Visual Component Library

Reference
Delphi for Windows

Introduction

Copyright
Agreement
. This manual is a reference for the Delphi Visual Component Library (VCL) and the
Delphi run-time library. Use it when you want to look up the details of a particular VCL
object, component, variable, property, method, event, routine, or type and find out how
to use it.
Note See online Help for documentation of the Object Pascal Language Definition and

Reference.

Manual conventions

The printed manuals for Delphi use the typefaces and symbols described in
Table Intro.1 to indicate special text.

Table Intro.1 Typefaces and symbols in these manuals

Typeface or symbol Meaning

Monospace type Monospaced text represents text as it appears onscreen or in Object Pascal code.
It also represents anything you must type.

Boldface Boldfaced words in text or code listings represent Object Pascal reserved words
or compiler directives.

Italics Italicized words in text represent Object Pascal identifiers, such as variable or
type names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to exit a
menu.”

T This symbol indicates a key, or important property, method, or event.

b This symbol indicates a run-time only property, method or event.

Contacting Borland

The Borland Assist program offers a range of technical support plans to fit the different
needs of individuals, consultants, large corporations, and developers. To receive help
with this product send in the registration card and select the Borland Assist plan that
best suits your needs. North American customers can register by phone 24 hours a day
by calling 1-800-845-0147. For additional details on these and other Borland services, see
the Borland Assist Support and Services Guide included with this product.

Introduction 1

Copyright Agreement
Borland may have patents and/or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents.

Copyright © 1995 Borland International. All rights reserved. All Borland product names are trademarks or registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered trademarks of their respective holders.

Printed in the U.S.A.

1E0R395
9596979899-987654321
W1

Delphi Visual Component Library

The VCL is made up of objects, most of which are also components. Using the objects
and components of VCL, you are unlimited in the range of Windows programs you can
develop rapidly. Delphi itself was built using VCL.

Delphi objects contain both code and data. The data is stored in the fields and properties
of the objects, and the code is made up of methods that act upon the field and property
values. All objects descend from the ancestor object TObject.

Components are visual objects that you can manipulate at design time. All components
descend from the TComponent object. To program with a component, this is the model
you will use most frequently:

1 Select a component from Delphi’s Component palette and add it to a form.
2 Set property values of the component using the Object Inspector.

3 Respond to events that might occur to the component at run time. To respond to an
event, you write code within an event handler. Your code modifies property values
and calls methods.

For detailed information on how to perform these three steps, see the Delphi User’s
Guide.

You can create your own objects and components by deriving them from the existing
Delphi objects and components. For information about writing your own components,
see the Delphi Component Writer’s Guide.

Visual Component Library objects

Objects are the fundamental elements of the VCL. In fact, all components and controls
are based on objects.

Objects differ from controls in that you can access them only at run time. Unlike most
components, objects do not appear on the Component palette. Instead, a default
instance variable is declared in the unit of the object or you have to declare one yourself.

For example, the Clipboard variable is declared in the Clipbrd unit. To use a TClipboard
object, add the Clipbrd unit to the uses clause of the unit, then refer to the Clipboard
variable. However, to use a TBitmap object, add the Graphics unit to the uses clause of
the unit, then execute the following code at run time to declare an instance variable:

var
Bitmapl: TBitmap;
begin
Bitmapl := TBitmap.Create;
end;

Note The memory allocated for objects that you explicitly declare should be released when
you are finished with the object. For example, call the Free method of the bitmap:

Bitmapl.Free;

2 Delphi Visual Component Library

Note

The properties, methods, and events that all objects have in common are inherited from
an abstract object type called TObject. You need to understand the internal details of
TObject only if you are creating a new object based on TObject.

The following is a list of all objects in the VCL that directly descend from TObject.:

Table Intro.2 VCL objects

TBitmap TGraphic TOutlineNode
TBlobStream TGraphicsObject TParam
TBrush Tlcon TParams
TCanvas TIndexDef TPen
TClipboard TIndexDefs TPicture
TControlScrollBar TIniFile TPrinter
TFieldDef TList TStringList
TFieldDefs TMetafile TStrings
TFont TOLEDropNotify

In addition to these objects, all VCL components also descend from TObject, although
not directly.

The TObject object introduces the following methods that all objects and components
inherit:
Table Intro.3 Object methods

ClassName ClassType Destroy

ClassParent Create Free

Visual Component Library components

Components are the building blocks of Delphi applications. You build an application by
adding components to forms and using the properties, methods, and events of the
components.

The properties, methods, and events that all components have in common are inherited
from an abstract component type called TComponent. You need to understand the
internal details of TComponent only if you are writing a component based on
TComponent.

The following is a list of all components in the VCL:

Table Intro.4 VCL components

TApplication TDDEClientltem TOutline
TBatchMove TDDEServerConv TPaintBox
TBCDField TDDEServerltem TPanel

TBevel TDirectoryListBox TPopupMenu
TBitBtn TDrawGrid TPrintDialog
TBlobField TDriveComboBox TPrinterSetupDialog
TBooleanField TEdit TQuery

Introduction 3

Table Intro.4

VCL components (continued)

TButton TField TRadioButton
TBytesField TFileListBox TRadioGroup
TCheckBox TFilterComboBox TReplaceDialog
TColorDialog TFindDialog TReport
TComboBox TFloatField TSaveDialog
TCurrencyField TFontDialog TScreen
TDatabase TForm TScrollBar
TDataSource TGraphicField TScrollBox
TDateField TGroupBox TSession
TDateTimeField THeader TShape
TDBCheckBox TImage TSmalllntField
TDBComboBox TIntegerField TSpeedButton
TDBEdit TLabel TStoredProc
TDBGrid TListBox TStringField
TDBImage TMainMenu TStringGrid
TDBListBox TMaskEdit TTabbedNotebook
TDBLookupCombo TMediaPlayer TTable
TDBLookupList TMemo TTabSet
TDBMemo TMemoField TTimeField
TDBNavigator TMenultem TTimer
TDBRadioGroup TNotebook TVarBytesField
TDBText TOLEContainer TWordField
TDDEClientConv TOpenDialog

Most components are available from the Component palette. You will not find the
following components on the Component palette, however:

Table Intro.5 Components not on the Component palette
TApplication TDateTimeField TScreen
TBCDField TField TSession
TBlobField TFloatField TSmalllntField
TBooleanField TGraphicField TStringField
TBytesField TIntegerField TTimeField
TCurrencyField TMemoField TVarBytesField
TDateField TMenultem TWordField

The TComponent component introduces the following properties that all components

inherit:

Table Intro.6 ~ Component properties
> ComponentCount v Components > Owner
b ComponentIndex Name Tag

4 Delphi Visual Component Library

In addition to the methods components inherit from the TObject object, the TComponent
component introduces the following:

Table Intro.7 Component methods

FindComponent InsertComponent RemoveComponent

Visual Component Library controls

Controls are visual components; that is, they are components you can see when your
application is running. All controls have properties in common that specify the visual
attributes of controls, such as Left, Top, Height, Width, Cursor, and Hint.

The properties, methods, and events that all controls have in common are inherited
from an abstract component type called TControl. You need to understand the internal
details of TControl only if you are writing a component based on TControl.

The following is a list of all controls in the VCL.

Table Intro.8 VCL controls

TBevel TDBText TNotebook
TBitBtn TDirectoryListBox TOLEContainer
TButton TDrawGrid TOutline
TCheckBox TDriveComboBox TPaintBox
TComboBox TEdit TPanel
TDBCheckBox TFileListBox TRadioButton
TDBComboBox TFilterComboBox TRadioGroup
TDBEdit TForm TScrollBar
TDBGrid TGroupBox TScrollBox
TDBImage THeader TShape
TDBListBox TImage TSpeedButton
TDBLookupCombo TLabel TStringGrid
TDBLookupList TListBox TTabbedNotebook
TDBMemo TMaskEdit TTabSet
TDBNavigator TMediaPlayer

TDBRadioGroup TMemo

In addition to the properties controls inherit from the TComponent component, the
TControl component introduces the following:

Table Intro.9 Control properties

b Align Cursor b ShowHint
b BoundsRect b Enabled Top

F ClientHeight Height b Visible

F ClientOrigin Hint Width

5 ClientRect Left

b ClientWidth b Parent

Introduction 5

In addition to the methods controls inherit from the TComponent component, the
TControl component introduces the following methods:

Table Intro.10 Control methods

BeginDrag
BringToFront
ClientToScreen
Control AtPos
Dragging
EndDrag

GetTextBuf
GetTextLen
Hide
Invalidate
Refresh

SendToBack

Repaint
ScreenToClient
SetBounds
SetTextBuf
Show

Update

Visual Component Library windowed controls
Windowed controls are controls that:

¢ Can receive focus while your application is running
¢ (Can contain other controls
¢ Have a window handle

All windowed controls have properties in common that specify their focus attributes,
such as HelpContext, TabStop, and TabOrder. Windowed controls also provide the
OnEnter and OnExit events.

The properties, methods, and events that all windowed controls have in common are
inherited from an abstract component type called TWinControl. You need to understand
the internal details of TWinControl only if you are writing a component based on

TWinControl.

The following is a list of all windowed controls in the VCL:

Table Intro.11 VCL windowed controls

TBitBtn
TButton
TCheckBox
TComboBox
TDBCheckBox
TDBComboBox
TDBEdit
TDBGrid
TDBImage
TDBListBox
TDBLookupCombo
TDBLookupList
TDBMemo

TDBNavigator
TDBRadioGroup
TDirectoryListBox
TDrawGrid
TDriveComboBox
TEdit
TFileListBox
TFilterComboBox
TForm
TGroupBox
THeader
TListBox
TMaskEdit

TMediaPlayer
TMemo
TNotebook
TOLEContainer
TOutline
TPanel
TRadioButton
TRadioGroup
TScrollBar
TScrollBox
TStringGrid
TTabbedNotebook
TTabSet

6 Delphi Visual Component Library

In addition to the properties windowed controls inherit from the TControl component,
the TWinControl component introduces the following properties:

Table Intro.12 Windowed control properties

b Brush b Handle b TabOrder
F Controls HelpContext F TabStop
F ControlCount 2 Showing

In addition to the methods windowed controls inherit from the TControl component, the
TWinControl component introduces the following methods:

Table Intro.13 Windowed control methods

CanFocus Focused RemoveControl
ClientOrigin HandleAllocated ScaleBy

Create HandleNeeded ScrollBy
Destroy InsertControl SetFocus

The TWinControl component introduces the following events:

Table Intro.14 Windowed control events
OnEnter OnExit

Visual Component Library nonwindowed controls
Nonwindowed controls are controls that:

* Cannot receive focus while your application is running
¢ Cannot contain other controls
¢ Do not have a window handle

The properties, methods, and events that all windowed controls have in common are
inherited from an abstract component type called TGraphicControl. You need to
understand the internal details of TGraphicControl only if you are writing a component
based on TGraphicControl.

The following is a list of all nonwindowed controls in the VCL:

Table Intro.15 VCL nonwindowed controls

TBevel TLabel TSpeedButton
TDBText TPaintBox
TImage TShape

Visual Component Library procedures and functions

These procedures and functions are part of the VCL, but they aren’t methods of any
components or objects. They are categorized here by how they are used.

Introduction 7

The following routines are used to display messages in dialog boxes:

Table Intro.16 Message dialog box routines

InputBox MessageDlg
InputQuery MessageDIgPos

The following routines are used to define menu command short cuts.

Table Intro.17 Menu shortcut routines

ShortCut ShortCutToText
ShortCutToKey TextToShortCut

The following routines are used to determine the parent form of components:

Table Intro.18 Parent form routines

GetParentForm ValidParentForm

The following routines are used to create graphical points and rectangles:

Table Intro.19 Point and rectangle routines
Bounds Point Rect

The following routines are used to control Object Linking and Embedding (OLE)
container applications:

Table Intro.20 OLE routines

BOLEMediumCalc LinksDIgEnabled ReleaseOLEInitInfo
ClearFormOLEDropFormats PasteSpecialDlg SetFormOLEDropFormats
InsertOLEObjectDlg PasteSpecialEnabled
LinksDIg RegisterFormAsOLEDropTarget

Library reference

The alphabetical reference following the sample entry in the next section contains a
detailed description of the Delphi VCL objects, components, variables, properties,
methods, events, routines, and types you use to develop Windows applications. The
reference also contains the procedures, functions, types, variables, and constants that
make up the Delphi run-time library and are declared in the System and SysUtils units.
These procedures and functions are useful routines that exist outside of the objects of
VCL. They are presented here so that you only need to search one reference source for
the information you need about programming Delphi applications.

Each alphabetically listed entry contains the declaration format and a description of the
entry. If the entry is an object, component, routine, or type, the unit that contains the
entry is listed at the beginning of the entry. (The unit that corresponds to a variable,
property, method, or event is the unit that contains the object or component to which the
entry belongs.) If the entry applies to specific objects or components, they are listed. The

8 Delphi Visual Component Library

cross-referenced entries and examples provide additional information about how to use
the specified entry. The following sample illustrates this format.

Sample entry Unit it occupies (if applicable)

Note

Applies to
Listing of the objects and components the entry applies to, if any.

Declaration
{ The declaration of the entry from the unit it occupies }
A description containing specific information about the entry.

Any special notes that apply to the entry

Example
A description of the example code that follows.

{ Example code which illustrates the use of the entry }

See also
Related entries that are also listed in the VCL Reference.

Introduction 9

10 Delphi Visual Component Library

Delphi Library Reference

Abort method

Applies to
TPrinter object

Declaration
procedure Abort;

The Abort procedure terminates the printing of a print job, dropping all unprinted data.
The device is then set for the next print job. Use Abort to terminate the print job before it
completes; otherwise, use the EndDoc method.

To use the Abort method, you must add the Printers unit to the uses clause of your unit.

Example
The following code aborts a print job if the user presses Esc. Note that you should set
KeyPreview to True to ensure that the OnKeyDown event handler of Form1 is called.

procedure TForml.FormKeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);
begin
if (Key=VK_ESCAPE) and Printer.Printing then
begin
Printer.Abort;
MessageDlg('Printing aborted', mtInformation, [mbOK],0);
end;
end;

See also
BeginDoc method, EndDoc method, Printer variable, Printing property

Abort procedure SysUltils

Declaration
procedure Abort;

The Abort procedure raises a special “silent exception” which operates like any other
exception, but does not display an error message to the end user.

Use Abort to escape from an execution path without reporting an error.

Delphi Visual Component Library Reference 11

Aborted property

Aborted property

Applies to
TPrinter object

Declaration
property Aborted: Boolean;

Run-time and read-only. The Aborted property determines if the user aborted the print
job, thereby calling the Abort method. If Aborted is True, the print job was aborted. If it is
False, the user did not abort the print job.

Example
The following code displays a dialog box if the print job was aborted:

if Printer.Aborted then
MessageDlg (‘The print job did not finish printing’), mtInformation, [mbOK], 0);

See also
Abort method, Printer variable, Printing property

AbortOnKeyViol property

Note

Applies to
TBatchMove component

Declaration
property AbortOnKeyViol: Boolean;

If AbortOnKeyViol is True (the default) and an integrity (key) violation occurs during the
batch move operation, the Execute method will immediately terminate the operation. If
you prefer to have the operation continue, with all key violations posted to the key
violations table, set AbortOnKeyViol to False.

If you set AbortOnKeyViol to False, you should provide a KeyViolTableName to hold the
records with errors.

Example

BatchMovel.AbortOnKeyViol := False;

See also
KeyViolCount property, KeyViolTableName property

12 Delphi Visual Component Library Reference

AbortOnProblem property

AbortOnProblem property

Applies to
TBatchMove component

Declaration
property AbortOnProblem: Boolean;

If AbortOnProblem is True (the default) and it would be necessary to discard data from a
source record to place it into the Destination, the Execute method will immediately
terminate the batch move operation. If you prefer to have the operation continue, with
all problems posted to the problems table, set AbortOnProblem to False.

Note If you set AbortOnProblem to False, you should provide a ProblemTableName to hold the
records with problems.

Example

BatchMovel.AbortOnProblem := False;

See also
ProblemCount property, ProblemTableName property

Abs function System

Declaration
function Abs(X);
The Abs function returns the absolute value of the argument.

X is an integer-type or real-type expression.

Example

var
r: Real;

i: Integer;
begin
r
i
end;

Abs(-2.3); { 2.3}
Abs (-157); { 157 }

Abstract procedure System

Declaration

procedure Abstract;

Delphi Visual Component Library Reference 13

Active property

A call to this procedure terminates the program with a run-time error.

When implementing an abstract object type, use calls to Abstract in virtual methods that
must be overridden in descendant types. This ensures that any attempt to use instances
of the abstract object type will fail.

Active property

Note

Note

Applies to
TOLEContainer, TQuery, TStoredProc, TTable components

For tables, queries, and stored procedures

Declaration
property Active: Boolean;

Set the Active property to True to open a dataset and put it in Browse state. Set it to False
to close the dataset and put it in Inactive state. Changing the Active property is
equivalent to calling the Open or Close method.

For TQuery and TStoredProc, if the SQL statement or stored procedure does not return a
result set, then setting Active to True will raise an exception because Delphi expects to
get a cursor.

Post is not called implicitly by setting Active to False. Use the BeforeClose event to post any
pending edits explicitly.

Example

{ Close the dataset }
Tablel.Active := False;
{ Open the dataset }
Tablel.Active := True;

For OLE containers

Declaration
property Active: Boolean;

Run-time only. The Active property specifies whether the OLE object in an OLE
container is active. Set Active to True to activate the OLE object. Set Active to False to
deactivate the OLE object.

Setting Active to False only deactivates in-place active OLE objects. If the object is
activated within its own window, you must deactivate the object by executing a File |
Exit command (or its equivalent in the command structure) from the OLE server
application.

14 Delphi Visual Component Library Reference

ActiveControl property
Example

The following code activates OLEContainer1 if it contains an OLE object.

OLEContainerl.Active := OLEContainerl.OLEObjAllocated;

See also
AutoActivate property, InPlaceActive property, OnActivate event

ActiveControl property

Applies to

TForm, TScreen components

Declaration
property ActiveControl: TWinControl;

For forms, the ActiveControl property indicates which control has focus, or has focus
initially when the form becomes active. Your application can use the ActiveControl
property to access methods of the active control. Only one control, the active control, can
have focus at a given time in an application.

For the screen, ActiveControl is a read-only property. The value of ActiveControl is the
control that currently has focus on the screen.

Note ~ When focus shifts to another control, the ActiveControl property is updated before the
OnExit event of the original control with focus occurs.

Example
The following event handler responds to timer events by moving the active control one
pixel to the right:

procedure TForml.TimerlTimer (Sender: TObject);
begin

ActiveControl.Left := ActiveControl.Left + 1;
end;

See also
ActiveForm property, OnActiveControlChange event, OnEnter event, OnExit event

ActiveForm property

Applies to

TScreen component

Declaration

property ActiveForm: TForm;

Delphi Visual Component Library Reference 15

ActiveMDIChild property

Run-time and read only. The ActiveForm property indicates which form currently has
focus, or will have focus when the application becomes active again after another
Windows application has been active.

Example
This example changes the color of the current form.

procedure TForml.ButtonlClick(Sender: TObject);
begin

Screen.ActiveForm := clBlue;
end;

See also

ActiveControl property, ActiveMDIChild property, OnActivate event,
OnActiveFormChange event, Screen variable

ActiveMDIChild property

Applies to
TForm component

Declaration
property ActiveMDIChild: TForm;

Run-time and read only. The value of the ActiveMDIChild property is the form that
currently has focus in an MDI application.

Example
This code uses a button on an MDI application. When the user clicks the button, the
active MDI child form turns blue.

procedure TForml.ButtonlClick(Sender: TObject);
var
BlueForm: TForm;
begin
BlueForm := Forml.ActiveMDIChild;
BlueForm.Color := clBlue;
end;

See also
ActiveForm property, FormStyle property, MDIChildCount property, MDIChildren
property

16 Delphi Visual Component Library Reference

ActivePage property

ActivePage property

Applies to
TNotebook, TTabbedNotebook components

Declaration
property ActivePage: string;

The ActivePage property determines which page displays in the notebook or tabbed
notebook control. The value of ActivePage must be one of the strings contained in the
Pages property.

Example

This example uses a notebook control and a button on the form. The notebook has
multiple pages, including one called Graphics options. When the user clicks the button,
the Graphics options page displays in the notebook control.

procedure TForml.ButtonlClick(Sender: TObject);
begin

Notebookl.ActivePage := 'Graphics options’;
end;

See also
Pagelndex property, TTabSet component

Add method

Applies to
TFieldDefs, TIndexDefs, TList, TStringList, TStrings objects; TMenultem, TOutline
components

For field definitions

Declaration
procedure Add(const Name: string; DataType: TFieldType; Size: Word; Required: Boolean);

The Add method creates a new TFieldDef object using the Name, DataType, and Size
parameters, and adds it to Iterns. Except for special purposes, you do not need to use this
method because the Items is filled for you when you open the dataset, or because Update
fills Items without opening the dataset.

The value of the Required parameter determines whether the newly added field
definition is a required field. If the Required parameter is True, the value of the Required
property of the TFieldDef object is also True. If the Required parameter is False, the value
of the Required property is also False.

Delphi Visual Component Library Reference 17

Add method

For index definitions

Declaration
procedure Add(const Name, Fields: string; Options: TIndexOptions);

The Add method creates a new TIndexDef object using the Name, Fields, and Options
parameters, and adds it to Ifems. Generally you will never need to use this method since
the dataset will have already filled Items for you when it is open, or the Update method
will fill Items without opening the dataset.

For list objects

Declaration
function Add(Item: Pointer): Integer;

The Add method adds a new item to the end of a list. Add returns the position of the item
in the list stored in the Items property; the first item in the list has a value of 0. Specify the
item you want added to the list as the value of the Itemn parameter.

Example
This example adds a new object to a list in a list object:

type
TMyClass = class
MyString: string;
constructor Create(S: string);
end;

constructor TMyClass.Create(S: string);
begin

MyString := S;
end;

procedure TForml.ButtonlClick(Sender: TObject);
var

MyList: TList;

MyObject, SameObject: TMyClass;

begin
MyList := TList.Create; { create the list }
try
MyObject := TMyClass.Create('Semper Fidelis!'); { create a class instance }
try
MyList.Add (MyObject); { add instance to list }
SameObject := TMyClass (MyList.Items[0]); { get first element in list }
MessageDlg (SameObject .MyString, mtInformation, [mbOk], 0); { show it }
finally
MyObject.Free;
end; { don't forget to clean up! }
finally

MyList.Free;

18 Delphi Visual Component Library Reference

Add method

end;
end;

procedure TForml.ButtonlClick(Sender: TObject);
var

MyList: TList;

MyObject, SameObject: TMyClass;

begin
MyList := TList.Create; { create the list }
try
MyObject := TMyClass.Create('Semper Fidelis!'); { create a class instance }
try
MyList.2Add (MyObject) ; { add instance to list }
SameObject := TMyClass (MyList.Items[0]); { get first element in list }
MessageDlg (SameObject .MyString, mtInformation, [mbOk], 0); { show it }
finally
MyObject.Free; { don't forget to clean up! }
finally
MyList.Free;
end;
See also

Capacity property, Clear method, Delete method, Expand method, First method, IndexOf
method, Insert method, Last method, Remove method

For string and string list objects

Declaration
function Add(comst S: string): Integer;

The Add method adds a new string to a string list. The S parameter is the new string. Add
returns the position of the item in the list; the first item in the list has a value of 0.

For TStrings objects, such as the Items property of a list box, the new string is appended
to the end of the list unless the Sorted property of the list box or combo box is True. In
such a case the string is inserted into the list of strings so as to maintain the sort order.

For TStringList objects, the value of the Sorted property determines how a string is
added. If Sorted is False, the string is appended to the list. If Sorted is True, the new string
is inserted into the list of strings so as to maintain the sort order.

Example
This code uses a button and a list box on a form. When the user clicks the button, the
code adds a new string to a list box.

procedure TForml.ButtonlClick(Sender: TObject);
begin

ListBoxl.Items.Add('New string');
end;

Delphi Visual Component Library Reference 19

Add method

This code uses a list box, a button, and a label on a form. When the user clicks the
button, the code adds a new string to the list box and reports its position in the list box as
the caption of the label.

procedure TForml.ButtonlClick(Sender: TObject);
var
Position: Integer;
begin
Position:= ListBoxl.Items.Add('New item');
Labell.Caption := IntToStr(Position);
end;

See also

AddObject method, AddStrings method, Clear method, Delete method, Duplicates
property, Exchange method, Insert method, Items property, Lines property, Move method,
Sorted property

For menu items

Declaration
procedure Add(Item: TMenultem);

The Add method adds a menu item to the end of a menu. Specify the menu item you
want added as the value of the Item parameter.

Example
This code adds a menu item to a File menu:

procedure Forml.ButtonlClick(Sender: TSender);

var
NewlItem: TMenultem;

begin
NewItem := TMenultem.Create(Self);
NewItem.Caption := ‘New item’;
File.Add (NewItem);

end;

See also

Delete method, Insert method

For outlines

Declaration
function Add(Index: LongInt; const Text: string): LongInt;

The Add method adds an outline item (T'OutlineNode object) to an outline. The value of
the Index parameter specifies where to add the new item. The Text parameter specifies

20 Delphi Visual Component Library Reference

AddChild method

the Text property value of the new item. Add returns the Index property value of the
added item.

The added item is positioned in the outline as the last sibling of the outline item
specified by the Index parameter. The new item shares the same parent as the item
specified by the Index parameter. Outline items that appear after the added item are
moved down one row and reindexed with valid Index values. This is done automatically
unless BeginUpdate was called.

Note To add items to an empty outline, specify zero (0) as the Index parameter.

Example
The following code adds a new item at the top level of the outline. The new item is
identified by the text ‘New item”:

Outlinel.Add(0, 'New item');
See also

AddChild method, AddChildObject method, AddObject method, Insert method, MoveTo
method

AddChild method

Applies to

TOutline component

Declaration
function AddChild(Index: LongInt; comst Text: string): LongInt;

The AddChild method adds an outline item (I'OutlineNode object) to an outline as a child
of an existing item. The value of the Index parameter specifies where to add the new
item. The Text parameter specifies the Text property value of the new item. AddChild
returns the Index property value of the added item.

The added item is positioned in the outline as the last child of the outline item specified
by the Index parameter. Outline items that appear after the added item are moved down
one row and reindexed with valid Index values. This is done automatically unless
Beginllpdate was called.

Note To add items to an empty outline, specify zero (0) as the Index parameter.

Example
The following code adds a new child to the selected item of the outline. The new item is
identified by the text ‘New child”:

Outlinel.AddChild(Outlinel.SelectedItem, 'New child');

See also
Add method, AddChildObject method, AddObject method, Insert method, MoveTo method

Delphi Visual Component Library Reference 21

AddChildObject method

AddChildObject method

Applies to
TOutline component

Declaration
function AddChildObject (Index: LongInt; const Text: string; const Data: Pointer): LongInt;

The AddChildObject method adds an outline item (T'OutlineNode object) containing data
to an outline as a child of an existing item. The value of the Index parameter specifies
where to add the new item. The Text parameter specifies the Text property value of the
new item. The Data parameter specifies the Data property value of the new item.
AddChild returns the Index property value of the added item.

The added item is positioned in the outline as the last child of the outline item specified
by the Index parameter. Outline items that appear after the added item are moved down
one row and reindexed with valid Index values. This is done automatically unless
BeginlUpdate was called.

Note To add items to an empty outline, specify zero (0) as the Index parameter.
Example
The following code adds a new child to the selected item of the outline. The new item is
identified by the text ‘New child’. The TBitmap object named Bitmap1 is attached to the
new item:
Outlinel.AddChildObject (Outlinel.SelectedItem, 'New child', Bitmapl);
See also
Add method, AddChild method, AddObject method, Insert method, MoveTo method
AddExitProc procedure SysUtils

Declaration
procedure AddExitProc(Proc: TProcedure);

AddExitProc adds the given procedure to the run-time library's exit procedure list. When
an application terminates, its exit procedures are executed in reverse order of definition,
i.e. the last procedure passed to AddExitProc is the first one to get executed upon
termination.

AddFieldDesc method

Applies to
TFieldDefs object

22 Delphi Visual Component Library Reference

AddIndex method

AddFieldDesc creates a new TFieldDef object using the information provided by the
Borland Database Engine in the FieldDesc parameter, and adds it to Iterns. Except for
special purposes, you do not need to use this method because the Iters is filled for you
when you open the dataset, or because Update fills Items without opening the dataset.

Declaration

procedure AddFieldDesc(FieldDesc: FLDDesc; FieldNo: Word);

AddIndex method

Applies to
TTable component

Declaration
procedure AddIndex(const Name, Fields: string; Options: TIndexOptions);

The AddIndex method creates a new index for the TTable. Name is the name of the new
index. Fields is a list of the fields to include in the index. Separate the field names by a
semicolon. Options is a set of values from the TIndexOptions type.

Example

Tablel.AddIndex (‘NewIndex’, ‘CustNo;CustName’, [ixUnique, ixCaselnsensitive]);

See also
Deletelndex method, IndexDefs property, IndexName property

AddObject method

Applies to
TStringList, TStrings objects; TOutline component

For string and string list objects

Declaration
function AddObject (const S: string; AObject: TObject): Integer;

The AddObject method adds both a string and an object to a string or string list object.
The string and the object are appended to the list of strings. Specify the string to be
added as the value of the S parameter, and specify the object to be added as the value of
the AObject parameter.

Example
This code adds the string ‘Orange” and a bitmap of an orange to an owner-draw list box:

Delphi Visual Component Library Reference 23

AddObject method

Note

procedure TForml.ButtonlClick(Sender: TSender);
var
Icon: TIcon;
begin
Icon := TIcon.Create;
Icon.LoadFromFile(*ORANGE.ICO');
ListBoxl.Items.AddObject (‘Orange’, Icon);
end;

See also

Add method, AddStrings method, IndexOf method, IndexOfObject method, InsertObject
method, Objects property, Strings property

For outlines

Declaration
function AddObject (Index: LongInt; const Text: string; const Data: Pointer): LongInt;

The AddObject method adds an outline item (TOutlineNode object) containing data to an
outline. The value of the Index parameter specifies where to add the new item. The Text
parameter specifies the Text property value of the new item. The Data parameter
specifies the Data property value of the new item. Add returns the Index property value
of the added item.

The added item is positioned in the outline as the last sibling of the outline item
specified by the Index parameter. The new item shares the same parent as the item
specified by the Index parameter. Outline items that appear after the added item are
moved down one row and reindexed with valid Index values. This is done automatically
unless BeginUpdate was called.

To add items to an empty outline, specify zero (0) as the Index parameter.

Example
The following code defines a record type of TMyRec and a record pointer type of
PMyRec.

type
PMyRec = “TMyRec;
TMyRec = record
FName: string;
LName: string;
end;

Assuming these types are used, the following code adds an outline node toOutlinel. A
TMyRec record is associated with the added item. The FName and LNarme fields are
obtained from edit boxes Edit] and Edit2. The Index parameter is obtained from edit box
Edit3. The item is added only if the Index is a valid value.

var
MyRecPtr: PMyRec;
OutlineIndex: LongInt;

24 Delphi Visual Component Library Reference

AddParam method

begin
New (MyRecPtr) ;
MyRecPtr”.FName := Editl.Text;
MyRecPtr”.LName := Edit2.Text;
OutlineIndex := StrToInt (Edit3.Text);
if (OutlineIndex <= Outlinel.ItemCount) and (OutlineIndex >= 0) then
Outlinel.AddObject (OutlineIndex, 'New item', MyRecPtr);
end;

After an item containing a TMyRec record has been added, the following code retrieves
the FName and LName values associated with the item and displays the values in labels.

Labeld.Caption := PMyRec(Outlinel.Items[Outlinel.SelectedItem].Data)”.FName;
Label5.Caption := PMyRec (Outlinel.Items[Outlinel.SelectedItem].Data)”.LName;

See also
Add method, AddChild method, AddChildObject method, Insert method, MoveTo method

AddParam method

Applies to
TParams object

Declaration
procedure AddParam(Value: TParam);

AddParam adds Value as a new parameter to the Ifems property.

Example

{ Move all parameter info from Params2 to Paramsl }
while Params2.Count <> 0 do

begin

Grab the first parameter from Params2 }
TempParam := Params2[0];

Remove it from Params2 }
Params2.RemoveParam(TempParam) ;

And add it to Paramsl }
Paramsl.AddParam(TempParam) ;

end;

—

—

—

See also
RemoveParam method

AddPassword method

Applies to

TSession component

Delphi Visual Component Library Reference 25

Addr function

Declaration
procedure AddPassword(const Password: string);

The AddPassword method is used to add a new password to the current T'Session
component for use with Paradox tables. When an application opens a Paradox table that
requires a password, the user will be prompted to enter a password unless the Session
has a valid password for the table.

Example

Session.AddPassword(‘ASecret’);

See also
Session variable

Addr function System

Declaration

function Addr(X): pointer;

The Addr function returns the address of a specified object.

X is any variable, procedure or function identifier. The result is a pointer to X.

The result of Addr is of the predefined type Pointer, which means that it is assignment-
compatible with all pointer types but can’t be dereferenced directly without a typecast.

Example

var
P: Pointer;
begin
P := Addr(P); { Now points to itself }
end;

See also
Ofs function, Ptr function, Seg function

AddStrings method

Applies to
TStringList, TStrings objects

Declaration

procedure AddStrings(Strings: TStrings);

26 Delphi Visual Component Library Reference

AfterCancel event

The AddStrings method adds a group of strings to the list of strings in a string or string
list object. The new strings are appended to the existing strings. Specify a string object
containing the list of strings you want added as the value of the Strings parameter.

Example
This code appends the contents of a file to the end of a memo control:

procedure TForml.ButtonlClick(Sender: TSender);
var
Contents: TStringList;
begin
Contents.LoadFromFile (‘NEWSTUFF.TXT');
Memol.Lines.AddStrings (Contents);
finally
Contents.Free;
end;

This code adds the list of strings contained in ListBox1.Items to the end of the
ListBox2.Items list of strings:

procedure TForml.ButtonlClick(Sender: TObject);
begin

ListBox2.Items.AddStrings (ListBoxl.Items);
end;

See also
Add method, AddObject method, Strings property

AfterCancel event

Applies to
TTable, TQuery, TStoredProc components

Declaration
property AfterCancel: TDataSetNotifyEvent;

The AfterCancel event is activated when the dataset finishes a call to the Cancel method.
This event is the last action before Cancel returns to the caller. If the dataset is not in Edit
state or there are no changes pending, then Cancel will not activate the AfterCancel event.

By assigning a method to this property, you can take any special actions required by the
event.

See also
BeforeCancel event

Delphi Visual Component Library Reference 27

AfterClose event

AfterClose event

Applies to
TTable, TQuery, TStoredProc components

Declaration
property AfterClose: TDataSetNotifyEvent;

The AfterClose event is activated after a dataset is closed, either by calling the Close
method or by setting the Active property to False. This event is the last action before Close
returns to the caller. Typically, the AfterClose event handler closes any private lookup
tables opened by the BeforeOpen event.

By assigning a method to this property, you can take any special actions required by the
event.

See also
BeforeClose event

AfterDelete event

Applies to
TTable, TQuery, TStoredProc components

Declaration
property AfterDelete: TDataSetNotifyEvent;

The AfterDelete event is activated when the dataset finishes a call to the Delete method.
This event is the last action before Delete returns to the caller. When AfterDelete is called,
the deleted record has already been removed from the dataset, and the dataset cursor
will be positioned on the following record.

By assigning a method to this property, you can take any special actions required by the
event.

See also
BeforeDelete event

AfterEdit event

Applies to
TTable, TQuery, TStoredProc components

28 Delphi Visual Component Library Reference

Afterlnsert event
Declaration
property AfterEdit: TDataSetNotifyEvent;

The AfterEdit event is activated when a dataset finishes a call to the Edit method. This
event is the last action before Edit returns to the caller.

Note The event occurs before any changes have been made to the current record.
By assigning a method to this property, you can take any special actions required by the
event.

See also
BeforeEdit event

Afterinsert event

Applies to
TTable, TQuery, TStoredProc components

Declaration
property AfterInsert: TDataSetNotifyEvent;

The AfterInsert event is activated when a dataset finishes a call to the Insert or Append
methods. This event is the last action before Insert or Append returns to the caller.

Note This event occurs before a new record has been added to the component.
By assigning a method to this property, you can take any special actions required by the

event.

See also
Beforelnsert event

AfterOpen event

Applies to
TTable, TQuery, TStoredProc components

Declaration
property AfterOpen: TDataSetNotifyEvent;

The AfterOpen event is activated after a dataset is opened, either by calling the Open
method or by setting the Active property to True. This event is the last action before Open
returns to the caller.

By assigning a method to this property, you can take any special actions required by the
event.

Delphi Visual Component Library Reference 29

AfterPost event

See also
BeforeOpen event

AfterPost event

Applies to
TTable, TQuery, TStoredProc components

Declaration
property AfterPost: TDataSetNotifyEvent;

The AfterPost event is activated after a call to the Post method. This event is the last
action before Post returns to the caller.

If a TTable has a range filter (set with ApplyRange) in effect, and if the key value of the
newly posted record falls outside the range, then in the AfterPost event, the cursor will
not be positioned on the newly posted record.

By assigning a method to this property, you can take any special actions required by the
event.

See also
BeforePost event

AliasName property

Applies to
TDataBase component

Declaration
property AliasName: TSymbolStr;

AliasName is the name of an existing BDE alias defined with the BDE Configuration
Utility. This is where the TDatabase component gets its default parameter settings. This
property will be cleared if DriverName is set. If you try to set AliasName of a TDatabase for
which Connected is True, Delphi will raise an exception.

Example

Databasel.AliasName := ‘DBDEMOS’;

30 Delphi Visual Component Library Reference

Align property

Align property

Applies to

At design time: TBevel, TDBGrid, TDBRadioGroup, TDirectoryListBox, TDrawGrid,
TFileListBox, THeader, TImage, TLabel, TListBox, TMaskEdit, TMemo, TNotebook,
TOLEContainer, TOutline, TPaintBox, TPanel, TRadioGroup, TScrollBox, TStringGrid,
TTabbedNotebook, TTabSet components

At run time: All controls

Declaration
property Align: TAlign;

The Align property determines how the controls align within their container (or parent
control). These are the possible values:

Value Meaning
alNone The component remains where you place it in the form. This is the default value.
alTop The component moves to the top of the form and resizes to fill the width of the form. The

height of the component is not affected.

alBottom The component moves to the bottom of the form and resizes to fill the width of the form.
The height of the component is not affected.

alLeft The component moves to the left side of the form and resizes to fill the height of the form.
The width of the component is not affected.

alRight The component moves to the right side of the form and resizes to fill the height of the
form. The width of the component is not affected.

alClient The component resizes to fill the client area of a form. If a component already occupies
part of the client area, the component resizes to fit within the remaining client area.

If the form or a component containing other components is resized, the components
realign within the form or control.

Using the Align property is useful when you want a control to stay in one position on
the form, even if the size of the form changes. For example, you could use a panel
component with a various controls on it as a tool palette. By changing Align to alLeft, you
guarantee that the tool palette always remains on the left side of the form and always
equals the client height of the form.

Example
This example moves a panel control named Panell to the bottom of the form and resizes
it to fill the width of the form:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Panell.Align := alBottom;
end;

See also
Alignment property

Delphi Visual Component Library Reference 31

Alignment property

Alignment property

Applies to

TBCDField, TBooleanField, TCheckBox, TCurrencyField, TDateField, TDateTimeField,
TDBCheckBox, TDBMemo, TDBText, TFloatField, TIntegerField, TLabel, TMemo, TPanel,
TPopupMenu, TRadioButton, TSmallintField, TStringField, TTimeField, TWordField
components

For labels, memos, and panels

Declaration
property Alignment: TAlignment;
The Alignment property specifies how text is aligned within the component.

These are the possible values:

Value Meaning

taLeft]ustify Align text to the left side of the control
taCenter Center text horizontally in the control
taRightJustify Align text to the right side of the control
Example

This code aligns text to the right side of a label named Label1 in response to a click on a
button named RightAlign:

procedure TForml.RightAlignClick(Sender: TObject);
begin

Labell.Alignment := taRightJustify;
end;

See also
Caption property, Text property

For check boxes and radio buttons

Declaration
property Alignment: TLeftRight;

For check boxes and radio buttons, the control’s caption is always left-aligned within the
text area. If the check box is two-dimensional (its CtI3D property is False), Alignment
determines the placement of that caption area relative to the control’s check box or radio
button. If the check box is three dimensional (its Ct[3D property is True), the value of the
Alignment property has no effect on the check box.

32 Delphi Visual Component Library Reference

Alignment property

These are the possible values:

Value Meaning

taLeft]ustify The caption appears to the left of the check box or radio button.
taRightJustify The caption appears to the right of the check box or radio button.
Example

This code makes the check box two-dimensional and puts the check box on the left side
of the text:

procedure TForml.ButtonlClick(Sender: TObject);
begin
CheckBox1.Ct13D := False;
CheckBox1.Alignment := taLeftJustify;
end;

See also
Caption property

For pop-up menus

Declaration
property Alignment: TPopupAlignment;

The Alignment property determines where the pop-up menu appears when the user
clicks the right mouse button. These are the possible values and their meanings:

Value Meaning

paLeft The pop-up menu appears with its top left corner under the mouse pointer.

paCenter The pop-up menu appears with the top center of the menu under the mouse pointer.
paRight The pop-up menu appears with its top right corner under the mouse pointer.

The default value is paLeft.

Example

This example uses a pop-up menu component and a button on a form. The code places
the top right corner of a pop-up menu under the mouse pointer when the menu
appears:

procedure TForml.AlignPopupMenuClick(Sender: TObject);
begin

PopupMenul.Alignment := paRight;
end;

See also
AutoPopup property, OnPopup event

Delphi Visual Component Library Reference 33

AllocMem function

For field components

Declaration
property Alignment: TAlignment;

The Alignment property is used by some data-aware controls to center, left-, or right-
align the data in a field. Data-aware controls that support alignment include TDBGrid
and TDBEdit.

AllocMem function SysUtils

Declaration
function AllocMem(Size: Cardinal): Pointer;

AllocMem allocates a block of the given size on the heap. Each byte in the allocated
buffer is set to zero. To dispose the buffer, use the FreeMem standard procedure.

See also
ReAllocMem function

AllowAllUp property

Applies to
TSpeedButton component

Declaration
property AllowAllUp: Boolean;

The AllowAllUp property determines if all speed buttons in a group this speed button
belongs to can be unselected (in their up state) at the same time. AllowAllUp should be
used only with speed buttons in a group (that is, the value of the button’s Grouplndex
property is not zero). See the GroupIndex property for information on how to create a
group of speed buttons. If Grouplndex is zero, AllowAllUp has no effect.

If AllowAllUp is True, all of the speed buttons in a group can be unselected. All buttons
can appear in their up state.

If AllowAllUp is False, one of the speed buttons belonging to a group must be selected (in
its down state) at all times. Clicking a down button won’t return the button to its up
state. The button only becomes unselected when the user clicks one of the other buttons
in the group. In such a group, one button must always be selected. Determine which
speed button will be initially down by setting its Down property to True.

The default value is False.

Changing the value of the AllowAllUp property for one speed button in a group changes
the AllowAllUp value for all buttons in the group.

34 Delphi Visual Component Library Reference

AllowGrayed property

You can use AllowAllUp with a single bitmap button in its own group (with a
GrouplIndex value greater than 0) so that the button can be selected and remain selected
until the user clicks the button again—at which time it becomes unselected. In other
words, the button can work much like a check box. To make a single speed button
behave this way, set its GroupIndex property to a value greater than 0 (but different from
any other Grouplndex value of any other speed buttons you have), and set AllowAllUp to
True.

Example

In this example, there are three speed buttons on a form. All three belong to the same
group as all three have a GroupIndex value of 1. This line of code changes the AllowAllUp
property to True for all three speed buttons, so it’s possible that all the speed buttons in
the group can be unselected at the same time:

SpeedButton3.AllowAllUp := True;

See also
Down property, Glyph property, GroupIndex property

AllowGrayed property

Applies to
TCheckBox, TDBCheckBox components

Declaration
property AllowGrayed: Boolean;

The value of the AllowGrayed property determines if a check box can have two or three
possible states. If AllowGrayed is False, the default value, clicking a check box alternately
checks and unchecks it. If AllowGrayed is True, clicking a check box either checks, grays,
or unchecks it.

Example

This example uses a check box on a form. When the application runs, the check box is
initially checked. When the user clicks it, the check box is unchecked. Clicking it again
grays the check box.

procedure TForml.FormCreate(Sender: TObject);
begin
CheckBox1.AllowGrayed := True;
CheckBox1.State := cbChecked;
end;

See also
Checked property, State property

Delphi Visual Component Library Reference 35

AllowInPlace property

AllowInPlace property

Applies to
TOLEContainer component

Declaration
property AllowInPlace: Boolean;

The AllowlInPlace property specifies whether an OLE object can be activated in place. If
AllowInPlace is True, in-place activation is allowed. If AllowInPlace is False, in-place
activation is not allowed and the OLE object is activated in its own window (OLE 1.0-

style).

Note To support in-place activation, the OLE container application must include a
TMainMenu component.

Example
The following code sets AllowInPlace to False.

OLEContainerl.AllowInPlace := False;

See also
AutoActivate property

AllowResize property

Applies to
THeader component

Declaration
property AllowResize: Boolean;

The value of the AllowResize property determines if the user can modify the size of the
header at run time with the mouse. If AllowResize is False, the sections within a header
can’t be resized. If AllowResize is True, clicking a border of a header section and dragging
it left or right changes the width of the section. The default value is True.

Example
The following code allows the resizing of the sections of Header1.

Headerl.AllowResize := True;

See also
OnSized event, Sections property, SectionWidth property, Sizing event

36 Delphi Visual Component Library Reference

AnsiCompareStr function
p

AnsiCompareStr function SysUtils

Declaration
function AnsiCompareStr(const S1, S2: string): Integer;

AnsiCompareStr compares S1 to S2, with case sensitivity. The compare operation is
controlled by the currently installed language driver. The return value is the same as for
CompareStr.

See also
AnsiCompareText function

AnsiCompareText function SysUtils

Declaration
function AnsiCompareText (const S1, S2: string): Integer;

AnsiCompareText compares S1 to 52, without case sensitivity. The compare operation is
controlled by the currently installed language driver. The return value is the same as for
CompareStr.

See also
AnsiCompareStr function

AnsiLowerCase function SysUtils

Declaration
function AnsilLowerCase(const S: string): string;

AnsiLowerCase converts all characters in the given string to lower case. The conversion
uses the currently installed language driver.

See also
AnsillpperCase function, LowerCase function

AnsiToNative function DB

Declaration

function AnsiToNative(Locale: TLocale; const AnsiStr: string; NativeStr: PChar;
MaxLen: Word): PChar;

The AnsiToNative function translates the ANSI characters in AnsiStr (or the first MaxLen
characters) to the native character set according to Locale by calling DBIAnsiToNative.

Delphi Visual Component Library Reference 37

AnsiUpperCase function

The translated characters are returned in NativeStr with a null terminator. AnsiToNative
returns NativeStr.

AnsiUpperCase function SysUtils

Declaration
function AnsiUpperCase(const S: string): string;

AnsillpperCase converts all characters in the given string to upper case. The conversion
uses the currently installed language driver.

See also
AnsiLowerCase function, UpperCase function

Append method

Note

Applies to
TTable, TQuery, TStoredProc components

Declaration
procedure Append;

The Append method moves the cursor to the end of the dataset, puts thedataset into
Insert state , and opens a new, empty record. When an application calls Post, the new
record will be inserted in the dataset in a position based on its index, if defined. To
discard the new record, use Cancel.

This method is valid only for datasets that return a live result set.

For indexed tables, the Append and Insert methods will both put the new record in the
correct location in the table, based on the table’s index. If no index is defined on the
underlying table, then the record will maintain its position—Append will add the record
to the end of the table, and Insert will insert it at the current cursor position. In either
case, posting a new record may cause rows displayed in a data grid to change as the
dataset follows the new row to its indexed position and then fetches data to fill the data
grid around it.

Example

with Tablel do
begin
Append;
FieldByName(‘CustNo’).AsString := ‘9999';
{ Fill in other fields here }
if { you are sure you want to do this} then Post
else { if you changed your mind } Cancel;
end.

38 Delphi Visual Component Library Reference

Append procedure
ppend p

See also
TField component

Append procedure System

Declaration
procedure Append(var f: Text);

The Append procedure opens an existing file with the name assigned toF, so that new
text can be added.

F is a text file variable and must be associated with an external file using AssignFile.
If no external file of the given name exists, an error occurs.

If F is already open, it is closed, then reopened. The current file position is set to the end
of the file.

If a Ctrl+Z (ASCII 26) is present in the last 128-byte block of the file, the current file
position is set so that the next character added to the file overwrites the first Cirl+Z in the
block. In this way, text can be appended to a file that terminates with a Ctri+Z.

If F was not assigned a name, then, after the call to Append, F refers to the standard
output file (standard handle number 1).

After calling Append, F is write-only, and the file pointer is at the end of the file.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for I/O errors.

Example

var F: TextFile;
begin
if OpenDialogl.Execute then { Bring up open file dialog }
begin
AssignFile(F, OpenDialogl.FileName);
{ Open file selected in dialog }

Append (F) ; { Add more text onto end }
Writeln(F, 'appended text');
CloseFile(F); { Close file, save changes }
end;
end;
See also

AssignFile procedure, FileClose procedure, Reset procedure, Rewrite procedure

Delphi Visual Component Library Reference 39

AppendRecord method

AppendRecord method

Applies to
TTable, TQuery, TStoredProc components

Declaration
procedure AppendRecord(const Values: array of const);

The AppendRecord method appends a new record to the dataset using the field values
passed in the Values parameter. The assignment of the elements of Values to fields in the
record is sequential; the first element is assigned to the first field, the second to the
second, etc. The number of field values passed in Values may be fewer than the number
of actual fields in the record; any remaining fields are left unassigned and are NULL.
The type of each element of Values must be compatible with the type of the field in that
the field must be able to perform the assignment using AsString, Aslnteger, and so on,
according the type of the Values element.

This method is valid only for datasets that return a live result set.

Note For indexed tables, the AppendRecord and InsertRecord methods will both put the new
record in the correct location in the table, based on the table’s index. If no index is
defined on the underlying table, then the record will maintain its position—
AppendRecord will add the record to the end of the table, and InsertRecord will insert it at
the current cursor position. In either case, posting a new record in a data grid may cause
all the rows before and after the new record to change as the dataset follows the new
row to its indexed position and then fetches data to fill the grid around it.

Example
Tablel.AppendRecord([9999, ‘Doe’, ‘John’']);
See also
TField component.
AppendStr procedure SysUtils

Declaration
procedure AppendStr(var Dest: string; const S: string);

AppendStr appends S to the end of Dest. AppendStr corresponds to the statement "Dest :=
Dest + S", but is more efficient.

40 Delphi Visual Component Library Reference

Application variable
:

Application variable Forms

Declaration
Application: TApplication;

The Application variable declares an instance of your application for your project. By
default, when you create a new project, Delphi constructs an application object and
assigns it to Application. Application has several properties you can use to get information
about your application while it runs; see the TApplication component for the list of
properties.

Example
This code displays the name of your project in an edit box:
procedure TForml.ButtonlClick(Sender: TObject);
begin
Editl.Text := Application.Title;
end;

See also
Icon property, Run method, Title property

ApplyFilePath method

Applies to
TFileListBox component

Declaration
procedure ApplyFilePath(const EditText: string);

ApplyFileEditText is intended to be used in a dialog box that approximates the utility and
behavior of an Open dialog box. Such a dialog box would contain a file list box
(TFileListBox), a directory list box (T DirectoryListBox), a drive combo box
(TDriveComboBox), a filter combo box TFilterComboBox, a label, and an edit box where
the user can type a file name including a full directory path. When the user then chooses
the OK button, you would like all the controls to update with the information the user
entered in the edit box. For example, you would want the directory list box to change to
the directory specified in the path the user typed, and you want the drive combo box to
change to the correct drive if the path included a different drive letter.

If the file list box, directory list box, drive combo box, filter combo box, label, and edit
box are connected using the FileEdit, FileList, DirLabel, and DirList properties, your
application can call ApplyFilePath to update the controls with the text the user entered in
the edit box.

The user can enter any of these strings in the edit box: a file name, with or without a
path, a drive only, a drive and directory only, relative paths, or a file mask using
wildcard characters. In all cases, the ApplyFilePath method updates the controls as you

Delphi Visual Component Library Reference 41

ApplyRange method

would expect. For example, if the user includes a directory name, the directory list box
makes that directory the current one.

The EditText parameter is the text within the edit box.

Example

This example uses a file list box, a directory list box, a filter combo box, a drive combo
box, a label, an edit box, and a button on a form. When the user runs the application and
enters a path or file name in the edit box, all the controls update:

procedure TForml.FormCreate(Sender: TObject);

begin
FileListBoxl.FileEdit := Editl;
FilterComboBoxl.FileList := FileListBoxl;
DirectoryListBoxl.FileList := FileListBoxl;
DirectoryListBoxl.DirLabel := Labell;
DriveComboBox1.DirList := DirectoryListBoxl;
Buttonl.Default := True;

end;

procedure TForml.ButtonlClick(Sender: TObject);
begin

FileListBoxl.ApplyFilePath(Editl.Text);
end;

See also
Directory property, Drive property

ApplyRange method

Applies to

TTable component

Declaration
procedure ApplyRange;

The ApplyRange method is used to apply the start and end ranges established with the
SetRangeStart and SetRangeEnd methods or the EditRangeStart and EditRangeEnd
methods. This will filter the set of records from the database table accessible to the
application.

Note When comparing fields for range purposes, a NULL field is always less than any other
possible value.

Example

{ Limit the range from ‘Goleta’ to ‘Santa Barbara'}
with Tablel do
begin

EditRangeStart; { Set the beginning key }

42 Delphi Visual Component Library Reference

Arc method

FieldByName(‘City’).AsString := ‘Goleta’;

EditRangeEnd; { Set the ending key }

FieldByName(‘City’).AsString := ‘Santa Barbara’;

ApplyRange; { Tell the dataset to establish the range }
end;

See also
CancelRange method, KeyExclusive property, KeyFieldCount property, SetRange method

Arc method

Applies to
TCanvas object

Declaration
procedure Arc (X1, Y1, X2, Y2, X3, Y3, X4, V4: Integer);

The Arc method draws an arc on the canvas along the perimeter of the ellipse bounded
by the specified rectangle. Coordinates (X1, Y1 and X2, Y2) define the enclosing
rectangle for the arc. The arc starts at the intersection of the ellipse edge and the line
from the center of the ellipse to the specified starting point (X3, Y3). The arc is drawn
counterclockwise until it reaches the position where the ellipse edge intersects the line
from the center of the ellipse to the specified ending point (X4, Y4).

Example
The following lines of code draw the top quarter of an arc bounded by the current
window:

TForml.FormPaint (Sender: TObject);
var
R: TRect;
begin
R := GetClientRect; {Gets the rectangular coordinates of the current window}
Canvas.Arc(R.Left, R.Top, R.Right, R.Bottom, R.Right, R.Top, R.Left, R.Top);
end;

See also
Chord method, Draw method, DrawFocusRect method, Ellipse method, Pie method

ArcTan function System

Declaration
function ArcTan(X: Real): Real;

The ArcTan function returns the resulting arctangent of the argument.

Delphi Visual Component Library Reference 43

Arrangelcons method

You can calculate other trigonometric functions using Sin, Cos, and ArcTan in the
following expressions:

Tan(x) = Sin(x) / Cos(x)
ArcSin(x) = ArcTan (x/sqrt (l-sqr (x)))
ArcCos (x) = ArcTan (sqrt (l-sgr (x)) /x)

Example

var
R: Real;
begin
R := ArcTan(Pi);
end;

See also
Cos function, Sin function

Arrangelcons method

Applies to

TForm component

Declaration
procedure Arrangelcons;

The Arrangelcons method arranges the icons of minimized forms so that they are evenly
spaced and don’t overlap. The Arrangelcons method applies only to forms that are MDI
parent forms (have a FormStyle property value of fsMDIForm).

Example
This code runs when the user chooses a menu item called Window | Arrange Icons:

procedure TForml.WindowArrangeIconsClick(Sender: TObject);
begin

Forml.Arrangelcons;
end;

See also
Cascade method, Next method, Previous method, Tile method

AsBCD property

Applies to
TParam object

44 Delphi Visual Component Library Reference

AsBoolean property

Assigning a value to the AsBCD property sets the DataType property to ftBCD and saves
the value as the current data for the parameter.

Declaration

property AsBCD: Double;

See also
TFieldType type

AsBoolean property

Applies to
TParam object; TBooleanField, TStringField components

For TParam objects

Declaration
property AsBoolean: Boolean;

Assigning a value to the AsBoolean property sets the DataType property to ftBoolean and
saves the value as the current data for the parameter. Accessing the AsBoolean property
attempts to convert the current data to a Boolean value and returns that value.

For Boolean and string field components

Declaration
property AsBoolean: Boolean;

Run-time only. This is a conversion property. For a TBooleanField, AsBoolean can be used
to read or set the value of the field, but Value should be used for this purpose instead.

For a TStringField, AsBoolean returns True on reading the value of the field if its text
begins with the letters “Y”, “y”, “T” or “t” (for “Yes” or “True”), and False otherwise.
Using AsBoolean to write a TStringField’s value sets the string to “T” or ‘F'.

Example

if Tablel.FieldByName ('BackOrdered').AsBoolean then ...

AsCurrency property

Applies to
TParam object

Delphi Visual Component Library Reference 45

AsDate property

Declaration
property AsCurrency: Double;

Assigning a value to the AsCurrency property sets the DataType property to ftCurrency
and saves the value as the current data for the parameter. Accessing the AsCurrency
property attempts to convert the current data to a Double value and returns that value.

See also
TFieldType type

AsDate property

Applies to
TParam object

Declaration

property AsDate: TDateTime;

Assigning a value to the AsDate property sets the DataType property to ftDate and saves
the value as the current data for the parameter. Accessing the AsDate property attempts
to convert the current data to a TDateTime value and returns that value.

See also
StrToDateTime function, TFieldType type

AsDateTime property

Applies to
TParam object; TDateField, TDateTimeField, TStringField, TTimeField components

For TParam objects

Declaration
property AsDateTime: TDateTime;

Assigning a value to the AsDateTime property sets the DataType property to ftDateTime
and saves the value as the current data for the parameter. Accessing the AsDateTime
property attempts to convert the current data to a TDateTime value and returns that
value.

See also
StrToDateTime function, TFieldType type

46 Delphi Visual Component Library Reference

AsFloat property

For date, date-time, time, and string field components

Declaration
property AsDateTime: TDateTime;

Run-time only. This is a conversion property. For TDateField, TDateTimeField or
TTimeField, AsDateTime can be used to read or set the value of the field, but Value should
be used for this purpose instead.

For a TStringField, AsDateTime converts a date to a string on assigning a value to the
string field, and converts a string to a date when reading from the field.

Example
The following statement converts a string to a date for insertion into a date field:

Tablel.FieldByName (TimeStamp) .AsDateTime := StrToDateTime (Now);
See also

DateToStr function, StrToDate function, StrToDateTime function, DateTimeToStr function,
TimeToStr function, StrToTime function, Value property

AsFloat property

Applies to
TParam object; TBCDField, TCurrencyField, TFloatField, TStringField components

For TParam objects

Declaration
property AsFloat: Double;

Assigning a value to the AsFloat property sets the DataType property to ftFloat and saves
the value as the current data for the parameter. Accessing the AsFloat property attempts
to convert the current data to a Double value and returns that value.

See also
TFieldType type

For field components

Declaration

property AsFloat: Double;

Delphi Visual Component Library Reference 47

Aslinteger property

Run-time only. This is a conversion property. For a TFloatField, TBCDField or
TCurrencyField, AsFloat can be used to read or set the value of the field as a Double, but
Value should be used for this purpose instead.

For a TStringField, AsFloat converts a float to a string on assigning a value to the field,
and converts a string to a float when reading from the field.

See also
FloatToStr function, StrToFloat function

AslInteger property

Applies to
TParam object; TIntegerField, TSmallintField, TStringField, TWordField components

For TParam objects

Declaration
property AsInteger: LonglInt;

Assigning a value to the AsInteger property sets the DataType property to ftInteger and
saves the value as the current data for the parameter. Accessing the AsInteger property
attempts to convert the current data to a Longint value and returns that value.

See also
TFieldType type

For field components

Declaration
property AsInteger: Longint;

Run-time only. This is a conversion property. For a TIntegerField, TSmallintField or
TWordField, AsInteger can be used to read or set the value of the field as a Longint, but
Value should be used for this purpose instead.

For a TStringField, AsInteger converts an integer to a string on assigning a value to the
field, and converts a string to an integer when reading from the field.

See also
Data Access Components Hierarchy, IntToStr function, StrTolnt function, Value

property

48 Delphi Visual Component Library Reference

Assign method
g

Assign method

Applies to

TBitmap, TBrush, TClipboard, TControlScrollBar, TFieldDef, TFieldDefs, TFont, Tlcon,
TIndexDef, TIndexDefs, TMetafile, TParam, TParams, TPen, TPicture, TStringList, TStrings
objects

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

For the Clipboard

Declaration:
procedure Assign(Source: TPersistent);

The Assign method assigns the object specified by the Source parameter to the Clipboard.
If the object is a TGraphic, TBitmap, TPicture or TMetafile, the image will be copied to the
Clipboard in the corresponding format (either CF_BITMAP or CF_METAFILE). For
example, the following code copies the bitmap from a bitmap object named Bitmap1 to
the Clipboard:

Clipboard.Assign(Bitmapl);

To retrieve an object from the Clipboard, simply use the Assign method of an
appropriate object. For example, if a bitmap is on the Clipboard, the following code
copies it to a bitmap object named Bitmap1:

Bitmapl.Assign(Clipboard) ;

Example
The following code copies the bitmap of a speed button named SpeedButton1 to the
Clipboard:

Clipboard.Assign(SpeedButtonl.Glyph);

See also
AsText property, Clipboard variable, HasFormat property

For field definitions

Declaration
procedure Assign(FieldDefs: TFieldDefs);

Assign creates a new set of TFieldDef objects in Items from the FieldDefs parameter. Any
previously entries in Items are freed.

Delphi Visual Component Library Reference 49

Assign method

For index definitions

Declaration
procedure Assign(IndexDefs: TIndexDefs);

Assign creates a new set of TIndexDef objects in Iterns from the IndexDefs parameter. Any
previously entries in Items are freed.

For field components

Declaration
procedure Assign(Source: TPersistent);

Assign copies data from one field to another. Both fields must be valid and have the
same DataType and Size, and the DataSize of Source must be 255 bytes or less.

The restrictions on type compatibility and size do not apply to TBlobField, TBytesField,
TGraphicField, TMemoField, and TVarBytesField. For a TBlobField, TBytesField or
TVarBytesField, the source can be a TBlobField, TBytesField, TVarBytesField, TMemoField
component, TGraphicField component, TMemoField component, TStrings object, TPicture
or TGraphicField.

Examples

{ Copy one date-time field to another }
DateTimeFieldl.Assign(DateTimeField2);

{ Copy a graphic field to a blob field }
BlobFieldl.Assign(GraphicFieldl);

{Copy strings in a TMemo to a TMemoField}
MemoFieldl.Assign (Memol.Lines);

See also
DataType property, Size property

For TParam objects

Declaration
procedure Assign(Param: TParam);

The Assign method transfers all of the data contained in the Param parameter to the
TParam object that calls it. If, however, you have specified a value for the ParamType
property of the TParam object that calls Assign, the data in the Param parameter will not
be assigned to the TParam object.

Example

{ Copy the CustNo parameter from Queryl to Query2 }

50 Delphi Visual Component Library Reference

Assign method
g

Query?.ParamByName (‘CustNo’) .Assign(Queryl.ParamByName (‘CustNo’));

See also
ParamType property, DataType property, AssignField method

For TParams objects

Declaration
procedure Assign(Source: TPersistent);

If Source is another TParams object, Assign discards any current parameter information
and replaces it with the information from Source. If Source is any other type of object,
Assign calls its inherited method. Use this method to save and restore a set of parameter
information or copy another object’s information.

Example

var SavedParams: TParams;

{ Initialize SavedParams }

SavedParams := TParams.Create;

{ Save the parameters for Queryl }
SavedParams.Assign (Queryl.Parameters);
{ Do something with Queryl }

{ Restore the parameters to Queryl }

Queryl.Parameters.Assign(SavedParams) ;
SavedParams.Free;

See also
AssignValues method

For other objects

Declaration

procedure Assign(Source: TPersistent);

The Assign method assigns one object to another. The general form of a call to Assign is
Destination.Assign(Source);

which tells the Destination object to assign the contents of the Source object to itself.

In general, the statement “Destination := Source” is not the same as the statement
“Destination.Assign(Source)”. The statement “Destination := Source” makes Destination
reference the same object as Source, whereas "Destination.Assign(Source)" copies the
contents of the object references by Source into the object referenced by Destination.

Delphi Visual Component Library Reference 51

AssignCrt procedure

If Destination is a property of some object, however, and that property is not a reference
to another object (such as the ActiveControl property of a form, or the DataSource
property of a data-aware control), then the statement "Destination := Source" is the same
as "Destination.Assign(Source)". Consider these statements:

Buttonl.Font := Button2.Font;
ListBoxl.Items := Memol.Lines;
Tablel.Fields[0] := Queryl.Fields([2];

They correspond to these statements:

Buttonl.Font.Assign(Button2.Font);
ListBoxl.Items.Assign(Memol.Lines);
Tablel.Fields[0].Assign(Queryl.Fields[2]);

The actions performed by Assign depend on the actual types of Destination and Source.
For example, if Destination and Source are string objects (TStrings), the strings contained
in Source are copied into Destination. Likewise, if Destination and Source are bitmaps
(TBitmap), the bitmap contained in Source is copied into Destination.

Although the compiler allows any two TPersistent objects to be used in a call to Assign,
the call succeeds at run time only if the objects involved "know" how to perform an
assignment. For example, if Destination is a button (TButton) and Source is an edit box
(TEdit), the call to Assign raises an EConvertError exception at run time.

An object of one type can always be assigned to another object of the same type. In
addition, Assign supports the following special cases:

o If Destination is of type TPicture then Source can be of type TBitmap, Tlcon, or TMetafile.

o If Destination is of type TBitmap, Tlcon, or TMetafile then Source can be of type TPicture
if the Graphic property of the picture is of the same type as Destination.

e If Destination is of type TBlobField then Source can be of type TBitmap, TPicture, or
TStrings.

Example
The following code changes the properties of a label’s font so that they match the
properties of the button’s font when the user clicks the button:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Labell.Font.Assign(Buttonl.Font);
end;

AssignCrt procedure WinCrt

Declaration
procedure AssignCrt(var f: Text);

The AssignCrt procedure associates a text file with the CRT window.

52 Delphi Visual Component Library Reference

Assigned function
g

AssignCrt works exactly like the Assign standard procedure except that no file name is
specified. Instead, the text file associates with the CRT window, which emulates a text-
based CRT in the Windows environment. Subsequent Write and Writeln operations on
the file write to the CRT window, and Read and ReadIn operations read from the CRT
window.

This allows faster output (and input) than would normally be possible using standard
output (or input).

See also
AssignFile procedure, Read procedure, Readln procedure, Write procedure, Writeln
procedure

Assigned function System

Declaration
function Assigned(var P): Boolean;
The Assigned function tests if a pointer or procedural variable isnil (unassigned).

P must be a variable reference of a pointer or procedural type. Assigned(P) corresponds
to the test P<> nil for a pointer variable, and @P <> nil for a procedural variable.

Assigned returns True if P is nil, False otherwise.

Note Assigned can’t detect a “stale” pointer—that is, one that isn’tnil but no longer points to
valid data. For example, in the following code, Assigned won't detect the fact that P isn't

valid.
Example
var P: Pointer;
begin
P := nil;
if Assigned (P) then Writeln ('You won''t see this');
P := @P;
if Assigned (P) then Writeln ('You''ll see this');
end;

AssignField method

Applies to
TParam object

Declaration

procedure AssignField(Field: TField);

Delphi Visual Component Library Reference 53

AssignFile procedure

The AssignField method transfers the DataType value and Name from Field. Use
AssignField to set a parameter from a TField component.

Example

{ Copy the CustNo field value from Queryl to the CustNo parameter of Query?2 }
Query?2.ParamByName (‘CustNo’) .AssignField (Queryl.FieldNyName (‘CustNo’));

AssignFile procedure System

Declaration
procedure AssignFile(var F, String);

To avoid scope conflicts, AssignFile replaces Assign in Delphi. However, for backward
compatibility you can still use Assign.

The AssignFile procedure associates the name of an external file with a file variable.

F is a file variable of any file type, and string is a string-type expression or an expression
of type PChar if extended syntax is enabled. All further operations on F operate on the
external file name.

After calling AssignFile, F is associated with the external file until F is closed.

When the String parameter is empty, F associates with the standard input or standard
output file.

If assigned an empty name, after a call to Reset (F), F refers to the standard input file, and
after a call to Rewrite (F), F refers to the standard output file.

Do not use AssignFile on a file variable that is already open.

A file name consists of a path of zero or more directory names separated by backslashes,
followed by the actual file name:

Drive:\DirName\...\DirName\FileName

If the path begins with a backslash, it starts in the root directory; otherwise, it starts in
the current directory.

Drive is a disk drive identifier (A-Z). If Drive and the colon are omitted, the default drive
is used. \DirName\...\DirName is the root directory and subdirectory path to the file
name. FileName consists of a name of up to eight characters, optionally followed by a
period and an extension of up to three characters. The maximum length of the entire file
name is 79 characters.

Example

var
F: TextFile;
S: string;
begin
if OpenDialogl.Execute then { Display Open dialog box }

54 Delphi Visual Component Library Reference

begin
AssignFile(F, OpenDialogl.FileName);
Reset (F);
Readln(F, S);
Editl.Text := S;
CloseFile(F);

end;

end;

See also

AssignPrn procedure
g p

{ File selected in dialog box }

{ Read the first line out of the file }
{ Put string in a TEdit control }

Append procedure, FileClose procedure, Reset procedure, Rewrite procedure

AssignPrn procedure

Printers

Declaration

procedure AssignPrn(var F: Text);

The AssignPrn procedure assigns a text-file variable to the printer. After the variable is
assigned, your application must call the Rewrite procedure. Then any time an
application writes data to F, the text-file variable, the data is sent to the printer using the

pen and font of the Canvas property.

Example

This code prints a line of text on the printer when the user clicks the button on the form:

procedure TForml.ButtonlClick(Sender: TObject);

var
MyFile: TextFile;

begin
AssignPrn(MyFile);
Rewrite (MyFile);
Writeln(MyFile, ‘Print this text’);
System.CloseFile (MyFile);

end;

AssignStr procedure

SysUtils

Declaration

procedure AssignStr(var P: PString; const S: string);

AssignStr assigns a new dynamically allocated string to the given string pointer.
AssignStr corresponds to the statement DisposeStr(P) followed by the statement P :=
NewStr(S). Note that P must be NIL or contain a valid string pointer before calling
AssignStr. In other words, AssignStr cannot be used to initialize a string pointer variable.

Delphi Visual Component Library Reference 55

AssignValue method

Example

var
P: PString;
begin
P := NewStr('First string'); { Allocate and point to 'First string' }
AssignStr(P, 'Second string'); { Dispose of 'First string', allocate and point to }
{ 'Second string' }
DisposeStr(P); { Dispose of 'Second string' }
end;

See also
DisposeStr procedure

AssignValue method

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

procedure AssignValue(const Value: TVarRec);

The AssignValue method sets the field to Value using one of the Aslnteger, AsBoolean,
AsString or AsFloat properties, depending on the type of Value. If Value is of type TObject
or a TObject descendant, AssignValue uses the Assign method to transfer the information.

Example

Fieldl.AssignValue(’new string’);

AssignValues method

Applies to
TParams object

Declaration
procedure AssignValues(Value: TParams);

For each entry in Items, the AssignValues method attempts to find a parameter with the
same Name property in Value. If successful, the parameter information (type and current
data) from the Value parameter is assigned to the Items entry. Entries in Items for which
no match is found are left unchanged.

56 Delphi Visual Component Library Reference

AsSmallint property

Example

var SavedParams: TParams;

{ Initialize SavedParams }
SavedParams := TParams.Create;

{ Save the parameters for Queryl }
SavedParams.Assign(Queryl.Parameters);
{ Do something with Queryl }

{ Restore the parameters to Queryl }

Queryl.Parameters.AssignValues (SavedParams) ;
SavedParams.Free;

AsSmallint property

Applies to
TParam object

Declaration

procedure SetAsSmalllnt (Value: Longint);

Assigning a value to the AsSmalllnt property sets the DataType property to fsSmalllnt
and save the value as the current data for the parameter. Accessing the AsSmalllnt
property attempts to convert the current data to a Smalllnt value and returns that value.

AsString property

Applies to

TParam object; TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField,
TDateField, TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField,
TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

For TParam objects

Declaration
property AsString: string;

Assigning a value to the AsString property sets the DataType property to ftString and
saves the value as the current data for the parameter. Accessing the AsString property
attempts to convert the current data to a string value and returns that value.

See also
DateToStr function, DateTimeToStr function, FloatToStr function, IntToStr function,
TFieldType type, TimeToStr function

Delphi Visual Component Library Reference 57

AsText property

Note

For field components

Declaration
property AsString: string;

Run-time only. This a conversion property. For a TStringField, AsString can be used to
read or set the value of the field as a string, but Value should be used for this purpose
instead.

For TBCDField, TCurrencyField, TDateField, TDateTimeField, TFloatField, TIntegerField,
TSmallintField, TTimeField, and TWordField, AsString converts a string to the appropriate
type on inserting to or updating the field, and converts the type to a string when reading
from the field.

For TBooleanField, on insert or update AsString sets the value to True if the text begins
with the letter “Y”, “y”, “T” or “t” and to False otherwise. When reading from a Boolean
field, AsString returns “T” or ‘F".

For a TMemoField, AsString should only be used to read from the field. It sets the string
value to ‘(Memo)’. An exception is raised if AsString is used to write to a TMemoField.

For a TGraphicField, AsString should only be used to read from the field. It sets the string
value to (Graphic)’. An exception is raised if AsString is used to write to a TGraphicField.

For a TBlobField, AsString should only be used to read from the field. It sets the string
value to ‘(Blob)’. An exception is raised if AsString is used to write to a TBlobField.

For a TBytesField, AsString should only be used to read from the field. It sets the string
value to ‘(Bytes)’. An exception is raised if AsString is used to write to a TBytesField.

For a TVarBytesField, AsString should only be used to read from the field. It sets the
string value to ‘(Var Bytes)’. An exception is raised if AsString is used to write to a
TVarBytesField.

When working with TMemoField, TGraphicField, or TBlobField, use the Assign,
LoadFromFile, or LoadFromStream methods to write to a field, and Assign, SaveToFile, or
SaveToStream methods to read from a field.

AsText property

Applies to
TClipboard object

Declaration
property AsText: String;

Run-time only. The AsText property returns the current contents of the Clipboard as a
string. The Clipboard must contain a string or an exception occurs.

