of a label. The current position is
updated by Timer1.

procedure TForm1.BitBtn1Click(Sender: TObject);
begin
with MediaPlayer1 do begin

DeviceType := dtWaveAudio;
FileName := 'CARTOON.WAV';
Open;
TimeFormat := tfMilliseconds;
Label1.Caption := IntToStr(Position);
Play;

end;
end;

procedure TForm1.Timer1Timer(Sender: TObject);
begin
Label1.Caption := IntToStr(MediaPlayer1.Position);

end;

See also
Length property, Start property, TrackPosition property, Tracks property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 619

P o s t m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

For Find and Replace dialog boxes

Applies to
TFindDialog, TReplaceDialog component

Declaration

property Position: TPoint;

The Position property determines where the Find or Replace dialog box appears
onscreen.

Example
This example uses a Find dialog box and a button on a form. When the user clicks the
button, the Find dialog box appears on screen at location 100, 200.

procedure TForm1.Button1Click(Sender: TObject);
begin
 FindDialog1.Position := Point(100, 200);
 if FindDialog1.Execute then ;
end;

See also
CloseDialog method

Post method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure Post;

The Post method writes the current record to the database. Post should be called after
calling Append or Insert and making any desired changes to the fields of the current
record.

Post behaves differently depending on a dataset’s state.

• In Edit state, Post modifies the current record.

• In Insert state, Post inserts or appends a new record.

• In SetKey state, Post commits the changes to the search key buffer, and returns the
dataset to Browse state.

Posting can be done explicitly, or implicitly as part of another procedure. When an
application moves off the current record, Delphi calls Post implicitly. Calls to the Next,
MoveBy, Prior, First, and Last methods perform a Post if the table is in Edit or Insert state.

620 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P r e c i s i o n p r o p e r t y

The Append, AppendRecord, Insert, and InsertRecord methods also implicitly perform a
Post of any pending data.

Note If the record can not be written to the database for some reason, the dataset will remain
in Edit state.

Example
with Table1 do
begin
Append;
FieldByName(‘CustNo’).AsString := ‘9999’;
{ Fill in other fields here }
if { you are sure you want to do this} then Post
else { if you changed your mind } Cancel;
end.

See also
Cancel method

Precision property

Applies to
TBCDField, TCurrencyField, TFloatField components

Declaration

property Precision: Integer;

The Precision property is used in formatting numeric fields. The value of Precision is the
number of decimal places to the right of the decimal point the numeric value should be
formatted to before rounding begins. The default value is 15 decimal places.

Pred function System

Declaration

function Pred(X);

The Pred function returns the predecessor of the argument.

X is an ordinal-type expression. The result, of the same type as X, is the predecessor
of X.

Example

uses Dialogs;

type
 Colors = (RED,BLUE,GREEN);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 621

P r e f i x S e g v a r i a b l e+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

 var
 S: string;
 begin
 S := 'The predecessor of 5 is ' + IntToStr(Pred(5)) + #13#10;
 S := S + 'The successor of 10 is ' + IntToStr(Succ(10)) + #13#10;
 if Succ(RED) = BLUE then
 S := S + 'In the type Colors, RED is the predecessor of BLUE.';
 MessageDlg(S, mtInformation, [mbOk], 0);
 end;

See also
Dec procedure, Inc procedure, Succ function

PrefixSeg variable System

Declaration

var PrefixSeg: Word;

In a program, the PrefixSeg variable contains the selector (segment address) of the
Program Segment Prefix (PSP) created by DOS and Windows when the application was
executed.

In a library, PrefixSeg is always 0.

For a complete description of the PSP, refer to your Windows manuals.

Prepare method

Applies to
TQuery, TStoredProc components

For stored procedures

Declaration

procedure Prepare;

The Prepare method prepares the stored procedure to be executed. This allows the server
to load the procedure and otherwise prepare for execution.

Example

StoredProc1.Prepare;

See also
Prepared property, UnPrepare method

622 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P r e p a r e d p r o p e r t y

For queries

Declaration

procedure Prepare;

The Prepare method sends a parameterized query to the database engine for parsing and
optimization. A call to Prepare is not required to use a parameterized query. However, it
is strongly recommended, because it will improve performance for dynamic queries
that will be executed more than once. If a query is not explicitly prepared, each time it is
executed, Delphi automatically prepares it.

Prepared is a Boolean property of TQuery that indicates if a query has been prepared.

If a query has been executed, an application must call Close before calling Prepare again.
Generally, an application should call Prepare once—for example, in the OnCreate event
of the form—then set parameters using the Params property, and finally call Open or
ExecSQL to execute the query. Each time the query is to be executed with different
parameter values, an application must call Close, set the parameter values, and then
execute the query with Open or ExecSQL.

See also
Text property

Prepared property

Applies to
TQuery, TStoredProc components

For stored procedures

Declaration

property Prepared: Boolean;

Run-time only. The Prepared property is True if the stored procedure has been submitted
to the server for optimization purposes. Setting Prepared to True will not execute the
procedure; it simply advises the server that the procedure will need to be executed at
some future time. Setting Prepared to True is equivalent to calling the Prepare method;
setting it to False is equivalent to calling the UnPrepare method.

Example

{ Make sure that the server is aware that we will be executing the procedure }
with StoredProc1 do
if not Prepared then Prepared := True;

See also
Prepare method, UnPrepare method

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 623

P r e v i e w p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

For queries

Declaration

property Prepared: Boolean;

Run-time only. The Prepared property specifies if the Prepare method has been called to
prepare the TQuery. While preparing a query is not required, it is highly recommended
in most cases.

Note Close the TQuery by setting the Active property to False before changing Prepared.

Example

if not Query1.Prepared then
begin
Query1.Close;
Query1.Prepared := True;
end;

See also
Params property, UnPrepare method

Preview property

Applies to
TReport component

Declaration

property Preview: Boolean;

The Preview property determines whether a report should be viewed onscreen or
printed. If Preview is True, the report appears onscreen when the report is run. If Preview
is False, the report is printed.

Example
This example uses a report component and a button on a form. When the user clicks the
button, a message appears if the Preview property is True. If Preview is True, the MyReport
report is sent to the screen; if Preview is False, the report prints on the printer.

procedure TForm1.Button1Click(Sender: TObject);
begin
Report1.ReportName := ‘MyReport’;
if Report1.Preview then

 Application.MessageBox('Sending the report to the screen', 'Message box', MB_OK);
 Report1.Run;
end;

624 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P r e v i o u s m e t h o d

See also
ReportName property, Run method

Previous method

Applies to
TForm, TMediaPlayer components

The Previous method activates the previous form or media player track.

For forms

Declaration

procedure Previous;

The Previous method makes the previous child form in the form sequence the active
form.

For example, if you have three child forms within a parent form in your MDI
application and Form4 is the active form, the Previous method makes Form3 the active
form. Calling Previous again makes Form2 active. The next time your application calls
Previous, the sequence starts over again and Form4 becomes the active form once again.

The Previous method applies only to forms that are MDI parent forms (have a FormStyle
property value of fsMDIForm).

Example
This code sample activates the previous child window of the parent (Form1) when the
user selects a menu item named Previous on a menu.

procedure TForm1.Previous1Click(Sender: TObject);
begin
Previous;

end;

See also
ArrangeIcons method, Cascade method, Next method, Tile method

For media players

Declaration

procedure Previous;

The Previous method sets the current position to the beginning of the previous track if
the position was at the beginning of a track when Previous was called. If the position is at
the first track or somewhere other than the beginning of a track when Previous was

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 625

P r i n t m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

called, Previous sets the current position to the beginning of the current track. If the
device doesn’t use tracks, Previous sets the current position to the beginning of the
medium, which is specified in the Start property. Previous is called when the Previous
button on the media player control is clicked at run time.

Upon completion, Previous stores a numerical error code in the Error property and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Previous method has completed. The Notify property determines whether Previous
generates an OnNotify event.

Example
The following code rewinds the media after playing has completed. Normally, setting
AutoRewind to True would accomplish the same result, but if EndPos is set, AutoRewind
has no effect. This code is essentially an AutoRewind for media with EndPos set.

with MediaPlayer1 do
begin
EndPos := 3000;
Play;
Previous;

end;

See also
AutoRewind property, Next method, Position property, Tracks property

Print method

Applies to
TForm, TReport components

For forms

Declaration

procedure Print;

The Print method prints the form.

Example
This example uses a button named PrintButton on a form. When the user chooses the
button, the form prints.

procedure TForm1.PrintButtonClick(Sender: TObject);
begin
 Print;
end;

626 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P r i n t C o p i e s p r o p e r t y

See also
PrintScale property

For reports

Declaration

function Print: Boolean;

The Print method determines whether a ReportSmith report prints. Print sends a DDE
message to ReportSmith Runtime and looks for a DDE message from ReportSmith
Runtime in return. If Print returns True, ReportSmith Runtime received the message to
print the report. If Print returns False, ReportSmith Runtime could not receive the DDE
message at the current time.

Example
This example notifies the user if the report is being printed:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if Report1.Print = True then
 MessageDlg('Printing the report', mtInformation, [mbOK], 0) ;
end;

See also
Preview property, PrintCopies property, Run method

PrintCopies property

Applies to
TReport component

Declaration

property PrintCopies: Word;

The value of the PrintCopies property determines how many copies of the report are
printed when you run a report. Specify the number of copies you want printed when
your report runs. The default value is 1.

Example
The following code reads the number of copies to print from an edit box.

Report1.PrintCopies := StrToInt(Edit1.Text);

See also
EndPage property, StartPage property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 627

P r i n t e r v a r i a b l e+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

Printer variable Printers

Declaration

Printer: TPrinter;

The Printer variable declares an instance of the TPrinter object. Use Printer when you
want to print using the TPrinter object.

Printer is declared in the Printers unit. Whenever you use Printer and the TPrinter object,
you must add Printers to the uses clause of your unit.

Example
This example prints a one-line print job when the user clicks the button on the form:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Printer.BeginDoc;
 Printer.Canvas.TextOut(100,100, 'Programming is easy');
 Printer.EndDoc;
end;

PrinterIndex property

Applies to
TPrinter object

Declaration

property PrinterIndex: Integer;

Run-time only property. The PrinterIndex property specifies which printer listed in the
Printers property is the currently selected printer.

To select the default printer, set the value of PrinterIndex to -1.

Example
The following code asks the user if they want to use the default printer. If they choose
yes, PrinterIndex specifies the default printer. The code assumes that Printer is a TPrinter
object.

if (MessageDlg('Do you want to use the default printer',
 mtInformation, mbYesNoCancel,0)=idYes) then
 Printer.PrinterIndex := -1;

See also
Printers property

628 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P r i n t e r s p r o p e r t y

Printers property

Applies to
TPrinter object

Declaration

property Printers: TStrings;

Run-time and read only. The Printers property is a list of all printers installed in
Windows.

Example
The following code displays the names of all printers in ListBox1.

begin
ListBox1.Items := Printer1.Printers;

end;

See also
Printer variable

Printing property

Applies to
TPrinter object

Declaration

property Printing: Boolean;

Run-time and read only. The Printing property determines whether a print job is
printing. Printing is True when your application has called the BeginDoc method, but the
EndDoc method (or the Abort method) hasn’t been called yet.

Example
This code terminates the print job if the job is currently printing:

if Printer.Printing then
Abort;

See also
Aborted property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 629

P r i n t R a n g e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

PrintRange property

Applies to
TPrintDialog component

Declaration

property PrintRange: TPrintRange;

The PrintRange property determines the type of print range the application uses to print
a file. These are the possible settings:

The default value is prAllPages.

Note The PrintRange property can have the value prSelection only if the Options property set
includes poSelection. Also, the PrintRange property can have the value prPageNums only
if the Options property set includes poPageNums. If you select either of these PrintRange
values at design time, but neglect to set the corresponding Options values to True, only
the All Pages option will be enabled when your application displays the Print dialog
box.

Example
The following code allows the printing of selected text.

PrintDialog1.Options := PrintDialog1.Options + [poSelection];
PrintDialog1.PrintRange := prSelection;

See also
Options property, PrintToFile property

PrintScale property

Applies to
TForm component

Value Meaning

prAllPages If set at run time, the user chose to print all pages of the print job. If you set the PrintRange
value to prAllPages at design time, the All Pages radio button is selected when the Print
dialog box first appears.

prSelection If set at run time, the user chose to print only selected text. If you set the PrintRange value
to prSelection at design time, the Selection radio button is selected when the Print dialog
box first appears.

prPageNums If set at run time, the user chose to specify a range of pages to print. If you set the
PrintRange value to prPageNum at design time, the Pages radio button is selected when
the Print dialog box first appears, and the user can specify a print range by page numbers.
The page numbers are set through the MinPage and MaxPage properties.

630 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P r i n t T o F i l e p r o p e r t y

Declaration

property PrintScale: TPrintScale;

The PrintScale property determines the proportions of a printed form. These are the
possible values:

The default value is poProportional.

Example
The following code maintains the proportions of the form when it is printed.

Form1.PrintScale := poProportional;
Form1.Print;

See also
Print method

PrintToFile property

Applies to
TPrintDialog component

Declaration

property PrintToFile: Boolean;

The PrintToFile property determines if the user has chosen to print the print job to a file
rather than to a printer. If True, the user has checked the Print to File check box. If False,
the user has unchecked the Print to File check box. If PrintToFile is set to True at design
time, the Print to File check box is checked when the Print dialog box appears in your
application. The default value is False.

Note The Print to File check box appears in the Print dialog box, only if the Options property set
includes poPrintToFile. Otherwise, your users won’t have the option of choosing to print
to a file.

Example
This example displays a print dialog box with its Print to File check box checked:

procedure TForm1.BitBtn1Click(Sender: TObject);
begin

Value Meaning

poNone No special scaling occurs; therefore, the printed form and how the form appears
onscreen may have somewhat different proportions.

poProportional The form is printed so that it maintains the same size that is has on the screen (the
same number of pixels per inch is used).

poPrintToFit The form is printed using the same screen proportions, but in a size that just fits the
printed page.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 631

P r i o r m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

with PrintDialog1 do
 begin
 Options := [poPrintToFile];
 PrintToFile := True;
 if Execute then

...;
 end;
end;

Prior method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure Prior;

The Prior method moves the current record position of the dataset backward by one
record. If the dataset is in Insert or Edit state, Prior will perform an implicit Post of any
pending data.

Example

{ Move to the previous record }
Table1.Prior;
if Table1.BOF then { No more records };

See also
First method, Last method, MoveBy method, Next method

PrivateDir property

Applies to
TSession component

Declaration

property PrivateDir: string;

Run-time only. PrivateDir specifies the path of the directory in which to store temporary
files (for example, files used to process local SQL statements). You should set this
property if there will be only one instance of the application running at a time.
Otherwise, the temporary files from multiple application instances will interfere with
each other.

See also
Session variable

632 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P r o b l e m C o u n t p r o p e r t y

ProblemCount property

Applies to
TBatchMove component

Declaration

property ProblemCount: Longint;

Run-time and read only. ProblemCount is the number of records which could not be
added to Destination without loss of data due to field width constraints. If
AbortOnProblem is True, then this number will be one, since the operation will be aborted
when the problem occurs.

Example

MessageDlg(IntToStr(BatchMove1.ProblemCount) + ‘ records had problems’,
mtInformation, [mbOK], 0);

See also
ProblemTableName property

ProblemTableName property

Applies to
TBatchMove component

Declaration

property ProblemTableName: TFileName;

If the Execute method is unable to move a record to Destination without data loss (caused
by a field width conflict), the record will be placed in a new table with the name
supplied in ProblemTableName. If AbortOnProblem is True, then there will be at most one
record in this table since the operation will be aborted with that first record.
ProblemCount will have the number of records placed in the new table. If
ProblemTableName is not specified, the data in the record will still be trimmed and placed
in the destination table.

Example

BatchMove1.ProblemTableName := ‘PROB.DB’;

ProcessMessages method

Applies to
TApplication component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 633

P r o c e s s M e s s a g e s m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

Declaration

procedure ProcessMessages;

The ProcessMessages method interrupts the execution of your application so that
Windows can respond to events. For example, the user might want to move a form on
the screen while your application is doing some complex processing that would
ordinarily prevent Windows from responding to keyboard or mouse events. By calling
ProcessMessages, your application permits Windows to process these events at the time
ProcessMessages is called. The ProcessMessages method cycles the Windows message loop
until it is empty and then returns control to your application.

Example
This example uses two buttons that are long enough to accommodate lengthy captions
on a form. When the user clicks the button with the caption Ignore Messages, the code
begins to generate a long series of random numbers. If the user tries to resize the form
while the handler is running, nothing happens until the handler is finished. When the
user clicks the button with the caption Process Messages, more random numbers are
generated, but Windows can still respond to a series of mouse events, such as resizing
the form.

Note How quickly these event handlers run depends on the microprocessor of your
computer. A message appears on the form informing you when the handler has finished
executing.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Button1.Caption := 'Ignore Messages';
 Button2.Caption := 'Process Messages';
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 I, J, X, Y: Word;
begin
I := 0;
J := 0;
while I < 64000 do
begin

Randomize;
while J < 64000 do
begin
Y := Random(J);
Inc(J);
end;

 X := Random(I);
 Inc(I);
 end;
 Canvas.TextOut(10, 10, 'The Button1Click handler is finished');
end;

procedure TForm1.Button2Click(Sender: TObject);
var

634 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

P t r f u n c t i o n

 I, J, X, Y: Word;
begin
I := 0;
J := 0;
while I < 64000 do

 begin
 Randomize;
 while J < 64000 do

begin
Y := Random(J);
Inc(J);
Application.ProcessMessages;

end;
 X := Random(I);
 Inc(I);
 end;
 Canvas.TextOut(10, 10, 'The Button2Click handler is finished');
end;

Ptr function System

Declaration

function Ptr(Seg, Ofs: Word): Pointer;

The Ptr function converts a segment base and an offset address to a pointer-type value.
Seg and Ofs are expressions of type Word.

The result is a pointer that points to the address given by Seg and Ofs. Like nil, the result
of Ptr is assignment compatible with all pointer types. The function result can be
immediately dereferenced only if it is typecast:

if Byte(Ptr(Seg0040, $49)^) = 7 then
Writeln('Video mode = mono');

Example

var P: ^Byte;
begin
 P := Ptr($40, $49);
 Canvas.TextOut(10, 10, 'Current video mode is ' + IntToStr(P^));
end;

See also
Addr function

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 635

P t r R e c+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

PtrRec SysUtils

Declaration

PtrRec = record
Ofs, Seg: Word;

end;

PtrRec declares a utility record that stores the offset and segment of a pointer as type
Word.

See also
Ofs function, Seg function

Random function System

Declaration

function Random [(Range: Word)];

The Random function returns a random number within the range 0 <= X < Range.

If Range is not specified, the result is a real-type random number within the range
0 <= X < 1.

To initialize the Random number generator, call Randomize, or assign a value to the
RandSeed variable.

Example

var
 I: Integer;
 begin
 Randomize;
 for I := 1 to 50 do begin
 { Write to window at random locations }
 Canvas.TextOut(Random(Width), Random(Height), 'Boo!');
 end;
 end;

See also
Randomize procedure, RandSeed variable

Randomize procedure System

Declaration

procedure Randomize;

636 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R a n d S e e d v a r i a b l e

The Randomize procedure initializes the built-in random number generator with a
random value (obtained from the system clock).

The random number generator should be initialized by making a call to Randomize, or
by assigning a value to RandSeed.

Example

var
 I: Integer;
 begin
 Randomize;
 for I := 1 to 50 do begin
 { Write to window at random locations }
 Canvas.TextOut(Random(Width), Random(Height), 'Boo!');
 end;
 end;

See also
Random function, RandSeed variable

RandSeed variable System

Declaration

var RandSeed: LongInt;

The RandSeed variable stores the built-in random number generator's seed.

By assigning a specific value to RandSeed, the Random function can repetitively generate
a specific sequence of random numbers.

This is useful for applications that deal with data encryption, statistics, and simulations.

See also
Random function, Randomize procedure

Range property

Applies to
TControlScrollBar component

Declaration

property Range: Integer;

The value of the Range property determines how far a horizontal or vertical form scroll
bar can be scrolled. It also represents the virtual size of the form. For example, if the
Range value of a horizontal scroll bar is 500, and the client width of the form is 200, the

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 637

R e a d m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

scroll bar position can range from 0 to 300. While the client width of the form is 200, the
virtual client width of the form is 500, because the user can scroll the form that far.

If the value of Range for a horizontal scroll bar is less than the client width of the form or
scroll box, no horizontal scroll bar appears on the form. Likewise, if the value of Range
for a vertical scroll bar is less than the client height of the form or scroll box, no vertical
scroll bar appears.

For a horizontal scroll bar, the Range is calculated to be the distance of the right edge of
the control that is the farthest to the right in the scroll bar or form from the left edge of
the scroll box or form plus an amount specified as the value of the Margin property. If
the form or scroll box contains one or more controls that are right-aligned (their Align
value is alRight), the width of these controls is also added to the Range calculation.

For a vertical scroll bar, the Range is calculated to be the distance of the bottom edge of
the control farthest away from the top edge of the scroll box or form from the top of the
scroll box or form plus an amount specified as the value of the Margin property. If the
form or scroll box contains one or more controls that are bottom-aligned (their Align
value is alBottom), the height of these controls is also added to the Range calculation.

Example
This example uses a button on a form. When the user clicks the button, a vertical scroll
bar alternately appears and disappears on the form, because the value of the Range
property changes with each click.

procedure TForm1.Button1Click(Sender: TObject);
begin
 ClientHeight := 300;
 VertScrollBar.Visible := True;
 if VertScrollBar.Range = 290 then
 VertScrollBar.Range := 500
 else
 VertScrollBar.Range := 290;
end;

See also
ClientHeight property, ClientWidth property, HorzScrollBar property, VertScrollBar
property, Visible property

Read method

Applies to
TBlobStream object

Declaration

function Read(var Buffer; Count: Longint): Longint;

The Read method copies up to Count bytes from the current position in the field to Buffer.
Buffer must have at least Count bytes allocated for it. Read returns the number of bytes

638 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R e a d p r o c e d u r e

transferred (which may be less than the number requested in Count.) Transfers which
require crossing a selector boundary in the destination will be handled correctly.

Example

BlobStream1.Read(MyBuf, 4096);

See also
TBlobField component, TBytesField component, TVarBytesField component

Read procedure System

Declaration

Typed files:

procedure Read(F , V1 [, V2,...,Vn]);

Text files:

procedure Read([var F: Text;] V1 [, V2,...,Vn]);

The Read procedure can be used in the following ways.

• For typed files, it reads a file component into a variable.
• For text files, it reads one or more values into one or more variables.

With a type string variable

• Read reads all characters up to, but not including, the next end-of-line marker or until
Eof(F) becomes True; it does not skip to the next line after reading. If the resulting
string is longer than the maximum length of the string variable, it is truncated.

• After the first Read, each subsequent Read sees the end-of-line marker and returns a
zero-length string.

• Use multiple Readln calls to read successive string values.

When the extended syntax is enabled, Read can read null-terminated strings into zero-
based character arrays.

With type integer or type real variables

• Read skips any blanks, tabs, or end-of-line markers preceding the numeric string.

• If the numeric string does not conform to the expected format, an I/O error occurs;
otherwise, the value is assigned to the variable.

• The next Read starts with the blank, tab, or end-of-line marker that terminated the
numeric string.

See also
Eof function, ReadKey function, Readln procedure, Write procedure, Writeln procedure

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 639

R e a d B o o l m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

ReadBool method

Applies to
TIniFile object

Declaration

function ReadBool(const Section, Ident: string; Default: Boolean): Boolean;

The ReadBool method retrieves a Boolean value in an .INI file.

The Section constant identifies the section of the .INI file in which to search for the value.
For example, the WIN.INI for Windows contains a [Desktop] section.

The Ident parameter is the name of the identifier of which you want the value.

The Default parameter is the default value.

Example
This example reads the DELPHI.INI file and displays on the form the status of your auto
save options.

To run this application, you must add the IniFiles unit to the uses clause of your unit.

procedure TForm1.FormActivate(Sender: TObject);
var
DelphiIni: TIniFile;

begin
DelphiIni := TIniFile.Create('Delphi.Ini');

 with DelphiIni do
 begin
 if ReadBool('AutoSave', 'EditorFiles', True) = True then
 Canvas.TextOut(10, 10, 'Auto saving editor files.')
 else
 Canvas.TextOut(10, 10, 'Not auto saving editor files.');

if ReadBool('AutoSave', 'DesktopFile', True) = True then
 Canvas.TextOut(10, 50, 'Auto saving desktop file.')
 else
 Canvas.TextOut(10, 50, 'Not auto saving desktop file.');
 end;
DelphiIni.Free;

end;

See also
ReadInteger method, ReadSection method, ReadString method, WriteBool method

ReadBuf function WinCrt

Declaration

function ReadBuf(Buffer: PChar; Count: Word): Word;

640 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R e a d F r o m m e t h o d

The ReadBuf function inputs a line from the CRT window.

Buffer points to a line buffer that can store up to Count characters. Count contains the
number of characters to read.

Only Count–2 characters can be input because an end-of-line marker (a #13 followed by
a #10) is automatically appended to the line when the user presses Enter.

If CheckEof is True, the user can terminate the input line by pressing Ctrl+Z, and the line
will have an end-of-line marker (#26) appended to it.

ReadBuf returns the number of characters read, including the end-of-line or end-of-file
marker.

Example

uses WinCrt;

var
 C: PChar;

begin
 GetMem(C, 20);
 C := #0;
 Writeln('Type a phrase up to 20 characters long:');
 ReadBuf(C, 20);
 Writeln(' You typed: ');
 Writeln(C);
end;

See also
ReadKey function

ReadFrom method

Applies to
TBitmap, TGraphic, TIcon, TMetafile, TPicture objects

Declaration

procedure ReadFrom(const Filename: string); virtual;

The ReadFrom method reads an image from the file named in FileName.

Example
To read an image into a bitmap object called MyBitmap from the file MYBITMAP.BMP,

MyBitmap.ReadFrom(‘MYBITMAP.BMP’);

See also
SaveToFile method

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 641

R e a d l n p r o c e d u r e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

Readln procedure System

Declaration

procedure Readln([var F: Text;] V1 [, V2, ...,Vn]);

The Readln procedure reads a line of text and then skips to the next line of the file.

Readln(F) with no parameters causes the current file position to advance to the
beginning of the next line if there is one; otherwise, it goes to the end of the file.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

Example

uses WinCrt;

var
 s : string;
 begin
 Write('Enter a line of text: ');
 Readln(s);
 Writeln('You typed: ',s);
 Writeln('Hit <Enter> to exit');
 Readln;
 end;

See also
Read procedure, Writeln procedure

ReadInteger method

Applies to
TIniFile object

Declaration

function ReadInteger(const Section, Ident: string; Default: Longint): Longint;

The ReadInteger method retrieves an integer value in an .INI file.

The Section constant identifies the section of the .INI file in which to search for the value.
For example, the WIN.INI for Windows contains a [Desktop] section.

The Ident parameter is the name of the identifier of which you want the value.

The Default parameter is the default value.

642 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R e a d K e y f u n c t i o n

Example
This example reads settings in the WIN.INI file and displays on the form the value of a
few settings.

Before you run this example, you must add the IniFiles unit to the uses clause of your
unit.

procedure TForm1.FormActivate(Sender: TObject);
var
 WinIni: TIniFile;
begin
 Canvas.TextOut(20, 10, 'VARIOUS WINDOWS SETTINGS');
 WinIni := TIniFile.Create('Win.Ini');
 with WinIni do
 begin
 Canvas.TextOut(10, 45, 'Border Width = ' +
 IntToStr(ReadInteger('Windows', 'BorderWidth', -1)));
 Canvas.TextOut(10, 65, 'Icon Spacing = ' +
 IntToStr(ReadInteger('Desktop', 'IconSpacing', -1)));
 Canvas.TextOut(10, 85, 'Grid Granularity = ' +
 IntToStr(ReadInteger('Desktop', 'GridGranularity', -1)));
 Canvas.TextOut(10, 105, 'Cursor Blink Rate = ' +
 IntToStr(ReadInteger('Windows', 'CursorBlinkRate', -1)));
 Canvas.TextOut(10, 125, 'Double Click Speed = ' +
 IntToStr(ReadInteger('Windows', 'DoubleClickSpeed', -1)));
 end;
 WinIni.Free;
end;

See also
ReadBool method, ReadSection method, ReadString method, WriteBool method

ReadKey function WinCrt

Declaration

function ReadKey: Char;

The ReadKey function reads a character from the keyboard.

ReadKey supports only standard ASCII key codes. It does not support extended key
codes, such as function and cursor keys codes.

Example

uses WinCrt;

var
 C: Char;

begin
 Writeln('Please press a key');

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 643

R e a d O n l y p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

 C := Readkey;
 Writeln(' You pressed ', C, ', whose ASCII value is ', Ord(C), '.');
end;

See also
KeyPressed function, ReadBuf function

ReadOnly property

Applies to
TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TDBCheckBox, TDBComboBox, TDBEdit, TDBGrid, TDBImage,
TDBListBox, TDBLookupCombo, TDBLookupList, TDBMemo, TDBRadioGroup, TEdit,
TFloatField, TGraphicField, TIntegerField, TMaskEdit, TMemo, TMemoField, TSmallintField,
TStringField, TTable, TTimeField, TVarBytesField, TWordField components

For controls

Declaration

property ReadOnly: Boolean;

The ReadOnly property determines if the user can change the contents of the control. If
ReadOnly is True, the user can’t change the contents. If ReadOnly is False, the user can
modify the contents. The default value is False.

For data-aware controls, the ReadOnly property determines whether the user can use the
data-aware control to change the value of the field of the current record, or if the user
can use the control only to display data. If ReadOnly is False, the user can change the
field’s value as long as the dataset is in edit mode.

When the ReadOnly property of a data grid is True, the user can no longer use the Insert
key to insert a new row in the grid, nor can the user append a new row at the end of the
data grid with the Down Arrow key.

Example
This code toggles the read-only state of an edit box each time the user double-clicks the
form:

procedure TForm1.FormActivate(Sender: TObject);
begin
 Edit1.Left := 2;
 Edit1.Top := 2;
 Edit1.ReadOnly := True;
 Edit1.Text := 'Change Me';
 Canvas.TextOut(10, 40, 'Double-click form to toggle read-only state');
end;

procedure TForm1.FormDblClick(Sender: TObject);
begin

644 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R e a d S e c t i o n m e t h o d

 Edit1.ReadOnly := not Edit1.ReadOnly;
end;

See also
Alignment property, EditMask property, Options property, Title property, Visible property

For tables

Declaration

property ReadOnly: Boolean;

Use the ReadOnly property to prevent users from changing data in the table.

Note Set the Active property to False before changing ReadOnly.

Example

Table1.Active := False;
Table1.ReadOnly := True;
Table1.Active := True;

See also
Exclusive property

For field components

Declaration

property ReadOnly: Boolean;

ReadOnly enables or disables modification of a field. If set to False, the default, a field can
be modified. To prevent a field from being modified, set ReadOnly to True. In a TDBGrid,
tabbing from field to field skips over ReadOnly fields.

ReadSection method

Applies to
TIniFile object

Declaration

procedure ReadSection (const Section: string; Strings: TStrings);

The ReadSection method reads all the variables of a section of an .INI file into a string
object. The Strings parameter specifies the string list object. If you want to use a string
list that is maintained by a component such as a list box, Strings should specify the
property of the component that contains the string list. If you want to maintain the
string list independent of any components, use a TStringList object.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 645

R e a d S e c t i o n V a l u e s m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

The Section constant identifies the section of the .INI file that is read. For example, the
WIN.INI for Windows contains a [Desktop] section.

Example
This example uses a list box on a form. When the application runs, all the entries in the
Windows section of the WINI.INI file appear as items in the list box.

Before you run this example, you must put the IniFiles unit in the uses clause of your
unit.

procedure TForm1.FormActivate(Sender: TObject);
var
 WinIni: TIniFile;
begin
 WinIni := TIniFile.Create('WIN.INI');
 WinIni.ReadSection('Windows', ListBox1.Items);
 WinIni.Free;
end;

See also
EraseSection method, ReadBool method, ReadInteger method, ReadSectionValues method,
ReadString method, WriteBool method, WriteInteger method, WriteString method

ReadSectionValues method

Applies to
TIniFile object

Declaration

procedure ReadSectionValues(const Section: string; Strings: TStrings);

The ReadSectionValues method reads all the variables and their values of an entire
section of an .INI file into a string object. You can then use the Values property of string
and string list objects to access a specific string in the list of strings.

Example
This example reads the Transfer section of the DELPHI.INI file into a memo and
changes one of the strings:

procedure TForm1.Button1Click(Sender: TObject);
var
 DelphiIni: TIniFile;
begin
 DelphiIni := TIniFile.Create('c:\windows\delphi.ini');
 Memo1.Clear;
 DelphiIni.ReadSectionValues('Transfer', Memo1.Lines);
 Memo1.Lines.Values['Title1'] := 'Picture Painter';
 DelphiIni.Free;
end;

646 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R e a d S t r i n g m e t h o d

Although this example doesn’t do so, your code could then write the new value to the
DELPHI.INI file.

See also
EraseSection method, ReadBool method, ReadInteger method, ReadSection method,
ReadString method, Values property, WriteBool method, WriteInteger method, WriteString
method

ReadString method

Applies to
TIniFile object

Declaration

function ReadString(const Section, Ident, Default: string): string;

The ReadString method retrieves a string in an .INI file.

The Section constant identifies the section of the .INI file in which to search for the value.
For example, the WIN.INI for Windows contains a [Desktop] section.

The Ident constant is the name of the identifier of which you want the value.

The Default constant is the default string value.

Example
This example reads strings in the DELPHI.INI file and displays them on the form.

Before you run this application, you must add the IniFiles unit to the uses clause of your
unit.

procedure TForm1.FormActivate(Sender: TObject);
var
DelphiIni: TIniFile;

begin
 Canvas.TextOut(20, 10, 'VARIOUS DELPHI SETTINGS');
DelphiIni := TIniFile.Create('Delphi.Ini');

 with DelphiIni do
 begin
 with Canvas do
 begin
 TextOut(10, 50, 'Editor Font = ' +
 ReadString('Editor', 'FontName', 'ERROR'));
 TextOut(10, 70, 'Search Path = ' +
 ReadString('Library', 'SearchPath', 'ERROR'));
 TextOut(10, 90, 'Component Library = ' +
 ReadString('Library', 'ComponentLibrary', 'ERROR'));
 TextOut(10, 110, 'VBX Directory = ' +
 ReadString('VBX', 'VBXDir', 'ERROR'));
 TextOut(10, 130, 'VBX Unit Directory = ' +

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 647

R e A l l o c M e m f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

 ReadString('VBX', 'UnitDir', 'ERROR'));
 end;
 end;
DelphiIni.Free;

end;

See also
ReadBool method, ReadInteger method, ReadSection method, WriteBool method,
WriteInteger method, WriteString method

ReAllocMem function SysUtils

Declaration

function ReAllocMem(P: Pointer; CurSize, NewSize: Cardinal): Pointer;

ReAllocMem re-allocates a block. On entry, P points to an existing heap block, CurSize
gives the current size of the heap block, and NewSize specifies the requested new size of
the block.

If CurSize is less than NewSize, the additional bytes in the new buffer are set to zero. The
returned value is a pointer to the new block; this value is always different from the
original pointer.

See also
AllocMem function

RecalcReport method

Applies to
TReport component

Declaration

function RecalcReport: Boolean;

The RecalcReport method recalculates and reprints the report with the new value for the
report variable previously changed with the SetVariable method.

RecalcReport sends a DDE message to ReportSmith Runtime and looks for a DDE
message in return. If RecalcReport returns True, the DDE message to recalculate the
report was sent successfully to ReportSmith Runtime. If it returns False, ReportSmith
Runtime could not receive the message at the current time.

For more information about report variables, see your ReportSmith documentation.

Example
The following code sets the ‘FirstName’ report variable to ‘Marty’, then recalculates the
report.

648 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R e c t f u n c t i o n

Report1.SetVariable(‘FirstName’, ‘Marty’);
if not (Report1.RecalcReport) then
MessageDlg(‘Unable to recalculate’, mtInformation, [mbOK] 0);

See also
Preview property, Print method, Run method, SetVariable method, SetVariableLines
method

Rect function

Declaration

function Rect(ALeft, ATop, ARight, ABottom: Integer): TRect;

The Rect function returns a TRect record built from the individual coordinates passed in
ALeft, ATop, ARight, and ABottom. You’ll usually use Rect to construct parameters for
functions that require TRect, rather than setting up local variables for each one.

Example
The following code defines the display rectangle for a media player component to be
100 pixels wide, 200 pixels tall, with a top-left corner at coordinates (10, 10);

MediaPlayer1.DisplayRect := Rect(10, 10, 110, 210);

See also
Point function

RecordCount property

Applies to
TBatchMove, TQuery, TStoredProc, TTable components

For batch move components

Declaration

property RecordCount: Longint;

The RecordCount property is used to control the maximum number of records that will
be moved. If zero, all records are moved, beginning with the first record in Source. If
RecordCount is not zero, a maximum of RecordCount records will be moved, beginning
with the current record. If RecordCount exceeds the number of records remaining in
Source, no wraparound occurs; the operation is terminated.

Example

{ Limit the move to the first 1000 records }

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 649

R e c t a n g l e m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

BatchMove1.RecordCount := 1000;

For tables, queries, and stored procedures

Declaration

property RecordCount: Longint;

Run-time and read only. The RecordCount property specifies the number of records in
the dataset. The number of records reported may depend on the server and whether a
range limitation is in effect.

Rectangle method

Applies to
TCanvas object

Declaration

procedure Rectangle(X1, Y1, X2, Y2: Integer);

The Rectangle method draws a rectangle on the canvas with its upper left corner at the
point (X1, Y1) and its lower right corner at the point (X2, Y2). Rectangle draws the
rectangle using the current brush (TBrush) and pen (TPen) attributes.

Example
This example draws many rectangles of various sizes and colors on a form maximized
to fill the entire screen:

var
 X, Y: Integer;

procedure TForm1.FormActivate(Sender: TObject);
begin
 WindowState := wsMaximized;
 Canvas.Pen.Width := 5;
 Canvas.Pen.Style := psDot;
 Timer1.Interval := 50;
 Randomize;
end;

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 X := X + 4;
 Y := Y + 4;
 Canvas.Pen.Color := Random(65535);
 Canvas.Rectangle(X, Y, X + Random(400), Y + Random(400));
 if X > 700 then
 Timer1.Enabled := False;
end;

650 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R e f r e s h m e t h o d

See also
RoundRect method

Refresh method

Applies to
All controls; TTable, TQuery, TStoredProc components

For all controls

Declaration

procedure Refresh;

The Refresh method erases whatever image is on the screen and then repaints the entire
control. Within the implementation of Refresh, the Invalidate and then the Update
methods are called.

Example
The following code refreshes all windowed controls of Form1, then refreshes Form1.

var
I: Integer;

begin
for I := 0 to Form1.ComponentCount-1 do

if Form1.Components[i] is TWinControl then
with Form1.Components[i] as TWinControl do

Refresh;
Form1.Refresh;

end;

See also
Repaint method

For tables, queries, and stored procedures

Declaration

procedure Refresh;

The Refresh method rereads all records from the dataset. Use Refresh to be certain that
data controls display the latest information from the dataset. Calling Refresh may
unexpectedly change the displayed data, potentially confusing the user.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 651

R e g i s t e r F o r m A s O L E D r o p T a r g e t p r o c e d u r e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

RegisterFormAsOLEDropTarget procedure ToCtrl

Declaration

procedure RegisterFormAsOleDropTarget(Form: TForm; const Fmts: array of BOleFormat);

RegisterFormAsOLEDropTarget registers a form as a drag-and-drop target for OLE
objects. The object formats in the Fmts array are registered so the objects can be dropped
on the form. To register an OLE object format, you must declare a new Clipboard format
for OLE objects with the Windows API function RegisterClipboardFormat prior to the call
to RegisterFormAsOLEDropTarget.

Once a form is registered, the object formats which can be dropped can be modified
with the SetFormOLEDropFormats procedure or deleted with the
ClearFormOLEDropFormats procedure.

Example
The following code registers OLE formats for linked and embedded OLE objects. Then it
creates a formats array for linked and embedded objects, as well as text. Finally, Form1 is
registered as an OLE drop target.

var
FEmbedClipFmt, FLinkClipFmt: Word;
Fmts: array[0..2] of BOLEFormat;

begin
FEmbedClipFmt := RegisterClipboardFormat('Embedded Object');

 FLinkClipFmt := RegisterClipboardFormat('Link Source');
 Fmts[0].fmtId := FEmbedClipFmt;
 Fmts[0].fmtMedium := BOLEMediumCalc(FEmbedClipFmt);
 Fmts[0].fmtIsLinkable := False;
 StrPCopy (Fmts[0].fmtName, '%s');
 StrPCopy (Fmts[0].fmtResultName, '%s');
 Fmts[1].fmtId := FLinkClipFmt;
 Fmts[1].fmtMedium := BOLEMediumCalc(FLinkClipFmt);
 Fmts[1].fmtIsLinkable := True;
 StrPCopy (Fmts[1].fmtName, '%s');
 StrPCopy (Fmts[1].fmtResultName, '%s');
Fmts[2].fmtId := CT_TEXT;

 Fmts[2].fmtMedium := BOLEMediumCalc(CF_TEXT);
 Fmts[2].fmtIsLinkable := False;
 StrPCopy (Fmts[2].fmtName, 'Text');
 StrPCopy (Fmts[2].fmtResultName, 'Text');
RegisterFormAsOLEDropTarget(Self, Fmts);

end;

See also
TOLEDropNotify object

652 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R e l e a s e m e t h o d

Release method

Applies to
TForm component

Declaration

procedure Release;

The Release method destroys the form and releases its associated memory. It is much like
the Free method except that it does not destroy the form until all event handlers of the
form or event handlers of components on the form have finished executing.

Example
This example displays a message box about the form going away, calls Release, and
terminates the application.

procedure TForm1.Button1Click(Sender: TObject);
begin
 MessageDlg('This form is going away forever', mtInformation, [mbOK], 0);
 Release;
 Application.Terminate;
end;

See also
Free method, Destroy method

Release procedure System

Declaration

procedure Release(var p: pointer);

The Release procedure returns the heap to a given state.

Release should not be used with FreeMem or Dispose.

Note Release is obsolete for Delphi applications.

Example

uses Crt;

var
 p : pointer;
 p1,p2,p3 : ^Integer;
 begin
 ClrScr;
 New(p1); { Allocate an Integer }
 Mark(p); { Save heap state }
 New(p2); { Allocate two more Integers }

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 653

R e l e a s e H a n d l e m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

 New(p3);
 Release(p); { Memory reserved for p2^ and p3^ has been released; p1^ may still be used}
 end;

See also
Dispose procedure, FreeMem procedure, GetMem procedure, Mark procedure, New procedure

ReleaseHandle method

Applies to
TBitmap object

Declaration

function ReleaseHandle: HBitmap;

The ReleaseHandle method returns the handle to the bitmap so that the TBitmap object no
longer knows about the handle.

Example
The following code release the handle to the bitmap in MyBitmap.

MyBitmap.ReleaseHandle;

See also
ReleasePalette method

ReleaseOLEInitInfo procedure ToCtrl

Declaration

procedure ReleaseOleInitInfo(PInitInfo: Pointer);

ReleaseOLEInitInfo frees the memory allocated for OLE object initialization information.
ReleaseOLEInitInfo should be called after calling the InsertOLEObjectDlg or
PasteSpecialDlg functions to initialize a pointer to an OLE initialization information data
structure. Pass the pointer initialized by InsertOLEObjectDlg or PasteSpecialDlg in the
PInitInfo parameter of ReleaseOLEInitInfo.

Example
The following code uses PasteSpecialDlg to specify OLE initialization information. After
OLEContainer1 is initialized, the information is released. Fmts is assumed to be a valid
array of BOLEFormat records.

var
 ClipFmt: Word;
 DataHand: THandle;
 Info: Pointer;

654 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R e l e a s e P a l e t t e m e t h o d

begin
if PasteSpecialDlg(Form1, Fmts, 0, ClipFmt, DataHand, Info) then
begin

OLEContainer.PInitInfo := Info;
ReleaseOLEInitInfo(Info);

end;
end;

See also
PInitInfo property

ReleasePalette method

Applies to
TBitmap object

Declaration

function ReleasePalette: HPalette;

The ReleasePalette method returns the handle to the bitmap’s palette so that the TBitmap
object no longer knows about the palette.

Example
The following code release the palette of the bitmap in MyBitmap.

MyBitmap.ReleasePalette;

See also
ReleaseHandle method

Remove method

Applies to
TList object

Declaration

function Remove(Item: Pointer): Integer;

The Remove method deletes the item referenced in the Item parameter from the list of
pointers stored in the List property of a list object. The value returned is the position of
the item in the list of pointers before it was removed. After an item is removed, its
position in the list is nil.

Example
The following code adds a new object to a list in a list object and then removes it:

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 655

R e m o v e A l l P a s s w o r d s m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

type
 TMyClass = class
 MyString: string;
 constructor Create(S: string);
 end;

constructor TMyClass.Create(S: string);
begin
 MyString := S;
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 MyList: TList;
 MyObject, SameObject: TMyClass;
begin
 MyList := TList.Create; { create the list }
 try
 MyObject := TMyClass.Create('Semper Fidelis!'); { create a class instance }
 try
 MyList.Add(MyObject); { add instance to list }
 SameObject := TMyClass(MyList.Items[0]); { get first element in list }
 MessageDlg(SameObject.MyString, mtInformation, [mbOk], 0); { show it }
 MyList.Remove(MyObject);
 MessageDlg('Removing the object', mtInformation, [mbOk], 0);
 finally
 MyObject.Free;
 end; { don't forget to clean up! }
 finally
 MyList.Free;
 end;
end;

See also
Delete method

RemoveAllPasswords method

Applies to
TSession component

Declaration

procedure RemoveAllPasswords;

The RemoveAllPasswords method causes all previously entered password information to
be discarded. Any future access will require that new password information be
supplied before the table can be opened. This method affects Paradox databases only.

656 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R e m o v e C o m p o n e n t m e t h o d

Example

Session.RemoveAllPasswords;

See also
RemovePassword method, Session variable

RemoveComponent method

Applies to
All components

Declaration

procedure RemoveComponent(AComponent: TComponent);

The RemoveComponent method removes the component specified in the AComponent
parameter from the component’s Components list. That position in the list becomes nil.

Example
The following code removes Button2 from the Components list of Form1.

Form1.RemoveComponent(Button2);

See also
InsertComponent method

RemoveControl method

Applies to
All controls

Declaration

procedure RemoveControl(AControl: TControl);

The RemoveControl method removes the control specified with the AControl parameter
from the Controls array of this control. The result is that this control is no longer the
parent of the removed control.

Example
This example uses a button placed alongside a group box. When the user clicks the
button, the group box becomes the parent of the button, so the button moves inside the
group box:

procedure TForm1.Button1Click(Sender: TObject);
begin
 RemoveControl(Button1);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 657

R e m o v e P a r a m m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

 GroupBox1.InsertControl(Button1);
end;

Note that it was necessary to remove the button from the Controls property of the form
before the button actually appears to move into the group box.

This code accomplishes the same thing:

procedure TForm1.Button1Click(Sender: TObject);
begin
Button1.Parent := GroupBox1;

end;

See also
Controls property, InsertControl method

RemoveParam method

Applies to
TParams object

Declaration

procedure RemoveParam(Value: TParam);

RemoveParam removes Value from the Items property.

Example

{ Move all parameter info from Params2 to Params1 }
while Params2.Count <> 0 do
begin

{ Grab the first parameter from Params2 }
TempParam := Params2[0];

{ Remove it from Params2 }
Params2.RemoveParam(TempParam);

{ And add it to Params1 }
Params1.AddParam(TempParam);
end;

See also
AddParam method

RemovePassword method

Applies to
TSession component

658 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R e n a m e p r o c e d u r e

Declaration

procedure RemovePassword(const Password: string);

The RemovePassword method removes Password from the known set of authorizations.
Any future access will require that new password information be supplied before the
table can be opened. This method affects Paradox databases only.

Example
Session.RemovePassword(’MySecret’);

See also
RemoveAllPasswords method, Session variable

Rename procedure System

Declaration

procedure Rename(var F; Newname);

The Rename procedure changes the name of an external file.

F is a variable of any file type. Newname is a string-type expression or an expression of
type PChar if the extended syntax is enabled.

The external file associated with F is renamed Newname. Further operations on F operate
on the external file with the new name.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

Example

uses Dialogs;

var
 f : file;
 begin
 OpenDialog1.Title := 'Choose a file... ';
 if OpenDialog1.Execute then begin
 SaveDialog1.Title := 'Rename to...';
 if SaveDialog1.Execute then begin
 AssignFile(f, OpenDialog1.FileName);
 Canvas.TextOut(5, 10, 'Renaming ' + OpenDialog1.FileName + ' to ' +

SaveDialog1.FileName);
 Rename(f, SaveDialog1.FileName);
 end;
 end;
 end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 659

R e n a m e F i l e f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

See also
Erase procedure

RenameFile function SysUtils

Declaration

function RenameFile(const OldName, NewName: string): Boolean;

The RenameFile function attempts to change the name of the file specified by OldFile to
NewFile. If the operation succeeds, RenameFile returns True. If it cannot rename the file
(for example, if a file called NewName already exists), it returns False.

Example
The following code renames a file:

if not RenameFile('OLDNAME.TXT','NEWNAME.TXT') then
ErrorMsg('Error renaming file!');

See also
DeleteFile function

Repaint method

Applies to
All controls

Declaration

procedure Repaint;

The Repaint method forces the control to repaint its image on the screen, but without
erasing what already appears there. To erase before repainting, call the Refresh method
instead of Repaint.

Example
The following code repaints all windowed controls of Form1, then repaints Form1.

var
I: Integer;

begin
for I := 0 to Form1.ComponentCount-1 do

if Form1.Components[I] is TWinControl then
with Form1.Components[I] as TWinControl do

Repaint;
Form1.Repaint;

end;

660 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R e p l a c e T e x t p r o p e r t y

See also
Refresh method

ReplaceText property

Applies to
TReplaceDialog component

Declaration

property ReplaceText: string;

The ReplaceText property contains the string your application can use to replace the
string specified in the FindText property when the FindText value is found during a
search.

Example
The following code replaces the selected text in Memo1 with the value of ReplaceText.

Memo1.SelText := ReplaceDialog1.ReplaceText;

See also
FindText property

ReportDir property

Applies to
TReport component

Declaration

property ReportDir: string;

The value of the ReportDir is the directory where ReportSmith stores its reports and
expects to find saved reports. By specifying a report directory, you won’t have to
include a path when specifying a report name.

Example

The following text lets the user use the Save dialog box component to specify where
ReportSmith saves its reports.

if SaveDialog1.Execute then
Report1.ReportDir := SaveDialog1.FileName;

See also
ReportName property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 661

R e p o r t H a n d l e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

ReportHandle property

Applies to
TReport component

Declaration

property ReportHandle: HWND;

Run-time and read only. The value of the ReportHandle property is a Windows handle to
ReportSmith.

Example

The following code retrieves the window placement information for ReportSmith,
assuming Report1 is a valid TReport component.

var
RSWinPlacement: PWindowPlacement;

begin
GetWindowPlacement(Report1.ReportHandle, RSWinPlacement);

end;

ReportName property

Applies to
TReport component

Declaration

property ReportName: string;

The value of the ReportName property determines which report you want to run. You
can include a full path name as part of the report name if you have not specified a
ReportDir property value or want to run a report that is stored elsewhere. If you have
specified a ReportDir value, omit the path name and simply specify the name of the
report.

Example
The following code lets users use the Open dialog box component to specify the report
they want to run.

if OpenDialog1.Execute then
Report1.ReportName := OpenDialog1.FileName;

See also
ReportDir property

662 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R e q u e s t D a t a m e t h o d

RequestData method

Applies to
TDDEClientConv component

Declaration

function RequestData(const Item: string): PChar;

The RequestData method requests data from a DDE server. Call RequestData when you
want your DDE client application to receive data from the server once, instead of being
updated continually. Another reason to use RequestData is that some DDE servers
contain DDE items that can’t be continually updated; the only way for your client to
access these items is to explicitly request the data.

Item specifies the DDE server item you want data from. The value of the DDE item
depends on the linked DDE server application. Item is typically a selectable portion of
text, such as a spreadsheet cell or a database field in an edit box. If the DDE server is an
Delphi application, Item is the name of the linked DDE server component.

Note See the documentation for the DDE server application for the specific information about
specifying DDEItem.

RequestData returns a null-terminated PChar string which contains the value of the item
requested of the DDE server. RequestData automatically allocates memory to store this
data, but you must dispose of the PChar string returned by RequestData after you have
finished processing it. This is done with the StrDispose function.

Example
The following code requests data from the DDE server and displays it in Label1. The
DDE item of the conversation is specified in the DDEItem property of DDEClientItem1.

var
TheData: PChar;

begin
TheData := DDEClientConv1.RequestData(DDEClientItem1.DDEItem);
Label1.Caption := StrPas(TheData);

end;

See also
StrPas function

RequestLive property

Applies to
TQuery component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 663

R e q u i r e d p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

Declaration

property RequestLive: Boolean;

By default, a TQuery always returns a read-only result set. Set RequestLive to True to
request a live result set. The BDE will then return a live result set if the SELECT syntax
of the query conforms to the syntax requirements for a live result set. If RequestLive is
True, but the syntax does not conform to the requirements, the BDE returns a read-only
result set (for local SQL) or an error return code (for passthrough SQL). If a query
returns a live result set, Delphi will set the CanModify property to True.

See also
Local property

Required property

Applies to
TFieldDef object; TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField,
TDateField, TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField,
TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

For field components

Declaration

property Required: Boolean;

Specifies whether a non-nil value for a field is required. The default value is False,
meaning a field does not require a value. If a field is created with the Fields Editor, then
this property is set based on the underlying table. Set Required to True for fields that
must get values (for example, a password or part number), and write an OnValidate
event handler for the field. Before a record is posted, exceptions are raised for any
required fields that have nil values.

For TFieldDef objects

Declaration

property Required: Boolean;

Run-time and read only. Reports whether or not a value for a physical field in an
underlying table is required.

RequestLive CanModify Type of result set

False False Read-only result set
True—SELECT syntax meets requirements True Live result set
True—SELECT syntax does not meet requirements False Read-only result set

664 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R e s e t p r o c e d u r e

Example

{ Is field required? }
if FieldDef1.Required) then
MessageDlg(Name 'is a required field’ , mtInformation, [mbOK], 0);

See also
TField component

Reset procedure System

Declaration

procedure Reset(var F [: File; RecSize: Word]);

The Reset procedure opens an existing file.

F is a variable of any file type associated with an external file using AssignFile. RecSize is
an optional expression, which can be specified only if F is an untyped file. If F is an
untyped file, RecSize specifies the record size to be used in data transfers. If RecSize is
omitted, a default record size of 128 bytes is assumed.

Reset opens the existing external file with the name assigned to F. An error results if no
existing external file of the given name exists. If F is already open, it is first closed and
then reopened. The current file position is set to the beginning of the file.

If F is assigned an empty name, such as AssignFile(F, ''), then after the call to Reset, F
refers to the standard input file (standard handle number 0).

If F is a text file, F becomes read-only.

After a call to Reset, Eof(F) is True if the file is empty; otherwise, Eof(F) is False.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

Example

function FileExists(FileName: string): Boolean;
{ Boolean function that returns True if the file exists; otherwise,
 it returns False. Closes the file if it exists. }
 var
 F: file;
begin
 {$I–}
 AssignFile(F, FileName);
 FileMode := 0; (Set file access to read only }
 Reset(F);
 CloseFile(F);
 {$I+}
 FileExists := (IOResult = 0) and (FileName <> '');

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 665

R e s t o r e m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

end; { FileExists }

begin
 if FileExists(ParamStr(1)) then {Get file name from command line}
 Canvas.TextOut(10, 10, 'File exists')
 else
 Canvas.TextOut(10, 10, 'File not found');
end;

See also
Append procedure, AssignFile procedure, FileClose procedure, Rewrite procedure, Truncate
procedure

Restore method

Applies to
TApplication component

Declaration

procedure Restore;

The Restore method returns your application to its previous size before it was
maximized or minimized.

Don’t confuse the Restore method with restoring a form or window to its original size.
To minimize, maximize, and restore a window or form, you change the value of the
WindowState property.

Example
This example uses a timer on a form. When the application runs and the user minimizes
the application, the application returns to its normal size when an OnTimer event occurs:

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 Application.Restore;
end;

See also
BorderIcons property, BorderStyle property, Minimize method

RestoreTopMosts method

Applies to
TApplication component

666 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R e s u m e m e t h o d

Declaration

procedure RestoreTopMosts;

The RestoreTopMosts method restores forms that were originally designated as topmost
forms (FormStyle is fsStayOnTop) and then temporarily changed to be non-topmost
forms with the NormalizeTopMosts method call. After a call to RestoreTopMosts, the
topmost forms move on top of other forms again.

Example
The following code normalizes topmost forms before calling the MessageBox function in
the WinProcs unit. After the message box is closed, the topmost forms are restored.

begin
 Application.NormalizeTopMosts;
 MessageBox(Form1.Handle, 'This should be on top.', 'Message Box', MB_OK);
 Application.RestoreTopMosts;
end;

Resume method

Applies to
TMediaPlayer component

Declaration

procedure Resume;

The Resume method resumes playing or recording the currently paused multimedia
device. Resume is called when the Pause button on the media player control is clicked at
run time, when the device is paused.

Upon completion, Resume stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Resume method has completed. The Notify property determines whether Resume
generates an OnNotify event.

Example
The following code resumes the playing or recording of MediaPlayer1.

MediaPlayer1.Resume;

See also
Pause method, PauseOnly method

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 667

R e w i n d m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

Rewind method

Applies to
TMediaPlayer component

Declaration

procedure Rewind;

The Rewind method sets the current position to the beginning of the medium, which is
stored in the Start property.

Upon completion, Rewind stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Rewind method has completed. The Notify property determines whether Rewind
generates an OnNotify event.

Example
This example uses a media player and a button on a form. When the user clicks the
button, the WAV audio media rewinds and begins playing. To run this example
successfully, you must have installed a WAV audio device correctly.

procedure TForm1.FormClick(Sender: TObject);
begin
 MediaPlayer1.DeviceType := dtWaveAudio;
FileName := ‘CHIMES.WAV’;
Button1.Caption := 'Rewind and Play';

 Button1.Width := 130;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 MediaPlayer1.Rewind;
 MediaPlayer1.Play;
end;

See also
AutoRewind property, Back method

Rewrite procedure System

Declaration

procedure Rewrite(var F: File [; Recsize: Word]);

The Rewrite procedure creates and opens a new file.

F is a variable of any file type associated with an external file using AssignFile. RecSize is
an optional expression, which can be specified only if F is an untyped file. If F is an

668 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R m D i r p r o c e d u r e

untyped file, RecSize specifies the record size to be used in data transfers. If RecSize is
omitted, a default record size of 128 bytes is assumed.

Rewrite creates a new external file with the name assigned to F.

If an external file with the same name already exists, it is deleted and a new empty file is
created in its place.

If F is already open, it is first closed and then re-created. The current file position is set to
the beginning of the empty file.

If F was assigned an empty name, such as AssignFile(F,''), then after the call to Rewrite, F
refers to the standard output file (standard handle number 1).

If F is a text file, F becomes write-only.

After calling Rewrite, Eof(F) is always True.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

Example

var F: TextFile;
begin
 AssignFile(F, 'NEWFILE.$$$');
 Rewrite(F);
 Writeln(F, 'Just created file with this text in it...');
 CloseFile(F);
end;

See also
Append procedure, AssignFile procedure, Reset procedure, Truncate procedure

RmDir procedure System

Declaration

procedure RmDir(S: string);

The RmDir procedure deletes an empty subdirectory.

RmDir removes the subdirectory with the path specified by S. If the path does not exist,
is non-empty, or is the currently logged directory, an I/O error occurs.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 669

R o l l b a c k m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

Example

uses Dialogs;

begin
 {$I–}
 { Get directory name from TEdit control }
 RmDir(Edit1.Text);
 if IOResult <> 0 then
 MessageDlg('Cannot remove directory', mtWarning, [mbOk], 0)
 else
 MessageDlg('Directory removed', mtInformation, [mbOk], 0);
 end;

See also
ChDir procedure, GetDir procedure, MkDir procedure

Rollback method

Applies to
TDataBase component

Declaration

procedure Rollback;

The Rollback method rolls back the current transaction and thus cancels all modifications
made to the database since the last call to StartTransaction. Use this method only when
connected to a server database.

Example

with Database1 do
begin
StartTransaction;

{ Update one or more records in tables linked to Database1 }
...
Rollback;
end;

See also
Commit method

Round function System

Declaration

function Round(X: Real): Longint;

670 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R o u n d R e c t m e t h o d

The Round function rounds a real-type value to an integer-type value.

X is a real-type expression. Round returns a Longint value that is the value of X rounded
to the nearest whole number. If X is exactly halfway between two whole numbers, the
result is the number with the greatest absolute magnitude.

If the rounded value of X is not within the Longint range, you will generate a run-time
error, which you can handle using the EInvalidOp exception.

Example

var
 S, T: string;

begin
 Str(1.4:2:1, T);
 S := T + ' rounds to ' + IntToStr(Round(1.4)) + #13#10;
 Str(1.5:2:1, T);
 S := S + T + ' rounds to ' + IntToStr(Round(1.5)) + #13#10;
 Str(-1.4:2:1, T);
 S := S + T + ' rounds to ' + IntToStr(Round(-1.4)) + #13#10;
 Str(-1.5:2:1, T);
 S := S + T + ' rounds to ' + IntToStr(Round(-1.5));
 MessageDlg(S, mtInformation, [mbOk], 0);
end;

See also
Int function, Trunc function

RoundRect method

Applies to
TCanvas object

Declaration

procedure RoundRect(X1, Y1, X2, Y2, X3, Y3: Integer);

The RoundRect method draws a rectangle on a canvas with the upper left corner at (X1,
Y1) and the lower right corner at (X2, Y2), much as the Rectangle method does. However,
RoundRect draws the corners as quarters of an ellipse with the width of X3 and a height
of Y3.

Example
This example draws many rectangles of various sizes and colors on a form maximized
to fill the entire screen:

var
 X, Y: Integer;

procedure TForm1.FormActivate(Sender: TObject);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 671

R o w p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

begin
 WindowState := wsMaximized;
 Canvas.Pen.Width := 5;
 Canvas.Pen.Style := psDot;
 Timer1.Interval := 50;
 Randomize;
end;

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 X := X + 4;
 Y := Y + 4;
 Canvas.Pen.Color := Random(65535);
 Canvas.RoundRect(X, Y, X + Random(400), Y + Random(400), 10, 10);
 if X > 700 then
 Timer1.Enabled := False;
end;

See also
Ellipse method, Rectangle method

Row property

Applies to
TDrawGrid, TOutline, TStringGrid components

Declaration

property Row: Longint;

Run-time only. The value of the Row property indicates which row of the control has
focus. For outlines, you can use the Row property to determine which item is selected at
run time. For the grid components, you can use Row along with the Col property to
determine which cell is selected.

Example
This examples uses a string grid with a label above it on a form. When the user clicks a
cell in the grid, the location of the cursor is displayed in the caption of the label.

procedure TForm1.StringGrid1Click(Sender: TObject);
begin
 Label1.Caption := 'The cursor is in column ' + IntToStr(StringGrid1.Col + 1)
 + ', row ' + IntToStr(StringGrid1.Row + 1);
end;

See also
DefaultRowHeight property, RowCount property, RowHeights property

672 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R o w C o u n t p r o p e r t y

RowCount property

Applies to
TDrawGrid, TStringGrid components

Declaration

property RowCount: Longint;

The value of the RowCount property determines the number of rows that appear in the
grid.

Example
This example uses a string grid and a button. When the user clicks the button, the
number of columns and rows change:

procedure TForm1.Button1Click(Sender: TObject);
begin
 StringGrid1.ColCount := 7;
 StringGrid1.RowCount := 11;
end;

See also
ColCount property, Row property, RowHeights property

RowHeights property

Applies to
TDrawGrid, TStringGrid components

Declaration

property RowHeights[Index: Longint]: Integer;

Run-time only. The RowHeights property determines the height in pixels of all the cells
within the row referenced by the Index parameter.

By default, all the rows are the same height, the value found in the DefaultRowHeight
property. To change the height of all rows within a grid, change the DefaultRowHeight
property value.

To change the height of one row without affecting any others, change the RowHeights
property. Specify the row you want to change as the value of the Index parameter.
Remember, the first row always has an Index value of 0.

Example
This example uses a string grid and a button. When the user clicks the button, the
number of columns and rows change, and the first column and row in the grid are sized
differently from the rest of the columns and rows:

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 673

R o w s p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

procedure TForm1.Button1Click(Sender: TObject);
begin
with StringGrid1 do
 begin
 ColCount := 7;
 RowCount := 11;
 RowHeights[0] := 35;
 ColWidths[0] := 90;
 end;
end;

See also
ColWidths property, DefaultColWidth property, Row property

Rows property

Applies to
TStringGrid component

Declaration

property Rows[Index: Integer]: TStrings;

Run-time only. The Rows property is an array of the strings and their associated objects
in a row. The number of strings and associated objects is always the value of the
RowCount property, the number of rows in the grid. Use the Rows property to access the
strings and their associated objects within a particular row in the grid. The Index
parameter is the number of the row you want to access, with the first row having an
Index value of zero.

Example
This example displays a string grid, a list box, and a button on a form. When the
application runs, strings are put in the cells of row 1 of the string grid. When the user
clicks the button, each string in row 1 appears as an item in the list box.

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items := StringGrid1.Rows[1];
 Button1.Enabled := False;
end;

procedure TForm1.FormCreate(Sender: TObject);
begin
 with StringGrid1 do
 begin
 Cells[1,1] := 'Object';
 Cells[2,1] := 'Pascal';
 Cells[3,1] := 'is';
 Cells[4,1] := 'excellent';
 end;

674 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

R u n m e t h o d

end;

Note that the first position of the list box is empty, because there is no string in the cell
referenced by Cells[0, 1].

See also
Cells property, Cols property, Objects property, TStrings object

Run method

Applies to
TApplication, TReport components

For an application

Declaration

procedure Run;

The Run method executes the application.

When you create a new project, Delphi automatically creates a main program block in
the project file that calls the Run method.

Example
The main program block of a Delphi project always looks like this, by default:

begin
Application.CreateForm(TForm1, Form1);

 Application.Run;
end.

See also
CreateForm method, MainForm property

For reports

Declaration

procedure Run;

The Run method loads ReportSmith Runtime, runs the report specified as the value of
the ReportName property, and prints the report.

Example
The following code allows the user to specify the report with the Open dialog box and
then runs the report.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 675

R u n E r r o r p r o c e d u r e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

if OpenDialog1.Execute then
begin
Report1.ReportName := OpenDialog1.FileName;
Report1.Run;

end;

See also
Preview property, Print method, ReportName property

RunError procedure System

Declaration

procedure RunError [(Errorcode: Byte)];

The RunError procedure stops program execution by generating a run-time error with
the given number at the current statement.

Errorcode is the run-time error number (0 if omitted). If you compile the current module
with debug information on, and run the program within Delphi, Delphi automatically
takes your RunError call.

Example

begin
{$IFDEF Debug}
 if P = nil then
 RunError(204);
{$ENDIF}
end;

See also
Exit procedure, Halt procedure

RunMacro method

Applies to
TReport component

Declaration

function RunMacro(Macro: string): Boolean;

The RunMacro method runs the ReportBasic macro specified as the value of the Macro
parameter.

The RunMacro method sends a DDE message to ReportSmith Runtime to run the
specified macro and looks for a DDE message from ReportSmith Runtime in return. If
RunMacro returns True, the message to run the macro was sent successfully to

676 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S a v e m e t h o d

ReportSmith Runtime. If it returns False, ReportSmith Runtime could not receive the
DDE message at the current time.

For information about ReportBasic macros, refer to your ReportSmith documentation.

Example
The following code runs the macro “SELALL.MAC”.

Report1.RunMacro(‘SELALL.MAC’);

See also
Run method

Save method

Applies to
TMediaPlayer component

Declaration

procedure Save;

The Save method saves the currently loaded medium to the file specified in the FileName
property. Save is ignored for devices that don’t use media stored in files (videodiscs, for
example).

Upon completion, Save stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Save method has completed. The Notify property determines whether Save generates an
OnNotify event.

Example
The following code saves to a file when the SaveButton is clicked, assuming that
FileName has been specified.

procedure TForm1.SaveButtonClick(Sender: TObject);
begin
MediaPlayer1.Save;

end;

See also
Close method, Open method

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 677

S a v e T o F i l e m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SaveToFile method

Applies to
TBitmap, TBlobField, TGraphic, TGraphicField, TIcon, TMemoField, TMetafile, TPicture,
TStringList, TStrings objects; TOLEContainer, TOutline components

Declaration

procedure SaveToFile(const FileName: string);

The SaveToFile method saves an object to the file specified in FileName. The graphic
objects save a graphic to the file, the OLE container saves an OLE object to the file, the
outline and string objects save text to the file, and the field components save the contents
of the field to the file.

Example
This example uses a memo control and two buttons on a form. When the application
runs, the code attempts to load text in a text file named SOMETEXT.TXT into the memo
control. If the attempt fails, a message box appear, prompting the user to enter text in the
memo.

The user must choose one of the two buttons, as there is no System menu (also called a
Control menu) on the form to close the form. If the user chooses the button labeled Save,
the contents of the memo control is saved in a file named SOMETEXT.TXT, and the
form closes. If the user chooses the button labeled Discard, the lines in the memo control
are not saved, and the form closes.

procedure TForm1.FormCreate(Sender: TObject);
begin
 BorderIcons := [];
 Button1.Caption := 'Save';
 Button2.Caption := 'Discard';
 try
 Memo1.Lines.LoadFromFile('SOMETEXT.TXT');
 except
 Memo1.Lines.Clear;
 MessageDlg('When form appears, type in the memo control',
 mtInformation, [mbOk], 0);
 end;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 Memo1.Lines.SaveToFile('SOMETEXT.TXT');
 Close;
end;

procedure TForm1.Button2Click(Sender: TObject);
begin
 Close;
end;

678 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S a v e T o S t r e a m m e t h o d

This example stored a blob field into a file:

{ Store a blob field into a temporary file }
BlobField1.SaveToFile(‘c:\windows\temp\myblob.blb’);

See also
LoadFromFile method, LoadFromStream method, SaveToStream method

SaveToStream method

Applies to
TBlobField, TGraphicField, TMemoField components

Declaration

procedure SaveToStream(Stream: TStream);

The SaveToStream method writes a stream with the name passed in Stream with the
contents of TBlobField, TMemoField, or TGraphicField.

Example

{ Store a blob field into a stream }
BlobField1.SaveToStream(Stream1);

See also
LoadFromFile method, LoadFromStream method, SaveToFile method

ScaleBy method

Applies to
All controls

Declaration

procedure ScaleBy(M, D: Integer);

Description

The ScaleBy method scales a control to a percentage of its former size. The M parameter
is the multiplier and the D parameter is the divisor. For example, if you want a control to
be 75% of its original size, specify the value of M as 75, and the value of D as 100 (75/
100). You could also obtain the same results by specifying the value of M as 3, and the
value of D as 4 (3/4). Both fractions are equal and result in the control being scaled by
the same amount, 75%.

If you want the control to be 33% larger than its previous size, specify the value of M as
133, and the value of D as 100 (133/100). You can also obtain the same results by

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 679

S c a l e d p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

specifying the value of M as 4, and the value of D as 3 (4/3), as the fraction 133/100 is
approximately equal to 4/3.

Example
This example makes your form 50% larger:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ScaleBy(150, 100);
end;

See also
Scaled property

Scaled property

Applies to
TForm component

Declaration

property Scaled: Boolean;

The Scaled property determines if the form is scaled to the value in the PixelsPerInch
property. If Scaled is True and the value of PixelsPerInch differs from its default value, the
form is scaled to a new size. If Scaled is False, no scaling occurs, regardless of the
PixelsPerInch value. The default value is True.

Example
This code ensures that the form is always scaled to whatever value is in the PixelsPerInch
property:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Scaled := True;
end;

See also
PixelsPerInch property, ScaleBy method

Screen variable Forms

Declaration

Screen: TScreen;

680 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S c r e e n S i z e t y p e d c o n s t a n t

The Screen variable is a TScreen component that normally represents your screen device.
By default, your application creates a screen component based on information from
Windows about the current screen device and assigns it to Screen.

Example
The following code sets the width of a form called Form1 to half the width of the screen:

Form1.Width := Screen.Width div 2;

ScreenSize typed constant WinCrt

Declaration

const ScreenSize: TPoint = (X: 80; Y: 25);

The ScreenSize typed constant determines the width and height in characters of the
virtual screen within the CRT window.

The default screen size is 80 columns by 25 lines.

You can change the size of the virtual screen by assigning new values to the x- and y-
coordinates of ScreenSize before the CRT window is created.

The value given by ScreenSize.X multiplied by ScreenSize.Y must not exceed 65,520.

ScreenToClient method

Applies to
All controls

Declaration

function ScreenToClient(Point: TPoint): TPoint;

The ScreenToClient method is used to determine the control coordinates in pixels of a
point on the screen. ScreenToClient returns X and Y coordinates in a record of type
TPoint.

Example
The following code converts the origin of the screen (0, 0) to the client coordinates of
Button2.

var
ScreenOrgin, ClientPoint: TPoint;

begin
ScreenOrgin.X := 0;
ScreenOrgin.Y := 0;
ClientPoint := Button2.ScreenToClient(ScreenOrgin);

end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 681

S c r o l l B a r s p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

See also
ClientToScreen method

ScrollBars property

Applies to
TDBMemo, TDrawGrid, TMemo, TStringGrid components

Declaration

property ScrollBars: TScrollStyle;

The ScrollBars property controls whether a memo control or a grid control has any scroll
bars. You can set ScrollBars to any of the following values:

By default, grids have both vertical and horizontal scroll bars, while memo controls
have none.

Example
The following example adds a scroll bar to the bottom of memo control Memo1:

Memo1.ScrollBars := scHorizontal;

See also
HorzScrollBar property, VertScrollBar property

ScrollBy method

Applies to
All controls; TForm component

Declaration

procedure ScrollBy(DeltaX, DeltaY: Integer);

The ScrollBy method scrolls the contents of a form or windowed control. You will
seldom need to call the ScrollBy method unless you want to write your own scrolling
logic rather than use a scroll bar.

The DeltaX parameter is the change in pixels along the X axis. A positive DeltaX value
scrolls the contents to the right; a negative value scrolls the contents to the left. The

Value Meaning

ssNone No scroll bar
ssHorizontal Puts a scroll bar on the right edge
ssVertical Puts a scroll bar on the bottom edge
ssBoth Puts a scroll bar on both the right and bottom edges

682 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S c r o l l I n V i e w m e t h o d

DeltaY parameter is the change in pixels along the Y axis. A positive DeltaY value scrolls
the contents down; a negative value scrolls the contents up.

Example
This example uses a timer and several controls of your choosing on a form. When the
application runs, the controls on the form appear to slide down and off to the right. This
is because the contents of the form are scrolling both down and to the right by one pixel
each time a timer event occurs:

procedure TForm1.FormActivate(Sender: TObject);
begin
 Timer1.Interval := 1;
end;

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 ScrollBy(1,1);
end;

See also
HorzScrollBar property, ScrollBars property, ScrollInView method, TScrollBox component,
VertScrollBar property

ScrollInView method

Applies to
TForm, TScrollBox components

Declaration

procedure ScrollInView(AControl: TControl);

The ScrollInView method scrolls the form or scroll box so that at least part of the control
specified as the AControl parameter is in view.

Example
This example uses two buttons on a form. Place each button on opposite sides of the
form. When the user runs the application and resizes the form so that it is smaller,
clicking either of the buttons scrolls the form so that at least part of the other button is
visible:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ScrollInView(Button2);
end;

procedure TForm1.Button2Click(Sender: TObject);
begin
 ScrollInView(Button1);
end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 683

S c r o l l P o s p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

See also
HorzScrollBar property, VertScrollBar property

ScrollPos property

Applies to
TControlScrollBar component

Declaration

property ScrollPos: Integer

Run-time and read only. The value of the ScrollPos property is the current Position value
of a horizontal or vertical scroll bar on a form or scroll box.

Example
This example uses a label on a form. When the application runs, resize the form so a
horizontal scroll bar appears. You can use the scroll bar to scroll the form. Each time you
click the label, it reports the current position of the scroll bar:

procedure TForm1.Label1Click(Sender: TObject);
begin
 Label1.Caption := 'Scroll bar position is ' + IntToStr(HorzScrollBar.ScrollPos);
end;

See also
HorzScrollBar property, Position property, VertScrollBar property

ScrollTo procedure WinCrt

Declaration

procedure ScrollTo(X, Y: Integer);

The ScrollTo procedure scrolls the CRT window to show the virtual screen location (X,Y)
in the upper left corner.

The upper left corner of the virtual screen corresponds to (0,0).

Example

uses WinCrt;

begin
 GotoXY(1,10);
 Writeln('Hello');
 Writeln('Type in a line and press Enter.');
 Readln;
 ScrollTo(0,10);
end;

684 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S e c t i o n s p r o p e r t y

See also
GoToXY procedure

Sections property

Applies to
THeader component

Declaration

property Sections: TStrings

The Sections property is a list of strings that contain the text for the sections of a header.
The number of lines of the string list determines the number of sections of the header. If
the string list is empty, the header will have one blank section. If this string list contains
one or more lines, the text of each line will be in its own section. The first line will be in
the leftmost section, the second line will be in the next section to the right, and so on.

Example
The following code adds ‘Schaeferle’ to the header sections list.

Header1.Sections.Add(‘Schaeferle’);

See also
SectionWidth property

SectionWidth property

Applies to
THeader component

Declaration

property SectionWidth[X: Integer]: Integer;

Run-time only. The SectionWidth array property determines the width in pixels of the
sections of a header. X is an index into the sections, from 0 to the number of sections - 1.
For example, the index of the first section is 0, the second section is 1, and so on.

Example
The following code doubles the width of all the sections of a header.

var
I: Integer;

begin
with Header1 do

for I := Sections.Count-1 do

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 685

S e e k m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SectionWidth[I] := SectionWidth[I] * 2;
end;

See also
Sections property

Seek method

Applies to
TBlobStream object

Declaration

function Seek(Offset: Longint; Origin: Word): Longint;

The Seek function resets the current position within the TBlobStream. If Origin is 0, the
new position is Offset (seek absolute). If Origin is 1, the new position is Position + Offset
(seek relative). If Origin is 2, the new position is Size + Offset (seek absolute from end of
data). Seek returns the new position, relative to the beginning of the BLOB stream.

Note When Origin is 0, Offset must be >= 0. When Origin is 2, Offset must be <= 0.

Example

{ Move to the end of the data so we can add more to it }
BlobStream1.Seek(0, 2);

See also
TBlobField component, TBytesField component, TVarBytesField component

Seek procedure System

Declaration

procedure Seek(var F; N: Longint);

The Seek procedure moves the current position of a file to a specified component. You
can use Seek only on open typed or untyped files.

In the above syntax, F is a typed or untyped file variable, and N is an expression of type
Longint.

The current file position of F moves to component number N. The number of the first
component of a file is 0.

To expand a file, you can seek one component beyond the last component; that is, the
statement Seek(F, FileSize(F)) moves the current file position to the end of the file.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

686 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S e e k E o f f u n c t i o n

If you are using {$I–}, you must use IOResult to check for I/O errors.

Example

uses Dialogs;

var
 f: file of Byte;
 size : Longint;
 S: string;
 y: integer;
 begin
 if OpenDialog1.Execute then begin
 AssignFile(f, OpenDialog1.FileName);
 Reset(f);
 size := FileSize(f);
 S := 'File size in bytes: ' + IntToStr(size);
 y := 10;
 Canvas.TextOut(5, y, S);
 y := y + Canvas.TextHeight(S) + 5;
 S := 'Seeking halfway into file...';
 Canvas.TextOut(5, y, S);
 y := y + Canvas.TextHeight(S) + 5;
 Seek(f,size div 2);
 S := 'Position is now ' + IntToStr(FilePos(f));
 Canvas.TextOut(5, y, S);
 CloseFile(f);
 end;
 end;

See also
FilePos function

SeekEof function System

Declaration

function SeekEof [(var F: Text)]: Boolean;

The SeekEof function returns the end-of-file status of a file.

SeekEof can only be used on open text files.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

Example

var
 f : System.TextFile;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 687

S e e k E o l n f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

 i, j, Y : Integer;
 begin
 AssignFile(f,'TEST.TXT');
 Rewrite(f);
 { Create a file with 8 numbers and some
 whitespace at the ends of the lines }
 Writeln(f,'1 2 3 4 ');
 Writeln(f,'5 6 7 8 ');
 Reset(f);
 { Read the numbers back. SeekEoln returns TRUE if there are no more numbers on the

current line; SeekEof returns TRUE if there is no more text (other than whitespace)
in the file. }

 Y := 5;
 while not SeekEof(f) do
 begin
 if SeekEoln(f) then
 Readln; { Go to next line }
 Read(f,j);
 Canvas.TextOut(5, Y, IntToStr(j));
 Y := Y + Canvas.TextHeight(IntToStr(j)) + 5;
 end;
 end;

See also
Eof function, SeekEoln function

SeekEoln function System

Declaration

function SeekEoln [(var F: Text)]: Boolean;

The SeekEoln function returns the end-of-line status of a file.

SeekEoln can be used only on open text files.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

Example

var
 f : System.TextFile;
 i, j, Y : Integer;
 begin
 AssignFile(f,'TEST.TXT');
 Rewrite(f);
 { Create a file with 8 numbers and some
 whitespace at the ends of the lines }
 Writeln(f,'1 2 3 4 ');

688 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S e g f u n c t i o n

 Writeln(f,'5 6 7 8 ');
 Reset(f);
 { Read the numbers back. SeekEoln returns TRUE if there are no more numbers on the

current line; SeekEof returns TRUE if there is no more text (other than whitespace)
in the file. }

 Y := 5;
 while not SeekEof(f) do
 begin
 if SeekEoln(f) then
 Readln; { Go to next line }
 Read(f,j);
 Canvas.TextOut(5, Y, IntToStr(j));
 Y := Y + Canvas.TextHeight(IntToStr(j)) + 5;
 end;
 end;

See also
Eoln function, SeekEof function

Seg function System

Declaration

function Seg(X): Word;

The Seg function returns the segment of a specified object.

X is any variable, or a procedure or function identifier. The result is the segment part of
the address of X.

Example

function MakeHexWord(w: Word): string;
 const
 hexChars: array [0..$F] of Char =
 '0123456789ABCDEF';
var
 HexStr : string;
 begin
 HexStr := '';
 HexStr := HexStr + hexChars[Hi(w) shr 4];
 HexStr := HexStr + hexChars[Hi(w) and $F];
 HexStr := HexStr + hexChars[Lo(w) shr 4];
 HexStr := HexStr + hexChars[Lo(w) and $F];
 MakeHexWord := HexStr;
 end;

var
 i: Integer;
 Y: Integer;
 S: string;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 689

S e l C o u n t p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

begin
 Y := 10;
 S := 'The current code segment is $' + MakeHexWord(CSeg);
 Canvas.TextOut(5, Y, S);

Y := Y + Canvas.TextHeight(S) + 5;
 S := 'The global data segment is $' + MakeHexWord(DSeg);
 Canvas.TextOut(5, Y, S);

Y := Y + Canvas.TextHeight(S) + 5;
 S := 'The stack segment is $' + MakeHexWord(SSeg);
 Canvas.TextOut(5, Y, S);

Y := Y + Canvas.TextHeight(S) + 5;
 S := 'The stack pointer is at $' + MakeHexWord(SPtr);
 Canvas.TextOut(5, Y, S);

Y := Y + Canvas.TextHeight(S) + 5;
 S := 'i is at offset $' + MakeHexWord(Ofs(i));
 Canvas.TextOut(5, Y, S);

Y := Y + Canvas.TextHeight(S) + 5;
 S := 'in segment $' + MakeHexWord(Seg(i));
 Canvas.TextOut(5, Y, S);
end;

See also
Addr function, Ofs function

SelCount property

Applies to
TDBListBox, TDirectoryListBox, TFileListBox, TListBox components

Declaration

property SelCount: Integer;

Run-time and read only. The SelCount property reports the number of items that are
selected in a list box when the value of the MultiSelect property is True. When MultiSelect
property is False, only one item can be selected. If no items are selected, the value of
SelCount is 0.

Example
This example uses a list box, a label, and a button on a form. Enter several strings in the
list box as the value of the Items property. When the user selects items in the list box and
clicks the button, the number of items selected in the list box is displayed in the caption
of the label:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := IntToStr(ListBox1.SelCount) + ' items are selected';

690 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S e l e c t A l l m e t h o d

end;

See also
ExtendedSelect property, MultiSelect property, Selected property

SelectAll method

Applies to
TComboBox, TDBComboBox, TDBEdit, TDBMemo, TDriveComboBox, TEdit,
TFilterComboBox, TMaskEdit, TMemo components

Declaration

procedure SelectAll;

The SelectAll method selects the entire block of text in the control. If you want to select
only part of the text, use the SelStart and SelLength properties.

Example
The following code selects all the text in Memo1.

Memo1.SelectAll;

 See also
SelLength property, SelStart property, SelText property, Text property

SelectDirectory function FileCtrl

Declaration

function SelectDirectory(var Directory: string; Options: TSelectDirOpts; HelpCtx: Longint):
Boolean;

The SelectDirectory function lets the user enter a directory name into the application
using a Select Directory dialog box. Calling the SelectDirectory function displays the
Select Directory dialog box. The directory passed to the function with the Directory
parameter is the currently selected directory when the dialog box appears. The name of
the directory the user selects becomes the value of Directory when the function returns.

The Options parameter is a set of values. These are the possible values of the Options set:

Value Meaning

[], the empty set The user can select a directory that currently exists only. The user cannot specify a
directory that does not exist as there is no edit box to type in a new directory name.

sdAllowCreate An edit box appears in the dialog box so that the user can type in the name of a
directory that does not exist. This option does not create a directory, but the
application can access the Directory parameter to create the directory selected if
desired.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 691

S e l e c t e d p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

The function returns True if the user selected a directory and chose OK, and False if the
user chose Cancel or closed the dialog box without selecting a directory.

The HelpCtx parameter is the help context ID number.

Example
This example uses a button on a form. When the user clicks the button, a Select
Directory dialog box appears. The current directory displayed in the dialog box is
C:\LINDA. The user can select a directory from the directory list, or enter a new
directory in the edit box. If the user enters a new directory, a message box asks the user
if the directory should be created. If the user chooses Yes, the directory is created. If the
user chooses No, the message box goes away and the user can use the dialog box again
to select a directory. The name of the directory the user selects appears as the caption of
the label:

uses FileCtrl;

procedure TForm1.Button1Click(Sender: TObject);
var
 Dir: string;
begin
 Dir := 'C:\LINDA';
 if SelectDirectory(Dir, [sdAllowCreate, sdPerformCreate, sdPrompt]) then
 Label1.Caption := Dir;
end;

See also
DirectoryExists function, ForceDirectories procedure

Selected property

Applies to
TDBListBox, TDirectoryListBox, TFileListBox, TListBox components

Declaration

property Selected[X: Integer]: Boolean;

The Selected property determines whether a particular item is selected in the list box. The
X parameter is the item referenced by its position in the list box, with the first item

sdPerformCreate Used only when the Options set contains sdAllowCreate. If the user enters a directory
name that does not exist, the function creates the directory.

sdPrompt Used when the Options set contains sdAllowCreate. Displays a message box the
informs the user the entered directory does not exist and asks the user if the
directory should be created. If the user chooses OK, the directory is created only if
the Options set contains the sdPerformCreate value. If only sdAllowCreate is True, the
directory is not actually created, but the application can create it if desired.

Value Meaning

692 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S e l e c t e d C o l o r p r o p e r t y

having an X value of 0. If the specified item is selected in the list box, the value of the
Selected property is True. If the specified item is not selected, Selected is False.

If you want the user to be able to select more than one item in the list box, use the
MultiSelect property

Example
This example uses a list box on a form. When the form is first created, 3 items are added
to the list box. When the user selects an item in the list box, the list box color changes to
reflect the item selected:

procedure TForm1.FormCreate(Sender: TObject);
var
 I: Integer;
begin
 ListBox1.Items.Add('Blue');
 ListBox1.Items.Add('Yellow');
 ListBox1.Items.Add('Red');
end;

procedure TForm1.ListBox1Click(Sender: TObject);
begin
if ListBox1.Selected[0] then

 ListBox1.Color := clBlue;
 if ListBox1.Selected[1] then
 ListBox1.Color := clYellow;
 if ListBox1.Selected[2] then
 ListBox1.Color := clRed;
end;

See also
ExtendedSelect property, MultiSelect property, SelCount property

SelectedColor property

Applies to
TTabSet component

Declaration

property SelectedColor: TColor;

The SelectedColor property determines the color of the selected tab in the tab set control.
To view a list of available color values, see the Color property.

Example
This code changes the color of selected tabs:

TabSet11.SelectedColor := clPurple;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 693

S e l e c t e d F i e l d p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

See also
UnselectedColor property

SelectedField property

Applies to
TDBGrid, TDBLookupList components

Declaration

property SelectedField: TField;

Run-time and read only. The value of the SelectedField property indicates which field is
selected in the data grid.

Example
The following code displays the name of the selected field in a label if the selected field
is ‘CustNo’.

if DBGrid1.SelectedField.FieldName = ‘CustNo’ then
Label1.Caption := DBGrid1.SelectedField.FieldName;

See also
SelectedIndex property

SelectedIndex property

Applies to
TDBGrid, TDBLookupList components

Declaration

property SelectedIndex: Integer;

Run-time only. The value of the SelectedIndex property returns the index value of the
currently selected field in the displayed dataset. A value of 0 indicates the first field of
the displayed dataset, 1 is the second field, and so on.

SelectedIndex can be used as an index to Fields property array to access a field in the
dataset.

Example
The following code makes all the fields up to the selected field of the dataset of DBGrid1
read-only. I is an integer variable.

for I := 0 to DBGrid1.SelectedIndex do
DBGrid1.Fields[I].ReadOnly := True;

694 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S e l e c t e d I t e m p r o p e r t y

See also
SelectedField property

SelectedItem property

Applies to
TOutline component

Declaration

property SelectedItem: Longint;

Run-time only. The SelectedItem property determines which item of the outline currently
has focus. SelectedItem contains the Index value of the selected item. If no item is selected,
SelectedItem contains 0.

Example
The following code expands the selected item of Outline1.

Outline1.Items[Outline1.SelectedItem].FullExpand;

See also
Items property

Selection property

Applies to
TDrawGrid, TStringGrid components

Declaration

property Selection: TGridRect;

The Selection property contains the column and row coordinates of the cell or cells
selected in the grid.

Example
The following code selects the rectangle containing rows 1 and 2, and columns 3 and 4.

var
 SRect: TGridRect;
begin
 SRect.Top := 1;
 SRect.Left := 3;
 SRect.Bottom := 2;
 SRect.Right := 4;
 StringGrid1.Selection := SRect;
end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 695

S e l e c t N e x t m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SelectNext method

Applies to
TTabSet component

Declaration

procedure SelectNext(Direction: Boolean);

The SelectNext method selects the next tab in a tab set control, and scrolls that tab set
control if necessary to bring the selected tab into view.

The value of the Direction parameters determines if the tab to the left or right is selected.
If Direction is True, the tab to the right is selected. If Direction is False, the tab to the left is
selected. When the last tab in either direction is selected, calling SelectNext using the
same direction wraps around to the beginning of the tab order. For example, if your
application has three tabs, First, Second, and Third, and Third is the current tab, calling
SelectNext(True) selects First. Likewise, if First is the current tab, SelectNext(False) selects
Third.

When SelectNext is called, the OnClick event of the tab set occurs, followed by the
OnChange event, just as if the user had clicked on a new tab.

Example
The following code selects the next tab to the left of the current tab (or selects the last tab
if the first tab is currently selected).

TabSet1.SelectNext(False);

See also
TabIndex property

SelectorInc variable System

Declaration

var SelectorInc: Word;

SelectorInc contains the value that must be added to or subtracted from the selector part
of a pointer to increment or decrement the pointer by 64K bytes.

SelLength property

Applies to
TComboBox, TDBComboBox, TDBEdit, TDBMemo, TDriveComboBox, TEdit,
TFilterComboBox, TMaskEdit, TMemo components

696 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S e l S t a r t p r o p e r t y

Declaration

property SelLength: Integer;

The SelLength property returns the length (in characters) of the control’s selected text. By
using SelLength along with the SelStart property, you specify which part of the text in the
control is selected. You can change the number of selected characters by changing the
value of SelLength. When the SelStart value changes, the SelLength value changes
accordingly.

The edit box or memo must be the active control when you change the value of
SelLength, or nothing appears to happen.