You can also use the AsText property to place a copy of a string on the Clipboard. Assign
a string as the value of AsText.

58 Delphi Visual Component Library Reference

AsTime property

The string value of the AsText property is limited to 255 characters. If you need to set
and retrieve more than 255 characters, use the SetTextBuf and GetTextBuf Clipboard
methods.

If the Clipboard contains a string, this expression is True:

Clipboard.HasFormat (CF_TEXT)

Example
The following code retrieves the contents of the Clipboard as a string and displays the
value in a label:

begin
Labell.Caption := Clipboard.AsText;
end;

See also
Clipboard variable, HasFormat method

AsTime property

Applies to
TParam object

Declaration

property AsTime: TDateTime;

Assigning a value to the AsTime property sets the DataType property to ftTime and saves
the value as the current data for the parameter. Accessing the AsTime property attempts
to convert the current data to a TDateTime value and returns that value.

See also
StrToDateTime function, TDateTime type, TFieldType type

AsWord property

Applies to
TParam object

Declaration

property AsWord: Longint;

Assigning a value to the AsWord property sets the DataType property to ftWord and
saves the value as the current data for the parameter. Accessing the AsWord property
attempts to convert the current data to a Longint value and returns that value.

Delphi Visual Component Library Reference 59

AutoActivate property

See also
TFieldType type

AutoActivate property

Applies to
TOLEContainer component

Declaration
property AutoActivate: TAutoActivate;

AutoActivate determines how an object in an OLE container can be activated. These are
the possible values:

Value Meaning

aaManual The OLE object must be manually activated. To activate the OLE object manually,
set the Active property to True.

aaGetFocus The user activates the OLE object by clicking the OLE container or pressing Tab

until focus shifts to the OLE container. If the OLE container has a TabOrder of 0,
the OLE container initially receives focus but the OLE object won't be activated.

aaDoubleClick The user activates the OLE object by double-clicking the OLE container, or
pressing Enter when the container has focus. An OnDbIClick event is generated
immediately after the OLE server application is activated.

Example
The following code sets the activation method of OLEContainer] to aaManual, then
activates OLEContainerl:

OLEContainerl.AutoActivate := aaManual;
OLEContainerl.Active := True;

See also
OnActivate event

AutoCalcFields property

Applies to
TTable, TQuery, TStoredProc components

Declaration
property AutoCalcFields: Boolean;

The AutoCalcFields property determines when OnCalcFields is called. OnCalcFields is
always called whenever an application retrieves a record from the database. If
AutoCalcFields is True, then OnCalcFields is called also whenever a field in a dataset is
edited.

60 Delphi Visual Component Library Reference

AutoDisplay property

If AutoCalcFields is True, OnCalcFields should not perform any actions that modify the
dataset (or the linked dataset if it is part of a master-detail relationship), because this can
lead to recursion. For example, if OnCalcFields performs a Post, and AutoCalcFields is
True, then OnCalcFields will be called again, leading to another Post, and so on.

AutoDisplay property

Applies to
TDBImage, TDBMemo component

Declaration
property AutoDisplay: Boolean;

The value of the AutoDisplay property determines whether to automatically display the
contents of a memo or graphic BLOB in a database memo (I'DBMemo) or database
image (TDBImage) control.

If AutoDisplay is True (the default value), the control automatically displays new data
when the underlying BLOB field changes (such as when moving to a new record).

If AutoDisplay is False, the control clears whenever the underlying BLOB field changes.
To display the data, the user can double-click on the control or select it and press Enter.
In addition, by calling the LoadMemo method of a database memo or the LoadPicture
method of a database image you can ensure that the control is showing data.

You might want to change the value of AutoDisplay to False if the automatic loading of
BLOB fields seems to take too long.

Example
The following code displays the text BLOB in DBMemo1.

DBMemol.AutoDisplay := True;

See also
LoadMemo method, LoadPicture method

AutoEdit property

Applies to

TDataSource component
Declaration

property AutoEdit: Boolean;

AutoEdit determines if data-aware controls connected to TDataSource automatically
place the current record into edit mode by calling the table’s Edit method when the user
begins typing within one of them. AutoEdit is True by default; set it to False to protect the

Delphi Visual Component Library Reference 61

AutoEnable property

data from being unintentionally modified. When AutoEdit is False, you can still call the
Edit method to modify a field.

AutoEnable property

Applies to
TMediaPlayer component

Declaration
property AutoEnable: Boolean;

The AutoEnable property determines whether the media player automatically enables
and disables individual buttons in the component.

If AutoEnable is True, the media player automatically enables or disables its control
buttons. The media player determines which buttons to enable or disable by the current
mode specified in the Mode property, and the current multimedia device type specified
in the DeviceType property.

AutoEnable overrides the EnabledButtons property. The buttons enabled or disabled
automatically by the media player supersede any buttons enabled or disabled with
EnabledButtons.

If AutoEnable is False, the media player does not enable or disable buttons. You must
enable or disable buttons with the EnabledButtons property.

The following table shows whether buttons are automatically enabled or disabled for
each device mode:

Button Play Record Pause Stop Not Open
Back Enabled Enabled Enabled Enabled Disabled
Eject Enabled Enabled Enabled Enabled Disabled
Next Enabled Enabled Enabled Enabled Disabled
Pause Enabled Enabled Enabled Disabled Disabled
Play Disabled Disabled Enabled Enabled Disabled
Prev Enabled Enabled Enabled Enabled Disabled
Record Disabled Disabled Enabled Enabled Disabled
Step Enabled Enabled Enabled Enabled Disabled
Stop Enabled Enabled Disabled Disabled Disabled
Example

The following code causes all of the buttons of MediaPlayer1 to become disabled when a
bitmap button is clicked:

procedure TForml.BitBtnlClick(Sender: TObject);
begin
with MediaPlayerl do begin
AutoEnable := False;

62 Delphi Visual Component Library Reference

AutoMerge property

EnabledButtons := [];
end;
end;

See also
AutoOpen property

AutoMerge property

Applies to
TMainMenu component

Declaration
property AutoMerge: Boolean;

The AutoMerge property determines if the main menus (I'MainMenu) of forms other
than the main form merge with the main menu of the main form in non-MDI
applications at run time. The default value is False. To merge the form’s menus with the
main menu in the main form, set the AutoMerge property of each main menu you want
merged to True. Make sure that the AutoMerge property of the main menu you are
merging with other menus remains False. How menus merge depends on the value of
the GroupIndex property for each menu item.

If the application is an MDI application (the FormStyle properties are set so the main
form is a parent form and subsequent forms are child forms), menu merging occurs
automatically and you don’t need to use the AutoMerge property. In an MDI application,
you should be sure that the AutoMerge value for the main menu of the parent form is
False, or else the menu bar of the parent form disappears when a child form appears.

Example

This example uses two forms with a main menu and a button on each form. Using the
Object Inspector, set the Grouplndex value for each menu item on the menu bar in the
second form to a number greater than 0. When the application runs and the user clicks
the button on the first form, the main menu on the second form merges with the main
menu of the first form. When the user clicks the button on the second form, the form
closes.

procedure TForml.ButtonlClick(Sender: TObject);
begin
Form2.MainMenul.AutoMerge := True;
Form?2 . Show;
end;

This is the code for the button-click event handler on the second form:

procedure TForm2.ButtonlClick(Sender: TObject);
begin

Close;
end;

Delphi Visual Component Library Reference 63

AutoOpen property

To run this example, you must add Unit2 to the uses clause of Unit1.

See also
Grouplndex property, Merge method, Unmerge method

AutoOpen property

Applies to
TMediaPlayer component

Declaration
property AutoOpen: Boolean;

The AutoOpen property determines if the media player is opened automatically when
the application is run. If AutoOpen is True, the media player attempts to open the
multimedia device specified by the DeviceType property (or FileName if DeviceType is
dtAutoSelect) when the form containing the media player component is created at run
time. If AutoOpen is False, the device must be opened with a call to the Open method.
AutoOpen defaults to True.

If an error occurs when opening the device, an exception of type EMCIDeviceError is
raised which contains the error message. Upon completion, a numerical error code is
stored in the Error property, and the corresponding error message is stored in the
ErrorMessage property.

The Wait property determines whether control is returned to the application before
opening the multimedia device. The Notify property determines whether opening the
device generates an OnNotify event.

Example
The following code opens MediaPlayer1 if AutoOpen was not set to True. This code
assumes that an appropriate value was specified for FileName at design time.

with MediaPlayerl do
if not AutoOpen then
Open;

See also
Close method

AutoPopup property

Applies to
TPopupMenu component

64 Delphi Visual Component Library Reference

AutoRewind property

The AutoPopup property determines if the pop-up menu appears when the user clicks
the right mouse button on the component that has this menu specified as the value of its
PopupMenu property. If AutoPopup is True, a right click displays the pop-up menu. If
AutoPopup is False, the menu won't appear when the user clicks the right mouse button.
The default value is True.

Declaration

property AutoPopup: Boolean;

To display a pop-up menu when AutoPopup is False, you must use the Popup method.

Example
The following prevents the pop-up menu from appearing when the user clicks the right
mouse button:

PopupMenul .AutoPopup := False;

See also
OnPopup event, Popup method

AutoRewind property

Applies to
TMediaPlayer component

Declaration
property AutoRewind: Boolean;

The AutoRewind property determines if the media player control rewinds before playing
or recording.

If AutoRewind is True and the current position is at the end of the medium, Play or
StartRecording moves the current position to the beginning of the medium before
playing or recording. If AutoRewind is False, the user must click the Prev button or your
code must call Previous to move to the beginning.

Note If values have been assigned to StartPos or EndPos or if the multimedia device uses
tracks, AutoRewind has no effect on playing or recording. When you call Play or
StartRecording, the current position remains at the end of the medium.

Example
The following code plays MediaPlayer. If AutoRewind is False, Previous is called to rewind
after Play is finished.

MediaPlayer.Wait := True;
MediaPlayer.Play;
if not MediaPlayer.AutoRewind then MediaPlayer.Previous;

Delphi Visual Component Library Reference 65

AutoScroll property

See also
Rewind method

AutoScroll property

Applies to
TForm, TScrollBox, TTabSet components

For tab set controls

Declaration
property AutoScroll: Boolean;

The AutoScroll property determines if scroll buttons automatically appear in a tab set
control if there isn’t room in the control to display all the tabs.

If AutoScroll is False, your application can still access tabs that aren’t visible by using the
FirstIndex or Tablndex properties at design time or run time, but the user can’t click on
the tabs with the mouse at run time.

Example
This code displays scroll buttons in the tab set control if all the tabs aren’t visible:

TabSet1l.AutoScroll := True;

See also
Firstindex property, Tablndex property

For forms and scroll boxes

Declaration
property AutoScroll: Boolean;

The AutoScroll property determines if scroll bars appear on the form when the form is
not large enough to display all the controls it contains. If AutoScroll is True, the scroll
bars appear automatically when necessary. For example, if the user resizes the form so
that it is smaller and some controls are partially obscured, scroll bars appear. If
AutoScroll is False, no scroll bars appear.

Example

This example uses a label on a form. When the form becomes active, the label displays a
message informing the user whether scroll bars will be available if the form is resized so
that not all controls are fully visible.

procedure TForml.FormActivate(Sender: TObject);
begin

66 Delphi Visual Component Library Reference

AutoSelect property

if AutoScroll then
Labell.Caption := 'Scroll bars might appear!'
else
Labell.Caption := 'No scroll bars will appear';
end;

See also
HorzScrollBar property, ScrolllnView method, VertScrollBar property

AutoSelect property

Applies to
TDBEdit, TDBLookupCombo, TEdit, TMaskEdit components

Declaration
property AutoSelect: Boolean;

The value of the AutoSelect property determines if the text in the edit box or combo box
is automatically selected when the user tabs to the control. If AutoSelect is True, the text is
selected. If AutoSelect is False, the text is not selected.

The default value is True.

Example

This example uses an edit box and a check box on a form. Set the caption of the check
box to “AutoSelect text’. When the user checks the check box, text is automatically
selected each time the user tabs to the edit box. If the user unchecks the check box, text is
no longer selected automatically when the user tabs to the edit box.

procedure TForml.CheckBox1Click(Sender: TObject);
begin
if CheckBox1.Checked then
Editl.AutoSelect := True
else
Editl.AutoSelect := False;
end;
end;

See also
AutoSize property, SelLength property, SelStart property, SelText property, Text property

AutoSize property

Applies to
TDBEdit, TDBText, TEdit, TImage, TLabel, TMaskEdit, TOLEContainer components

Delphi Visual Component Library Reference 67

AutoSize property

Note

The AutoSize property determines if the component automatically resizes to match the
size of its contents.

For images

Declaration
property AutoSize: Boolean;

When the AutoSize property is True, the image control resizes to accommodate the
image it contains (specified by the Picture property). When AutoSize is False, the image
control remains the same size, regardless of the size of the image. If the image control is
smaller than the image, only the portion of the picture that fits inside the image
component will be visible.

The default value is False.

You must remember to set the AutoSize property to True before loading the picture, or
AutoSize has no effect.

To resize the image to fill an image control completely when the control is larger than
the native size of the image, use the Stretch property.

Example
This example uses an image control and a button. Resize the image control so that it is
too small to display the entire bitmap. When the user clicks the button, the bitmap is
loaded into the image control, and the image control resizes to display the bitmap in its
entirety.

procedure TForml.ButtonlClick(Sender: TObject);

begin

Imagel.AutoSize := True;

Imagel.Picture.LoadFromFile('c:\windows\arches.bmp');
end;

See also
LoadFromFile method, Stretch property

For edit boxes and database lookup combo boxes

Declaration
property AutoSize: Boolean;

When the AutoSize property is True, the height of the edit box changes to accommodate
font size changes to the text. When AutoSize is False, the edit box remains the same size,
regardless of any font changes. The default value is True.

If an edit box has no border, changing the value of AutoSize has no effect. In other
words, the BorderStyle property must have a value of bsSingle.

68 Delphi Visual Component Library Reference

AutoSize property
Example

This example uses an edit box, a label, and a button on a form. When the user clicks the
button, the font in the edit box enlarges, and the edit box enlarges also to accommodate
the larger font size.

procedure TForml.ButtonlClick(Sender: TObject);
begin

Editl.AutoSize := True;

Editl.Font.Size := 20;

Labell.Caption := 'The edit box is bigger now';
end;

See also
Font property

For label and database text components

Declaration
property AutoSize: Boolean;

When the AutoSize property is True, the label component resizes to the width and length
of the current string in the label’s Caption property. If you type text for a label while
AutoSize is True, the label grows for each character you type. If you change the font size
of the text, the label resizes to the new font size. When AutoSize is False, the size of the
label is not affected by the length of the string in its Caption property.

The default value of AutoSize is True.

Example

The following code keeps the size of the label control constant, even though the length
of the label’s caption changes. As a result, the caption of the label is probably too long to
display in the label when the user clicks the button:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Labell.AutoSize := False;

Labell.Caption := 'This string is too long as the caption of this label';
end;

See also
WordWrap property

For OLE containers

Declaration

property AutoSize: Boolean;

Delphi Visual Component Library Reference 69

AutoTracking typed constant

Autosize determines whether the OLE container automatically resizes to the size of the
OLE object it contains.

If Autosize is True, the OLE container adopts the shape of the OLE object at run time. If
the user activates the object and changes its size, the OLE container resizes to the new
size. Setting Autosize to True may unintentionally cause the OLE container to resize to a
shape that exists outside the client area of the form or over other controls.

If Autosize is False, the shape of the OLE container remains constant. The picture of the
OLE object is clipped to fit in the shape of the OLE container when deactivated. This
clipping does not affect the OLE object itself, however. The user can still access the entire
OLE object when it is activated.

Example
The following code resizes OLEContainer] automatically when activated:

OLEContainerl.AutoSize := True;

AutoTracking typed constant WinCrt

Declaration
const AutoTracking: Boolean = True;
The AutoTracking typed constant controls automatic cursor tracking in the CRT window.

When AutoTracking is True, the CRT window automatically scrolls to ensure that the
cursor is visible after each Write and Writeln.

If AutoTracking is False, the CRT window will not scroll automatically, and text written
to the window might not be visible to the user.

AutoUnload property

Applies to
TReport component

Declaration
property AutoUnload: Boolean;

The AutoUnload property determines whether ReportSmith Runtime unloads from
memory when you have finished running a report.

If AutoUnload is True, ReportSmith Runtime unloads as soon as the report is finished
running.

If AutoUnload is False, ReportSmith Runtime remains in memory. For example, you can
create an application that includes a menu item that runs a report. After the report runs,
you want ReportSmith Runtime to stay in memory so the report can be quickly rerun

70 Delphi Visual Component Library Reference

Back method

again. To remove ReportSmith Runtime from memory when AutoUnload is False, you
must then call the CloseApplication method.

Example

The following code sets AutoUnload to False, so that Report1 can be run twice using two
different variables. After the second run, ReportSmith is unloaded by a call to
CloseApplication.

Reportl.AutoUnload := False;

if Reportl.SetVariable(’'FName’, ‘Linda’) then
Reportl.Run;

if Reportl.SetVariable(’'LName’, ‘King’) then
Reportl.Run;

Reportl.CloseApplication(False);

Back method

Applies to
TMediaPlayer component

Declaration
procedure Back;

The Back method steps backward a number of frames (determined by the value of the
Frames property) in the currently loaded medium. Back is called when the Back button
on the media player control is clicked at run time.

Upon completion, Back stores a numerical error code in the Error property and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Back method has been completed. The Notify property determines whether Back
generates an OnNotify event.

Example

The following example lets the user pick an .AVI video file using OpenDialog1 and
opens that file in MediaPlayer1. Then, the Back button can be used to step backward
through the .AVI clip. You could use this to hide MediaPlayer1 and design your own
user interface for the media player.

procedure TForml.OpenClick(Sender: TObject);

begin
OpenDialogl.Filename := '*.*';
if OpenDialogl.Execute then
begin

MediaPlayerl.Filename := OpenDialogl.Filename;
MediaPlayerl.Open;
end;
end;

Delphi Visual Component Library Reference 71

BackgroundColor property

procedure TForml.BackClick(Sender: TObject);
begin

MediaPlayerl.Back;
end;

See also
Capabilities property, OnClick event, Rewind method, Step method

BackgroundColor property

Applies to
TTabSet component

Declaration
property BackgroundColor: TColor;

The BackgroundColor property determines the background color of the tab set control.
The background area of the tab set control is the area between the tabs and the border of
the control. For a list of possible color values, see the Color property.

Example
This code changes the background color of the tab set control:

TabSetl.BackgroundColor := clBackground;

See also
DitherBackground property

BatchMove method

Applies to
TTable component

Declaration
function BatchMove (ASource: TDataSet; AMode: TBatchMode): Longint;

The BatchMove method copies, appends, updates, or deletes records in the TTable.
ASource is a TTable linked to a database table containing the source records. AMode is the
copy mode; it can be any of the elements of TBatchMode: bat Append, batUpdate,
batAppendUpdate, batDelete, or batCopy.

BatchMove returns the number of records operated on.

Example

Tablel.BatchMove (Table2, batAppend);

72 Delphi Visual Component Library Reference

BeforeCancel event

See also
TBatchMove component

BeforeCancel event

Applies to
TTable, TQuery, TStoredProc components

Declaration
property BeforeCancel: TDataSetNotifyEvent;

The BeforeCancel event is activated at the beginning of a call to the Cancel method. This
event is the first action taken by Cancel. If the dataset is not in Edit state or there are no
changes pending, then Cancel will not activate the BeforeCancel event.

By assigning a method to this property, you can take any special actions required by the
event. By raising an exception in this event handler, you can prevent the Carncel
operation from occurring.

See also
AfterCancel event

BeforeClose event

Applies to
TTable, TQuery, TStoredProc components

Declaration
property BeforeClose: TDataSetNotifyEvent;

The BeforeClose event is activated before the dataset is closed, either by calling the Close
method or by setting the Active property to False. This event is the first action taken by
Close.

By assigning a method to this property, you can take any special actions required by the
event. By raising an exception in this event handler, you can prevent the Close operation
from occurring.

See also
AfterClose event

Delphi Visual Component Library Reference 73

BeforeDelete event

BeforeDelete event

Applies to
TTable, TQuery, TStoredProc components

Declaration
property BeforeDelete: TDataSetNotifyEvent;

The BeforeDelete event is activated when the dataset begins a call to Delete. This event is
the first action taken by the Delete method.

By assigning a method to this property, you can take any special actions required by the
event. By raising an exception in this event handler, you can prevent the Delete
operation from occurring.

See also
AfterDelete event

BeforeEdit event

Applies to
TTable, TQuery, TStoredProc components

Declaration
property BeforeEdit: TDataSetNotifyEvent;

The BeforeEdit event is activated when the dataset begins a call to the Edit method. This
event is the first action taken by Edit.

By assigning a method to this property, you can take any special actions required by the
event. By raising an exception in this event handler, you can prevent the Edit operation
from occurring.

See also
AfterEdit event

Beforelnsert event

Applies to
TTable, TQuery, TStoredProc components

Declaration

property Beforelnsert: TDataSetNotifyEvent;

74 Delphi Visual Component Library Reference

BeforeOpen event

The Beforelnsert event is activated when the dataset begins a call to the Insert or Append
methods. This event is the first action taken by Insert or Append.

By assigning a method to this property, you can take any special actions required by the
event. By raising an exception in this event handler, you can prevent thelnsert operation
from occurring.

See also
Afterlnsert event

BeforeOpen event

Applies to
TTable, TQuery, TStoredProc components

Declaration
property BeforeOpen: TDataSetNotifyEvent;

The BeforeOpen event is activated before the dataset is opened, either by calling the Open
method or by setting the Active property to True. This event is the first action taken by
the Open method. Typically, the BeforeOpen event handler opens any private lookup
tables used by other event handlers in the dataset.

By assigning a method to this property, you can take any special actions required by the
event. By raising an exception in this event handler, you can prevent the Open operation
from occurring.

See also
AfterOpen event

BeforePost event

Applies to
TTable, TQuery, TStoredProc components

Declaration
property BeforePost: TDataSetNotifyEvent;

The BeforePost event is activated at the beginning of a call to the Post method. This event
is the first action taken by the Post method, after it calls the UpdateRecord method to
reflect any changes made to the record by data controls. The BeforePost event can be
used to validate a record before it is posted. By raising an exception, a BeforePost event
handler can prevent the posting of an invalid record.

Delphi Visual Component Library Reference 75

BeginDoc method
By assigning a method to this property, you can take any special actions required by the

event. By raising an exception in this event handler, you can prevent the Post operation
from occurring.

See also
AfterPost event

BeginDoc method

Applies to
TPrinter object

Declaration
procedure BeginDoc;

The BeginDoc method sends a print job to the printer. If the print job is sent successfully,
the application should call EndDoc to end the print job. The print job won't actually start
printing until EndDoc is called.

To use the BeginDoc method, you must add the Printers unit to the uses clause of your

unit.
Example
This code prints a rectangle on the default printer:
begin
Printer.BeginDoc; { begin to send print job to printer }
Printer.Canvas.Rectangle(20,20,1000,1000); { draw rectangle on printer's canvas }
Printer.EndDoc; { EndDoc ends and starts printing print job }
end;

To use the BeginDoc method, you must add the Printers unit to the uses clause of your
unit.

See also
Abort method, Printer variable

BeginDrag method

Applies to
All controls

Declaration

procedure BeginDrag (Immediate: Boolean);

76 Delphi Visual Component Library Reference

BeginUpdate method

The BeginDrag method starts the dragging of a control. If the Immediate parameter is
True, the mouse pointer changes to the value of the DragCursor property and dragging a
begins immediately. If Immediate is False, the mouse pointer doesn’t change to the value

of the DragCursor property and dragging doesn’t begin until the user moves the mouse
pointer a short distance (5 pixels). This allows the control to accept mouse clicks without
beginning a drag operation.

Your application needs to call the BeginDrag method to begin dragging only when the
DragMode property value for the control is dmManual.

Example

procedure TForml.ButtonlClick(Sender: TObject);
begin
if Buttonl.DragMode = dmManual then
Buttonl.BeginDrag(True);
end;

See also

DragMode property, EndDrag method, OnDragDrop event, OnDragOver event,
OnEndDrag event

BeginUpdate method

Applies to
TStringList, TStrings objects; TOutline component

Declaration
procedure BeginUpdate;

The BeginlUpdate method prevents the updating of the outline or string object until the
EndUpdate method is called. For string objects, BeginlUpdate prevents the screen from
being repainted when new strings are added. For outlines, BeginlUpdate prevents the
screen from being repainted and prevents outline items from being reindexed when
new items are added, deleted, or inserted. Outline items affected by the changes will
have invalid Index values until EndUpdate is called.

For example, the Lines property of a memo component is of type TStrings. If your
application calls the AddStrings method to add several strings at once to the Lines
property, AddStrings calls BeginUpdate before the strings are added. After the strings are
added, AddStrings calls EndUpdate and the screen repaints, displaying the new list of
strings.

Use Beginlipdate to prevent screen repaints and to speed processing time while you are
rebuilding your list.

Delphi Visual Component Library Reference 77

Bevellnner property

Example

BeginUpdate and EndUpdate should always be used in conjunction with a try...finally
statement to ensure that EndUpdate is called if an exception occurs. A block that uses
BeginUpdate and EndUpdate typically looks like this:

ListBoxl.Items.BeginUpdate;
try
ListBoxl.Items.Clear;
ListBoxl.Items.Add(...);

ListBoxl.Items.Add(...);
finally

ListBox1.Items.EndUpdate; { Executed even in case of an exception }
end;

See also
EndUpdate method

Bevellnner property

Applies to
TPanel component

Declaration
property BevelInner: TPanelBevel;

A panel component has two bevels, an outer bevel drawn next to the border of the
control, and an inner bevel drawn inside the outer bevel the number of pixels specified
in the BorderWidth property.

The Bevellnner property determines the style of the inner bevel of a panel component.
These are the possible values:

Value Meaning

buNone No inner bevel exists.
buLowered The inner bevel is lowered.
buRaised The inner bevel is raised.
Example

This example uses a panel component and a button named CreateStatusLine on a form.
The code moves the panel to the bottom of the form when the user clicks the button and
gives the panel the appearance of a status line by changing the value of the Bevellnner,
BevelOuter, Bevel Width, and BorderWidth properties.

procedure TForml.CreateStatusLineClick(Sender: TObject);
begin
with Panell do

begin

78 Delphi Visual Component Library Reference

BevelOuter property

Align := alBottom;
BevelInner := bvLowered; a
BevelOuter := bvRaised;
BorderWidth := 1;
BevelWidth := 1;
end;

end;

See also
BevelOuter property, Bevel Width property, BorderWidth property, TPanelBevel type

BevelOuter property

Applies to

TPanel component

Declaration
property BevelOuter: TPanelBevel;

A panel component has two bevels, an outer bevel drawn next to the border of the
control, and an inner bevel drawn inside the outer bevel. The width of the inner bevel is
specified in the BorderWidth property in pixels.

The BevelOuter property determines the style of the outer bevel of a panel component.
These are the possible values:

Value Meaning

buNone No outer bevel exists.

buLowered The outer bevel is lowered.

buRaised The outer bevel is raised.

Example
This code creates a lowered frame 10 pixels wide around a panel component named
Panell:

Panell.BorderWidth := 10;
Panell.BevellInner := bvRaised;
Panell.BevelQuter := bvLowered;

See also
Bevellnner property, BevelWidth property, BorderWidth property

BevelWidth property

Applies to

TPanel component

Delphi Visual Component Library Reference 79

Bitmap property

Declaration
property BevelWidth: TBevelWidth;

The Bevel Width property determines the width in pixels between the inner and the outer
bevels of a panel. The Bevellnner property determines how the inner bevel appears, and
the BevelOuter property determines how the outer bevel appears. By changing these
properties, you change the appearance of the panel.

Example
This code alternately displays and hides the bevels of a panel when the user clicks the
Button1 button:

procedure TForml.ButtonlClick(Sender: TObject);
begin
with Panell do
begin
BevelInner := bvLowered;
BevelOuter := bvRailsed;
if BevelWidth = 0 then
BevelWidth := 2
else
BevelWidth := 0;
end;
end;

See also
BorderWidth property

Bitmap property

Applies to
TBrush, TPicture objects

For brushes

Declaration
property Bitmap: TBitmap;

Run-time only. The Bitmap property enables a brush to use a bitmap image for painting
with the ability to produce special painting effects such as patterns. The bitmap must be
8 pixels high and 8 pixels wide.

Example
The following code loads a bitmap from a file and assigns it to the Brush of the Canvas of
Form1:

80 Delphi Visual Component Library Reference

BlockRead procedure

begin
Forml.Canvas.Brush.Bitmap.LoadFromFile (‘MYBITMAP.BMP'); a
end;

For pictures

Declaration
property Bitmap: TBitmap;

The Bitmap property specifies the contents of the TPicture object as a bitmap graphic
(.BMP file format). If Bitmap is referenced when the TPicture contains a Metafile or Icon
graphic, the graphic won’t be converted. Instead, the original contents of theTPicture are
discarded and Bitmap returns a new, blank bitmap.

Example
The following code copies the bitmap in Picturel to the Glyph of BitBtn1.

BitBtnl.Glyph := Picturel.Bitmap;

See also
Graphic property

BlockRead procedure System

Declaration
procedure BlockRead(var F: File; var Buf; Count: Word [; var Result: Word]);
The BlockRead procedure reads one or more records from an open file into a variable.

F is an untyped file variable, Buf is any variable, Count is an expression of type Word,
and Result is an optional variable of type Word.

BlockRead reads Count or fewer records from the file F into memory, starting at the first
byte occupied by Buf. The actual number of complete records read (less than or equal to
Count) is returned in Result.

The entire transferred block occupies at most Count * RecSize bytes. RecSize is the record
size specified when the file was opened (or 128 if the record size was not specified). An
error occurs if Count * RecSize is greater than 65,535 (64K). You can handle this error
using exceptions.

If the entire block was transferred, Result is equal to Count.

If Result is less than Count, ReadBlock reached the end of the file before the transfer was
complete. If the file’s record size is greater than 1, Result returns the number of complete
records read.

If Result isn't specified, an 1/O error occurs if the number of records read isn’t equal to
Count. You can use the EInOutError exception to handle this error.

Delphi Visual Component Library Reference 81

BlockWrite procedure
{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for I/O errors.

Example

var
FromF, ToF: file;
NumRead, NumWritten: Word;
Buf: array([l..2048] of Char;

begin
if OpenDialogl.Execute then { Display Open dialog box }
begin
AssignFile(FromF, OpenDialogl.FileName);
Reset (FromF, 1); { Record size = 1}
if SaveDialogl.Execute then { Display Save dialog box}
begin
AssignFile(ToF, SaveDialogl.FileName); { Open output file }
Rewrite(ToF, 1); { Record size =1 }
Canvas.TextOut (10, 10, 'Copying ' + IntToStr(FileSize(FromF))
+ ' bytes...');
repeat

BlockRead (FromF, Buf, SizeOf (Buf), NumRead);
BlockWrite(ToF, Buf, NumRead, NumWritten);

until (NumRead = 0) or (NumWritten <> NumRead);
CloseFile(FromF) ;
CloseFile(ToF);

end;
end;
end;

See also
BlockWrite procedure

BlockWrite procedure System

Declaration
procedure BlockWrite(var f: File; var Buf; Count: Word [; var Result: Word]);
The BlockWrite procedure writes one or more records from a variable to an open file.

F is an untyped file variable, Buf is any variable, Count is an expression of type Word,
and Result is an optional variable of type Word.

BlockWrite writes Count or fewer records to the file F from memory, starting at the first
byte occupied by Buf. The actual number of complete records written (less than or equal
to Count) is returned in Result.

The entire block transferred occupies at most Count * RecSize bytes. RecSize is the record
size specified when the file was opened (or 128 if the record size was unspecified). An

82 Delphi Visual Component Library Reference

BlockWrite procedure

error occurs if Count * RecSize is greater than 65,535 (64K). You can use the exception
handler EInOutError to deal with this error.
If the entire block is transferred, Result is equal to Count on return.

If Result is less than Count, the disk became full before the transfer was complete. In this
case, if the file’s record size is greater than 1, Result returns the number of complete
records written.

The current file position is advanced by Result records as an effect of the BlockWrite.

If Result isn’t specified, an I/O error occurs if the number written isn’t equal to Count.
You can use exception handler EInOutError to deal this error.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for I/O errors.

Example

var
FromF, ToF: file;
NumRead, NumWritten: Word;
Buf: arrayl[l..2048] of Char;

begin
if OpenDialogl.Execute then { Display Open dialog box }
begin
AssignFile(FromF, OpenDialogl.FileName);
Reset (FromF, 1); { Record size =1 }
if SaveDialogl.Execute then { Display Save dialog box }
begin
AssignFile(ToF, SaveDialogl.FileName); { Open output file }
Rewrite(ToF, 1); { Record size = 1}
Canvas.TextOut (10, 10, 'Copying ' + IntToStr(FileSize(FromF))
+ ' bytes...');
repeat

BlockRead (FromF, Buf, SizeOf (Buf), NumRead);
BlockWrite(ToF, Buf, NumRead, NumWritten);

until (NumRead = 0) or (NumWritten <> NumRead);
CloseFile(FromF);
CloseFile(ToF);

end;
end;
end;

See also
BlockRead procedure

Delphi Visual Component Library Reference 83

BOF property

BOF property

Applies to
TTable, TQuery, TStoredProc components

Declaration
property BOF: Boolean;

Run-time and read only. BOF is a Boolean property that indicates whether a dataset is
known to be at its first row. The BOF property returns a value of True only after:

¢ An application first opens a table
e A call to a table’s First method
e A call to a table’s Prior method fails

Example

Tablel.last;
while not Tablel.BOF do
begin
{DoSomething}
Tablel.Prior;
end;

See also
MoveBy method

BOLEFormat type BOLEDefs

Declaration

BOleFormat = Record
fmtId: Word;
fmtName: array [0..31] of char;
fmtResultName: array [0..31] of char;
fmtMedium: BOleMedium;
fmtIsLinkable: Bool;

end;

BOLEFormat registers a format that allows drag-and-drop of OLE objects and other
types onto a form. Pass an array of BOLEFormat as a parameter to the
ClearFormOLEDropFormats, RegisterFormAsOLEDropTarget, and
SetFormOLEDropFormats procedures.

An array of BOLEFormat records is also used when pasting objects from the Clipboard
with the PasteSpecialDlg function. Each object type you want to be able to paste should
be registered as an element of the Fmts parameter of PasteSpecialDIg. To see if any objects
of a given type are on the Clipboard so that the Paste Special dialog box is enabled, pass
an array of BOLEFormats in the Fmts parameter of PasteSpecialEnabled.

84 Delphi Visual Component Library Reference

BOLEMedium type

These are the fields of BOLEFormat: a
Field Description
fmtld Windows Clipboard format ID. For non-OLE data, fintld should be a standard

Clipboard format such as CF_TEXT for text or CF_BITMAP for bitmap graphics.
For OLE objects, you should register new Clipboard formats with the Windows
API function RegisterClipboardFormat.

tName Name to appear in the list box of Paste Special dialog box.
pp p g
tResultName Name to appear in the Results box of the Paste Special dialog box.
pp p)
tMedium Based on the Clipboard format ID specified in fintld. For linked OLE objects,
p p)

fmtMedium should be BOLE_MED_STREAM. For embedded OLE objects,
fmtMedium should be BOLE_MED_STORAGE.

fmtlsLinkable True if the object is linkable, False if not. For linked OLE objects, fmtIsLinkable
should be set to True. For embedded OLE objects, fimtIsLinkable should be False.

BOLEMedium type BOLEDefs

Declaration
type BoleMedium = Integer;
const
BOLE_MED_NULL = 0;
BOLE_MED_HGLOBAL = 1; { used for most non-ole2 formats }

1
BOLE_MED_FILE = 2;

BOLE_MED_STREAM = 4; { used for ole2 linked objects }
BOLE_MED_STORAGE = 8; { used for ole2 embedded objects }
BOLE_MED_GDI = 16; { used for bitmaps and other gdi formats }
BOLE_MED MFPICT = 32; { used for metafile format }

BOLEMedium is the type of the fmtMedium field of the BOLEFormat type. This is based
on the fmtld field in the same record. For linked OLE objects, the BOLEMedium should
be BOLE_MED_STREAM. For embedded OLE objects, the BOLEMedium should be
BOLE_MED_STORAGE. For other objects, the BOLEMedium should be one of the other
values, according to the comments in the declaration above. Use BOLEMediumCalc to
calculate the BOLEMedium for a given Clipboard format.

BOLEMediumCalc function Toctrl

Declaration
function BOleMediumCalc (fmtId: Word): BOleMedium;

The BOLEMediumCalc function returns the BOLEMedium value that should be used with
the Clipboard format ID passed in the fintld parameter. BOLEMedium is the type of the
fmtMedium field of the BOLEFormat record.

Example
The following code calculates the BOLEMedium associated with CF_BITMAP and stores
it in the fmtMedium field of the first element of a BOLEFormat record array.

Delphi Visual Component Library Reference 85

BorderColor property

var
Fmts: array(0..2] of BOLEFormat;
begin
Fmts[0].fmtId := CF_BITMAP;
Fmts[0].fmtMedium := BOLEMediumCalc (CF_BITMAP);
Fmts[0].fmtIsLinkable := False;
StrPCopy (Fmts([0].fmtName, '$s');
StrPCopy (Fmts[0].fmtResultName, '%s');
end;

BorderColor property

Applies to
TShape component

Declaration

property BorderColor: TColor;

The BorderColor property is used to color the border of a shape component. For a
complete list of the values the BorderColor property can have, see the Color property.
Example

This example changes the border color of a shape component at run time:

Shapel.BorderColor := clBlack;

Borderlcons property

Applies to
TForm component

Declaration

property BorderIcons: TBorderIcons;

The Borderlcons property is a set whose values determine which icons appear on the title
bar of a form. These are the possible values that the Borderlcons set can contain:

Value Meaning

biSystemMenu The form has a Control menu (also known as a System menu)
biMinimize The form has a Minimize button

biMaximize The form has a Maximize button

Example

The following code removes a form’s Maximize button when the user clicks a button:

procedure TForml.ButtonlClick(Sender: TObject);

86 Delphi Visual Component Library Reference

BorderStyle property

begin
BorderIcons := BorderIcons - [biMaximize];
end;
See also
BorderStyle property

BorderStyle property

Applies to

TDBEdit, TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBLookupList,
TDBMemo, TDrawGrid, TEdit, TForm, THeader, TListBox, TMaskEdit, TMemo,
TOLEContainer, TOutline, TPanel, TScrollBox, TStringGrid components

For forms

Declaration
property BorderStyle: TFormBorderStyle;

The BorderStyle property for forms specifies both the appearance and the behavior of the
form border. You normally set BorderStyle at design time, but you can also change it at
run time.

BorderStyle can have any of the following values:

Value Meaning

bsDialog Not resizeable; standard dialog box border

bsSingle Not resizeable; single-line border

bsNone Not resizeable; no visible border line, Minimize or Maximize

buttons, or Control menu
bsSizeable Standard resizeable border

Changing the border style of an MDI child form to bsDialog or bsNone has no effect.

Example
This example creates a form with a single-line border that the user can’t resize:

Forml.BorderStyle := bsSingle;

See also
Borderlcons property

Delphi Visual Component Library Reference 87

BorderWidth property

For controls

Declaration
property BorderStyle: TBorderStyle;

The BorderStyle property of edit boxes, list boxes, memo controls, grid controls, outlines,
and scroll boxes determines whether these components have a border. These are the
possible values:

Value Meaning
bsNone No visible border
bsSingle Single-line border

If you set the AutoSize property of an edit box to True, the edit box resizes automatically
when the font size of the text changes. You must set the value of the BorderStyle property
to fsSingle, or else AutoSize has no effect.

Example
The following example puts a single-line border around the edit box, Edit1.

Editl.BorderStyle := bsSingle;

See also
CtI3D property

BorderWidth property

Applies to

TPanel component

Declaration
property BorderWidth: TBorderWidth;

The BorderWidth property determines the width in pixels of the border around a panel.
The default value is 0, which means no border.

Example

This example uses a panel component and a button named CreateStatusLine on a form.
The code moves the panel to the bottom of the form when the user clicks the button, and
gives the panel the appearance of a status line by changing the value of the Bevellnner,
BevelOuter, Bevel Width, and BorderWidth properties:

procedure TForml.CreateStatusLineClick(Sender: TObject);
begin
with Panell do
Align := alBottom;

88 Delphi Visual Component Library Reference

Bounds function

BevellInner := bvLowered;

BevelOuter := bvRaised; a
BorderWidth := 1;

BevelWidth := 1;

end;
end;

See also
Bevellnner property, BevelOuter property, Bevel Width property

Bounds function Classes

Declaration

function Bounds(ALeft, ATop, AWidth, AHeight: Integer): TRect;

The Bounds function returns a rectangle with the given dimensions. The statement
R := Bounds(X, Y, W, H);

corresponds to

R :=Rect(X, Y, X + W, Y + H);

Example
This example returns a TRect record that defines a rectangle that is 100 pixels long on
each side with the top left corner at coordinate 10, 10.

var
R: TRect;
begin
R := Bounds (10, 10, 100, 100);
end;

See also
BoundsRect property

BoundsRect property

Applies to
All controls

Declaration

property BoundsRect: TRect;

The BoundsRect property returns the bounding rectangle of the control, expressed in the
coordinate system of the parent control. The statement

R := Control.BoundsRect;

Delphi Visual Component Library Reference 89

Break procedure

corresponds to

R.Left := Control.Left;
R.Top := Control.Top;

R.Right := Control.Left + Control.Width;
R.Bottom := Control.Top + Control.Height;

Example

This code resizes a button control to twice as wide and half as high:

procedure TForml.ButtonlClick(Sender: TObject);

var
MyRect: TRect;
begin
MyRect := Button2.BoundsRect;

MyRect.Right := MyRect.Left + 2 * (MyRect.Right - MyRect.Left);
MyRect .Bottom := MyRect.Top + (MyRect.Bottom - MyRect.Top) div 2;

Button2.BoundsRect := MyRect;
end;

See also
Bounds function

Break procedure

System

Declaration

procedure Break;

The Break procedure causes the flow of control to exit a for, while, or repeat statement

and continue at the next statement following the loop statement.

The compiler reports an error if a call to Break isn’t in a for, while, or repeat statement.

Example
uses WinCRT;

var
S: string;
begin
while True do
begin
Readln(S) ;
if S = '' then Break;
WriteLn(S);
end;
end;

See also

Continue procedure, Exit procedure, Halt procedure

90 Delphi Visual Component Library Reference

Break property

Break property

Applies to

TMenultem component
Declaration

property Break: TMenuBreak;

The Break property lets you break a long menu into columns. These are the possible

values:
Value Meaning
mbNone No menu breaking occurs.
mbBarBreak The menu breaks into another column with the menu item appearing at the top of the
new column. A bar separates the new and the old columns.
mbBreak The menu breaks into another column with the menu item appearing at the top of the

new column. Only space separates the new and the old columns.

The default value is mbNone.

Example

This example uses a button and a main menu component with several subitems on it,
including one labeled Save As, so that Delphi automatically names that menu item
SaveAsl. When the user clicks the button on the form, the menu breaks so Save As
appears in a second column with a bar between the two columns. The change to the
menu is visible when the menu displays.

procedure TForml.ButtonlClick(Sender: TObject);
begin

SaveAsl.Break := mbBarBreak;
end;

See also
Checked property, Enabled property

BringToFront method

Applies to

All controls; TForm component
Declaration

procedure BringToFront;

The BringToFront method puts the component or form in front of all other components
or forms within its parent component or form. BringToFront is especially useful for

Delphi Visual Component Library Reference 91

Brush property

making certain that a form is visible. You can also use it to reorder overlapping
components within a form.

The order in which controls stack on top of each order (also called theZ order) depends
on whether the controls are windowed or non-windowed controls. For example, if you
put a label and an image on a form so that one is on top of the other, the one you placed
first on the form is the one on the bottom. Because both the label and the image are non-
windowed controls, they “stack” as you would expect them to. Suppose that the label is
on the bottom. If you call the BringToFront method for the label, the label then appears
on top of the image.

The stacking order of windowed controls is the same. For example, if you put a memo
on a form, then put a check box on top of it, the check box remains on top. If you call
BringToFront for the memo, the memo appears on top.

The stacking order of windowed and non-windowed controls cannot be mingled. For
example, if you put a memo, a windowed control, on a form, and then put a label, a non-
windowed control, on top of it, the label disappears behind the memo. Windowed
controls always stack on top of non-windowed controls. In this example, if you call the
BringToFront method of the label, it remains behind the memo.

Example

The following code uses two forms. Form1 has a button on it. The second form is used as
a tool palette. This code makes the palette form visible, and ensures it is the top form by
bringing it to the front.

To run this example, you must put Unit2 in the uses clause of your unit.

procedure TForml.ShowPaletteButtonClick(Sender: TObject);
begin
if Form2.Visible = False then Form2.Visible := True;
Form2.BringToFront;
end;

See also
SendToBack method

Brush property

Applies to
All controls; TCanvas object; TForm, TShape components

Declaration
property Brush: TBrush;

A canvas or shape object’s Brush property determines what kind of color and pattern the
canvas uses for filling graphical shapes and backgrounds. Controls also specify an
additional brush in their Brush properties, which they use for painting their
backgrounds.

92 Delphi Visual Component Library Reference

BrushCopy method

For controls, Brush is a read only and run-time only property. a
Example
The following code sets the color of the brush used by Form1 to fill shapes drawn on it
with red:

procedure TForml.MakeRedButtonClick(Sender: TObject);

begin

Canvas.Brush.Color := cIRed;
end;

This code changes the shape, color, and pattern of a shape component:

procedure TForml.ChangeShapeClick(Sender: TObject);
begin
Shapel.Shape := stEllipse;
Shapel.Brush.Color := clMaroon;
Shapel.Brush.Style := bsFDiagonal;
end;

See also
BrushCopy method, Canvas property, Font property, Pen property, TCanuvas object

BrushCopy method

Applies to
TCanvas object

Declaration
procedure BrushCopy (const Dest: TRect; Bitmap: TBitmap; comst Source: TRect; Color: TColor);

The BrushCopy method copies a portion of a bitmap onto a portion of a canvas, replacing
one of the colors of the bitmap with the brush of the destination canvas. Dest specifies
the rectangular portion of the destination canvas to copy to. Bitmap specifies the graphic
to copy from. Source specifies the rectangular area of the bitmap to copy. Color specifies
the color in Bitmap to replace with the brush of the canvas (specified in the Brush

property).
You could use BrushCopy to make the copied image partially transparent, for example.
To do this, you would specify the color of the surface being copied to (c/Background for

example) as the Color of the Brush property of the destination canvas, then call
BrushCopy.

Example

The following code illustrates the differences between CopyRect and BrushCopy. The
bitmap graphic “TARTAN.BMP” is loaded into Bitmap and displayed on the Canvas of
Form1. BrushCopy replaces the color black in the graphic with the brush of the canvas,
while CopyRect leaves the colors intact.

Delphi Visual Component Library Reference 93

BtnClick method

var
Bitmap: TBitmap;
MyRect, MyOther: TRect;
begin
MyRect.Top := 10;
MyRect.Left := 10;
MyRect.Bottom := 100;
MyRect.Right := 100;
MyOther.Top := 111; {110}
MyOther.Left := 10;
MyOther.Bottom := 201; {210}
MyOther.Right := 100;
Bitmap := TBitmap.Create;
Bitmap.LoadFromFile('c:\windows\tartan.bmp');
Forml.Canvas.BrushCopy (MyRect,Bitmap, MyRect, clBlack);
Forml.Canvas.CopyRect (MyOther,Bitmap.Canvas,MyRect) ;
Bitmap.Free;
end;

See also
Brush property, CopyRect method

BtnClick method

Applies to
TDBNavigator component

Declaration
procedure BtnClick(Index: TNavigateBtn);

The BtnClick method simulates a button click on the database navigator, invoking the
action of the button. Specify which button BtnClick should operate on as the value of the
Index parameter.

Example
This line of code simulates the clicking of the Next button on a database navigator
control, which makes the next record in the dataset the current record:

DBNavigatorl.BtnClick (nbNext);

Buttons property

Applies to
TDBRadioGroup, TRadioGroup components

94 Delphi Visual Component Library Reference

Calculated property

Declaration
property Buttons: TList;

Run-time and read only. The Buttons property lets your application access the list of
radio buttons in the database radio button group box. Use the properties and methods
of a list object (TList) to manipulate the list of buttons.

Example
The following code disables the first button in DBRadioGroup1.

TRadioButton (DBRadioGroupl.Buttons.First).Enabled := False;

Calculated property

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration
property Calculated: Boolean;

Calculated is True if the value of the field is calculated by the OnCalcFields event handler.
Calculated fields can be created with the Fields Editor, but are not stored in or retrieved
from the physical tables underlying a dataset. Instead they are calculated for each record
in the table by the dataset’s OnCalcFields event handler, which typically uses expressions
involving values from other fields in the record to generate a value for each calculated
field. For example, a table might have non-calculated fields for Quantity and UnitPrice,
and a calculated field for ExtendedPrice, which would be calculated by multiplying the
values of the Quantity and UnitPrice fields. Calculated fields are also useful for
performing lookups in other tables. For example, a part number can be used to retrieve a
part description for display in an invoice line item.

Cancel method

Applies to

TTable, TQuery, TStoredProc components
Declaration

procedure Cancel;

The Cancel method returns the dataset to Browse state and discards any changes to the
current record.

Delphi Visual Component Library Reference 95

Cancel property

See also
Append method, Insert method, Post method

Cancel property

Applies to
TBitBtn, TButton components

Declaration
property Cancel: Boolean;

The Cancel property indicates whether a button or a bitmap button is a Cancel button. If
Cancel is True, any time the user presses Esc, the OnClick event handler for the button
executes. Although your application can have more than one button designated as a
Cancel button, the form calls the OnClick event handler only for the first button in the
tab order that is visible.

Example
The following code designates a button called Button1 as a Cancel button:

Buttonl.Cancel := True;

See also
Default property, OnClick event

CancelRange method

Applies to
TTable component

Declaration
procedure CancelRange;

The CancelRange method removes any range limitations for the TTable which were
previously established by calling the ApplyRange or SetRange methods.

Example

Tablel.CancelRange;

CanFocus method

Applies to
All controls

96 Delphi Visual Component Library Reference

CanModify property

Declaration
function CanFocus: Boolean;

The CanFocus method determines whether a control can receive focus. CanFocus returns
True if both the control and its parent(s) have their Visible and Enabled properties set to

True. If all the Visible and Enabled properties of the control and the components from

which the control descends are not True, then CanFocus returns False.

Example

This example uses a group box, a label, and a button on a form. The group box contains
a check box. When the application runs, the group box is disabled (Enabled is set to
False). Because the group box is the parent of the check box, the user can never tab to the
check box. When the user clicks the button, the caption of the label reports that the check
box can not receive the input focus:

procedure TForml.FormCreate(Sender: TObject);
begin

GroupBox1.Enabled := True;
end;

procedure TForml.ButtonlClick(Sender: TObject);

begin
if CheckBoxl.CanFocus then
Labell.Caption := 'The check box can focus'
else
Labell.Caption := 'The check box cannot focus';
end;
See also
Parent property

CanModify property

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStoredProc, TStringField, TQuery, TTable, TTimeField, TVarBytesField, TWordField
components

For tables, queries, and stored procedures

Declaration
property CanModify: Boolean;

Run-time and read only. CanModify specifies whether an application can modify the
data in a dataset. When CanModify is False, then the dataset is read-only, and cannot be

Delphi Visual Component Library Reference 97

Canvas property

put into Edit or Insert state. When CanModify is True, the dataset can enter Edit or Insert
state.

Even if CanModify is True, it is not a guarantee that a user will be able to insert or update
records in a table. Other factors may come in to play, for example, SQL access privileges.

TTable has a ReadOnly property that requests write privileges when set to False. When
ReadOnly is True, CanModify will automatically be set to False. When ReadOnly is False,
CanModify will be True if the database allows read and write privileges for the dataset
and the underlying table.

Example

if Tablel.CanModify then
{ Do this only if the dataset can be modified }
Tablel.CustNo := 1234;

See also
Active property

For field components

Declaration
property CanModify: Boolean;

Run-time and read only. Specifies if a field can be modified for any reason, such as
during a SetKey operation. CanModify is True if the value of the field can be modified. If
the ReadOnly property of the field is True, or the ReadOnly property of the dataset is True,
then CanModify is False.

See also
DataSet property

Canvas property

Applies to

TBitmap, TComboBox, TDBComboBox, TDBGrid, TDBListBox, TDirectoryListBox,
TDrawGrid, TFileListBox, TForm, TImage, TListBox, TOutline, TPaintBox, TPrinter,
TStringGrid components

For forms, images, and paint boxes

Declaration

property Canvas: TCanvas;

98 Delphi Visual Component Library Reference

Canvas property

Run-time only. The Canvas property gives you access to a drawing surface that you can
use when implementing a handler for the OnPaint event of a form, an image, or a paint

box.
The Canvas property of an image or a form is read only.

Example
The following code sets the Color of the Pen of the Canvas of Bitmap1 to clBlue.

Bitmapl.Canvas.Pen.Color := clBlue;

See also
Search for Graphics in online Help and choose the topic Drawing Graphics at Run Time

For list boxes, combo boxes, and outlines

Declaration
property Canvas: TCanvas;

Run-time and read only. The Canvas property gives you access to a drawing surface that
you can use when implementing a handler for the OnDrawltem event of an owner-draw
list box, combo box, or outline control.

Example

The following code draws a graphic stored in the Objects property of the Items list of
ListBox1. This code should be attached to the OnDrawltem event handler of ListBox1, and
the Style property of ListBox1 should be [bOwnerDrawFixed.

procedure TForml.ListBox1DrawItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);

var
SourceRect: TRect;

begin
SourceRect.Top := 0;
SourceRect.Left := 0;
SourceRect.Bottom := TBitmap (ListBoxl.Items.Objects[Index]).Height;
SourceRect.Right := TBitmap(ListBoxl.Items.Objects[Index]).Width;
ListBoxl.Canvas.CopyRect (Rect, TBitmap(ListBoxl.Items.Objects[Index]).Canvas,

SourceRect) ;
end;

The following code draws a graphic stored in the Data property of the Items list of
Outlinel. This code should be attached to the OnDrawltem event handler of Outlinel,
and the Style property of Outlinel should be otOwnerDraw.

procedure TForml.OQutlinelDrawItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);

var
SourceRect: TRect;

begin
SourceRect.Top := 0;

Delphi Visual Component Library Reference 99

Canvas property

Note

SourceRect.Left := 0;
SourceRect.Bottom := TBitmap(Outlinel.Items[Index].Data).Height;
SourceRect.Right := TBitmap(Outlinel.Items[Index].Data).Width;
Outlinel.Canvas.CopyRect (Rect, TBitmap (Outlinel.Items[Index].Data).Canvas,
SourceRect) ;
end;

See also

ItemHeight property, OnDrawCell event, OnDrawDataCell event, OnDrawltem event,
OnPaint event

For grids

Declaration
property Canvas: TCanvas;

Run-time and read only. The Canuvas property gives you access to a drawing surface that
you can use when implementing a handler for the OnDrawCell or OnDrawDataCell event
of a grid control.

For printer objects

Declaration
property Canvas: TCanvas;

Run-time only and read only. The Canvas property for a printer object represents the
surface of the currently printing page.

Some printers do not support graphics. Therefore, the Draw, StretchDraw, or CopyRect
methods might fail on these printers.

Example
The following code prints the text ‘Hello, world!”:

Printer.BeginDoc;
Printer.Canvas.TextOut (0, 0, 'Hello, world');
Pritner.EndDoc;

See also
Brush property, Font property, Pen property, TextOut method

For bitmap objects

Applies to
TBitmap object

100 Delphi Visual Component Library Reference

Capabilities property

Declaration
property Canvas: TCanvas;

Run-time and read only. The Canvas property gives you access to a drawing surface that
represents the bitmap. When you draw on the canvas you are in effect modifying the
underlying bitmap.

See also
Draw method

Capabilities property

Applies to
TMediaPlayer component

Declaration
property Capabilities: TMPDevCapsSet;

Run-time and read only. The Capabilities property determines the capabilities of the
open multimedia device.

The various capabilities specified in Capabilities are determined when the device is
opened with the Open method. The following table lists the capabilities a device can

have:
Value Capability
mpCanEject Can eject media
mpCanPlay Can play media
mpCanRecord Can record media
mpCanStep Can step forward or backward within media

mpUsesWindows Uses a window for displaying output

Note ~Currently, there is no way to check whether a device can step forward or backward.
Capabilities includes mpCanStep only if the device type (specified in the DeviceType
property) is Animation, AVI Video, Digital Video, Overlay, or VCR.

Example

The following code determines whether the device opened by the media player control
MediaPlayer1 uses a window to display output. If so, the output displays in a form
named Form2:

if mpUsesWindows in MediaPlayerl.Capabilities then
MediaPlayerl.Display := Form2;

Delphi Visual Component Library Reference 101

Capacity property
See also

Back method, Display property, Eject method, Play method, StartRecording method, Step
method

Capacity property

Applies to
TList object

Declaration
property Capacity: Integer;

Run time only. The Capacity property contains the allocated size of the array of pointers
maintained by a TList object. This is different from the Count property, which contains
the number of entries that are actually in use. The value of the Capacity property is
always greater than or equal to the value of the Count property.

When setting the Capacity property, an EListError exception occurs if the specified value
is less than the Count property or greater than 16380 (the maximum number of elements
a list object can contain). Also, an EOutOfMemory exception occurs if there is not enough
memory to expand the list to its new size.

When an element is added to a list whose Capacity and Count are equal (indicating that

all allocated entries are in use), the Capacity is automatically increased by 16 elements. In
situations where you are going to be adding a known number of elements to a list, you
can reduce memory reallocations by first increasing the list's capacity. For example,

List.Clear;
List.Capacity := Count;
for I := 1 to Count do List.Add(...);

The assignment to Capacity before the for loop ensures that each of the following Add
operations doesn’t cause the list to be reallocated, which in turn means that the Add
operations are guaranteed to never raise an exception.

Example
The following code sets the Capacity of List1 to 5.

Listl.Capacity := 5;

See also
Count property, Expand method, Items property, Pack method

Caption property

Applies to
TBitBtn, TButton, TCheckBox, TDBCheckBox, TDBRadioGroup, TForm, TGroupBox, TLabel,
TMenultem, TPanel, TRadioButton, TSpeedButton components

102 Delphi Visual Component Library Reference

Caption property

The Caption property specifies text that will appear in a component.

For forms

Declaration

property Caption: string;

The Caption property is the text that appears in the form’s title bar; this text also appears
as the icon label when the form is minimized.

Example
The following code creates a caption that says “Hello, World!” on a form called MyForm:

MyForm.Caption := ‘Hello, World!';

See also
BorderStyle property

For all other components

Declaration
property Caption: string;

For components other than forms, the Caption property contains the text string that
labels the component. To underline a character in a string, include an ampersand (&)
before the character. This type of character is called an accelerator character. The user
can then select the control or menu item by pressing Alf while typing the underlined
character. The default value is the name of the component.

For menu items, you can use the Caption property to include a line that separates the
menu into parts. Specify a hyphen character (-) as the value of Caption for the menu
item.

The Caption property of a data grid is available at run time only.

Example
This code changes the caption of a group box:
procedure TForml.ButtonlClick(Sender: TObject);
begin
GroupBox1.Caption := 'Fancy options’;
end;

See also
FocusControl property, ShowAccelChar property, Text property

Delphi Visual Component Library Reference 103

Cascade method

Cascade method

Applies to
TForm component

Declaration
procedure Cascade;

The Cascade method rearranges the child forms in your application so they overlap. The
top of each form remains visible so that you can easily select one of the forms. The
Cascade method applies only to MDI parent forms (with a FormStyle property value of
fsMDIForm).

Example
This code arranges all MDI children of the current MDI parent form in a cascade pattern
when the user chooses the Cascade menu command:

procedure TForml.CascadelClick(Sender: TObject);
begin

Cascade;
end;

See also
Arrangelcons method, Next method, Previous method, Tile method

CellRect method

Applies to
TDrawGrid, TStringGrid components

Declaration
function CellRect (ACol, ARow: Longint): TRect;

The CellRect method creates a rectangle of type TRect for the cell defined by the column
ACol and the row ARow. If the cell indicated by ACol and ARow is not visible, CellRect
returns an empty rectangle.

Example

This example uses a string grid, four labels, and a button on a form. When the user clicks
the button, the coordinates of the cell in the second column and first row appear in the
label captions:

procedure TForml.ButtonlClick(Sender: TObject);
var

Rectangle: TRect;
begin

Rectangle := StringGridl.CellRect (3, 2);

104 Delphi Visual Component Library Reference

Cells property

Labell.Caption := IntToStr(Rectangle.Top) + ' is the top';
Label2.Caption := IntToStr(Rectangle.Bottom) + ' is the bottom';
(
(

Label3.Caption := IntToStr(Rectangle.Left) + ' is the left side';
Labeld.Caption := IntToStr(Rectangle.Right) + ' is the right side';
end;
See also
MouseToCell method

Cells property

Applies to
TStringGrid component

Declaration
property Cells[ACol, ARow: Integer]: string;

Run-time only. The Cells property is an array of strings, one string for each cell in the
grid. Use the Cells property to access a string within a particular cell. ACol is the column
coordinate of the cell, and ARow is the row coordinate of the cell. The first row is row
zero, and the first column is column zero.

The ColCount and RowCount property values define the size of the array of strings.

Example
This code fills each cell of a grid with the same string.

procedure TForml.ButtonlClick(Sender: TObject);
var
I, J: Integer;
begin
with StringGridl do
for T := 0 to ColCount - 1 do
for J:= 0 to RowCount - 1 do
Cells([I,J] := 'Delphi';
end;

See also
Cols property, Objects property, Rows property

Center property

Applies to
TDBImage, TImage components

Delphi Visual Component Library Reference 105

ChangedCount property

Declaration
property Center: Boolean;

The Center property determines whether an image is centered in the image control. If
Center is True, the image is centered. If Center is False, the image aligns with the top left
corner of the control. The default value is True.

Example
The following code centers the image in Irmagel when the user checks CheckBox1:

procedure TForml.CheckBox1Click(Sender: TObject);
begin

Imagel.Center := CheckBoxl.Checked;
end;

See also
AutoSize property, Stretch property

ChangedCount property

Applies to
TBatchMove component

Declaration
property ChangedCount: Longint;

Run-time and read only. ChangedCount is the number of records added to the table
specified by ChangedTableName. If ChangedTableName is not specified, the count is still
valid.

Example

with BatchMovel do
begin
Execute;
if ChangedCount <> Source.RecordCount then { something went wrong };
end;

See also
ChangedTableName property

ChangedTableName property

Applies to
TBatchMove component

106 Delphi Visual Component Library Reference

ChangeFileExt function

Declaration
property ChangedTableName: TFileName;

ChangedTableName, if specified, creates a local (Paradox) table containing all recordsin (@
the destination table that changed as a result of the batch operation. The number of
records placed in the new table is reported in the ChangedCount property.

Example

BatchMovel.ChangedTableName := ‘oldrecs.db’;

ChangeFileExt function SysUtils

Declaration
function ChangeFileExt (const FileName, Extension: string): string;

The ChangeFileExt function takes the file name passed in FileName and changes the
extension of the file name to the extension passed in Extension.

Example
The following code generates the name of an .INI file based on the name of the program:
function INIFileName: string;
begin
Result := ChangeFileExt (ParamStr(0), '.INI');
end;

ChangeLevelBy method

Applies to
TOutlineNode object

Declaration
procedure ChangelevelBy (Value: TChangeRange);

The ChangeLevel By method changes the level of an outline item. Specify a Value
parameter value of -1 to move up (toward the root) one level. Specify a Value parameter
value of 1 to move down (away from the root) one level.

When moving up one level, an item becomes the next sibling of its former parent. When
moving down one level, an item becomes the last child of its former prior sibling.
Therefore, you can not change the level of the first item in the outline, as it has no parent
or prior sibling. Also, you can not move items that are already on the first level up one
level.

ChangeLevel By modifies the value of the Level property to reflect the new level. You can
only move an item up or down one level at a time.

Delphi Visual Component Library Reference 107

CharCase property

Example

Attach the following code to the OnClick event handlers of two buttons to allow the user
to move the selected outline item up or down. The code for UpBtn checks to see if the
selected item is not already on the first level before moving it up. The code for DownBtn
checks to see if the selected item has a prior sibling before moving it down.

procedure TForml.UpBtnClick(Sender: TObject);
begin
with Outlinel[Outlinel.SelectedItem] do
if Level > 1 then ChangeLevelBy(-1);
end;

procedure TForml.DownBtnClick(Sender: TObject);
begin
with Outlinel[Outlinel.SelectedItem] do
if Outlinel[Parent.GetPrevChild(Index)] <> -1 then
ChangeLevelBy (1) ;
end;

See also
Level property, MoveTo method

CharCase property

Applies to
TDBEdit, TEdit, TMaskEdit components

Declaration

property CharCase: TEditCharCase;

The CharCase property determines the case of the Text property of the edit box. These are
the possible values:

Value Meaning

ecLowerCase The text of the edit box displays in lowercase

ecNormal The text of the edit box displays in mixed case
ecUpperCase The text of the edit box displays in uppercase

If the user tries to enter a different case than the current value of CharCase, the characters
the user enters appear in the case specified by CharCase. For example, if the value of
CharCase is ecLowerCase, only lowercase characters appear in the edit box, even if the
user tries to enter uppercase characters.

Example

This example uses an edit box and group box containing three radio buttons. When the
user selects the first radio button, the text in the edit box becomes lowercase, and any
text the user types in the edit box also appears in lowercase. When the user selects the

108 Delphi Visual Component Library Reference

ChDir procedure

second radio button, the text in the edit box becomes uppercase, and any text the user

types in the edit box also appears in uppercase. When the user selects the third radio

button, the text in the edit box remains unchanged, but the user can type using either

upper- or lowercase characters:

procedure TForml.RadioButtonlClick(Sender: TObject);
begin

Editl.CharCase := ecLowerCase;
end;

procedure TForml.RadioButton2Click(Sender: TObject);
begin

Editl.CharCase := ecUpperCase;
end;

procedure TForml.RadioButton3Click(Sender: TObject);
begin

Editl.CharCase := ecNormal;
end;

ChDir procedure System

Declaration
procedure ChDir(S: string);

The ChDir procedure changes the current directory to the path specified by S.
If S specifies a drive letter, the current drive is also changed.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for I/O errors. IOResult returns 0 if
the operation was successful; otherwise, it returns a nonzero error code.

Example

begin
{$1-}
{ Change to directory specified in Editl }
ChDir (Editl.Text);
if IOResult <> 0 then
MessageDlg('Cannot find directory', mtWarning, [mbOk], 0);
end;

See also
GetDir procedure, MkDir procedure, RmDir procedure

Delphi Visual Component Library Reference 109

Check procedure

Check procedure DB

Declaration
procedure Check(Status: Integer);

The Check procedure tests Status for a nonzero value and calls DbiError passing Status.

CheckBreak typed constant WinCrt

Declaration
const CheckBreak: Boolean = True;

The CheckBreak typed constant controls user termination of an application using the CRT
window.

When CheckBreak is True, the user can terminate the application at any time by

¢ Choosing the Close command on the CRT window’s Control menu
¢ Double-clicking the window's Control-menu box

* Pressing Alt+F4

* Pressing Ctrl+Break

The user can also press Ctrl+C or Ctrl+Break at any time to halt the application and force
the CRT window into its inactive state.

All these features are disabled when CheckBreak is False.

At run time, Crt stores the old Ctrl+Break interrupt vector, $1B, in a global pointer called
Savelnt1B.

CheckBrowseMode method

Applies to
TTable, TQuery, TStoredProc components

Declaration
procedure CheckBrowseMode;

The CheckBrowseMode method verifies that the dataset is open and has no pending
changes. If the dataset’s State property is dsEdit, dsInsert or dsSetKey, the Post method is
called to post any pending changes. If the dataset is closed, an EDataBaseError exception
will be raised.

110 Delphi Visual Component Library Reference

Checked property

Checked property

Applies to
TCheckBox, TDBCheckBox, TMenultem, TRadioButton components

Declaration
property Checked: Boolean;

Run-time only. The Checked property determines whether an option is selected. These
are the possible values:

Component Value Meaning
Check box True A check mark appears in the check box, indicating the option is selected.
False No check mark appears, indicating the option is not selected. The value of

the Checked property is False if the State of the check box is cbGrayed (the
check box is grayed) or cbUnChecked (the check box is unchecked).

Radio button True A black circle appears in the radio button, indicating that the option is
selected.
False No black circle appears in the radio button, indicating the option is not
selected.
Menu item True A check mark appears next to the menu item in the menu, indicating the

item is selected.

False No check mark appears, indicating the item is not selected.

Example
This example fills in a radio button at run time:

RadioButtonl.Checked := True;

This example uses a main menu component that contains a menu item named
SnapToGridl on a form. When the user chooses the Snap To Grid command, a check
mark appears next to the command. When the user chooses the Snap To Grid command
again, the check marks disappears:

procedure TForml.SnapToGridlClick(Sender: TObject);
begin

SnapToGridl.Checked := not SnapToGridl.Checked;
end;

See also
AllowGrayed property, State property

CheckEQF typed constant WinCrt

Declaration

const CheckEOF: Boolean = False;

Delphi Visual Component Library Reference 111

Chord method
The CheckEOF typed constant controls the end-of-file character checking in the CRT
window.

When CheckEOF is True, an end-of-file marker is generated when the user presses Ctri+Z
while reading from a file assigned to the CRT window.

When CheckEOF is False, pressing Ctrl+Z has no effect.
CheckEOF is False by default.

Chord method

Applies to
TCanuvas object

Declaration
procedure Chord (X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer);

The Chord method draws a line on the canvas connecting two points on the ellipse
bounded by the specified rectangle. The screen pixel coordinates (X1, Y1) and (X2, Y2)
define the enclosing rectangle for the chord. (X3,Y3) is the starting point for the line, and
(X4, Y4) is the ending point.

Example
This code draws a chord on the top of an ellipse bounded by the current window:

var
R: TRect;

begin
R := GetClientRect; {Gets the rectangular coordinates of the current window}
Canvas.Chord (R.Left, R.Top, R.Right, R.Bottom, R.Right, R.Top, R.Left, R.Top);

end;

See also
Arc method, Draw method, Ellipse method, Pie method

Chr function System

Declaration
function Chr(X: Byte): Char;

The Chr function returns the character with the ordinal value (ASCII value) of the byte-
type expression, X.

Example

begin
Canvas.TextOut (10, 10, Chr(65)); { The letter ‘A’}

112 Delphi Visual Component Library Reference

ClassName method

end;
See also
Ord function

ClassName method

Applies to

All objects and components

Declaration
class function ClassName: string;

The ClassName function returns the name of an object or a class. For example,
TButton.ClassName returns the string “TButton’.

The name returned by ClassName is the name of the actual class of the object, as opposed
to the object’s declared class. For example, the following code assigns 'TButton’ toS, not
"TObject’:

var
MyObject: TObject;
S: string;
begin
MyObject := TButton.Create(Application);
S := MyObject.ClassName;

MyObject.Free;
end;

Example
This example uses a button, a label, a list box, a check box, and an edit box on a form.
When the user clicks one of the controls, the name of the control’s class appears in the

edit box.
procedure FindClassName (AControl:TObject);
begin
Forml.Editl.Text := AControl.ClassName;
end;

procedure TForml.ButtonlClick(Sender: TObject);
begin

FindClassName (Buttonl);
end;

procedure TForml.LabellClick(Sender: TObject);
begin

FindClassName (Labell);
end;

procedure TForml.CheckBox1Click(Sender: TObject);

Delphi Visual Component Library Reference 113

ClassParent method

begin
FindClassName (CheckBox1) ;
end;

procedure TForml.ListBox1Click(Sender: TObject);
begin

FindClassName (ListBox1);
end;

See also
ClassParent method, ClassType method

ClassParent method

Applies to

All objects and components

Declaration

class function ClassParent: TClass;

The ClassParent method returns the parent class of an object or a class. The returned
value is the immediate ancestor of the object or class. For example, TScrollBar.
ClassParent returns TWinControl as TScrollBar is derived from TWinControl.

Note that TObject.ClassParent returns nil because TObject has no parent.

Example

This code example uses a button and a list box on a form. When the user clicks the
button, the name of the button’s class and the names of its parent classes are added to

the list box.
procedure TForml.ButtonlClick(Sender: TObject);
var
ClassRef: TClass;
begin

ListBoxl.Clear;

ClassRef := Sender.ClassType;

while ClassRef <> nil do

begin
ListBoxl.Items.Add(ClassRef.ClassName);
ClassRef := ClassRef.ClassParent;

end;

end;

The list box contains the following strings after clicking the button:

TButton
TButtonControl
TWinControl
TControl

114 Delphi Visual Component Library Reference

ClassType method

TComponent
TPersistent

TObject

See also
ClassName method, ClassType method

ClassType method

Applies to

All objects and components

Declaration
function ClassType: TClass;

The ClassType function returns the class of an object.

Example
This example uses a button and a label on a form. When the user clicks the button, the
type of the button component (T'Button) appears in the caption of the label.

procedure TForml.ButtonlClick(Sender: TObject);
var
ButtonClassType: TClass;
begin
ButtonClassType := Buttonl.ClassType;
Labell.Caption := ButtonClassType.ClassName;
end;

See also
ClassName method, ClassParent method

Clear method

Applies to

TClipboard, TFieldDefs, TIndexDefs, TList, TParam, TParams, TStringList, TStrings objects;
TBCDField, TBlobField, TBooleanField, TBytesField, TComboBox, TDBComboBox,
TCurrencyField, TDateField, TDateTimeField, TDBEdit, TDBListBox, TDBMemo,
TDirectoryListBox, TDriveComboBox, TEdit, TFileListBox, TFilterComboBox, TFloatField,
TGraphicField, TIndexDefs, TIntegerField, TListBox, TMaskEdit, TMemo, TMemoField,
TOutline, TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField
components

Delphi Visual Component Library Reference 115

Clear method

For TParams objects

Declaration
procedure Clear;

The Clear method deletes all parameter information from Iterms.

Example

Paramsl.Clear;

For TParam objects

Declaration
procedure Clear;

The Clear method sets the parameter to NULL, erasing all previously assigned data. The
Name, DataType and ParamType properties are not altered.

Example

{ Clear the CustNo parameter for Query 1 }
Queryl.ParamByName (‘CustNo’).Clear;

For TIndexDefs objects

Declaration
procedure Clear;

The Clear method frees all of the entries in the Items property.

For TFieldsDefs objects

Declaration
procedure Clear;

The Clear method frees all of the entries in the Items property, effectively removing all
TFieldDef objects from TFieldDefs.

For fields

Declaration
procedure Clear;

Clear sets the value of the field to NULL.

116 Delphi Visual Component Library Reference

ClearFields method

For other objects and components

Declaration

procedure Clear;

The Clear method deletes all text from the control, or, in the case of list and string objects
or outlines, deletes all items. For the Clipboard object, Clear deletes the contents of the
Clipboard; this happens automatically each time data is added to the Clipboard (cut and
copy operations).