Example
This example uses an edit box and a label on a form. When the user selects text in the
edit box, the number of selected characters is reported in the caption of the label:

procedure TForm1.Edit1MouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Label1.Caption := 'Selected length = ' +
 IntToStr(Edit1.SelLength);
end;

See also
SelStart property, SelText property, Text property

SelStart property

Applies to
TComboBox, TDBComboBox, TDBEdit, TDBMemo, TDriveComboBox, TEdit,
TFilterComboBox, TMaskEdit, TMemo components

Declaration

property SelStart: Integer;

The SelStart property returns the starting position of the selected part of the control’s
text, with the first character in the text having a value of 0. You can use SelStart along
with the SelLength property to select a portion of the text. Specify the character you want
the selected text to start with by its position in the text as the value of SelStart.

When the SelStart value changes, the SelLength value changes accordingly.

The edit box or memo must be the active control when you change the value of SelStart,
or nothing appears to happen.

Example

This example uses an edit box and a label on a form. When the user selects text in the
edit box, the starting position of the selected text is reported in the caption of the label:

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 697

S e l T e x t p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

procedure TForm1.Edit1MouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Label1.Caption := 'Selected text starts at character ' +
 IntToStr(Edit1.SelStart + 1);
end;

Note that if all the text in the edit box is selected, the value of the SelStart property is 0,
the index value of the first item in the string array. Therefore, this example uses the
expression SelStart + 1 to make the result reported more understandable to most people.

See also
SelectAll method, SelLength property, SelText property, Text property

SelText property

Applies to
TComboBox, TDBComboBox, TDBEdit, TDriveComboBox, TEdit, TFilterComboBox,
TMaskEdit components

Declaration

property SelText: string;

The SelText property contains the selected part of the control’s text. You can use it to
determine what the selected text is, or you can change the contents of the selected text
by specifying a new string. If no text is currently selected, the SelText string is inserted in
the text at the cursor.

Example
This example uses an edit box and a label on a form. When the user selects text in the
edit box, the selected text is reported in the caption of the label.

procedure TForm1.Edit1MouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Label1.Caption := 'Selected string = ' + Edit1.SelText;
end;

See also
SelLength property, SelStart property, Text property

SendToBack method

Applies to
All controls; TForm component

698 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S e r v e r C o n v p r o p e r t y

Declaration

procedure SendToBack;

The SendToBack method puts a windowed component behind all other windowed
components within its parent component or form, or it puts a non-windowed
component behind all other non-windowed components within its parent component
or form. If the component has the input focus when the SendToBack method executes, it
loses the input focus.

SendToBack is useful for changing the order of overlapping controls or forms.

The order in which controls stack on top of each order (also called the Z order) depends
on whether the controls are windowed or non-windowed. For example, if you put a
label and an image on a form so that one is on top of the other, the first one you placed
on the form is the one on the bottom. Because both the label and the image are non-
windowed controls, they “stack” as you would expect them to. Suppose that the image
is on the top. If you call the SendToBack method for the image, the label then appears on
top of the image.

The stacking order of windowed controls is the same. For example, if you put a memo
on a form, then put a check box on top of it, the memo remains on the bottom. If you call
SendToBack for the check box, the memo appears on top.

The stacking order of windowed and non-windowed controls cannot be mingled. For
example, if you put a memo, a windowed control, on a form, and then put a label, a non-
windowed control, on top of it, the label disappears behind the memo. Windowed
controls always “stack” on top of non-windowed controls. In this example, if you call
the SendToBack method of the memo, it remains on top of the label.

Example
This example uses two forms. When the user clicks the button on Form2, it moves Form2
behind the other form and is no longer the active form:

procedure TForm2.Button1Click(Sender: TObject);
begin
 SendToBack;
end;

In this example, the parent of the two forms is the application itself.

See also
BringToFront method

ServerConv property

Applies to
TDDEServerItem component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 699

S e r v i c e A p p l i c a t i o n p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Declaration

property ServerConv: TDdeServerConv;

The ServerConv property specifies the DDE server conversation component to associate
with the DDE server item component. The value of ServerConv is the name of the DDE
server conversation component that defines the DDE conversation.

Example
The following code sets DDEServerConv1 to be the server conversation for
DDEServerItem1.

DDEServerItem1.ServerConv := DDEServerConv1;

See also
Name property

ServiceApplication property

Applies to
TDDEClientConv component

Declaration

property ServiceApplication: string;

The ServiceApplication property specifies the main executable file name (and path, if
necessary) of a DDE server application, without the .EXE extension. Typically, this is the
same value as the DDEService property. Sometimes, however, DDEService is a value
other than the DDE server application’s executable file name. In either case,
ServiceApplication must be specified for Delphi to run an inactive DDE server to establish
a DDE conversation.

Example
The following code sets the service application to ‘ReportSmith’.

DDEClientConv1.ServiceApplication := ‘ReportSmith’;

Session variable DB

Declaration

Session: TSession;

The Session variable is responsible for maintaining all of the database components used
by your application. It is created automatically as part of your application’s initialization
and destroyed as part of your application’s termination. The Session variable must
remain active at all times; it can not be destroyed and recreated.

700 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S e t A s H a n d l e m e t h o d

SetAsHandle method

Applies to
TClipboard object

Declaration

function SetAsHandle (Format: Word): THandle;

The SetAsHandle method places the data in the given format as a Windows handle. Once
your application gives the handle to the Clipboard, it should not delete the handle.
Instead, the Clipboard will delete the handle.

See the Windows API Help file for information about the available formats for Format
parameter.

Example
The following code gives the handle of bitmap graphic data to the Clipboard.

Clipboard.SetAsHandle(CF_BITMAP);

See also
FormatCount property, Formats property, GetAsHandle method, HasFormat method

SetBounds method

Applies to
All controls

Declaration

procedure Setbounds(ALeft, ATop, AWidth, AHeight: Integer);

The SetBounds method sets the component’s boundary properties, Left, Top, Width, and
Height, to the values passed in ALeft, ATop, AWidth, and AHeight, respectively.

SetBounds enables you to set more than one of the component’s boundary properties at a
time. Although you can always set the individual boundaries, using SetBounds enables
you to make several changes at once without repainting the control for each change.

Example
The following code doubles the size of a button control when the user clicks it:

procedure TForm1.Button1Click(Sender: TObject);
begin
Button1.SetBounds(Left, Top, Height * 2, Width * 2);

end;

Note that you could use the following code instead, but each click would result in the
button being redrawn twice: once to change the height, and once to change the width:

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 701

S e t C o m p o n e n t m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

procedure TForm1.Button1Click(Sender: TObject);
begin
Button1.Height := Button1.Height * 2;
Button1.Width := Button1.Width * 2;

end;

See also
Height property, Left property, Top property, Width property

SetComponent method

Applies to
TClipboard object

Declaration

procedure SetComponent(Component: TComponent);

The SetComponent method copies a component to the Clipboard. Specify the component
you want copied as the value of the Component parameter.

Example
This example uses a button and a group box on a form. When the user clicks the button,
the button is copied to the Clipboard and then retrieved from the Clipboard and placed
in the new parent of the button, the group box. The name of the original button is
changed to an empty string to avoid having two components with the same name at the
same time.

implementation

uses Clipbrd;

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
begin
 Clipboard.SetComponent(Button1); { copies button to the Clipboard }
 Button1.Name := ''; { prevents having two components with the same name }
 Clipboard.GetComponent(Self, GroupBox1); { retrieves button from Clipboard and }
end; { places it in the group box }

initialization
 RegisterClasses([TButton]); { registers the TButton class }
end.

See also
AsText property, GetComponent method, Owner property, Parent property

702 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S e t D a t a m e t h o d

SetData method

Applies to
TParam object; TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField,
TDateField, TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField,
TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

For TParam objects

Declaration

procedure SetData(Buffer: Pointer);

The SetData method copies a new value for the parameter in native format from Buffer.

Example

var I: Longint;
I := 1221;
{ Set the data }
Query1.ParamByName(‘CustNo’).SetData(@I);

For field components

Declaration

procedure SetData(Buffer: Pointer);

SetData is the method used to assign “raw” data to the field. Unlike the AsString or Text
properties, SetData performs no translation or interpretation of the data. Buffer must
have sufficient space allocated for the data. Use the DataSize property to determine the
space required. To set the data to NULL, pass nil for the Buffer parameter.

Example

{ Assign “raw” data to Field1 }
with Field1 do
begin

{ Allocate space }
GetMem(Buffer, DataSize);

{ Fill Buffer with the desired data }
...

{ Do the assignment }
Field1.SetData(Buffer)

{ Free the space }
FreeMem(Buffer, DataSize);
end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 703

S e t F i e l d s m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

See also
FieldDefs property, TFieldDef object

SetFields method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure SetFields(const Values: array of const);

SetFields assigns the values specified in the Values array parameter to the fields in the
dataset. If Values has fewer elements than there are fields, the remaining elements are
unchanged. To assign a null value to a field, use the keyword null. To not assign any
value to a field, use nil; the field will then get its default value.

Before calling this method, an application must first call Edit to put the dataset in Edit
state. To then modify the current record in the database, it must then call Post.

Because this method depends explicitly on the structure of the underlying table, an
application should use it only if the table structure will not change.

Example

Table1.SetFields([208, 23.1]);

See also
Fields property

SetFocus method

Applies to
All controls; TForm component

Declaration

procedure SetFocus;

The SetFocus method gives the input focus to the control. If the control is a form, the
form calls the SetFocus method of its active control.

Example
When the user clicks the button on this form, the list box becomes the active control and
receives the input focus:

procedure TForm1.Button1Click(Sender: TObject);
begin

704 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S e t F o r m O L E D r o p F o r m a t s p r o c e d u r e

 ListBox1.SetFocus;
end;

See also
ActiveControl property, OnEnter event

SetFormOLEDropFormats procedure ToCtrl

Declaration

procedure SetFormOleDropFormats(Form: TForm; const Fmts: array of BOleFormat);

SetFormOLEDropFormats specifies which object formats can be dropped on a form that
was registered for drag-and-drop by the RegisterFormAsOLEDropTarget procedure. Use
SetFormOLEDropFormats to modify which objects can be dropped. The formats in the
Fmts array are registered so objects can be dropped on the form. Drop formats can be
deleted with the ClearFormOLEDropFormats procedure.

Example
The following code resets the OLE object drop format for Form1, assuming Fmts is an
array of BOLEFormat records.

SetFormOLEDropFormats(Form1, Fmts);

See also
TOLEDropNotify object

SetKey method

Applies to
TTable component

Declaration

procedure SetKey;

The SetKey method puts the TTable in SetKey state (the State property is set to dsSetKey).
This enables an application to search for values in database tables. In SetKey state, you
can set the values of the search key buffer. The search key buffer is a set of fields
corresponding to the table’s key fields. After setting the values of the search key buffer
fields, call GotoKey, GotoNearest, FindKey, or FindNearest to move the cursor to the
matching record.

SetKey differs from EditKey in that the former clears all the elements of the search key
buffer. EditKey leaves the elements of the search key buffer with their current values, but
enables you to edit them.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 705

S e t L i n k m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Example

with Table1 do
begin
SetKey;
FieldByName(‘State’).AsString := ‘CA‘;
FieldByName(‘City’).AsString := ‘Scotts Valley‘;
GotoKey;
end;

See also
IndexFields property, State property, TDataSetState type

SetLink method

Applies to
TDDEClientConv component

Declaration

function SetLink(Service: string; Topic: string): Boolean;

The SetLink method specifies the service and topic of a DDE conversation and attempts
to open the link if ConnectMode is ddeAutomatic. The Service parameter defines the DDE
service and is assigned to the DDEService property. The Topic parameter defines the
DDE topic and is assigned to the DDETopic property.

If ConnectMode is ddeManual, you must call OpenLink to initiate the conversation after
calling SetLink.

Example
The following code establishes a link with a DDE server. The service is specified in the
DDEService property of DDEClientConv1, and the topic is specified in the DDETopic
property of DDEClientConv1. If the link is established, a message is displayed.

with DDEClientConv1 do
if SetLink(DDEService, DDETopic) then

MessageDlg(‘Link established.’, mtInformation, [mbOK], 0);

See also
CloseLink method, OpenLink method

SetParams method

Applies to
TScrollBar component

706 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S e t P r i n t e r m e t h o d

Declaration

procedure SetParams(APosition, AMin, AMax: Integer);

The SetParams method sets the Position, Min, and Max property values of a scroll bar all
at once.

Example
This example uses a scroll bar and a button on a form. When the user clicks the button,
the minimum and maximum values of scroll bar are set, and the thumb tab moves to
one-fifth of the distance to the right:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ScrollBar1.SetParams(100, 0, 500)
end;

SetPrinter method

Applies to
TPrinter object

Declaration

procedure SetPrinter(ADevvice, ADriver, APort: PChar; ADeviceMode: THandle);

The SetPrinter method specifies a printer as the current printer. You should seldom, if
ever, need to call this method, but instead should access the printer you want in the
Printers property array. For more information, see the Windows API CreateDC function.

SetRange method

Applies to
TTable component

Declaration

procedure SetRange(const StartValues, EndValues: array of const);

The SetRange method combines the functionality of the SetRangeStart, SetRangeEnd, and
ApplyRange methods. SetRange assigns the elements of StartValues to the beginning
index key, the elements of EndValues to the ending index key, and then calls ApplyRange.
This enables an application to filter the data visible to the dataset.

If either StartValues or EndValues has fewer elements than the number of fields in the
current index, then the remaining entries are set to NULL.

Note With Paradox or dBASE tables, these methods work only with indexed fields. With SQL
databases, they can work with any columns specified in the IndexFieldNames property.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 707

S e t R a n g e E n d m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Example

Table1.SetRange([1000], [2000]);

See also
KeyExclusive property

SetRangeEnd method

Applies to
TTable component

Declaration

procedure SetRangeEnd;

SetRangeEnd indicates that subsequent assignments to field values will specify the end
of the range of rows to include in the dataset. This enables an application to filter the
data that is visible to it. Any column values not specified are not considered. The
corresponding method EditRangeEnd indicates to keep existing range values and update
with the succeeding assignments.

Call ApplyRange to apply the range filter defined with SetRangeEnd and SetRangeStart.

SetRangeEnd differs from EditRangeEnd in that it clears all the elements of the range filter
to the default values (or NULL). EditRangeEnd leaves the elements of the range filter
with their current values.

Note With Paradox or dBASE tables, these methods work only with indexed fields. With SQL
databases, they can work with any columns specified in the IndexFieldNames property.

Example

with Table1 do
begin
SetRangeStart; { Set the beginning key }
FieldByName(‘City’).AsString := ‘Felton‘;
SetRangeEnd; { Set the ending key }
FieldByName(‘City’).AsString := ‘Scotts Valley‘;
ApplyRange; { Tell the dataset to establish the range }
end;

See also
CancelRange method, KeyExclusive property, EditRangeStart method, SetRange method,
SetRangeStart method

708 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S e t R a n g e S t a r t m e t h o d

SetRangeStart method

Applies to
TTable component

Declaration

procedure SetRangeStart;

SetRangeStart indicates that subsequent assignments to field values will specify the start
of the range of rows to include in the dataset. This enables an application to filter the
data that is visible to it. Any column values not specified are not considered. The
corresponding method EditRangeStart indicates to keep existing range values and
update with the succeeding assignments.

Call ApplyRange to apply the range filter defined with SetRangeEnd and SetRangeStart.

SetRangeStart differs from EditRangeStart in that it clears all the elements of range filter
to the default values (or NULL). EditRangeStart leaves the elements of range filter with
their current values.

Note With Paradox or dBASE tables, these methods work only with indexed fields. With SQL
databases, they can work with any columns specified in the IndexFieldNames property.

Example

with Table1 do
begin
SetRangeStart; { Set the beginning key }
FieldByName(‘City’).AsString := ‘Ben Lomond‘;
SetRangeEnd; { Set the ending key }
FieldByName(‘City’).AsString := ‘Scotts Valley‘;
ApplyRange; { Tell the dataset to establish the range }
end;

See also
EditRangeEnd method, KeyExclusive property, SetRangeEnd method

SetSelTextBuf method

Applies to
TComboBox, TDBComboBox, TDBEdit, TDBMemo, TEdit, TMaskEdit, TMemo components

Declaration

procedure SetSelTextBuf(Buffer: PChar);

The SetSelTextBuf method sets the selected text in the edit box or memo control to the
text in the null-terminated string pointed to by Buffer.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 709

S e t T a b F o c u s m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

You should have no need to use the SetSelTextBuf method unless you are working with
strings longer than 255 characters. Because an Object Pascal string has a limit of 255
characters, such properties as Text for an edit box, Items for a list box, and Lines for a
memo control do not allow you to work with strings longer than 255 characters.
SetSelTextBuf and the corresponding GetSelTextBuf methods use null-terminated strings
that are up to 64K in length.

Example
This example uses a button and an edit box on a form. When the user selects text in the
edit box and clicks the button, new text replaces the selected text. The string specified as
the parameter of the SetSelTextBuf is a null-terminated string of type PChar.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Button1.Caption := 'Click me';
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 Edit1.SetSelTextBuf('You clicked the button');
end;

See also
GetSelTextBuf method, SetTextBuf method

SetTabFocus method

Applies to
TTabbedNotebook component

Declaration

procedure SetTabFocus(Index: Integer);

The SetTabFocus changes the active page in the tabbed notebook control. The Index
parameter is the PageIndex value of the page, which indicates the page’s position in the
Pages property array. For example, the first page in the control has an index value of 0,
the second page has an index value of 1, and so on.

Example
The following code sets focus to the first page in TabbedNotebook1.

TabbedNoteBook1.SetTabFocus(0);

See also
ActivePage property, GetIndexForPage method

710 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S e t T e x t m e t h o d

SetText method

Applies to
TStringList, TStrings objects

Declaration

procedure SetText(Text: PChar);

The SetText method writes an entire list of strings at one time. It is meant to be used with
components that contain multiple strings where you would find it convenient to treat all
the strings as one block. For example, SetText would be useful with a memo component,
which can hold multiple strings.

Specify the text you want write as the value of the Text parameter, making sure the
block of text to which you are referring is a null-terminated string.

Example
The following code uses SetText to write the contents of an edit box to Memo1.

var
TheText: array[0..255] of Char;

begin
StrPCopy(TheText, Edit1,Text);
Memo1.SetText(TheText);

end;

See also
GetText method

SetTextBuf method

Applies to
All controls; TClipboard object

Declaration

procedure SetTextBuf(Buffer: PChar);

The SetTextBuf method sets the control’s text to the text in the buffer pointed to by Buffer.
Buffer must point to a null-terminated string.

Usually, you use SetTextBuf and the corresponding GetTextBuf only when you need to
work with strings that are longer than 255 characters. Because an Object Pascal style
string has a limit of 255 characters, such properties as Text for an edit box, Items for a list
box, and Lines for a memo control do not allow you to work with strings longer than 255
characters. GetTextBuf and SetTextBuf use null-terminated strings that are up to 64K in
length.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 711

S e t T e x t B u f p r o c e d u r e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Example
This example uses a button and an edit box on a form. When the user clicks the button,
text appears in the edit box. The string specified as the parameter of the SetTextBuf is a
null-terminated string, as it is of type PChar.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Button1.Caption := 'Click me';
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 Edit1.SetTextBuf('You clicked the button');
end;

See also
GetTextBuf method, SetSelTextBuf method

SetTextBuf procedure System

Declaration

procedure SetTextBuf(var F: Text; var Buf [; Size: Word]);

The SetTextBuf procedure assigns an I/O buffer to a text file.

F is a text file variable, Buf is any variable, and Size is a optional expression.

Each Text file variable has an internal 128-byte buffer that buffers Read and Write
operations. This buffer is adequate for most operations. However, heavily I/O-bound
programs benefit from a larger buffer to reduce disk head movement and file system
overhead.

SetTextBuf changes the text file F to use the buffer specified by Buf instead of F's internal
buffer. Size specifies the size of the buffer in bytes. If Size is omitted, SizeOf(Buf) is
assumed. The new buffer remains in effect until F is next passed to AssignFile.

SetTextBuf can be called immediately after Reset, Rewrite, and Append, but never apply it
to an open file.

If you call SetTextBuf on an open file once I/O operations have taken place, you could
lose data because of the change of buffer.

Delphi does not ensure that the buffer exists for the entire duration of I/O operations on
the file. A common error is to install a local variable as a buffer, then use the file outside
the procedure that declared the buffer.

712 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S e t U p d a t e S t a t e m e t h o d

Example

uses Dialogs;

var
 F, FTwo: System.TextFile;
 Ch: Char;
 Buf: array[1..4095] of Char; { 4K buffer }
begin
 if OpenDialog1.Execute then begin
 AssignFile(F, ParamStr(1));
 { Bigger buffer for faster reads }
 SetTextBuf(F, Buf);
 Reset(F);
 { Dump text file into another file }
 AssignFile(FTwo, 'WOOF.DOG');
 Rewrite(FTwo);
 while not Eof(f) do
 begin
 Read(F, Ch);
 Write(FTwoCh);
 end;
 System.CloseFile(F);
 System.CloseFile(FTwo);
 end;
end;

See also
Append procedure, AssignFile procedure, Read procedure, Reset procedure, Rewrite
procedure, SizeOf function, Write procedure

SetUpdateState method

Applies to
TOutline component

Declaration

procedure SetUpdateState(Value: Boolean);

The SetUpdateState method sets the update state of the outline component. If you add or
delete an item from the outline, by default the outline component reindexes the
subsequent items that have indexes changed by the addition or deletion. For a large
outline, this can slow processing and consume a large amount of processing time. If you
have a large outline, or plan to add many items, you can turn off automatic reindexing
to speed up processing. You can quickly add items, but the indexes of all subsequent
items will no longer be valid. When you finish adding items, you should turn on
reindexing so the index values of the subsequent items are made valid again.

By passing True in the Value property of SetUpdateState, you turn off automatic
reindexing. This is functionally the same as calling the BeginUpdate method. By passing

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 713

S e t V a r i a b l e m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

False in the Value property of SetUpdateState, you turn on automatic indexing. This is
functionally the same as calling the EndUpdate method.

Example
The following code turns off automatic reindexing on Outline1.

Outline1.SetUpdateState(True);

SetVariable method

Applies to
TReport component

Declaration

function SetVariable(Name, Value: string): Boolean;

The SetVariable method changes the value of a report variable. The Name parameter
specifies which report variable changes, and the Value parameter specifies the new
value. Once the SetVariable method has been called, your application can call the
RecalcReport method, which recalculates the report using the new value for the specified
report variable.

The SetVariable method sends a DDE message to ReportSmith Runtime to change the
specified report variable with the new value, and looks for a DDE message from
ReportSmith Runtime in return. If SetVariable returns True, the message was sent to
ReportSmith Runtime successfully. If it returns False, ReportSmith Runtime could not
receive the message at the current time.

To learn more about report variables, see your ReportSmith documentation.

Note Before calling SetVariable, you must load a report by specifying the ReportName
property.

Example
The following code attempts to set the ‘LastName’ report variable to ‘Schaeferle’. If
successful, it then recalculates the report.

if Report1.SetVariable(‘LastName’, ‘Schaeferle’) then
Report1.RecalcReport;

See also
RecalcReport method, SetVariableLines method

SetVariableLines method

Applies to
TReport component

714 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S h a p e p r o p e r t y

Declaration

function SetVariableLines(Name, Value: TStrings): Boolean;

The SetVariableLines method changes the value of a report variable. The Name parameter
specifies which report variable changes, and the Value parameter specifies the new
value, which is a list of strings. Once the SetVariableLines method has been called, your
application can call the RecalcReport method, which recalculates the report using the
new value for the specified report variable.

The SetVariableLines method sends a DDE message to ReportSmith Runtime to change
the specified report variable with the new value, and looks for a DDE message from
ReportSmith Runtime in return. If SetVariableLines returns True, the message was sent to
ReportSmith Runtime successfully. If it returns False, ReportSmith Runtime could not
receive the message at the current time.

To learn more about report variables, see your ReportSmith documentation.

Note Before calling SetVariable, you must load a report by specifying the ReportName
property.

See also
RecalcReport method, SetVariable method

Shape property

Applies to
TBevel, TShape components

The Shape property determines the visual shape of the component.

For bevels

Declaration

property Shape: TBevelShape;

The Shape property determines the shape the bevel control assumes. These are the
possible values:

Value Meaning

bsBox The bevel assumes a box shape.
bsFrame The bevel assumes a frame shape.
bsTopLine The bevel becomes a line at the top of the bevel control.
bsBottomLine The bevel becomes a line at the bottom of the bevel control.
bsLeftLine The bevel becomes a line at the left side of the bevel control.
bsRightLine The bevel becomes a line at the right side of the bevel control.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 715

S h a p e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Example
This code uses a bevel control and a button. When the user clicks the button, the bevel
becomes a raised frame:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Bevel1.Shape := bsFrame;
 Bevel1.Style := bsRaised;
end;

For shape controls

Declaration

property Shape: TShapeType;

The Shape property determines how a TShape component appears on a form. These are
the possible values and their meanings:

Example
This example uses a shape component on a form. When the user clicks the shape, it
becomes a ball with red stripes:

procedure TForm1.Shape1MouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
with Shape1 do
 begin

Shape := stCircle;
Brush.Color := clRed;
Brush.Style := bsVertical;

 end;
end;

Value Meaning

stEllipse The shape is an ellipse.
stRectangle The shape is a rectangle.
stRoundRect The shape is a rectangle with rounded corners.
stRoundSquare The shape is a square with rounded corners.
stSquare The shape is a square.
stCircle The shape is a circle.

716 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S h a r e a b l e p r o p e r t y

Shareable property

Applies to
TMediaPlayer component

Declaration

property Shareable: Boolean;

The Shareable property determines whether more than one application can share a
multimedia device. If Shareable is False, no other components or applications can access
the device. If True, more than one component or application can access the device.
Shareable defaults to False.

You should set Shareable before opening a device. Some devices aren’t shareable. If you
set Shareable to True and try to open a device that isn’t shareable by more than one
application, the Open method fails and the error code is returned to the Error property.

Example
The following code sets the Shareable property of a media player named MediaPlayer1 to
True before attempting to open the Microsoft Video for Windows device. Attach this
code to the OnClick event handler of a bitmap button named BitBtn1. If an exception
occurs when the Open method is called, a message dialog box displays the error. Note
that this example assumes that C:\KA-BAR.AVI is a valid video file name.

procedure TForm1.BitBtn1Click(Sender: TObject);
begin
 with MediaPlayer1 do
begin

 try
 FileName := 'c:\Ka-Bar.AVI';
 Shareable := True;
 Open;

except
MessageDlg(MediaPlayer1.ErrorMessage, mtError, [mbOk], 0);

 end;
 end;
end;

ShortCut function Menus

Declaration

function ShortCut(Key: Word; Shift: TShiftState): TShortCut;

The ShortCut function creates a menu shortcut at run time. Specify a Key value by using
a virtual key code.You can find a table of virtual key codes in the Help system; search
for the topic Virtual Key Codes. Specify a Shift value by using a set of type TShiftState.
For example, to specify the Shift key, use the set [ssShift]. To specify a Shift and Ctrl key
combination, use the set [ssShift, ssCtrl].

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 717

S h o r t C u t p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Once you create a shortcut, you can assign it to the ShortCut property of a menu item.

The TextToShortCut function can also create a shortcut. This function converts a string to
a shortcut; therefore, it’s useful when you want to let the user specify the shortcut.
TextToShortCut executes much more slowly, however, so you should use the ShortCut
function whenever possible.

Example
This code creates a shortcut, Ctrl+O, at run time and assigns it to the Open command on a
File menu.

begin
OpenCommand.ShortCut := ShortCut(Word('O'), [ssCtrl]);

end;

See also
ShortCut property, ShortCutToKey procedure, ShortCutToText function, TextToShortCut
function

ShortCut property

Applies to
TMenuItem component

Declaration

property ShortCut: TShortCut;

The ShortCut property determines the key strokes users can use to access a menu item.
The key combination the user can use appears to the right of the menu item in the menu.
To see an example of menu shortcuts, pull down the Delphi Edit menu and note the
menu shortcuts on the right side of some of the editing commands.

Usually you set menu shortcuts for menu items in the Object Inspector, which gives you
a long list to choose from. If you create menu items at run time, however, you can create
shortcuts for them too. Choose from these functions and procedures for more
information about working with shortcuts at run time:

Example
This code creates a shortcut, Ctrl+C, at run time and assigns it to the Close command on a
File menu.

Routine Purpose

ShortCut function Creates a shortcut for a menu item programmatically.
ShortCutToKey procedure Obtains the virtual key code and shift state of an existing shortcut.
ShortCutToText function Returns the text string of an existing shortcut. Use this function to display a

shortcut you created at run time on a menu item.
TextToShortCut function Converts a text string to a shortcut. Use this function to allow users to specify

the shortcut characters.

718 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S h o r t C u t T o K e y p r o c e d u r e

begin
CloseCommand.ShortCut := ShortCut(Word('C'), [ssCtrl]);

end;

ShortCutToKey procedure Menus

Declaration

procedure ShortCutToKey(ShortCut: TShortCut; var Key: Word; var Shift: TShiftState);

The ShortCutToKey procedure breaks a menu shortcut apart into its virtual key code and
shift state parts.

Example
The following code redefines the ShortCut of CloseCommand if the original short cut
used the [ssCtrl] shift state.

var
TheKey: Word;
TheShiftState: TShiftState;

begin
ShortCutToKey(CloseCommand.ShortCut, TheKey, TheShiftState);
if TheShiftState = [ssCtrl] then

CloseCommand.ShortCut := ShortCut(Word('C'), [ssShift]);
end;

See also
ShortCut function, ShortCut property, ShortCutToText function, TextToShortCut function

ShortCutToText function Menus

Declaration

function ShortCutToText(ShortCut: TShortCut): string;

The ShortCutToText function converts a shortcut into a string. Your application can use
this function any time it needs to display a menu shortcut as a string.

Note The ShortCut property of a menu item is of type TShortCut, so you can assign a shortcut
you create at run time using either the ShortCut function or the TextToShortCut function
directly to the menu item’s ShortCut property. You don’t need to use ShortCutToText to
convert the shortcut to a text string first.

Example
This code converts the menu shortcut assigned to the OpenCommand ShortCut
property to a string and displays it in an edit box:

Edit1.Text := ShortCutToText(OpenCommand.ShortCut);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 719

S h o w m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

See also
ShortCut function, ShortCut property, ShortCutToKey procedure, TextToShortCut
function

Show method

Applies to
All controls; TForm component

Declaration

procedure Show;

The Show method makes a form or control visible by setting its Visible property to True.
If the Show method of a form is called and the form is somehow obscured, Show tries to
make the form visible by bringing it to the front with the BringToFront method.

Example
This code puts away the current form and displays another:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Form1.Hide;
 Unit2.Form2.Show;
end;

See also
Hide method, ShowModal method, Visible property

ShowAccelChar property

Applies to
TLabel component

Declaration

property ShowAccelChar: Boolean;

The ShowAccelChar property determines how an ampersand in the caption of a label
appears. If ShowAccelChar is True, an ampersand appears as an underline under the
character to its right in the caption indicating the underlined character is an accelerator
character. If ShowAccelChar is False, the ampersand character appears as an ampersand.

Example
This example uses two labels on a form. The first label has a caption with an accelerator
character in it. The second label also includes an ampersand, but it does not appear as an
accelerator character.

720 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S h o w E x c e p t i o n m e t h o d

procedure TForm1.FormCreate(Sender: TObject);
begin
 Label1.ShowAccelChar := True;
 Label1.Caption := 'An &Underlined character appears here';
 Label2.ShowAccelChar := False;
 Label2.Caption := 'An ampersand (&) appears here';
end;

See also
Caption property, FocusControl property

ShowException method

Applies to
TApplication component

Declaration

procedure ShowException(E: Exception);

The ShowException method displays an exception that occurred in your application in a
message box.

ShowException procedure SysUtils

Declaration

procedure ShowException(ExceptObject: TObject; ExceptAddr: Pointer);

This procedure displays the message associated with an exception, together with the
exception’s physical address. The exception’s address is converted to a logical segment
address that can be used with Search|Find Error menu command to find the statement
that raised the exception.

ShowGlyphs property

Applies to
TFileListBox component

Declaration

property ShowGlyphs: Boolean;

The value of the ShowGlyphs property determines whether glyphs (bitmaps) appear next
to the file names listed in the file list box. If ShowGlyphs is True, the glyphs appear; if
ShowGlyphs is False, the glyphs don’t appear. The default value is False.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 721

S h o w H i n t p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Example
If the files in the list box don’t have the glyphs next to them, this line of code redisplays
the files with the glyphs included:

FileListBox1.ShowGlyphs := True;

ShowHint property

Applies to
All controls, TApplication component

The ShowHint property is used at both the control and the application level.

For all controls

Declaration

property ShowHint: Boolean;

Description

The ShowHint property determines if the control should display a Help Hint when the
user’s mouse pointer rests momentarily on the control. The Help Hint is the value of the
Hint property, which is displayed in a box just beneath the control. If ShowHint property
is True, the Help Hint will appear.

If ShowHint is False, the Help Hint may or may not appear. If ParentShowHint is False
also, the Help Hint won’t appear. If, however, ParentShowHint is True, whether or not
the Help Hint appears depends on the setting of the ShowHint property of the control’s
parent. For example, imagine a check box within a group box. If the ShowHint property
of the group box is True and the ParentShowHint property of the check box is True, but
the ShowHint property of the check box is False, the check box will still display its Help
Hint.

The default value is False.

Changing the ShowHint value to True automatically sets the ParentShowHint property to
False.

Example
This example uses an edit box on a form. When the application runs and the user places
the mouse pointer over the edit box, a Help Hint in an aqua box appears:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.ShowHint := True;
 Application.HintColor := clAqua;
 Application.HintPause := 1000;
 Edit1.ShowHint := True;

722 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S h o w i n g p r o p e r t y

 Edit1.Hint := 'Enter your name';
end;

See also
HintColor property, HintPause property, ParentShowHint property, ShowHint for the
application

For applications

Applies to
TApplication component

Declaration

property ShowHint: Boolean;

Run-time only. The ShowHint property determines whether Help Hints are enabled or
disabled for the entire application. If ShowHint is True, Help Hints are enabled; if
ShowHint is False, Help Hints are disabled. The default value is True.

Even if ShowHint is True, a Help Hint won’t appear for a particular control unless its
own ShowHint property is True, or its ParentShowHint property is True and its parent’s
ShowHint property is True.

Setting ShowHint for the application to False disables all Help Hints, regardless of the
value of the ShowHint properties for individual controls.

Example
This example includes an control that has a Hint property value and has its ShowHint
property value set to True. When the application runs and the user places the mouse
cursor over the control, a Help Hint appears for the control in a red hint box after a delay
of 1000 milliseconds:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.ShowHint := True;
 Application.HintColor := clAqua;
 Application.HintPause := 1000;
end;

See also
Hint property, HintColor property, HintPause property

Showing property

Applies to
All controls

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 723

S h o w M e s s a g e p r o c e d u r e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Declaration

property Showing: Boolean;

Run-time and read only. The Showing property specifies whether a component is
currently showing on the screen. If the Visible properties of a component and all the
parents in its parent hierarchy are True, Showing is True. If one of the ancestors of the
component has a Visible property value of False, Showing is False.

Example
The following code adds the name of all controls in a form for which Showing is False to
a list box. When Button2 is clicked, ListBox1 is filled with the names of all windowed
controls that aren’t showing in Form1.

procedure TForm1.Button2Click(Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to ComponentCount -1 do
 if Components[I] is TWinControl then
 if not TWinControl(Components[I]).Showing then
 ListBox1.Items.Add(Components[I].Name);
end;

See also
Hide method, Show method

ShowMessage procedure Dialogs

Declaration

procedure ShowMessage(const Msg: string);

The ShowMessage procedure displays a message box with an OK button. The Msg
parameter is the message string that appears within the message box. The name of your
application’s executable file appears as the caption of the message box.

Example
This example uses a button on a form. When the user clicks the button, a message dialog
box appears with instructions to push the OK button.

procedure TForm1.Button1Click(Sender: TObject);
begin
 ShowMessage('Push this button');
end;

See also
MessageBox method, MessageDlg function, MessageDlgPos function, ShowMessagePos
procedure

724 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S h o w M e s s a g e P o s p r o c e d u r e

ShowMessagePos procedure Dialogs

Declaration

procedure ShowMessagePos(const Msg: string; X, Y: Integer);

The ShowMessagePos procedure displays a message box with an OK button at a specified
screen location. The Msg parameter is the message string that appears within the
message box. The X and Y parameters are the screen coordinates for the upper left
corner of the message box. The name of your application’s executable file appears as the
caption of the message box.

Example
This example uses a button on a form. When the user clicks the button, a message dialog
box appears with a comment about Delphi programmers. The upper left corner of the
message box appears at screen location 100, 100.

procedure TForm1.Button1Click(Sender: TObject);
begin
 ShowMessagePos('Delphi programmers are more productive', 100, 100);
end;

See also
MessageBox method, MessageDlg function, MessageDlgPos function, ShowMessage
procedure

ShowModal method

Applies to
TForm component

Declaration

function ShowModal: Integer;

The ShowModal method makes a form the active form, just like Show, but also makes the
form modal; therefore the user must put the form away before the application can
continue to run.

When the user chooses to close the form in some manner, the value of the form’s
ModalResult property changes to a nonzero value. When ModalResult has a nonzero
value, the form terminates, and the ModalResult value is passed as the result of the
ShowModal method.

Example
The following code displays a message box after BtnBottomDlg is shown modally and is
closed by an OK button.

BtnBottomDlg.ShowModal;
if BtnBottomDlg.ModalResult=mrOK then

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 725

S i n f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

 MessageDlg('OK!', mtInformation, [mbOK], 0);

This code uses two forms and a button on the first form. The user must close Form2
before the focus returns to Form1.

uses Unit2;

procedure TForm1.Button1Click(Sender: TObject);
begin
 Form2.ShowModal;
end;

See also
ModalResult property, Show method

Sin function System

Declaration

function Sin(X: Real): Real;

The Sin function returns the sine of the argument.

X is a real-type expression. Sin returns the sine of the angle X in radians.

Example

var
 R: Real;
 S: string;
begin
 R := Sin(Pi);
 Str(R:5:3, S);
 Canvas.TextOut(10, 10, 'The Sin of Pi is ' + S);
end;

See also
ArcTan function, Cos function, TypeOf function

Size property

Applies to
TFieldDef, TFont object; TBCDField, TBlobField, TBytesField, TGraphicField, TIntegerField,
TMemoField, TStringField, TTimeField, TVarBytesField components

726 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S i z e p r o p e r t y

For fonts

Declaration

property Size: Integer;

The Size property value is the size of the font, which is the height of the font minus the
internal leading that appears at the top of the font. Whenever you specify a font size in
points, use the Size property. If you are concerned with the height of the font on the
screen—the number of pixels the font needs—use the Height property instead of Size.
Users usually specify font sizes in points within an application, while programmers are
usually concerned with the actual height of the font—which includes the internal
leading—when displaying a font on the screen.

Delphi determines the value of the Size property using this formula:

Font.Size = -Font.Height * 72 / Font.PixelsPerInch

Therefore, whenever you enter a positive value for the Size property, the font’s Height
property value changes to a negative number. Conversely, if you enter a positive value
for the Height property, the font’s Size property changes to a negative number.

Example
This examples uses a button on a form. When the user clicks the button, the size of the
font used by the button changes to 24 points.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Button1.Font.Size := 24;
end;

See also
Font property, Height property, PixelsPerInch property

For TFieldDef objects

Declaration

property Size: Integer;

Run-time and read only. Reports the size of the TFieldDef object. Size is meaningful only
for a TFieldDef object with one of the following TFieldType values: ftString, ftBCD, ftBytes,
ftVarBytes, ftBlob, ftMemo or ftGraphic. For string and byte fields, Size is the number of
bytes reserved in the table for the field. For a BCD field, it is the number of digits
following the decimal point. For a BLOB, memo, or graphic field it is the number of
bytes in the field.

Example

{ Allocate enough memory to make a copy of the BLOB }
GetMem(PBlob, BlobFieldDef.Size);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 727

S i z e O f f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

See also
TField component

For field components

Declaration

property Size: Integer;

For a TStringField, Size is the number of bytes reserved for the field in the dataset. For a
TBCDField, it is the number of digits following the decimal point. For a TBlobField,
TBytesField, TVarBytesField, TMemoField, or TGraphicField, it is the size of the field as
stored in the table.

SizeOf function System

Declaration

function SizeOf(X): Word;

The SizeOf function returns the number of bytes occupied by X.

X is either a variable reference or a type identifier.

Always use SizeOf when passing values to FillChar, Move, and GetMem.

When applied to an instance of an object type that has a virtual method table (VMT),
SizeOf returns the size stored in the VMT.

Example

type
 CustRec = record
 Name: string[30];
 Phone: string[14];
 end;
 var
 P: ^CustRec;
begin
 GetMem(P, SizeOf(CustRec));
 Canvas.TextOut(10, 10, 'The size of the record is ' + IntToStr(SizeOf(CustRec)));
 FreeMem (P, SizeOf(CustRec));
 Readln;
end;

See also
FillChar procedure, GetMem procedure, Move procedure

728 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S m a l l C h a n g e p r o p e r t y

SmallChange property

Applies to
TScrollBar component

Declaration

property SmallChange: TScrollBarInc;

The SmallChange property determines how far the thumb tab moves when the user
clicks the arrows at the end of the scroll bar to scroll or uses the arrow keys on the
keyboard. The default value is 1.

For example, if SmallChange is 1000, each time the user clicks an arrow on the scroll bar,
the thumb tab moves 1000 positions. The number of positions is determined by the
difference between the Max property value and the Min property value. If the Max
property is 30000 and the Min property is 0, the user would need to click an arrow on
the scroll bar 30 times to move the thumb tab from one end of the scroll bar to the other.

Example
This code determines that when the user clicks an arrow on the scroll bar, the thumb tab
moves 10 positions on the scroll bar:

ScrollBar1.SmallChange := 10;

See also
LargeChange property, Max property, Position property

Sort method

Applies to
TStringList object

Declaration

procedure Sort;

The Sort method sorts the strings in a string list object in alphabetical order.

Example
The following code sorts MyStringList.

MyStringList.Sort;

See also
Sorted property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 729

S o r t e d p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Sorted property

Applies to
TStringList object; TComboBox, TDBComboBox, TDBListBox, TListBox components

For combo and list boxes

Declaration

property Sorted: Boolean;

The Sorted property indicates whether the items in a list box or combo box are arranged
alphabetically. To sort the items, set the Sorted value to True. If Sorted is False, the items
are unsorted.

If you add or insert items when Sorted is True, Delphi automatically places them in
alphabetical order.

Example
This example uses an edit box, a list box, and two buttons on a form. The buttons are
named Add and Sort. When the user clicks the Add button, the text in the edit box is
added to the list in the list box. When the user clicks the Sort button, the list in the list
box is sorted and remains sorted, even if additional strings are added:

procedure TForm1.FormCreate(Sender: TObject);
begin
 ListBox1.Items.Add('Not');
 Listbox1.Items.Add('In');
 ListBox1.Items.Add('Alphabetical');
 ListBox1.Items.Add('Order');
end;

procedure TForm1.AddClick(Sender: TObject);
begin
 ListBox1.Items.Add(Edit1.Text);
end;

procedure TForm1.SortClick(Sender: TObject);
begin
 ListBox1.Sorted := True;
end;

See also
Add method, Insert method, Items property

730 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S o u r c e p r o p e r t y

For string list objects

Declaration

property Sorted: Boolean;

The value of the Sorted property determines the order of the strings in the list of strings
maintained by the string list. If Sorted is True, the strings are sorted in ascending order. If
Sorted is False, the strings are unsorted.

Example
This example uses a list box on a form. When the application runs, a string list object is
created and three strings are added to it. The strings are sorted and added to the list box,
where they appear in their sorted order:

procedure TForm1.FormCreate(Sender: TObject);
var
 MyList: TStringList;
begin
 MyList := TStringList.Create;
 MyList.Add('Plants');
 MyList.Add('Animals');
 MyList.Add('Minerals');
 MyList.Sorted := True;
 ListBox1.Items.AddStrings(MyList);
 MyList.Free;
end;

See also
Add method, IndexOf method, Sort method, Strings property

Source property

Applies to
TBatchMove component

Declaration

property Source: TDataSet;

Source specifies a dataset (a TQuery or TTable component) corresponding to an existing
source table.

Example
BatchMove1.Source := Table1;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 731

S p a c i n g p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

See also
Destination property

Spacing property

Applies to
TBitBtn, TSpeedButton components

Declaration

property Spacing: Integer;

The Spacing property determines where the image and text appear on a bitmap or speed
button. Spacing determines the number of pixels between the image (specified in the
Glyph property) and the text (specified in the Caption property). The default value is 4.

If Spacing is a positive number, its value is the number of pixels between the image and
text. If Spacing is 0, no pixels will be between the image and text. If Spacing is –1, the text
appears centered between the image and the button edge. The number of pixels
between the image and text is equal to the number of pixels between the text and the
button edge opposite the glyph.

Example
This example loads a bitmap from a file when the form is created and places the bitmap
20 pixels from the right side of the button text:

procedure TForm1.FormCreate(Sender: TObject);
begin
BitBtn1.Glyph.LoadFromFile(‘c:\delphi\bin\mybitmap.bmp’);
BitBtn1.Layout := blGlyphLeft;
BitBtn1.Spacing := 20;

end;

See also
Caption property, Layout property, Margin property

SPtr function System

Declaration

function SPtr: Word;

The SPtr function returns the offset of the stack pointer within the stack segment.

Example

function MakeHexWord(w: Word): string;
 const
 hexChars: array [0..$F] of Char =

732 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S Q L p r o p e r t y

 '0123456789ABCDEF';
var
 HexStr : string;
 begin
 HexStr := '';
 HexStr := HexStr + hexChars[Hi(w) shr 4];
 HexStr := HexStr + hexChars[Hi(w) and $F];
 HexStr := HexStr + hexChars[Lo(w) shr 4];
 HexStr := HexStr + hexChars[Lo(w) and $F];
 MakeHexWord := HexStr;
 end;

var
 i: Integer;
 Y: Integer;
 S: string;
begin
 Y := 10;
 S := 'The current code segment is $' + MakeHexWord(CSeg);
 Canvas.TextOut(5, Y, S);

Y := Y + Canvas.TextHeight(S) + 5;
 S := 'The global data segment is $' + MakeHexWord(DSeg);
 Canvas.TextOut(5, Y, S);

Y := Y + Canvas.TextHeight(S) + 5;
 S := 'The stack segment is $' + MakeHexWord(SSeg);
 Canvas.TextOut(5, Y, S);

Y := Y + Canvas.TextHeight(S) + 5;
 S := 'The stack pointer is at $' + MakeHexWord(SPtr);
 Canvas.TextOut(5, Y, S);

Y := Y + Canvas.TextHeight(S) + 5;
 S := 'i is at offset $' + MakeHexWord(Ofs(i));
 Canvas.TextOut(5, Y, S);

Y := Y + Canvas.TextHeight(S) + 5;
 S := 'in segment $' + MakeHexWord(Seg(i));
 Canvas.TextOut(5, Y, S);
end;

See also
SSeg function

SQL property

Applies to
TQuery component

Declaration

property SQL: TStrings;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 733

S q r f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

The SQL property holds the text of the SQL statement that will be executed when Open
or ExecSQL is called. Once a query has been executed by Open, you must call the Close
method before you can change the SQL text.

You can create the text for the SQL property:

Delphi also supports heterogeneous queries against more than one server or table type (for
example, data from an Oracle table and a Paradox table).

Note The SQL property may contain only one complete SQL statement at a time. In general,
multiple statements are not allowed. Some servers support multiple statement “batch”
syntax; if the server supports this, then such statements are allowed.

See also
Text property

Sqr function System

Declaration

function Sqr(X: Real): (Real);

The Sqr function returns the square of the argument.

X is a real-type expression. The result, of the same type as X, is the square of X, or X*X.

Example

var
 S, Temp: string;
begin
 Str(Sqr(5.0):3:1, Temp);
 S := '5 squared is ' + Temp + #13#10;
 Str(Sqrt(2.0):5:4, Temp);
 S := S + 'The square root of 2 is ' + Temp;
 MessageDlg(S, mtInformation, [mbOk], 0);
end;

See also
Sqrt function

Sqrt function System

Declaration

function Sqrt(X: Real): Real;

The Sqrt function returns the square root of the argument.

X is a real-type expression. The result is the square root of X.

734 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S S e g f u n c t i o n

Example

var
 S, Temp: string;
begin
 Str(Sqr(5.0):3:1, Temp);
 S := '5 squared is ' + Temp + #13#10;
 Str(Sqrt(2.0):5:4, Temp);
 S := S + 'The square root of 2 is ' + Temp;
 MessageDlg(S, mtInformation, [mbOk], 0);
end;

See also
Sqr function

SSeg function System

Declaration

function SSeg: Word;

The SSeg function returns the current value of the SS register.

The result, of type Word, is the segment address of the stack segment.

Example
function MakeHexWord(w: Word): string;
 const
 hexChars: array [0..$F] of Char =
 '0123456789ABCDEF';
 var
 HexStr : string;
 begin
 HexStr := '';
 HexStr := HexStr + hexChars[Hi(w) shr 4];
 HexStr := HexStr + hexChars[Hi(w) and $F];
 HexStr := HexStr + hexChars[Lo(w) shr 4];
 HexStr := HexStr + hexChars[Lo(w) and $F];
 MakeHexWord := HexStr;
 end;

var
 i: Integer;
 Y: Integer;
 S: string;
begin
 Y := 10;
 S := 'The current code segment is $' + MakeHexWord(CSeg);
 Canvas.TextOut(5, Y, S);

Y := Y + Canvas.TextHeight(S) + 5;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 735

S t a r t p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

 S := 'The global data segment is $' + MakeHexWord(DSeg);
 Canvas.TextOut(5, Y, S);

Y := Y + Canvas.TextHeight(S) + 5;
 S := 'The stack segment is $' + MakeHexWord(SSeg);
 Canvas.TextOut(5, Y, S);

Y := Y + Canvas.TextHeight(S) + 5;
 S := 'The stack pointer is at $' + MakeHexWord(SPtr);
 Canvas.TextOut(5, Y, S);

Y := Y + Canvas.TextHeight(S) + 5;
 S := 'i is at offset $' + MakeHexWord(Ofs(i));
 Canvas.TextOut(5, Y, S);

Y := Y + Canvas.TextHeight(S) + 5;
 S := 'in segment $' + MakeHexWord(Seg(i));
 Canvas.TextOut(5, Y, S);
end;

See also
CSeg function, DSeg function, SPtr function

Start property

Applies to
TMediaPlayer component

Declaration

property Start: Longint;

The Start property specifies the starting position within the currently loaded medium.
Start is the beginning of the medium for devices that don’t use tracks, or the beginning
of the first track for devices that use tracks. Start is defined when a multimedia device is
opened with the Open method. Start is specified according to the current time format,
which is stored in the TimeFormat property. Start is read only at run time and is
unavailable at design time.

Example
The following code displays the start position of the Microsoft Video for Windows file in
an edit box named Edit1. Attach the code to the OnClick event handler of a bitmap
button named BitBtn1. The code assumes Video for Windows has been installed and a
video file named NOTES.AVI is present.

procedure TForm1.BitBtn1Click(Sender: TObject);
begin
with MediaPlayer1 do
begin

try
FileName := 'NOTES.AVI';
Open;

736 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t a r t M a r g i n p r o p e r t y

Edit1.Text := IntToStr(MediaPlayer1.Start);
except
MessageDlg(MediaPlayer1.ErrorMessage, mtError, [mbOk], 0);

end;
end;

end;

See also
Length property

StartMargin property

Applies to
TTabSet component

Declaration

property StartMargin: Integer;

The StartMargin property determines how far in pixels the first tab appears from the left
edge of the tab set control. The default value is 5. Together with the EndMargin property,
StartMargin can play a role in determining how many tabs can fit within the tab set
control.

Example
This example displays the tab set control so that the tabs are no closer than 20 pixels
from the edge of the tab control on the left and from the scroll buttons on the right:

procedure TForm1.FormCreate(Sender: TObject);
begin
 with TabSet1 do
 begin
 AutoScroll := True;
 StartMargin := 20;
 EndMargin := 20;
 end;
end;

See also
AutoScroll property, EndMargin property

StartPage property

Applies to
TReport component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 737

S t a r t P o s p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Declaration

property StartPage: Word;

The value of the StartPage property determines which page you want the report to start
printing from. The default value is 1, indicating the first page. You can change that value
to begin printing the report on some other page.

Example
The following code determines the page on which to start printing the report from an
edit box.

Report1.StartPage := StrToInt(Edit1.Text);

See also
EndPage property, PrintCopies property, Print method

StartPos property

Applies to
TMediaPlayer component

Declaration

property StartPos: Longint;

Run-time only. The StartPos property specifies the position within the currently loaded
medium from which to begin playing or recording. StartPos is specified using the
current time format, which is specified in the TimeFormat property.

The StartPos property affects only the next Play or StartRecording method called after
setting StartPos. You must reset StartPos to affect any subsequent calls to Play or
StartRecording.

StartPos does not affect the current position of the medium (specified in the Position
property) until the next Play or StartRecording method is called.

Example
The following procedure begins playing the .WAV audio file from the middle of the file.

procedure TForm1.Button1Click(Sender: TObject);
begin
 with MediaPlayer1 do begin
 FileName := 'd:\winapps\sounds\cartoon.wav';
 Open;
 StartPos := TrackLength[1] div 2;
 Play;
 end;
end;

738 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t a r t R e c o r d i n g m e t h o d

See also
EndPos property

StartRecording method

Applies to
TMediaPlayer component

Declaration

procedure StartRecording;

The StartRecording method begins recording from the current Position or from the
position specified in StartPos. StartRecording is called when the Record button on the
media player control is clicked at run time.

Upon completion, StartRecording stores a numerical error code in the Error property and
the corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
StartRecording method has completed. The Notify property determines whether
StartRecording generates an OnNotify event.

By default, the Notify property becomes True, and the Wait property becomes False upon
completion of the StartRecording method. However, if you’ve set these properties to
specific values prior to calling StartRecording, they remain unchanged.

Example
The following code tells MediaPlayer1 to start recording.

MediaPlayer1.StartRecording;

See also
Capabilities property, Pause method, PauseOnly method, Play method, Stop method

StartTransaction method

Applies to
TDataBase component

Declaration

procedure StartTransaction;

The StartTransaction method begins a transaction at the isolation level specified by the
TransIsolation property. If a transaction is currently active, Delphi will raise an exception.

Modifications made to the database will be held by the server until the Commit method
is called to commit the changes or the Rollback method is called to cancel the changes.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 739

S t a t e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Use this method only when connected to a server database.

Example

with Database1 do
begin
StartTransaction;

{ Update one or more records in tables linked to Database1 }
...
Commit;
end;

State property

Applies to
TCheckBox, TDBCheckBox, TDataSource, TTable, TQuery, TStoredProc components

For check boxes

Declaration

property State: TCheckBoxState;

The State property determines the various states a check box control can have. These are
the possible values:

State is a run-time only property of a database check box component.

Example
This code examples uses three check boxes on a form. When the form is created, the
code sets the initial state of each of the check boxes: the first check box is checked, the
second check box is dimmed (or grayed), and the third check box is unchecked:

procedure TForm1.FormCreate(Sender: TObject);
begin
CheckBox1.State := cbChecked;
CheckBox2.State := cbGrayed;
CheckBox3.State := cbUnChecked;

end;

See also
AllowGrayed property, Checked property

Value Meaning

cbUnchecked The check box has no check mark indicating the user hasn’t selected the option.
cbChecked The check box has a check mark in it indicating the user has selected the option.
cbGrayed The check box is gray indicating a third state that is neither checked nor unchecked.

Your application determines the meaning of a grayed check box.

740 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t e p m e t h o d

For data source components

Declaration

property State: TDataSetState;

Description

State reads the current status of the dataset component. Possible values are those of the
TDataSetState type: dsInactive, dsBrowse, dsEdit, dsInsert, dsSetKey, or dsCalcFields. The
value of State is the same as that of the State property of DataSet, except that when
Enabled is False or DataSet has not been assigned a value, State will be dsInactive.

Example

if DataSource1.Dataset <> nil then
PostButton.Enabled := DataSource1.State in [dsEdit, dsInsert];

For tables, queries, and stored procedures

Declaration

property State: TDataSetState;

Run-time and read only. The State property specifies the current state of the dataset. The
possible values are those of the TDataSetState type:

• dsInactive when the dataset is closed
• dsBrowse when the dataset is in Browse state
• dsEdit when the dataset is in Edit state
• dsInsert when the dataset is in Insert state
• dsSetKey when the dataset is in SetKey state
• dsCalcFields when the OnCalcFields event is called.

Example

{ Open the dataset if it is not already }
if Table1.State = dsInactive then Table1.Active := True;

Step method

Applies to
TMediaPlayer component

Declaration

procedure Step;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 741

S t m t H a n d l e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

The Step method steps forward a number of frames (determined by the Frames property)
in the currently loaded medium. Step is called when the Step button on the media player
control is clicked at run time.

Upon completion, Step stores a numerical error code in the Error property and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Step method has completed. The Notify property determines whether Step generates an
OnNotify event.

Example
The following example lets the user pick an .AVI video file using OpenDialog1 and
opens that file in MediaPlayer1. The 'Step' button can then be used to step forward
through the .AVI clip. This could be used to hide MediaPlayer1 if you wanted to design
your own user interface for the media player.

procedure TForm1.FormClick(Sender: TObject);
begin
 OpenDialog1.Filename := '*.*';
 if OpenDialog1.Execute then begin
 MediaPlayer1.Filename := OpenDialog1.Filename;
 MediaPlayer1.Open;
 end;
end;

procedure TForm1.BackClick(Sender: TObject);
begin
 MediaPlayer1.Step;
end;

See also
Back method, Capabilities property

StmtHandle property

Applies to
TQuery, TStoredProc component

Declaration

property StmtHandle: HDBIStmt;

Run-time and read only. The StmtHandle property enables an application to make direct
calls to the Borland Database Engine (BDE) API using the result of the last query. Under
most circumstances you should not need to use this property, unless your application
requires some functionality not encapsulated in the VCL.

742 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t o p m e t h o d

Stop method

Applies to
TMediaPlayer component

Declaration

procedure Stop;

The Stop method stops playing or recording. Stop is called when the Stop button on the
media player control is clicked at run time.

Upon completion, Stop stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Stop method has completed. The Notify property determines whether Stop generates an
OnNotify event.

Example
The following procedure stops the currently playing multimedia device when Button2 is
clicked.

procedure TForm1.Button2Click(Sender: TObject);
begin
 MediaPlayer1.Stop;
end;

See also
Pause method, PauseOnly method, Play method, StartRecording method

Storage property

Applies to
TOLEContainer component

Declaration

property Storage: IStorage;

Read-only. The Storage property allows access to the OLE IStorage interface of an OLE
container component.

Note The concept of IStorage is described in detail in OLE 2.0 documentation such as the
Microsoft OLE 2.0 SDK.

See also
LoadFromFile method, SaveToFile method

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 743

S t o r e d P r o c N a m e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

StoredProcName property

Applies to
TStoredProc component

Declaration

property StoredProcName: string;

StoredProcName is the name of the stored procedure on the server.

Oracle servers allow more than one stored procedure with the same name. Set the
Overload property to specify the procedure to execute on an Oracle server.

Example

StoredProc1.StoredProcName := ‘FOO’;

Str procedure System

Declaration

procedure Str(X [: Width [: Decimals]]; var S);

The Str procedure converts X to a string representation according to the Width and
Decimals formatting parameters. The effect is like a call to Write except the resulting
string is stored in S instead of being written to a text file.

X is an integer-type or real-type expression. Width and Decimals are integer-type
expressions. S is a string-type variable or a zero-based character array variable if
extended syntax is enabled.

Example

function MakeItAString(I: Longint): string;
{ Convert any integer type to a string }
 var
 S: string[11];
begin
 Str(I, S);
 IntToStr := S;
end;

begin
 Canvas.TextOut(10, 10, MakeItAString(-5322));
end;

See also
Val procedure, Write procedure

744 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t r A l l o c f u n c t i o n

StrAlloc function SysUtils

Declaration

function StrAlloc(Size: Word): PChar;

This function allocates a buffer for a null-terminated string with a maximum length of
Size - 1 (1 byte must be reserved for the termination character). The maximum value of
Size is 65,526. The result points to the location where the first character of the string is to
be stored. A 16-bit number giving the total amount of memory allocated is stored in the
two bytes preceding the first character; it is equal to Size + 2. If space for a string is
allocated with StrAlloc, it should be deallocated via StrDispose.

StrAlloc is used by NewStr and is a general purpose routine.

StrBufSize function SysUtils

Declaration

function StrBufSize(Str: PChar): Word;

This function returns the maximum number of characters that can be stored in a string
buffer allocated by StrAlloc. This number includes the termination character. If Str does
not point to a string buffer allocated by StrAlloc, no error message is returned, and the
result is unpredictable.

StrCat function SysUtils

Declaration

function StrCat(Dest, Source: PChar): PChar;

The StrCat function appends a copy of Source to the end of Dest and returns the
concatenated string.

StrCat does not perform any length checking. The destination buffer must have room for
at least StrLen(Dest)+StrLen(Source)+1 characters.

If you want length checking, use the StrLCat function.

Example

uses SysUtils;

const
 Obj: PChar = 'Object';
 Pascal: PChar = 'Pascal';
 var
 S: array[0..15] of Char;
begin
 StrCopy(S, Obj);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 745

S t r C o m p f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

 StrCat(S, ' ');
 StrCat(S, Pascal);
 Canvas.TextOut(10, 10, StrPas(S));
end;

See also
StrLCat function

StrComp function SysUtils

Declaration

function StrComp(Str1, Str2 : PChar): Integer;

The StrComp function compares Str1 to Str2.

Example

uses SysUtils;

const
 S1: PChar = 'Wacky';
 S2: PChar = 'Code';

var
 C: Integer;
 Result: string;
begin
 C := StrComp(S1, S2);
 if C < 0 then Result := ' is less than ' else
 if C > 0 then Result := ' is greater than ' else
 Result := ' is equal to ';
 Canvas.TextOut(10, 10, StrPas(S1) + Result + StrPas(S2));
end;

See also
StrIComp function, StrLComp function, StrLIComp function

StrCopy function SysUtils

Declaration

function StrCopy(Dest, Source: PChar): PChar;

Return value Condition

<0 if Str1< Str2

=0 if Str1= Str2

>0 if Str1 > Str2

746 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t r D i s p o s e f u n c t i o n

The StrCopy function copies Source to Dest and returns Dest.

StrCopy does not perform any length checking. The destination buffer must have room
for at least StrLen(Source)+1 characters.

If you want to use length checking, use the StrLCopy function.

Example

uses SysUtils;

var
 S: array[0..12] of Char;
begin
 StrCopy(S, 'ObjectPascal');
 Canvas.TextOut(10, 10, StrPas(S));
end;

See also
StrECopy function, StrLCopy function

StrDispose function SysUtils

Declaration

function StrDispose(Str: PChar);

The StrDispose function disposes of a string on a heap that was previously allocated with
StrNew.

If Str is nil, StrDispose does nothing.

See also
StrNew function

StrECopy function SysUtils

Declaration

function StrECopy(Dest, Source: PChar): PChar;

The StrECopy function copies Source to Dest and returns StrEnd(Dest).

StrECopy does not perform any length checking. The destination buffer must have room
for at least StrLen(Source)+1 characters.

Nested calls to StrECopy to concatenate a sequence of strings will run more efficiently
than multiple calls to StrCat.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 747

S t r E n d f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Example

uses SysUtils;

const
 Turbo: PChar = 'Object';
 Pascal: PChar = 'Pascal';
 var
 S: array[0..15] of Char;
begin
 StrECopy(StrECopy(StrECopy(S, Turbo), ' '), Pascal);
 Canvas.TextOut(10, 10, StrPas(S));
end;

See also
StrCat function, StrCopy function, StrEnd function

StrEnd function SysUtils

Declaration

function StrEnd(Str: PChar): PChar;

The StrEnd function returns a pointer to the null character at the end of Str.

Example

uses SysUtils;

const
 S: PChar = 'Yankee Doodle';
begin
 Canvas.TextOut(5, 10, 'The string length of “' + StrPas(S) + '“ is ' +

IntToStr(StrEnd(S) - S));
end;

See also
StrLen function

Stretch property

Applies to
TImage, TDBImage components

Declaration

property Stretch: Boolean;

748 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t r e t c h D r a w m e t h o d

Setting the Stretch property to True permits bitmaps and metafiles to assume the size
and shape of the image control. When the image control is resized, the image resizes
also. The Stretch property has no affect on icons.

If you prefer to have the image control resize to fit the native size of the image, set the
AutoSize property to True.

Example
This example uses an image component on a form. When the form is created, the
specified image is loaded and stretched to fit the boundaries of the image component.

procedure TForm1.FormCreate(Sender: TObject);
begin
Image1.Stretch := True;
Image1.Picture.LoadFromFile('C:\DELPHI\DEMOS\GRAPHEX\PASTE.BMP');

end;

See also
AutoSize property, LoadFromFile method, Picture property

StretchDraw method

Applies to
TCanvas object

Declaration

procedure StretchDraw(const Rect: TRect; Graphic: TGraphic);

This method draws the graphic specified by the Graphic parameter in the rectangle
specified by the Rect parameter. Use this method to stretch or resize a graphic to the size
of the rectangle.

Example
The following code stretches the bitmap to fill the client area of Form1.

Form1.Canvas.StretchDraw(Form1.ClientRect, TheGraphic);

StrFmt function SysUtils

Declaration

function StrFmt(Buffer, Format: PChar; const Args: array of const): PChar;

This function formats the series of arguments in the open array Args. Formatting is
controlled by the null-terminated format string Format; the results are returned in Buffer.
The function result contains a pointer to the destination buffer.

For information on the format strings, see Format Strings.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 749

S t r i n g s p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Strings property

Applies to
TStringList, TStrings objects

Declaration

property Strings[Index: Integer]: string;

Run-time only. With the Strings property, you can access a specific string of a string or
string list object. Specify the position of the string in the string list as the value of the
Index parameter. The index of the Strings property is zero-based, so the first string has an
Index value of 0, the second has an Index value of 1, and so on. To find out what the index
of a particular string is, call the IndexOf method.

Strings is the default property of string objects. Therefore, you can safely omit the
reference to the Strings identifier and just the treat the string object itself as an indexed
array of strings. In the following example, Lines is a string object property of a memo
component (TMemo). These two lines of code are both acceptable and do the same thing:

Memo1.Lines.Strings[0] := ‘This is the first line’;
Memo1.Lines[0] := ‘This is the first line’;

Example
This example uses a list box and a button on a form. When the form is created, three
string are added to the list box. When the user clicks the button, each of the strings of the
Items property, a TStrings object, changes:

procedure TForm1.FormCreate(Sender: TObject);
begin
 ListBox1.Items.Add('One');
 ListBox1.Items.Add('Two');
 ListBox1.Items.Add('Three');
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items.Strings[0] := 'First';
 ListBox1.Items.Strings[1] := 'Second';
 ListBox1.Items.Strings[2] := 'Third';
end;

Because Strings is the default property of a string object, you can omit the reference to
Strings in the preceding code. For example, you can write the code like this:

procedure TForm1.FormCreate(Sender: TObject);
begin
 ListBox1.Items.Add('One');
 ListBox1.Items.Add('Two');
 ListBox1.Items.Add('Three');
end;

procedure TForm1.Button1Click(Sender: TObject);

750 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t r L C a t f u n c t i o n

begin
 ListBox1.Items[0] := 'First';
 ListBox1.Items[1] := 'Second';
 ListBox1.Items[2] := 'Third';
end;

See also
Add method, AddObject method, AddStrings method, Assign method, Clear method,
Count property, Delete method, Exchange method, IndexOf method, LoadFromFile
method, Objects property, SaveToFile method

StrLCat function SysUtils

Declaration

function StrLCat(Dest, Source: PChar; MaxLen: Word): PChar;

The StrLCat function appends at most MaxLen – StrLen(Dest) characters from Source to
the end of Dest and returns Dest. The SizeOf standard function can be used to determine
the MaxLen parameter.

Example

uses SysUtils;

var
 S: array[0..13] of Char;
begin
 StrLCopy(S, 'Object', SizeOf(S) - 1);
 StrLCat(S, ' ', SizeOf(S) - 1);
 StrLCat(S, 'Pascal', SizeOf(S) - 1);
 Canvas.TextOut(10, 10, StrPas(S));
end;

See also
SizeOf function, StrCat function

StrIComp function SysUtils

Declaration

function StrIComp(Str1, Str2:PChar): Integer;

The StrIComp function compares Str1 to Str2 without case sensitivity. The return value is
the same as StrComp.

Example

uses SysUtils;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 751

S t r L C o m p f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

const
 S1: PChar = 'Wacky';
 S2: PChar = 'Code';

var
 C: Integer;
 Result: string;
begin
 C := StrIComp(S1, S2);
 if C < 0 then Result := ' is less than ' else
 if C > 0 then Result := ' is greater than ' else
 Result := ' is equal to ';
 Canvas.TextOut(10, 10, StrPas(S1) + Result + StrPas(S2));
end;

See also
StrComp function, StrLComp function, StrLIComp function

StrLComp function SysUtils

Declaration

function StrLComp(Str1, Str2: PChar; MaxLen: Word): Integer;

The StrLComp function compares Str1 to Str2, up to a maximum length of MaxLen
characters. The return value is the same as StrComp.

Example

uses SysUtils;

const
 S1: PChar = 'Enterprise'
 S2: PChar = 'Enter'

var
 Result: string;
begin
 if StrLComp(S1, S2, 5) = 0 then
 Result := 'equal'
 else
 Result := 'different';
 Canvas.TextOut(10, 10, 'The first five characters are ' + Result);
end;

See also
StrComp function, StrIComp function, StrLIComp function

752 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t r L C o p y f u n c t i o n

StrLCopy function SysUtils

Declaration

function StrLCopy(Dest, Source: PChar; MaxLen: Cardinal): PChar;

The StrLCopy function copies at most MaxLen characters from Source to Dest and returns
Dest. The SizeOf standard function can be used to determine the MaxLen parameter.

Example

uses SysUtils;

var
 S: array[0..11] of Char;
begin
 StrLCopy(S, 'ObjectPascal', SizeOf(S) - 1);
 Canvas.TextOut(10, 10, StrPas(S));
end;

See also
SizeOf function, StrCopy function

StrLen function SysUtils

Declaration

function StrLen(Str: PChar): Cardinal;

The StrLen function returns the number of characters in Str, not counting the null
terminator.

Example

uses SysUtils;

const
 S: PChar = 'E Pluribus Unum';
begin
 Canvas.TextOut(5, 10, 'The string length of “' + StrPas(S) + '“ is ' +

IntToStr(StrLen(S)));
end;

See also
StrEnd function

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 753

S t r L F m t f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

StrLFmt function SysUtils

Declaration

function StrLFmt(Buffer: PChar; MaxLen: Word; Format: PChar; const Args: array of const):
PChar;

This function formats the series of arguments in the open array Args. Formatting is
controlled by the null-terminated format string Format; the results are returned in Buffer,
whose maximum length is given by MaxLen. The function result contains a pointer to
the destination buffer.

For information on the format strings, see Format Strings.

See also
FormatBuf function, StrFmt function, FmtStr procedure

StrLIComp function SysUtils

Declaration

function StrLIComp(Str1, Str2: PChar; MaxLen: Word): Integer;

StrLIComp compares Str1 to Str2 , up to a maximum length of MaxLen characters,
without case sensitivity.

The return value is the same as StrComp.

Example

uses SysUtils;

const
 S1: PChar = 'Enterprise'
 S2: PChar = 'Enter'

var
 Result: string;
begin
 if StrLIComp(S1, S2, 5) = 0 then
 Result := 'equal'
 else
 Result := 'different';
 Canvas.TextOut(10, 10, 'The first five characters are ' + Result);
end;

See also
StrComp function, StrIComp function, StrLComp function

754 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t r L o w e r f u n c t i o n

StrLower function SysUtils

Declaration

function StrLower(Str: PChar): PChar;

The StrLower function converts Str to lowercase and returns Str.

Example

uses SysUtils;

const
 S: PChar = 'A fUnNy StRiNg'
begin
 Canvas.TextOut(5, 10, StrPas(StrLower(S)) + ' ' + StrPas(StrUpper(S)));
end;

See also
StrUpper function

StrMove function SysUtils

Declaration

function StrMove(Dest, Source: PChar; Count: Cardinal): PChar;

The StrMove function copies exactly Count characters from Source to Dest and returns
Dest. Source and Dest can overlap.

Example

uses SysUtils;

function AHeapaString(S: PChar): PChar;
{ Allocate string on heap }
 var
 L: Word;
 P: PChar;
begin
 StrNew := nil;
 if (S <> nil) and (S[0] <> #0) then
 begin
 L := StrLen(S) + 1;
 GetMem(P, L);
 StrNew := StrMove(P, S, L);
 end;
end;

procedure DisposeDaString(S: PChar);
{ Dispose string on heap }
begin

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 755

S t r N e w f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

 if S <> nil then FreeMem(S, StrLen(S) + 1);
end;

var
 S: PChar;
begin
 AHeapaString(S);
 DisposeDaString(S);
end;

See also
Move procedure

StrNew function SysUtils

Declaration

function StrNew(Str: PChar): PChar;

The StrNew function allocates a copy of Str on the heap.

If Str is nil or points to an empty string, StrNew returns nil and does not allocate any
heap space.

Otherwise, StrNew makes a duplicate of Str, obtaining space with a call to the StrAlloc
procedure, and returns a pointer to the duplicated string.

The allocated space is StrLen(Str) + 3 bytes long.

Example

uses SysUtils;

const
 S: PChar = 'Nevermore';
 var
 P: PChar;
begin
 P := StrNew(S);
 Canvas.TextOut(10, 10, StrPas(P));
 StrDispose(P);
end;

See also
GetMem procedure, StrDispose function

StrPas function SysUtils

Declaration

function StrPas(Str: PChar): string;

756 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t r P C o p y f u n c t i o n

The StrPas function converts the null-terminated Str to a Pascal-style string.

Example

uses SysUtils;

const
 A: PChar = 'I love the smell of Object Pascal in the morning.';
 var
 S: string[79];
begin
 S := StrPas(A);
 Canvas.TextOut(10, 10, S);
end;

See also
StrPCopy function

StrPCopy function SysUtils

Declaration

function StrPCopy(Dest: PChar; Source: string): PChar;

The StrPCopy function copies a Pascal-style string Source into a null-terminated string
Dest.

StrPCopy does not perform any length checking.

The destination buffer must have room for at least Length(Source)+1 characters.

Example
uses SysUtils;

var
 A: array[0..79] of Char;
begin
 S := 'Honk if you know Blaise.';
 StrPCopy(A, S);
 Canvas.TextOut(10, 10, StrPas(A));
end;

See also
StrCopy procedure

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 757

S t r P L C o p y f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

StrPLCopy function SysUtils

Declaration

function StrPLCopy(Dest: PChar; const Source: string; MaxLen: Word): PChar;

StrPLCopy copies a maximum of MaxLen characters from the Pascal-style string Source
into the null-terminated string Dest. Dest is also returned as the function result.

StrPos function SysUtils

Declaration

function StrPos(Str1, Str2: PChar): PChar;

The StrPos function returns a pointer to the first occurrence of Str2 in Str1.

If Str2 does not occur in Str1, StrPos returns nil.

Example

uses SysUtils;

const
 S: PChar = 'Ready, Set, Go! ';
 SubStr: PChar = 'Set';

var
 P: PChar;
begin
 P := StrPos(S, SubStr);
 if P = nil then
 Canvas.TextOut(10, 10, 'Substring not found')
 else
 Canvas.TextOut(10, 10, 'Substring found at index ' + IntToStr(P - S));
end;

StrRScan function SysUtils

Declaration

function StrRScan(Str: PChar; Chr: Char): PChar;

The StrRScan function returns a pointer to the last occurrence of Chr in Str.

If Chr does not occur in Str, StrRScan returns nil. The null terminator is considered to be
part of the string.

Example

{ Return pointer to name part of a full path name }

758 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t r S c a n f u n c t i o n

uses SysUtils;

function NamePart(FileName: PChar): PChar;
 var
 P: PChar;
begin
 P := StrRScan(FileName, '\');
 if P = nil then
 begin
 P := StrRScan(FileName, ':');
 if P = nil then P := FileName;
 end;
 NamePart := P;
end;

var
 S : string;
begin
 S := StrPas(NamePart('C:\Test.fil'));
 Canvas.TextOut(10, 10, S);
end;

See also
StrScan function

StrScan function SysUtils

Declaration

function StrScan(Str: PChar; Chr: Char): PChar;

The StrScan function returns a pointer to the first occurrence of Chr in Str.

If Chr does not occur in Str, StrScan returns nil. The null terminator is considered to be
part of the string.

Example

uses SysUtils;

function HasWildcards(FileName: PChar): Boolean;
{ Return true if file name has wildcards in it }
begin
 HasWildcards := (StrScan(FileName, '*') <> nil) or
 (StrScan(FileName, '?') <> nil);
end;

const
 P: PChar = 'C:\Test.* ';
begin
 if HasWildcards(P) then
 Canvas.TextOut(20, 20, 'The string has wildcards')
 else

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 759

S t r T o D a t e f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

 Canvas.TextOut(20, 20, 'The string doesn’t have wildcards')
end;

See also
StrRScan function

StrToDate function SysUtils

Declaration

function StrToDate(const S: string): TDateTime;

The StrToDate function converts a string to date format. The date in the string must be a
valid date.

The string must consist of two or three numbers, separated by the character defined by
the DateSeparator global variable. The order for month, day, and year is determined by
the ShortDateFormat global variable--possible combinations are m/d/y, d/m/y, and y/
m/d.

If the string contains only two numbers, it is interpreted as a date (m/d or d/m) in the
current year. Year values between 0 and 99 are assumed to mean 1900 to 1999.

If the given string does not contain a valid date, an EConvertError exception is raised.

Note The correct format of the date string varies if you change the value of some of the date
and time typed constants.

Example
This example uses an edit box, a label, and a button on a form. When the user enters a
date in the edit box in the MM/DD/YY format, the string entered is converted to a
TDateTime value. This value is then converted back to a string value so it can appear as
the caption of the label:

procedure TForm1.Button1Click(Sender: TObject);
var
 ADate: TDateTime;
begin
 ADate := StrToDate(Edit1.Text);
 Label1.Caption := DateToStr(ADate);
end;

See also
DateToStr function, StrToDateTime function, StrToTime function

StrToDateTime function SysUtils

Declaration

function StrToDateTime(const S: string): TDateTime;

760 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t r T o F l o a t f u n c t i o n

The StrToDateTime function converts a string into a date and time format. The string
specified as the S parameter must be in the MM/DD/YY HH:MM:SS format unless the
value of the value of the date and time typed constants has changed. Specifying AM or
PM as part of the time is optional, as are the seconds. You should use 24-hour time (7:45
PM is entered as 19:45, for example) if you don’t specify AM or PM.

Note You must use another format to specify a date and time string if you change the value of
the some of the date and time typed constants.

Example
This example uses an edit box, a label, and a button on the form. When the user enters a
date and time in the edit box in the MM/DD/YY HH:MM:SS format, the string entered
is converted to a TDateTime value. This value is then converted back to a string value so
it can appear as the caption of the label:

procedure TForm1.Button1Click(Sender: TObject);
var
 ADateAndTime: TDateTime;
begin
 ADateAndTime := StrToDateTime(Edit1.Text);
 Label1.Caption := DateTimeToStr(ADateAndTime);
end;

See also
DateTimeToStr function, StrToDate function, StrToTime function

StrToFloat function SysUtils

Declaration

function StrToFloat(const S: string): Extended;

StrToFloat converts the given string to a floating-point value. The string must consist of
an optional sign (+ or –), a string of digits with an optional decimal point, and an
optional ’E’ or ’e’ followed by a signed integer. Leading and trailing blanks in the string
are ignored.

The DecimalSeparator global variable defines the character that must be used as a
decimal point. Thousand separators and currency symbols are not allowed in the string.
If the string doesn’t contain a valid value, an EConvertError exception is raised.

StrToInt function SysUtils

Declaration

function StrToInt(const S: string): Longint;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 761

S t r T o I n t D e f f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

The StrToInt function converts a string representing an integer-type number in either
decimal or hexadecimal notation into a number. If the string does not represent a valid
number, StrToInt raises an EConvertError exception.

Example
This example uses an edit box and a button on a form. When the user clicks the button,
the code converts the string ’22467’ into an integer, increments that value, then
reconverts that new value back to an a string so that it can display in the edit box:

procedure TForm1.Button1Click(Sender: TObject);
var
 S: string;
 I: Integer;
begin
 S := '22467';
 I := StrToInt(S);
 Inc(I);
 Edit1.Text := IntToStr(I);
end;

See also
IntToHex function, IntToStr function, StrToIntDef function

StrToIntDef function Sysutils

Declaration

function StrToIntDef(const S: string; Default: Longint): Longint;

The StrToIntDef function converts the string passed in S into a number. If S does not
represent a valid number, StrToIntDef returns the number passed in Default.

Example
This example uses two edit boxes and a button on a form. The user enters a number in
the first edit box and clicks the button. If the number entered was a valid integer, the
same value appears in the second edit box. If the number was not a valid integer, the
default value of 1000 appears in the second edit box:

procedure TForm1.Button1Click(Sender: TObject);
var
 NumberString: string;
 Number: Integer;
begin
 NumberString := Edit1.Text;
 Number := StrToIntDef(NumberString, 1000);
 Edit2.Text := IntToStr(Number);
end;

762 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t r T o T i m e f u n c t i o n

See also
IntToStr function, StrToInt function

StrToTime function SysUtils

Declaration

function StrToTime(const S: string): TDateTime;

The StrToTime function converts a string to a TDateTime. Specify the time string in the
HH:MM:SS format. Specifying AM or PM is optional, as are the seconds. You should
use 24 hour time (7:45 PM is entered as 19:45, for example) if you don't specify AM or
PM. You can use another format if you change the value of the some of the date and
time typed constants. If the given string does not contain a valid time an EConvertError
exception is raised.

Example
This example uses an edit box, a label, and a button on a form. When the user enters a
time in the edit box in the HH:MM:SS format, the string entered is converted to a
TDateTime value. This value is then converted back to a string value so it can appear as
the caption of the label:

procedure TForm1.Button1Click(Sender: TObject);
var
 ATime: TDateTime;
begin
 ATime := StrToTime(Edit1.Text);
 Label1.Caption := TimeToStr(ATime);
end;

See also
StrToDate function, StrToDateTime function, TimeToStr function

StrUpper function SysUtils

Declaration

function StrUpper(Str: PChar): PChar;

The StrUpper function converts Str to uppercase and returns Str.

Example

uses SysUtils;

const
 S: PChar = 'A fUnNy StRiNg'
begin

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 763

S t y l e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

 Canvas.TextOut(5, 10, StrPas(StrLower(S)) + ' ' + StrPas(StrUpper(S)));
end;

See also
StrLower function

Style property

Applies to
TFont, TPen objects; TBevel, TBitBtn, TComboBox, TDBComboBox, TDBListBox,
TDBLookupCombo, TListBox, TOutline, TTabSet components

For pen objects

Declaration

property Style: TPenStyle;

The Style property determines the style in which the pen draws lines. The following
table shows the different style values and what they produce:.

Example
This example uses two radio buttons on a form. When the user drags the mouse pointer
across the form, lines are drawn. The user can use the two radio buttons to choose
between two pen styles. Selecting the first radio button draws a dotted line. Selecting the
second radio button draws a solid line.

var
 Drawing: Boolean;

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Drawing := True;
 Canvas.MoveTo(X, Y);
end;

procedure TForm1.FormMouseMove(Sender: TObject; Shift: TShiftState; X,
 Y: Integer);

Style Meaning

psSolid The pen draws a solid line.
psDash The pen draws a line made up of a series of dashes.
psDot The pen draws a line made up of a series of dots.
psDashDot The pen draws a line made up of alternating dashes and dots.
psDashDotDot The pen draws a line made up of a series of dash-dot-dot combinations.
psClear The pen draws lines made up no visible marks.
psInsideFrame The pen draws lines within the frame of closed shapes that specify a bounding rectangle.

764 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t y l e p r o p e r t y

begin
 if Drawing then
 Canvas.LineTo(X, Y);
end;

procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.LineTo(X, Y);
 Drawing := False;
end;

procedure TForm1.RadioButton1Click(Sender: TObject);
begin
 Canvas.Pen.Style := psDot;
end;

procedure TForm1.RadioButton2Click(Sender: TObject);
begin
 Canvas.Pen.Style := psSolid;
end;

For brushes

Declaration

property Style: TBrushStyle;

The Style property of a brush determines the brush’s pattern for painting backgrounds
of windows or graphic shapes. The following table shows the different values for Style
and the resulting patterns:

Example
This example displays a rectangle filled with red horizontal stripes whenever a form
OnPaint event occurs.

procedure TForm1.FormPaint(Sender: TObject);
begin

Hatch Pattern Hatch Pattern

bsSolid bsCross

bsClear bsDiagCross

bsBDiagonal bsHorizontal

bsFDiagonal bsVertical

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 765

S t y l e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

 with Canvas do
 begin
 Brush.Style := bsHorizontal;
 Brush.Color := clRed;
 Rectangle(12, 50, 100, 200);
 end;
end;

For fonts

Declaration

property Style: TFontStyles;

The Style property determines whether the font is normal, italic, underlined, bold, and
so on. These are the possible values:

The Style property is a set, so it can contain multiple values. For example, a font could be
both boldfaced and italicized.

Example
The following code boldfaces the font used in the memo..

Memo1.Font.Style := [fsBold];

For combo boxes

Declaration

property Style: TComboBoxStyle;

The Style property determines how a combo box displays its items. By default, Style is
csDropDown, meaning that the combo box displays each item as a string in a drop-down
list. By changing the value of Style, you can create owner-draw combo boxes, meaning

Value Meaning

fsBold The font is boldfaced.
fsItalic The font is italicized.
fsUnderline The font is underlined.
fsStrikeout The font is displayed with a horizontal line through it.

766 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t y l e p r o p e r t y

that items can be graphical of either fixed or varying height. You can set Style to any of
the following values:

Owner-draw combo boxes can display items other than strings. For example, a combo
box could display graphical images along with or instead of its strings. Owner-draw
combo boxes require more programming, however, as the application needs
information on how to render the image for each item in the list.

Each time an item is displayed in an csOwnerDrawFixed combo box, the OnDrawItem
event occurs. The event handler for OnDrawItem draws the specified item. The
ItemHeight property determines the height of all the items.

Each time an item is displayed in an csOwnerDrawVariable combo box, two events occur.
The first is the OnMeasureItem event. The event handler for OnMeasureItem can set the
height of each item. Then the OnDrawItem event occurs. The OnDrawItem handler draws
each item in the list box using the size specified by the OnMeasureItem handler.

Example
This example uses a combo box and a check box on a form. If the user checks the check
box, the combo box becomes a drop-down list. When the user unchecks the check box,
the combo box becomes a simple combo box:

procedure TForm1.CheckBox1Click(Sender: TObject);
begin
 if CheckBox1.Checked then

Value Meaning

csDropDown Creates a drop-down list with an edit box in which the user can enter text. All
items are strings, with each item having the same height.
For database combo boxes, the combo box displays the contents of the field of
the current records. The user can choose another item from the drop-down list
and change the value of the field or type a new value in the edit box.

csSimple Creates an edit box with no list.
For database combo boxes, the current contents of the linked field displays in
the combo box. The user can change the contents of the field by typing in a new
value.

csDropDownList Creates a drop-down list with no attached edit box, so the user can’t edit an
item or type in a new item. All items are strings, with each item having the same
height.
For database combo boxes, the edit box is blank unless the current contents of
the field matches one of the specified Items in the drop-down list. The user can
change the contents of the field only by selecting one of the strings from the
drop-down list.

csOwnerDrawFixed Each item in the combo box is the height specified by the ItemHeight property.
For database combo boxes, the combo box is blank unless the current contents
of the field matches one of the specified Items in the drop-down list. The user
can change the contents of the field only by selecting one of the strings from the
drop-down list.

csOwnerDrawVariable Items in the combo box can be of varying heights.
For database combo boxes, the combo box is blank unless the current contents
of the field matches one of the specified Items in the drop-down list. The user
can change the contents of the field only by selecting one of the strings from the
drop-down list.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 767

S t y l e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

 ComboBox1.Style := csDropDownList
 else
 ComboBox1.Style := csSimple;
end;

See also
ReadOnly property, Creating an owner-draw control

For list boxes

Declaration

property Style: TListBoxStyle

The Style property determines how a list box displays its items. By default, Style is
lbStandard, meaning that the list box displays each item as a string. By changing the
value of Style, you can create owner-draw list boxes, meaning that items can be
graphical and of either fixed or varying height. These are the possible values for Style:

Owner-draw list boxes can display items other than strings. For example, a list box
could display graphical images along with or instead of its strings. Owner-draw list
boxes require more programming, however, because the application needs information
on how to render the image for each item in the list.

Each time an item is displayed in an lbOwnerDrawFixed list box, the OnDrawItem event
occurs. The event handler for OnDrawItem draws the specified item. The ItemHeight’
property determines the height of all the items.

Each time an item is displayed in an lbOwnerDrawVariable list box, two events occur. The
first is the OnMeasureItem event. The code you write for the OnMeasureItem handler can
set the height of each item. Then the OnDrawItem event occurs. The code you write for
the OnDrawItem handler draws each item in the list box using the size specified by the
OnMeasureItem handler.

Example
This example uses a list box and a check box. When the user checks the check box, the
list box becomes an fixed owner-draw list box. When the user unchecks the check box,
the list box becomes a standard list box:

procedure TForm1.CheckBox1Click(Sender: TObject);
begin
 if CheckBox1.Checked then
 ListBox1.Style := lbOwnerDrawFixed
 else

Value Meaning

lbStandard All items are strings, with each item the same height.
lbOwnerDrawFixed Each item in the list box is the height specified by the ItemHeight property.
lbOwnerDrawVariable Items in the list box can be of varying heights.

768 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t y l e p r o p e r t y

 ListBox1.Style := lbStandard;
end;

For bitmap buttons

Declaration

property Style: TButtonStyle;

The Style property of a bitmap button determines the appearance of a bitmap button.
These are the possible values:

Example
This example uses a bitmap button and a check box on a form. When the user checks the
check box, the bitmap button assumes the new bitmap style. When the user unchecks
the check box, the bitmap button takes on the Windows 3.1 look:

procedure TForm1.CheckBox1Click(Sender: TObject);
begin
 if CheckBox1.Checked then
 BitBtn1.Style := bsNew
 else
 BitBtn1.Style := bsWin31;
end;

See also
Kind property

For tab set controls

Declaration

property Style: TTabStyle;

The Style property of a tab set control (TTabSet component) determines how a tab
appears. These are the possible values:

Value Meaning

bsAutoDetect When you are using Windows 3.x, the bitmap button uses the standard Windows 3.x look.
When you are using a later version of Windows, the bitmap button uses a newer look.

bsWin31 Uses the standard Windows 3.1 look, regardless of which version of Windows you are
running.

bsNew Uses a new bitmap button look, regardless of which version of Windows you are running.

Value Meaning

tsStandard Each tab has the standard size and look.
tsOwnerDraw Each tab has the height specified with the TabHeight property and width needed to

hold the text or glyph.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 769

S t y l e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Owner-draw tabs can display objects other than strings, such as graphical images.
Owner-draw tabs require more programming, however, as the application needs
information on how to render the image for each tab in the tab set control.

Each time an item is displayed in an tsOwnerDraw tab, two events occur. The first is the
OnMeasureTab event. In the OnMeasureTab event handler, you write the code that
calculates the width of the tab needed to hold the text or graphical image. After the
OnMeasureTab event, the OnDrawTab event occurs. The code you write for the
OnDrawTab event draws the tab and its contents using the width found with the
OnMeasureTab event and the height specified as the value of the TabHeight property.

Example
When this example runs, the tab set on the form becomes an owner-draw tab set:

procedure TForm1.FormCreate(Sender: TObject);
begin
 TabSet1.Style := tsOwnerDraw;
end;

See also
 TTabStyle type

For outlines

Declaration

property Style: TOutlineType;

The Style property determines how a outline displays its items. By default, Style is
osStandard, meaning that the outline displays items in the style determined by the
OutlineStyle property. By changing the value of Style to otOwnerDraw, you can create
owner-draw outlines, meaning that items are drawn on the Canvas of the TOutline
component by code that you write. These are the possible values for Style:

Owner-draw outlines can display items other than the Text of an item and the standard
bitmaps specified in the PictureClosed, PictureOpen, PictureMinus, PicturePlus, and
PictureLeaf properties. Owner-draw outlines require more programming, however, as
the application needs information on how to render the image for each item in the list.

Each time an item is displayed in an otOwnerDraw outline, the OnDrawItem event occurs.
The event handler for OnDrawItem draws the specified item. The ItemHeight property
determines the height of all the items.

Example
The following code sets the style of Outline1 to owner-draw.

Value Meaning

otStandard Items are drawn according to the setting of OutlineStyle.

otOwnerDraw Items are drawn on the Canvas by your code.

770 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

S t y l e p r o p e r t y

Outline1.Style := otOwnerDraw;

For bevels

Declaration

property Style: TBevelStyle;

The value of the Style property determines if the bevel is raised or lowered. These are the
possible values:

Example
This example uses a bevel and a check box on a form. When the check box is checked,
the bevel is raised. When the check box is unchecked, the bevel is lowered:

procedure TForm1.CheckBox1Click(Sender: TObject);
begin
 if CheckBox1.Checked then
 Bevel1.Style := bsRaised
 else
 Bevel1.Style := bsLowered;
end;

For database lookup combo boxes

Declaration

property Style: TDBLookupComboStyle;

The Style property determines how a database lookup combo box displays its items.
These are the possible values:

The default value is csDropDown.

Note If the value of the LookupDisplay property differs from the value of the LookupField
property, the database lookup combo box will function as if its Style is csDropDownList,
regardless of the value of the Style property.

Value Meaning

bsLowered The bevel is lowered.
bsRaised The bevel is raised.

Value Meaning

csDropDown Creates a drop-down list with an edit box in which the user can enter text.
csDropDownList Creates a drop-down list with no attached edit box, so the user can’t edit an item or

type in a new item.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 771

S u c c f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

\Example
The following code sets the style of DBLookupCombo1 to have a drop-down list with no
edit box.

DBLookupCombo1.Style := csDropDownList;

Succ function System

Declaration

function Succ(X);

The Succ function returns the successor of the argument.

X is an ordinal-type expression. The result, of the same type as X, is the successor of X.

Example

uses Dialogs;

type
 Colors = (RED,BLUE,GREEN);
 var
 S: string;
 begin
 S := 'The predecessor of 5 is ' + IntToStr(Pred(5)) + #13#10;
 S := S + 'The successor of 10 is ' + IntToStr(Succ(10)) + #13#10;
 if Succ(RED) = BLUE then
 S := S + 'In the type Colors, RED is the predecessor of BLUE.';
 MessageDlg(S, mtInformation, [mbOk], 0);
 end;

See also
Dec procedure, Inc procedure, Pred function

Swap function System

Declaration

function Swap(X);

The Swap function exchanges the high-order bytes with the low-order bytes of the
argument.

X is an expression of type Integer or Word.

Example

var
 X: Word;
begin

772 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T a b l e N a m e p r o p e r t y

 X := Swap($1234); { $3412 }
end;

See also
Hi function, Lo function

TableName property

Applies to
TTable component

Declaration

property TableName: TFileName;

The TableName property is the name of the database table to which the TTable is linked.

Note The TTable must be closed to change this property.

TableType property

Applies to
TTable component

Declaration

property TableType: TTableType

The TableType property specifies the type of the underlying database table. This
property is not used for SQL tables.

If TableType is set to Default, the table’s file-name extension determines the table type:

• Extension of .DB or no file-name extension: Paradox table
• Extension of .DBF : dBASE table
• Extension of .TXT : ASCII table

If the value of TableType is not Default, then the table will always be of the specified
TableType, regardless of file-name extension:

• ttASCII: Text file
• ttDBase: dBASE table
• ttParadox: Paradox table

Note The TTable must be closed to change this property.

See also
CreateTable method, TableName property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 773

T a g p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Tag property

Applies to
All components

Declaration

property Tag: Longint;

The Tag property is available to store an integer value as part of a component. While the
Tag property has no meaning to Delphi, your application can use the property to store a
value for its special needs.

Example
The following code assumes that the OnClick event handlers of more than one button
point to the TForm1.Button1Click method. When a button is clicked, the procedure
checks to see if the value of the Tag of the clicked button is 42. If so, the caption of that
button is changed.

procedure TForm1.Button1Click(Sender: TObject);
begin
if (Sender as TButton).Tag = 42 then

(Sender as TButton).Caption := 'A-Ha!';
end;

TAlign type Controls

Declaration

TAlign = (alNone, alTop, alBottom, alLeft, alRight, alClient);

TAlign defines the possible values of the Align property.

TAlignment type Classes

Declaration

TAlignment = (taLeftJustify, taRightJustify, taCenter);

TAlignment is the type of the Alignment property.

TApplication component Forms

Each Delphi application automatically uses a TApplication component, which
encapsulates your application. Delphi declares an Application variable of type
TApplication that is an instance of your application.

774 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T A p p l i c a t i o n c o m p o n e n t

When you execute your application, the application’s Run method is called. The
Terminate method ends application execution. The name of your application’s
executable file is the value of the ExeName property.

The main form of your application is the form specified as the value of the MainForm
property. By default, Delphi uses Form1 as the main form. If you want to make another
form the main form, the form that is created first, use the Forms page of the Options|
Project Options dialog box to do so.

When the user minimizes the application, the Minimize method is called. When the user
restores the application to normal size, the Restore method is called. Your application
can call these methods programmatically as well.

A minimized application appears as an icon on the Windows desktop. You can assign
the icon of your choice to represent your application using the Icon property. The text
that appears below the icon is the value of the Title property. If your application has a
help file, specify its name as the value of the HelpFile property, and the Windows Help
system can display help for your application. You can specify an icon, a help file, and
the title of the application in the Options|Project dialog box on the Application page.

To display the help file for your application, call the HelpContext method.

You can specify how exceptions are handled for your application using the
HandleException method, the OnException event, and the ShowException method.

To display a message to the user, use the MessageBox method.

TApplication has several events that let you specify how your application processes the
occurrence of special events. The code you write in the OnActivate and OnDeactivate
event handlers specifies what happens when your application becomes active and
inactive. You specify how help hints appear in the OnHint and OnShowHint event
handlers. The OnIdle event handler is used to determine what happens as your
application becomes idle, and the OnMessage event handler is used to process Windows
messages your application receives. Search help for “Handling Application Events” for
more information about creating event handlers for application events.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all components.

Properties

Methods

Active HelpFile Name
ComponentCount Hint Owner
ComponentIndex HintColor ShowHint
Components HintPause Tag
ExeName Icon Terminated
Handle MainForm Title

Create HelpContext RemoveComponent
CreateForm HelpJump Restore

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 775

T A t t a c h M o d e t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Events

TAttachMode type Outline

Declaration

TAttachMode = (oaAdd, oaAddChild, oaInsert);

Description
TAttachMode is the type of the AttachMode parameter of the MoveTo method.
TAttachMode specifies the different ways which an outline item can attach to the new
position when moved in an outline.

TAutoActivate type ToCtrl

Declaration

TAutoActivate = (aaManual, aaGetFocus, aaDoubleClick);

TAutoActivate is the type of the AutoActivate property of the TOLEContainer component.

TBatchMode type DBTables

Declaration

TBatchMode = (batAppend, batUpdate, batAppendUpdate, batDelete, batCopy);

The TBatchMode type is the set of values which are passed to the BatchMove method of a
TTable or the Mode property of a TBatchMove component. batAppend appends all records.
(The destination must not have any records with the key of the any of the records in the
source.) batUpdate replaces all existing records with the new versions. (Each record in
the source must have a record in the destination with the same key.) batAppendUpdate
appends any records which do not already exist and replaces those which do. batDelete
deletes the records in the source from the destination. (Each source record must have a
key which is also found in the destination.) batCopy makes an exact duplicate of the
source table.

Destroy InsertComponent RestoreTopMosts
FindComponent MessageBox Run
Free Minimize ShowException
HandleException NormalizeTopMosts Terminate
HelpCommand ProcessMessages

OnActivate OnHelp OnMessage
OnDeactivate OnHint
OnException OnIdle

776 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T B a t c h M o v e c o m p o n e n t

TBatchMove component
TBatchMove enables you to perform operations on groups of records or entire tables. Set
the Source property to specify a dataset (a TQuery or TTable component) corresponding
to an existing source table. Set the Destination property to specify a TTable component
corresponding to a database table. The destination table may or may not already exist.

Use the Mode property to specify the operations to perform. Set the Mappings property if
the Source and Destination have different column names and you want to control how
those fields are transferred.

Set AbortOnProblem to specifiy whether to abort the operation when a data type
conversion error occurs. Set the AbortOnKeyViol property to specify whether to abort the
operation when an integrity (key) violation occurs. Set KeyViolTableName and
ProblemTableName to create Paradox tables to hold records that caused errors. Set the
ChangedTableName property to save the replaced or deleted records from Destination.

Set the Transliterate property to specify whether to transliterate character data to the
preferred character set for the destination table.

In addition to these properties and methods, this component also has the properties and
methods that apply to all components.

Properties

Methods

TBCDField component
A TBCDField represents a field of a record in a dataset. It is represented as a BCD value.
Use TBCDField for a floating-point number with a fixed number of digits following the
decimal point. The range depends on the number of digits after the decimal point, since
the accuracy is 18 digits.

AbortOnKeyViol KeyViolTableName ProblemCount
AbortOnProblem Mappings ProblemTableName
ChangedCount Mode RecordCount
ChangedTableName MovedCount Source
Destination Name Transliterate
KeyViolCount Owner Tag

Execute

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 777

T B e v e l c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Set the DisplayFormat property to control the formatting of the field for display
purposes, and the EditFormat property for editing purposes. Set the Size property to
define the number of BCD digits following the decimal point. Use the Value property to
access or change the current field value.

The TBCDField component has the properties, methods, and events of the TField
component.

Properties

Methods

Events

TBevel component ExtCtrls

The TBevel component lets you put beveled lines, boxes, or frames on the forms in your
application.

You determine if the bevel appears as a box, frame, or line using the Shape property. The
bevel can appear raised or lowered, depending on the value selected for the Style
property.

Alignment DisplayLabel MinValue
AsBoolean DisplayName Name
AsDateTime DisplayText Owner
AsFloat DisplayWidth Precision
AsInteger EditFormat ReadOnly
AsString EditMask Required
Calculated EditMaskPtr Size
CanModify FieldName Tag
Currency FieldNo Text
DataSet Index Value
DataSize IsIndexField Visible
DataType IsNull
DisplayFormat MaxValue

Assign FocusControl SetData
AssignValue GetData
Clear IsValidChar

OnChange OnSetText OnValidate
OnGetText

778 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T B e v e l S h a p e t y p e

To keep the bevel aligned within the form so that even if the user resizes the form, the
bevel remains in the same relative position, set the Align property.

In addition to these properties and methods, this component also has the properties and
methods that apply to all controls.

For more information, search for Bevel component in the online Help, and choose the
topic Using the Bevel Component.

Properties

Methods

TBevelShape type StdCtrls

Declaration

TBevelShape = (bsBox, bsFrame, bsTopLine, bsBottomLine, bsLeftLine, bsRightLine);

The TBevelShape type defines the possible values of the Shape property of the TBevel
component.

TBevelStyle type Card

Declaration

TBevelStyle = (bsLowered, bsRaised);

The TBevelStyle type defines the possible values of the Style property of the TBevel
component.

Align Height Shape
BoundsRect Hint ShowHint
ComponentIndex Left Style
Components Name Tag
ControlCount Owner Top
Controls Parent Visible
Handle ParentShowHint Width

BeginDrag Hide SetBounds
BringToFront Refresh Show
ClientToScreen Repaint Update
Dragging ScreenToClient
EndDrag SendToBack

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 779

T B e v e l W i d t h t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TBevelWidth type ExtCtrls

Declaration

TBevelWidth: 1..MaxInt;

Description
The TBevelWidth type defines the possible values of the BevelWidth property for a panel
component (TPanel).

TBitBtn component Buttons

A TBitBtn component is a push button control that can include a bitmap on its button
face. You can choose from predefined bitmap buttons styles or specify your own bitmap
for the button. Users use bitmap buttons as they would use a TButton component—to
initiate actions.

Like buttons, bitmap buttons are frequently used within dialog boxes. A default bitmap
button is the button whose OnClick event handler runs whenever the user presses the
Enter key while using the dialog box. To make a bitmap button a default button, set the
button’s Default property to True.

A Cancel bitmap button is the button whose OnClick event handler runs whenever the
user presses the Esc key while using the dialog box. To make a bitmap button a Cancel
button, set the button’s Cancel property to True.

You can have a bitmap button close a modal form without writing an event handler that
includes code specifically to close the form. Set the button’s ModalResult property to a
value other than 0.

You can select from several predefined bitmap buttons. Specify the kind of bitmap
button you want with the Kind property.

To create a customized bitmap button, use the Glyph property to specify the bitmap you
want to appear on the button, and use the Layout, Margin, and Spacing properties to
specify how to arrange the caption and bitmap on the button. You can use different
images to represent the different states of the bitmap button. For example, you can use
one image when the button is unselected, another when it is selected, and another when
it is disabled. Use the NumGlyphs property to specify multiple images.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for the BitmapButton component in the online Help, and
choose the topic Using the Bitmap Button Component.

780 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T B i t B t n K i n d t y p e

Properties

Methods

Events

TBitBtnKind type Buttons

Declaration

TBitBtnKind = (bkCustom, bkOK, bkCancel, bkHelp, bkYes, bkNo, bkClose, bkAbort, bkRetry,
bkIgnore, bkAll);

The TBitBtnKind type contains the values the Kind property of a TBitBtn bitmap button
can assume.

Align HelpContext PopupMenu
BoundsRect Hint ShowHint
Cancel Kind Showing
Caption Layout Spacing
ComponentIndex Left Style
Cursor Margin TabOrder
Default ModalResult TabStop
DragCursor Name Tag
DragMode NumGlyphs Top
Enabled Owner Visible
Font Parent Width
Glyph ParentFont
Height ParentShowHint

BeginDrag GetTextBuf SendToBack
BringToFront GetTextLen SetBounds
CanFocus Hide SetFocus
Click Refresh SetTextBuf
ClientToScreen Repaint Show
Dragging ScaleBy Update
EndDrag ScreenToClient
Focused ScrollBy

OnClick OnEnter OnKeyUp
OnDragDrop OnExit OnMouseDown
OnDragOver OnKeyDown OnMouseMove
OnEndDrag OnKeyPress OnMouseUp

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 781

T B i t m a p o b j e c t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TBitmap object Graphics

A TBitmap object contains a bitmap graphic (.BMP file format). A TBitmap encapsulates a
Windows HBITMAP and an HPALETTE and manages the realizing of the palette
automatically.

The canvas of the TBitmap is a TCanvas object specified by the Canvas property. The
palette of the TBitmap is specified by the Palette property.

The height and width in pixels of the bitmap are specified by the Height and Width
properties, respectively.

If the Monochrome property is set to False, the bitmap is displayed in color. If Monochrome
is set to True, the bitmap is displayed in monochrome.

To load a bitmap from a file, call the LoadFromFile method. To save a bitmap to a file, call
SaveToFile.

To draw a bitmap on a canvas, call the Draw or StretchDraw methods of a TCanvas object,
passing a TBitmap as a parameter.

When the bitmap is modified, an OnChange event occurs.

In addition to these properties, methods, and events, this object also has the methods
that apply to all objects.

Properties

Methods

Events

TBlobField component
A TBlobField component represents a field of a record in a dataset. It is represented by a
value consisting of an arbitrary set of bytes of indefinite size.

Use the Assign method to copy values from another field to a TBlobField. Use the
LoadFromFile method to load a field’s contents from a file. Use LoadFromStream method

Canvas Height Width
Empty Monochrome
Handle Palette

Assign Create ReleaseHandle
ClassName Destroy ReleasePalette
ClassParent Free SaveToFile
ClassType LoadFromFile

OnChange

782 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T B l o b S t r e a m o b j e c t

to load a field from a Stream. Use SaveToFile method to write a field’s contents to a file.
Use SaveToStream method to write a field’s contents to a Stream.

The TBlobField component has the properties, methods, and events of the TField
component.

Properties

Methods

Events

TBlobStream object
The TBlobStream object provides a simple technique to access or modify a TBlobField,
TBytesField or TVarBytesField by allowing you to “read” from or “write” to the field as if
it were a file or stream.

Use the Create constructor to link the field to the BLOB stream. Call the Read or Write
methods to access or change the contents of the field. Use Seek to position within the
field. Call the Truncate method to delete all information in the field from the current
position on.

In addition to these methods, this object also has the methods that apply to all objects.

Alignment DataType IsIndexField
AsBoolean DisplayLabel IsNull
AsDateTime DisplayName Name
AsFloat DisplayText Owner
AsInteger DisplayWidth ReadOnly
AsString EditMask Required
Calculated EditMaskPtr Size
CanModify FieldName Tag
DataSet FieldNo Text
DataSize Index Visible

Assign GetData SaveToFile
AssignValue IsValidChar SaveToStream
Clear LoadFromFile SetData
FocusControl LoadFromStream

OnChange OnSetText OnValidate
OnGetText

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 783

T B l o b S t r e a m M o d e t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Methods

TBlobStreamMode type DBTables

Declaration

TBlobStreamMode = (bmRead, bmWrite, bmReadWrite);

The TBlobStreamMode type is the set of values which are passed to the Create method of a
TBlobStream object. Use bmRead to access an existing TBlobField, TBytesField or
TVarBytesField. Use bmWrite to clear the contents of the field and assign a new value. Use
bmReadWrite to modify an existing value.

TBookmark type DB

Declaration

TBookmark = Pointer;

The TBookmark type is the type of the Bookmark parameter you use to call the
GetBookmark, GotoBookmark, and FreeBookmark methods of a dataset component.

TBooleanField component
A TBooleanField represents a field of a record in a dataset. A Boolean field is either True
or False, but the display string in a data-aware control can be varied.

Set the DisplayValues property to control the formatting of the field for display purposes
or input recognition. Use the Value property to access or change the current field value.

The TBooleanField component has the properties, methods, and events of the TField
component.

Properties

ClassName Destroy Truncate
ClassParent Free Write
ClassType Read
Create Seek

Alignment DisplayLabel IsNull
AsBoolean DisplayName Name
AsDateTime DisplayText Owner
AsFloat DisplayValues ReadOnly
AsInteger DisplayWidth Required
AsString EditMask Size

784 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T B o r d e r I c o n s t y p e

Methods

Events

TBorderIcons type Forms

Declaration

TBorderIcon = (biSystemMenu, biMinimize, biMaximize);

TBorderIcons = set of TBorderIcon;

The TBorderIcons type defines which icons appear in a form’s title bar. TBorderIcons is the
type of the BorderIcons property.

TBorderStyle type Forms

Declaration

TBorderStyle = bsNone..bsSingle;

TBorderStyle is the type of the BorderStyle property for controls.

The BorderStyle property for forms and windows uses the type TFormBorderStyle.

TBorderWidth type ExtCtrls

Declaration

TBorderWidth: 0..MaxInt;

Calculated EditMaskPtr Tag
CanModify FieldName Text
DataSet FieldNo Value
DataSize Index Visible
DataType IsIndexField

Assign FocusControl SetData
AssignValue GetData
Clear IsValidChar

OnChange OnSetText OnValidate
OnGetText

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 785

T B r u s h o b j e c t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Description
The TBorderWidth type defines the possible values for the BorderWidth property of a
panel component (TPanel).

TBrush object Graphics

A TBrush object is used when filling solid shapes, such as rectangles and ellipses. The
interior of the shape is filled with a color or pattern. TBrush encapsulates a Windows
HBRUSH.

The color of the brush is specified by the Color property. The pattern is specified by the
Style property. If a bitmap is specified by the Bitmap property, the pattern of the brush is
defined by the bitmap rather than the Style property.

If the brush is modified, an OnChange event occurs.

In addition to these properties, methods, and events, this object also has the methods
that apply to all objects.

Properties

Methods

Events

TBrushStyle type Graphics

Declaration

TBrushStyle = (bsSolid, bsClear, bsHorizontal, bsVertical, bsFDiagonal, bsBDiagonal, bsCross,
bsDiagCross);

The TBrushStyle type is used by the Style property to determine the pattern of a TBrush
object.

Bitmap Handle Style
Color

Assign ClassType Free
ClassName Create
ClassParent Destroy

OnChange

786 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T B u t t o n c o m p o n e n t

TButton component StdCtrls

A TButton component is a push button control. Users choose button controls to initiate
actions. Buttons are most commonly used in dialog boxes.

A default button is the button whose OnClick event handler runs whenever the user
presses the Enter key while using the dialog box. To make a button a default button, set
the button’s Default property to True.

A Cancel button is the button whose OnClick event handler runs whenever the user
presses the Esc key while using the dialog box. To make a button a Cancel button, set the
button’s Cancel property to True.

You can have a button close a modal form without writing an event handler that
includes code to specifically close the form. Set the button’s ModalResult property to one
of the values other than 0.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for Button component in the online Help, and choose the
topic Using the Button Component.

Properties

Methods

Align Font ParentShowHint
BoundsRect Height PopupMenu
Cancel HelpContext ShowHint
Caption Hint Showing
ComponentIndex Left TabOrder
Cursor ModalResult TabStop
Default Name Tag
DragCursor Owner Top
DragMode Parent Visible
Enabled ParentFont Width

BeginDrag GetTextBuf ScrollBy
BringToFront GetTextLen SendToBack
CanFocus Hide SetBounds
ClientToScreen Refresh SetFocus
Dragging Repaint SetTextBuf
EndDrag ScaleBy Show
Focused ScreenToClient Update

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 787

T B u t t o n L a y o u t t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Events

TButtonLayout type Buttons

Declaration

TButtonLayout = (blGlyphLeft, blGlyphRight, blGlyphTop, blGlyphBottom);

The TButtonLayout type defines the values the Layout property of a bitmap button
(TBitBtn) or speed button (TSpeedButton) can assume.

TButtonSet type MPlayer and DBCtrls

For media players

Declaration

TButtonSet = set of TMPBtnType;

The TButtonSet type is a set of the buttons of the media player component. This set is
used with the ColoredButtons, EnabledButtons, and VisibleButtons properties to determine
how the buttons are displayed.

For database navigators

Declaration

TNavigateBtn = (nbFirst, nbPrior, nbNext, nbLast, nbInsert, nbDelete, nbEdit, nbPost,
nbCancel, nbRefresh);

TButtonSet = set of TNavigateBtn;

The TButtonSet type defines the possible values of the VisibleButtons property for the
database navigator control.

TButtonStyle type Buttons

Declaration

TButtonStyle = (bbStandard, bbWin31, bbNew);

OnClick OnEnter OnKeyUp
OnDragDrop OnExit OnMouseDown
OnDragOver OnKeyDown OnMouseMove
OnEndDrag OnKeyPress OnMouseUp

788 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T B y t e A r r a y

The TButtonStyle type contains the values the Style property of bitmap buttons (TBitBtn)
and speed buttons (TSpeedButton) can assume.

TByteArray SysUtils

Declaration

PByteArray = ^TByteArray;

TByteArray = array[0..32767] of Byte;

TByteArray declares a general array of type Byte that can be used in typecasting.

TBytesField component
A TBytesField represents a field of a record in a dataset. It is represented by a value
consisting of an arbitrary set of bytes with indefinite size.

Use the Assign method to copy values from another field to a TBytesField.

The TBytesField component has the properties, methods, and events of the TField
component.

Properties

Methods

Events

Alignment DataType IsIndexField
AsBoolean DisplayLabel IsNull
AsDateTime DisplayName Name
AsFloat DisplayText Owner
AsInteger DisplayWidth ReadOnly
AsString EditMask Required
Calculated EditMaskPtr Size
CanModify FieldName Tag
DataSet FieldNo Text
DataSize Index Visible

Assign FocusControl SetData
AssignValue GetData
Clear IsValidChar

OnChange OnSetText OnValidate
OnGetText

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 789

T C a n v a s o b j e c t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TCanvas object Graphics

The TCanvas object is a drawing surface. It represents an area in which your application
can draw. A TCanvas object encapsulates a Windows HDC display context.

The brush, pen, and font used to draw on the canvas are specified by the Brush, Pen, and
Font properties.

The current position of the pen is specified by the PenPos property. To move the pen, call
the MoveTo method.

To output text, call the TextOut method. To determine if text fits in a particular area, use
TextHeight and TextWidth.

To draw a straight line, call LineTo. To draw a series of straight lines, call PolyLine. To
draw curved lines, use the Arc or Chord methods.

You can draw a variety of shapes on a canvas. To draw a rectangle, call Rectangle. To
draw a rectangle with rounded corners, call RoundRect. To draw an ellipse, call Ellipse.
To draw a pie slice, call Pie. To draw a polygon defined by a series of points, call Polygon.

To fill a rectangular area with the pattern defined by Brush, call FillRect. To fill an entire
area until boundaries are encountered, call FloodFill.

To output a graphic on a canvas, such as a bitmap or metafile, call Draw. To resize the
graphic to a particular shape when drawn, call StretchDraw. To make a copy of t a
rectangular area of the canvas, use CopyRect.

When a canvas is modified, an OnChange event occurs. Immediately prior to the
modification of the canvas, an OnChanging event occurs.

In addition to these properties, methods, and events, this object also has the methods
that apply to all objects.

Properties

Methods

Brush Font PenPos
ClipRect Handle Pixels
CopyMode Pen

Arc DrawFocusRect PolyLine
BrushCopy Ellipse Rectangle
Chord FillRect RoundRect
ClassName FloodFill StretchDraw
ClassParent FrameRect TextHeight
ClassType Free TextOut
CopyRect LineTo TextRect
Create MoveTo TextWidth

790 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T C a p t i o n t y p e

Events

TCaption type Controls

Declaration

TCaption = string[255];

The TCaption type defines the string type used for control captions. TCaption is the type
of the Caption property and the Text property.

TChangeRange type Outline

Declaration

TChangeRange = -1..1;

Description
TChangeRange specifies the valid values that can be passed to the ChangeLevelBy method.
-1 moves an outline item up one level, and 1 moves an outline item down one level. 0
has no effect.

TCheckBox component StdCtrls

A check box presents an option for the user; the user can check it to select the option, or
uncheck it to deselect the option.

When the user checks or unchecks a check box, the value of the Checked property
changes. The OnClick event also occurs. The text associated with the check box that
identifies its purpose is the value of the Caption property.

If you want the user to be able to dim or gray the check box, set the AllowGrayed
property to True. Whether the check box is checked, unchecked, or grayed is determined
by the value of the State property. You can change value of State to change the check
box’s appearance.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

Destroy Pie
Draw Polygon

OnChange OnChanging

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 791

T C h e c k B o x S t a t e t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

For more information, search for Check Box component in the online Help, and choose
the topic Using the Check Box Component.

Properties

Methods

Events

See also
TDBCheckBox component, TRadioButton component

TCheckBoxState type StdCtrls

Declaration

TCheckBoxState = (cbUnchecked, cbChecked, cbGrayed);

The TCheckBoxState type defines the different types of states the check box can assume.
TCheckBoxState is the type of the State property of a TCheckBox check box control.

Align Font PopupMenu
Alignment Height ShowHint
AllowGrayed HelpContext Showing
Caption Hint State
Checked Left TabOrder
Color Name TabStop
ComponentIndex Owner Tag
Ctl3D Parent Top
Cursor ParentColor Visible
DragCursor ParentCtl3D Width
DragMode ParentFont
Enabled ParentShowHint

BeginDrag Focused ScrollBy
BringToFront GetTextBuf ScreenToClient
CanFocus GetTextLen SendToBack
ClientToScreen Hide SetBounds
Dragging Refresh SetTextBuf
EndDrag Repaint Show
FindComponent ScaleBy Update

OnClick OnEnter OnKeyUp
OnDragDrop OnExit OnMouseDown
OnDragOver OnKeyDown OnMouseMove
OnEndDrag OnKeyPress OnMouseUp

792 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T C l i p b o a r d o b j e c t

TClipboard object Clipbrd

The TClipboard object encapsulates the Windows Clipboard. Whenever you cut, copy, or
paste text or graphics objects within a Delphi application or between a Delphi
application and another Windows application, you are using the TClipboard object.

The Clipbrd unit declares the variable Clipboard as an instance of TClipboard. Use the
Clipboard variable instead of creating your own instance of TClipboard.

You can place text in and retrieve text from the Clipboard using the AsText property. If
you want to place pictures in and retrieve pictures from the Clipboard, use the Assign
property. To add or retrieve a component object to the Clipboard, call the GetComponent
and SetComponent methods.

The list of all the current formats on the Clipboard is found in the Formats property. The
number of formats is the value of the FormatCount property. To find out if a specific
format is on the Clipboard, call the HasFormat method.

Calling the Clear method clears the contents of the Clipboard.

Each time you add an item to the Clipboard, the previous contents are cleared
automatically. To add multiple items, you should use the Open method to prevent the
contents from being overwritten or being changed by another application. Call Close
when you are finished adding items to the Clipboard.

You can add and other formats to the Clipboard using Windows handles with the
GetAsHandle and SetAsHandle methods.

In addition to these properties and methods, this object also has the methods that apply
to all objects.

Properties

Methods

TCloseEvent type Forms

Declaration

TCloseAction = (caNone, caHide, caFree, caMinimize);

TCloseEvent = procedure(Sender: TObject; var Action: TCloseAction) of object;

AsText FormatCount Formats

Assign Destroy Open
Clear GetAsHandle SetAsHandle
Close GetComponent SetComponent
Create HasFormat SetTextBuf

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 793

T C l o s e Q u e r y E v e n t t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

The TCloseEvent type points to a method that handles the closing of a form. The value of
the Action parameter determines if the form actually closes. The possible values of
Action are defined by the TCloseAction type.

TCloseEvent is the type of the OnClose event.

TCloseQueryEvent type Forms

Declaration

TCloseQueryEvent = procedure(Sender: TObject; var CanClose: Boolean) of object;

The TCloseQueryEvent type points to the method that determines whether a form can be
closed. The value of the CanClose parameter determines if the form can close or not.

TCloseQueryEvent is the type of the OnCloseQuery event.

TColor type Graphics

Declaration

TColor = -(COLOR_ENDCOLORS + 1)..$02FFFFFF;

The TColor type is used to specify the color of an object. It is used by the Color property
of many components and the BackgroundColor of a tab set (TTabSet).

The Graphics unit contains definitions of useful constants for TColor. These constants
map either directly to the closest matching color in the system palette (for example,
clBlue maps to blue) or to the corresponding system screen element color defined in the
Color section of the Windows Control panel (for example, clBtnFace maps to the system
color for button faces).

The constants that map to the closest matching system colors are clAqua, clBlack, clBlue,
clDkGray, clFuchsia, clGray, clGreen, clLime, clLtGray, clMaroon, clNavy, clOlive, clPurple,
clRed, clSilver, clTeal, clWhite, and clYellow.

The constants that map to the system screen element colors are clActiveBorder,
clActiveCaption, clAppWorkSpace, clBackground, clBtnFace, clBtnHighlight, clBtnShadow,
clBtnText, clCaptionText, clGrayText, clHighlight, clHighlightText, clInactiveBorder,
clInactiveCaption, clInactiveCaptionText, clMenu, clMenuText, clScrollBar, clWindow,
clWindowFrame, and clWindowText.

If you specify TColor as a specific 4-byte hexadecimal number instead of using the
constants defined in the Graphics unit, the low three bytes represent RGB color
intensities for blue, green, and red, respectively. The value $00FF0000 represents full-
intensity, pure blue, $0000FF00 is pure green, and $000000FF is pure red. $00000000 is
black and $00FFFFFF is white.

If the highest-order byte is zero ($00), the color obtained is the closest matching color in
the system palette. If the highest-order byte is one ($01), the color obtained is the closest
matching color in the currently realized palette. If the highest-order byte is two ($02), the

794 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T C o l o r D i a l o g c o m p o n e n t

value is matched with the nearest color in the logical palette of the current device
context.

To work with logical palettes, you must select the palette with the Windows API
function SelectPalette. To realize a palette, you must use the Windows API function
RealizePalette.

TColorDialog component Dialogs

The TColorDialog component makes a Color dialog box available to your application.
The purpose of the dialog box is to allow a user to select a color. When the user selects a
color and chooses OK in the dialog box, the user’s color selection is stored in the dialog
box’s Color property, which you can then use to process as you want.

Display the Color dialog box by calling the Execute method.

You can use the Options property to customize how the Color dialog box appears. For
example, you can specify that a Help button be included in the dialog box.

In addition to these properties and methods, this component also has the properties and
methods that apply to all components.

For more information, search for ColorDialog component in the online Help, and choose
the topic Using the Color Dialog component.

Properties

Methods

TColorDialogOptions type Dialogs

Declaration

TColorDialogOption = (cdFullOpen, cdPreventFullOpen, cdShowHelp);

TColorDialogOptions = set of TColorDialogOption;

The TColorDialogOptions type declares the three options enumerated in the
TColorDialogOption type as members of a set used by the Options property of the
TColorDialog component.

Color HelpContext Owner
ComponentIndex Left Tag
Ctl3D Name Top
CustomColors Options

Execute

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 795

T C o m b o B o x c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TComboBox component StdCtrls

A TComboBox component is a control that combines an edit box with a list, much like
that of a list box. Users can either type text in the edit box or select an item from the list.

When users enter data into the combo box, either by typing text or selecting an item
from the list, the value of the Text property changes. Your application can also change
the Text property by displaying text for the user in the edit box of the combo box.

The list of items in the list is the value of the Items property. The ItemIndex property
indicates which item in the list is selected.

You can add, delete, insert, and move items in the list using the Add, Delete, and Insert
methods of the Items object, which is of type TStrings. For example, to add a string to the
list, you could write this line of code:

ComboBox1.Items.Add('New item');

Sort the items in the list with the Sorted property.

At run time, you can select all the text in the edit box with the SelectAll method. To find
out which text the user selected, or to replace selected text, use the SelText property. To
select only part of the text or to find out what part of the text is selected, use the SelStart
and SelLength properties.

You can change the style of the combo box or make it an owner-draw control by
changing the value of the Style property.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for Combo Box component in the online Help, and choose
the topic Using the Combo Box component.

Properties

Align Hint SelLength
BoundsRect ItemHeight SelStart
Canvas ItemIndex SelTSelStartext
Color Items ShowHint
ComponentIndex Left Showing
Ctl3D MaxLength Sorted
Cursor Name Style
DragCursor Owner TabOrder
DragMode Parent TabStop
DropDownCount ParentColor Tag
Enabled ParentCtl3D Text
Font ParentFont Top
Height ParentShowHint Visible
HelpContext PopupMenu Width

796 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T C o m b o B o x S t y l e t y p e

Methods

Events

See also
Creating an owner-draw control

TComboBoxStyle type StdCtrls

Declaration

TComboBoxStyle = (csDropDown, csSimple, csDropDownList, csOwnerDrawFixed,
csOwnerDrawVariable);

The TComboBoxStyle type defines the styles of combo boxes. TComboBoxStyle is the type
of the combo box control’s Style property.

TComponentName type Classes

Declaration

TComponentName: string[63];

The TComponentName type is the type of the Name property for all components.

TControlScrollBar object Forms

The TControlScrollBar object is used by the HorzScrollBar and VertScrollBar properties of
a form or scroll box to display horizontal and vertical scroll bars users can use to scroll
the form or scroll box.

BeginDrag GetTextBuf ScrollBy
BringToFront GetTextLen SelectAll
CanFocus Hide SendToBack
Clear Invalidate SetBounds
ClientToScreen Refresh SetTextBuf
Dragging Repaint Show
EndDrag ScaleBy Update
Focused ScreenToClient

OnChange OnDrawItem OnKeyDown
OnClick OnDropDown OnKeyPress
OnDblClick OnEndDrag OnKeyUp
OnDragDrop OnEnter OnMeasureItem
OnDragOver OnExit

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 797

T C o p y M o d e t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

The HorzScrollBar and VertScrollBar objects have nested properties that determine how
these scroll bars behave. The Range property determines how far a user can scroll a form
or scroll box. Increment determines how many positions the thumb tab on a scroll bar
moves when the user clicks on the scroll bar arrows. You can set the position of the
thumb tab with the Position property. If you don’t want a scroll bar to appear, set the
Visible property to False.

If you want to prevent controls from scrolling partially off screen so the user can’t scroll
them back into view, use the Margin property.

In addition to these properties, this object also has the methods that apply to all objects.

Properties

TCopyMode type Graphics

Declaration

TCopyMode = Longint;

TCopyMode is the type of the CopyMode property of a TCanvas object.

TCurrencyField component
A TCurrencyField represents a field of a record in a dataset. It is represented as a binary
value with a range from (positive or negative) 5.0 * 10-324 to 1.7 * 10308. It has an accuracy
of 15 to 16 digits. Use TCurrencyField for fields that hold currency values.

Set the DisplayFormat property to control the formatting of the field for display
purposes, and the EditFormat property for editing purposes. Use the Value property to
access or change the current field value.

The TCurrencyField component has the properties, methods, and events of the TField
component.

Properties

Align Margin Range
ComponentIndex Name ScrollPos
Increment Owner Tag
Kind Position Visible

Alignment DisplayLabel MinValue
AsBoolean DisplayName Name
AsDateTime DisplayText Owner
AsFloat DisplayWidth Precision
AsInteger EditFormat ReadOnly
AsString EditMask Required

798 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T C u r s o r t y p e

Methods

Events

TCursor type Controls

Declaration

TCursor = -32768..32767;

The TCursor type defines the different kinds of standard cursors a component can have.
TCursor is the type of the Cursor property and the DragCursor property.

TCustomColors type Dialogs

Declaration

TCustomColors = array[0..15] of Longint;

The TCustomColors type is an array that holds the color values for the custom colors the
user can create using the Color dialog box (TColorDialog component).

TDatabase component DB

The TDatabase component is not required for database access, but it provides additional
control over factors that are important for client/server applications. If you do not create
an explicit TDatabase component for a database, and an application opens a table in the
database, then Delphi will create a temporary (virtual) TDatabase component.

Calculated EditMaskPtr Size
CanModify FieldName Tag
Currency FieldNo Text
DataSet Index Value
DataSize IsIndexField Visible
DataType IsNull
DisplayFormat MaxValue

Assign FocusControl SetData
AssignValue GetData
Clear IsValidChar

OnChange OnSetText OnValidate
OnGetText

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 799

T D a t a b a s e c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

DatabaseName is the name of the database connection that can be used by dataset
components. In other words, this is the name of the local alias defined by the component
that will show up in the DatabaseName drop-down list of dataset components.

AliasName is the name of an existing BDE alias defined with the BDE Configuration
Utility. This is where the TDatabase component gets its default parameter settings. This
property will be cleared if DriverName is set. The Params property holds the connection
parameters for the alias.

DriverName is the name of a BDE driver, such as STANDARD (for dBASE and Paradox),
ORACLE, SYBASE, INFORMIX or INTERBASE. This property will be cleared if
AliasName is set, because an AliasName specifies a driver type.

The DataSets property of TDatabase is an array of references to the active datasets in the
TDatabase. The DatasetCount property is an integer that specifies the number of active
datasets.

Set the Connected property to open or close the database. Set KeepConnection to True to
avoid having to log in to the server each time the database is opened.

Set LoginPrompt to True to always prompt for user name and password when logging in
to the database server.

The TDatabase component controls server transactions. Call StartTransaction to begin a
transaction, RollBack to cancel it, or Commit to commit the changes. The TransIsolation
property specifies the transaction isolation level to request on the server.

In addition to these properties and methods, this component also has the properties and
methods that apply to all components.

Properties

Methods

Events

AliasName Handle Owner
Connected IsSQLBased Params
DatabaseName KeepConnection Tag
DatasetCount Locale Temporary
Datasets LoginPrompt TransIsolation
DriverName Name

Close Commit Rollback
CloseDatasets Open StartTransaction

OnLogin

800 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D a t a C h a n g e E v e n t t y p e

TDataChangeEvent type DB

Declaration

TDataChangeEvent = procedure(Sender: TObject; Field: TField) of object;

The TDataChangeEvent points to a method that handles the changing of data in a data
source component (TDataSource). The Field parameter is the field in which the data is
changing. It is used by the OnDataChange event of the data source.

TDataMode type DDEMan

Declaration

TDataMode = (ddeAutomatic, ddeManual);

The TDataMode type contains the types of connect modes used when initiating a DDE
conversation. Specify the connect mode in the ConnectMode property.

TDataSetNotifyEvent type DB

Declaration

TDataSetNotifyEvent = procedure(DataSet: TDataSet) of object;

The TDataSetNotifyEvent type points to a method that notifies a dataset component that
an event has occurred. It is used by all the events of the tables, queries, and stored
procedures (TTable, TQuery, and TStoredProc components).

TDataSetState type DB

Declaration

TDataSetState = (dsInactive, dsBrowse, dsEdit, dsInsert, dsSetKey, dsCalcFields);

The TDataSetState type is the set of values of the State property of a dataset component.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 801

T D a t a S o u r c e c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TDataSource component DB

TDataSource is the interface between a dataset component and data-aware controls on
forms. TDataSource attaches to a dataset through the Dataset property. Data-aware
controls, such as database edit boxes and data grids, attach to a TDataSource through
their DataSource properties. Usually there is only one data source for each dataset
component, but there can be as many data source components connected to a dataset as
you need.

The Dataset property identifies the dataset from which the data is obtained. Set the
AutoEdit property to False to prevent the dataset from going into edit mode
automatically when the value of an attached data-aware control is modified (you can
still call the Edit method to permit modifications). Set the Enabled property to False to
clear and disable the data-aware controls. Check the current status of the dataset with
the State property. To monitor changes to both the dataset and attached data-aware
controls, assign a method to the OnDataChange event. To monitor changes in the
dataset’s state, assign a method to the OnStateChange event. To update the dataset prior
to a post, assign a method to the OnUpdateData event.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all components.

Properties

Methods

Events

TDateField component
A TDateField represents a field of a record in dataset. It represents a value consisting of a
date.

Set the DisplayFormat property to control the formatting of the field for display
purposes, and the EditFormat property for editing purposes. Use the Value property to
access or change the current field value.

The TDateField component has the properties, methods, and events of the TField
component.

AutoEdit Name Tag
Dataset Owner
Enabled State

Edit

OnDataChange OnStateChange OnUpdateData

802 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D a t e T i m e t y p e

Properties

Methods

Events

TDateTime type System

Declaration

TDateTime: Float;

TDateTime is the type used by date and time routines to hold date and time values.

Delphi stores dates in the TDateTime type as the number of days that have passed since
1/1/0001. The resulting value is an integer. Time is stored as the floating-point part of
the TDateTime. The floating-point part represents the fractional part of the day.

TDateTimeField component
A TDateTimeField component represents a field of a record in a dataset. It represents a
value consisting of a date and time.

Set the DisplayFormat property to control the formatting of the field for display
purposes, and the EditFormat property for editing purposes. Use the Value property to
access or change the current field value.

The TDateTimeField component has the properties, methods, and events of the TField
component.

Alignment DataType IsIndexField
AsBoolean DisplayLabel IsNull
AsDateTime DisplayName Name
AsFloat DisplayText Owner
AsInteger DisplayWidth ReadOnly
AsString EditMask Required
Calculated EditMaskPtr Size
CanModify FieldName Tag
DataSet FieldNo Text
DataSize Index Visible

Assign FocusControl SetData
AssignValue GetData
Clear IsValidChar

OnChange OnSetText OnValidate
OnGetText

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 803

T D B C h e c k B o x c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Properties

Methods

Events

TDBCheckBox component DBCtrls

A check box presents an option to the user; the user can check it to select the option, or
uncheck it to deselect the option. A database check box (TDBCheckBox) is much like an
ordinary check box (TCheckBox), except that it is aware of the data in a particular field of
a dataset.

You can link a database check box with a dataset by specifying the data source
component (TDataSource) that identifies the dataset as the value of the check box’s
DataSource property. Specify the field in the dataset you want to access as the value of
the check box’s DataField property.

If the contents of a field in the current record of the dataset equals the string of the
ValueChecked property, the database check box is checked. If the contents matches the
string specified as the value of the ValueUnchecked property, the check box is unchecked.

When the user checks or unchecks a database check box, the string specified as the value
of the ValueChecked or ValueUnchecked property becomes the value of the field in the
dataset, as long as the value of the ReadOnly property is False and the dataset is in edit
mode. If you want the user to be able to view the data in the field but not modify it, set
ReadOnly to True.

Alignment DisplayFormat IsNull
AsBoolean DisplayLabel Name
AsDateTime DisplayName Owner
AsFloat DisplayText ReadOnly
AsInteger DisplayWidth Required
AsString EditMask Size
Calculated EditMaskPtr Tag
CanModify FieldName Text
DataSet FieldNo Value
DataSize Index Visible
DataType IsIndexField

Assign FocusControl SetData
AssignValue GetData
Clear IsValidChar

OnChange OnSetText OnValidate
OnGetText

804 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D B C o m b o B o x c o m p o n e n t

If your application doesn’t require the data-aware capabilities of TDBCheckBox, use the
check box (TCheckBox) component instead to conserve system resources.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for DBCheckBox component in the online Help, and
choose the Using the DBCheck Box Component.

Properties

Methods

Events

TDBComboBox component DBCtrls

A TDBComboBox component is a data-aware combo box control. It allows the user to
change the value of the field of the current record in a dataset either by selecting an item

Align Enabled PopupMenu
Alignment Font ReadOnly
AllowGrayed Height ShowHint
Caption HelpContext Showing
Checked Hint State
Color Left TabOrder
ComponentIndex Name TabStop
Ctl3D Owner Tag
Cursor Parent Top
DataField ParentColor ValueChecked
DataSource ParentCtl3D ValueUnchecked
DragCursor ParentFont Visible
DragMode ParentShowHint Width

BeginDrag GetTextBuf ScreenToClient
BringToFront GetTextLen ScrollBy
CanFocus Hide SendToBack
ClientToScreen Invalidate SetBounds
Dragging Refresh SetTextBuf
EndDrag Repaint Show
Focused ScaleBy Update

OnClick OnEnter OnKeyUp
OnDragDrop OnExit OnMouseDown
OnDragOver OnKeyDown OnMouseMove
OnEndDrag OnKeyPress OnMouseUp

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 805

T D B C o m b o B o x c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

from a list or by typing in the edit box part of the control. The selected item or entered
text becomes the new value of the field if the database combo box’s ReadOnly property is
False.

How a database combo box appears and behaves depends on the value of its Style
property.

You can link the database combo box with a dataset by specifying the data source
component (TDataSource) that identifies the dataset as the value of the memo’s
DataSource property. Specify the field in the dataset you want to access as the value of
the DataField property.

You specify the values the user can choose from in the combo box with the Items
property. For example, if you want the user to choose from five different values in the
combo box list, specify five strings as the value of Items. Just as with an ordinary combo
box, you can add, delete, and insert items to it using the Add, Delete, and Insert methods
of the Items object, which is of type TStrings. For example, to add a string to a database
combo box, you could write this line of code:

DBListBox1.Items.Add(‘New item’);

The ItemIndex property indicates which item in the database combo box is selected.

Sort the items in the list with the Sorted property.

At run time, you can select all the text in the edit box of the database combo box with the
SelectAll method. To find out which text the user selected, or to replace selected text, use
the SelText property. To select only part of the text or to find out what part of the text is
selected, use the SelStart and SelLength properties.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for DBComboBox component in the online Help, and
choose the topic Using the DBCombo Box Component.

Properties

Align Height ReadOnly
BoundsRect HelpContext SelLength
Color Hint SelStart
ComponentIndex ItemHeight SelText
Ctl3D ItemIndex ShowHint
Cursor Items Showing
DataField Left Sorted
DataSource Name Style
DragCursor Owner TabOrder
DragMode Parent TabStop
DropDownCount ParentColor Tag
Enabled ParentCtl3D Text
Fields ParentFont Top

806 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D B E d i t c o m p o n e n t

Methods

Events

TDBEdit component DBEdit

A TDBEdit component is a data-aware edit box with all the capabilities of an ordinary
edit box (a TEdit component).

Unlike an ordinary edit box, you can use the database edit box to enter data into a field,
or to simply display data from a field in a dataset. Link the database edit box with a
dataset by specifying the data source component (TDataSource) that identifies the
dataset as the value of the edit box’s DataSource property. Specify the field in the dataset
you want to access as the value of the DataField property.

Your application can tell if the text displayed in the edit box changed by checking the
value of the Modified property. To limit the number of characters users can enter into the
edit box, use the MaxLength property.

If you want to prevent the user from modifying the contents of the field linked to the
edit box, set the ReadOnly property to True. .

You can choose to have the text in an edit box automatically selected whenever it
becomes the active control with the AutoSelect property. At run time, you can select all
the text in the edit box with the SelectAll method. To find out which text in the edit box
the user has selected or to replace selected text, use the SelText property. To clear
selected text, call the ClearSelection method. To select only part of the text or to find out
what part of the text is selected, use the SelStart and SelLength properties.

Font ParentShowHint Visible
Handle PopupMenu Width

BeginDrag Focused ScreenToClient
BringToFront GetTextBuf ScrollBy
CanFocus GetTextLen SelectAll
Clear Hide SendToBack
ClientToScreen Invalidate SetBounds
CopyToClipboard PasteFromClipboard SetFocus
CutToClipboard Refresh SetTextBuf
Dragging Repaint Show
EndDrag ScaleBy Update

OnChange OnDrawItem OnKeyDown
OnClick OnDropDown OnKeyPress
OnDblClick OnEndDrag OnKeyUp
OnDragDrop OnEnter OnMeasureItem
OnDragOver OnExit

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 807

T D B E d i t c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

You can cut, copy, and paste text in an edit box using the CutToClipboard,
CopyToClipboard, and PasteFromClipboard methods.

Your application can use an edit box that displays a specified character rather than the
actual character typed into it. If the edit box is used to enter a password, onlookers won’t
be able to read the typed text. Specify the special character with the PasswordChar
property.

If you want the edit box to automatically resize to accommodate a change in font size,
use the AutoSize property.

If your application doesn’t require the data-aware capabilities of TDBEdit, use the TEdit
component instead to conserve system resources.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for DBEdit component in the online Help, and choose the
topic Using the DBEdit Component.

Properties

Methods

Align Fields PasswordChar
AutoSelect Font PopupMenu
AutoSize Height ReadOnly
BorderStyle HelpContext SelLength
BoundsRect Hint SelStart
CharCase IsMasked SelText
Color Left ShowHint
ComponentIndex MaxLength Showing
Ctl3D Modified TabOrder
Cursor Name TabStop
DataField Owner Tag
DataSource Parent Text
DragCursor ParentColor Top
DragMode ParentCtl3D Visible
EditText ParentFont Width
Enabled ParentShowHint

BeginDrag GetSelTextBuf SelectAll
BringToFront GetTextBuf SendToBack
CanFocus GetTextLen SetBounds
Clear Hide SetFocus
ClearSelection Invalidate SetSelTextBuf
ClientToScreen PasteFromClipboard SetTextBuf
CopyToClipboard Refresh Show
CutToClipboard Repaint Update

808 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D B G r i d c o m p o n e n t

Events

TDBGrid component DBGrids

The TDBGrid component can access the data in a database table or query and display it
in a grid. Your application can use the data grid to insert, delete, or edit data in the
database, or simply to display it.

The most convenient way to move through data in a data grid and to insert, delete, and
edit data is to use the database navigator (TDBNavigator) with the data grid.

The Fields property is an array of all the fields in the dataset displayed in the data grid.
To determine which field is the currently selected field, use the SelectedField property.
Use the FieldCount property to find out how many fields are in the dataset displayed in
the data grid.

You can change the appearance and behavior of a data grid by changing the value of the
Options property. For example, you can choose to allow the user to use the Tab key to
move to a new column, or you can decide to display grid lines between columns, but not
between rows.

If you want the user to be able only to view the data and not to edit it, set the ReadOnly
property to True. If you want the user to be able to edit the data, set ReadOnly to False.
Also, the dataset must be in Edit state, and the ReadOnly property of the data must be
False. The user can cancel an edit by pressing Esc.

Users don’t really insert or edit the data in a field using the data grid until they move to
a different record or close the application. Your application can also post edits using
code within event handlers such as OnColExit or OnColEnter.

The value of the TitleFont property determines which font is used to display the column
headings.

To customize the order the fields appear in the grid, use the Fields editor. You can find
information about it in the online Help; search for Fields Editor.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for DBGrid component in the online Help, and choose the
topic Using the DBGrid Component.

Dragging ScaleBy ValidateEdit
EndDrag ScreenToClient
Focused ScrollBy

OnChange OnEndDrag OnKeyUp
OnClick OnEnter OnMouseDown
OnDblClick OnExit OnMouseMove
OnDragDrop OnKeyDown OnMouseUp
OnDragOver OnKeyPress

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 809

T D B G r i d O p t i o n s t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Properties

Methods

Events

TDBGridOptions type DBGrids

Declaration

TDBGridOption = (dgEditing, dgAlwaysShowEditor, dgTitles, dgIndicator,
dgColumnResize,dgColLines, dgRowLines, dgTabs, dgRowSelect, dgAlwaysShowSelection,
dgConfirmDelete, dgCancelOnExit);

Align EditorMode PopupMenu
BorderStyle Enabled ReadOnly
BoundsRect FieldCount SelectedField
Brush Fields SelectedIndex
Canvas FixedColor Showing
ClientHeight Font TabOrder
ClientOrigin Height TabStop
ClientRect HelpContext Tag
ClientWidth Hint TitleFont
Color Left Top
ComponentIndex Name TopRow
Ctl3D Options Visible
Cursor Owner Width
DataSource Parent
DefaultDrawing ParentColor
DragCursor ParentCtl3D
DragMode ParentFont

BeginDrag GetTextBuf ScrollBy
BringToFront GetTextLen SendToBack
CanFocus Hide SetBounds
ClientToScreen Invalidate SetFocus
Dragging Refresh SetTextBuf
EndDrag Repaint Show
FindComponent ScaleBy Update
Focused ScreenToClient

OnColEnter OnDragOver OnExit
OnColExit OnDrawDataCell OnKeyDown
OnDblClick OnEndDrag OnKeyPress
OnDragDrop OnEnter OnKeyUp

810 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D B I m a g e c o m p o n e n t

TDBGridOptions = set of TDBGridOption;

The TDBGridOptions type is a set that defines the possible values of the Options property
of the data grid (TDBGrid).

TDBImage component DBCtrls

The TDBImage component displays a graphic image from a BLOB (binary large object)
stored in a field of the current record of a dataset. You can also modify the image if the
ReadOnly property is set to False.

You can link the database image with a dataset by specifying the data source component
(TDataSource) that identifies the dataset as the value of the image’s DataSource property.
Specify the field in the dataset you want to access as the value of the image’s DataField
property.

You can control when the image appears in the database control with the AutoDisplay
property.

You can change the size at which the BLOB is displayed by using the Stretch property.

You can cut, copy, and paste images in the database image control. While your
application is running and the database image control has the focus, use the Windows
cut, copy, and paste keys (Ctrl+X, Ctrl+C, and Ctrl+V). If you change your mind, you can
return to the original state of the database image control by pressing Esc before moving
to another record.

If your application doesn’t require the data-aware capabilities of TDBImage, use a
database image control (TImage) instead to conserve system resources.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for DBImage Component in the online Help, and choose
the topic Using the DBImage Component.

Properties

Align Fields ParentShowHint
AutoDisplay Font PopupMenu
BorderStyle Handle ReadOnly
Center Height ShowHint
Color HelpContext Stretch
ComponentIndex Hint TabOrder
Ctl3D Left TabStop
Cursor Name Tag
DataField Owner Top
DataSource Parent Visible
DragCursor ParentColor Width

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 811

T D B L i s t B o x c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Methods

Events

TDBListBox component DBCtrls

The TDBListBox component is a data-aware list box. It allows the user to change the
value of the field of the current record in a dataset by selecting an item from a list. The
selected item becomes the new value of the field.

Link the database list box with a dataset by specifying the data source component
(TDataSource) that identifies the dataset as the value of the memo’s DataSource property.
Specify the field in the dataset you want to access as the value of the DataField property.

You specify the values the user can choose from in the list box with the Items property.
For example, if you want the user to choose from five different values in the list box,
specify five strings as the value of Items. Just as with an ordinary list box, you can add,
delete, and insert items in the list box using the Add, Delete, and Insert methods of the
Items object, which is of type TStrings. For example, to add a string to a database list box,
you could write this line of code:

DBListBox1.Items.Add(‘New item’);

The ItemIndex property indicates which item in the list box is selected. If you want to
prevent the user from being able to select an item in the list box, set the ReadOnly
property to False.

If your application doesn’t require the data-aware capabilities of TDBListBox, use a list
box (TListBox) instead to conserve system resources.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

DragMode ParentCtl3D
Enabled ParentFont

BeginDrag Focused ScreenToClient
BringToFront Hide SendToBack
ClientToScreen Invalidate SetBounds
CopyToClipboard LoadPicture Show
CutToClipboard PasteFromClipboard Update
Dragging Refresh
EndDrag Repaint

OnClick OnEnter OnMouseDown
OnDblClick OnExit OnMouseMove
OnDragDrop OnKeyDown OnMouseUp
OnDragOver OnKeyPress
OnEndDrag OnKeyUp

812 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D B L i s t B o x c o m p o n e n t

For more information, search for DBListBox component in the online Help, and choose
the topic Using the DBListBox Component.

Properties

Methods

Events

Align Font ParentFont
BorderStyle Handle PopupMenu
BoundsRect Height ReadOnly
Brush HelpContext SelCount
Canvas Hint Selected
Color ItemIndex Showing
ComponentIndex IntegralHeight Sorted
Ctl3D ItemHeight Style
Cursor Items TabOrder
DataField Left TabStop
DataSource Name Tag
DragCursor Owner Top
DragMode Parent TopIndex
Enabled ParentColor Visible
Fields ParentCtl3D Width

BeginDrag GetTextLen ScrollBy
BringToFront Hide SendToBack
CanFocus ItemAtPos SetBounds
Clear ItemRect SetFocus
ClientToScreen Invalidate SetTextBuf
Dragging Refresh Show
EndDrag Repaint Update
Focused ScaleBy
GetTextBuf ScreenToClient

OnClick OnEndDrag OnKeyUp
OnDblClick OnEnter OnMeasureItem
OnDragDrop OnExit OnMouseDown
OnDragOver OnKeyDown OnMouseMove
OnDrawItem OnKeyPress OnMouseUp

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 813

T D B L o o k u p C o m b o c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TDBLookupCombo component DBLookup

A TDBLookupCombo component is a data-aware combo box that “looks up” a value in a
lookup table.

For example, imagine that DataSource1 identifies the table called Customers, and
DataSource2 identifies the table called Orders. The Orders table contains a CustNo field
which has a number that identifies the customer who placed the order. When the user
moves through the records of the Orders table, you want the database lookup combo
box to display the name of the customer, and you want the drop-down list of the combo
box to display all the customer names. You can do this, because Customers also contains
a field that identifies the customer by number (CustNo), as well as the customer’s name.

To have the combo box look up the customer name, set the DataSource property value of
the combo box to DataSource2, which refers to the Orders table. Set the DataField property
value to CustNo. The LookupSource is the data source that refers to the table the combo
box uses to look up the name of the customer—in this case, DataSource1—because the
Customers table contains the name of the customer.

Set the LookupField property to CustNo. LookupField links the two tables on the value that
identifies the customer by number. In this example, both the DataField value and the
LookupField value have the same field name, but this isn’t required. If the Active property
of both tables is True, the database combo box displays the value of the CustNo field.
You want to see the customer’s name—not the customer number—so set the
LookupDisplay property to Name, the field that contains the full name of the customer.
Now as you move through the records in the Orders table, the name of the customer
who placed the order appears in the database lookup combo box.

You can choose to display multiple fields in the drop-down list of the combo box by
entering a list of fields to display as the value of the LookupDisplay property. To display
the resulting columns the way you want, use the Options property.

If the ReadOnly property is False, the user can select a displayed value in the database
lookup combo box and the corresponding value in current record of the primary dataset
updates with a new value. Using the Customers and Orders example, when the user
selects a customer name in the lookup table using the database lookup combo box, the
value of the CustNo field in the primary dataset updates accordingly.

The Style property determines whether the user can edit a selected item in the combo
box or enter a new value and therefore change the value in the lookup table, or simply
select items without being able to edit them.

The DropDownCount and DropDownWidth properties determine how long and how
wide the drop-down list of the combo box is.

The Value property is the string the combo box uses to identify which record in the
lookup table to display; it is the contents of the DataField for the current record. The
DisplayValue is the actual displayed string in the combo box.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

814 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D B L o o k u p C o m b o S t y l e t y p e

Properties

Methods

Events

TDBLookupComboStyle type DBLookup

Declaration

TDBLookupComboStyle = (csDropDown, csDropDownList);

Align Height PopupMenu
AutoSelect HelpContext ReadOnly
BoundsRect Hint SelLength
Color Left SelStart
ComponentIndex LookupDisplay SelText
Ctl3D LookupField ShowHint
Cursor LookupSource Showing
DataField MaxLength Style
DataSource Name TabOrder
DisplayValue Options TabStop
DragCursor Owner Tag
DragMode Parent Text
DropDownCount ParentColor Top
DropDownWidth ParentCtl3D Value
Enabled ParentFont Visible
Font ParentShowHint Width

BeginDrag Focused ScrollBy
BringToFront GetTextBuf SelectAll
CanFocus GetTextLen SendToBack
Clear Hide SetBounds
ClientToScreen Invalidate SetTextBuf
CloseUp Refresh Show
Dragging Repaint Update
DropDown ScaleBy
EndDrag ScreenToClient

OnChange OnDropDown OnKeyPress
OnClick OnEndDrag OnKeyUp
OnDblClick OnEnter OnMouseDown
OnDragDrop OnExit OnMouseMove
OnDragOver OnKeyDown OnMouseUp

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 815

T D B L o o k u p L i s t c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

The TDBLookupComboStyle determines the kind of combo box. It is the type of the Style
property for a database lookup combo box (TDBLookupCombo).

TDBLookupList component DBLookup

A TDBLookupList component is a data-aware list box that “looks up” a value in a lookup
table.

For example, imagine that DataSource1 identifies the table called Books, and DataSource2
identifies the table called BookOrders. The BookOrders table contains a Volume field that
use a number to identify the book the customer ordered. When the user moves through
the records of the BookOrders table, you want the database lookup list box to display the
titles of the books. You can do this, because Books also contains a field that identifies the
book by number (Volume), as well as the title of the book.

For the database lookup list box to look up the title of the book, set the DataSource
property value of the list box to DataSource2, which refers to the BookOrders table. Set the
DataField property value to Volume. The LookupSource is the data source that refers to the
table the combo box uses to look up the title of the book—in this case, DataSource1—
because the Books table contains the book’s title.

Set the LookupField property to Volume. LookupField links the two tables on the value that
identifies the book by number. In this example, both the DataField value and the
LookupField value have the same field name, but this isn’t required. If the Active property
of both tables is True, the database list box now displays the value of the Volume field.
You want to see the title of the book—not the volume number—so set the LookupDisplay
property to Title, the field that contains the title of the book. Now as you move through
the records in the BookOrders table, the title of the ordered book appears in the database
lookup list box.

You can choose to display multiple fields in the list box by entering the list of fields to
display as the value of the LookupDisplay property, separating each field with a
semicolon. To display the resulting columns the way you want, use the Options
property.

If the ReadOnly property is False, the user can select a displayed value in the database
lookup list box and the corresponding value in current record of the primary dataset
updates with a new value. Using the Books and BookOrders example, when the user
selects a title in the lookup table using the database lookup list box, the value of the
CustNo field in the primary dataset updates accordingly.

The Value property is the string the combo box uses to identify which record in the
lookup table to display. The DisplayValue is the actual displayed string in the list box.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

Properties

Align Fields ParentFont
BorderStyle Font ParentShowHint

816 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D B L o o k u p L i s t O p t i o n s t y p e

Methods

Events

TDBLookupListOptions type DBLookup

Declaration

TDBLookupListOption = (loColLines, loRowLines, loTitles);

TDBLookupListOptions = set of TDBLookupListOption;

The TDBLookupListOptions type defines the possible values contained in the Options set
of a database lookup combo box (TDBLookupCombo) or database lookup list box
(TDBLookupList).

BoundsRect Height PopupMenu
Color HelpContext ReadOnly
ComponentIndex Hint SelectedField
Ctl3D Left SelectedIndex
Cursor LookupDisplay ShowHint
DataField LookupField TabOrder
DataSource LookupSource TabStop
DisplayValue Name Tag
DragCursor Options Value
DragMode Owner Visible
EditorMode Parent Width
Enabled ParentColor
FieldCount ParentCtl3D

BeginDrag GetTextBuf ScrollBy
BringToFront GetTextLen SendToBack
CanFocus Hide SetBounds
ClientToScreen Invalidate SetFocus
Dragging Refresh SetTextBuf
EndDrag Repaint Show
FindComponent ScaleBy Update
Focused ScreenToClient

OnClick OnEndDrag OnKeyPress
OnDblClick OnEnter OnKeyUp
OnDragDrop OnExit
OnDragOver OnKeyDown

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 817

T D B M e m o c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TDBMemo component DBCtrls

A TDBMemo component displays text for the user and permits the user display and
enter data into a field much like a TDBEdit component. The TDBMemo component
permits multiple lines to be entered or displayed, including text BLOBs (binary large
objects).

Unlike an ordinary memo control, you can use the database memo to enter data into a
field, or to simply display data from a field of the current record in a dataset. Link the
database memo with a dataset by specifying the data source component (TDataSource)
that identifies the dataset as the value of the memo’s DataSource property. Specify the
field in the dataset you want to access as the value of the DataField property.

The text in the database memo is the value of the Text property. When the value of Text
changes, the new Text value becomes the value of the field for the current record in the
dataset. If you just want the user to be able only to view the data in the field and not to
change it, set the ReadOnly property to True.

Your application can tell if the value of Text changes by checking the value of the
Modified property. To limit the number of characters users can enter into the database
memo, use the MaxLength property.

You can access the text by line using the Lines property. If you want to work with the
text as one chunk, use the Text property. If you want to work with individual lines of
text, the Lines property will better suit your needs. Also, the first line of text is the value
of the Text property, which can be up to 255 characters.

You can add, delete, insert, and move lines in a database memo control using the Add,
Delete, and Insert methods of the Lines object, which is of type TStrings. For example, to
add a line to a memo, you could write this line of code:

Memo1.Items.Add(‘Another line is added’);

You can cut, copy, and paste text to and from a database memo control using the
CutToClipboard, CopyToClipboard, and PasteFromClipboard methods.

If the memo displays a BLOB field, you can control when the text appears in the memo
with the AutoDisplay property. You can also load the text using the LoadMemo method.

Several properties affect how the database memo appears and how text is entered. You
can choose to supply scroll bars in the memo with the ScrollBars property. If you want
the text to break into lines, set WordWrap to True. If you want the user to be able to use
tabs in the text, set WantTabs to True.

At run time, you can select all the text in the memo with the SelectAll method. To find
out which text in the memo the user has selected, or to replace selected text, use the
SelText property. To select only part of the text or to find out what part of the text is
selected, use the SelStart and SelLength properties.

If your application doesn’t require the data-aware capabilities of TDBMemo, use a memo
control (TMemo) instead to conserve system resources.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

818 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D B M e m o c o m p o n e n t

For more information, search for DBMemo Component in the online Help, and choose
the topic Using the DBMemo Component.

Properties

Methods

Events

Align HelpContext SelLength
Alignment Hint SelStart
AutoDisplay Left SelText
BorderStyle Lines ShowHint
Color MaxLength Showing
ComponentIndex Modified TabOrder
Ctl3D Name TabStop
Cursor Owner Tag
DataField Parent Text
DataSource ParentColor Top
DragCursor ParentCtl3D Visible
DragMode ParentFont WantTabs
Enabled ParentShowHint Width
Fields PopupMenu WordWrap
Font ReadOnly
Height ScrollBars

BeginDrag GetTextBuf ScrollBy
BringToFront GetTextLen SelectAll
CanFocus Hide SendToBack
ClientToScreen Invalidate SetBounds
Clear LoadMemo SetFocus
Dragging Refresh SetSelTextBuf
EndDrag Repaint SetTextBuf
Focused ScaleBy Show
GetSelTextBuf ScreenToClient Update

OnChange OnEndDrag OnKeyUp
OnClick OnEnter OnMouseDown
OnDblClick OnExit OnMouseMove
OnDragDrop OnKeyDown OnMouseUp
OnDragOver OnKeyPress

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 819

T D B N a v i g a t o r c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TDBNavigator component DBCtrls

The TDBNavigator component (a database navigator) is used to move through the data
in a database table or query, and perform operations on the data, such as inserting a
blank record or posting a record. It is used in conjunction with the data-aware controls,
such as the data grid, which give you access to the data, either for editing the data, or for
simply displaying it.

You link the database navigator with a dataset when you specify a data source
component that identifies the dataset as the value of navigator’s DataSource property.

The database navigator consists of multiple buttons.

When the user chooses one of the navigator buttons, the appropriate action occurs on
the dataset the navigator is linked to. For example, if the user clicks the Insert button, a
blank record is inserted in the dataset.

This table describes the buttons on the navigator:

Using the VisibleButtons property, you can decide which operations are allowed on the
data and when.

You can customize the Help Hints available for the buttons on the database navigator by
specifying values in the Hints property.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

Button Purpose

First Sets the current record to the first record in the dataset, disables the First and Prior buttons,
and enables the Next and last buttons if they are disabled

Prior Sets the current record to the previous record and enables the Last and Next buttons if they
are disabled

Next Sets the current record to the next record and enables the First and Prior buttons if they are
disabled

Last Sets the current record to the last record in the dataset, disables the Last and Next buttons,
and enables the First and Prior buttons if they are disabled

Insert Inserts a new record before the current record, and sets the dataset into Insert and Edit
states

Delete Deletes the current record and makes the next record the current record
Edit Puts the dataset into Edit state so that the current record can be modified
Post Writes changes in the current record to the database
Cancel Cancels edits to the current record, restores the record display to its condition prior to

editing, and turns off Insert and Edit states if they are active
Refresh Redisplays the current record from the dataset, thereby updating the display of the record

on the form

First Prior Next Last Insert Delete Edit RefreshCancelPost

820 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D B R a d i o G r o u p c o m p o n e n t

For more information, search for DBNavigator in the online Help, and choose the topic
Using the DBNavigator Component.

Properties

Methods

Events

TDBRadioGroup component DBCtrls

The TDBRadioGroup component displays a group of data-aware radio buttons. Only one
of the radio buttons can be selected at a time, so the radio buttons present a set of
mutually exclusive choices. Using a database radio button group box, you can ensure
that the user must enter one of the presented options in a field, or the database radio
group box can display the value of data in a field when the field is limited to a few
possible values. For example, if only the values Red, Green, and Blue are valid in the
field, the group box can have Red, Green, and Blue radio buttons.

Align Height PopupMenu
BoundsRect HelpContext Showing
ComponentIndex Hint ShowHint
ConfirmDelete Hints TabOrder
Ctl3D Left TabStop
Cursor Name Tag
DataSource Owner Top
DragCursor Parent Visible
DragMode ParentCtl3D VisibleButtons
Enabled ParentShowHint Width

BeginDrag GetTextBuf ScrollBy
BringToFront GetTextLen SendToBack
BtnClick Hide SetBounds
CanFocus Invalidate SetFocus
ClientToScreen Refresh SetTextBuf
Dragging Repaint Show
EndDrag ScaleBy Update
Focused ScreenToClient

OnClick OnEndDrag OnMouseMove
OnDblClick OnEnter OnMouseUp
OnDragDrop OnExit OnResize
OnDragOver OnMouseDown

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 821

T D B R a d i o G r o u p c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Link the database radio group box with a dataset by specifying the data source
component (TDataSource) that identifies the dataset as the value of the group box’s
DataSource property. Specify the field in the dataset you want to access as the value of
the group box’s DataField property.

The radio buttons are added to the group box when strings are entered as the value of
the Items property. The strings entered in the Items property become the captions of the
radio buttons if there are no strings in the Values property. If there are strings in the
Values property, the first string is associated with the first radio button, the second with
the second radio button, and so on. The Values string for a radio button is the value in
the field of the current record that selects the radio button.

If the user selects a radio button and the ReadOnly property is False, the Values string for
the radio button becomes the contents of the field for the current record in the dataset.

The Value property contains the contents of the field of the current record in the dataset.

You can display the radio buttons in a single column or in multiple columns by setting
the value of the Columns property.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for DBRadioGroup in the online Help, and choose the
topic Using the DBRadioGroup Component.

Properties

Methods

Align Font ParentShowHint
Caption Height PopupMenu
Color HelpContext ReadOnly
Columns Hint ShowHint
ComponentIndex ItemIndex Showing
Ctl3D Items TabOrder
Cursor Left TabStop
DataField Name Tag
DataSource Owner Top
DragCursor Parent Value
DragMode ParentColor Values
Enabled ParentCtl3D Visible
Fields ParentFont Width

BeginDrag GetTextBuf ScrollBy
BringToFront GetTextLen SendToBack
CanFocus Hide SetBounds
ClientToScreen Invalidate SetFocus
ContainsControl Refresh SetTextBuf
Dragging Repaint Show

822 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D B T e x t c o m p o n e n t

Events

TDBText component DBCtrls

The TDBText component is a data-aware control that displays text on a form. Your
application can display the contents of a field in the current record of a dataset in a
database text control, but the user won’t be able to modify the field’s contents.

Link the database text control with a dataset by specifying the data source component
(TDataSource) that identifies the dataset as the value of the label’s DataSource property.
Specify the field in the dataset you want to access as the value of the label’s DataField
property.

The text of a database text control is the value of its Caption property. How the text of the
caption aligns within the label is determined by the value of the Alignment property.
You can have the text control resize automatically to fit a changing caption if you set the
AutoSize property to True. If you prefer to have the text wrap, set WordWrap to True.

If you want a database text control to appear on top of a graphic, but you want to be able
to see through the control so that part of the graphic isn’t hidden, set the Transparent
property to True.

If your application doesn’t require the data-aware capabilities of TDBText, you should
use the label component (TLabel) instead to conserve system resources.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all controls.

For more information, search for DBText component in the online Help, and choose the
topic Using the DBText Component.

Properties

EndDrag ScaleBy Update
Focused ScreenToClient

OnChange OnDragDrop OnEnter
OnClick OnDragOver OnExit
OnDblClick OnEndDrag

Align Enabled ParentShowHint
Alignment Fields PopupMenu
AutoSize Font ShowHint
BoundsRect Height Tag
Color Hint Top
ComponentIndex Left Transparent
Cursor Name Visible
DataField Owner Width
DataSource Parent WordWrap

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 823

T D D E C l i e n t C o n v c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Methods

Events

TDDEClientConv component DDEMan

A TDDEClientConv component establishes a Dynamic Data Exchange (DDE)
conversation with a DDE server application. Use it in conjunction with a
TDDEClientItem component to make your application a DDE client.

To link to a DDE server application, define the DDE conversation by specifying the
server application name in the DDEService property and the topic of the DDE
conversation in the DDETopic property. To establish a link at design time, click the
ellipsis (...) button for DDEService or DDETopic in the Object Inspector and choose Paste
Link in the DDE Info dialog box. To establish a link at run time, specify the service and
topic with the Setlink method.

To send data to the DDE server, use the PokeData or ExecuteMacro methods. PokeData
sends a text string to the linked item in the DDE server. ExecuteMacro sends a text string
containing a macro command to be processed by the DDE server.

You can change the way a DDE conversation is established by specifying the
ConnectMode property. If ConnectMode is ddeAutomatic, the client attempts to establish
the conversation when the TDDEClientConv component is created at run time. If
ConnectMode is ddeManual, you must write code that executes the OpenLink method to
establish the DDE conversation.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all components.

For more information, search for TDDEClientConv component in the online Help, and
choose the topic Using the DDE Client Conversation Component.

DragCursor ParentColor
DragMode ParentFont

BeginDrag GetTextBuf ScreenToClient
BringToFront GetTextLen SendToBack
CanFocus Hide SetBounds
ClientToScreen Invalidate SetTextBuf
Dragging Refresh Show
EndDrag Repaint Update

OnClick OnDragOver OnMouseMove
OnDblClick OnEndDrag OnMouseUp
OnDragDrop OnMouseDown

824 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D D E C l i e n t I t e m c o m p o n e n t

Properties

Methods

Events

TDDEClientItem component DDEMan

A TDDEClientItem component defines the item of a Dynamic Data Exchange (DDE)
conversation. Use it in conjunction with a TDDEClientConv component to make your
application a DDE client.

To link to a DDE conversation, specify the name of a TDDEClientConv component in the
DDEConv property. The DDE item of the conversation should be specified in the
DDEItem property. If the TDDEClientConv component has established a link with a DDE
server, the server will automatically and continually update the client until the
conversation is terminated.

The actual text data to exchange with the DDE server is specified in the Text property.
When the server updates your DDE client, the new data will be automatically stored in
the Text property. Whenever Text is updated, an OnChange event occurs. For text data
longer than the 255 character limit of Text, use the Lines property to specify the text data
to exchange.

In addition to these properties and events, this component also has the properties and
methods that apply to all components.

For more information, search for TDDEClientItem component in the online Help, and
choose the topic Using the DDE Client Item Component.

Properties

ComponentIndex DDETopic Owner
ConnectMode FormatChars ServiceApplication
DDEService Name Tag

CloseLink OpenLink RequestData
ExecuteMacro PokeData SetLink
ExecuteMacroLines PokeDataLines

OnClose OnOpen

ComponentIndex Lines Tag
DDEConv Name Text
DDEItem Owner

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 825

T D D E S e r v e r C o n v c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Events

TDDEServerConv component DDEMan

A TDDEServerConv component establishes a Dynamic Data Exchange (DDE)
conversation with a DDE client application. Use it in conjunction with a
TDDEServerItem component to make your application a DDE server.

If the DDE client sends a macro to your DDE server application, an OnExecuteMacro
event occurs. You should write code in the OnExecuteMacro event handler to process
this macro.

Using a TDDEServerConv component is optional. If you don’t use a TDDEServerConv
component, the client can still request an update directly from the TDDEServerItem
component.

If you use a TDDEServerConv component, the DDE topic of the conversation is the value
of the Name property of the TDDEServerConv component. If you don’t use a
TDDEServerConv component, the DDE topic of the conversation is the value of the
Caption property of the form containing the TDDEServerItem component.

You should use a TDDEServerConv component with a TDDEServerItem component
when the client might send a macro, or when the Caption of the form containing the
TDDEServerItem might not be unique or constant at run time.

In addition to these properties and events, this component also has the properties and
methods that apply to all components.

For more information, search for TDDEServerConv component in the online Help, and
choose the topic Using the DDE Server Conversation Component.

Properties

Events

TDDEServerItem component DDEMan

A TDDEServerItem component defines the item of a Dynamic Data Exchange (DDE)
conversation. Use it by itself, or optionally, with a TDDEServerConv component to make
your application a DDE server.

OnChange

ComponentIndex Owner Tag
Name

OnClose OnExecuteMacro OnOpen

826 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D i r e c t o r y L i s t B o x c o m p o n e n t

To use a TDDEServerItem component with a TDDEServerConv component, specify the
name of a TDDEServerConv component in the ServerConv property.

The actual text data to exchange with the DDE client is specified in the Text property.
When the client requests an update, your server sends the contents of the Text property
to the client. When the Text property is modified, either by your own application or
when the client pokes data, an OnChange event occurs. For text data longer than the 255-
character limit of Text, use the Lines property to specify the data to exchange.

To test a link with a DDE client, use the CopyToClipboard method. This method will copy
the contents of Text (or Lines), as well as DDE link information to the Clipboard. Then, if
the DDE client can paste links, you can activate the client and paste the DDE data into
the client application.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all components.

For more information, search for TDDEServerItem component in the online Help, and
choose the topic Using the DDE Server Item Component.

Properties

Methods

Events

TDirectoryListBox component FileCtrl

The TDirectoryListBox component is a specialized list box that is aware of the directory
structure of the current drive. When the application runs, the user can use the directory
list box to change directories, which changes the value of the Directory property.

The Drive property determines on which drive the list box displays the directory
structure. When the value of Drive changes, the Directory value also changes to the
current directory on the specified drive.

You can synchronize a directory list box with a file list box (TFileListBox), so that when
the user uses a directory list box to change directories, the file list box displays the files
in the new directory. This is the event handler for the OnChange event for the directory
list box:

procedure TForm1.DirectoryListBox1Change(Sender: TObject);

ComponentIndex Owner Text
Lines ServerConv
Name Tag

CopyToClipboard

OnChange OnPokeData

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 827

T D i r e c t o r y L i s t B o x c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

begin
 FileListBox1.Directory := DirectoryListBox1.Directory;
end;

Note An OnChange event for a directory list box occurs when the user selects a new directory
with the mouse or when the user move the selection bar and presses enter.

Another way to accomplish the same thing is to assign a file list box as the value of the
FileList property. If you use the DirLabel property, you can have the caption of the label
display the current directory.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for DirectoryListBox component in the online Help, and
choose the topic Using the Directory List Box Component.

Properties

Methods

Align Font ParentShowHint
BoundsRect Handle PopupMenu
Color Height Selected
Columns HelpContext ShowHint
ComponentIndex Hint Showing
Ctl3D IntegralHeight Tag
Cursor ItemHeight Top
Directory Left TabOrder
DirLabel Name TabStop
DragCursor Owner TopIndex
DragMode Parent Visible
Drive ParentColor Width
Enabled ParentCtl3D
FileList ParentFont

BeginDrag GetTextBuf ScreenToClient
BringToFront GetTextLen ScrollBy
CanFocus Hide SendToBack
Clear Invalidate SetBounds
ClientToScreen ItemAtPos SetFocus
Dragging ItemRect SetTextBuf
EndDrag Refresh Show
Focused Repaint Update
GetItemPath ScaleBy

828 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D r a g D r o p E v e n t t y p e

Events

TDragDropEvent type Controls

Declaration

TDragDropEvent = procedure(Sender, Source: TObject; X, Y: Integer) of object;

The TDragDropEvent type points to a method that handles the dropping of a dragged
object. The Source parameter is the object being dragged, Sender is the object the Source is
being dropped on, and X and Y are screen coordinates in pixels.

TDragDropEvent is the type of the OnDragDrop event.

TDragMode type Controls

Declaration

TDragMode = (dmManual, dmAutomatic);

The TDragMode type defines the values for the DragMode property of controls.

TDragOverEvent type Controls

Declaration

TDragOverEvent = procedure(Sender, Source: TObject; X, Y: Integer; State: TDragState; var
Accept: Boolean) of object;

The TDragOverEvent type points to a method that handles the dragging of one object
over another. The Source parameter is the object being dragged, Sender is the object the
Source is being dragged over, X and Y are screen coordinates in pixels, State is the state
of the drag object in relationship to the object being dragged over, and Accept
determines whether the Sender recognizes the drag object. Accept does not default to
True or False; you must assign the appropriate value to it.

TDragOverEvent is the type of the OnDragOver event.

See also
TDragState type

OnClick OnEndDrag OnKeyUp
OnDblClick OnEnter OnMouseDown
OnDragDrop OnExit OnMouseMove
OnDragOver OnKeyDown OnMouseUp
OnDropDown OnKeyPress

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 829

T D r a g S t a t e t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TDragState type Controls

Declaration

TDragState = (dsDragEnter, dsDragLeave, dsDragMove);

The TDragState type specifies the drag state of a dragged control in relationship to
another control. It is the type of the State parameter used in OnDragOver event handlers.
These are the possible states:

Example
This code is a OnDragOver event handler that won’t allow a label control to be dropped
on a panel control and stops the dragging of the label as soon as the user drags the label
onto the panel:

procedure TForm1.Panel1DragOver(Sender, Source: TObject; X, Y: Integer;
 State: TDragState; var Accept: Boolean);
begin
Accept := False;
if (Source is TLabel) and (State = dsDragEnter) then

 (Source as TLabel).EndDrag(False);
end;

The Source parameter is the label being dragged, the Sender parameter is the panel
control, and the State parameter is the drag state.

See also
TDragOverEvent type

TDrawCellEvent type Grids

Declaration

TDrawCellEvent = procedure (Sender: TObject; ACol, ARow: Longint; ARect: TRect; AState:
TGridDrawState) of object;

The TDrawCellEvent type points to a method that handles the drawing of a cell in an
owner-draw grid control. The ACol parameter is the column of the cell in the grid, and
the ARow parameter is the row of the cell. ARect is the cell area where the drawing
occurs, and AState is current state of the cell.

TDrawCellEvent is the type of the OnDrawCell event.

Value Meaning

dsDragEnter The state a drag object is in when it enters a control that allows the drag object to be
dropped. dsDragEnter is the default state.

dsDragMove The state a drag object is in when it is moved within a control that allows the drag object
to be dropped.

dsDragLeave The state a drag object is in when it leaves a control that would allow the drag object to
be dropped

830 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D r a w D a t a C e l l E v e n t t y p e

TDrawDataCellEvent type DBGrids

Declaration

TDrawDataCellEvent = procedure (Sender: TObject; const Rect: TRect; Field: TField; State:
TGridDrawState) of object;

The TDrawDataCellEvent type points to a method that handles the drawing of a cell in an
owner-draw data grid control. The Rect parameter specifies the cell area where the
drawing occurs. The Field parameter specifies which field the drawing takes place in,
and the State parameter is the current state of the cell.

TDrawDataCellEvent is the type of the OnDrawDataCell event.

TDrawGrid component Grids

A TDrawGrid component is a grid control that permits the display of an existing data
structure in column and row format.

The grid uses the OnDrawCell event to fill in the cells of the grid. If the DefaultDrawing
property is False, the code you write in the OnDrawCell event handler draws in the cells.
If DefaultDrawing is True, the contents of the cells are automatically drawn using some
default values.

You can obtain the drawing area of a cell with the CellRect method. The MouseToCell
method returns the column and row coordinates of the cell the mouse cursor is in.

You can determine which cell is selected in the grid by checking the value of the Selection
property.

You can change the appearance and behavior of a data grid by changing the value of the
Options property. For example, you can choose to allow the user to use the Tab key to
move to a new column, you can decide to display grid lines between columns but not
between rows, or let the user edit the data displayed in the grid.

Several properties affect the appearance of the grid. The DefaultColWidth and
DefaultRowHeight properties determine the default widths and heights of the columns
and rows. You can change the width or height of a specific column or row with the
ColWidths and RowHeights properties. You can choose to have fixed or nonscrolling
columns and rows with the FixedCols and FixedRows properties, and you can assign the
color of the fixed columns and rows with the FixedColor property. Set the width of the
grid lines with the GridLineWidth property. Add scroll bars to the grid with the ScrollBars
property.

You can determine which row is currently the top row in the grid, or set a specified row
to be the top row with the TopRow property. To determine which column is the first
visible column in the grid, use the LeftCol property. The values of the VisibleColCount
and VisibleRowCount properties are the number of columns and rows visible in the grid.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 831

T D r a w G r i d c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

For more information, search for DrawGrid component in the online Help, and choose
the topic Using the Draw Grid Component.

Properties

Methods

Events

Align FixedColor PopupMenu
BorderStyle FixedCols Row
BoundsRect FixedRows RowCount
Brush Font RowHeights
Canvas GridHeight Scrollbars
Col GridLineWidth Selection
ColCount GridWidth Showing
Color Height TabOrder
ColWidths HelpContext TabStop
ComponentIndex Hint TabStops
Ctl3D Left Tag
Cursor LeftCol Top
DefaultColWidth Name TopRow
DefaultDrawing Options Visible
DefaultRowHeight Owner VisibleColCount
DragCursor Parent VisibleRowCount
DragMode ParentColor Width
EditorMode ParentCtl3D
Enabled ParentFont

BeginDrag EndDrag ScaleBy
BringToFront Focused ScreenToClient
CanFocus GetTextBuf ScrollBy
CellRect GetTextLen SendToBack
ClassName Hide SetBounds
ClassParent Invalidate SetFocus
ClassType MouseToCell SetTextBuf
ClientToScreen Refresh Show
Dragging Repaint Update

OnClick OnEnter OnMouseDown
OnColumnMoved OnExit OnMouseMove
OnDblClick OnGetEditMask OnMouseUp
OnDragDrop OnGetEditText OnRowMoved
OnDragOver OnKeyDown OnSelectCell

832 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D r a w I t e m E v e n t t y p e

TDrawItemEvent type StdCtrls

Declaration

TDrawItemEvent = procedure(ListBox: TListBox; Index: Integer; Rect: TRect; State:
TOwnerDrawState) of object;

The TDrawItemEvent type points to a method that handles the drawing of an item in an
owner-draw list box. The Index parameter is the position of the item in the list box, Rect
is the area in the list box where the item is to be drawn, and State is the current state of
the item in the list box. These are the possible values of State:

TDrawItemEvent is the type of the OnDrawItem event.

TDrawTabEvent type Tabs

Declaration

TDrawTabEvent = procedure(Sender: TObject; TabCanvas: TCanvas; R: TRect; Index: Integer;
Selected: Boolean) of object;

The TDrawTabEvent type points to a method that handles the drawing of an item in an
owner-draw tab. The TabCanvas parameter is the canvas on which the item is drawn,
The Index parameter is the position of the tab in the tab set control, R is the area in the tab
where the item is to be drawn, and Selected indicates whether the tab is currently
selected or not.

TDrawTabEvent is the type of the OnDrawTab event.

TDriveComboBox component FileCtrl

The TDriveComboBox component is a specialized combo box that displays all the drives
available when the application runs. When the user uses the combo box to select another
drive, the value of the Drive property changes.

You can specify whether the text in the drive combo box is uppercase or lowercase with
the TextCase property.

OnDrawCell OnKeyPress OnSetEditText
OnEndDrag OnKeyUp OnTopLeftChanged

Value Meaning

odSelected The item is selected
odDisabled The entire list box is disabled
odFocused The item currently has focus

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 833

T D r i v e C o m b o B o x c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

If your application uses the drive combo box with a directory list box and a file list box,
you can synchronize them with this code written in the drive combo box OnChange
event handler and in the directory list box OnChange event handler:

procedure TForm1.DriveComboBox1Change(Sender: TObject);
begin
 DirectoryListBox1.Drive := DriveComboBox1.Drive;
end;

procedure TForm1.DirectoryListBox1Change(Sender: TObject);
begin
 FileListBox1.Directory := DirectoryListBox1.Directory;
end;

Now when the user selects a new drive using the drive combo box, the directory list box
and the file list box are updated also.

Another way to accomplish the same task is to set the DirList property of the drive
combo box and the FileList property of the directory list box.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for DriveComboBox component in the online Help, and
choose the topic Using the Drive Combo Box Component.

Properties

Methods

Align HelpContext SelStart
BoundsRect Hint SelText
Color ItemIndex Showing
ComponentIndex Items TabOrder
Ctl3D Left TabStop
Cursor Name Tag
DirList Owner Text
DragCursor Parent TextCase
DragMode ParentColor Top
Drive ParentCtl3D Visible
Enabled ParentFont Width
Font PopupMenu
Height SelLength

BeginDrag GetTextBuf ScrollBy
BringToFront GetTextLen SelectAll
CanFocus Hide SendToBack
Clear Invalidate SetBounds
ClientToScreen Refresh SetFocus
Dragging Repaint SetTextBuf

834 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T D u p l i c a t e s t y p e

Events

See also
TDirectoryListBox component, TFileListBox component

TDuplicates type Classes

Declaration

TDuplicates = (dupIgnore, dupAccept, dupError);

The TDuplicates type defines the possible values of the Duplicates property of a string list
object (TStringList).

TEdit component StdCtrls

Use a TEdit component to put a standard Windows edit box control on your form. Edit
boxes are used to retrieve information from the user, because the user can type data into
an edit box. Edit boxes can also display information to the user.

When users enter data into an edit box or the application displays information to the
user in the edit box, the value of the edit box’s Text property changes. Your application
can tell if the value of Text changes by checking the value of the Modified property. To
limit the number of characters users can enter into the edit box, use the MaxLength
property.

You can specify whether the text in the edit box is uppercase and lowercase with the
CharCase property.

If you want to prevent the user from changing the value of the Text property, set the
ReadOnly property to True.

You can choose to have the text in an edit box automatically selected whenever it
becomes the active control with the AutoSelect property. At run time, you can select all
the text in the edit box with the SelectAll method. To find out which text in the edit box
the user has selected or to replace selected text, use the SelText property. To clear
selected text, call the ClearSelection method. To select only part of the text or to find out
what part of the text is selected, use the SelStart and SelLength properties.

You can cut, copy, and paste text to and from an edit box using the CutToClipboard,
CopyToClipboard, and PasteFromClipboard methods.

EndDrag ScaleBy Show
Focused ScreenToClient Update

OnChange OnDragOver OnExit
OnClick OnDropDown OnKeyDown
OnDblClick OnEndDrag OnKeyPress
OnDragDrop OnEnter OnKeyUp

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 835

T E d i t c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Your application can replace the characters typed into the edit box with another
specified character. If the edit box is used to enter a password, for example, onlookers
won’t be able to read the typed characters. Specify the replacement character with the
PasswordChar property.

If you want the edit box to automatically resize to accommodate a change in font size,
use the AutoSize property.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information about using edit boxes, search for Edit component in the online
Help, and choose the topic Using the Edit Component.

Properties

Methods

Align HideSelection ReadOnly
AutoSelect Hint SelLength
AutoSize Left SelStart
BorderStyle MaxLength SelText
CharCase Modified ShowHint
Color Name Showing
ComponentIndex OEMConvert TabOrder
Ctl3D Owner TabStop
Cursor Parent Tag
DragCursor ParentColor Text
DragMode ParentCtl3D Top
Enabled ParentFont Visible
Font ParentShowHint Width
Height PasswordChar
HelpContext PopupMenu

BeginDrag Free ScreenToClient
BringToFront GetSelTextBuf ScrollBy
ClientToScreen GetTextBuf SelectAll
Clear GetTextLen SendToBack
ClearSelection Hide SetBounds
CopyToClipboard Invalidate SetFocus
CutToClipboard PasteFromClipboard SetSelTextBuf
Dragging Refresh SetTextBuf
EndDrag Repaint Show
FindComponent ScaleBy Update

836 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T E d i t C h a r C a s e t y p e

Events

See also
TDBEdit component, TComboBox component

TEditCharCase type StdCtrls

Declaration

TEditCharCase = (ecNormal, ecUpperCase, ecLowerCase);

The TEditCharCase type defines the possible values for the CharCase property of an edit
box (TEdit).