Example
The following code removes the text from an edit box control called NameField:

NameField.Clear;

This example uses a list box and a button on a form. When the form is created, strings
are added to the list box. When the user clicks the button, all the strings contained in the
Items property, a TStrings object, are cleared.

procedure TForml.FormCreate(Sender: TObject);

begin
ListBoxl.Items.Add('One');
ListBoxl.Items.Add('Two');
ListBoxl.Items.Add('Three');

end;

procedure TForml.ButtonlClick(Sender: TObject);
begin

ListBoxl.Items.Clear;
end;

See also

CopyToClipboard method, CutToClipboard method, Items property, Pack method,
PasteFromClipboard method, Text property, Strings property

ClearFields method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure ClearFields;

The ClearFields method clears all fields of the current record to their default values
(normally NULL.) The dataset must be in Edit state or an EDatabaseError exception will
be raised.

Delphi Visual Component Library Reference 117

ClearFormOLEDropFormats procedure

See also
Edit method, State property, TField component

ClearFormOLEDropFormats procedure Toctrl

Declaration
procedure ClearFormOleDropFormats(Form: TForm);

ClearFormOLEDropFormats deletes the object formats that can be dropped on a form that
is registered for drag-and-drop by the RegisterFormAsOLEDropTarget procedure. If the
form is cleared of OLE drag-and-drop formats, no OLE objects can be dropped into a
TOLEContainer component.

Example
The following code clears Form1 of object formats:

ClearFormOLEDropFormats (Forml) ;

See also
SetFormOLEDropFormats procedure, TOLEDropNotify object

ClearSelection method

Applies to
TDBEdit, TDBMemo, TEdit, TMaskEdit, TMemo components

Declaration
procedure ClearSelection;

The ClearSelection method deletes text selected in an edit box or memo control. If no text
is selected in the control when ClearSelection is called, nothing happens.

Example
This code uses a memo control named MyMermo and a button on a form. When the user
clicks the button, the text the user selected in the memo control is deleted.

procedure TForml.ButtonlClick(Sender: TObject);
begin

MyMemo.ClearSelection;
end;

See also

Clear method, CopyToClipboard method, CutToClipboard method, PasteFromClipboard
method

118 Delphi Visual Component Library Reference

Click method

Click method

Applies to
TBitBtn, TButton, TDBNavigator, TMenultem, TSpeedButton components

For menu items and buttons

Declaration
procedure Click;

The Click method simulates a mouse click, as if the user had clicked a menu item or
button, executing any code attached to the OnClick event.

Example

This example uses a main menu component and a button named Print. The main menu
component has a Print] menu item on it. When the user clicks the button, the code
attached to the OnClick event of the Print] menu item runs.

procedure TForml.PrintClick(Sender: TObject);
begin

Printl.Click;
end;

See also
OnClick event

For database navigator controls

Declaration
procedure Click(Button: TNavigateBtn);

The Click method simulates a mouse click, as if the user had clicked a button on the
database navigator, executing any code attached to the OnClick event. Specify which
button the Click method applies to using the Button parameter.

Example
The following code simulates a click on the Next button of DBNavigator1.

DBNavigatorl.Click (nbNext);

ClientHandle property

Applies to
TForm component

Delphi Visual Component Library Reference 119

ClientHeight property

Declaration
property ClientHandle: HWND;

Read only. The ClientHandle property value is the handle to the internal MDI (Multiple
Document Interface) client window. The property value is meaningful only if the form
is an MDI parent form with its FormStyle property set to fsMDIForm.

ClientHeight property

Applies to

All controls; TForm component

Declaration
property ClientHeight: Integer;

The ClientHeight property is the height of the control’s client area in pixels. For most
controls, ClientHeight is exactly the same as Height. For forms, however, ClientHeight
represents the height of the usable area inside the form’s frame.

ClientHeight is a run-time only property for all controls except forms.

Example
This example reduces the height of the form’s client area by half when the user clicks the
button on the form:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Forml.ClientHeight := Forml.ClientHeight div 2;
end;

Note that only the client area is halved, not the entire form.

See also
ClientWidth property, Height property

ClientOrigin property

Applies to

All controls; TForm component
Declaration

property ClientOrigin: TPoint;

Run-time and read only. The ClientOrigin property is used to determine the screen
coordinates (in pixels) of the top left corner of a control or form client area. ClientOrigin
returns X and Y coordinates in a record of type Point.

120 Delphi Visual Component Library Reference

ClientRect property

Example
This example displays the Y screen coordinate of the top right corner of the Buttonl
button client area:
procedure TForml.ButtonlClick(Sender: TObject);
begin
Editl.Text := IntToStr(Buttonl.ClientOrigin.Y);
end;
See also
ClientRect property

ClientRect property

Applies to

All controls; TForm component

Declaration
property ClientRect: TRect;

Run-time and read only. The ClientRect property is used to determine the size (in pixels)
of a control or form client area. ClientRect returns the Top, Bottom, Left, and Right
coordinates in one record of type TRect.

Example
The following code uses ClientRect to find and draw a line from the top left to the bottom
right of the current form:

with ClientRect do
begin
Canvas.MoveTo (Left, Top) ;
Canvas.LineTo (Right, Bottom);
end;

See also
ClientOrigin property

ClientToScreen method

Applies to
All controls

Declaration

function ClientToScreen(Point: TPoint): TPoint;

Delphi Visual Component Library Reference 121

ClientWidth property

The ClientToScreen method translates the given point from client area coordinates to
global screen coordinates. In client area coordinates (0, 0) corresponds to the upper left
corner of the control’s client area. In screen coordinates (0, 0) corresponds to the upper
left corner of the screen.

Using the ClientToScreen and ScreenToClient methods you can convert from one control’s
coordinate system to another control’s coordinate system. For example,

P := TargetControl.ScreenToClient (SourceControl.ClientToScreen(P));

which converts P from coordinates in SourceControl to coordinates in TargetControl.

Example
This example uses two edit boxes on a form. When the user clicks a point on the form,
the X screen coordinate appears in Edit1, and the Y screen coordinate appears in Edit2.

procedure TForml.FormMouseDown (Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

var
P, Q : TPoint;

begin
P.X := X; { P is the TPoint record for the form}
P.Y :=Y;

Q := ClientToScreen(P) { Q0 is the TPoint for the screen }

Editl.Text := IntToStr(Q.X) + ' is the X screen coordinate';
Edit2.Text := IntToStr(Q.Y) + ' is the Y screen coordinate';
end;
See also
ScreenToClient method

ClientWidth property

Applies to
All controls

Declaration
property ClientWidth: Integer;

The ClientWidth property is the horizontal size of the control’s client area in pixels. For
most controls, ClientWidth is exactly the same as Width. For forms, however, ClientWidth
represents the width of the usable area inside the form’s frame.

ClientWidth is a run-time only property for all components except forms.

Example
This example uses a button on a form. Each time the user clicks the button, the button
grows 10 pixels wider.

122 Delphi Visual Component Library Reference

Clipboard variable

procedure TForml.ButtonlClick(Sender: TObject);
begin
Buttonl.ClientWidth := Buttonl.ClientWidth + 10;

end; ‘Eill

See also
ClientHeight property, Width property

Clipboard variable Clipbrd

Declaration
Clipboard: TClipboard;

The Clipboard variable declares an instance of the TClipboard object. Use Clipboard when
you want to use the TClipboard obiject.

Clipboard is declared in the Clipbrd unit. Whenever you use Clipboard and the TClipboard
object you must add Clipbrd to the uses clause of your unit.

ClipRect property

Applies to
TCanvas object

Declaration
property ClipRect: TRect;

Read only. The ClipRect property specifies a bounding clipping rectangle. The rectangle
specified by ClipRect defines the outer boundaries of the drawing area of the canvas.
Any drawing that occurs at coordinates outside the ClipRect are clipped and don’t
appear onscreen. For example, the ClipRect of the canvas of a form is the same size as the
client area of the form.

See also
ClientRect property

Close method

Applies to
TClipboard object; TDataBase, TForm, TMediaPlayer, TQuery, TStoredProc, TTable
components

Delphi Visual Component Library Reference 123

Close method

For forms

Declaration
procedure Close;

The Close method closes a form. Calling the Close method on a form corresponds to the
user selecting the Close menu item on the form’s System menu. The Close method first
calls the CloseQuery method to determine if the form can close. If CloseQuery returns
False, the close operation is aborted. Otherwise, if CloseQuery returns True, the code
attached to the OnClose event is executed. The CloseAction parameter of the OnClose
event controls how the form is actually closed.

Example
The following method closes a form when a button called Done is clicked:

procedure TForml.DoneButtonClick(Sender: TObject);
begin

Close;
end;

See also
Hide method, Open method

For Clipboard objects

Declaration
procedure Close;

For Clipboard objects, Close closes the Clipboard if it is open. The Clipboard can be
opened with a call to Open multiple times before being closed. Because the Clipboard
object counts each time it is opened, your application must close it the same number of
times it was opened before the Clipboard is actually closed.

Example
The following code closes the Clipboard:

Clipboard.Close;

See also
Clipboard variable

For media player controls

Declaration

procedure Close;

124 Delphi Visual Component Library Reference

Close procedure

The Close method closes the open multimedia device.

Upon completion, Close stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property. C

The Wait property determines whether control is returned to the application before the
Close method is completed. The Notify property determines whether Close generates an
OnNotify event.

Close is called automatically when the application is terminated.

See also
Open method

For tables, queries, and stored procedures

Declaration
procedure Close;

The Close method closes the dataset, returning it to Inactive state. Calling Close is
equivalent to setting the Active property to False.

Note Post is not called implicitly by the Close method. Use the BeforeClose event to post any
pending edits explicitly.

For databases

Declaration
procedure Close;

The Close method closes the TDatabase component and all the dataset components
linked to it. This is the same as setting the Connected property to False.

Example

Databasel.Close;

See also
CloseDatasets method

Close procedure System

Declaration
procedure Close(var F);

The Close procedure provides compatibility with existing Borland Pascal code. When
writing applications for Delphi, you should use CloseFile.

Delphi Visual Component Library Reference 125

CloseApplication method

The Close procedure terminates the association between the file variable and an external
disk file.

F is a file variable of any file type opened using Reset, Rewrite, or Append. The external
file associated with F is completely updated and then closed, freeing the file handle for
reuse.

{$I+] lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for I/O errors.

Example

var
F: TextFile;
begin
if OpenDialogl.Execute then { Bring up open file dialog }
begin
AssignFile(F, OpenDialogl.FileName);
{ File selected in dialog }
Reset (F);
Editl.Text := IntToStr(FileSize(F);
{ Put file size string in a TEdit control }
CloseFile(F); { Close file }
end;
end;

See also
Append procedure, AssignFile procedure, Reset procedure, Rewrite procedure

CloseApplication method

Applies to
TReport component

Declaration
function CloseApplication(ShowDialogs: Boolean): Boolean;

The CloseApplication method stops ReportSmith Runtime, if it is running.
CloseApplication sends a DDE message to terminate ReportSmith Runtime and looks for
a DDE message from ReportSmith in return. If CloseApplication returns True, the
ReportSmith Runtime received the message to terminate successfully; if it returnsFalse,
ReportSmith Runtime was not able to receive the message at the current time.

The value of the ShowDialogs parameter determines whether ReportSmith displays
dialog boxes prompting users to save the existing report before closing, and so on. If
ShowDialogs is True, the dialog boxes appear before ReportSmith closes. If the parameter
is False, no dialog boxes appear.

126 Delphi Visual Component Library Reference

CloseDatabase method

See also
CloseReport method

C
CloseDatabase method .

Applies to
TSession component

Declaration
procedure CloseDatabase(Database: TDatabase);

The CloseDatabase method closes a TDatabase component. The parameter Database
specifies the TDatabase component to close. Normally, this is handled automatically
when an application closes the last table in the database associated with a TDatabase
component. CloseDatabase decrements the Session’s reference count of the number of
open database connections.

You should always use CloseDatabase with OpenDatabase, typically in a try...finally block
to ensure that database connections are handled properly.

Example

Database := Session.OpenDatabase (’'DBDEMOS’);
try
begin
{Do Something}
finally
Session.CloseDatabase ('DBDEMOS’) ;
end;

See also
Session variable

CloseDatasets method

Applies to

TDataBase component
Declaration

procedure CloseDatasets;

The CloseDatasets method closes all of the dataset components linked to the TDatabase
component, but does not close the database connection itself.

Delphi Visual Component Library Reference 127

CloseDialog method

Example

Databasel.CloseDatasets;

See also
Close method

CloseDialog method

Applies to
TFindDialog, TReplaceDialog components

Declaration
procedure CloseDialog;

The CloseDialog method closes the Find and Replace dialog boxes.

See also
Execute method

CloseFile procedure System

Declaration
procedure CloseFile(var F);

Due to naming contflicts, the CloseFile procedure replaces the Borland Pascal Close
procedure. Use the CloseFile procedure instead of Close to terminate the association
between the file variable and an external disk file.

F is a file variable of any file type opened using Reset, Rewrite, or Append. The external
file associated with F is completely updated and then closed, freeing the file handle for
reuse.

{$I+] lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for I/O errors.

CloseLink method

Applies to
TDDEClientConv component

Declaration

function CloseLink;

128 Delphi Visual Component Library Reference

CloseQuery method

The CloseLink method terminates an ongoing DDE conversation. After a link is closed,
no DDE communication can take place between the DDE client and server until another
link is opened.

Example
The following code terminates the DDE conversation.

DDEClientConvl.CloseLink;

See also
OnClose event, OpenLink method

CloseQuery method

Applies to

TForm component

Declaration
function CloseQuery: Boolean;

The CloseQuery method is called as part of a form’s Close method processing to
determine if the form can actually close. CloseQuery executes the code attached to the
OnCloseQuery event. If the OnCloseQuery event handler assigns False to its CanClose
parameter, CloseQuery will return False indicating that the form cannot close. Otherwise
CloseQuery returns True, indicating that the form is ready to close.

The CloseQuery method of the main form of an MDI application automatically calls the
CloseQuery method of each MDI child form before executing its own OnCloseQuery
event. If any of the child forms return False, the main form’s CloseQuery stops and also
returns False. Your application can use the OnCloseQuery event to ask users if they want
special processing to occur, such as saving information on the form, before the form is
closed.

Example

When the user attempts to close the form in this example, a message dialog appears that
asks if it is OK to close the form. If the user chooses No, the form doesn’t close. If the
user chooses OK, the form closes.

procedure TForml.FormCloseQuery (Sender: TObject; var CanClose: Boolean);
var
ButtonSelected: Word;
begin
ButtonSelected := MessageDlg('Is it OK to close the form?', mtInformation,
[mbOk, mbNol, 0);
if ButtonSelected = mrOk then
CanClose := True
else
CanClose := False;
end;

Delphi Visual Component Library Reference 129

CloseReport method

See also
Close method, OnCloseQuery event

CloseReport method

Applies to
TReport component

Declaration
function CloseReport (ShowDialogs: Boolean): Boolean;

The CloseReport method determines whether the running of a ReportSmith report
terminates. CloseReport sends a DDE message to ReportSmith Runtime and looks for a
DDE message from ReportSmith Runtime in return. If CloseReport returns True,
ReportSmith Runtime received the message to terminate the report. If CloseReport
returns False, ReportSmith Runtime could not receive the DDE message at the current
time.

The ShowDialogs parameter determines whether dialog boxes that prompt the user
about saving the report appear before the report closes, and so on. If ShowDialogs is True,
the dialog boxes appear. If it is False, the dialog boxes are not shown.

Example
The following code terminates the running report if the user chooses Yes from a dialog
box:

if MessageDlg('Do you want to stop running ' + Reportl.ReportName + ' ?',
mtConfirmation, [mbYes, mbNo], 0) = mrYes then
if Reportl.CloseReport (False) then MessageDlg(Reportl.ReportName + ' canceled.',
mtInformation, [mbOK], 0);

See also
CloseApplication method

CloseUp method

Applies to
TDBLookupCombo component

Declaration
procedure CloseUp;

The CloseUp method closes an opened or “dropped-down” database lookup combo box.

See also
DropDown method

130 Delphi Visual Component Library Reference

ClrEol procedure

ClrEol procedure WinCrt

Declaration

procedure ClrEol;

The ClrEol procedure clears all characters from the cursor position to the end of the line
without moving the cursor.

ClrEol sets all character positions to blanks with the currently defined text attributes.

Example
uses WinCrt;

begin
ClrScr;
Writeln('Hello there, how are you today?');
Writeln('Press <enter> key...');
Readln;
GotoXY(1,2);
ClrEol;
Writeln ('Glad to hear it!');
end;

See also
ClrScr procedure

ClrScr procedure WinCrt

Declaration
procedure ClrScr;

The ClrScr procedure clears the active windows and returns the cursor to the upper left
corner.

ClrScr sets all character positions to blanks with the currently defined text attributes.

Example
uses WinCrt;

begin
Writeln('Hello. Please the <enter> key...');
Readln;
ClrScr;

end;

See also
ClrEol procedure

Delphi Visual Component Library Reference 131

CmdLine variable

CmdLine variable System

Declaration
var CmdLine: PChar;

In a program, the CmdLine variable contains a pointer to a null-terminated string that
contains the command-line arguments specified when the application was started.

In a library, CmdLine is nil.

CmdShow variable System

Declaration
var CmdShow: Integer;

In a program, the CmdShow variable contains the parameter value that Windows expects
to be passed to ShowWindow when the application creates its main window.

In a library, CmdShow is always zero.

Col property

Applies to
TDrawGrid, TStringGrid components

Declaration
property Col: Longint;

Run-time only. The value of the Col property indicates the current column of the cell that
has input focus. You can use the Col property along with the Row property to determine
which cell is selected at run time.

Example
This example uses a string grid with a label above it on a form. When the user clicks a
cell in the grid, the location of the cursor is displayed in the label caption.

procedure TForml.StringGridlClick(Sender: TObject);

begin
Labell.Caption := 'The cursor is in column ' + IntToStr(StringGridl.Col + 1)
+ ', row ' + IntToStr(StringGridl.Row + 1);
end;
See also

ColCount property, ColWidths property, DefaultColWidth property

132 Delphi Visual Component Library Reference

ColCount property

ColCount property

Applies to
TDrawGrid, TStringGrid components

Declaration
property ColCount: Longint;

Run-time only. The value of the ColCount property determines the number of columns
in the grid. The default value is 5.

Example
The following line of code adds one column to a string grid named MyStrngGrd:

MyStrngGrd.ColCount := MyStrngGrd.ColCount + 1;

See also
Col property, ColWidths property, RowCount property

Collapse method

Applies to
TOutlineNode object

Declaration
procedure Collapse;

The Collapse method collapses an outline item by assigning False to its Expanded
property. When an outline item is collapsed, its sub-items are hidden and the plus
picture or closed picture might be displayed, depending on the outline style specified in
the OutlineStyle property of the TOutline component.

Example
The following code collapses the first outline item.

Outlinel.Items[1].Collapse;
See also

Expand method, FullCollapse method, FullExpand method, PictureClosed property,
PicturePlus property

Collate property

Applies to
TPrintDialog component

Delphi Visual Component Library Reference 133

Color property

Declaration
property Collate: Boolean;

The Collate property determines if the Collate check box is checked and, therefore, if
collating is selected. Regardless of the initial setting of the Collate property, the user can
always check or uncheck the Collate check box (and change the Collate property) to
choose or not choose to collate the print job. The default setting is False.

Color property

Applies to

TBrush, TFont, TPen objects; TBitBtn, TCheckBox, TColorDialog, TComboBox,
TDBCheckBox, TDBComboBox, TDBEdit, TDBGrid, TDBImage, TDBListBox,
TDBLookupCombo, TDBLookupList, TDBMemo, TDBRadioGroup, TDBText,
TDirectoryListBox, TDrawGrid, TDriveComboBox, TEdit, TFileListBox, TForm, TGroupBox,
TLabel, TListBox, TMaskEdit, TMemo, TNotebook, TOutline, TPaintBox, TPanel,
TRadioButton, TScrollBox, TStringGrid components

Declaration
property Color: TColor;

For all components or objects except the Color dialog box, the Color property determines
the background color of a form or the color of a control or graphics object.

If a control’s ParentColor property is True, then changing the Color property of the
control’s parent automatically changes the Color property of the control. When you
assign a value to a control’s Color property, the control’s ParentColor property is
automatically set to False. These are the possible values of Color:

Value Meaning
cIBlack Black
cIMaroon Maroon
clGreen Green
clOlive Olive green
cINavy Navy blue
clPurple Purple
clTeal Teal

clGray Gray
clSilver Silver

clRed Red

clLime Lime green
cIBlue Blue
clFuchsia Fuchsia
clAqua Aqua
cIWhite White
cIBackground Current color of your Windows background

134 Delphi Visual Component Library Reference

Value

clActiveCaption
clInactiveCaption
cIMenu

Color property

Meaning

Current color of the title bar of the active window
Current color of the title bar of inactive windows
Current background color of menus

clWindow Current background color of windows

cIlWindowFrame Current color of window frames

cIMenuText Current color of text on menus

cIWindowText Current color of text in windows

clCaptionText Current color of the text on the title bar of the active window
clActiveBorder Current border color of the active window

clInactiveBorder

Current border color of inactive windows

clAppWorkSpace Current color of the application workspace

clHighlight Current background color of selected text

clHightlightText Current color of selected text

cIBtnFace Current color of a button face

cIBtnShadow Current color of a shadow cast by a button

clGrayText Current color of text that is dimmed

cIBtnText Current color of text on a button

clnactiveCaptionText Current color of the text on the title bar of an inactive window
cIBtnHighlight Current color of the highlighting on a button

The second half of the colors listed here are Windows system colors. The color that
appears depends on the color scheme users are using for Windows. Users can change
these colors using the Control Panel in Program Manager. The actual color that appears
will vary from system to system. For example, the color fuchsia may appear more blue
on one system than another.

For the Color dialog box

When you use the Color dialog box to select a color, you are assigning a new color value
to the dialog box’s Color property. You can then use the value within the Color property
and assign it to the Color property of another control.

Example
This code colors a form red:

Forml.Color := clRed;

The following code changes the color of an edit box control using the Color dialog box.
The example displays the Color dialog box when the Button1 button is clicked, allowing
the user to select a color with the dialog box. The example then assigns the color value
selected with the dialog box to the Color property of the edit box control:

procedure TForml.ButtonlClick(Sender: TObject);
begin
if ColorDialogl.Execute then

Delphi Visual Component Library Reference 135

ColoredButtons property

Editl.Color := ColorDialogl.Color;
end;

See also
ColorToRGB function, ParentColor property, TColorDialog component

ColoredButtons property

Applies to
TMediaPlayer component

Declaration
property ColoredButtons: TButtonSet;

The ColoredButtons property determines which of the buttons on the media player
control has color. If a button is not colored with ColoredButtons, it appears in black-and-
white when visible. All media player control buttons are colored by default.

Button Value Action

Play btPlay Plays the media player

Record btRecord Starts recording

Stop btStop Stops playing or recording

Next btNext Skips to the next track, or to the end if the medium doesn’t use
tracks

Prev btPrev Skips to the previous track, or to the beginning if the medium
doesn’t use tracks

Step btStep Moves forward a number of frames

Back btBack Moves backward a number of frames

Pause btPause Pauses playing or recording. If already paused when clicked,
resumes playing or recording.

Eject btEject Ejects the medium

Example

The following example displays all of the media player component’s buttons in color:

TMediaPlayerl.ColoredButtons := [btPlay, btPause, btStop, btNext, btPrev, btStep, btBack,
btRecord, btEject]

See also
EnabledButtons property, VisibleButtons property

ColorToRGB function Graphics

Declaration

function ColorToRGB(Color: TColor): Longint;

136 Delphi Visual Component Library Reference

Cols property

The ColorToRGB function returns the RGB value that Windows uses from a TColor type
used by Delphi. If the color represents a system color, the current RGB value for that

system color is returned. .
C

Example
The following code converts the color of the current form, Form1, to a Windows RGB
value:

var
L : Longint;
begin
L := ColorToRGB(Forml.Color);
end;

See also
Color property

Cols property

Applies to
TStringGrid component

Declaration
property Cols[Index: Integer]: TStrings;

The Cols property is an array of the strings and their associated objects in a column. The
number of strings and associated objects is always equal to the value of the ColCount
property, the number of columns in the grid. Use the Cols property to access the strings
and their associated objects within a particular column in the grid. Thelndex parameter
is the number of the column you want to access; the Index value of the first column in the
grid is zero.

Example
The following line of code adds the string "Hello” to the end of the list of strings in
column four of the string grid named StringGrid1:

StringGridl.Cols[3].Add('Hello');

See also
Cells property, Objects property, Rows property

Columns property

Applies to
TDBRadioGroup, TDirectoryListBox, TListBox, TRadioGroup components

Delphi Visual Component Library Reference 137

ColWidths property

Declaration
property Columns: Longint;

The Columns property denotes the number of columns in the list box or radio group box.
Specify the number of columns you want for the list box or radio group box as the value
of Columns.

Example

This example uses a list box and a button on a form. Each time the user clicks the button,
the string ‘Hello’ is added to the list box. When the list box is filled, a new column is
created and subsequent new strings are added to the new column:

procedure TForml.ButtonlClick(Sender: TObject);
begin

if ListBoxl.Columns < 1 then

ListBoxl.Columns := 1;
Listboxl.Items.Add('Hello');
if Listboxl.Height <= ((Listboxl.ItemHeight * Listboxl.Items.Count)
/ ListBoxl.Columns) then
Listboxl.Columns := Listboxl.Columns + 1;

end;

ColWidths property

Applies to
TDrawGrid, TStringGrid components

Declaration
property ColWidths[Index: Longint]: Integer;

Run-time only. The ColWidths property determines the width in pixels of all the cells
within the column referenced by the Index parameter.

By default, all the columns are the same width, the value of the DefaultColWidth
property. To change the width of all columns within a grid, change the DefaultColWidth
property value.

To change the width of one column without affecting others, change the ColWidths
property. Specify the column you want to change as the value of the Index parameter.
Remember the first column always has an Index value of 0.

Example
The following code changes the width of column 0 in the string grid called StringGrid1
to twice the default value.

StringGridl.ColWidths[0] := StringGridl.DefaultColWidth * 2;

See also
RowHeights property

138 Delphi Visual Component Library Reference

Command property

Command property

Applies to
TMenultem component

Declaration

property Command: Word;

Run-time and read only. The Command property value is the command number passed
to Windows and the number that arrives in the WM_COMMAND message sent by
Windows to the form when the user chooses this menu item on the menu. Command is
useful only if you are handling WM_COMMAND messages directly.

Example

The following procedure is a WM_COMMAND message handler. It checks the ItemID
field of Msg to see if the message was generated by a menu item called MenuThink. If so,
it displays a message dialog box. When writing message handlers, remember to call
Inherited afterward, if necessary, so Windows can perform default message processing.

procedure TForml.WMCommand (var Msg: TWMCommand) ;
begin
if Msg.ItemID = MenuThink.Command then
MessageDlg(‘This is the Think command’, mtInformation, [mbOk], 0);
Inherited;
end;

Commit method

Applies to
TDataBase component

Declaration
procedure Commit;

The Commit method commits the current transactions and thus all modifications made
to the database since the last call to StartTransaction. If no transaction is active, Delphi
will raise an exception. Use this method only when connected to a server database.

Example

with Databasel do
begin
StartTransaction;
{ Update one or more records in tables linked to Databasel }

Commit;
end;

Delphi Visual Component Library Reference 139

CompareStr function

See also
Rollback method

CompareStr function SysUtils

Declaration
function CompareStr(const S1, S2: string): Integer;

CompareStr compares S1 to S2, with case-sensitivity. The return value is less than 0 if S1
is less than 52, 0 if S1 equals 52, or greater than 0 if S1 is greater than S2. The compare
operation is based on the 8-bit ordinal value of each character and is not affected by the
currently installed language driver.

Example
The following code compares Stringl, STEVE), to String2, 'STEVe'. Note that CompareStr
returns a number less than 0 because the value of 'e' is greater than the value of 'E'.

var
Stringl, String2 : string;
I : integer;
begin
Stringl := 'STEVE';
String2 := 'STEVe';
I := CompareStr(Stringl, String2); { the value of I is < 0 }
if T < 0 then
MessageDlg('The strings are not equal', mtWarning, [mbOK], 0)
end;

See also
CompareText function

CompareText function SysUtils

Declaration
function CompareText (const S1, S2: string): Integer;

The CompareText function compares the strings S1 and S2 and returns 0 if they are equal.
If S1 is greater than 52, CompareText returns an integer greater than 0. If 51 is less than
52, CompareText returns an integer less than 0. The CompareText function is not case
sensitive. For example, CompareText finds 'object pascal' and 'Object Pascal' to be equal.

Example
The following code compares Stringl, 'ABC, to String2, 'aaa’. Because CompareText is
case insensitive, String?2 is larger.

var
Stringl, String2 : string;

140 Delphi Visual Component Library Reference

ComponentCount property

I : integer;
begin
Stringl := 'ABC';

String2 := 'aaa';
I := CompareStr(Stringl, String2); { the value of I is < 0 }

if T < 0 then
MessageDlg('The strings are not equal', mtWarning, [mbOK], 0)
end;

See also
CompareStr function

ComponentCount property

Applies to
All components

Declaration
property ComponentCount: Integer;

Run-time and read only. The ComponentCount property indicates the number of
components owned by the component as listed in the Components array property. For
example, ComponentCount of a form contains the same number of items as in the
Components list of a form.

Note ~ ComponentCount is always 1 more than the highest Components index, because the first
Components index is always 0.

Example

This code uses several controls on a form, including a button and an edit box. When the
user clicks the button, the code counts all the components on the form and displays the
number in the Edit1 edit box. While the components are being counted, each is
evaluated to see if it is a button component. If the component is a button, the code
changes the font on the button face.

procedure TForml.ButtonlClick(Sender: TObject);
var
I: Integer;
begin
for T := 0 to ComponentCount -1 do
if Components[I] is TButton then

TButton (Components[I]).Font.Name := 'Courier';
Editl.Text := IntToStr(ComponentCount) + ' components';
end;
See also

ComponentIndex property, Components property

Delphi Visual Component Library Reference 141

Componentindex property

Componentindex property

Applies to
All components

Declaration
property ComponentIndex: Integer;

Run-time and read only. The ComponentIndex property indicates the position of the
component in its owner’s Components property list. The first component in the list has a
ComponentIndex value of 0, the second has a value of 1, and so on.

Example
The following code uses a button and a wide edit box on a form. When the user clicks
the button, the edit box displays the index value of the button component:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Editl.Text := 'The index of the button is ' + IntToStr(Buttonl.ComponentIndex);
end;

See also
ComponentCount property, Components property

Components property

Applies to

All components

Declaration
property Components[Index: Integer]: TComponent;

Run-time and read only. The Components array property is a list of all components
owned by the component. You can use the Components property to access any of these
owned components, such as the controls owned by a form. The Components property is
most useful if you need to refer to owned components by number rather than name.

Don’t confuse the Components property with the Controls property. The Components
property lists all components that are owned by the component, whereas the Controls
property lists all the controls that are child windows of this control. All components on a
form are owned by the form, and therefore, they appear in the form’s Components

property list.
Consider this example. If you put a control in a group box, the form still owns the

control, but the control’s window parent is the group box control, and therefore, is listed
in the group box’s Controls property array.

142 Delphi Visual Component Library Reference

Concat function

Example

This code uses several controls on a form, including a button and an edit box. When the

user clicks the button, the code counts all the components on the form and displays the
number in the Edit1 edit box. While the components are being counted, each is
evaluated to see if it is a button component. If the component is a button, the code

changes the font on the button face.

procedure TForml.ButtonlClick(Sender: TObject);
var

I: Integer;
begin

for I := 0 to ComponentCount -1 do

if Components[I] is TButton then
TButton (Components[I]).Font.Name := 'Courier';

Editl.Text := IntToStr(ComponentCount) + ' components';

end;

See also

ComponentCount property, ComponentIndex property, Owner property, Parent property,
TabOrder property

Concat function System

Declaration
function Concat(sl [, s2,..., sn]: string): String;
The Concat function merges two or more strings into one large string.

Each parameter is a string-type expression. The result is the concatenation of all the
string parameters. If the resulting string is longer than 255 characters, it is truncated
after the 255th character.

Using the plus (+) operator has the same effect on two strings as using the Concat
function:

S := 'ABC' + 'DEF';

Example

var
S: string;
begin
S := Concat ('ABC', 'DEF'); { 'ABCDE' }
end;

See also
Copy function, Delete procedure, Insert procedure, Length function, Pos function

Delphi Visual Component Library Reference 143

ConfirmDelete property

ConfirmDelete property

Applies to
TDBNavigator component

Declaration
property ConfirmDelete: Boolean;

The ConfirmDelete property determines whether a message box asking you to confirm
the deletion when the user uses the database navigator to delete the current record in
the dataset. If ConfirmDelete is True, a prompting message box appears and the record
isn’t deleted unless the user chooses the OK button. If ConfirmDelete is False, no message
box appears and the record is deleted.

The default value is True.

See also
VisibleButtons property

Connect method

Applies to

TReport component

Declaration

function Connect (ServerType: Word; const ServerName, UserName, Password,
DatabaseName: string): Boolean;

The Connect method connects the report to a database, bypassing the ReportSmith log in
dialog box. Specify the server type and name with the ServerType and ServerName
parameters. Specify the user name, the log-in password, and the name of the database
using the UserName, Password, and DatabaseName parameters.

Connected property

Applies to
TDataBase component

Declaration
property Connected: Boolean;

The Connected property indicates whether the TDatabase component has established a
connection to a database. Connected will be set to True when an application opens a table
in a database (logging in to a server, if required). It will be set back to False when the
table is closed (unless KeepConnection is True). Set Connected to True to establish a

144 Delphi Visual Component Library Reference

ConnectMode property

connection to a database without opening a table. Set Connected to False to close a
database connection.

The KeepConnection property of TDatabase specifies whether to maintain database C
connections when no tables in the database are open. The KeepConnections property of

TSession specifies whether to maintain database connections when there is no explicit
TDatabase component for the database.

Example

Databasel.Connected := True;

ConnectMode property

Applies to
TDDEClientConv component

Declaration

property ConnectMode: TDataMode;

The ConnectMode property determines the type of connection to establish when
initiating a link with a DDE server application. These are the possible values:

Value Meaning

ddeAutomatic The link is automatically established when the form containing the TDDEClient
component is created at run time. This is the default value.

ddeManual The link is established only when the OpenLink method is called.

Example

The following code sets the connect mode of DDEClientConvl to manual.

DDEClientConvl.ConnectMode := ddeManual;

ContainsControl method

Applies to

All windowed controls

Declaration
function ContainsControl (Control: TControl): Boolean;

The ContainsControl method indicates whether a specified control exists within a control.
If the method returns True, the control specified as the value of the Control parameter
exists within the control. If the method returns False, the specified control is not within
the control.

Delphi Visual Component Library Reference 145

Continue procedure

Example
This example uses a label, a list box, and a button on a form. When the user clicks the
button, the caption of the label reports that the form contains the list box:

procedure TForml.ButtonlClick(Sender: TObject);

begin
if ContainsControl (ListBoxl) then
Labell.Caption := 'The form contains ListBoxl';
end;
Continue procedure System
Declaration

procedure Continue;

The Continue procedure has the flow of control proceed to the next iteration of the
calling for, while, or repeat statement.

The compiler reports an error if a call to Continue isn’t enclosed by a for, while, or repeat
statement.

Example

var
F: File;
i: integer;
begin
for i := 0 to (FileListBoxl.Items.Count - 1) do begin
if FileListBoxl.Selected[i] then begin
if not FileExists(FileListBoxl.Items.Strings([i]) then begin
MessageDlg('File: ' + FileListBoxl.Items.Strings([i] +
' not found', mtError, [mbOk], 0);
Continue;
end;
AssignFile(F, FileListBoxl.Items.Strings[i]);
Reset (F, 1);
ListBoxl.Items.Add(IntToStr (FileSize(F)));
CloseFile(F);
end;
end;
end;

See also
Break procedure, Exit procedure, Halt procedure

146 Delphi Visual Component Library Reference

ControlAtPos method

ControlAtPos method

Applies to
All windowed controls

Declaration

function ControlAtPos(Pos: TPoint; AllowDisabled: Boolean): TControl;

The ControlAtPos method returns the windowed control’s child control (from those in
the Controls array property) located at the screen coordinates passed in Pos. If there is no
control at the specified position, ControlAtPos returns nil. The AllowDisabled parameter

controls whether the search for controls includes disabled controls.

ControlCount property

Note

Applies to
All controls

Declaration

property ControlCount: Integer;

Run-time and read only. The ControlCount property indicates the number of controls
that are children of the control. The children are listed in the Controls property array.

The value of ControlCount is always 1 greater than the highest Controls index, because

the first Controls index is 0.

Example

This example uses a group box on a form, with several controls contained within the

group box. The form also has an edit box and a button outside of the group box. The
code counts each control’s child controls turning each of them invisible as they are

counted. The total number of controls counted appears in the edit box.

procedure TForml.ButtonlClick(Sender: TObject);
var
I: Integer;
begin
for I:= 0 to GroupBoxl.ControlCount -1 do
GroupBox1.Controls([I].Visible := False;
Editl.Text := IntToStr (GroupBoxl.ControlCount) + ' controls';
end;

See also
Controls property

Delphi Visual Component Library Reference

147

Controls property

Controls property

Applies to
All controls

Declaration
property Controls[Index: Integer]: TControl;

Run-time and read only. The Controls property is an array of all controls that are
children of the control. The Controls property is most useful if you have a need to refer to
the children of a control by number rather than name.

Don’t confuse the Controls property with the Components property. The Components
property lists all components that are owned by the component, while the Controls
property lists all the controls that are child windows of the control. All components put
on a form are owned by the form, and therefore, they appear in the form’s Components
property list.

For example, if you put a control in a group box, the form still owns the control, but the
control’s window parent is the group box control, and therefore, is listed in the group
box’s Controls property array.

Example

This example uses a group box on a form, with several controls contained within the
group box. The form also has an edit box and a button outside of the group box. The
code counts each control’s child controls turning each of them invisible as they are
counted. The total number of controls counted displays in the edit box.

procedure TForml.ButtonlClick(Sender: TObject);
var
I: Integer;
begin
for I:= 0 to GroupBoxl.ControlCount -1 do
GroupBox1.Controls[I].Visible := False;
Editl.Text := IntToStr (GroupBoxl.ControlCount) + ' controls';
end;

See also
ControlCount property, Owner property, Parent property

ConvertDIgHelp property

Applies to
TOLEContainer component

Declaration

property ConvertDlgHelp: THelpContext;

148 Delphi Visual Component Library Reference

Copies property

The ConvertDIgHelp property specifies the context-sensitive help identification number

for the Convert dialog box. If your application is programmed for online help, specify

an integer value for ConvertDIgHelp to identify the online help topic to be called when

the user chooses Help from the Convert dialog box. If the application is not
programmed for context-sensitive online Help, or if zero is specified for ConvertDIgHelp,
choosing Help from the Convert dialog box will have no effect.

The Convert dialog box enables the user to convert an OLE object to another object type.
To enable the Convert dialog box, a menu item but be designated the OLE object menu
item in the ObjectMenultem property of a form. Then, when an OLE container containing
an OLE object is selected at run time, the OLE Object menu item will be available on the
menu bar of the form. If the OLE server application supports object conversion, choose

Convert from the OLE object menu item to display the Convert dialog box.

Note You don’t need to program your application to provide the functionality of the Convert
dialog box and the OLE object menu item. This functionality comes from the OLE server
application automatically when an OLE container has focus. The only step required is to
identify the name of a menu item in the ObjectMenultem property.

Example

The following code assigns 531 to the context-sensitive Help identification number of
the OLE Convert dialog box.

OLEContainerl.ConvertDlgHelp := 531;

Copies property

Applies to
TPrintDialog component

Declaration
property Copies: Integer;

The value of the Copies property determines the number of copies of the print job to
print. If you change the value of Copies at design time, the value you specify is the
default value in the edit box control when the Print dialog box appears. The default
value is 0.

Example
The following code sets the default number of copies for the print dialog box,
PrintDialog1, to 3 before displaying the dialog box:

PrintDialogl.Copies := 3;
PrintDialogl.Execute;

Delphi Visual Component Library Reference 149

Copy function

Copy function System

Declaration
function Copy(S: string; Index, Count: Integer): string;
The Copy function returns a substring of a string.

S is a string-type expression. Index and Count are integer-type expressions. Copy returns
a string containing Count characters starting with at S[Index].

If Index is larger than the length of S, Copy returns an empty string.

If Count specifies more characters than are available, the only the characters from
S[Index] to the end of S are returned.

Example

var S: string;
begin

S := '"ABCDEF';

S := Copy (S, 2, 3); { 'BCD' }
end;

See also
Concat function, Delete procedure, Insert procedure, Length function, Pos function

CopyMode property

Applies to
TCanuvas object

Declaration
property CopyMode: TCopyMode;

The CopyMode property determines how a canvas treats an image copied from another
canvas. By default, CopyMode is cmSrcCopy, meaning that pixels from the other canvas
are copied to the canvas, overwriting any image already there. By changing CopyMode,
you can create many different effects. The following table shows possible values of
CopyMode and describes each:

Value Meaning

cmBlackness Turns all output black.

cmDstInvert Inverts the destination bitmap.

cmMergeCopy Combines the pattern and the source bitmap by using the Boolean AND operator.

cmMergePaint Combines the inverted source bitmap with the destination bitmap by using the
Boolean OR operator.

cmNotSrcCopy Copies the inverted source bitmap to the destination.

150 Delphi Visual Component Library Reference

CopyParams method

Value Meaning

cmNotSrcErase Inverts the result of combining the destination and source bitmaps by using the
Boolean OR operator.

cmPatCopy Copies the pattern to the destination bitmap with the pattern by using the Boolean C
XOR operator.

cmPatInvert Combines the destination bitmap with the pattern by using the Boolean XOR operator

cmPatPaint Combines the inverted source bitmap with the pattern by using the Boolean OR
operator. Combines the result of this operation with the destination bitmap by using
the Boolean OR operator.

cmSrcAnd Combines pixels from the destination and source bitmaps by using the Boolean AND
operator.

cmSrcCopy Copies the source bitmap to the destination bitmap.

cmSrcErase Inverts the destination bitmap and combines the result with the source bitmap by
using the Boolean AND operator.

cmSrclnvert Combines pixels from the destination and source bitmaps by using the Boolean XOR
operator.

cmSrcPaint Combines pixels from the destination and source bitmaps by using the Boolean OR
operator.

cmWhiteness Turns all output white.

Example

The following code copies the the inverted source bitmap to the Canvas of Form?2:

Form2.Canvas.CopyMode := cmNotSrcCopy;
Form2.Canvas.CopyRect (ClientRect, Canvas, ClientRect);

See also
CopyRect method

CopyParams method

Applies to
TStoredProc component

Declaration

procedure CopyParams(Value: TParams);

The CopyParams method copies all of the parameter information from the stored
procedure component to Value. Use this method to copy parameters from one stored
procedure component to another.

Example

{ Copy all parameters from StoredProcl to StoredProc2 }
StoredProcl.CopyParams (StoredProc?.Params) ;

Delphi Visual Component Library Reference 151

CopyRect method

CopyRect method

Applies to
TCanuvas object

Declaration
procedure CopyRect (Dest: TRect; Canvas: TCanvas; Source: TRect);

The CopyRect method copies part of an image from another canvas into the canvas
object. The Dest property specifies the destination rectangle on the destination canvas
where the image will be copied. The Canvas property specifies the source canvas. The
Source property specifies the source rectangle from the source canvas that will be copied.

Example
The following code copies the the inverted source bitmap to the Canvas of Form?2:

Form2.Canvas.CopyMode := cmNotSrcCopy;
Form2.Canvas.CopyRect (ClientRect, Canvas, ClientRect);

See also
CopyMode property

CopyToClipboard method

Applies to
TDBEdit, TDBImage, TDBMemo, TDDEServerltem, TEdit, TMemo, TOLEContainer
components

For edit boxes and memos

Declaration
procedure CopyToClipboard;

The CopyToClipboard method copies the text selected in the control to the Clipboard,
replacing any text that exists there. If no text is selected, nothing is copied.

Example

The following method copies the selected text from the memo control named Mermo1 to
the Clipboard and pastes it into an edit box named Edit1 when the user clicks the button
named Button1:

procedure TForml.ButtonlClick(Sender: TObject);
begin
Memol.CopyToClipboard;
Editl.PasteFromClipboard;
end;

152 Delphi Visual Component Library Reference

CopyToClipboard method

See also
Clear method, ClearSelection method, CutToClipboard method, PasteFromClipboard

method

For OLE containers

Declaration
procedure CopyToClipboard(Clear: Boolean);

The CopyToClipboard method copies the OLE object contained in an OLE container to the
Clipboard, as well as OLE information. You can then create a link by activating an OLE
container application and executing an Edit | Paste Special command, or its equivalent in
the command structure of the OLE container application. To paste an object into a
TOLEContainer component, call the PasteSpecialDIg function.

For example, after your application calls the CopyToClipboard method of a OLE container
component, you can manually activate Quattro Pro for Windows. Select a location in the
worksheet and choose Paste Format from the Edit menu of Quattro Pro for Windows to
embed the OLE object in the worksheet.

If the Clear parameter is True, the prior contents of the Clipboard are deleted before
CopyToClipboard places its data on the Clipboard. If Clear is False, the Clipboard won't be
cleared before the copy.

Example
The following code copies the OLE object in OLEContainer1 to the Clipboard without
clearing the contents first.

OLEContainerl.CopyToClipboard(False);

See also
Clear method

For DDE server items

Declaration
procedure CopyToClipboard;

The CopyToClipboard method copies the text data specified in the Text or Lines property
of a DDE server item component to the Windows Clipboard, as well as DDE link
information. You can then create a link by activating the DDE client application,
selecting the topic and item of the DDE conversation, and executing an Edit | Paste Link
command, or its equivalent in the command structure of the DDE client application.

CopyToClipboard can be used to create a DDE link at run-time only. To create a link at
design time, select the DDE server item component and choose Edit | Copy from the
menu. Then, activate the DDE server application and paste the link according to the

Delphi Visual Component Library Reference 153

Cos function
rules of the DDE server application. See the documentation for the DDE server
application for specific information about pasting the link.

If the Clear parameter is True, the prior contents of the Clipboard are deleted before
CopyToClipboard places its data on the Clipboard. If Clear is False, the Clipboard won't be
cleared before the copy.

Example
The following code copies the DDE link information of DDEServerltem1 to the
Clipboard, clearing the contents of the Clipboard before the copy.

DDEServerIteml.CopyToClipboard;

See also
Clear method

For database images

Declaration
procedure CopyToClipboard;

The CopyToClipboard method copies the image of the database image component to the
Clipboard.

Example
The following code copies the contents of DBImagel to the Clipboard without clearing
the contents of the Clipboard first.

DBImagel.CopyToClipboard(False);

See also
CutToClipboard method, PasteFromClipboard method

Cos function System

Declaration
function Cos(X: Real): Real;

The Cos function returns the cosine of the angle X, in radians.

Example

var R: Real;
begin

R := Cos(P1);
end;

154 Delphi Visual Component Library Reference

Count property

See also
ArcTan function, Sin function

Count property

Applies to
TIndexDefs, TFieldDefs, TList, TParams, TStringList, TStrings objects; TMenultem
component

For lists and menu items

Declaration
property Count: Integer;

Run-time and read only. The Count property contains the number of items in a list or in
a menu item.

For string and string list objects, Count is the number of strings in the list of strings. For
list objects, Count is the number of items in the list.

For menu items, Count contains the number of subitems that belongs to a menu item.
Subitems can be the menu items in a drop-down or pop-up menu, or the items in a
submenu.

For example, if you have a File menu item on the main menu bar, but haven’t added any
commands to the File menu yet, the File menu’s Count property value is 0. If you add
New and Open commands to the File menu, the Count property value is 2. Because New
and Open are also menu items, they too have Count property values. Unless either of
these menu items have submenus, their Count property values are 0.

Example
The following code displays the number of items in a list box in the caption of a label
when the user clicks the Countltems button:

procedure TForml.CountItemsClick(Sender: TObject);
begin
Labell.Caption := 'There are ' + IntToStr(ListBoxl.Items.Count) +
' items in the listbox.';
end;

The following example assumes the form contains a main menu component, which
includes a File menu and a label. This code displays the number of menu items that
make up the File menu.

procedure TForml.ButtonlClick(Sender: TObject);
begin

Labell.Caption := IntToStr(FileMenu.Count):
end;

Delphi Visual Component Library Reference 155

Create method

See also
Items property, List property, Strings property

For TParams objects

Declaration
function Count: Integer;

The Count method returns the number of entries in Items.

Example

{ Assign 99999 to any integer parameter which does not have a value }
for T := 0 to Params.Count - 1 do
if (Params.Items[I].IsNull) and (Params.Items[I].DataType = ftInteger) then
{ Items is the default property, so you can omit its name }
Params[I].AsInteger := 99999;

For TFieldDefs objects

Declaration
property Count: Integer;

The Count property specifies the total number of TFieldDef objects in this TFieldDefs
object.

See also
Items property

For TindexDefs objects

Declaration
property Count: Integer;

Run-time and read only. The Count property holds the number of entries in the Items
property.

Create method

Applies to
All objects and components

156 Delphi Visual Component Library Reference

Create method

For TiniFile objects

Declaration
constructor Create(const FileName: string);

The Create method allocates memory to create a TIniFile object and passes it the file
name of the .INI file. Delphi looks for the specified .INI file in the Windows directory
unless you include a path in the file name.

Example
This code creates an .INI file object and passes it the name of the .INI file,
SUPERAPP.INI:

var
IniFile: TIniFile;

begin
IniFile := TIniFile.Create('SUPERAPP.INI');
IniFile.Free;

end;

For outline nodes

Declaration
constructor Create(AOwner: TCustomOutline);

The Create method creates a new outline node owned by the outline passed in the
AQOuwner parameter. You shouldn’t need to call Create, as this is done for you when you
add a new subitem to the outline with the Add method.

For control scroll bars

Declaration
constructor Create(AControl: TScrollingWinControl; AKind: TScrollBarKind);

The Create method creates a new control scroll bar. AControl specifies the component
that owns the control scroll bar. AControl is of type TScrollingWinControl, which is
simply a base class for TForm and TScrollBox components. AKind specifies the type of
scroll bar, either sbHorizontal or sbVertical.

For TindexDef objects

Declaration
constructor Create(Owner: TIndexDefs; const Name, Fields: string; Options: TIndexOptions);

The Create constructor creates a new TIndexDef object using the Name, Fields, and Options
parameters and adds it to the Items property of the Owner parameter.

Delphi Visual Component Library Reference 157

Create method

For TIndexDefs objects

Declaration
constructor Create(Table: TTable);

The Create constructor creates a new TIndexDefs object for the Table parameter.

For blob streams

Declaration
constructor Create(Field: TBlobField; Mode: TBlobStreamMode);

The Create method links a TBlobField, TBytesField or TVarBytesField to the TBlobStream.
Mode may be one of the following elements of TBlobStreamMode: bmReadto access existing
data in the field; bmWrite to clear the contents of the field and assign a new value; bmReadWrite
to modify an existing value

Example

{ Link BlobStreaml to MyBlobField for data access only }
BlobStreaml := TBlobStream.Create(MyBlobField, bmRead);

For all other components

Declaration
constructor Create(AOwner: TComponent);

The Create method allocates memory to create the component and initializes its data as
needed. Each object can have a Create method customized to create that particular kind
of object. The owner of the created component is passed in the AOwner parameter.

Usually you don’t need to create objects manually. Objects you design in Delphi are
automatically created for you when you run the application and destroyed when you
close the application.

If you construct a component by calling Create, and give it an owner, the owner disposes
of the component when the owner is destroyed. If you don’t want another component to
own the created component, pass Self in the AOwner parameter.

Example
The following code creates a TButton and makes Form1 the owner.

var

Buttonl: TButton;
begin

Buttonl := TButton.Create(Forml);
end;

158 Delphi Visual Component Library Reference

CreateField method

See also
Free method

For all other objects

Declaration
constructor Create H

The Create method allocates memory to create the object and initializes its data as
needed. Each object can have a Create method customized to create that particular kind
of object.

Example

The following code creates a TBitmap and loads the bitmap graphic file C:\WINDOWS\
256COLOR.BMP into it. Then, the bitmap is drawn in a paint box by the OnPaint event
handler of PaintBox1.

procedure TForml.PaintBoxlPaint (Sender: TObject);

var
Bitmapl: TBitmap;

begin
Bitmapl := TBitmap.Create;
Bitmapl.LoadFromFile('c:\windows\256color.bmp');
PaintBoxl.Canvas.Draw(0, 0, Bitmapl);
Bitmapl.Free;

end;

See also
Free method

CreateField method

Applies to

TFieldDef object

Declaration

function CreateField(Owner: TComponent): TField;

CreateField creates a TField component of the appropriate type that corresponds to the
TFieldDef object itself. Owner is the dataset component containing the field.

CreateForm method

Applies to
TApplication component

Delphi Visual Component Library Reference 159

CreateNew method

Declaration
procedure CreateForm(FormClass: TFormClass; var Reference);

The CreateForm method creates a new form of the type specified by the FormClass
parameter and assigns it to the variable given by the Reference parameter. The owner of
the new form is the Application object. The form created by the first call to CreateForm in a
project becomes the project's main form.

A Delphi project typically contains one or more calls to CreateForm in the project's main
statement part, but there is seldom any need for you to call CreateForm yourself.
Example

The following code creates Form1 of type TForm1.

Application.CreateForm(TForml, Forml);

CreateNew method

Applies to

TForm component

Declaration
constructor CreatelNew(AOwner: TComponent);

The CreateNew method creates a new instance of the current form type.

CreateParam method

Applies to
TParams object

Declaration

function CreateParam(F1dType: TFieldType; const ParamName: string;
ParamType: TParamType): TParam;

The CreateParam method attempts to create a new entry in Items, using the FieldType,
ParamName, and ParamType parameters.
Example

{ Create a new parameter for CustNo and assign a value of 999 to it }
with Params.CreateParam(ftInteger, ‘CustNo’, ptInput) do
AsInteger := 999;

160 Delphi Visual Component Library Reference

CreateTable method

CreateTable method

Applies to
TTable component

Declaration

procedure CreateTable;

The CreateTable method creates a new empty database table. Before calling this method,
the DatabaseName, TableName, TableType, FieldDefs and IndexDefs properties must be
assigned values.

Example

with Tablel do
begin
Active := False;
DatabaseName := ‘Delphi_Demos’;
TableName := ‘CustInfo’;
TableType := ttParadox;
with FieldDefs do
begin
Clear;
Add(‘Fieldl’, ftlInteger, 0);
Add(‘Field2’, ftlInteger, 0);
end;
with IndexDefs do
begin
Clear;
Add(‘FieldlIndex’, ‘Fieldl’, [ixPrimary, ixUnique]);
end;
CreateTable;
end;

CSeg function System

Declaration
function CSeg: Word;
The CSeg function returns the current value of the CS register.

The result is the segment address of the code segment that called CSeg.

Example
function MakeHexWord (w: Word): string;
const
hexChars: array [0..SF] of Char = '0123456789ABCDEF';
var

Delphi Visual Component Library Reference 161

Ctl3D property

HexStr : string;

begin
HexStr := '';
HexStr := HexStr + hexChars[Hi(w) shr 4];
HexStr := HexStr + hexChars[Hi(w) and SF];
HexStr := HexStr + hexChars[Lo(w) shr 4];
HexStr := HexStr + hexChars[Lo(w) and SF];

MakeHexWord := HexStr;
end;

procedure TForml.ButtonlClick(Sender: TObject);

var
i: Integer;
Y: Integer;
S: string;
begin
Y := 10;
S := 'The current code segment is $' + MakeHexWord(CSeg);

Canvas.TextOut (5, Y, S);

Y := Y + Canvas.TextHeight (S) + 5;

S := 'The global data segment is $' + MakeHexWord (DSeg);
Canvas.TextOut (5, Y, S);

Y := Y + Canvas.TextHeight (S) + 5;

S := 'The stack segment is $' + MakeHexWord(SSeg);
Canvas.TextOut (5, Y, S);

Y := Y + Canvas.TextHeight (S) + 5;

S := 'The stack pointer is at $' + MakeHexWord(SPtr);
Canvas.TextOut (5, Y, S);

Y := Y + Canvas.TextHeight (S) + 5;

S := 'l is at offset $' + MakeHexWord(Ofs(i));
Canvas.TextOut (5, Y, S);

Y := Y + Canvas.TextHeight (S) + 5;

S := 'in segment $' + MakeHexWord(Seg(i));
Canvas.TextOut (5, Y, S);
end;
See also

DSeg function, SSeg function

Cti3D property

Applies to

TBitBtn, TButton, TCheckBox, TColorDialog, TComboBox, TDBCheckBox, TDBComboBox,
TDBEdit, TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBLookupList,
TDBMemo, TDBNavigator, TDBRadioGroup, TDirectoryListBox, TDrawGrid,
TDriveComboBox, TEdit, TFileListBox, TFindDialog, TFilterComboBox, TFontDialog, TForm,
TGroupBox, TListBox, TMaskEdit, TMemo, TNotebook, TOLEContainer, TOpenDialog,
TOutline, TPanel, TRadioButton, TReplaceDialog, TSaveDialog, TScrollBar, TScrollBox,
TStringGrid components

162 Delphi Visual Component Library Reference

Currency and date/time formatting variables

Declaration
property Ctl3D: Boolean;

The CtI3D property determines whether a control has a three-dimensional (3-D) or two-
dimensional look. If CtI3D is True, the control has a 3-D appearance. If Ct/3D is False, the
control appears normal or flat. The default value of CH3D is True.

For dialog boxes, the value of CtI3D affects the dialog box and all the controls it contains.

If a control's ParentCtI3D property is True, then changing in the Ct/3D property of the
control's parent automatically changes the Ct/3D property of the control. When you
assign a value directly to a control's Ct/3D property, the control's ParentCti3D property
is automatically set to False.

Note For CtI3D to work with radio buttons, check boxes, and any of the common dialog
boxes, the CTL3DV2.DLL dynamic-link library must be present on the path.

Example
The following code toggles the 3-D look of a memo control when the user clicks a button
named Toggle:

procedure TForml.ToggleClick(Sender: TObject);

begin

Memol.Ct13D := not Memol.Ct13D; {Toggles the Ctl3D property of Memol}

end;
See also
ParentCt13D property

Currency and date/time formatting variables SysUlils

Declaration

CurrencyString: string[7];
CurrencyFormat: Byte;
NegCurrFormat: Byte;
ThousandSeparator: Char;
DecimalSeparator: Char;
CurrencyDecimals: Byte;
DateSeparator: Char;
ShortDateFormat: string[15];
LongDateFormat: string[31];
TimeSeparator: Char;

TimeAMString: string[7];

Delphi Visual Component Library Reference 163

Currency and date/time formatting variables

TimePMString: string(7];

ShortTimeFormat: string[15];
LongTimeFormat: string[31];
ShortMonthNames: array[l..12] of string[3];
LongMonthNames: array[l..12] of string[15];
ShortDayNames: array[l..7] of string[3];
LongDayNames: array[l..7] of string[15];

The SysUtils unit includes a number of variables that are used by the date and time
routines. You can assign new values to these variables to change the formats of date and
time strings.

Typed constant Defines

CurrencyString The currency symbol used in floating-point to decimal conversions. The initial
value is fetched from the sCurrency variable in the [intl] section of WIN.INL

CurrencyFormat The currency symbol placement and separation used in floating-point to decimal
conversions. Possible values are:

0= 81
1= 1
2251
3= 1

The initial value is fetched from the iCurrency variable in the [intl] section of
WIN.INL

NegCurrFormat The currency format for used in floating-point to decimal conversions of
negative numbers. Possible values are:

0= ($1) 4= (18)
1=-51 5= -18
2 = $-1 6 = 1-$
3=81- 7= 1§

The initial value is fetched from the iNegCurr variable in the [intl] section of
WIN.INL

ThousandSeparator The character used to separate thousands in numbers with more than three digits
to the left of the decimal separator. The initial value is fetched from the
sThousand variable in the [intl] section of WIN.INIL.

DecimalSeparator The character used to separate the integer part from the fractional part of a
number. The initial value is fetched from the sDecimal variable in the [intl]
section of WIN.INTL

CurrencyDecimals The number of digits to the right of the decimal point in a currency amount. The
initial value is fetched from the sCurrDigits variable in the [int]] section of
WIN.INL

DateSeparator The character used to separate the year, month, and day parts of a date value.
The initial value is fetched from the sDate variable in the [intl] section of
WIN.INL

164 Delphi Visual Component Library Reference

Currency and date/time formatting variables

Typed constant Defines

ShortDateFormat The format string used to convert a date value to a short string suitable for
editing. For a complete description of date and time format strings, refer to the
documentation for the FormatDateTime function. The short date format should
only use the date separator character and the m, mm, d, dd, yy, and yyyy format
specifiers. The initial value is fetched from the sShortDate variable in the [intl]
section of WIN.INTL.

LongDateFormat The format string used to convert a date value to a long string suitable for display
but not for editing. For a complete description of date and time format strings,
refer to the documentation for the FormatDateTime function. The initial value is
fetched from the sLongDate variable in the [intl] section of WIN.INIL

TimeSeparator The character used to separate the hour, minute, and second parts of a time
value. The initial value is fetched from the sTime variable in the [intl] section of
WINL.INIL

TimeAMString The suffix string used for time values between 00:00 and 11:59 in 12-hour clock
format. The initial value is fetched from the s1159 variable in the [intl] section of
WINL.INL

TimePMString The suffix string used for time values between 12:00 and 23:59 in 12-hour clock
format. The initial value is fetched from the s2359 variable in the [int]] section of
WIN.INL

ShortTimeFormat The format string used to convert a time value to a short string with only hours
and minutes. The default value is computed from the iTime and iTLZero
variables in the [intl] section of WIN.INIL.

LongTimeFormat The format string used to convert a time value to a long string with hours,
minutes, and seconds. The default value is computed from the iTime and
iTLZero variables in the [intl] section of WIN.INI.

ShortMonthNames Array of strings containing short month names. The mmm format specifier in a
format string passed to FormatDateTime causes a short month name to be
substituted.

LongMonthNames Array of strings containing long month names. The mmmm format specifier in a
format string passed to FormatDateTime causes a long month name to be
substituted.

ShortDayNames Array of strings containing short day names. The ddd format specifier in a
format string passed to FormatDateTime causes a short day name to be
substituted.

LongDayNames Array of strings containing long day names. The dddd format specifier in a
format string passed to FormatDateTime causes a long day name to be
substituted.

Example

This example uses a label and a button on a form. When the user clicks the button, the
current date displays in the caption of the label. Because some of the date variables are
assigned new values, the format of the date in the label changes. For example, if the date
is 9/15/94, the date displays as 15-09-1994.

procedure TForml.ButtonlClick(Sender: TObject);
begin

DateOrder := doDMY;

DateSeparator := '-';

DateFullYear := True;

DateLeadZero := True;

Labell.Caption := DateToStr (Date);

end;

Delphi Visual Component Library Reference 165

Currency property

Currency property

Applies to
TBCDField, TCurrencyField, TFloatField components

Declaration
property Currency: Boolean;

Run-time only. The Currency property is used to control the format of the value of a
TBCDField, TCurrencyField, and TFloatField when both DisplayFormat and EditFormat
properties are not assigned.

Currency is True by default for TCurrencyField and False for TFloatField and TBCDField.
When Currency is True formatting is performed by FloatToText using ffCurrency for
display text or ffFixed for editable text. When Currency is False, the formatting is
performed by FloatToTextFmt.

See also
DisplayFormat property, EditFormat property, FloatToText function, FloatToTextFmt
function

Cursor property

Applies to

All controls, TScreen component

For all controls

Declaration
property Cursor: TCursor;

The Cursor property is the image used when the mouse passes into the region covered
by the control. These are the possible images:

Value Image Value Image Value Image
crDefault crSizeNESW crHourglass -
o s 2 g
crArrow crSizeNS crDra;
s X ® i
crCross o crSizeNWSE iy crNoDrop)

166 Delphi Visual Component Library Reference

Cursor property

Value Image Value Image Value Image
crIBeam crSizeWE crHSplit

I = +|»
crSize & crUpArrow = crVSplit =

To learn how to make a custom cursor available to your application, see the Cursors
property.
Example

This line of code changes the display of the image to the cross cursor when the user
moves the mouse pointer over Button1:

Buttonl.Cursor := crCross;

See also
Cursors property, DragCursor property

For screen objects

Declaration
property Cursor: TCursor;

The Screen object's Cursor property controls the mouse cursor shape at a global level.
Assigning any value but crDefault to the Screen object's Cursor property sets the mouse
cursor shape for all windows belonging to the application. The global mouse cursor
shape remains in effect until you assign crDefault to the Screen object's Cursor property,
at which point normal cursor behavior is restored.

To see a list of possible cursor shapes, see the Cursor property for all controls.
Example

Assignments to the Screen object's cursor property are typically guarded by a
try...finally statement to ensure that normal cursor behavior is restored, for example:

Screen.Cursor := crHourglass; { Show hourglass cursor }
try

{ Do some lengthy operation }
finally

Screen.Cursor := crDefault; { Always restore to normal }
end;

Delphi Visual Component Library Reference 167

Cursor typed constant

Cursor typed constant WinCrt

Declaration
const Cursor: TPoint = (X: 0; Y: 0);
The Cursor variable contains the current position of the cursor within the virtual screen.

The upper left corner corresponds to (0, 0). Cursor is a read-only variable; do not assign
values to it.

CursorPosChanged method

Applies to
TTable, TQuery, TStoredProc components

Declaration
procedure CursorPosChanged;

The CursorPosChanged method is needed only if you use the Handle property to make
direct calls to the Borland Database Engine (BDE) API which cause the cursor position
to change. To notify the dataset that the underlying BDE cursor’s position has changed,
call CursorPosChanged after the direct calls to the BDE.

See also
UpdateCursorPos method

Cursors property

Applies to

TScreen component

Declaration
property Cursors[Index: Integer]: HCursor;

Run-time only. The Cursors property gives you access to the list of cursors available for
your application. To access a particular cursor, specify its position in the list of cursors as
the value of the Index parameter with the first position in the list having an index of 0,
the second having an index of 1, and so on.

Using the Cursors property, you can make custom cursors available to your application.

168 Delphi Visual Component Library Reference

CursorTo procedure

These are the cursor constants and their position in the Cursors property array:

Cursor Value Cursor Value

crDefault 0 crSizeWE -9
crNone -1 crlUpArrow -10

crArrow 2 crHourglass -11

crCross -3 crDrag -12

crlBeam —4 crNoDrop -13

crSize -5 crHSplit -14

crSizeNESW -6 crVSplit -15

crSizeNS -7 crMultiDrag -16

crSizeNWSE -8 crSQLWait -17

To make a custom cursor available to your application,

1
2

Create the cursor resource using a resource editor.

Declare a cursor constant with a value that does not conflict with an existing cursor
constant.

Use the WinAPI function LoadCursor to make your cursor available to your
application, specifying the newly declared cursor constant as the value of thelndex
parameter for the Cursors property array.

Note You don’t need to call the WinAPI function DestroyCursor when you are finished using
the custom cursor; Delphi does this automatically.
Example
This example assumes you have created a cursor resource with the name NewCursor.
The code loads the new cursor into the Cursors property array and makes the newly
loaded cursor the cursor of the form:
const
crMyCursor = 5;
procedure TForml.FormCreate(Sender: TObject);
begin
Screen.Cursors[crMyCursor] := LoadCursor (HInstance, 'NewCursor');
Cursor := crMyCursor;
end;
See also
Cursor property, DragCursor property
CursorTo procedure WinCrt

Declaration

procedure CursorTo(X, Y: Integer);

Delphi Visual Component Library Reference 169

CustomColors property

The CursorTo procedure moves the cursor to the given coordinates (X, Y) within the
virtual screen.

The coordinates of the upper left corner of the CRT window are (0, 0). CursorTo sets the
Cursor variable to (X, Y).

See also
GoToXY procedure

CustomColors property

Applies to
TColorDialog component

Declaration
property CustomColors: TStrings;

The value of the CustomColors property determines the custom colors that are available
in the Color dialog box. Each custom color is represented as a string that follows this
format:

ColorX=HexValue

For example, this string could indicate that the first custom color box in the Color dialog
box:

ColorA=808022

This is the same format that your CONTROL.INI file uses to specify the custom colors
that are available in the Windows Color dialog box.

You can have up to 16 custom colors, ColorA through ColorP.

Use the string list of custom colors to save the custom colors specified in the dialog box
so you can use them elsewhere. For example, you might save them to an .INI file for
your application so your application can use the custom colors.

Example

This example displays the Color dialog box, allowing the user to create custom colors,
then displays the custom color strings in a list box:

procedure TForml.ButtonlClick(Sender: TObject);
begin
if ColorDialogl.Execute then
ListBoxl.Items.AddStrings(ColorDialogl.CustomColors);
end;

170 Delphi Visual Component Library Reference

CutToClipboard method

CutToClipboard method

Applies to
TDBEdit, TDBImage, TDBMemo, TEdit, TMaskEdit, TMemo components

Declaration
procedure CutToClipboard;

The CutToClipboard method deletes the text selected in the control and copies it to the
Clipboard, replacing any text that exists there. If no text is selected, nothing is copied.

For database images, CutToClipboard deletes the image in the control and copies it to the
Clipboard, replacing the contents of the Clipboard.

Example
The following method cuts the text the user selects in Memo1 to the Clipboard and
pastes it from the Clipboard in an edit box control when the user clicks the button:

procedure TForml.ButtonlClick(Sender: TObject);
begin
Memol.CutToClipboard;
Editl.PasteFromClipboard;
end;

See also

Clear method, ClearSelection method, CopyToClipboard method, PasteFromClipboard
method

Data property

Applies to
TOutlineNode component

Declaration
property Data: Pointer;

Run-time only. The Data property specifies any data you want associated with an
outline item.

Example
The following code creates a TBitmap and adds it to the Data of the selected outline item.

var
Bitmap: TBitmap;
begin
Bitmap := TBitmap.Create;

Delphi Visual Component Library Reference 171

Database property

Outlinel.Items[Outlinel.SelectedItem].Data := Bitmap;
end;

See also
GetDataltem method, Text property

Database property

Applies to
TTable, TQuery component

Declaration
property Database: TDatabase;

Run-time and read only. Database specifies the database (TDatabase) component
associated with the dataset component. If you did not create a TDatabase at design time,
then Delphi will create one at run time. Use the Database property to reference the
properties and methods of the database.

Example

{ Do a transaction }
with Tablel.Database do
begin
StartTransAction;
{ Post some records with Tablel }
Commit;
end;

DatabaseCount property

Applies to

TSession component

Declaration
property DatabaseCount: Integer;

Run-time and read only. DatabaseCount is the number of TDataBase components
currently attached to Session.

Example

{ Close all databases }
with Session do
while DatabaseCount <> 0 do
Databases[0].Close;

172 Delphi Visual Component Library Reference

DatabaseError procedure

See also
Databases property

DatabaseError procedure DB a

Declaration

procedure DatabaseError(const Message: string);

The DatabaseError procedure creates and raises the EDatabaseError exception object,
using Message as the text for the exception.

Example

{ Test for an error and raise an exception if so }
if { some error has occured } then DatabaseError(’Some error has occured’);

DatabaseName property

Applies to
TDataBase, TQuery, TStoredProc, TTable components

For database components

Declaration
property DatabaseName: TFileName;

Set the DatabaseName property to define an application-specific alias. Dataset
components can reference this name instead of a BDE alias, directory path, or database
name. In other words, this is the name of an application-specific alias defined by the
dataset component that will show up in the DatabaseName drop-down list of TTable,
TQuery, and TStoredProc components.

If you try to set DatabaseName of a TDatabase for which Connected is True, Delphi will
raise an exception.

Example

Databasel.DatabaseName := ‘Delphi_Demos’;

For tables, queries, and stored procedures

Declaration

property DatabaseName: TFileName;

Delphi Visual Component Library Reference 173

Databases property

Set the DatabaseName property to specify the database to access. This property can
specify:

¢ A defined BDE alias,

¢ A directory path for desktop database files,

¢ A directory path and file name for a Local InterBase Server database,

¢ An application-specific alias defined by a TDatabase component

Note Use the Close method to put a dataset in Inactive state before changing DatabaseName.

Example

{ Close the DBDataSet }
Tablel.Active := False;
try
{ First try to use an alias }
Tablel.DatabaseName := ‘Delphi_Demos’;
Tablel.Active := True;
except
on EDatabaseError do
{ If that fails, try to use the drive and directory }
Tablel.DatabaseName := ‘c:\delphi\demos\database’;
Tablel.Active := True;

See also
Active property

Databases property

Applies to

TSession component

Declaration

property Databases[Index: Integer]: TDatabase;

Run-time and read only. The Databases property holds a list of all of the currently active
TDatabase components.

Example

{ Close all databases }
with Session do
while DatabaseCount <> 0 do
Databases[0].Close;

See also
DatabaseCount property

174 Delphi Visual Component Library Reference

DataField property

DataField property

Applies to
TDBCheckBox, TDBComboBox, TDBEdit, TDBImage, TDBListBox, TDBLookupCombo,
TDBLookupList, TDBMemo, TDBRadioGroup, TDBText components a

Declaration
property DataField: string;

The DataField property identifies the field from which the data-aware control displays
data. The dataset the field is located in is specified in a data source component
(TDataSource). The DataSource property of the data-aware control specifies which data
source component.

If the DataField value of a database edit box (TDBEdit) is an integer or floating-point
value, only characters that are valid in such a field can be entered in the edit box.
Characters that are not legal are not accepted.

Example
The following code specifies that the DataField of DBEdit1 is 'FNAME'.

DBEditl.DataField := ‘FNAME';

DataFormat property

Applies to
TOLEDropNotify object

Declaration
property DataFormat: Word;

The DataFormat property specifies the Clipboard format of data dropped on a form. The
form must be registered with the RegisterFormAsOLEDropTarget function for a
TOLEDropNotify object to be the Source in an OnDragDrop event handler. If DataFormat
specifies an OLE object format, the Plnitlnfo property points to initialization information
for the dropped OLE object. If the dropped data is not an OLE object, DataFormat
specifies some other format (such as CF_BITMAP for bitmap graphic data) and PlnitInfo
won't point to valid OLE initialization information and can’t be used to initialize a
TOLEContainer component.

Example

The following code is the OnDragDrop event handler for a form that is registered as an
OLE drop target with RegisterFormAsOLEDropTarget. If a text object is dropped, a label is
created to display the data. If a metafile object is dropped, an image is created to display
the data. Otherwise, it is assumed that an OLE object was dropped and an OLE
container is created to contain the object.