Temporary property

Applies to
TDataBase component

Declaration

property Temporary: Boolean;

Run-time only. The Temporary property is True if the TDatabase component was created
because none existed when a database table was opened. Such a database will
automatically be destroyed when the table or query is closed. You can set Temporary to
False so that it will be preserved until you explicitly free it with Free. If you explicitly
created the TDatabase component, then Temporary will be False, but you can set it to be
True and it will automatically be freed when the last dataset linked to it is closed.

Example

Table1.Database.Temporary := False;

See also
Database property

OnChange OnEnter OnMouseDown
OnDblClick OnExit OnMouseMove
OnDragDrop OnKeyDown OnMouseUp
OnDragOver OnKeyPress
OnEndDrag OnKeyUp

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 837

T E n d D r a g E v e n t t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TEndDragEvent type Controls

Declaration

TEndDragEvent = procedure(Sender, Target: TObject; X, Y: Integer) of object;

The TEndDragEvent type points to a method that handles the stopping of the dragging
of an object. The Sender is the object being dragged, Target is the object Sender is dragged
to, and X and Y are screen coordinates in pixels.

TEndDragEvent is the type of the OnEndDrag event.

Terminate method

Applies to
TApplication component

Declaration

procedure Terminate;

The Terminate method stops the execution of your application.

Example
This example uses a button on a form. When the user clicks the button, a message box
appears, asking the user if the application should terminate. If the user chooses Yes, the
application ends.

procedure TForm1.Button1Click(Sender: TObject);
begin
if MessageDlg('Ternminate the application?', mtConfirmation,

[mbYes, mbNo], 0) = mrYes then
Application.Terminate;

end;

See also
Run method, Terminated property

Terminated property

Applies to
TApplication component

Declaration

property Terminated: Boolean;

838 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T e s t 8 0 8 6 v a r i a b l e

Read and run-time only. The Terminated property determines whether the application
has received the Windows WM_QUIT message, which then terminates the application.
Your Delphi application receives this message usually because the main window of the
application has closed, or the Terminate method has been called, thereby requiring
windows to quit the application.

The Terminated property is usually used when calling the ProcessMessages method so
that your application doesn’t attempt to process Windows messages after the
application has quit.

Example
The application calls the ProcessMessages method if the application has not received the
message from Windows to quit executing:

if Application.Terminated = False then
Application.ProcessMessages;
...

See also
ProcessMessages method, Run method, Terminate method

Test8086 variable System

Declaration

var Test8086: Byte;

The Test8086 variable identifies the type of 80x86 processor the system contains.

The run-time library's startup code contains detection logic that automatically
determines what kind of 80x86 processor the system contains. The result of the CPU
detection is stored in Test8086 as one of the following values:

When the run-time library detects that the processor is an 80386 or later CPU, it will use
80386 instructions to speed up certain operations. In particular, Longint multiplication,
division, and shifts are performed using 32-bit instructions when an 80386 is detected.

TExceptionEvent type Forms

Declaration

TExceptionEvent = procedure (Sender: TObject; E: Exception) of object;

Value Definition

 0 Processor is an 8086.
 1 Processor is an 80286.
 2 Processor is an 80386 or later.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 839

T e x t p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

The TExceptionEvent type points to a method that handles exceptions in your
application. The Sender parameter is the object that raised the exception and E is the
exception message.

TExceptionEvent is the type of the OnException event.

Text property

Applies to
TOutlineNode, TParam objects; TComboBox, TDBComboBox, TDBEdit, TDBMemo,
TDDEClientItem, TDDEServerItem, TDriveComboBox, TEdit, TFilterComboBox, TMaskEdit,
TMemo, TQuery, TBCDField, TBooleanField, TCurrencyField, TDateField, TDateTimeField,
TFloatField, TIntegerField, TSmallintField, TStringField, TTimeField, TWordField
components

The Text property specifies a text string to appear in a component or object.

For edit boxes and memo controls

Declaration

property Text: TCaption;

The Text property of a component determines the text that appears within an edit box or
memo control. The default text is the name of the control. Your application can use the
value of Text as input into the application, or to display data to the user. The maximum
length of the string in the Text property is 255 characters.

The value of the Text property of a mask edit box (TMaskEdit) or database edit box
(TDBEdit) or database memo (TDBMemo) includes the text and the literal mask
characters specified with the EditText property if the user chooses to save the mask
characters with the text. If the mask characters are not saved, the text does not include
them.

The Text property of a database edit box or database memo is available at run time only.
You should seldom assign a new value to the Text property of a database edit box or
memo. If the dataset is read only when the new value is assigned to Text, the contents of
the field won’t change. Instead, you should change the value of the underlying field by
using the Fields property of the edit box. For example,

DBEdit1.Field.AsString := ‘New value’;

Example
This example uses an edit box, a list box, and a button named Add on a form. Each time
the user clicks the Add button, the text in the edit box is added to the list in the list box:

procedure TForm1.AddClick(Sender: TObject);
begin
 ListBox1.Items.Add(Edit1.Text);
end;

840 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T e x t p r o p e r t y

See also
GetSelTextBuf method, GetTextBuf method, SetTextBuf method, SetSelTextBuf method

For combo boxes

Declaration

property Text: string;

The value of the Text property is the first item that appears in the combo box when the
application runs. For simple combo boxes, the user can change the value of Text by
entering a new value.

For other types of combo boxes, the value of Text is read only and accessible only at run
time. The value of the Drive property determines the value of the Text property in a
drive combo box. The value of the Filter property determines the value of the Text
property in a filter combo box. If the Filter property specifies multiple filters, the first
filter in the Filter string appears first in the filter combo box.

For the database lookup combo box, Text is the value of the field of the current record.

Example
The following code stores the value of the first item of a combo box in the Text property
in the OnCreate event handler of the form containing the combo box. The first item will
be displayed in the combo box at run time.

procedure TForm1.FormCreate(Sender: TObject);
begin
 ComboBox1.Text := ComboBox1.Items[0];
end;

See also
Drive property, Filter property

For outline nodes

Declaration

property Text: string;

The Text property contains the string that identifies an outline item. This string is
displayed in the outline. The value of Text can be assigned directly or can be set by the
Lines property of the TOutline component. If set with the Lines property, each line, minus
any leading spaces or tabs, is assigned to the Text property of an individual
TOutlineNode object.

Example
The following code should be attached to the OnClick event handler of an TOutline
component. When the value of the Text of the SelectedItem is ‘Aqua’, the Color of the
outline becomes clAqua.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 841

T e x t p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

procedure TForm1.Outline1Click(Sender: TObject);
begin
 if Outline1.Items[Outline1.SelectedItem].Text = 'Aqua' then
 Outline1.Color := clAqua;
end;

See also
Data property

For DDE items

Declaration

property Text: string;

The Text property contains the text data to exchange in a DDE conversation. For
TDDEClientItem components, Text specifies the text that is updated by the DDE server
application. For TDDEServerItem components, Text specifies the text that is sent to any
DDE clients when the value of Text changes or when a client requests an update. When
Text is changed, an OnChange event occurs.

Text corresponds to the Lines property. Whenever the value of Text or Lines is changed,
the other is updated so that the first line of Lines is always equal to Text. Use Text to
contain text values up to 255 characters in length (which is the limit of the Text
property). For longer strings, use the Lines property.

If the Text property is of a TDDEClientItem component, you can also send the text in Text
directly to the DDE server by poking data with the PokeData method.

If the Text property is of a TDDEServerItem component, the DDE client can change Text
by poking data. The poked data replaces the contents of Text and an OnChange event
occurs.

Example
The following code assigns the value to the Text property of DDEClientItem1 to the
Caption of Label1. This code is executed in the OnChange event handler of
DDEClientItem1, so whenever the client is updated, the new data from the server is
displayed.

procedure TForm1.DdeClientItem1Change(Sender: TObject);
begin
 Label1.Caption := DDEClientItem1.Text
end;

For queries

Declaration

property Text: PChar;

842 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T e x t p r o p e r t y

Run-time and read only. The Text property holds the actual text of the SQL query sent to
the Borland Database Engine. In general, you should not need to examine this property.
However, if you encounter problems with an SQL statement, you may want to inspect
the Text property to be sure that the statement is as expected.

Example

var
ActualText: PChar;
Buf: array [0..20] of Char;

...
ActualText := Query1.Text;
repeat

StrLCopy(Buf, ActualText, SizeOf(Buf));
WriteLn(Buf);
if StrLen(ActualText) > 20 then Inc(ActualText, 20)
else Break;
until False;

See also
SQL property

For fields

Declaration

property Text: string;

Run-time only. Text contains the string value of the field a data-aware control uses for
display when the control is in edit mode. Data-aware controls such as TDBEdit rely on
Text to provide the editing format for each field.

You can control the strings returned by Text by assigning an OnGetText event handler,
or you can accept Delphi defaults, which depend on the field’s data type.

For TStringField, the AsString property is returned.

For TIntegerField, TSmallintField, and TWordField, if EditFormat or DisplayFormat (in that
order) is assigned a value, FloatToTextFmt is called. Otherwise, Str is called.

For TBCDField and TFloatField, FloatToTextFmt is called with value of EditFormat or
DisplayFormat (in that order).

For a TCurrencyField, if EditFormat or DisplayFormat (in that order) is assigned a value,
FloatToTextFmt is called. Otherwise, FloatToTextFmt is called with the ffCurrency flag and
CurrencyDecimals variable.

For a TDateTimeField, DateTimeToStr is called with the value of DisplayFormat.

For a TDateField, DateTimeToStr is called with the DisplayFormat property, except that the
ShortDateFormat variable is substituted if DisplayFormat is unassigned. For a TTimeField,
DateTimeToStr is called with the DisplayFormat property, except that the LongTimeFormat
variable is substituted if DisplayFormat is unassigned.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 843

T e x t C a s e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Example

Edit.Text := Field1.Text;

For TParam objects

Declaration

property Text: string;

The Text property is similar to the AsString property. Accessing the Text property
attempts to convert the current data to a string value and returns that value. If the
current data is NULL, the value is an empty string.

Example

{ Assign ‘1221’ to the CustNo parameter }
Parameters.ParamByName(‘CustNo’).Text := ‘1221’;

See also
TFieldType type, AsString property, DateToStr function, TimeToStr function,
DateTimeToStr function, IntToStr function, FloatToStr function, StrToInt function,
StrToFloat function, StrToDate function, StrToTime function, StrToDateTime function,
TDateTime type

TextCase property

Applies to
TDriveComboBox component

Declaration

property TextCase: TTextCase;

The TextCase property determines if the volume name in the Text property appears in
uppercase or lowercase. These are the possible values:

The default value is tcLowerCase. If you use the Object Inspector to change the value to
tcUpperCase, you won’t see the results until your application runs.

Example
Assuming a drive combo box exists on the form, this code displays the volume name in
the drive combo box in uppercase letters when the form appears:

Value Meaning

tcLowerCase The volume name specified in the Text property is displayed in lowercase letters.
tcUpperCase The volume name specified in the Text property is displayed in uppercase letters.

844 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T e x t F i l e t y p e

procedure TForm1.FormCreate(Sender: TObject);
begin
 DriveComboBox1.TextCase := tcUpperCase;
end;

TextFile type System

The type TextFile is used to declare text file variables. Borland Pascal uses the type Text
but to avoid confusion with the Text property, Delphi uses TextFile. Note that the type
Text is still supported by Delphi, and if you want to use it you should always qualify it.

Example
The following example declares the variable F as a text file.

var
F: TextFile;

See also
AssignFile procedure, CloseFile procedure

TextHeight method

Applies to
TCanvas object

Declaration

function TextHeight(const Text: string): Integer;

TextHeight returns the height in pixels of the string passed in Text when rendered in the
current font. You can use TextHeight to specify whether the entire string will appear in a
given space.

Example
This example displays the height of a text string in the current font of the canvas in an
edit box on the form:

procedure TForm1.FormCreate(Sender: TObject);
var
 L: LongInt;
begin
 L := Canvas.TextHeight('Object Pascal is the best');
 Edit1.Text := IntToStr(L) + ' pixels in height';
end;

See also
Font property, TextWidth method

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 845

T e x t O u t m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TextOut method

Applies to
TCanvas object

Declaration

procedure TextOut(X, Y: Integer; const Text: string);

TextOut draws the string contained in Text on the canvas using the current font, with the
upper left corner of the text at the point (X, Y).

Example
This example displays a text string at a specified position on the form when the user
clicks the button on the form:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Canvas.TextOut(20, 20, 'Delphi makes Windows programming easy');
end;

See also
TextRect method

TextRect method

Applies to
TCanvas object

Declaration

procedure TextRect(Rect: TRect; X, Y: Integer; const Text: string);

The TextRect method displays text inside a clipping rectangle. Any portions of the text
passed in the Text parameter that fall outside the rectangle passed in the Rect parameter
are clipped and don’t appear onscreen. The upper left corner of the text is placed at the
point (X, Y).

Example
The following code outputs the text “Hello, world!” in a rectangle defined by the
coordinates (10, 10) and (100, 100). By passing 0 for X and 0 for Y, the top and left edges
of the text will be clipped by the rectangle.

var
TheRect: TRect;

begin
TheRect.Top := 10;

 TheRect.Left := 10;
 TheRect.Bottom := 100;

846 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T e x t T o F l o a t f u n c t i o n

 TheRect.Right := 100;
 Form1.Canvas.TextRect(TheRect,0,0,'Hello, world!');
end;

See also
TextOut method

TextToFloat function SysUtils

Declaration

function TextToFloat(Buffer: PChar; var Value: Extended): Boolean;

TextToFloat converts the null-terminated string given by Buffer to a floating-point value
which is returned in the variable given by Value.

The return value is True if the conversion was successful, or False if the string is not a
valid floating-point value.

For further details, see the description of the StrToFloat function.

TextToShortCut function Menus

Declaration

function TextToShortCut(Text: string): TShortCut;

The TextToShortCut function creates a menu shortcut from a text string. For example,
your application can allow the user to specify what they want the shortcut to be in an
edit box control, then TextToShortCut can use that string to create a menu shortcut.

Note The TextToShortCut function executes slowly. Unless you are getting input from the
user, your application should use the ShortCut function to create a menu shortcut.

Example
This example uses a main menu that contains an Open command, an edit box, and a
button. Delphi automatically names the menu item for the Open command Open1.
When the user enters the desired shortcut text in the edit box and clicks the button, a
shortcut is created and the shortcut text appears next to the Open menu item.

procedure TForm1.Button1Click(Sender: TObject);
var
 NewShortCut: TShortCut;
begin
 NewShortCut := TextToShortCut(Edit1.Text);
 Open1.ShortCut := NewShortCut;
end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 847

T e x t W i d t h m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

See also
ShortCut function, ShortCut property, ShortCutToKey procedure, ShortCutToText
function

TextWidth method

Applies to
TCanvas object

Declaration

function TextWidth(const Text: string): Integer;

The TextWidth method returns the width in pixels of the string passed in Text when
rendered in the current font. You can use TextWidth to determine whether a given string
will fit in a particular space.

Example
This example determines the width of a specified string, and if the string is too wide to
display in an edit box, the edit box is widened to accommodate the string. The string
displays in the edit box.

procedure TForm1.Button1Click(Sender: TObject);
var
 T: Longint;
 S: string;
begin
 S := 'Object Pascal is the language for me';
 T := Canvas.TextWidth(S);
 if T > Edit1.Width then
 Edit1.Width := T + 10;
 Edit1.Text := S;
end;

See also
TextRect method

TFDApplyEvent type Dialogs

Declaration

TFDApplyEvent = procedure(Sender: TObject; Wnd: HWND) of object;

The TFDApplyEvent type points to a method that performs an action when the user
chooses the Apply button in the Font dialog box. TFDApplyEvent is the type of the
OnApply event.

848 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T F i e l d c o m p o n e n t

TField component
TField components are used to access fields in a record. By default, a set of TField
components is created automatically each time a dataset component is activated; the
resulting set of TField components is dynamic, mirroring the actual columns in an
underlying physical table at that time.

At design time, you can use the Fields Editor to create a persistent, unchanging set of
TField components for a dataset. Creating TField components with the Fields Editor
provides efficient, readable, and type-safe programmatic access to underlying data. It
guarantees that each time your application runs, it uses and displays the same columns,
in the same order, every time, even if the physical structure of the underlying database
has changed. Creating TField components at design time guarantees that data-aware
components and program code that rely on specific fields always work as expected. If a
column on which a persistent TField component is based is deleted or changed, then
Delphi generates an exception rather than running the application against a nonexistent
column or mismatched data.

A TField component is an abstract object. The Fields property of a dataset is always one
of the following TField descendants:

Each TField component and its properties, methods, and events can be accessed
programmatically. At run time, dynamically created components can be accessed
through the Fields property of the dataset; at design time, use the Fields Editor to select a
field component and use the Object Inspector to modify the field’s properties.

Component: Used for:

TStringField Fixed length text data up to 255 characters
TIntegerField Whole numbers in the range –2,147,483,648 to 2,147,483,647
TSmallintField Whole numbers in the range –32,768 to 32,767
TWordField Whole numbers in the range 0 to 65,535
TFloatField Real numbers with absolute magnitudes from 5.0*10–324 to 1.7*10308 accurate to 15–16

digits
TCurrencyField Currency values. The range and accuracy is the same as TFloatField

TBCDField Real numbers with a fixed number of digits after the decimal point. Accurate to 18
digits. Range depends on the number of digits after the decimal point. [Paradox only]

TBooleanField True or False values
TDateTimeField Date and time value
TDateField Date value
TTimeField Time value
TBlobField Arbitrary data field without a size limit
TBytesField Arbitrary data field without a size limit
TVarBytesField Arbitrary data field up to 65,535 characters, with the actual length stored in the first two

bytes
TMemoField Arbitrary length text
TGraphicField Arbitrary length graphic, such as a bitmap

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 849

T F i e l d c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Most TField descendants have the same properties, but some properties, such as
AsBoolean or EditMask only apply to some fields. Use the AsBoolean, AsDateTime, AsFloat,
AsInteger, or AsString properties as appropriate to access or modify the current value of
the field. Test the CanModify property to see if the field can be changed. Use the DataSet
property to reference the dataset of the field. Use the DataType property to test the type
of the field. Set the DisplayLabel property to a column heading for a data grid(TDBGrid).
The DisplayText property will format the field for display purposes; Text will format it
for editing purposes. Set the DisplayWidth to control the column width in a data grid. Set
the EditMask property to limit the characters entered to a selected set. Use the FieldName
property to get the name of the field in the dataset. Test the IsNull property to see if the
field has been assigned a value. Set the ReadOnly property to prevent or allow the user
to change the value. Set the Visible property to control whether the field appears in a
data grid. Call the Clear method to erase any data assigned. Call the GetData method to
access the data in native format, or SetData to assign new data. Use the OnChange event
to be notified when the value of the field is changed. Use the OnGetText event to do your
own formatting of the data for display or edit purposes, and the OnSetText event to
convert the edited data back to native format. Use the OnValidate event to validate the
data before it is stored into the record.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all components.

Properties

Methods

Events

Alignment DataType IsIndexField
AsBoolean DisplayLabel IsNull
AsDateTime DisplayName Name
AsFloat DisplayText Owner
AsInteger DisplayWidth ReadOnly
AsString EditMask Required
Calculated EditMaskPtr Size
CanModify FieldName Tag
DataSet FieldNo Text
DataSize Index Visible

Assign FocusControl SetData
AssignValue GetData
Clear IsValidChar

OnChange OnSetText OnValidate
OnGetText

850 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T F i e l d G e t T e x t E v e n t t y p e

TFieldGetTextEvent type DB

Declaration

TFieldGetTextEvent = procedure(Sender: TField; var Text: string; DisplayText: Boolean) of
object;

The TFieldGetTextEvent points to a method that retrieves the text in the field. It is used by
the OnGetText event of field components. The Text parameter references the text, and the
DisplayText parameter determines whether the text is formatted for display. If
DisplayText is True, the text is in display format. If DisplayText is False, the text is not
formatted for display.

TFieldNotifyEvent type DB

Declaration

TFieldNotifyEvent = procedure(Sender: TField) of object;

The TFieldNotifyEvent type points to a method that handles the validation of data in a
field or handles the changing of data in a field. It is the type of the OnChange and
OnValidate events of a field component.

TFieldSetTextEvent type DB

Declaration

TFieldSetTextEvent = procedure(Sender: TField; const Text: string) of object;

The TFieldSetTextEvent type points to a method that stores text in a field. It is used by the
OnSetText event of field components. The Text parameter is the text that is being stored
in the field.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 851

T F i l e E d i t S t y l e t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TFileEditStyle type Dialogs

Declaration

TFileEditStyle = (fsEdit, fsComboBox);

The TFileEditStyle type contains the possible values of the FileEditStyle property used by
the Open (TOpenDialog) and Save (TSaveDialog) dialog boxes.

TFileExt type Dialogs

Declaration

TFileExt = string[3];

The TFileExt type is used to hold the three characters of a file-name extension. TFileExt is
used by the DefaultExt property of the Open and Save dialog boxes (TOpenDialog and
TSaveDialog).

TFileListBox component FileCtrl

The TFileListBox component is a specialized list box that lists all the files in the current
directory. To display files in a different directory, change the value of the Directory
property.

You can have icons next to the file names to help identify the type of file. For example,
an executable file displays a different icon than a word processing document. To make
the icons appear, set ShowGlyphs to True.

You decide which file types you want to appear in the list box using the Mask property,
which displays only the files that match the Mask string. For example, you can choose to
display only executable files and source code files.

You can also decide which files display in the file list box by their file attributes. For
example, you can choose to display hidden and system files as well as regular files, or
you can choose to see read-only files only. Use the FileType property to select the file
types according to their file attributes.

You can have the file selected in the file list box appear as the text of an edit box if you
specify a value for the FileEdit property.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for FileListBox component in the online Help, and choose
the Using the File List Box Component.

852 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T F i l e L i s t B o x c o m p o n e n t

Properties

Methods

Events

See also
TDirectoryListBox component, TDriveComboBox component

Align Handle ParentFont
BoundsRect Height ParentShowHint
Canvas HelpContext PopupMenu
ComponentIndex Hint Selected
Color IntegralHeight ShowGlyphs
Controls ItemHeight ShowHint
Ctl3D ItemIndex Showing
Cursor Items TabOrder
Directory Left TabStop
DragCursor Mask Tag
DragMode MultiSelect Top
Enabled Name TopIndex
FileEdit Owner Visible
FileName Parent Width
FileType ParentColor
Font ParentCtl3D

BeginDrag GetTextLen ScrollBy
BringToFront Hide SendToBack
CanFocus Invalidate SetBounds
Clear ItemAtPos SetFocus
ClientToScreen ItemRect SetTextBuf
Dragging Refresh Show
EndDrag Repaint Update
Focused ScaleBy
GetTextBuf ScreenToClient

OnChange OnEndDrag OnKeyUp
OnClick OnEnter OnMouseDown
OnDblClick OnExit OnMouseMove
OnDragDrop OnKeyDown OnMouseUp
OnDragOver OnKeyPress

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 853

T F i e l d C l a s s t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TFieldClass type DB

Declaration

TFieldClass = class of TField;

The TFieldClass type is the object type of TField. Use it to create an object reference to a
TField.

TFieldDef object
The TFieldDef object corresponds to a physical field of a record in a table underlying a
dataset. TFieldDef objects are created automatically for dataset components. A field
definition has a corresponding TField component, but not all TField components have a
corresponding TFieldDef objects. For example, calculated field do not have TFieldDef
objects.

In addition to these properties and methods, this object also has the methods that apply
to all objects.

Properties

Methods

TFieldDefs object
A TFieldDefs object holds the TFieldDef objects that represent the physical fields
underlying a dataset.

The Count property is the total number of TFieldDef objects in TFieldDefs. The Items
property is an array of pointers to the TFieldDef objects.

Use the Find or IndexOf methods to locate an entry in Items by name. Call Clear to
remove all TFieldDef objects from TFieldDefs. Call Update to obtain information about the
fields in a dataset without opening it.

In addition to these properties and methods, this object also has the methods that apply
to all objects.

DataType FieldNo Required
FieldClass Name Size

ClassName Create Free
ClassParent CreateField
ClassType Destroy

854 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T F i e l d T y p e t y p e

Properties

Methods

TFieldType type DB

Declaration

TFieldType = (ftUnknown, ftString, ftSmallint, ftInteger, ftWord, ftBoolean, ftFloat,
ftCurrency, ftBCD, ftDate, ftTime, ftDateTime, ftBytes, ftVarBytes, ftBlob, ftMemo,
ftGraphic);

The TFieldType type is the set of values of the DataType property of a TField component
or TFieldDef component.

TFileName type SysUtils

Declaration

TFileName = string[79];

The TFileName type is the type for the FileName property of Open and Save dialog boxes.

TFileRec type SysUtils

Declaration

TFileRec = record
Handle: Word;
Mode: Word;
RecSize: Word;
Private: array[1..26] of Byte;
UserData: array[1..16] of Byte;
Name: array[0..79] of Char;

end;

TFileRec is the internal format for typed and untyped files. TFileRec enables you to
typecast a file variable to access its internal fields.

Note You would normally never declare a variable of this type.

Count Items

Add ClassType Free
AddFieldDesc Clear IndexOf
Assign Create Update
ClassName Destroy
ClassParent Find

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 855

T F i l e T y p e t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TFileType type FileCtrl

Declaration

TFileAttr = (ftReadonly, ftHidden, ftSystem, ftVolumeID, ftDirectory, ftArchive, ftNormal);

TFileType = set of TFileAttr;

The TFileType type is a set of file attributes. The FileType property of a file list box
(TFileListBox) uses the TFileType type.

TFillStyle type Graphics

Declaration

TFillStyle = (fsSurface, fsBorder);

The TFillStyle type determines the method of filling used by the FloodFill method of a
canvas (TCanvas object).

TFilterComboBox component FileCtrl

The TFilterComboBox component is a specialized combo box that is used to present the
user with a choice of file filters. Specify the filters you want to appear in the filter combo
box with the Filter property. The filter the user selects is the value of the Mask property.

Most commonly, a filter combo box is used with a file list box (TFileListBox). Your
application can have the file filter the user selects in the filter combo box determine
which files appear in the file list box. If you place this line of code in an OnChange event
handler of the filter combo box, any change in the filter combo box is reflected in the file
list box:

FileListBox1.Mask := FilterComboBox1.Filter;

Another way to accomplish the same task is to set the FileList property of the filter
combo box to the file list box you want affected with a change of filters.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for FilterComboBox component in the online Help, and
choose the topic Using the Filter Combo Box Component.

Properties

Align Height ParentFont
BoundsRect HelpContext SelLength
Color Hint SelStart
ComponentIndex ItemIndex SelText
Ctl3D Items Showing

856 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T F i n d D i a l o g c o m p o n e n t

Methods

Events

TFindDialog component Dialogs

The TFindDialog component provides a Find dialog box to your application. Users can
use the Find dialog box to search for text in a file.

Display the Find dialog box by calling the Execute method.

The text your application is searching for is the value of the FindText property.

To determine which search options are available in the Find dialog box, use the Options
property. For example, you can have a Match Case check box appear in the dialog box
or hide it, and you can disable or enable the Whole Word check box.

When the user enters the text to search for in the dialog box and chooses Find Next, the
OnFind event occurs. Within the OnFind event handler, write the code that searches for
the text specified as the value of FindText. Your code should use the Options values to
determine how the user wants the search conducted.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all components.

Cursor Left TabOrder
DragCursor Mask TabStop
DragMode Name Text
Enabled Owner Tag
FileList Parent Top
Filter ParentColor Visible
Font ParentCtl3D Width

BeginDrag GetTextBuf ScrollBy
BringToFront GetTextLen SelectAll
CanFocus Hide SendToBack
Clear Invalidate SetBounds
ClientToScreen Refresh SetFocus
Dragging Repaint SetTextBuf
EndDrag ScaleBy Show
Focused ScreenToClient Update

OnChange OnDragOver OnExit
OnClick OnDropDown OnKeyDown
OnDblClick OnEndDrag OnKeyPress
OnDragDrop OnEnter OnKeyUp

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 857

T F i n d I t e m K i n d t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

For more information, search for FindDialog component in the online Help, and choose
the topic Using the Find Dialog Component.

Properties

Methods

Events

TFindItemKind type Menus

Declaration

TFindItemKind = (fkCommand, fkHandle, fkShortCut);

The TFindItemKind defines the possible values of the Kind parameter in the FindItem
method of a menu component.

TFindOptions type Dialogs

Declaration

TFindOption = (frDown, frFindNext, frHideMatchCase, frHideWholeWord, frHideUpDown,
frMatchCase, frDisableMatchCase, frDisableUpDown, frDisableWholeWord, frReplace,
frReplaceAll, frWholeWord, frShowHelp);

TFindOptions = set of TFindOption;

The TFindOptions type defines the set of possible values for the Options property of the
Find and Replace dialog boxes (TFindDialog and TReplaceDialog components).

TFloatField component
A TFloatField represents a field of a record in a dataset. It is represented as a binary value
with a range from (positive or negative) 5.0 * 10-324 to 1.7 * 10308. It has an accuracy of 15
to 16 digits. Use TFloatField for fields that hold floating-point numbers.

ComponentIndex HelpContext Position
Ctl3D Name Tag
FindText Options
Handle Owner

CloseDialog Execute

OnFind

858 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T F l o a t F o r m a t

Set the DisplayFormat property to control the formatting of the field for display
purposes, and the EditFormat property for editing purposes. Use the Value property to
access or change the current field value.

The TFloatField component has the properties, methods, and events of the TField
component.

Properties

Methods

Events

TFloatFormat SysUtils

Declaration

TFloatFormat = (ffGeneral, ffExponent, ffFixed, ffNumber, ffCurrency);

Alignment DisplayLabel MinValue
AsBoolean DisplayName Name
AsDateTime DisplayText Owner
AsFloat DisplayWidth Precision
AsInteger EditFormat ReadOnly
AsString EditMask Required
Calculated EditMaskPtr Size
CanModify FieldName Tag
Currency FieldNo Text
DataSet Index Value
DataSize IsIndexField Visible
DataType IsNull
DisplayFormat MaxValue

Assign FocusControl SetData
AssignValue GetData
Clear IsValidChar

OnChange OnSetText OnValidate
OnGetText

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 859

T F l o a t R e c+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TFloatFormat defines an enumerated list of formatting codes for the float functions.

See also
FloatToDecimal procedure, FloatToStr function, FloatToStrF function, FloatToText
function, FloatToTextFmt function

TFloatRec SysUtils

Declaration

TFloatRec = record
Exponent: Integer;
Negative: Boolean;
Digits: array[0..18] of Char;

end;

TFloatRec is the FloatToDecimal result record.

TFont object Graphics

A TFont object defines the appearance of text. TFont encapsulates a Windows HFONT.

Format Defines

ffGeneral General number format. The value is converted to the shortest possible decimal string using
fixed or scientific format. Trailing zeros are removed from the resulting string, and a decimal
point appears only if necessary. The resulting string uses fixed point format if the number of
digits to the left of the decimal point in the value is less than or equal to the specified
precision, and if the value is greater than or equal to 0.00001. Otherwise the resulting string
uses scientific format, and the Digits parameter specifies the minimum number of digits in
the exponent (between 0 and 4).

ffExponent Scientific format. The value is converted to a string of the form "-d.ddd...E+dddd". The
resulting string starts with a minus sign if the number is negative, and one digit always
precedes the decimal point. The total number of digits in the resulting string (including the
one before the decimal point) is given by the Precision parameter. The "E" exponent character
in the resulting string is always followed by a plus or minus sign and up to four digits. The
Digits parameter specifies the minimum number of digits in the exponent (between 0 and 4).

ffFixed Fixed point format. The value is converted to a string of the form "-ddd.ddd...". The resulting
string starts with a minus sign if the number is negative, and at least one digit always
precedes the decimal point. The number of digits after the decimal point is given by the
Digits parameter—it must be between 0 and 18. If the number of digits to the left of the
decimal point is greater than the specified precision, the resulting value will use scientific
format.

ffNumber Number format. The value is converted to a string of the form "-d,ddd,ddd.ddd...". The
ffNumber format corresponds to the ffFixed format, except that the resulting string contains
thousand separators.

ffCurrency Currency format. The value is converted to a string that represents a currency amount. The
conversion is controlled by the CurrencyString, CurrencyFormat, NegCurrFormat,
ThousandSeparator, and DecimalSeparator global variables, all of which are initialized from the
Currency Format in the International section of the Windows Control Panel. The number of
digits after the decimal point is given by the Digits parameter—it must be between 0 and 18.

860 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T F o n t D i a l o g c o m p o n e n t

A TFont object defines a set of characters by specifying their height, font family
(typeface) name, and so on. The height is specified by the Height property. The typeface
is specified by the Name property. The size in points is specified by the Size property.
The color is specified by the Color property. The attributes of the font (bold, italic, and so
on) are specified by the Style property.

When a font is modified, an OnChange event occurs.

In addition to these properties, methods, and events, this object also has the methods
that apply to all objects.

Properties

Methods

Events

TFontDialog component Dialogs

The TFontDialog component makes a Font dialog box available to your application. The
purpose of the dialog box is to allow a user to select a font and set attributes of that font.
When the user selects a font and chooses OK in the dialog box, the user’s font selection is
stored in the dialog box’s Font property, which you can then process as you want.

Display the Font dialog box by calling the Execute method.

You choose which device you want a font change to affect with the Device property.

You can use the Options property to customize how the Font dialog box appears and
behaves. For example, you can specify that a Help button be included in the dialog box
or that only True Type fonts appear in the list of fonts.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all components.

For more information, search for FontDialog component in the online Help, and choose
the topic Using the Font Dialog Component.

Color Name Size
Handle Pitch Style
Height PixelsPerInch

Assign Destroy Free
Create

OnChange

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 861

T F o n t D i a l o g D e v i c e t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Properties

Methods

Events

TFontDialogDevice type Dialogs

Declaration

TFontDialogDevice = (fdScreen, fdPrinter, fdBoth);

The TFontDialogDevice type lists the values the Device property of the Font dialog box
(TFontDialog) can assume.

TFontDialogOptions type Dialogs

Declaration

TFontDialogOption = (fdAnsiOnly, fdTrueTypeOnly, fdEffects, fdFixedPitchOnly,
fdForceFontExist, fdNoFaceSel, fdNoOEMFonts, fdNoSimulations, fdNoSizeSel, fdNoStyleSel,
fdNoVectorFonts, fdShowHelp, fdWysiwyg, fdLimitSize, fdScalableOnly);

TFontDialogOptions = set of TFontDialogOption;

The TFontDialogOptions type is the set of values the Options property of the Font dialog
box (TFontDialog) can have.

TFontName type Graphics

Declaration

TFontName = string(LF_FACESIZE - 1);

The TFontName type is used by the Name property of a font object (TFont). The
maximum number of characters is 32, so font names longer than 32 characters are
truncated.

ComponentIndex HelpContext Options
Ctl3D MaxFontSize Owner
Device MinFontSize Tag
Font Name

Execute

OnApply

862 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T F o n t P i t c h t y p e

TFontPitch type Graphics

Declaration

TFontPitch = (fpDefault, fpVariable, fpFixed);

The TFontPitch type is used by the Pitch property of a font object (TFont).

TFontStyles type Graphics

Declaration

TFontStyle = (fsBold, fsItalic, fsUnderline, fsStrikeOut);

TFontStyles = set of TFontStyle;

The TFontStyles type is the set of font styles the Style property of a font object (TFont) can
assume.

TForm component Forms

The Form component is at the center of Delphi applications. You design your
application by putting other components on a form. Forms can be used as windows,
dialog boxes, or simply as forms, such as data-entry forms.

To display a form that isn’t currently active in your application, call either the Show or
ShowModal method. To close a form, call either Close or CloseQuery, or use the
ModalResult property with the ShowModal method.

You determine the behavior of the horizontal and vertical scroll bars on the form by
setting the properties of the HorzScrollBar and VertScrollBar objects, which are properties
of a form.

You can decide how your form first appears—maximized, minimized, or normal—with
the WindowState property. You can customize the appearance of your form and
determine how the user interacts with it by setting the BorderStyle and BorderIcons
properties. Using the Icon property, you determine the icon that appears when the form
is minimized.

To find out which control is the active control on the form, use the ActiveControl
property. To assure that a particular control on the form is in view, use the ScrollInView
method.

Forms have a number of properties and methods that make it simple to create Multiple
Document Interface (MDI) applications. You specify which form is the parent form for
your application and which forms are the child forms with the FormStyle property. Once
you have designated a form as a parent and others as children, you can access a child
form with the MDIChildren property. The number of child forms open in your
application is the value of the MDIChildCount property. You can determine which form
is the active child form with the ActiveMDIChild property. For more information about

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 863

T F o r m c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

creating MDI applications, search for “MDI applications, creating” in the online Help,
and choose the topic “Multiple Document Interface (MDI) Applications.”

Most MDI applications have a Window menu that lists the open child forms or
windows at the bottom of the menu. You can specify which item on the main menu of
your application is the Window menu as the value of the WindowMenu property, and at
run time, the open child forms are automatically listed at the bottom of the specified
menu. Usually, Window menus have commands that allow the user to manage the
windows or forms in the running application. You can call the Cascade, Tile, Previous,
Next, and ArrangeIcons methods in the OnClick event handlers for the appropriate menu
commands, which make it very easy to give your users this capability.

If you want your form to display different menus at various times while your
application runs, you specify the menu you want to use with the Menu property. If you
want your application to be able to process key events rather than have them go
immediately to the selected control on the form, set the form’s KeyPreview property to
True.

You can use the OnCreate event handler of the form to set initial values for properties
and do any processing you want to occur before the user begins interacting with the
form.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for Form component in the online Help, and choose the
topic Using the Form Component.

Properties

Active Controls Owner
ActiveControl Ctl3D Parent
ActiveMDIChild Cursor PixelsPerInch
Align Enabled PopupMenu
AutoScroll Font Position
BorderIcons FormStyle PrintScale
BorderStyle Handle Scaled
Brush Height ShowHint
Caption HelpContext Showing
Canvas Hint TabOrder
ClientHandle HorzScrollBar TabStop
ClientHeight Icon Tag
ClientOrigin KeyPreview TileMode
ClientRect Left Top
ClientWidth MDIChildCount VertScrollBar
Color MDIChildren Visible
ComponentCount Menu Width
ComponentIndex ModalResult WindowMenu

864 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T F o r m B o r d e r S t y l e t y p e

Methods

Events

TFormBorderStyle type Forms

Declaration

TFormBorderStyle = (bsNone, bsSingle, bsSizeable, bsDialog);

The TFormBorderStyle type defines the possible border styles of a form. It is the type of
the form’s BorderStyle property.

Components Name WindowState
ControlCount ObjectMenuItem

ArrangeIcons GetFormImage RemoveComponent
BringToFront GetTextBuf Repaint
CanFocus GetTextLen ScaleBy
Cascade Hide ScreenToClient
ClientToScreen HandleAllocated ScrollBy
Close HandleNeeded ScrollInView
CloseQuery Hide SendToBack
ContainsControl InsertComponent SetBounds
Create InsertControl SetFocus
CreateNew Invalidate SetTextBuf
Destroy Next Show
Dragging Previous ShowModal
FindComponent Print Tile
Focused Refresh Update
Free Release

OnActivate OnDragDrop OnMouseDown
OnClick OnDragOver OnMouseMove
OnClose OnEnter OnMouseUp
OnCloseQuery OnExit OnPaint
OnCreate OnHide OnResize
OnDestroy OnKeyDown OnShow
OnDblClick OnKeyPress
OnDeactivate OnKeyUp

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 865

T F o r m S t y l e t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TFormStyle type Forms

Declaration

TFormStyle = (fsNormal, fsMDIChild, fsMDIForm, fsStayOnTop);

The TFormStyle type defines the possible values of the FormStyle property of a form
(TForm).

TGetEditEvent type Grids

Declaration

TGetEditEvent = procedure (Sender: TObject; ACol, ARow: Longint; var Value: string) of object;

The TGetEditEvent points to a method that handles the retrieving of the text displayed in
a cell in a draw grid (TDrawGrid) or string grid (TStringGrid) while the grid is in Edit
mode, or the edit mask used to display text. The ACol parameter specifies the column of
the cell, and the ARow parameter specifies the row of the cell. The Value parameter is the
string displayed in the cell or the edit mask used to display the text.

TGetEditEvent is the type of the OnGetEditText and OnGetEditMask events of the draw
and string grid components.

TGraphic object Graphics

The TGraphic object is the foundation class for the TBitmap, TIcon, and TMetafile objects.
If you know which type of graphic (bitmap, icon, or metafile) you will be using, you
should store the graphic in its specific type object (TBitmap, TIcon, or TMetafile,
respectively). Otherwise, you should use a TPicture object which can hold any type of
TGraphic.

In addition to these properties, methods, and events, this object also has the methods
that apply to all objects.

Properties

Methods

Events

Height Empty Width

ClassName Create LoadFromFile
ClassParent Destroy SaveToFile
ClassType Free

OnChange

866 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T G r a p h i c F i e l d c o m p o n e n t

TGraphicField component
A TGraphicField represents a field of a record which is represented by a value consisting
of an arbitrary set of bytes with indefinite size. The bytes should correspond to graphics
data.

Use the Assign method to transfer another component to a TGraphicField. Use the
LoadFromFile method to load a field’s contents from a file. Use LoadFromStream method
to load a field from a Stream. Use SaveToFile method to write a field’s contents to a file.
Use SaveToStream method to write a field’s contents to a Stream.

The TGraphicField component has the properties, methods, and events of the TField
component.

Properties

Methods

Events

TGraphicsObject object Graphics

A TGraphicsObject object is the base class for the Delphi encapsulation of the three main
Windows graphics tools: the TBrush, TFont, and TPen objects.

In addition to these methods and events, this object also has the methods that apply to
all objects.

Alignment DataType IsIndexField
AsBoolean DisplayLabel IsNull
AsDateTime DisplayName Name
AsFloat DisplayText Owner
AsInteger DisplayWidth ReadOnly
AsString EditMask Required
Calculated EditMaskPtr Size
CanModify FieldName Tag
DataSet FieldNo Text
DataSize Index Visible

Assign GetData SaveToFile
AssignValue IsValidChar SaveToStream
Clear LoadFromFile SetData
FocusControl LoadFromStream

OnChange OnSetText OnValidate
OnGetText

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 867

T G r i d D r a w S t a t e t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Methods

Events

TGridDrawState type Grids

Declaration

TGridDrawState = set of (gdSelected, gdFocused, gdFixed);

The TGridDrawState type defines the possible states of cell when drawing occurs. The
TGridDrawState is the type of the AState parameter used in the TDrawCellEvent method
pointer.

TGridOptions type Grids

Declaration

TGridOption = (goFixedHorzLine, goFixedVertLine, goHorzLine, goVertLine, goRangeSelect,
goDrawFocusSelected, goRowSizing, goColSizing, goRowMoving, goColMoving, goEditing, goTabs,
goRowSelect, goAlwaysShowEditor, goThumbTracking);

TGridOptions = set of TGridOption;

TGridOptions is the set of values the Options property of a TDrawGrid or TStringGrid
component can have.

TGridRect type Grids

Declaration

TGridRect = record
case Integer of
0: (Left, Top, Right, Bottom: Longint);
1: (TopLeft, BottomRight: TGridCoord);

end;

TGridRect defines a rectangular area within a grid control. It is the type of the Selection
property of the TDrawGrid and TStringGrid components.

ClassName ClassType Destroy
ClassParent Create Free

OnChange

868 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T G r o u p B o x c o m p o n e n t

TGroupBox component StdCtrls

The TGroupBox component is a standard Windows group box. Use a group box
component to group related controls on a form. The most commonly grouped controls
in a group box are radio buttons (TRadioButton).

Place the group box on the form, then select the components you want to appear in the
group box from the Component palette, and place them in the group box.

The text that identifies the purpose of the grouping appears as the value of the Caption
property.

Once you place another windowed control within a group box, the group box becomes
the parent of the control and is the value of that control’s Parent property.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for GroupBox component in the online Help, and choose
the topic Using the Group Box Component.

Properties

Methods

Events

Align Height PopupMenu
Caption HelpContext Showing
Color Hint TabOrder
Controls Left TabStop
Ctl3D Name Tag
Cursor Owner Top
DragCursor Parent Visible
DragMode ParentColor Width
Enabled ParentCtl3D
Font ParentFont

BeginDrag Focused ScaleBy
BringToFront GetTextBuf ScreenToClient
CanFocus GetTextLen ScrollBy
ClientToScreen Hide SendToBack
ContainsControl Invalidate SetBounds
Dragging Refresh SetFocus
EndDrag Repaint SetTextBuf

OnClick OnEndDrag OnMouseMove
OnDblClick OnEnter OnMouseUp

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 869

T H e a d e r c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

THeader component ExtCtrls

The THeader component is a sectioned visual control that displays text and allows each
section to be resized with the mouse. At design time, resize a section by clicking the
right mouse button on a section border and dragging to the new size. At run time, the
user can resize the header by clicking and dragging with the left mouse button. The
widths of the other sections that are not resized remain unchanged.

The Sections property specifies the sections of a header. The AllowResize property enables
or prevents the user from resizing sections at run time. When a section is resized, an
OnSizing event occurs. After a section has been resized, an OnSized event occurs.

To use a header you should attach code to these event handlers. One use would be to
align text under a header. When the header is resized, you would realign the text in the
OnSized event handler. To move the text as the header is being resized, realign the text in
the OnSizing event handler.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for GroupBox component in the online Help, and choose
the topic Using the Group Box Component.

Properties

Methods

OnDragDrop OnExit
OnDragOver OnMouseDown

Align HelpContext SectionWidth
AllowResize Hint ShowHint
BoundsRect Left Showing
BorderStyle Name TabOrder
ComponentIndex Owner TabStop
Cursor Parent Tag
Enabled ParentFont Top
Font ParentShowHint Visible
Height Sections Width

BeginDrag GetTextLen SendToBack
BringToFront Hide SetBounds
CanFocus Invalidate SetFocus
ClientToScreen Refresh SetTextBuf
Dragging Repaint Show
EndDrag ScaleBy Update

870 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T H e l p C o n t e x t t y p e

Events

THelpContext type Classes

Declaration

THelpContext = -MaxLongInt..MaxLongInt;

The THelpContext type is used to define Help context numbers.

THelpEvent type Classes

Declaration

THelpEvent = function (Command: Word; Data: Longint): Boolean of object;

The THelpEvent is used by the OnHelp event handler. To find the possible values of the
Command and Data parameters, search for the WinHelp topic in the Help system, which
explains the WinHelp API (application programming interface).

THintInfo type Forms

Declaration

THintInfo = record
HintControl: TControl;
HintPos: TPoint;
HintMaxWidth: Integer;
HintColor: TColor;
CursorRect: TRect;
CursorPos: TPoint;

end;

The THintInfo type is used to define the appearance and behavior of the Help window in
a TShowHintEvent type OnShowHint event handler.

TIcon object Graphics

A TIcon object contains an icon graphic (.ICO file format). TIcon encapsulates a Windows
HICON.

Focused ScrollBy
GetTextBuf ScreenToClient

OnEnter OnSized OnSizing
OnExit

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 871

T I d l e E v e n t t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

The height and width in pixels of the icon are specified by the Height and Width
properties, respectively.

To load an icon from a file, call the LoadFromFile method. To save an icon to a file, call
SaveToFile.

To draw an icon on a canvas, call the Draw or StretchDraw methods of a TCanvas object,
passing a TIcon as a parameter.

When the icon is modified, an OnChange event occurs.

In addition to these properties, methods, and events, this object also has the methods
that apply to all objects.

Properties

Methods

Events

TIdleEvent type Forms

Declaration

TIdleEvent = procedure (Sender: TObject; var Done: Boolean) of object;

The TIdleEvent type points to a method that runs when your application is idle. It is the
type of the OnIdle event of the application (TApplication).

The Boolean parameter Done is True by default. When Done is True, the Windows API
WaitMessage function is called when OnIdle returns. WaitMessage yields control to other
applications until a new message appears in the message queue of your application. If
Done is False, WaitMessage is not called.

Tile method

Applies to
TForm component

Empty Height Width
Handle

Assign ClassType Free
ClassName Create LoadFromFile
ClassParent Destroy SaveToFile

OnChange

872 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T i l e M o d e p r o p e r t y

Declaration

procedure Tile;

The Tile method arranges the child forms of a parent form in your application so that the
forms are all the same size. At the same time, all the forms together completely fill up
the client area of the parent form. How the forms arrange themselves depends upon the
value of the TileMode property.

The Tile method applies only to forms that are MDI parent forms (have a FormStyle
property value of fsMDIForm).

Example
This example uses three forms. The first form has its FormStyle property set to MDIForm.
The other two have their FormStyle properties set to MDIChild and their Visible
properties set to True. Add a main menu component and name one of the menu items
TileForms. This is code for the TileFormsClick handler:

procedure TForm1.TileForms1Click(Sender: TObject);
begin
 TileMode := tbVertical;
 Tile;
end;

When the user chooses the TileForms command, the child forms tile vertically within
the MDI frame form.

See also
ArrangeIcons method, Cascade method, Next method, Previous method

TileMode property

Applies to
TForm component

Declaration

property TileMode: TTileMode;

Run-time only. The TileMode property determines how the child forms within a parent
form arrange themselves when the application calls the Tile method. These are the
possible values the TileMode property can have:

Setting the TileMode property is meaningful only in an MDI parent form (has a FormStyle
property value of fsMDIForm).

Value Meaning

tbHorizontal Each form stretches across the width of the parent form
tbVertical Each form stretches along the height of the parent form

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 873

T I m a g e c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Example
This example uses three forms. The first form has its FormStyle property set to MDIForm.
The other two have their FormStyle properties set to MDIChild and their Visible
properties set to True. Add a main menu component and name one of the menu items
TileForms. This is code for the TileFormsClick handler:

procedure TForm1.TileForms1Click(Sender: TObject);
begin
 TileMode := tbHorizontal;
 Tile;
end;

When the application runs and the user chooses the TileForms command, the child
forms tile horizontally within the MDI frame form.

See also
Tile method

TImage component ExtCtrls

The TImage component displays a graphical image on a form. The image that appears is
the value of the Picture property. If you want the image control to resize to fit the current
image, set the AutoSize property to True. If you want to resize the image to completely
fill an image control when the control is larger than the native size of the image, use the
Stretch property.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all controls.

For more information, search for Image component in the online Help, and choose the
topic Using the Image Component.

Properties

Align Height ShowHint
Autosize HelpContext Showing
BoundsRect Hint Stretch
Canvas Left TabOrder
Center Name TabStop
ComponentIndex Owner Tag
Cursor Parent Top
DragCursor ParentShowHint Visible
DragMode Picture Width
Enabled PopupMenu

874 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T i m e f u n c t i o n

Methods

Events

Time function SysUtils

Declaration

function Time: TDateTime;

The Time function returns the current time.

Example
This example uses a label and a button on a form. When the user clicks the button, the
current time displays in the caption of the label:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := 'The time is ' + TimeToStr(Time);
end;

See also
Date function, DecodeTime procedure, Now function, TimeToStr function

TimeFormat property

Applies to
TMediaPlayer component

Declaration

property TimeFormat: TMPTimeFormats;

Run-time only. The TimeFormat property determines the format used to specify position
information.

BeginDrag Hide SendToBack
BringToFront Invalidate SetBounds
ClientToScreen Refresh Show
Dragging Repaint Update
EndDrag ScaleBy
Focused ScreenToClient

OnClick OnDragOver OnMouseMove
OnDblClick OnEndDrag OnMouseUp
OnDragDrop OnMouseDown

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 875

T i m e F o r m a t p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TimeFormat determines how the StartPos, Length, Position, Start, and EndPos properties
are interpreted. For example, if Position is 180 and TimeFormat is tfMilliseconds, the
current position is 180 milliseconds into the medium. If Position is 180 and TimeFormat is
tfMSF, the current position is 180 minutes into the medium.

Not all formats are supported by every device. If you try to set an unsupported format,
the assignment is ignored.

The current timing information is always passed in a 4-byte integer. In some formats,
the timing information returned is not really one integer, but single bytes of information
packed in the long integer.

The following table lists the possible values for the TimeFormat property:

Value Time format

tfMilliseconds Milliseconds are stored as a 4-byte integer variable.
tfHMS Hours, minutes, and seconds packed into a 4-byte integer. From least significant to

most significant byte, the data values are
Hours (least significant byte)
Minutes
Seconds
Unused (most significant byte)

tfMSF Minutes, seconds, and frames packed into a 4-byte integer. From least significant to
most significant byte, the data values are
Minutes (least significant byte)
Seconds
Frames
Unused (most significant byte)

tfFrames Frames are stored as a 4-byte integer variable.
tfSMPTE24 24-frame SMPTE packs values in a 4-byte variable. From least significant to most

significant byte, the data values are
Hours (least significant byte)
Minutes
Seconds
Frames (most significant byte)

SMPTE (Society of Motion Picture and Television Engineers) time is an absolute time
format expressed in hours, minutes, seconds, and frames. The standard SMPTE
division types are 24, 25, and 30 frames per second.

tfSMPTE25 25-frame SMPTE packs data into a 4-byte variable in the same order as 24-frame
SMPTE.

tfSMPTE30 30-frame SMPTE packs data into the 4-byte variable in the same order as 24-frame
SMPTE.

tfSMPTE30Drop 30-drop-frame SMPTE packs data into the 4-byte variable in the same order as 24-
frame SMPTE.

tfBytes Bytes are stored as a 4-byte integer variable.
tfSamples Samples are stored as a 4-byte integer variable.
tfTMSF Tracks, minutes, seconds, and frames are packed in the 4-byte variable. From least

significant to most significant byte, the data values are
Tracks (least significant byte)
Minutes
Seconds
Frames (most significant byte)

Note that MCI uses continuous track numbering.

876 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T i m e T o S t r f u n c t i o n

Note Functions provided with MCI to help you decode the 4-byte integer specified in a given
time format are documented under MCI Macros for Encoding and Decoding Time Data in
the MMSYSTEM.HLP Help file.

Example

The following code declares a HMSRec record with four byte fields. If TimeFormat is
tfHMS, the first field specifies hours, the second field specifies minutes, the third field
specifies seconds, and the fourth field corresponds to the unused most-significant byte
of the tfHMS time format. A LongInt variable is typecast to an HMSRec record, then the
hours, minutes, and seconds of the Length of the loaded media are displayed in labels
when the user clicks a button.

type
HMSRec = record

 Hours: byte;
 Minutes: byte;
 Seconds: byte;
 NotUsed: byte;
 end;

procedure TForm1.Button1Click(Sender: TObject);
var
TheLength: LongInt;

begin
TimeFormat := tfHMS; { Set time format - note that some devices don’t support tfHMS }
TheLength := MediaPlayer1.Length; { Store length of currently loaded media in var }

 with HMSRec(TheLength) do { Typecast TheLength as a HMSRec record }
 begin

Label1.Caption := IntToStr(Hours); { Display Hours in Label1 }
Label2.Caption := IntToStr(Minutes); { Display Minutes in Label2 }
Label3.Caption := IntToStr(Seconds); { Display Seconds in Label3 }

end;
end;

TimeToStr function SysUtils

Declaration

function TimeToStr(Time: TDateTime): string;

The TimeToStr function converts the Time parameter, a variable of type TDateTime, to a
string. You can change the format of how the string is displayed by changing the values
of some of the date and time variables.

Example
This example uses a label and a button on a form. When the user clicks the button, the
current time appears as the caption of the label:

procedure TForm1.Button1Click(Sender: TObject);
begin

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 877

T I n d e x D e f o b j e c t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

 Label1.Caption := TimeToStr(Time);
end;

See also
DateTimeToStr function, DateToStr function, StrToDateTime function, Time function

TIndexDef object
The TIndexDef object describes the index for a table.

Use the Fields property to get a list of the fields in the index Use the Name property to get
the name of the index. Test the flags in the Options property for a specific characteristic
of the index.

In addition to these properties and methods, this object also has the methods that apply
to all objects.

Properties

Methods

TIndexDefs object
The TIndexDefs object holds the set of available indexes for a table.

In addition to these properties and methods, this object also has the methods that apply
to all objects.

Properties

Methods

Expression Name Options
Fields

ClassName ClassType Destroy
ClassParent Create Free

Count Items

Add ClassType FindIndexForFields
Assign Clear Free
ClassName Create IndexOf
ClassParent Destroy Update

878 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T I n d e x O p t i o n s t y p e

TIndexOptions type DB

Declaration

TIndexOptions = set of (ixPrimary, ixUnique, ixDescending, ixNonMaintained,
ixCaseInsensitive);

The TIndexOptions type is the set of values that can be used in creating a new index. It is
used by the AddIndex method of a dataset component.

TIniFile object IniFiles

The TIniFile object permits your application to write and read an .INI file.

Your application can retrieve all the strings in a section of an .INI file by calling the
ReadSection method; or it can retrieve a single Boolean, integer, or string value by calling
the ReadBool, ReadInteger, or ReadString methods.

To erase an entire section of an .INI file, use the EraseSection method.

Your application can change the settings in an existing .INI file. To change a Boolean
value, call the WriteBool method. To change an integer value, call the WriteInteger
method. Finally, to change a string value, call the WriteString method.

In addition to these methods, this object also has the methods that apply to all objects.

Methods

TIntegerField component
A TIntegerField component represents a field of a record in a dataset. It is represented as
a binary value with a range from -2,147,483,648 to 2,147,483,647. Use TIntegerField for
fields that hold large, signed whole numbers.

Set the DisplayFormat property to control the formatting of the field for display
purposes, and the EditFormat property for editing purposes. Use the Value property to
access or change the current field value. Set the MinValue or the MaxValue property to
limit the smallest or largest value permitted in a field.

The TIntegerField component has the properties, methods, and events of the TField
component.

ClassName FileName ReadString
ClassParent Free WriteBool
ClassType ReadBool WriteInteger
Create ReadInteger WriteString
Destroy ReadSection
EraseSection ReadSectionValues

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 879

T i t l e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Properties

Methods

Events

Title property

Applies to
TPrinter object; TApplication, TOpenDialog, TSaveDialog components

The Title property specifies the text used to title an object, component, or application.

For applications

Declaration

property Title: string;

The Title property determines the text that appears with an icon representing your
application when it is minimized. The default value is the project name (the name of the
project file without the .PRJ file extension).

You can set the title at run time, or you can enter the value of the Title property on the
Application page of the Options|Project Options dialog box.

Alignment DisplayFormat IsNull
AsBoolean DisplayLabel MaxValue
AsDateTime DisplayName MinValue
AsFloat DisplayText Name
AsInteger DisplayWidth Owner
AsString EditFormat ReadOnly
Calculated EditMask Required
CanModify EditMaskPtr Size
DataSet FieldName Tag
DataSize FieldNo Text
DataType Index Value
AsFloat IsIndexField Visible

Assign FocusControl SetData
AssignValue GetData
Clear IsValidChar

OnChange OnSetText OnValidate
OnGetText

880 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

F o r O p e n a n d S a v e d i a l o g b o x e s

Example

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.Title := 'My Incredible Application';
end;

See also
Application variable, Caption property, Icon property, Minimize method

For Open and Save dialog boxes

Declaration

property Title: string;

The Title property determines the text that appears in the dialog box’s title bar.

Example
This code displays the Open dialog box with the text “Open Pascal files” in its title bar
and lists only Pascal files in the list box:

procedure TForm1.Button1Click(Sender: TObject);
begin
 OpenDialog1.Filter := ’Pascal files (*.PAS)|*.PAS’;
 OpenDialog1.Title := ’Open Pascal files’;
 OpenDialog1.Execute;
end;

For printer objects

property Title: string;

Run-time only. The Title property determines the text that appears listed in the Print
Manager and on network header pages.

Example
This line of code sets the value of the Title property for the printer object:

Printer.Title := ‘My incredible application’;

See also
Printer variable

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 881

T i t l e F o n t p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TitleFont property

Applies to
TDBGrid component

Declaration

property TitleFont: TFont;

The TitleFont property determines the font used for the titles of the columns in the data
grid.

Example
The following code makes the font specified by the font dialog component, FontDialog1,
the font of the data grid.

if FontDialog1.Execute then
DBGrid1.TitleFont := FontDialog1.Font;

See also
Title property

TKey type Controls

Declaration

TKey = Word;

The TKey type is used to hold keyboard scan codes in keyboard event handlers and in
menu shortcut routines.

See also
OnKeyDown event, OnKeyUp event, ShortCut function, ShortCutToKey procedure,
TKeyEvent type

TKeyEvent type Controls

Declaration

TKeyEvent = procedure (Sender: TObject; var Key: Word; Shift: TShiftState) of object;

The TKeyEvent type points to a method that handles keyboard events. The Key
parameter is the key on the keyboard and Shift is one of these possible states:

State Meaning

ssShift The Shift key is held down.
ssAlt The Alt key is held down.

882 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T K e y P r e s s E v e n t t y p e

TKeyEvent is the type of the OnKeyDown and OnKeyUp events.

TKeyPressEvent type Controls

Declaration

TKeyPressEvent = procedure (Sender: TObject; var Key: Char) of object;

The TKeyPressEvent type points to a method that handles a single character key press.
The Key parameter is the key on the keyboard.

TKeyPressEvent is the type of the OnKeyPress event.

TLabel component StdCtrls

The TLabel component is a nonwindowed control that displays text on a form. Usually
this text labels some other control.

The text of a label is the value of its Caption property. Within the caption, you can
include an accelerator key. When the user presses the accelerator key, the control that is
the value of the label’s FocusControl becomes the active control on the form.

How the text of the caption aligns within the label is determined by the value of the
Alignment property. You can have the label resize automatically to fit a changing caption
if you set the AutoSize property to True. If you prefer to have the text wrap, set
WordWrap to True.

If you want a label to appear on top of a graphic, but you want to be able to see through
the label so that part of the graphic isn’t hidden, set the Transparent property to True.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all controls.

For more information, search for Label component in the online Help, and choose the
topic Using the Label Component.

Properties

ssCtrl The Ctrl key is held down.
ssLeft The left mouse button is held down.
ssMiddle The middle mouse button is held down.
ssDouble Both the right and left mouse buttons are held down.

Align FocusControl PopupMenu
Alignment Font ShowAccelChar
AutoSize Height ShowHint
BoundsRect Hint Tag

State Meaning

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 883

T L e f t R i g h t t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Methods

Events

TLeftRight type Classes

Declaration

TAlignment = (taLeftJustify, taRightJustify, taCenter);

TLeftRight = taLeftJustify..taRightJustify;

TLeftRight is the type of the Alignment property of check boxes and radio buttons.

TList object Classes

The TList object is used to maintain lists of objects.

The List property is a list of pointers to all the objects in the list. You can access a
particular item referenced in the list using the Items property. To find the position of an
item in the list, use the IndexOf method.

You can add, delete, insert, remove, move, and exchange items in the list using the Add,
Delete, Insert, Remove, Move, and Exchange methods. Use the Count property to determine
how many items are in the list.

Use the First method to move to the beginning of the list, and use the Last method to
move to the end of the list.

Caption Left Top
Color Name Transparent
ComponentIndex Owner Visible
Cursor Parent Width
DragCursor ParentColor WordWrap
DragMode ParentFont
Enabled ParentShowHint

BeginDrag GetTextLen ScreenToClient
BringToFront Hide SendToBack
ClientToScreen Invalidate SetBounds
Dragging Refresh SetTextBuf
EndDrag Repaint Show
GetTextBuf ScaleBy Update

OnClick OnDragOver OnMouseMove
OnDblClick OnEndDrag OnMouseUp
OnDragDrop OnMouseDown

884 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T L i s t B o x c o m p o n e n t

The number of items the list can maintain is determined by the value of the Capacity
property. If you need to increase the size of the list, call the Expand method. You can
remove all nil pointers in the list with the Pack method.

In addition to these properties and methods, this object also has the methods that apply
to all objects.

Properties

Methods

TListBox component StdCtrls

The TListBox component is a Windows list box. A list box displays a list from which
users can select one or more items.

The list of items in the list box is the value of the Items property. The ItemIndex property
indicates which item in the list box is selected.

You can add, delete, and insert items in the list box using the Add, Delete, and Insert
methods of the Items object, which is of type TStrings. For example, to add a string to a
list box, you could write this line of code:

ListBox1.Items.Add(‘New item’);

You can change how the list box appears. If you want the list box to have multiple
columns, change the value of the Columns property. Sort the list box items with the
Sorted property.

You can allow users to select more than one item at a time by setting the MultiSelect
property to True. The ExtendedSelect property determines how multiple items can be
selected. To determine whether a particular item is selected and how many items are
selected, check the values of the Selected and SelCount properties, respectively.

You can make the list box an owner-draw list box by changing the Style property.

You can drag and drop objects into a list box. For more information, search for Dragging
and Dropping in the Help file.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

Capacity Items List
Count

Add Delete IndexOf
ClassName Destroy Insert
ClassParent Exchange Last
ClassType Expand Pack
Create First Remove
Clear Free

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 885

T L i s t B o x S t y l e t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Properties

Methods

Events

See also
Creating an owner-draw control, TComboBox component, TDBListBox component

TListBoxStyle type StdCtrls

Declaration

TListBoxStyle = (lbStandard, lbOwnerDrawFixed, lbOwnerDrawVariable);

Align Hint SelCount

BorderStyle IntegralHeight Selected

Canvas ItemIndex ShowHint

Color ItemHeight Showing

Columns Items Sorted

ComponentIndex Left Style

Ctl3D MultiSelect TabOrder

Cursor Name TabStop

DragCursor Owner Tag

DragMode Parent Top

Enabled ParentColor TopIndex

ExtendedSelect ParentCtl3D Visible

Font ParentFont Width

Height ParentShowHint

HelpContext PopupMenu

BeginDrag Hide SendToBack
BringToFront ItemAtPos SetBounds
Clear Invalidate SetFocus
ClientToScreen Refresh SetTextBuf
Dragging Repaint Show
EndDrag ScaleBy Update
GetTextBuf ScreenToClient
GetTextLen ScrollBy

OnClick OnEndDrag OnKeyUp
OnDblClick OnEnter OnMeasureItem
OnDragDrop OnExit OnMouseDown
OnDragOver OnKeyDown OnMouseMove
OnDrawItem OnKeyPress OnMouseUp

886 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T L o c a l e t y p e

The TListBoxStyle type is the type of the Style property for a list box (TListBox
component).

TLocale type DB

Declaration

TLocale = Pointer;

The TLocale type is the type of a Locale or DBLocale property. These properties are only
used or needed when making direct calls to the Borland Database Engine.

TLoginEvent type DB

Declaration

TLoginEvent = procedure(Database: TDatabase; LoginParams: TStrings) of object;

The TLoginEvent type is the header for the method that handles an OnLogin event for a
TDatabase. The Database parameter is the database. LoginParams is a TStrings object
which holds the username and password, along with any other parameters to be used in
opening the Database. The username is a string of the form ‘USER NAME=John_Doe’.
The password is a string of the form ‘PASSWORD=His_Password’. The OnLogin event
handler should add both the username and password to LoginParams when called.

TMacroEvent type DDEMan

Declaration

TMacroEvent = procedure(Sender: TObject; Msg : String) of object;

The TMacroEvent type points to a method that handles the passing of a macro string
from a DDE client to a DDE server conversation (TDDEServerConv) component. Msg
contains the macro.

TMacroEvent is the type of the OnExecuteMacro event.

TMainMenu component Menus

The MainMenu component encapsulates a menu bar and its accompanying drop-down
menus for a form. To begin designing a menu, add a main menu component to your
form, and double-click the component. See the topic Menu Designer in the Help system.

The items on the menu bar and in its drop-down menus are specified with the Items
object, a property of a main menu. The Items object is of type TMenuItem. Your
application can use the Items property to access a particular command on the menu.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 887

T M a s k E d i t c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

You can choose to have the menus of one form merge with those of another using the
AutoMerge property and the Merge and Unmerge methods.

In addition to these properties and methods, this component also has the properties and
methods that apply to all components.

For more information, search for MainMenu component in the online Help, and choose
the topic Using the Main Menu Component.

Properties

Methods

See also
ShortCut function, ShortCutToKey procedure, ShortCutToText function, TextToShortCut
function, TPopupMenu component

TMaskEdit component Mask

A mask edit box is an much like an ordinary edit box (TEdit component), except you can
require the user to enter only valid characters through the use of an EditMask property.
You can also use the mask to format the display of data.

The text the user enters in the edit box is the value of the Text property, just as it is with
any edit box. The text of the edit box with the mask specified in the EditMask property
applied to it is the value of the EditText property.

Your application can tell if the value of Text changes by checking the value of the
Modified property. To limit the number of characters users can enter into the mask edit
box, use the MaxLength property.

If you want to prevent the user from changing the value of the Text property by typing
in the edit box, set the ReadOnly property to True.

You can choose to have the text in a mask edit box automatically selected whenever it
becomes the active control with the AutoSelect property. At run time, you can select all
the text in the edit box with the SelectAll method. To find out which text in the edit box
the user has selected or to replace selected text, use the SelText property. To clear
selected text, call the ClearSelection method. To select only part of the text or to find out
what part of the text is selected, use the SelStart and SelLength properties.

You can cut, copy, and paste text to and from a mask edit box using the CutToClipboard,
CopyToClipboard, and PasteFromClipboard methods.

AutoMerge Items Owner
ComponentIndex Name Tag

FindItem GetHelpContext Unmerge
Free Merge

888 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T M a s k E d i t c o m p o n e n t

Your application can display a specified character rather than the actual character typed
into an edit box. If the edit box is used to enter a password, onlookers won’t be able to
read the typed text. Specify the special character with the PasswordChar property.

If you want the edit box to automatically resize to accommodate a change in font size,
use the AutoSize property.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for MaskEdit component in the online Help, and choose
the topic Using the MaskEdit Component.

Properties

Methods

Align Height ReadOnly
AutoSelect HelpContext SelLength
AutoSize Hint SelStart
BorderStyle IsMasked SelText
CharCase Left ShowHint
Color MaxLength Showing
ComponentIndex Modified TabOrder
Ctl3D Name TabStop
Cursor Owner Tag
DragCursor Parent Text
DragMode ParentColor Top
EditMask ParentCtl3D Visible
EditText ParentFont Width
Enabled ParentShowHint
Font PasswordChar

BeginDrag GetSelTextBuf SelectAll
BringToFront GetTextBuf SendToBack
CanFocus GetTextLen SetBounds
Clear Hide SetFocus
ClearSelection Invalidate SetSelTextBuf
ClientToScreen PasteFromClipboard SetTextBuf
CopyToClipboard Refresh Show
CutToClipboard Repaint Update
Dragging ScaleBy ValidateEdit
EndDrag ScreenToClient
Focused ScrollBy

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 889

T M e a s u r e I t e m E v e n t t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Events

See also
TDBEdit component, TEdit component

TMeasureItemEvent type StdCtrls

Declaration

TMeasureItemEvent = procedure(ListBox: TListBox; Index: Integer; var Height: Integer) of
object;

The TMeasureItemEvent type points to a method that handles the measuring of an item
in an owner-draw list box. The Index parameter identifies the position of the item in the
list box and Height is the height of the item in pixels.

TMeasureItemEvent is the type of the OnMeasureItem event.

TMeasureTabEvent type Tabs

Declaration

TMeasureTabEvent = procedure(Sender: TObject; Index: Integer; var TabWidth: Integer) of
object;

The TMeasureTabEvent type points to a method that handles the measuring of a tab in an
owner-draw tab set control. Your code is responsible for calculating and returning the
tab width, depending on what you have drawn in the tab (if the tab is of Style
tsOwnerDraw). The Index parameter identifies the position of the tab in the tab set
control and TabWidth is the width of the tab.

TMeasureTabEvent is the type of the OnMeasureTab event.

TMediaPlayer component MPlayer

A TMediaPlayer component controls devices that provide a Media Control Interface
(MCI) driver. The component is a set of buttons (Play, Stop, Eject, and so on) that
controls a multimedia device such as a CD-ROM drive, a MIDI sequencer, or a VCR. A
multimedia device may be hardware or software.

OnChange OnEnter OnMouseDown
OnDblClick OnExit OnMouseMove
OnDragDrop OnKeyDown OnMouseUp
OnDragOver OnKeyPress
OnEndDrag OnKeyUp

890 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T M e d i a P l a y e r c o m p o n e n t

The media player component consists of multiple buttons. These buttons can be clicked
with the mouse, but are not separate objects or button components.

The multimedia device is played, paused, stopped, and so on when the user clicks the
corresponding button on the TMediaPlayer component. The device can also be controlled
by the control methods that correspond to the buttons (Play, Pause, Stop, Next, Previous,
Step, Back, StartRecording, and Eject).

The type of multimedia device (such as dtWaveAudio or dtVideodisc) is specified by the
DeviceType property. If the device stores its media in a file, the name of the media file is
specified by the FileName property. If DeviceType is dtAutoSelect, the media player
attempts to determine the type of device from the extension of the file specified by
FileName.

To open a multimedia device, call the Open method. To have the media player attempt
to open the device specified by DeviceType automatically when the media player
component is created at run time, set the AutoOpen property to True.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for MediaPlayer component in the online Help, and
choose the topic Using the Media Player Component.

Properties

Button Value Action

Play btPlay Plays the media player
Pause btPause Pauses playing or recording. If already paused when clicked,

resumes playing or recording.
Stop btStop Stops playing or recording
Next btNext Skips to the next track, or to the end if the medium doesn’t use

tracks
Prev btPrev Skips to the previous track, or to the beginning if the medium

doesn’t use tracks
Step btStep Moves forward a number of frames
Back btBack Moves backward a number of frames
Record btRecord Starts recording
Eject btEject Ejects the medium

Align ErrorMessage ShowHint
AutoEnable FileName Showing
AutoOpen Frames Start
AutoRewind Height StartPos
BoundsRect HelpContext TabOrder

Play Pause Stop Next Prev Step Back Rec Eject

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 891

T M e m o c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Methods

Events

TMemo component StdCtrls

A TMemo component displays text to the user and permits the user to enter text into the
application much like a TEdit component. The TMemo component permits multiple lines
to be entered or displayed, unlike TEdit.

The text in the memo is the value of the Text property. Your application can tell if the
value of Text changes by checking the value of the Modified property. To limit the
number of characters users can enter into the memo, use the MaxLength property

You can also access the text line by line using the Lines property. If you want to work
with the text as one chunk, use the Text property. If you want to work with individual
lines of text, the Lines property will suit your needs better.

Capabilities Hint TabStop
ColoredButtons Left Tag
ComponentIndex Length TimeFormat
Cursor Mode Top
DeviceID Name TrackLength
DeviceType Notify TrackPosition
Display NotifyValue Tracks
DisplayRect Owner Visible
Enabled Parent VisibleButtons
EnabledButtons ParentShowHint Wait
EndPos Position Width
Error Shareable

Back Hide Save
BeginDrag Invalidate ScaleBy
BringToFront Next ScreenToClient
CanFocus Open SendToBack
ClientToScreen Pause SetBounds
Close PauseOnly SetFocus
Dragging Play SetTextBuf
Eject Previous Show
EndDrag Refresh StartRecording
Focused Repaint Step
GetTextBuf Resume Stop
GetTextLen Rewind Update

OnClick OnExit OnPostClick
OnEnter OnNotify

892 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T M e m o c o m p o n e n t

You can add, delete, insert, and move lines in a memo control using the Add, Delete, and
Insert methods of the Lines object, which is of type TStrings. For example, to add a line to
a memo, you could write this line of code:

Memo1.Lines.Add(‘Another line is added’);

You can cut, copy, and paste text to and from a memo control using the CutToClipboard,
CopyToClipboard, and PasteFromClipboard methods.

If you want the user to be able to read the text in the memo but not to change it, set the
ReadOnly property to True.

Several properties affect how the memo appears and how text is entered. You can
choose to supply scroll bars in the memo with the ScrollBars property. If you want the
memo to automatically resize to accommodate a change in font size, use the AutoSize
property. If you want the text to break into lines, set WordWrap to True. If you want the
user to be able to use tabs in the text, set WantTabs to True.

You can choose to have the text in a memo automatically selected whenever it becomes
the active control with the AutoSelect property. At run time, you can select all the text in
the memo with the SelectAll method. To find out which text in the memo the user has
selected, or to replace selected text, use the SelText property. To select only part of the
text or to find out what part of the text is selected, use the SelStart and SelLength
properties.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for Memo component in the online Help, and choose the
topic Using the Memo Component.

Properties

Align Left SelStart
Alignment Lines SelText
BorderStyle MaxLength ShowHint
Color Modified Showing
ComponentIndex Name TabOrder
Ctl3D Owner TabStop
Cursor Parent Tag
DragCursor ParentColor Text
DragMode ParentCtl3D Top
Enabled ParentFont Visible
Font ParentShowHint WantReturns
Height PopupMenu WantTabs
HelpContext ReadOnly Width
HideSelection ScrollBars WordWrap
Hint SelLength

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 893

T M e m o F i e l d c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Methods

Events

TMemoField component
A TMemoField represents a field of a record in a dataset. It is represented by a value
consisting of an arbitrary set of bytes with indefinite size. The bytes should correspond
to text data.

Use the Assign method to transfer another component to a TMemoField. Use the
LoadFromFile method to load a field’s contents from a file. Use LoadFromStream method
to load a field from a Stream. Use SaveToFile method to write a field’s contents to a file.
Use SaveToStream method to write a field’s contents to a Stream.

The TMemoField component has the properties, methods, and events of the TField
component.

Properties

BeginDrag Focused ScreenToClient
BringToFront GetSelTextBuf ScrollBy
CanFocus GetTextBuf SelectAll
Clear GetTextLen SendToBack
ClearSelection Hide SetBounds
ClientToScreen Invalidate SetFocus
CopyToClipboard PasteFromClipboard SetSelTextBuf
Create Refresh SetTextBuf
CutToClipboard RemoveComponent Show
Dragging Repaint Update
EndDrag ScaleBy

OnChange OnEndDrag OnKeyUp
OnClick OnEnter OnMouseDown
OnDblClick OnExit OnMouseMove
OnDragDrop OnKeyDown OnMouseUp
OnDragOver OnKeyPress

Alignment DisplayLabel Name
AsBoolean DisplayName Owner
AsDateTime DisplayText ReadOnly
AsFloat DisplayWidth Required
AsInteger EditMask Size
AsString EditMaskPtr Tag
Calculated FieldName Text
CanModify FieldNo Transliterate

894 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T M e n u B r e a k t y p e

Methods

Events

TMenuBreak type Menus

Declaration

TMenuBreak = (mbNone, mbBreak, mbBarBreak);

The TMenuBreak type defines the values the Break property of a menu item can have.

TMenuItem component Menus

A TMenuItem component contains the properties, methods, and events for each menu
item on a menu (TMainMenu or TPopupMenu). Each TMainMenu or TPopupMenu
component may contain multiple menu items. As you design a menu with the Menu
Designer, you are creating a menu item object for each command on the menu.

When the user chooses a command on a menu, that menu item’s OnClick event occurs.

The text that appears on a menu is the Caption of a menu item. You can also use the
caption of the menu item to specify an accelerator key for a menu item or to provide a
line that separates a menu into parts. You can assign a shortcut key to a menu item with
the ShortCut property.

You can use the Items property to access a subitem of the current menu item.

If you want a check mark to alternately appear and disappear next to a menu item when
the user has selected it, use the Checked property. If you want to disable a menu item
(make it dim and unavailable to the user), set the Enabled property to False. You can
simulate a user clicking a menu item with the Click method. If you are working with a
lengthy menu, you can break the menu into two or more columns with the Break
property.

DataSet Index Visible
DataSize IsIndexField
DataType IsNull

Assign GetData SaveToFile
AssignValue IsValidChar SaveToStream
Clear LoadFromFile SetData
FocusControl LoadFromStream

OnChange OnSetText OnValidate
OnGetText

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 895

T M e s s a g e E v e n t t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

When you want to merge menus of one form with those of another, use the GroupIndex
property of menu items, and either the AutoMerge property or the Merge and Unmerge
methods of a main menu (TMainMenu).

You can insert and delete menu items from a menu at run time with the Insert and
Remove methods.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all components.

Properties

Methods

Events

See also
ShortCut function, ShortCutToKey procedure, ShortCutToText function, TextToShortCut
function, TMainMenu component, TPopupMenu component

TMessageEvent type Forms

Declaration

TMessageEvent = procedure (var Msg: TMsg; var Handled: Boolean) of object;

The TMessageEvent type points to a method that handles the processing of incoming
Windows messages. It is the type of the OnMessage event handler. The Msg parameter
identifies the Windows message, and the Handled parameter determines whether the
message is handled or not.

TMetafile object Graphics

A TMetafile object contains a Windows metafile graphic (.WMF file format).

Break Enabled Owner
Caption GroupIndex Parent
Checked HelpContext ShortCut
Command Hint Tag
ComponentIndex Items Visible
Count Name

Add IndexOf Remove
Click Insert

OnClick

896 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T M e t h o d

The height and width in pixels of the metafile are specified by the Height and Width
properties, respectively.

To load a metafile from a file, call the LoadFromFile method. To save a bitmap to a file,
call SaveToFile.

To draw a metafile on a canvas, call the Draw or StretchDraw methods of a TCanvas
object, passing a TMetafile as a parameter.

When the metafile is modified, an OnChange event occurs.

In addition to these properties, methods, and events, this object also has the methods
that apply to all objects.

Properties

Methods

Events

TMethod SysUtils

Declaration

TMethod = record

Code, Data: Pointer;

end;

TMethod declares a record that stores the Code and Data fields as type Pointer.

TModalResult type Forms

Declaration

TModalResult = Low(Integer)..High(Integer);

The TModalResult type is the type of the ModalResult property.

Empty Height Width
Handle Inch

Assign ClassType Free
ClassName Create LoadFromFile
ClassParent Destroy SaveToFile

OnChange

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 897

T M o u s e B u t t o n t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TMouseButton type Controls

Declaration

TMouseButton = (mbRight, mbLeft, mbMiddle);

The TMouseButton type defines the mouse-button constants used by mouse-event
handlers to distinguish which button generated the mouse event.

See also
TMouseEvent type

TMouseEvent type Controls

Declaration

TMouseEvent = procedure (Sender: TObject; Button: TMouseButton; Shift:
TShiftState; X, Y: Integer) of object;

The TMouseEvent type points to a method that handles mouse-button events. The Button
parameter determines which mouse button the user pressed, Shift indicates which shift
keys (Shift, Ctrl, or Alt) and mouse buttons were down when the user pressed or released
the mouse button that generated the mouse-button event. X and Y are the screen pixel
coordinates of the mouse pointer.

See also
OnMouseDown event, OnMouseUp event

TMouseMoveEvent type Controls

Declaration

TMouseMoveEvent = procedure(Sender: TObject; Shift: TShiftState; X, Y: Integer) of object;

The TMouseMoveEvent type points to a method that handles mouse-move events. The
Button parameter determines which mouse button the user pressed, Shift indicates
which shift keys (Shift, Ctrl, or Alt) and mouse buttons were down when the user moved
the mouse, and X and Y are screen pixel coordinates of the new location of the mouse
pointer.

See also
OnMouseMove event

898 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T M o v e d E v e n t t y p e

TMovedEvent type Grids

Declaration

TMovedEvent = procedure (Sender: TObject; FromIndex, ToIndex: Longint) of object;

The TMovedEvent type points to a method that handles the moving of a column or row
in a draw grid (TDrawGrid) or string grid (TStringGrid). The FromIndex parameter is the
index of the column or row that is being moved, with the first column or row having an
index value of 0. The ToIndex parameter value is the new location of the column or row
after it is moved.

TMovedEvent is the type of OnColumnMoved and OnRowMoved events of the draw and
string grid components.

TMPBtnType type MPlayer

Declaration

TMPBtnType = (btPlay, btPause, btStop, btNext, btPrev, btStep, btBack, btRecord, btEject);

The TMPBtnType type defines the buttons of a TMediaPlayer component. The buttons are
included in a set of the TButtonSet type and are used for the Button parameter of the
OnClick and OnPostClick events.

TMPDevCapsSet type MPlayer

Declaration

TMPDevCaps = (mpCanStep, mpCanEject, mpCanPlay, mpCanRecord, mpUsesWindows);

TMPDevCapsSet = set of TMPDevCaps;

The TMPDevCapsSet type is a set of the capabilities of the open multimedia device used
with a TMediaPlayer component. TMPDevCapsSet is the type of the Capabilities property.

TMPDeviceTypes type MPlayer

Declaration

TMPDeviceTypes = (dtAutoSelect, dtAVIVideo, dtCDAudio, dtDAT, dtDigitalVideo, dtMMMovie,
dtOther, dtOverlay, dtScanner, dtSequencer, dtVCR, dtVideodisc, dtWaveAudio);

The TMPDeviceTypes type contains the multimedia device types that can be opened by a
TMediaPlayer component. TMPDeviceTypes is the type of the DeviceType property.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 899

T M P M o d e s t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TMPModes type MPlayer

Applies to
TMediaPlayer component

Declaration

TMPModes = (mpNotReady, mpStopped, mpPlaying, mpRecording, mpSeeking, mpPaused, mpOpen);

The TMPModes type defines the modes for a multimedia device used with a
TMediaPlayer component. TMPModes is the type of the Mode property.

TMPNotifyValues type MPlayer

Declaration

TMPNotifyValues = (nvSuccessful, nvSuperseded, nvAborted, nvFailure);

The TMPNotifyValues type defines the notification values for a multimedia device used
with a TMediaPlayer component. TMPNotifyValues is the type of the NotifyValue
property.

TMPTimeFormats type MPlayer

Declaration

TMPTimeFormats = (tfMilliseconds, tfHMS, tfMSF, tfFrames, tfSMPTE24, tfSMPTE25, tfSMPTE30,
tfSMPTE30Drop, tfBytes, tfSamples, tfTMSF);

The TMPTimeFormats type defines the time formats for a multimedia device used with a
TMediaPlayer component. TMPTimeFormats is the type of the TimeFormat property.

TMsgDlgButtons type Dialogs

Declaration

TMsgDlgBtn = (mbYes, mbNo, mbOK, mbCancel, mbAbort, mbRetry, mbIgnore, mbAll, mbHelp);

TMsgDlgButtons = set of TMsgDlgBtn;

The TMsgDlgButtons type defines the set of values a button in a message box can have.
The TMsgDlgButtons type is used by the MessageDlg and MessageDlgPos functions.

900 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T M s g D l g T y p e t y p e

TMsgDlgType type Dialogs

Declaration

TMsgDlgType = (mtWarning, mtError, mtInformation, mtConfirmation, mtCustom);

The TMsgDlgType type defines the values describing the type of message box. The
TMsgDlgType is used by the MessageDlg and MessageDlgPos functions.

TNavigateBtn type DBCtrls

Declaration

TNavigateBtn = (nbFirst, nbPrior, nbNext, nbLast, nbInsert, nbDelete, nbEdit, nbPost,
nbCancel, nbRefresh);

The TNavigateBtn type defines the possible values in the TButtonSet type. It is also used
in the Click method and the ENavClick type.

TNotebook component ExtCtrls

The TNotebook component is a component that can display multiple pages, each with its
own set of controls. Notebook components are frequently used with tab set controls
(TTabSet) to let the user select pages in the notebook by clicking a tab.

The pages available in the notebook control are the strings specified as the value of the
Pages property. You can access a particular page in the notebook either with the
PageIndex property or the ActivePage property.

If you are using a notebook with a tab set, this is the code that connects the pages of the
notebook with the tabs in the tab set, displaying the page strings as the text of the tabs:

TabSet1.Tabs := Notebook1.Pages;

Then, in the OnClick event handler of the notebook, this line of code changes the current
page in the notebook control when the user clicks a tab:

Notebook1.PageIndex := TabSet1.TabIndex;

If you are using a notebook and a tab set together, you usually want the tab set at the
bottom of the form and the notebook to take up the remaining space on the form. To
align the components this way, use their Align properties.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for Notebook component in the online Help, and choose
the topic Using the Notebook Component.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 901

T N o t i f y E v e n t t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Properties

Methods

Events

TNotifyEvent type Classes

Declaration

TNotifyEvent = procedure (Sender: TObject) of object;

The TNotifyEvent type is the type for events that have no parameters. These events
simply notify the component that a specific event occurred. For example, OnClick, which
is type TNotifyEvent, notifies the control that a click event occurred on the control.

ActivePage Enabled ParentFont
Align Font ParentShowHint
BoundsRect Handle PopupMenu
Color Height ShowHint
ComponentCount HelpContext Showing
ComponentIndex Left TabOrder
Components Name TabStop
ControlCount Owner Tag
Controls PageIndex Top
Ctl3D Pages Visible
Cursor Parent Width
DragCursor ParentColor
DragMode ParentCtl3D

BeginDrag Focused Repaint
BringToFront Free ScaleBy
CanFocus GetTextBuf ScreenToClient
ClientToScreen GetTextLen ScrollBy
ContainsControl Hide SendToBack
Create InsertComponent SetBounds
Destroy InsertControl SetTextBuf
Dragging Invalidate Show
EndDrag Refresh Update
FindComponent RemoveComponent

OnClick OnEndDrag OnMouseMove
OnDblClick OnEnter OnMouseUp
OnDragDrop OnExit OnPageChanged
OnDragOver OnMouseDown

902 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T N u m G l y p h s t y p e

TNumGlyphs type Buttons

Declaration

TNumGlyphs: 1..4;

The TNumGlyphs type defines the range of values (1-4) the NumGlyphs property of a
bitmap button (TBitBtn) or speed button (TSpeedButton) can assume.

TOLEContainer component Toctrl

The TOLEContainer component holds linked or embedded OLE objects. With an OLE
container, you can display data from an OLE server application in your Delphi
application.

When the user edits the OLE object in your application, the OLE server application is
activated and handles any changes to the OLE object. When the user finishes editing the
object, the OLE server application can update the object in your application. Along with
the following properties, events, and methods, you should use a number of OLE
routines to control the OLE container.

The object contained in a TOLEContainer component is defined by its OLE class,
document, and item. These values are specified in the ObjClass, ObjDoc, and ObjItem
properties, respectively.

To initialize an OLE container at run time, assign a pointer that points to an OLE
initialization data structure to the PInitInfo property. You can obtain this pointer using
the InsertOLEObjectDlg or PasteSpecialDlg functions.

To drop OLE objects onto an OLE container, you should register the form that contains
the TOLEContainer component with the RegisterFormAsOLEDropTarget procedure. Then,
in the OnDragDrop event handler of the form, the OLE object will be passed in the Source
parameter.

To determine if an OLE object is active in place, examine the InPlaceActive property. If an
object is activated in place, the OLE server merges menu items with the TMainMenu
component of the main form of the OLE container application, depending on the
GroupIndex property values of the menu items.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

Properties

Active Handle ParentShowHint
Align Height PInitInfo
AllowInPlace HelpContext ShowHint
AutoActivate Hint Showing
AutoSize InPlaceActive Storage
BorderStyle Left TabOrder

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 903

T O L E D r o p N o t i f y o b j e c t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Methods

Events

TOLEDropNotify object Toctrl

The TOLEDropNotify object is the type of the Source parameter of the OnDragDrop event
of a form when an OLE object is dropped on it. To accept dropped objects, a form must
be registered with the RegisterFormAsOLEDropTarget procedure.

In order to use the Source object as a TOLEDropNotify object, Source must be typecast as a
TOLEDropNotify object.

The DataFormat property specifies the Clipboard format of the dropped object. The
DataHandle property specifies a handle to the dropped data.

The PInitInfo property corresponds to the PInitInfo property of a TOLEContainer
component. If the dropped object is an OLE object, PInitInfo points to an OLE
initialization information structure for the OLE object. To initialize an OLE container,
assign the value of the PInitInfo property of a TOLEDropNotify object to the PInitInfo
property of a TOLEContainer component.

BoundsRect Modified TabStop
ComponentIndex Name Tag
ConvertDlgHelp ObjClass Top
Ctl3D ObjDoc Visible
Cursor ObjItem Width
DragCursor Owner Zoom
DragMode Parent
Enabled ParentCtl3D

BeginDrag HandleAllocated ScreenToClient
BringToFront HandleNeeded ScrollBy
CanFocus Hide SendToBack
ClientToScreen Invalidate SetBounds
CopyToClipboard LoadFromFile SetFocus
Dragging OLEObjAllocated SetTextBuf
EndDrag Refresh Show
Focused Repaint Update
GetTextBuf SaveToFile
GetTextLen ScaleBy

OnActivate OnEnter OnMouseDown
OnDblClick OnExit OnMouseMove
OnDragDrop OnKeyDown OnMouseUp
OnDragOver OnKeyPress OnStatusLineEvent
OnEndDrag OnKeyUp

904 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T o p p r o p e r t y

In addition to these properties and methods, this object also has the methods that apply
to all objects.

Properties

Methods

Top property

Applies to
All controls; TFindDialog, TReplaceDialog components

Declaration

property Top: Integer;

The Top property determines the y coordinate of the top left corner of a control, relative
to the form in pixels. For forms, the value of the Top property is relative to the screen in
pixels.

For the Find and Replace dialog boxes, Top is a run-time only property. The default
value is -1.

Example
The following code moves a button 10 pixels up each time a user clicks it:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Button1.Top := Button1.Top - 10;
end;

See also
Left property, SetBounds method

ToPage property

Applies to
TPrintDialog component

Declaration

property ToPage: Integer;

DataFormat DataHandle PInitInfo

ClassName ClassType Destroy
ClassParent Create Free

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 905

T O p e n D i a l o g c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

The value of the ToPage property determines on which page the print job ends. The
default value is 0, which means no ending page is specified.

Example
This example uses a print dialog box on a form. The code sets up the print dialog box so
that when it appears, the default values of 1 and 1 are the default starting and ending
values for the Pages From and To edit boxes:

PrintDialog1.Options := [poPageNums];
PrintDialog1.FromPage := 1;
PrintDialog1.ToPage := 1;

See also
FromPage property, Options property

TOpenDialog component Dialogs

The TOpenDialog component makes an Open dialog box available to your application.
The purpose of the dialog box is to let a user specify a file to open. Use the Execute
method to display the Open dialog box.

When the user chooses OK in the dialog box, the user’s file name selection is stored in
the dialog box’s FileName property, which you can then use to process as you want.

You can let the user decide which files to make visible in the list box of the Open dialog
box with the Filter property. The user can then use the List Files of Type combo box to
determine which files display in the list box. You set the default filter using the
FilterIndex property.

You can permit the user to choose multiple file names with the Options property so that
the Files property contains a list of all the selected file names in the list box. You can
customize how the Open dialog box appears and behaves with the Options property.

If you want a file extension automatically appended to the file name typed in the File
Name edit box of the Open dialog box, use the DefaultExt property.

In addition to these properties and methods, this component also has the properties and
methods that apply to all components.

For more information, search for OpenDialog component in the online Help, and choose
the topic Using the Open Dialog Component.

Properties

ComponentIndex Filter Options
Ctl3D FilterIndex Owner
DefaultExt HelpContext Tag
FileEditStyle HistoryList Title
FileName InitialDir
Files Name

906 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T O p e n O p t i o n s t y p e

Methods

TOpenOptions type

Declaration

TOpenOption = (ofReadOnly, ofOverwritePrompt, ofHideReadOnly, ofNoChangeDir,
ofShowHelp, ofNoValidate, ofAllowMultiSelect, ofExtensionDifferent,
ofPathMustExist, ofFileMustExist, ofCreatePrompt, ofShareAware, ofNoReadOnlyReturn,
ofNoTestFileCreate);

TOpenOptions = set of TOpenOption;

The TOpenOptions type contains the set of values the Options property of the Open
dialog box (TOpenDialog) can assume.

TopIndex property

Applies to
TDirectoryListBox, TFileListBox, TListBox components

Declaration

property TopIndex: Integer;

The TopIndex property is the index number of the item that appears at the top of the list
box. You can use the TopIndex property to determine which item is the first item
displayed at the top of the list box and to set it to the item of your choosing.

Example
This example uses a list box containing a list of strings, a button, and an edit box on a
form. When the user runs the application and clicks the button, the third item in the list
becomes the first item, and the index value of that item appears in the edit box. The
index value displayed is 2, indicating the third item in the list (the first item in the list
has an index value of 0):

procedure TForm1.FormCreate(Sender: TObject);
var
 Number: Integer;
begin
for Number := 1 to 20 do

ListBox1.Items.Add('Item ' + IntToStr(Number));
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.TopIndex := 2;
 Edit1.Text := IntToStr(ListBox1.TopIndex);

Execute

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 907

T o p I t e m p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

end;

See also
ItemIndex property, Items property, Sorted property

TopItem property

Applies to
TOutlineNode object

Declaration

property TopItem: LongInt;

The TopItem property specifies the Index value of the level 1 parent of the outline item.
For an item on level 1, TopItem is the same as its index. For an item that is farther down
the outline tree than level 1, TopItem specifies the index value of the parent at the top of
its outline tree branch.

Example
The following code expands the top-level parent of the selected item.

with Outline1 do
if not Items[Items[SelectedItem].TopItem].Expanded then

Items[Items[SelectedItem].TopItem].Expanded := True;

See also
Level property

TopRow property

Applies to
TDrawGrid, TStringGrid components

Declaration

property TopRow: Longint;

Run-time only. The TopRow property determines which row in the grid appears at the
top of the grid.

If you have one or more nonscrolling rows in the grid, they remain at the top, regardless
of the value of the TopRow property. In this case, the row you specify as the top row will
be the first row below the nonscrolling rows.

908 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T O u t l i n e c o m p o n e n t

Example
This code uses a string grid and a button on a form. When the user clicks the button, the
last row of the string grid becomes the top row:

procedure TForm1.Button1Click(Sender: TObject);
begin
 StringGrid1.TopRow := StringGrid1.RowCount;
end;

See also
FixedRows property, LeftCol property, OnTopLeftChange event

TOutline component Outline

The TOutline component is used for multilevel outlines of data. Use an outline to
visually organize information in a hierarchical tree. Each item in an outline is contained
in a TOutlineNode object.

An item in an outline can be accessed by the Items property. The items are indexed from
1 to the number of items. For example, Items[1] refers to the first (topmost) item. Since
Items is the default array property of TOutline, an item can also be accessed immediately
following the outline name. For example, Outline1.Items[1] and Outline1[1] refer to the
same outline item.

Use the Add or AddObject methods to add a subitem to an outline. Use the Insert or
InsertObject methods to replace an existing item in the outline. Use AddChild and
AddChildObject to add a child item to the outline. Use Delete to remove items.

When adding, removing, or moving outline items, processing time can be sped up by
calling BeginUpdate first. This prevents the outline items from being reindexed until
EndUpdate is called.

The currently selected item is specified by the SelectedItem property. When the user
selects a new item of the outline (by clicking with the mouse or pressing an Arrow key),
the newly selected item is specified by SelectedItem.

The outline items can be represented within an outline by pictures that identify each
item. The OutlineStyle property determines what type of pictures are used in the outline.
You can also choose to display the outline tree with the OutlineStyle property.

The pictures displayed in an outline can be specified in the PictureLeaf, PictureMinus,
PicturePlus, PictureOpen, and PictureClosed properties. If you don’t specify these
properties, an outline displays default pictures.

To display other items than the default pictures and text, set the Style property to
otOwnerDraw and then draw the item in the OnDrawItem event handler.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for Outline component in the online Help, and choose the
topic Using the Outline Component.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 909

T O u t l i n e c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Properties

Methods

Events

Align ItemHeight PictureMinus
BorderStyle Items PictureOpen
BoundsRect ItemSeparator PicturePlus
Canvas Left PopupMenu
Color Lines Row
ComponentIndex Name ScrollBars
Ctl3D Options SelectedItem
Cursor OutlineStyle ShowHint
DragCursor Owner Showing
DragMode Parent Style
Enabled ParentColor TabOrder
Font ParentCtl3D TabStop
Height ParentFont Tag
HelpContext ParentShowHint Top
Hint PictureClosed Visible
ItemCount PictureLeaf Width

Add Focused Refresh
AddChild FullCollapse Repaint
AddChildObject FullExpand SaveToFile
AddObject GetDataItem ScaleBy
BeginDrag GetItem ScreenToClient
BeginUpdate GetTextBuf ScrollBy
BringToFront GetTextItem SendToBack
CanFocus GetTextLen SetBounds
Clear Hide SetFocus
ClientToScreen Insert SetTextBuf
Dragging InsertObject SetUpdateState
EndDrag Invalidate Show
EndUpdate LoadFromFile Update

OnClick OnEndDrag OnKeyUp
OnCollapse OnEnter OnMouseDown
OnDblClick OnExit OnMouseMove
OnDragDrop OnExpand OnMouseUp
OnDragOver OnKeyDown
OnDrawItem OnKeyPress

910 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T O u t l i n e N o d e o b j e c t

TOutlineNode object Outline

The TOutlineNode object contains an item of an TOutline component. An outline item is
represented as a line, or row, of the outline.

An outline node contains Text and Data defined by your application. Text contains a
string, and Data contains a pointer to a data structure to be associated with each outline
item.

Each item can have from 0 to 16368 subitems, which are subordinate to the parent item
in the outline structure.

Each item is identified by a unique Index. Index corresponds to the index of the Items
property of the TOutline component. The children of an item are indexed sequentially,
first child of an item having an Index value of one greater the its parent. For example, if
the parent item has an Index of 7, its first child has an Index of 8, its second child has an
Index of 9, and so on.

To move an item to a new location within the outline, call the MoveTo method.

The Expanded property determines if the item is currently expanded. If expanded, all
children of an item are displayed in the outline. To set Expanded to True, call Expand. To
set Expanded to False, call Collapse.

The Level property specifies the level, or column of an item in an outline. The items on
the top level have a Level of 0. Their children have a level of 1, and so on. To change the
level of an item, call the ChangeLevelBy method.

The HasItems property specifies whether an item has any children or subitems.
GetFirstChild returns the Index value of the first child of an item. Likewise, GetLastChild,
GetPrevChild, and GetNextChild return the index values of the last, previous, and next
child items respectively.

The IsVisible property specifies whether an item is visible in an outline. An item is visible
if all of its parents are expanded. You can expand all parents of an item with the
FullExpand method.

The TopItem property specifies the Index value of the top-level parent of an item. The
Parent property returns the actual immediate parent outline node of an item.

The FullPath property specifies the full path of parents down to an item. The path
consists of the Text values of the parents separated by the ItemSeparator string specified
for the TOutline component.

In addition to these properties and methods, this object also has the methods that apply
to all objects.

Properties

Data Index Text
Expanded IsVisible TopItem
FullPath Level
HasItems Parent

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 911

T O u t l i n e O p t i o n s t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Methods

TOutlineOptions type Outline

Declaration

TOutlineOption = (ooDrawTreeRoot, ooDrawFocusRect, ooStretchBitmaps);

TOutlineOptions = set of TOutlineOption;

The TOutlineOptions type determines the display options for a TOutline component.
TOutlineStyle is the type of the Options property.

TOutlineStyle type Outline

Declaration

TOutlineStyle = (osText, osPlusMinusText, osPictureText, osPlusMinusPictureText,osTreeText,
osTreePictureText);

The TOutlineStyle type determines how the items of a TOutline component are drawn if
the Styleproperty is set to osStandard. TOutlineStyle is the type of the OutlineStyle
property.

TOutlineType type Outline

Declaration

TOutlineType = (otStandard, otOwnerDraw);

The TOutlineType type determines whether a TOutline component draws itself the
standard way, or requires you to write code to draw its items. TOutlineType is the type
of the Style property.

TOwnerDrawState type StdCtrls

Declaration

TOwnerDrawState = set of (odSelected, odGrayed, odDisabled, odChecked, odFocused);

ChangeLevelBy Create GetFirstChild
ClassName Destroy GetLastChild
ClassParent Expand GetNextChild
ClassType Free GetPrevChild
Collapse FullExpand MoveTo

912 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T P a i n t B o x c o m p o n e n t

The TOwnerDrawState type defines the possible values for the State parameter in the
TDrawItemEvent method pointer of an owner-draw list box.

TPaintBox component ExtCtrls

The TPaintBox component provides a way for your application to draw on the form in a
specified rectangular area, preventing drawing outside of the boundaries of the paint
box. Once a paint box is added to your form, your application can use the OnPaint event
handler to draw on the paint box’s Canvas, the drawing surface of the paint box.

If you want to draw on the entire form, you can just use the OnPaint event of the form
itself. If you want to confine your drawing to rectangular area, you’ll find a paint box
convenient.

You can align a paint box so that it remains in its relative position on the form, even
when the user resizes the form. Use the Align property.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all controls.

Properties

Methods

Events

Align Font ParentShowHint
BoundsRect Height PopupMenu
Canvas Hint ShowHint
ComponentIndex Left Tag
Color Name Top
Cursor Owner Visible
DragCursor Parent Width
DragMode ParentColor
Enabled ParentFont

BeginDrag GetTextBuf SendToBack
BringToFront GetTextLen SetBounds
ClientToScreen Invalidate SetTextBuf
Dragging Refresh Update
EndDrag Repaint
Focused ScreenToClient

OnClick OnDragOver OnMouseUp
OnDblClick OnMouseDown OnPaint
OnDragDrop OnMouseMove

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 913

T P a n e l c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TPanel component ExtCtrls

The TPanel component is used to place panels on a form on which other controls can be
placed.

Panels can be aligned with the form so that they maintain the same relative position to
the form even when the form is resized. Align a panel with the Align property. Once a
panel is aligned with the form, you can use the panel as the foundation of a tool bar, tool
palette, or status bar. To make a tool bar or tool palette, add speed buttons
(TSpeedButton) to the panel along with other controls you find useful.

The text that appears on a panel is the value of the Caption property. Align the caption to
the left, right, or center of the panel with the Alignment property. You can use a panel as
a status bar for your application, displaying help hints on it. See the OnHint event and
the Hint property for more information.

To customize the appearance of a panel, use panel’s BevelInner, BevelOuter, BevelWidth,
and BorderWidth properties.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for Panel component in the online Help, and choose the
topic Using the Panel Component.

Properties

Methods

Align Controls Parent
Alignment Ctl3D ParentColor
BevelInner Cursor ParentCtl3D
BevelOuter DragCursor ParentFont
BevelWidth DragMode ParentShowHint
BorderStyle Enabled PopupMenu
BorderWidth Font ShowHint
BoundsRect Height Showing
Caption HelpContext TabOrder
Color Hint TabStop
ComponentCount Left Tag
ComponentIndex Locked Top
Components Name Visible
ControlCount Owner Width

BeginDrag GetTextBuf ScaleBy
BringToFront GetTextLen ScreenToClient
CanFocus Hide ScrollBy
ClientToScreen InsertComponent SendToBack

914 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T P a n e l B e v e l t y p e

Events

TPanelBevel type StdCtrls

Declaration

TPanelBevel = (bvNone, bvLowered, bvRaised);

The TPanelBevel type contains the values the BevelInner and BevelOuter properties can
assume.

TParam object
The TParam object holds information about a parameter of a TQuery or TStoredProc. In
addition to the parameter value, TParam stores the field type, name, and (for a stored
procedure) the parameter type.

You generally do not need to create a TParam explicitly, since TQuery or TStoredProc will
create it as an element of its Params property as needed. All you have to do is assign
values to the parameters by assigning one of the properties: AsBCD, AsBoolean,
AsCurrency, AsDate, AsDateTime, AsFloat, AsInteger, AsSmallint, AsString, AsTime, or
AsWord.

In addition to these properties and methods, this object also has the methods that apply
to all objects.

Properties

ContainsControl InsertControl SetBounds
Dragging Invalidate SetFocus
EndDrag Refresh SetTextBuf
FindComponent RemoveComponent Show
Focused Repaint Update

OnClick OnDragOver OnMouseMove
OnDblClick OnEndDrag OnMouseUp
OnDragDrop OnMouseDown OnResize

AsBCD AsInteger IsNull
AsBoolean AsSmallInt Name
AsCurrency AsString ParamType
AsDate AsTime Text
AsDateTime AsWord
AsFloat DataType

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 915

T P a r a m B i n d M o d e t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Methods

TParamBindMode type DBTables

Declaration

TParamBindMode = (pbByName, pbByNumber);

The TParamBindMode type defines the possible values of the ParamBindMode property of
a stored procedure (TStoredProc).

TParams object
The TParams object holds the parameters for a stored procedure (TStoredProc) or
parameterized query (TQuery) and provides the methods to create and access those
parameters. Each parameter is a TParam object.

Use the Items property to access individual parameters. Call CreateParam to create a new
parameter. Call AddParam to add a new parameter or RemoveParam to take one out of the
set. Call Clear to delete all parameters. Use the ParamByName method to find a
parameter with a particular name.

In addition to these properties and methods, this object also has the methods that apply
to all objects.

Properties

Methods

Assign ClassType Free
AssignField Clear GetData
ClassName Create GetDataSize
ClassParent Destroy SetData

Items

AddParam ClassType Destroy
Assign Clear Free
AssignValues Count ParamByName
ClassName Create RemoveParam
ClassParent CreateParam

916 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T P a r a m T y p e t y p e

TParamType type DBTables

Declaration

TParamType = (ptUnknown, ptInput, ptOutput, ptInputOutput, ptResult);

The TParamType type is the set of values of the ParamType property of a TParam object

TPasswordEvent type DB

Declaration

TPasswordEvent = procedure(Sender: TObject; var Continue: Boolean);

The TPasswordEvent type is the header for the procedure that handles a password
exception event. The value of Sender is the TSession component of the DB unit. Continue
determines whether the caller will make another attempt to access the database. The
procedure should add any available additional passwords and set Continue to True. If
there are no additional passwords available, set Continue to False. TPasswordEvent is
used by the OnPassword event

TPen object Graphics

A TPen object is used to draw lines on a canvas (TCanvas). The TPen object encapsulates
the Windows HPEN.

The color of the pen is specified by the Color property. The width in pixels of the line
drawn is specified by the Width property. The pattern of the line (solid, dotted, and so
on) is specified by the Style property.

The Mode property specifies the color of the line, as it relates to the pixels the line is
drawn over. For example, to color the line the color specified by the Color property, set
Mode to pmCopy. To color the line the inverse of the screen color, set Mode to pmNot.

If the pen is modified, an OnChange event occurs.

In addition to these properties, methods, and events, this object also has the methods
that apply to all objects.

Properties

Methods

Color Mode Width
Handle Style

Assign ClassType Free
ClassName Create
ClassParent Destroy

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 917

T P e n M o d e t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Events

TPenMode type Graphics

Declaration

TPenMode = (pmBlack, pmWhite, pmNop, pmNot, pmCopy, pmNotCopy,pmMergePenNot, pmMaskPenNot,
pmMergeNotPen, pmMaskNotPen, pmMerge,pmNotMerge, pmMask, pmNotMask, pmXor, pmNotXor);

The TPenMode type specifies the values the Mode property of pen object (TPen) can
assume.

TPenStyle type Graphics

Declaration

TPenStyle = (psSolid, psDash, psDot, psDashDot, psDashDotDot, psClear, psInsideFrame);

The TPenStyle type specifies the values the Style property of pen object (TPen) can
assume.

TPicture object Graphics

The TPicture object contains a bitmap, icon, or metafile graphic. The type of graphic
contained by the TPicture is specified in the Graphic property.

If the TPicture contains a bitmap graphic, the Bitmap property specifies the graphic. If the
TPicture contains an icon graphic, the Icon property specifies the graphic. If the TPicture
contains a metafile graphic, the Metafile property specifies the graphic.

The height and width in pixels of the graphic are specified by the Height and Width
properties, respectively.

To load a graphic from a file, call the LoadFromFile method. To save a bitmap to a file, call
SaveToFile. To load or save a picture to the Clipboard, use the Assign method of a
TClipboard object.

To draw a picture on a canvas, call the Draw or StretchDraw methods of a TCanvas object,
passing the Graphic property of a TPicture as a parameter.

When the graphic is modified, an OnChange event occurs.

In addition to these properties, methods, and events, this object also has the methods
that apply to all objects.

OnChange

918 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T P o i n t t y p e

Properties

Methods

Events

TPoint type WinTypes

Declaration

TPoint = record
X: Integer;
Y: Integer;

end;

The TPoint type defines a pixel location onscreen, with the origin in the top left corner. X
specifies the horizontal coordinate of the point, Y specifies the vertical coordinate.

TPopupAlignment type Menus

Declaration

TPopupAlignment = (paLeft, paRight, paCenter);

The PopupAlignment type determines where a pop-up menu (TPopupMenu) appears. The
Alignment property of a pop-up menu is of type TPopupAlignment.

TPopupMenu component Menus

The TPopupMenu component encapsulates the properties, methods, and events of a pop-
up menu, the menu available to forms and controls when the user selects the component
and clicks the right mouse button. To make a pop-up menu available, assign a
TPopupMenu component to the form’s or control’s PopupMenu property.

To begin designing a pop-up menu, add a pop-up menu component to your form, and
double-click the component. For more information, see the topic Menu Designer in the
Help system.

Bitmap Height Metafile
Graphic Icon Width

Assign ClassType Free
ClassName Create LoadFromFile
ClassParent Destroy SaveToFile

OnChange

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 919

T P o s i t i o n t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

The items on the pop-up menu are specified with the Items object, a property of a pop-
up menu. The Items object is of type TMenuItem. Your application can use the Items
property to access a particular item on the menu.

If you want the pop-up menu to appear when the user clicks the right mouse button on
the control to which the pop-up menu is assigned, set the AutoPopup property to True. If
you want to use code to control when a pop-up menu appears, use the Popup method.

Pop-up menus have an OnPopup event handler you can use to specify special processing
you want to occur in your application just before a pop-up menu appears.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all components.

For more information, search for PopupMenu component in the online Help, and
choose the topic Using the Popup Menu Component.

Properties

Methods

Events

See also
ShortCut function, ShortCutToKey procedure, ShortCutToText function, TextToShortCut
function, TMainMenu component, TMenuItem component

TPosition type Forms

Declaration

TPosition = (poDesigned, poDefault, poDefaultPosOnly, poDefaultSizeOnly, poScreenCenter);

The TPosition type enumerates the values the Position property of a form can have.

Alignment Components Name
AutoPopup Handle Owner
ComponentCount HelpContext PopupComponent
ComponentIndex Items Tag

FindComponent Free Popup
FindItem

OnPopup

920 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T P r i n t D i a l o g c o m p o n e n t

TPrintDialog component Dialogs

The TPrintDialog component displays a Print dialog box that permits the user to select
which printer to print to, which pages to print, how many copies to print, and if the
print job should be collated. If the user chooses the Setup button in the Print dialog box,
the Print Setup dialog (TPrinterSetupDialog component) appears.

Display the Print dialog box by calling the Execute method.

You can customize how the Print dialog box appears and behaves using the Options
property. For example, you can determine which print options are enabled or disabled,
or you can decide whether the option to print to a file appears.

The range of pages to be printed is specified with the PrintRange property. If the value of
PrintRange is prPageNums, which allows users to specify a page range, the pages they
specify are the values of the FromPage and ToPage properties. With the MinPage and
MaxPage, your application can limit the range of pages the user can select.

If the user chooses to print to a file, the PrintToFile property is True. If the user wants the
print job to be collated, the Collate property is True.

In addition to these properties and methods, this component also has the properties and
methods that apply to all components.

For more information, search for PrintDialog component in the online Help, and choose
the topic Using the Print Dialog Component.

Properties

Methods

TPrintDialogOptions type Dialogs

Declaration

TPrintDialogOption = (poPrintToFile, poPageNums, poSelection, poWarning, poHelp,
poDisablePrintToFile);

TPrintDialogOptions = set of TPrintDialogOption;

The TPrintDialogOptions type defines the set of values the Options property of the Print
dialog box (TPrintDialog) can have.

Collate MaxPage PrintRange
ComponentIndex MinPage PrintToFile
Copies Name Tag
FromPage Options ToPage
HelpContext Owner

Execute

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 921

T P r i n t e r o b j e c t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TPrinter object Printers

The TPrinter object encapsulates the printer interface of Windows. Within the Printers
unit, the variable Printer is declared as an instance of TPrinter, ready for you to use.

To start a print job, call the BeginDoc method. To end a print job that is sent successfully
to the printer, call the EndDoc method. If a problem occurs and you need to terminate a
print job that was not sent to the printer successfully, call the Abort method.

You can determine if a job is printing by checking the value of the Printing property. If
the job aborted, the Aborted property is True.

The printing surface of a page is represented by the Canvas property. You can use the
Brush, Font, and Pen properties of the Canvas object to determine how drawing or text
appears on the page.

The list of installed printers is found in the Printers property. The value of the
PrinterIndex property is the currently selected printer. The list of fonts supported by the
current printer is found in the Fonts property.

You can determine if a print job prints in landscape or portrait orientation using the
Orientation property.

You height and width of the current page is found in the PageHeight and PageWidth
properties. The current page is the value of the PageNumber property.

The Title property determines the text that appears listed in the Print Manager and on
network header pages.

Using the PrintScale property of a TForm component, you determine how the printed
image of the form appears.

Whenever you use a TPrinter object, you must add Printers to the uses clause of the unit
that implements the properties or methods of a TPrinter object.

In addition to these properties and methods, this object also has the methods that apply
to all objects.

Properties

Methods

Aborted Orientation PrinterIndex
Canvas PageHeight Printers
Fonts PageNumber Printing
Handle PageWidth Title

Abort ClassType GetPrinter
BeginDoc Create NewPage
ClassName Destroy SetPrinter
ClassParent EndDoc

922 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T P r i n t e r O r i e n t a t i o n t y p e

TPrinterOrientation type Printers

Declaration

TPrinterOrientation = (poPortrait, poLandscape);

The TPrinterOrientation type defines the possible values of the Orientation property of
the printer object (TPrinter).

TPrinterSetupDialog component Dialogs

The TPrinterSetupDialog component displays a Printer Setup dialog box in your
application. Users can use the dialog box to setup their printer before printing a job.

Display the Printer Setup dialog box by calling the Execute method. The Printer Setup
dialog box also appears when the user chooses the Setup button in the Print dialog box
(TPrintDialog).

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all components.

For more information, search for PrinterSetupDialog component in the online Help, and
choose the topic Using the Printer Setup Dialog Component.

Properties

Methods

TPrintRange type Dialogs

Declaration

TPrintRange = (prAllPages, prSelection, prPageNums);

ComponentIndex Name Tag
HelpContext Owner

Execute

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 923

T P r i n t S c a l e t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

The TPrintRange type defines the values the PrintRange property can have in the Print
dialog box (TPrintDialog).

TPrintScale type Forms

Declaration

TPrintScale = (poNone, poProportional, poPrintToFit);

The TPrintScale type defines the possible values of the PrintScale property of the form.

TQuery component DBTables

TQuery enables Delphi applications to issue SQL statements to a database engine--either
the BDE or an SQL server. TQuery provides the interface between an SQL server (or the
BDE) and TDataSource components. TDataSource components then provide the interface
to data-aware controls such as TDBGrid.

Set the DatabaseName property to specify the database to query. Enter a single SQL
statement to execute in the SQL property. To query dBASE or Paradox tables, use local
SQL. To query SQL server tables, use passthrough SQL. The SQL statement can be a
static SQL statement or a dynamic SQL statement.

At run time, an application can supply parameter values for dynamic queries with the
Params property, the ParamByName method, or the DataSource property. Use the Prepare
method to optimize a dynamic query.

A result set is the group of records returned by a query to an application. A TQuery can
return two kinds of result sets:

• “Live” result sets: As with TTable components, users can edit data in the result set
with data controls. The changes are sent to the database when a Post occurs, or when
the user tabs off a control.

• “Read only” result sets: Users cannot edit data in the result set with data controls.

If you want the query to provide a live result set, the SQL must conform to certain syntax
requirements. If the SQL syntax does not conform to these requirements, the query will
provide a read-only result set.

Execute the SQL statement at design time by setting the Active property to True . Execute
the SQL statement at run time with the Open or ExecSQL methods.

Call the First, Next, Prior, Last, and MoveBy methods to navigate through the result set.
Test the BOF and EOF properties to determine if the cursor is at the beginning or end of
the result set, respectively.

924 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T Q u e r y c o m p o n e n t

Call the Append, Insert, AppendRecord or InsertRecord methods to add a record to the
underlying database table. Call the Delete method to delete the current record. Call the
Edit method to allow modification of the fields of the current record, and Post to post the
changes or Cancel to discard them.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all components.

Properties

Methods

Active FieldDefs RecordCount
AutoCalcFields Fields RequestLive
BOF Handle SQL
CanModify Local SQLBinary
Database Locale State
DatabaseName Modified StmtHandle
DataSource Name Tag
DBHandle Owner Text
DBLocale ParamCount UniDirectional
EOF Params UpdateMode
FieldCount Prepared

Append FieldByName Open
AppendRecord FindField ParamByName
Cancel First Post
CheckBrowseMode FreeBookmark Prepare
ClearFields GetBookmark Prior
Close GetFieldNames Refresh
CursorPosChanged GotoBookmark SetFields
Delete Insert UnPrepare
DisableControls InsertRecord UpdateCursorPos
Edit Last UpdateRecord
EnableControls MoveBy
ExecSQL Next

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 925

T r a c k C u r s o r p r o c e d u r e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Events

TrackCursor procedure WinCrt

Declaration

procedure TrackCursor;

The TrackCursor procedure scrolls the CRT window if necessary to ensure that the
cursor is visible.

Example

uses WinCrt;

var
 x: integer;

begin
 for x := 1 to 30 do
 Write('Xx');
 TrackCursor;
 Readln;
end;

See also
ScrollTo procedure

TrackLength property

Applies to
TMediaPlayer component

Declaration

property TrackLength[TrackNum: Integer]: Longint;

Run-time and read only. The TrackLength property reports the length of the track
specified by the TrackNum index. The value of TrackLength is specified according to the
current time format, which is specified in the TimeFormat property.

AfterCancel AfterPost BeforeOpen
AfterClose BeforeCancel BeforePost
AfterDelete BeforeClose OnCalcFields
AfterEdit BeforeDelete OnNewRecord
AfterInsert BeforeEdit
AfterOpen BeforeInsert

926 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T r a c k P o s i t i o n p r o p e r t y

Example
The following code shows the length of the currently playing .WAV audio file
(CARTOON.WAV in this example) in the Caption of a label.

procedure TForm1.BitBtn1Click(Sender: TObject);
begin
with MediaPlayer1 do begin

TimeFormat := tfMilliseconds;
DeviceType := dtWaveAudio;
FileName := 'cartoon.wav';
Open;
Label1.Caption := IntToStr(TrackLength[1]);

end;
end;

See also
Length property, TrackPosition property, Tracks property

TrackPosition property

Applies to
TMediaPlayer component

Declaration

property TrackPosition[TrackNum: Integer]: Longint;

Run-time and read only. The TrackPosition property reports the starting position of the
track specified by the TrackNum index. The value of TrackPosition is specified according
to the current time format, which is specified in the TimeFormat property.

Example
The following code shows the starting position of the first track of the currently loaded
audio CD in the Caption of a label.

procedure TForm1.BitBtn1Click(Sender: TObject);
begin
with MediaPlayer1 do begin

TimeFormat := tfMilliseconds;
DeviceType := dtCDAudio;
Open;
Label1.Caption := IntToStr(TrackPosition[1]);

end;
end;

See also
Position property, TrackLength property, Tracks property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 927

T r a c k s p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Tracks property

Applies to
TMediaPlayer component

Declaration

property Tracks: Longint;

Run-time and read only. The Tracks property specifies the number of playable tracks on
the open multimedia device. Tracks is undefined for devices that don’t use tracks.

Example
The following code skips to the beginning of the last track on a CD audio device. You
must declare the integer variable I to run this code.

with MediaPlayer1 do
if DeviceType = dtCDAudio then
begin
Seek(TrackPosition[1]);
for I := 1 to Tracks-1 do

Next;
end;

See also
Next method, Previous method, TrackLength property, TrackPosition property

TRadioButton component StdCtrls

The TRadioButton component is a Windows radio button. Use radio buttons to present a
set of mutually exclusive options to the user—that is, only one radio button in a set can
be selected at any time. When the user selects a radio button, the previously selected
radio button becomes unselected.

Radio buttons are frequently grouped in a group box (TGroupBox). Add the group box
to the form first, then choose the radio buttons from the Component palette and put
them in the group box.

The text associated with the radio button that identifies its purpose is the value of the
Caption property.

When the user selects a radio button, the value of the Checked property changes. Also,
the OnClick event occurs. If you check a radio button, all other radio buttons in the same
group become unchecked. By default, all radio buttons that are directly contained by the
same windowed control container, such as a TForm, TGroupBox, or TPanel, are grouped.
For example, two radio buttons on a form can be checked at the time only if they are
contained in separate containers, such as two different group boxes.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

928 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T R a d i o G r o u p c o m p o n e n t

For more information, search for RadioButton component in the online Help, and
choose the topic Using the Radio Button Component.

Properties

Methods

Events

See also
TDBRadioGroup component

TRadioGroup component ExtCtrls

A radio group box is a group box that contains radio buttons. A radio group box
simplifies the task of grouping radio buttons and getting them to work together as a
group.

Align Font ParentFont
Alignment Handle ParentShowHint
Caption Height PopupMenu
Checked HelpContext ShowHint
Color Hint Showing
ComponentIndex Left TabOrder
Ctl3D Name TabStop
Cursor Owner Tag
DragCursor Parent Top
DragMode ParentColor Visible
Enabled ParentCtl3D Width

BeginDrag GetTextLen SendToBack
BringToFront Hide SetBounds
CanFocus Invalidate SetFocus
ClientToScreen Refresh SetTextBuf
Dragging Repaint Show
EndDrag ScaleBy Update
Focused ScreenToClient
GetTextBuf ScrollBy

OnClick OnEnter OnMouseDown
OnDblClick OnExit OnMouseMove
OnDragDrop OnKeyDown OnMouseUp
OnDragOver OnKeyPress
OnEndDrag OnKeyUp

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 929

T R a d i o G r o u p c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

The radio buttons are added to the group box when strings are entered as the value of
the Items property. Each string in Items makes a radio button appear in the group box
with the string appearing as the caption of the radio button. The value of the ItemIndex
property determines which radio button is currently selected.

You can choose to display the radio buttons in a single column or in multiple columns
by setting the value of the Columns property.

When the user selects a radio button in the radio button group box, the previously
selected radio button is unselected automatically.

You can place other types of controls in a radio group box besides radio buttons.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for RadioGroup in the online Help, and choose the topic
Using the RadioGroup Component.

Properties

Methods

Events

Align Height ParentShowHint
Caption HelpContext PopupMenu
Color Hint ShowHint
Columns Items Showing
ComponentIndex ItemIndex TabOrder
Ctl3D Left TabStop
Cursor Name Tag
DragCursor Owner Top
DragMode Parent Visible
Enabled ParentColor Width
Font ParentCtl3D
Handle ParentFont

BeginDrag Focused ScreenToClient
BringToFront GetTextBuf ScrollBy
CanFocus GetTextLen SendToBack
ClientToScreen Hide SetBounds
ContainsControl Invalidate SetFocus
Dragging Refresh SetTextBuf
EndDrag Repaint
FindComponent ScaleBy

OnClick OnDragOver OnEnter
OnDragDrop OnEndDrag OnExit

930 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T r a n s I s o l a t i o n p r o p e r t y

See also
TDBRadioGroup component, TGroupBox component, TRadioButton component

TransIsolation property

Applies to
TDataBase component

Declaration

property TransIsolation: TTransIsolation;

The TransIsolation property specifies the transaction isolation level used by an SQL
server. tiDirtyRead causes any change to be returned, regardless of whether the record
has been committed. tiReadCommitted will return only committed versions of the record;
uncommitted changes will not be reflected in the result. tiRepeatableRead will return only
the original record for the duration of the transaction, even if another application has
committed a change.

Database servers may support these isolation levels differently or not at all. If the
requested isolation level is not supported by the server, then Delphi will use the next
highest isolation level, as shown in the following table. For a detailed description of how
each isolation level is implemented, see your server documentation.

Example

Database1.TransIsolation := tiReadCommitted;

Transliterate property

Applies to
TBatchMove, TMemoField, TStringField component

Declaration

property Transliterate: Boolean;

TransIsolation
setting Oracle

Sybase and
Microsoft SQL
servers Informix InterBase

Dirty read Read committed Read committed Dirty Read Read committed
Read committed
(Default)

Read committed Read committed Read committed Read committed

Repeatable read Repeatable read
(READ ONLY)

Read committed Repeatable Read Repeatable Read

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 931

T r a n s p a r e n t p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

The Transliterate property controls whether translations to and from the respective
locales of the Source and Destination properties will be done. Transliterate is True by
default.

Example
{ Suppress translations }
BatchMove1.Transliterate := False;

See also
DBLocale property

Transparent property

Applies to
TLabel, TDBText components

Declaration

property Transparent: Boolean;

The Transparent property determines if a label or database text control is transparent.
You could place a transparent label or text control on top of a bitmap, and the control
won’t hide part of the bitmap. For example, if you have placed a bitmap of the world on
a form, you could label the South American continent with a label control, and you
would still see the continent in the label space.

Example
This code makes a label transparent:

Label1.Transparent := True;

See also
BorderStyle property

TRect type WinTypes

Declaration

TRect = record
case Integer of
0: (Left, Top, Right, Bottom: Integer);
1: (TopLeft, BottomRight: TPoint);

end;

The TRect type defines a rectangle. The coordinates are specified either as four separate
integers representing the pixel locations of the left, top, right, and bottom sides, or as

932 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T R e p l a c e D i a l o g c o m p o n e n t

two points representing the pixel locations of the top left and bottom right corners. The
origin of the pixel coordinate system is in the top left corner of the screen.

TReplaceDialog component Dialogs

The TReplaceDialog component provides a Replace dialog box your application can use.
TReplaceDialog contains all the capabilities of the TFindDialog component, but it also
allows the user to replace found text with a replacement string.

Display the Replace dialog box by calling the Execute method.

The text your application is searching for is the value of the FindText property. The text
that is to replace the found text is the value of the ReplaceText property.

To determine which search and replace options are available in the Find dialog box, use
the Options property. For example, you can have a Match Case check box appear in the
dialog box or hide it, and you can disable or enable the Whole Word check box.

When the user enters the text to search for in the dialog box and chooses Find Next, the
OnFind event occurs. Within the OnFind event handler, write the code that searches for
the text specified as the value of the FindText. Your code can use the Options values to
determine how the user wants the search conducted.

When the user chooses the Replace or Replace All button in the Replace dialog box, the
OnReplace event occurs. Within the OnReplace event handler, write the code that replaces
the found text specified as the value of ReplaceText. Your code can use the Options values
to determine how the user wants the text replaced.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all components.

For more information, search for ReplaceDialog component in the online Help, and
choose the topic Using the Replace Dialog Component.

Properties

Methods

Events

ComponentIndex HelpContext Owner
Ctl3D Name ReplaceText
FindText Options Tag

CloseDialog Execute

OnFind OnReplace

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 933

T R e p o r t c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TReport component Report

The TReport component is an interface to Borland’s ReportSmith application. Once you
place the TReport component on a form, you can double-click it to begin running
ReportSmith. If you specify an existing report name using the Object Inspector, choose
Cancel when the Open Report dialog box appears and ReportSmith minimizes. When
you click the ReportSmith icon to restore it, the specified report displays.

You can also control the running of ReportSmith at run time. When you run a report at
run time, you are using ReportSmith Runtime.

Specify the report you want to run as the value of the ReportName property. You can
include the path where the report is located as part of the ReportName property, or you
can specify the directory with the ReportDir property. Call the Run method to run the
report. To print an existing report, call the Print method.

The report component lets you specify several report parameters. You can choose the
starting and ending page of the report with the StartPage and EndPage properties. To
limit the size of the report, you can specify a maximum number of records for the report
with the MaxRecords property. Choose how many copies of the report you want with the
PrintCopies property.

Specify the report variables you want the report to use with the InitialValues property.
You can change a report variable with the SetVariable and SetVariableLines methods, and
then recalculate the report and run it using the new report variable by calling the
RecalcReport method.

You can run a ReportBasic macro using the RunMacro method.

To terminate the running of a report, call the CloseReport method. You can choose to
automatically unload ReportSmith Runtime when a report finishes running if you set
the AutoUnload property to True. If AutoUnload is False, you must call the CloseApplication
method to unload ReportSmith Runtime.

For information about using ReportSmith, see the ReportSmith documentation.

In addition to these properties and methods, this component also has the properties and
methods that apply to all components.

For more information, search for Report component in the online Help, and choose the
topic Using the Report Component.

Properties

AutoUnload Owner StartPage
ComponentIndex Preview Tag
EndPage PrintCopies VersionMajor
InitialValues ReportHandle VersionMinor
MaxRecords ReportDir
Name ReportName

934 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T r u n c f u n c t i o n

Methods

Trunc function System

Declaration

function Trunc(X: Real): Longint;

The Trunc function truncates a real-type value to an integer-type value.

X is a real-type expression. Trunc returns a Longint value that is the value of X rounded
toward zero.

If the truncated value of X is not within the Longint range, an error occurs, which you
can handle using the EInvalidOp exception. If you do not handle it, you will receive a
run-time error.

Example

var
 S, T: string;
begin
 Str(1.4:2:1, T);
 S := T + ' Truncs to ' + IntToStr(Trunc(1.4)) + #13#10;
 Str(1.5:2:1, T);
 S := S + T + ' Truncs to ' + IntToStr(Trunc(1.5)) + #13#10;
 Str(-1.4:2:1, T);
 S := S + T + ' Truncs to ' + IntToStr(Trunc(-1.4)) + #13#10;
 Str(-1.5:2:1, T);
 S := S + T + ' Truncs to ' + IntToStr(Trunc(-1.5));
 MessageDlg(S, mtInformation, [mbOk], 0);
end;

See also
Int function, Round function

Truncate method

Applies to
TBlobStream object

Declaration

procedure Truncate;

CloseApplication Print RunMacro
CloseReport RecalcReport SetVariable
Connect Run SetVariableLines

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 935

T r u n c a t e p r o c e d u r e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

The Truncate method discards all data in the TBlobField, TBytesField or TVarBytesField
from the current position.

Example

{ Discard all data after the first 1000 bytes }
with BlobStream1 do
begin
Seek(0, 1000);
Truncate;
end;

Truncate procedure System

Declaration

procedure Truncate(var F);

The Truncate procedure deletes all records in the file after the current file position F. The
current file position also becomes end-of-file (Eof(F) is True).

F is a file variable of any type. Truncate does not work on text files. F must be open.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

Example

uses WinCRT;

var
 f: file of Integer;
 i,j: Integer;
 begin
 AssignFile(f,'TEST.INT');
 Rewrite(f);
 for i := 1 to 6 do
 Write(f,i);
 Writeln('File before truncation:');
 Reset(f);
 while not Eof(f) do
 begin
 Read(f,i);
 Writeln(i);
 end;
 Reset(f);
 for i := 1 to 3 do
 Read(f,j); { Read ahead 3 records }
 Truncate(f); { Cut file off here }
 Writeln;
 Writeln('File after truncation:');

936 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T S a v e D i a l o g c o m p o n e n t

 Reset(f);
 while not Eof(f) do
 begin
 Read(f,i);
 Writeln(i);
 end;
 CloseFile(f);
 Erase(f);
 end;

See also
Reset procedure, Rewrite procedure, Seek procedure

TSaveDialog component Dialogs

The TSaveDialog component makes a Save dialog box available to your application. The
purpose of the dialog box is to allow a user to specify a file to save. Use the Execute
method to display the Save dialog box.

When the user chooses OK in the dialog box, the user’s file name selection is stored in
the dialog box’s FileName property, which you can then use to process as you want.

You can let the user decide which set of files are visible in the list box of the Save dialog
box with the Filter property. The user can then use the List Files of Type combo box to
determine which files display in the list box. You set the default filter using the
FilterIndex property.

You can permit the user to choose multiple file names with the Options property so that
the Files property contains a list of all the selected file names in the list box. You can
customize how the Save dialog box appears and behaves with the Options property.

If you want a file extension automatically appended to the file name typed in the File
Name edit box of the Save dialog box, use the DefaultExt property.

In addition to these properties and methods, this component also has the properties and
methods that apply to all components.

For more information, search for SaveDialog component in the online Help, and choose
the topic Using the Save Dialog Component.

Properties

ComponentIndex Filter Options
Ctl3D FilterIndex Owner
DefaultExt HelpContext Tag
FileEditStyle HistoryList Title
FileName InitialDir
Files Name

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 937

T S c r e e n c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Methods

See also
TOpenDialog component

TScreen component Forms

The TScreen component represents the state of the screen as your application runs. A
Screen variable of type TScreen is already declared, ready for you to use as an instance of
TScreen.

The screen component lists all forms displayed on the screen in the Forms property
array. The number of forms is kept as the value of the FormCount property. You can find
out which form currently has the focus by checking the value of the ActiveForm
property. Similarly, the control that has the focus is the value of the ActiveControl
property.

The height and width of the screen device in pixels are the value of the Height and Width
properties. The PixelsPerInch property tells you how many pixels are in an inch using the
current video driver.

All the fonts supported by the screen are listed in the Fonts property. Similarly, all the
cursors available are in the Cursors property. Using Cursors, you can make a custom
cursor available to your application.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all components.

Properties

Methods

Events

Execute

ActiveControl Cursors Owner
ActiveForm FormCount PixelsPerInch
ComponentCount Forms Tag
ComponentIndex Fonts Width
Components Height
Cursor Name

FindComponent InsertComponent RemoveComponent

OnActiveControlChange OnActiveFormChan
ge

938 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T S c r o l l B a r c o m p o n e n t

TScrollBar component StdCtrls

The TScrollBar component is a Windows scroll bar, which is used to scroll the contents
of a window, form, or control. In the OnScroll event handler, you write the code that
determines how the window, form, or control behaves in response to the user scrolling
the scroll bar.

You determine how far a thumb tab moves when the user clicks the scroll bar on either
side of the thumb tab with the value of the LargeChange property. The value of the
SmallChange property determines how far the thumb tab moves when the user clicks the
arrows at the end of the scroll bar or scrolls the scroll bar using the arrow keys on the
keyboard.

The Min and Max property values together determine how many positions are available
on the scroll bar for the thumb tab to move when the user scrolls the scroll bar. Your
application can set the position of the thumb tab with the Position property, or use the
property to determine how far the scroll bar has scrolled. You can use the SetParams
method to set the Min, Max, and Position properties all at once.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for ScrollBar component in online Help, and choose the
topic Using the Scroll Bar Component.

Properties

Methods

Align Kind Position
ComponentIndex LargeChange ShowHint
Ctl3D Left Showing
Cursor Max SmallChange
DragCursor Min TabOrder
DragMode Name TabStop
Enabled Owner Tag
Handle Parent Top
Height ParentCtl3D Visible
HelpContext ParentShowHint Width
Hint PopupMenu

BeginDrag GetTextLen SetBounds
BringToFront Hide SetFocus
CanFocus Invalidate SetParams
ClientToScreen Refresh SetTextBuf
Dragging Repaint Show
EndDrag ScaleBy Update

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 939

T S c r o l l B a r I n c t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Events

See also
TScrollBox component, TForm component

TScrollBarInc type Forms

Declaration

TScrollBarInc = 1..32767;

Description
The TScrollBarInc type defines the possible values of the SmallChange and LargeChange
properties of a scroll bar (TScrollBar).

TScrollBarKind type Forms

Declaration

TScrollBarKind = (sbHorizontal, sbVertical);

The TScrollBarKind type defines the two different orientations a scroll bar can have:
horizontal and vertical. TScrollBarKind is the type of the scroll bar control’s Kind
property.

TScrollBox component Forms

Scroll box components make it possible to create scrolling areas on a form that are
smaller than the entire form. For example, your form might contain a panel component
used as a speed bar that is aligned with the top of the form, and a panel component used
as a status bar that is aligned with the bottom of the form. You would not want these
panel components to scroll when the user scrolls the form. By placing a scroll box
between the two panels and aligning it so that it fills the remaining client area, you can
place components on the scroll box and then allow the user to scroll only the scroll box
on the form.

Focused ScreenToClient
GetTextBuf SendToBack

OnChange OnEndDrag OnKeyPress
OnClick OnEnter OnKeyUp
OnDragDrop OnExit OnScroll
OnDragOver OnKeyDown

940 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T S c r o l l B o x c o m p o n e n t

You determine the behavior of the horizontal and vertical scroll bars on the scroll box by
setting the properties of the HorzScrollBar and VertScrollBar objects, which are properties
of a scroll box.

To assure that a particular control on the scroll box is in view, use the ScrollInView
method.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

Properties

Methods

Events

Align Enabled ParentShowHint
BorderStyle Font PopupMenu
Brush Height ShowHint
Color HelpContext Showing
ComponentCount Hint TabOrder
ComponentIndex HorzScrollBar TabStop
Components Left Tag
ControlCount Name Top
Controls Owner VertScrollBar
Ctl3D Parent Visible
Cursor ParentColor Width
DragCursor ParentCtl3D
DragMode ParentFont

BeginDrag GetTextLen ScrollBy
BringToFront Hide ScrollInView
CanFocus InsertComponent SendToBack
ClientToScreen InsertControl SetBounds
ContainsControl Invalidate SetFocus
Dragging Refresh SetTextBuf
EndDrag RemoveComponent Show
FindComponent Repaint Update
Focused ScaleBy
GetTextBuf ScreenToClient

OnClick OnEndDrag OnMouseMove
OnDblClick OnEnter OnMouseUp
OnDragDrop OnExit OnResize
OnDragOver OnMouseDown

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 941

T S c r o l l C o d e t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TScrollCode type StdCtrls

Declaration

TScrollCode = (scLineUp, scLineDown, scPageUp, scPageDown, scPosition, scTrack, scTop,
scBottom, scEndScroll);

Description
The TScrollCode type defines the possible states of a scroll bar. It is used by the
TScrollEvent method pointer.

TScrollEvent type StdCtrls

Declaration

TScrollEvent = procedure(Sender: TObject; ScrollCode: TScrollCode; var ScrollPos: Integer) of
object;

The TScrollEvent type points to a method that handles the scrolling of a scroll bar. The
ScrollCode parameter is one of these values:

The ScrollPos parameter indicates the position of the thumb tab on the scroll bar.

TScrollEvent is the type of the OnScroll event.

TScrollStyle type StdCtrls

Declaration

TScrollStyle = (ssNone, ssHorizontal, ssVertical, ssBoth);

Value Meaning

scLineUp User clicked the top or left scroll arrow or pressed the Up arrow key
scLineDown User clicked the bottom or right scroll arrow or pressed the Down arrow key
scPageUp User clicked the area to the left of the thumb tab or pressed the PgUp key
scPageDown User clicked the area to the right of the thumb tab or pressed the PgDn key
scPosition User positioned the thumb tab and released it.
scTrack User is moving the thumb tab
scTop User moved the thumb tab to the top or far left on the scroll bar
scBottom User moved the thumb tab to the bottom or far right on the scroll bar
scEndScroll User is done moving the thumb tab on the scroll bar

942 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T S e a r c h R e c t y p e

The TScrollStyle type defines the different combinations of scroll bars a memo control or
a grid can have. TScrollStyle is the type of the ScrollBars property of TMemo, TDBMemo,
TDrawGrid, and TStringGrid.

TSearchRec type SysUtils

Declaration

TSearchRec = record
Fill: array[1..21] of Byte;
Attr: Byte;
Time: Longint;
Size: Longint;
Name: string[12];

end;

The TSearchRec type defines file information searched for by a FindFirst or FindNext
function call. If a file is found, the fields of the TSearchRec type parameter are modified
to specify the found file.

Attr represents the file attributes the file attributes of the file. Test Attr against the
following attribute constants or values to determine if a file has a specific attribute:

To test for an attribute, combine the value of the Attr field with the attribute constant
with the and operator. If the file has that attribute, the result will be greater than 0. For
example, if the found file is a hidden file, the following expression will evaluate to True:
(SearchRec.Attr and faHidden > 0).

Time contains the time stamp of the file. Size contains the size of the file in bytes. Name
contains the DOS file name and extension.

TSectionEvent type Headers

Declaration

TSectionEvent = procedure(Sender: TObject; ASection, AWidth: Integer) of object;

Constant Value Description

faReadOnly $01 Read-only files
faHidden $02 Hidden files
faSysFile $04 System files
faVolumeID $08 Volume ID files
faDirectory $10 Directory files
faArchive $20 Archive files

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 943

T S e l e c t C e l l E v e n t t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

The TSectionEvent type is used by the OnSized and OnSizing events of the THeader
component. The index of the header section being resized is passed in the ASection
parameter, and its width in pixels is passed in the AWidth parameter.

TSelectCellEvent type Grids

Declaration

TSelectCellEvent = procedure (Sender: TObject; Col, Row: Longint; var CanSelect: Boolean) of
object;

The TSelectEvent type points to a method that handles the selecting of a cell in a draw
grid (TDrawGrid) or string grid (TStringGrid). The Col and Row parameters specify the
column and row of the selected cell. The value of the CanSelect parameter determines
whether the user can successfully select the cell in the grid.

TSelectEvent is the type of the OnSelectCell event of the draw and string grid
components.

TSelectDirOpts type FileCtrl

Declaration

TSelectDirOpt = (sdAllowCreate, sdPerformCreate, sdPrompt);

TSelectDirOpts = set of TSelectDirOpt;

The TSelectDirOpts type defines the possible values of the Options parameter in the
SelectDirectory function.

TSession component
You cannot see nor explicitly create a TSession component, but you can use its methods
and properties to globally affect an application. Delphi creates a TSession component
named Session each time an application runs. Do not attempt to create any other TSession
or destroy and recreate Session itself.

TSession provides global control over database connections for an application. The
Databases property of TSession is an array of all the active databases in the session. The
DatabaseCount property is an integer specifying the number of active databases in the
Session.

KeepConnections is a Boolean property that specifies whether to keep inactive database
connections for temporary TDatabase components. The DropConnections method will
drop all inactive database connections.

The NetFileDir property specifies the directory path of the BDE network control
directory. The PrivateDir property specifies the path of the directory in which to store
temporary files.

944 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T S e t E d i t E v e n t t y p e

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all components.

Properties

Methods

Events

TSetEditEvent type Grids

Declaration

TSetEditEvent = procedure (Sender: TObject; ACol, ARow: Longint; const Text: string)
of object;

Description
The TSetEditEvent type points to a method that handles the changes the user makes to
the text in a cell in a draw grid (TDrawGrid) or string grid (TStringGrid). The ACol
parameter specifies the column of the cell, and the ARow parameter specifies the row of
the cell. The Text parameter is the text string the editor has changed.

TSetEditEvent is the type of the OnSetEditText event of the draw and string grid
components.

DatabaseCount Locale PrivateDir
Databases Name Tag
Handle NetFileDir
KeepConnections Owner

AddPassword GetAliasParams GetTableNames
CloseDatabase GetDatabaseNames GetStoredProcNames
DropConnections GetDriverNames OpenDatabase
FindDatabase GetDriverParams RemoveAllPassword

s
GetAliasNames GetPassword RemovePassword

OnPassword

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 945

T S h a p e c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TShape component ExtCtrls

The TShape component displays a geometric shape on the form. It is a nonwindowed
component.

You determine which geometric shape the shape control assumes by setting the Shape
property. How the shape is painted depends on the two nested properties of the Brush
object, Color and Style.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all controls.

For more information, search for Search component in online Help, and choose the topic
Using the Shape Component.

Properties

Methods

Events

TShapeType type StdCtrls

Declaration

TShapeType = (stRectangle, stSquare, stRoundRect, stRoundSquare, stEllipse, stCircle);

Align Height Shape
BoundsRect Hint ShowHint
Brush Left Tag
ComponentIndex Name Top
Cursor Owner Visible
DragCursor Parent Width
DragMode ParentShowHint
Enabled Pen

BeginDrag Hide ScreenToClient
BringToFront Invalidate SendToBack
ClientToScreen Refresh SetBounds
Dragging Repaint Show
EndDrag ScaleBy Update

OnDragDrop OnEndDrag OnMouseMove
OnDragOver OnMouseDown OnMouseUp

946 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T S h i f t S t a t e t y p e

The TShapeType type is used by the Shape property of the TShape component to
determine if the TShape component appears as a rectangle, square, rounded rectangle,
rounded square, ellipse, or circle.

TShiftState type Classes

Declaration

TShiftState = set of (ssShift, ssAlt, ssCtrl, ssRight, ssLeft, ssMiddle, ssDouble);

The TShiftState type is used by key-event and mouse-event handlers to determine the
state of the Alt, Ctrl, and Shift keys and the state of the mouse buttons when the event
occurred.

See also
TKeyEvent type, TMouseEvent type

TShortCut type Menus

Declaration

TShortCut = Low(Word) .. High(Word);

TShortCut types are the menu shortcuts that appear on menus and give the user an
alternate way to select a menu commands using the keyboard. The ShortCut property is
of type TShortCut, and the ShortCutToText and ShortCutToKey routines use parameters
of type TShortCut.

TShowHintEvent type Forms

Declaration

TShowHintEvent = procedure (var HintStr: string; var CanShow: Boolean; var HintInfo:
THintInfo) of object;

The TShowHintEvent type points to a method that displays a Help Hint for a control. It is
the type of the OnShowHint event.

The HintStr parameter is the text of the Help Hint. To obtain the text of a hint for a
particular control, call the GetShortHint function, assigning the result to HintStr. You can
change the contents of this string if you want to change the text.

Use the CanShow variable to permit or prevent the Help Hint from displaying. If
CanShow is True, the Help Hint displays. If it is False, the Help Hint does not appear.

The HintInfo parameter is a record that contains information about the appearance and
behavior of the help window.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 947

T S m a l l i n t F i e l d c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

The HintColor field of the record contains the name of the control for which hint
processing is occurring.

The HintPos field determines the default position in screen coordinates of the top-left
corner of the hint window. You can change where the window appears by changing this
value.

The HintMaxWidth field determines the maximum width of the hint window before
word wrapping begins. By default, the value is the width of the screen (Screen.Width).

The CursorRect field determines the rectangle the user’s mouse pointer must be in for the
hint window to appear. The default value for CursorRect is the client rectangle of the
control. Your application can change this value so that a single control can divided into
several hint regions. When the user moves the mouse pointer moves outside the
rectangle, the hint window disappears.

The CursorPos field contains the location of the mouse pointer within the control.

TSmallintField component
A TSmallintField represents a field of a record in a dataset. It is represented as a binary
value with a range from –32,768 to 32,767. Use TSmallintField for fields that hold signed
whole numbers.

Set the DisplayFormat property to control the formatting of the field for display
purposes, and the EditFormat property for editing purposes. Use the Value property to
access or change the current field value. Set the MinValue or the MaxValue property to
limit the smallest or largest value permitted in a field.

The TSmallintField component has the properties, methods, and events of the TField
component.

Properties

Alignment DisplayFormat IsNull
AsBoolean DisplayLabel MaxValue
AsDateTime DisplayName MinValue
AsFloat DisplayText Name
AsInteger DisplayWidth Owner
AsString EditFormat ReadOnly
Calculated EditMask Required
CanModify EditMaskPtr Size
DataSet FieldName Tag
DataSize FieldNo Text
DataType Index Value
AsFloat IsIndexField Visible

948 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T S p e e d B u t t o n c o m p o n e n t

Methods

Events

TSpeedButton component Buttons

TSpeedButton components are buttons that usually have graphical images on their faces
that users use to execute commands or set modes. They have some unique capabilities
that allow them to work as a set. Speed buttons are commonly used with panels (TPanel)
to create tool bars and tool palettes.

The graphical image that appears on a speed button is the value of its Glyph property.
You can use different images to represent the different states of the speed button. For
example, you can use one image when the speed button is unselected, another when it is
selected, and another when it is disabled. Use the NumGlyphs property to specify
multiple images.

Use the Layout, Margin, and Spacing properties to arrange the image and text on the
speed button.

Speed buttons can work together as a group if you set the GroupIndex property. If you
want all speed buttons in a group to be able to appear in their “up” state, set the
AllowAllUp property to True. If you want a speed button to initially appear as if it is
selected, set its Down property to True.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all controls.

For more information, search for SpeedButton component in online Help, and choose
the topic Using the SpeedButton Component.

Properties

Assign FocusControl SetData
AssignValue GetData
Clear IsValidChar

OnChange OnSetText OnValidate
OnGetText

Align GroupIndex ParentFont
AllowAllUp Height ParentShowHint
BoundsRect Hint ShowHint
Caption Layout Showing
ComponentIndex Left Spacing
Cursor Margin Tag
Down Name Top
Enabled NumGlyphs Visible

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 949

T S t a t u s L i n e E v e n t t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Methods

Events

TStatusLineEvent type ToCtrl

Declaration

TStatusLineEvent = procedure(Sender: TObject; Msg: string) of object;

TStatusLineEvent is the type of the OnStatusLineEvent event of the TOLEContainer
component. Msg contains the string message from the OLE server application.

TStoredProc component
The TStoredProc component enables Delphi applications to execute server stored
procedures. Set the DatabaseName property to specify the database in which the stored
procedure is defined. Set the StoredProcName to the name of the stored procedure on the
server.

A stored procedure has a Params array for its input and output parameters, similar to a
TQuery component. The order of the parameters in the Params array is determined by
the stored procedure definition. An application can set the values of input parameters
and get the values of output parameters in the array similar to TQuery parameters. You
can also use ParamByName to access the parameters by name. If you are not sure of the
ordering of the input and output parameters for a stored procedure, use the Parameters
Editor.

Before an application can execute a stored procedure, you must prepare the stored
procedure, which can be done:

• At design time with the Parameters Editor.
• At run time with the Prepare method.

Font Owner Width
Glyph Parent

BeginDrag GetTextBuf ScreenToClient
BringToFront GetTextLen SendToBack
CanFocus Hide SetBounds
ClientToScreen Invalidate SetTextBuf
Click Refresh Show
Dragging Repaint Update
EndDrag ScaleBy

OnClick OnMouseDown OnMouseUp
OnDblClick OnMouseMove

950 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T S t o r e d P r o c c o m p o n e n t

A stored procedure can return either a singleton result or a result set with a cursor, if the
server supports it. Execute a stored procedure with the ExecProc method, if the stored
procedure returns a singleton result (one row), or Open method, if the stored procedure
returns a result set (multiple rows).

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all components.

Properties

Methods

Events

Active FieldDefs Params
AutoCalcFields Fields Prepared
BOF Handle RecordCount
CanModify Locale State
Database Modified StmtHandle
DatabaseName Name StoredProcName
DBHandle Owner Tag
DBLocale Overload UpdateMode
EOF ParamBindMode
FieldCount ParamCount

Append ExecProc Next
AppendRecord FieldByName Open
Cancel FindField ParamByName
CheckBrowseMode First Post
ClearFields FreeBookmark Prepare
Close GetBookmark Prior
CopyParams GetFieldNames Refresh
CursorPosChanged GetResults SetFields
Delete GotoBookmark UnPrepare
DescriptionsAvailabl
e

Insert UpdateCursorPos

DisableControls InsertRecord UpdateRecord
Edit Last
EnableControls MoveBy

AfterCancel AfterPost BeforeOpen
AfterClose BeforeCancel BeforePost
AfterDelete BeforeClose OnCalcFields
AfterEdit BeforeDelete OnNewRecord
AfterInsert BeforeEdit
AfterOpen BeforeInsert

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 951

T S t r i n g F i e l d c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TStringField component
A TStringField component represents a field of a record in a dataset. A field of
TStringField is physically stored as a sequence of up to 255 characters. Use TStringField
for fields that contain text, such as names and addresses.

Use the Value property to access or change the current field value.

The TStringField component has the properties, methods, and events of the TField
component.

Properties

Methods

Events

TStringGrid component Grids

The TStringGrid component is a grid control designed to simplify the handling of strings
and associated objects while maintaining all the functionality of the TDrawGrid
component.

All the strings within a string grid are contained in the Cells property, which you can use
to access a particular string within the grid. All the objects associated with the strings in
a string grid are contained in the Objects property. Use Objects to access a particular
object.

Alignment DisplayLabel Name
AsBoolean DisplayName Owner
AsDateTime DisplayText ReadOnly
AsFloat DisplayWidth Required
AsInteger EditMask Size
AsString EditMaskPtr Tag
Calculated FieldName Text
CanModify FieldNo Transliterate
DataSet Index Value
DataSize IsIndexField Visible
DataType IsNull

Assign FocusControl SetData
AssignValue GetData
Clear IsValidChar

OnChange OnSetText OnValidate
OnGetText

952 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T S t r i n g G r i d c o m p o n e n t

All the strings and their associated objects for a particular column can be accessed using
the Cols property. The Rows property gives you access to all the strings and their
associated objects for a particular row.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for StringGrid component in online Help, and choose the
topic Using the String Grid Component.

Properties

Methods

Align DefaultRowHeight ParentColor
BorderStyle DragCursor ParentCtl3D
BoundsRect DragMode ParentFont
Canvas EditorMode ParentShowHint
Cells Enabled PopupMenu
ClientHeight FixedColor Row
ClientOrigin FixedCols RowCount
ClientRect FixedRows RowHeights
ClientWidth Font Rows
Col GridHeight ScrollBars
ColCount GridLineWidth Selection
Color GridWidth ShowHint
Cols Handle Showing
ColWidths Height TabOrder
ComponentCount HelpContext TabStop
ComponentIndex Hint TabStops
Components Left Tag
ControlCount LeftCol Top
Controls Name TopRow
Ctl3D Objects Visible
Cursor Options VisibleColCount
DefaultColWidth Owner VisibleRowCount
DefaultDrawing Parent Width

BeginDrag GetTextBuf ScaleBy
BringToFront GetTextLen ScreenToClient
CanFocus Hide SendToBack
CellRect Invalidate SetBounds
ClientToScreen MouseToCell SetFocus
Dragging Refresh SetTextBuf
EndDrag RemoveComponent Show
Focused Repaint Update

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 953

T S t r i n g L i s t o b j e c t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Events

TStringList object Classes

The TStringList object maintains a list of strings. Use a string list object when you are
managing a list of strings that is not maintained by a control.

You can add, delete, insert, move, and exchange strings using the Add, Delete, Insert,
Move, and Exchange methods. The Clear method clears all the strings in the list of strings.
The Count property contains the number of strings in the list. Each string list object has a
Strings property that lets you access a particular string by its position in the list of
strings. To find the position of a string in the list, use the IndexOf method.

If you want to add several strings at once to a list of strings, use the AddStrings method.
You can assign one strings object to another using the Assign method.

To determine if a particular string exists in the list of strings, call the Find method. To
sort the list of strings, use the Sort method. To determine if the list is sorted, check the
value of the Sorted property. You can decide whether the list can contain duplicate
strings using the Duplicates property.

Each string can be associated with an object. The objects associated with strings are
commonly used to place a bitmap in an owner-draw control. If you want to add a string
and an object to string list at the same time, use the AddObject method. You can access a
particular object by its position in the list of objects using the Objects property. To find
the position of the object in the list, use the IndexOfObject method. To insert an object,
call the InsertObject method. The Delete, Move, Clear, and Exchange methods operate on
the object associated with a string as well as on the string itself. For example, calling
Clear removes all strings and all their associated objects.

You can store strings in a file and then load them all at one using the LoadFromFile
method. To save the strings to a file, use the SaveToFile method.

In addition to these properties, methods, and events, this object also has the methods
that apply to all objects.

Properties

OnClick OnEnter OnMouseDown
OnColumnMoved OnExit OnMouseMove
OnDblClick OnGetEditMask OnMouseUp
OnDragDrop OnGetEditText OnRowMoved
OnDragOver OnKeyDown OnSelectCell
OnDrawCell OnKeyPress OnSetEditText
OnEndDrag OnKeyUp OnTopLeftChanged

Count Objects Strings
Duplicates Sorted Values

954 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T S t r i n g s o b j e c t

Methods

Events

TStrings object Classes

String objects are used by various components to manipulate strings. A string object has
no way to store a string, but instead uses the native storage ability of the control that
uses it.

For example, the Items property of a list box control is of type TStrings. The strings that
appear in a list box control are stored in a list box string object (TListBoxStrings), which is
derived from TStrings. When you add or delete items in a list box, you are adding and
deleting them from a list box string object.

To maintain a list of strings outside of a control, use a string list object (TStringList).

You can add, delete, insert, move, and exchange strings using the Add, Delete, Insert,
Move, and Exchange methods of a string object. The Clear method clears all the strings in
the list of strings. The Count property contains the number of strings in the list. Each
string object has a Strings property that lets you access a particular string by its position
in the list of strings. To find the position of a string in the list, use the IndexOf method.

To add several strings at once to a list of strings, use the AddStrings method. You can
assign one string object to another using the Assign method.

Each string can be associated with an object. The objects associated with strings are
commonly used to place a bitmap in an owner-draw control. If you want to add a string
and an object to string list at the same time, use the AddObject method. You can access a
particular object by its position in the list of objects using the Objects property. To find
the position of the object in the list, use the IndexOfObject method. To insert an object,
call the InsertObject method. The Delete, Move, Clear, and Exchange methods operate on
the object associated with a string as well as on the string itself. For example, calling
Clear removes all strings and all their associated objects.

You can store strings in a file and then load them all at one using the LoadFromFile
method. To save the strings to a file, use the SaveToFile method.

Add Clear Insert
AddObject Delete InsertObject
AddStrings EndUpdate LoadFromFile
Assign Exchange SaveToFile
BeginUpdate Free SetText
ClassName GetText Sort
ClassParent IndexOf
ClassType IndexOfObject

OnChange

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 955

T S y m b o l S t r t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

In addition to these properties and methods, this object also has the methods that apply
to all objects.

Properties

Methods

TSymbolStr type DB

Declaration

TSymbolStr = string[DBIMAXNAMELEN];

The TSymbolStr type is the type of a string of the correct length for a database object
name, such as a Locale property, a field name, or a password.

TTabbedNotebook component TabNotBk

The TTabbedNotebook component contains multiple pages, each with its own set of
controls. The user selects a page by clicking the page’s tab that appears at the top of the
control.

The pages available in the tabbed notebook control are the strings specified as the value
of the Pages property. You can access a particular page in the notebook either with the
PageIndex property or the ActivePage property.

At run time, you can change the active page in the tabbed notebook with the SetTabFocus
method. If you need to determine the PageIndex value of a particular page, call the
GetIndexForPage method.

You determine how many tabs appear in a row by setting the TabsPerRow property. If
there are more pages than there are tabs in one row, multiple rows automatically appear
in the control. You can specify the font of the text on the tabs with the TabFont property.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

Count Strings Values
Objects

Add Clear Insert
AddObject Delete InsertObject
AddStrings Exchange LoadFromFile
Assign EndUpdate Move
BeginUpdate Free SaveToFile
ClassName GetText SetText
ClassParent IndexOf
ClassType IndexOfObject

956 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T T a b C h a n g e E v e n t t y p e

Properties

Methods

Events

TTabChangeEvent type Tabs

Declaration

TTabChangeEvent = procedure(Sender: TObject; NewTab: Integer; var AllowChange: Boolean) of
object;

The TTabChangeEvent type points to a method that is called when the selected tab (the
TabIndex) is about to change in a tab set control. The NewTab parameter is the tab that is
about to become the selected tab. The AllowChange variable determines whether the
change is permitted. If AllowChange is False, the user won’t be able to select the new tab,
in effect disabling it.

TTable component DBTables

The TTable component provides live access to database tables through the Borland
Database Engine. TTable is the interface between the Borland Database Engine and

ActivePage Handle Parent
Align Height TabOrder
BoundsRect HelpContext TabsPerRow
ComponentIndex Hint TabStop
ControlCount Left Tag
Controls Name Top
Cursor Owner Visible
Enabled PageIndex Width
Font Pages

BeginDrag GetTextBuf ScrollBy
BringToFront GetTextLen SendToBack
CanFocus Hide SetBounds
ClientToScreen InsertControl SetFocus
ContainsControl Invalidate SetTabFocus
Dragging Refresh SetTextBuf
EndDrag Repaint Show
Focused ScaleBy Update
GetIndexForPage ScreenToClient

OnEnter OnExit

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 957

T T a b l e c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TDataSource components. The TDataSource components then provide the interface to
data-aware controls such as TDBGrid.

Set the DatabaseName property to specify the database to access. Set the TableName
property to the table to access. Set the ReadOnly property to True unless you want to
change the contents of the table. Set the Exclusive property to True if you do not want
any other application to access the table while you are using it. Use the IndexName
property to use the table with a secondary index. Use the MasterFields and MasterSource
properties to create a link to a master table in a master-detail relationship. Call the
GotoCurrent method to move the cursor to the same position as another TTable linked to
the same database table.

Set the Active property to True or call the Open method to open a TTable, putting it in
Browse mode. Set Active to False or call Close close the TTable. Call the First, Next, Prior,
Last, and MoveBy, methods to navigate through the table. Call the SetKey, FindKey,
FindNearest, GotoKey, and GotoNearest methods to search the database table for specific
values.

Test the BOF and EOF properties to determine if the cursor has reached the beginning or
end of the table, respectively. Call the Append, Insert, AppendRecord or InsertRecord
methods to add a record to the table. Call the Delete method to delete the current record.
Call the Edit method to allow an application to modify records in the table, and Post to
send the changes to the database or Cancel to discard them.

Use the EditRangeStart, EditRangeEnd, SetRangeStart, SetRangeEnd, ApplyRange and
SetRange methods to limit the range of records returned to the application and the
CancelRange method to remove the limit.

In addition to these properties, methods, and events, this component also has the
properties and methods that apply to all components.

Properties

Methods

Active Fields Modified
AutoCalcFields Handle Name
BOF IndexDefs Owner
CanModify IndexFieldCount ReadOnly
Database IndexFieldNames RecordCount
DatabaseName IndexName State
DBHandle IndexFields TableName
DBLocale KeyExclusive TableType
EOF KeyFieldCount Tag
Exclusive Locale UpdateMode
FieldCount MasterFields
FieldDefs MasterSource

AddIndex EditKey GotoNearest
ApplyRange EditRangeEnd Insert

958 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T T a b O r d e r t y p e

Events

TTabOrder type Controls

Declaration

TTabOrder = –1..32767;

The TTabOrder type defines a subrange of integers that can be used as values for the
TabOrder property.

TTabSet component Tabs

The TTabSet component presents horizontal tabs users can click to initiate actions. Tab
set controls are commonly used with TNotebook controls to display pages within the
same dialog box.

You create a set of tabs for the tab set control when you specify a list of strings as the
value of the Tabs property. One tab is created for each string. If you are using a tab set
control to work with a notebook control (TNotebook), this line of code creates a tab for
each page of the notebook control:

TabSet1.Tabs := Notebook1.Pages;

Append EditRangeStart InsertRecord
AppendRecord EmptyTable Last
BatchMove EnableControls MoveBy
Cancel FieldByName Next
CancelRange FindField Open
CheckBrowseMode FindKey Post
ClearFields FindNearest Prior
Close First Refresh
CreateTable FreeBookmark SetFields
CursorPosChanged GetBookmark SetKey
Delete GetFieldNames SetRange
DeleteIndex GetIndexNames SetRangeEnd
DeleteTable GotoBookmark SetRangeStart
DisableControls GotoCurrent UpdateRecord
Edit GotoKey

AfterCancel AfterPost BeforeOpen
AfterClose BeforeCancel BeforePost
AfterDelete BeforeClose OnCalcFields
AfterEdit BeforeDelete OnNewRecord
AfterInsert BeforeEdit
AfterOpen BeforeInsert

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 959

T T a b S e t c o m p o n e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Then, in the OnClick event handler of the tab set control, this line of code changes the
current page in the notebook control when the user clicks a tab:

Notebook1.PageIndex := TabSet1.TabIndex;

To determine which tab is currently selected or to use code to select a tab, use the
TabIndex property. To find out which tab is the first visible tab in the tab set control or to
make a tab the first visible tab, use the FirstIndex property.

Several properties affect the appearance of the tab set control. Tabs are usually
displayed at the bottom of a form. To display the tabs at the bottom of the form, choose
alBottom as the Align property value. Set the SelectedColor and UnselectedColor properties
to help the user tell the difference between a selected and an unselected tab. The
BackgroundColor and the DitherBackground properties determine how the background of
the tab set appears. You can determine how far from the edge of the control the tabs are
positioned with the StartMargin and EndMargin properties. If you want scroll buttons to
appear automatically when the tab set control doesn’t have enough room to display all
the tabs, set AutoScroll to True.

You can display graphics on tabs as well as text. Use the Style property select an owner-
draw tab style.

In addition to these properties, methods, and events, this component also has the
properties, methods, and events that apply to all windowed controls.

For more information, search for TabSet component in online Help, and choose the topic
Using the TabSet Component.

Properties

Methods

Align Height Style
AutoScroll HelpContext TabHeight
BackgroundColor Hint TabIndex
Canvas Left Tabs
ComponentIndex Name Tag
Cursor Owner Top
DitherBackground Parent UnselectedColor
DragMode ParentShowHint Visible
Enabled SelectedColor VisibleTabs
EndMargin ShowHint Width
FirstIndex Showing
Font StartMargin

BeginDrag GetTextLen ScreenToClient
BringToFront Hide ScrollBy
CanFocus Invalidate SelectNext
ClientToScreen ItemAtPos SendToBack
Dragging ItemRect SetBounds

960 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T T a b S t y l e t y p e

Events

TTabStyle type Tabs

Declaration

TTabStyle = (tsStandard, tsOwnerDraw);

The TTabStyle type defines the style of the tabs in a tab set control. TTabStyle is the type
of the a tab set control’s Style property.

TTextCase type FileCtrl

Declaration

TTextCase = (tcLowerCase, tcUpperCase);

The TTextCase type defines the values available to the Text property of a drive combo
box (TDriveComboBox).

TTextRec type SysUtils

Declaration

PTextBuf = ^TTextBuf;
TTextBuf = array[0..127] of Char;
TTextRec = record
Handle: Word;
Mode: Word;
BufSize: Word;
Private: Word;
BufPos: Word;
BufEnd: Word;
BufPtr: PTextBuf;
OpenFunc: Pointer;
InOutFunc: Pointer;
FlushFunc: Pointer;
CloseFunc: Pointer;
UserData: array[1..16] of Byte;

EndDrag Refresh SetFocus
Focused Repaint SetTextBuf
GetTextBuf ScaleBy Update

OnChange OnDragOver OnEnter
OnClick OnDrawTab OnExit
OnDragDrop OnEndDrag OnMeasureTab

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 961

T T i l e M o d e t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Name: array[0..79] of Char;
Buffer: TTextBuf;

end;

TTextRec is the internal format of a variable of type text. You would never declare a
variable of this type. However, you would use TTextRec to typecast a text file variable to
access the internal data fields, such as the file name.

Note Do not use this unless you are familiar with writing Object Pascal text file device drivers.

TTileMode type Forms

Declaration

TTileMode = (tbHorizontal, tbVertical);

The TTileMode type defines the values the TileMode property of a form can have.

TTimeField component
A TTimeField represents a field of a record in a dataset. It represents a value consisting of
a time.

Set the DisplayFormat property to control the formatting of the field for display
purposes, and the EditFormat property for editing purposes. Use the Value property to
access or change the current field value.

The TTimeField component has the properties, methods, and events of the TField
component.

Properties

Methods

Alignment DataType IsIndexField
AsBoolean DisplayLabel IsNull
AsDateTime DisplayName Name
AsFloat DisplayText Owner
AsInteger DisplayWidth ReadOnly
AsString EditMask Required
Calculated EditMaskPtr Size
CanModify FieldName Tag
DataSet FieldNo Text
DataSize Index Visible

Assign FocusControl SetData
AssignValue GetData
Clear IsValidChar

962 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T T i m e r c o m p o n e n t

Events

TTimer component ExtCtrls

The TTimer component causes an OnTimer event to occur whenever a specified period
of time passes. Within that OnTimer event handler, your code specifies what you want
to happen each time the OnTimer event occurs.

You use the Interval property to control the amount of time between timer events.

To activate or deactivate a timer, use its Enabled property.

In addition to these properties and events, this component also has the properties and
methods that apply to all components.

For more information, search for Timer component in online Help, and choose the topic
Using the Timer Component.

Properties

Events

TTransIsolation type DB

Declaration

TTransIsolation = (tiDirtyRead, tiReadCommitted, tiRepeatableRead);

The TTransIsolation type is used by the TransIsolation property and it is the set of values
that can be used to start a transaction. They control how records which have been
modified by another application will be returned to your application by the server.

TVarBytesField component
A TVarBytesField represents a field of a record which is represented by a value
consisting of an arbitrary set of up to 65535 bytes. The first two bytes are a binary value
defining the actual length.

Use the Assign method to copy values from another field to a TVarBytesField.

OnChange OnSetText OnValidate
OnGetText

ComponentIndex Interval Owner
Enabled Name Tag

OnTimer

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 963

T V a r R e c t y p e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

The TVarBytesField component has the properties, methods, and events of the TField
component.

Properties

Methods

Events

TVarRec type System

Declaration

const
 vtInteger = 0;
vtBoolean = 1;

 vtChar = 2;
 vtExtended = 3;
 vtString = 4;
 vtPointer = 5;
 vtPChar = 6;
 vtObject = 7;
 vtClass = 8;

type
 TVarRec = record
 case Integer of
 vtInteger: (VInteger: Longint; VType: Byte);
 vtBoolean: (VBoolean: Boolean);
 vtChar: (VChar: Char);

Alignment DataType IsIndexField
AsBoolean DisplayLabel IsNull
AsDateTime DisplayName Name
AsFloat DisplayText Owner
AsInteger DisplayWidth ReadOnly
AsString EditMask Required
Calculated EditMaskPtr Size
CanModify FieldName Tag
DataSet FieldNo Text
DataSize Index Visible

Assign FocusControl SetData
AssignValue GetData
Clear IsValidChar

OnChange OnSetText OnValidate
OnGetText

964 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T W i n d o w S t a t e t y p e

 vtExtended: (VExtended: PExtended);
 vtString: (VString: PString);
 vtPointer: (VPointer: Pointer);
 vtPChar: (VPChar: PChar);
 vtObject: (VObject: TObject);
 vtClass: (VClass: TClass);
 end;

TVarRec type is used inside a procedure with a parameter type of array of const. The tag
field lets the procedure know the simple type of each parameter passed in the open
array.

The variable type constants represent the values passed in the tag of the TVarRec
structure.

TWindowState type Forms

Declaration

TWindowState = (wsNormal, wsMinimized, wsMaximized);

The TWindowState type defines the three possible states of a form: normal, minimized,
or maximized. TWindowState is the type of the WindowState property of a form.

TWordArray SysUtils

Declaration

PWordArray = ^TWordArray;

TWordArray = array[0..16383] of Word;

TWordArray declares a general array of type Word that can be used in typecasting.

TWordField component
A TWordField represents a field of a record in a dataset. It is represented as a binary
value with a range from 0 to 65,535. Use TWordField for fields that hold unsigned whole
numbers.

Set the DisplayFormat property to control the formatting of the field for display
purposes, and the EditFormat property for editing purposes. Use the Value property to
access or change the current field value. Set the MinValue or the MaxValue property to
limit the smallest or largest value permitted in a field.

The TWordField component has the properties, methods, and events of the TField
component.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 965

T y p e O f f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Properties

Methods

Events

TypeOf function System

Declaration

function TypeOf(X) : Pointer

The TypeOf function returns a pointer to an object type’s virtual method table (VMT).

X is either an object type identifier or an instance of an object type.

TypeOf can be applied only to object types that have a VMT; all other types result in an
error.

Example

{Note: use TypeOf for the older “Object” object hierarchy}

uses WinCrt;

uses Objects;

type
 PBaseObject = ^TBaseObject;
 TBaseObject = object(TObject)

Alignment DisplayFormat IsNull
AsBoolean DisplayLabel MaxValue
AsDateTime DisplayName MinValue
AsFloat DisplayText Name
AsInteger DisplayWidth Owner
AsString EditFormat ReadOnly
Calculated EditMask Required
CanModify EditMaskPtr Size
DataSet FieldName Tag
DataSize FieldNo Text
DataType Index Value
AsFloat IsIndexField Visible

Assign FocusControl SetData
AssignValue GetData
Clear IsValidChar

OnChange OnSetText OnValidate
OnGetText

966 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

T Z o o m F a c t o r t y p e

 end;

PChildObject = ^TChildObject;
 TChildObject = object(TBaseObject)
 end;

var
 P,Q : PObject; { abstract object pointer }

begin
 P := New(PBaseObject, Init);
 Q := New(PChildObject, Init);
 if TypeOf(P^) = TypeOf(TBaseObject) then
 writeln('P is a TBaseObject instance')
 else
 writeln('P is not a TBaseObject instance');

if TypeOf(Q^) = TypeOf(TChildObject) then
 writeln('Q is a TChildObject instance')
 else
 writeln('Q is not a TChildObject instance');

if TypeOf(Q^) <> TypeOf(P^) then
 writeln('Q is not the same kind of object instance as P');

Dispose(P, Done);
 Dispose(Q, Done);
end;

See also
SizeOf function

TZoomFactor type ToCtrl

Declaration

TZoomFactor = (z025, z050, z100, z150, z200);

TZoomFactor is the type of the Zoom property of the TOLEContainer component.

UniDirectional property

Applies to
TQuery component

Declaration

property UniDirectional: Boolean;

If an application only needs to be able to move forward in the result set of a TQuery
component, set the UniDirectional property to True. When UniDirectional is True, an

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 967

U n m e r g e m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
U

application requires less memory (because the records do not have to be cached), but the
application cannot move backwards in the result set.

UniDirectional is False by default.

Unmerge method

Applies to
TMainMenu component

Declaration

procedure Unmerge(Menu: TMainMenu);

The Unmerge method reverses the merging of two menus into one in a non-MDI
application. The Menu parameter is the merged menu that you no longer want to be
merged.

Example
This example uses two forms, each containing a main menu created with the Menu
Designer. It also uses a button on Form1. When the user clicks the button, Form2 appears
and the main menu of Form2 merges with that of Form1.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Form2.Show;
 MainMenu1.Merge(Form2.MainMenu1);
end;
bo

Form2 also has a button. When the user clicks the button on Form2, the menu of Form2 is
no longer merged with the menu on Form1:

procedure TForm2.Button1Click(Sender: TObject);
begin
 Form1.MainMenu1.Unmerge(MainMenu1);
end;

To run this example, create a uses clause in the implementation section of each unit and
add the other unit to it. For example, the uses clause in the implementation section of
Unit1 would look like this:

uses Unit2;

See also
AutoMerge property, Merge method

968 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

U n P r e p a r e m e t h o d

UnPrepare method

Applies to
TQuery, TStoredProc component

For stored procedures

Declaration

procedure UnPrepare;

The UnPrepare method notifies the server that the stored procedure will no longer be
needed, allowing the server to release any resources allocated to the stored procedure.

Example

StoredProc1.UnPrepare;

See also
Prepared property, Prepare method

For queries

Declaration

procedure UnPrepare;

The UnPrepare method sets the Prepared property to False. This ensures that the SQL
property will be translated again before the request is submitted to the server. In
addition, the server is notified that it can release any resources allocated for
optimization purposes, since a new request will be sent before (or in conjunction with) a
call to the Open or ExecSQL method.

Preparing a query consumes some database resources, so it is good practice for an
application to unprepare a query once it is done using it. The UnPrepare method
unprepares a query. When you change the text of a query at run time, Delphi
automatically closes and unprepares the query.

See also
Prepare method

UnselectedColor property

Applies to
TTabSet component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 969

U p C a s e f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
U

Declaration

property UnselectedColor: TColor;

The UnselectedColor property determines the color of the tabs that aren’t currently
selected in the tab set control.

Example
This code changes the color of the unselected tabs:

TabSet11.UnselectedColor := clSilver;

See also
SelectedColor property

UpCase function System

Declaration

function UpCase(Ch: Char): Char;

The UpCase function converts a Ch to uppercase.

Ch is an expression of type Char. Character values not in the range a..z are unaffected.

Example

uses Dialogs;

var
 s : string;
 i : Integer;
 begin
 { Get string from TEdit control }
 s := Edit1.Text;
 for i := 1 to Length(s) do
 s[i] := UpCase(s[i]);
 MessageDlg('Here it is in all uppercase: ' + s, mtInformation, [mbOk], 0);
 end;

See also
StrUpper function

Update method

Applies to
All controls; TFieldDefs, TIndexDefs objects; TDirectoryListBox, TFileListBox components

The Update method repaints or refreshes a component.

970 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

U p d a t e m e t h o d

For directory and file list boxes

Declaration

procedure Update;

The Update method updates and refreshes the directory list for the directory and file list
box controls.

Example
The following sample code sets the directory of DirectoryListBox1 to C:\TEMP when the
form is created. When Button1 is pressed, a subdirectory called MYDIR is added to C:\
TEMP, but note that it is not updated in DirectoryListBox1 until Button2 is pressed and
Update is called.

procedure TForm1.Button1Click(Sender: TObject);
begin
MkDir('c:\temp\mydir');

end;

procedure TForm1.FormCreate(Sender: TObject);
begin
DirectoryListBox1.Directory := 'c:\temp';

end;

procedure TForm1.Button2Click(Sender: TObject);
begin
DirectoryListBox1.Update;

end;

For all controls

Declaration

procedure Update;

The Update method calls the Windows API UpdateWindow function, which processes
any pending paint messages.

Example
When this line of code runs, Windows repaints EditBox1:

Edit1.Update;

See also
Invalidate method, Refresh method

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 971

U p d a t e C u r s o r P o s m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
U

For TFieldDefs objects

Declaration

procedure Update;

Update refreshes the TFieldDef entries in Items to reflect the current state of the fields
underlying the dataset. It does so without opening the dataset.

For TIndexDefs objects

Declaration

procedure Update;

The Update method will refresh the entries in Items to reflect the current dataset. Use this
method to obtain index information without opening the dataset.

See also
Items property

UpdateCursorPos method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure UpdateCursorPos;

UpdateCursorPos sets the current position of the dataset’s underlying BDE cursor to the
current cursor position of the dataset. The UpdateCursorPos method is useful if you make
direct calls to the Borland Database Engine.

See also
CursorPosChanged method

UpdateMode property

Applies to
TTable, TQuery components (live result sets only)

Declaration

property UpdateMode;

972 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

U p d a t e M o d e p r o p e r t y

The UpdateMode property determines how Delphi will find records being updated in a
SQL database. This property is important in a multi-user environment when users may
retrieve the same records and make conflicting changes to them.

When a user posts an update, Delphi uses the original values in the record to find the
record in the database. This approach is similar to an optimistic locking scheme.
UpdateMode specifies which columns Delphi uses to find the record. In SQL terms,
UpdateMode specifies which columns are included in the WHERE clause of an UPDATE
statement. If Delphi cannot find a record with the original values in the columns
specified (if another user has changed the values in the database), Delphi will not make
the update and will generate an exception.

The UpdateMode property may have the following values:

• WhereAll (the default): Delphi uses every column to find the record being updated.
This is the most restrictive mode.

• WhereKeyOnly: Delphi uses only the key columns to find the record being updated.
This is the least restrictive mode and should be used only if other users will not be
changing the records being updated.

• WhereChanged: Delphi uses key columns and columns that have changed to find the
record being updated.

Example
Consider a COUNTRY table with columns for NAME (the key), CAPITAL, and
CONTINENT. Suppose you and another user simultaneously retrieve a record with the
following values:

• NAME = “Philippines”
• CAPITAL = “Nairobi”
• CONTINENT = “Africa”

Both you and the other user notice that the information in this record is incorrect and
should be changed. Now, suppose the other user changes CONTINENT to “Asia”,
CAPITAL to “Manila”, and posts the change to the database. A few seconds later, you
change NAME to “Kenya” and post your change to the database.

If your application has UpdateMode set to WhereKey on the dataset, Delphi compares the
original value of the key column (NAME = “Philippines”) to the current value in the
database. Since the other user did not change NAME, your update occurs. You think the
record is now [“Kenya”, “Nairobi”, “Africa”] and the other users thinks it is
[“Philippines”, “Asia”, “Manila”]. Unfortunately, it is actually [“Kenya”, “Asia”,
“Manila”], which is still incorrect, even though both you and the other user think you
have corrected the mistake. This problem occurred because you had UpdateMode set to
its least restrictive level, which does not protect against such occurrences.

If your application had UpdateMode set to WhereAll, the Delphi would check all the
columns when you attempt to make your update. Since the other user changed
CAPITAL and CONTINENT, Delphi would not let you make the update. When you
retrieved the record again, you would see the new values entered by the other user and
realize that the mistake had already been corrected.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 973

U p d a t e R e c o r d m e t h o d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
V

UpdateRecord method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure UpdateRecord;

The UpdateRecord method notifies each TDataSource component that the current record
is about to be posted to the dataset. Each data source in turn notifies all data controls so
that they can update the fields of the record from the current values displayed in the
controls. UpdateRecord is called automatically by Post, but an application can also use it
separately to bring the current record up to date without posting it.

UpperCase function SysUtils

Declaration

function UpperCase(const S: string): string;

The UpperCase function returns a string containing the same text as S, but with all letters
converted to uppercase.

Example
This example uses a list box and a button on a form. Use the Items property editor in the
Object Inspector to enter a list of strings in the list box. When you run the application
and click the button, the strings in the list box become uppercase.

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to ListBox1.Items.Count –1 do
 ListBox1.Items[I] := UpperCase(ListBox1.Items[I]);
end;

See also
AnsiUpperCase function, LowerCase function

Val procedure System

Declaration

procedure Val(S; var V; var Code: Integer);

The Val function converts the string value S to its numeric representation, as if it were
read from a text file with Read.

974 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

V a l i d a t e E d i t m e t h o d

S is a string-type expression; it must be a sequence of characters that form a signed
whole number. V is an integer-type or real-type variable. Code is a variable of type
Integer.

If the string is invalid, the index of the offending character is stored in Code; otherwise,
Code is set to zero. For a null-terminated string, the error position returned in Code is one
larger than the actual zero-based index of the character in error.

Val performs range checking differently depending upon the state of $R and the type of
the parameter V.

Example

uses Dialogs;

var
 I, Code: Integer;
begin
 { Get text from TEdit control }
 Val(Edit1.Text, I, Code);
 { Error during conversion to integer? }
 if code <> 0 then
 MessageDlg('Error at position: ' + IntToStr(Code), mtWarning, [mbOk], 0);
 else
 Canvas.TextOut(10, 10, 'Value = ' + IntToStr(I));
 Readln;
end;

See also
Str procedure

ValidateEdit method

Applies to
TDBEdit, TMaskEdit components

Declaration

procedure ValidateEdit;

The ValidateEdit method checks the value of the EditText property for blank required
characters in the edit box. If one is found, the EDBEditError exception is raised. If no
exception occurs, you can be sure all required characters have been entered in the edit
box.