Delphi Visual Component Library Reference 175

DataFormat property

procedure TXMdiX.DoDrop (DragTgt, DragSource: TObject; X, Y: Integer);
var
Ctrl : TOleContainer;
Image : TImage;
Pict : TPicture;
ClipPict : TPicture;
FLabel : TLabel;
Ptr : PChar;
Str : String;
Dropper : TOleDropNotify;
begin
if DragSource is TOleDropNotify then
begin
Dropper := TOleDropNotify (DragSource);
if Dropper.DataFormat = CF_TEXT then
begin
FLabel := TLabel.Create (TForm(DragTgt));
FLabel.Left := X;
FLabel.Top := Y;
FLabel.width := 30;
FLabel .Height := 10;
Ptr := GlobalLock (Dropper.DataHandle);
Str := StrPas (Ptr);
GlobalUnlock (Dropper.DataHandle);
Str := Format ('DropText = %s', [@Str]);
FLabel.Caption := Str;
GlobalFree (Dropper.DataHandle);
FLabel.visible := True;
FLabel.enabled := True;
TForm (DragTgt).InsertControl (FLabel);
end
else if Dropper.DataFormat = CF_METAFILEPICT then
begin
Image := TImage.Create (TForm(DragTgt));
Image.Left := X;
Image.Top := Y;
Image.Width := 30;
FLabel .Height := 10;
Pict := TPicture.Create;
Pict.LoadFromClipboardFormat (Dropper.DataFormat, Dropper.DataFormat, 0);
Image.Picture := Pict;
GlobalFree (Dropper.DataHandle);
Image.visible := True;
Image.enabled := True;
TForm (DragTgt).InsertControl (Image);

end;
else if Dropper.PInitInfo <> Nil then
begin
Ctrl := TOleContainer.Create (TForm(DragTgt));
Ctrl.top = Y;
Ctrl.left = X;
Ctrl.width := 100;

176 Delphi Visual Component Library Reference

DataHandle property

Ctrl.Height 100;

Ctrl.visible True;

Ctrl.enabled := True;

Ctrl.AutoSize := True;

TForm (DragTgt).InsertControl (Ctrl);

Ctrl.PInitInfo := Dropper.PInitInfo;
end;

end;
end;

See also
DataHandle property

DataHandle property

Applies to
TOLEDropNotify object

Declaration
property DataHandle: THandle;

The DataHandle property specifies a handle to the data dropped on a form. The form
must have been registered with the RegisterFormAsOLEDropTarget function for a
TOLEDropNotify object to be the Source in an OnDragDrop event handler. If the data is
any type other than an OLE object, you can use DataHandle to access the data.

Example
The following code locks the data handle of a TOLEDropNotify object named Dropper.

Ptr := GlobalLock (Dropper.DataHandle);

See also
DataFormat property

DataSet property

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDataSource,
TDateField, TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField,
TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

For data source components

Declaration

property DataSet: TDataSet

Delphi Visual Component Library Reference 177

DatasetCount property

DataSet specifies the dataset component (TTable, TQuery, and TStoredProc) that is
providing data to the data source. Usually you set DataSet at design time with the Object
Inspector, but you can also set it programmatically. The advantage of this interface
approach to connecting data components is that the dataset, data source, and data-
aware controls can be connected and disconnected from each other through the
TDataSource component. In addition, these components can belong to different forms.

Example

DataSourcel.DataSet := Tablel; {get data from this form’s Tablel}
DataSourcel.DataSet := Form2.Tablel; {get data from Form2’s Tablel}

For field components

Declaration
property DataSet: TDataSet;

Run-time only. DataSet identifies the dataset to which a TField component belongs. Only
assign a value to this property if you are programmatically creating TField component .

DatasetCount property

Applies to
TDataBase component

Declaration
property DatasetCount: Integer;

DatasetCount is the number of dataset components (T'Table, TQuery, and TStoredProc)
that are currently using the TDatabase component. Read-only and run time only.

Example

{ Check to see if any record associated with this database has pending updates }
Changed := False;
with Databasel do
for T := 0 to DatasetCount - 1 do
Changed := Changed or DataSets[I].Modified;

See also
Datasets property

178 Delphi Visual Component Library Reference

Datasets property

Datasets property

Applies to
TDataBase component

Declaration
property Datasets[Index: Integer]: TDBDataSet;

Run-time and read only. Datasets is the set of dataset components that are currently
sharing the TDatabase component.

Example

{ Check to see if any record associated with this database has pending updates }
Changed := False;
with Databasel do
for T := 0 to DatasetCount - 1 do
Changed := Changed or DataSets[I].Modified;

See also
DatasetCount property

DataSize property

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration
property DataSize: Word;

Run-time and read only. The value of DataSize is the number of bytes required to store
the field in memory.

For TBoolean, TSmallint, and TWordField, the value is two bytes. For TDateField,
TIntegerField, and TTimeField, the value is four bytes. For TCurrencyField, TDateTimeField,
and TFloatField, the value is eight bytes. For TBCDField, the value is eighteen bytes. For
TStringField, the value is the maximum size of the text plus one (not more than 255
characters). For TBlobField, TBytesField, TGraphicField, TMemoField, and TVarBytesField,
the value is the size of the field as stored in the record buffer.

Delphi Visual Component Library Reference 179

DataSource property

DataSource property

Applies to

TDBCheckBox, TDBComboBox, TDBEdit, TDBGrid, TDBImage, TDBListBox,
TDBLookupCombo, TDBLookupList, TDBMemo, TDBNavigator, TQuery, TDBRadioGroup,
TDBText components

For data-aware controls

Declaration
property DataSource: TDataSource;

The DataSource property determines where the component obtains the data to display.
Specify the data source component that identifies the dataset the data is found in.

Example
The following code specifies DataSourcel to be the DataSource of DBGrid1.

DBGridl.DataSource := DataSourcel;

See also
DataField property, SQL property

For queries

Declaration
property DataSource: TDataSource;

Set the DataSource property to the name of a TDataSource component in the application
to assign values to parameters not bound to values programmatically with Params or
ParamByName. If the unbound parameter names match any column names in the
specified data source, Delphi binds the current values of those fields to the
corresponding parameters. This capability enables applications to have linked queries.

Example

The LINKQRY sample application illustrates the use of the DataSource property to link a
query in a master-detail form. The form contains a TQuery component (named Orders)
with the following in its SQL property:

SELECT Orders.CustNo, Orders.OrderNo, Orders.SaleDate
FROM Orders
WHERE Orders.CustNo = :CustNo

The form also contains:

* A TDataSource named OrdersSource, linked to Orders by its DataSet property.
* A TTable component (named Cust).

180 Delphi Visual Component Library Reference

DataType property

® A TDataSource named CustSource linked to Cust.
e Two data grids; one linked to CustSource and the other to OrdersSource.

Orders’ DataSource property is set to CustSource. Because the parameter :CustNo does
not have any value assigned to it, at run time Delphi will try to match it with a column
name in CustSource, which gets its data from the Customer table through Cust. Because
there is a CustNo column in Cust, the current value of CustNo in the Cust table is
assigned to the parameter, and the two data grids are linked in a master-detail
relationship. Each time the Cust table moves to a different row, the Orders query
automatically re-executes to retrieve all the orders for the current customer.

See also
SQL property

DataType property

Applies to

TFieldDef, TParam objects; TBCDField, TBlobField, TBooleanField, TBytesField,
TCurrencyField, TDateField, TDateTimeField, TFloatField, TGraphicField, TIntegerField,
TMemoField, TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField

components

For field definition objects

Declaration
property DataType: TFieldType;

Run-time and read only. Read DataType to determine a physical field’s type. Possible
values are those of the TFieldType type: ftUnknown, ftString, ftSmallint, ftInteger, ftWord,
ftBoolean, ftFloat, ftCurrency, ftBCD, ftDate, ftTime, ftDateTime, ftBytes, ftVarBytes, ftBlob,
ftMemo or ftGraphic.

For field definitions

Declaration
property DataType: TFieldType;

Run-time and read only. DataType identifies the data type of the TField. Possible values
are those of the TFieldType type: ftBoolean, ftBCD, ftBlob, ftBytes, ftCurrency, ftDate,
ftDateTime, ftFloat, ftGraphic, ftInteger, ftMemo, ftSmallint, ftString, ftTime, ftUnknown,
ftVarBytes, and ftWord.

Delphi Visual Component Library Reference 181

Date function

For TParam objects

Declaration
property DataType: TFieldType;

The DataType property is the type of the parameter. Possible values are those of the
TFieldType type: ftUnknown, ftString, ftSmallint, ftInteger, ftWord, ftBoolean, ftFloat,
ftCurrency, ftBCD, ftDate, ftTime, ftDateTime, ftBytes, ftVarBytes, ftBlob, ftMemo or
ftGraphic.

Example

with Queryl.Parameters do
for T := 0 to Count - 1 do
if Params[I].DataType = ftUnknown then
MessageDlg (‘Parameter * + IntToStr(I) + ' is undefined’, mtWarning, [mbOK], 0);

Date function SysUtils

Declaration
function Date: TDateTime;

The Date function returns the current date.

Example
This example uses a label and a button on a form. When the user clicks the button, the

current date is displayed in the caption of the label:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Labell.Caption := 'Today is ' + DateToStr(Date);
end;

See also

DateToStr function, DayOfWeek function, DecodeDate procedure, Now function, Time
function

DateTimeToFileDate function SysUtils

Declaration
function DateTimeToFileDate (DateTime: TDateTime): Longint;

DateTimeToFileDate converts a TDateTime value to a DOS date-and-time value. The
FileAge, FileGetDate, and FileSetDate routines operate on DOS date-and-time values, and
the Time field of a TSearchRec used by the FindFirst and FindNext functions contains a

DOS date-and-time value.

182 Delphi Visual Component Library Reference

DateTimeToString procedure

See also
FileDateToDateTime function

DateTimeToString procedure SysUltils a

Declaration
procedure DateTimeToString(var Result: string; const Format: string; DateTime: TDateTime);

DateTimeToString converts the date and time value given by DateTime using the format
string given by Format into the string variable given by Result. For further details, see the
description of the FormatDateTime function.

See also
TDateTime type

DateToStr function SysUtils

Declaration
function DateToStr(Date: TDateTime): string;

The DateToStr function converts a variable of type TDateTime to a string. The conversion
uses the format specified by the ShortDateFormat global variable.

Example
This example uses a label and a button on a form. When the user clicks the button, the
current date is converted to a string and displayed as the caption of the label:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Labell.Caption := DateToStr(Date);
end;

See also
Date function, DateTimeToStr function, StrToDate function, TimeToStr function

DateTimeToStr function SysUtils

Declaration
function DateTimeToStr (DateTime: TDateTime): string;

The DateTimeToStr function converts a variable of type TDateTime to a string. If DateTime
parameter does not contain a date value, the date displays as 00/00/00. If the DateTime
parameter does not contain a time value, the time displays as 00:00:00 AM. You can

Delphi Visual Component Library Reference 183

DayOfWeek function

change how the string is formatted by changing some of the date and time typed
constants.

Example
This example uses a label and a button on a form. When the user clicks the button, the
current date and time is converted to a string and displayed as the caption of the label:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Labell.Caption := DateTimeToStr (Now);
end;

See also

Date function, DateToStr function, Now function, StrToDate function, Time function,
TimeToStr function

DayOfWeek function SysUtils

Declaration
function DayOfWeek (Date: TDateTime): Integer;

The DayOfWeek function returns the day of the week of the specified date as an integer
between 1 and 7. Sunday is the first day of the week and Saturday is the seventh.

Example

This example uses a button, an edit box, and a label on a form. When the user enters a
date in the edit box using the Month/Day/Year format, the caption of the label reports
the day of the week for the specified date.

procedure TForml.ButtonlClick(Sender: TObject);
var
ADate: TDateTime;
begin
ADate := StrToDate(Editl.Text);
Labell.Caption := 'Day ' + IntToStr(DayOfWeek(ADate)) + ' of the week';
end;

See also

Date function, EncodeDate function, Now function, StrToDate function, StrToDateTime
function

DBHandle property

Applies to
TTable, TQuery, TStoredProc components

184 Delphi Visual Component Library Reference

DbiError procedure

Declaration
property DBHandle: HDBIDB;

Run-time and read only. The DBHandle property enables an application to make direct
calls to the Borland Database Engine (BDE) API. Many BDE function calls require a
database handle. This property provides the requisite database handle. a

Under most circumstances you should not need to use this property, unless your
application requires some functionality not encapsulated in the VCL.

DbiError procedure DB

Declaration
procedure DbiError (ErrorCode: Integer);

The DbiError procedure creates an error message by querying the Borland Database
Engine for the last error number and text and calls DatabaseError passing the result.
ErrorCode is used to obtain a text message from the engine if the error has already been
cleared.

DBLocale property

Applies to
TTable, TQuery, TStoredProc components

Declaration
property DBLocale: TLocale;

Run-time and read only. The DBLocale property allows you to make direct calls to the
Borland Database Engine using this specification of the language driver. Under most
circumstances you should not need to use this property, unless your application
requires some functionality not encapsulated in the VCL.

DDEConv property

Applies to
TDDEClientItem component

Declaration
property DdeConv: TDdeClientConv;

The DDEConv property specifies the DDE client conversation component to associate
with the DDE client item component. The value of DDEConv is the name of the DDE
client conversation component that defines the DDE conversation.

Delphi Visual Component Library Reference 185

DDEltem property

Example
The following code specifies DDEClientConv1 as the conversation of DDEClientltem]1.

DDEClientIteml.DDEConv := DDEClientConvl.

See also
Name property

DDEltem property

Applies to
TDDEClientItem component

Declaration
property DDEItem: String;

The DDEItem property specifies the item of a DDE conversation. The value of DDEltemn
depends on the linked DDE server application. DDEItem is typically a selectable portion
of text, such as a spreadsheet cell or a database field in an edit box. If the DDE server is a
Delphi application, DDEItem is the name of the linked DDE server component. For
example, to link to a DDE server component named DDEServer1, set DDEItem to
‘DDEServerl’.

See the documentation for the DDE server application for the specific information about
specifying DDEItem.

At design time, you can specify DDEItem either by typing the item string in the object
inspector or by pasting a link using the DDE Info dialog box, which appears if you click
the ellipsis (...) button for DDEService or DDETopic in the Object Inspector. After you
choose Paste Link in the DDE Info dialog box, you can choose the item from a list of
possible items for DDEItem in the object inspector if link information is still on the

Clipboard.

Example

The following code specifies a DDE item of “DDEServerl’.
DDEClientIteml.DDEItem := 'DDEServerl';

See also

DDEService property, DDETopic property

DDEService property

Applies to
TDDEClientConv component

186 Delphi Visual Component Library Reference

DDETopic property

Declaration
property DDEService: string;

The DDEService property specifies the DDE server application to be linked to a DDE

client. Typically, DDEService is the file name (and path, if necessary) of the DDE server
application’s main executable file without the .EXE extension. If the DDE server is an a
Delphi application, DDEService is the project name without the .DPR or .EXE extension.

For example, to link to a TDDEServerConv component in PROJ1.DPR, set DDEService to
‘PROJT".

See the documentation for the DDE server application for the specific information about
specifying DDEService.

At design time, you can specify DDEService either by typing the DDE server application
name in the object inspector or by choosing Paste Link in the DDE Info dialog box.

Example
The following code specifies a DDE service of ‘Projectl’.

DDEClientConvl.DDEService := 'Projectl';

See also
DDEItem property, DDETopic property

DDETopic property

Applies to
TDDEClientConv component

Declaration
property DDETopic: string;

The DDETopic property specifies the topic of a DDE conversation. Typically, DDETopic
is a file name (and path, if necessary) used by the application specified in DDEService. If
the DDE server is an Delphi application, by default DDETopic is the caption of the form
containing the linked component. For example, to link to a component on a form named
Form1, set DDETopic to ‘Form1’. However, if the DDE client is linked to a
TDDEServerConv component, DDETopic is the name of the server conversation
component instead of the form caption. For example, to link to DDEServerConvl, set
DDETopic to ‘DDEServerConv1’.

See the documentation for the DDE server application for the specific information about
specifying DDETopic.

At design time, you can specify DDETopic either by typing the DDE server application
name in the object inspector or by choosing Paste Link in the DDE Info dialog box.

Example
The following code spGecifies a DDE topic of ‘Form1’.

Delphi Visual Component Library Reference 187

Dec procedure

DDEClientConvl.DDETopic := 'Forml';

See also
DDEItem property

Dec procedure

System

Declaration

procedure Dec(var X[; N: Longint]);

The Dec procedure subtracts one or N from a variable.

Dec(X) corresponds to X := X — 1, and Dec(X, N) corresponds to X := X - N.

X is an ordinal-type variable or a variable of type PChar if the extended syntax is

enabled, and N is an integer-type expression.

Dec generates optimized code and is especially useful in a tight loop.

Example

var
IntVar: Integer;
LongintVar: Longint;
begin
Intvar := 10;
LongintVar := 10;
Dec (IntVar) ;
Dec (LongintVar, 5);
end;

See also
Inc procedure, Pred function, Succ function

DecodeDate procedure

{ IntVar := IntVar - 1}

{ LongintVar

:= LongintVar - 5 }

SysUtils

Declaration

procedure DecodeDate(Date: TDateTime; var Year, Month, Day: Word);

The DecodeDate procedure breaks the value specified as the Date parameter into Year,
Month, and Day values. If the given TDateTime value is less than or equal to zero, the
year, month, and day return parameters are all set to zero.

Example

This example uses a button and two labels on a form. When the user clicks the button,
the current date and time are reported in the captions of the two labels.

procedure TForml.ButtonlClick(Sender: TObject);

188 Delphi Visual Component Library Reference

DecodeTime procedure

var
Present: TDateTime;
Year, Month, Day, Hour, Min, Sec, MSec: Word;
begin
Present:= Now;
DecodeDate (Present, Year, Month, Day);
Labell.Caption := 'Today is Day ' + IntToStr(Day) + ' of Month '
+ IntToStr (Month) + ' of Year ' + IntToStr(Year);
DecodeTime (Present, Hour, Min, Sec, MSec);
Label2.Caption := 'The time is Minute ' + IntToStr(Min) + ' of Hour '
+ IntToStr (Hour);
end;

See also
DecodeTime procedure

DecodeTime procedure SysUtils

Declaration
procedure DecodeTime (Time: TDateTime; var Hour, Min, Sec, MSec: Word);

The DecodeTime procedure breaks the value specified as the Time parameter into hours,
minutes, seconds, and milliseconds.

Example
This example uses a button and two labels on a form. When the user clicks the button,
the current date and time are reported in the captions of the two labels.

procedure TForml.ButtonlClick(Sender: TObject);
var
Present: TDateTime;
Year, Month, Day, Hour, Min, Sec, MSec: Word;
begin
Present:= Now;
DecodeDate (Present, Year, Month, Day);
Labell.Caption := 'Today is Day ' + IntToStr(Day) + ' of Month '
+ IntToStr (Month) + ' of Year ' + IntToStr(Year);
DecodeTime (Present, Hour, Min, Sec, MSec);
Label2.Caption := 'The time is Minute ' + IntToStr(Min) + ' of Hour '
+ IntToStr (Hour);
end;

See also
DecodeDate procedure, EncodeTime function, Time function

Delphi Visual Component Library Reference 189

Default property

Default property

Applies to
TBitBtn, TButton components

Declaration
property Default: Boolean;

The Default property indicates whether a push or bitmap button is the default button. If
Default is True, any time the user presses Enter, the OnClick event handler for that button
runs. The only exception to this is if the user selects another button before pressingEnter,
in which case the OnClick event handler for that button runs. Although your application
can have more than one button designated as a default button, the form calls the OnClick
event handler for the first button in the tab order.

Whenever any button has focus, it becomes the default button temporarily. When the
focus moves to a control that isn’t a button, the button with its Default property set to
True becomes the default button once again.

Example
This example makes the button named OK the default button:
procedure TForml.FormCreate(Sender: TObject);
begin
OK.Default := True;
end;

See also
Cancel property

DefaultColWidth property

Applies to
TDrawGrid, TStringGrid components

Declaration
property DefaultColWidth: Integer;
The DefaultColWidth property determines the width of all the columns within the grid.

If you want to change the width of a single column within a grid without changing
other columns, use the ColWidths property during run time. If you change the
DefaultColWidth property value after changing the width of specified columns, all the
columns become the height specified in the DefaultColWidth property once again.

The default value is 64 pixels.

190 Delphi Visual Component Library Reference

DefaultDrawing property

Example
The following line of code changes the default width of the columns in a string grid to
twice the original value:

StringGridl.DefaultColWidth := StringGridl.DefaultColWidth * 2;

See also a

ColWidth property, DefaultRowHeight property

DefaultDrawing property

Applies to
TDBGrid, TDrawGrid, TStringGrid components

Declaration
property DefaultDrawing: Boolean;

The DefaultDrawing property determines if the cell is painted and the item it contains is
drawn automatically. If True, the default drawing occurs. If False, your application must
handle all the drawing details in the OnDrawCell event handler, or in the
OnDrawDataCell event handler for the data grid.

When DefaultDrawing is True, the Paint method initializes the Canvas’ font and brush to
the control font and the cell color. The cell is prepainted in the cell color and a focused
TRect object is drawn in the cell. The state of the cell is returned. The possible states are a
fixed cell, a focused cell, or a cell within the area the user has selected.

Example
The following code sets DefaultDrawing to False for DrawGrid1.

DrawGridl.DefaultDrawing := False;

See also
OnDrawCell event, OnDrawDataCell event

DefaultExt property

Applies to
TOpenDialog, TSaveDialog components

Declaration

property DefaultExt: TFileExt;

The DefaultExt property specifies the extension that is added to the file name the user
types in the File Name edit box if the user doesn’t include a file-name extension in the
file name. If the user specifies an extension for the file name, the value of the DefaultExt

Delphi Visual Component Library Reference 191

DefaultRowHeight property

property is ignored. If the DefaultExt value remains blank, no extension is added to the
file name entered in the File Name edit box.

Legal property values include strings up to 3 characters in length. Don’t include the
period (.) that divides the file name and its extension.

Example

This example sets the default file extension to TXT, displays the Open dialog box, then
assigns the file name the user selects with the dialog box to a variable the application can
use to open a file:

procedure TForml.ButtonlClick(Sender: TObject);
var

NameOfFile : TFileName;
begin

OpenDialogl.DefaultExt := 'TXT';

if OpenDialogl.Execute then

NameOfFile := OpenDialogl.FileName;

end;

When this code runs, if the user types a file name in the File Name edit box in the Open
dialog box, but doesn’t specify an extension, the TXT extension is added to the file name,
and the entire file name is saved in the NameOfFile variable. For example, if the user
types MYNOTES as the file name, the string saved in the NameOfFile variable is
MYNOTES.TXT.

See also
FileName property, TOpenDialog component, TSaveDialog component

DefaultRowHeight property

Applies to
TDrawGrid, TStringGrid components

Declaration
property DefaultRowHeight: Integer;

The DefaultRowHeight property determines the height of all the rows within the grid.
The default value is 24 pixels.

If you want to change the height of a single row within a grid without changing other
rows, use the RowHeights property during run time. If you change the DefaultRowHeight
property value after changing the height of specified rows, all the rows become the
height specified in the DefaultRowHeight property once again.

Example
The following line of code changes the default height of the rows in a string grid control
to 10 pixels more than the original value:

192 Delphi Visual Component Library Reference

Delete method

StringGridl.DefaultRowHeight := StringGridl.DefaultRowHeight + 10;

See also
DefaultColWidth property, RowHeights property

Delete method a

Applies to
TList, TStringList, TStrings objects; TMenultem, TOutline, TQuery, TTable components

For list and string objects and menu items

Declaration
procedure Delete(Index: Integer);

The Delete method removes the item specified with theIndex parameter. The item can be
deleted from

e the list of a list object
¢ the strings and their associated objects of a string or string list object
* amenu

In all cases, the index is zero-based, so the first item has an Index value of 0, the second
item has an Index value of 1, and so on.

If a string is deleted from a string object, the reference to its associated object is also
deleted.

If the item deleted is a menu item that has a submenus, the submenus are also deleted.

If the item is deleted in a list object, the list contains anil value in the item’s position in
the list.

Example

FileMenu in the following code is a menu that contains four menu items (menu
commands). They are New, Open, Save, and Save As, in that order. This event handler
deletes the Save command from the menu:

procedure TForml.ButtonlClick(Sender: TObject);
begin

FileMenu.Delete(2);
end;

This example uses a list box and a button on a form. When the form appears, five items
are in the list box. When the user clicks the button, the second item in the list box is
deleted:

procedure TForml.FormCreate(Sender: TObject);
var
I: Integer;

Delphi Visual Component Library Reference 193

Delete method

begin
for T := 1 to 5 do
ListBoxl.Items.Add('Item ' + IntToStr(I));
end;

procedure TForml.ButtonlClick(Sender: TObject);
begin

ListBoxl.Items.Delete(1);
end;

See also
Add method, Clear method, Insert method, Remove method

For outlines

Declaration
procedure Delete(Index: LongInt);

The Delete method removes the outline item with an Index property value equal to the
Index parameter from the list outline. If that item is has subitems, the subitems are also
deleted.

Outline items that appear after the deleted item are moved up and reindexed with valid
Index values. This is done automatically unless BeginlUpdate has been called.

Example
The following code deletes the selected item from Outlinel.

Outlinel.Delete(Outlinel.SelectedItenm);

See also
Add method, AddChild method, Insert method

For queries and tables

Declaration
procedure Delete;

The Delete method deletes the current record from the dataset. The next record then
becomes the new current record. If the record deleted was the last record in the dataset,
then the previous record becomes the current record.

This method is valid only for datasets that return a live result set.

194 Delphi Visual Component Library Reference

Delete procedure

Delete procedure System
Declaration
procedure Delete(var S: string; Index, Count:Integer);
The Delete procedure removes a substring of Count characters from string S starting at a

S[Index].
S is a string-type variable. Index and Count are integer-type expressions.

If Index is larger than the length of S, no characters are deleted. If Count specifies more
characters than remain starting at the S[Index], Delete removes the rest of the string.

Example

var

s: string;
begin

s := 'Honest Abe Lincoln';

Delete(s,8,4);

Canvas.TextOut (10, 10, s); { 'Honest Lincoln' }
end;

See also
Concat function, Copy function, Insert procedure, Length function, Pos function

DeleteFile function SysUtils

Declaration

function DeleteFile(const FileName: string): Boolean;

The DeleteFile function erases the file named by FileName from the disk.

If the file cannot be deleted or does not exist, the function returns False but does not raise

an exception.

Example
The following code erases the file DELETE.ME in the current directory:

DeleteFile('DELETE.ME');

Deletelndex method

Applies to
TTable component

Delphi Visual Component Library Reference 195

DeleteTable method

Declaration

procedure DeleteIndex(const Name: string);

The Deletelndex method deletes a secondary index for a TTable. Name is the name of the
index. You must have opened the table with exclusive access (Exclusive = True).

Example

Tablel.DeleteIndex (‘NewIndex');

See also
AddIndex method

DeleteTable method

Applies to
TTable component

Declaration
procedure DeleteTable;

The DeleteTable method deletes an existing database table. Before calling this method,
the DatabaseName, TableName and TableType properties must be assigned values. The
table must be closed.

Example

with Tablel do

begin
Active := False;
DatabaseName := ‘DBDEMOS’;

TableName := ‘Customer’;
TableType := ttParadox;
DeleteTable;

end;

DescriptionsAvailable method

Applies to

TStoredProc component

Declaration

function DescriptionsAvailable: Boolean;

The Descriptions Available method indicates whether stored procedure parameter
information is available from the server. If the information is available, it returns True.

196 Delphi Visual Component Library Reference

Destination property

Otherwise, it returns False. Different servers may require additional information to
obtain the parameter information. If DescriptionsAvailable returns False, you will have to
specify parameters either with the Parameters Editor or with explicit code.

Example
if not StoredProcl.DescriptionsAvailable then a

begin
{ Build the Parameters property explicitly }
end;

See also
Owerload property, StoredProcName property

Destination property

Applies to

TBatchMove component
Declaration

property Destination: TTable;

Destination specifies a TTable component corresponding to the database table that will be
the destination of the batch move operation. The destination table may or may not
already exist.

Example

BatchMovel.Destination := Tablel;

Destroy method

Applies to

All objects and components

Declaration
destructor Destroy;

The Destroy method destroys the object, component, or control and releases the memory
allocated to it.

You seldom need to call Destroy. Objects designed with Delphi create and destroy
themselves as needed, so you don’t have to worry about it. If you construct an object by
calling the Create method, you should call Free to release memory and dispose of the
object.

Delphi Visual Component Library Reference 197

Device property

See also
Free method, Release method

Device property

Applies to
TFontDialog component

Declaration
property Device: TFontDialogDevice;

The Device property determines which device the returned font affects. These are the
possible values:

Value Meaning

fdScreen Affects the screen

fdPrinter Affects the printer

fdBoth Affects both the screen and the printer
Example

This example lets the user select a font to use for printing a file:

procedure TForml.ButtonlClick(Sender: TObject);
var
FontName: TFont;
begin
FontDialogl.Device := fdPrinter;
FontDialogl.Execute;
FontName := FontDialogl.Font;
end;

See also
TFont object

DevicelD property

Applies to
TMediaPlayer component

Declaration
property DevicelD: Word;

Run-time and read only. The DevicelD property specifies the device ID for the currently
open multimedia device.

198 Delphi Visual Component Library Reference

DeviceType property

The value of DevicelD is determined when an device is opened with the Open method. If

no device is open, DevicelD is 0.

Example

The following code opens MediaPlayer] and displays the DevicelD in Edit1. If an
exception occurs, a message window displays the error number and string.

procedure TForml.BitBtnlClick(Sender: TObject);

var
MyErrorString: string;
begin
try
MediaPlayerl.Open;

Editl.Text := IntToStr(MediaPlayerl.DeviceID);

except

MyErrorString := 'ErrorCode:

' + IntToStr(Error) + #13#10;

MessageDlg (MyErrorString + MediaPlayerl.ErrorMessage, mtError, [mbOk], 0);

end;
end;

DeviceType property

Applies to
TMediaPlayer component

Declaration

property DeviceType: TMPDeviceTypes;

The DeviceType property specifies a multimedia device type to open with the Open

method. The default is dtAutoSelect. The valid values for DeviceType are dtAutoSelect,

dtAVIVideo, dtCDAudio, dtDAT, dtDigitalVideo, dtMMMovie, dtOther, dtOverlay,
dtScanner, dtSequencer, dtVCR, dtVideodisc, or dtWaveAudio.

If DeviceType is dt AutoSelect, the device type is determined by the file extension specified
in the FileName property. If no device type is associated with the extension, you must

explicitly specify the correct device type by setting DeviceType to a value other than

dtAutoSelect.

A multimedia device is typically associated with an appropriate file-name extension

when you install the device. Associations are specified in the [mci extensions] section of
the Windows WINLINI file. See the documentation for your specific device for
instructions about how to associate file-name extensions with the device.

Example

The following code checks to make sure that a filename is specified for MediaPlayer1 if
the DeviceType is set to dtAutoSelect before opening the device.

procedure TForml.FormCreate(Sender: TObject);

begin

Delphi Visual Component Library Reference

199

Directory property

with MediaPlayerl do

if (DeviceType = dtAutoSelect) and (FileName = '') then

MessageDlg('You must specify a filename for the MediaPlayer', mtError, [mbOk], 0)
else

Open;

end;

Directory property

Applies to
TDirectoryListBox, TFileListBox components

Declaration
property Directory: string;

The value of the Directory property determines the current directory for the file list box
and directory list box components. The file list box displays the files in the directory
specified in the Directory property. The directory list box displays the value of the
Directory property as the current directory in the list box.

Examine the example to see how a directory list box and a file list box can work together
through their Directory properties.

Example

If you have a file list box and a directory list box on a form, this code changes the current
directory in the directory list box and displays the files in that directory in the file list
box when the user changes directories using the directory list box:

procedure TForml.DirectoryListBoxlChange (Sender: TObject);
begin

FileListBoxl.Directory := DirectoryListBoxl.Directory;
end;

See also
DirLabel property, Drive property, FileList property

DirectoryExists function FileCtr

Declaration
function DirectoryExists(Name: string): Boolean;

The DirectoryExists function determines whether the directory specified as the value of
the Name parameter exists. If the directory exists, the function returns True. If the
directory does not exist, the function returns False.

200 Delphi Visual Component Library Reference

DirLabel property

If only a directory name is entered as the value of Name, DirectoryExists searches for the
directory within the current directory. If a full path name is entered, DirectoryExists
searches for the directory along the designated path.

Example

This example uses an edit box, a label, and a button on a form. When the user enters a
directory name in the edit box and clicks the button, whether or not the directory exists
is reported in the caption of the label:

procedure TForml.ButtonlClick(Sender: TObject);
begin
if DirectoryExists(Editl.Text) then
Labell.Caption := Editl.Text + ' exists'
else
Labell.Caption := Editl.Text + ' does not exist';
end;

See also
ForceDirectories procedure, Select Directory function

DirLabel property

Applies to
TDirectoryListBox component

Declaration
property DirLabel: TLabel;

The DirLabel property provides a simple way to display the current directory as the
caption of a label control. When the current directory changes in the directory list box,
the change is reflected in the caption of the label.

Specify the label you want updated with the current directory as the value of the
DirLabel property.

Example

This example uses a button, an edit box, a label, a drive combo box, a directory list box, a
file list box, and a filter combo box on a form. When the user clicks the button, the rest of
the controls of the form begin working together like the controls in an Open or Save
dialog box.

procedure TForml.ButtonlClick(Sender: TObject);
begin
DriveComboBox1.DirList := DirectoryListBoxl;
DirectoryListBoxl.FileList := FileListBoxl;
DirectoryListBoxl.DirLabel := Labell;
FileListBoxl.FileEdit := Editl;
FilterComboBoxl.FileList := FileListBoxl;
end;

Delphi Visual Component Library Reference 201

DirList property

See also
Caption property, Directory property, DirList property, FileEdit property, FileList
property

DirList property

Applies to
TDriveComboBox component

Declaration
property DirList: TDirectoryListBox;

The DirList property provides a simple way to connect a drive combo box with a
directory list box. When a new drive is selected in the drive combo box, the specified
directory list box updates to display the directory structure and the current directory on
the new drive.

Specify the directory list box you want updated as the value of DirList.

Example
This example uses a button, an edit box, a label, a drive combo box, a directory list box, a
file list box, and a filter combo box on a form. When the user clicks the button, the rest of

the controls of the form begin working together as the controls in an open or save dialog
box do.

procedure TForml.ButtonlClick(Sender: TObject);
begin
DriveComboBox1.DirList := DirectoryListBoxl;
DirectoryListBoxl.FileList := FileListBoxl;
DirectoryListBoxl.DirLabel := Labell;
FileListBoxl.FileEdit := Editl;
FilterComboBoxl.FileList := FileListBoxl;
end;

See also
Directory property, DirLabel property, Drive property, FileEdit property, FileList property

DisableControls method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure DisableControls;

202 Delphi Visual Component Library Reference

DiskFree function

The DisableControls method temporarily disconnects the dataset from all TDataSource
components. While the data sources are disconnected, associated data-aware controls
will not reflect changes to datasets. When iterating over a dataset with Next or Prior
methods, calling DisableControls first will speed the process, eliminating the need to
update the screen each time.

Use EnableControls to restore the connection. The dataset maintains a count of the a
number of calls to DisableControls and EnableControls, so only the last call to
EnableControls will actually update the data sources.

Example

with Tablel do
begin
DisableControls;
{ Move forward five records }
try
for T := 1 to 5 do Next;
finally
{ Update the controls to the current record }
EnableControls;
end;

DiskFree function SysUtils

Declaration
function DiskFree(Drive: Byte): Longint;

DiskFree returns the number of free bytes on the specified drive number, where 0 =
Current, 1 = A, 2 =B, and so on.

DiskFree returns -1 if the drive number is invalid.

Example

var
S: string;

begin
S := IntToStr(DiskFree(0) div 1024) + ' Kbytes free.';
Canvas.TextOut (10, 10, S);

end;

See also
DiskSize function

Delphi Visual Component Library Reference 203

DiskSize function

DiskSize function SysUtils

Declaration
function DiskSize(Drive: Byte): Longint;

DiskSize returns the size in bytes of the specified drive number, where 0 = Current, 1 =
A, 2 =B, etc. DiskSize returns -1 if the drive number is invalid.

Example

var
S: string;

begin
S := IntToStr(DiskSize(0) div 1024) + ' Kbytes capacity.';
Canvas.TextOut (10, 10, S);

end;

See also
DiskFree function

Display property

Applies to
TMediaPlayer component

Declaration
property Display: TWinControl;

The Display property specifies the display window for an multimedia device that uses a
window for output. Assign the name of a windowed control such as a form or panel to
Display to display output in that control.

The default value of Display is nil. If the value of Display is nil, the device creates its own
window to display output. Also, if you Free the control assigned to Display after the
device has been opened, video output will be in its own default window.

Examples of multimedia devices that use a window to display output are Animation,
AVI Video, Digital Video, Overlay, and VCR.

Example
The following example displays the .AVI video file FOOTBALL.AVT' in the client area
of Form?2.
procedure TForml.BitBtnlClick(Sender: TObject);
begin
with MediaPlayerl do begin
try
FileName := 'football.avi';

204 Delphi Visual Component Library Reference

DisplayFormat property

Open;
Display := Form2;
Form2.Show;
Play;
except
MessageDlg (MediaPlayerl.ErrorMessage, mtError, [mbOk], 0);
end;
end;
end;

See also
Capabilities property, DeviceType property, DisplayRect property, Open method

DisplayFormat property

Applies to
TDateField, TDateTimeField, TIntegerField, TSmallintField, TTimeField, TWordField
components

Declaration
property DisplayFormat: string
The DisplayFormat property is used to format the value of the field for display purposes.

For TIntegerField, TSmallintField, and TWordField, formatting is performed by
FloatToTextFmt. If DisplayFormat is not assigned a string, the value is formatted by Str.

For TDateField, TDateTimeField, and TTimeField, formatting is performed by
DateTimeToStr. If DisplayFormat is not assigned a string, the value is formatted according
to the default Windows specifications in the [International] section of the WIN.INI file.

For TBCDField, TCurrencyField, and TFloatField, formatting is performed by
FloatToTextFmt. If DisplayFormat is not assigned a string, the value is formatted
according to the value of the Currency property.

See also

FmtStr procedure, Format function, FormatBuf function, FormatDateTime function,
FormatFloat function, StrFmt function, StrLFmt function

DisplayLabel property

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Delphi Visual Component Library Reference 205

DisplayName property

Declaration
property DisplayLabel: string;

DisplayLabel contains the column heading for a field displayed by a TDBGrid
component. If DisplayLabel is null, the FieldName property is used to supply the column
heading.

DisplayName property

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration
property DisplayName: Pstring;

Run-time and read only. DisplayName returns the name of the field for display purposes.
Use DisplayName in your code to use the same algorithm that other Delphi components
use when they need the DisplayLabel or FieldName of a field.

DisplayRect property

Note

Applies to
TMediaPlayer component

Declaration
property DisplayRect: TRect;

Run-time only. The DisplayRect property specifies the rectangle area within the form
specified in the Display property used to display output from a multimedia device.
DisplayRect is ignored if Display is nil.

Assign a TRect record to DisplayRect to display output in a specific rectangle area on a
form. The Rect function can be used to create a TRect record.

Examples of multimedia devices that use a window to display output are Animation,
AVI Video, Digital Video, Overlay, and VCR.

Media that use a rectangle to display output usually perform best if the default
DisplayRect size is used. To set DisplayRect to the default size, use 0, 0 for the lower right
corner. Position the rectangle with the upper left corner.

You must set DisplayRect after the media device is opened.

206 Delphi Visual Component Library Reference

DisplayText property

Example
The following example positions the upper left corner of the display rectangle to 10, 10
and uses the default display size:

MediaPlayerl.DisplayRect := Rect (10, 10, 0, 0);

See also a

Capabilities property, DeviceType property, Open method

DisplayText property

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration
property DisplayText: string;

Run-time and read only. The string value for the field when it is displayed in a data-
aware control that is not in Edit mode. Data-aware controls such as TDBEdit rely on
DisplayText to provide the formatting for each field.

The default string depends on a field’s data type. You can control the strings returned
by DisplayText by specifying a DisplayFormat string or by providing an OnGetText event
handler.

For a TStringField, the contents of the field is formatted using the EditMask property.

For a TIntegerField, TSmallintField, or TWordField, if DisplayFormat has been assigned a
value, FloatToTextFmt is called with it; otherwise Str is called.

For a TFloatField or TBCDField, FloatToTextFmt is called with the DisplayFormat property.

For a TCurrencyField, if DisplayFormat has been assigned a value, FloatToTextFmt is called
with it; otherwise, FloatToTextFmt is called with the ffCurrency flag and CurrencyDecimals
variable.

For a TDateTimeField, DateTimeToStr is called with the DisplayFormat property. For a
TDateField, DateTimeToStr is called with the DisplayFormat property, except that the
ShortDateFormat variable will be substituted if DisplayFormat is unassigned. For a
TTimeField, DateTimeToStr is called with the DisplayFormat property, except that the
LongTimeFormat variable will be substituted if DisplayFormat is unassigned.

Example

{ Display a message that the current value is invalid }
MessageDlg(Fieldl.DisplayText + ‘ is invalid’, mtWarning, [mbOK], 0);

Delphi Visual Component Library Reference 207

DisplayValue property

DisplayValue property

Applies to
TDBLookupCombo, TDBLookupList components

Declaration
property DisplayValue : string;

Run-time only. The DisplayValue is the string that appears in the database lookup combo
box or database lookup list box. Its value is contained in the field specified as the
LookupDisplay field. The current value of the Value property, which determines the
current record in the lookup table, also determines which string is the DisplayValue
string.

Example

The following code makes the caption of a button equal to the DisplayValue of
DBLookupCombol.

Buttonl.Caption := DBLookupCombol.DisplayValue;

See also
LookupField property

DisplayValues property

Applies to
TBooleanField component

Declaration
property DisplayValues: string;

DisplayValues controls the manner in which the TBooleanField is translated to and from
display format. Set DisplayValues to “T;F’ to use ‘“T” and ‘F’ for values of True and False.
You can use any pair of phrases you want, separated by a semicolon. If one phrase is
omitted, no text is displayed and a data-aware control with no text assigns the
corresponding value to the field. The default value is “True;False’.

Example
Fieldl.DisplayValues := 'Yes;No';
Field2.DisplayValues := 'Oui;Non';

208 Delphi Visual Component Library Reference

DisplayWidth property
DisplayWidth property

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration
property DisplayWidth: Integer;

DisplayWidth specifies the number of characters that should be used to display a field in
a TDBGrid control. For TStringField, DisplayWidth is the number of characters in the
field. For all other fields the default value is 10.

See also
DisplayLabel property, DisplayText property

Dispose procedure System

Declaration
procedure Dispose(var P: Pointer);
The Dispose procedure releases memory allocated for a dynamic variable.

After a call to Dispose, the value of P is undefined and it is an error to reference P. If {$I+},
you can use exceptions to handle this error. For more information on handling run-time
library exceptions, see Handling RTL Exceptions in the Help system.

Example

type
Strl8 = string[18];
var
P: "Strl8;
begin
New (P) ;
P* := 'Now you see it...';
Dispose(P); { Now you don't... }
end;

See also
FreeMem procedure, GetMem procedure, New procedure

Delphi Visual Component Library Reference 209

DisposeStr procedure

DisposeStr procedure SysUtils

Declaration
procedure DisposeStr(P: PString);

The DisposeStr procedure disposes of the dynamically allocated string pointed to by P. P
must have been allocated previously with NewStr function. If the given pointer is nil or
points to an empty string, StrDispose does nothing.

Example
The following code allocates and frees heap space for a copy of string S pointed to by P,
then deallocates the heap space pointed to by P:

var
P: PString;
S: string;

begin
S := 'Ask me about Blaise';
P := NewStr(S);
DisposeStr(P):

end;

See also
NewStr function

DitherBackground property

Applies to
TTabSet component

Declaration
property DitherBackground: Boolean;

The DitherBackground property determines whether the selected background color set
with the BackgroundColor property is dithered. Dithering means the background is
lightened by 50%, which is intended to make the tabs easier to see. If DitherBackground is
True, the tab set control background is dithered. If it is False, there is no dithering.

The default value is True.

Example
This event handler toggles the dithering of the tab set control’s background each time
the user clicks the form:

procedure TForml.FormClick(Sender: TObject);
begin
if TabSetl.DitherBackground = True then
TabSet1.DitherBackground := False

210 Delphi Visual Component Library Reference

DoneWinCrt procedure
else
TabSet1.DitherBackground := True;

end;

See also

Color property a

DoneWinCrt procedure WinCrt

Declaration
procedure DoneWinCrt;
The DoneWinCrt procedure destroys the CRT window.

Calling DoneWinCrt before the program ends prevents the CRT window from entering
the inactive state.

Down property

Applies to
TSpeedButton component

Declaration
property Down: Boolean;

The Down property of a speed button determines if the button appears in an up
(unselected) or down (selected) state. Speed buttons are initially in their up (unselected)
state. This occurs because the default setting of the Down property is False.

To initially display a speed button in its down state, set the Down property to True. For
example, if you use a panel component with several speed buttons to create a tools
palette, you might want one of the speed buttons selected when the palette first appears.

Although you can use a group of speed buttons with the AllowAllUp property set to
False to make the tool palette buttons work as a group, you must set the Down property
for the button you want to be selected initially. You can also use the Down property at
run time any time you want to put a button in a down state without the user clicking it
first.

Example
This code displays the speed button in a down state:

SpeedButtonl.Down := True;

See also
AllowAllUp property, Grouplndex property

Delphi Visual Component Library Reference 211

DragCursor property

DragCursor property

Applies to

TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBEdit, TDBGrid, TDBImage,
TDBListBox, TDBLookupCombo, TDBLookupList, TDBMemo, TDBNavigator,
TDBRadioGroup, TDBText, TDirectoryListBox, TDriveComboBox, TEdit, TFileListBox,
TFilterComboBox, TGroupBox, TImage, TLabel, TListBox, TMaskEdit, TMemo, TOutline,
TPaintBox, TPanel, TRadioButton, TScrollBar, TScrollBox, TShape, TNotebook controls

Declaration

property DragCursor: TCursor;

The DragCursor property determines the shape of the mouse pointer when the pointer is
over a component that will accept an object being dragged. These are the possible

images:
Value Image Value Image Value Image
crDefault crSizeNESW crHourglass -
o, [o 8

crArrow crSizeNS crDra,

X 5 i t
crCross ¢h crSizeNWSE 5 crNoDrop o
crlBeam crSizeWE crHSplit

I = “
crSize &% crlUpArrow = crVSplit s
Example

The following code changes the DragCursor of Memol to crIBeam:.

Memol.DragCursor := crIBeam;
See also

BeginDrag method, Cursor property, Cursors property, Dragging method, EndDrag
method, OnDragDrop event, OnDragOuver event, OnEndDrag event

Dragging method

Applies to
All controls

212 Delphi Visual Component Library Reference

DragMode property

Declaration
function Dragging: Boolean;

The Dragging method specifies whether a control is being dragged. If Dragging returns
True, the control is being dragged. If Dragging is False, the control is not being dragged. a

Example
This example uses three check boxes on a form. When the user begins dragging one of
the check boxes, the color of the form changes:

procedure TForml.FormActivate(Sender: TObject);

begin
CheckBox1.DragMode := dmAutomatic;
CheckBox2.DragMode := dmAutomatic;
CheckBox3.DragMode := dmAutomatic;

end;

procedure TForml.FormDragOver (Sender, Source: TObject; X, Y: Integer;
State: TDragState; var Accept: Boolean);
begin
if CheckBoxl.Dragging then
Color := clAqua;
if CheckBox2.Dragging then
Color := clYellow;
if CheckBox3.Dragging then
Color := clLime;
end;

See also

BeginDrag method, DragMode property, EndDrag method, OnDragDrop event,
OnDragQOver event, TDragState type

DragMode property

Applies to

TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,
TDBGrid, TDBImage, TDBText, TDBListBox, TDBLookupCombo, TDBLookupList,
TDBMemo, TDBNavigator, TDBRadioGroup, TDirectoryListBox, TDrawGrid,
TDriveComboBox, TEdit, TFileListBox, TFilterComboBox, TGroupBox, TImage, TLabel,
TListBox, TMaskEdit, TMemo, TOLEContainer, TOutline, TPaintBox, TRadioButton,
TScrollBar, TScrollBox, TShape, TStringGrid, TNotebook controls

Declaration

property DragMode: TDragMode;

Delphi Visual Component Library Reference 213

Draw method

The DragMode property determines the drag and drop behavior of a control. These are
the possible values:

Value Meaning

dmAutomatic If dmAutomatic is selected, the control is ready to be dragged; the user just
clicks and drags it.

dmManual If dmManual is selected, the control can’t be dragged until the application calls
the BeginDrag method.

If a control’s DragMode property value is dmAutomatic, the application can disable the
drag and drop capability at run time by changing the DragMode property value to
dmManual.

Example
This example determines whether the drag mode of the button on the form is manual. If
it is, the dragging the button becomes possible.

procedure TForml.ButtonlClick(Sender: TObject);
begin
if Buttonl.DragMode = dmManual then
Buttonl.BeginDrag(True);
end;

See also
BeginDrag method, EndDrag method

Draw method

Applies to
TCanvas object

Declaration
procedure Draw(X, VY: Integer; Graphic: TGraphic);

The Draw method draws the graphic specified by the Graphic parameter on the canvas at
the location given in the screen pixel coordinates (X, Y). Graphics can be bitmaps, icons,
or metafiles.

Example

The following code draws the graphic in C:\WINDOWS\TARTAN.BMP centered in
Form1 when the user clicks Button1. Attach this code to the OnClick event handler of
Buttonl.

procedure TForml.ButtonlClick(Sender: TObject);
var

Bitmapl: TBitmap;
begin

Bitmapl := TBitmap.Create;

214 Delphi Visual Component Library Reference

DrawFocusRect method

Bitmapl.LoadFromFile('c:\windows\tartan.bmp"');
Forml.Canvas.Draw((Forml.Width div 2)-(Bitmapl.Width div 2),
(Forml.Height div 2) - (Bitmapl.Height div 2), Bitmapl);
end;

See also
StretchDraw method, TBitmap object, TIcon object, TMetafile object

DrawFocusRect method

Applies to
TCanvas object

Declaration
procedure DrawFocusRect (const Rect: TRect);

The DrawFocusRect method draws a rectangle in the style used to indicate that the
rectangle has the focus. Because this is an XOR function, calling it a second time and
specifying the same rectangle removes the rectangle from the screen.

The rectangle this function draws cannot be scrolled. To scroll an area containing a
rectangle drawn by this function, call DrawFocusRect to remove the rectangle from the
screen, scroll the area, and then call DrawFocusRect to draw the rectangle in the new
position.

Example
This examples uses a radio button and a button on a form. When the user clicks the
button, the code draws a rectangle around the radio button.

procedure TForml.ButtonlClick(Sender: TObject);
var
NewRect: TRect;
begin
NewRect := RadioButtonl.BoundsRect;
with NewRect do
begin
Left := Left - 10;
Top := Top - 10;
Right := Right + 10;
Bottom := Bottom + 10;
end;
Forml.Canvas.DrawFocusRect (NewRect) ;
end;

See also

Arc method, Chord method, Ellipse method, FrameRect method, Pie method, Rectangle
method

Delphi Visual Component Library Reference 215

Drive property

Drive property

Applies to
TDirectoryListBox, TDriveComboBox, TFileListBox components

Declaration
property Drive: Char;

Run-time only. For the drive combo box, the Drive property determines which drive is
displayed in the edit control of the combo box. When the user uses the drive combo box
to select a new drive, the selected drive becomes the value of the Drive property. The
value of the Text property also changes to the new volume name when the Drive
property value changes.

For the directory list box, the Drive property determines which drive the list box
displays the directory structure on. When the value of Drive changes, the Directory value
changes also to the current directory on the specified drive.

For the file list box, the Drive property determines which drive the list box displayed the
files on. When the value of Drive changes, the Directory value also changes to the current
directory on the specified drive.

Example

The following example assumes that a drive combo box, a file list box, and a directory
list box are on a form. This code changes the drive displayed in the drive combo box,
displays the current directory of the selected drive in the directory list box, and displays
the files in the current directory of the selected drive in the file list box when the user
selects a drive in the drive combo box:

procedure TForml.DriveComboBoxlChange (Sender: TObject);
begin
DirectoryListBoxl.Drive := DriveComboBoxl.Drive;
FileListBoxl.Directory := DirectoryListBoxl.Directory;
end;

See also
Directory property, DirList property, Text property

DriverName property

Applies to
TDataBase component

Declaration

property DriverName: TSymbolStr;

216 Delphi Visual Component Library Reference

DropConnections method

DriverName is the name of a BDE driver, such as STANDARD (for dBASE and Paradox),
ORACLE, SYBASE, INFORMIX or INTERBASE. This property will be cleared if
AliasName is set, because an AliassName specifies a driver type. Conversely, setting this
property will clear AliasName.

If you try to set DriverName of a TDatabase for which Connected is True, Delphi will raise
an exception.

Example

Databasel.DriverName := ‘STANDARD';

DropConnections method

Applies to

TSession component
Declaration

procedure DropConnections;
The DropConnections method drops all inactive database connections. By default,
temporary database components keep their connections to the server open even when
not in use so that they do not have to log in to the server each time a datasetcomponent
is opened.
Example

Session.DropConnections;

See also
Session variable, Temporary property

DropDown method

Applies to

TDBLookupCombo component

Declaration

procedure DropDown;

The DropDown method opens or “drops down” the database lookup combo box so that

the user has a list of values to choose from.

See also
Closelp method

Delphi Visual Component Library Reference 217

DropDownCount property

DropDownCount property

Applies to
TComboBox, TDBComboBox, TDBLookupCombo components

Declaration
property DropDownCount: Integer;

The DropDownCount property determines how long the drop-down list of a combo box
is. By default, the drop-down list is long enough to contain eight items without
requiring the user to scroll to see them all. If you would like the drop-down list to be
smaller or larger, specify a number larger or smaller than eight as the DropDownCount
value.

If the DropDownCount value is larger than the number of items in the drop-down list, the
drop-down list is just large enough to hold all the items and no larger. For example, if
the list contains three items, the drop-down list is only long enough to display the three
items, even if the DropDownCount is eight.

Example
The following code assigns three to the DropDownCount property of ComboBox1. To see
more than three items in the drop-down list, the user must scroll.

ComboBox1.DropDownCount := 3;

See also
DropDownWidth property

DropDownWidth property

Applies to
TDBLookupCombo component

Declaration
property DropDownWidth: Integer;

The DropDownWidth property determines how wide the drop-down list of the combo
box is in pixels. The default value is 0, which means the drop-down list is the same
width as the combo box.

The DropDownWidth property is useful when you are displaying multiple fields, and
therefore, multiple columns in the database lookup combo box.

Example
This code displays three fields in the drop-down list of the database lookup combo box.
Each column has a title and is separated from the other columns by a line. The combo

218 Delphi Visual Component Library Reference

DroppedDown property

box displays ten items at a time; therefore, the user must scroll to view the rest of the
items. The drop-down list is 600 pixels wide so all the fields fit in the drop-down list.

procedure TForml.FormCreate(Sender: TObject);

begin
DBLookupCombol.LookupDisplay := 'Company;City;Country';
DBLookupCombol.0Options := [loColLines,loTitles];

DBLookupCombol . DropDownCount := 10;
DBLookupCombol . DropDownWidth := 600;
end;

See also
DropDownCount property, LookupDisplay property, Options property

DroppedDown property

Applies to
TComboBox, TDBComboBox components

Declaration

property DroppedDown: Boolean;

Run-time only. The DroppedDown property determines whether the drop-down list of
the combo box is open or closed. If DroppedDown is True, the drop-down list is visible. If
DroppedDown is False, the drop-down list is closed. The default value is False.

See also
DropDownCount property

dsEditModes const

Declaration
dsEditModes = [dsEdit, dsInsert, dsSetKey];

dsEditModes is the subset of TDataSetState elements which the State property of a dataset
component will have if the current record of the dataset is being modified. It is also uses
by the UpdateRecord of a dataset component.

DSeg function System

Declaration
function DSeg: Word;

The DSeg function returns the current value of the DS register.

Delphi Visual Component Library Reference 219

DSeg function

The result is the segment address of the data segment.

Example

function MakeHexWord(w: Word): string;

const
hexChars: array [0..SF] of Char = '0123456789ABCDEF';

var
HexStr : string;

begin
HexStr := '';
HexStr := HexStr + hexChars[Hi(w) shr 4];
HexStr := HexStr + hexChars[Hi(w) and SF];
HexStr := HexStr + hexChars[Lo(w) shr 4];
HexStr := HexStr + hexChars[Lo(w) and S$F];

MakeHexWord := HexStr;
end;

procedure TForml.ButtonlClick(Sender: TObject);

var
i: Integer;
Y: Integer;
S: string;
begin
Y := 10;
S := 'The current code segment is §$'

Canvas.TextOut (5, Y, S);
Y := Y + Canvas.TextHeight (S) + 5;

+ MakeHexWord (CSeg) ;

S := 'The global data segment is $' + MakeHexWord(DSeg);

Canvas.TextOut (5, Y, S);
Y := Y + Canvas.TextHeight (S) + 5;

S := 'The stack segment is $' + MakeHexWord(SSeg);

Canvas.TextOut (5, Y, S);
Y := Y + Canvas.TextHeight (S) + 5;

S := 'The stack pointer is at $' + MakeHexWord(SPtr);

Canvas.TextOut (5, Y, S);
Y := Y + Canvas.TextHeight (S) + 5;

S := 'l 1s at offset $' + MakeHexWord(Ofs(i));

Canvas.TextOut (5, Y, S);
Y := Y + Canvas.TextHeight (S) + 5;

S := 'in segment $' + MakeHexWord(Seg(i));
Canvas.TextOut (5, Y, S);
end;
See also

CSeg function, SSeg function

220 Delphi Visual Component Library Reference

Duplicates property

Duplicates property

Applies to
TStringList object

Declaration
property Duplicates: TDuplicates;

The Duplicates property determines whether duplicate strings are allowed in the sorted
list of strings of a string list object. If the list is not sorted, the value of Duplicates has no
effect. These are the possible values:

Value Meaning

duplgnore Attempts to add a duplicate string to a sorted string list are ignored
dupAccept Duplicate strings can be added to a sorted string list

dupError Adding a duplicate string results in an EListError exception
Example

The following code makes StringList1 ignore duplicate entries.

StringListl.Duplicates := dupIgnore;

See also
Sort method, Sorted property

EAbort object SysUtils

Declaration
EAbort = class(Exception)

The EAbort exception is Delphi’s “silent” exception. When it is raised, no message box
appears to inform the user. Your application can handle the exception without the user
ever knowing it occurred.

EBreakpoint object SysUtils

Declaration
EBreakpoint = class(EProcessorException);

The EBreakpoint exception is a hardware exception. It occurs when your application
generates a breakpoint interrupt. Usually Delphi’s integrated debugger handles
breakpoint exceptions.

Delphi Visual Component Library Reference 221

EClassNotFound object

EClassNotFound object Classes

Declaration
EClassNotFound = class(EFilerError);

The EClassNotFound exception is raised when a component exists on a form, but it has
been deleted from the type declaration. For example, this form type declaration includes
two panel components:

type
TForml = class(TForm)
Panell: TPanel;
SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
Panel2: TPanel;
private
{ Private declarations }
public
{ Public declarations }
end;

If you compile the application, then delete Panel2, for example, from the TForm1 type
declaration, the next time you attempt to run the application, the class not found
exception is raised.

EComponentError object Classes

Declaration
EComponentError = class(Exception);

The EComponentError exception is raised when an attempt is made to register a
component outside of the Register procedure. It is also raised when your application
changes the name of a component at run time so that it has the same name as another
component. It can also occur if the name of a component is changed to a name that is not

a valid Object Pascal identifier.

EConvertError object SysUtils

Declaration
EConvertError = class(Exception);

The EConvertError exception is raised when either the StrTolnt or StrToFloat functions
are unable to convert the specified string to a valid integer or floating-point value,
respectively. For example, this code raises the convert error exception because 3.4 is not

a valid integer:

222 Delphi Visual Component Library Reference

EDatabaseError object

var
X: Integer;
begin
X := StrToInt('3.4');
end;

EDatabaseError object DB a

Declaration
EDatabaseError = class(Exception);

The EDatabaseError type is the exception type raised when a database error is detected
by a component. Use EDatabaseError with an exception handling block or to create a
database exception. With an exception handling block, you can detect the condition and
handle it yourself. If something in your code encounters an error, you can create and
raise the exception yourself.

{ Try to open Tablell }
repeat { until successful or Cancel button is pressed }
try
Tablel.Active := True; { See if it will open }
Break; { If no error, exit the loop }
except
on EDatabaseError do
{ Ask if it is OK to retry }
if MessageDlg(’Could not open Tablel - check server’, mtError,
[mbOK, mbCancel], 0) <> mrOK then raise; { If not, reraise to abort }
{ Otherwise resume the repeat loop }
end;
until False;
{ Test for an error and raise an exception if so }
if { some error has occured } then
raise EDatabaseError.Create(’Some error has occured’);

EDBENgineError object DB

EDBEngineError = class(EDatabaseError)
private
FErrors: TList;
function GetError(Index: Integer): TDBError;
function GetErrorCount: Integer;
public
constructor Create(ErrorCode: DBIResult);
destructor Destroy;
property ErrorCount: Integer;
property Errors[Index: Integer]: TDBError;
end;

Delphi Visual Component Library Reference 223

EDBEditError object

Description

The EDBEngineError exception is raised whenever a BDE error occurs. The exception
contains two public properties of significance:

Property How used

Errors A list of the entire Borland Database Engine error stack. The first error has an index value
of 0.
ErrorCount The total number of errors contained in the Errors property.

The objects contained in the Errors property are of type TDBError, which is declared like
this:

TDBError = class
private
FErrorCode: DBIResult;
FNativeError: Longint;
FMessage: TMessageStr;
function GetCategory: Byte;
function GetSubCode: Byte;
public
constructor Create(Owner: EDBEngineError; ErrorCode: DBIResult;
NativeError: Longint; Message: PChar);
property Category: Byte;
property ErrorCode: DBIResult;
property SubCode: Byte;
property Message: TMessageStr;
property NativeError: Longint;
end;

These are the public properties of the TDBError object:

Property How used

ErrorCode The error code returned by the Borland Database Engine

Category The category of the error referenced by ErrorCode

SubCode The subcode of the error code

NativeError The remote error code returned from the server. If NativeError is 0, the error is not a
server error.

Message The server message for native errors, or the BDE message for non-server errors.

EDBEditError object Mask

Declaration

EDBEditError = class(Exception);

The EDBEditError exception is raised when the data is not compatible with the mask
specified for the field.

224 Delphi Visual Component Library Reference

EDDEError object

EDDEE'ror object DDEMan

Declaration
EDDEError = class(Exception);

The EDDEError exception is raised when your application can't find the specified server
or conversation, or when a session is unexpectedly terminated. a

Edit method

Applies to
TDataSource, TQuery, TTable components

For tables and queries

Declaration
procedure Edit;

The Edit method prepares the current record of the dataset for changes and puts the
dataset in Edit state, setting the State property to dsEdit. Data-aware controls cannot
modify existing records unless the dataset is in Edit state.

Calling this method for a dataset that cannot be modified raises an exception. The
CanModify property will be True for datasets that can be modified. This method is valid
only for datasets that return a live result set.

Example
Tablel.Edit;

See also
AutoEdit property

For datasource components

Declaration
procedure Edit;

Edit calls the dataset’s Edit method if AutoEdit is True and State is dsBrowse.

See also
DataSet property, Insert method

Delphi Visual Component Library Reference 225

EditFormat property

EditFormat property

Applies to
TintegerField, TSmallintField, TWordField components

Declaration
property EditFormat: string;
EditFormat is used to format the value of the field for editing purposes.

For TIntegerField, TSmallintField, and TWordField, formatting is performed by
FloatToTextFmt. If EditFormat is not assigned a string, but DisplayFormat does have a
value, the DisplayFormat string is used. Otherwise, the value is formatted by to the
shortest possible string.

For TBCDField, TCurrencyField, and TFloatField, formatting is performed by
FloatToTextFmt. If EditFormat is not assigned a string but DisplayFormat does have a
value, the DisplayFormat string will be used. Otherwise, the value is formatted according
to the value of the Currency property.

Editkey method

Applies to
TTable component

Declaration
procedure EditKey;

Use the EditKey method to modify the contents of the search key buffer. This method is
useful only when searching on multiple fields after calling SetKey. Call GotoKey to move
the cursor to the record with the corresponding key.

EditKey differs from SetKey in that the latter clears all the elements of the search key
buffer to the default values (or NULL). EditKey leaves the elements of the search key
buffer with their current values.

Example

with Tablel do
begin
EditKey;
FieldByName(‘State’).AsString := ‘CA’;
FieldByName('City’).AsString := ‘Santa Barbara’;
GotoKey;
end;

See also
IndexFields property

226 Delphi Visual Component Library Reference

EditMask property

EditMask property

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMaskEdit, TMemoField,
TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

property EditMask: string;

The EditMask property is the mask that is used to limit the data that can be put into a

masked edit box or entered into a data field. A mask restricts the characters the user can
enter to valid characters and formats. If the user attempts to enter a character that is not
valid, the edit box does not accept the character. Validation is performed on a character-

by-character basis. Use an OnValidate event to validate the entire input.

For a TStringField, EditMask can be used to format output with the DisplayText property.

A mask consists of three fields with semicolons separating the fields. The first part of the

mask is the mask itself. The second part is the character that determines whether the

literal characters of a mask are saved as part of the data. The third part of the mask is the

character used to represent a blank in the mask.

These are the special characters used to create masks:

Character
|

> —

#+# 0 o n A

Meaning in mask

If a! character appears in the mask, leading blanks don’t appear in the data. If a ! character is
not present, trailing blanks don’t appear in the data.

If a > character appears in the mask, all characters that follow are in uppercase until the end
of the mask or until a < character is encountered.

If a < character appears in the mask, all characters that follow are in lowercase until the end
of the mask or until a > character is encountered.

If these two characters appear together in a mask, no case checking is done and the data is
formatted with the case the user uses to enter the data.

The character that follows a \ character is a literal character. Use this character when you
want to allow any of the mask special characters as a literal in the data.

The L character requires only an alphabetic character only in this position. For the US, this is
A-Z,a-z.

The I character permits only an alphabetic character in this position, but doesn’t require it.

The A character requires an alphanumeric character only in this position. For the US, this is
A-Z,a-z,0-9.

The a character permits an alphanumeric character in this position, but doesn’t require it.
The C character requires a character in this position.

The c character permits a character in this position, but doesn’t require it.

The 0 character requires a numeric character only in this position.

The 9 character permits a numeric character in this position, but doesn’t require it.

The # character permits a numeric character or a plus or minus sign in this position, but
doesn’t require it.

Delphi Visual Component Library Reference 227

EditMask property

Character Meaning in mask

The : character is used to separate hours, minutes, and seconds in times. If the character that
separates hours, minutes, and seconds is different in the International settings of the Control
Panel utility on your computer system, that character is used instead of :.

/ The / character is used to separate months, days, and years in dates. If the character that
separates months, days, and years is different in the International settings of the Control
Panel utility on your computer system, that character is used instead of /.

; The ; character is used to separate masks.

The _ character automatically inserts a blank the edit box. When the user enters characters
in the field, the cursor skips the blank character. When using the EditMask property editor,
you can change the character used to represent blanks. You can also change this value
programmatically. See the following table.

These characters (already mentioned in previous table) are typed constants declared in
the Mask unit whose value you can change at run time, although the need for this should

be limited:
Typed constant Initial value Meaning
DefaultBlank _ Blanks in the mask are represented by the _ character
MaskFieldSeparator ; The ; character separates the fields of a mask.
MaskNoSave 0 The 0 character means that the mask is not saved as part of
the data. The 1 character means that the mask is saved as part
of the data.

For example, a telephone number could have parentheses
around the area code as part of the mask. If MaskNoSave is 0,
the parentheses do not become part of the data, making the
size of the field slightly smaller.

procedure TForml.FormCreate(Sender: TObject);

begin
Mask.MaskFieldSeparator := ',';
Mask.DefaultBlank := '@';
MaskEditl.EditMask := '999-999,1,@';

end;

Example
This example assigns an edit mask to the masked edit box on the form. The edit mask
makes it easy to enter American telephone numbers in the edit box.

procedure TForml.FormCreate(Sender: TObject);
begin
MaskEditl.EditMask := '!\(999\)000-0000;1;
MaskEditl.Text := '';
MaskEditl.AutoSelect := False;
end;

See also
OnGetEditMask event, EditText property, Text property

228 Delphi Visual Component Library Reference

EditMaskPtr property

EditMaskPtr property

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration a

property EditMask: string;

Run-time and read only. EditMaskPtr is a pointer to the EditMask property of a string.

Example

Fieldl.EditMask := Field2.EditMaskPtr”;

EditorMode property

Applies to
TDBGrid, TDrawGrid, TStringGrid components

Declaration
property EditorMode: Boolean;

Run-time only. The EditorMode property determines whether the grid is in automatic
Edit mode. When the grid is in automatic edit mode, the user can type in a cell without
having to press Enter or F2 first. If the Options property set includes the value
goAlwaysShowEditor (goAlwaysShowEditor is True), the grid is in automatic edit mode,
just as if EditorMode is True. While you are most likely to set the Options property values
at design time, the EditorMode property makes it easy to control when editing is
permitted at run time.

If EditorMode is True, the grid is in automatic edit mode as long as the Options property
set includes the value goEditing (or dgEditing for the data grid). If goEditing or dgEditing is
not in the Options set (goEditing or dgEditing is False), setting EditorMode to True has no
effect, and the user cannot edit the contents of a cell.

If EditorMode is False and the Options property set includes the value goEditing or
dgEditing, but not the value goAlwaysShowEditor (or dgAlwaysShowEditor for the data
grid), the user can enter edit mode by pressing either Enter or F2 before editing the
contents of each cell.

Example
The following code sets EditorMode to True for StringGrid1.

StringGridl.EditorMode := True;

Delphi Visual Component Library Reference 229

EditRangeEnd method

See also
Options property

EditRangeEnd method

Applies to
TTable component

Declaration

procedure EditRangeEnd;

EditRangeEnd enables you to modify the beginning range of the dataset filter established
with SetRangeEnd. Subsequent assignments to field values will modify the values of the
ending field range previously set with SetRangeEnd. Call ApplyRange to apply the new

range and filter the dataset.

EditRangeEnd differs from SetRangeEnd in that the latter clears all the elements of the
search key buffer to the default values (NULL). EditRangeEnd leaves the elements of

search key buffer with their current values.

Note ~ With Paradox or dBASE tables, these methods work only with indexed fields. With SQL
databases, they can work with any columns specified in the IndexFieldNames property.

Example

{ Limit the range from ‘Goleta’ to ‘Santa Barbara'}
with Tablel do
begin
EditRangeStart; { Set the beginning key }
FieldByName (‘City’).AsString := ‘Goleta’;
EditRangeEnd; { Set the ending key }

FieldByName('City’).AsString := ‘Santa Barbara’;
ApplyRange; { Tell the dataset to establish the range }
end;

See also

KeyExclusive property, KeyFieldCount property

EditRangeStart method

Applies to
TTable component

Declaration

procedure EditRangeStart;

230 Delphi Visual Component Library Reference

EditText property

EditRangeStart enables you to modify the lower key limit established with SetRangeStart.
Call ApplyRange to apply the new range and filter the dataset.

EditRangeStart differs from SetRangeStart in that the latter clears all the elements of the
search key buffer to the default values (NULL). EditRangeStart leaves the elements of the
search key buffer with their current values.

Note ~ With Paradox or dBASE tables, these methods work only with indexed fields. With SQL
databases, they can work with any columns specified in the IndexFieldNames property.

Example

{ Limit the range from ‘Goleta’ to ‘Santa Barbara'}

with Tablel do
begin
EditRangeStart; { Set the beginning key }
FieldByName(‘City’).AsString := ‘Goleta’;
EditRangeEnd; { Set the ending key }
FieldByName(‘City’).AsString := ‘Santa Barbara’;
ApplyRange; { Tell the dataset to establish the range }
end;

See also
KeyExclusive property, EditRangeEnd method, SetRange method, SetRangeEnd method

EditText property

Applies to
TDBEdit, TMaskEdit components

Declaration
property EditText: string;

Run-time only. The EditText property is the value of the Text property as it appears in
the edit box at run time with the mask specified in the EditMask property applied. If
literal mask characters are not saved and no character is substituted for blanks, the
values of EditText and Text are the same.

EditText is what the user actually sees in the edit box at run time.

See also
EditMask property, Text property

EDivByZero object SysUtils

Declaration

EDivByZero = class(EIntError);

Delphi Visual Component Library Reference 231

EFault object

The EDivByZero exception is an integer math exception. The exception occurs when
your application attempts to divide an integer type by zero. For example, this code
raises an EDivByZero exception:

var

X, Y: Integer;
begin

X :=0;

Y := 10;

Y := Y div X;
end;

EFault object SysUltils

Declaration
EFault = class(EProcessorException);

The EFault exception is the base exception object from which all other exception fault
objects descend. These are the fault exceptions:

Exception Meaning

EGPFault A general protect fault, which is usually caused by an uninitialized pointer or object.
EStackFault Illegal access to the processor’s stack segment.

EPageFault The Windows memory manager was unable to correctly use the Windows swap file.

ElnvalidOpCode The processor encountered an undefined instruction. Usually this means the
processor was trying to execute data or uninitialized memory.

EFCreateError object Classes

Declaration
EFCreateError = class(EStreamError);

The EFCreateError exception is raised when an error occurs as a file is being created. For
example, the specified file might have an invalid file name, or the file can’t be recreated
because it is read only.

EFilerError object Classes

Declaration

EFilerError = class(EStreamError);

232 Delphi Visual Component Library Reference

EFOpenError object

The EFilerError is raised when an attempt is made to register the same class twice. It is
also the parent of these exceptions that occur when reading or writing streams:

Exception Description

EReadError The ReadBuf method cannot read the specified number of bytes

EWriteError The WriteBuf method cannot write the specified number of bytes

EClassNotFound A component on the form has been deleted from the form type declaration a
EFOpenError object Classes

Declaration

EFOpenError = class(EStreamError);

The EFOpenError exception is raised when an attempt is made to create a file stream
object and the specified file cannot be opened.

EGPFault object SysUtils

Declaration
EGPFault = class(EFault);

The EGPFault is a hardware exception that is raised when your application attempts to
access memory that isn’t legal for your application to access. These are the most
common causes of general protection faults (GPF):

1 Loading invalid values into segment registers

2 Accessing memory beyond a segment’s limit

3 Writing to read-only code segments

4 Attempting to access an uninitialized pointer or object

The most likely cause in Delphi programs is probably the fourth one: attempting to
access an uninitialized pointer or object.

EInOutError object SysUtils
Declaration
EInOutError = class(Exception)
public
ErrorCode: Integer;
end;

The EInOutError is raised any time an input/output MS-DOS error occurs. The resulting
error code is returned in the ErrorCode field.

Delphi Visual Component Library Reference 233

ElntError object

The $I+ directive must be in effect or input/output errors will not raise an exception. If
an I/O error occurs when your application is in the $I- state, your application must call
the IOResult function to clear the error.

EIntError object SysUtils

Declaration

EIntError = class(Exception);

Description

The ElntError exception is a generic integer math exception. Although it is never raised
in the run-time library, it is the base from which other integer math exceptions descend.
These are the integer math exceptions:

Exception Meaning
EDivByZero An attempt was made to divide by zero
ERangeError Number or expression out of range
EIntOverflow Integer operation overflowed
EIntOverflow object SysUtils
Declaration

EIntOverFlow = class(EIntError);

Description

The EIntOverFlow exception is an integer math exception. It occurs when a calculated
result is too large to fit within the register allocated for it and therefore, data is lost. For
example, this code results in an overflow condition as the calculation result overflows a
register:

var
SmallNumber: Shortint;
X, Y: Integer;
begin
X = 127;
Y := 127;
SmallNumber := X * Y * 100;
end;

The EIntOverFlow occurs only if range checking is turned on (your code includes the
$O+ directive or you set the Overflow-checking option using the Options | Project dialog
box).

See also the ERangeError exception.

234 Delphi Visual Component Library Reference

ElnvalidCast object

ElnvalidCast object SysUtils

Declaration
EInvalidCast = class(Exception);

The ElnvalidCast exception occurs when your application tries to typecast an object into
another type using the as operator, and the requested typecast is illegal. For example, an a
invalid typecast exception is raised if in this expression AnObject is not of a type

compatible with TObjectType:

AnObject as TObjectType

ElnvalidGraphic object Graphics

Declaration
EInvaldGraphic = class(Exception);

An ElnvalidGraphic exception is raised when your application attempts to access a file
that is not a valid bitmap, icon, metafile, or user-defined graphic type when your
application expects it to be. For example, this code raises an invalid graphic exception:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Imagel.Picture.LoadFromFile ('README.TXT');
end;

Because the README.TXT file doesn’t contain a valid graphic, the exception is raised.

ElnvalidGraphicOperation object Graphics

Declaration

EInvalidGraphicOperation = class(Exception);

Description

An ElnvalidGraphicOperation is raised when an illegal operation is attempted on a
graphic. For example, if your application attempts to resize an icon, the invalid graphic
operation is raised:

var
AnIcon: TIcon;
begin
AnIcon := TIcon.Create;
AnIcon.LoadFromFile('C:\WINDOWS\DIRECTRY.ICO');
AnIcon.Width := 100; { an invalid graphic operation exception is raised }

Delphi Visual Component Library Reference 235

ElnvalidGridOperation object

ElnvalidGridOperation object Grids

Declaration
EInvalidGridOperation = class(Exception);

An ElnvalidGridOperation is raised when an illegal operation is attempted on a grid. For
example, your application might try to access a cell that does not exist within the grid.

Elnvalidimage object Classes

Declaration
EInvalidImage = class(EFilerError);

The ElnvalidImage exception is raised when your application attempts to read a resource
file and the specified file is not a resource file. When your application calls the
ReadComponentRes method, it must also use the corresponding WriteComponentRes
method to write to a resource file. Similarly, when you application calls the
ReadComponent method, it must use the corresponding WriteComponent method.

ElnvalidOp object SysUtils

Declaration
EInvalidOp = class(EMathError);

The ElnvalidOp exception is a floating-point math exception. It occurs whenever the
processor encounters an undefined instruction. For example, if your application uses an
opcode that is not available to the 80287 floating-point unit and you run the application
on a 80286 computer, the invalid opcode exception is raised.

ElnvalidOpCode object SysUtils

Declaration
EInvalidOpCode = class(EFault);

The ElnvalidOpCode exception is a hardware fault exception. It occurs when the
processor encounters an undefined instruction. Usually this means the processor was
attempting to execute data or uninitialized memory. It could also happen if your
application jumps to the middle of an instruction somehow. An invalid opcode
exception represents a serious failure in the operating environment. Your application
should encounter it rarely.

236 Delphi Visual Component Library Reference

ElnvalidOperation object

ElnvalidOperation object Controls

Declaration

EInvalidOperation = class(Exception);

Description

An ElnvalidOperation exception is raised when your application does some operation a
that requires a window handle and your component does not have a parent (Parent =

nil). It can also occur if you try to perform drag and drop operations from the form such

as Form1.BeginDrag.

ElnvalidPointer object SysUtils

Declaration
EInvalidPointer = class(Exception);

The ElnvalidPointer exception is raised when your application attempts an invalid
pointer operation. For example, it can occur if your application tries to dispose of the
same pointer twice, or your application calls the Free method twice to destroy an object.

Eject method

Applies to
TMediaPlayer component

Declaration
procedure Eject;

The Eject method ejects the loaded medium from the open multimedia device. Eject is
called when the Eject button on the media player control is clicked at run time.

Upon completion, Eject stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Eject method has been completed. The Notify property determines whether Eject
generates an OnNotify event.

Example

This code ejects the CD from the CD-ROM player after 10 seconds. For the code to run
correctly, you must have your CD audio device installed correctly, and the device must
have software ejecting capabilities.

var
TimerOver: Word;

Delphi Visual Component Library Reference 237

EListError object

procedure TForml.FormClick(Sender: TObject);
begin
MediaPlayerl.DeviceType := dtCDAudio;
MediaPlayerl.Open;
MediaPlayerl.Play;
end;

procedure TForml.TimerlTimer (Sender: TObject);
begin
if TimeOver = 10 then
begin
MediaPlayerl.Eject;
MediaPlayerl.Close;
Timerl.Enabled := False;
end
else
Inc(TimeOver);
end;

See also
Capabilities property

EListError object

Classes

Declaration

EListError = class(Exception);

The EListError is an exception that is raised when an error is made in a list, string, or
string list object. List error exceptions commonly occur when your application refers to
an item in a list that is out of the list’s range. For example, the following code is an event
handler that attempts to access an item in a list box that does not exist. The EListError is

raised and handled:

procedure TForml.ButtonlClick(Sender: TObject);

begin
ListBoxl.Items.Add('First item'); { Ttems[0] }
ListBoxl.Items.Add('Another item'); { Items{1] }
ListBoxl.Items.Add('Still another item'); { Items[2] }
try

ListBoxl.Items[3] := 'This item does not exist';

except

on EListError do

MessageDlg('List box contains fewer than 4 strings', mtWarning, [mbOK], 0);

end;
end;

Also, a list error occurs when your application tries to add a duplicate string to a string

list object when the value of the Duplicates property is dupError.

238 Delphi Visual Component Library Reference

Ellipse method

A list error exception is raised when you insert a string into a sorted string list, as the
string you insert at the specified position may put the string list out of sorted order. For
example, this code raises the list error exception:

procedure TForml.FormCreate(Sender: TObject);
var
I: Integer;

begin
for T := 1 to 5 do a
ListBoxl.Items.Add('Item ' + IntToStr(I));

end;

procedure TForml.ButtonlClick(Sender: TObject);
begin
try
ListBoxl.Items.Insert (0, 'Try to insert here');
except
on EListError do
MessageDlg (‘Attempt to insert into a sorted list’, mtWarning, [mbOK], 0);
end;
end;

Ellipse method

Applies to
TCanuvas object

Declaration
procedure Ellipse(Xl, Y1, X2, Y2: Integer);

The Ellipse method draws an ellipse defined by a bounding rectangle on the canvas. The
top left point of the bounding rectangle is at pixel coordinates (X1, Y1) and the bottom
right point is at (X2, Y2). If the points of the rectangle form a square, a circle is drawn.

Example
The following code draws an ellipse filling the background of a form:

procedure TForml.FormPaint (Sender: TObject);
begin

Canvas.Ellipse(0, 0, ClientWidth, ClientHeight);
end;

See also

Arc method, Chord method, Draw method, DrawFocusRect method, Pie method,
StretchDraw method

Delphi Visual Component Library Reference 239

EMathError object

EMathError object SysUtils

Declaration
EMathError = class(Exception);

The EMathError exception is never raised on its own, but it provides a base exception
object from which all the specific floating-point math exceptions descend. These are the
floating-point math exceptions:

Exception Meaning
ElnvalidOp Processor encountered an undefined instruction
EZeroDivide Attempt to divide by zero
EOverflow Floating-point operation overflowed
EUnderflow Floating-point operation underflowed
EMCIDeviceError object MPlayer
Declaration

EMCIDeviceError = class(Exception);

Description

The EMCIDeviceError exception is raised if an error occurs when accessing a multimedia
device. The most common cause for the exception is trying to access a multimedia
device before it has been opened with the Open method.

EMenuError object Menus

Declaration
EMenuError = class(Exception);

The EMenuError exception is raised if an error occurs when your application is working
with menu items. For example, if you application attempts to delete a menu item that
doesn’t exist, a menu error exception occurs.

EMPNotify type MPlayer

Declaration

EMPNotify = procedure (Sender: TObject; Button: TMPBtnType; var DoDefault: Boolean) of object;

The EMPNotify type is used for the OnClick event for TMediaPlayer components.

240 Delphi Visual Component Library Reference

EMPPostNotify type

The Button argument can be one of the following values: btBack, btEject, btNext, btPause,
btPlay, btPrev, btRecord, btStep, or btStop.

The default value of the DoDefault argument is True. If DoDefault is True, the media
player control calls the method that corresponds to the clicked button. For example, if
the user clicks the Play button (btPlay), the Play method is called.

If DoDefault is False, you must supply the code that executes when a media player
control button is clicked in the OnClick event handler. The following table lists the
default methods corresponding to the media player control buttons:

Control button Button value Method called

Play btPlay Play

Record btRecord StartRecording
Stop btStop Stop

Next btNext Next

Prev btPrev Previous

Step btStep Step

Back btBack Back

Pause btPause Pause

Eject btEject Eject

EMPPostNotify type MPlayer

Declaration

EMPPostNotify = procedure (Sender: TObject; Button: TMPBtnType) of object;
The EMPPostNotify type is used for the OnPostClick event for TMediaPlayer components.

The Button argument can be one of the following values: btBack, btEject, btNext, btPause,
btPlay, btPrev, btRecord, btStep, or btStop.

Empty property

Applies to
TBitmap, TGraphic, Tlcon, TMetafile objects

Declaration
property Empty: Boolean;

Read-only. The Empty property specifies whether the graphics object contains a graphic.
If Empty is True, no graphic has been loaded into the graphics object. If Empty is False, a
graphic is contained by the graphics object.

Delphi Visual Component Library Reference 241

EmptyStr constant

Example
The following loads a file into Graphicl if it does not already contain a graphic.

if Graphicl.Empty then Graphicl.LoadFromFile('myfile.bmp');

See also
LoadFromFile method

EmptyStr constant SysUtils

Declaration

EmptyStr: string(1] H

EmptyStr declares an empty string.

EmptyTable method

Applies to
TTable component

Declaration
procedure EmptyTable;

The EmptyTable method deletes all records from the database table specified by
TableName. Before calling this method, the DatabaseName, TableName and TableType
properties must be assigned values.

Note If the table is open, it must have been opened with the Exclusive property set to True.

Example

with Tablel do
begin
Active := False;
DatabaseName := ‘Delphi_Demos’;
TableName := ‘CustInfo’;
TableType ttParadox;
EmptyTable;
end;

EnableControls method

Applies to
TTable, TQuery, TStoredProc components

242 Delphi Visual Component Library Reference

Enabled property

Declaration
procedure EnableControls;

The EnableControls method restores the connections from the dataset to all TDataSource
components that were disconnected by a call to the DisableControls method. While the

data sources are disconnected, changes in the active record will not be reflected in them.

The dataset maintains a count of the number of calls to DisableControls and

EnableControls, so only the last call to EnableControls will actually update the data a
sources.

Example

with Tablel do
begin
DisableControls;
{ Move forward five records }
try
for T := 1 to 5 do Next;
finally
{ Update the controls to the current record }
EnableControls;
end;

See also
Enabled property

Enabled property

Applies to
All controls; TDataSource, TForm, TMenultem, TTimer components

The Enabled property determines if the control responds to mouse, keyboard, or timer
events, or if the data-aware controls update each time the dataset they are connected to
changes.

For all controls, menu items, and timers

Declaration
property Enabled: Boolean;

The Enabled property controls whether the control responds to mouse, keyboard, and
timer events. If Enabled is True, the control responds normally. If Enabled is False, the
control ignores mouse and keyboard events, and in the case of a timer control, the
OnTimer event. Disabled controls appear dimmed.

Example
To disable a button called FormatDiskButton,

Delphi Visual Component Library Reference 243

EnabledButtons property

Note

FormatDiskButton.Enabled := False;
This code alternately dims or enables a menu command when a user clicks the button:

procedure TForml.ButtonlClick(Sender: TObject);
begin
if OpenCommand.Enabled then
OpenCommand.Enabled := False
else
OpenCommand.Enabled := True;
end;

For data source components

Declaration

property Enabled: Boolean;

Description

Enabled specifies if the display in data-aware controls connected to TDataSource is
updated when the current record in the dataset changes. For example, when Enabled is
True and the Next method of a dataset component is called many times, each call
updates all controls. Setting Enabled to False allows the Next calls to be made without
performing updates to the controls. Once you reach the desired record, set Enabled to
True to update the controls to that record.

Setting Enabled to False clears the display in data-aware controls until you set it to True
again. If you want to leave the controls with their current contents while moving
through the table or query, call the DisableControls and EnableControls.

Example

DataSourcel.Enabled := False;
while not DataSourcel.DataSet.EOF do DataSourcel.DataSet.Next;
DataSourcel.Enabled := True;

EnabledButtons property

Declaration
property EnabledButtons: TButtonSet;

The EnabledButtons property determines which buttons on the media player are enabled.
An enabled button is colored and usable. A disabled button is dimmed and not usable.
If a button is not enabled with EnabledButtons, it is disabled. By default, all buttons are
enabled.

244 Delphi Visual Component Library Reference

EnableExceptionHandler procedure

If the AutoEnable property is True, AutoEnable supersedes EnabledButtons. The buttons
automatically enabled or disabled by the media player override any buttons enabled or
disabled with the EnabledButtons property.

Button Value Action

Play btPlay Plays the media player

Record btRecord Starts recording

Stop btStop Stops playing or recording a

Next btNext Skips to the next track, or to the end if the medium doesn’t use
tracks

Prev btPrev Skips to the previous track, or to the beginning if the medium
doesn’t use tracks

Step btStep Moves forward a number of frames

Back btBack Moves backward a number of frames

Pause btPause Pauses playing or recording. If already paused when clicked,
resumes playing or recording.

Eject btEject Ejects the medium

Example

The following example enables all of the media player component’s buttons:

TMediaPlayerl.EnabledButtons := [btPlay, btPause, btStop, btNext, btPrev, btStep, btBack,
btRecord, btEject]

See also
ColoredButtons property, VisibleButtons property

EnableExceptionHandler procedure SysUlils

Declaration
procedure EnableExceptionHandler (Enable: Boolean);

The EnableExceptionHandler procedure enables or disables the standard processing of
hardware exceptions or language exceptions. This requires setting notification hooks
using the ToolHelp DLL. If you want to implement your own hardware exception
processing, you should disable the default exception handler.

ENavClick type DBCtrls

Declaration
ENavClick = procedure (Sender: TObject; Button: TNavigateBtn) of object;

The ENavClick type is the type of the OnClick event for a database navigator component
(TDBNavigator).

Delphi Visual Component Library Reference 245

EncodeDate function

EncodeDate function SysUtils

Declaration
function EncodeDate(Year, Month, Day: Word): TDateTime;

The EncodeDate function returns a TDateTime type from the values specified as the Year,
Month, and Day parameters.

The year must be between 1 and 9999.
Valid Month values are 1 through 12.

Valid Day values are 1 through 28, 29, 30, or 31, depending on the Month value. For
example, the possible Day values for month 2 (February) are 1 through 28 or 1 through
29, depending on whether or not the Year value specifies a leap year.

If the specified values are not within range, an EConvertError exception is raised. The
resulting value is one plus the number of days between 1/1/0001 and the given date.

Example

This example uses a button and a label on a form. When the user clicks the button, a
specified date is encoded as a MyDate variable of type TDateTime. MyDate is then
displayed as a string in the caption of the label.

procedure TForml.ButtonlClick(Sender: TObject);
var
MyDate: TDateTime;
begin
MyDate := EncodeDate(83, 12, 31);
Labell.Caption := DateToStr (MyDate);
end;

See also
DateToStr function, DecodeDate procedure, EncodeTime function

EncodeTime function SysUtils

Declaration
function EncodeTime (Hour, Min, Sec, MSec: Word): TDateTime;

The EncodeTime function returns a TDateTime type from the values specified as the Hour,
Min, Sec, and MSec parameters.

If the value of the Time24Hour typed constant is False, valid Hour values are 0 through
12. If the value of Time24Hour is True, valid Hour values are 0 through 23.

Valid Min and Sec values are 0 through 59. Valid MSec values are 0 through 999.

If the specified values are not within range, an EConvertError exception is raised. The
resulting value is a number between 0 (inclusive) and 1 (not inclusive) that indicates the

246 Delphi Visual Component Library Reference

EndDoc method

fractional part of a day given by the specified time. The value 0 corresponds to
midnight, 0.5 corresponds to noon, 0.75 corresponds to 6:00 pm, etc.

Example

procedure TForml.ButtonlClick(Sender: TObject);
var
MyTime: TDateTime;
Hour, Min, Sec, MSec: Word;
begin
MyTime := EncodeTime(0, 45, 45, 7);
Labell.Caption := TimeToStr (MyTime);
Time24Hour := True;
Label2.Caption := TimeToStr (MyTime);
end;

See also
DecodeTime procedure, EncodeDate function

EndDoc method

Applies to
TPrinter object

Declaration

procedure EndDoc;

The EndDoc method ends the current print job and closes the text file variable. After the

application calls EndDoc, the printer begins printing. Use EndDoc after successfully

sending a print job to the printer. If the print job isn’t successful, use the Abort method.

The Close procedure calls the EndDoc method.

Example

This example uses a button on a form. When the user clicks it, the event handler prints a

rectangle on the printer and displays a message on the form.

procedure TForml.ButtonlClick(Sender: TObject);
begin
with Printer do
begin
BeginDoc;
Canvas.Rectangle (20, 20, 400, 300);
EndDoc;
end;
Canvas.TextOut (10, 10, 'Printed');
end;

Delphi Visual Component Library Reference

247

EndDrag method

To use the EndDoc method, you must add the Printers unit to the uses clause of your
unit.

See also
BeginDoc method

EndDrag method

Applies to
All controls

Declaration
procedure EndDrag(Drop: Boolean);

The EndDrag method stops an object from being dragged any further. If the Drop
parameter is True, the object being dragged is dropped. If the Drop parameter is False,
the object is not dropped and dragging is canceled.

Example
The following code cancels the dragging of Label1 without dropping the object.

Labell.EndDrag (False);

See also
BeginDrag method, DragMode property, OnEndDrag event

EndMargin property

Applies to
TTabSet component

Declaration
property EndMargin: Integer;

The EndMargin property determines how far in pixels the rightmost tab appears from
the right edge of the tab set control. The default value is 5. Together with theStartMargin
property, EndMargin can play a role in determining how many tabs can fit within the tab
set control.

If AutoScroll is True and scroll buttons appear in the tab set control, EndMargin
determines how far in pixels the rightmost tab appears from the left edge of the scroll
buttons, rather than the edge of the tab set control.

248 Delphi Visual Component Library Reference

EndPage property

Example

This example displays the tab set control so the tabs are no closer than 20 pixels from the
edge of the tab control on the left and from the scroll buttons on the right:

procedure TForml.FormCreate(Sender: TObject);
begin

with TabSetl do

begin
AutoScroll := True; a
StartMargin := 20;

EndMargin := 20;

end;

end;

See also
StartMargin property

EndPage property

Applies to
TReport component

Declaration
property EndPage: Word;

The value of the EndPage property specifies the last page of the report that is printed.
The default value is 9999. If the report is fewer than 9999 pages and you don’t change
the value of EndPage, your entire report is printed.

Example
The following code prints only the first page of Report1.

Reportl.EndPage := 1;
Reportl.Run;

See also
PrintCopies property, StartPage property

EndPos property

Applies to
TMediaPlayer component

Declaration

property EndPos: Longint;

Delphi Visual Component Library Reference 249

EndUpdate method

Run-time only. The EndPos property specifies the position within the currently loaded
medium at which to stop playing or recording. EndPos is specified using the current
time format, which is specified in the TimeFormat property.

The EndPos property affects only the next Play or StartRecording method called after
setting EndPos. You must reset EndPos to affect any subsequent calls to Play or
StartRecording.

Example
The following procedure begins playing the WAV audio file from the beginning of the
file to middle only.

procedure TForml.ButtonlClick(Sender: TObject);
begin
with MediaPlayerl do
begin
FileName := 'D:\WINAPPS\SOUNDS\CARTOON.WAV';
Open;
EndPos := TrackLength[l] div 2;
Play;
end;
end;

See also
StartPos property

EndUpdate method

Applies to
TStringList, TStrings objects; TOutline component

Declaration
procedure EndUpdate;

The EndUpdate method re-enables screen repainting and outline item reindexing that
was turned off with the Beginllpdate method.

Example

BeginUpdate and EndUpdate should always be used in conjunction with a try...finally
statement to ensure that EndUpdate is called if an exception occurs. A block that uses
BeginUpdate and EndUpdate typically looks like this:

ListBoxl.Items.BeginUpdate;
try
ListBoxl.Items.Clear;
ListBoxl.Items.Add(...);

ListBoxl.Items.Add(...);
finally

250 Delphi Visual Component Library Reference

Eof function

ListBoxl.Items.EndUpdate; { Executed even in case of an exception }
end;
See also
BeginlUpdate method
Eof function System ﬂ
Declaration
Typed or untyped files:
function Eof(var F): Boolean;
Text files:
function Fof [(var F: Text)]: Boolean;

The Eof function tests whether or not the current file position is the end-of-file.
F is a text file variable. If F is omitted, the standard file variable Input is assumed.

Eof(F) returns True if the current file position is beyond the last character of the file or if
the file contains no components; otherwise, Eof(F) returns False.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for I/O errors.

Example

var
F1, F2: TextFile;
Ch: Char;
begin
if OpenDialogl.Execute then begin
AssignFile(F1, OpenDialogl.Filename);
Reset (F1);
if SaveDialogl.Execute then begin
AssignFile(F2, OpenDialogl.Filename);
Rewrite(F2);
while not Eof (F1) do
begin
Read(F1, Ch);
Write(F2, Ch);
end;
CloseFile(F2);
end;
CloseFile(F1);
end;
end;

Delphi Visual Component Library Reference 251

EOF property

See also
Eoln function, SeekEof function

EOF property

Applies to
TTable, TQuery, TStoredProc components

Declaration
property EOF: Boolean;

Run-time and read only. EOF is a Boolean property that indicates whether a dataset is
known to be at its last row. The EOF property returns a value of True after:

¢ An application opens an empty dataset
e A call to a table’s Last method
e A call to a table’s Next fails because the cursor is on the last row

Example

Tablel.First;
while not Tablel.EOF do
begin
{Do Something}
Tablel.Next;
end;

See also
MoveBy method

Eoln function System

Declaration
function Eoln [(var F: Text)]: Boolean;
The Eoln function test whether the current file position is the end-of-line of a text file.

F, if specified, is a text file variable. If F is omitted, the standard file variable Input is
assumed.

Eoln(F) returns True if the current file position is at an end-of-line or if Eof(F) is True;
otherwise, Eoln(F) returns False.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for I/O errors.

252 Delphi Visual Component Library Reference

EOQutlineChange type

Example
uses WinCrt;

begin

{ Tells program to wait for keyboard input }
WriteLn(Eoln);

end;

See also
Eof function, SeekEoln function

EQutlineChange type Outline

Declaration
EOutlineChange = procedure (Sender: TObject; Index: LongInt) of object;

EQutlineChange is the type of the events which occur when an item in a TOutline
component is changed by being expanded (OnExpand) or collapsed (OnCollapse). The
Index parameter specifies the Index property value of the changed item.

EQutlineError object Outline

Declaration
EOutlineFrror = class(Exception);

The EOutlineError exception is raised when an error occurs as your application works
with an outline component.

EOutOfMemory object SysUltils

Declaration
EOutOfMemory = class(Exception);

The EOutOfMemory exception is a heap exception. It occurs when your application
attempts to allocate dynamic memory, but there wasn’t enough free memory in the
system to complete the requested operation.

EOutOfResources object Controls

Declaration

EOutOfResources = class(Exception);

Delphi Visual Component Library Reference 253

EOverflow object

The EOutOfResources exception occurs when your application attempts to create a
Windows handle and Windows has no more handles to allocate.

EOverflow object SysUtils

Declaration

EOverflow = class(EMathError);

Description

The EOverflow exception is a floating-point math exception. It occurs when a calculated
result is too large to fit within the register allocated for it and therefore, data is lost. For
example, this code results in an overflow condition:

var
X, Y: Single;
begin
X 3.3e37;
Y := 2.4e36;
X =X *Y;
end;

EPageFault object SysUtils

Declaration
EPageFault = class(EFault);

The EPageFault exception is a hardware fault exception. It occurs when the Windows
memory manager is unable to use the Windows swap file correctly. A page fault
exception indicates a serious failure in the operating environment. Your applications
should encounter it rarely.

EParserError object Classes

Declaration
EParser = class(Exception);

The EParserError is raised when your application attempts to read from a text form and
it is unable to read some part of it, due to a “syntax error.”

254 Delphi Visual Component Library Reference

EPrinter object

EPrinter object Printers

Declaration
EPrinter = class(Exception);

The EPrinter exception is raised when a printing error occurs. For example, if your
application attempts to print to a printer that doesn’t exist, or if the print job can’t be sent
to the printer for some reason, a printer exception occurs.

EProcessorException object

Declaration
EProcessorException = class(Exception);

The EProcessorException is a hardware exception. Although the EProcessorException is
never called by the run-time library, it provides a base from which specific hardware
exceptions descend. Hardware exception handling is not compiled into DLLs, only into
standalone applications. These are the descendants of EProcessorException:

Exception Meaning

EFault The base exception object from which all fault objects descend.

EGPFault A general protect fault, which is usually caused by an uninitialized pointer or object.
EStackFault Illegal access to the processor’s stack segment.

EPageFault The Windows memory manager was unable to correctly use the Windows swap file.

EInvalidOpCode The processor encountered an undefined instruction. Usually this means the
processor was trying to execute data or uninitialized memory.

EBreakpoint Your application generated a breakpoint interrupt.
ESingleStep Your application generated a single-step interrupt.

You should rarely encounter the fault exceptions, other than the general protection fault,
because they represent serious failures in the operating environment. The breakpoint
and single-step exceptions are usually handled by Delphi’s integrated debugger.

ERangeError object SysUtils

Declaration

ERangeError = class(EIntError);

Description

The ERangeError exception is an integer math exception. It occurs when an integer
expression evaluates to a value that exceeds the bounds of the specified integer type to
which it is assigned. For example, this code raises an ERangeError exception:

var

Delphi Visual Component Library Reference 255

Erase procedure

SmallNumber: Shortint;

X, Y: Integer;
begin

X := 100;

Y := 75;

SmallNumber := X * V;
end;

Attempting to access an item in an array with an index value that is not within the
defined array results in a range error exception. For example, this code attempts to
assign a value to Values[11] when the highest index of the Values array is 10:

var
Values: array{l..10] of Integer;
I: Integer;
begin
for T := 1 to 11 do
Values[I] := I; { on the last loop a range error exception is raised }
end;

The ERangeError exception is raised only if range checking is turned on (your code
includes the $R+ directive or you set the Range-checking option using the Options |
Project dialog box).

Erase procedure System

Declaration

procedure Erase(var F);

The Erase procedure deletes the external file associated with F.
F is a file variable of any file type.

Always close a file before erasing it.

{$I+] lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for I/O errors.

Example

procedure TForml.ButtonlClick(Sender: TObject);
var
F: Textfile;
begin
OpenDialogl.Title := 'Delete File';
if OpenDialogl.Execute then begin
AssignFile(F, OpenDialogl.FileName);
try
Reset (F);
if MessageDlg('Erase ' + OpenDialogl.FileName + '?°',
mtConfirmation, [mbYes, mbNo], 0) = mrYes then

256 Delphi Visual Component Library Reference

EraseSection method

begin
CloseFile(F);
Erase(F);
end;
except
on EInOutError do
MessageDlg('File I/0 error.', mtError, [mbOk], 0);
end;
end;
end;

See also
Rename procedure

EraseSection method

Applies to
TIniFile object

Declaration
procedure EraseSection(const Section: string);
The EraseSection method erases an entire section of an .INI file.

The Section constant identifies the section of the .INI file to erase. For example, the
WINL.INI for Windows contains a [Desktop] section.

Example
This examples erases the SaveSettings section in the MYAPP.INI file when the user
clicks the button on the form:

procedure TForml.ButtonlClick(Sender: TObject);
var
MyAppIni: TIniFile;
begin
MyAppIni := TIniFile.Create('MYAPPINI.INI');
MyAppIni.EraseSection('SaveSettings');
MyAppIni.Free;
end;

See also
ReadSection method

Delphi Visual Component Library Reference

257

EReadError object

EReadError object Classes

Declaration
EReadError = class(EFilerError);

The EReadError is raised when your application attempts to read data from a stream by
calling the ReadBuffer method, but the number of bytes specified in the Count parameter
of the method cannot be read.

A read error exception can also occur if Delphi is unable to read a property.

EReportError object Report

Declaration
EReportError = class(Exception);

The EReportError exception is raised when the Connect method of a report component
(TReport) cannot connect the report to a database because the specified server is invalid.

EResNotFound object Classes

Declaration
EResNotFound = class(Exception);

The EResNotFound exception is raised when the ReadComponentRes method cannot find
the name of the specified resource in the resource file.

Error property

Applies to
TMediaPlayer component

Declaration
property Error: Longint;

Run-time and read only. The Error property specifies the MCI error code returned by
the most recent media control method (Back, Close, Eject, Next, Open, Pause, PauseOnly,
Play, Previous, StartRecording, Resume, Rewind, Step, or Stop).

The error codes returned by media control methods are the same error codes returned
by the mciSendCommand function, which is documented in MMSYSTEM.HLP. The
message describing the error code is stored in the ErrorMessage property.

258 Delphi Visual Component Library Reference

ErrorAddr variable

The value of Error is zero if the most recent media control method didn’t cause an error.
If a method results in an error, a value other than zero is stored in Error. If the error
occurs during the opening of the device, an EMCIDeviceError exception occurs.

Example
The following code opens, closes, then plays MediaPlayer1. If an error occurs, a message
window displays the error number.

procedure TForml.BitBtnlClick(Sender: TObject);
var

MyErrorString: String;
begin

MediaPlayerl.Open;

MediaPlayerl.Close;

MediaPlayerl.Play;

MyErrorString := 'ErrorCode: ' + IntToStr(Error);
MessageDlg (MyErrorString, mtError, [mbOk], 0);
end;
ErrorAddr variable System
Declaration

var ErrorAddr: Pointer;

The ErrorAddr variable contains the address of the statement causing a run-time error.
If a program terminates normally or stops due to a call to Halt, ErrorAddr is nil.

If a program ends because of a run-time error, ErrorAddr contains the address of the

statement in error.

See also
ExitCode variable, ExitProc variable

ErrorMessage property

Applies to
TMediaPlayer component

Declaration
property ErrorMessage: String;

Run-time and read only. The ErrorMessage property specifies the error message that
describes the error code returned from the most recent media control method (Back,
Close, Eject, Next, Open, Pause, PauseOnly, Play, Previous, StartRecording, Resume, Rewind,
Step, or Stop). The error code described by the message is stored in the Error property.

Delphi Visual Component Library Reference 259

ErrorProc typed constant

Example
The following code opens MediaPlayer1. If an exception occurs, a message window
displays the error number and string.

procedure TForml.BitBtnlClick(Sender: TObject);
var
MyErrorString: String;
begin
try
MediaPlayerl.Open;
except
MyErrorString := 'ErrorCode: ' + IntToStr(Error) + #13#10;
MessageDlg (MyErrorString + MediaPlayerl.ErrorMessage, mtError, [mbOk], 0);
end;
end;

ErrorProc typed constant System

Declaration
const ErrorProc: Pointer = nil;

ErrorProc is a procedure variable pointing to the RTL run-time error handler. The
standard RTL ErrorProc reports the run-time error and terminates the program.
However, if you use SysUtils in your program, it will force ErrorProc to its own routine
and convert the run-time error into an exception.

ESingleStep object SysUtils

Declaration
ESingleStep = class(EProcessorException);

The ESingleStep exception is a hardware exception. It occurs when your application
generates a single-step interrupt. Usually Delphi’s integrated debugger handles single-
step exceptions.

EStackFault object SysUtils

Declaration

EStackFault = class(EFault);

Description

The EStackFault exception is a hardware fault exception. It occurs when an illegal
attempt to access the processor’s stack is made. Usually a stack fault represents a serious
failure in the operating environment.

260 Delphi Visual Component Library Reference

EStreamError object

If you have stack checking turned on {$S+}, you are not likely to reach a point where a
stack fault occurs because each procedure or function call checks to be sure there is
enough stack space for local variables before it runs. If stack checking is off $S-}, this
checking does not occur, and the stack fault exception could be raised.

EStreamError object Classes ﬂ

Declaration
EStreamError = class(Exception);

The EStreamError exception is raised when an error occurs when a stream is read with
the LoadFromStream method. It also is the parent of these two stream exceptions:

Exception Description
EFCreateError An error occurred while creating a file
EFOpenError An error occurred while opening a file
EStringListError object Classes
Declaration

EStringListError = class(Exception);

The EStringListError exception occurs when an error is made in a string list object. String
list error exceptions commonly occur when your application refers to an item in a list
that is out of the string list’s range.

EUnderflow object SysUtils

Declaration
EUnderflow = class(EMathError);

The EUnderflow exception is a floating-point math exception. It occurs when the result of
a calculation is too small to be represented in the size register allocated for it. For
example, a 16-bit precision result that has a significant digit only in the 16th bit would
underflow a register that was expecting only a Byte value.

EWriteError object Classes

Declaration

EWriteError = class(EFilerError);

Delphi Visual Component Library Reference 261

Exception object

The EWriteError exception is raised when the WriteBuffer method of a stream object is
unable to write the number of bytes specified in its Count parameter.

Exception object SysUtils

Declaration

Exception = class(TObject)

private
FMessage: PString;
FHelpContext: Longint;
function GetMessage: string;
procedure SetMessage(const Value: string);

public
constructor Create(const Msg: string);
constructor CreateFmt (const Msg: string; const Args: array of const);
constructor CreateRes(Ident: Word);
constructor CreateResFmt (Ident: Word; const Args: array of comst);
constructor CreateHelp(const Msg: string; AHelpContext: Longint);
constructor CreateFmtHelp(const Msg: string; const Args: array of const;

AHelpContext: Longint);
constructor CreateResHelp(Ident: Word; AHelpContext: Longint);
constructor CreateResFmtHelp(Ident: Word; const Args: array of comst;
AHelpContext: Longint);

destructor Destroy; override;
property HelpContext: Longint
property Message: string;
property MessagePtr: PString;

end;

The Exception object is the base class for all exceptions. Therefore, all exceptions inherit
the methods and properties declared within Exception.

The Message property is the message displayed when the exception occurs.

The CreateFmt method allows you to create a formatted message as the value of Message.
The Msg constant is the string you specify, and the Args constant is an array of format
specifiers used to format the message. CreateFmt uses the Format function to format the
message.

The CreateRes method obtains the string that becomes the value of the Message property
from a resource file. Specify the string as the value of the Ident parameter.

The CreateResFmt method obtains the string that becomes the value of the Message
property and formats it using the Format function.

The CreateHelp method creates an exception object with an help context ID number.

The CreateFmtHelp method allows you to create a formatted message as the value of
Message with a context-sensitive ID help number. The Msg constant is the string you
specify, and the Args constant is an array of format specifiers used to format the
message. The AHelpContext parameter is the context- sensitive help ID number.
CreateFmt uses the Format function to format the message.

262 Delphi Visual Component Library Reference

Exchange method

The CreateResHelp method obtains the string that becomes the value of the Message
property from a resource file. Specify the string as the value of theldent parameter. The
AHelpContext parameter is for a context-sensitive ID number.

The CreateResFmtHelp method obtains the string that becomes the value of the Message
property and formats it using the Format function. The AHelpContext parameter is for a
context-sensitive ID number.

Exchange method a

Applies to
TList, TStringList, TStrings objects

Declaration
procedure Exchange(Indexl, Index2: Integer);

The Exchange method exchanges the position of two items in the list of a list object, or in
the list of strings of a string or string list object. The items are specified with their index

values in the Index1 and Index2 parameters. Because the indexes are zero-based, the first
item in the list has an index value of 0,the second item has an index value of 1, and so on.

If a string in a string or string list object has an associated object, Exchange changes the
position of both the string and the object.

Example

This example uses a list box that contains several strings as the value of theItems
property, and a button. When the user clicks the button, the second and third items in
the list box switch places in the list box.

procedure TForml.ButtonlClick(Sender: TObject);
begin

ListBoxl.Items.Exchange(1l, 2);
end;

See also

Add method, AddStrings method, Delete method, IndexOf method, Insert method, Move
method

Exclude procedure System

Declaration
procedure Exclude(var S: set of T;I:T);
The Exclude procedure removes element I from set S.

S is a set type variable, and I is an expression of a type compatible with the base type
of S.

Delphi Visual Component Library Reference 263

Exclusive property

The construct Exclude (S, I) corresponds to S := S — (I) but the Exclude procedure
generates more efficient code.

See also
Include procedure

Exclusive property

264

Applies to
TTable component

Declaration
property Exclusive: Boolean;

Set the Exclusive property to True to prevent any other user from accessing the table. If
other users are accessing the table when you try to open it, your exception handler will
have to wait for those users to release it. If you do not provide an exception handler and
another user already has the table open, your application will be terminated.

Note Set the Active property to False before changing Exclusive to prevent an exception.

Do not set Active and Exclusive to True in the Object Inspector Window. Since the Object
Inspector will have the table open, that will prevent your program from opening it.

Set Exclusive to True only when you must have complete control over the table.

Example

{ Try to open Tablel with Exclusive True }
{ First, close Tablel }
Tablel.Active := False;
repeat { until successful or Cancel button is pressed }
try
Tablel.Exclusive := True; { See if it will open }
Tablel.Active := True;
Break; { If no error, exit the loop }
except
on EDatabaseError do
{ Ask if it is OK to retry }
if MessageDlg(’Could not open Tablel exclusively - OK to retry?’, mtError,
[mbOK, mbCancel], 0) <> mrOK then raise; { If not, reraise to abort }
{ Otherwise resume the repeat loop }
end;
until False;

Delphi Visual Component Library Reference

ExecProc method

ExecProc method

Applies to
TStoredProc component

Declaration
procedure ExecProc;

The ExecProc method executes the stored procedure on the server.

Example

{ Execute the stored procedure }
StoredProcl.ExecProc;

ExecSQL method

Applies to
TQuery component

Declaration
procedure ExecSQL;

Use the ExecSQL method to execute an SQL statement assigned to the SQL property of a
TQuery if the statement does not return a result set. If the SQL statement is an INSERT,
UPDATE, DELETE, or any DDL statement, then use this method.

If the SQL statement is a SELECT statement, use Open instead.

Example

Queryl.Close;

Queryl.SQL.Clear;

Queryl.SQL.Add(‘Delete from Country where Name = ‘Argentina’);
Queryl.ExecSQL;

Execute method

Applies to

TBatchMove, TColorDialog, TFindDialog, TFontDialog, TOpenDialog, TPrintDialog,
TPrinterSetupDialog, TReplaceDialog, TSaveDialog components

Delphi Visual Component Library Reference 265

Execute method

For Color, Font, Open, Save, Print, Find, and Replace dialog boxes

Declaration
function Execute: Boolean;

The Execute method displays the dialog box in the application and returns True when it
is displayed. This allows your code to determine whether the user has displayed and
used the dialog box by choosing its OK button.

Example

This example uses a main menu component, a memo, an Open dialog box, and a Save
dialog box on a form. To use it, you need to create a File menu that includes an Open
command. This code is an event handler for the OnClick event of the Open command on
the File menu. If the user has selected a file name by choosing the Open dialog box’s OK
button, the code sets the Save dialog box Filename property to the same file name, and
displays the selected file name as the caption of the form.

procedure TForml.OpenlClick(Sender: TObject);
begin
if OpenDialogl.Execute then
begin
Memol.Lines.LoadfromFile (OpenDialogl.FileName);
SaveDialogl.Filename := OpenDialogl.FileName;
Caption := OpenDialogl.FileName;
end;
end;

For Printer Setup dialog boxes

Declaration
procedure Execute;

The Execute method displays the Printer Setup dialog box.

Example
This code displays the Printer Setup dialog box when the user clicks the button:

procedure TForml.ButtonlClick(Sender: TObject);
begin

PrinterSetupDialogl.Execute;
end;

For batch move components

Declaration

procedure Execute;

266 Delphi Visual Component Library Reference

ExecuteMacro method

The Execute method performs the batch move operation specified by Mode from the
Source table to the Destination table.

Example

BatchMovel .Execute;

ExecuteMacro method

Applies to
TDDEClientConv component

Declaration
function ExecuteMacro(Cmd: PChar; WaitFlg: Boolean): Boolean;

The ExecuteMacro method attempts to send a macro command string to a DDE server
application. ExecuteMacro returns True if the macro was successfully passed to the DDE
server application. If ExecuteMacro was unable to send a command string, ExecuteMacro
returns False.

Cmd is a null-terminated string that contains the macro to be executed by the DDE
server application. The actual value of Cmd depends on the DDE server application. See
the documentation of the DDE server application for the command strings it will accept.

WaitFlg determines if your application should wait until the DDE server application
finishes executing the macro before allowing another successful call to ExecuteMacro or
the ExecuteMacroLines, PokeData, or PokeDataLines methods. If WaitFlg is set to True,
subsequent calls to these methods before the DDE server application completes the first
macro do not send data to the DDE server and return False. If WaitFlg is set to False,
subsequent calls to these methods before the DDE server application completes the first
macro do attempt to send data to the DDE server.

If you need to send a macro command string list rather than a single string, use the
ExecuteMacroLines method.

Note Depending on the DDE server, attempting to execute a macro or poke data before the
DDE server application completes the first macro might cause the first macro to execute
unsuccessfully or produce unpredictable results. See the documentation of the DDE
server application for the results of sending command strings or poking data before
macro execution has completed.

Example
The following code executes the macro that is specified by the Text of Edit1. The macro
sets WaitFlg to True to wait until the server has completed macro execution.

var
TheMacro: PChar;
begin
StrPCopy (TheMacro, Editl.Text);

Delphi Visual Component Library Reference 267

ExecuteMacroLines method

DDEClientConvl.ExecuteMacro (TheMacro, True);
end;

See also
StrPCopy function

ExecuteMacroLines method

Applies to
TDDEClientConv component

Declaration
function ExecuteMacroLines(Cmd: TStrings; WaitFlg: Boolean): Boolean;

The ExecuteMacroLines method attempts to send a macro command string list to a DDE
server application. ExecuteMacroLines returns True if the macro was successfully passed
to the DDE server application. If ExecuteMacroLines was unable to send a command
string list, ExecuteMacroLines returns False.

Cmd contains the macro to be executed by the DDE server application. WaitFlg
determines if your application should wait until the DDE server application finishes
executing the macro before allowing another successful call to ExecuteMacroLines or the
ExecuteMacro, PokeData, or PokeDataLines methods.

Use ExecuteMacroLines to execute a macro command string list rather than a single
macro command string (which is what the ExecuteMacro method passes for its Cind
parameter).

Example

The following code executes the macro that exists in the Lines of Memol. Wait is a
boolean variable that specifies whether to wait for the server to complete macro
processing before sending more data to the server.

DDEClientConvl.ExecuteMacroLines (Memol.Lines, Wait);

ExeName property

Applies to
TApplication component

Declaration
property ExeName: string;

Run-time and read only. The ExeName property contains the name of the executable
application including path information. The name of the application is the name you
gave the project file with an .EXE extension. If you haven’t specified a name, the default
name is PROJECT1.EXE.

268 Delphi Visual Component Library Reference

ExceptionClass typed constant

Example
This code displays the current name of the application’s .EXE file in a label control when
the user clicks the button:

procedure TForml.ButtonlClick(Sender: TObject);
begin
Labell.Caption := Application.ExeName;

end;
For example, if the application name is C:\DELPHI\WORK\MYAPP.EXE, that entire a
string appears in the label control.

See also
Title property

ExceptionClass typed constant System

Declaration
const ExceptionClass: TClass = nil;

ExceptionClass is a class reference variable that determines what exception classes will be
reported by the debugger. ExceptionClass is set to Exception by default, so only objects
descended from Exception and raised in the Raise statement will be reported by the
debugger during a debug session.

ExceptProc typed constant System

Declaration
const ExceptProc: Pointer = nil;

ExceptProc is a pointer that points to the lowest-level RTL exception handler. Unhandled
exceptions are handled by ExceptProc. You can hook into ExceptProc to change how
unhandled exceptions are reported, much like hooking into ExitProc.

Exit procedure System

Declaration

procedure Exit;

The Exit procedure immediately passes control away from the current block.
If the current block is the main program, Exit causes the program to terminate.

If the current block is nested, Exit causes the next outer block to continue with the
statement immediately after the statement that passed control to the nested block.

Delphi Visual Component Library Reference 269

ExitCode variable

If the current block is a procedure or function, Exit causes the calling block to continue
with the statement after the point which the block was called.

Example
uses WinCrt;

procedure TForml.ButtonlClick(Sender: TObject);
begin
repeat
if Keypressed then Exit;
Write('Xx');
until False;
end;

See also
Halt procedure

ExitCode variable System

Declaration

var ExitCode: Integer;

The ExitCode variable contains the application's exit code.

An exit procedure can learn the cause of termination by examining ExitCode.
If the program terminates normally, ExitCode is zero.

If the program terminates due to a call to Halt, ExitCode contains the value passed to
Halt.

If the program terminates due to a run-time error, ExitCode contains the error code.

See also
ErrorAddr variable, ExitProc variable

ExitProc variable System

Declaration
var ExitProc: Pointer;

The ExitProc pointer variable enables you to install an exit procedure. The exit
procedure always gets called as part of a program's termination.

An exit procedure takes no parameters and must be compiled with afar procedure
directive to force it to use the far call model.

270 Delphi Visual Component Library Reference

Exp function

When implemented properly, an exit procedure actually becomes part of a chain of exit
procedures. The procedures on the exit chain get executed in reverse order of
installation.

To keep the exit chain intact, you need to save the current contents of ExitProc before
changing it to the address of your own exit procedure.

The first statement in your exit procedure must reinstall the saved value of ExitProc.

See also a

ErrorAddr variable, ExitCode variable

Exp function System

Declaration

function Exp(X: Real): Real;

Return Value
The Exp function returns the exponential of X.

The return value is e raised to the power of X, where e is the base of the natural
logarithms.

Example

var
S: string;

begin
S := ‘e = ' + IntToStr(Exp(1.0));
TextOut (10, 10, S);

end;

See also
Ln function

Expand method

Applies to
TList, TOutlineNode objects

For lists

Declaration

function Expand: TList;

Delphi Visual Component Library Reference 271

Expanded property

The Expand method increases the maximum size of the list maintained by a list object,
creating more space to add new list items and incrementing the value of the Capacity
property. If the value of the Capacity property is greater than 8, the Expand method
increases the capacity of the list by 16. If the value of Capacity is greater than 4, but less
than 9, then the capacity of the list increases by 8. Finally if the value of Capacity is less
than 4, then the capacity of the list grows by 4.

The returned value is the expanded list.

Example
The following code expands List1.

Listl.Expand;

See also
Capacity property

For outline nodes

Declaration
procedure Expand;

The Expand method expands an outline item by assigning True to its Expanded property.
When an outline item is expanded, its sub-items are displayed and the minus picture or
open picture might be displayed, depending on the outline style specified in the
OutlineStyle property of the TOutline component.

Example
The following code expands the first child of the first outline item, if it has children.
with Outlinel.Items[1] do

if HasItems then
Outlinel.Items[GetFirstChild].Expand;

See also

Collapse method, FullCollapse method, FullExpand method, PictureMinus property,
PictureOpen property

Expanded property

Applies to
TOutlineNode object

Declaration

property Expanded: Boolean;

272 Delphi Visual Component Library Reference

ExpandFileName function

Run-time only. The Expanded property specifies whether the outline item is expanded or
not. When an outline item is expanded, its subitems are displayed and the minus picture
or open picture might be displayed, depending on the outline style specified in the
OutlineStyle property of the TOutline component.

Expanded is True if the item is expanded, False if it isn’t expanded.

Example
The following code toggles the state of the selected outline item.
with Outlinel do
ITtems[SelectedItem].Expanded := not Items[SelectedItem].Expanded;

See also
Collapse method, Expand method, FullCollapse method, FullExpand method, PictureMinus
property, PictureOpen property

ExpandFileName function SysUtils

Declaration
function ExpandFileName(const FileName: string): string;

The ExpandFileName function returns a string containing a fully qualified path name for
the file passed in the FileName. A fully qualified path name includes the drive letter and
any directory and subdirectories in addition to the file name and extension.

Example
The following code converts a file name into a fully-expanded file name:

MyFileName := ExpandFileName (MyFileName);

See also
ExtractFileName function

Expression property

Applies to
TIndexDef object

Declaration
property Expression: string;

Run-time and read only. Read expressions in dBASE indexes.

Delphi Visual Component Library Reference 273

ExtendedSelect property

ExtendedSelect property

Applies to
TListBox component

Declaration
property ExtendedSelect: Boolean;

The ExtendedSelect property determines if the user can select an range of items in the list
box. ExtendedSelect works in conjunction with the MultiSelect property. If MultiSelect is
False, the setting of ExtendedSelect has no effect as the user will not be able to select more
than one item at a time in the list box.

If MultiSelect is True and ExtendedSelect is True, the user can select an item then hold
down the Shiftkey and select another and all the items in between the two selected items
also become selected. If the user doesn’t hold down the Shift or Ctrl key while selecting a
second item, the first selected item becomes unselected—in other words, the user must
use the Cirlkey to select multiple noncontiguous items, or the Shift key to select a range of
items. If ExtendedSelect is False, the user can select multiple items without using the Shift
or Ctrlkey, but they can’t select a range of items in one operation.

See also
MultiSelect property

ExtractFileExt function SysUtils

Declaration

function ExtractFileExt (const FileName string): string;

The ExtractFileExt function takes a fully qualified FileName and returns a string
containing the three-character extension.

Example
The following code returns the extension from a file name:

MyFilesExtension := ExtractFileExt (MyFileName);

See also
ExtractFileName function

ExtractFileName function SysUtils

Declaration

function ExtractFileName(const FileName: string): string;

274 Delphi Visual Component Library Reference

ExtractFilePath function

The ExtractFileName function takes a fully or partially qualified path name in FileName
and returns a string containing only the file name part, including the name and

extension.
Example
The following code changes the caption of Form1 to read "Editing <FileName>".
Forml.Caption := 'Editing '+ ExtractFileName (FileName); a
See also

ExpandFileName function, ExtractFilePath function

ExtractFilePath function SysUtils

Declaration
function ExtractFilePath(const FileName: string): string;

The ExtractFilePath function takes a fully or partially qualified path name in FileName
and returns a string containing only the path part (drive letter and directories).

Example
The following code changes the current directory to the location of FileName.

ChDir (ExtractFilePath(FileName));

See also
ExtractFileName function

ExceptObject function SysUtils

Declaration
function ExceptObject: TObject;

The ExceptObject function returns a reference to the current exception object — that is,
the object associated with the currently raised exception. If there is no current exception,
ExceptObject returns nil. In most cases, you do not need to call ExceptObject explicitly;
instead, you can use the language construct

on E: ExceptionType do

This constructs maps the identifier E onto the object instance of the current exception
statement that follows if the current exception is of ExceptionType. However, if you
create a default exception handler by using an else in your exception block, the only
way to access the current exception object is by calling ExceptObject.

Delphi Visual Component Library Reference 275

ExceptAddr function

ExceptAddr function SysUtils

Declaration
function ExceptAddr: Pointer;

The ExceptAddr function returns the address at which the current exception was raised.
If there is no current exception, ExceptAddr returns nil.

EZeroDivide object SysUltils

Declaration

EZeroDivide = class(EMathError);

Description

The EZeroDivide exception is a floating-point math exception. It occurs when your
application attempts to divide a floating-point value by zero. For example, this code
raises a EZeroDivide exception:

var

X, Y: Double;
begin

X 0.0;

Y 10.11111;

Y=Y /X%
end;

Fail procedure System

Declaration
procedure Fail;

The Fail procedure called from within a constructor causes the constructor to deallocate
a dynamic object it has just allocated.

Fail should be called only if one of the constructor operations fails. However, a better
way to handle a failed constructor operation is to use exception handling; see the Help
system for more information.

See also
New procedure

276 Delphi Visual Component Library Reference

Field property

Field property

Applies to

TDBCheckBox, TDBComboBox, TDBEdit, TDBImage, TDBListBox, TDBMemo,
TDBRadioGroup, TDBText components

Declaration

property Field: TField;

Read and run-time only. The Field property returns the TField object the data-aware
control is linked to. Use the Field object when you want to change the value of the data in
the field programmatically.

FieldByName method

Applies to
TTable, TQuery, TStoredProc components

Declaration
function FieldByName (const FieldName: string): TField;

The FieldByName method returns the TField with the name passed as the argument in
FieldName. Using FieldByName protects your application from a change in the order of
the fields in the dataset. If the field can not be found, Field ByName raises an exception. If
you are not certain whether a field with the requested name exists, use the FindField
method.

Example

with Tablel do
begin
{ This is the safe way to change ‘CustNo’ field }
FieldByName (‘CustNo’).AsString := ‘1234';
{ This is *not* the safe way to change ‘CustNo’ field }
Fields[0].AsString := ‘1234';
end;

FieldClass property

Applies to
TFieldDef object

Declaration

property FieldClass: TFieldClass;

Delphi Visual Component Library Reference 277

FieldCount property

Run-time and read only. Read FieldClass to determine the type of the TField component
that corresponds to this TFieldDef object.

FieldCount property

Applies to
TDBGrid, TDBLookupList, TQuery, TStoredProc, TTable components

Declaration
property FieldCount: Integer;

Run-time and read only. The FieldCount property specifies the number of fields
(columns) in a dataset. It may not be the same as the number of fields in the underlying
database table, since you can add calculated fields and remove fields with the Fields
Designer.

For the data grid and database lookup list box, the value of the FieldCount property is the
number of fields in the dataset displayed in the control.

Example

The following code displays the number of fields in DBGrid1 in a label.

Labell.Caption := IntToStr(DBGridl.FieldCount);

See also
Fields property, SelectedField property

FieldDefs property

Applies to
TTable, TQuery, TStoredProc components

Declaration

property FieldDefs: TFieldDefs;

Run-time only. The FieldDefs property holds information about each TFieldDef in the
dataset. You can use this property to determine which fields are in the dataset, their
name, type, and size.

See also
Fields property, TField component

278 Delphi Visual Component Library Reference

FieldName property

FieldName property

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

property FieldName: string;

FieldName is the name of the physical column in the underlying dataset to which aTField
component is bound. FieldName is used as a default column heading by the data grid
when the DisplayLabel property is null. For calculated fields, supply a FieldName when
you define the field. For non-calculated fields, an exception occurs if a FieldName is not a
column name in the physical table.

See also
DisplayName property

FieldNo property

Applies to

TFieldDef object; TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField,
TDateField, TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField,
TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

For TFieldDef objects

Declaration

property FieldNo: Integer;

Run-time and read only. FieldNo is the physical field number used by the Borland
Database Engine to reference the field.

Example

{ Display the field name and number }
with FieldDefl do
MessageDlg (Name + ' is field ' + IntToStr(FieldNo), mtInformation, [mbOK], 0);

See also
TField component

Delphi Visual Component Library Reference 279

Fields property

For fields

Declaration
property FieldNo: Integer;

Run-time and read only. FieldNo is the ordinal of the TField component in its dataset.
This property is available for programs that make direct calls to the Borland Database
Engine.

Fields property

Applies to
TIndexDef object; TDBGrid, TDBLookupList, TQuery, TStoredProc, TTable components

For grids, lookup lists, queries, stored procedures, and tables

Declaration
property Fields[Index: Integer]: TField;

Run-time and read only. The Fields property returns a specific field in the dataset.
Specify the field using the Index parameter, with the first field in the dataset having an
Index value of 0.

Example
The following code left justifies the first field in DBGrid1.

DBGridl.Fields[0].Alignment := taLeftJustify;

See also
FieldCount property, FieldDefs property, SelectedField property, SelectedIndex property

For index definitions

Declaration
property Fields: string;

Run-time and read only. Fields is a string consisting of the names or numbers of the

fields comprising the index, separated by semicolons (“;”). When numbers are used,
they are the physical field numbers in the table; for example, 1..N.

280 Delphi Visual Component Library Reference

File mode constants

File mode constants SysUtils

Declaration

fmClosed = $D7BO;
fmInput = SD7BI1;
fmOutput = $D7B2;
fmInOut = $D7B3;

Use the file mode constants when opening and closing disk files. The Mode field of

TFileRec and TTextRec will contain one of these values.
File open mode constants SysUtils

Declaration

fmOpenRead = $0000;

fmOpenirite = $0001;

fmOpenReadWrite = $0002;

fmShareCompat = $0000;

fmShareExclusive = $0010;
fmShareDenyWrite = $0020;
fmShareDenyRead = $0030;
fmShareDenyNone = $0040;

The file open mode constants are used to control the shareability of a file or stream when
you open it.

TFileStream.Create has a Mode parameter that you can set to one of these constants:

Constant Definition
fmOpenRead Open for read access only.
fmOpenWrite Open for write access only.
fmOpenReadWrite Open for read and write access.
fmShareCompat Compatible with the way FCBs are opened.
fmShareExclusive Read and write access is denied.
fmShareDenyWrite Write access is denied.
fmShareDenyRead Read access is denied.
fmShareDenyNone Allows full access for others.

FileAge function SysUlils
Declaration

function FileAge(const FileName: string): Longint;

The FileAge function returns the age of the file named by FileName as a Longint.

Delphi Visual Component Library Reference 281

FileClose procedure

FileClose procedure SysUtils

Declaration
procedure FileClose(Handle: Integer);
The FileClose procedure closes the specified file.

The FileClose routine exists to prevent a name conflict between the standard Close
procedure and the Close method of an object.

Example
The following code closes a file opened with FileOpen:

FileClose (MyFileHandle);

See also
FileCreate function, FileOpen procedure

FileCreate function SysUtils

Declaration
function FileCreate(const FileName: string): Integer;

FileCreate creates a new file by the specified name. If the return value is positive, the
function was successful, and the value is the file handle of the new file. If the return
value is negative, an error occurred, and the value is a negative DOS error code.

Example
The following example creates a new file and assigns it to the identifier MyFileHandle.

MyFileHandle := FileCreate('NEWFILE.TXT');

See also
FileClose procedure, FileOpen procedure

FileEdit property

Applies to
TFileListBox component

Declaration
property FileEdit: TEdit;

The FileEdit property provides a simple way to display a file selected in a file list box as
the text of an edit box, as is commonly done in Open and Save dialog boxes. If no file is

282 Delphi Visual Component Library Reference

FileEditStyle property

selected in the file list box, the text of the edit box is the current value of the file list box’s
Mask property.

Specify the edit box you want the mask or selected file to appear in as the value of the
FileEdit property.

Example

This example uses a button, an edit box, a label, a drive combo box, a directory list box, a

file list box, and a filter combo box on a form. When the user clicks the button, the rest of

the controls of the form begin working together like the controls in an Open or Save

dialog box.

procedure TForml.ButtonlClick(Sender: TObject);
begin
DriveComboBox1.DirList := DirectoryListBoxl;
DirectoryListBoxl.FileList := FileListBoxl;
DirectoryListBoxl.DirLabel := Labell;
FileListBoxl.FileEdit := Editl;
FilterComboBoxl.FileList := FileListBoxl;
end;

See also
DirLabel property, DirList property, FileList property, Mask property, Text property

FileEditStyle property

Applies to
TOpenDialog, TSaveDialog components

Declaration
property FileEditStyle: TFileEditStyle;

The FileEditStyle property determines if the Open or Save dialog box contains an edit
box or combo box control for the user to enter a file name. These are the possible values:

Value Meaning
fsEdit Edit box to enter a file name.
fsComboBox Drop-down combo box to enter a file name. The combo box can be used to display a

list of file names.

The default value is fsEdit.

If the FileEditStyle is fsComboBox, you can specify which files names appear in the combo
box. Use the List property to enter a list of file names, either during design time with the
Object Inspector, or at run time.

Your application can also keep a history list for the combo box, a list of previous file
names the user has entered. To implement a history list, follow these suggested steps:

Delphi Visual Component Library Reference 283

FileExists function

1

Add a TStringList object to your application to keep the list of file names the user
enters.

Before your application calls the Execute method to display the Open or Save dialog
box, assign the TStringList object to the HistoryList property. For example,

var
MyHistoryList: TStringList;

begin
OpenDialogl.HistoryList := MyHistoryList;
if OpenDialogl.Execute then

Use the returned FileName property value to update your history list. For example:

MyHistoryList.Insert (0, OpenDialogl.FileName);

Example

This examples uses a Save dialog box, an edit box, and a button on a form. When the

user clicks the button, the Save dialog box appears with a combo box control to allow
the user to type a file name, select a file name from the list box, or drop down a list to
choose a file name from a history list. For this example, no history list exists. Once the
user selects a file name, the selected name appears in the edit box on the form.

procedure TForml.ButtonlClick(Sender: TObject);
begin
SaveDialogl.FileEditStyle := fsComboBox;
SaveDialogl.Filter := 'Text Files(*.TXT) | *.TXT';
if SaveDialogl.Execute then
Editl.Text := SaveDialogl.FileName;
end;

See also
HistoryList property, TFilterComboBox component

FileExists function SysUtils

Declaration

function FileExists(const FileName: string): Boolean;

The FileExists function returns True if the file specified by FileName exists. If the file does
not exist, FileExists returns False.

Example
The following code prompts you for confirmation before deleting a file:

if FileExists(FileName) then
MsgBox ('Do you really want to delete ' + ExtractFileName (FileName)
+ '?"), []) = IDYes then FileDelete(FileName);

284 Delphi Visual Component Library Reference

FileDateToDateTime function

See also
FileSearch function

FileDateToDateTime function SysUtils

Declaration
function FileDateToDateTime (FileDate: Longint): TDateTime;

FileDateToDateTime converts a DOS date-and-time value to a TDateTime value. The
FileAge, FileGetDate, and FileSetDate routines operate on DOS date-and-time values, and

the Time field of a TSearchRec used by the FindFirst and FindNext functions contains a

DOS date-and-time value.

See also
DateTimeToFileDate function

FileGetAttr function SysUtils

Declaration
function FileGetAttr(const FileName: string): Integer;

FileGetAttr returns the file attributes of the file given by FileName. The attributes can be
examined by AND-ing with the faXXXX constants. If the return value is negative, an
error occurred and the value is a negative DOS error code.

See also
FileSetAttr function

FileGetDate function SysUtils

Declaration
function FileGetDate(Handle: Integer): Longint;

The FileGetDate function returns the date when a file was created or last modified in
DOS internal format.

See also
FileSetDate procedure

Delphi Visual Component Library Reference 285

FileList property

FileList property

Applies to
TDirectoryListBox, TFilterComboBox components

Declaration
property FileList: TFileListBox;

The FileList property is used for two different purposes, depending on the type of
control it is a property of.

For directory list boxes, FileList provides a simple way to connect a directory list box
with a file list box. Once the two controls are connected and new directory is selected as
the current directory using a directory list box, the file list box displays the files in the
current directory. Specify the file list box in which you want to display the files in the
directory selected in the directory list box as the value of the FileList property.

For filter combo boxes, FileList provides a simple way to connect a filter combo box with
a file list box. Once the two controls are connected and a new filter is selected using a
filter combo box, the file list box displays the files that match the selected filter. Specify
the file list box you want to display the files matching the selected filter as the value of
the FileList property.

Example

This example uses a button, an edit box, a label, a drive combo box, a directory list box, a
file list box, and a filter combo box on a form. When the user clicks the button, the rest of
the controls on the form begin working together like the controls in an open or save
dialog box.

procedure TForml.ButtonlClick(Sender: TObject);
begin
DriveComboBox1.DirList := DirectoryListBoxl;
DirectoryListBoxl.FileList := FileListBoxl;
DirectoryListBoxl.DirLabel := Labell;
FileListBoxl.FileEdit := Editl;
FilterComboBoxl.FileList := FileListBoxl;
end;

See also

DirLabel property, Directory property, DirList property, FileEdit property, FileList
property, Filter property, Mask property

FileMode variable System

Declaration

var FileMode: Byte;

286 Delphi Visual Component Library Reference

FileName property
The FileMode variable determines the access code to pass to DOS when typed and
untyped files (not text files) are opened using the Reset procedure.

The default FileMode is 2. Assigning another value to FileMode causes all subsequent
Resets to use that mode.

The range of valid FileMode values depends on the version of DOS in use. For all
versions, these modes are defined:

0 Read only
1 Write only F
2 Read/Write

DOS version 3.x and later defines additional modes, which are primarily concerned

with file sharing on networks.

See also
Rewrite procedure

FileName property

Applies to
TFileListBox, TMediaPlayer, TOpenDialog, TSaveDialog components; TIniFile object

For Open and Save dialog boxes

Declaration
property FileName: TFileName;

The FileName property specifies the file name that appears in the File Name edit box
when the dialog box opens. The user can then select that file name or specify any other.
Once the user specifies a file name and chooses OK, the value of the FileName property
becomes the name of the file the user selected.

The path name can include a path. For example, to open the file README.TXT in the
directory C:\TEMP, set FileName to CA\TEMP\README.TXT.

The FileName property can be set to the name of a file that doesn’t exist in the current
directory. In an Open dialog box, you can use this capability to let the user open a new
file, and in a Save dialog box, the user can save a file that hasn’t been saved before.

Example

This example displays an Open dialog box and suggests the file name LIST.PAS to the
user. Once the user selects a file name, the code displays that name in a label on the
form:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Delphi Visual Component Library Reference 287

FileName property

OpenDialogl.FileName := 'LIST.PAS’;
if OpenDialogl.Execute then
Labell.Caption := OpenDialogl.FileName;
end;

See also
Files property

For media player components

Declaration
property FileName: string;

The FileName property specifies the media file to be opened by the Open method, or the
file to save by the Save method. At design time, you can use a file open dialog box to
specify the FileName property by clicking the ellipses button (...) in the Object Inspector.

Example
The following code determines what type of media device to open from the results of an
Open dialog box, then opens the file.

if OpenDialogl.Execute then

begin
MediaPlayerl.DeviceType := dtAutoSelect;
MediaPlayerl.FileName := OpenDialogl.FileName;
MediaPlayerl.Open;

end;

For the file list boxes

Declaration
property FileName: string;

Run-time only. The FileName property contains the name of the selected file in the list
box, including the path name.

Example
This example uses a file list box and a label on a form. When the user selects a file in the
file list box, the name of the file appears as the caption of the label.

procedure TForml.FileListBox1Click(Sender: TObject);
begin

Labell.Caption := FileListBoxl.FileName;
end;

See also
FileList property

288 Delphi Visual Component Library Reference

FilePos function

For TiniFile objects

Declaration
property FileName: string;

Run-time and read only. The FileName property contains the name of the .INI file the
TIniFile object encapsulates.

FilePos function System

Declaration

function FilePos(var F): Longint;

The FilePos function returns the current file position within a file.

To use FilePos the file must be open and it can’t be used on a text file.

F is a file variable.

Position Result

Beginning of file FilePos(F) =0

Middle of file FilePos(F) = current file position
End of file Eof(F) = True

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for I/O errors.

Example

var

f: file of Byte;

size : Longint;

S: string;

y: integer;

begin

if OpenDialogl.Execute then begin
AssignFile(f, OpenDialogl.FileName);
Reset (f);
size := FileSize(f);
S := 'File size in bytes: ' + IntToStr(size);
y := 10;
Canvas.TextOut (5, v, S);
y :=y + Canvas.TextHeight (S) + 5;
S := 'Seeking halfway into file...';
Canvas.TextOut (5, vy, S);
y :=y + Canvas.TextHeight (S) + 5;

Delphi Visual Component Library Reference 289

FileRead function

Seek (f,size div 2);
S := 'Position is now ' + IntToStr(FilePos(f));
Canvas.TextOut (5, y, S);
CloseFile(f);
end;
end;

See also
FileSize function, Seek procedure

FileRead function SysUtils

Declaration
function FileRead(Handle: Integer; var Buffer; Count: Longint): Longint;

The FileRead function reads Count bytes from the Handle into the buffer. The function
result is the actual number of bytes read, which may be less than Count.

Example
The following code fills a buffer from a file.

ActualRead := FileRead(MyFileHandle, Buffer, SizeOf (Buffer));

See also
FileSeek function, FileWrite function

Files property

Applies to
TOpenDialog, TSaveDialog components

Declaration
property Files: TStrings;

Run-time and read only. The Files property value contains a list of all the file names
selected in the Open or Save dialog box including the path names.

To let users select multiple file names in the dialog box, include ofAllowMultiSelect in the
Options property set (set ofAllowMultiSelect to True).

The entire list of names is returned as the value of the FileName property. If the list of
names is long, FileName contains only the first 127 characters.

290 Delphi Visual Component Library Reference

FileSearch function

Example

This example uses an Open dialog box, a list box, and a button on a form. When the user
clicks the button, the Open dialog box appears. When the user selects files in the dialog
box and chooses the OK button, the list of selected files appears in the list box.

procedure TForml.ButtonlClick(Sender: TObject);
begin
OpenDialogl.Options := [ofAllowMultiSelect];
OpenDialogl.Filter := 'All files (*.*)|*.*';

if OpenDialogl.Execute then
ListBoxl.Items := OpenDialogl.Files;

end;

See also
Filter property, Options property

FileSearch function SysUtils

Declaration
function FileSearch(const Name, DirList: string): string;

The FileSearch function searches through the directories passed in DirList for a file
named Narme. DirList should be in the same format as a DOS path: directory names
separated by semicolons. If FileSearch locates a file matching Namze, it returns a string
containing a fully-qualified path name for that file. If no matching file exists, FileSearch
returns an empty string.

Example
The following code searches for INDME.DLL in a series of directories:

FoundIt := FileSearch('FINDME.DLL', MyAppDir+’\';'+WinDir+"';'+WinDir+'\SYSTEM');

See also
FileExists function

FileSeek function SysUtils

Declaration
function FileSeek(Handle: Integer; Offset: Longint; Origin: Integer): Longint;

The FileSeek function positions the current file pointer within a previously opened file.
Handle contains the file handle. Offset specifies the number of bytes from Origin where
the file pointer should be positioned. Origin is a code with three possible values,

Delphi Visual Component Library Reference 291

FileSetAttr function

denoting the beginning of the file, the end of the file, and the current position of the file
pointer.

Origin Action

0 The file pointer is positioned Offset bytes from the beginning of the file.
1 The file pointer is positioned Offset bytes from its current position.
2 The file pointer is positioned Offset bytes from the end of the file.

If FileSeek is successful, it returns the new position of the file pointer; otherwise, it
returns the Windows constant HFILE_ERROR.

Example
The following code positions the file pointer at the end of a file:

if FileSeek(MyFileHandle,0,2) = HFILE_ERROR then
HandleFileError

else
AppendStuff;

See also
FileRead function, FileWrite function

FileSetAttr function SysUtils

Declaration
function FileSetAttr(const FileName: string; Attr: Integer): Integer;

FileSetAttr sets the file attributes of the file given by FileName to the value given by Attr.
The attribute value is formed by OR-ing the appropriate faXXXX constants. The return
value is zero if the function was successful. Otherwise the return value is a negative
DOS error code.

See also
FileGetAttr function

FileSetDate procedure SysUtils

Declaration
procedure FileSetDate(Handle: Integer; Age: Longint);

FileSetDate sets the DOS date-and-time stamp of the file given by Handle to the value
given by Age. The DateTimeToFileDate function can be used to convert a TDateTime value
to a DOS date-and-time stamp.

292 Delphi Visual Component Library Reference

See also
FileGetDate function

FileSize function

FileSize function

System

Declaration

function FileSize(var F): Longint;

The FileSize function returns the size in bytes of file F. However, if F is a record file
FileSize will return the number of records in the file.

To use FileSize the file must be open and it can’t be used on a text file.

F is a file variable.

If the file is empty, FileSize(F) returns 0.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for I/O errors.

Example

var
f: file of Byte;
size : Longint;
S: string;
y: integer;
begin

if OpenDialogl.Execute then begin

AssignFile(f, OpenDialogl.FileName);

Reset (f);
size := FileSize(f);

S := 'File size in bytes: ' + IntToStr(size);

y := 10;
Canvas.TextOut (5, v, S);

y :=y + Canvas.TextHeight(S) + 5;
S := 'Seeking halfway into file...';

Canvas.TextOut (5, y, S);

y := y + Canvas.TextHeight (S) + 5;

Seek (f,size div 2);

S := 'Position is now ' + IntToStr(FilePos(f));

Canvas.TextOut (5, v, S);
CloseFile(f);
end;
end;

See also
FilePos function

Delphi Visual Component Library Reference

293

FileType property

FileType property

Applies to
TFileListBox component

Declaration
property FileType: TFileType;

The FileType property determines which files are displayed in the file list box based on
the attributes of the files. Because FileType is of type TFileType, which is a set of file
attributes, FileType can contain multiple values. For example, if the value of FileType is a
set containing the values ftReadOnly and ftHidden, only files that have the read-only and
hidden attributes are displayed in the list box. These are the values that can occur in the

FileType property:

Value Meaning

ftReadOnly When ftReadOnly is True, the list box can display files with the read-only attribute.
ftHidden When ftHidden is True, the list box can display files with the hidden attribute.
ftSystem When ftSystem is True, the list box can display files with the system attribute.
ftVolumelD When ftVolumelD is True, the list box can display the volume name.

ftDirectory When ftDirectory is True, the list box can display directories.

ftArchive When ftArchive is True, the list box can display files with archive attribute.
ftNormal When ftNormal is True, the list box can display files with no attributes.

If you use the Object Inspector to change the value of FileType, click the FileType
property to see the attribute values. Then you can set each value to True or False, which
builds the FileType set.

Example
This example uses a file list box on a form. When the application runs, only read-only
files, directories, volume IDs, and files with no attributes appear in the list box.

procedure TForml.FormCreate(Sender: TObject);
begin

FileListBoxl.FileType := [ftReadOnly, ftDirectory, ftVolumeID, ftNormall];
end;

See also
Mask property, TFileType type

FileWrite function SysUtils

Declaration

function FileWrite(Handle: Integer; const Buffer; Count: Longint): Longint;

294 Delphi Visual Component Library Reference

FillChar procedure

This is an internal routine, and you will not need to use it.

The FileWrite function writes Count bytes from Buffer to the file indicated by Handle. The
actual number of bytes written is returned. If the return value is not equal to Count, it is
usually because the disk is full.

Example

if FileWrite(MyFileHandle, Buffer, SizeOf(Buffer)) <> SizeOf (Buffer) then
ErrorMsg('Disk full while writing to file!');

See also
FileRead function, FileSeek function

FillChar procedure System

Declaration
procedure FillChar(var X; Count: Word; value);

The FillChar procedure fills Count number of contiguous bytes with a specified value
(can be type Byte or Char).

This function does not perform any range checking.

Example

var
S: string[80];

begin
{ Set a string to all spaces }
FillChar (S, SizeOf(S), ' ');

S[0] := #80; { Set length byte }
end;
See also
Move procedure

FilRect method

Applies to
TCanuvas object

Declaration
procedure FillRect (const Rect: TRect);

The FillRect method fills the specified rectangle on the canvas using the current brush.