Setting Result

{$R+} An out-of-range value always generates a run-time error.
{$R–} The values for out-of-range vary depending upon the data type of V.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 975

V a l i d P a r e n t F o r m f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
V

Example
The following code calls ValidateEdit from the default OnExit event handler of DBEdit1.

procedure TForm1.DBEdit1Exit(Sender: TObject);
begin
 ValidateEdit;
end;

See also
EditText property

ValidParentForm function Forms

Declaration

function ValidParentForm(Control: TControl): TForm;

The ValidParentForm function returns the form that contains the control specified in the
Control parameter. If the specified control is not on a form, ValidParentForm generates an
EInvalidOperation exception.

If you prefer that the function return nil when the specified control is not on a form, use
the GetParentForm function.

Example
The following code calls ValidParentForm to find the parent form of the
MyForm.MyButton control. If found, that form is shown modally. If not, an exception
occurs.

procedure TForm1.Button3Click(Sender: TObject);
begin
ValidParentForm(MyForm.MyButton).ShowModal;

end;

Value property

Applies to
TDBLookupCombo, TDBLookupList, TDBRadioGroup, TBCDField, TBooleanField,
TCurrencyField, TDateField, TDateTimeField, TFloatField, TIntegerField, TSmallintField,
TStringField, TTimeField, TWordField components

For database radio groups

Declaration

property Value: string;

976 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

V a l u e p r o p e r t y

The value of the Value property is the current contents of the field for the current record
in the dataset. When the user selects a radio button, the value of the Value property
changes to the value of the Items string for the radio button. The new value of the Value
property becomes the value of the field for the current record in the dataset.

If the ReadOnly property of the database radio group box is True, the user won’t be able
to select a button or change the contents of the field.

Example
The following code concatenates some text to the string in the Value property. When the
user chooses a radio button in DBRadioGroup1, the value of Value is stored in the
corresponding field in the DataSource (if ReadOnly is False). In the OnChange event
handler, a label is updated, indicating to the user that this change has occurred.

procedure TForm1.DBRadioGroup1Change(Sender: TObject);
begin
Label1.Caption := 'Field ' + DBRadioGroup1.DataField + ' has changed to ' +

DBRadioGroup1.Value;
end;

See also
ItemIndex property

For database lookup combo and list boxes

Declaration

property Value: string;

Run-time only. The value of the Value property is the contents of the DataField for the
current record in the primary dataset. As the user moves through the primary dataset,
the value of the Value property changes.

By explicitly changing the Value property value at run time, you change the contents of
the field.

Example
The following code changes the Value property, and thus, the value of the field in the
connected dataset to ‘Green’.

DBLookupCombo1.Value := ‘Green’;

See also
DisplayValue property

For fields

Declaration

property Value: string; {TStringField}

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 977

V a l u e C h e c k e d p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
V

property Value: Longint; {TIntegerField, TSmallintField, TWordField}

property Value: Double; {TBCDField, TCurrencyField, TFloatField}

property Value: Boolean; {TBooleanField}

property Value: TDateTime {TDateField, TDateTimeField, TTimeField}

Run-time only. Value is the actual data in a TField. Use Value to read data directly from
and write data directly to a TField.

For TBCDField, TCurrencyField, and TFloatField, Value is a Double.

For TBooleanField, Value is a Boolean.

For TDateField, TDateTimeField, and TTimeField, Value is a TDateTime.

For TIntegerField, TSmallintField, and TWordField, Value is a Longint.

For TStringField, Value is the string assigned to the field.

Examples

StringField1.Value := ‘Delphi’;

DateField1.Value := StrToDateTime(‘02/14/95 00:00:00’);

ValueChecked property

Applies to
TDBCheckBox component

Declaration

property ValueChecked: string;

Description
If the value of the ValueChecked property is equal to the data in the field of the current
record of the dataset, the database check box is checked.

You also can enter a semicolon-delimited list of items as the value of ValueChecked. If any
of the items matches the contents of the field of the current record in the dataset, the
check box is checked. For example, you can specify a ValueChecked string like this:

DBCheckBox1.ValueChecked := ‘True;Yes;On’;

If the string True, Yes, or On is the contents of the field specified as the database check
box’s DataField, the check box is checked. The case of the specified strings is not checked.

If the contents of the field of the current record matches a string specified as the value of
the ValueUnchecked property, the check box is unchecked. If the contents of the field
matches no string in either ValueChecked or ValueUnchecked, the check box appears gray.

If the DataField of the database check box is a logical field, the check box is always
checked if the contents of the field is True, and it is always unchecked if the contents of

978 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

V a l u e s p r o p e r t y

the field is False. The values of the ValueChecked and ValueUnchecked properties have no
affect on logical fields.

If the user checks a database check box, the string that is the value of the ValueChecked
property is placed in the database field, as long as the ReadOnly property is False. If the
value is a semicolon-delimited list of items, the first item in the list is inserted as the
contents of the field of the current record.

The default value of ValueChecked is the string ‘True’.

Example
The following code toggles the value of the ValueChecked property of DBCheckBox1 from
‘True’ to ‘False’ or from ‘False’ to ‘True’.

with DBCheckBox1 do
if (ValueChecked = ‘True’) or (ValueChecked = ‘False’) then
if ValueChecked = ‘True’ then ValueChecked := ‘False’
else ValueChecked := ‘True’;

See also
ValueUnchecked property

Values property
The Values property is used by string and string list objects, and by database radio group
boxes.

For string and string list objects

Applies to
TStrings, TStringList objects

Declaration

property Values[const Name: string]: string;

The Values property gives you access to a specific string in a list of strings. The strings
must have a unique structure before you can use the Values property array to access
them:

Name=Value

The Name that identifies the string is to the left of the equal sign (=), and the current
Value of the Name identifier is on the right side of the equal sign. There should be no
spaces present before and after the equal sign.

Such strings are commonly found in .INI files. For example, here are a few strings taken
from a DELPHI.INI file:

DisplayGrid=1

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 979

V a l u e s p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
V

SnapToGrid=1
GridSizeX=8
GridSizeY=8

The strings that make up the Params property of a database component (TDatabase) have
the same format. The most common use of the Values property is to modify a string
within the Params property array.

To modify a string in a list of strings that have the required format, identify the string to
modify with the Name constant parameter, which serves as an index into the list of
strings, and assign a new value.

Example
Assume that a string that identifies the password needed to access a database exists in
the Params string list. You can change the acceptable password using this code:

Database1.Params.Values[‘Password’] := ‘TopSecret’;

If there is no password string, the same code creates one at the bottom of the list of
strings and assigns the ‘TopSecret’ string as its value.

You can also assign the value of the string to a variable. For example, this code assigns
the current value of the password string to a variable called StringValue:

var
StringValue: string;

StringValue := Database1.Params.Values[‘Password’];

For database radio group boxes

Applies to
TDBRadioGroup component

Declaration

property Values: TStrings;

Each string in the Items property for a database radio group box places a radio button in
the group box with an accompanying caption. If the contents of a field for the current
record is the same as one of the strings in Items, the corresponding radio button is
selected. If the user selects one of the radio group buttons and the ReadOnly property of
the database radio group is False, the contents of the field changes to the corresponding
Items string.

Often, you might not want the same string that serves as the caption of a radio button to
become the contents of the field. Or, you might want a different value in the data field
(other than the caption of a radio button) to select a radio button. In this case, use the
Values property. You can specify a string in the Value property for each string in the
Items list. The first string in Values corresponds to the first string in the Items, and
therefore, the first radio button in the group box.

980 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

V a l u e U n c h e c k e d p r o p e r t y

For example, suppose you have two strings in the Items property for a database radio
group: Yes and No. If there are no strings in the Values property, the data field must
contain either the value Yes or No to select one of the radio buttons. If the user selects
one of these buttons, the string Yes or No becomes the contents of the data field.

If the data field contains values such as Y or N, rather than Yes or No, you can specify Y
or N as Values strings. This way, the Yes or No radio buttons are selected when a Y or N
value appears in the data field. When the user selects one of the radio buttons, Y or N
becomes the value of the field of the current record.

Example
This example uses a database radio group box connected to field in a dataset. The field
contains the values ‘Y’, ‘N’, or ‘M’. You want the captions of the radio buttons to be
‘Yes’, ‘No’, or ‘Maybe’, so the code adds these three strings to the Items property array.
The actual values that are in the field and that can entered into the field are the ‘Y’, ‘N’,
and ‘M’ strings, so these are added to the Values property array.

procedure TForm1.FormCreate(Sender: TObject);
begin
 with DBRadioGroup1 do
 begin
 Items.Add('Yes');
 Items.Add('No');
 Items.Add('Maybe');
 Values.Add('Y');
 Values.Add('N');
 Values.Add('M');
 end;
end;

When the code runs, three radio buttons appear in the group box. If the current record
in the dataset contains any of the values contained in the Values property, the
appropriate radio button is checked. When the user selects a radio button, the
corresponding string in the Values property is entered into the field.

See also
ItemIndex property, Items property

ValueUnchecked property

Applies to
TDBCheckBox component

Declaration

property ValueUnchecked: string;

If the value of the ValueUnchecked property is equal to the data in the field of the current
record of the dataset, the database check box is unchecked.

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 981

V e r s i o n M a j o r p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
V

You also can enter a semicolon-delimited list of items as the value of ValueUnchecked. If
any of the items matches the contents of the field of the current record in the dataset, the
check box is unchecked. For example, you can specify a ValueUnchecked string like this:

DBCheckBox1.ValueUnchecked := ‘False;No;Off’;

If the string False, No, or Off is the contents of the field specified as the database check
box’s DataField, the check box is unchecked.

If the contents of the field of the current record matches a string specified as the value of
the ValueChecked property, the check box is checked. If the contents of the field matches
no string in either ValueChecked or ValueUnchecked, the check box appears gray.

If the DataField of the database check box is a logical field, the check box is always
checked if the contents of the field is True, and it is always unchecked if the contents of
the field is False. The values of the ValueChecked and ValueUnchecked properties have no
affect on logical fields.

If the user checks a database check box, the string that is the value of the ValueUnchecked
property is placed in the database field, as long as the ReadOnly property is False. If the
value is a semicolon-delimited list of items, the first item in the list is inserted as the
contents of the field of the current record.

The default value of ValueUnchecked is the string ‘False’.

Example
The following code changes ValueUnchecked to ‘NO’. When the value of the linked field
is ‘NO’, DBCheckBox1 is unchecked.

DBCheckBox1.ValueUnchecked := ‘NO’;

See also
ValueChecked property

VersionMajor property

Applies to
TReport component

Declaration

property VersionMajor: Integer;

Run-time and read only. The value of the VersionMajor property identifies which major
version of ReportSmith you are running. For example, if you are using ReportSmith 2.5,
the value of VersionMajor is 2. The minor version value is reported in the VersionMinor
property.

See also
VersionMinor property

982 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

V e r s i o n M i n o r p r o p e r t y

VersionMinor property

Applies to
TReport component

Declaration

property VersionMajor: Integer;

Run-time and read only. The value of the VersionMinor property identifies which minor
version of ReportSmith you are running. For example, if you are using ReportSmith 2.5,
the value of VersionMinor is 5. The major version value is reported in the VersionMajor
property.

See also
VersionMajor property

VertScrollBar property

Applies to
TForm, TScrollBox components

Declaration

property VertScrollBar: TControlScrollBar;

The VertScrollBar property is the form’s or scroll box’s vertical scroll bar. The values of
VertScrollBar’s nested properties determines how the vertical scroll bar behaves.

To make a vertical scroll bar appear on a form or scroll box, these nested properties of
VertScrollBar must be set like this:

• Visible must be x.

• The value of the Range property must be greater than the value of the ClientHeight
property of the form or the Height property of the scroll box.

Example
This example places a vertical scroll bar on the form, as long as the ClientHeight of the
form is not greater than 500:

procedure TForm1.FormCreate(Sender: TObject);
begin
 with VertScrollBar do
 begin

Range := 500;
 Visible := True;
 end;
end;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 983

V i s i b l e p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
V

See also
HorzScrollBar property, Increment property, Position property, Range property, ScrollPos
property, Visible property

Visible property

Applies to
All controls; TBCDField, TBlobField, TBooleanField, TBytesField, TControlScrollBar,
TCurrencyField, TDateField, TDateTimeField, TFloatField, TForm, TGraphicField,
TIntegerField, TMenuItem, TMemoField, TSmallintField, TStringField, TTimeField,
TVarBytesField, TWordField components

Declaration

property Visible: Boolean;

The Visible property determines whether the component appears onscreen. If Visible is
True, the component appears. If Visible is False, the component is not visible.

For controls, calling the Show method makes the control’s Visible property True, but it
also performs other actions to ensure that the user can see the control.

For field components, the Visible property determines if a field can be displayed in a
TDBGrid component. If Visible is False, the field is not displayed.

The default value is True for all components except for forms.

Example
The following code shows how to make a button invisible:

Button1.Visible := False;

See also
Hide method, HorzScrollBar property, Show method, VertScrollBar property

VisibleButtons property

Applies to
TDBNavigator, TMediaPlayer components

The VisibleButtons property determines which buttons of a component are visible, and
therefore, which operations the user can perform.

Declaration

property VisibleButtons: TButtonSet;

984 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

V i s i b l e B u t t o n s p r o p e r t y

The VisibleButtons property determines which of the buttons on the media player are
visible. If a button is not made visible with VisibleButtons, it does not appear on the
media player control. By default, all buttons are visible when a media player component
is added to a form.

Example
The following line of code causes only the Play and Stop buttons of MediaPlayer1 to be
displayed:

MediaPlayer1.VisibleButtons := [btPlay, btStop];

See also
ColoredButtons property, EnabledButtons property

For database navigator controls

Declaration

property VisibleButtons: TButtonSet;

The value of the VisibleButtons property determines which buttons appear on the
database navigator component. By default, all the buttons are visible. By changing the
value of the VisibleButtons set, you can hide some of the buttons, and therefore, prevent
the user from performing certain operations. For example, if you only want the user to
view the records in the dataset, you would include only the nbFirst, nbPrior, nbNext, and
nbLast values in the VisibleButtons set.

Button Value Action

Play btPlay Plays the media player
Record btRecord Starts recording
Stop btStop Stops playing or recording
Next btNext Skips to the next track, or to the end if the medium doesn’t use

tracks
Prev btPrev Skips to the previous track, or to the beginning if the medium

doesn’t use tracks
Step btStep Moves forward a number of frames
Back btBack Moves backward a number of frames
Pause btPause Pauses playing or recording. If already paused when clicked,

resumes playing or recording.
Eject btEject Ejects the medium

Button Value Action

First nbFirst Go to the first record
Prior nbPrior Go to the previous record
Next nbNext Go to the next record
Last nbLast Go to the last record
Insert nbInsert Insert a blank record

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 985

V i s i b l e C o l C o u n t p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
V

The default value is all of these values in the Options set.

Example
The following line of code displays only the Prior and Next buttons of DBNavigator1:

DBNavigator1.VisibleButtons := [nbPrior, nbNext];

VisibleColCount property

Applies to
TDrawGrid, TStringGrid components

Declaration

function VisibleColCount: Integer;

Run-time and read only. The VisibleColCount contains the number of columns, other
than fixed or nonscrolling columns, that are fully displayed in the grid. If another
column is partially displayed in the grid, it won’t be part of the count.

Example
This example uses a draw grid, two labels, and a button on a form. When the user clicks
the button, the number of rows and columns, excluding partial and fixed ones, are
reported in the captions of the two labels:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := IntToStr(DrawGrid1.VisibleRowCount) + ' rows';
 Label2.Caption := IntToStr(DrawGrid1.VisibleColCount) + ' columns';
end;

See also
ColCount property, VisibleRowCount property

VisibleRowCount property

Applies to
TDrawGrid, TStringGrid components

Delete nbDelete Deletes the current record
Edit nbEdit Permits editing of the current record
Post nbPost Posts the current record
Cancel nbCancel Cancels the current edit
Refresh nbRefresh Refreshes the data in the dataset

Button Value Action

986 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

V i s i b l e T a b s p r o p e r t y

Declaration

function VisibleRowCount: Integer;

Run-time and read only. The VisibleRowCount contains the number of rows, other than
fixed or nonscrolling rows, that are fully displayed in the grid. If another row is partially
displayed in the grid, it won’t be part of the count.

Example
This example uses a draw grid, two labels, and a button on a form. When the user clicks
the button, the number of rows and columns, excluding partial and fixed ones, are
reported in the captions of the two labels:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := IntToStr(DrawGrid1.VisibleRowCount) + ' rows';
 Label2.Caption := IntToStr(DrawGrid1.VisibleColCount) + ' columns';
end;

See also
RowCount property, VisibleColCount property

VisibleTabs property

Applies to
TTabSet component

Declaration

property VisibleTabs: Integer;

Read only. The value of the VisibleTabs property contains the number of tabs currently
visible in the tab set control.

Example
This example queries the VisibleTabs property to find out how many tabs are visible in
the tab set control and assigns the number to a variable:

SeeTabs := TabSet11.VisibleTabs;

Wait property

Applies to
TMediaPlayer component

Declaration

property Wait: Boolean;

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 987

W a n t R e t u r n s p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
W

The Wait property determines whether a media control method (Back, Close, Eject, Next,
Open, Pause, PauseOnly, Play, Previous, StartRecording, Resume, Rewind, Step, or Stop)
returns control to the application only after it has been completed. Wait is unavailable at
design time.

If Wait is True, the media player component waits until the next media control method
has completed before returning control to the application. If Wait is False, the application
won’t wait for the next media control method to finish before continuing.

Wait affects only the next media control method called after setting Wait. You must reset
Wait to affect any subsequent call to a media control method.

By default, Play and StartRecording function as if Wait is False. You must set Wait to True
before calling Play or StartRecording to prevent control from returning to the application
before playing or recording has finished. By default, all other media control methods
function as if Wait is True.

Note Usually you would set Wait to False only if the next media control is expected to take a
long time, so that your application can execute other code before the media control
method has completed. If you set Wait to False, you might want to set Notify to True so
the application is notified when the media control method completes.

Example
The following code plays a .WAV audio file named NI!.WAV twice. The first call to Play
doesn't return control to the application until the file is done playing. Note that if you
remove the line of code that sets wait to true, the sound is only played once.

procedure TForm1.Button1Click(Sender: TObject);
begin
 with MediaPlayer1 do begin
 FileName := 'ni!.wav';
 AutoRewind := True;
 try
 Open; { Open Media Player }
 Wait := True; { Waits until sounds is done playing to return }
 Play; { Play sound }
 Play; { Play again }
 finally
 Close; { Close media player }
 end;
 end;
end;

WantReturns property

Applies to
TDBMemo, TMemo components

Declaration

property WantReturns: Boolean;

988 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

W a n t T a b s p r o p e r t y

The WantReturns property determines whether return characters the user enters in the
memo by pressing Enter affect the text in the memo, or go to the form. If WantReturns is
True and the user presses Enter, a return character is entered in the memo. If WantReturns
is False and the user presses Enter, a return is not entered in the memo, but instead goes
to the form. For example, if there is a default button on a form, pressing Enter would
choose the button instead of affecting the memo’s text.

To enter return characters in a memo when WantReturns is False, press Ctrl+Enter.

Example
This example uses a memo and a check box on a form. If the check box is checked, the
user can enter return characters into text entered in the memo. If the check box is
unchecked, return characters aren’t entered into the memo, but go to the form.

procedure TForm1.CheckBox1Click(Sender: TObject);
begin
 if CheckBox1.Checked then
 Memo1.WantReturns := True
 else
 Memo1.WantReturns := False;
end;

See also
KeyPreview property, WantTabs property, WordWrap property

WantTabs property

Applies to
TDBMemo, TMemo components

Declaration

property WantTabs: Boolean;

The WantTabs property determines if tabs are enabled in a memo control. To enable tabs
in a memo control, set WantTabs to True. To turn tabs off, set WantTabs to False.

Caution If WantTabs is True, the user can’t use the Tab key to select the next control on the form.
The user can tab into a memo control, but can’t tab out.

Example
This example uses a memo and a check box on a form. When the check box is checked,
the user can enter tab characters into the memo’s text. When the check box is unchecked,
the user can’t enter tab characters into the text, but can use the Tab key to move between
the memo and the check box controls.

procedure TForm1.CheckBox1Click(Sender: TObject);
begin
 if CheckBox1.Checked then
 Memo1.WantTabs := True

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 989

W h e r e X f u n c t i o n+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
W

 else
 Memo1.WantTabs := False;
end;

See also
KeyPreview property, TabStop property, WantReturns property, WordWrap property

WhereX function WinCrt

Declaration

function WhereX: Byte;

Return value
The WhereX function returns the CP’s X-coordinate of the current cursor location.

The returned value is 1-based, and it corresponds to Cursor.X + 1.

Example

uses WinCrt;

begin
 Write('The number in this sentence is in the #');
 Writeln(WhereX, ' column in this window.');
end;

See also
GotoXY procedure, WhereY function

WhereY function WinCrt

Declaration

function WhereY: Byte;

The WhereY function returns the CP’s Y-coordinate of the current cursor location.

The returned value is 1-based, and it corresponds to Cursor.Y + 1.

Example

uses WinCrt;

begin
 Writeln;
 Writeln;
 Write('This sentence is on the #');
 Writeln(WhereY, ' line in this window.');
end;

990 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

W i d t h p r o p e r t y

See also
GoToXY procedure, WhereX function

Width property

Applies to
All controls; TBitmap, TGraphic, TIcon, TMetafile, TPen, TPicture objects; TForm, TScreen
components

Declaration

property Width: Integer;

The Width property determines horizontal size.

For forms and controls

The Width property determines the horizontal size of the control or form in pixels. When
you increase the Width property value, the form or control becomes wider. If you
decrease the value, the form or control becomes narrower.

Example
The following code doubles the width of a button:

Button1.Width := Button1.Width * 2;

See also
ClientWidth property, Height property, SetBounds method

For graphic objects

Declaration

property Width: Integer;

The Width property determines the maximum width of the graphics object in pixels.

Example
To set the pen width to a random value from 1 to 10,

Canvas.Pen.Width := 1 + Random(10);

See also
Height property

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 991

W i n d o w M e n u p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
W

For screen components

Declaration

property Width: Integer;

Run-time and read only. The Width property is the horizontal size of the screen device in
pixels.

Example
The following component determines the width of all the forms on the screen and
resizes the ones that are wider than the screen width. To run this code, the integer
variable I must be declared.

with Screen do
for I := 0 to FormCount-1 do
if Forms[I].Width > Width than Forms[I].Width := Width;

See also
Height property

WindowMenu property

Applies to
TForm component

Declaration

property WindowMenu: TMenuItem;

Most Windows MDI applications contain a Window menu that contains menu items
such as Cascade, Arrange Icons, Tile, and so on that let the user manage the windows in
the application. Usually this menu lists (at the bottom) the child windows that are
currently open in the application. When the user selects one of these windows from the
menu, the window becomes the active window in the application.

The WindowMenu property determines which menu includes the open child windows
(or forms) in your application. Although this menu is commonly called the Window
menu, it can be any name of your choosing. It must be an existing menu item, however,
and it should be one of the menu items that appears in the menu bar or the child forms
won’t be included in a menu.

Example
For this code to run, a menu item called MyWindows must exist on an MDI form parent
form. This line of code designates the MyWindows menu to be the Window menu, the
menu that lists all open child windows in an MDI application:

WindowMenu := MyWindows;

992 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

W i n d o w O r g t y p e d c o n s t a n t

See also
FormStyle property, TMenuItem component

WindowOrg typed constant WinCrt

Declaration

const WindowOrg: TPoint = (X: cw_UseDefault; Y: cw_UseDefault);

The WindowOrg typed constant determines the initial location of the CRT window.

The default location enables Windows to select a suitable location for the CRT window.

You can change the initial location by assigning new values to the x- and y-coordinates
before the CRT window is created.

WindowSize typed constant WinCrt

Declaration

const WindowSize: TPoint = (X: cw_UseDefault; Y: cw_UseDefault);

The WindowSize typed constant determines the initial size of the CRT window.

The default size enables Windows to select a suitable size for the CRT window.

You can change the initial size by assigning new values to the x- and y-coordinates
before the CRT window is created.

WindowState property

Applies to
TForm component

Declaration

property WindowState: TWindowState

The WindowState determines the initial state of the form. These are the possible values:

The default value is wsNormal.

Value Meaning

wsNormal The form appears neither maximized nor minimized
wsMaximized The form is maximized
wsMinimized The form is minimized

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 993

W i n d o w T i t l e v a r i a b l e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
W

Example
The following code responds to the user clicking a button named Shrink by minimizing
the form:

procedure TForm1.ShrinkClick(Sender: TObject);
begin
WindowState := wsMinimized;

end;

See also
TWindowState type

WindowTitle variable WinCrt

Declaration

var WindowTitle: array[0..79] of Char;

The WindowTitle variable determines the title of the CRT window.

The default value is the full path of the program's .EXE file.

You can change the title by storing a new string in WindowTitle before the CRT window
is created.

Here is an example:

StrCopy(WindowTitle, 'Hello World');

WordRec SysUtils

Declaration

WordRec = record
Lo, Hi: Byte;

end;

WordRec declares a utility record that stores the high and low order bytes of the
specified variable as type Byte.

See also
Hi function, Lo function

WordWrap property

Applies to
TDBMemo, TDBText, TLabel, TMemo components

994 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

W r i t e m e t h o d

Declaration

property WordWrap: Boolean;

The WordWrap property determines if text in a label or memo control wraps at the right
margin so that it fits in the control. You can give the user access to the lines which aren’t
visible in a memo control by setting its ScrollBars property to add horizontal, vertical, or
both scrollbars to the memo control. There should be no reason to use a horizontal scroll
bar if WordWrap is True.

The memo control must be tall enough to display at least one line of text to allow the
user to edit its contents, even if WordWrap is True.

The default value is False.

Example
This example allows text a user enters in the Memo1 control to wrap to the next line, if
the control is large enough to hold the text:

Memo1.WordWrap := True;

See also
ScrollBars property, Text property, AutoSize property

Write method

Applies to
TBlobStream object

Declaration

function Write(const Buffer; Count: Longint): Longint; override;

The Write method copies up to Count bytes from Buffer to the current position in the
field. Buffer must have at least Count bytes allocated for it. Write returns the number of
bytes transferred (which may be less than the number requested in Count.) Transfers
which require crossing a selector boundary in the source will be handled correctly.

Example

BlobStream1.Write(Buf, 4096);

See also
TBlobField component, TBytesField component, TVarBytesField component

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 995

W r i t e p r o c e d u r e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
W

Write procedure System

Declaration

Text files:

 procedure Write([var F: Text;] P1 [,P2,...,Pn]);

Typed files:

 procedure Write(F, V1 [V2,...Vn]);

The Write procedure writes values to a file.

F specifies a text file variable, which must be open for output. If F is omitted, the
standard file variable Output is assumed.

For text files
Each P is a Write parameter that includes an output expression whose value is to be
written to the file. A Write parameter can also contain the specifications of field width,
and number of decimal places.

Each output expression must be of type Char, Integer, Real, string, packed string, or
Boolean.

For typed files
Each V is a variable of the same type as the component type of F.

For each variable written, the current file position is advanced to the next component.

If the current file position is at the end of the file, the file is expanded.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I–}, you must use IOResult to check for I/O errors.

See also
Read procedure, Readln procedure, Writeln procedure

WriteBool method

Applies to
TIniFile object

Declaration

procedure WriteBool(const Section, Ident: string; Value: Boolean);

The WriteBool method writes a Boolean value in an .INI file.

996 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

W r i t e B u f p r o c e d u r e

The Section constant identifies the section of the .INI file where the value is written. For
example, the WIN.INI for Windows contains a [Desktop] section.

The Ident parameter is the name of the identifier for which you want to change the
value. The Value parameter contains the new value.

Example
This example creates an .INI file for a game with two entries in the Options section, and
one entry in the Configuration section.

Before you try this example, you must add IniFiles to the uses clause of your unit.

var
 GameIni: TIniFile;
begin
Gamini := TIniFile.Create('FUNGAME.INI');
with GameIni do
begin

WriteBool('Options', 'Sound', True);
 WriteInteger('Options', 'Level', 3);
 WriteString('Configuration', 'Name', 'Teresa Ace');
 Free;
end;

end;

See also
ReadBool method, WriteInteger method, WriteString method

WriteBuf procedure WinCrt

Declaration

procedure WriteBuf(Buffer: PChar; Count: Word);

The WriteBuf procedure writes a block of characters to the CRT window.

Buffer points to the first character in the block. Count contains the number of characters
to write.

If the value of the AutoTracking typed constant is True, the CRT window scrolls if
necessary to ensure that the cursor is visible after writing the block of characters.

Example

uses WinCrt;

var
 MyBuffer: PChar;

begin
 GetMem(MyBuffer, 80);
 MyBuffer := 'This is an example of WriteBuf';
 WriteBuf(MyBuffer, 30);

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 997

W r i t e C h a r p r o c e d u r e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
W

end;

See also
AutoTracking typed constant, WriteChar procedure

WriteChar procedure WinCrt

Declaration

procedure WriteChar(Ch: Char);

The WriteChar writes the character Ch to the WinCrt window at the current cursor
position by calling WriteBuf(@Ch, 1).

Example

uses WinCrt;

begin
 Write('ABCDE');
 WriteChar('F');
end;

See also
WriteBuf procedure, Writeln procedure

WriteIn procedure System

Declaration

procedure Writeln([var F: Text;] P1 [, P2, ...,Pn]);

The Writeln procedure is an extension to the Write procedure, as it is defined for text
files.

After executing Write, Writeln writes an end-of-line marker (carriage-return/linefeed) to
the file. Writeln(F) with no parameters writes an end-of-line marker to the file. (Writeln
with no parameter list corresponds to Writeln(Output).)

The file must be open for output.

Example

uses WinCrt;

var
 s : string;
 begin
 Write('Enter a line of text: ');
 Readln(s);
 Writeln('You typed: ',s);

998 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

W r i t e I n t e g e r m e t h o d

 Writeln('Hit <Enter> to exit');
 Readln;
 end;

See also
Write procedure

WriteInteger method

Applies to
TIniFile object

Declaration

procedure WriteInteger(const Section, Ident: string; Value: Longint);

The WriteInteger method writes an integer value in an .INI file.

The Section constant identifies the section of the .INI file where the value is written. For
example, the WIN.INI for Windows contains a [Desktop] section.

The Ident constant is the name of the identifier for which you want to change the value.
The Value parameter contains the new value.

Example
This example creates an .INI file for a game with two entries in the Options section, and
one entry in the Configuration section.

Before you try this example, you must add IniFiles to the uses clause of your unit.

var
 GameIni: TIniFile;
begin
 GameIni := TIniFile.Create('FUNGAME.INI');
 GameIni.WriteBool('Options', 'Sound', True);
 GameIni.WriteInteger('Options', 'Level', 3);
 GameIni.WriteString('Configuration', 'Name', 'Teresa Ace');
 GameIni.Free;
end;

See also
ReadInteger method, WriteBool method, WriteString method

WriteString method

Applies to
TIniFile object

D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e 999

Z o o m p r o p e r t y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Z

Declaration

procedure WriteString(const Section, Ident, Value: string);

The WriteString method writes a string in an .INI file.

The Section constant identifies the section of the .INI file where the string is written. For
example, the WIN.INI for Windows contains a [Desktop] section.

The Ident constant is the name of the identifier for which you want to change the value.
The Value constant holds the new string value.

Example
This example creates an .INI file for a game with two entries in the Options section, and
one entry in the Configuration section.

Before you try this example, you must add IniFiles to the uses clause of your unit.

var
 GameIni: TIniFile;
begin
 GameIni := TIniFile.Create('FUNGAME.INI');
 GameIni.WriteBool('Options', 'Sound', True);
 GameIni.WriteInteger('Options', 'Level', 3);
 GameIni.WriteString('Configuration', 'Name', 'Teresa Ace');
 GameIni.Free;
end;

See also
ReadSection method, ReadString method, WriteBool method, WriteInteger method

Zoom property

Applies to
TOLEContainer component

Declaration

property Zoom : TZoomFactor

Run-time only. Zoom specifies how much to magnify or shrink the picture of an OLE
object within an OLE container. Zoom defaults to z100. Setting Zoom to a different value
causes the picture of the OLE object in the OLE container to be scaled accordingly. If you
zoom in to make the picture of the OLE object larger than the OLE container, the extra
portion of the picture will be visually clipped to the size of the OLE container. The OLE
object itself won’t be affected, however. These are the possible values:

Value Meaning

z025 Zoom to 25% of OLE object’s original size
z050 Zoom to 50% of OLE object’s original size

1000 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

Z o o m p r o p e r t y

Example
The following code should be attached to the OnClick event handlers of the Zoom In and
Zoom Out buttons. When the ZoomInBtn is clicked, the image in OLEContainer1 is
magnified. When the ZoomOutBtn is clicked, the image in OLEContainer1 is reduced.

procedure TForm1.ZoomInBtnClick(Sender: TObject);
begin
 OLEContainer1.Zoom := Succ(OLEContainer1.Zoom)
end;

procedure TForm1.ZoomOutBtnClick(Sender: TObject);
begin
 OLEContainer1.Zoom := Pred(OLEContainer1.Zoom)
end;

z100 Zoom to 100% of OLE object’s original size
z150 Zoom to 150% of OLE object’s original size
z200 Zoom to 200% of OLE object’s original size

Value Meaning

I n d e x 1001

Symbols
& (ampersand) in captions 103
| (pipe)

filters 296, 298
hints 383

– (hyphen) in captions 103

Numerics
3-D controls 163, 592
80x86 processors

floating-point exceptions 236
testing 838

A
aaDoubleClick constant 60
aaGetFocus constant 60
aaManual constant 60
Abort buttons 432, 468

message boxes 465, 466, 468
Abort method 11
Abort procedure 11
Aborted property 12
AbortOnKeyViol property 12
AbortOnProblem property 13

ProblemTableName and 632
Abs function 13
absolute value 13
Abstract procedure 13
accelerators 103, 846

display options 719
access codes 286
access keys See accelerators
accessing

data 105, 782, 801
BLOBs 782
grids 137, 673
lookup tables 449, 450
OLE objects 177
parameterized queries 180

databases 144, 174, 564, 956
forms 330
menus 370, 423, 615
objects associated with

strings 137, 498, 499, 673
printer objects 370
strings

grids 105, 137, 499, 673,
749

group boxes 422
lists 422, 978

Index
tab set controls 66

actions See events
activating

applications 504, 521
batch moves 267
child forms 490
columns in grids 517
components 243, 514, 528
controls 505, 528, 530, 703
datasets 14, 848
DDE links 145, 705, 800
forms 503, 506, 514, 557, 703

previous 624
media players 984

buttons 62, 244, 787
navigator buttons 94, 787, 984
notebook pages 17, 549, 900
OLE objects 14, 36, 60, 400,

503, 775
pop-up menus 552

activation constants 60
activation events

applications 504, 521
controls 505, 528, 530
DDE conversations 548
forms 503, 506, 514, 557
notebook pages 549
OLE objects 503
pop-up menus 552

active control 317
returning 15, 318

active form 503, 506
returning 16

Active property 14–15
AfterClose and 28
AfterOpen and 29
BeforeClose and 73
BeforeOpen and 75
Close vs. 125
Exclusive and 264
IndexFieldCount and 393
IndexFields and 394
LookupField and 449
Open vs. 564
ReadOnly and 644

ActiveControl property 15
See also Default property
OnActiveControlChange

and 505
OnExit and 531

ActiveForm property 15
OnActiveFormChange

and 506

ActiveMDIChild property 16
ActivePage property 17
Add method 17–21

See also Insert method
AddChild method 21
AddChildObject method 22
AddExitProc procedure 22
AddFieldDesc method 22
AddIndex method 23

TIndexOptions and 878
AddObject method 23–25
AddParam method 25
AddPassword method 25
Addr function 26

See also Ofs, Ptr, Seg functions
addresses 26
AddStrings method 26
advancing media players 741
AfterCancel event 27
AfterClose event 28
AfterDelete event 28
AfterEdit event 28
AfterInsert event 29

OnNewRecord and 547
AfterOpen event 29
AfterPost event 30
alBottom constant 31
alClient constant 31
aliases

application-specific 173, 342
BDE 30, 338, 342

returning 337
AliasName property 30

DriverName and 217
Align property 31

TAlign and 773
aligning

captions 32–34
components 31
controls 31, 106
data 34
images on buttons 435, 787
pop-up menus 33, 918
text 32–34

alignment constants 773
bitmap buttons 435, 787
check boxes 33
controls 31, 773
menus 33
radio buttons 33
speed buttons 435, 787
text 32

1002 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

Alignment property 32–34
TAlignment and 773
TLeftRight and 883
TPopupAlignment and 918

alLeft constant 31
allocating memory 350

components 158, 579
field values 179
files 157
objects 159
queries 342

allocating string buffers 744
AllocMem function 34

FreeMem and 34
AllowAllUp property 34

Down and 211
AllowGrayed property 35
AllowInPlace property 36
AllowResize property 36
alNone constant 31
alphabetic characters

masks 227
alphanumeric characters

masks 227
alphanumeric fields 57, 58
alRight constant 31
Alt key, testing 946
alTop constant 31
ampersands (&) in captions 103
ancestor objects 3, 114
ANSI characters 37, 487
AnsiCompareStr function 37

See also AnsiCompareText
function

AnsiCompareText function 37
See also AnsiCompareStr

function
AnsiLowerCase function 37

See also AnsiUpperCase,
LowerCase functions

AnsiToNative function 37
AnsiUpperCase function 38

See also AnsiLowerCase,
UpperCase functions

Append method 38
AfterInsert and 29
BeforeInsert and 75
Insert vs. 405
Post and 619, 620

Append procedure 39
See also AssignFile, FileClose,

Reset, Rewrite procedures
appending text 39
AppendRecord method 40

InsertRecord vs. 410
Post and 620

AppendStr procedure 40
Application component 773
application objects 41
Application variable 41, 773
applications

activating 504, 521
client/server See DDE; OLE

applications
database See databases
handles 370
idle 538, 871
instantiating 41, 773
main form 452
maximizing 554
message boxes and 723, 724
minimized 389, 472, 879

handling events 544, 554
multi-form 367, 624
naming 879
quitting 837, 838
ReportSmith See ReportSmith

applications
restoring to previous

state 665
running 674, 937, 943

handling events 504, 521
other Windows and

Delphi 521
terminating 11, 13, 22, 269,

270, 368
ApplyFilePath method 41
applying fonts 847
ApplyRange method 42

CancelRange and 96
SetRange and 706
SetRangeEnd and 707
SetRangeStart and 708

Arc method 43
arcs, drawing 43
ArcTan function 43

See also Cos, Sin functions;
trigonometric functions

arctangent 43
arguments See parameters
ArrangeIcons method 44
arranging icons

minimized forms 44, 872
arrays

child controls 148
Clipboard formats 328
components 142
field objects 301, 425
list objects 102
objects 499
queries 587
releasing controls 656
strings 105, 137

as operator
illegal typecasting 235

AsBCD property 44
AsBoolean property 45

AssignValue and 56
ASCII files See text files
AsCurrency property 45
AsDate property 46
AsDateTime property 46–47
AsFloat property 47–48

AssignValue and 56
AsInteger property 48

AssignValue and 56
Assign method 49–52

AssignValue and 56
IsNull and 415

AssignCrt procedure 52
See also AssignFile, Read,

Readln, Write, Writeln
procedures

Assigned function 53
AssignField method 53

IsNull and 415
AssignFile procedure 54

See also Append, FileClose,
Reset, Rewrite procedures

assigning objects to
Clipboard 49, 58

assigning values 40, 56, 410,
703, 977

binary-coded decimals 45
Boolean 45
currency 46
date/time 46, 47, 59
DDE applications 509
floating-point 47, 48
integers 48
key field searches 305, 362
lookup tables 208, 449, 450
maximum 461
minimum 473
required 663
Smallint types 57
SQL statements 54, 56, 180,

182
dynamic queries 585

stored procedures 54, 56, 182
string 57, 58
word 59

AssignPrn procedure 55
AssignStr procedure 55

See also DisposeStr procedure
AssignValue method 56
AssignValues method 56
AsSmallInt property 57
associating data with

outlines 22, 24, 171

I n d e x 1003

associating objects with
strings 23, 397, 408, 498, 499

associating tab sets with
notebook pages 958

AsString property 57–58
AssignValue and 56
GetData vs. 341
SetData vs. 702
Text vs. 843

AsText property 58
AsTime property 59
AsWord property 59
attaching to databases 127, 564

See also database servers;
servers

dropping connections 217
login scripts and 448, 541, 886
testing connections 144, 426,

427
attribute flags 374

See also heap
AutoActivate property 60

OnActivate and 503
TAutoActivate and 775

AutoCalcFields property 60
OnCalcFields and 508

AutoDisplay property 61
LoadMemo and 445
LoadPicture and 445

AutoEdit property 61
Edit and 225

AutoEnable property 62
EnabledButtons vs. 245

automatically resizing
components 68–70

automatically selecting text 67
AutoMerge property 63
AutoOpen property 64
AutoPopup property 64

OnPopup and 552
PopupMenu and 615

AutoRewind property 65
Play and 609

AutoScroll property 66–67
AutoSelect property 67
AutoSize property 67–70

BorderStyle and 88
Stretch vs. 748

AutoTracking typed constant 70
AutoUnload property 70

B
Back method 71

Frames and 332
Wait and 987

background colors 92, 134

tab set controls 72, 210
BackgroundColor property 72

DitherBackground and 210
TColor and 793

backspace characters
DDE applications 324

base classes
graphics 866

base exception objects
faults 232
hardware 255
math errors 234, 240
streams 233, 261

batAppend constant 477, 775
batAppendUpdate

constant 477, 775
batch modes 477, 775
batch operations 72, 775, 776

converting data 13, 430, 632
specifying types 57

destinations 197, 632
trimmed data in 632

integrity (key) violations 12,
430

overriding column
mappings 452

queries 733
running 267
sources 730
terminating 12, 13

BatchMove component 776
BatchMove method 72

TBatchMode and 775
batCopy constant 477, 776
batDelete constant 477, 775
batUpdate constant 477, 775
BCD fields 45, 776

currency values and 166
decimal points 620, 727
size, returning 726, 727
string values and 58

BCDField component 776
BDE See Borland Database

Engine
BeforeCancel event 73
BeforeClose event 73

Active and 14
Close and 125

BeforeDelete event 74
BeforeEdit event 74
BeforeInsert event 74

OnNewRecord and 547
BeforeOpen event 75

AfterClose and 28
BeforePost event 75
BeginDoc method 76
BeginDrag method 76

BeginUpdate method 77
SetUpdateState vs. 712

Bevel component 777
specifying shape 714
styles 770

bevel constants 78, 79, 778, 779
beveled frames 777
beveled lines 777
beveled panels 78, 79, 80, 779,

914
BevelInner property 78

TPanelBevel and 914
BevelOuter property 79

TPanelBevel and 914
BevelWidth property 79

TBevelWidth and 779
biMaximize constant 86
biMinimize constant 86
binary fields See BLOB fields
binary large objects See BLOBs
binary-coded decimals See BCD
biSystemMenu constant 86
bitmap buttons 779

adding glyphs 359, 495
aligning images 435, 787
arranging text and

images 731
Cancel button as 96
closing forms 474
margins 453
multiple images 495
selecting 35, 119
specifying default 190
specifying types 431
styles 768, 788

bitmap files 81
loading 443

Bitmap property 80–81
Icon and 389
Metafile and 470

BitmapButton component 779
bitmaps 781, 917

See also bitmap buttons;
graphics

adding 443
changing 81, 101
Clipboard formats 85, 373
color mapping 584
copying 49, 93
displaying 479
drawing surfaces 101
fitting to images 748
message boxes 467, 469
painting with 80
reading 640
releasing handles 653, 654
size, setting 376

1004 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

specifying type 81, 359
strings and 498
testing existence 241
testing for changes 477
transparent labels 931

bkAbort constant 432
bkAll constant 432
bkCancel constant 431
bkClose constant 432
bkCustom constant 431
bkHelp constant 431
bkIgnore constant 432
bkNo constant 431
bkOK constant 431
bkRetry constant 432
bkYes constant 431
blank characters

masks 228, 231
blGlyphBottom constant 435
blGlyphLeft constant 435
blGlyphRight constant 435
blGlyphTop constant 435
BLOB fields 781

clearing 935
reading from 58, 637, 782
size, returning 726, 727
streams and 158, 678, 782, 783
string values and 58
writing to 444, 782

BlobField component 781
BLOBs

See also BLOB fields
accessing 782
changing 782
copying 154
deleting 171
displaying 106, 810, 817

automatically 61
loading 445
resizing 68

BlobStream object 782
BlockRead procedure 81

See also BlockWrite procedure
blocks

exiting 269
text 690, 710

BlockWrite procedure 82
See also BlockRead procedure

bmRead constant 158, 783
bmReadWrite constant 158, 783
bmWrite constant 158, 783
BOF property 84
BOLE_MED_FILE constant 85
BOLE_MED_GDI constant 85
BOLE_MED_HGLOBAL

constant 85

BOLE_MED_MFPICT
constant 85

BOLE_MED_NULL constant 85
BOLE_MED_STORAGE

constant 85
BOLE_MED_STREAM

constant 85
BOLEFormat type 84

BOLEMedium and 85
BOLEMedium type 85

BOLEMediumCalc and 85
BOLEMediumCalc function 85
bookmarks 783

freeing memory 334
retrieving 360
setting 339

Boolean fields 45, 783
check boxes and 977
formatting data 208
radio buttons and 976, 979
string values and 58

Boolean types 45
INI files and 639, 995

BooleanField component 783
BorderColor property 86
BorderIcons property 86

TBorderIcons and 784
borderless forms 87
borders 86–88, 785

coloring 135
multicolored 315

border-style constants 87, 88,
784, 864

BorderStyle property 87–88
TBorderStyle and 784
TFormBorderStyle and 864

BorderWidth property 88
TBorderWidth and 785

Borland Assist program 1
Borland Database Engine 168,

971
accessing tables 956
adding fields 23
aliases 30, 338, 342

returning 337
calling 185, 371, 446, 447, 741
driver types 217

returning 343, 344
exception handling 224
network control file 487
referencing fields 279, 280

bounding rectangles 89, 421
cells in grids 104
client areas 121
clipping 123, 845
display windows 206
grids 867

Bounds function 89
BoundsRect property 89
boxes 777
Break procedure 90

See also Continue, Exit, Halt
procedures

Break property 91
TMenuBreak and 894

breakpoint interrupts 221
BringToFront method 91
Browse mode 564, 740
Brush property 92

FloodFill and 315
FrameRect and 332

BrushCopy method 93
brushes 92, 785, 866

bitmaps and 80
filling rectangles 295, 332
flood filling 315, 855
setting styles 785
styles 764

bsAutoDetect constant 768
bsBDiagonal constant 764
bsBottomLine constant 714
bsBox constant 714
bsClear constant 764
bsCross constant 764
bsDiagCross constant 764
bsDialog constant 87
bsFDiagonal constant 764
bsFrame constant 714
bsHorizontal constant 764
bsLeftLine constant 715
bsLowered constant 770
bsNew constant 768
bsNone constant 87, 88
bsRaised constant 770
bsRightLine constant 715
bsSingle constant 87, 88
bsSizeable constant 87
bsSolid constant 764
bsTopLine constant 714
bsVertical constant 764
bsWin31 constant 768
btBack constant 241
btEject constant 241
BtnClick method 94
btNext constant 241
btPause constant 241
btPlay constant 241
btPrev constant 241
btRecord constant 241
btStep constant 241
btStop constant 241
buffers

formatting 324

I n d e x 1005

I/O 711
search key 704
stream 158, 637, 994

clearing 935
current position,

resetting 685
text

clearing 315
setting 708, 710
writing to 354, 357, 358

Button component 786
button type constants 431, 780

message boxes 465, 466, 468
buttons 779, 786

Abort 432, 465, 466, 468
adding images 902, 948

multiple 495
aligning captions 33
as check boxes 35
bitmap See bitmap buttons
Cancel 96, 431, 465, 466, 468
clicking See click events
Close 432, 474
coloring 135, 136
edit 560
enabling/disabling 983
Find Next 532
grouping 928
Help 431

common dialog boxes 566,
567, 568, 570, 571

message boxes 466, 468
Ignore 432, 465, 466, 468
indexes 420
margins 453
Maximize/Minimize 86
media players See media

players
message boxes 464, 466, 468,

899
mouse See mouse buttons
navigator See database

navigator
OK 431, 465, 466, 468
push See push buttons
radio See radio buttons
Replace 553
resizing 90
Retry 432, 465, 466, 468
scroll

tab set controls 66, 248
selecting 111, 211

groups 34, 366
shadows 135
specifying default 190
speed See speed buttons

Buttons property 94
bvLowered constant 78, 79

bvNone constant 78, 79
bvRaised constant 78, 79
byte fields 788, 962

clearing 935
reading from 58, 782
size, returning 726, 727
streams and 158, 783
writing to 782

bytes
exchanging 771
high-order 380
moving 481
number occupied 727

BytesField component 788

C
caFree constant 515
caHide constant 515
calculated fields 95

handling events 508
naming 279

Calculated property 95
calculations

overflow conditions 234, 254
underflow conditions 261

caller, testing 333
See also objects

CamelCaps 108
caMinimize constant 515
Cancel buttons 96, 431, 468

message boxes 465, 466, 468
Cancel method 95

AfterCancel and 27
BeforeCancel and 73
Modified and 479

Cancel property 96
canceling print jobs 11, 247

testing status 12
CancelRange method 96
CanClose variable 516
CanFocus method 96
CanModify property 97–98

RequestLive and 663
caNone constant 515
Canvas property 98–101
canvases 98–101, 789

See also drawing
accessing pixels 607
bitmaps and 781
color options 134–135, 793
copying images 150, 152, 797
drawing text 845
moving pens 483
outer boundaries 123
printer objects 100

Capabilities property 101

TMPDeviceTypes and 898
Capacity property 102
Caption property 102–103

FocusControl and 317
TCaption and 790

captions 103, 317, 790
See also labels; text; titles
aligning 32–34
message boxes 464
underlining characters 103

carriage-return characters 988
Clipboard 373
DDE applications 324

Cascade method 104
cascading forms 104
case

combo boxes 843
edit boxes 108, 836
masks 108, 227
search and replace

operations 570
Category property 224
cbChecked constant 739
cbGrayed constant 739
cbUnchecked constant 739
cdFullOpen constant 566
cdPreventFullOpen constant 566
CD-ROM drives See media

players
cdShowHelp constant 566
CellRect method 104
Cells property 105
Center property 105
centering images 106
centering text 32
CF_BITMAP constant 373
CF_METAFILE constant 373
CF_OBJECT constant 373
CF_PICTURE constant 373
CF_TEXT constant 373
change events 510

data 27, 73, 520, 560, 800
data-aware components 510
DDE applications 509
fields 510, 850
graphics 510, 511
grids 561
tab sets 509

ChangedCount property 106
ChangedTableName

property 106
ChangeFileExt function 107
ChangeLevelBy method 107

TChangeRange and 790
changing

See also editing

1006 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

bitmaps 81, 101
components 510, 700
data 277, 804, 811

batch moves 72, 106
BLOBs 782
discarding changes 27, 73,

95
entire records 97, 110,

219, 225, 479
handling events 27, 73,

510, 520, 560, 800, 850
placing restrictions 644
specific fields 98

directories 109, 565, 826
extensions 107, 274
graphics 510, 511
identifiers 222
mouse cursor image 523
notebook pages 549, 581,

709, 900
objects 510
OLE links 441
strings 511, 979
tab sets 509
tracks 490

character fields 57, 58, 951
characters

clearing 131
filling 295
returning 112
strings See strings

CharCase property 108
TEditCharCase and 836

ChDir procedure 109
See also GetDir, MkDir, RmDir

procedures
check boxes 790

3-D controls and 163
aligning captions 32, 883
buttons as 35
checking/unchecking 35,

111, 739
data-aware 803, 977, 980
states 739, 791

check marks 111, 739
Check procedure 110
Check property 111
CheckBox component 790
CheckBreak typed constant 110
CheckBrowseMode method 110
CheckEOF typed constant 111
child controls 407

counting 147
returning 145, 147, 148

child forms See MDI applications
child windows 589
choosing See selecting

Chord method 112
chords, drawing 112
Chr function 112

 See also Ord function
circles 715
clActiveBorder constant 793
clActiveCaption constant 793
clAppWorkSpace constant 793
clAqua constant 793
classes 114, 115

graphics 866
not found exceptions 222
OLE objects 496
registration exceptions 233
returning names 113

ClassName method 113
ClassParent method 114
ClassType method 115
clBackground constant 793
clBlack constant 793
clBlue constant 793
clBtnFace constant 793
clBtnHighlight constant 793
clBtnShadow constant 793
clBtnText constant 793
clCaptionText constant 793
clDkGray constant 793
Clear method 115–116

IsNull and 415
ClearFields method 117
ClearFormOLEDropFormats

procedure 118
BOLEFormat and 84
RegisterFormAs

OLEDropTarget and 651
clearing

characters 131
Clipboard 117
screens 131
stream buffers 935

ClearSelection method 118
clFuchsia constant 793
clGray constant 793
clGrayText constant 793
clGreen constant 793
clHighlight constant 793
clHighlightText constant 793
click events 514, 521

fonts 507
grids 517
media player buttons 512,

552
navigator buttons 94, 119, 513
notebook pages 900
simulating 94, 119

Click method 119

OnClick and 513
TNavigateBtn and 900

client areas 120, 121, 122
height 120
width 122

client/server applications 798
See also DDE applications;

OLE applications
ClientHandle property 119
ClientHeight property 120

GridHeight and 364
ClientOrigin property 120
ClientRect property 121
ClientToScreen method 121
ClientWidth property 122

GridWidth and 366
HorzScrollBar and 387

clInactiveBorder constant 793
clInactiveCaption constant 793
clInactiveCaptionText

constant 793
Clipboard 792

assigning objects 49, 58
clearing 117
closing 124
copying text 357, 710
data-aware components 810
formats 85, 175

clearing 118
registering 84, 651
returning 325, 328
testing for 373

handles 338, 700
instantiating 123
opening 124, 562
overwriting contents 562
pasting objects 84, 340, 596,

598
reading from 328, 338, 596,

700
returning current content 49

as text strings 58
writing to 152, 171, 328, 701

Clipboard object 792
Clipboard variable 123, 792
Clipbrd unit 123, 792
ClipRect property 123
clLime constant 793
clLtGray constant 793
clMaroon constant 793
clMenu constant 793
clMenuText constant 793
clNavy constant 793
clock 802, 961, 962

See also Timer component
conversions 46, 47, 59

clOlive constant 793

I n d e x 1007

Close buttons 432, 474
close events

datasets 28, 73
DDE conversations 515
forms 515, 516, 793

Close method 123–125
Active vs. 14
AfterClose and 28
BeforeClose and 73
CloseQuery and 129
OnClose and 515
OnCloseQuery and 516
Open and 563
Prepare and 622
Wait and 987

Close procedure 125
See also Append, AssignFile,

Reset, Rewrite procedures
CloseApplication method 126

AutoUnload and 71
CloseDatabase method 127

OpenDatabase and 565
CloseDatasets method 127
CloseDialog method 128
CloseFile procedure 128
CloseLink method 128

OnClose and 515
CloseQuery method 129

Close and 124
CloseReport method 130
CloseUp method 130
closing 125

Clipboard 124
combo boxes 130, 219
databases 125, 127
datasets 14, 125, 127

handling events 28, 73
DDE applications 515
files 128
forms 124, 129, 474

handling events 515, 516,
793

lookup tables 28
media players 125
ReportSmith

applications 126, 130
clPurple constant 793
clRed constant 793
ClrEol procedure 131

 See also ClrScr procedure
ClrScr procedure 131

See also ClrEol procedure
clScrollBar constant 793
clSilver constant 793
clTeal constant 793
clWhite constant 793
clWindow constant 793

clWindowFrame constant 793
clWindowText constant 793
clYellow constant 793
cmBlackness constant 150
CmdLine variable 132
CmdShow variable 132
cmDstInvert constant 150
cmMergeCopy constant 150
cmMergePaint constant 150
cmNotSrcCopy constant 150
cmNotSrcErase constant 151
cmPatCopy constant 151
cmPatInvert constant 151
cmPatPaint constant 151
cmSrcAnd constant 151
cmSrcCopy constant 151
cmSrcErase constant 151
cmSrcInvert constant 151
cmSrcPaint constant 151
cmWhiteness constant 151
code 2

access, passing to DOS 286
executing 561

code segments 161
Col property 132

Row and 671
ColCount property 133

FixedCols and 311
Objects and 499

Collapse method 133
collapsing outline items 133,

253, 336
handling events 518

Collate check boxes 134
Collate property 133
Color common dialog box 794

color options, setting 135,
170, 794, 798

opening 266
specifying behavior 566

color constants 134, 475, 793
color palettes 584

customizing 170, 566, 798
options 793

Color property 134
FixedColor and 310
HintColor and 384
ParentColor and 591
TColor and 793

ColorDialog component 794
ColoredButtons property 136

TButtonSet and 787
colors 92, 134–135, 607, 793

See also color palettes
brushes 785
fonts 567

hints 384
media player buttons 136
nonscrolling regions in

grids 310
pens 475
RGB values 137, 793
selecting 794
status, retrieving 591
system 135, 137, 793
tab set controls 72, 210, 692,

969
ColorToRGB function 136
Cols property 137
column mappings 452
columns

combo boxes 218, 449, 574,
816

list boxes 138, 449, 574, 816
lookup tables 816
menus 91, 894

columns in grids See data grids,
string grids; fields

Columns property 137
ColWidths property 138

DefaultColWidth vs. 190
combo boxes 795, 832, 855

See also edit boxes; list boxes
activating lists 217, 527
adding items 218, 460
clearing text 117
closing 130, 219
columns 218, 449, 574, 816
creating drop-down lists 766
data-aware 804, 813

display options 816
setting current values 976
styles 815

displaying file names 287,
386, 854

drawing surfaces 99
file masks and 297, 455
owner-draw 420

displaying 766
variable styles 542

returning items 422
selecting items 696, 697

getting starting
position 696

selecting text 67, 511, 690
setting case 843
simple 766
sorting items 729
specifying initial items 840,

960
styles 765, 796
synchronizing with list

boxes 833
testing status 218

1008 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

ComboBox component 795
command buttons See buttons;

speed buttons
Command property 139
command-line parameters 132
commands See menu items
Commit method 139
committing transactions 139, 738

isolation levels 930, 962
common dialog boxes

See also dialog boxes
3-D controls and 163
closing 128
color options 135, 794

custom 170, 566, 798
display options 566, 567, 568,

569, 570
displaying 436, 619, 904
finding text 856
font-selection 860
naming 880
opening files 905
printer setup 922
printing 920

options 134, 149
replacing text 932
saving files 936

CompareStr function 140
See also CompareText function

CompareText function 140
See also CompareStr function

comparing
strings 37, 140, 745, 750, 751,

753
comparing values

database searches 42, 972
strings 751

component library See Visual
Component Library

Component palette 2, 4
ComponentCount property 141
ComponentIndex property 142
components 2, 222

See also specific component
activating 514, 528
adding captions 103, 317, 790
aligning 31
arrays 142
bringing to front 91
changing 510, 700
coloring 134, 793
constructing 2, 158, 197, 333
container 853

activating 14
OLE See OLE containers
resizing 70

controls vs. 5

copying 701
creating 2, 158
data-aware See data-aware

components
destroying 158, 197, 333

handling events 522
displaying 983
enabling/disabling 243
initializing 158
listed 3
moving 31
naming 485, 796, 879

at run time 222
nonwindowed 945
objects vs. 2
overlapping 91, 698
owned 142, 158, 406

counting 141
parent vs. 579
returning 142
specifying owner 579

parent 589, 656
referencing 485, 519
registering 651

exception handling 222
renaming 222, 486
repainting 969
resizing 68–70
returning 301
saving 677
selecting 514
sending to back 698
setting boundaries 700
settings See properties
testing for 723

Components property 142
ComponentCount and 141
ComponentIndex and 142
Controls vs. 148
InsertComponent and 406
RemoveComponent and 656

Concat function 143
See also Copy, Delete, Insert,

Length, Pos functions
concatenating strings 143, 744,

746, 750
See also strings

confirmation messages
deleting data 144, 574

ConfirmDelete property 144
Connect method 144
Connected property 144

AliasName and 30
Close and 125
DatabaseName and 173
DriverName and 217
KeepConnection and 426
Open and 564

connecting data-aware
components 178, 203, 243

connecting tabs to notebook
pages 958

connecting to databases 127, 564
See also database servers;

servers
dropping connections 217
login scripts and 448, 541, 886
testing connections 144, 426,

427
connection modes 145, 800
connection parameters 588
ConnectMode property 145

SetLink and 705
TDataMode and 800

constants
activation, OLE objects 60
alignment 773

bitmap buttons 435, 787
check boxes 33
controls 31, 773
menus 33
radio buttons 33
speed buttons 435, 787
text 32

arrays 963
batch moves 477, 775
bevel 78, 79, 778, 779
bevel shapes 714
BLOB streams 158, 783
border styles 87, 88, 784, 864
brush styles 764
button styles 768
button types 431, 780

message boxes 465, 466,
468

case 108, 843
check box states 739
Clipboard formats 85, 373
color 134, 475, 793
connection modes 145, 800
copy 150
cursor 169
data states 219, 740, 800
data types 182, 854
device

fonts 198, 861
media players 199

display options
combo boxes 574, 766, 770
common dialog boxes 566,

567, 568, 569, 570
grids 572, 573
list boxes 767
lookup tables 574
outlines 571, 769

drag/drop modes 214, 828

I n d e x 1009

states 829
duplicate strings 221
file attributes 294, 855
file mode 280
file names 283, 851
file open mode 281
font styles 765
form position 617
form states 992
form style 330, 865
icons 86, 784
keyboard states 881
list boxes 832
masks 228
media players 493

buttons 241, 898
modes 101, 476
time formats 875

menu 91, 305, 857
message 466, 468
mouse image 166, 212
mouse-button 897
outlines 484, 571, 577
pen styles 763
print modes 576
print ranges 629
print scale 630
scaling graphics 999
scrolling 432, 681, 941
shape states 715
SQL transactions 972
tab set styles 768
table type 772
tile modes 872
transaction levels 930

constructing
components 2, 158, 333
objects 333

constructors 276
contacting Borland 1
containers 853

graphics 363
OLE applications See OLE

containers
ContainsControl method 145
context-sensitive help See Help

systems
Continue procedure 146

See also Break, Exit, Halt
procedures

continuing loops 146
Control menu 86
ControlAtPos method 147
ControlCount property 147
controls

See also components
activating 505, 528, 530, 703

active 15, 318
aligning 31, 106
arrays 148
child 407

counting 147
returning 145, 147, 148

client areas 120, 121, 122
height 120
width 122

coloring 134, 793
components vs. 5
contents, read-only 643
destroying 197
disabled, searching for 147
displaying 66, 380, 436, 904,

983
dragging and dropping See

drag and drop
grouping 868
handles 370

creating 373
testing for 371

labeling 317
listed 5
naming 882
nonwindowed 7

listed 7
objects vs. 2
owner-draw See owner-draw

controls
receiving focus 97, 703
repainting 413, 970

handling events 525, 526,
542, 543

resizing 678, 990
saving 677
scaling 678
selecting 103, 317
size, setting 376
stacking 92, 698
tab order, setting 958
testing for 15, 318, 351, 723,

975
three-dimensional 163, 592
transparent 931
windowed 6, 147

listed 6
Controls property 148

Components vs. 142
InsertControl and 407
RemoveControl and 656

conversions
ANSI characters 37, 487
data 843

batch moves 12, 13, 57,
430, 632

date/time fields 47
float fields 48

integers 48
logical fields 45
strings 58, 222

dates
file 285

exception handling 222
floating-point

to decimal 312
to string 313
to text 314

integer
to decimal 413
to hexadecimal 412
to string 412, 413

OEM characters 501
real to integer 934
string

to date 759
to date/time formats 759
to floating-point 760
to integer 761
to time formats 762

text
to floating-point 846

Convert dialog box
Help buttons 149

ConvertDlgHelp property 148
coordinates 610

grids 694, 867
metafiles 391
mouse 480
screen 680, 918

bounding rectangle 89
client areas 120, 121, 122
controls 436, 904
dialog boxes 436, 904

Copies property 149
copy constants 150
Copy function 150

See also Concat, Delete, Insert,
Length, Pos functions

copying
bitmaps 93
components 701
data 50

BLOB images 154
Clipboard and 328, 338
DDE applications 153

DDE links 153
graphics 49, 150, 152, 797
OLE objects 153
strings 745, 752, 755, 756, 757
strings See strings
text 58, 152, 354, 357, 710

edit boxes 354
CopyMode property 150

TCopyMode and 797
CopyParams method 151

1010 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

CopyRect method 152
BrushCopy vs. 93

CopyToClipboard method
152–154

Cos function 154
See also ArcTan, Sin functions;

trigonometric functions
cosine 154
Count property 155–156

Capacity vs. 102
counting

child controls 147
child windows 462
columns in grids 133, 985
components 141
databases 172
datasets 178
fields 156, 278, 393

database searches 428
forms 329
index elements 156
items in lists 155, 689
outlines items 419
records 649

batch moves 106, 430,
482, 632, 648

rows in grids 672, 986
visible tabs 986

crArrow constant
cursors 169
mouse images 166, 212

crCross constant
cursors 169
mouse images 166, 212

crDefault constant
cursors 169
mouse images 166, 212

crDrag constant
cursors 169
mouse images 166, 212

Create method 156–158
Free and 333
OnCreate and 519
TBlobStreamMode and 783

CreateField method 159
CreateFmt method 262
CreateFmtHelp method 262
CreateForm method 159
CreateHelp method 262
CreateNew method 160
CreateParam method 160
CreateRes method 262
CreateResFmt method 262
CreateResFmtHelp method 263
CreateResHelp method 263
CreateTable method 161
crHourglass constant

cursors 169
mouse images 166, 212

crHSplit constant
cursors 169
mouse images 167, 212

crIBeam constant
cursors 169
mouse images 167, 212

crMultiDrag constant 169
crNoDrop constant

cursors 169
mouse images 166, 212

crNone constant 169
crSize constant

cursors 169
mouse images 167, 212

crSizeNESW constant
cursors 169
mouse images 166, 212

crSizeNS constant
cursors 169
mouse images 166, 212

crSizeNWSE constant
cursors 169
mouse images 166, 212

crSizeWE constant
cursors 169
mouse images 167, 212

CRT window
active title 993
character cells 576
creating 399
cursor

automatic tracking 70
location 70, 168

destroying 211
end-of-line status 111
inactive state, preventing 211
inactive title 390
initial size 992
inputting from51 639
location 992
user termination 110
virtual screen size 576, 680

crUpArrow constant
cursors 169
mouse images 167, 212

crVSplit constant
cursors 169
mouse images 167, 212

CS register 161
csDropDown constant 766, 770
csDropDownList constant 766,

770
CSeg function 161

See also DSeg, SSeg functions

csOwnerDrawFixed
constant 766

csOwnerDrawVariable
constant 766

csSimple constant 766
Ctl3D property 162

ParentCtl3D and 592
CTL3DV2.DLL 163
Ctrl key, testing 946
currency fields 46, 797

formatting data 166
string values and 58

currency formatting
variables 163

Currency property 166
DisplayFormat vs. 205

CurrencyField component 797
current dates/time 182, 494, 874
current directory

common dialog boxes 398
list boxes 200, 201, 565

current form See active form
current printer 353, 627

specifying 706
cursor constants 169
Cursor property 166–167

TCursor and 798
Cursor typed constant 168
CursorPosChanged method 168
cursors 168, 798

customizing 169
databases 168, 971

moving 306, 361
specified distance 482
to first record 309
to last record 434
to next record 491
to previous record 631

keeping visible 925
location 70, 131, 168, 169, 362,

989
mouse image 166, 167, 212
moving 169, 362

Cursors property 168
CursorTo procedure 169

See also GoToXY procedure
CustomColors property 170
customer assistance 1
cutting text 171, 195, 328

See also deleting
CutToClipboard method 171

D
data

accessing 105, 782, 801
BLOBs 782

I n d e x 1011

grids 137, 673
lookup tables 449, 450
OLE objects 177
parameterized queries 180

aligning 34
changing 277, 804, 811

batch moves 72, 106
BLOBs 782
discarding changes 27, 73,

95
entire records 97, 110,

219, 225, 479
handling events 27, 73,

510, 520, 560, 800, 850
placing restrictions 644
specific fields 98

converting 843
batch moves 12, 13, 57,

430, 632
date/time fields 47
float fields 48
integers 48
logical fields 45
strings 58, 222

copying 50
BLOB images 154
Clipboard and 328, 338
DDE applications 153

deleting 194, 242
BLOB images 171
Clipboard and 328
confirmation 144, 574
handling events 28, 74

displaying 175, 180, 983
column and row

format 191, 808, 830
datasets 650
handling events 829, 830,

867
memo fields 61
OLE applications 902

editing
databases 60, 61, 225, 226
grids 229, 944
handling events 29, 74

encryption 636
entering 61, 97

automatically 229
check boxes and 977, 980
combo boxes and 804, 813,

976
edit boxes and 806
list boxes and 976
lookup tables 217, 813
masks and 227, 839
outlines 22, 24, 171, 342,

408
radio buttons and 820,

976, 979

required values 663, 887,
974

valid characters only 175
filtering 42, 230, 231, 427, 706,

707, 708
formatting See data formats
incompatible 224
moving 648, 931
printing 55
processing 560
protecting 61
raw

returning 341
setting 702

read-only 97, 643, 644
records

deleting 935
reading to variables 81
writing from variables 82

retrieving 834
searching for 427, 428

key fields and 305, 306,
361, 704

multiple fields 226
ranges 427

canceling 96
changing 230, 231
setting 42, 706, 707, 708

selecting 217
simulations 636
statistics 636
updating 244

datasets 243, 971, 973
DDE applications 439, 662
handling events 562
live result sets 972

validating 317, 416
handling events 562, 850

data form 163
data formats 226

currency 163, 166
display-only 205, 207, 842

handling events 534, 556,
850

logical fields 208
time 189, 246, 325, 762

preferences 345
values 326

data grids 808, 830
borders 88
captions 103
cells

bounding rectangle 104
line width 365
selecting 573, 943

events 517
color options 134
columns

activating 517
counting 133, 278, 985
current 132, 573
displaying 436, 561, 573,

907
headers 869

fonts 881
moving 898, 907

events 519, 554
returning 132, 280, 693
setting size 138, 190, 573

display options 867
displaying data 180, 983

automatically 191
handling events 829, 830,

867
options 810

drawing surfaces 100
editing data 229, 944

handling events 533, 556
options 573

exception handling 236
height 364
moving through 573
nonscrolling regions 310, 311,

312, 907
coloring 310
labeling 312

owner-draw
handling events 829, 830,

867
painting cells 191, 524, 525,

533, 556
handling events 829, 830,

867
retrieving text strings 865
returning coordinates 867
rows

counting 986
displaying 436, 561, 573,

907
moving 898, 907

width 366
data pointers 800, 830, 850

outlines 342
Data property 171

GetDataItem and 342
data segments 219
data sources

connecting to datasets 178,
203, 243

editing 61, 225
linking 456, 457
lookup tables 450
parameterized queries 180,

923
updating 244

data state constants 219, 740, 800

1012 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

data transactions
committing 139, 738

isolation levels 930, 962
rolling back 669

data types
See also types
compatible 50
returning 278
specifying 54, 181, 182, 854

batch moves 57
data-aware components 801, 822

check boxes 803
checking/

unchecking 977, 980
Clipboard 810
combo boxes 804, 813

display options 816
setting current values 976
styles 815

connecting 178, 203, 243
contents, read-only 643
database navigator and 819
edit boxes 804, 806

validating required
characters 974

graphics 810
handling events 510
list boxes 811, 815, 816

display options 816
setting current values 976

radio buttons 95, 820
setting current

contents 976, 979
retrieving information 277
setting input focus 317
transparent labels 931
updating 562, 972

Database component 798
testing existence 836

database drivers 217, 416
returning 343, 344

database engine See Borland
Database Engine

database handles 185, 371
database navigator 819

buttons 819
activating 94
creating help for 385
enabling/disabling 787,

984
handling events 513
types 245, 900

confirming deletions 144
Database Parameters Editor 588
Database property 172
database servers

connecting to 127, 564
dropping connections 217

login scripts and 448, 541,
886

modes 145
testing connections 144,

426, 427
exception handling 225
heterogeneous queries 733
opening databases 541, 588
security 448

login events 541, 886
password events 916

DatabaseCount property 172
DatabaseError procedure 173

DbiError and 185
DatabaseName property

173–174
CreateTable and 161
DeleteTable and 196
EmptyTable and 242
GotoCurrent and 360

databases
See also data; fields; records;

tables
accessing 144, 174, 564
adding images 445
assigning aliases 30, 173, 342
checking for nonzero

values 110
closing 125, 127
committing changes 139, 738

isolation levels 930, 962
connecting to See database

servers
counting 172
creating 565
detail tables

linking to master 456, 457
discarding changes 27, 95

handling events 73
exception handling 173, 185,

223
integrity (key) violations 12,

430
labels, autosizing 69
lookup tables See lookup

tables
maintaining 699
master tables 456, 457
moving through 819
naming 174, 955
opening 565, 836

database servers 541, 588
read-only text 69
referencing 172, 174
returning active 172, 174, 302
rolling back changes 669
temporary 836

Databases property 174

DataField property 175
LookupField and 449
Value and 976

DataFormat property 175
DataHandle property 177
DataSet property 177–178

OnChangeState and 560
DatasetCount property 178
datasets 801

accessing data 782
lookup tables 449, 450

activating 14, 848
batch operations 776
closing 14, 125, 127

handling events 28, 73
counting 178
data states 740, 800
displaying data 175, 180, 650
filtering data 42, 230, 231,

427, 706, 707, 708
indexes 425
opening 564

handling events 29, 75
position indicators 84, 252
returning 179
setting current values 976,

977, 979
specifying 178, 560
updating data 243, 971, 973

Datasets property 179
DataSize property 179
DataSource component 801
DataSource property 180–181
DataType property 181–182

AsBCD and 45
AsBoolean and 45
AsCurrency and 46
AsDate and 46
AsDateTime and 46
AsFloat and 47
AsInteger and 48
AssignField and 54
AsSmallInt and 57
AsString and 57
AsTime and 59
AsWord and 59
TFieldType and 854

date fields 801, 802
assigning values 46, 47, 59
string values and 58

Date function 182
See also DateToStr,

DayOfWeek, Now, Time
functions; DecodeDate
procedure

date/time formatting
variables 163

I n d e x 1013

DateField component 801
dates 802

converting 182, 183, 285
file creation 285
file modification 285
formatting 163, 184, 188, 246,

325, 802
converting to strings 183
decoding 188
encoding 246

masks and 228
returning 494, 759

current 182, 494
stamping 292

DateTime types 46, 47, 59
DateTimeField component 802
DateTimeToFileDate

function 182
See also FileDateTo DateTime

function
DateTimeToStr function 183

See also Date, DateToStr, Now,
StrToDate, Time, TimeToStr
functions

DateTimeToString
procedure 183

See also TDateTime type
DateToStr function 183

See also Date, DateTimeToStr,
StrToDate, TimeToStr
functions

DayOfWeek function 184
See also Date, EncodeDate,

Now, StrToDate,
StrToDateTime functions

dBASE tables
accessing 416, 541
indexes 273

secondary 395
queries 923
searching for data 230, 231,

306, 706, 707, 708
specifying 772
testing for 446

DBCheckBox component 803
DBComboBox component 804
DBEdit component 806
DBGrid component 808
DBHandle property 184
DbiError procedure 185
DBImage component 810
DBListBox component 811
DBLocale property 185

TLocale and 886
DBLookupCombo

component 813
DBLookupList component 815

DBMemo component 817
DBNavigator component 819
DBRadioGroup component 820
DBText component 822
DDE applications

client 823, 824
associating items with 185
connecting to 187
updating 841

closing 515
handling events 509, 530
poking data 611, 841

handling events 509, 551
server 825

assigning values 509
connecting to 145, 800, 823
copying data 153
receiving data 611
sending macros 267, 268,

530, 886
specifying main file 699

updating data 439, 662
DDE conversations 699, 823, 825

exception handling 225
initiating 145, 548, 566, 800
items, specifying 186, 824,

825, 841
services, specifying 705
terminating 129, 515
topics, specifying 187, 705

DDE links 129
activating 145, 705, 800
character filters 324
copying 153
setting 187, 699

ddeAutomatic constant 145
DDEClientConv component 823
DDEClientItem component 824
DDEConv property 185
DDEItem property 186
ddeManual constant 145
DDEServerConv component 825
DDEServerItem component 825
DDEService property 186

SetLink and 705
DDETopic property 187

SetLink and 705
deactivating See disabling
deallocating dynamic

objects 276
debugger interrupts,

handling 221, 260
debugging 269
Dec procedure 188

See also Inc, Pred, Succ
functions

decimal numbers 620, 727

DecodeDate procedure 188
See also DecodeTime

procedure
DecodeTime procedure 189

See also DecodeDate
procedure; EncodeTime,
Time functions

decoding time data 876
decrementing variables 188
default application 41
default buttons 190
default printers 627
Default property 190
DefaultBlank constant 228
DefaultColWidth property 190
DefaultDrawing property 191

OnDrawCell and 524
OnDrawDataCell and 525

DefaultExt property 191
TFileExt and 851

DefaultRowHeight property 192
RowHeights and 672

Delete method 193–194
AfterDelete and 28
BeforeDelete and 74

Delete procedure 195
See also Concat, Copy, Insert,

Length, Pos functions
DeleteFile function 195
DeleteIndex method 195
DeleteTable method 196
deleting

BLOBs 171
Clipboard contents 117
data 194, 242

Clipboard and 328
confirmation 144, 574
handling events 28, 74

directories 668
files 256
images 650, 659
menu items 193
passwords 655, 658
secondary indexes 196
substrings 195
tables 196
text 117, 118, 193–194, 195

Clipboard and 117, 171,
328

descendant objects 848
DescriptionsAvailable

method 196
Destination property 197
Destroy method 197

OnDestroy and 522
destroying

components 158, 197, 333

1014 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

handling events 522
controls 197
objects 197, 333, 499, 652

detaching from servers
database 217

detail tables
linking to master 456, 457

device constants
fonts 198, 861
media players 199

Device property 198
TFontDialogDevice and 861

DeviceID property 198
devices

input 400
output 577
screen 680

DeviceType property 199
Open and 563
TMPDeviceTypes and 898

dgAlwaysShowEditor
constant 573

dgAlwaysShowSelection
constant 573

dgCancelOnExit constant 574
dgColLines constant 573
dgColumnResize constant 573
dgConfirmDelete constant 574
dgEditing constant 573
dgIndicator constant 573
dgRowLines constant 573
dgRowSelect constant 573
dgTabs constant 573
dgTitles constant 573
dialog boxes 862

See also common dialog boxes
3-D effects 163
adding buttons 431

default 190
borders 87
history lists 386
input 401, 402
messages 464, 465, 468

defining buttons 899
displaying 469, 491
types 900

modal 474
opening 724

multi-page 958
updating file lists 41

dialogs See dialog boxes
directories

See also directory lists
changing 109, 565, 826
creating 321, 473
deleting 668
displaying structures 202, 216

private 631
returning 343
selecting 690
testing existence 200

directory list boxes 826
See also list boxes
drive combo boxes and 202

synchronizing 833
file list boxes and 286

directory lists 826
clearing text 117
columns 138
counting items 689
current directory

displaying 201
selecting 565
setting 200

current drive 216
displaying files 286
filtering 286
returning paths 348
selecting items 691
updating 41, 970

Directory property 200
Drive and 216

DirectoryExists function 200
DirectoryListBox

component 826
DirLabel property 201

ApplyFileEditText and 41
DirList property 202

ApplyFileEditText and 41
DisableControls method 202

EnableControls and 243
disabled controls, searching

for 147
disabling

components 243
drag and drop 214
media player buttons 62,

244, 787, 984
navigator buttons 787, 984
OLE objects 14, 36, 60, 400,

775
scroll bars 681

disconnecting datasets from
data sources 203

disconnecting from servers
database 217

disk drive See drive
DiskFree function 203

See also DiskSize function
DiskSize function 204

See also DiskFree function
Display property 204
display windows 204

See also media players

bounding rectangle 206
DisplayFormat property 205

Currency vs. 166
DisplayText and 207
EditFormat and 226

displaying
bitmaps 479
BLOBs 106, 810, 817

automatically 61
columns and rows in

grids 436, 561, 572, 573, 907
components 983
controls 66, 380, 436, 904, 983
data 175, 180, 983

column and row
format 191, 808, 830

datasets 650
handling events 829, 830,

867
memo fields 61
OLE applications 902

dialog boxes 436, 619, 904
directory structures 202, 216
files 851

combo boxes 287, 386, 854
directory lists 286
file lists 286, 294, 855

forms 380, 608, 719, 919
specifying position 617

Help Hints 721, 722
list boxes 411
message boxes 469, 491, 529
notebook pages 347, 581
online help 379
panels 80
pictures 68
pop-up menus 33, 65, 613,

918
handling events 552

scroll bars 796
text 69, 859

automatically 61
data-aware

components 817, 822
edit boxes 68, 381
input focus and 381
lookup tables 68
memos 381, 839
resizeable 869

warnings 720
DisplayLabel property 205

DisplayName vs. 206
FieldName and 279

DisplayName property 206
display-only data formats 205,

207, 842
handling events 534, 556, 850

DisplayRect property 206

I n d e x 1015

DisplayText property 207
EditMask and 227
GetData vs. 341
OnGetText and 534

DisplayValue property 208
DisplayValues property 208
DisplayWidth property 209
Dispose procedure 209

See also FreeMem, GetMem,
New procedures

DisposeStr procedure 210
See also NewStr function

DitherBackground property 210
divide-by-zero exceptions 232,

276
dmAutomatic constant 214
dmManual constant 214
documentation, printing

conventions 1
DoneWinCrt procedure 211
Double types 46, 47, 48
Down property 211
drag and drop 248

disabling 214
handling events 522, 523, 528,

828, 829, 837
initiating 77
OLE objects 84, 175, 177, 651,

704, 903
setting mouse image 212
specifying behavior 214, 828
status, testing for 213

drag/drop modes 214, 828
states 829

DragCursor property 212
TCursor and 798

Dragging method 212
DragMode property 213

BeginDrag and 77
TDragMode and 828

draw grids 830
counting rows 672
returning coordinates 694
returning current column

and row 480
scrolling 681
setting size 192, 672

Draw method 214
DrawFocusRect method 215
DrawGrid component 830
drawing 214, 793

See also painting
arcs 43
chords 112
color options 134–135
ellipses 239, 605
geometric shapes 945

items
combo boxes 525, 542
grids 191, 524, 525, 533,

556
list boxes 99, 525, 542, 912
outlines 99, 420, 525, 911

options 571, 577
lines 112, 440, 475
patterns 80
polygons 612
polylines 613
rectangles 89, 215, 332, 649
rounded rectangles 670
text 845

drawing events
grids 524, 525, 533, 556, 829,

830, 867
items in lists 525, 542
list boxes 832
tab sets 526, 543, 832

drawing routines 8
drawing surfaces 789
drawing tools 785, 866, 912, 916
drive

changing 109
free space 203
size, measuring 204

drive combo boxes 832
directory list boxes and 202

synchronizing 833
file list boxes and 833
volume names 843

drive lists 832
clearing text 117
current drive 216
selecting items 696

getting starting
position 696

specifying initial items 840,
960

updating 41, 970
Drive property 216

Text and 840
DriveComboBox

component 832
DriverName property 216

AliasName and 30
drivers

databases 217, 343, 344, 416
language 185, 446, 447
media control 889
returning current 343, 344

DropConnections method 217
KeepConnections and 427

drop-down lists 217, 218, 219
creating 766, 770
events 527

DropDown method 217
DropDownCount property 218
DropDownWidth property 218
DroppedDown property 219
dropping See drag and drop
DS register 219
dsBrowse constant 740
dsCalcFields constant 740
dsDragEnter constant 829
dsDragLeave constant 829
dsDragMove constant 829
dsEdit constant 740
dsEditModes constant 219
DSeg function 219

See also CSeg, SSeg functions
dsInactive constant 740
dsInsert constant 740
dsSetKey constant 740
dtAutoSelect constant 199
dtAVIVideo constant 199
dtCDAudio constant 199
dtDAT constant 199
dtDigitalVideo constant 199
dtMMMovie constant 199
dtOther constant 199
dtOverlay constant 199
dtScanner constant 199
dtSequencer constant 199
dtVCR constant 199
dtVideodisc constant 199
dtWaveAudio constant 199
dupAccept constant 221
dupError constant 221
dupIgnore constant 221
duplicate names 222
duplicate strings 221, 834
Duplicates property 221

TDuplicates and 834
Dynamic Data Exchange See

DDE
dynamic variables See variables

E
EAbort object 221
EBreakpoint object 221
EClassNotFound object 222
ecLowerCase constant 108
ecNormal constant 108
EComponentError object 222
EConvertError object 222
ecUpperCase constant 108
EDatabaseError object 223
EDBEditError object 224
EDBEngineError object 223
EDDEError object 225

1016 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

edit boxes 795, 834, 887
adding items 460
borders 88
copying text 354
data-aware 804, 806

validating required
characters 974

deleting items 117, 118, 171
displaying items 381
editing text 231
file lists and 41
hiding characters 595
multiline 891
naming 839
passwords and 595
resizing 68
restricting data entry

valid characters only 175
selecting text 67, 690, 696, 697

getting starting
position 696

setting case 108, 836
testing for changes 478

edit buttons 560
Edit component 834
Edit method 225

AfterEdit and 29
AutoEdit and 61
BeforeEdit and 74
SetFields and 703

Edit mode 61, 225, 740
grids 229
retrieving text strings 865

EditFormat property 226
Currency vs. 166

editing
See also changing
data

databases 60, 61, 225, 226
grids 229, 944

events 533, 556
options 572, 573

handling events 29, 74
strings 229, 944

handling events 533, 556
text

edit boxes 231
list boxes 282
masks 231

EditKey method 226
GotoKey and 361
GotoNearest and 361
SetKey vs. 704

EditMask property 227
EditMaskPtr and 229

EditMaskPtr property 229
EditorMode property 229
EditRangeEnd method 230

ApplyRange and 42
SetRangeEnd vs. 707

EditRangeStart method 230
ApplyRange and 42
SetRangeStart vs. 708

EditText property 231
Text and 839
ValidateEdit and 974

EDivByZero object 231
EFault object 232
EFCreateError object 232
EFilerError object 232
EFOpenError object 233
EGPFault object 233
EInOutError object 233
EIntError object 234
EIntOverflow object 234
EInvalidCast object 235
EInvalidGraphic object 235
EInvalidGraphicOperation

object 235
EInvalidGridOperation

object 236
EInvalidImage object 236
EInvalidOp object 236
EInvalidOpCode object 236
EInvalidOperation object 237
EInvalidPointer object 237
Eject method 237

Wait and 987
ejecting loaded medium 237
elephants and marshmallows

See Pat Z
EListError object 238
Ellipse method 239
ellipses 239, 605, 715

connecting points 112
filling 785

EMathError object 240
embedded OLE objects 902
EMCIDeviceError object 240
EMenuError object 240
EMPNotify type 240
EMPPostNotify type 241
Empty property 241
empty strings 242, 495, 843
EmptyStr constant 242
EmptyTable method 242
EnableControls method 242

DisableControls and 203
Enabled property 243–244
EnabledButtons property 244

AutoEnable vs. 62
TButtonSet and 787

EnableExceptionHandler
procedure 245

enabling See activating
ENavClick type 245

TNavigateBtn and 900
EncodeDate function 246

See also DateToStr,
EncodeTime functions;
DecodeDate procedure

EncodeTime function 246
See also DecodeTime

procedure; EncodeDate
function

encoding time data 876
encryption 636

See also passwords
EndDoc method 247

BeginDoc and 76
EndDrag method 248
EndMargin property 248

StartMarging and 736
end-of-file status 251
end-of-line status 111, 252, 687
EndPage property 249
EndPos property 249

AutoRewind and 65
Play and 609
TimeFormat and 875

EndUpdate method 250
SetUpdateState vs. 713

Eof function 251
See also Eoln, SeekEof

functions
EOF property 252
Eoln function 252

See also Eof, SeekEof functions
EOutlineChange type 253
EOutlineError object 253
EOutOfMemory object 253
EOutOfResources object 253
EOverflow object 254
EPageFault object 254
EParserError object 254
EPrinter object 255
EProcessorException object 255
ERangeError object 255
Erase procedure 256

See also Rename procedure
EraseSection method 257
erasing files 195, 256
erasing images 650
EReadError object 258
EReportError object 258
EResNotFound object 258
error codes

media players 258, 259
error messages

creating 173, 185, 262

I n d e x 1017

media players 259
message boxes and 466, 468

Error property 258
ErrorAddr variable 259

See also ExitCode, ExitProc
variables

ErrorCode property 224
ErrorCount property 224
ErrorMessage property 259
ErrorProc typed constant 260
errors 372

See also exceptions
heap 374
input/output 233
media players 258, 259
run-time 675

Abstract and 13
addresses 259, 374
handlers 260, 375

Errors property 224
ESingleStep object 260
EStackFault object 260
EStreamError object 261
EStringListError object 261
EUnderflow object 261
event handlers 333
events 2, 7

activation
applications 504, 521
controls 505, 528, 530
DDE conversations 548
forms 503, 506, 514, 557
notebook pages 549
OLE objects 503
pop-up menus 552

applying fonts 847
calculated fields 508
change 510

data 27, 73, 520, 560, 800
data-aware

components 510
DDE applications 509
fields 510, 850
graphics 510, 511
grids 561
tab sets 509

click 514, 521
fonts 507
grids 517
media player buttons 512,

552
navigator buttons 94, 119,

513
notebook pages 900

close
datasets 28, 73
DDE conversations 515
forms 515, 516, 793

closing datasets 73
creating forms 519
deleting records 28, 74
display-only formats 534,

556, 850
drag-and-drop 77, 248, 522,

523, 528, 828, 829, 837
clearing formats and 118
disabling 214
OLE objects 84, 903
retrieving status 213
setting mouse image 212

drawing
grids 524, 525, 533, 556,

829, 830, 867
items in lists 525, 542
list boxes 832
tab sets 526, 543, 832

drop-down lists 527
editing data 29, 74
exceptions 529, 839
hiding forms 534
inserting records 29, 75, 547
keyboard 539, 540, 881, 882

determining state 946
processing 429
responding to 243
scrolling forms 941

login scripts 541, 886
minimizing applications 544,

554
mouse 544, 545, 546, 897, 946

responding to 243
returning coordinates 480
simulating 94, 119

moving columns and
rows 519, 554

notification 800, 850, 901
DDE applications 530, 551
idle applications 538, 871
media players 492, 493,

547
OLE applications 560
online help 536
Windows messages 543

opening datasets 29, 75
outlines 518, 531
paint 549
passwords 352, 551
pointers 800
posting records 30, 75
requesting online help 870
resizing

forms 554
headers 559

scrolling 555
search and replace

operations 532, 553

timer 561
initiating 412
responding to 243

updating data 562
validating data 562, 850

EWriteError object 261
ExceptAddr function 276
Exception object 262
exception objects 275, 276
ExceptionClass typed

constant 269
exceptions 262, 275, 276, 577

addresses 720
classes

not found 222
registering 233

creating files 232
database engine (BDE) 224
databases 173, 185, 223
DDE conversations 225
displaying messages 720
enabling standard

processing 245
faults 260

base object 232
general protection 233
invalid opcodes 236
page 254

floating-point 222, 236, 240,
254, 261, 276

graphics 235
resources and 236, 258

grids 236
handling 372
handling events 529, 839
hardware 245, 260

base object 255
interrupts 221, 260
memory 233
stack 260
swap files 254
undefined

instructions 236
heap 253
hiding error messages 11
input/output 233
invalid operations 237, 254,

535
language 245
lists 238, 261
masks 224
math 222

base object 234, 240
divide-by-zero 232, 276
overflow 234, 254
range errors 255
undefined

instructions 236

1018 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

underflow 261
media players 240, 258, 259
menus 240
opening files 233
outlines 253
pointers 237
printing 255
reporting 269
reports 258
silent 11, 221
streams 233, 258, 262

base object 261
system resources 253, 254
text forms 254
typecasting 235
unhandled 269

ExceptObject function 275
ExceptProc typed constant 269
Exchange method 263
exchanging bytes 771
Exclude procedure 263

See also Include procedure
Exclusive property 264

DeleteIndex and 196
EmptyTable and 242

ExecProc method 265
Open vs. 564

ExecSQL method 265
Open vs. 564
SQL and 733

executable files 268
message boxes and 466, 468

Execute method 265–267
Font and 320
ProblemTableName and 632

ExecuteMacro method 267
OnExecuteMacro and 530
PokeData and 611
PokeDataLines and 612

ExecuteMacroLines method 268
PokeData and 611
PokeDataLines and 612

ExeName property 268
Exit procedure 269

See also Halt procedure
exit procedures

adding 22
calling 270
chaining 270
installing 270

ExitCode variable 270
See also ErrorAddr, ExitProc

variables
ExitProc variable 270

See also ErrorAddr, ExitCode
variables

far calls and 270

Exp function 271
See also Ln function

Expand method 271
Expanded property 272

Collapse and 133
FullCollapse and 336
FullExpand and 336
OnCollapse and 518
OnExpand and 531

ExpandFileName function 273
expanding outline items 253,

272, 273, 336, 417
handling events 531

exponentials
See Exp function

Expression property 273
ExtendedSelect property 274
ExtractFileExt function 274
ExtractFileName function 274
ExtractFilePath function 275
EZeroDivide object 276