Delphi Visual Component Library Reference 295

Filter property

Example
This code creates a rectangle on the form’s canvas and colors it red by changing the
canvas Brush property to clRed.

procedure TForml.ColorRectangleClick(Sender: TObject);
var
NewRect: TRect;
begin
NewRect := Rect (20, 30, 50, 90);
Forml.Canvas.Brush.Color := clRed;
Forml.Canvas.FillRect (NewRect);
end;

See also
Brush property, Rect function

Filter property

Applies to
TFilterComboBox, TOpenDialog, TSaveDialog components

For Open and Save dialog boxes

Declaration
property Filter: string;

The Filter property determines the file masks available to the user for use in determining
which files display in the dialog box’s list box.

A file mask or file filter is a file name that usually includes wildcard characters (*.PAS,
for example). Only files that match the selected file filter are displayed in the dialog
box’s list box, and the selected file filter appears in the File Name edit box. To specify a
file filter, assign a filter string as the value of Filter. To create the string, follow these
steps:

1 Type some meaningful text that indicates the type of file.
2 Typea | character (this is the “pipe” or “or” character).
3 Type the file filter.

Don’t put in any spaces around the | character in the string.
Here’s an example:
OpenDialogl.Filter := 'Text files|*.TXT’

If you entered the preceding example as the Filter of an Open or Save dialog box, the
string “Text files” appears in the List Files of Type drop-down list box when the dialog
box appears in your application, the file filter appears in the File Name edit box, and
only .TXT files appear in the list box. You can specify multiple file filters so that a list of
filters appears in the List Files of Type drop-down list box or in the filter combo box.

296 Delphi Visual Component Library Reference

Filter property
This allows the user to select from a number of file filters and determine which files are
displayed in the list box.
To specify multiple file filters,
1 Create a file filter string as previously shown.

2 Type another file filter in the same way, but separate the second file filter from the
first with the | character.

3 Continue adding as many file filters as you like, separating them with the | character.
The string can be up to 255 characters.

Here’s an example of three file filters specified as the value of the Filter property:
"Text files (*.TXT)|*.TXT|Pascal files (*.PAS)|*.PAS|Quattro Pro files (*.WBl)|*.WBl’

Now when the dialog box appears, the user can choose from three file filters that appear
in the List Files of Type drop-down list box.

Note that the previous example includes the file filters in parentheses in the text parts.
This isn’t required, but it's a common convention that helps users understand what to
expect when they select a file filter.

You can string multiple wildcard file filters together if you separate them with
semicolons:

OpenDialogl.Filter := 'All files|*.TXT;*.PAS;*.WB1';

Example
This code sets the value of the Filter property, displays the dialog box, and assigns the
file name the user selects to a variable:

procedure TForml.ButtonlClick(Sender: TObject);
var
NameOfFile : TFileName;
begin
OpenDialogl.Filter := 'Text files (*.TXT)|*.TXT|Pascal files (*.PAS)' +
“|*,PAS|Quattro Pro files (*.WB1)|*.WBl';
if OpenDialogl.Execute then
NameOfFile := OpenDialogl.FileName;

end;

See also
FileName property, FilterIndex property

For filter combo boxes

Declaration
property Filter: string;

The Filter property determines the file masks displayed in the filter combo box.

Delphi Visual Component Library Reference 297

Filter property

A file mask or file filter is a file name that usually includes wildcard characters (*.PAS,
for example). When your application runs, the file filter the user selects in the filter
combo box becomes the value of the Mask property. To specify a file filter, assign a filter
string as the value of Filter. To create the string, follow these steps:

1 Type some meaningful text to indicate the type of file.
2 Typea | character (this is the “pipe” or “or” character).
3 Type the file filter.

Don’t put in any spaces around the | character in the string.
Here’s an example:
FilterComboBoxl.Filter := 'Text files|*.TXT';
If you entered this string, the string “Text files” appears in the filter combo box.

You can specify multiple file filters so that a list of filters appears in the filter combo box
from which the user can select. To specify multiple file filters,

1 Type a file filter as shown previously.

2 Type another file filter in the same way, but separate the second file filter from the
first with the | character.

3 Continue adding as many file filters as you like, separating them with the | character.
The string can be up to 255 characters.

Here’s an example of three file filters specified as the value of the Filter property:
'Text files (*.TXT)|*.TXT|Pascal files (*.PAS)|*.PAS|Quattro Pro files (*.WB1)|*.WBL'

Note that the previous example includes the file filters in parentheses in the text parts.
This isn’t required, but it’s a common convention that helps users understand what to
expect when they select a file filter.

You can string multiple wildcard file filters together if you separate them with
semicolons:

FilterComboBoxl.Filter := 'All files|*.TXT;*.PAS;*.WBLl';

Examples
This example uses a filter combo box on a form. When the application runs, three filters
appear in the filter combo box:

procedure TForml.FormCreate (Sender: TObject);

begin
FilterComboBoxl.Filter := 'Text files (*.TXT)|*.TXT|Pascal files (*.PAS)' +
'|* PAS|Quattro Pro files (*.WBL)|*.WBL';

end;

This example uses a filter combo box, a file list box, and an edit box on a form. The code
connects the three controls through the FileList and FileEdit properties. When the user
selects a filter in the filter combo box, the filter is applied to the files in the list box so the
list box displays only the files that match the filter. The filter in effect on the file list box
appears in the edit box. When the user selects a file in the file list box, the selected file
appears in the edit box.

298 Delphi Visual Component Library Reference

FilterIndex property

procedure TForml.FormCreate(Sender: TObject);
begin
FilterComboBoxl.Filter := 'All files (*.*)|*.*|Pascal files (*.pas)|' +
'* PAS|DLLs (*.dl1l)]|*.DLL';
FilterComboBoxl.FileList := FileListBoxl;
FileListBoxl.FileEdit := Editl;
end;

See also
FileList property, FileName property, Mask property

Filterindex property

Applies to
TOpenDialog, TSaveDialog components

Declaration
property FilterIndex: Integer;

The FilterIndex property determines which file filter specified in the Filter property
appears as the default file filter in the List Files of Type drop-down list box. For
example, if you set the FilterIndex value to 2, the second file filter listed in the Filter
property becomes the default filter when the dialog box appears. The defaultFilterIndex
value is 1. If you specify a value greater than the number of file filters in theFilter
property, the first filter is chosen.

The default value is 1.

Example

This code specifies three file filters as the value of the Filter property, sets the FilterIndex
to 2 so that the second file filter is the default file filter, and displays the Open dialog
box. Once the user selects a file with the dialog box and chooses OK, the file name the
user selected appears in a label on the form.

procedure TForml.ButtonlClick(Sender: TObject);
begin
OpenDialogl.Filter := 'Text files (*.TXT)|*.TXT|Pascal files (*.PAS)' +
‘| *,PAS|dBASE program files (*.PRG)|*.PRG';
OpenDialogl.FilterIndex := 2;
if OpenDialogl.Execute then
Labell.Caption := OpenDialogl.FileName;
end;

See also
Filter property

Delphi Visual Component Library Reference 299

Find method

Find method

Applies to
TFieldDefs, TStringList objects

For string list objects

Declaration
function Find(const S: string; var Index: Integer): Boolean;

The Find method searches for a specified string in the list of strings kept in a string list
object. If the string specified as the value of the S parameter is found, Find returns True
and the position of the string in the string list is stored as the value of the Index
parameter. Because the index is zero-based, the first string in the string list has an index
value of 0, the second string has an index value of 1, and so on.

Find returns False if the specified string is not found.

Example

This example uses a list box and a label on a form. When the application runs, a string
list object is created and three strings are added to it. The Find method searches the
strings to look for a match with the string "Flowers’. If the string is found, all the strings
in the string list are added to the list box, and the index value of the ‘Flowers’ string
appears in the caption of the label control.

procedure TForml.FormCreate(Sender: TObject);
var
MyList: TStringList;
Index: Integer;
begin
MyList := TStringList.Create;
MyList.Add('Animals');
MyList.Add('Flowers');
MyList.Add('Cars');
if MyList.Find('Flowers', Index) then
begin
ListBoxl.Items.AddStrings (MyList);
Labell.Caption := 'Flowers has an index value of ' + IntToStr(Index);
end;
MyList.Free;
end;

See also
Add method, Clear method, IndexOf method, Strings property

300 Delphi Visual Component Library Reference

FindClose procedure

For TFieldDefs objects

Declaration
function Find(const Name: string): TFieldDef;

The Find method returns a pointer to an entry in the Items property whose Narme
property matches the Name parameter. Use this method to obtain information about a
particular TFieldDef object.

Example

{ Display the field name and number }
MessageDlg('CustNo is field ' + IntToStr(FieldDefs.Find('CustNo').FieldNo),
mtInformation, [mbOK], 0);

See also
Name property

FindClose procedure SysUltils

Declaration
procedure FindClose(var SearchRec: TSearchRec);

FindClose terminates a FindFirst/FindNext sequence. FindClose does nothing in the 16-bit
version of Windows, but is required in the 32-bit version, so for maximum portability
every FindFirst/FindNext sequence should end with a call to FindClose.

See also
FindFirst function, FindNext function

FindComponent method

Applies to

All components

Declaration
function FindComponent (const AName: string): TComponent;

The FindComponent method returns the component in the Components array property
with the name that matches the string in the AName parameter. FindComponent is not
case sensitive.

Delphi Visual Component Library Reference 301

FindDatabase method

Example

To set up this example, place several components on a form, including an edit box and a
button. When the user clicks the button, the code displays the value of the
ComponentIndex of the edit box in the edit box.

procedure TForml.ButtonlClick(Sender: TObject);
var
TheComponent : TComponent ;
begin
TheComponent := FindComponent ('Editl');
Editl.Text := IntToStr(TheComponent.ComponentIndex);
end;

See also
ComponentCount property, ComponentIndex property, Components property

FindDatabase method

Applies to

TSession component
Declaration

function FindDatabase(const DatabaseName: string): TDatabase;

The FindDatabase method attempts to find a TDatabase component in the Databases
collection with a DatabaseName property which matches the DatabaseName parameter. If
there is no such database, FindDatabase returns nil.

Example

MyDatabase := Session.FindDatabase(‘MYDB');

See also
Session variable

FindField method

Applies to
TTable, TQuery, TStoredProc components
Declaration

function FindField(const FieldName: string): TField;

The FindField method returns the field with the name passed in FieldName. While calling
FindField is slightly slower than a direct reference to the Fields property, using FindField

302 Delphi Visual Component Library Reference

FindFirst function

protects your application from a change in the order of the fields in the component. If
the field can not be found, FindField returns nil.

Example

with Tablel do
begin

{ This is the safe way to change ‘CustNo’ field }
FindField('CustNo’).AsString := ‘1234';

{ This is *not* the safe way to change ‘CustNo’ field }
Fields[0].AsString := ‘1234';
end;

See also
FieldByName method

FindFirst function SysUtils

Declaration
function FindFirst (const Path: string; Attr: Word; var F: TSearchRec): Integer;

The FindFirst function searches the specified directory for the first entry matching the
specified file name and set of attributes.

The Path constant parameter is the directory and file name mask, including wildcard
characters. For example, 'c:\test*.*' specifies all files in the C:\TEST directory).

The Attr parameter specifies the special files to include in addition to all normal files.
Choose from these file attribute constants when specifying the Attr parameter:

Constant Value Description
faReadOnly $01 Read-only files
faHidden $02 Hidden files
faSysFile $04 System files
faVolumelD $08 Volume ID files
faDirectory $10 Directory files
faArchive $20 Archive files
faAnyFile $3F Any file

You can combine attributes by adding their constants or values. For example, to search
for read-only and hidden files in addition to normal files, pass (faReadOnly + faHidden)
the Attr parameter.

FindFirst returns the results of the directory search in the search record you specify in
the F parameter. You can then use the fields of the search record to extract the
information you want.

Delphi Visual Component Library Reference 303

FindindexForFields method

The return value is zero if the function was successful. Otherwise the return value is a
negative DOS error code; a value of -18 indicates that there are no more files matching
the search criteria.

Example

This example uses a label and a button named Search on a form. When the user clicks
the button, the first file in the specified path is found and the name and number of bytes
in the file appear in the label's caption:

var
SearchRec: TSearchRec;
procedure TForml.SearchClick(Sender: TObject);
begin
FindFirst ('c:\delphi\bin*.*', faAnyFile, SearchRec);
Labell.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) +
' bytes in size';
end;

See also
FindNext function

FindIndexForFields method

Applies to

TIndexDefs object

Declaration

function FindIndexForFields(const Fields: string): TIndexDef;

Run-time and read only. Returns the TIndexDef object that is present in Items
corresponding to a semicolon-separated list of fields.

Findltem method

Applies to
TMainMenu component

Declaration

function FindItem(Value: Word; Kind: TFindItemKind): TMenultem;

304 Delphi Visual Component Library Reference

FindKey method

The Findltem method returns the menu item owned by the menu that has either a menu
handle, menu command, or menu shortcut matching the value of the Value parameter.
The Kind parameter can be any of these values:

Value Meaning

fkCommand Menu command number used by Windows WM_COMMAND message
fkHandle Menu handle

fkShortCut Menu shortcut

Example

This example uses a label, a button, and a main menu component. The menu is a File
menu that contains Open, Save, and Close commands. Delphi automatically names the
menu items that are the commands, Open1, Savel, and Closel. The Openl menu item has
a ShortCut value of F3. The code locates the menu item that has the specified shortcut
and reports the name of the menu item in the caption of the label. Note that the shortcut
is specified as a virtual key code. You can find a list of virtual key codes in the Help
system. Search for the Virtual Key Codes topic.

procedure TForml.ButtonlClick(Sender: TObject);

var
ItemName: TMenultem;

begin
ItemName := MainMenul.FindItem(VK_F3, fkShortCut);
Labell.Caption := ItemName.Name;

end;

See also
Command property, ShortCut property, TMenultem component

FindKey method

Applies to
TTable component

Declaration
function FindKey (const KeyValues: array of const): Boolean;

The FindKey method searches the database table to find a record whose index fields match
those passed in KeyValues. FindKey takes a comma-delimited array of values as its
argument, where each value corresponds to a index column in the underlying table. The
values can be literals, variables, null, or nil. If the number of values supplied is less than
the number of columns in the database table, then the remaining values are assumed to
be null. FindKey will search for values specified in the array in the current index.

FindKey does the following:
® Puts the TTable in SetKey state.

Delphi Visual Component Library Reference 305

FindNearest method
* Finds the record in the table that matches the specified values. If a matching record is
found, it moves the cursor there, and returns True.

e If a matching record is not found, it does not move the cursor, and returnsFalse.

Example

{ Search for CustNo = 1234’ }
if Tablel.FindKey(['1234']) then
ShowMessage (‘Customer Found’);

See also
FindNearest method, GotoKey method

FindNearest method

Applies to
TTable component

Declaration
procedure FindNearest (const KeyValues: array of conmst);

The FindNearest method moves the cursor to the first record whose index fields’ values
are greater than or equal to those passed in KeyValues. The search begins at the first
record, not at the current cursor position. This method can be used to match columns of
string data type only. If you do not supply values for each field in the index key, any
unassigned fields will use a null value.

FindNearest works by default on the primary index column. To search the table for
values in other indexes, you must specify the field name in the table’s IndexFieldNames
property or the name of the index in the IndexName property.

The KeyExclusive property indicates whether a search will position the cursor on or after
the specified record being searched for.

Note ~ With Paradox or dBASE tables, FindNearest works only with indexed fields. With SQL
databases, it can work with any columns specified in the IndexFieldNames property.

Example

{ Search for CustNo >= '1234' }
Tablel.FindNearest ([*1234']);

See also
FindKey method, GotoKey method, GotoNearest method, TField component

306 Delphi Visual Component Library Reference

FindNext function

FindNext function SysUtils

Declaration
function FindNext (var F: TSearchRec): Integer;

The FindNext function returns the next entry that matches the name and attributes
specified in the previous call to the FindFirst function.

The search record must be the same one you passed to the FindFirst function.

The return value is zero if the function was successful. Otherwise the return value is a
negative DOS error code; a value of -18 indicates that there are no more files matching
the search criteria.

Example

This example uses a label, a button named Search, and a button named Again on a form.
When the user clicks the Search button, the first file in the specified path is found, and
the name and the number of bytes in the file appear in the label's caption. Each time the
user clicks the Again button, the next matching file name and size is displayed in the
label:

var
SearchRec: TSearchRec;
procedure TForml.SearchClick(Sender: TObject);
begin
FindFirst ('c:\delphi\bin*.*', faAnyFile, SearchRec);
Labell.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) +
' bytes in size';
end;
procedure TForml.AgainClick(Sender: TObject);
begin
FindNext (SearchRec) ;
Labell.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) +
' bytes in size';
end;

See also
FindFirst function

FindText property

Applies to
TFindDialog, TReplaceDialog components

Declaration

property FindText: string;

Delphi Visual Component Library Reference 307

First method

The FindText property contains the string your application can search for if it uses the
Find dialog box.

You can specify a FindText value before the user displays the Find dialog box so that
when it appears, the FindText value appears in the Find What edit box. The user can
then either accept or change the FindText value before choosing the Find Next button in
the dialog box.

Example

The following OnFind event handler searches a memo component for the text specified
in the FindText property of a find dialog component. If found, the first occurrence of the
text in Memol is selected. The code uses the Pos function to compare strings, and stores
the number of characters to skip when determining the selection position in the
SkipChars variable. Because there is no handling of case, whole word, or search direction
in this algorithm, it is assumed that the Options property of FindDialog1 was set to
[frHideMatchCase, frHideWholeWord, frHideUpDown].

procedure TForml.FindDialoglFind (Sender: TObject);

var
I, J, PosReturn, SkipChars: Integer;
begin
For I := 0 to Memol.Lines.Count do
begin

PosReturn := Pos(FindDialogl.FindText,Memol.Lines[I]);
if PosReturn <> 0 then {found!}
begin
Skipchars := 0;
for J:=0toI-14do
Skipchars := Skipchars + Length(Memol.Lines([J]);
SkipChars := SkipChars + (I*2);
SkipChars := SkipChars + PosReturn - 1;
Memol.SetFocus;
Memol.SelStart := SkipChars;
Memol.SelLength := Length(FindDialogl.FindText);
end;
end;
end;

See also
ReplaceText property

First method

Applies to
TList object; TQuery, TStoredProc, TTable components

308 Delphi Visual Component Library Reference

Firstindex property

For list objects

Declaration
function First: Pointer;

The First method returns a pointer that points to the first item referenced in the List
property, which is indexed by Iterns[0].

Example

The following code assumes that the items in MyList are objects that have a text field
named Desc. If the Desc of the first item in the list is ‘Blue’, the following code changes it

to ‘Green’.

if MyList.First.Desc = 'Blue’ then MyList.First.Desc := 'Green’;

See also
IndexOf method, Last method

For tables, queries, and stored procedures

Declaration
procedure First;

The First method moves the cursor to the first record in the active range of records of the
dataset. The active range of records is affected by the filter established with ApplyRange.

If the dataset is in Edit or Insert state, First will perform an implicit Post of any pending
data.

See also
Last method, MoveBy method, Next method, Prior method, SetRange method,
SetRangeStart method

Firstindex property

Applies to
TTabSet component

Declaration
property FirstIndex: Integer;

Run-time only. The value of the FirstIndex property is the tab that appears in the leftmost
visible position in the tab set control. Any tabs with a lower value in the FirstIndex
property scroll to the left in the tab set control and don’t appear until the user scrolls the
tabs.

Delphi Visual Component Library Reference 309

FixedColor property

The default value of FirstIndex is 0 indicating that the tab with an index of 0 is in the
leftmost position. For example, if you have three tabs labeled First, Second, and Third
with Tablndex values of 0, 1, and 2, respectively, First appears first, by default, because it
has an index value of 0. If you want to shift the tabs so the Second or Third tab appears
leftmost in the tab set control, change the FirstIndex value to 1 or 2.

Example
This example uses a tab set control, a label, and a button on a form.

This code in an event handler creates 20 tabs labeled Tab 1 through Tab 20 whenForm1
is created:

procedure TForml.FormCreate (Sender: TObject);
var

I: Integer;
begin

for T := 0 to 19 do

TabSet1l.Tabs.Add('Tab ' + IntToStr(I));
end;

Users can scroll through the tabs. When they click the button, the caption of the first tab
visible in the tab set control is displayed in the label control.

procedure TForml.ButtonlClick(Sender: TObject);
var

I: Integer;
begin

Labell.Caption := IntToStr(TabSetll.FirstIndex);
end;

See also
TabIndex property, Tabs property

FixedColor property

Applies to
TDBGrid, TDrawGrid, TStringGrid components

Declaration
property FixedColor: TColor;

The value of the FixedColor property determines the color of nonscrolling or fixed
columns and rows within the grid. Refer to the Color property for a list of the possible
values for FixedColor.

The default color is cIBtnFace, the color of the face of a button.

Example
This example uses a draw grid and a button on a form. When the user clicks the button,
the color of the nonscrolling (fixed) rows and columns of the draw grid changes color.

310 Delphi Visual Component Library Reference

FixedCols property

procedure TForml.ButtonlClick(Sender: TObject);
begin
if DrawGridl.FixedColor = clBlue then
DrawGridl.FixedColor := clLime
else
DrawGridl.FixedColor := clMaroon;
end;

See also
Color property, FixedCols property, FixedRows property

FixedCols property

Applies to
TDrawGrid, TStringGrid components

Declaration
property FixedCols: Integer;

The FixedCols property determines the number of nonscrolling columns within a grid.
The default value is 1. Nonscrolling columns remain fixed at the far left of the grid, even
when the user scrolls the other columns. Nonscrolling columns are useful for displaying
row titles that need to remain visible in the grid at all times.

Each grid must have a least one column that isn’t fixed. In other words, the value of the
FixedCols property must always be at least one less than the value of the ColCount
property, which contains the number of columns in the grid.

Example

This example uses a string grid and a button. When the user clicks the button, a message
dialog box appears informing the user that a fixed column number of 2 is
recommended. The dialog box also offers the user an opportunity to accept the
recommended number if the number of fixed columns isn’t already 2. If the user
chooses Yes, the number of fixed columns changes to 2.

procedure TForml.ButtonlClick(Sender: TObject);
var
Check: Integer;
begin
if StringGridl.FixedCols <> 2 then
begin
Check := MessageDlg('2 fixed columns are recommended! Change?',
mtWarning, mbYesNoCancel, 0);
if Check = IdYes then
StringGridl.FixedCols := 2;
end;
end;

Delphi Visual Component Library Reference 311

FixedRows property

See also
FixedColor property, FixedRows property, LeftCol property

FixedRows property

Applies to
TDrawGrid, TStringGrid components

Declaration
property FixedRows: Integer;

The FixedRows property determines the number of nonscrolling rows within a grid. The
default value is 1. Nonscrolling rows remain fixed at top of the grid, even when the user
scrolls the other rows. Nonscrolling rows are useful for displaying column titles that
need to remain visible in the grid at all times.

Each grid must have a least one row that isn’t fixed. In other words, the value of the
FixedRows property must always be at least one less than the value of the RowCount
property, which contains the number of rows in the grid.

Example

This example uses a string grid and three radio buttons on a form. With the Object
Inspector, specify the following event handler for all OnClick events of the three radio
buttons. As the user selects different radio buttons, the number of fixed rows in the
string grid changes.

procedure TForml.RadioButtonlClick(Sender: TObject);
begin
if RadioButtonl.Checked then
StringGridl.FixedRows := 1
else if RadioButton2.Checked then
StringGridl.FixedRows := 2
else if RadioButton3.Checked then
StringGridl.FixedRows := 3;
end;

See also
FixedColor property, FixedCols property, TopRow property

FloatToDecimal procedure SysUltils

Declaration

procedure FloatToDecimal (var Result: TFloatRec; Value: Extended; Precision, Decimals:
Integer);

FloatToDecimal converts a floating-point value to a decimal representation that is suited
for further formatting.

312 Delphi Visual Component Library Reference

FloatToStr function

The Precision parameter specifies the requested number of significant digits in the
result—the allowed range is 1..18.

The Decimals parameter specifies the requested maximum number of digits to the left of
the decimal point in the result.

Precision and Decimals together control how the result is rounded. To produce a result
that always has a given number of significant digits regardless of the magnitude of the
number, specify 9999 for the Decimals parameter.

The result of the conversion is stored in the specified TFloatRec record as follows:
Field Value
Exponent Contains the magnitude of the number, i.e. the number of significant digits to the right of

the decimal point. The Exponent field is negative if the absolute value of the number is
less than one. If the number is a NAN (not-a-number), Exponent is set to -32768. If the
number is INF or -INF (positive or negative infinity), Exponent is set to 32767.

Negative True if the number is negative, False if the number is zero or positive.

Digits Contains up to 18 significant digits followed by a null terminator. The implied decimal
point (if any) is not stored in Digits. Trailing zeros are removed, and if the resulting
number is zero, NAN, or INF, Digits contains nothing but the null terminator.

FloatToStr function SysUtils

Declaration
function FloatToStr(Value: Extended): string;

FloatToStr converts the floating-point value given by Value to its string representation.
The conversion uses general number format with 15 significant digits.

For further details, see the description of the FloatToStrF function.

FloatToStrF function SysUtils

Declaration

function FloatToStrF (Value: Extended; Format: TFloatFormat; Precision,
Digits: Integer): string;

FloatToStrF converts the floating-point value given by Value to its string representation.
The Format parameter controls the format of the resulting string.

The Precision parameter specifies the precision of the given value. It should be 7 or less
for values of type Single, 15 or less for values of type Double, and 18 or less for values of
type Extended.

The meaning of the Digits parameter depends on the particular format selected.

Delphi Visual Component Library Reference 313

FloatToText function

The possible values of the Format parameter, and the meaning of each, are described

below.
Value Meaning
ffGeneral General number format. The value is converted to the shortest possible decimal string

using fixed or scientific format. Trailing zeros are removed from the resulting string, and a
decimal point appears only if necessary. The resulting string uses fixed point format if the
number of digits to the left of the decimal point in the value is less than or equal to the
specified precision, and if the value is greater than or equal to 0.00001. Otherwise the
resulting string uses scientific format, and the Digits parameter specifies the minimum
number of digits in the exponent (between 0 and 4).

ffExponent Scientific format. The value is converted to a string of the form "-d.ddd...E+dddd". The
resulting string starts with a minus sign if the number is negative, and one digit always
precedes the decimal point. The total number of digits in the resulting string (including
the one before the decimal point) is given by the Precision parameter. The "E" exponent
character in the resulting string is always followed by a plus or minus sign and up to four
digits. The Digits parameter specifies the minimum number of digits in the exponent
(between 0 and 4).

ffFixed Fixed point format. The value is converted to a string of the form "-ddd.ddd...". The
resulting string starts with a minus sign if the number is negative, and at least one digit
always precedes the decimal point. The number of digits after the decimal point is given
by the Digits parameter—it must be between 0 and 18. If the number of digits to the left of
the decimal point is greater than the specified precision, the resulting value will use
scientific format.

fNumber Number format. The value is converted to a string of the form "-d,ddd,ddd.ddd...". The
fiNumber format corresponds to the ffFixed format, except that the resulting string contains
thousand separators taken from WIN.INL

ffCurrency Currency format. The value is converted to a string that represents a currency amount.
The conversion is controlled by the CurrencyString, CurrencyFormat, NegCurrFormat,
ThousandSeparator, and DecimalSeparator global variables, all of which are initialized from
the Currency Format in the International section of the Windows Control Panel and
WINL.INI The number of digits after the decimal point is given by the Digits parameter—it
must be between 0 and 18.

For all formats, the actual characters used as decimal and thousand separators are
obtained from the DecimalSeparator and ThousandSeparator global variables.

If the given value is a NAN (not-a-number), the resulting string is NAN'. If the given
value is positive infinity, the resulting string is 'INF'. If the given value is negative
infinity, the resulting string is '-INF".

FloatToText function SysUtils

Declaration

function FloatToText (Buffer: PChar; Value: Extended; Format: TFloatFormat;
Precision, Digits: Integer): Integer;

FloatToText converts the given floating-point value to its decimal representation using
the specified format, precision, and digits. The resulting string of characters is stored in
the given buffer, and the returned value is the number of characters stored. The
resulting string is not null-terminated.

For further details, see the description of the FloatToStrF function.

314 Delphi Visual Component Library Reference

FloatToTextFmt function

FloatToTextFmt function SysUtils

Declaration
function FloatToTextFmt (Buffer: PChar; Value: Extended; Format: PChar): Integer;

FloatToTextFmt converts the given floating-point value to its decimal representation
using the specified format. The resulting string of characters is stored in the given
buffer, and the returned value is the number of characters stored. The resulting string is

not null-terminated.
For further details, see the description of the FormatFloat function.

FloodFill method

Applies to
TCanuvas object

Declaration
procedure FloodFill(X, Y: Integer; Color: TColor; FillStyle: TFillStyle);

The FloodFill method fills an area of the screen surface using the current brush specified
by the Brush property. The FloodFill method begins at the point at coordinates (X, Y) and
continues in all directions to the color boundary.

The way in which the area is filled is determined by the FillStyle parameter. If FillStyle is
fsBorder, the area fills until a border of the color specified by the Color parameter is
encountered. If FillStyle is fsSurface, the area fills as long as the color specified by the
Color parameter is encountered. fsSurface fills are useful to fill an area with a
multicolored border.

Example
The following code floodfills from the center point of Form1’s client area until the color
black is encountered.

Forml.Canvas.FloodFill (ClientWidth/2, ClientHeight/2, clBlack, fsBorder);

See also
Ellipse method, FillRect method, Polygon method, Rectangle method

Flush procedure System

Declaration
procedure Flush(var F: Text);

The Flush procedure clears the buffer of a text file open for output.

Delphi Visual Component Library Reference 315

FmtLoadStr function

F is a text file variable.

When a text file is opened for output using Rewrite or Append, Flush empties the file’s
buffer. This guarantees that all characters written to the file at that time have actually
been written to the external file. Flush has no effect on files opened for input.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for I/O errors.

Example

var
f: TextFile;
begin
if OpenDialogl.Execute then
begin { open a text file }
AssignFile(f, OpenDialogl.FileName);
Append (£) ;
Writeln(f, 'I am appending some stuff to the end of the file.');
Flush(f); { ensures that the text was actually written to file }
CloseFile(f);
end;
end;

FmtLoadStr function SysUtils

Declaration
function FmtLoadStr(Ident: Word; const Args: array of comst): string;

FmtLoadStr loads a string from a program's resource string table and uses that string,
plus the Args array, as a parameter to Format. Ident is the string resource ID of the
desired format string. Result is the output of Format.

See also
Format function

FmtStr procedure SysUtils

Declaration
procedure FmtStr(var Result: string; const Format: string; const Args: array of comst);

This function formats the series of arguments in the open array Args. Formatting is
controlled by the Pascal format string Format; the results are returned in the parameter
Result.

For information on the format strings, see Format Strings.

316 Delphi Visual Component Library Reference

FocusControl method

See also
FormatBu f function, StrFmt function, StrLFmt function

FocusControl method

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,

TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

function FocusControl;

Sets a form’s focus to the first data-aware component associated with a TField. Use this
method when doing record-oriented validation (for example, in the BeforePost event)
since a field may be validated whether its associated data-aware components have
focus.

Example

{ Set focus to first data-aware component associated with Fieldl }
Fieldl.FocusControl;

FocusControl property

Applies to
TLabel component

Declaration
property FocusControl: TWinControl;

The FocusControl links the label control with another control on the form. If the Caption
of a label includes an accelerator key, the control specified as the value of the
FocusControl property becomes the focused control when the user uses the accelerator
key.

The caption of a label often identifies the purpose of another control on the form, or
directs the user to interact with it. For example, a label placed right above an edit box
might have the caption 'File Name’, indicating the user should type a file name in the
edit box. In this case, making that edit box the value of the label’s FocusControl property
gives the edit box the focus when the user presses Alt+F.

Example

This code displays a line of text in a label on the form and associates the label with an
edit box control. Note that the label caption includes an accelerator key. When the user
presses Alt+N, the edit box control receives the focus:

Delphi Visual Component Library Reference 317

Focused method

Labell.Caption := ‘&Name';
Labell.FocusControl := Editl;

For this example, you need to place the label and edit box control close together to make
sure that users understand that they should enter text in the edit box.

See also
ShowAccelChar property, TabStop property

Focused method

Applies to

All windowed controls

Declaration
function Focused: Boolean;

The Focused method is used to determine whether a windowed control has the focus and
is therefore is the ActiveControl.

Example
This example uses an edit box and a memo on a form. When the user switches the focus
between the two controls, the control that currently has the focus becomes red:

type
TForml = class(TForm)
Editl: TEdit;
Memol: TMemo;
Buttonl: TButton;
procedure FormCreate(Sender: TObject);
private
{ Private declarations }
public
procedure ColorControl (Sender: TObject);
end;

var
Forml: TForml;

implementation
(SR *.DFM}

procedure TForml.ColorControl (Sender: TObject);
begin
if Editl.Focused then
Editl.Color := clRed
else
Editl.Color := clWindow;
if Memol.Focused then
Memol.Color := clRed

318 Delphi Visual Component Library Reference

Font property

else
Memol.Color := clWindow;

procedure TForml.FormCreate(Sender: TObject);
begin

Screen.OnActiveControlChange := ColorControl;
end;

See also
ActiveControl property, OnActiveControlChange event, SetFocus method

Font property

Applies to

TCanvas object; TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox,
TDBEdit, TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBLookupList,
TDBMemo, TDBRadioGroup, TDBText, TDirectoryListBox, TDrawGrid, TDriveComboBox,
TEdit, TFileListBox, TFilterComboBox, TFontDialog, TForm, TGroupBox, THeader, TLabel,
TListBox, TMaskEdit, TMemo, TNotebook, TOutline, TPaintBox, TPanel, TRadioButton,
TScrollBox, TSpeedButton, TStringGrid, TTabbedNotebook, TTabSet components

Declaration
property Font: TFont;

The Font property is a font object that controls the attributes of text written on or in the
component or object or sent to the printer. To modify a font, you change the value of the
Color, Name, Size, or Style properties of the font object.

Example
This code changes color of text in a memo control to dark blue:

Memol.Font.Color := clNavy;

See also
ParentFont property

For Font dialog boxes

Declaration
property Font: TFont;

The Font property is the font the Font dialog box returns when the user uses the Font
dialog box. Your application can then use this returned Font value for further
processing.

You can also specify a default font before displaying the Font dialog box; the font name
then appears selected in the Font combo box. Use the Object Inspector to specify a Font

Delphi Visual Component Library Reference 319

Fonts property

property, or assign a value to Font before using the Execute method to display the dialog
box.

Example

This example uses a button, a Font dialog box, and a label on a form. When the user
clicks the button, the Font dialog box appears. If the user uses the dialog box to change
the font and chooses OK, the caption of the label changes to reflect the user’s font
selection.

procedure TForml.ButtonlClick(Sender: TObject);
begin
FontDialogl.Font.Name := 'System';
FontDialogl.Font.Size := 10;
if FontDialogl.Execute then
Labell.Font := FontDialogl.Font;
end;

See also
Color property, Name property, Size property

Fonts property

Applies to
TPrinter object; TScreen component

Declaration
property Fonts: TStrings;

Run-time and read only. The Fonts property for the screen component returns a list of
fonts supported by the screen.

The Fonts property for a printer object holds a list of fonts supported by the printer. The
list contains TrueType fonts even if the printer doesn’t support them natively because
the Windows Graphics Device Interface (GDI) can draw TrueType fonts accurately
when a print job uses them.

Example
This code displays the fonts supported by the screen in a FontList list box when the user
clicks the ListFonts button:

procedure TForml.ListFontsClick(Sender: TObject);
var
FontIndex: Integer;
begin
FontList.Clear;
FontList.Sorted := True;
FontList.Items := Screen.Fonts;
end;

320 Delphi Visual Component Library Reference

ForceDirectories procedure

See also
Canuvas property, Screen variable, Printer variable

ForceDirectories procedure FileCtrl

Declaration
procedure ForceDirectories(Dir: string);

Whenever you create directories using DOS and Windows, you must create one at a
time. For example, if you want to create the C:\APPS\SALES\LOCAL directory, the
APPS and SALES directories must exist before you can create the LOCAL directory.

The ForceDirectories can create all the directories specified along a directory path all at
once if they don’t exist. If the first directories in the path do exist, but the latter ones
don’t, ForceDirectories creates just the ones that don’t exist.

Example

This example uses a label and a button on a form. When the user clicks the button, all the
directories along the specified path that don’t exist are created. The results are reported
in the caption of the label:

procedure TForml.ButtonlClick(Sender: TObject);
var
Dir: string;
begin
Dir := 'C:\APPS\SALES\LOCAL';
ForceDirectories (Dir);
if DirectoryExists(Dir) then
Labell.Caption := Dir + ' was created'
end;

See also
DirectoryExists function, SelectDirectory function

Format function SysUtils

Declaration
function Format (const Format: string; const Args: array of comnst): string;

This function formats the series of arguments in the open array Args. Formatting is
controlled by the Object Pascal format string Format; the results are returned in the
function result as a Pascal string.

For information on the format strings, see Format Strings.

Delphi Visual Component Library Reference 321

Format strings

Format strings

Format strings passed to the string formatting routines contain two types of objects—
plain characters and format specifiers. Plain characters are copied verbatim to the
resulting string. Format specifiers fetch arguments from the argument list and apply
formatting to them.

Format specifiers have the following form:
"$" [index ":"] ["-"] [width] ["." prec] type

A format specifier begins with a % character. After the % come the following, in this
order:

An optional argument index specifier, [index ":"]
An optional left justification indicator, ["-"]
An optional width specifier, [width]

An optional precision specifier, ["." prec]
The conversion type character, type

The following table summarizes the possible values for type:

Value What it specifies

d Decimal. The argument must be an integer value. The value is converted to a string of
decimal digits. If the format string contains a precision specifier, it indicates that the
resulting string must contain at least the specified number of digits; if the value has less
digits, the resulting string is left-padded with zeros.

e Scientific. The argument must be a floating-point value. The value is converted to a string
of the form "-d.ddd...E+ddd". The resulting string starts with a minus sign if the number is
negative. One digit always precedes the decimal point.

The total number of digits in the resulting string (including the one before the decimal
point) is given by the precision specifer in the format string—a default precision of 15 is
assumed if no precision specifer is present. The "E" exponent character in the resulting
string is always followed by a plus or minus sign and at least three digits.

f Fixed. The argument must be a floating-point value. The value is converted to a string of
the form "-ddd.ddd...". The resulting string starts with a minus sign if the number is
negative.

The number of digits after the decimal point is given by the precision specifier in the format
string—a default of 2 decimal digits is assumed if no precision specifier is present.

g General. The argument must be a floating-point value. The value is converted to the
shortest possible decimal string using fixed or scientific format. The number of significant
digits in the resulting string is given by the precision specifier in the format string—a
default precision of 15 is assumed if no precision specifier is present.

Trailing zeros are removed from the resulting string, and a decimal point appears only if
necessary. The resulting string uses fixed point format if the number of digits to the left of
the decimal point in the value is less than or equal to the specified precision, and if the
value is greater than or equal to 0.00001. Otherwise the resulting string uses scientific
format.

n Number. The argument must be a floating-point value. The value is converted to a string of
the form "-d,ddd,ddd.ddd...". The "n" format corresponds to the "f" format, except that the
resulting string contains thousand separators.

322 Delphi Visual Component Library Reference

Format strings

Value What it specifies

m Money. The argument must be a floating-point value. The value is converted to a string
that represents a currency amount. The conversion is controlled by the CurrencyString,
CurrencyFormat, NegCurrFormat, ThousandSeparator, DecimalSeparator, and CurrencyDecimals
global variables, all of which are initialized from the Currency Format in the International
section of the Windows Control Panel. If the format string contains a precision specifier, it
overrides the value given by the CurrencyDecimals global variable.

p Pointer. The argument must be a pointer value. The value is converted to a string of the
form "XXXX:YYYY" where XXXX and YYYY are the segment and offset parts of the pointer
expressed as four hexadecimal digits.

s String. The argument must be a character, a string, or a PChar value. The string or character
is inserted in place of the format specifier. The precision specifier, if present in the format
string, specifies the maximum length of the resulting string. If the argument is a string that
is longer than this maximum, the string is truncated.

X Hexadecimal. The argument must be an integer value. The value is converted to a string of
hexadecimal digits. If the format string contains a precision specifier, it indicates that the
resulting string must contain at least the specified number of digits; if the value has fewer
digits, the resulting string is left-padded with zeros.

Conversion characters may be specified in upper case as well as in lower case—both
produce the same results.

For all floating-point formats, the actual characters used as decimal and thousand
separators are obtained from the DecimalSeparator and ThousandSeparator global
variables.

Index, width, and precision specifiers can be specified directly using decimal digit string
(for example "%10d"), or indirectly using an asterisk character (for example "%*.*f").
When using an asterisk, the next argument in the argument list (which must be an
integer value) becomes the value that is actually used. For example,

Format ('%*.*f', [8, 2, 123.456])
is the same as
Format ('%8.2f', [123.456]).

A width specifier sets the minimum field width for a conversion. If the resulting string is
shorter than the minimum field width, it is padded with blanks to increase the field
width. The default is to right-justify the result by adding blanks in front of the value, but
if the format specifier contains a left-justification indicator (a "-" character preceding the
width specifier), the result is left-justified by adding blanks after the value.

An index specifier sets the current argument list index to the specified value. The index
of the first argument in the argument list is 0. Using index specifiers, it is possible to
format the same argument multiple times. For example "Format('%d %d %0:d %d’, [10,
20])" produces the string 10 20 10 20'.

The format strings are used by the following routines:
Format function
FormatBuf function
FmtStr procedure

StrFmt function

Delphi Visual Component Library Reference 323

FormatBuf function

StrLFmt function

FormatBuf function SysUtils

Declaration

function FormatBuf (var Buffer; BufLen: Word; const Format; FmtLen: Word; const Args: array
of const): Word;

This function formats the series of arguments in the open array Args. Formatting is
controlled by the format string Format (whose length is given by FmtLen); the results are
returned in Buffer (whose length is given by BufLen). The function result contains the
number of bytes in the Result buffer.

For information on the format strings, see Format Strings.

FormatChars property

Applies to
TDDEClientConv component

Declaration
property FormatChars: Boolean;

The FormatChars property determines if certain characters are filtered out of text data
transferred from a DDE server application. Some DDE server applications transfer
backspaces, linefeeds, carriage returns, and tabs with the text data. Sometimes, this can
cause incorrect spacing, line breaks, or characters in the DDE client data. If this is the
case, the characters should be filtered. The default value of FormatChars is False.

If False, all text characters of the linked data from the DDE server appear in the linked
data in the DDE client. If True, ASCII characters 8 (backspace), 9 (tab), 10 (linefeed), and
13 (carriage return) are filtered out and won't appear in the DDE client data.

Example
The following code formats characters if the DDE service name is “SuperWrd”.

if DDEClientConv.DDEService = 'SuperWrd’ then
DDEClientConv.FormatChars := True;

FormatCount property

Applies to
TClipboard object

324 Delphi Visual Component Library Reference

FormatDateTime function

Declaration
property FormatCount: Integer;

Run-time and read only. The FormatCount property value is the number of formats
contained in the Formats array property of a Clipboard object.

Example
The following code adds each format on the Clipboard to ListBox1 when Button1 is
clicked:

procedure TForml.ButtonlClick(Sender: TObject);
var
I: Integer;
begin
for I := 0 to Clipboard.FormatCount-1 do
ListBoxl.Items.Add(IntToStr (Clipboard.Formats[I]));
end;

See also

Assign method, AsText property, Clipboard variable, GetComponent method, HasFormat
method, SetComponent method

FormatDateTime function SysUtils

Declaration
function FormatDateTime (const Format: string; DateTime: TDateTime): string;

FormatDateTime formats the date-and-time value given by DateTime using the format
given by Format. The following format specifiers are supported:

Specifier Displays

c Displays the date using the format given by the ShortDateFormat global variable, followed
by the time using the format given by the LongTimeFormat global variable. The time is not
displayed if the fractional part of the DateTime value is zero.

d Displays the day as a number without a leading zero (1-31).

dd Displays the day as a number with a leading zero (01-31).

ddd Displays the day as an abbreviation (Sun-Sat) using the strings given by the
ShortDayNames global variable.

dddd Displays the day as a full name (Sunday-Saturday) using the strings given by the
LongDayNames global variable.

ddddd Displays the date using the format given by the ShortDateFormat global variable.

dddddd Displays the date using the format given by the LongDateFormat global variable.

m Displays the month as a number without a leading zero (1-12). If them specifier

immediately follows an /1 or hh specifier, the minute rather than the month is displayed.

mm Displays the month as a number with a leading zero (01-12). If the mm specifier
immediately follows an h or I specifier, the minute rather than the month is displayed.

mmm Displays the month as an abbreviation (Jan-Dec) using the strings given by the
ShortMonthNames global variable.

Delphi Visual Component Library Reference 325

FormatFloat function

Specifier

mmmni

vy
yyyy

hh
nn
ss

tt
am/pm

alp

ampm

x! /UXX ”

Displays

Displays the month as a full name (January-December) using the strings given by the
LongMonthNames global variable.

Displays the year as a two-digit number (00-99).

Displays the year as a four-digit number (0000-9999).

Displays the hour without a leading zero (0-23).

Displays the hour with a leading zero (00-23).

Displays the minute without a leading zero (0-59).

Displays the minute with a leading zero (00-59).

Displays the second without a leading zero (0-59).

Displays the second with a leading zero (00-59).

Displays the time using the format given by the ShortTimeFormat global variable.
Displays the time using the format given by the LongTimeFormat global variable.

Uses the 12-hour clock for the preceding h or hh specifier, and displays 'am' for any hour
before noon, and 'pm' for any hour after noon. Theam/pm specifier can use lower, upper,
or mixed case, and the result is displayed accordingly.

Uses the 12-hour clock for the preceding or hh specifier, and displays 'a' for any hour
before noon, and 'p' for any hour after noon. Thea/p specifier can use lower, upper, or
mixed case, and the result is displayed accordingly.

Uses the 12-hour clock for the precedingh or Iih specifier, and displays the contents of the
TimeAMString global variable for any hour before noon, and the contents of the
TimePMString global variable for any hour after noon.

Displays the date separator character given by the DateSeparator global variable.
Displays the time separator character given by the TimeSeparator global variable.

Characters enclosed in single or double quotes are displayed as-is, and do not affect
formatting.

Format specifiers may be written in upper case as well as in lower case letters—both
produce the same result.

If the string given by the Format parameter is empty, the date and time value is
formatted as if a 'c' format specifier had been given.

Example

The following example assigns 'The meeting is on Wednesday, February 15, 1995 at
10:30 AM' to the string variable S.

S := FormatDateTime('"The meeting is on" dddd, mmmm d, yyyy, ' +
'"at" hh:mm AM/PM', StrToDateTime('2/15/95 10:30am'));

FormatFloat function SysUtils

Declaration

function FormatFloat (const Format: string; Value: Extended): string;

326 Delphi Visual Component Library Reference

FormatFloat function

FormatFloat formats the floating-point value given by Value using the format string
given by Format. The following format specifiers are supported in the format string:

Specifier Represents

0 Digit placeholder. If the value being formatted has a digit in the position where the '0'
appears in the format string, then that digit is copied to the output string. Otherwise, a ‘0’
is stored in that position in the output string.

Digit placeholder. If the value being formatted has a digit in the position where the #'
appears in the format string, then that digit is copied to the output string. Otherwise,
nothing is stored in that position in the output string.

Decimal point. The first '.' character in the format string determines the location of the
decimal separator in the formatted value; any additional ' characters are ignored. The
actual character used as a the decimal separator in the output string is determined by the
DecimalSeparator global variable. The default value of DecimalSeparator is specified in the
Number Format of the International section in the Windows Control Panel.

, Thousand separator. If the format string contains one or more ', characters, the output
will have thousand separators inserted between each group of three digits to the left of the
decimal point. The placement and number of ',' characters in the format string does not
affect the output, except to indicate that thousand separators are wanted. The actual
character used as a the thousand separator in the output is determined by the
ThousandSeparator global variable. The default value of ThousandSeparator is specified in
the Number Format of the International section in the Windows Control Panel.

E+ Scientific notation. If any of the strings 'E+', 'E-', 'e+', or 'e-' are contained in the format
string, the number is formatted using scientific notation. A group of up to four '0'
characters can immediately follow the 'E+', 'E-, 'e+', or 'e-' to determine the minimum
number of digits in the exponent. The 'E+' and 'e+' formats cause a plus sign to be output
for positive exponents and a minus sign to be output for negative exponents. The 'E-' and
'e-' formats output a sign character only for negative exponents.

xx’/ xx” Characters enclosed in single or double quotes are output as-is, and do not affect
formatting.

; Separates sections for positive, negative, and zero numbers in the format string.

The locations of the leftmost '0' before the decimal point in the format string and the
rightmost '0' after the decimal point in the format string determine the range of digits
that are always present in the output string.

The number being formatted is always rounded to as many decimal places as there are
digit placeholders ('0' or '#)) to the right of the decimal point. If the format string contains
no decimal point, the value being formatted is rounded to the nearest whole number.

If the number being formatted has more digits to the left of the decimal separator than
there are digit placeholders to the left of the "' character in the format string, the extra
digits are output before the first digit placeholder.

To allow different formats for positive, negative, and zero values, the format string can
contain between one and three sections separated by semicolons.

® One section: The format string applies to all values.

* Two sections: The first section applies to positive values and zeros, and the second
section applies to negative values.

¢ Three sections: The first section applies to positive values, the second applies to
negative values, and the third applies to zeros.

Delphi Visual Component Library Reference 327

Formats property

If the section for negative values or the section for zero values is empty, that is if there is
nothing between the semicolons that delimit the section, the section for positive values
is used instead.

If the section for positive values is empty, or if the entire format string is empty, the
value is formatted using general floating-point formatting with 15 significant digits,
corresponding to a call to FloatToStrF with the ffGeneral format. General floating-point
formatting is also used if the value has more than 18 digits to the left of the decimal
point and the format string does not specify scientific notation.

Example
The following table shows some sample formats and the results produced when the
formats are applied to different values:

Format string— 1234 -1234 0.5 0

1234 -1234 0.5 0
0 1234 -1234 1 0
0.00 1234.00 -1234.00 0.50 0.00
#.## 1234 -1234 5
#44#0.00 1,234.00 -1,234.00 0.50 0.00
#4##0.00;(#,#40.00) 1,234.00 (1,234.00) 0.50 0.00
#4##0.00;;Zero 1,234.00 -1,234.00 0.50 Zero
0.000E+00 1.234E+03 -1.234E+03 5.000E-01 0.000E+00
#AHHEO 1.234E3 -1.234E3 5E-1 (0)200]

Formats property

Applies to
TClipboard object

Declaration
property Formats[Index: Integer]: Word;

Run-time and read only. The Formats property array contains a list of all the formats the
Clipboard contains. Usually when an application copies or cuts something to the
Clipboard, it places it there in multiple formats.

Your application can place items of a particular format on the Clipboard and retrieve
items with a particular format from the Clipboard if the format is in the Formats array.
You can find out if a particular format is available on the Clipboard with the HasFormat
method.

The Index parameter of the Formats property lets you access a format by its position in
the array.

328 Delphi Visual Component Library Reference

FormCount property

Example

The following code adds each format on the Clipboard to ListBox1 when Button1 is
clicked:

procedure TForml.ButtonlClick(Sender: TObject);
var
I: Integer;
begin
for I := 0 to Clipboard.FormatCount-1 do
ListBoxl.Items.Add(IntToStr (Clipboard.Formats[I]));
end;

See also
Assign method, AsText property, Clipboard variable, FormatCount property, HasFormat
method

FormCount property

Applies to

TScreen component

Declaration
property FormCount: Integer;

Run-time and read only. The FormCount property value contains the number of forms
displayed on the screen.

Example

The following code adds the name of all forms on the screen to ListBox1 when Button1 is
clicked.

procedure TForml.ButtonlClick(Sender: TObject);
var
I: Integer;
begin
For T := 0 to Screen.FormCount-1 do
ListBoxl.Items.Add(Screen.Forms[I].Name);
end;

See also
Forms property, Screen variable

Forms property

Applies to
TScreen component

Delphi Visual Component Library Reference 329

FormStyle property

Declaration

property Forms[Index: Integer]: TForm;

Description

Run-time and read only. The Forms property lets you access a form on the screen by
specifying its position in the list of forms kept by the TScreen component using its Index
value. The first form has an index value of 0, the second has an index value of 1, and so
on.

Example
The following code adds the name of all forms on the screen to ListBox1 when Button1 is
clicked.

procedure TForml.ButtonlClick(Sender: TObject);
var
I: Integer;
begin
For I := 0 to Screen.FormCount-1 do
ListBoxl.Items.Add(Screen.Forms([I].Name);
end;

See also
FormCount property, Screen variable

FormStyle property

Applies to

TForm component
Declaration

property FormStyle: TFormStyle;

The FormStyle property determines the style of the form. These are the possible values
and their meanings:

Value Meaning

fsNormal The form is neither an MDI parent window nor an MDI child window.

fsMDIChild The form is an MDI child window.

fsMDIForm The form is an MDI parent window.

fsStayOnTop This form remains on top of other forms in the project, except any others that also have

FormStyle set to fsStayOnTop.

The default value is fsNormal.

All MDI (Multiple Document Interface) applications must have the FormStyle property
of the main form set to fsMDIForm. All forms specified as MDI child forms display as

330 Delphi Visual Component Library Reference

Frac function

forms contained within the MDI parent form. You must use the Object Inspector to set
the child form’s Visible property to True or your child form won’t appear. You can have
as many child forms as you like.

Example
This example ensures the main form of the application is an MDI parent form:

procedure TForml.FormCreate(Sender: TObject);
begin
if FormStyle <> fsMDIForm then
FormStyle := fsMDIForm;
if FormStyle = fsMDIForm then
Editl.Text := 'MDI form'
else
Editl.Text := 'Not an MDI form'; {This line never runs}

end;

See also
CreateForm method, MainForm property, Visible property

Frac function System

Declaration
function Frac(X: Real): Real;
The Frac function returns the fractional part of the argument X.

X is a real-type expression. The result is the fractional part of X; that is,
Frac(X) = X - Int(X).

Example

var
R: Real;

begin
R := Frac(123.456); { 0.456 }
R := Frac(-123.456); { -0.456 }

end;

See also
Int function

FrameRect method

Applies to
TCanuvas object

Delphi Visual Component Library Reference 331

Frames property

Declaration
procedure FrameRect (const Rect: TRect);

The FrameRect method draws a rectangle using the Brush of the canvas to draw the
border. FrameRect does not fill the interior of the rectangle with the Brush pattern.

Example

The following code displays the text “Hello, world!” in a rectangle defined by the
coordinates (10, 10) and (100, 100). After displaying the text with the TextRect method,
the code draws a black, vertical line frame around the rectangle.

var
TheRect: TRect;

begin
Forml.Canvas.Brush.Color := clBlack;
Forml.Canvas.Brush.Style := bsVertical;
TheRect.Top := 10;
TheRect.Left := 10;
TheRect.Bottom := 100;
TheRect.Right := 100;
Forml.Canvas.TextRect (TheRect, 10,10, 'Hello, world!');
Forml.Canvas.FrameRect (TheRect) ;

end;

See also
Brush property, Rect function, TextRect method

Frames property

Note

Applies to
TMediaPlayer component

Declaration
property Frames: Longint;

Run-time-only. The Frames property specifies the number of frames the Step method
steps forward or the Back method steps backward.

Frames defaults to ten percent of the length of the currently loaded medium, which is
specified by the Length property.

The definition of frame varies by multimedia device. For display media, a frame is one
still image.

332 Delphi Visual Component Library Reference

Free method

Free method

Applies to
All objects and components

Declaration
procedure Free;

The Free method destroys the object and frees its associated memory. If you created the
object yourself using the Create method, you should use Free to destroy and release F
memory. Free is successful even if the object is nil, so if the object was never initialized,

for example, calling Free won't result in an error.

Delphi automatically destroys Visual Component Library objects and frees memory
allocated to them.

You should never explicitly free a component within one of its own event handlers, nor
should you free a component from an event handler of a component the component
owns or contains. For example, you should avoid freeing a button in its OnClick event
handler. Nor should you free the form that owns the button from the button’s OnClick
event.

If you want to free the form, call the Release method, which destroys the form and
releases the memory allocated for it after all its event handlers and those of the
components it contains are through executing.

Example
The following code frees an object called MyObject:

MyObject.Free;

See also
Destroy method, Release method

Free procedure System

Declaration

procedure Free;

The Free procedure tests whether or not the instance of the caller isnil.
If it isn't nil, Free calls Destroy.

If it is nil, the Free call is ignored.

Delphi Visual Component Library Reference 333

FreeBookmark method

FreeBookmark method

Applies to
TTable, TQuery, TStoredProc components

Declaration
procedure FreeBookmark (Bookmark: TBookmark);

Use the FreeBookmark method in combination with the GetBookmark and GotoBookmark
methods. FreeBookmark releases the system resources reserved during a call to
GetBookmark.

Example

var MyBookmark: TBookmark;

with Tablel do

begin

Save the current record position in MyBookmark }
MyBookmark := GetBookmark;

... { Other code here }

Return to the record associated with MyBookmark }
GotoBookmark (MyBookmark) ;

Release the resources for MyBookmark }
FreeBookmark (MyBookmark) ;

end;

—

—_—

—

FreeMem procedure System

Declaration
procedure FreeMem(var P: Pointer; Size: Word);
The FreeMem procedure disposes of a dynamic variable of a given size.

P is a variable of any pointer type previously assigned by the GetMem procedure or
assigned a meaningful value using an assignment statement.

Size specifies the size in bytes of the dynamic variable to dispose of; it must be exactly
the number of bytes previously allocated to that variable by GetMerm.

FreeMem destroys the variable referenced by P and returns its memory to the heap. If P
does not point to memory in the heap, a run-time error occurs.

After calling FreeMem, the value of P is undefined, and an error occurs if you
subsequently reference PA. You can use the exceptions to handle this error. For more
information on handling run-time library exceptions, see Handling RTL Exceptions in
the Help system.

334 Delphi Visual Component Library Reference

FromPage property

Example

type
TFriendRec = record
Name: string[30];

Age : Byte;
end;
var
p: pointer;
begin

if MaxAvail < SizeOf (TFriendRec) then
MessageDlg('Not enough memory', mtWarning, [mbOk], 0);
else
begin
{ Allocate memory on heap }
GetMem(p, SizeOf (TFriendRec));
{ ...}
{ ...Use the memory... }
{ ...}
{ then free it when done }
FreeMem(p, SizeOf (TFriendRec));
end;
end;

See also
Dispose procedure, GetMem procedure, New procedure

FromPage property

Applies to
TPrintDialog component

Declaration
property FromPage: Integer;

The value of the FromPage property determines on which page the print job begins. The
default value is 0.

Example

This example uses a Print dialog box on a form. These lines set up the Print dialog box so
that when it appears, the default values of 1 and 1 are the default starting and ending
values for the Pages From and To edit boxes.

PrintDialogl.Options := [poPageNums];
PrintDialogl.FromPage := 1;
PrintDialogl.ToPage := 1;

Delphi Visual Component Library Reference 335

FullCollapse method

See also
ToPage property

FullCollapse method

Applies to
TOutline component

Declaration
procedure FullCollapse;

FullCollapse collapses all the items within an outline. When an item is collapsed, its
Expanded property is set to False, its subitems are hidden, and the closed or plus pictures
might be displayed, depending on the outline style specified in the OutlineStyle

property.

Example

The following code collapses the outline if the selected item is visible.
if Outline[Outlinel.SelectedItem].IsVisible then

Outlinel.FullCollapse;

See also
Collapse method, Expand method, FullExpand method, OnCollapse event, PictureClosed
property, PicturePlus property

FullExpand method

Applies to
TOutlineNode object; TOutline component

Declaration
procedure FullExpand;

FullExpand expands the items within an outline. If the FullExpand method belongs to a
TOutline component, all items in the outline are expanded. If the FullExpand method
belongs to a TOutlineNode object, only the items on the same branch as the outline node
are expanded. This means that all subitems are expanded, and all parents up to the top
item on level 1 (specified by the Topltem property) are expanded. No items on other
branches (with different level 1 parents) are expanded.

When an item is expanded, its Expanded property is set to True, its subitems are
displayed, and the open or minus pictures might be displayed, depending on the
outline style specified in the OutlineStyle property.

336 Delphi Visual Component Library Reference

FullPath property
Example
The following code expands the outline if the selected item is not visible:
if not Outlinel.Items[Outlinel.SelectedItem].IsVisible then
Outlinel.FullExpand;

See also

Collapse method, Expand method, FullCollapse method, OnExpand event, PictureMinus
property, PictureOpen property

FullPath property

Applies to
TOutlineNode object

Declaration
property FullPath: string;

Run-time and read only. The FullPath property specifies the path of outline items from
the top item on level 1 to the item contained by the TOutlineNode. The path consists of
the values of the Text properties of the outline items separated by the string specified in
the ItemSeparator property of the TOutline component.

Example
The following code displays the full path of the selected outline item in Labell:

Labell.Caption := Outlinel.Items[Outlinel.SelectedItem].FullPath;

See also
Items property, SelectedItem property

GetAliasNames method

Applies to

TSession component

Declaration
procedure GetAliasNames(List: TStrings);

The GetAliasNames method clears the parameter List and adds to it the names of all
defined BDE aliases. Application-specific aliases are not included.

Example

Session.GetAliasNames (MyStringList);

Delphi Visual Component Library Reference 337

GetAliasParams method

See also
GetDataBaseNames method, Session variable

GetAliasParams method

Applies to

TSession component

Declaration
procedure GetAliasParams(const AliasName: string; List: TStrings);

The GetAliasParams method clears List and adds to it the parameters associated with the
BDE alias passed in AliasName.

Example

Session.GetAliasParams (MyStringList);

See also
Session variable

GetAsHandle method

Applies to
TClipboard object

Declaration
function GetAsHandle (Format: Word): THandle;

The GetAsHandle method returns the data from the Clipboard in a Windows handle for
the format specified in the Format parameter. See the Windows API Help file for
information about the available formats.

Your application doesn’t own the handle, so it should copy the data before using it.

Example
The following code locks the memory for text on the Clipboard, then converts the text to
a Pascal-style string.

var
TheClipboard: TClipboard;
MyHandle: THandle;
TextPtr: PChar;
MyString: string;

begin
MyHandle := TheClipboard.GetAsHandle (CF_TEXT);

338 Delphi Visual Component Library Reference

GetBookmark method

TextPtr := GlobalLock(MyHandle);
MyString := StrPas(TextPtr);
GlobalUnlock (MyHandle) ;

end;

See also
FormatCount property, Formats property, HasFormat method, SetAsHandle method

GetBookmark method

Applies to G
TTable, TQuery, TStoredProc components

Declaration
function GetBookmark: TBookmark;

The GetBookmark method saves the current record information of thedataset to allow you
to return to that record with a later call to the GotoBookmark method. The bookmark
should be eventually be passed to the FreeBookmark method to release the resources
reserved during the call to GetBookmark. If the dataset is empty or not in Browse state,
GetBookmark will return nil.

Note All bookmarks are invalidated when a dataset is closed and when a table’s index is
changed.

Example

var MyBookmark: TBookmark;

with Tablel do

begin

Save the current record position in MyBookmark }
MyBookmark := GetBookmark;

... { Other code here }

Return to the record associated with MyBookmark }
GotoBookmark (MyBookmark) ;

Release the resources for MyBookmark }
FreeBookmark (MyBookmark) ;

end;

—

—

—

GetComponent method

Applies to
TClipboard object

Delphi Visual Component Library Reference 339

GetData method

Declaration
function GetComponent (Owner, Parent: TComponent): TComponent;

The GetComponent method retrieves a component from the Clipboard and places it
according to the value of the Owner and Parent parameters. With Owner, specify the
component that becomes the owner of the retrieved component—usually this is a form.
With Parent, specify the component that becomes the parent of the component. Both
Owner and Parent can be nil.

Example

This example uses a button and a group box on a form. When the user clicks the button,
the button is copied to the Clipboard and then retrieved from the Clipboard and placed
in the new parent of the button, the group box. The name of the original button is
changed to an empty string to avoid having two components with the same name at the
same time.

implementation

uses Clipbrd;

{SR *.DFM}
procedure TForml.ButtonlClick(Sender: TObject);
begin
Clipboard.SetComponent (Buttonl) ; { copies button to the Clipboard }
Buttonl.Name := ''; { prevents having two components with the same name }
Clipboard.GetComponent (Self, GroupBoxl); { retrieves button from Clipboard and }
end; { places it in the group box }
initialization
RegisterClasses([TButton]); { registers the TButton class }
end.
See also

AsText property, Owner property, Parent property, SetComponent method

GetData method

Applies to

TParam object; TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField,
TDateField, TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField,
TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

For fields

Declaration

function GetData(Buffer: Pointer): Boolean;

340 Delphi Visual Component Library Reference

GetDatabaseNames method

GetData is the method used to obtain “raw” data from the field. Unlike the AsString,
DisplayText, and Text properties, GetData performs no translation or interpretation of the
data. Buffer must have sufficient space allocated for the data. Use the DataSize property
to determine the space required. If the data is NULL, GetData returns False and no data
is transferred to Buffer. Otherwise, it returns True.

Example

{ Retrieve the “raw” data from Fieldl }

with Fieldl do

begin

Allocate space }

GetMem (Buffer, DataSize);

if not Fieldl.GetData(Buffer) then
MessageDlg (FieldName + ' is NULL’, mtInformation, [mbOK], 0)

else { Do something with the data };

Free the space }

FreeMem(Buffer, DataSize);

end;

—

—

For Tparam objects

Declaration
procedure GetData(Buffer: Pointer);

The GetData method copies the current value of the parameter in native format to Buffer.
Buffer must have enough space to hold the information; use the GetDataSize method to
determine the requirement.

Example

var Buffer: Pointer;

{ Allocate enough space to hold the CustNo data }
GetMem(Buffer, Queryl.ParamByName (‘CustNo’).GetDataSize);
{ Retrieve the data }

Queryl.ParamByName (‘CustNo’).GetData (Buffer);

See also
SetData method

GetDatabaseNames method

Applies to
TSession component

Declaration

procedure GetDatabaseNames(List: TStrings);

Delphi Visual Component Library Reference 341

GetDataltem method

The GetDatabaseNames method clears List and adds to it the names of all BDE aliases and
application-specific aliases.

Example

Session.GetDatabaseNames (MyStringList);

See also
GetAliasNames method, Session variable

GetDataltem method

Applies to

TOutline component

Declaration
function GetDataltem(Value: Pointer): Longint;

The GetDataltern method returns the Index value of the first outline item that contains the
data specified in the Value parameter in its Data property. Use GetDataltem when you
have a pointer to data and you want to know which outline item contains the data.

Example
The following code displays the Text of the outline item that points to the variable P3 in
its Data property. The text is displayed in a label.

Labell.Caption := Outlinel.Items[GetDataltem(p3)].Text;

See also
Getltem method, GetTextItem method

GetDataSize method

Applies to

TParam object

Declaration

function GetDataSize: Word;

The GetDataSize method returns the number of bytes required to hold the parameter’s
value. Use GetDataSize in conjunction with the GetData method to allocate memory for
the parameter’s data.

Example

var Buffer: Pointer;

342 Delphi Visual Component Library Reference

GetDir procedure

{ Allocate enough space to hold the CustNo data }

GetMem (Buffer, Queryl.ParamByName (’CustNo’).GetDataSize);
{ Retrieve the data }

Queryl.ParamByName (‘CustNo’) .GetData (Buffer);

GetDir procedure System

Declaration
procedure GetDir(D: Byte; var S: string);
The GetDir procedure returns the current directory of a specified drive.

D can be set to any of the following values:

Value Drive
0 Default
1 A
2 B
3 C

Performs no error checking. If the drive specified by D is invalid, S returns X:\ as if it
were the root directory of the invalid drive.

Example

var
s : string;
begin
GetDir(0,s); { 0 = Current drive }
MessageDlg ('Current drive and directory: ' + s, mtInformation, [mbOk] , 0);
end;

See also
ChDir function, MkDir procedure, RmDir procedure

GetDriverNames method

Applies to
TSession component

Declaration

procedure GetDriverNames(List: TStrings);

The GetDriverNames method clears List and adds to it the names of all BDE drivers
currently installed. This will not include PARADOX’ or ‘DBASE’, since these databases
are handled by the driver named ‘STANDARD'.

Delphi Visual Component Library Reference 343

GetDriverParams method

Example

Session.GetDriverNames (MyStringList);

See also
Session variable

GetDriverParams method

Applies to

TSession component
Declaration

procedure GetDriverParams(const DriverName: string; List: TStrings);
The GetDriverParams method clears List and adds to it the default parameters for the
driver named in DriverName parameter. The driver named ‘STANDARD’ (used for
Paradox and dBASE tables) has only one parameter, PATH=". SQL drivers will have
varying parameters.
Example

Session.GetDriverParams (MyStringList);

See also
Session variable

GetFieldNames method

Applies to
TTable, TQuery, TStoredProc components

Declaration

procedure GetFieldNames(List: TStrings);

The GetFieldNames method clears the TStrings argument, List, and then adds the name of
each field in the dataset to it.

Example

var FieldNames: TStringList;
{ Initialize FieldNames to hold the names }
FieldNames := TStringList.Create;

{ Get the names }
Tablel.GetFieldNames (FieldNames) ;

344 Delphi Visual Component Library Reference

GetFirstChild method

{ Do something with them }

{ Free the TStringList }
FieldNames.Free;

GetFirstChild method

Applies to
TOutlineNode object

Declaration
function GetFirstChild: Longint;

The GetFirstChild method returns the Index value of the first subitem in an outline item.
If the item has no subitems, GetFirstChild returns -1.

Example
The following code expands the selected outline item if it has children and then selects
the first child.

with Outlinel do
if Ttems[SelectedItem].HasItems then
begin
ITtems[SelectedItem].Expanded := True;
SelectedItem := Items[Items[SelectedItem].GetFirstChild];
end;

See also
GetLastChild method, GetNextChild method, GetPrevChild method

GetFormatSettings procedure SysUtils

Declaration
procedure GetFormatSettings;

GetFormatSettings reloads all the date and number format preferences stored in the
WINL.INI file's International section. When a program, such as Control Panel, modifies
the WIN.INI file, it should notify other running applications by broadcasting a
WM_WININIFILEChanged message. Your application should call GetFormatSettings
when you receive this message.

GetFormimage method

Applies to
TForm component

Delphi Visual Component Library Reference 345

GetHelpContext method

Declaration
function GetFormImage: TBitmap;

The GetFormlmage returns a bitmap of the form as it appears when printed.

Example

This example uses an image, a button, and a shape component on a form. When the user
clicks the button, an image of the form is stored in the FormImage variable and copied to
the Clipboard. Then image of the form in then copied back to the image component,
producing an interesting result, especially if the button is clicked multiple times.

procedure TForml.ButtonlClick(Sender: TObject);
var
FormImage: TBitmap;
begin
FormImage := GetFormImage;
Clipboard.Assign(FormImage) ;
Imagel.Picture.Assign(Clipboard);
end;

procedure TForml.FormCreate(Sender: TObject);

begin
Shapel.Shape := stEllipse;
Shapel.Brush.Color := clLime;
Imagel.Stretch := True;

end;

See also
PrintScale property

GetHelpContext method

Applies to
TMainMenu component

Declaration
function GetHelpContext (Value: Word; ByCommand: Boolean): THelpContext;

The GetHelpContext method returns a help context number.

See also
HelpContext property, HelpContext method, HelpJump method, OnHelp event

GetIndexForPage method

Applies to
TTabbedNotebook component

346 Delphi Visual Component Library Reference

GetlndexNames method

Declaration
function GetIndexForPage(const PageName: string): Integer;

The GetIndexForPage method returns the Pagelndex value of the specified page. The
Pagelndex property value is determined by the page’s position in the Pages property
array. Specify the name of the page as the value of the PageName parameter. The name
you specify must be one of the strings in the Pages property.

Example

This example uses a tabbed notebook and a label on a form. When the form is created,
pages are added to the tabbed notebook. The Pagelndex value of the Preferences page
appears in the caption of the label.

procedure TForml.FormCreate (Sender: TObject);
begin
with TabbedNotebookl do
begin
Pages.Clear;
Pages.Add('Styles');
Pages.Add('Fonts');
Pages.Add('Preferences');
end;
Labell.Caption := 'The Preferences page has an index of ' +
IntToStr (TabbedNotebookl.Get IndexForPage (' Preferences')) ;
end;

See also
SetTabFocus method

GetlndexNames method

Applies to
TTable component

Declaration
procedure GetIndexNames(List: TStrings);

The GetIndexNames method adds the names of all available indexes for the TTable to the
List parameter.

Example

var
MyList: TStringList;

MyList := TStringList.Create;
Tablel.GetIndexNames (MyList);
{ Do something with the names }

Delphi Visual Component Library Reference 347

Getltem method

MyList.Free;

See also
IndexName property

Getltem method

Applies to
TOutline component

Declaration
function GetItem(X, Y: Integer): Longint;

The Getltern method returns the Index value of the outline item that resides at the pixel
coordinates (X, Y). Use Getltern when you want to know which outline item is in a
specific screen location.

Example
The following code makes the item at screen coordinates (34,100) the selected item.

Outlinel.SelectedItem := Outlinel.GetItem(34,100);

See also
GetDataltem method, GetTextItem method

GetltemPath method

Applies to
TDirectoryListBox component

Declaration
function GetItemPath(Index : Integer): string;

The GetltemPath method returns as a string the path of a directory in a directory list box.
Specify the directory with the Index value using the first directory in the list that has an
index value of 0.

Example

This example uses a directory list box, a button, and a label on a form. When the user
selects a directory in the directory list box and clicks the button, the selected directory
opens, and the path of the second directory displayed in the list box appears as the
caption of the label.

procedure TForml.ButtonlClick(Sender: TObject);
begin
DirectoryListBox1.OpenCurrent;

348 Delphi Visual Component Library Reference

GetLastChild method

Labell.Caption := DirectoryListBoxl.GetItemPath(1l);
end;

See also
Directory property, Drive property, OpenCurrent method

GetLastChild method

Applies to
TOutlineNode object

|
Declaration

function GetLastChild: Longint;

The GetLastChild method returns the Index value of the last subitem in an outline item. If
the item has no subitems, GetLastChild returns -1.

Example
The following code expands the selected outline item if it has children and then selects
the last child.

with Outlinel do
if Ttems[SelectedItem].HasItems then
begin
ITtems[SelectedItem] .Expanded := True;
SelectedItem := Items[Items[SelectedItem].GetLastChild];
end;

See also
GetFirstChild method, GetNextChild method, GetPrevChild method

GetLongHint function Controls

Declaration
function GetLongHint (const Hint: string): string;

The GetLongHint function returns the second part of the two-part string specified as the
value of the Hint property. The second part of the string is the text following the |
character. If the Hint string value is not separated into two parts, GetLongHint returns
the entire Hint string.