F
Fail procedure 276

See also New procedure
faults

base exception object 232
general protection 233
invalid opcodes 236
page 254
stack 260

fdAnsiOnly constant 567
fdBoth constant 198
fdEffects constant 567
fdFixedPitchOnly constant 567
fdForceFontExist constant 567
fdLimitSize constant 567
fdNoFaceSel constant 567
fdNoOEMFonts constant 567
fdNoSimulations constant 567
fdNoSizeSel constant 567
fdNoStyleSel constant 567
fdNoVectorFonts constant 567
fdPrinter constant 198
fdScalableOnly constant 567
fdScreen constant 198
fdShowHelp constant 567
fdTrueTypeOnly constant 568
fdWysiwyg constant 568
Field component 848

descendant objects 848
Field Link Designer 456
field names 206, 279

See also headers
returning 206

field objects 853
creating 17, 23, 159

sets 49
pointers 425

returning 301
subsets 853

clearing 116
testing for 277

Field property 277
FieldByName method 277
FieldClass property 277
FieldCount property 278
FieldDefs property 278

CreateTable and 161
FieldName property 279

DisplayLabel and 206
DisplayName vs. 206

FieldNo property 279–280
fields 848

See also field objects; specific
types

allocating memory 179
assigning values 40, 56, 410,

703, 977
Boolean 45
date/time 47
floating-point 48
integers 48
maximum 461
minimum 473
required 663
string 58

batch moves 452
calculated 95

handling events 508
naming 279

changing data 98, 510, 800,
850

combo boxes and 804
list boxes and 811

combo boxes and
multiple 218, 449, 574

comparing values 42
copying contents 50
counting 156, 278, 393

database searches 428
displaying 983
indexes 280, 304, 393, 397, 415

returning values 693
key 393, 428

searching on 305, 306
masks and 227, 839
naming 487
null 42

specifying 116
testing for 416

numbering 280
raw data

I n d e x 1019

returning 341
setting 702

read-only 644, 822
referencing 279, 487
reordering 393
restoring default values 117
retrieving information 278,

301, 425
returning 277, 302, 344

specific 280, 693
searching for multiple 226
setting current contents 976,

977, 979
size

returning 726
setting 209, 727

types
compatible 50
returning 278
specifying 54, 181, 182,

854
validating 317, 416

Fields Editor 848
Fields property 280

FindField vs. 302
Index and 393
SelectedIndex and 693
Text vs. 839

file attribute constants 294, 855
file list boxes 286, 851

See also list boxes
drive combo boxes and 833

file lists 851
adding glyphs 720
clearing text 117
counting items 689
current directory 200
current drive 216
displaying files 286, 294, 855
editing 282
filtering 41, 286
selecting files 288, 290

file masks and 296, 297,
299, 364, 455, 456

selecting items 691
updating 41, 970
wildcard characters and 296,

297, 298
file masks 296–299, 456
file mode constants 280
File Name combo boxes 283

displaying file names 386
File Name edit boxes 287

adding file names 296
default extensions 191, 851

file names 501
associating variables 54
changing 659

dynamically 658
extracting 274
invalid 232
returning 356

graphics files 363
specifying 283, 287–289, 854

combo boxes 298, 386, 455
default extensions 191,

851
list boxes 296, 364, 456

file objects
creating 157
erasing sections 257

file open mode constants 281
file streams 233
FileAge function 281
FileClose procedure 282
FileCreate function 282
FileDateToDateTime

function 285
See also DateTimeToFileDate

function
FileEdit property 282

ApplyFileEditText and 41
FileEditStyle property 283

HistoryList and 386
TFileEditStyle and 851

FileExists function 284
FileGetAttr function 285

See also FileSetAttr function
FileGetDate function 285
FileList property 286

ApplyFileEditText and 41
FileListBox component 851
FileMode variable 286

See also Rewrite procedure
file-name extensions See file

names
FileName property 287–289

Files and 290
TFileName and 854

FilePos function 289
See also FileSize function;

Seek procedure
FileRead function 290

Handle and 290
files 125

See also file objects
age 281
allocating memory 157
applying filters 41, 286
attributes 285, 292
closing 125, 128, 280, 282
converting dates 285
creating 282, 667

exception handling 232
creation date 285

current position 685
deleting 256
displaying 851

combo boxes 287, 854
directory lists 286
file lists 286, 294, 855

end 251, 686
erasing 195, 256
executable 268

message boxes and 466,
468

existence, testing 284
extensions 273–275

extracting 274
extensions, changing 107
filtering 296, 298, 364, 455,

456
specifying default

filter 299
graphic See graphic files
line ends 252
modification date 285
number of records 293
opening 41, 280, 281, 287,

664, 905
exception handling 233

paths
extracting 275
specifying 273

positions within 289
printing 55
reading bytes 290
renaming 658, 659

extensions 107, 274
saving 287, 936
searching 291, 303, 307, 942
seeking 291
selecting in lists 288, 290

file masks and 296, 297,
299, 364, 455, 456

sharing 281
size 293
swap 254
text See text files
typed 854
untyped 854

Files property 290
FileSearch function 291
FileSeek function 291
FileSetAttr function 292

See also FileGetAttr function
FileSetDate procedure 292

See also FileGetDate function
FileSize function 293

See also FilePos function
FileType property 294

TFileType and 855
FileWrite function 294

1020 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

See also FleRead, FileSeek
functions

fill patterns 92, 785
brushes 764
pens 763
specifying 785

FillChar procedure 295
See also Move procedure

filling bytes 295
FillRect method 295
filter combo boxes 286, 855

file list boxes and 286
file masks and 297, 455
specifying initial items 840

Filter property 296–299
FilterIndex and 299
GraphicFilter and 364
Text and 840

FilterComboBox component 855
FilterIndex property 299
filters 855

See also masks
applying 41, 286
clearing text 117
combo boxes 298
data 42, 230, 231, 427, 706,

707, 708
DDE applications 324
displaying files 286
list boxes 296–297
selecting text 690, 696, 697

getting starting
position 696

specifying default 299
Find common dialog box 856

accessing 370
adding search strings 308
closing 128
display options 857
displaying 436, 619, 904
Find Next button 532
opening 266
specifying behavior 570

Find method 300–301
find sequences 301, 303, 307, 942
FindClose procedure 301

See also FindFirst, FindNext
functions

FindComponent method 301
FindDatabase method 302

OpenDatabase and 565
FindDialog component 856
FindField method 302
FindFirst function 303

See also FindNext function
FindIndexForFields method 304
FindItem method 304

TFindItemKind and 857
FindKey method 305

SetKey and 704
FindNearest method 306

KeyExclusive and 427
SetKey and 704

FindNext function 307
See also FindFirst function

FindText property 307
ReplaceText and 660

First method 308–309
Post and 619

FirstIndex property 309
FixedColor property 310
FixedCols property 311
FixedRows property 312
fixed-width fonts 606
fkCommand constant 305
fkHandle constant 305
fkShortCut constant 305
float fields 857

currency values and 166
string values and 58

FloatField component 857
floating-point math

exceptions 222, 254, 261, 276
base object 240
invalid opcodes 236

floating-point values 47, 48, 776,
857

conversions
exception handling 222

overflow conditions 254
underflow conditions 261

FloatToDecimal procedure 312
FloatToStr function 313
FloatToStrF function 313
FloatToText function 314

Currency and 166
FloatToTextFmt function 315

Currency and 166
DisplayText and 207

FloodFill method 315
TFillStyle and 855

Flush procedure 315
See also ShowerScald

procedure
FmtLoadStr function 316

See also Format funciton
FmtStr procedure 316
focus 215

active control 15, 317, 318
current form 16
data-aware components 317
grids 132
moving 958

handling events 505, 530

selected text and 381
setting 703
testing 97

FocusControl method 317
FocusControl property 317
Focused method 318
Font common dialog box 860

display options 861
handling events 507, 847
limiting font size 459, 471
opening 266
selecting fonts 319
setting default font 319
specifying behavior 567
specifying device 198, 861

Font property 319–320
ParentFont and 593

FontDialog component 860
fonts 319–320, 859, 860, 866

applying 507, 847
character widths 606
color options 567
default 319
headers 881
naming 486, 861
pitch 606, 862
screen 320, 568
selecting 319, 567
size

changing 68, 69
checking 844, 847
setting 376, 459, 471, 609,

726, 862
status, retrieving 593
styles 765, 862
TrueType 320, 568

Fonts property 320
for statements

continuing 146
exiting 90

ForceDirectories procedure 321
Form component 862
form objects

destroying 652
form properties See properties
Format function 321
format specifiers 322–324
format strings See strings

format
FormatBuf function 324
FormatChars property 324
FormatCount property 324
FormatDateTime functon 325
FormatFloat function 326
Formats property 328

FormatCount and 325
HasFormat and 373

I n d e x 1021

formatting data See data formats
FormCount property 329
forms 862

accessing 330
activating 503, 506, 514, 557,

703
previous 624

active 16, 503, 506
backgrounds 92, 134
borders 87, 864
bringing to front 91
child See MDI applications
client areas 120, 121, 122

height 120
width 122

closing 124, 129, 474
handling events 515, 516,

793
counting 329
creating 160

handling events 519
displaying 380, 608, 719, 919

specifying position 617
exception handling 254
hiding 515, 534
icons 388

arranging 44, 872
labeling 103
title bars 86, 784

initial states, setting 964, 992
instantiating 160
main 452
menus 463
minimized 515, 992

captions 103
modal 474

opening 724
terminating 896

multiple 367
moving through 624

naming 103
overlapping 44, 91, 698
painting 99, 549
printing 346, 625

scaling options 630
resizing 31, 86, 679, 990

handling events 554
scaling 679
scrolling 66, 681, 682, 938

handling events 941
horizontal scroll bars

and 387
vertical scroll bars and 982

sending to back 698
setting main 330, 865
size, setting 376, 617
styles 330, 865
topmost 491, 666

usable area 120
Forms property 329
FormStyle property 330

TFormStyle and 865
fpDefault constant 606
fpFixed constant 606
fpVariable constant 606
Frac function 331

See also Int function
fractional parts 331
FrameRect method 331
frames 777

See also borders
Frames property 332

Step and 741
frDisableMatchCase

constant 570
frDisableUpDown constant 570
frDisableWholeWord

constant 570
frDown constant 570
Free method 333

OnDestroy and 522
Release vs. 652
Temporary and 836

Free procedure 333
FreeBookmark method 334

GetBookmark and 339
GotoBookmark and 360
TBookmark and 783

freeing memory 197, 333, 334,
522, 652

bookmarks 334
closing forms 515
OLE objects 653
owned components 579

freeing resources 116
FreeMem procedure 334

See also Dispose, GetMem,
New procedures

frFindNext constant 571
frHideMatchCase constant 571
frHideUpDown constant 571
frHideWholeWord constant 571
frMatchCase constant 571
FromPage property 335
frReplace constant 571
frReplaceAll constant 571
frShowHelp constant 571
frWholeWord constant 571
fsBold constant 765
fsComboBox constant 283
fsEdit constant 283
fsItalic constant 765
fsMDIChild constant 330
fsMDIForm constant 330

fsNormal constant 330
fsStayOnTop constant 330
fsStrikeout constant 765
fsUnderline constant 765
ftArchive constant 294
ftBCD constant 854
ftBlob constant 854
ftBoolean constant 854
ftBytes constant 854
ftCurrency constant 854
ftDate constant 854
ftDateTime constant 854
ftDirectory constant 294
ftFloat constant 854
ftGraphic constant 854
ftHidden constant 294
ftInteger constant 854
ftMemo constant 854
ftNormal constant 294
ftReadOnly constant 294
ftSmallint constant 854
ftString constant 854
ftSystem constant 294
ftTime constant 854
ftUnknown constant 854
ftVarBytes constant 854
ftVolumeID constant 294
ftWord constant 854
FullCollapse method 336

OnCollapse and 518
FullExpand method 336

OnExpand and 531
FullPath property 337

ItemSeparator and 426
functions 7–8

G
GDI font simulations 567
general protection faults 233
geometric shapes See shape

components
GetAliasNames method 337
GetAliasParams method 338
GetAsHandle method 338
GetBookmark method 339

FreeBookmark and 334
TBookmark and 783

GetComponent method 339
GetData method 340–341

GetDataSize and 342
GetDatabaseNames method 341
GetDataItem method 342
GetDataSize method 342

GetData and 341
GetDir procedure 343

1022 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

See also ChDir function;
MkDir, RmDir procedures

GetDriverNames method 343
GetDriverParams method 344
GetFieldNames method 344
GetFirstChild method 345
GetFormatSettings

procedure 345
GetFormImage method 345
GetHelpContext method 346
GetIndexForPage method 346
GetIndexNames method 347
GetItem method 348
GetItemPath method 348
GetLastChild method 349
GetLongHint function 349
GetMem procedure 350

See also Dispose, FreeMem,
New procedures

GetNextChild method 351
GetParentForm function 351

ValidParentForm vs. 975
GetPassword method 352
GetPrevChild method 352
GetPrinter method 353
GetProfileChar function 353
GetProfileStr function 353
GetResults method 353
GetSelTextBuf method 354
GetShortHint function 355
GetStoredProcNames

method 355
GetTableNames method 356
GetText method 356
GetTextBuf method 357

GetTextLen and 358
GetTextItem method 357
GetTextLen method 358

GetTextBuf and 357
Glyph property 358
glyphs

See also bitmaps
buttons 359

returning 495
list boxes and 720
message boxes 467, 469

goAlwaysShowEditor
constant 572

goColMoving constant 572
goColSizing constant 572
goDrawFocusSelected

constant 572
goEditing constant 572
goFixedHorzLine constant 572
goFixedVertLine constant 572
goHorzLine constant 572

goRangeSelect constant 572
goRowMoving constant 572
goRowSelect constant 573
goRowSizing constant 572
goTabs constant 573
goThumbTracking constant 573
GotoBookmark method 360

FreeBookmark and 334
TBookmark and 783

GotoCurrent method 360
GotoKey method 361

SetKey and 704
GotoNearest method 361

KeyExclusive and 427
SetKey and 704

GoToXY procedure 362
See also CursorTo, WhereX,

WhereY procedures
goVertLine constant 572
GPFs 233
graphic fields 866

associating with streams 678
size, returning 726, 727
streams and 678
string values and 58
writing to 444

graphic files
filtering 364
loading 443, 444, 445, 640

BLOBs 445
invalid access 235, 236

returning 363
Graphic property 362
GraphicExtension function 363
GraphicField component 866
GraphicFilter function 363
graphics 781, 865, 870, 873, 895,

917
See also images; pictures
adding 443
buttons and 902, 948
changing 510, 511
Clipboard formats 373
coloring 92, 793
copying 49
data-aware 810
drawing 214
exception handling 235

resources and 236, 258
handles 369
painting backgrounds 764
pasting 596
pictures vs. 865
resizing 748
scaling 966, 999
size 990

setting 376

specifying type 363
testing existence 241
testing for changes 477

graphics tools 866
Graphics unit 793
GridHeight property 364
GridLineWidth property 365
grids See data grids; draw grids;

string grids
GridWidth property 365
group boxes 868

See also radio group boxes
GroupBox component 868
GroupIndex property 366–368
grouping buttons 366, 928
grouping menu items 367
grouping related controls 868

H
Halt procedure 368

See also Exit, RunError
procedures

Handle property 369–371
CursorPosChanged and 168

HandleAllocated method 371
HandleException method 372

OnException and 529
HandleNeeded method 372
handles 369–371

bitmaps 653, 654
Clipboard 338, 700
creating 373
data access 177
databases 185, 371
instance 382
invalid operations 237, 254,

535
MDI applications 120
reports 661
testing for 371

hardware exceptions 260
base object 255
interrupts 221, 260
memory 233
stack 260
swap files 254
undefined instructions 236

HasFormat method 373
HasItems property 374
Header component 869
header pages (networks) 880
headers 869

borders 88
fonts 881
multi-line 684
resizing 36, 943

I n d e x 1023

handling events 559
specifying sections 684

heap
allocating 34, 374
attribute flags 374
blocks

free 458
size 374

deallocating 374
disposing strings 746
errors 374
exception handling 253
integrity 374
reallocating 647
total free memory 462
variables 374

heap variables 374
See also GlobalAlloc,

GlobalLock functions
Height property 375–377

ClientHeight vs. 120
Size vs. 726

Help buttons 431
common dialog boxes 566,

567, 568, 570, 571
Convert dialog box 149
message boxes 466, 468

Help files 379
Help Hints 946

color options 384
creating 383
displaying 721, 722
handling events 536, 557
navigator buttons 385
retrieving 349, 355
setting time intervals 385
status, retrieving 594

Help systems 377
displaying online help 379
handling events 536, 870
help context numbers 377

creating 378, 870
returning 346

jumps 379
message boxes and 466, 469
OLE applications 149

Help windows 870
HelpCommand method 377
HelpContext method 377

HelpFile and 379
OnHelp and 536

HelpContext property 378
HelpFile property 378

HelpContext and 377
HelpJump and 379

HelpJump method 379
OnHelp and 536

heterogeneous queries 733
Hi function 380

See also Lo, Swap functions
Hide method 380
HideSelection property 381
hiding components 983
hiding controls 380
hiding forms 380, 515, 534
High function 381

See also Low function
high-order bytes 380
HInstance variable 382
Hint property 383

GetLongHint and 349
GetShortHint and 355
HintPause and 385
OnHint and 536
ParentShowHint and 594

HintColor property 384
HintPause property 385
Hints property 385
hints See Help Hints
history lists 386

implementing 283
HistoryList property 386
HMetafile type 387
horizontal scroll bars 157, 387,

432, 939
displaying 796
scrolling ranges 636
setting position 683

HorzScrollBar property 387
TControlScrollBar and 796

HPrevinst variable 382
hyphens (–) in captions 103

I
I/O buffers 711
I/O errors

exception handling 233
I/O functions 399
I/O status 414
icon files 389

loading 443
Icon property 388–390

Bitmap and 81
Metafile and 470

icons 870, 917
See also graphics
adding 443
minimized applications 389,

879
minimized forms 44, 103,

388, 872
pictures 389
reading 640

size, setting 376
testing existence 241
testing for changes 477
title bars 86, 784

IDABORT constant 465
IDCANCEL constant 465
identifiers

See also names
changing at run time 222
classes 113
defined 417
objects 113
valid 417

IDIGNORE constant 465
idle applications 538, 871
IDNO constant 465
IDOK constant 465
IDRETRY constant 465
IDYES constant 465
Ignore buttons 432, 468

message boxes 465, 466, 468
illegal typecasts 235
Image component 873
images 873

See also bitmaps; icons;
metafiles

aligning on buttons 435, 787
buttons and 731, 902, 948

multiple 495
centering 106
copying 150, 152, 797

BLOBs 154
databases and 445
deleting 650, 659

BLOBs 171
painting 99
reading 640
resizing 68, 748
specifying type 602
stretching to fit 748
transparent 93

Inactive mode 740
InactiveTitle typed constant 390
Inc procedure 390

See also Succ function; Dec,
Pred procedures

Inch property 390
Include procedure 391

See also Exclude procedure
incompatible data

exceptions 224
Increment property 391
incrementing variables 390
indenting items in outlines 438
indenting text

See also aligning
outlines 107

1024 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

Index property 392–393
GetDataItem and 342
GetFirstChild and 345
GetItem and 348
GetItemPath and 348
GetLastChild and 349
GetNextChild and 351
GetPrevChild and 352
GetTextItem and 358
Items and 423

IndexDefs property 393
CreateTable and 161

indexes
buttons 420
combo boxes 420
components 142
datasets 425
fields 280, 304, 393, 397, 415

returning values 693
list boxes 418, 420, 906
notebook pages 581
object lists 403
outlines 392, 907
strings 403
tables 393, 877

characteristics 575
clearing elements 116
counting elements 156
counting fields 393
creating 18, 23, 50, 157,

158, 878
dBASE 273, 395
entering fields 23, 394
naming 347, 486
retrieving

information 394, 397, 971
searching on 305, 306
secondary 395

deleting 196
IndexFieldCount property 393
IndexFieldNames property 394

EditRangeEnd and 230
EditRangeStart and 231
FindNearest and 306
IndexName and 395

IndexFields property 394
indexing queen

See Frances
IndexName property 395

FindNearest and 306
IndexFieldNames and 394

IndexOf method 395–397
IndexOfObject method 397
informational messages 466, 468
.INI files 353, 878

creating 157
erasing sections 257
International section 345

reading from 644, 645
Boolean values 639
integers 641

retrieving strings 646
accessing strings 978
writing to 995, 998, 999

InitialDir property 398
initializing

components 158
objects 159, 409
OLE objects 496, 497, 500,

502, 596
object pointer 605
releasing memory 653

InitialValues property 399
InitWinCrt procedure 399

See also ScreenSize,
WindowOrg, WindowSize
typed constants;
WindowTitle variable

InOutRes variable 399
in-place activation 14, 36, 400

See also OLE objects
InPlaceActive property 400
input

See also I/O
exception handling 233

input device, standard 400
input dialog boxes 401, 402
input focus 215

active control 15, 317, 318
current form 16
data-aware components 317
grids 132
moving 958

handling events 505, 530
selected text and 381

setting 703
testing 97

input parameters
See also stored procedures

Input variable 400
See also Output

variable;TextFile type
InputBox function 401

InputQuery vs. 402
InputQuery function 402

InputBox vs. 401
Insert method 402–405

See also Add method
AfterInsert and 29
Append vs. 38
BeforeInsert and 75
Post and 619, 620

Insert mode 405, 740
Insert Object dialog box 409, 496,

497

Insert procedure 406
See also Concat, Copy, Length,

Pos functions; Delete
procedure

InsertComponent method 406
InsertControl method 407
InsertObject method 407–409
InsertOLEObjectDlg

function 409
PInitInfo and 605
ReleaseOLEInitInfo and 653

InsertRecord method 410
AppendRecord vs. 40
Post and 620

instance handles 382
instantiation 2

applications 41, 773
Clipboard 123
forms 160
printer objects 627

instructions
undefined 236

Int function 411
See also Frac, Round, Trunc

functions
IntegerField component 878
integers 48, 773

conversions
exception handling 222
strings 328, 760

generic exceptions 234
INI files and 998
out-of-range 255
overflow conditions 234
returning 411
values and INI files 641

IntegralHeight property 411
integrity violations 12, 430
internal routines 294
interrupts

debugger 221, 260
Interval property 412

OnTimer and 561
IntToHex function 412

See also IntToStr function
IntToStr function 413

See also IntToHex, StrToInt
functions

invalid names 232
invalid opcode exception 236
invalid pointers 237
Invalidate method 413

Refresh and 650
invisible borders 88
invisible components 983
invisible controls 380
invisible forms 380

I n d e x 1025

IOResult function 414
exception handling vs. 414

IsIndexField property 414
IsMasked property 415
IsNull property 415–416
isolation levels 930, 962
IsSQLBased property 416
IStorage 742
IsValidChar method 416
IsValidIdent function 417
IsVisible property 417
ItemAtPos method 417–419
ItemCount property 419
ItemHeight property 419
ItemIndex property 420
ItemRect method 421
Items property 422–425

Add and 17, 18
AddFieldDesc and 23
AddParam and 25
Assign and 49, 50
AssignValues and 56
Clear and 116
Count and 156
CreateParam and 160
Find and 301
Index and 392
IndexOf and 397
Lines vs. 439
ParamByName vs. 585
RemoveParam and 657
Value and 976
Values vs. 979

ItemSeparator property 425
FullPath and 337

J
justification See alignment

K
KeepConnection property 426

Connected and 144
KeepConnections vs. 427

KeepConnections property 427
key fields

counting 393, 428
searching on 305, 306

key presses 428
key violations 12, 430
keyboard activity 400
keyboard events 428, 539, 540,

642, 881, 882
determining state 946
processing 429
responding to 243

scrolling forms 941
keyboard scan codes 881
keyboard shortcuts

controls 103
menu items 717

returning as strings 718
returning shift states 718
setting 103
specifying at run time 716

KeyExclusive property 427
FindNearest and 306

KeyFieldCount property 428
KeyPressed function 428

See also ReadKey function
KeyPreview property 429
keyviol tables 12, 430
KeyViolCount property 430
KeyViolTableName

property 430
AbortOnKeyViol and 12

Kind property 431–433
TBitBtnKind and 780
TScrollBarKind and 939

L
Label component 882
labels

See also captions; text; titles
aligning text 32
associating with controls 317
columns in grids 312
directory lists 41, 201
fields 206, 279
resizing 69
rows in grids 311
transparent 931
wrapping 994

landscape printing 576, 922
language drivers 185, 446, 447
LargeChange property 433

Max and 457
Min and 470
TScrollBarInc and 939

Last method 433–435
Post and 619

Layout property 435
TButtonLayout and 787

lbOwnerDrawFixed
constant 767

lbOwnerDrawVariable
constant 767

lbStandard constant 767
leading blanks

masks 227
left aligning text 32, 33
Left property 436

LeftCol property 436
OnTopLeftChanged and 561

Length function 437
See also Concat, Copy, Pos

functions; Delete, Insert
procedures

Length property 437
Frames and 332
TimeFormat and 875

Level property 437
ChangeLevelBy and 107

libraries 2
run-time 8

linefeed characters
Clipboard 373
DDE applications 324

Lines property 438–440
Text and 840, 841

lines, drawing 112, 440, 475
LineTo method 440
linked OLE objects 902
linked queries 180
linking data sources 456, 457
Links dialog box 441
LinksDlg procedure 440

LinksDlgEnabled and 441
LinksDlgEnabled function 441
list boxes 826, 851, 884

See also combo boxes
activating lists 527
borders 88
clearing text 117
columns 138, 449, 574, 816
counting items 689
data-aware 811, 815

display options 816
setting current values 976

displaying 411
items in 767

drawing surfaces 99
editing text 282
file masks and 296, 456
glyphs and 720
integral height 411
moving items 906
owner-draw

adding bitmaps 498
displaying 767
drawing items 420, 832,

912
measuring items 889
variable styles 542

returning items 422
selecting items 274, 691

multiple 485
sorting items 729
states 832

1026 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

synchronizing with combo
boxes 833

testing for items 418
updating 41, 970

list objects See object lists
List property 441

FileEditStyle and 283
First and 309
Index Of and 396
Last and 434
Pack and 579

ListBox component 884
literal characters

masks 227, 231
live result sets (defined) 923
Ln function 442

See also Exp function
Lo function 443

See also Hi, Swap functions
LoadField property

LookupDisplay and 449
LoadFromFile method 443–444
LoadFromStream method 444
loading graphic files 443, 444,

445, 640
BLOBs 445
invalid access 235, 236

LoadMemo method 444
LoadPicture method 445
LoadStr function 446
Local property 446
Locale property 446–447

TLocale and 886
Locked property 447
loColLines constant 574
logarithm

bases See Exp function
natural 442

logical fields 45, 783
check boxes and 977
formatting data 208
radio buttons and 976, 979
string values and 58

logical palettes 794
Login dialog box 448
login parameters 541
login scripts 448

handling events 541, 886
LoginPrompt property 448
Longint types 48
lookup combo boxes 813

See also combo boxes
creating drop-down lists 770
specifying initial items 840
styles 770

lookup tables 813, 815

See also databases
adding data 460
assigning values 208
calculated fields and 95
closing 28, 130, 218
counting fields 278
displaying values 68, 175,

180, 449
current field 840
data sources 450
in columns 816

multiple fields 218, 449, 574
opening 217, 219
returning specific fields 280,

693
setting current values 976

LookupDisplay property 449
Style and 770

LookupField property 449
Style and 770

LookupSource property 450
loops

continuing 146
exiting 90

loRowLines constant 574
loTitles constant 574
Low function 450

See also High function
lowercase characters 37, 227,

451, 754
See also uppercase
combo boxes 843
edit boxes 108
masks 108

LowerCase function 451
See also AnsiLowerCase,

UpperCase functions
low-order byte 443

M
macros

executing 267, 268, 530
reports 675

poking data and 611, 612
main form 330, 452, 865
main menus See menu bars
MainForm property 452
MainMenu component 886
Mappings property 452
Margin property 453–455
margins

buttons 453
scroll bars 454
tab sets 248, 736

mask edit boxes 839, 887
selecting items 696, 697

getting starting
position 696

selecting text 690
validating required

characters 974
Mask property 455–456

Filter and 298
Mask unit 228
MaskEdit component 887
MaskFieldSeparator

constant 228
MaskNoSave constant 228
masks 455–456, 887

See also filters
clearing text 117, 118
creating 227–228, 296
data fields 227, 839
deleting items 171
displaying text 68
editing 231
exception handling 224
file lists 296–299, 456
passwords and 595
pointers 229
retrieving text strings 865
returning changes 478
setting case 108, 227
testing for 415
validating entries 227, 974

master tables
linking detail tables 456, 457

MasterFields property 456
MasterSource property 457

MasterFields and 456
matching whole words 570, 571
math exceptions

base object 234, 240
conversions 222
divide-by-zero 232, 276
overflow 234, 254
range errors 255
undefined instructions 236
underflow 261

Max property 457
Min and 470
Position and 617
SetParams and 706

MaxAvail function 458
MaxFontSize property 459
Maximize buttons 86
maximizing applications 554
maximizing forms 86
MaxLength property 459
MaxPage property 460
MaxRecords property 460
MaxTabNameLen constant 461
MaxValue property 461

I n d e x 1027

mbAbort constant 466, 468
mbAbortRetryIgnore

constant 466, 468
mbAll constant 466, 468
mbBarBreak constant 91
mbBreak constant 91
mbCancel constant 466, 468
mbHelp constant 466, 468
mbIgnore constant 466, 468
mbLeft constant 897
mbMiddle constant 897
mbNo constant 466, 468
mbNone constant 91
mbOK constant 466, 468
mbOkCancel constant 466, 468
mbRetry constant 466, 468
mbRight constant 897
mbYes constant 466, 468
mbYesNoCancel constant 466,

468
MCI drivers 889
MCI error codes and

messages 258, 259
MCI macros 876
MDI applications 330, 862

active form 16, 503
child forms 331

accessing 462, 503
activating 490
borders 87
cascading 104
counting 462
hiding 534
moving through 624

closing forms 129
handles 120
main form See parent forms
managing windows 991
merging menus 63, 367
minimized

arranging icons 44, 872
parent forms 330, 589, 865

MDIChildCount property 461
MDIChildren property 462
measuring tabs 889
Media Control Interface See MCI
media players 237, 889

advancing 741
buttons 890

color options 136
defining 898
enabling/disabling 62,

244, 787, 984
handling events 512, 552
types 241

capabilities, returning 101,
898

changing tracks 490
closing 125
current position 618

resetting 624, 667
device IDs 198
device types 199, 898
directing output 204, 206
display windows 204
exception handling 240

error codes 258
error messages 259

handling events 492, 493
modes 101, 476, 899
notification events 547
notification values 899
opening 563

automatically 64
pausing 598, 600
playable tracks 927
playing 609, 874, 987

setting starting
position 735, 737

stopping 250, 742
position information 926

current position 618
resetting 624, 667

medium length 437
time formats 874, 899
track length 925

recording 874
starting 738
stopping 250, 742

resuming 666
rewinding 65, 71, 667

to previous track 624
saving to files 676
sharing 716
stepping through

frames 101, 332, 741
MediaPlayer component 889
MemAvail function 462

See also MaxAvail function;
heap

Memo component 891
memo fields 817, 893

See also memos
adding text 445
associating with streams 678
entering text 988, 994
masks and 839
scrolling 681
selecting text 690, 696

getting starting
position 696

size, returning 726, 727
streams and 678
string values and 58
writing to 444

MemoField component 893
memory

allocating 350
components 158, 579
files 157
objects 159
queries 342
storing field values 179

available 462
disposing 209
exception handling 233, 253
freeing 197, 209, 333, 334, 522,

652
bookmarks 334
closing forms 515
OLE objects 653
owned components 579

running out 577
memos 891

See also memo fields
adding text 438, 460
aligning text 32
borders 88
copying text 152, 354
deleting text 117, 118, 171
displaying text 381, 839

automatically 61
entering text 988, 994
moving through 681
selecting text 690, 696

getting starting
position 696

testing for changes 478
menu bars 367, 886

designating 463
disappearing 63
returning items 423

menu constants 91, 305, 857
menu items 894

accelerators 103, 846
display options 719

adding 20, 404
checking 111
coloring 135
counting 155
deleting 193
grouping 367
handles 370
identifying parent menu 590
naming 103
position, returning 395
returning 305, 422, 857
selecting 111, 119

at run time 716
shortcuts 103, 717, 718,

846, 881, 946
converting to

strings 718

1028 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

separators 103
underlining characters 103

Menu property 463
menu shortcut routines 8
menus 886, 918

accessing 370, 423, 615
breaking into columns 91,

894
coloring 135
commands See menu items
Control (System) 86
displaying 33, 65, 613, 918

handling events 552
exception handling 240
MDI applications 991
merging See merging menus
names, returning 615
objects and 614
OLE applications 368, 497
sharing 614
Windows messages and 139

Merge method 463
merging menus 63, 367

See also MDI applications
non-MDI applications 63,

463, 967
OLE applications 368

message boxes 464, 465, 468
adding buttons 464, 466, 468
applications 723, 724
defining buttons 899
displaying 469, 491, 529
exceptions 720
types 900

message constants 466, 468
message dialog box routines 8
Message property 224, 262
MessageBox method 464
MessageDlg function 465

TMsgDlgButtons and 899
TMsgDlgType and 900

MessageDlgPos function 468
TMsgDlgButtons and 899
TMsgDlgType and 900

messages
confirmation

deleting data 144, 574
data states 560
error See error messages
OLE applications 560, 949
processing 543, 633, 895
warning 466, 468

common dialog boxes 568,
569

displaying 720
Metafile property 470

Bitmap and 81

Icon and 389
metafiles 895, 917

See also graphics
adding 443, 470
Clipboard formats 85, 373
coordinate mappings 391
copying 49
fitting to images 748
handles 387
reading 640
size, setting 376
testing existence 241
testing for changes 477

method pointers See pointers
methods 3, 5, 6, 7
MIDI sequencer See media

players
milliseconds per day 485
Min property 470

Max and 457
Position and 617
SetParams and 706

MinFontSize property 471
Minimize buttons 86
Minimize method 472

OnMinimize and 544
minimized applications 389, 472,

879
handling events 544, 554

minimized forms 515, 992
arranging icons 44, 872
captions 103
specifying icons 388

minimizing forms 86
MinPage property 472
MinValue property 473
mixed case

See also lowercase; uppercase
masks 108

MkDir procedure 473
See also ChDir, CreateDir,

GetDir, RmDir procedures
CreateDir vs. 473

modal dialog boxes 474, 724
modal forms 724

closing 474
terminating 896

ModalResult property 474
ShowModal and 724
TModalResult and 896

Mode property 475–477
TBatchMode and 775
TMPModes and 899
TPenMode and 917

Modified property 477–479
OnNewRecord and 547

modifying See changing; editing

monetary formats 46
See also currency fields

Monochrome property 479
monospaced fonts 567
mouse buttons 882

clicking 119, 512, 513, 514,
521

shift keys and 544, 545,
546

determining state 946
displaying menus 65, 552
testing for 897

mouse cursor
changing image 523
moving 897
specifying 166, 212

screen objects 167
testing for 480

mouse events 544, 545, 546, 897,
946

See also mouse buttons,
clicking

drag-and-drop 77, 248, 522,
523, 528, 828, 829, 837

clearing formats and 118
disabling 214
OLE objects 84, 903
retrieving status 213
setting mouse image 212

responding to 243
returning coordinates 480
simulating 94, 119

mouse image constants 166, 212
MouseToCell method 480
Move method 480
Move procedure 481

See also FillChar procedure;
SizeOf function

MoveBy method 482
Post and 619

MovedCount property 482
MoveTo method 483–484

PenPos vs. 601
TAttachMode and 775

moving
bytes 481
columns and rows in

grids 572, 898, 907
handling events 519, 554

components 31
cursors in databases 306, 361

specified distance 482
to first record 309
to last record 434
to next record 491
to previous record 631

data 648, 931

I n d e x 1029

input focus 958
handling events 505, 530

items in lists 263, 481, 906
outlines 484, 775, 790
outlines and 107

mouse cursor 897
pens 483
scroll boxes 391, 433, 457, 470,

728
strings 754
thumb tabs in scroll bars 939,

941
specifying position 617,

706
moving through forms 624
moving through memos 681
moving through tab sets 309,

695
mpCanEject constant 101
mpCanPlay constant 101
mpCanRecord constant 101
mpCanStep constant 101
mpNotReady constant 476
mpOpen constant 476
mpPaused constant 476
mpPlaying constant 476
mpRecording constant 476
mpSeeking constant 476
mpStopped constant 476
mpUsesWindows constant 101
mrAbort constant

Close buttons 474
message boxes 467, 469

mrAll constant
Close buttons 475
message boxes 467, 469

mrCancel constant
Close buttons 474
message boxes 467, 469

mrIgnore constant
Close buttons 474
message boxes 467, 469

mrNo constant
Close buttons 475
message boxes 467, 469

mrNone constant
Close buttons 474
message boxes 467, 469

mrOk constant
Close buttons 474
message boxes 467, 469

mrRetry constant
Close buttons 474
message boxes 467, 469

mrYes constant
Close buttons 475
message boxes 467, 469

MSecsPerDay constant 485
MsgDlgButtonStyle type 467,

469
MsgDlgGlyphs type 467, 469
mtConfirmation constant 466,

468
mtCustom constant 466, 468
mtError constant 466, 468
mtInformation constant 466, 468
mtWarning constant 466, 468
multicolored borders 315
multi-form applications 367

moving through 624
multi-line headers 684
multimedia devices See media

players
multi-page dialog boxes 958
MultiSelect property 485

ExtendedSelect and 274
ItemIndex and 420
SelCount and 689
Selected vs. 692

multi-user environments 972
See also networks
accessing tables 264

N
Name property 485–487

InsertComponent and 406
TComponentName and 796
TFontName and 861

names
See also identifiers
duplicate 222
invalid 232
qualified 519

naming
applications 879
common dialog boxes 880
components 485, 796, 879

at run time 222
controls 882
databases 174, 955
edit boxes 839
fields 487
fonts 486, 861
forms 103
indexes 486
menu items 103
objects 879

NativeError property 224
NativeToAnsi procedure 487
navigator See database navigator
NetFileDir property 487
networks

See also multi-user
environments

header pages 880
Paradox tables and 487

New procedure 488
See also Dispose, FreeMem,

GetMem procedures
NewPage method 488

PageNumber and 582
NewStr function 489

See also DisposeStr procedure
Next method 490–491

DisableControls and 203
Post and 619
Wait and 987

nil pointers 654, 656
nil values 703

object lists 579
nonresizeable borders 87
nonscrolling regions

grids 310, 311, 312, 907
displaying 572

nonwindowed components 945
nonwindowed controls 7

listed 7
stacking order 92, 698

nonzero values
testing for 110

NormalizeTopMosts
method 491

Notebook component 900
notebooks 900

pages 955
activating 17, 549, 900
changing 549, 581, 709,

900
creating 583
displaying 347, 581
scrolling 66

tabs
accessing 66
adding 958
setting margins 248, 736

notification events 800, 850, 901
DDE applications 530, 551
idle applications 538, 871
media players 492, 493, 547
OLE applications 560
online help 536
Windows messages 543

Notify property 492
OnNotify and 547
Open and 563
Pause and 599
PauseOnly and 600
Play and 609
Previous and 625

1030 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

Resume and 666, 667
Save and 676
StartRecording and 738
Step and 741, 742

NotifyValue property 493
TMPNotifyValues and 899

Now function 494
See also Date, DateTimeToStr,

Time functions
null fields 42

specifying 116
testing for 416

null values 116, 703
testing for 415

NullStr constant 495
EmptyStr and 495

null-terminated strings 132, 757
converting 755, 846
reading 354, 357, 708, 710
returning 356
writing 710

numbers 973
See also integers
binary-coded decimal 45
currency, formatting 163
dates, formatting 163
decimal 620, 727
large 878
masks and 227
odd 500
out-of-range errors 255
random See random numbers
rounding 669
time, formatting 163

numeric fields 48, 878, 947, 964
floating-point numbers 47,

48, 776, 857
setting precision 620
string values and 58

NumGlyphs property 495
TNumGlyphs and 902

nvAborted constant 494
nvFailure constant 494
nvSuccessful constant 493
nvSuperseded constant 493

O
oaAdd constant 484
oaAddChild constant 484
oaInsert constant 484
ObjClass property 496
ObjDoc property 496

ObjItem vs. 500
Object Inspector 2
Object Linking and Embedding

See OLE

object lists 883
accessing items 424, 498
adding items 18, 403
arrays, allocated size 102
Clipboard formats 328
counting items 155
deleting items 117, 193, 579,

654
exception handling 238, 261
item position 396
moving items 263, 481
referencing items 441
removing components 656
returning items 309, 434
updating 77, 250

object methods 3
object pointers 102, 301, 425

accessing 424
drag and drop 828, 837
initialization information 605
nil items 579
returning 309, 434
storing 441

object types
TField 853

ObjectMenuItem property 497
object-oriented programming 2
objects 2

See also components
addresses 26
ancestor 3, 114
application 41
arrays 499
as operator and 235
assignment 51

Clipboard 49, 58
associated with strings 23,

397, 408, 498, 499
accessing 137, 498, 499,

673
base exception

faults 232
hardware 255
math errors 234, 240
streams 233, 261

changing 510
coloring 134, 137, 793
components vs. 2
constructing 159, 333
controls vs. 2
descendant 848
destroying 197, 333, 499, 652
determining class 115
dynamic, deallocating 276
handles 369
initializing 159, 409
listed 3
naming 879

OLE See OLE objects
pasting 84, 340, 596, 598
persistent 373
pop-up menus and 614
referencing 853
retrieving from Clipboard 49
returning names 113

Objects property 498–499
IndexOfObject and 397
Move and 481

ObjItem property 499
Odd function 500

See also Addr, Seg functions
odd numbers 500
odDisabled constant 832
odFocused constant 832
odSelected constant 832
OEM characters 501
OEMConvert property 501
ofAllowMultiSelect constant 569
ofCreatePrompt constant 569
ofExtensionDifferent

constant 569
ofFileMustExist constant 569
offsets 501–502
ofHideReadOnly constant 569
ofNoChangeDir constant 569
ofNoReadOnlyReturn

constant 569
ofNoTestFileCreate constant 569
ofNoValidate constant 569
ofOverwritePrompt

constant 570
ofPathMustExist constant 570
ofReadOnly constant 570
Ofs function 501–502
ofShareAware constant 570
ofShowHelp constant 570
OK buttons 431, 468

message boxes 465, 466, 468
OLE applications

container
testing for changes 478

context-sensitive help 149
displaying data 902
menus 497

merging 368
messages 560, 949
status bars 447, 560

OLE containers 902
See also OLE objects
accessing 742
activating 14
resizing 70
testing 502

OLE links 441

I n d e x 1031

changing 441
returning 441

OLE objects 70
accessing 177
activating/deactivating 14,

36, 60, 400, 775
handling events 503

adding 443
class, specifying 496
Clipboard formats 85, 175

clearing 118
registering 84, 651

copying 153
documents, specifying 497
dragging 84

handling events 523, 528,
828, 829, 837

registering targets 651
dropping 84, 175, 177, 704,

903
handling events 522, 828
registering targets 651

embedded 902
initializing 409, 496, 497, 500,

502, 596
object pointer 605
releasing memory 653

items, specifying 500
linked 902
pasting 84, 596, 598
resizing 966, 999
testing for changes 478

OLE routines 8
OLEContainer component 902
OleObjAllocated method 502
OnActivate event 502–505
OnActiveControlChange

event 505
OnActiveFormChange

event 506
OnApply event 507

TFDApplyEvent and 847
OnCalcFields event 508

AutoCalcFields and 60
Calculated and 95

OnChange event 508–510
TFieldNotifyEvent and 850

OnChanging event 511
OnClick event 511–514

EMPNotify and 240
ENavClick and 245
OnPostClick and 552
TMPBtnType and 898

OnClose event 514–516
TCloseEvent and 793

OnCloseQuery event 516
TCloseQueryEvent and 793

OnColEnter event 516
OnColExit event 517
OnCollapse event 518
OnColumnMoved event 518

TMovedEvent and 898
OnCreate event 519
OnDataChange event 520
OnDblClick event 520
OnDeactivate event 521
OnDestroy event 522
OnDragDrop event 522

TDragDrop and 828
TOLEDropNotify and 903

OnDragOver event 523
TDragOverEvent and 828
TDragState and 829

OnDrawCell event 524
Canvas and 100
DefaultDrawing and 191
TDrawCellEvent and 829

OnDrawDataCell event 524
Canvas and 100
DefaultDrawing and 191
TDrawDataCellEvent

and 830
OnDrawItem event 525

Canvas and 99
OnMeasureItem and 542
TDrawItemEvent and 832

OnDrawTab event 526
OnMeasureTab and 543
TDrawTabEvent and 832

OnDropDown event 527
OnEndDrag event 527

TEndDragEvent and 837
OnEnter event 528
OnException event 529

TExceptionEvent and 839
OnExecuteMacro event 530

TMacroEvent and 886
OnExit event 530
OnExpand event 531
OnFind event 532
OnGetEditMask event 533

TGetEditEvent and 865
OnGetEditText event 533

OnSetEditText and 556
TGetEditEvent and 865

OnGetText event 534
DisplayText and 207
Text and 842
TFieldGetTextEvent and 850

OnHelp event 536
THelpEvent and 870

OnHide event 534
OnHint event 536

Hint and 383
OnIdle event 538

TIdleEvent and 871
OnKeyDown event 539

KeyPreview and 429
OnKeyPress vs. 540

OnKeyPress event 539
KeyPreview and 429
TKeyPress and 882

OnKeyUp event 540
KeyPreview and 429
OnKeyPress vs. 540

online help See Help systems
OnLogin event 541

TLoginEvent and 886
OnMeasureItem event 541

TMeasureItemEvent and 889
OnMeasureTab event 542

OnDrawTab and 526
TMeasureTabEvent and 889

OnMessage event 543
TMessageEvent and 895

OnMinimize event 544
OnMouseDown event 544
OnMouseMove event 545
OnMouseUp event 546
OnNewRecord event 547
OnNotify event 547
OnOpen event 548

OpenLink and 566
OnPageChanged event 548
OnPaint event 549

Canvas and 99
OnPassword event 550
OnPokeData event 551
OnPopup event 552
OnPostClick event 552

EMPPostNotify and 241
TMPBtnType and 898

OnReplace event 553
OnResize event 553
OnRestore event 554
OnRowMoved event 554

TMovedEvent and 898
OnScroll event 555

TScrollStyle and 941
OnSelectCell event 555

TSelectCellEvent and 943
OnSetEditText event 556

OnGet EditText and 533
TSetEditEvent and 944

OnSetText event 556
TFieldSetTextEvent and 850

OnShow event 557
OnShowHint event 557

THintInfo and 870

1032 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

TShowHintEvent and 946
OnSized event 558

TSectionEvent and 943
OnSizing event 559

TSectionEvent and 943
OnStateChange event 559
OnStatusLineEvent event 560

TStatusLineEvent and 949
OnTimer event 560

initiating 962
Interval and 412

OnTopLeftChanged event 561
OnUpdateData event 561
OnValidate event 562

EditMask and 227
Required and 663
TFieldNotifyEvent and 850

ooDrawFocusRect constant 572
ooDrawTreeRoot constant 571
ooStretchBitmaps constant 572
opcodes

invalid 236
Open common dialog box 905

directories
setting initial 398

file names
default extensions 191,

851
displaying 287, 386, 854
entering 283, 851

opening 266
options 906
selecting files 290

file masks and 296, 299
specifying behavior 569
titles 880

Open method 562–564
Active vs. 14
AfterOpen and 29
BeforeOpen and 75
Capabilities and 101
DeviceID and 199
DeviceType and 199
ExecSQL vs. 265
SQL and 733
Start and 735
Wait and 987

OpenCurrent method 564
OpenDatabase method 565

CloseDatabase and 127
OpenDialog component 905
opening

Clipboard 124, 562
databases 565, 836

database servers 541, 588
datasets 14, 564

handling events 29, 75

files 41, 287, 905
exception handling 233

lookup tables 217
media players 563

automatically 64
modal forms 724

opening files 281, 664
OpenLink method 566
OpenLink property

SetLink and 705
Options property 566–575

EditorMode and 229
MaxFontSize and 459
MaxPage and 460
MinFontSize and 471
MinPage and 472
PrintRange and 629
TColorDialogOptions

and 794
TDBGridOptions and 810
TDBLookupListOptions

and 816
TFindOptions and 857
TFontDialogOptions and 861
TGridOptions and 867
TOpenOptions and 906
TOutlineOptions and 911
TPrintDialogOptions and 920

options See user options
Oracle tables

stored procedures 743
overloading 578

Ord function 575
See also Chr function

ordinal values 575
ordinal-type expressions 575
Orientation property 575

TPrinterOrientation and 922
Origin typed constant 576
osPictureText constant 577
osPlusMinusPictureText

constant 577
osPlusMinusText constant 577
osText constant 577
osTreePictureText constant 577
osTreeText constant 577
otOwnerDraw constant 769
otStandard constant 769
Outline component 908
outline nodes 910

creating 157
identifying parent item 591
paths 337, 426
row position 423

outlines 908
active item 694

adding items 20, 21, 404, 439,
443, 840, 910

associating data with 22, 24,
171, 408

borders 88
collapsing 133, 253, 336

handling events 518
counting items 419
deleting items 117, 194
display options 769, 911
drawing items 99, 420, 911

options 571, 577
exception handling 253
expanding 253, 272, 273, 336,

417
handling events 531

indenting items 107, 438
moving items 107, 484, 775,

790
pictures and 602, 603, 604
reindexing items 77, 250, 712
retrieving items 342, 351, 358,

374, 392
active 694
at run time 671
first 345
last 349
onscreen location 348
previous 352

testing for visible items 417
updating 77, 250, 712

OutlineStyle property 577
FullCollapse and 336
FullExpand and 336
OnCollapse and 518
TOutlineStyle and 911

out-of-memory exceptions 253
OutOfMemoryError

procedure 577
out-of-range errors 255
output

See also I/O
exception handling 233
media players 204, 206

output device, standard 577
output file, standard 578
output parameters 353

See also stored procedures
Output variable 577, 578

See also Input variable;
TextFile type

Write and 578
Writeln and 578

overflow math exceptions 234,
254

overlapping
components 91, 698

I n d e x 1033

forms 44, 91, 698
MDI child 104

Overload property 578
StoredProcName and 743

overloading stored
procedures 578

owned components 142, 158,
406

counting 141
parent vs. 579
returning 142
specifying owner 579

Owner property 578
Parent vs. 589

owner-draw combo boxes 420
displaying 766
variable styles 542

owner-draw controls 498
outlines 769
repainting 525, 526, 542, 543

owner-draw grids
handling events 829, 830, 867

owner-draw list boxes
adding bitmaps 498
displaying 767
drawing items 99, 420, 912

handling events 832
measuring items 889
variable styles 542

owner-draw tab sets 526, 543
displaying 769
handling events 832
measuring items 889

P
paCenter constant 33
Pack method 579
page fault exceptions 254
PageHeight property 580
PageIndex property 581

GetIndexForPage and 347
PageNumber property 582

NewPage and 489
pages

dimensions 580, 583
notebooks See notebooks
printing ranges 460, 472, 629,

923
first page 335
last page 905
returning current

page 582
Pages property 582

GetIndexForPage and 347
PageIndex and 581

PageWidth property 583

paint boxes 99, 549
PaintBox component 912
painting 315, 855, 969

See also fill patterns;
repainting

backgrounds 764
bitmaps and 80
cells in grids 191, 524, 525,

533, 556
handling events 829, 830,

867
disabling/enabling 77, 250
forms 99, 549

backgrounds 92, 134
handling events 549
images and shapes 99
screens 650, 659

paLeft constant 33
Palette property 583
palettes 654

See also Component palette
color 584

customizing 170, 566, 798
options 793

logical 794
realizing 781
tool 913, 948

Panel component 913
panels 913

aligning captions 32
beveling 78, 79, 80, 779, 914
borders 88, 785
OLE objects and 447
speed buttons and 948

Paradox tables
accessing 416, 541

insufficient rights 551
creating 107
keyviol 12, 430
lookup See lookup tables
networks and 487
passwords 26

deleting 655, 658
handling events 352, 551

problems 13, 632
queries 923
searching for data 230, 231,

306, 706, 707, 708
specifying 772
testing for 446

Param function
See also ParamStr function

ParamBindMode property 584
TParamBindMode and 915

ParamByName method 584–585
DataSource and 180
Items vs. 425

Params vs. 587
ParamCount function 585
ParamCount property 586
parameterized queries 923

accessing data 180
optimizing 622, 623, 966, 968
referencing 425, 446, 585

parameters 610
See also SQL statements;

stored procedures
array of const type 963
command-line 132
connection 588
formatting 316, 321, 322–324,

748, 753
fractional parts 331
login 541
number passed 585
predecessors 620
range

highest value 381
returning specified 588
successor 771
values, passing to main

window 132
Params property 587–588

DataSource and 180
ParamBindMode and 584
ParamByName and 585
ParamCount and 586
Values and 979

ParamStr function 588
See also ParamCount function

ParamType property 589
Assign and 50
TParamType and 916

parent components 589–591, 656
owned components vs. 589

parent forms 8
See also MDI applications

Parent property 589–591
ParentColor property 591

Color and 134
ParentCtl3D property 592

Ctl3D and 163
ParentFont property 593
ParentShowHint property 594

ShowHint and 721
paRight constant 33
passing control 269
passthrough SQL 663, 923
password dialog box

displaying 352
PasswordChar property 595
passwords 595

See also security
database servers 448, 886

1034 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

handling events 541, 916
Paradox tables 26

deleting 655, 658
handling events 352, 551

Paste Special dialog box 500,
596, 598

PasteFromClipboard
method 596

PasteSpecialDlg function 596
BOLEFormat and 84
PasteSpecialEnabled and 598
PInitInfo and 605
ReleaseOLEInitInfo and 653

PasteSpecialEnabled
function 598

BOLEFormat and 84
pasting graphics 596
pasting objects 340

OLE 84, 596, 598
pasting text 596
patterns 80

See also fill patterns
Pause method 598

Wait and 987
PauseOnly method 600

Wait and 987
pausing media players 598, 600
Pen property 600

NewPage and 489
PenPos property 601

MoveTo vs. 483
pens 866, 916

current position 601
modes 917
moving 483
setting color 475
specifying 600
styles 763, 917

persistent objects 373
Pi function 601
Picture property 602
PictureClosed property 602
PictureLeaf property 603
PictureMinus property 603
PictureOpen property 604
PicturePlus property 604
pictures 917

See also images
adding 443, 445
Clipboard formats 373
copying 49
displaying 68
graphics vs. 865
outlines 577, 602, 603, 604
reading 640
size, setting 376
specifying type 81, 363, 389

images 602
Pie method 605
PInitInfo property 605

DataFormat and 175
ObjClass and 496
ObjDoc and 497
ObjItem and 500

pipe (|) characters
filters 296, 298
hints 383

Pitch property 606
TFontPitch and 862

pixels 607
client areas 120, 122
metafiles and 391
returning 608

Pixels property 607
PixelsPerInch property 607–609

Scaled and 679
Play method 609

EndPos and 250
StartPos and 737
Wait and 987

playing media players 609
starting position 735, 737
stopping 742

pmBlack constant 475
pmCopy constant 475
pmMask constant 476
pmMaskNotPen constant 476
pmMaskPenNot constant 476
pmMerge constant 476
pmMergeNotPen constant 476
pmMergePenNot constant 476
pmNop constant 475
pmNot constant 475
pmNotCopy constant 476
pmNotMask constant 476
pmNotMerge constant 476
pmNotXor constant 476
pmWhite constant 475
pmXor constant 476
poDefault constant 617
poDefaultPosOnly constant 617
poDefaultSizeOnly constant 617
poDesigned constant 617
poDisablePrintToFile

constant 568
poHelp constant 568
Point function 610
point routines 8
pointer, mouse See mouse cursor
pointers

applications 871
data 800, 830, 850

outlines 342

DDE macros 886
events 800

closing forms 793
keyboard 881, 882
mouse 897

grids
changing text 944
drawing events 829, 830,

867
moving columns and

rows 898
selecting cells 943

Help Hints 946
incrementing or

decrementing 695
invalid 237
list boxes

drawing events 832
owner-draw 889, 912

masks 229
nil 654, 656
objects 102, 425

accessing 424
drag and drop 828, 837
initialization

information 605
returning 301, 309, 434
storing 441

scroll bars 941
tab sets 956

owner-draw 832, 889
text 850, 865
Windows messages 895

PokeData method 611
ExecuteMacro and 267
ExecuteMacroLines and 268
OnChange and 509
OnPokeData and 551
PokeDataLines vs. 612

PokeDataLines method 611
ExecuteMacro and 267
ExecuteMacroLines and 268
OnPokeData and 551
PokeData vs. 611

poking data 611, 841
See also DDE applications
handling events 509, 551

poLandscape constant 576
Polygon method 612
polygons 612
PolyLine method 613
poNone constant 630
poPageNums constant 568
poPortrait constant 576
poPrintToFile constant 568
poPrintToFit constant 630
poProportional constant 630
pop-up menus 918

I n d e x 1035

See also menus
activating 552
displaying 33, 65, 613, 918

handling events 552
names, returning 615
objects and 614
returning items 423

Popup method 613
AutoPopup and 65
OnPopup and 552
PopupComponent and 614
PopupMenu and 615

PopupComponent property 614
PopupMenu component 918
PopupMenu property 615
portrait printing 576, 922
Pos function 616

See also Delete, Insert
procedures; Concat, Copy,
Length functions

poScreenCenter constant 617
poSelection constant 568
Position property 616–619

Play and 609
ScrollPos and 683
SetParams and 706
StartPos and 737
TimeFormat and 875
TPosition and 919

Post method 619
AfterPost and 30
BeforePost and 75
Close and 125
First and 309
Last and 435
Modified and 479
MoveBy and 482
Next and 491
OnUpdateData and 562
Prior and 631
UpdateRecord and 973

posting records 619, 973
handling events 30, 75

poWarning constant 568
prAllPages constant 629
Precision property 620
Pred function 620

See also Dec, Inc, procedures;
Succ function

PrefixSeg variable 621
Prepare method 621–622

Prepared vs. 622
Prepared property 622–623

UnPrepare and 968
Preview property 623
previewing reports 623
Previous method 624–625

Wait and 987
Print common dialog box 920

Collate check box 134
opening 266
options 920

page ranges 629
Print to File check box 630
specifying behavior 568

Print Manager 880
Print method 625–626
print modes 576
PrintCopies property 626
PrintDialog component 920
printer fonts 198
printer objects 921

accessing 370
drawing surfaces 100
instantiating 627
naming 880
supported fonts 320

Printer Setup common dialog
box 922

opening 266
Printer variable 627
PrinterIndex property 627
printers

returning current 353, 627
sending output to 76, 247
specifying 706
specifying default 627
testing for installed 628

Printers property 628
GetPrinter vs. 353
PrinterIndex and 627
SetPrinter vs. 706

Printers unit 627, 921
PrinterSetupDialog

component 922
printing 568, 609, 920

collating options 134
data 55
directing output 76, 247
exception handling 255
forms 346, 625

scaling options 630
new pages 489
number of copies 149
orientation 576, 922
page dimensions 580, 583
page ranges 460, 472, 629, 923

first page 335
last page 905
returning current

page 582
reports 249, 623, 626

multiple copies 626
setting first page 737

scaling options 923
selected text only 629
terminating 11, 247

testing status 12
testing status 628
text files 55
to files 568, 630

printing conventions
(documentation) 1

Printing property 628
PrintRange property 629

TPrintRange and 923
PrintScale property 629

TPrintScale and 923
PrintToFile property 630
Prior method 631

Disable Controls and 203
Post and 619

private directories 631
PrivateDir property 631
ProblemCount property 632

ProblemTableName and 632
problems tables 13

creating 632
ProblemTableName

property 632
AbortOnProblem and 13

procedures 7–8
stored See stored procedures

processing messages 543, 633,
895

ProcessMessage method 632
Terminated and 838

Program Segment Prefix 621
programming 2
programs See applications
properties 2, 4, 5, 7

exception handling 258
inspecting See Object

Inspector
protecting data 61

See also encryption;
passwords; security

prPageNums constant 629
prSelection constant 629
psClear constant 763
psDash constant 763
psDashDot constant 763
psDashDotDot constant 763
psDot constant 763
psInsideFrame constant 763
PSP See Program Segment Prefix
psSolid constant 763
ptInput constant 916
ptInputOutput constant 916
ptOutput constant 916

1036 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

Ptr function 634
See also Addr function

ptResult constant 916
ptUnknown constant 916
push buttons 779, 786

See also buttons
specifying default 190

Q
qualified names 519
queries

See also SQL statements;
stored procedures

allocating memory 342
arrays 587
batch operations and 733
closing forms 793
handling events 800
heterogeneous 733
linked 180
moving through 819
parameterized 923

accessing data 180
optimizing 622, 623, 966,

968
referencing 425, 446, 585

result sets 353, 663, 966, 972
defined 923

running 265, 622, 733, 968
temporary tables 631

Query component 923
questions 466, 468

R
radio buttons 927

3-D controls and 163
accessing 95
aligning captions 32, 883
columns 138
data-aware 95, 820

setting current
contents 976, 979

grouping 928
selecting 111

radio group boxes 820, 928
returning strings 422

RadioButton component 927
RadioGroup component 928
Random function 635

See also Randomize
procedure; RandSeed
variable

random numbers
generating 635, 636
initializing generator 635

Randomize procedure 635

See also Random function;
RandSeed variable

RandSeed variable 635, 636
See also Random function;

Randomize procedure
Range property 636

HorzScrollBar and 387
Margin and 454
Position and 617

ranges
data searches 427

canceling 96
changing 230, 231
setting 42, 706, 707, 708

exception handling 255
lowest value 450
page 460, 472, 629, 923

first page 335
last page 905
returning current

page 582
raw data

returning 341
setting 702

Read method 637
Read procedure 638

See also Eof, ReadKey
functions, Readln, Write,
Writeln, procedures

read/write exceptions 233, 258,
262

base object 261
file creation 232

ReadBool method 639
ReadBuf function 639

See also ReadKey function
ReadFrom method 640
ReadInteger method 641
ReadKey function 642

See also KeyPressed, ReadBuf
functions

Readln procedure 641
See also Read, Writeln

procedures
read-only controls 643
read-only data 97, 643, 644
read-only fields 644, 822
ReadOnly property 643–644

CanModify and 98
ValueChecked and 978
ValueUnchecked and 981

read-only result sets
(defined) 923

read-only text 69
ReadSection method 644
ReadSectionValues method 645
ReadString method 646

realizing palettes 781
ReAllocMem function 647

See also AllocMem function
RecalcReport method 647
RecordCount property 649
recording 874

starting 738
stopping 250, 742

records
See also databases
adding fields 848
batch operations 776
bookmarks and 334, 339,

360, 783
changing 97, 110, 219, 225,

479
counting 649

batch moves 106, 430,
482, 632, 648

deleting from tables 194, 242
handling events 28, 74

inserting 38, 40, 405, 410
handling events 29, 75,

547
moving to specific 361
number of 293
posting 619, 973

handling events 30, 75
retrieving 60

Rect function 648
Rectangle method 649

RoundRect vs. 670
rectangle routines 8
rectangles 648, 715, 931

adding graphics 748
bounding 89, 421

cells in grids 104
client areas 121
clipping 123, 845
display windows 206
grids 867

drawing 89, 215, 332, 649
rounded 670

filling 295, 332, 785
input focus and 215
rounded

drawing 670
references

components 485, 519
databases 172, 174
fields 279, 487
objects 441, 853
parameterized queries 425,

446, 585
Refresh method 650

Repaint vs. 659

I n d e x 1037

RegisterFormAsOLEDropTarget
procedure 651

BOLEFormat and 84
registering classes 233
registering Clipboard

formats 84, 651
registering components 651

exception handling 222
registering targets 651
Release method 652

Free vs. 333
OnDestroy and 522

Release procedure 652
See also Dispose, FreeMem,

GetMem, Mark, New
procedures

ReleaseHandle method 653
ReleaseOLEInitInfo

procedure 653
ReleasePalette method 654
releasing memory 197, 209, 333,

334, 522, 652
bookmarks 334
closing forms 515
OLE objects 653
owned components 579

remote database servers See
database servers

Remove method 654
RemoveAllPasswords

method 655
RemoveComponent method 656
RemoveControl method 656
RemoveParam method 657
RemovePassword method 657
removing See deleting
Rename procedure 658

See also Erase procedure
RenameFile function 659
renaming components 222, 486
renaming files 658, 659

extensions 107, 274
reordering components 91, 698
reordering forms 91, 698
Repaint method 659
repainting

See also painting
components 969
controls 413, 970

handling events 525, 526,
542, 543

screens 77, 250, 650, 659
repeat statements

continuing 146
exiting 90

Replace common dialog box 932

accessing 370
closing 128
display options 857
displaying 436, 619, 904
Find Next button 532
opening 266
Replace buttons 553
replacement strings 660
specifying behavior 570

ReplaceDialog component 932
ReplaceText property 660
replacing text 553, 571, 660, 932
report variables 647

changing 713, 714
ReportDir property 660

ReportName and 661
ReportHandle property 661
ReportName property 661
reports

connecting to databases 144
creating 461
exception handling 258
executing macros 675
previewing 623
printing 249, 623, 626

multiple copies 626
setting first page 737

running 70, 661, 674
initial values 399

saving 660
updating 647, 713, 714

ReportSmith applications 933
See also reports
closing 126, 130
unloading 70
version, returning 981, 982
Windows handle 661

ReportSmith Runtime,
loading 674

RequestData method 662
RequestLive property 662
required data values 663, 887

validating 974
Required property 663–664
Reset procedure 664

See also Append, AssignFile,
FileClose, Rewrite, Truncate
procedures

resizeable borders 87
resizing

buttons 90
controls 678, 990
edit boxes 68
forms 31, 86, 679, 990

handling events 554
graphics 748
headers 36, 943

handling events 559
images 68, 748
labels 69
OLE containers 70
OLE objects 966, 999

resource string tables 316
resources

See also specific type
exception handling 236, 258
freeing 116
loading 236
system 253, 254, 334

Restore method 665
OnRestore and 554

RestoreTopMosts method 665
restoring default field values 117
result sets (defined) 923
Resume method 666

Pause and 598
Wait and 987

retrieving data 834
retrieving text strings 865
Retry buttons 432, 468

message boxes 465, 466, 468
Rewind method 667

Wait and 987
rewinding media players 65, 71,

667
to previous track 624

Rewrite procedure 667
See also Append, AssignFile,

Reset, Truncate procedures
AssignPrn and 55

RGB color values 137, 793
right aligning text 32, 33
RmDir procedure 668

See also ChDir, GetDir, MkDir
procedures

Rollback method 669
rolling back transactions 669
Round function 669

See also Int, Trunc functions
rounded rectangles 670, 715
rounding numbers 669
RoundRect method 670
routines 7–8
Row property 671
RowCount property 672

FixedRows and 312
Objects and 499

RowHeights property 672
DefaultRowHeight vs. 192

rows in grids See data grids,
string grids; records

Rows property 673
Run method 674–675

1038 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

RunError procedure 675
See also Exit, Halt procedures

RunMacro method 675
running applications 674, 937,

943
handling events 504, 521
other Windows and

Delphi 521
running batch operations 267
running reports 70, 661, 674

initial values 399
run-time errors 675

Abstract and 13
addresses 259
handlers 260, 269

run-time library 8

S
Save common dialog box 936

directories
setting initial 398

file names
default extensions 191,

851
displaying 287, 386, 854
entering 283, 851

opening 266
selecting files 290

file masks and 296, 299
specifying behavior 569
titles 880

Save method 676
SaveDialog component 936
SaveToFile method 677

LoadFromFile and 444
LoadFromStream and 444

SaveToStream method 678
LoadFromFile and 444
LoadFromStream and 444

saving
components 677
controls 677
files 287, 936
reports 660

sbHorizontal constant 432
sbVertical constant 432
ScaleBy method 678
scaled fonts 567
Scaled property 679

PixelsPerInch and 608
scaling controls 678
scaling forms 679
scaling graphics 966, 999
scan codes (keyboard) 881
scBottom constant 941
scEndScroll constant 941

scLineDown constant 941
scLineUp constant 941
scPageDown constant 941
scPageUp constant 941
scPosition constant 941
screen coordinates 680, 918

bounding rectangle 89
client areas 120, 121, 122
controls 436, 904
dialog boxes 436, 904

screen devices 680
screen fonts 198, 568
screen objects 937

creating 680
setting size 991
size, setting 376
specifying mouse cursor

image 167
Screen variable 679
screens

clearing 131
flood filling 315, 855
repainting 77, 250, 650, 659
supported fonts 320

ScreenSize typed constant 680
ScreenToClient method 680
scroll bars 157, 938

adding 387, 432, 681, 982
automatically displaying 66
disabling 681
displaying 796
handling events 555, 941
incrementing 457, 470
large change 433
margins 454
moving thumb tabs 939, 941

specifying position 617,
706

orientation options 939, 942
scrolling ranges 636
setting position 683
small change 728
states 941

scroll boxes 939
adding scroll bars 387, 432,

982
borders 88
moving 391, 433, 457, 470,

728
scrolling 682

scroll buttons
tab set controls 66, 248

ScrollBar component 938
ScrollBars property 681

TScrollStyle and 942
ScrollBox component 939
ScrollBy method 681

scrolling 683, 938, 939, 941
See also scroll bars; scroll boxes
forms 66, 681, 682, 938

handling events 941
horizontal scroll bars

and 387
vertical scroll bars and 982

grids 573, 681
memos 681
notebook pages 66
scroll boxes 682

ScrollInView method 682
ScrollPos property 683
ScrollTo procedure 683

See also GoToXY procedure
scTop constant 941
scTrack constant 941
sdAllowCreate constant 690
sdPerformCreate constant 691
sdPrompt constant 691
search key buffer 704
searching for components 301
searching for data 427, 428

key fields and 305, 306, 361,
704

multiple fields 226
ranges 427

canceling 96
changing 230, 231
setting 42, 706, 707, 708

searching for disabled
controls 147

searching for strings 306, 616
finding next occurrence 571

searching for text 308, 856
handling events 532, 553
matching whole words 570,

571
replace options 932
string lists 300

secondary indexes 395
deleting 196

Sections property 684
SectionWidth property 684
security 448

login events 541, 886
password events 916

Seek method 685
Seek procedure 685

See also FilePos function
SeekEof function 686

See also Eof, SeekEoln
functions

SeekEoln function 687
See also Eoln, SeekEof

functions
Seg function 688

I n d e x 1039

See also Addr, Ofs functions
segment bases 688

offset addresses and
converting 634

segments 621
code 161
data 219

SelCount property 689
Select Directory dialog box 690
Select directory dialog box

options 943
SelectAll method 690
SelectDirectory function 690

TSelectDirOpts and 943
Selected property 691
SelectedColor property 692
SelectedField property 693
SelectedIndex property 693
SelectedItem property 694
selecting

buttons 35, 111, 119, 211
groups 34, 366

cells in grids 573, 943
handling events 517
range of 572

colors 794
components 514
controls 103, 317
data 217
directories 690
files in lists 288, 290

file masks and 296, 297,
299, 364, 455, 456

fonts 319, 567
menu items 111, 119

at run time 716
shortcuts 103, 717, 718,

846, 881, 946
converting to

strings 718
tab sets 695, 956
text

automatically 67
combo boxes 511, 690, 696,

697
edit boxes 690, 697
entire blocks 690
getting starting

position 696
list boxes 274, 691

multiple items 485
memo fields 690, 696
returning length 696
setting colors 135

Selection property 694
TGridRect and 867

SelectNext method 695
SelectorInc variable 695

SelLength property 695
SelectAll vs. 690
SelStart and 696

SelStart property 696
SelectAll vs. 690
SelLength and 696

SelText property 697
SendToBack method 697
ServerConv property 698
servers

See also database servers
connecting to 145, 800
exception handling 225

ServiceApplication property 699
Session component 943
Session variable 699

incrementing 565
sessions, terminating 225
SetAsHandle method 700
SetBounds method 700
SetComponent method 701
SetData method 702–703
SetFields method 703
SetFocus method 703
SetFormOLEDropFormats

procedure 704
BOLEFormat and 84
RegisterFormAs

OLEDropTarget and 651
SetKey method 704

EditKey vs. 226
FindKey and 305
GotoKey and 361
GotoNearest and 361

SetKey state 740
SetLink method 705
SetParams method 705

Max and 458
Min and 471

SetPrinter method 706
SetRange method 706

CancelRange and 96
SetRangeEnd method 707

ApplyRange and 42
EditRangeEnd vs. 230
KeyExclusive and 427
SetRange vs. 706

SetRangeStart method 708
ApplyRange and 42
EditRangeStart vs. 231
KeyExclusive and 427
SetRange vs. 706

sets
adding elements 391
removing elements 263

SetSelTextBuf method 708

SetTabFocus method 709
SetText method 710
SetTextBuf method 710
SetTextBuf procedure 711

See also Append, AssignFile,
Read, Reset, Rewrite, Write
procedures; SizeOf function

settings See properties
SetUpdateState method 712
SetVariable method 713

RecalcReport and 647
SetVariableLines method 713
Shape component 945
shape components 945

coloring borders 86
determining shape 715, 946
fill patterns and colors 92, 785

Shape property 714–715
TBevelShape and 778
TShapeType and 946

Shareable property 716
sharing media players 716
sharing menus 614
Shift key, testing 946
shift keys 718

See also mouse buttons
ShortCut function 716

TextToShortCut vs. 846
ShortCut property 717

TShortCut and 946
shortcuts

menu items 846, 946
handling events 881

routines 8
ShortCutToKey function

TShortCut and 946
ShortCutToKey procedure 718
ShortCutToText function 718

TShortCut and 946
Show method 719

ShowModal vs. 724
Visible and 983

ShowAccelChar property 719
ShowerScald procedure See your

plumber
ShowException method 720
ShowException procedure 720
ShowGlyphs property 720
ShowHint property 721–722

Hint and 383
ParentShowHint and 594

Showing property 722
ShowMessage procedure 723
ShowMessagePos

procedure 724
ShowModal function

1040 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

ModalResult and 474
ShowModal method 724
silent exceptions 221
simple combo boxes 766
simulating click events 119

navigator buttons 94, 119
Sin function 725

See also ArcTan, Cos, TypeOf
functions

sine 725
single-line borders 87, 88
single-step interrupts 260
singleton results 950
Size property 725–727

Height vs. 376
SizeOf function 727

See also FillChar, GetMem,
Move procedures

SmallChange property 728
Max and 457
Min and 470
TScrollBarInc and 939

Smallint types 947
batch moves and 57

SmallintField component 947
SMPTE time formats 875
Sort method 728
Sorted property 729–730
sorting

items in lists 729
strings in lists 728, 730

sound effects See media players
Source property 730
Spacing property 731
speed buttons 948

See also buttons
adding glyphs 359, 495
aligning images 787
arranging text and

images 731
as check boxes 35
grouping 366
margins 453
multiple images 495
selecting 34, 119, 211, 366
styles 788

SpeedButton component 948
SPtr function 731

See also SSeg function
SQL property 732
SQL servers 923

opening databases 541, 588
SQL statements 923

See also queries
allocating memory 342
associating with

databases 174

changing 97
closing datasets 14

handling events 28, 73
connecting to datasets 203,

243
counting records 649
creating 587, 733

multiple 733
data states 740
deleting records 194

handling events 28, 74
executing 265, 564, 622, 733,

968
problems with 842

inserting records 38, 40, 405,
410

handling events 29, 75,
547

opening datasets 14, 564
handling events 29, 75

optimizing 622, 623, 966, 968
parameters 914, 915

adding 25, 160
assigning data 50, 54, 56,

180, 182, 415
BCD values 45
Boolean values 45
currency values 46
date/time values 46, 59
dynamic queries 585
float values 47
integer values 48
string values 57
word values 59

clearing 51, 116, 657
data assignments 116

copying 50, 54, 341, 342,
702

counting 156, 586
naming 486
referencing 425, 585
restoring 51
returning 353
saving 51
setting to null 116

passthrough SQL and 663,
923

posting records 619, 973
handling events 30, 75

result sets 353, 663, 966, 972
defined 923

updating data 972
SQL tables 923

returning names 356
searching for data 230, 231,

306, 706, 707, 708
security 448

login events 541, 886
password events 916

testing for 446
SQL transactions 972

committing 139
initiating 738, 962
isolation levels 930, 962
rolling back 669

Sqr function 733
See also Sqrt function

Sqrt function 733
See also Sqr function

square root 733
squares 715
SS register value 734
ssAlt constant 881, 946
ssBoth constant 681
ssCtrl constant 882, 946
ssDouble constant 882, 946
SSeg function 734

See also CSeg, DSeg, SPtr
functions

ssHorizontal constant 681
ssLeft constant 882, 946
ssMiddle constant 882, 946
ssNone constant 681
ssRight constant 946
ssShift constant 881, 946
ssVertical constant 681
stack exceptions 260
stack pointer 731
stacking controls 92, 698
stacking controls See Z order
standard input device 400
standard output device 577
standard output file 578
Start property 735

Rewind and 667
TimeFormat and 875

StartMargin property 736
EndMargin and 248

StartPage property 736
StartPos property 737

AutoRewind and 65
Play and 609
TimeFormat and 875

StartRecording method 738
EndPos and 250
StartPos and 737
Wait and 987

StartTransaction method 738
Commit and 139
Rollback and 669

State property 739–740
CheckBrowseMode and 110
dsEditModes and 219
Edit and 225
OnDateChange and 520

I n d e x 1041

OnStateChange and 560
TCheckBoxState and 791
TDataSetState and 800

states
check boxes 35, 739, 791
drag/drop modes 829
forms 964, 992
list boxes 832
scroll bars 941

statistics 636
status bars 913

OLE applications 447, 560
stCircle constant 715
stEllipse constant 715
Step method 740

Frames and 332
Wait and 987

StmtHandle property 741
Stop method 742

Wait and 987
Storage property 742
stored procedures 949

See also queries
allocating memory 342
associating with

databases 174
changing 97
closing datasets 14

handling events 28, 73
connecting to datasets 203,

243
counting records 649
data states 740
deleting records

handling events 28, 74
executing 265, 564, 621, 968
inserting records 38, 40

handling events 29, 75,
547

opening datasets 14, 564
handling events 29, 75

optimizing 622
overloading 578
parameters 584, 914, 915

adding 25, 160
assigning data 50, 54, 56,

182, 415
BCD values 45
Boolean values 45
currency values 46
date/time values 46, 59
float values 47
integer values 48
string values 57
word values 59

available descriptions 196
clearing 51, 116, 657

data assignments 116

copying 50, 54, 151, 341,
342, 702

counting 156, 586
naming 486
output 353
passing 587
referencing 425, 585
restoring 51
saving 51
setting to null 116
types, specifying 589, 916

posting records 619, 973
handling events 30, 75

result sets 353, 663, 966, 972
defined 923

return values 950
returning 355, 743
singleton results 950

StoredProc component 949
StoredProcName property 743
storing values 773
Str procedure 743

See also Val, Write procedures
DisplayFormat and 205
DisplayText and 207

StrAlloc function 744
StrBufSize function 744

StrAlloc and 744
StrCat function 744

See also StrLCat function
StrComp function 745

See also StrIComp, StrLComp
functions

StrCopy function 745
See also StrECopy, StrLCopy,

StrNew functions
StrDispose function 746

RequestData and 662
streams 782

buffers 637, 994
clearing 935
creating 158
current position,

resetting 685
creation exceptions 233
file 233
read/write exceptions 233,

258, 262
base object 261

reading from 444, 637
writing to 678, 994

StrECopy function 746
See also StrCat, StrCopy,

StrEnd functions
stRectangle constant 715
StrEnd function 747

See also StrLen function
Stretch property 747

AutoSize vs. 68
StretchDraw method 748
StrFmt function 748
StrIComp function 750

See also StrComp, StrLComp,
StrLIComp functions

strikeout text 567
string fields 951

date/time values and 47
floating-point values and 48
integers and 48
logical values and 45
searching for data 306
size, returning 726, 727

string grids 951
accessing strings 105, 749

and objects 137, 499, 673
borders 88
cells

active 671
bounding rectangle 104
line width 365
painting 191, 524, 533, 556

handling events 829,
867

returning current 132
selecting 943

range of 572
setting size 138, 190, 572

color options 134, 572
columns

counting 133, 278, 985
current 480
displaying 436, 561, 572,

907
headers 869
moving 572, 898, 907

events 519, 554
returning 280, 693

display options 867
displaying items 191

handling events 829, 867
drawing surfaces 100
editing items 229, 944

handling events 533, 556
options 572

exception handling 236
height 364
moving through 573
nonscrolling regions 310, 311,

312, 907
coloring 310
displaying 572
labeling 311, 312

owner-draw
handling events 829, 867

retrieving text strings 865

1042 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

returning coordinates 694,
867

rows
counting 672, 985, 986
current 480
displaying 436, 561, 572,

907
moving 898, 907
setting size 192, 672

scrolling 681
width 366

string lists 953
accessing strings 978
adding strings 19, 27, 403, 443

and objects 23, 408, 498
changing items 511, 979
counting items 155
deleting items 117, 193
duplicate strings 221, 834
exception handling 238, 261
headers and 684
INI files and 644, 645
item position 396
locating objects 397
moving items 263, 481
multiple strings and 356, 710
searching for items 300
sorting strings 728, 730
updating 77, 250

string tables 316
string types 57, 58, 955

captions 790
StringField component 951
StringGrid component 951
strings 954

accessing 105, 137, 499, 673,
749, 978

adding objects 23, 397, 408,
498

allocating 489
allocating buffers 744
appending 40
arrays 105, 137
assigning 55
changing 511, 979
characters

converting to
uppercase 969

first occurence 758
last occurence 757
number 752

maximum 744
writing to windows

996–997
clearing 117
Clipboard and 58
combo boxes 208

returning 422

comparing 745, 750, 751
case insensitive 37, 140,

753
case sensitive 37, 140

concatenating 143, 744, 746,
750

conversions 58
data to 843
exception handling 222

converting 743
null-terminated 755, 846
Pascal-type 756
to dates 759
to integers 760, 761
to lowercase 37, 451, 754
to null-terminated 756
to numbers 973
to Pascal-type 755
to time formats 759, 762
to uppercase 38, 762, 973

copying 745, 746, 752, 755,
756, 757

counting 155
deleting 193
display-only 207, 842

handling events 534, 556,
850

disposing 210, 746
editing 229, 944

handling events 533, 556
empty 242, 495, 843
end 747
exceeding maximum 708
exception handling 238
finding next occurrence 571
first occurrence 756–757
format 322–324
INI files and 646, 978, 999
length 437
loading 446
maximum length 354, 839
merging See concatenating
moving 263, 481, 754
new 489, 755
null-terminated 132, 710,

744, 757
reading 354, 357, 708, 710
returning 356

outline items and 358
Pascal-type 755, 757
position, returning 396
retrieving 422, 865
searching for 306
substrings

deleting 195
inserting 406
returning 150
searching for 616

treating as blocks 710
updating 77, 250

Strings property 749
StrLCat function 750

See also SizeOf, StrCat
functions

StrLComp function 751
See also StrComp, StrIComp,

StrLIComp functions
StrLCopy function 752

MaxLen and 752
StrLen function 752

See also StrEnd function
StrLFmt function 753
StrLIComp function 753

See also StrComp, StrIComp,
StrLComp functions

StrLower function 754
See also StrUpper function

StrMove function 754
See also Move function

StrNew function 755
See also GetMem procedure;

StrDispose function
stRoundRect constant 715
stRoundSquare constant 715
StrPas function 755

See also StrPCopy function
StrPCopy function 756

See also StrCopy function
StrPLCopy function 757
StrPos functions 756, 757
StrRScan function 757

See also StrScan function
StrScan function 758

See also StrRScan function
Chr and 758

StrToDate function 759
See also DateToStr,

StrToDateTime, StrToTime
functions

StrToDateTime function 759
See also DateTimeToStr,

StrToDate, StrToTime
functions

StrToFloat function 760
exception handling 222

StrToInt function 760
See also IntToHex, IntToStr,

StrToIntDef functions
exception handling 222

StrToIntDef function 761
See also IntToStr, StrToInt

functions
StrToTime function 762

I n d e x 1043

See also StrToDate,
StrToDateTime, TimeToStr
functions

StrUpper function 762
See also StrLower function

stSquare constant 715
Style property 763–771

IntegralHeight and 411
ItemHeight and 420
TBevelStyle and 778
TBrushStyle and 785
TButtonStyle and 788
TComboBoxStyle and 796
TDBLookupComboStyle

and 815
TFontStyles and 862
TListBoxStyle and 886
TOutlineType and 911
TPenStyle and 917
TTabStyle and 960

styles
bitmap buttons 768
borders 86–88
brushes 764, 785
buttons 788
combo boxes 765, 770, 796
fonts 765, 862
forms 330, 865
outlines 577, 911
owner-draw controls 542
pens 763, 917
tab sets 768, 960

SubCode property 224
substrings See string lists; strings
Succ function 771

See also Dec, Inc procedures;
Pred function

swap files 254
Swap function 771

See also Hi, Lo functions
Sybase tables

result sets, returning 353
system colors 135, 137, 793
System menu 86
system resources

exception handling 253, 254
freeing 334

system tables
returning 356

System unit 8
SysUtils unit 8

T
tab characters 988

DDE applications and 324
outlines 439

tab order, setting 958
tab sets 958

adding text 461
adding to notebooks 958
changing

handling events 509
coloring 72, 210, 692

unselected 969
counting visible tabs 986
dithered backgrounds 210
margins 248, 736
measuring tabs 889
moving through 309, 695
owner-draw 526, 543, 889

displaying 769
handling events 832

scroll buttons and 66, 248
selecting 695, 956
styles 768, 960
tab positions 418

TabbedNotebook
component 955

Table component 956
table type constants 772
TableName property 772

CreateTable and 161
DeleteTable and 196
EmptyTable and 242
GotoCurrent and 360

tables
See also databases
accessing 956

placing restrictions 264
associating with

databases 174
batch operations 776
creating 161
data states 740
dBASE See dBASE tables
deleting 196
detail

linking to master 456, 457
handling events 800
indexes 393, 877

characteristics 575
clearing elements 116
counting elements 156
counting fields 393
creating 18, 23, 50, 157,

158, 878
dBASE 273, 395
entering fields 23, 394
naming 347, 486
retrieving

information 394, 397, 971
searching on 305, 306
secondary 395

deleting 196

inserting records 38, 40, 405,
410

handling events 29, 75,
547

keyviol 12, 430
lookup 813, 815

adding data 460
assigning values 208
calculated fields and 95
closing 28, 130, 218
counting fields 278
displaying values 68, 175,

180, 449
current field 840
data sources 450
in columns 816

multiple fields 218, 449,
574

opening 217, 219
returning specific

fields 280, 693
setting current values 976

master 456, 457
moving cursors 306, 361

specified distance 482
to first record 309
to last record 434
to next record 491
to previous record 631

moving through 819
moving to specific

records 361
Paradox See Paradox tables
posting records 619, 973

handling events 30, 75
problems 13, 632
queries and temporary 631
removing records 194, 242

handling events 28, 74
returning names 356, 772
searching for data 427, 428

key fields and 305, 306,
361, 704

multiple fields 226
ranges 427

canceling 96
changing 230, 231
setting 42, 706, 707, 708

specifying types 772
SQL See SQL tables
Sybase See Sybase tables
synchronizing multiple 360

TableType property 772
CreateTable and 161
DeleteTable and 196
EmptyTable and 242

TabOrder property
TTabOrder and 958

taCenter constant 32

1044 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

Tag property 773
taLeftJustify constant 32, 33
TAlign type 773
TAlignment type 773, 883
TApplication component 773
taRightJustify constant 32, 33
TAttachMode type 775
TAutoActivate type 775
TBatchMode type 775

BatchMove and 72
TBatchMove component 776
TBCDField component 776
TBevel component 777
TBevelShape type 778
TBevelStyle type 778
TBevelWidth type 779
tbHorizontal constant 872
TBitBtn component 779
TBitBtnKind type 780
TBitmap object 781
TBlobField component 781
TBlobStream object 782
TBlobStreamMode type 783
TBookmark type 783
TBooleanField component 783
TBorderIcons type 784
TBorderStyle type 784
TBorderWidth type 784
TBrush object 785
TBrushStyle type 785
TButton component 786
TButtonLayout type 787
TButtonSet type 787
TButtonStyle type 787
tbVertical constant 872
TBytesField component 788
TCanvas object 789
TCaption type 790
TChangeRange type 790
TCheckBox component 790
TCheckBoxState type 791
TClipboard object 792
TCloseAction type 792
TCloseEvent type 792
TCloseQueryEvent type 793
tcLowerCase constant 843
TColor type 793
TColorDialog component 794
TColorDialogOptions type 794
TComboBox component 795
TComboBoxStyle type 796
TComponent type 3–5
TComponentName type 796
TControl type 5–6
TControlScrollBar object 796

TCopyMode type 797
tcUpperCase constant 843
TCurrencyField component 797
TCursor type 798
TCustomColors type 798
TDatabase component 798
TDataChangeEvent type 800
TDataMode type 800
TDataSetNotifyEvent type 800
TDataSetState type 800

dsEditModes and 219
State and 740

TDataSource component 801
TDataChangeEvent and 800
TTable and 956

TDateField component 801
TDateTime type 802
TDateTimeField component 802
TDBCheckBox component 803
TDBComboBox component 804
TDBEdit component 806
TDBError type 224
TDBGrid component 808
TDBGridOption type 809
TDBGridOptions type 809
TDBImage component 810
TDBListBox component 811
TDBLookupCombo

component 813
TDBLookupComboStyle

type 814
TDBLookupListOption type 816
TDBLookupListOptions

type 816
TDBMemo component 817
TDBNavigator component 819
TDBRadioGroup

component 820
TDBText component 822
TDDEClientConv

component 823
TDDEClientItem

component 824
TDDEServerConv

component 825
TDDEServerItem

component 825
TDirectoryListBox

component 826
TDragDropEvent type 828
TDragMode type 828
TDragOverEvent type 828
TDragState type 829
TDrawCellEvent type 829

TGridDrawState and 867
TDrawDataCellEvent type 830

TDrawGrid component 830
TDrawItemEvent method

TOwnerDrawState and 912
TDrawItemEvent type 832
TDrawTabEvent type 832
TDriveComboBox

component 832
TDuplicates type 834
technical support 1
TEdit component 834

TDBEdit vs. 807
TMemo vs. 891

TEditCharCase type 836
Temporary property 836
TEndDragEvent type 837
Terminate method 837
Terminated property 837
terminating applications 11, 13,

269, 270, 368
terminating batch

operations 12, 13
terminating print jobs 11, 247

testing status 12
terminating sessions

unexpectedly 225
Test8086 variable 838
testing for active control 15, 318
testing for active form 16
TExceptionEventType 838
text 839–843, 891

See also captions; labels; titles
aligning 32–34
appending 39
blocks 690, 710
color options 135
conversions

OEM characters 501
copying 58, 152, 354, 357, 710

edit boxes 354
deleting 117, 118, 193–194

Clipboard and 117, 171,
328

displaying 69, 859
automatically 61
data-aware

components 817, 822
edit boxes 68, 381
input focus and 381
lookup tables 68
memos 381, 839
resizeable 869

drawing 845
editing

edit boxes 231
list boxes 282
masks 231

entering

I n d e x 1045

edit boxes 108, 836
length, returning 358
memos See memos
outlines See outlines
pasting 596
pointers 850
reading lines 641
read-only 69
replacing 553, 571, 660, 932
retrieving 865
searching for 308, 856

handling events 532, 553
matching whole

words 570, 571
string lists 300

selecting 135
automatically 67
combo boxes 511, 690, 696,

697
edit boxes 690, 697
entire blocks 690
getting starting

position 696
list boxes 274, 691

multiple items 485
memo fields 690, 696
returning length 696

special effects 567
tab sets 461
underlining 567
updating

list boxes 41, 970
outlines 77, 712

wrapping 994
text buffers

setting 708, 710
writing to 354, 357, 358

text files
appending to 39
applying filters 41, 286
assigning I/O buffers 711
associating with CRT

window 52
clearing buffer 315
databases and 772
end-of-line markers 997
printing 55
Truncate and 935

text forms
exception handling 254

text pointers 865
Text property 839–843

EditText and 231
FullPath and 337
GetData vs. 341
GetTextItem and 358
ItemSeparator and 426
Lines vs. 439

OnGetText and 534
OnSetText and 556
SetData vs. 702
TCaption and 790
TextCase and 843
TextHeight and 844
TextOut and 845
TextWidth and 847
TTextCase and 960

text strings See strings
TextCase property 843
TextFile type 844

See also AssignFile, CloseFile
procedures

TextHeight method 844
TextOut method 845
TextRect method 845
TextToFloat function 846
TextToShortCut function 846

ShortCut vs. 717
TextWidth method 847
tfBytes constant 875
TFDApplyEvent type 847
tfFrames constant 875
tfHMS constant 875
TField component 848

TFieldClass and 853
TFieldType and 854

TFieldClass type 853
TFieldDef object 853

TFieldType and 854
TFieldDefs object 853
TFieldGetTextEvent type 850
TFieldNotifyEvent type 850
TFieldSetTextEvent type 850
TFieldType type 854

Size and 726
TFileAttr type 855
TFileEditStyle type 851
TFileExt type 851
TFileListBox component 851
TFileName type 854
TFileRec type 854
TFileType type 855
TFillStyle type 855
TFilterComboBox

component 855
TFindDialog component 856
TFindItemKind type 857
TFindOptions type 857
TFloatField component 857
tfMilliseconds constant 875
tfMSF constant 875
TFont object 859
TFontDialog component 860
TFontDialogDevice type 861

TFontDialogOptions type 861
TFontName type 861
TFontPitch type 862
TFontStyles type 862
TForm component 862
TFormBorderStyle type 864

TBorderStyle vs. 784
TFormStyle type 865
tfSamples constant 875
tfSMPTE24 constant 875
tfSMPTE25 constant 875
tfSMPTE30 constant 875
tfSMPTE30Drop constant 875
tfTMSF constant 875
TGetEditEvent type 865
TGraphic object 865
TGraphicClass type 363
TGraphicControl type 7
TGraphicField component 866
TGraphicsObject object 866
TGridDrawState type 867
TGridOptions type 867
TGridRect type 867
TGroupBox component 868
THeader component 869
THelpContext type 870
THelpEvent type 870
THintInfo type 870
three-dimensional controls 163,

592
thumb tabs See scroll bars
TIcon object 870
tiDirtyRead constant 930
TIdleEvent type 871
Tile method 871

TileMode and 872
tile mode constants 872
TileMode property 872

TTileMode and 961
tiling forms 872, 961
TImage component 873

TDBImage vs. 810
time 759, 802, 961

See also Timer component
conversions 46, 47, 59
converting 182, 183, 285, 876
decoding 189
encoding 246
formatting 163, 189, 246, 325,

802
masks and 228
preferences 345
returning 759, 762
returning current 494, 874
stamping 292

Time function 874

1046 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

See also Date, Now, TimeToStr
functions; DecodeTime
procedure

TimeField component 961
TimeFormat property 874

EndPos and 250
Length and 437
Position and 618
TMPTimeFormats and 899
TrackLength and 925
TrackPosition and 926

Timer component 962
timer events 561

initiating 412
responding to 243

TimeToStr function 876
See also DateTimeToStr,

DateToStr, StrToDateTime,
Time functions

TIndexDef object 877
TIndexDefs object 877
TIndexOptions type 878

AddIndex and 23
TIniFile object 878
TIntegerField component 878
tiReadCommitted constant 930
tiRepeatableRead constant 930
title bars 784

adding icons 86, 784
labels 103, 880

Title property 879–880
TitleFont property 881
titles 879–880

See also captions; labels; text
TKey type 881
TKeyEvent type 881
TKeyPressEvent type 882
TLabel component 882
TLeftRight type 883
TList object 883
TListBox component 884

TDBListBox vs. 811
TListBoxStyle type 885
TLocale type 886
TLoginEvent type 886
TMacroEvent type 886
TMainMenu component 886
TMaskEdit component 887
TMeasureItemEvent type 889
TMeasureTabEvent type 889

OnMeasureTab and 543
TMediaPlayer component 889
TMemo component 891
TMemoField component 893
TMenuBreak type 894
TMenuItem component 894

TMessageEvent type 895
TMetafile object 895
TModalResult type 896
TMouseButton type 897
TMouseEvent type 897
TMouseMoveEvent type 897
TMovedEvent type 898
TMPBtnType type 898
TMPDevCapsSet type 898
TMPDeviceTypes type 898
TMPModes type 899
TMPNotifyValues type 899
TMPTimeFormats type 899
TMsgDlgButtons type 899
TMsgDlgType type 900
TNavigateBtn type 900
TNotebook component 900
TNotifyEvent type 901
TNumGlyphs type 902
TObject type

AssignValue and 56
toggles See check boxes
TOLEContainer component 902
TOLEDropNotify object 903
tool bars 913, 948
tool palettes 913, 948
ToolHelp DLL 245
Top property 904
ToPage property 904
TOpenDialog component 905
TOpenOptions type 906
TopIndex property 906
TopItem property 907
TopRow property 907

OnTopLeftChanged and 561
TOutline component 908

EOutlineChange and 253
TOutlineNode object 910
TOutlineOptions type 911
TOutlineStyle type 911
TOutlineType type 911
TOwnerDrawState type 911
TPaintBox component 912
TPanel component 913
TPanelBevel type 914
TParam object 914
TParamBindMode type 915
TParams object 915
TParamType type 916
TPasswordEvent type 916
TPen object 916
TPenMode type 917
TPenStyle type 917
TPicture object 917
TPoint records 610

TPoint type 918
TPointerList type 442
TPopupAlignment type 918
TPopupMenu component 918
TPosition type 919
TPrintDialog component 920
TPrintDialogOptions type 920
TPrinter object 921
TPrinterOrientation type 922
TPrinterSetupDialog

component 922
TPrintRange type 922
TPrintScale type 923
TQuery component 923
TrackCursor procedure 925

See also ScrollTo procedure
TrackLength property 925
TrackPosition property 926
Tracks property 927
TRadioButton component 927
TRadioGroup component 928
trailing blanks

masks 227
transactions 972

committing 139
initiating 738, 962
isolation levels 930, 962
rolling back 669

TransIsolation property 930
StartTransaction and 738
TTransIsolation and 962

Transliterate property 930
transparent controls 931
transparent images 93
Transparent property 931
TRect type 931

Rect vs. 648
TReplaceDialog component 932
TReport component 933
trigonometric functions 43, 154,

725
TrueType fonts 320, 568
Trunc function 934

See also Int, Round functions
Truncate method 934
Truncate procedure 935

See also Reset, Rewrite, Seek
procedures

TSaveDialog component 936
TScreen component 937
TScrollBar component 938
TScrollBarInc type 939
TScrollBarKind type 939
TScrollBox component 939
TScrollCode type 941
TScrollEvent type 941

I n d e x 1047

TScrollStyle type 941
TSearchRec type 942
TSectionEvent type 942
TSelectCellEvent type 943
TSelectDirOpts type 943
TSession component 943
TSetEditTextEvent type 944
TShape component 945
TShapeType type 945
TShiftState type 946

ShortCut and 716
TShortCut 946
TShortCut type 946
TShowHintEvent type 946

OnShowHint and 557
THintInfo and 870

TSmallintField component 947
tsOwnerDraw constant 768
TSpeedButton component 948
tsStandard constant 768
TStatusLineEvent type 949
TStoredProc component 949
TStringField component 951
TStringGrid component 951
TStringList object 953
TStrings object 954
TSymbolStr type 955
TTabbedNotebook

component 955
TTabChangeEvent type 956
TTable component 956
TTabOrder type 958
TTabSet component 958
TTabStyle type 960
ttASCII constant 772
ttDBase constant 772
TTextCase type 960
TTextRec type 960
TTileMode type 961
TTimeField component 961
TTimer component 962
ttParadox constant 772
TTransIsolation type 962
TVarBytesField component 962
TVarRec type 963
TWinControl type 6–7
TWindowState type 964
TWordField component 964
typecasting

exception handling 235
TypeOf function 965

See also SizeOf function
types

Clipboard formats 85
data

compatible 50

returning 278
specifying 54, 181, 182,

854
batch moves 57

object
TField 853

string 57, 58, 955
captions 790

typography 1
TZoomFactor type 966

U
unassigned pointers 53
unassigned procedural

variables 53
unchecking check boxes 35, 111,

739
undefined instructions 236
underflow math exceptions 261
underlining characters in

captions 103
underlining text 567
UniDirectional property 966
Unmerge method 967
UnPrepare method 968

Prepared vs. 622
UnselectedColor property 968
UpCase function 969

See also StrUpper function
Update method 969–971

IndexDefs and 393
Refresh and 650

UpdateCursorPos method 971
UpdateMode property 971
UpdateRecord method 973

dsEditModes and 219
OnUpdateData and 562

updating controls
outlines 77, 250
strings 77, 250

updating data
data sources 244
datasets 243, 971, 973
DDE applications 439, 662
handling events 562
live result sets 972

updating reports 647, 713, 714
updating text

list boxes 41, 970
outlines 77, 712

uppercase characters 227, 969
See also lowercase
combo boxes 843
edit boxes 108
masks 108
returning 38, 762, 973

UpperCase function 973
See also AnsiUpperCase,

LowerCase functions
user actions See events
user names

database servers 448, 886
login events 541

user options 790, 803, 884
checking/unchecking 35,

111, 977, 980
initiating actions 779, 786
mutually exclusive 366, 820,

927

V
Val procedure 973

See also Str procedure
ValidateEdit method 974
validating data 317, 416

handling events 562, 850
ValidParentForm function 975

GetParentForm vs. 351
Value property 975–977

AsBoolean vs. 45
AsDateTime vs. 47
AsFloat vs. 48
AsInteger vs. 48
AssignValue and 56
AsString vs. 58
DisplayValue and 208

ValueChecked property 977
values

absolute 13
assigning 40, 56, 410, 703, 977

binary-coded decimals 45
Boolean 45
currency 46
date/time 46, 47, 59
DDE applications 509
floating-point 47, 48
integers 48
key field searches 305, 362
lookup tables 208, 449, 450
maximum 461
minimum 473
required 663
Smallint types 57
SQL statements 54, 56,

180, 182
dynamic queries 585

stored procedures 54, 56,
182

string 57, 58
word 59

comparing
database searches 42, 972
strings 751

1048 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

converting
floating-point to string 313
floating-point to text 315
See also conversions
string to integer 760

formatting floating-point 326
nil 703

object lists 579
nonzero

testing for 110
null 116, 703

testing for 415
numeric See integers;

numbers
ordinal 575
required 663, 887

validating 974
restoring default 117
storing 773
strings

comparing 751
truncating 934
writing to files 995

Values property 978–980
ReadSectionValues and 645

ValueUnchecked property 980
VStrLCopy function

See also SizeOf, StrCopy
functions

VarBytesField component 962
See also byte fields

variables
converting

date to string 183
time to string 183

currency formats 163
date/time type 802
decrementing 188
dynamic

creating 350, 488
disposing 334
releasing memory

allocations 209
file, typecasting 854
heap 374
incrementing 390
pointer, creating new 488
procedural, unassigned 53
reading file components

into 638
reading text file values

into 638
text 960
text files 844
writing records to files 82

variable-width fonts 606
VCL See Visual Component

Library

VCRs See media players
VersionMajor property 981
VersionMinor property 982
vertical scroll bars 157, 432, 939,

982
displaying 796
scrolling ranges 636
setting position 683

VertScrollBar property 982
TControlScrollBar and 796

videos See media players
viewing See displaying
virtual key codes 718
virtual method tables 965
Visible property 983

Hide and 380
HorzScrollBar and 387
OnCreate and 519
Show and 719
Showing and 723

VisibleButtons property 983–985
TButtonSet and 787

VisibleColCount property 985
VisibleRowCount property 985
VisibleTabs property 986
Visual Component Library

(VCL) 2

W
Wait property 986

Open and 563
Pause and 599
PauseOnly and 600
Play and 609
Previous and 625
Resume and 666, 667
Save and 676
StartRecording and 738
Step and 741, 742

WantReturns property 987
WantTabs property 988
warning messages 466, 468

common dialog boxes 568,
569

displaying 720
WhereAll constant 972
WhereChanged constant 972
WhereKeyOnly constant 972
WhereX function 989

See also GoToXY procedure;
WhereY function

WhereY function 989
See also CoToXY procedure;

WhereX function
while statements

continuing 146

exiting 90
Width property 990–991

HorzScrollBar and 387
wildcard characters 296, 297, 298

See also file filters
WIN.INI file

See also INI files
loading characters from 353

window handles
applications 370
Clipboard 338, 700
controls 370

creating 373
testing for 371

invalid operations 237, 254,
535

menu items 370
Window menu 863, 991
windowed controls 6

listed 6
returning children 147
stacking order 92, 698

WindowMenu property 991
WindowOrg typed constant 992
windows 862

See also CRT windows
coloring 135
painting backgrounds 764
scrolling 938
specifying icons 388

Windows applications
running Delphi with 521

Windows common dialog boxes
See common dialog boxes

Windows messages
menus and 139
processing 543, 633, 895

Windows swap files 254
Windows system colors 135, 137
WindowSize typed constant 992
WindowState property 992

Restore vs. 665
TWindowState and 964

WindowTitle variable 993
WinHelp

calling 377, 379
WM_COMMAND

messages 139
.WMF files See metafiles
Word types 59
word values 59
WordField component 964
WordWrap property 993
workspaces

coloring 135
wrapping text 994
Write method 994

I n d e x 1049

Write procedure 995
See also Read, Readln, Writeln

procedures
IOResult and 995
text files 995
typed files 995

WriteBool method 995
WriteBuf procedure 996

See also AutoTracking typed
constant; WriteChar
procedure

WriteChar procedure 997
See also WriteBuf, Writeln

procedures

WriteInteger method 998
Writeln procedure 997

See also Write procedure
WriteString method 998
writing 710
wsMaximized constant 992
wsMinimized constant 992
wsNormal constant 992

X
X coordinate See GoToXY

procedure

Y
Y coordinate See GoToXY

procedure

Z
Z order (controls) 92, 698
z025 constant 999
z050 constant 999
z100 constant 1000
z150 constant 1000
z200 constant 1000
zeros, dividing by 232, 276
Zoom property 999

TZoomFactor and 966

1050 D e l p h i V i s u a l C o m p o n e n t L i b r a r y R e f e r e n c e

Visual Component
Library Reference

Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

Borland ®

Delphi ™

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1995 Borland International. All rights reserved. All Borland product names are trademarks or
registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered
trademarks of their respective holders.

Printed in the U.S.A.

1E0R395
9596979899-987654321
W1

i

Introduction 1
Manual conventions 1
Contacting Borland. 1
Delphi Visual Component Library. 2

Visual Component Library objects2
Visual Component Library components 3
Visual Component Library controls5

Visual Component Library windowed
controls . 6

Visual Component Library nonwindowed
controls . 7

Visual Component Library procedures and
functions . .7

Library reference 8
Sample entry. . 9

Delphi Library Reference 11
Abort method . 11
Abort procedure 11
Aborted property 12
AbortOnKeyViol property 12
AbortOnProblem property 13
Abs function . 13
Abstract procedure 13
Active property 14

For tables, queries, and stored procedures . . . 14
For OLE containers 14

ActiveControl property 15
ActiveForm property. 15
ActiveMDIChild property. 16
ActivePage property 17
Add method . 17

For field definitions. 17
For index definitions 18
For list objects . 18
For string and string list objects 19
For menu items 20
For outlines . 20

AddChild method 21
AddChildObject method 22
AddExitProc procedure 22
AddFieldDesc method. 22
AddIndex method 23
AddObject method 23

For string and string list objects 23
For outlines . 24

AddParam method. 25

AddPassword method 25
Addr function . 26
AddStrings method. 26
AfterCancel event 27
AfterClose event. 28
AfterDelete event 28
AfterEdit event 28
AfterInsert event 29
AfterOpen event. 29
AfterPost event 30
AliasName property 30
Align property. 31
Alignment property. 32

For labels, memos, and panels 32
For check boxes and radio buttons 32
For pop-up menus 33
For field components 34

AllocMem function 34
AllowAllUp property. 34
AllowGrayed property. 35
AllowInPlace property 36
AllowResize property 36
AnsiCompareStr function 37
AnsiCompareText function 37
AnsiLowerCase function. 37
AnsiToNative function 37
AnsiUpperCase function. 38
Append method. 38
Append procedure 39
AppendRecord method 40
AppendStr procedure 40
Application variable 41
ApplyFilePath method 41
ApplyRange method 42
Arc method. . 43
ArcTan function 43
ArrangeIcons method 44
AsBCD property. 44
AsBoolean property. 45

For TParam objects 45
For Boolean and string field components . . . 45

AsCurrency property. 45
AsDate property. 46
AsDateTime property. 46

For TParam objects 46

Contents

ii

For date, date-time, time, and string field
components . 47

AsFloat property 47
For TParam objects 47
For field components. 47

AsInteger property 48
For TParam objects 48
For field components. 48

Assign method 49
For the Clipboard 49
For field definitions. 49
For index definitions 50
For field components. 50
For TParam objects 50
For TParams objects 51
For other objects 51

AssignCrt procedure 52
Assigned function 53
AssignField method 53
AssignFile procedure. 54
AssignPrn procedure. 55
AssignStr procedure 55
AssignValue method 56
AssignValues method 56
AsSmallInt property 57
AsString property. 57

For TParam objects 57
For field components. 58

AsText property 58
AsTime property 59
AsWord property 59
AutoActivate property. 60
AutoCalcFields property 60
AutoDisplay property 61
AutoEdit property 61
AutoEnable property. 62
AutoMerge property 63
AutoOpen property 64
AutoPopup property. 64
AutoRewind property 65
AutoScroll property 66

For tab set controls 66
For forms and scroll boxes. 66

AutoSelect property 67
AutoSize property 67

For images . 68
For edit boxes and database lookup

combo boxes. 68
For label and database text components 69

For OLE containers 69
AutoTracking typed constant 70
AutoUnload property 70
Back method . 71
BackgroundColor property 72
BatchMove method 72
BeforeCancel event 73
BeforeClose event 73
BeforeDelete event 74
BeforeEdit event 74
BeforeInsert event 74
BeforeOpen event 75
BeforePost event. 75
BeginDoc method 76
BeginDrag method 76
BeginUpdate method. 77
BevelInner property. 78
BevelOuter property 79
BevelWidth property 79
Bitmap property. 80

For brushes . 80
For pictures . 81

BlockRead procedure. 81
BlockWrite procedure. 82
BOF property . 84
BOLEFormat type. 84
BOLEMedium type 85
BOLEMediumCalc function. 85
BorderColor property. 86
BorderIcons property 86
BorderStyle property 87

For forms . 87
For controls . 88

BorderWidth property 88
Bounds function. 89
BoundsRect property 89
Break procedure 90
Break property. 91
BringToFront method. 91
Brush property. 92
BrushCopy method. 93
BtnClick method 94
Buttons property 94
Calculated property. 95
Cancel method. 95
Cancel property 96
CancelRange method. 96

iii

CanFocus method 96
CanModify property 97

For tables, queries, and stored procedures . . . 97
For field components. 98

Canvas property 98
For forms, images, and paint boxes 98
For list boxes, combo boxes, and outlines. . . . 99
For grids . 100
For printer objects 100
For bitmap objects 100

Capabilities property. 101
Capacity property. 102
Caption property 102

For forms. 103
For all other components 103

Cascade method 104
CellRect method 104
Cells property 105
Center property 105
ChangedCount property 106
ChangedTableName property 106
ChangeFileExt function 107
ChangeLevelBy method 107
CharCase property 108
ChDir procedure 109
Check procedure 110
CheckBreak typed constant110
CheckBrowseMode method 110
Checked property. 111
CheckEOF typed constant. 111
Chord method. 112
Chr function . .112
ClassName method. 113
ClassParent method 114
ClassType method 115
Clear method .115

For TParams objects 116
For TParam objects 116
For TIndexDefs objects. 116
For TFieldsDefs objects 116
For fields . 116
For other objects and components 117

ClearFields method. 117
ClearFormOLEDropFormats procedure 118
ClearSelection method118
Click method .119

For menu items and buttons 119
For database navigator controls 119

ClientHandle property. 119

ClientHeight property 120
ClientOrigin property 120
ClientRect property 121
ClientToScreen method. 121
ClientWidth property. 122
Clipboard variable 123
ClipRect property 123
Close method 123

For forms .124
For Clipboard objects 124
For media player controls 124
For tables, queries, and stored procedures . . .125
For databases125

Close procedure 125
CloseApplication method 126
CloseDatabase method. 127
CloseDatasets method 127
CloseDialog method 128
CloseFile procedure. 128
CloseLink method. 128
CloseQuery method 129
CloseReport method 130
CloseUp method 130
ClrEol procedure 131
ClrScr procedure 131
CmdLine variable 132
CmdShow variable 132
Col property . 132
ColCount property 133
Collapse method 133
Collate property 133
Color property 134

For the Color dialog box 135
ColoredButtons property 136
ColorToRGB function. 136
Cols property 137
Columns property. 137
ColWidths property. 138
Command property. 139
Commit method. 139
CompareStr function 140
CompareText function 140
ComponentCount property 141
ComponentIndex property 142
Components property 142
Concat function 143
ConfirmDelete property 144

iv

Connect method 144
Connected property 144
ConnectMode property 145
ContainsControl method 145
Continue procedure 146
ControlAtPos method 147
ControlCount property 147
Controls property 148
ConvertDlgHelp property. 148
Copies property 149
Copy function 150
CopyMode property 150
CopyParams method. 151
CopyRect method. 152
CopyToClipboard method 152

For edit boxes and memos 152
For OLE containers 153
For DDE server items 153
For database images 154

Cos function . 154
Count property 155

For lists and menu items. 155
For TParams objects 156
For TFieldDefs objects 156
For TIndexDefs objects. 156

Create method. 156
For TIniFile objects 157
For outline nodes 157
For control scroll bars 157
For TIndexDef objects 157
For TIndexDefs objects. 158
For blob streams 158
For all other components 158
For all other objects. 159

CreateField method. 159
CreateForm method 159
CreateNew method. 160
CreateParam method. 160
CreateTable method 161
CSeg function 161
Ctl3D property 162
Currency and date/time formatting

variables . 163
Currency property 166
Cursor property 166

For all controls. 166
For screen objects 167

Cursor typed constant 168
CursorPosChanged method 168

Cursors property 168
CursorTo procedure. 169
CustomColors property 170
CutToClipboard method 171
Data property 171
Database property. 172
DatabaseCount property. 172
DatabaseError procedure 173
DatabaseName property. 173

For database components. 173
For tables, queries, and stored procedures . . .173

Databases property 174
DataField property 175
DataFormat property 175
DataHandle property. 177
DataSet property 177

For data source components177
For field components 178

DatasetCount property. 178
Datasets property 179
DataSize property 179
DataSource property 180

For data-aware controls180
For queries .180

DataType property 181
For field definition objects 181
For field definitions 181
For TParam objects 182

Date function. 182
DateTimeToFileDate function 182
DateTimeToString procedure 183
DateToStr function 183
DateTimeToStr function 183
DayOfWeek function 184
DBHandle property. 184
DbiError procedure 185
DBLocale property 185
DDEConv property 185
DDEItem property 186
DDEService property. 186
DDETopic property 187
Dec procedure 188
DecodeDate procedure. 188
DecodeTime procedure. 189
Default property. 190
DefaultColWidth property. 190
DefaultDrawing property 191
DefaultExt property. 191

v

DefaultRowHeight property 192
Delete method. 193

For list and string objects and menu items . . 193
For outlines . 194
For queries and tables 194

Delete procedure 195
DeleteFile function 195
DeleteIndex method 195
DeleteTable method 196
DescriptionsAvailable method 196
Destination property 197
Destroy method 197
Device property 198
DeviceID property 198
DeviceType property 199
Directory property 200
DirectoryExists function 200
DirLabel property. 201
DirList property. 202
DisableControls method. 202
DiskFree function 203
DiskSize function 204
Display property 204
DisplayFormat property. 205
DisplayLabel property 205
DisplayName property 206
DisplayRect property. 206
DisplayText property. 207
DisplayValue property 208
DisplayValues property 208
DisplayWidth property 209
Dispose procedure 209
DisposeStr procedure 210
DitherBackground property 210
DoneWinCrt procedure 211
Down property 211
DragCursor property. 212
Dragging method. 212
DragMode property 213
Draw method 214
DrawFocusRect method 215
Drive property. 216
DriverName property 216
DropConnections method. 217
DropDown method. 217
DropDownCount property 218
DropDownWidth property 218

DroppedDown property. 219
dsEditModes const 219
DSeg function 219
Duplicates property. 221
EAbort object. 221
EBreakpoint object 221
EClassNotFound object 222
EComponentError object. 222
EConvertError object 222
EDatabaseError object 223
EDBEngineError object. 223
EDBEditError object 224
EDDEError object 225
Edit method . 225

For tables and queries225
For datasource components 225

EditFormat property 226
EditKey method 226
EditMask property 227
EditMaskPtr property 229
EditorMode property. 229
EditRangeEnd method 230
EditRangeStart method 230
EditText property 231
EDivByZero object 231
EFault object . 232
EFCreateError object 232
EFilerError object 232
EFOpenError object. 233
EGPFault object 233
EInOutError object 233
EIntError object 234
EIntOverflow object. 234
EInvalidCast object 235
EInvalidGraphic object 235
EInvalidGraphicOperation object 235
EInvalidGridOperation object. 236
EInvalidImage object 236
EInvalidOp object 236
EInvalidOpCode object 236
EInvalidOperation object 237
EInvalidPointer object 237
Eject method . 237
EListError object. 238
Ellipse method. 239
EMathError object. 240
EMCIDeviceError object 240

vi

EMenuError object 240
EMPNotify type. 240
EMPPostNotify type 241
Empty property 241
EmptyStr constant 242
EmptyTable method 242
EnableControls method 242
Enabled property 243

For all controls, menu items, and timers . . . 243
For data source components 244

EnabledButtons property 244
EnableExceptionHandler procedure. 245
ENavClick type 245
EncodeDate function 246
EncodeTime function. 246
EndDoc method. 247
EndDrag method 248
EndMargin property 248
EndPage property 249
EndPos property 249
EndUpdate method 250
Eof function . 251
EOF property 252
Eoln function 252
EOutlineChange type 253
EOutlineError object 253
EOutOfMemory object. 253
EOutOfResources object 253
EOverflow object 254
EPageFault object 254
EParserError object 254
EPrinter object 255
EProcessorException object 255
ERangeError object 255
Erase procedure 256
EraseSection method 257
EReadError object. 258
EReportError object. 258
EResNotFound object 258
Error property 258
ErrorAddr variable 259
ErrorMessage property 259
ErrorProc typed constant 260
ESingleStep object. 260
EStackFault object. 260
EStreamError object 261
EStringListError object 261

EUnderflow object 261
EWriteError object. 261
Exception object 262
Exchange method 263
Exclude procedure 263
Exclusive property 264
ExecProc method 265
ExecSQL method 265
Execute method 265

For Color, Font, Open, Save, Print, Find,
and Replace dialog boxes266

For Printer Setup dialog boxes. 266
For batch move components266

ExecuteMacro method 267
ExecuteMacroLines method. 268
ExeName property 268
ExceptionClass typed constant 269
ExceptProc typed constant. 269
Exit procedure 269
ExitCode variable 270
ExitProc variable 270
Exp function . 271
Expand method 271

For lists .271
For outline nodes 272

Expanded property 272
ExpandFileName function. 273
Expression property 273
ExtendedSelect property 274
ExtractFileExt function 274
ExtractFileName function 274
ExtractFilePath function 275
ExceptObject function 275
ExceptAddr function 276
EZeroDivide object 276
Fail procedure 276
Field property 277
FieldByName method 277
FieldClass property 277
FieldCount property 278
FieldDefs property 278
FieldName property 279
FieldNo property 279

For TFieldDef objects 279
For fields .280

Fields property. 280
For grids, lookup lists, queries, stored

procedures, and tables. 280

vii

File mode constants. 280
File open mode constants 281
FileAge function 281
FileClose procedure 282
FileCreate function 282
FileEdit property 282
FileEditStyle property 283
FileExists function 284
FileDateToDateTime function. 285
FileGetAttr function 285
FileGetDate function 285
FileList property. 286
FileMode variable. 286
FileName property 287

For Open and Save dialog boxes 287
For media player components 288
For the file list boxes 288
For TIniFile objects 289

FilePos function 289
FileRead function 290
Files property 290
FileSearch function 291
FileSeek function 291
FileSetAttr function. 292
FileSetDate procedure 292
FileSize function. 293
FileType property 294
FileWrite function. 294
FillChar procedure 295
FillRect method 295
Filter property 296

For Open and Save dialog boxes 296
For filter combo boxes 297

FilterIndex property 299
Find method . 300

For string list objects 300
For TFieldDefs objects 301

FindClose procedure 301
FindComponent method 301
FindDatabase method 302
FindField method. 302
FindFirst function. 303
FindIndexForFields method 304
FindItem method 304
FindKey method 305
FindNearest method 306
FindNext function 307
FindText property. 307

First method . 308
For list objects. 309
For tables, queries, and stored procedures . . .309

FirstIndex property 309
FixedColor property 310
FixedCols property 311
FixedRows property 312
FloatToDecimal procedure. 312
FloatToStr function 313
FloatToStrF function 313
FloatToText function 314
FloatToTextFmt function 315
FloodFill method 315
Flush procedure 315
FmtLoadStr function 316
FmtStr procedure 316
FocusControl method 317
FocusControl property 317
Focused method. 318
Font property 319

For Font dialog boxes319
Fonts property 320
ForceDirectories procedure 321
Format function 321
Format strings 322
FormatBuf function 324
FormatChars property 324
FormatCount property 324
FormatDateTime function 325
FormatFloat function 326
Formats property 328
FormCount property 329
Forms property 329
FormStyle property 330
Frac function . 331
FrameRect method 331
Frames property. 332
Free method . 333
Free procedure. 333
FreeBookmark method. 334
FreeMem procedure 334
FromPage property 335
FullCollapse method 336
FullExpand method. 336
FullPath property 337
GetAliasNames method 337
GetAliasParams method 338

viii

GetAsHandle method 338
GetBookmark method 339
GetComponent method 339
GetData method 340

For fields . 340
For Tparam objects 341

GetDatabaseNames method 341
GetDataItem method. 342
GetDataSize method 342
GetDir procedure 343
GetDriverNames method 343
GetDriverParams method. 344
GetFieldNames method 344
GetFirstChild method 345
GetFormatSettings procedure. 345
GetFormImage method 345
GetHelpContext method 346
GetIndexForPage method 346
GetIndexNames method 347
GetItem method. 348
GetItemPath method 348
GetLastChild method 349
GetLongHint function 349
GetMem procedure. 350
GetNextChild method 351
GetParentForm function. 351
GetPassword method 352
GetPrevChild method 352
GetPrinter method 353
GetProfileChar function 353
GetProfileStr function 353
GetResults method 353
GetSelTextBuf method 354
GetShortHint function 355
GetStoredProcNames method 355
GetTableNames method 356
GetText method 356
GetTextBuf method. 357
GetTextItem method 357
GetTextLen method. 358
Glyph property 358
GotoBookmark method 360
GotoCurrent method. 360
GotoKey method 361
GotoNearest method 361
GotoXY procedure 362
Graphic property 362

GraphicExtension function 363
GraphicFilter function 363
GridHeight property 364
GridLineWidth property. 365
GridWidth property 365
GroupIndex property. 366

For speed button controls. 366
For menu items. 367

Halt procedure. 368
Handle property. 369

For graphics objects 369
For applications, Find and Replace dialog

boxes, windowed controls 370
For menu items, main menus, and pop-up

menus .370
For printer objects 370
For sessions . .370
For tables, queries, and stored procedures . . .371
For databases371

HandleAllocated method 371
HandleException method 372
HandleNeeded method 372
HasFormat method 373
HasItems property 374
Heap variables. 374
Height property 375

For controls, forms, and graphics 376
For the screen. 376
For fonts . .376

HelpCommand method 377
HelpContext method 377
HelpContext property 378
HelpFile property 378
HelpJump method 379
Hi function . 380
Hide method. 380
HideSelection property. 381
High function 381
HInstance and HPrevInst variables 382
Hint property 383
HintColor property 384
HintPause property. 385
Hints property 385
HistoryList property 386
HMetafile type. 387
HorzScrollBar property 387
HPrevInst variable 388
Icon property. 388

For forms .388

ix

For picture objects 389
For an application 389

InactiveTitle typed constant 390
Inc procedure 390
Inch property 390
Include procedure 391
Increment property 391
Index property. 392

For outline nodes 392
For fields . 393

IndexDefs property. 393
IndexFieldCount property. 393
IndexFieldNames property 394
IndexFields property 394
IndexName property. 395
IndexOf method. 395

For menu items 395
For list objects 396
For string objects 396
For TIndexDefs objects. 397
For TFieldDefs objects 397

IndexOfObject method. 397
InitialDir property 398
InitialValues property 399
InitWinCrt procedure 399
InOutRes variable. 399
InPlaceActive property 400
Input variable 400
InputBox function. 401
InputQuery function 402
Insert method 402

For list objects 403
For string objects 403
For menu items 404
For outlines . 404
For tables and queries 405

Insert procedure. 406
InsertComponent method. 406
InsertControl method 407
InsertObject method 407

For string and string list objects 407
For outlines . 408

InsertOLEObjectDlg function. 409
InsertRecord method. 410
Int function. .411
IntegralHeight property411
Interval property 412
IntToHex function. 412
IntToStr function 413

Invalidate method. 413
IOResult function 414
IsIndexField property. 414
IsMasked property 415
IsNull property 415

For TParam objects 415
For fields .416

IsSQLBased property 416
IsValidChar method 416
IsValidIdent function 417
IsVisible property 417
ItemAtPos method 417

For list boxes .418
For tab sets .418

ItemCount property 419
ItemHeight property 419
ItemIndex property 420
ItemRect method 421
Items property 422

For list boxes, combo boxes, and radio
group boxes. 422

For menu items, main menus, and pop-up
menus .422

For outlines . .423
For list objects. 423
For TIndexDefs objects 425
For TParams objects425
For TFieldDefs objects. 425

ItemSeparator property 425
KeepConnection property 426
KeepConnections property 427
KeyExclusive property 427
KeyFieldCount property 428
KeyPressed function 428
KeyPreview property. 429
KeyViolCount property 430
KeyViolTableName property 430
Kind property 431

For bitmap buttons 431
For scroll bars. 432

LargeChange property 433
Last method . 433

For list objects. 434
For tables, queries, and stored procedures . . .434

Layout property 435
Left property . 436
LeftCol property. 436
Length function 437
Length property 437

x

Level property. 437
Lines property. 438

Lines property for memos. 438
Lines property for outlines 439
Lines property for DDE items 439

LineTo method 440
LinksDlg procedure 440
LinksDlgEnabled function 441
List property . 441
Ln function. 442
Lo function. 443
LoadFromFile method 443

For graphics objects and outlines. 443
For blob, graphic, and memo fields 444

LoadFromStream method 444
LoadMemo method 444
LoadPicture method 445
LoadStr function 446
Local property. 446
Locale property 446

For tables, queries, and stored procedures . . 446
For sessions . 447
For database components 447

Locked property 447
LoginPrompt property. 448
LongRec . 448
LookupDisplay property 449
LookupField property 449
LookupSource property 450
Low function 450
LowerCase function 451
MainForm property 452
Mappings property. 452
Margin property 453

For bitmap buttons and speed buttons 453
For form and scroll box scroll bars 454

Mask property. 455
For filter combo boxes 455
For file list boxes 456

MasterFields property 456
MasterSource property. 457
Max property 457
MaxAvail function 458
MaxFontSize property 459
MaxLength property 459
MaxPage property 460
MaxRecords property 460
MaxTabNameLen constant 461

MaxValue property 461
MDIChildCount property 461
MDIChildren property 462
MemAvail function 462
Menu property. 463
Merge method 463
MessageBox method 464
MessageDlg function 465
MessageDlgPos function. 468
Metafile property 470
Min property. 470
MinFontSize property 471
Minimize method 472
MinPage property. 472
MinValue property 473
MkDir procedure 473
ModalResult property 474
Mode property. 475

For pen objects475
For media player controls 476
For batch move components477

Modified property 477
For graphics objects 477
For OLE containers 478
For edit boxes and memos 478
For tables, queries, and stored procedures . . .479

Monochrome property 479
MouseToCell method. 480
Move method 480
Move procedure 481
MoveBy method. 482
MovedCount property 482
MoveTo method. 483

For canvases .483
For outline nodes 484

MSecsPerDay constant 485
MultiSelect property 485
Name property 485

For components 485
For font objects486
For TIndexDef objects486
For TParam objects 486
For TFieldDef objects 487

NativeToAnsi procedure 487
NetFileDir property. 487
New procedure 488
NewPage method 488
NewStr function. 489

xi

Next method. 490
For forms. 490
For media player controls 490
For tables, queries, and stored procedures . . 491

NormalizeTopMosts method 491
Notify property 492
NotifyValue property. 493
Now function 494
NullStr constant. 495
NumGlyphs property 495
ObjClass property. 496
ObjDoc property 496
ObjectMenuItem property. 497
Objects property. 498

For string objects 498
For string grids 499

ObjItem property 499
Odd function 500
OEMConvert property. 501
Ofs function . 501
OLEObjAllocated method. 502
OnActivate event 502

For forms. 503
For OLE containers 503
For an application 504

OnActiveControlChange event. 505
OnActiveFormChange event 506
OnApply event 507
OnCalcFields event. 508
OnChange event 508

For tab set controls 509
For DDE client item and DDE server item

controls . 509
For data-aware components 510
For fields . 510
For other components and objects 510

OnChanging event511
OnClick event511

For the media player components 511
For database navigators 513
For forms and other components 514

OnClose event. 514
For forms. 515
For DDE components 515

OnCloseQuery event 516
OnColEnter event. 516
OnColExit event. 517
OnCollapse event 518
OnColumnMoved event. 518

OnCreate event 519
OnDataChange event. 520
OnDblClick event 520
OnDeactivate event 521
OnDestroy event 522
OnDragDrop event 522
OnDragOver event 523
OnDrawCell event 524
OnDrawDataCell event 524
OnDrawItem event 525
OnDrawTab event. 526
OnDropDown event 527
OnEndDrag event. 527
OnEnter event 528
OnException event 529
OnExecuteMacro event 530
OnExit event . 530
OnExpand event 531
OnFind event 532
OnGetEditMask event 533
OnGetEditText event 533
OnGetText event. 534
OnHide event 534
OnHelp event 536
OnHint event 536
OnIdle event . 538
OnKeyDown event 539
OnKeyPress event. 539
OnKeyUp event 540
OnLogin event. 541
OnMeasureItem event 541
OnMeasureTab event 542
OnMessage event 543
OnMinimize event 544
OnMouseDown event 544
OnMouseMove event 545
OnMouseUp event 546
OnNewRecord event 547
OnNotify event 547
OnOpen event 548
OnPageChanged event. 548
OnPaint event 549
OnPassword event 550
OnPokeData event 551
OnPopup event 552
OnPostClick event 552
OnReplace event 553

xii

OnResize event 553
OnRestore event. 554
OnRowMoved event 554
OnScroll event. 555
OnSelectCell event 555
OnSetEditText event 556
OnSetText event 556
OnShow event. 557
OnShowHint event 557
OnSized event 558
OnSizing event 559
OnStateChange event 559
OnStatusLineEvent event 560
OnTimer event 560
OnTopLeftChanged event. 561
OnUpdateData event. 561
OnValidate event 562
Open method 562

For the Clipboard 562
For media player controls 563
For tables, queries, and stored procedures . . 564
For databases 564

OpenCurrent method 564
OpenDatabase method 565
OpenLink method 566
Options property 566

For Color dialog boxes 566
For Font dialog boxes 567
For Print dialog boxes 568
For Open and Save dialog boxes 569
For Find and Replace dialog boxes. 570
For outlines . 571
For draw and string grids 572
For data grids 573
For database lookup combo boxes and list

boxes . 574
For TIndexDef objects 575

Ord function . 575
Orientation property 575
Origin typed constant 576
OutlineStyle property 577
OutOfMemoryError procedure. 577
Output variable 577
Overload property 578
Owner property. 578
Pack method. 579
PageHeight property 580
PageIndex property 581
PageNumber property 582

Pages property. 582
PageWidth property 583
Palette property 583
ParamBindMode property. 584
ParamByName method 584

For TParam objects 585
For queries and stored procedures 585

ParamCount function. 585
ParamCount property 586

For query components 586
For stored procedures586

Params property. 587
For stored procedures587
For queries .587
For database components. 588

ParamStr function. 588
ParamType property 589
Parent property 589

For controls . .589
For menu items. 590
For outline nodes 591

ParentColor property 591
ParentCtl3D property. 592
ParentFont property 593
ParentShowHint property 594
PasswordChar property 595
PasteFromClipboard method 596
PasteSpecialDlg function. 596
PasteSpecialEnabled function 598
Pause method 598
PauseOnly method 600
Pen property . 600
PenPos property. 601
Pi function . 601
Picture property 602
PictureClosed property. 602
PictureLeaf property 603
PictureMinus property 603
PictureOpen property 604
PicturePlus property 604
Pie method . 605
PInitInfo property 605
Pitch property 606
Pixels property. 607
PixelsPerInch property 607

For forms .608
For the screen. 608
For fonts . .609

xiii

Play method . 609
Point function 610
PokeData method. 611
PokeDataLines method 611
Polygon method 612
PolyLine method 613
Popup method 613
PopupComponent property 614
PopupMenu property 615
Pos function . 616
Position property 616

For forms. 616
For scroll bars 617
For media player controls 618
For Find and Replace dialog boxes. 619

Post method . 619
Precision property 620
Pred function 620
PrefixSeg variable. 621
Prepare method 621

For stored procedures 621
For queries . 622

Prepared property 622
For stored procedures 622
For queries . 623

Preview property 623
Previous method 624

For forms. 624
For media players. 624

Print method. 625
For forms. 625
For reports . 626

PrintCopies property. 626
Printer variable 627
PrinterIndex property 627
Printers property 628
Printing property 628
PrintRange property 629
PrintScale property 629
PrintToFile property 630
Prior method. 631
PrivateDir property. 631
ProblemCount property 632
ProblemTableName property 632
ProcessMessages method 632
Ptr function . 634
PtrRec. 635
Random function 635

Randomize procedure 635
RandSeed variable 636
Range property 636
Read method. 637
Read procedure 638
ReadBool method 639
ReadBuf function 639
ReadFrom method 640
Readln procedure 641
ReadInteger method 641
ReadKey function 642
ReadOnly property 643

For controls . .643
For tables .644
For field components 644

ReadSection method 644
ReadSectionValues method 645
ReadString method 646
ReAllocMem function 647
RecalcReport method. 647
Rect function . 648
RecordCount property 648

For batch move components648
For tables, queries, and stored procedures . . .649

Rectangle method 649
Refresh method 650

For all controls 650
For tables, queries, and stored procedures . . .650

RegisterFormAsOLEDropTarget
procedure . 651

Release method 652
Release procedure. 652
ReleaseHandle method. 653
ReleaseOLEInitInfo procedure 653
ReleasePalette method 654
Remove method. 654
RemoveAllPasswords method 655
RemoveComponent method 656
RemoveControl method 656
RemoveParam method. 657
RemovePassword method. 657
Rename procedure 658
RenameFile function 659
Repaint method 659
ReplaceText property 660
ReportDir property 660
ReportHandle property 661
ReportName property 661

xiv

RequestData method. 662
RequestLive property 662
Required property 663

For field components. 663
For TFieldDef objects. 663

Reset procedure 664
Restore method 665
RestoreTopMosts method 665
Resume method. 666
Rewind method 667
Rewrite procedure 667
RmDir procedure 668
Rollback method 669
Round function 669
RoundRect method. 670
Row property 671
RowCount property 672
RowHeights property 672
Rows property. 673
Run method . 674

For an application 674
For reports . 674

RunError procedure 675
RunMacro method 675
Save method. 676
SaveToFile method 677
SaveToStream method 678
ScaleBy method 678
Scaled property 679
Screen variable 679
ScreenSize typed constant 680
ScreenToClient method 680
ScrollBars property 681
ScrollBy method. 681
ScrollInView method. 682
ScrollPos property 683
ScrollTo procedure 683
Sections property 684
SectionWidth property 684
Seek method . 685
Seek procedure 685
SeekEof function 686
SeekEoln function. 687
Seg function . 688
SelCount property 689
SelectAll method 690
SelectDirectory function 690

Selected property 691
SelectedColor property. 692
SelectedField property 693
SelectedIndex property. 693
SelectedItem property 694
Selection property. 694
SelectNext method 695
SelectorInc variable 695
SelLength property 695
SelStart property. 696
SelText property 697
SendToBack method 697
ServerConv property 698
ServiceApplication property 699
Session variable 699
SetAsHandle method. 700
SetBounds method 700
SetComponent method. 701
SetData method 702

For TParam objects 702
For field components 702

SetFields method 703
SetFocus method 703
SetFormOLEDropFormats procedure 704
SetKey method 704
SetLink method 705
SetParams method 705
SetPrinter method. 706
SetRange method 706
SetRangeEnd method 707
SetRangeStart method 708
SetSelTextBuf method 708
SetTabFocus method 709
SetText method 710
SetTextBuf method 710
SetTextBuf procedure 711
SetUpdateState method 712
SetVariable method 713
SetVariableLines method. 713
Shape property 714

For bevels . .714
For shape controls715

Shareable property 716
ShortCut function 716
ShortCut property. 717
ShortCutToKey procedure 718
ShortCutToText function 718

xv

Show method 719
ShowAccelChar property 719
ShowException method 720
ShowException procedure 720
ShowGlyphs property 720
ShowHint property. 721

For all controls. 721
For applications 722

Showing property. 722
ShowMessage procedure 723
ShowMessagePos procedure 724
ShowModal method 724
Sin function . 725
Size property. 725

For fonts . 726
For TFieldDef objects. 726
For field components. 727

SizeOf function 727
SmallChange property 728
Sort method . 728
Sorted property 729

For combo and list boxes 729
For string list objects 730

Source property 730
Spacing property 731
SPtr function. 731
SQL property 732
Sqr function . 733
Sqrt function . 733
SSeg function 734
Start property 735
StartMargin property. 736
StartPage property 736
StartPos property 737
StartRecording method 738
StartTransaction method. 738
State property 739

For check boxes 739
For data source components 740
For tables, queries, and stored procedures . . 740

Step method . 740
StmtHandle property. 741
Stop method . 742
Storage property 742
StoredProcName property 743
Str procedure 743
StrAlloc function 744
StrBufSize function 744

StrCat function. 744
StrComp function 745
StrCopy function 745
StrDispose function 746
StrECopy function 746
StrEnd function 747
Stretch property 747
StretchDraw method 748
StrFmt function 748
Strings property 749
StrLCat function. 750
StrIComp function 750
StrLComp function 751
StrLCopy function 752
StrLen function 752
StrLFmt function 753
StrLIComp function. 753
StrLower function. 754
StrMove function 754
StrNew function. 755
StrPas function. 755
StrPCopy function 756
StrPLCopy function. 757
StrPos function. 757
StrRScan function 757
StrScan function 758
StrToDate function 759
StrToDateTime function 759
StrToFloat function 760
StrToInt function. 760
StrToIntDef function 761
StrToTime function 762
StrUpper function. 762
Style property 763

For pen objects763
For brushes . .764
For fonts . .765
For combo boxes765
For list boxes .767
For bitmap buttons 768
For tab set controls. 768
For outlines . .769
For bevels . .770
For database lookup combo boxes 770

Succ function. 771
Swap function 771
TableName property 772
TableType property 772

xvi

Tag property . 773
TAlign type . 773
TAlignment type 773
TApplication component 773
TAttachMode type 775
TAutoActivate type. 775
TBatchMode type 775
TBatchMove component. 776
TBCDField component 776
TBevel component 777
TBevelShape type. 778
TBevelStyle type 778
TBevelWidth type. 779
TBitBtn component 779
TBitBtnKind type 780
TBitmap object 781
TBlobField component. 781
TBlobStream object 782
TBlobStreamMode type 783
TBookmark type 783
TBooleanField component 783
TBorderIcons type 784
TBorderStyle type. 784
TBorderWidth type 784
TBrush object 785
TBrushStyle type 785
TButton component 786
TButtonLayout type 787
TButtonSet type 787

For media players. 787
For database navigators 787

TButtonStyle type. 787
TByteArray . 788
TBytesField component 788
TCanvas object 789
TCaption type 790
TChangeRange type 790
TCheckBox component 790
TCheckBoxState type. 791
TClipboard object 792
TCloseEvent type 792
TCloseQueryEvent type 793
TColor type . 793
TColorDialog component 794
TColorDialogOptions type 794
TComboBox component. 795
TComboBoxStyle type 796

TComponentName type 796
TControlScrollBar object 796
TCopyMode type 797
TCurrencyField component 797
TCursor type. 798
TCustomColors type 798
TDatabase component 798
TDataChangeEvent type. 800
TDataMode type 800
TDataSetNotifyEvent type. 800
TDataSetState type 800
TDataSource component. 801
TDateField component 801
TDateTime type 802
TDateTimeField component. 802
TDBCheckBox component. 803
TDBComboBox component 804
TDBEdit component 806
TDBGrid component 808
TDBGridOptions type 809
TDBImage component 810
TDBListBox component 811
TDBLookupCombo component 813
TDBLookupComboStyle type. 814
TDBLookupList component. 815
TDBLookupListOptions type 816
TDBMemo component 817
TDBNavigator component 819
TDBRadioGroup component 820
TDBText component 822
TDDEClientConv component. 823
TDDEClientItem component 824
TDDEServerConv component 825
TDDEServerItem component 825
TDirectoryListBox component 826
TDragDropEvent type 828
TDragMode type 828
TDragOverEvent type 828
TDragState type 829
TDrawCellEvent type 829
TDrawDataCellEvent type 830
TDrawGrid component 830
TDrawItemEvent type 832
TDrawTabEvent type. 832
TDriveComboBox component 832
TDuplicates type 834
TEdit component 834

xvii

TEditCharCase type 836
Temporary property 836
TEndDragEvent type. 837
Terminate method 837
Terminated property 837
Test8086 variable 838
TExceptionEvent type 838
Text property 839

For edit boxes and memo controls 839
For combo boxes 840
For outline nodes 840
For DDE items. 841
For queries . 841
For fields . 842
For TParam objects 843

TextCase property. 843
TextFile type . 844
TextHeight method 844
TextOut method. 845
TextRect method 845
TextToFloat function 846
TextToShortCut function. 846
TextWidth method 847
TFDApplyEvent type 847
TField component 848
TFieldGetTextEvent type 850
TFieldNotifyEvent type 850
TFieldSetTextEvent type 850
TFileEditStyle type 851
TFileExt type. 851
TFileListBox component. 851
TFieldClass type 853
TFieldDef object. 853
TFieldDefs object 853
TFieldType type 854
TFileName type 854
TFileRec type 854
TFileType type. 855
TFillStyle type 855
TFilterComboBox component 855
TFindDialog component. 856
TFindItemKind type 857
TFindOptions type 857
TFloatField component 857
TFloatFormat 858
TFloatRec. 859
TFont object . 859
TFontDialog component. 860

TFontDialogDevice type 861
TFontDialogOptions type 861
TFontName type 861
TFontPitch type 862
TFontStyles type. 862
TForm component 862
TFormBorderStyle type 864
TFormStyle type. 865
TGetEditEvent type. 865
TGraphic object 865
TGraphicField component. 866
TGraphicsObject object. 866
TGridDrawState type. 867
TGridOptions type 867
TGridRect type 867
TGroupBox component 868
THeader component 869
THelpContext type 870
THelpEvent type 870
THintInfo type. 870
TIcon object. 870
TIdleEvent type 871
Tile method. 871
TileMode property 872
TImage component 873
Time function 874
TimeFormat property. 874
TimeToStr function 876
TIndexDef object 877
TIndexDefs object 877
TIndexOptions type 878
TIniFile object 878
TIntegerField component 878
Title property. 879

For applications 879
For Open and Save dialog boxes 880
For printer objects 880

TitleFont property. 881
TKey type. 881
TKeyEvent type 881
TKeyPressEvent type. 882
TLabel component 882
TLeftRight type 883
TList object . 883
TListBox component 884
TListBoxStyle type 885
TLocale type . 886

xviii

TLoginEvent type. 886
TMacroEvent type 886
TMainMenu component. 886
TMaskEdit component. 887
TMeasureItemEvent type 889
TMeasureTabEvent type. 889
TMediaPlayer component. 889
TMemo component. 891
TMemoField component 893
TMenuBreak type. 894
TMenuItem component 894
TMessageEvent type 895
TMetafile object 895
TMethod . 896
TModalResult type 896
TMouseButton type 897
TMouseEvent type 897
TMouseMoveEvent type 897
TMovedEvent type 898
TMPBtnType type. 898
TMPDevCapsSet type 898
TMPDeviceTypes type 898
TMPModes type 899
TMPNotifyValues type. 899
TMPTimeFormats type. 899
TMsgDlgButtons type 899
TMsgDlgType type 900
TNavigateBtn type 900
TNotebook component 900
TNotifyEvent type 901
TNumGlyphs type 902
TOLEContainer component. 902
TOLEDropNotify object 903
Top property. 904
ToPage property. 904
TOpenDialog component 905
TOpenOptions type 906
TopIndex property 906
TopItem property 907
TopRow property 907
TOutline component 908
TOutlineNode object 910
TOutlineOptions type 911
TOutlineStyle type 911
TOutlineType type 911
TOwnerDrawState type911
TPaintBox component 912

TPanel component 913
TPanelBevel type 914
TParam object 914
TParamBindMode type 915
TParams object. 915
TParamType type 916
TPasswordEvent type 916
TPen object . 916
TPenMode type 917
TPenStyle type. 917
TPicture object 917
TPoint type . 918
TPopupAlignment type 918
TPopupMenu component 918
TPosition type 919
TPrintDialog component. 920
TPrintDialogOptions type 920
TPrinter object 921
TPrinterOrientation type. 922
TPrinterSetupDialog component 922
TPrintRange type 922
TPrintScale type 923
TQuery component 923
TrackCursor procedure. 925
TrackLength property 925
TrackPosition property 926
Tracks property 927
TRadioButton component 927
TRadioGroup component 928
TransIsolation property. 930
Transliterate property. 930
Transparent property 931
TRect type . 931
TReplaceDialog component 932
TReport component. 933
Trunc function 934
Truncate method 934
Truncate procedure 935
TSaveDialog component. 936
TScreen component 937
TScrollBar component 938
TScrollBarInc type. 939
TScrollBarKind type 939
TScrollBox component 939
TScrollCode type 941
TScrollEvent type 941
TScrollStyle type. 941

xix

TSearchRec type. 942
TSectionEvent type 942
TSelectCellEvent type 943
TSelectDirOpts type 943
TSession component 943
TSetEditEvent type 944
TShape component 945
TShapeType type 945
TShiftState type 946
TShortCut type 946
TShowHintEvent type 946
TSmallintField component 947
TSpeedButton component. 948
TStatusLineEvent type 949
TStoredProc component 949
TStringField component 951
TStringGrid component 951
TStringList object 953
TStrings object. 954
TSymbolStr type 955
TTabbedNotebook component 955
TTabChangeEvent type 956
TTable component 956
TTabOrder type 958
TTabSet component. 958
TTabStyle type. 960
TTextCase type 960
TTextRec type 960
TTileMode type 961
TTimeField component 961
TTimer component 962
TTransIsolation type 962
TVarBytesField component 962
TVarRec type. 963
TWindowState type 964
TWordArray . 964
TWordField component 964
TypeOf function. 965
TZoomFactor type 966
UniDirectional property 966
Unmerge method 967
UnPrepare method 968

For stored procedures 968
For queries . 968

UnselectedColor property. 968
UpCase function 969
Update method 969

For directory and file list boxes 970
For all controls 970
For TFieldDefs objects. 971
For TIndexDefs objects 971

UpdateCursorPos method. 971
UpdateMode property 971
UpdateRecord method 973
UpperCase function 973
Val procedure 973
ValidateEdit method 974
ValidParentForm function 975
Value property 975

For database radio groups 975
For database lookup combo and list boxes. . .976
For fields .976

ValueChecked property 977
Values property 978

For string and string list objects 978
For database radio group boxes979

ValueUnchecked property 980
VersionMajor property 981
VersionMinor property. 982
VertScrollBar property 982
Visible property 983
VisibleButtons property 983

For database navigator controls984
VisibleColCount property 985
VisibleRowCount property 985
VisibleTabs property 986
Wait property 986
WantReturns property 987
WantTabs property 988
WhereX function 989
WhereY function 989
Width property 990

For forms and controls 990
For graphic objects. 990
For screen components 991

WindowMenu property 991
WindowOrg typed constant. 992
WindowSize typed constant. 992
WindowState property 992
WindowTitle variable. 993
WordRec . 993
WordWrap property 993
Write method 994
Write procedure 995
WriteBool method. 995

xx

WriteBuf procedure. 996
WriteChar procedure. 997
WriteIn procedure. 997
WriteInteger method 998

WriteString method. 998
Zoom property 999

Index 1001

	MAIN MENU
	READER TIPS
	INTRODUCTION
	Manual conventions
	Contacting Borland
	Delphi Visual Component Library
	Visual Component Library objects
	Visual Component Library components
	Visual Component Library controls
	Visual Component Library windowed controls
	Visual Component Library nonwindowed controls

	Visual Component Library procedures and functions

	Library reference
	Sample entry

	DELPHI LIBRARY REFERENCE
	A
	Abort method
	Abort procedure
	Aborted property
	AbortOnKeyViol property
	AbortOnProblem property
	Abs function
	Abstract procedure
	Active property
	For tables, queries, and stored procedures
	For OLE containers

	ActiveControl property
	ActiveForm property
	ActiveMDIChild property
	ActivePage property
	Add method
	For field definitions
	For index definitions
	For list objects
	For string and string list objects
	For menu items
	For outlines

	AddChild method
	AddChildObject method
	AddExitProc procedure
	AddFieldDesc method
	AddIndex method
	AddObject method
	For string and string list objects
	For outlines

	AddParam method
	AddPassword method
	Addr function
	AddStrings method
	AfterCancel event
	AfterClose event
	AfterDelete event
	AfterEdit event
	AfterInsert event
	AfterOpen event
	AfterPost event
	AliasName property
	Align property
	Alignment property
	For labels, memos, and panels
	For check boxes and radio buttons
	For pop-up menus
	For field components

	AllocMem function
	AllowAllUp property
	AllowGrayed property
	AllowInPlace property
	AllowResize property
	AnsiCompareStr function
	AnsiCompareText function
	AnsiLowerCase function
	AnsiToNative function
	AnsiUpperCase function
	Append method
	Append procedure
	AppendRecord method
	AppendStr procedure
	Application variable
	ApplyFilePath method
	ApplyRange method
	Arc method
	ArcTan function
	ArrangeIcons method
	AsBCD property
	AsBoolean property
	For TParam objects
	For Boolean and string field components

	AsCurrency property
	AsDate property
	AsDateTime property
	For TParam objects
	For date, date-time, time, and string field components

	AsFloat property
	For TParam objects
	For field components

	AsInteger property
	For TParam objects
	For field components

	Assign method
	For the Clipboard
	For field definitions
	For index definitions
	For field components
	For TParam objects
	For TParams objects
	For other objects

	AssignCrt procedure
	Assigned function
	AssignField method
	AssignFile procedure
	AssignPrn procedure
	AssignStr procedure
	AssignValue method
	AssignValues method
	AsSmallInt property
	AsString property
	For TParam objects
	For field components

	AsText property
	AsTime property
	AsWord property
	AutoActivate property
	AutoCalcFields property
	AutoDisplay property
	AutoEdit property
	AutoEnable property
	AutoMerge property
	AutoOpen property
	AutoPopup property
	AutoRewind property
	AutoScroll property
	For tab set controls
	For forms and scroll boxes

	AutoSelect property
	AutoSize property
	For images
	For edit boxes and database lookup combo boxes
	For label and database text components
	For OLE containers

	AutoTracking typed constant
	AutoUnload property

	B
	Back method
	BackgroundColor property
	BatchMove method
	BeforeCancel event
	BeforeClose event
	BeforeDelete event
	BeforeEdit event
	BeforeInsert event
	BeforeOpen event
	BeforePost event
	BeginDoc method
	BeginDrag method
	BeginUpdate method
	BevelInner property
	BevelOuter property
	BevelWidth property
	Bitmap property
	For brushes
	For pictures

	BlockRead procedure
	BlockWrite procedure
	BOF property
	BOLEFormat type
	BOLEMedium type
	BOLEMediumCalc function
	BorderColor property
	BorderIcons property
	BorderStyle property
	For forms
	For controls

	BorderWidth property
	Bounds function
	BoundsRect property
	Break procedure
	Break property
	BringToFront method
	Brush property
	BrushCopy method
	BtnClick method
	Buttons property

	C
	Calculated property
	Cancel method
	Cancel property
	CancelRange method
	CanFocus method
	CanModify property
	For tables, queries, and stored procedures
	For field components

	Canvas property
	For forms, images, and paint boxes
	For list boxes, combo boxes, and outlines
	For grids
	For printer objects
	For bitmap objects

	Capabilities property
	Capacity property
	Caption property
	For forms
	For all other components

	Cascade method
	CellRect method
	Cells property
	Center property
	ChangedCount property
	ChangedTableName property
	ChangeFileExt function
	ChangeLevelBy method
	CharCase property
	ChDir procedure
	Check procedure
	CheckBreak typed constant
	CheckBrowseMode method
	Checked property
	CheckEOF typed constant
	Chord method
	Chr function
	ClassName method
	ClassParent method
	ClassType method
	Clear method
	For TParams objects
	For TParam objects
	For TIndexDefs objects
	For TFieldsDefs objects
	For fields
	For other objects and components

	ClearFields method
	ClearFormOLEDropFormats procedure
	ClearSelection method
	Click method
	For menu items and buttons
	For database navigator controls

	ClientHandle property
	ClientHeight property
	ClientOrigin property
	ClientRect property
	ClientToScreen method
	ClientWidth property
	Clipboard variable
	ClipRect property
	Close method
	For forms
	For Clipboard objects
	For media player controls
	For tables, queries, and stored procedures
	For databases

	Close procedure
	CloseApplication method
	CloseDatabase method
	CloseDatasets method
	CloseDialog method
	CloseFile procedure
	CloseLink method
	CloseQuery method
	CloseReport method
	CloseUp method
	ClrEol procedure
	ClrScr procedure
	CmdLine variable
	CmdShow variable
	Col property
	ColCount property
	Collapse method
	Collate property
	Color property
	For the Color dialog box

	ColoredButtons property
	ColorToRGB function
	Cols property
	Columns property
	ColWidths property
	Command property
	Commit method
	CompareStr function
	CompareText function
	ComponentCount property
	ComponentIndex property
	Components property
	Concat function
	ConfirmDelete property
	Connect method
	Connected property
	ConnectMode property
	ContainsControl method
	Continue procedure
	ControlAtPos method
	ControlCount property
	Controls property
	ConvertDlgHelp property
	Copies property
	Copy function
	CopyMode property
	CopyParams method
	CopyRect method
	CopyToClipboard method
	For edit boxes and memos
	For OLE containers
	For DDE server items
	For database images

	Cos function
	Count property
	For lists and menu items
	For TParams objects
	For TFieldDefs objects
	For TIndexDefs objects

	Create method
	For TIniFile objects
	For outline nodes
	For control scroll bars
	For TIndexDef objects
	For TIndexDefs objects
	For blob streams
	For all other components
	For all other objects

	CreateField method
	CreateForm method
	CreateNew method
	CreateParam method
	CreateTable method
	CSeg function
	Ctl3D property
	Currency and date/time formatting variables
	Currency property
	Cursor property
	For all controls
	For screen objects

	Cursor typed constant
	CursorPosChanged method
	Cursors property
	CursorTo procedure
	CustomColors property
	CutToClipboard method

	D
	Data property
	Database property
	DatabaseCount property
	DatabaseError procedure
	DatabaseName property
	For database components
	For tables, queries, and stored procedures

	Databases property
	DataField property
	DataFormat property
	DataHandle property
	DataSet property
	For data source components
	For field components

	DatasetCount property
	Datasets property
	DataSize property
	DataSource property
	For data-aware controls
	For queries

	DataType property
	For field definition objects
	For field definitions
	For TParam objects

	Date function
	DateTimeToFileDate function
	DateTimeToString procedure
	DateToStr function
	DateTimeToStr function
	DayOfWeek function
	DBHandle property
	DbiError procedure
	DBLocale property
	DDEConv property
	DDEItem property
	DDEService property
	DDETopic property
	Dec procedure
	DecodeDate procedure
	DecodeTime procedure
	Default property
	DefaultColWidth property
	DefaultDrawing property
	DefaultExt property
	DefaultRowHeight property
	Delete method
	For list and string objects and menu items
	For outlines
	For queries and tables

	Delete procedure
	DeleteFile function
	DeleteIndex method
	DeleteTable method
	DescriptionsAvailable method
	Destination property
	Destroy method
	Device property
	DeviceID property
	DeviceType property
	Directory property
	DirectoryExists function
	DirLabel property
	DirList property
	DisableControls method
	DiskFree function
	DiskSize function
	Display property
	DisplayFormat property
	DisplayLabel property
	DisplayName property
	DisplayRect property
	DisplayText property
	DisplayValue property
	DisplayValues property
	DisplayWidth property
	Dispose procedure
	DisposeStr procedure
	DitherBackground property
	DoneWinCrt procedure
	Down property
	DragCursor property
	Dragging method
	DragMode property
	Draw method
	DrawFocusRect method
	Drive property
	DriverName property
	DropConnections method
	DropDown method
	DropDownCount property
	DropDownWidth property
	DroppedDown property
	dsEditModes const
	DSeg function
	Duplicates property

	E
	EAbort object
	EBreakpoint object
	EClassNotFound object
	EComponentError object
	EConvertError object
	EDatabaseError object
	EDBEngineError object
	EDBEditError object
	EDDEError object
	Edit method
	For tables and queries
	For datasource components

	EditFormat property
	EditKey method
	EditMask property
	EditMaskPtr property
	EditorMode property
	EditRangeEnd method
	EditRangeStart method
	EditText property
	EDivByZero object
	EFault object
	EFCreateError object
	EFilerError object
	EFOpenError object
	EGPFault object
	EInOutError object
	EIntError object
	EIntOverflow object
	EInvalidCast object
	EInvalidGraphic object
	EInvalidGraphicOperation object
	EInvalidGridOperation object
	EInvalidImage object
	EInvalidOp object
	EInvalidOpCode object
	EInvalidOperation object
	EInvalidPointer object
	Eject method
	EListError object
	Ellipse method
	EMathError object
	EMCIDeviceError object
	EMenuError object
	EMPNotify type
	EMPPostNotify type
	Empty property
	EmptyStr constant
	EmptyTable method
	EnableControls method
	Enabled property
	For all controls, menu items, and timers
	For data source components

	EnabledButtons property
	EnableExceptionHandler procedure
	ENavClick type
	EncodeDate function
	EncodeTime function
	EndDoc method
	EndDrag method
	EndMargin property
	EndPage property
	EndPos property
	EndUpdate method
	Eof function
	EOF property
	Eoln function
	EOutlineChange type
	EOutlineError object
	EOutOfMemory object
	EOutOfResources object
	EOverflow object
	EPageFault object
	EParserError object
	EPrinter object
	EProcessorException object
	ERangeError object
	Erase procedure
	EraseSection method
	EReadError object
	EReportError object
	EResNotFound object
	Error property
	ErrorAddr variable
	ErrorMessage property
	ErrorProc typed constant
	ESingleStep object
	EStackFault object
	EStreamError object
	EStringListError object
	EUnderflow object
	EWriteError object
	Exception object
	Exchange method
	Exclude procedure
	Exclusive property
	ExecProc method
	ExecSQL method
	Execute method
	For Color, Font, Open, Save, Print, Find, and Replace dialog boxes
	For Printer Setup dialog boxes
	For batch move components

	ExecuteMacro method
	ExecuteMacroLines method
	ExeName property
	ExceptionClass typed constant
	ExceptProc typed constant
	Exit procedure
	ExitCode variable
	ExitProc variable
	Exp function
	Expand method
	For lists
	For outline nodes

	Expanded property
	ExpandFileName function
	Expression property
	ExtendedSelect property
	ExtractFileExt function
	ExtractFileName function
	ExtractFilePath function
	ExceptObject function
	ExceptAddr function
	EZeroDivide object

	F
	Fail procedure
	Field property
	FieldByName method
	FieldClass property
	FieldCount property
	FieldDefs property
	FieldName property
	FieldNo property
	For TFieldDef objects
	For fields

	Fields property
	For grids, lookup lists, queries, stored procedures, and tables
	For index definitions

	File mode constants
	File open mode constants
	FileAge function
	FileClose procedure
	FileCreate function
	FileEdit property
	FileEditStyle property
	FileExists function
	FileDateToDateTime function
	FileGetAttr function
	FileGetDate function
	FileList property
	FileMode variable
	FileName property
	For Open and Save dialog boxes
	For media player components
	For the file list boxes
	For TIniFile objects

	FilePos function
	FileRead function
	Files property
	FileSearch function
	FileSeek function
	FileSetAttr function
	FileSetDate procedure
	FileSize function
	FileType property
	FileWrite function
	FillChar procedure
	FillRect method
	Filter property
	For Open and Save dialog boxes
	For filter combo boxes

	FilterIndex property
	Find method
	For string list objects
	For TFieldDefs objects

	FindClose procedure
	FindComponent method
	FindDatabase method
	FindField method
	FindFirst function
	FindIndexForFields method
	FindItem method
	FindKey method
	FindNearest method
	FindNext function
	FindText property
	First method
	For list objects
	For tables, queries, and stored procedures

	FirstIndex property
	FixedColor property
	FixedCols property
	FixedRows property
	FloatToDecimal procedure
	FloatToStr function
	FloatToStrF function
	FloatToText function
	FloatToTextFmt function
	FloodFill method
	Flush procedure
	FmtLoadStr function
	FmtStr procedure
	FocusControl method
	FocusControl property
	Focused method
	Font property
	For Font dialog boxes

	Fonts property
	ForceDirectories procedure
	Format function
	Format strings
	FormatBuf function
	FormatChars property
	FormatCount property
	FormatDateTime function
	FormatFloat function
	Formats property
	FormCount property
	Forms property
	FormStyle property
	Frac function
	FrameRect method
	Frames property
	Free method
	Free procedure
	FreeBookmark method
	FreeMem procedure
	FromPage property
	FullCollapse method
	FullExpand method
	FullPath property

	G
	GetAliasNames method
	GetAliasParams method
	GetAsHandle method
	GetBookmark method
	GetComponent method
	GetData method
	For fields
	For Tparam objects

	GetDatabaseNames method
	GetDataItem method
	GetDataSize method
	GetDir procedure
	GetDriverNames method
	GetDriverParams method
	GetFieldNames method
	GetFirstChild method
	GetFormatSettings procedure
	GetFormImage method
	GetHelpContext method
	GetIndexForPage method
	GetIndexNames method
	GetItem method
	GetItemPath method
	GetLastChild method
	GetLongHint function
	GetMem procedure
	GetNextChild method
	GetParentForm function
	GetPassword method
	GetPrevChild method
	GetPrinter method
	GetProfileChar function
	GetProfileStr function
	GetResults method
	GetSelTextBuf method
	GetShortHint function
	GetStoredProcNames method
	GetTableNames method
	GetText method
	GetTextBuf method
	GetTextItem method
	GetTextLen method
	Glyph property
	GotoBookmark method
	GotoCurrent method
	GotoKey method
	GotoNearest method
	GotoXY procedure
	Graphic property
	GraphicExtension function
	GraphicFilter function
	GridHeight property
	GridLineWidth property
	GridWidth property
	GroupIndex property
	For speed button controls
	For menu items

	H
	Halt procedure
	Handle property
	For graphics objects
	For applications, Find and Replace dialog boxes, windowed controls
	For menu items, main menus, and pop-up menus
	For printer objects
	For sessions
	For tables, queries, and stored procedures
	For databases

	HandleAllocated method
	HandleException method
	HandleNeeded method
	HasFormat method
	HasItems property
	Heap variables
	Height property
	For controls, forms, and graphics
	For the screen
	For fonts

	HelpCommand method
	HelpContext method
	HelpContext property
	HelpFile property
	HelpJump method
	Hi function
	Hide method
	HideSelection property
	High function
	HInstance and HPrevInst variables
	Hint property
	HintColor property
	HintPause property
	Hints property
	HistoryList property
	HMetafile type
	HorzScrollBar property
	HPrevInst variable

	I
	Icon property
	For forms
	For picture objects
	For an application

	InactiveTitle typed constant
	Inc procedure
	Inch property
	Include procedure
	Increment property
	Index property
	For outline nodes
	For fields

	IndexDefs property
	IndexFieldCount property
	IndexFieldNames property
	IndexFields property
	IndexName property
	IndexOf method
	For menu items
	For list objects
	For string objects
	For TIndexDefs objects
	For TFieldDefs objects

	IndexOfObject method
	InitialDir property
	InitialValues property
	InitWinCrt procedure
	InOutRes variable
	InPlaceActive property
	Input variable
	InputBox function
	InputQuery function
	Insert method
	For list objects
	For string objects
	For menu items
	For outlines
	For tables and queries

	Insert procedure
	InsertComponent method
	InsertControl method
	InsertObject method
	For string and string list objects
	For outlines

	InsertOLEObjectDlg function
	InsertRecord method
	Int function
	IntegralHeight property
	Interval property
	IntToHex function
	IntToStr function
	Invalidate method
	IOResult function
	IsIndexField property
	IsMasked property
	IsNull property
	For TParam objects
	For fields

	IsSQLBased property
	IsValidChar method
	IsValidIdent function
	IsVisible property
	ItemAtPos method
	For list boxes
	For tab sets

	ItemCount property
	ItemHeight property
	ItemIndex property
	ItemRect method
	Items property
	For list boxes, combo boxes, and radio group boxes
	For menu items, main menus, and pop-up menus
	For outlines
	For list objects
	For TIndexDefs objects
	For TParams objects
	For TFieldDefs objects

	ItemSeparator property

	K
	KeepConnection property
	KeepConnections property
	KeyExclusive property
	KeyFieldCount property
	KeyPressed function
	KeyPreview property
	KeyViolCount property
	KeyViolTableName property
	Kind property
	For bitmap buttons
	For scroll bars

	L
	LargeChange property
	Last method
	For list objects
	For tables, queries, and stored procedures

	Layout property
	Left property
	LeftCol property
	Length function
	Length property
	Level property
	Lines property
	Lines property for memos
	Lines property for outlines
	Lines property for DDE items

	LineTo method
	LinksDlg procedure
	LinksDlgEnabled function
	List property
	Ln function
	Lo function
	LoadFromFile method
	For graphics objects and outlines
	For blob, graphic, and memo fields

	LoadFromStream method
	LoadMemo method
	LoadPicture method
	LoadStr function
	Local property
	Locale property
	For tables, queries, and stored procedures
	For sessions
	For database components

	Locked property
	LoginPrompt property
	LongRec
	LookupDisplay property
	LookupField property
	LookupSource property
	Low function
	LowerCase function

	M
	MainForm property
	Mappings property
	Margin property
	For bitmap buttons and speed buttons
	For form and scroll box scroll bars

	Mask property
	For filter combo boxes
	For file list boxes

	MasterFields property
	MasterSource property
	Max property
	MaxAvail function
	MaxFontSize property
	MaxLength property
	MaxPage property
	MaxRecords property
	MaxTabNameLen constant
	MaxValue property
	MDIChildCount property
	MDIChildren property
	MemAvail function
	Menu property
	Merge method
	MessageBox method
	MessageDlg function
	MessageDlgPos function
	Metafile property
	Min property
	MinFontSize property
	Minimize method
	MinPage property
	MinValue property
	MkDir procedure
	ModalResult property
	Mode property
	For pen objects
	For media player controls
	For batch move components

	Modified property
	For graphics objects
	For OLE containers
	For edit boxes and memos
	For tables, queries, and stored procedures

	Monochrome property
	MouseToCell method
	Move method
	Move procedure
	MoveBy method
	MovedCount property
	MoveTo method
	For canvases
	For outline nodes

	MSecsPerDay constant
	MultiSelect property

	N
	Name property
	For components
	For font objects
	For TIndexDef objects
	For TParam objects
	For TFieldDef objects

	NativeToAnsi procedure
	NetFileDir property
	New procedure
	NewPage method
	NewStr function
	Next method
	For forms
	For media player controls
	For tables, queries, and stored procedures

	NormalizeTopMosts method
	Notify property
	NotifyValue property
	Now function
	NullStr constant
	NumGlyphs property

	O
	ObjClass property
	ObjDoc property
	ObjectMenuItem property
	Objects property
	For string objects
	For string grids

	ObjItem property
	Odd function
	OEMConvert property
	Ofs function
	OLEObjAllocated method
	OnActivate event
	For forms
	For OLE containers
	For an application

	OnActiveControlChange event
	OnActiveFormChange event
	OnApply event
	OnCalcFields event
	OnChange event
	For tab set controls
	For DDE client item and DDE server item controls
	For data-aware components
	For fields
	For other components and objects

	OnChanging event
	OnClick event
	For the media player components
	For database navigators
	For forms and other components

	OnClose event
	For forms
	For DDE components

	OnCloseQuery event
	OnColEnter event
	OnColExit event
	OnCollapse event
	OnColumnMoved event
	OnCreate event
	OnDataChange event
	OnDblClick event
	OnDeactivate event
	OnDestroy event
	OnDragDrop event
	OnDragOver event
	OnDrawCell event
	OnDrawDataCell event
	OnDrawItem event
	OnDrawTab event
	OnDropDown event
	OnEndDrag event
	OnEnter event
	OnException event
	OnExecuteMacro event
	OnExit event
	OnExpand event
	OnFind event
	OnGetEditMask event
	OnGetEditText event
	OnGetText event
	OnHide event
	OnHelp event
	OnHint event
	OnIdle event
	OnKeyDown event
	OnKeyPress event
	OnKeyUp event
	OnLogin event
	OnMeasureItem event
	OnMeasureTab event
	OnMessage event
	OnMinimize event
	OnMouseDown event
	OnMouseMove event
	OnMouseUp event
	OnNewRecord event
	OnNotify event
	OnOpen event
	OnPageChanged event
	OnPaint event
	OnPassword event
	OnPokeData event
	OnPopup event
	OnPostClick event
	OnReplace event
	OnResize event
	OnRestore event
	OnRowMoved event
	OnScroll event
	OnSelectCell event
	OnSetEditText event
	OnSetText event
	OnShow event
	OnShowHint event
	OnSized event
	OnSizing event
	OnStateChange event
	OnStatusLineEvent event
	OnTimer event
	OnTopLeftChanged event
	OnUpdateData event
	OnValidate event
	Open method
	For the Clipboard
	For media player controls
	For tables, queries, and stored procedures
	For databases

	OpenCurrent method
	OpenDatabase method
	OpenLink method
	Options property
	For Color dialog boxes
	For Font dialog boxes
	For Print dialog boxes
	For Open and Save dialog boxes
	For Find and Replace dialog boxes
	For outlines
	For draw and string grids
	For data grids
	For database lookup combo boxes and list boxes
	For TIndexDef objects

	Ord function
	Orientation property
	Origin typed constant
	OutlineStyle property
	OutOfMemoryError procedure
	Output variable
	Overload property
	Owner property

	P
	Pack method
	PageHeight property
	PageIndex property
	PageNumber property
	Pages property
	PageWidth property
	Palette property
	ParamBindMode property
	ParamByName method
	For TParam objects
	For queries and stored procedures

	ParamCount function
	ParamCount property
	For query components
	For stored procedures

	Params property
	For stored procedures
	For queries
	For database components

	ParamStr function
	ParamType property
	Parent property
	For controls
	For menu items
	For outline nodes

	ParentColor property
	ParentCtl3D property
	ParentFont property
	ParentShowHint property
	PasswordChar property
	PasteFromClipboard method
	PasteSpecialDlg function
	PasteSpecialEnabled function
	Pause method
	PauseOnly method
	Pen property
	PenPos property
	Pi function
	Picture property
	PictureClosed property
	PictureLeaf property
	PictureMinus property
	PictureOpen property
	PicturePlus property
	Pie method
	PInitInfo property
	Pitch property
	Pixels property
	PixelsPerInch property
	For forms
	For the screen
	For fonts

	Play method
	Point function
	PokeData method
	PokeDataLines method
	Polygon method
	PolyLine method
	Popup method
	PopupComponent property
	PopupMenu property
	Pos function
	Position property
	For forms
	For scroll bars
	For media player controls
	For Find and Replace dialog boxes

	Post method
	Precision property
	Pred function
	PrefixSeg variable
	Prepare method
	For stored procedures
	For queries

	Prepared property
	For stored procedures
	For queries

	Preview property
	Previous method
	For forms
	For media players

	Print method
	For forms
	For reports

	PrintCopies property
	Printer variable
	PrinterIndex property
	Printers property
	Printing property
	PrintRange property
	PrintScale property
	PrintToFile property
	Prior method
	PrivateDir property
	ProblemCount property
	ProblemTableName property
	ProcessMessages method
	Ptr function
	PtrRec

	R
	Random function
	Randomize procedure
	RandSeed variable
	Range property
	Read method
	Read procedure
	ReadBool method
	ReadBuf function
	ReadFrom method
	Readln procedure
	ReadInteger method
	ReadKey function
	ReadOnly property
	For controls
	For tables
	For field components

	ReadSection method
	ReadSectionValues method
	ReadString method
	ReAllocMem function
	RecalcReport method
	Rect function
	RecordCount property
	For batch move components
	For tables, queries, and stored procedures

	Rectangle method
	Refresh method
	For all controls
	For tables, queries, and stored procedures

	RegisterFormAsOLEDropTarget procedure
	Release method
	Release procedure
	ReleaseHandle method
	ReleaseOLEInitInfo procedure
	ReleasePalette method
	Remove method
	RemoveAllPasswords method
	RemoveComponent method
	RemoveControl method
	RemoveParam method
	RemovePassword method
	Rename procedure
	RenameFile function
	Repaint method
	ReplaceText property
	ReportDir property
	ReportHandle property
	ReportName property
	RequestData method
	RequestLive property
	Required property
	For field components
	For TFieldDef objects

	Reset procedure
	Restore method
	RestoreTopMosts method
	Resume method
	Rewind method
	Rewrite procedure
	RmDir procedure
	Rollback method
	Round function
	RoundRect method
	Row property
	RowCount property
	RowHeights property
	Rows property
	Run method
	For an application
	For reports

	RunError procedure
	RunMacro method

	S
	Save method
	SaveToFile method
	SaveToStream method
	ScaleBy method
	Scaled property
	Screen variable
	ScreenSize typed constant
	ScreenToClient method
	ScrollBars property
	ScrollBy method
	ScrollInView method
	ScrollPos property
	ScrollTo procedure
	Sections property
	SectionWidth property
	Seek method
	Seek procedure
	SeekEof function
	SeekEoln function
	Seg function
	SelCount property
	SelectAll method
	SelectDirectory function
	Selected property
	SelectedColor property
	SelectedField property
	SelectedIndex property
	SelectedItem property
	Selection property
	SelectNext method
	SelectorInc variable
	SelLength property
	SelStart property
	SelText property
	SendToBack method
	ServerConv property
	ServiceApplication property
	Session variable
	SetAsHandle method
	SetBounds method
	SetComponent method
	SetData method
	For TParam objects
	For field components

	SetFields method
	SetFocus method
	SetFormOLEDropFormats procedure
	SetKey method
	SetLink method
	SetParams method
	SetPrinter method
	SetRange method
	SetRangeEnd method
	SetRangeStart method
	SetSelTextBuf method
	SetTabFocus method
	SetText method
	SetTextBuf method
	SetTextBuf procedure
	SetUpdateState method
	SetVariable method
	SetVariableLines method
	Shape property
	For bevels
	For shape controls

	Shareable property
	ShortCut function
	ShortCut property
	ShortCutToKey procedure
	ShortCutToText function
	Show method
	ShowAccelChar property
	ShowException method
	ShowException procedure
	ShowGlyphs property
	ShowHint property
	For all controls
	For applications

	Showing property
	ShowMessage procedure
	ShowMessagePos procedure
	ShowModal method
	Sin function
	Size property
	For fonts
	For TFieldDef objects
	For field components

	SizeOf function
	SmallChange property
	Sort method
	Sorted property
	For combo and list boxes
	For string list objects

	Source property
	Spacing property
	SPtr function
	SQL property
	Sqr function
	Sqrt function
	SSeg function
	Start property
	StartMargin property
	StartPage property
	StartPos property
	StartRecording method
	StartTransaction method
	State property
	For check boxes
	For data source components
	For tables, queries, and stored procedures

	Step method
	StmtHandle property
	Stop method
	Storage property
	StoredProcName property
	Str procedure
	StrAlloc function
	StrBufSize function
	StrCat function
	StrComp function
	StrCopy function
	StrDispose function
	StrECopy function
	StrEnd function
	Stretch property
	StretchDraw method
	StrFmt function
	Strings property
	StrLCat function
	StrIComp function
	StrLComp function
	StrLCopy function
	StrLen function
	StrLFmt function
	StrLIComp function
	StrLower function
	StrMove function
	StrNew function
	StrPas function
	StrPCopy function
	StrPLCopy function
	StrPos function
	StrRScan function
	StrScan function
	StrToDate function
	StrToDateTime function
	StrToFloat function
	StrToInt function
	StrToIntDef function
	StrToTime function
	StrUpper function
	Style property
	For pen objects
	For brushes
	For fonts
	For combo boxes
	For list boxes
	For bitmap buttons
	For tab set controls
	For outlines
	For bevels
	For database lookup combo boxes

	Succ function
	Swap function

	T
	TableName property
	TableType property
	Tag property
	TAlign type
	TAlignment type
	TApplication component
	TAttachMode type
	TAutoActivate type
	TBatchMode type
	TBatchMove component
	TBCDField component
	TBevel component
	TBevelShape type
	TBevelStyle type
	TBevelWidth type
	TBitBtn component
	TBitBtnKind type
	TBitmap object
	TBlobField component
	TBlobStream object
	TBlobStreamMode type
	TBookmark type
	TBooleanField component
	TBorderIcons type
	TBorderStyle type
	TBorderWidth type
	TBrush object
	TBrushStyle type
	TButton component
	TButtonLayout type
	TButtonSet type
	For media players
	For database navigators

	TButtonStyle type
	TByteArray
	TBytesField component
	TCanvas object
	TCaption type
	TChangeRange type
	TCheckBox component
	TCheckBoxState type
	TClipboard object
	TCloseEvent type
	TCloseQueryEvent type
	TColor type
	TColorDialog component
	TColorDialogOptions type
	TComboBox component
	TComboBoxStyle type
	TComponentName type
	TControlScrollBar object
	TCopyMode type
	TCurrencyField component
	TCursor type
	TCustomColors type
	TDatabase component
	TDataChangeEvent type
	TDataMode type
	TDataSetNotifyEvent type
	TDataSetState type
	TDataSource component
	TDateField component
	TDateTime type
	TDateTimeField component
	TDBCheckBox component
	TDBComboBox component
	TDBEdit component
	TDBGrid component
	TDBGridOptions type
	TDBImage component
	TDBListBox component
	TDBLookupCombo component
	TDBLookupComboStyle type
	TDBLookupList component
	TDBLookupListOptions type
	TDBMemo component
	TDBNavigator component
	TDBRadioGroup component
	TDBText component
	TDDEClientConv component
	TDDEClientItem component
	TDDEServerConv component
	TDDEServerItem component
	TDirectoryListBox component
	TDragDropEvent type
	TDragMode type
	TDragOverEvent type
	TDragState type
	TDrawCellEvent type
	TDrawDataCellEvent type
	TDrawGrid component
	TDrawItemEvent type
	TDrawTabEvent type
	TDriveComboBox component
	TDuplicates type
	TEdit component
	TEditCharCase type
	Temporary property
	TEndDragEvent type
	Terminate method
	Terminated property
	Test8086 variable
	TExceptionEvent type
	Text property
	For edit boxes and memo controls
	For combo boxes
	For outline nodes
	For DDE items
	For queries
	For fields
	For TParam objects

	TextCase property
	TextFile type
	TextHeight method
	TextOut method
	TextRect method
	TextToFloat function
	TextToShortCut function
	TextWidth method
	TFDApplyEvent type
	TField component
	TFieldGetTextEvent type
	TFieldNotifyEvent type
	TFieldSetTextEvent type
	TFileEditStyle type
	TFileExt type
	TFileListBox component
	TFieldClass type
	TFieldDef object
	TFieldDefs object
	TFieldType type
	TFileName type
	TFileRec type
	TFileType type
	TFillStyle type
	TFilterComboBox component
	TFindDialog component
	TFindItemKind type
	TFindOptions type
	TFloatField component
	TFloatFormat
	TFloatRec
	TFont object
	TFontDialog component
	TFontDialogDevice type
	TFontDialogOptions type
	TFontName type
	TFontPitch type
	TFontStyles type
	TForm component
	TFormBorderStyle type
	TFormStyle type
	TGetEditEvent type
	TGraphic object
	TGraphicField component
	TGraphicsObject object
	TGridDrawState type
	TGridOptions type
	TGridRect type
	TGroupBox component
	THeader component
	THelpContext type
	THelpEvent type
	THintInfo type
	TIcon object
	TIdleEvent type
	Tile method
	TileMode property
	TImage component
	Time function
	TimeFormat property
	TimeToStr function
	TIndexDef object
	TIndexDefs object
	TIndexOptions type
	TIniFile object
	TIntegerField component
	Title property
	For applications
	For Open and Save dialog boxes
	For printer objects

	TitleFont property
	TKey type
	TKeyEvent type
	TKeyPressEvent type
	TLabel component
	TLeftRight type
	TList object
	TListBox component
	TListBoxStyle type
	TLocale type
	TLoginEvent type
	TMacroEvent type
	TMainMenu component
	TMaskEdit component
	TMeasureItemEvent type
	TMeasureTabEvent type
	TMediaPlayer component
	TMemo component
	TMemoField component
	TMenuBreak type
	TMenuItem component
	TMessageEvent type
	TMetafile object
	TMethod
	TModalResult type
	TMouseButton type
	TMouseEvent type
	TMouseMoveEvent type
	TMovedEvent type
	TMPBtnType type
	TMPDevCapsSet type
	TMPDeviceTypes type
	TMPModes type
	TMPNotifyValues type
	TMPTimeFormats type
	TMsgDlgButtons type
	TMsgDlgType type
	TNavigateBtn type
	TNotebook component
	TNotifyEvent type
	TNumGlyphs type
	TOLEContainer component
	TOLEDropNotify object
	Top property
	ToPage property
	TOpenDialog component
	TOpenOptions type
	TopIndex property
	TopItem property
	TopRow property
	TOutline component
	TOutlineNode object
	TOutlineOptions type
	TOutlineStyle type
	TOutlineType type
	TOwnerDrawState type
	TPaintBox component
	TPanel component
	TPanelBevel type
	TParam object
	TParamBindMode type
	TParams object
	TParamType type
	TPasswordEvent type
	TPen object
	TPenMode type
	TPenStyle type
	TPicture object
	TPoint type
	TPopupAlignment type
	TPopupMenu component
	TPosition type
	TPrintDialog component
	TPrintDialogOptions type
	TPrinter object
	TPrinterOrientation type
	TPrinterSetupDialog component
	TPrintRange type
	TPrintScale type
	TQuery component
	TrackCursor procedure
	TrackLength property
	TrackPosition property
	Tracks property
	TRadioButton component
	TRadioGroup component
	TransIsolation property
	Transliterate property
	Transparent property
	TRect type
	TReplaceDialog component
	TReport component
	Trunc function
	Truncate method
	Truncate procedure
	TSaveDialog component
	TScreen component
	TScrollBar component
	TScrollBarInc type
	TScrollBarKind type
	TScrollBox component
	TScrollCode type
	TScrollEvent type
	TScrollStyle type
	TSearchRec type
	TSectionEvent type
	TSelectCellEvent type
	TSelectDirOpts type
	TSession component
	TSetEditEvent type
	TShape component
	TShapeType type
	TShiftState type
	TShortCut type
	TShowHintEvent type
	TSmallintField component
	TSpeedButton component
	TStatusLineEvent type
	TStoredProc component
	TStringField component
	TStringGrid component
	TStringList object
	TStrings object
	TSymbolStr type
	TTabbedNotebook component
	TTabChangeEvent type
	TTable component
	TTabOrder type
	TTabSet component
	TTabStyle type
	TTextCase type
	TTextRec type
	TTileMode type
	TTimeField component
	TTimer component
	TTransIsolation type
	TVarBytesField component
	TVarRec type
	TWindowState type
	TWordArray
	TWordField component
	TypeOf function
	TZoomFactor type

	U
	UniDirectional property
	Unmerge method
	UnPrepare method
	For stored procedures
	For queries

	UnselectedColor property
	UpCase function
	Update method
	For directory and file list boxes
	For all controls
	For TFieldDefs objects
	For TIndexDefs objects

	UpdateCursorPos method
	UpdateMode property
	UpdateRecord method
	UpperCase function

	V
	Val procedure
	ValidateEdit method
	ValidParentForm function
	Value property
	For database radio groups
	For database lookup combo and list boxes
	For fields

	ValueChecked property
	Values property
	For string and string list objects
	For database radio group boxes

	ValueUnchecked property
	VersionMajor property
	VersionMinor property
	VertScrollBar property
	Visible property
	VisibleButtons property
	For database navigator controls

	VisibleColCount property
	VisibleRowCount property
	VisibleTabs property

	W
	Wait property
	WantReturns property
	WantTabs property
	WhereX function
	WhereY function
	Width property
	For forms and controls
	For graphic objects
	For screen components

	WindowMenu property
	WindowOrg typed constant
	WindowSize typed constant
	WindowState property
	WindowTitle variable
	WordRec
	WordWrap property
	Write method
	Write procedure
	WriteBool method
	WriteBuf procedure
	WriteChar procedure
	WriteIn procedure
	WriteInteger method
	WriteString method

	Z
	Zoom property

	INDEX
	Symbols and Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J - L
	M
	N
	O
	P
	Q - R
	S
	T
	U - V
	W
	X - Z