Example
This code assigns a two-part string as to the Hint property of an edit box and then
displays the “long” or second part of the string as the text of the edit box:

procedure TForml.BitBtnlClick(Sender: TObject);

Delphi Visual Component Library Reference 349

GetMem procedure

begin
Editl.Hint := 'Name|Enter full name';
Editl.Text := GetLongHint (Editl.Hint);
end;
See also

GetShortHint function, OnHint event, ShowHint property

GetMem procedure System

Declaration
procedure GetlMem(var P: Pointer; Size: Word);

The GetMem procedure creates a dynamic variable of the specified size and puts the
addpress of the block in a pointer variable.

P is a variable of any pointer type. Size is an expression specifying the size in bytes of the
dynamic variable to allocate. You should reference the newly created variable as P/

If there isn’t enough free space in the heap to allocate the new variable, a run-time error
occurs. When {$I+}, you can use the exceptions to handle the error. For more
information on handling run-time library exceptions, see Handling RTL Exceptions in
the Help system.

The largest single block that can be safely allocated on the heap at one time is 65,528
bytes.
Example

type
TFriendRec = record
Name: string[30];

Age : Byte;
end;
var
p: pointer;
begin

if MaxAvail < SizeOf (TFriendRec) then
MessageDlg('Not enough memory', mtWarning, [mbOk], 0);
else
begin
{ Allocate memory on heap }
GetMem(p, SizeOf (TFriendRec));
{ ...}
{ ...Use the memory... }
{ ...}
{ then free it when done }
FreeMem(p, SizeOf (TFriendRec));
end;
end;

350 Delphi Visual Component Library Reference

GetNextChild method

See also
Dispose procedure, FreeMem procedure, New procedure

GetNextChild method

Applies to

TOutlineNode object

Declaration

function GetNextChild(Value: Longint): Longint;
The GetNextChild method returns the Index value of the next outline item that shares the

same parent item as the item that has an Index value equal to the Value parameter. This is
useful when the item indexed by Value has subitems, thus the index of its next sibling is
not simply one more than Value. If the item indexed by Value has no next sibling,
GetNextChild returns -1.

Example
The following code selects the next sibling of the selected item.

with Outlinel do
SelectedItem := Items[SelectedItem].GetNextChild(SelectedItem);

See also
GetFirstChild method, GetLastChild method, GetPrevChild method

GetParentForm function Forms

Declaration
function GetParentForm(Control: TControl): TForm;

The GetParentForm function returns the form that contains the control specified in the
Control parameter. If the specified control is not on a form, GetParentForm returns nil.

If you’d rather have the function return an exception when the specified control is not
on a form, use the ValidParentForm function.

Example
The following code shows the form that contains Button2:

GetParentForm(Button2) .Show;

See also
ValidParentForm function

Delphi Visual Component Library Reference 351

GetPassword method

GetPassword method

Applies to

TSession component
Declaration

function GetPassword: Boolean;

The GetPassword method invokes the OnPassword event (if any) or displays the default
password dialog box. It then returns True if the user chose the OK button and False if the
user chose the Cancel button.

Example

Session.GetPassword;

See also
Session variable

GetPrevChild method

Applies to
TOutlineNode object

Declaration
function GetPrevChild(Value: Longint): Longint;

The GetPrevChild method returns the Index value of the previous outline item that shares
the same parent item as the item that has an Index value equal to the Value parameter.
This is useful when the previous sibling has subitems, thus its index is not simply one
less than Value. If the item indexed by Value has no previous sibling, GetPrevChild
returns -1.

Example
The following code tests to determine if the selected item has a previous sibling. The
results are displayed in a label.

with Outlinel do
if (Items[SelectedItem].GetPrevChild > -1) then

Labell.Caption := 'Has a prior sibling’
else
Labell.Caption := 'Has no prior sibling’;
See also

GetFirstChild method, GetLastChild method, GetNextChild method

352 Delphi Visual Component Library Reference

GetPrinter method

GetPrinter method

Applies to
TPrinter object

Declaration

procedure GetPrinter (ADevice, ADriver, APort: PChar; var ADeviceMode: THandle);

The GetPrinter method retrieves the current printer. You should rarely need to call this
method and should instead access the printer you want in the Printers property array.
For more information, see the Windows API CreateDC function.

See also
SetPrinter method

GetProfileChar function SysUtils

Declaration
function GetProfileChar(Section, Entry: PChar; Default: Char): Char;

GetProfileChar loads a single character from the given section and item of WIN.INL

GetProfileStr function SysUtils

Declaration
function GetProfileStr(Section, Entry: PChar; const Default: string): string;

GetProfileStr loads a string value from the given section and item of WIN.INL This
function is used by GetFormatSettings.

GetResults method

Applies to
TParam object

Declaration

procedure GetResults;

You only need to call this method with a Sybase stored procedure that returns a result
set. GetResults returns the output parameter values from the stored procedure. Usually,
TStoredProc does this automatically, but Sybase stored procedures do not return the

Delphi Visual Component Library Reference 353

GetSelTextBuf method

values until the cursor reaches the end of the result set, so you must call GetResults
explicitly.

Example

StoredProcl.Open
while not EOF do
begin
StoredProcl.Next;
{Do Something}
end;
StoredProcl.GetResults;
Editl.Text := StoredProcl.ParamByName (‘Output’);

GetSelTextBuf method

Applies to
TDBEdit, TDBMemo, TEdit, TMaskEdit, TMemo components

Declaration
function GetSelTextBuf (Buffer: PChar; BufSize: Integer): Integer;

The GetSelTextBuf method copies the selected text from the edit box or memo control
into the buffer pointed to by Buffer, up to a maximum of BufSize characters, and returns
the number of characters copied.

You should need to use the GetSelTextBuf method only if you are working with strings
longer than 255 characters. Because an Object Pascal style string has a limit of 255
characters, such properties as Text for an edit box, Items for a list box, and Lines for a
memo control do not allow you to work with strings longer than 255 characters.
GetSelTextBuf and the corresponding SetSelTextBuf methods use null-terminated strings
that can be up to 64K in length.

Example

procedure TForml.ButtonlClick(Sender: TObject);
var

Buffer: PChar;

Size: Integer;

begin
Size := Editl.SelLength; {Get length of selected text in Editl}
Inc(Size); {Add room for null character}
GetMem(Buffer, Size); {Creates Buffer dynamic variable}
Editl.GetSelTextBuf (Buffer,Size); {Puts Editl.Text into Buffer}
Edit2.Text := StrPas(Buffer); {Converts string in Buffer into Pascal-style string}
FreeMen(Buffer, Size); {Frees memory allocated to Buffer}

end;

354 Delphi Visual Component Library Reference

GetShortHint function

See also
GetTextBuf method, SelText property, SetSelTextBuf method

GetShortHint function Controls

Declaration
function GetShortHint (const Hint: string): string;

The GetShortHint function returns the first part of the two-part string specified as the

value of the Hint property. The first part of the string is the text following the |

character. If the Hint string value is not separated into two parts, GetShortHint returns
the entire Hint string.

Example
This code assigns a two-part string as the Hint property of an edit box and then displays
the “short” or first part of the string as the text of the edit box:

procedure TForml.BitBtnlClick(Sender: TObject);

begin
Editl.Hint := 'Namel|Enter full name';
Editl.Text := GetShortHint (Editl.Hint);
end;
See also

GetLongHint function, OnHint event, ShowHint property

GetStoredProcNames method

Applies to

TSession component

Declaration

procedure GetStoredProcNames (const DatabaseName: string; List: TStrings);

GetStoredProcNames returns a list of all stored procedures defined for the specified SQL
database. This method is not valid for Paradox or dBASE databases.

Example

Session.GetStoredProcNames (' IB_EMPLOYEE’, MyStringList);

See also
Session variable

Delphi Visual Component Library Reference 355

GetTableNames method

GetTableNames method

Applies to
TSession component

Declaration

procedure GetTableNames (const DatabaseName, Pattern: string;
Extensions, SystemTables: Boolean; List: TStrings);

The GetTableNames method clears List and then adds to it the names of all the tables in
the database referenced by DatabaseName. The Pattern parameter will limit the table
names to those matching Pattern.

For SQL servers, set SystemTables to True to obtain system tables in addition to user
tables. For desktop (non-SQL) databases, set Extensions to True to include file-name
extensions in the table names.

Example

Session.GetTableNames ('DBDEMOS’, False, False, MyStringList);

See also
Session variable

GetText method

Applies to
TStrings, TStringList objects
Declaration

function GetText: PChar;

The GetText method returns a string list as a null-terminated string. GetText is useful
when working with components that contain blocks of text made up of more than one
string. For example, a memo component (TMerno) can contain multiple strings. When
you want to return the entire list of strings in a memo component all at once, use the
GetText method.

Example

The following code returns the text in the items of an outline to one variable called
MyVar.

MyVar := Outlinel.Lines.GetText;

See also
SetText method

356 Delphi Visual Component Library Reference

GetTextBuf method

GetTextBuf method

Applies to
All controls; TClipboard object

Declaration
function GetTextBuf (Buffer: PChar; BufSize: Integer): Integer;

The GetTextBuf method retrieves the control’s text and copies it into the buffer pointed
to by Buffer, up to the number of characters given by BufSize, and returns the number of

characters copied.

The resulting text in Buffer is a null-terminated string.
To find out how many characters the buffer needs to hold the entire text, you can call the
GetTextLen method before calling GetTextBuf.

Usually you need to use GetTextBuf and the corresponding SetTextBuf only when
working with strings longer than 255 characters. Because Object Pascal strings have a
limit of 255 characters, such properties as Text for an edit box, Iterms for a list box, and
Lines for a memo control only allow you to work with strings up to 255 characters.
GetTextBuf and SetTextBuf use null-terminated strings that can be up to 64K in length.

Example
This example copies the text in an edit box into a null-terminated string, and puts this
string in another edit box when the user clicks the button on the form.

procedure TForml.ButtonlClick(Sender: TObject);

var
Buffer: PChar;
Size: Byte;
begin
Size := Editl.GetTextLen; {Get length of string in Editl}
Inc(Size); {Add room for null character}
GetMem (Buffer, Size); {Creates Buffer dynamic variable}
Editl.GetTextBuf (Buffer,Size); {Puts Editl.Text into Buffer}
Edit2.Text := StrPas(Buffer); {Converts Buffer to a Pascal-style string]
FreeMen(Buffer, Size); {Frees memory allocated to Buffer}
end;
See also

GetSelTextBuf method, SetTextBuf method

GetTextltem method

Applies to

TOutline component

Delphi Visual Component Library Reference 357

GetTextLen method

Declaration
function GetTextItem(Value: string): Longint;

The GetTextItem method returns the Index value of the first outline item that contains the
string specified in the Value parameter in its Text property. Use GetTextItern when you
want to know which outline item is identified by a string.

Example
The following code returns the index of the outline item that contains the text "Perry’ to
a variable called Perrylndex.

PerryIndex := Outlinel.GetTextItem('Perry’);

See also
GetDataltem method, Getltem method

GetTextLen method

Applies to
All controls

Declaration
function GetTextLen: Integer;

The GetTextLen method returns the length of the control’s text. The most common use of
GetTextLen is to find the size needed for a text buffer in the GetTextBuf method.

Example

This example uses two edit boxes and a button on a form. When the user clicks the
button, the length of the text in the Edit1 is displayed in Edit2.

procedure TForml.ButtonlClick(Sender: TObject);

var
Size: Integer;
begin
Size := Editl.GetTextLen;
Edit2.Text := ('Editl has ' + IntToStr(Size) + 'characters in it');
end;
See also
GetTextBuf method

Glyph property

Applies to
TBitBtn, TSpeedButton controls

358 Delphi Visual Component Library Reference

Glyph property

Declaration
property Glyph: TBitmap;

The Glyph property specifies the bitmap that appears on the selected bitmap button or
on a speed button. Use the Open dialog box that appears as an editor in the Object
Inspector to choose a bitmap file (with a.BMP extension) to use on the button, or specify
a bitmap file at run time.

You can provide up to four images on a bitmap button or speed button with a single
bitmap. Delphi then displays one of these images depending on the state of the button.

Image position
in bitmap Button state Description
First Up This image appears when the button is unselected. If no other

images exist in the bitmap, Delphi also uses this image for all
other images.

Second Disabled This image usually appears dimmed to indicate that the button
can’t be selected.

Third Down This image appears when a button is clicked. The up state image
reappears when the user releases the mouse button.

Fourth Stay down This image appears when a button stays down indicating that it
remains selected. (This fourth state applies only to speed
buttons.)

If only one image is present, Delphi attempts to represent the other states by altering the
image slightly for the different states, although the stay down state is always the same as
the up state. If you aren’t satisfied with the results, you can provide one or more
additional images in the bitmap.

If you have multiple images in a bitmap, you must specify the number of images that
are in the bitmap with the NumGlyphs property. All images must be the same size and
next to each other in a horizontal row.

Example
This example uses a bitmap button on a form. When the application runs and the form is
created, a bitmap is placed on the bitmap button.

procedure TForml.FormCreate (Sender: TObject);
begin

BitBtnl.Glyph.LoadFromFile ('TARTAN.BMP');
end;

These lines of code load a four-image bitmap into the Glyph property of a speed button,
and specify the appropriate value for the NumGlyphs property:

SpeedButtonl.Glyph.LoadFromFile (‘MYBITMAP.BMP');
SpeedButtonl.NumGlyphs := 4;

See also

Kind property, Layout property, Margin property, ModalResult property, NumGlyphs
property, Spacing property, TBitmap object

Delphi Visual Component Library Reference 359

GotoBookmark method

GotoBookmark method

Applies to
TTable, TQuery, TStoredProc components

Declaration
procedure GotoBookmark (Bookmark: TBookmark);

The GotoBookmark method moves the cursor to the record corresponding to the
bookmark obtained through a call to GetBookmark. While you must eventually call the
FreeBookmark method to release the resources reserved during the call to GetBookmark,
you are free to make as many calls to GotoBookmark as you wish before calling
FreeBookmark. If the Bookmark parameter is nil, GotoBookmark does nothing.

Example

var MyBookmark: TBookmark;

with Tablel do

begin

Save the current record position in MyBookmark }
MyBookmark := GetBookMark;

... { Other code here }

Return to the record associated with MyBookmark }
GotoBookMark (MyBookMark) ;

Release the resources for MyBookmark }
FreeBookmark (MyBookmark) ;

end;

—

—

—

GotoCurrent method

Applies to
TTable component

Declaration
procedure GotoCurrent (Table: TTable);

Use the GotoCurrent method to synchronize the positions of two TTable components that
use the same database table. GotoCurrent changes the position of the table to match that
of the Table parameter.

Note Both tables must have the same DatabaseName and TableName or a “table mismatch”
exception will be raised.

Example

Tablel.GotoCurrent (Table2);

360 Delphi Visual Component Library Reference

GotoKey method

GotoKey method

Applies to
TTable component

Declaration
function GotoKey: Boolean;

The GotoKey method is used with the SetKey or EditKey method to move to a specific

record in a TTable. Call SetKey to put the table in SetKey state. In SetKey state,

assignments to fields indicate values to search for in indexed fields. GoToKey then moves

the cursor to the first row in the table that matches those field values.

GoToKey is a Boolean function that moves the cursor and returns True if the search is
successful. If the search is unsuccessful, it returns False and does not change the position
of the cursor.

Note If you want to search on a subset of fields in a multiple-field key, you must set the
KeyFieldCount property to the number of fields on which you want to search.

Example

with Tablel do
begin
EditKey;
FieldByName (‘CustNo’).AsFloat := 610;
GotoKey;
end;

See also
FindKey method

GotoNearest method

Applies to
TTable component

Declaration
procedure GotoNearest;

The GotoNearest method is used with the EditKey or SetKey method to move to a record
in the dataset whose index fields are greater than or equal to the IndexFields property.
Call SetKey first to put the TTable in SetKey state, modify the fields of the key, and finally
call GotoNearest to perform the move.

The KeyExclusive property indicates whether a search will position the cursor on or after
the specified record being searched for.

Delphi Visual Component Library Reference 361

GotoXY procedure

Note You do not have to assign a value for each field in the index key. Any unassigned field
will use a NULL value.

The search begins at the first record in the table, not at the current cursor position.

Example

with Tablel do
begin
SetKey;
FieldByName (’State’).AsString := ‘CA’;
FieldByName(‘City’).AsString := ‘Santa’;
GotoNearest;
end;

See also
GotoKey method, KeyFieldCount property, SetKey method

GotoXY procedure WinCrt

Declaration
procedure GotoXY (X, Y: Byte);

The GotoXY procedure moves the cursor to specified coordinates (X,Y) within the
virtual screen.

The upper left corner of the virtual screen corresponds to (1, 1).

Use CursorTo instead of GotoXY when developing new applications.

Example
uses WinCrt;

var
C: PChar;

begin
GotoXY (10,10);
Writeln('Hello');
end;

See also
CursorTo procedure, WhereX function, WhereY function

Graphic property

Applies to
TPicture object

362 Delphi Visual Component Library Reference

GraphicExtension function

Declaration
property Graphic: TGraphic;
The Graphic property specifies the graphic that the picture contains. The graphic can be a

bitmap, icon, or metafile.

Example

The following code draws the graphic in Picturel in the top-left corner of the canvas of
Form1.

Forml.Canvas.Draw(0,0 Picturel.Graphic);
See also
Bitmap property, Icon property, Metafile property

GraphicExtension function Graphics

Declaration
function GraphicExtension(GraphicClass: TGraphicClass): string;

The GraphicExtension function returns the file-name extension of the graphics object
specified by the GraphicClass parameter. The TGraphicClass type is simply a container
class for the TBitmap, TGraphic, Tlcon, and TMetafile objects. These are the file extensions
returned for each graphics class:

Graphic class File extension returned
TGraphic .BMP, .ICO, or WFM
TBitmap .BMP

Tlcon ICO

TMetafile WEM

Example

The following code tests to determine if the graphic in Picturel is an icon. If so, the
minimized icon of Form1 is set to the graphic.

if GraphicExtension(Picturel.Graphic)=".ICO’ then
Forml.Icon := Picturel.Graphic;

See also
GraphicFilter function

GraphicFilter function Graphics

Declaration

function GraphicFilter (GraphicClass: TGraphicClass): string;

Delphi Visual Component Library Reference 363

GridHeight property

The GraphicFilter function returns a filter string compatible with the Filter property value
of an Open or Save dialog box. The GraphicClass parameter can be one of these values:
TBitmap, TGraphic, Tlcon, or TMetafile. These are the strings that are returned for each
class:

Graphic class Filter string returned

TBitmap Bitmaps (*BMP) | * BMP

Tlcon Icons (*ICO) 1 *1CO

TMetafile Metafiles (* WMF) | * WMF

TGraphic All (*. BMP; * WMEF; *ICO) | * BMP; * WME,; *.ICO | Bitmaps (*.BMP | * BMP | Metafiles

(*WEM | *WME | Icons (*1CO) |*ICO

Example
This code displays an Open dialog box with the TBitmap filter string in the List Files of
Type combo box:

OpenDialogl.DefaultExt := GraphicExtension(TBitmap);
OpenDialogl.Filter := GraphicFilter (TBitmap);
if OpenDialogl.Execute then

See also
GraphicExtension function, TOpenDialog component, TSaveDialog component

GridHeight property

Applies to
TDrawGrid, TStringGrid components

Declaration
property GridHeight: Integer;

Run-time and read only. The GridHeight property is the height of the grid in pixels. If the
grid is too tall to be fully displayed causing the user to scroll to see its entire contents, the
value of GridHeight is the same as the ClientHeight property value for the grid.

Example
This example uses a string grid and a label on a form. The height of the grid appears in
the caption of the label.
procedure TForml.FormCreate(Sender: TObject);
var
ARow, ACol: Integer;
begin
with StringGridl do
begin

for ARow := 1 to RowCount - 1 do

364 Delphi Visual Component Library Reference

GridLineWidth property

for ACol := 1 to ColCount - 1 do

Cells[ARow, ACol] := 'Delphi';
end;
Labell.Caption := IntToStr(StringGridl.GridHeight) + ' pixels';
end;
See also
GridWidth property

GridLineWidth property

Applies to
TDrawGrid, TStringGrid components

Declaration
property GridLineWidth: Integer;

The GridLineWidth property determines the width of the lines between the cells in the
grid. The default value is 1 pixel. Larger values create heavier lines.

Example

This example includes a draw grid on a form. When the application runs and the form is
created, the width of the lines on the draw grid changes if the default column width of
the grid is over 90 pixels wide:

procedure TForml.FormCreate(Sender: TObject);
begin
with DrawGridl do
begin
if DefaultColwidth > 90 then
GridLineWidth := 2

else
GridLineWidth := 1;
end;
end;
See also
ColWidths property, DefaultColWidth property, GridHeight property, GridWidth property,
RowHeights property

GridWidth property

Applies to
TDrawGrid, TStringGrid components

Delphi Visual Component Library Reference 365

Grouplndex property

Declaration
property GridWidth: Integer;

Run-time and read only. The GridWidth property is the width of the grid in pixels. If the
grid is too wide to be fully displayed causing the user to scroll it to see its entire
contents, the value of GridWidth is the same as the ClientWidth property value for the

grid.
Example
This example uses a string grid and a label on a form. The label reports the width of the
grid.
procedure TForml.FormCreate(Sender: TObject);
var
ARow, ACol: Integer;
begin
with StringGridl do
begin

for ARow := 1 to RowCount - 1 do
for ACol := 1 to ColCount - 1 do

Cells[ARow, ACol] := 'Pascal';
end;
Labell.Caption := IntToStr(StringGridl.GridwWidth) + ' pixels';
end;
See also
GridHeight property

Grouplndex property

Applies to
TMenultem, TSpeedButton components

For speed button controls

Declaration
property GroupIndex: Integer;
The GroupIndex property determines which speed buttons work together as a group.

By default, speed buttons have a Grouplndex property value of 0, indicating that they do
not belong to a group. When the user clicks such a speed button, the button appears
“pressed,” or in its down state, then the button returns to its normal up state when the
user releases the mouse button.

Speed buttons with the same GroupIndex property value (other than 0), work together as
a group. When the user clicks one of these speed buttons, it remains “pressed,” or in its

366 Delphi Visual Component Library Reference

Grouplndex property

down state, until the user clicks another speed button belonging to the same group.
Speed buttons used in this way can present mutually exclusive choices to the user.

Example
This code assures that the three speed buttons work together as a group:

SpeedButtonl.GroupIndex := 1;
SpeedButton2.GroupIndex := 1;
SpeedButton3.GroupIndex := 1;

See also
AllowAllUp property, Down property

For menu items

Declaration
property GroupIndex: Byte;

If your application has multiple forms, you'll probably want your application’s main
menu to change as different forms become active. The alternative is for each form to
display its own menu within itself. MDI applications always merge the menus of child
windows with the main menu of the parent window. By using the Grouplndex property
for menu items, you can determine how menus are merged. You can choose to replace
or insert menu items in a menu bar.

Each menu item has a Grouplndex property value. By default, all menu items in a menu
bar have the same Grouplndex value, unless you explicitly change them. Each successive
menu item in a menu bar must have a Grouplndex value equal to or greater than the
previous menu item.

Replacing menu items in a menu bar

If a menu item in a menu bar on a form other than the main form has the same
Grouplndex value as a menu item in a menu bar on the main form, the menu item
replaces the menu item in the menu bar of the main form when that form becomes
active.

If multiple menu items in the menu bar on the main form have the same GroupIndex
value, and all menu items of another form also have the same Grouplndex value, then the
other form’s menu items replace all menu items on the menu bar on the main form.

For example, imagine that the menu bar on Form1 has three items: One, Two, and Three,
and all have a Grouplndex value of 0. If Form2 has a menu bar with one menu item, Four,
with a Grouplndex value of 0, when Form2 becomes active, only the menu item Four
appears in the menu bar on Form1.

Inserting menu items in a menu bar

If one or more menu items in a menu bar on a form that isn’t the main form have a
Grouplndex value greater than a menu item in the menu bar on the main form, those
menu items are inserted into the menu bar on the main form when the menus merge. If

Delphi Visual Component Library Reference 367

Halt procedure

the item’s Grouplndex value is greater than all other GroupIndex values in the main
form’s menu bar, the item appears at the end of the menu. If the GroupIndex value is
between other Grouplndex values in the menu bar on the main form, the menu item
appears between other menu items, depending on the value.

For example, an item with a GroupIndex value of 2 would be inserted between items
with Grouplndex values of 1 and 3. An item with a Grouplndex value of 4 would appear
after all the other items.

Note The Grouplndex value must be different from all others in the menu bar on the main
form, or else the new menu item will replace one or more menu items with the same
GroupIndex value, which you may or may not want to do.

OLE application menus

When you activate an object created by an OLE 2.0 server application, the server might
try to merge its menus with the menus of your container application, depending on the
OLE server application. The Grouplndex property of each of the container application’s
menus determines where the merging menu items appear in the container’s menu bar.
Merged menu items from the OLE server might replace those on the main menu bar, or
they might be inserted beside existing container application menu items.

Note See the documentation for the OLE server for information about whether it attempts
menu merge during in-place activation.

The OLE server can merge up to three groups of menu items. Each group is
distinguished by a unique group index and can contain any number of menu
commands. The following table summarizes the menu item groups that the OLE server
application can merge:

Group Index Description

Edit 1 Menu item(s) from the server for editing the active OLE object

View 3 Menu item(s) from the server for modifying the view of the OLE object.
Help 5 Menu item(s) from the server for accessing the server’s online Help

Any menu items in your container application with values of 1, 3, or 5 for their
Grouplndex properties are replaced by menu items with corresponding index values
from the OLE server application. The menu items from your OLE container with a
Grouplndex value other than 1, 3, or 5 won't be replaced by menus from the server.

See also
AutoMerge property, FormStyle property

Halt procedure System

Declaration

procedure Halt [(Exitcode: Word) 1;

368 Delphi Visual Component Library Reference

Handle property

The Halt procedure stops the program and returns to the operating system. Exifcode is
an optional expression that specifies the exit code of your program.

Example

begin
if 1 = 1 then
begin
if 2 = 2 then
begin
if 3 = 3 then
begin
Halt(1); { Halt right here! }
end;
end;
end;
Canvas.TextOut (10, 10, 'This will not be executed');
end;

See also
Exit procedure, RunError procedure

Handle property

Applies to

All windowed controls; TApplication, TBitmap, TBrush, TCanvas, TFont, Tlcon, TMetafile,
TPen, TPrinter objects; TDatabase, TFindDialog, TMainMenu, TMenultem, TPopupMenu,
TQuery, TSession, TStoredProc, TTable components

For graphics objects

Declaration

property Handle: HBitmap; {for TBitmap objects)
property Handle: HBrush; {for TBrush objects}
property Handle: HDC; {for TCanvas objects}
property Handle: HFont; {for TFont objects}
property Handle: HIcon; {for TIcon objects}

property Handle: HMetafile; {for TMetafile objects}
property Handle: HPen; {for TPen objects}

The Handle property lets you access the Windows GDI object handle, so you can access
the GDI object. If you need to use a Windows API function that requires the handle of a
pen object, you could pass the handle from the Handle property of a TPen object.

Delphi Visual Component Library Reference 369

Handle property

For applications, Find and Replace dialog boxes, windowed controls

Declaration
property Handle: HWND;

Read and run-time only. The Handle property gives you access to window handle of the
application, the Find and Replace dialog boxes, and all controls in case you need to call a
Windows API function that requires a handle.

Example
The following code uses the Windows API function ShowWindow to display Form?2 as an
icon, but does not activate it.

ShowWindow (Form2 .Handle, SW_SHOWWINMINNOACTIVE);

See also
HandleAllocated method, HandleNeeded method

For menu items, main menus, and pop-up menus

Declaration
property Handle: HMENU;

Read and run-time only. The Handle property lets you access the menu or menu item’s
window handle, so you can call a Windows API function that requires a menu handle.

Example
The following code uses the Windows API function HiliteMenultem to highlight the first
menu item in MainMenul on Form]1.

HiliteMenuItem(Forml.Handle, MainMenul.Handle, 0, MF_BYPOSITION+MF_HILITE);

For printer objects

Declaration
property Handle: HDC;

Read and run-time only. The Handle property give you access to the handle of the
printer object.

For sessions

Declaration

property Handle: HDBISES;

370 Delphi Visual Component Library Reference

HandleAllocated method

Run-time and read only. The Handle property allows you to make direct calls to the
Borland Database Engine using this handle to the session (I'Session). Under most
circumstances you should not need to use this property, unless your application
requires some functionality not encapsulated in the VCL.

For tables, queries, and stored procedures

Declaration
property Handle: HDBICur;

Run-time and read only. The Handle property enables an application to make direct calls
to the Borland Database Engine API using this handle of a dataset component.

Under most circumstances you should not need to use this property, unless your
application requires some functionality not encapsulated in the VCL.

For databases

Declaration
property Handle: HDBIDB;

Run-time and read only. Use the Handle property to make direct calls to the Borland
Database Engine (BDE) API that require a database handle. Under most circumstances
you should not need to use this property, unless your application requires some
functionality not encapsulated in the VCL.

HandleAllocated method

Applies to
All controls

Declaration
function HandleAllocated: Boolean;

The HandleAllocated method returns True if a window handle for the control exists. If no
window handle exists, HandleAllocated returns False. If you query the Handle property of
a control directly, a handle is automatically created if it didn’t previously exist.
Therefore, you should call the HandleAllocated method if you don’t want a handle
created automatically for the control, but simply want to know if one exists.

Example
The following code displays the value of the handle of GroupBox1 if it exists. If not, it
displays a message.

var
TheValue: string;

Delphi Visual Component Library Reference 371

HandleException method

begin
if GroupBoxl.HandleAllocated then
TheValue := IntToStr (GroupBoxl.Handle)

else TheValue := 'Handle not allocated.’;
Labell.Caption := TheValue;
end;
See also
HandleNeeded method

HandleException method

Applies to
TApplication component

Declaration
procedure HandleException(Sender: TObject);

The HandleException method handles the exceptions for the application. If an exception
passes through all the try blocks in your application code, your application
automatically calls the HandleException method, which displays a dialog box indicating
an error occurred. To assign other exception handling code for the application, use the
OnException event handler.

Example
The following code uses the default error handling:
try
{ Some code that may produce an exception goes here }
except
Application.HandleException (Self);
end;

See also
Application variable, OnException event

HandleNeeded method

Applies to
All controls

Declaration

procedure HandleNeeded;

372 Delphi Visual Component Library Reference

HasFormat method

The HandleNeeded method creates a window handle for the control if one doesn’t
already exist.

Example
The following code creates a window handle for Button1:

Buttonl.HandleNeeded;

See also
Handle property, HandleAllocated method

HasFormat method

Applies to ﬂ

TClipboard object

Declaration
procedure HasFormat (Format: Word): Boolean;

The HasFormat method determines if the Clipboard object contains a particular format.
If HasFormat is True, the format is present; if False, the format is absent. The Clipboard
object keeps a list of available formats in the Formats array property.

These are the possible values of the Format parameter:

Value Meaning

CF_TEXT Text with each line ending with a CR-LF combination. A null character identifies
the end of the text.

CF_BITMAP A Windows bitmap graphic.

CF_METAFILE A Windows metafile graphic.

CF_PICTURE An object of type TPicture.

CF_OBJECT Any persistent object.

Example

This example uses a button on a form. When the user clicks the button, a message box
appears if there is no text on the Clipboard; otherwise, you don’t see anything happen.

procedure TForml.ButtonlClick(Sender: TObject);
begin
if not Clipboard.HasFormat (CF_TEXT) then
MessageDlg ('There is no text on the Clipboard', mtInformation,
[mbOK],0) ;
end;

See also

Assign method, FormatCount property, Formats property, GetComponent method,
SetComponent method

Delphi Visual Component Library Reference 373

Hasltems property

Hasltems property

Applies to
TOutlineNode object

Declaration
property HasItems: Boolean;

Run-time and read only. The Hasltems property determines if an outline item has any
subitems. Subitems appear below and indented from their parent item when the parent
is expanded. The Index value of the parent item is one less than the Index value of its first
subitem. Hasltems is True if the item has subitems, or False if the item has no subitems.

Example
The following code expands the selected item of Outlinel if it has subitems:

with Outlinel[Outlinel.SelectedItem] do
if HasItems then Expand;

See also
GetFirstChild method, GetLastChild method, GetNextChild method, GetPrevChild method

Heap variables System

Declaration

var HeapAllocFlags: Word;
var HeapBlock: Word;

var HearLimit: Word;

var HeapError: Pointer;
var HeapCheck: Pointer;

The heap manager uses the variables HeapList, HeapLimit, HeapBlock, HeapError,
HeapCheck to implement dynamic memory allocation routines.

Heap variable Description

HeapAllocFlags Defines the attribute flags passed to GlobalAlloc when the heap manager allocates
global blocks. Used with gmem_Mouveable.

HeapError Contains the address of a heap-error function that is called whenever the heap
manager cannot complete an allocation request.

HeapLimit Defines the threshold between small and large heap blocks. The default value is
1024.

374 Delphi Visual Component Library Reference

Height property

Heap variable Description

HeapBlock Defines the size the heap manager uses when allocating blocks assigned to the sub-
allocator. The default value is 8192.

HeapCheck Contains the address of the heap integrity checking hook. If this pointer is nonil,

the allocator/deallocator will call this each time a block is allocated and a block is
freed. It is called before the actual allocation or deallocation occurs.

You should have no reason to change the values of HeapLimit and HeapBlock, but should
you decide to do so, make sure that HeapBlock is at least 4 times the size of HeapLimit.

HeapError is a pointer that points to a function with this header:
function HeapFunc (Size: Word): Integer; far;

Install the heap-error function by assigning its address to the HeapError variable as
follows:

HeapError := @HeapFunc;

The heap-error function gets called whenever a call to New or GetMem cannot complete
the request.

The Size parameter contains the size of the block that could not be allocated, and the
heap error function should attempt to free a block of a least that size.

Before calling the heap-error function, the heap manager attempts to allocate the block
within its sub-allocation free space as well as through a direct call to the Windows
GlobalAlloc function.

The HeapError function returns

¢ (toindicate failure, and causes a run-time error to occur immediately

¢ 1 to indicate failure, and causes New or GetMem to return a nil pointer

* 2 toindicate success, and causes a retry (which could also cause another call to the

heap error function)

See also
GlobalAlloc function, GlobalLock function

Height property

Applies to

All controls; TBitmap, TFont, TGraphic, Tlcon, TMetafile, TPicture objects; TForm, TScreen
components

Declaration

property Height: Integer;

Delphi Visual Component Library Reference 375

Height property

For controls, forms, and graphics

The Height property of a control is the vertical size of the control, form, or graphic in
pixels.

Example
The following code doubles the height of a list box control:

ListBoxl.Height := ListBoxl.Height * 2;

See also
ClientHeight property, SetBounds method, Width property

For the screen

Read and run-time only. The Height property of a screen component contains the
vertical size of the screen device in pixels.

Example
To following code sets a form’s height to half the height of the screen:

Forml.Height := Screen.Height div 2;

See also
Screen variable, Width property

For fonts

The Height property is the height of the font in pixels. It is the size of the font plus the
font’s internal leading. If you are concerned with the size of the font on the screen—the
number of pixels the font needs—use the Height property. If you want to specify a font’s
size using points, use the Size property instead.

Delphi calculates Height using this formula:
Font.Height = -Font.Size * Font.PixelsPerInch / 72

Therefore, whenever you enter a point size in the Height property, you'll notice the Size
property changes to a negative value. Conversely, if you enter a positive Size value, the
Height property value changes to a negative value.

Example
This example uses button and a label on a form. When the user clicks the button, the
height of the font changes to 36 pixels on the screen:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Labell.Font.Height := 36;
end;

376 Delphi Visual Component Library Reference

HelpCommand method

See also
Font property, PixelsPerInch property, Size property

HelpCommand method

Applies to
TApplication component

Declaration
function HelpCommand (Command: Word; Data: Longint): Boolean;

The HelpCommand method gives you quick access to any of the Help commands in the
WinHelp API (application programming interface). For information about the
commands you can call and the data passed to them, see the WinHelp topic in the Help
system.

Example
This example uses a bitmap button on a form. When the user clicks the button, the Help
contents screen of the specified Help file appears.

procedure TForml.BitBtnlClick(Sender: TObject);
begin
Application.HelpFile := 'MYHELP.HLP';
Application.HelpCommand (HELP_CONTENTS, 0);
end;

See also

Application variable, HelpContext method, HelpContext property, HelpFile property,
HelpJump method

HelpContext method

Applies to
TApplication component

Declaration
function HelpContext (Context: THelpContext): Boolean;

The HelpContext method calls WinHelp, the Windows Help system program, if the
HelpFile property is assigned a file to use for Help. HelpContext passes the file name
contained in HelpFile and the context number passed in Context parameter. For example,
if you specify the Context value as 714, the HelpContext method displays the screen with
the context help ID of 714 in the Help file.

HelpContext returns False if HelpFile is an empty string, meaning the application has no
Help file assigned. In all other cases, HelpContext returns True.

Delphi Visual Component Library Reference 377

HelpContext property

Example
This example uses a bitmap button on a form. When the user clicks the button, the
screen with the context number of 714 in the DATA.HLP Help file appears:
procedure TForml.BitBtnlClick(Sender: TObject);
begin
Application.HelpFile := 'DATA.HLP';

Application.HelpContext (714);
end;

See also
Application variable, HelpFile property, OnHelp event

HelpContext property

Applies to

All controls; Exception, TColorDialog, TFindDialog, TFontDialog, TMenultem, TPopupMenu,
TOpenDialog, TPrintDialog, TPrinterSetupDialog, TReplaceDialog, TSaveDialog
components

Declaration
property HelpContext: THelpContext;

The HelpContext property provides a context number for use in calling context-sensitive
online Help. Each screen in the Help system should have a unique context number.
When a component is selected in the application, pressing F1 displays a Help screen.
Which Help screen appears depends on the value of the HelpContext property.

Example
The following code associates a Help file with the application, and makes the screen
with a context number of 7 the context-sensitive Help screen for the Edit1 edit box:
procedure TForml.FormActivate(Sender: TObject);
begin
Application.HelpFile := 'MYHELP.HLP';

Editl.HelpContext := 7;
end;

See also
HelpContext method, HelpFile property, HelpJump method, OnHelp event

HelpFile property

Applies to
TApplication component

378 Delphi Visual Component Library Reference

HelpJump method

Declaration
property HelpFile: string;

Run-time only. The HelpFile property holds the name of the file the application uses to
display online Help. By default, HelpFile is a null string, and the application’s Help
method ignores attempts to display Help. If HelpFile contains anything, the HelpContext
method passes it to the Windows Help system as the name of the file to use for Help.

Example
To specify the MYHELP.HLP file as the Help file for your application, use this line of
code:

Application.HelpFile := ‘MYHELP.HLP';

See also ﬂ
HelpContext method

HelpJump method

Applies to
TApplication component

Declaration
function HelpJump(const JumpID: string): Boolean;

The HelpJump method calls WinHelp, the Windows Help system program, if the HelpFile
property is assigned a file to use for Help. HelpJump passes the file name contained in
HelpFile and the context string specified in the JumpID parameter. For example, if you
specify the JumpID value as ‘vclDefaultProperty', the HelpJump method displays the
screen in the Help file that has the context string “vclDefaultProperty'.

HelpJump returns False if HelpFile is an empty string, meaning the application has no
Help file assigned. In all other cases, HelpJump returns True.

Example

This example uses a bitmap button on a form. When the user clicks the button, the Help
screen describing the Default property in the DELPHLHLP file appears, because the
Default property screen has the a JumpID string of “vclDefaultProperty'.

procedure TForml.BitBtnlClick(Sender: TObject);
begin
Application.HelpFile := 'DELPHI.HLP';
Application.HelpJump ('vclDefaultProperty');
end;

See also

Application variable, HelpCommand method, HelpContext method, HelpContext property,
HelpFile property, OnHelp event

Delphi Visual Component Library Reference 379

Hi function

Hi function System

Declaration
function Hi(X): Byte;

The Hi function returns the high-order byte of X as an unsigned value. X is an
expression of type Integer or Word.

Example

var B: Byte;
begin

B := Hi($1234); { $12 }
end;

See also
Lo function, Swap function

Hide method

Applies to

TForm component, All controls

Declaration
procedure Hide;

The Hide method makes a form or control invisible by setting the Visible property of the
form or control to False. Although a form or control that is hidden is not visible, you can
still set the properties of the form or control, or call its methods.

Example

This code uses a button and a timer on a form. When the user clicks the button, the form
disappears for the period of time specified in the Interval property of the timer control,
then the form reappears:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Timerl.Enabled := True;

Hide;
end;

procedure TForml.TimerlTimer (Sender: TObject);
begin

Visible := True;

Timerl.Enabled := False;
end;

380 Delphi Visual Component Library Reference

HideSelection property

See also
Close method, Show method, ShowModal method

HideSelection property

Applies to
TEdit, TMemo components

Declaration

property HideSelection: Boolean;

remains selected when the focus shifts to another control. If True, the text is no longer
selected until the focus returns to the control. If False, the text remains selected. The
default value is True.

The HideSelection property determines whether text that is selected in an edit or memo ﬂ

Example
This example uses an edit box and a memo on a form. When the user jumps from one
control to the other, selected text remains selected in the memo, but not in the edit box.

procedure TForml.FormCreate(Sender: TObject);
begin
Editl.HideSelection := True;
Memol.HideSelection := False;
end;

See also
AutoSelect property

High function System

Declaration

function High(X);

The High function returns the highest value in the range of the argument.
The result type is X, or the index type of X.

X is either a type identifier or a variable reference. The type denoted by X, or the type of
the variable denoted by X, must be one of the following types.

For this type High returns

Ordinal type The highest value in the range of the type

Array type The highest value within the range of the index type of the array
String type The declared size of the string

Delphi Visual Component Library Reference 381

Hinstance and HPrevinst variables

For this type High returns
Open array The value, of type Word, giving the number of elements in the actual parameter
minus one
String parameter The value, of type Word, giving the number of elements in the actual parameter
minus one
Example
function Sum(var X: array of Double): Double;
var
I: Word;
S: Double;
begin

S :=0; { Note that open array index range is always zero-based.

for T := 0 to High(X) do S := S + X[I];
Sum := S;

end;

procedure TForml.ButtonlClick(Sender: TObject);
var
Listl: array[0..3] of Double;
List2: array[5..17] of Double;
X: Word;
S, TempStr: string;
begin
for X := Low(Listl) to High(Listl) do
List1[X] := X * 3.4;
for X := Low(List2) to High(List2) do
List2[X] := X * 0.0123;
Str(Sum(Listl):4:2, S);
S := 'Sum of Listl: ' + S + #13#10;
S := S + 'Sum of List2: ';
Str(Sum(List2):4:2, TempStr);
S := S + TempStr;
MessageDlg (S, mtInformation, [mbOk], 0);
end;

See also
Low function

Hinstance and HPrevinst variables

}

System

Declaration

var HInstance: Word;

The HInstance variable contains the instance handle of the application or library as

provided by the Windows environment.

382 Delphi Visual Component Library Reference

Hint property

Hint property

Applies to
All controls; TApplication, TMenultem components

Declaration

property Hint: string;

Description

The Hint property is the text string that can appear when the OnHint event occurs,

which happens when the user moves the mouse pointer over a control or menu item.

The code within the OnHint event handler determines how the string is displayed. A
common use of an OnHint event handler is to display the hint as the caption of a panel ﬂ
component that is being used as a status bar.

You can have a Help Hint, a box containing help text, appear for a control when the user
moves the mouse pointer over the control and pauses momentarily. This is how:

1 Specify a Hint value for each control you want a Help Hint to appear for.
2 Set the ShowHint property of each control to True.
3 Atrun time, set the value of application’s ShowHint property to True.

You can specify a hint to be used for both for a Help Hint box and in an OnHint handler
(as the application’s Hint property value) by specifying two values separated by a |
character (the “or” or “pipe” symbol). For example,

Editl.Hint := ’'Name|Enter Name in the edit box';

The "Name’ string appears in the Help Hint box, and the "Enter full name’ string appears
as specified in the OnHint event handler.

If you specify just one value, it can be used both as a Help Hint and as the Hint property
of the application. If the application’s ShowHint property is False, the Help Hint won't
appear, but the other hint still will.

If a control has no Hint value specified, but its parent control does, the control uses the
Hint value of the parent control as long as the control’s ShowHint property is True.

Example

This example uses an edit box and a list box on a form. Items are added to the list box
and a Help Hint is assigned to both controls. The last statement enables the Help Hints
for the entire application.

procedure TForml.FormCreate(Sender: TObject);
var
I: Integer;
begin
Editl.Hint := 'Enter your name';
Editl.ShowHint := True;
with ListBoxl do
begin

Delphi Visual Component Library Reference 383

HintColor property

for T := 1 to 10 do
Items.Add('Item ' + IntToStr(I));

Hint := 'Select an item';
ShowHint := True;
end;
Application.ShowHint := True;
end;

To see a example that displays the hints of controls in some place other than in a Help
Hint box, see the OnHint example.

See also

GetLongHint function, GetShortHint function, HintColor property, HintPause property,
ShowHint property for controls, ShowHint property for the application

HintColor property

Applies to
TApplication component

Declaration

property HintColor: TColor

Description

Run time only. The HintColor property determines the color of the hint boxes for the
Help Hints of the controls in the application. For a table of possible color values, see the
Color property.

Example

This example includes an control that has a Hint property value and has its ShowHint
property value set to True. When the application runs and the user places the mouse
cursor over the control, a Help Hint appears for the control in an aqua hint box after a
delay of 1000 milliseconds:

procedure TForml.FormCreate(Sender: TObject);

begin
Application.ShowHint := True;
Application.HintColor := clAqua;
Application.HintPause := 1000;

end;

See also
Application variable, Hint property, HintPause property, ShowHint property, TColor type

384 Delphi Visual Component Library Reference

HintPause property

HintPause property

Applies to
TApplication component

Declaration
property HintPause: Integer;

The HintPause property determines the time interval that passes when the user places
the mouse pointer on a control before the control’s Help Hint specified in its Hint
property appears. The interval is in milliseconds. The default value is 800 milliseconds.

Example

This example includes an control that has a Hint property value and has its ShowHint ﬂ
property value set to True. When the application runs and the user places the mouse

cursor over the control, a Help Hint appears for the control in an aqua hint box after a

delay of 1000 milliseconds:

procedure TForml.FormCreate(Sender: TObject);

begin
Application.ShowHint := True;
Application.HintColor := clAqua;
Application.HintPause := 1000;

end;

See also
Application variable, Hint property, HintColor property, ShowHint property

Hints property

Applies to
TDBNavigator component

Declaration
property Hints: TStrings;

The Hints property allows you to customize the Help Hints for the buttons on the
database navigator. Each hint is a string. The first string in the string object becomes the
Help Hint for the first button on the navigator. The seventh hint becomes the Help Hint
for the seventh button (the Edit button).

If you don’t want to change the Help Hint for every button, enter an empty string (*’) for
the Help Hint you want to stay the same, or simply leave the line blank if you are using
the string list property editor of the Object Inspector for the Hints property.

Delphi Visual Component Library Reference 385

HistoryList property

Example
This example uses a database navigator and a button on a form. When the user clicks the
button, the Help Hints for the navigator are modified.

procedure TForml.ButtonlClick(Sender: TObject);
var
NewStrings: TStringList;
begin
NewStrings := TStringList.Create;
with NewStrings do
begin
Add
Add
Add
Add
end;
DBNavigatorl.Hints := NewStrings;
DBNavigatorl.ShowHint := True;
end;

'Beginning of dataset');
'Previous record');

")

'End of dataset');

See also
Hint property, HintColor property, HintPause property

HistoryList property

Applies to
TOpenDialog, TSaveDialog components

Declaration
property HistoryList: TStrings ;

The HistoryList property contains strings that appear in the File Name drop-down
combo box of an Open or Save dialog box when the user opens it. Because only a File
Name combo box can have a value for the HistoryList property, the FileEditStyle
property value of the dialog box must be fsComboBox. If the FileEditStyle property value
is fsEdit, the strings in the HistoryList property aren’t used by the dialog box.

Your application can use the HistoryList property to create a list of previous files names
opened or saved with the dialog box. Use a TStringList object to keep a list of file names,
and assign this object to the HistoryList property.

Note When an Open or Save dialog box is open, your application won’t be able to access the
HistoryList property. Therefore, your application must work with HistoryList before the
dialog box opens or after it closes.

Example

This example uses an Open dialog box and a button. The code creates a string list object
and stores each file the user selects in the Open dialog box in it. Each time the clicks the
button to open the dialog box, the string list is assigned to the HistoryList property.

386 Delphi Visual Component Library Reference

HMetafile type

var
0ldFiles: TStringList;

procedure TForml.ButtonlClick(Sender: TObject);
var
SelectedFile: string;
begin
if OpenDialogl.Execute then
SelectedFile := OpenDialogl.FileName;
0ldFiles.Add(SelectedFile);
OpenDialogl.HistoryList := OldFiles;
end;
initialization
OldFiles := TStringList.Create;
end.

HMetafile type Graphics

Declaration
HMETAFILE = THandle;
HMetafile is the handle of a TMetafile object.

HorzScrollBar property

Applies to
TForm, TScrollBox components

Declaration
property HorzScrollBar: TControlScrollBar;

The HorzScrollBar property is the form’s or scroll box’s horizontal scroll bar. The values
of HorzScrollBar’s nested properties determines how the horizontal scroll bar behaves.

To make a horizontal scroll bar appear on a form or scroll box, the nested properties of
HorzScrollBar must be set like this:

¢ Visible must be True.
¢ The value of the Range property must be greater than the value of the ClientWidth
property of the form or the Width property of the scroll box.

Example

This example implements a horizontal scroll bar on the form. The scroll bar scrolls the
form 100 pixels more than the form width:

procedure TForml.FormCreate (Sender: TObject);
begin

Delphi Visual Component Library Reference 387

HPrevinst variable

ClientWidth := 300;
with HorzScrollBar do
begin
Increment := 4;
Position := 0;

Range := ClientWidth + 100; {Range must be greater than the form’s client width}
Visible := True;
end;
end;
See also

AutoScroll property, Increment property, Position property, Range property, ScrollPos
property, VertScrollBar property, Visible property

HPrevinst variable System

Declaration
var HPrevInst: Word;

In a program, the HPrevlnst variable contains the handle of the previous instance of the
application, or 0 if there are no previous instances. In a library, HPrevlnst is always zero.

Icon property

Applies to
TPicture object; TApplication, TForm components

For forms

Declaration
property Icon: TIcon

The Icon property determines the icon that is displayed when the window or form is
minimized. If you don’t assign a specific icon to Icon, the form uses the application’s
icon.

Example
This code assigns an icon to a form when the form is created:

procedure TForml.FormCreate(Sender: TObject);
begin

Icon.LoadFromFile ('MYICON.ICO');
end;

388 Delphi Visual Component Library Reference

lcon property

See also
LoadFromFile method, SaveToFile method

For picture objects

Declaration
property Icon: TIcon

The Icon property specifies the contents of the TPicture object as an icon graphic (ICO
file format). If Icon is referenced when the TPicture contains a Bitmap or Metafile graphic,
the graphic won't be converted. Instead, the original contents of the TPicture are
discarded and Icon returns a new, blank icon.

Example

The following code allows the user to use a dialog box to redefine the icon for the

application at run time. When the user clicks Button1, OpenDialog1 executes and the user d
specifies an icon file name. The file is loaded into the Icon property of the Thelcon picture

object. Then, the Icon of Thelcon is assigned to the Icon of Form1.

procedure TForml.ButtonlClick(Sender: TObject);
var Thelcon: TPicture;
begin
OpenDialogl.FileName := '*.ICO';
if OpenDialogl.Execute then
begin
TheIcon := TPicture.Create;
TheIcon.LoadFromFile (OpenDialogl.FileName);
Forml.Icon := ThelIcon.Icon;
end;
end;

See also
Graphic property

For an application

Declaration
property Icon: TIcon;

The value of the Icon property determines which icon represents the application when it
is minimized or displayed in the Program Manager.

Example
This line of code uses the icon in the MYAPP.ICO files for the application’s icon:

Application.Icon.LoadFromFile('MYAPP.ICO');

Delphi Visual Component Library Reference 389

InactiveTitle typed constant

See also
Application variable, LoadFromFile method, Minimize method, SaveToFile method

InactiveTitle typed constant WinCrt
Declaration
const InactiveTitle: PChar = '(Inactive $%s)';

The InactiveTitle typed constant points to a null-terminated string to use when
constructing the title of an inactive CRT window.

The string is used as the format-control parameter of a call to the Windows WV SPrintF
function. The %s specifier, if present, indicates where to insert the existing window title.

Inc procedure System

Declaration
procedure Inc(var X [; N: Longint]);
The Inc procedure adds one or N to the variable X.

X is an ordinal-type variable or a variable of type PChar if the extended syntax is
enabled and N is an integer-type expression.

X increments by 1, or by N if N is specified; that is, Inc(X) corresponds to the statement
X := X + I,and Inc(X, N) corresponds to the statementx := X + N.

Inc generates optimized code and is especially useful in tight loops.

Example

var
IntVar: Integer;
LongintVar: Longint;

begin
Inc(IntVar); { IntVar := IntVar + 1 }
Inc(LongintVar, 5); { LongintVar := LongintVar + 5 }
end;
See also

Dec procedure, Pred function, Succ function

Inch property

Applies to
TMetafile object

390 Delphi Visual Component Library Reference

Include procedure

Declaration
property Inch: Word;

The Inch property value is the number of pixels per inch that are used for the metafile’s
coordinate mapping. For example, if the metafile was created in a Twips coordinate
system (using MM_TWIPS mapping), the value of Inch is 1440.

Include procedure System

Declaration
procedure Include(var S: set of T; I:T);
The Include procedure adds the element I to the set S.

S is a set type variable, and I is an expression of a type compatible with the base

type of S. d

The construct Include(S,I) correspondstosS := S + (I) but the Include procedure
generates more efficient code.

See also
Exclude procedure

Increment property

Applies to
TControlScrollBar component

Declaration
property Increment: Integer;

The Increment property determines how many positions the scroll box in a form scroll
bar moves when the user clicks one of the small end arrows. The default value is 8.

Example

This example implements a horizontal scroll bar on the form. The scroll bar scrolls the
form 100 pixels more than the form width. Each time the user clicks a scroll arrow on the
scroll bar, the form scrolls 7 pixels:

procedure TForml.FormCreate(Sender: TObject);
begin
ClientWidth := 300;
with HorzScrollBar do
begin
Position := 0;
Increment := 7;
Range := ClientWidth + 100; {Range must be greater than the form’s client width}

Delphi Visual Component Library Reference 391

Index property

Visible := True;
end;
end;

See also

HorzScrollBar property, Position property, Range property, ScrollPos property,
VertScrollBar property

Index property

Applies to

TOutlineNode object; TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField,
TDateField, TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField,
TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

For outline nodes

Declaration
property Index: Longint;

The Index property uniquely identifies each item of an outline. The first outline item has
an Index value of 1, and subsequent items are indexed sequentially. If an item has
subitems, the Index value of the parent item is one less than the Index value of its first
subitem.

The value of the Index property corresponds to the index in the Items property array of
the TOutline component. When an item is added, inserted, or deleted from the outline,
the values of the Index properties of all subsequent items must be recalculated to be
valid. This happens automatically, unless the Beginllpdate method has been called.

Example
The following code tests to determine if the selected item is the top item in the outline.

with Outlinel do
if Ttems[SelectedItem].Index = 1 then
{ The selected item is the top item }
else
{ The selected item is not the top item };

See also
Add method, Delete method, EndUpdate method, Insert method

392 Delphi Visual Component Library Reference

IndexDefs property

For fields

Declaration
property Index: Integer;

Index is a field’s index number into the Fields property of the dataset. It corresponds to
the order of the field in the dataset. You can change the order of a field’s position in the
dataset by changing its Index property. A better way to change field order, however, is
by dragging and dropping fields in the Fields Editor at design time.

IndexDefs property

Applies to

TTable component d

Declaration
property IndexDefs: TIndexDefs;

Run-time and read only. The IndexDefs property holds information about all the indexes
for the TTable.

Note The IndexDefs property may not always reflect the current set of indexes. Before
examining any property of IndexDefs, call its Update method to ensure that it has the
most recent set of information.

Example

{ Get the current available indicies }
Tablel.IndexDefs.Update;
{ Find one which combines Customer Number (‘CustNo’) and Order Number (‘OrderNo’) }
for I := 0 to Tablel.IndexDefs.Count - 1 do
if Tablel.IndexDefs.Items[I].Fields = ‘CustNo;OrderNo’ then

IndexFieldCount property

Applies to
TTable component

Declaration
property IndexFieldCount: Integer;

Run-time only. The IndexFieldCount property is the number of actual fields for the
current index. If you are using the primary index for the component, this value will be
one. If the component is not Active, the value of IndexFieldCount will be zero.

Delphi Visual Component Library Reference 393

IndexFieldNames property

Example

TotalLen := 0;
with Tablel do
{ Calculate the total length of the index }
for I := 0 to IndexFieldCount - 1 do
Inc(TotalLen, IndexFields[I].FieldDef.DataSize);

IndexFieldNames property

Applies to
TTable component

Declaration
property IndexFieldNames: string;

The IndexFieldNames property is used with an SQL server to identify the columns to be
used as an index for the TTable. Separate the column names with semicolon characters
(“;”). If you have too many column names or the names are too long to fit within the 255
character limit, use column numbers instead of names.

Note IndexFieldNames and IndexName are mutually exclusive. Setting one will clear the other.

Example

Queryl.IndexFieldNames := ‘CustNo;OrderNo’;

IndexFields property

Applies to

TTable component

Declaration
property IndexFields[Index: Integer]: TField;

Run-time only. The IndexFields property gives you access to information about each field
of the current index for the dataset. The Active property must be True or the information
will not be valid.

Example

So=
with Tablel do
{ Create a composite string with the index’s names separated by “@" }
for T := 0 to IndexFieldCount - 1 do
S := S + '@ + IndexFields[I].FieldName;

394 Delphi Visual Component Library Reference

IndexName property

See also
IndexFieldCount property

IndexName property

Applies to
TTable component

Declaration
property IndexName: string;

The IndexName property identifies a secondary index for the TTable. If no value is
assigned to IndexName, the table’s primary index will be used to order the records.

For dBASE tables, the index must reside in the table’s master index file. The master
index file is determined by taking the TableName property and replacing any file d
extension with “MDX”. Non-maintained indexes are not supported.

Note IndexFieldNames and IndexName are mutually exclusive. Setting one will clear the other.

Example

Tablel.IndexName := ‘CustNoIndex’;

See also
MasterFields property, MasterSource property

IndexOf method

Applies to
TList, TStringList, TStrings objects; TFieldDefs, TIndexDefs, TMenultem components

For menu items

Declaration
function IndexOf (Item: TMenultem): Integer;

The IndexOf method returns the position of a menu item within a menu. The first
position in a menu is 0. If a menu item is not in the menu, IndexOf returns -1.

Example

This example uses a main menu named Filel, a button, and a label on a form. The Filel
menu contains three menu commands, Open, Save, and Close. Delphi automatically
names these menu items Openl, Savel, and Closel. This code returns the position of the
Close command in the File menu and reports it as the caption of the label.

Delphi Visual Component Library Reference 395

IndexOf method

procedure TForml.ButtonlClick(Sender: TObject);
begin

Labell.Caption := IntToStr(Filel.IndexOf (Closel));
end;

The label displays the number 2, indicating that Close is the third menu command in the
File menu. The first menu item, Open, has an index value of 0.

See also
FindItem method

For list objects

Declaration
function IndexOf (Item: Pointer): Integer;

The IndexOf method returns the position of an item in a list kept by the List property.
The first position in a list is 0. If an item is not in the list, IndexOf returns -1.

Example
The following code adds an object to MyList if it isn’t already in the list.

if MyList.IndexOf (MyObject)=-1 then MyList.Add(MyObject);

See also
Add method, Count property

For string objects

Declaration
function IndexOf (const S: string): Integer;

The IndexOf method returns the position of a string in a list of strings in a string or string
list object. Specify the string you want to locate as the value of the S parameter. The first
position in the list of strings is 0. If the string is not in the string list, IndexOf returns -1.

Example

This example uses a combo box that contains five strings (enter them as the value of the
Items property with the Object Inspector) and a label. When the user selects a string in
the combo box, the index of the selected string appears as the caption of the label.

procedure TForml.ComboBox1Click (Sender: TObject);
begin

Labell.Caption := IntToStr (ComboBoxl.Items.IndexOf (ComboBoxl.SelText));
end;

This example uses a file list box, a directory list box, and a label on a form. When the
user uses the directory list box to change directories, a message appears and the color of

396 Delphi Visual Component Library Reference

IndexOfObject method

the form changes if the file AUTOEXEC.BAT is in the new directory. The code is written
in the OnChange event of the directory list box:

procedure TForml.DirectoryListBox1Change (Sender: TObject);
begin
FileListBoxl.Directory := DirectoryListBoxl.Directory;
if FileListBoxl.Items.IndexOf ('AUTOEXEC.BAT') > -1 then

begin
Color := clYellow;
Labell.Caption := 'You are in the root directory!';
end;
end;
See also

IndexOfObject method, Strings property

For TIndexDefs objects

Declaration
function IndexOf (const Name: string): Integer;

The IndexOf method returns the index of the entry in Iterns whose Name property
matches the Name parameter.

For TFieldDefs objects

Declaration
function IndexOf (const Name: string): Integer;

The IndexOf method returns the index number of the entry in Items whose Name
property matches the Name parameter.

IndexOfObject method

Applies to

TStringList, TStrings objects

Declaration

function IndexOfObject (AObject: TObject): Integer;

The IndexOfObject method returns the position of an object stored in the Objects property
of a string object. Specify the object you want to locate as the value of the AObject
parameter. The first position in the list of objects is 0. If the object is not in the list of
objects, IndexOfObject returns -1.

Delphi Visual Component Library Reference 397

InitialDir property

Example
The following code determines if MyObject is the first object in MyStringList.

if MyStringList.IndexOfObject (MyObject)=0 then
{ MyObject is the first object in the list };

See also
AddObject method, IndexOf method, InsertObject method

InitialDir property

Applies to
TOpenDialog, TSaveDialog components

Declaration
property InitialDir: string;

The Initial Dir property determines the current directory when the dialog box first
appears and value of the Initial Dir property is shown as the current directory in the
directory tree. Only files in the current directory appear in the dialog box’s list box of file
names. After the dialog box appears, users can then use the directory tree to change to
another directory if they want.

When specifying the initial directory, include the full path name. For example,
C: \WINDOWS\SYSTEM

If no initial directory is specified, the directory that is current when the dialog box
appears remains the current directory. The same is true if you specify a directory that
does not exist.

Example

This code specifies C:\WINDOWS as the initial directory when the dialog box appears,
displays the dialog box, and displays the name of the file the user selects with the dialog
box in a label on the form:

procedure TForml.ButtonlClick(Sender: TObject);
begin
OpenDialogl.InitialDir := 'C:\WINDOWS';
if OpenDialogl.Execute then
Labell.Caption := OpenDialogl.FileName;
end;

See also
Filter property

398 Delphi Visual Component Library Reference

InitialValues property

InitialValues property

Applies to
TReport component

Declaration
property InitialValues: TStrings;

The InitialValues property is a list of report variable strings the specified report uses to
run. By specifying these initial values, your application can bypass the dialog boxes that
prompt you for these values when the report runs.

Example
The following code adds two report variable values and runs the report.

Reportl.InitialValues.Add('@Reportl=<35>");
Reportl.InitialValues.Add('@Report2=<test>');
Reportl.Run;

See also
SetVariable method, SetVariableLines method

InitWinCrt procedure WinCrt

Declaration
procedure InitWinCrt;
The InitWinCrt procedure creates a WinCRT window.

If you do not explicitly call InitWinCrt, it is automatically called when you use Read,
ReadlIn, Write, or Writeln on a file assigned to the CRT.

InitWinCrt uses the WindowOrg, WindowSize, and ScreenSize constants, and the
WindowTitle variable to determine the characteristics of the CRT window.

See also
ScreenSize typed constant, WindowOrg typed constant, WindowSize typed constant,
WindowTitle variable

InOutRes variable System
Declaration

var InOutRes: Integer;

The built-in I/O routines use the [nOutRes variable to store the value that the next call to
the IOResult standard function will return.

Delphi Visual Component Library Reference 399

InPlaceActive property

InOutRes is used by the built-in I/O functions.

InPlaceActive property

Applies to
TOLEContainer component

Declaration
property InPlaceActive: Boolean;

Run-time and read only. The InPlaceActive property specifies whether the OLE object in
an OLE container is active in-place. If so, the value of [nPlaceActive is True. If the object is
deactivated, or activated in its own window (not in place), the value of InPlaceActive is
False.

When an OLE object is active in-place, the OLE server application controls the editing of
the OLE object from within the OLE container application. The OLE server might
replace menu items and the status bar of the OLE container.

Example
The following code waits until an OLE object is activated in place before unlocking
Panell. Attach this code to the OnActivate event handler of OLEContainer].

procedure TForml.OleContainerlActivate(Sender: TObject, Activating:Boolean);
begin
if OLEContainerl.InPlaceActive then
Panell.Locked := False;
end;

See also
Active property, Grouplndex property

Input variable System

Declaration
var Input: Text;

The Input variable is a read-only file associated with the operating system's standard
input device, which is usually the keyboard.

In many of Delphi's standard file-handling routines, the file variable parameter can be
omitted. Instead the routine operates on the Input or Output file variable. The following
standard file-handling routines operate on the Input file when no file parameter is
specified:

e Eof

¢ Eoln

400 Delphi Visual Component Library Reference

InputBox function

Read
Readln
SeekEof
SeekEoln

Since Windows does not support text-oriented input and output, Input and Output files
are unassigned by default in a Windows application. Any attempt to read or write to
them will produce an I/O error.

If the application uses the WinCrt unit, Input and Output will refer to a scrollable text
window.

See also
Output variable, TextFile type

InputBox function Dialogs d

Declaration
function InputBox(const ACaption, APrompt, ADefault: string): string;

The InputBox function displays an input dialog box ready for the user to enter a string in
its edit box. The ACaption parameter is the caption of the dialog box, the APrompt
parameter is the text that prompts the user to enter input in the edit box, and the
ADefault parameter is the string that appears in the edit box when the dialog box first
appears.

If the user chooses the Cancel button, the default string is the value returned. If the user
chooses the OK button, the string in the edit box is the value returned.

Use the InputBox function when it doesn’t matter if the user chooses either the OK
button or the Cancel button (or presses Esc) to exit the dialog box. When your
application needs to know if the user chooses OK or Cancel (or presses Esc), use the
InputQuery function.

Example

This example displays an input dialog box when the user clicks the button on the form.
The input dialog box includes a prompt string and a default string. The string the user
enters in the dialog box is stored in the InputString variable.

uses Dialogs;

procedure TForml.ButtonlClick(Sender: TObject);
var
InputString: string;
begin
InputString:= InputBox('Input Box', 'Prompt', 'Default string');
end;

See also
MessageDlg function, MessageDIgPos function

Delphi Visual Component Library Reference 401

InputQuery function

InputQuery function Dialogs

Declaration
function InputQuery(const ACaption, APrompt: string; var Value: string): Boolean;

The InputQuery function displays an input dialog box ready for the user to enter a string
in its edit box. The ACaption parameter is the caption of the dialog box, the APrompt
parameter is the text that prompts the user to enter input in the edit box, and the Value
parameter is the string that appears in the edit box when the dialog box first appears. If
the user enters a string in the edit box and chooses OK, the Value parameter changes to
the new value.

The InputQuery function returns True if the user chooses OK, and False if the user
chooses Cancel or presses the Esc key.

If your application doesn’t need to know whether the user chooses OK or Cancel, use
the InputBox function.

Example

This example uses a button and a label on the form. When the user clicks the button, a
the input box displays. If the user chooses OK, the string that appears in the edit box of
the dialog box displays as the caption of the label on the form. If the user chooses
Cancel, the dialog box closes and the caption of the label remains unchanged.

procedure TForml.ButtonlClick(Sender: TObject);
var
NewString: string;
ClickedOK: Boolean;
begin
NewString := 'Default String';
Labell.Caption := NewString;
ClickedOK := InputQuery('Input Box', 'Prompt', NewString);

if ClickedOK then { NewString contains new input string }
Labell.Caption := 'The new string is ''' + NewString + '''';
end;
See also

MessageDlg function, MessageDIgPos function

Insert method

Applies to
TList, TMenultem, TStringList, TStrings objects; TOutline, TTable, TQuery components

402 Delphi Visual Component Library Reference

Insert method

For list objects

Declaration
procedure Insert (Index: Integer; Item: Pointer);

The Insert method inserts an item into the list of items stored in the List property of a list
object. Specify the item to insert as the value of the Itern parameter. Specify the position
in the list where you want the item inserted as the value of the Index parameter. The
index is zero-based, so the first position in the list has an index value of 0.

If your application calls Insert when the list of items is sorted, an EListError exception is
raised.

Example
The following code inserts MyObject into MyList at the position immediately following
the position of MyOtherObject.

MyList.Insert (IndexOf (MyOtherObject)+1, MyObject);
See also

Add method, Clear method, Count property, Delete method, First method, IndexOf
method, Last method

For string objects

Declaration
procedure Insert (Index: Integer; const S: string);

The Insert method inserts a string into the list of strings in a string or string list object.
The string S is inserted into the position in the list indicated by the value of Index. The
index is zero-based, so the first position in the list has an index value of 0.

Example
This example uses a list box and a button on a form. When the form appears, it contains
five items. When the user clicks the button, another string is inserted at the top of the list
of items:

procedure TForml.FormCreate(Sender: TObject);
var
I: Integer;
begin
for T := 1 to 5 do
ListBoxl.Items.Add('Item ' + IntToStr(I));
end;

procedure TForml.ButtonlClick(Sender: TObject);
begin

Delphi Visual Component Library Reference 403

Insert method

ListBoxl.Items.Insert (0, 'Inserted here');
end;

See also

Add method, AddStrings method, Clear method, Delete method, IndexOf method,
InsertObject method

For menu items

Declaration
procedure Insert(Index: Integer; Item: TMenultem);

The Insert method inserts a menu item in a menu at the position indicated by the value
of Index.

Example
This example inserts a new menu item after the first item in a menu named FileMenu:

procedure TForml.ButtonlClick(Sender: TObject);

var
NewItem: TMenultem;
begin
NewItem := TMenultem.Create(FileMenu);
NewItem.Caption := 'Do this';
FileMenu.Insert (1, NewItem);
end;
See also

Add method, Count property, Delete method

For outlines

Applies to

TOutline component

Declaration

function Insert(Index: Longint; const Text: string): Longint;

Description

The Insert method inserts an outline item (T'OutlineNode object) into an outline. The
value of the Index and Text parameters are stored in the Index and Text properties of the
inserted item. Insert returns the Index property value of the inserted item.

The inserted item appears in the outline position determined by the Index parameter. It
is inserted at the same level as the item that previously resided at this position.
Therefore, the inserted item and the original item are siblings and share the same parent.

404 Delphi Visual Component Library Reference

Insert method

The original item and all other outline items that appear after the inserted item are
moved down one row and are reindexed with valid Index values. This happens
automatically unless the Beginlpdate method was called.

Note To insert an item as the last top-level item in an outline, pass zero (0) in the Index
parameter.

Example
The following code inserts an item as a sibling of the selected item.

begin
Outlinel.Insert (Outlinel.SelectedItem, 'New item');
end;

See also
Add method, AddChild method, AddChildObject method, InsertObject method, MoveTo

method d

For tables and queries

Declaration
procedure Insert;

The Insert method puts the dataset into Insert state and opens a new, empty record at the
current cursor location. When an application calls Post, the new record will be inserted
in the dataset in a position based on its index, if defined. To discard the new record, use
Cancel.

This method is valid only for datasets that return a live result set.

Note For indexed tables, the Append and Insert methods will both put the new record in the
correct location in the table, based on the table’s index. If no index is defined on the
underlying table, then the record will maintain its position—Append will add the record
to the end of the table, and Insert will insert it at the current cursor position. In either
case, posting a new record may cause rows displayed in a data grid to change as the
dataset follows the new row to its indexed position and then fetches data to fill the data
grid around it.

Example

with Tablel do

begin

Move to the end ot the component }

Last;

Insert;

FieldByName (‘CustNo’).AsString := ‘9999';

{ Fill in other fields here }

if { you are sure you want to do this} then Post
else { if you changed your mind } Cancel;

end.

—

Delphi Visual Component Library Reference 405

Insert procedure

Insert procedure System

Declaration
procedure Insert(Source: string; var S: string; Index: Integer);
The Insert procedure merges a substring into a string beginning at a specified point.

Source is a string-type expression. S is a string-type variable of any length. Index is an
integer-type expression.

Insert merges Source into S at the position S[index]. If the resulting string is longer than
255 characters, it is truncated after the 255th character.

Example

var
S: string;
begin
S := 'Honest Lincoln';
Insert('Abe ', S, 8); { 'Honest Abe Lincoln' }
end;

See also
Concat function, Copy function, Delete procedure, Length function, Pos function

InsertComponent method

Applies to

All components

Declaration
procedure InsertComponent (AComponent: TComponent) ;

The InsertComponent method makes the component own the component passed in the
AComponent parameter. The component is added to the end of the Components array
property. The inserted component must have no name (no specified Name property
value), or the name must be unique among all others in the Components list.

When the owning component is destroyed, AComponent is destroyed also.

Example
The following code inserts NewButton into the Components array of Form1.

Forml.InsertComponent (NewButton);

See also
RemoveComponent method

406 Delphi Visual Component Library Reference

InsertControl method

InsertControl method

Applies to
All controls

Declaration
procedure InsertControl (AControl: TControl);

The InsertControl method inserts a control within the Controls property of a windowed
control, making the inserted control a child, and the containing control the parent. The
inserted control is the value of the AControl parameter.

Example

This example uses a button placed next to a group box. When the user clicks the button,

the group box becomes the parent of the button, so the button moves inside the group

box. d

procedure TForml.ButtonlClick(Sender: TObject);
begin
RemoveControl (Buttonl);
GroupBox1.InsertControl (Buttonl);
end;

Note that it was necessary to remove the button from the Controls property of the form
before the button actually moves into the group box.

This code accomplishes the same thing:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Buttonl.Parent := GroupBoxl;
end;

See also
Parent property, RemoveControl method

InsertObject method

Applies to
TStringList, TStrings objects, TOutline component

For string and string list objects

Declaration

procedure InsertObject (Index: Integer; const S: string; AObject: TObject);

Delphi Visual Component Library Reference 407

InsertObject method

The InsertObject method inserts a string into the list of strings and an object into the list
of objects in a string or string list object. Specify the string you want to insert as the value
of the S parameter, and the object you want to insert as the value of the AObject
parameter. The Index parameter identifies the position of the string and object in their
respective string and object lists. Because the index is zero-based, the first position in
each list has an Index value of 0.

If your application calls InsertObject when the list of items is sorted, an EListError
exception is raised.

Example
The following code inserts the components of Form1 into the first position of the Lines
list of Memol.

var
I: Integer;
begin
for I := 0 to Forml.ComponentCount-1 do
begin
with Forml.Components[i] as TComponent do
Memol.lines.InsertObject (0, Name, Self);
end;
end;

See also
AddObject method, IndexOfObject method, Insert method, Objects property, Strings

property

For outlines

Applies to
TOutline component

Declaration

function InsertObject(Index: Longint; const Text: string; const Data: Pointer): Longint;

Description

The InsertObject method inserts an outline item (TOutlineNode object) containing data
into an outline. The value of the Index and Text parameters are stored in the Index and
Text properties of the inserted item. The Data parameter specifies the Data property
value of the new item. Insert returns the Index property value of the inserted item.

The inserted item appears in the outline position determined by the Index parameter. It
will be inserted at the same level as the item that previously resided at this position.
Therefore, the inserted item and the original item will be siblings and share the same
parent. The original item and all other outline items that appear after the inserted item
are moved down one row and are reindexed with valid Index values. This is done
automatically unless the BeginlUpdate method was called.

408 Delphi Visual Component Library Reference

InsertOLEObjectDIlg function

Note To insert an item as the last top-level item in an outline, pass zero (0) in theIndex
parameter.

Example
The following code creates a bitmap object named Bitrmapl and inserts an outline item
containing Bitmap1 into the first level of Outlinel.

var
Bitmapl: TBitmap;

begin
Bitmapl := TBitmap.Create;
Outlinel.InsertObject (1, 'New item', Bitmapl);

end;

See Also
Add method, AddChild method, AddChildObject method, Insert method, MoveTo method

InsertOLEObjectDlg function Toctr

Declaration

function InsertOleObjectDlg(Form: TForm; HelpContext: THelpContext;
var PInitInfo: Pointer): Boolean;

InsertOLEObjectDlg displays the Insert Object dialog box. Use this function to allow the
user to specify the OLE object initialization information by using the Insert Object dialog
box.

InsertOLEObjectDlg returns True if the user specifies an OLE object and chooses OK from
the Insert Object dialog box. InsertOLEObjectDIg returns False if the user doesn’t specify
an OLE object or chooses Cancel in the dialog box.

These are the parameters of InsertOLEObjectDIg:

Field Description
Form The form that owns the Insert Object dialog box.
HelpContext A Help context identification number that is used if the user chooses Help from within

the Insert Object dialog box. If you pass 0 for HelpContext, no Help button appears in
the Insert Object dialog box. Pass a number other than 0 if you want to provide
context-sensitive online Help.

PlnitInfo If InsertOLEObject returns True, InsertOLEObjectDIg modifies the PlnitInfo pointer
parameter to point to OLE initialization information. Initialize the OLE object by
assigning this pointer to the PlnitInfo property. When your application is finished with
the PlnitInfo pointer, it should be released with ReleaseOLEInitInfo.

Example

The following code displays the Insert Object dialog box. If the user specifies an object
and chooses OK, OLEContainerl is initialized. After initialization, the OLE information is
released.

Delphi Visual Component Library Reference 409

InsertRecord method

var
Info: Pointer;
begin
if InsertOLEObjectDlg(Forml, 0, Info) then
begin
OLEContainerl.PInitInfo := Info;
ReleaseOLEInitInfo(Info);
end;
end;

See also
LinksDIg function, PasteSpecialDlg function

InsertRecord method

Applies to
TTable, TQuery components

Declaration
procedure InsertRecord(const Values: array of const);

The InsertRecord method inserts a new record into the dataset using the field values
passed in the Values parameter. The assignment of the elements of Values to fields in the
record is sequential; the first element is assigned to the first field, the second to the
second, etc. The number of field values passed in Values may be fewer than the number
of actual fields in the record; any remaining fields are left unassigned and are NULL.
The type of each element of Values must be compatible with the type of the field in that
the field must be able to perform the assignment using AsString, Aslnteger, etc.,
according the type of the Values element.

This method is valid only for datasets that return a live result set.

Note For indexed tables, the AppendRecord and InsertRecord methods will both put the new
record in the correct location in the table, based on the table’s index. If no index is
defined on the underlying table, then the record will maintain its position—
AppendRecord will add the record to the end of the table, and InsertRecord will insert it at
the current cursor position. In either case, posting a new record in a data grid may cause
all the rows before and after the new record to change as the dataset follows the new
row to its indexed position and then fetches data to fill the grid around it.

Example

Tablel.InsertRecord([9998, ‘Lesh’, ‘Phil’]);

See also
TField component

410 Delphi Visual Component Library Reference

Int function

Int function System

Declaration
function Int (X: Real): Real;
The Int function returns the integer part of the argument.

X is a real-type expression. The result is the integer part of X; that is, X rounded toward
Zero.

Example

var
R: Real;

begin
R
R

end;

Int (123.456); { 123.0
Int(-123.456); { -123.0 }

See also
Frac function, Round function, Trunc function

IntegralHeight property

Applies to
TDBListBox, TDirectoryListBox, TFileListBox, TListBox component

Declaration
property IntegralHeight: Boolean;

The IntegralHeight property controls the way the list box represents itself on the form. If
IntegralHeight is True, the list box shows only entries that fit completely in the vertical
space, and the bottom of the list box moves up to the bottom of the last completely
drawn item in the list. If IntegralHeight is False, the bottom of the list box is at the location
determined by its ItemHeight property, and the bottom item visible in the list might not
be complete.

If the list box has a Style property value of IbOwerDrawVariable, setting the IntegralHeight
property to True has no effect.

If the Style property value of the list box is [sOwnerDrawFixed, the height of the list box at
design time is always an increment of the IternHeight value.

Example

This example uses a list box on a form. To try it, enter as many strings in theItems
property as you like using the Object Inspector. When the application runs, the list box
displays only entries that fit completely in the vertical space, and the bottom of the list

Delphi Visual Component Library Reference 411

Interval property

box moves up to the bottom of the last string in the list box if the form is less than 300
pixels in height:

procedure TForml.FormCreate(Sender: TObject);
begin
if Height < 300 then
ListBoxl.IntegralHeight := True
else
ListBoxl.IntegralHeight := False;
end;

See also
ItemHeight property, Items property

Interval property

Applies to
TTimer component

Declaration
property Interval: Word;

The Interval property determines in milliseconds the amount of time that passes before
the timer component initiates another OnTimer event.

You can specify any value between 0 and 65,535 as the interval value, but the timer
component won't call an OnTimer event if the value is 0. The default value is 1000 (one
second).

Example
The code in this OnTimer event handler moves a ball, the shape component (T'Shape)
slowly across a form.

procedure TForml.TimerlTimer (Sender: TObject);
begin

Timerl.Interval := 100;

Shapel.Shape := stCircle;

Shapel.Left := Shapel.Left + 1;
end;

IntToHex function SysUtils

Declaration
function IntToHex(Value: Longint; Digits: Integer): string;

The IntToHex function converts a number into a string containing the number's
hexadecimal (base 16) representation with a specific number of digits.

412 Delphi Visual Component Library Reference

IntToStr function

Example
When the user clicks the button on the form, this code converts the number entered in
Edit] to a hexadecimal string. The string displays in Edit2.

procedure TForml.ButtonlClick(Sender: TObject);
begin

Edit2.Text := IntToHex(StrToInt (Editl.Text), 6);
end;

See also
IntToStr function

IntToStr function SysUtils

Declaration
function IntToStr(Value: Longint): string; d

The IntToStr function converts an integer into a string containing the decimal
representation of that number.

Example

This example uses a button and an edit box on a form. The code assigns a value to the
Value variable and displays the string representation of the Value variable in the edit
box.

procedure TForml.ButtonlClick(Sender: TObject);
var
Value: Integer;
begin
Value := 1234;
Editl.Text := IntToStr(Value);
end;

See also
IntToHex function, StrTolnt function

Invalidate method

Applies to
All controls; TForm component

Declaration
procedure Invalidate;

The Invalidate method forces a control to repaint as soon as possible.

Delphi Visual Component Library Reference 413

IOResult function

Example
The following code invalidates Form1.

Forml.Invalidate;

See also
Refresh method, Update method

|OResult function System

Declaration

function IOResult: Integer;

The IOResult function returns the status of the last I/O operation performed.
I/O-checking must be off—{$I-}—to trap I/O errors using IOResult.

If an I/O error occurs and I/O-checking is off, all subsequent I/O operations are
ignored until a call is made to IOResult. Calling IOResult clears the internal error flag.

An alternative way to handle I/O errors is to use exception handling. For more
information on handling run-time library exceptions, see Handling RTL Exceptions in
the Help system.

Example

var
F: file of Byte;
begin
if OpenDialogl.Execute then begin
AssignFile(F, OpenDialogl.FileName);
{$1-}
Reset (F) ;
{$1+}
if IOResult = 0 then
MessageDlg('File size in bytes: ' + IntToStr(FileSize(F))
mtInformation, [mbOk], 0);
else
MessageDlg('File access error', mtWarning, [mbOk], 0);
end;
end;

IsindexField property

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

414 Delphi Visual Component Library Reference

IsMasked property

Declaration
property IsIndexField: Boolean;

Run-time and read only. The IsIndexField property specifies whether or not a field is
indexed. If True, a field is indexed.

IsMasked property

Applies to
TDBEdit, TMaskEdit components

Declaration
property IsMasked: Boolean;

The IsMasked property determines if a mask exists (the EditMask property has a value)
for the data displayed in the database edit box or mask edit box. If sMasked is True, a
mask exists. If IsMasked is False, no mask exists.

Example
This example tests the masked edit box to determine if it has an edit mask. If it doesn’t
an edit mask is assigned. The edit mask is one for dates in the MM/DD/YY format:

procedure TForml.ButtonlClick(Sender: TObject);

begin
if not MaskEditl.IsMasked then
MaskEditl.EditMask := '199/99/00;1;_";
end;
See also
EditMask property

ISNull property

Applies to

TParam object; TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField,
TDateField, TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField,
TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

For TParam objects

Declaration
property IsNull: Boolean;

IsNull is a read only property that returns True if the parameter has no data assigned to
it. This should only occur if an application has called:

Delphi Visual Component Library Reference 415

IsSQLBased property

* Assign with another parameter that has no data assigned.
o AssignField with a TField whose data is null.
¢ The Clear method.

Example

{ Set the CustNo parameter to 999 if it is null }
with Params.ParamByName (‘CustNo’) do
if IsNull then AsInteger := 999;

For fields

Declaration
property IsNull: Boolean;
Run-time and read only. IsNull returns True if the value of the field is NULL.

See also
Required property

IsSQLBased property

Applies to
TDataBase component

Declaration
property IsSQLBased: Boolean;

Run-time and read only. IsSQLBased is True if the TDatabase component uses any driver
other than ‘STANDARD’. If you are accessing a dBASE or Paradox database or ASCII
file, IsSQLBased will be False.

IsValidChar method

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration
function IsValidChar (InputChar: Char): Boolean; virtual;

IsValidChar is used by data-aware controls to determine if a particular character entered
in the field is valid for the field. TIntegerField, TSmallintField and TWordField allow ‘+’, -/

416 Delphi Visual Component Library Reference

IsValidldent function

and ‘0" to ‘9". TBCDField and TFloatField also allow ‘E’, ‘e’, and the DecimalSeparator
character. All other fields accept all characters.

See also
DecimalSeparator variable

IsValidldent function SysUtils

Declaration
function IsValidIdent (const Ident: string): Boolean;

IsValidldent returns True if the given string is a valid identifier. An identifier is defined as

T

a character from the set ['A'..'"Z', 'a'..'z', '_'] followed by zero or more characters from the
set['A'..'Z','a'..'2','0..'9", '_'].
Note All component names must be valid Object Pascal identifiers. d

IsVisible property

Applies to
TOutlineNode object

Declaration
property IsVisible: Boolean;

Run-time and read only. The IsVisible property indicates whether the outline item is
visible within the TOutline component. An item is visible if it is on level 1 or if all its
parents are expanded.

Example
The following code expands the branch of the selected outline item if it isn’t visible.

with Outlinel.Tltems[Outlinel.SelectedItem] do
if not IsVisible then FullExpand;

See also
Expanded property, Level property

ltemAtPos method

Applies to
TDBListBox, TDirectoryListBox, TFileListBox, TListBox, TTabSet components

Delphi Visual Component Library Reference 417

IltemAtPos method

For list boxes

Applies to
TDBListBox, TDirectoryListBox, TFileListBox, TListBox components

Declaration
function TtemAtPos(Pos: TPoint; Existing: Boolean): Integer;

The ItemAtPos method returns the index of the list box indicated by the coordinates of a
point on the control. The Pos parameter is the point in the control in window
coordinates.

If Pos is beyond the last item in the list box, the value of the Existing variable determines
the returned value. If you set Existing to True, ItemAtPos returns -1, indicating that no
item exists at that point. If you set Existing to False, ItemAtPos returns the position of the
last item in the list box.

ItemAtPos is useful for detecting if an item exists at a particular point in the control.

Example

This example uses a list box, and edit box, and a button on a form. When the user clicks
the button, the index value of the item in the list box which contains the point specified
in the code appears in the edit box:

procedure TForml.ButtonlClick(Sender: TObject);
var
Value: Integer;
APoint: TPoint;
begin
APoint.X := 30;
APoint.Y := 50;
Value := ListBoxl.ItemAtPos(APoint, False);
Editl.Text := IntToStr(Value);
end;

See also
ItemIndex property, Items property

For tab sets

Applies to
TTabSet component

Declaration
function ItemAtPos(Pos: TPoint): Integer;

The [temAtPos method returns the index of the tab indicated by the coordinates of a
point on the control. The Pos parameter is the point in the control in window

418 Delphi Visual Component Library Reference

IltemCount property

coordinates. If the returned index is 0, the tab is the first tab in the tab set, if the index is
1, the tab is the second tab, and so on.

ItemAtPos is useful for determining which tab is located at a particular position in the tab
set control.

Example
The following code selects the tab that is at client coordinates (100, 10) inTabSet1.

TabSetl.TabIndex := TabSetl.ItemAtPos(Point (100, 10);

See also
Tablndex property, Tabs property

ltemCount property

Applies to
TOutline component

Declaration
property ItemCount: Longint;

Run-time and read only. The ItemCount property specifies the total number of items in
an outline.

Example

The following code turns off automatic reindexing before inserting a new item into the
index if the index includes more than 100 items. Otherwise, automatic reindexing
remains active.

Outlinel.SetUpdateState (Outlinel.ItemCount > 100)
Outlinel.Insert(l, 'Newltem’, MyData);
Outlinel.EndUpdate

See also
Items property

ltemHeight property

Applies to

TComboBox, TDBComboBox, TDBListBox, TDirectoryListBox, TFileListBox, TListBox,
TOutline components

Declaration

property ItemHeight: Integer;

Delphi Visual Component Library Reference 419

ItemlIndex property

For list boxes, the ItemHeight property is the height of an item in the list box in pixels
when the list box’s Style property is IsOwnerDrawFixed. If the Style property is IsStandard
or IsOwnerDrawVariable, the value of ItemHeight is ignored. You can control the height of
an item in a fixed owner-draw list box by changing the height of ItemHeight.

For combo boxes, the ItemHeight property is the height of an item in the combo box list
in pixels when the combo box’s Style property is csOwnerDrawFixed. If the Style property
is any other setting, the value of ItemHeight is ignored. You can control the height of an
item in a fixed owner-draw combo box by changing the height of IternHeight.

For outlines, the ItemHeight property is the height of an item in the outline in pixels
when the outline’s Style property is 0sOwnerDraw. If the Style property is osStandard, the
value of ItemHeight is ignored. You can control the height of an item in an owner-draw
outline by changing the height of ItemHeight.

Example
This example uses a list box and a button on a form. Enter as many strings in the list box
as you like using the property editor of the Itemns property in the Object Inspector. When
the user clicks the button on the form, the amount of vertical space allotted to each item
in the list box changes.

procedure TForml.ButtonlClick(Sender: TObject);

begin

ListBoxl.Style := 1lbOwnerDrawFixed;

ListBoxl.ItemHeight := 30;
end;

See also
Items property, IntegralHeight property, OnDrawltem event

ltemIndex property

Applies to
TComboBox, TDBComboBox, TDBRadioGroup, TDirectoryListBox, TDriveComboBox,
TFileListBox, TFilterComboBox, TListBox, TRadioGroup components

Declaration
property ItemIndex: Integer;

Run-time only. The value of the IfemIndex property is the ordinal number of the selected
item in the control’s item list. If no item is selected, the value is -1, which is the default
value unless MultiSelect is True. To select an item at run time, set the value of ItemIndex
to the index of the item in the list you want selected, with 0 being the first item in the list.

For list boxes and combo boxes, if the value of the MultiSelect property is True and the
user selects more than one item in the list box or combo box, the ItemIndex value is the
index of the selected item that has focus. If MultiSelect is True, ItemIndex defaults to 0.

420 Delphi Visual Component Library Reference

IltemRect method

Example
This example uses a drive combo box on a form. When the user selects a drive in the
combo box, the index value of the selected item appears in the caption of the label:

procedure TForml.DriveComboBoxlChange (Sender: TObject);
begin

Labell.Caption := 'Index value ' + IntToStr (DriveComboBoxl.ItemIndex);
end;

See also
Items property

ltemRect method

Applies to
TDBListBox, TDirectoryListBox, TDrawGrid, TFileListBox, TListBox, TStringGrid, TTabSet d
components

Declaration
function ItemRect(Item: Integer): TRect;

The ItemRect method returns the rectangle that surrounds the item specified in the Item
parameter.

Example

This example uses a list box and four labels on a form. When the application runs, three
strings are added to the list box. When the user selects one of the strings in the list box,
the coordinates of the rectangle taken up by the selected string appear in the four labels:

procedure TForml.FormCreate(Sender: TObject);
begin
with ListBoxl do
begin
Ttems.Add('Hello");
Ttems.Add('New');
Ttems.Add('World');
end;
end;

procedure TForml.ListBox1Click(Sender: TObject);

var
ListBoxItem: TRect;

begin
ListBoxItem := ListBoxl.ItemRect (ListBoxl.ItemIndex);
Labell.Caption := 'Left ' + IntToStr(ListBoxItem.Left);

Label2.Caption := 'Top ' + IntToStr(ListBoxItem.Top);

Label3.Caption := 'Right ' + IntToStr(ListBoxItem.Right);

Labeld.Caption := 'Bottom ' + IntToStr(ListBoxItem.Bottom);
end;

Delphi Visual Component Library Reference 421

Items property

See also
TRect type

ltems property

Applies to

TFieldDefs, TIndexDefs, TList, TParams objects; TComboBox, TDBComboBox, TDBListBox,
TDBRadioGroup, TDirectoryListBox, TDriveComboBox, TFileListBox, TFilterComboBox,
TListBox, TMainMenu, TMenultem, TOutline, TPopupMenu, TRadioGroup components

For list boxes, combo boxes, and radio group boxes

Declaration
property Items: TStrings;

The Items property contains the strings that appear in the list box or combo box, or as
radio buttons in a radio group box. Because Items is an object of type TStrings, you can
add, delete, insert, and move items using the Add, Delete, Insert, Exchange, and Move
methods of the TStrings object.

The ItemIndex property determines which item is selected, if any.

To determine if a particular item in the list of strings that makes up theItems property
for a list box or combo box is selected, use the Selected property.

Example
This example uses an edit box, a list box, and a button on a form. When the user clicks
the button, the text in the edit box is added to the list box:

procedure TForml.ButtonlClick(Sender: TObject);
begin

ListBoxl.Items.Add(Editl.Text);
end;

See also

Add method, Delete, method, Exchange method, Insert method, ItemIndex property, Move
method, Selected property

For menu items, main menus, and pop-up menus

Declaration
property Items[Index: Integer]: TMenultem;
Read-only property.

For menu items, the Items array property provides access to a subitem of a menu item
(TMenultem) by its position in the list of subitems. The value of Index is the position of

422 Delphi Visual Component Library Reference

Items property

the subitem within the Iterns array. For example, if an application has a File drop-down

menu that contains the menu items New, Open, and Save, in that order,

FileMenu.Items|[2] refers to the Save command. For menu items, Items is run-time only

property.

For main menus, the Items property provides access to a menu item on the main menu

bar, and is available at both design time and run time.

For pop-up menus, the Ifems property provides access to a menu item on the pop-up

menu, and is available at both design time and run time.

Example
The following code disables all the subitems of Menultem1.

var
I: Integer;
begin
for T := 0 to MenuIteml.ItemCount-1 do
MenulIteml.Items[I].Enabled := False;
end;

See also
Count property

For outlines

Declaration
property Items[Index: Longint]: TOutlineNode;

Run-time and read only. For outlines, the Items array property provides access to a

outline node by its row position. The value of the Index parameter corresponds to the

Index property and represents the position of the item within the Items array. For

example, if an outline has three items with Index property values of 1, 2, and 3 and Text
property values of ‘Orange’, "Apple’, and ‘Banana’, respectively, Items[2] refers to the

"Apple’ item.

Example
The following code collapses the selected item of Outlinel.

Outlinel.Items[Outlinel.SelectedItem].Expanded := False;

See also
SelectedItem property

For list objects

Declaration

property Items[Index: Integer]: Pointer;

Delphi Visual Component Library Reference

423

Items property

Run-time only. The Items array property lets you access a specific pointer kept in the List
property of a list object. Using the Index parameter of Items you can access a list item by

its position in the list.

Example

This example creates a list object and inserts two records into it. The value of the record
fields are written on the form:

procedure TForml.FormActivate(Sender: TObject);

type
PMyList = "AList;
AList = record
I: Integer;
C: Char;
end;

var
MyList: TList;
ARecord: PMyList;
B: Byte;
Y: Word;

begin
MyList := TList.Create;
New (ARecord) ;
ARecord”.T := 100;
ARecord”.C := '7Z';
MyList.Add (ARecord);
New (ARecord) ;

i

ARecord”.I := 200;
ARecord”.C := 'X';
MyList.Add (ARecord) ;
Y := 10;

{Add integer 100 and character Z to list}

{Add integer 200 and character X to list}
{Variable used in TextOut function}

{Go through the list until the end is reached}
for B := 0 to (MyList.Count - 1) do

begin
Y =Y 4+ 30;

ARecord := MyList.Items[B];

{Increment Y Value}

Canvas.TextOut (10, Y, IntToStr(ARecord".I)); {Display I}

{Increment Y Value again}

Canvas.TextOut (10, Y, ARecord”.C); ({Display C}

Y =Y 4+ 30;
end;
MyList.Free;

end;
See also

Add method, Expand method, First method, IndexOf method, Last method, Rermove

method

424 Delphi Visual Component Library Reference

ItemSeparator property

For TIndexDefs objects

Declaration
property Items[Index: Integer]: TIndexDef;

Run-time and read only. Items holds the TIndexDef objects that describe each index of the
dataset. The number of entries is given by the Count property; there will be one entry for
each index of the dataset.

For TParams objects

Declaration
property Items[Index: Word]: TParam;

Read and run-time only. The Items array property holds the parameters (T'Param
objects). Use this property when you want to work with the entire set. While you can
use Items to reference a particular parameter by its index, the ParamByName method is
recommended to avoid depending on the order of the parameters.

Example

{ Assign 99999 to any integer parameter which does not have a value }
for T := 0 to Params.Count - 1 do
if (Params.Items[I].IsNull) and (Params.Items[I].DataType = ftInteger) then
{ Items is the default property, so you can omit its name }
Params[I].AsInteger := 99999;

For TFieldDefs objects

Declaration
property Items[Index: Integer]: TFieldDef;

Items is an array of pointers to the TFieldDef objects that describe each field in the dataset.
There is one pointer for each component in the dataset.

See also
Count property

ltemSeparator property

Applies to
TOutline component

Delphi Visual Component Library Reference 425

KeepConnection property

Declaration
property ItemSeparator: string;

The ItemSeparator property determines the separator string used between the outline
item Text values in the FullPath property of the TOutlineNode object. The default value of
ItemSeparatoris "\,

For example, if the top-level outline item has a Text value of "Animals” and a child item
with the Text value of ‘Dogs’, the FullPath property of the ‘Dogs’ item would have the
value "Animals\Dogs’ by default. If the string '->" were assigned to the ItemSeparator
property, the FullPath property of the ‘Dogs’ item would be “Animals->Dogs’.

Example
The following code changes the item separator to "".

Outlinel.ItemSeparator := ':';

See also
FullPath property, Text property, TOutlineNode object

KeepConnection property

Applies to
TDataBase component

Declaration
property KeepConnection: Boolean;

The KeepConnection property specifies whether an application remains connected to a
database server even when no tables are open. If an application needs to open and close
several tables in a single database, it will be more efficient to set KeepConnection to True.
That way, the application will remain connected to the database even when it does not
have any tables open. It can then open and close tables repeatedly without incurring the
overhead of connecting to the database each time. If KeepConnection is False, the database
must repeat the login process to the server each time the Connected property is set to
True.

The TSession component has an application-wide KeepConnections property that
determines the initial state of the KeepConnection property for temporary (automatically-
created) TDatabase components.

Example

Databasel.KeepConnection := False;

426 Delphi Visual Component Library Reference

KeepConnections property

KeepConnections property

Applies to
TSession component

Declaration
property KeepConnections: Boolean;

Run-time only. KeepConnections specifies whether virtual TDatabase components will
maintain database connections even if no tables in the database are open. Databases that
have an explicit TDatabase component will use TDatabase’s KeepConnection property
instead to determine if connections are persistent.

If KeepConnections is True (the default), the application will maintain database
connections until the application exits or calls the DropConnections method. If
KeepConnections is False, then the application will disconnect from the database when all
datasets connected to tables in the database are closed.

Note KeepConnections has no effect on connections to databases for which an application has
an explicit TDatabase component.

Example

Session.KeepConnections := False;

See also
Session variable

KeyExclusive property

Applies to

TTable component

Declaration
property KeyExclusive: Boolean;

The KeyExclusive property indicates whether range and search functions will exclude
the matching records specified by the functions. KeyExclusive is False by default.

For the SetRangeStart and SetRangeEnd methods, KeyExclusive determines whether the
filtered range excludes the range boundaries. The default is False, which means rows
will be in the filtered range if they are greater than or equal to the start range specified
and less than or equal to the end range specified. If KeyExclusive is True, the methods
will filter strictly greater than and less than the specified values.

For the GotoNearest and FindNearest methods, KeyExclusive indicates whether a search
will position the cursor on or after the record being searched for. If KeyExclusive is False,
then GoToNearest and FindNearest will move the cursor to the record that matches the

Delphi Visual Component Library Reference 427

KeyFieldCount property

specified values, if found. If True, then the methods will go the record immediately
following the matching record, if found.

Example

{ Limit the range from 1351 to 1356, excluding both 1351 and 1356 }
with Tablel do

begin

Set the beginning key }

EditRangeStart;

IndexFields[0].AsString := '1351"';

Exclude 1351 itself }
KeyExclusive := True;

Set the ending key }
EditRangeEnd;
IndexFields[0].AsString :
Exclude 1356 itself }
KeyExclusive := True;
Tell the dataset to establish the range }
ApplyRange;

end;

—

—

—

'1356"';

—

—

See also
ApplyRange method, EditRangeStart method, EditRangeEnd method, KeyFieldCount

property

KeyFieldCount property

Applies to
TTable component

Declaration

property KeyFieldCount: Integer;

KeyFieldCount specifies the number of key fields to use with search functions (GotoKey,
FindKey, EditKey, and so on) if you don’t want to search on all the fields in the key.

See also
GotoKey method, GotoNearest method, EditKey method, FindKey method, FindNearest
method, SetKey method

KeyPressed function WinCrt
Declaration

function KeyPressed: Boolean;

428 Delphi Visual Component Library Reference

KeyPreview property

The KeyPressed function returns True if a key has been pressed on the keyboard
The key can be read using the ReadKey function.

Example
uses WinCrt;

begin
repeat
Write('Xx');
until KeyPressed;
end;

See also
ReadKey function

KeyPreview property

Applies to

TForm component

Declaration
property KeyPreview: Boolean;

When the KeyPreview property is True, most key events (OnKeyDown event, OnKeyUp
event, and OnKeyPress event) go to the form first, regardless of which control is selected
on the form. This allows your application to determine how to process key events. After
going to the form, key events are then passed to the control selected on the form. When
KeyPreview is False, the key events go directly to the controls. The default value is False.

The exceptions are the navigation keys, such as Tab, BackTab, the arrow keys, and so on.
If the selected control processes such keys, you can use KeyPreview to intercept them;
otherwise, you can't.

If KeyPreview is False, all key events go to the selected control.

Example

This example changes a form'’s color to aqua when the user presses a key, even when a
control on the form has the focus. When the user releases the key, the form returns to its
original color.

var
FormColor: TColor;

procedure TForml.FormCreate(Sender: TObject);
begin

KeyPreview := True;
end;

procedure TForml.FormKeyDown(Sender: TObject; var Key: Word;

Delphi Visual Component Library Reference 429

KeyViolCount property

Shift: TShiftState);
begin

FormColor := Forml.Color;

Forml.Color := clAqua;
end;

procedure TForml.FormKeyUp (Sender: TObject; var Key: Word;
Shift: TShiftState);

begin
Forml.Color := FormColor;

end;

KeyViolCount property

Applies to
TBatchMove component

Declaration
property KeyViolCount: Longint;

Run-time and read only. KeyViolCount reports the number of records which could not be
replaced, added, or deleted from Destination because of an integrity (key) violations. If
AbortOnKeyViol is True, KeyViolCount will never be greater than one, since the first
violation will cause the move to terminate.

Example

with BatchMovel do
begin
Execute;
if KeyViolCount <> 0 then { something went wrong };
end;

KeyViolTableName property

Applies to
TBatchMove component

Declaration
property KeyViolTableName: TFileName;

KeyViolTableName, if specified, creates a local (Paradox) table containing all records from
the source table that caused an integrity violation (such as a key violation) as a result of
the batch operation.

If AbortOnKeyViol is True, then there will be at most one record in this table since the
operation will be aborted with that first record. KeyViolCount will have the number of
records placed in the new table.

430 Delphi Visual Component Library Reference

Example

Kind property

BatchMovel .KeyViolTableName := ‘KeyViol’;

See also

Destination property

Kind property

Applies to

TBitBtn, TScrollBar components

The Kind property specifies the style or type of component.

For bitmap buttons

Declaration

property Kind: TBitBtnKind;

The Kind property determines the kind of bitmap button. These are the possible values
and their meanings:

Value
bkCustom

bkOK

bkCancel

bkYes

bkNo

bkHelp

Meaning

You indicate which bitmap you want the bitmap button to have by setting the value of
the Glyph property to the bitmap of your choice. Like push buttons, you can either
select a ModalResult for the button, or you can supply the code to respond to an
OnClick event.

A green check mark and the text “OK” appears on the button face. The button
becomes the default button (the Default property is automatically set to True). When
the user chooses the button, the dialog box closes. The resulting ModalResult value of
the bitmap button is mrOK.

A red X and the text “Cancel” appears on the button face. The button becomes the
Cancel button (the Cancel property is automatically set to True). When the user
chooses the button, the dialog box closes. The resulting ModalResult value of the
bitmap button is mrCancel.

A green check mark and the text “Yes” appears on the button face. The button
becomes the default button (the Default property is automatically set to True). When
the user chooses the button, any changes the user made in the dialog box are accepted
and the dialog box closes. The resulting ModalResult value of the bitmap button is
mrYes.

A red no symbol and the text “No” appears on the button face. The button becomes
the Cancel button (the Cancel property is automatically set to True). When the user
chooses the button, any changes the user made in the dialog box are canceled and the
dialog box closes. The resulting ModalResult value of the bitmap button is 1rNo.

A cyan question mark and the text “Help” appears on the button face. When the user
chooses the button, a Help screen in the application’s Help file appears. The Help file
that appears is the file specified as the value of the application’s HelpFile property. The
value of the HelpContext property of the button specifies which Help screen in the
Help file appears.

Delphi Visual Component Library Reference 431

Kind property

Value Meaning

bkClose A door with a green exit sign over it (use your imagination) and the text “Close”
appear on the button face. When the user chooses the button, the form closes. The
Default property of the button is True.

bkAbort A red X and the text “Abort” appears on the button face. The Cancel property of the
button is automatically set to True.

bkRetry A green circular arrow and the text “Retry” appear on the button face.

bkIgnore A green man walking away and the text “Ignore” appears on the button face. Use it to
allow the user to continue after an error has occurred.

bkAIl A double green check mark and the text “Yes to All” appears on the button face. The

Default property of the button is automatically set to True.

Example

This example uses three bitmap buttons on a form. When the application runs, theKind
property for each bitmap button is set, and the BitBtn1 button (the OK button) becomes
the default button.

procedure TForml.FormCreate(Sender: TObject);
begin

BitBtnl.Kind := DbkOK;

BitBtn2.Kind := bkCancel;

BitBtn3.Kind := bkHelp;
end;

See also
Cancel property, Default property, ModalResult property

For scroll bars

Declaration
property Kind: TScrollBarKind ;

The Kind property determines if a scroll bar is horizontal or vertical. These are the
possible values:

Value Meaning
sbHorizontal Scroll bar is horizontal
sbVertical Scroll bar is vertical

For scroll bars of type TControlScrollBar (form and scroll box scroll bars accessed
through the HorzScrollBar and VertScrollBar properties), Kind is a read- and run-time-
only property.

Example
This example uses a radio group box and a scroll bar on a form. When the user selects
one of the radio buttons, the scroll bar changes orientation accordingly.

procedure TForml.FormCreate(Sender: TObject);

432 Delphi Visual Component Library Reference

LargeChange property

begin
RadioGroupl.Items.Add('Vertical');
RadioGroupl.Items.Add('Horizontal');
RadioGroupl.ItemIndex := 2;

end;

procedure TForml.RadioGrouplClick(Sender: TObject);

begin
if RadioGroupl.Items[RadioGroupl.ItemIndex] = 'Vertical' then
ScrollBarl.Kind := sbVertical;
if RadioGroupl.Items[RadioGroupl.ItemIndex] = 'Horizontal' then
ScrollBarl.Kind := sbHorizontal;
end;

LargeChange property

Applies to
TScrollBar component

Declaration
property LargeChange: TScrollBarInc;

The LargeChange property determines how far the scroll box moves when the user clicks
the scroll bar on either side of the scroll box or presses PgUp or PgDn. The default value is
1 position.

For example, if the LargeChange property setting is 1000, each time the user clicks the
scroll bar, the scroll box moves 1000 positions. How big the change from one position to
another depends on the difference between the Max property value and the Min
property value. If Max is 3000 and Min is 0, the user needs to click the scroll bar three
times to move the scroll box from one end of the scroll bar to the other.

Example
This code determines that when the user clicks the scroll bar on either side of the scroll
box, the scroll box moves 100 positions on the scroll bar:

ScrollBarl.LargeChange := 100;

See also
Max property, Min property, Position property, SmallChange property

Last method

Applies to
TList object; TQuery, TStoredProc, TTable components

Delphi Visual Component Library Reference 433

Last method

For list objects

Declaration
function Last: Pointer;

The Last method returns a pointer that points to the last item referenced in the List
property of a list object.

Example
This example inserts two records into a list object and displays the contents of the last
record in the list on the form:

procedure TForml.FormActivate(Sender: TObject);
type
PMyList = "AList;
AList = record
I: Integer;
C: Char;
end;

var
MyList: TList;
ARecord: PMyList;

begin
MyList := TList.Create;
New (ARecord) ;
ARecord”.T := 100;
ARecord".C := 'Z';
MyList.Add (ARecord); {Add integer 100 and character Z to list}
New (ARecord) ;
ARecord”.I := 200;
ARecord”.C := 'X';
MyList.Add (ARecord); {Add integer 200 and character X to list}
ARecord := MyList.Last;
Canvas.TextOut (10, 10, IntToStr(ARecord".I)); {Display I}
Canvas.TextOut (10, 40, ARecord”.C); ({Display C}
MyList.Free;

end;

See also
Capacity property, First method, IndexOf method, Items property

For tables, queries, and stored procedures

Declaration
procedure Last;

The Last method moves the cursor to the last record in the active range of records of the
dataset. The active range of records is affected by the filter established withSetRangeEnd.

434 Delphi Visual Component Library Reference

Layout property

If the dataset is in Insert or Edit state, Last will perform an implicit Post of any pending
data.

Example

Tablel.last;

See also
First method, MoveBy method, Next method, Prior method, SetRangeEnd method

Layout property

Applies to
TBitBtn, TSpeedButton components

Declaration

property Layout: TButtonLayout;

The Layout property determines where the image appears on the bitmap button or a
speed button. These are the possible values:

Value Meaning

bIGlyphLeft The image appears near the left side of the button.
bIGlyphRight The image appears near the right side of the button.
biGlyphTop The image appears near the top of the button.
biGlyphBottom The image appears near the bottom of the button.
Example

This example uses a bitmap button on a form that has a bitmap specified as the value of
its Glyph property. When the user clicks the bitmap button, the bitmap randomly
changes its position on the button:

procedure TForml.BitBtnlClick(Sender: TObject);
begin
Randomize;
case Random(4) of
0: BitBtnl.Layout := blGlyphLeft;
1: BitBtnl.Layout := blGlyphRight;
2: BitBtnl.Layout := blGlyphTop;
3: BitBtnl.Layout := blGlyphBottom;
end;
end;

See also
Margin property, Spacing property

Delphi Visual Component Library Reference 435

Left property

Left property

Applies to
All controls; TFindDialog, TReplaceDialog components

Declaration
property Left: Integer;

The Left property determines the horizontal coordinate of the left edge of a component
relative to the form in pixels. For forms, the value of the Left property is relative to the
screen in pixels. The default value is -1.

The Left property for the Find and Replace dialog boxes is available at run-time only.

Example
The following example moves the button 10 pixels to the right each time a user clicks it:
procedure TForml.ButtonlClick(Sender: TObject);
begin
Buttonl.Left := Buttonl.Left + 10;
end;

See also
SetBounds method, Top property

LeftCol property

Applies to
TDrawGrid, TStringGrid components

Declaration
property LeftCol: Longint;

Run-time only. The LeftCol property determines which column in the grid appears at the
far left side of the grid.

If you have one or more nonscrolling columns in the grid, they remain at the far left,
regardless of the value of the LeftCol property. In this case, the column you specify as the
far left column is the first column to the immediate right of the nonscrolling columns.

Example
This line of code positions the fourth column of a string grid at the left edge of the grid:

StringGridl.LeftCol := 3;

See also
FixedCols property, TopRow property

436 Delphi Visual Component Library Reference

Length function

Length function System

Declaration
function Length(S: string): Integer;

The Length function returns the dynamic length of the string S.

Example

var

S: string;
begin

S := 'The Black Knight';

Canvas.TextOut (10, 10, 'String Length = ' + IntToStr(Length(S)));
end;

See also
Concat function, Copy function, Delete procedure, Insert procedure, Pos function

Length property

Applies to
TMediaPlayer component

Declaration
property Length: Longint;

Run-time and read only. The Length property specifies the length of the medium in the
open multimedia device. Length is specified using the current time format, which is
specified by the TimeFormat property.

Example
The following code sets Wait to False if the Length of the media is over 10,000. If
TimeFormat is tfMilliseconds, Wait is set to False if the media is over 10 seconds long.

MediaPlayerl.Wait := (MediaPlayerl.Lenth > 10000);

See also
Position property, Start property, TrackLength property

Level property

Applies to
TOutlineNode object

Delphi Visual Component Library Reference 437

Lines property

Declaration
property Level: Word;

Run-time and read only. The Level property indicates the level of indentation of an item
within the TOutline component. The value of Level is 1 for items on the top level. The
value of Level is 2 for their children, and so on.

Example
The following code tests to determine if the fifth outline item is on the same level as the
selected outline item.

if Outlinel.Items[5].Level = Outlinel.Items[Outlinel.SelectedItem].Level then
{ The selected item is on the same level as the fifth item };

See also
ChangeLevel By method, Topltem property

Lines property

Applies to
TDBMemo, TDDEClientltem, TDDEServerltem, TMemo, TOutline components

Lines property for memos

Declaration
property Lines: TStrings;
The Lines property contains the text lines in a memo component.

For a database memo control, the Lines property is a run-time property only.

Example

This example uses a button and a memo control on a form. When the user clicks the
button, the contents of the system’s AUTOEXEC.BAT file is loaded into the memo, and
the sixth line of the file is written across the top of the form.

procedure TForml.ButtonlClick(Sender: TObject);
begin

Memol.Lines.LoadFromFile('C:\AUTOEXEC.BAT');

Writeln('The 6th line of AUTOEXEC.BAT is: ', Memol.Lines[5]);
end;

See also
GetTextBuf method, SetTextBuf method, Text property

438 Delphi Visual Component Library Reference

Lines property for outlines

Lines property

Declaration

property Lines: TStrings;

The Lines property contains the Text property values of the individual items in an

outline.

If the Lines property is of an outline component, each line becomes an outline item in a

TOutlineNode object. Leading tabs and spaces are converted into levels of the outline.

Text without any leading tabs or spaces become level 1 items. For example, to create a
level 2 item, lead the text of the item with one tab or space.

The Lines property of outlines is primarily useful for stuffing an outline with items at
design time. While you can access the individual items with the Lines property at run
time, it is much quicker to access an item with the Items property.

Example

The following two lines of code each produce the same result. In the first line, Lines is

used to access the Strings value of the third outline node. In the second line, Iters is used
to access the Text value of the third outline node. Note that the index used with Iters is
one more than the index used with Lines.Strings.

Editl.text :
Edit2.Text :

Outlinel.Lines.Strings[2];

Outlinel.Items[3].Text;

Lines property for DDE items

Declaration

property Lines: TStrings;

The Lines property contains the text data to exchange in a DDE conversation. For
TDDEClientItem components, Lines specifies the text that is updated by the DDE server
application. For TDDEServerItem components, Lines specifies the text that is sent to any
DDE clients when the value of Lines changes or when a client requests to be updated.

When Lines is changed, an OnChange event occurs.

Lines corresponds to the Text property. Whenever the value of Lines or Text is changed,

the other is updated so that the first line of Lines is always equal to Text. Use Lines to

contain text values longer than 255 characters (which is the limit of the Text property).
For shorter strings, use the Text property.

If the Lines property is of a TDDEClientItern component, you can also send the text in

Lines directly to the DDE server by poking data with the PokeDataLines method.

If the Lines property is of a TDDEServerItem component, the DDE client can change Lines
by poking data. The poked data replaces the contents of Lines and an OnChange event

occurs.

Delphi Visual Component Library Reference

439

LineTo method

Example
The following code assigns the value to the Lines property of DDEClientItem1 to the
Lines of Memo1. This code is executed in the OnChange event handler of
DDEClientltem1, so whenever the client is updated, the new data from the server is
displayed.

procedure TForml.DdeClientItemlChange (Sender: TObject);

begin

Memol.Lines := DDEClientIteml.Lines
end;

LineTo method

Applies to
TCanvas object

Declaration
procedure LineTo(X, Y: Integer);

The LineTo method draws a line on the canvas from the current drawing position
(specified by the PenPos property) to the point specified by X and Y and sets the pen
position to (X, Y).

Example
The following code draws a line from the upper left corner of a form to the point clicked
with the mouse.

procedure TForml.FormMouseDown (Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
Canvas.MoveTo (0, 0);
Canvas.LineTo (X, Y);

end;

See also
MoveTo method

LinksDlg procedure Toctr

Declaration

procedure LinksDlg(Form: TForm; HelpContext: THelpContext);

440 Delphi Visual Component Library Reference

LinksDIgEnabled function

LinksDIg displays the Links dialog box. Use the Links dialog box to view and edit the
current OLE links in your application. These are the parameters of LinksDIg:

Field Description
Form The form that owns the Links dialog box.
HelpContext A Help context ID number to be used if the user chooses Help from within the Links

dialog box. If you pass 0 for HelpContext, no Help button appears in the Links dialog
box. Pass a number other than 0 if you want to provide context-sensitive online Help.

Example
The following code activates the Links dialog with a context-sensitive Help ID number
of 1000.

LinksDlg(Forml, 1000);

See also
InsertOLEObjectDlg function, LinksDIgEnabled function, PasteSpecial DIg function

LinksDIgEnabled function Toctr

Declaration
function LinksDlgEnabled(Form: TForm): Boolean;

LinksDIgEnabled determines if the Links dialog box is enabled. If so, LinksDIgEnabled
returns True and LinksDIg can be successfully called. If not, LinksDIgEnabled returns False
and nothing happens if you call LinksDIg.

The Form parameter specifies the form that owns the Links dialog box.

Example
The following code activates the Links dialog box if it is enabled.

if LinksDlgEnabled(Forml) then LinksDlg(Forml, 0);

List property

Applies to
TList object

Declaration
property List: PPointerList;

Run-time and read only. The List property stores a list of pointers that reference objects
of any type. The declaration of PPointerList is

PPointerList = "“TPointerList;

Delphi Visual Component Library Reference 441

Ln function

The declaration of TPointerList is
TPointerList = array(0..MaxListSize-1] of Pointer;

The elements of the TPointerList array each point to an item of the list.

Example
The following code creates List1 and Object1, then adds Object1 to List1. If the first item
in the List property List1 differs from the first item of the Items property of List1 (which
shouldn’t happen), a message is displayed.
var
Listl: TList;
Objectl: TObject;
begin
Listl := TList.Create;
Objectl := TObject.Create;
Listl.Add(Objectl);
if Listl.List”[0]<>Listl.Items[0] then
MessageDlg('Something is wrong here', mtInformation, [mbOK], 0);
Listl.Free;
Objectl.Free;
end;

See also
FileEditStyle property, TStrings object

Ln function System

Declaration
function Ln(X: Real): Real;

The Ln function returns the natural logarithm (Ln(e) = n) of the real-type expression X.

Example

var
e : real;
S : string;

begin
e := Exp(1.0);
Str(ln(e):3:2, S);
S :='ln(e) = ' + S;
Canvas.TextOut (10, 10, S);

end;

See also
Exp function

442 Delphi Visual Component Library Reference

Lo function

Lo function System

Declaration
function Lo(X): Byte;

The Lo function returns the low-order Byte of the argument X as an unsigned value. X is
an expression of type Integer or Word.

Example

var B: Byte;
begin

B := Lo($1234); { $34 }
end;

See also
Hi function, Swap function

LoadFromFile method

Applies to
TBitmap, TGraphic, Tlcon, TMetafile, TPicture, TStringList, TStrings objects; TBlobField,

TGraphicField, TMemoField, TOLEContainer, TOutline components

For graphics objects and outlines

Declaration
procedure LoadFromFile(const FileName: string);

The LoadFromFile method reads the file specified in FileName and loads the data into the
object or component. The graphics objects load graphics, the OLE container loads an
OLE object, and the outline and string objects load text.

Example
This example uses a bitmap button on a form. When the application runs and the form is
created, a bitmap is placed on the bitmap button:

procedure TForml.FormCreate(Sender: TObject);
begin

BitBtnl.Glyph.LoadFromFile ('TARTAN.BMP');
end;

See also
SaveToFile method, Strings property

Delphi Visual Component Library Reference 443

LoadFromStream method

For blob, graphic, and memo fields

Declaration
procedure LoadFromFile(const FileName: string);

The LoadFromFile method reads a file with the name passed in FileName and loads the
contents in TBlobField, TMemoField, or TGraphicField.

Note For TMemoField and TGraphicField, the file should have been created by the SaveToFile or
SaveToStream method.
Example

{ Load a blob field with the contents of autoexec.bat }
BlobFieldl.LoadFromFile(’c:\autoexec.bat’);

LoadFromStream method

Applies to
TBlobField, TGraphicField, TMemoField components

Declaration
procedure LoadFromStream(Stream: TStream);

The LoadFromStream method reads Stream and stores the contents in TBlobField,
TMemokField or TGraphicField.

Note For a TMemoField or TGraphicField, the file should have been created by the SaveToFile or
SaveToStream method.
Example

{ Load a blob field from an existing STreaml }
BlobFieldl.LoadFromStream(Streaml);

See also
LoadFromFile method, SaveToStream method

LoadMemo method

Applies to
TDBMemo component

Declaration

procedure LoadMemo;

444 Delphi Visual Component Library Reference

LoadPicture method

The LoadMemo method loads a text BLOB into the database memo control. If the value of
the AutoDisplay property is False, the text of a memo is not automatically loaded. If
AutoDisplay is False, you can control when the text is loaded at run time by calling
LoadMemo when you want the text to appear in the control.

Example

This example uses a database memo that is connected to a BLOB text field in the dataset.
It also contains a button. When the user clicks the button, the BLOB loads into the
memo.

procedure TForml.FormCreate(Sender: TObject);
begin

DBMemol.AutoDisplay := False;
end;

procedure TForml.ButtonlClick(Sender: TObject);
begin

DBMemol . LoadMemo;
end;

See also
LoadPicture method

LoadPicture method

Applies to
TDBImage component

Declaration
procedure LoadPicture;

The LoadPicture method loads the image specified as the value of the Picture property
into the database image control.

If the value of the AutoDisplay property is False, the image of a database image control is
not automatically loaded. If AutoDisplay is False, you can control when the image is
loaded at run time by calling LoadPicture when you want the image to appear in the
control.

Example
The following code loads the picture into DBImagel.

DBImagel.LoadPicture;

See also
LoadMemo method

Delphi Visual Component Library Reference 445

LoadStr function

LoadStr function SysUtils

Declaration
function LoadStr(Ident: Word): string;

LoadStr loads the string resource given by Ident from the application's executable file. If
the string resource does not exist, an empty string is returned.

Moving display strings into string resources makes your application easier to localize
without rewriting your program.

Local property

Applies to
TQuery component

Declaration
property Local: Boolean;

Run-time and read only. The Local property specifies if the table referenced by the
TQuery is a local dBASE or Paradox table or an SQL server table. If Local is True, then the
table is a dBASE or Paradox table. If Local is False, the table is a SQL table.

For remote SQL tables, some operations (such as record counts) may take longer than
for local tables, owing to network constraints.

Example

{ If the table is local, allow the data-aware controls to display the changes }
DataSourcel.Enabled := Queryl.Local;

Locale property

Applies to
TDataBase, TTable, TQuery, TSession, TStoredProc components

For tables, queries, and stored procedures

Declaration
property Locale: TLocale;

Run-time and read only. The Locale property identifies the language driver used with
the dataset for use with direct calls to the Borland Database Engine API.

Under most circumstances you should not need to use this property, unless your
application requires some functionality not encapsulated in the VCL.

446 Delphi Visual Component Library Reference

Locked property

For sessions

Declaration
property Locale: TLocale;

Run-time and read only. The Locale property identifies the language driver used with
the TSession component. It enables you to reference the language driver when making
direct calls to the Borland Database Engine API. Under most circumstances you should
not need to use this property, unless your application requires some functionality not
encapsulated in the VCL.

See also
Session variable

For database components

Declaration
property Locale: TLocale;

Run-time and read only. The Locale property identifies the language driver used with
the TDatabase component. It allows you to make direct calls to the Borland Database

Engine APIL Under most circumstances you should not need to use this property, unless

your application requires some functionality not encapsulated in the VCL.

Locked property

Applies to

TPanel component

Declaration
property Locked: Boolean;

The Locked property determines whether a panel is replaced by an in-place active OLE
object. If Locked is False, the OLE server can replace the panel. If Locked is True and the
panel is aligned to one of the edges of the form (its Align property is alTop, alBottom,
alLeft, or alRight), then the panel remains when an OLE object in a TOLEContainer
component is activated in place.

Use Locked to prevent status bars and the like from being replaced.

Example
The following code sets Locked to True for a panel named StatusBar.

StatusBar.Locked := True;

Delphi Visual Component Library Reference 447

LoginPrompt property

See also
InPlaceActive property

LoginPrompt property

Applies to
TDataBase component

Declaration
property LoginPrompt: Boolean;
The LoginPrompt property is used to control how security is handled for SQL databases.

If True, (the default), the standard Delphi Login dialog box will be opened when the
application attempts to establish a database connection. The user must then enter a
proper user name and password to connect to a database on the server.

If False, then an application will look for login parameters in the Params property of the
TDatabase component. These are the USERNAME and PASSWORD parameters. For

example,
USERNAME = SYSDBA
PASSWORD = masterkey

This is generally not recommended since it compromises server security.

Example

{ Do not display the login prompt }
Databasel.LoginPrompt := False;

See also
OnLogin event

LongRec SysUtils

Declaration

LongRec = record
Lo, Hi: Word;
end;

LongRec declares a utility record that stores the high and low order bytes of the specified
variable as type Word.

LongRec is useful in handling double-word length variables.

See also
Hi function, Lo function

448 Delphi Visual Component Library Reference

LookupDisplay property

LookupDisplay property

Applies to
TDBLookupCombo, TDBLookupList components

Declaration
property LookupDisplay : string;

The LookupDisplay property determines which field in the lookup table displays in the
database lookup combo box or database lookup list box. Before you specify a
LookupDisplay field, link the two datasets using the LookupField property.

You can choose to display multiple fields from the lookup dataset. Each field appears in
a separate column. To specify more than one field to display, separate each field name
with a semicolon. For example, this line of code displays three columns in the drop-
down list of a database lookup combo box. Column 1 is the name of the company,
column 2 is the city where the company is located, and column 3 is the country.

DBLookupCombol.LookupDisplay := ‘Company;City;Country’;
You can choose to include titles for the field columns and you can choose to have lines
between the rows and columns using the Options property.

Example
The following code specifies that the 'Company’ field is displayed in DBLookupCombol.

DBLookupCombol.LookupDisplay := ‘Company’;

See also
LookupField property, Options property

LookupField property

Applies to
TDBLookupCombo, TDBLookupList components

Declaration
property LookupField: string;

The LookupField property links the dataset the database lookup combo box or database
lookup list box uses to “look up” data to the primary dataset you are working with.

Although the name of the field specified as the LookupField does not have to be the same
as the name of the field specified as the DataField, the two fields must contain the same
values. For example, the LookupField value can be CustomerNumber and the DataField
value can be CustNo, as along as both fields use the same number to identify a particular
customer. When you specify a LookupField, the current value of that field appears in the
control, if the Active property of both datasets is True.

Delphi Visual Component Library Reference 449

LookupSource property

After you specify a LookupField field, you can choose which field you prefer to display in
the control with the LookupDisplay property.

Example
The following code designates that DBLookupCombol looks up data in the
"CustomerNumber” field.

DBLookupCombol.LookupField := ‘CustomerNumber’;

See also
DataSource property, LookupSource property

LookupSource property

Applies to
TDBLookupCombo, TDBLookupList components

Declaration
property LookupSource: TDataSource;

The LookupSource of a database lookup combo box or lookup list box is the data source
component (IT'DataSource) that identifies the dataset you want the control to use to “look
up” the information you want displayed in the control.

Example
The following code specifies that DataSourcel is the lookup source for DBLookupCombol.

DBLookupCombol.LookupSource := DataSourcel;

See also
LookupDisplay property, LookupField property

Low function System

Declaration
function Low(X);
The Low function returns the lowest value in the range of the argument.

Result type is X, or the index type of X where X is either a type identifier or a variable

reference.
Type Low returns
Ordinal type The lowest value in the range of the type
Array type The lowest value within the range of the index type of the array

450 Delphi Visual Component Library Reference

LowerCase function

Type Low returns
String type Returns 0
Open array Returns 0
String parameter Returns 0
Example
function Sum(var X: array of Double): Double;
var
I: Word;
S: Real;
begin
S :=0; { Note that open array index range is always zero-based. }
for I := 0 to High(X) do S := S + X[I];
sum := S;
end;

procedure TForml.ButtonlClick(Sender: TObject);
var
Listl: array[0..3] of Double;
List2: array([5..17] of Double;
X: Word;
S, TempStr: string;
begin
for X := Low(Listl) to High(Listl) do
List1[X] := X * 3.4;
for X := Low(List2) to High(List2) do
List2[X] := X * 0.0123;
Str(Sum(Listl):4:2, S);
S := 'Sum of Listl: ' + S + #13#10;
S :=S + 'Sum of List2: ';
Str(Sum(List2):4:2, TempStr);
S := S + TempStr;
MessageDlg (S, mtInformation, [mbOk], 0);
end;

See also
High function

LowerCase function SysUtils

Declaration
function LowerCase(const S: string): string;

The LowerCase function returns a string with the same text as the string passed in S, but
with all letters converted to lowercase. The conversion affects only 7-bit ASCII
characters between 'A' and 'Z'. To convert 8-bit international characters, use
AnsiLowerCase.

Delphi Visual Component Library Reference 451

MainForm property

Example
This example uses two edit boxes and a button on a form. When the user clicks the
button, the text in the Edit1 edit box displays in the Edit2 edit box in lowercase letters.

procedure TForml.ButtonlClick(Sender: TObject);
begin

Edit2.Text := LowerCase(Editl.Text);
end;

See also
AnsiLowerCase function, UpperCase function

MainForm property

Applies to
TApplication component

Declaration
property MainForm: TForm;

Run-time and read only. The MainForm property identifies which form in the
application is the main form, which is the form that is always created first. When the
main form closes, the application terminates.

When you create a new project, Form1 automatically becomes the value of the MainForm
property. If you want to make another form become the main form, use the Forms page
of the Options | Project Options dialog box.

See also
Application variable, CreateForm method, Run method

Mappings property

Applies to
TBatchMove component

Declaration
property Mappings: TStrings;

By default TBatchMove matches columns based on their position in the source and
destination tables. That is, the first column in the source is matched with the first column
in the destination, and so on.

To override the default column mappings, use the Mappings property. This is a list of
column mappings (one per line) in one of two forms. To map the column ColName in
the source table to the column of the same name in the destination table use:

452 Delphi Visual Component Library Reference

Margin property

ColName

Or, to map the column named SourceColName in the source table to the column named
DestColName in the destination table:

DestColName = SourceColName

If source and destination column data types are not the same, TBatchMove will perform
a “best fit”. It will trim character data types, if necessary, and attempt to perform a
limited amount of conversion if possible. For example, mapping a CHAR(10) column to
a CHAR(5) column will result in trimming the last five characters from the source
column.

As an example of conversion, if a source column of character data type is mapped to a
destination of integer type, TBatchMove will convert a character value of ‘5’ to the
corresponding integer value. Values that cannot be converted will generate errors.

Fields in Destination which have no entry in Mappings will be set to NULL.

Example

var Maps: TStringList;

with Maps do
begin
Clear;
{ Map the CustomerNum field to CustNo }
Add (‘CustNo=CustomerNum’) ;
end;
MatchMovel .Mappings := Maps;

See also
Source property

Margin property

Applies to
TBitBtn, TControlScrollBar, TSpeedButton components

For bitmap buttons and speed buttons

Declaration
property Margin: Integer;

The Margin property determines the number of pixels between the edge of the image
(specified in the Glyph property) and the edge of the button. The edges that the margin
separates depends on the layout of the image and text (specified in the Layout property).
For example, if Layout is blGlyphLeft, the margin appears between the left edge of the
image and the left edge of the button. If Margin is 3, three pixels separates the image and

Delphi Visual Component Library Reference 453

Margin property

the button edges. If Margin is 0, no distance in pixels separates the image and the button
edges.

If Margin is -1 (which it is by default), then the image and text (specified in the Caption
property) are centered. The number of pixels between the image and button edge is
equal to the number of pixels between the opposite edge of the button and the text.

Example

This example uses a moderately large bitmap button on a form. When the application
runs, a bitmap (or glyph) is loaded on to the button, the bitmap appears on the right side
of the button, and bitmap is placed 30 pixels from the right edge of the bitmap button.

procedure TForml.FormCreate (Sender: TObject);

begin
with BitBtnl do
begin
Glyph.LoadFromFile ('C:WINDOWS\CARS.BMP');
Layout := blGlyphRight;
Margin := 30;
end;
end;
See also

Caption property, Glyph property, Layout property

For form and scroll box scroll bars

Applies to
TControlScrollBar component

Declaration
procedure Margin: Word;

The Margin property value is the minimum number of pixels you want controls on a
form or in a scroll box to be from the edge of the form or scroll box. This number is
automatically added to the Range value to ensure that the user has a scroll bar whenever
the distance from a control and the edge of the form or scroll box becomes less than the
Margin value.

The default value is 0.

Example

This example uses a button and a label on a form. Place the label near the left side of the
form, and place the button somewhere near the middle of the form. When the user runs
the application, a horizontal scroll bar does not appear, because no control on the form is
close enough to the right edge. Each time the user clicks the button, the button moves 25
pixels to the right, and the calculated Range value is reported in the caption of the label.
Repeatedly clicking the button eventually moves the button close enough to the edge of
the form (within the Margin amount) so that a horizontal scroll bar appears:

454 Delphi Visual Component Library Reference

Mask property

procedure TForml.FormCreate(Sender: TObject);
begin
with HorzScrollBar do
begin
Margin:= 25;
Increment := 10;
end;
end;

procedure TForml.ButtonlClick(Sender: TObject);
begin
Buttonl.Left := Buttonl.Left + 25;
Labell.Caption := IntToStr(HorzScrollBar.Range);
end;

See also
Align property, HorzScrollBar property, Range property, VertScrollBar property

Mask property

Applies to
TFileListBox, TFilterComboBox components

Declaration

property Mask: string

For filter combo boxes

Declaration
property Mask: string

Run-time and read only. The Mask property value is the string selected as the filter in the
filter combo box.

Example
This example uses a filter combo box and a label on a form. When the user selects a filter
in the filter combo box, the selected mask appears in the caption of the label:

procedure TForml.FilterComboBoxlChange (Sender: TObject);
begin

Labell.Caption := 'The selected mask is ' + FilterComboBoxl.Mask;
end;

procedure TForml.FormCreate(Sender: TObject);
begin

FilterComboBoxl.Filter := 'All files (*.*)|*.*| Pascal files (*.pas)|*.pas';
end;

Delphi Visual Component Library Reference 455

MasterFields property

See also
Filter property

For file list boxes

property Mask: string

The Mask property determines which files are displayed in the file list box. A file mask
or file filter is a file name that usually includes wildcard characters (*.PAS, for example).
Only files that match the mask are displayed in list box. The file mask *.* displays all
files, which is the default value.

You can specify multiple file masks. Separate the file mask specifications with
semicolons. For example, *.PAS; * EXE.

Example
This example uses a file list box on a form. When the application runs, the list box
displays only files with a .PAS file extension:

procedure TForml.FormCreate(Sender: TObject);
begin

FileListBoxl.Mask := '*.PAS';
end;

See also
Filter property

MasterFields property

Applies to
TTable component

Declaration
property MasterFields: string;

Use the MasterFields property to specify the column(s) to link a detail table with a master
table that is specified by the MasterSource property. MasterFields is a string consisting of
one or more column names that join the two tables. Separate multiple column names
with semicolons. Each time the current record in the master table changes, the new
values in those fields are used to select corresponding records from the detail table for
display. At design time, use the Field Link Designer to set this property.

Example

Suppose you have a master table named Customer that contains a CustNo field, and you
also have a detail table named Orders that also has a CustNo field. To display only those
records in Orders that have the same CustNo value as the current record in Customer,
write this code:

456 Delphi Visual Component Library Reference

MasterSource property

Customer.MasterFields := ‘CustNo’;

If you want to display only the records in the detail table that match more than one field
value in the master table, specify each field and separate them with a semicolon.

Customer.MasterFields := ‘CustNo;SaleDate’;

See also
IndexName property

MasterSource property

Applies to
TTable component

Declaration
property MasterSource: TDataSource;

When linking a detail table to a master table, use the MasterSource property to specify
the TDataSource from which the TTable will get data for the master table.

Example
Table2.MasterSource := DataSourcel; m

See also
IndexName property, MasterFields property

Max property

Applies to

TScrollBar component

Declaration
property Max: Integer;

The Max property along with the Min property determines the number of possible
positions the scroll box can have on the scroll bar. The LargeChange and SmallChange
properties use the number of positions to determine how far to move the scroll box
when the user uses the scroll bar.

For example, if Max is 30000 and Min is 0, the scroll box can assume 30,000 positions on
a horizontal scroll bar. If the LargeChange property setting is 10000 and the scroll box
position is at the far left of the scroll bar (Position is 0), the user can click the scroll bar
three times to the right of the scroll box before the scroll box is moved all the way to the
right of the scroll bar (30000/10000 = 3).

Delphi Visual Component Library Reference 457

MaxAvail function

If you want to change the Min, Max, and Position values all at once at run time, call the
SetParams method.

Example
This code changes the maximum position of the scroll bar from 100, the default value, to
30000:

ScrollBarl.Max := 30000;

See also
LargeChange property, Min property, Position property, SetParams method, SmallChange

property

MaxAvail function System

458

Declaration

function MaxAvail: Longint;

The MaxAwvail function returns the size of the largest contiguous free block in the heap.
MaxAwail returns the larger of:

* The largest free blocks within the heap manager's sub-allocation space
¢ The Windows global heap

The value corresponds to the size of the largest dynamic variable that can be allocated at
that time.

To find the total amount of free memory in the heap, call MemAuvail.

Example
uses Dialogs;

type
FriendRec = record
Name: string[30];
Age: Byte;
end;
var
P: Pointer;
begin
if MaxAvail < SizeOf (FriendRec) then
MessageDlg ('Not enough memory', mtWarning, [mtOk], 0)
else
begin
{ Allocate memory on heap }
GetMem (P, SizeOf (FriendRec));
{ ...}
end;
end;

Delphi Visual Component Library Reference

MaxFontSize property

See also
MemAvail function

MaxFontSize property

Applies to
TFontDialog component

Declaration
property MaxFontSize: Integer;

The MaxFontSize property determines the largest font size available in the Font dialog
box. Use the MaxFontSize property when you want to limit the font sizes available to the
user. To limit the font sizes available, the Options set property of the Font dialog box
must also contain the value fdLimitSize. If fdLimitSize is False, setting the MaxFontSize
property has no affect on number of fonts available in the Font dialog box.

The default value is 0, which means there is no maximum font size specified.

Example

This example uses a Font dialog box, a button, and a label on a form. When the user
clicks the button, the Font dialog box appears. The font sizes available are within the
range of 10 to 14. When the user chooses OK, the selected font is applied to the caption

of the label.
procedure TForml.ButtonlClick(Sender: TObject);
begin
FontDialogl.Options := [fdLimitSize];

FontDialogl.MaxFontSize := 14;
FontDialogl.MinFontSize := 10;
if FontDialogl.Execute then
Labell.Font := FontDialogl.Font;
end;

See also
MinFontSize property

MaxLength property

Applies to

TComboBox, TDBEdit, TDBLookupCombo, TDBMemo, TEdit, TMaskEdit, TMemo
components

Declaration

property MaxLength: Integer;

Delphi Visual Component Library Reference 459

MaxPage property

The MaxLength property specifies the maximum number of characters the user can enter
in an edit box, memo, or combo box. The default setting for MaxLength is 0, which
means that there is no limit on the number of characters the control can contain. Any
other number limits the number of characters the control accepts.

Example
The following example sets the maximum number of characters for an edit box to 80:

Editl.MaxLength := 80;

MaxPage property

Applies to
TPrintDialog component

Declaration
property MaxPage: Integer;

The MaxPage property determines the greatest page number the user can use when
specifying pages to print. If the user specifies a number greater than the value in
MaxPage, a warning message appears and the user must enter a valid number or close
the dialog box. The default value is 0.

Note The user can specify pages numbers only if the Options property set includes the value
poPageNums.

Example

This example uses a button and a Print dialog box on a form. When the user clicks the
button, the code makes page four the highest page number the user can select in the
Print dialog box and displays the dialog box:

procedure TForml.ButtonlClick(Sender:TObject);
begin
PrintDialogl.Options := [poPageNums];
PrintDialogl.ToPage := 4;
PrintDialogl.MaxPage := 4;
if PrintDialogl.Execute then

el

end;

See also
MinPage property

MaxRecords property

Applies to
TReport component

460 Delphi Visual Component Library Reference

MaxTabNamelen constant

Declaration
property MaxRecords: Word;

The value of the MaxRecords property is the number of database records you want to use
to create the report. For example, if you just want to see a sample report and your
database contains 50,000 records, you can specify a MaxRecords value that limits the
number of records in the report to a much smaller number.

Example
The following code sets the maximum number of records to be used by Report1 to 3.

Reportl.MaxRecords := 3;

MaxTabNameLen constant

Declaration
MaxTabNameLen = 20;

The MaxTabNameLen constant specifies that the longest string that can be displayed on a
tab set control (TTabSet) is 20 characters.

MaxValue property ﬂ

Applies to
TCurrencyField, TFloatField, TIntegerField, TSmallintField, TWordField component

Declaration
property MaxValue: Longint;

The MaxValue property limits the maximum value in the field. Assigning a value greater
than MaxValue raises an exception.

Example

{ Limit a field to 1 to 10}
Fieldl.MaxValue := 10;
Fieldl.MinValue := 1;

See also
MinValue property

MDIChildCount property

Applies to

TForm component

Delphi Visual Component Library Reference 461

MDIChildren property

Declaration
property MDIChildCount: Integer;

Run-time and read only. The value of the MDIChildCount property is the number of
child windows open in an MDI application.

Example
The following code closes Form1 if it has no MDI children open.

if Forml.MDIChildCount = 0 then Forml.Close;

See also
ActiveMDIChild property, FormStyle property, MDIChildren property

MDIChildren property

Applies to

TForm component

Declaration
property MDIChildren[I: Integer]: TForm;

Run-time and read only. The MDIChildren property array provides access to a child
window or form in an MDI application through an index value, I. The value of I is
determined by the order in which the window was created. For example, the first MDI
child window has an I value of 0.

Example
The following code closes all the MDI children of Form1.

var
I: Integer;
begin
with Forml do
for T := 0 to MDIChildCount-1 do
MDIChildren[I].Close;
end;

See also
FormStyle property, MDIChildCount property

MemAvail function System

Declaration

function MemAvail: Longint;

462 Delphi Visual Component Library Reference

Menu property

The MemAuvail function returns the amount of all free memory in the heap.

Note that a contiguous block of storage the size of the returned value is unlikely to be
available due to fragmentation of the heap. To find the largest free block, call MaxAuvail.

Example

var
S: string;
begin
S := IntToStr(MemAvail) + ' bytes available' + #13#10;
S := S + 'Largest free block is ' + IntToStr(MaxAvail) + ' bytes';
Canvas.TextOut (10, 10, S);
end;

See also
MaxAwvail function

Menu property

Applies to

TForm component
Declaration

property Menu: TMainMenu;

The Menu property designates the menu bar for the form.

Example
This code displays a new menu named NewMenu when the user clicks the button
ChangeMenu button.
procedure TForml.ChangeMenuClick(Sender: TObject);
begin
Menu := NewMenu;
end;

Merge method

Applies to

TMainMenu component
Declaration

procedure Merge (Menu: TMainMenu);

The Merge method merges a main menu of one form with a main menu of another for
non-MDI applications. For example, when your application uses the main menu of the

Delphi Visual Component Library Reference 463

MessageBox method

first form as the main menu for the application, and your application displays a second
form, you can call Merge to merge the main menu on the second form with the main
menu of the application.

Specify the menu you want merged with this menu as the Menu parameter.

Depending on the value of the GroupIndex property of menu items on the main menu,
the merged menu items can replace menu items on the menu bar, or add or insert menu
items into the menu bar. See Grouplndex for information on how to do these things.

It you want merging and unmerging to occur automatically when another form is
displayed, change the value of the AutoMerge property to True.

Example

This example uses two forms, each containing a main menu created with the Menu
Designer. It also uses a button on Form1. When the user clicks the button, Form2 appears
and the main menu of Form2 merges with that of Form1.

Before running this example, add Unit2 to the uses clause of Unit1.

procedure TForml.ButtonlClick(Sender: TObject);
begin

Form?2 . Show;

MainMenul.Merge (Form2.MainMenul) ;
end;

See also
AutoMerge property, Unmerge method

MessageBox method

Applies to
TApplication component

Declaration
function MessageBox(Text, Caption: PChar; Flags: Word): Integer;

The MessageBox method is an encapsulation of the Windows API MessageBox function
except that you don’t need to supply a window handle.

The MessageBox method displays a generic dialog box that displays a message and one
or more buttons. The value of the Text parameter is the message, which can be longer
than 255 characters if necessary. Long messages are automatically wrapped in the
message box. The value of the Caption property is the caption that appears in the title bar
of the dialog box. Captions can be longer than 255 characters, but they don’t wrap. A
long caption results in a wide message box.

To see the possible values of the Flags parameter, see the MessageBox function in the
Windows API Help file (WinAPL.HLP). The corresponding parameter on that Help
screen is called TextType. The values determine the buttons that appear in the message

464 Delphi Visual Component Library Reference

MessageDlg function
box and the behavior of the message box. The values can be combined to obtain the
effect your want.

The return value of the MessageBox method is 0, if there wasn’t enough memory to
create the message box, or one of these values:.

Value Numeric value Meaning

IDABORT 3 The user chose the Abort button
IDCANCEL 2 The user chose the Cancel button
IDIGNORE 5 The user chose the Ignore button
IDNO 7 The user chose the No button
IDOK 1 The user chose the OK button
IDRETRY 4 The user chose the Retry button
IDYES 6 The user chose the Yes button
Example

This example uses a button and a label on a form. When the user clicks the button, a
message box appears. When the user responds to the message box, the button selected is
reported in the caption of the label:

procedure TForml.ButtonlClick(Sender: TObject);
var

Button: Integer;
begin m
Button := Application.MessageBox('Welcome to Delphi!', 'Message Box', mb_OKCancel +
mb_DefButtonl);
if Button = IDOK then
Labell.Caption := 'You chose OK';
if Button = IDCANCEL then
Labell.Caption := 'You chose Cancel';
end;

See also

MessageDlg function, MessageDIgPos function, ShowMessage procedure, ShowMessagePos
procedure

MessageDlg function Dialogs

Declaration

function MessageDlg(const Msg: string; AType: TMsgDlgType; AButtons: TMsgDlgButtons;
HelpCtx: Longint): Word;

The MessageDIg function displays a message dialog box for your application in the
center of your screen. The message box displays the value of the Msg string constant.

Delphi Visual Component Library Reference 465

MessageDlg function

The AType parameter determines the type of message box that appears. These are the
possible values:

Value Meaning

mtWarning A message box containing a yellow exclamation point symbol.

mtError A message box containing a red stop sign.

mtInformation A message box containing a blue “i”.

mtConfirmation A message box containing a green question mark.

mtCustom A message box containing no bitmap. The caption of the message box is the name of

the application’s executable file.

The AButtons parameter determines which buttons appear in the message box. AButtons
is of type TMsgDIgBtns, which is a set, so you can include multiple buttons within the
set. These are the values you can include in the set:

Value Meaning

mbYes A button with a green check mark and the text ‘Yes’ on its face

mbNo A button with a red circle and slash mark through the circle and the text ‘No’ on its face
mbOK A button with a green check mark and the text ‘OK’ on its face

mbCancel A button with a red X and the text ‘Cancel’ on its face

mbHelp A button with a cyan question mark and the text ‘Help” on its face

mbAbort A button with a red check mark and the text ‘Abort’ on its face

mbRetry A button with two green circular arrows and the text ‘Retry” on its face

mblgnore A button with a green man walking away and the text ‘Ignore” on its face

mbAll A button with a green double check marks and the text ‘All’ on its face

In addition to the individual set values, VCL defines three constants that are predefined
sets that include common button combinations:

Value Meaning

mbYesNoCancel A set that puts the Yes, No, and Cancel buttons in the message box
mbOkCancel A set that puts the OK and Cancel buttons in the message box
mbAbortRetrylgnore A set that puts an Abort, Retry, and Ignore buttons in the message box

When using these constants, remember not to add the brackets [] to define the set. These
constants are already predefined sets.

The HelpCtx parameter determines which Help screen is available for the message box.
For more information about Help context values, see the HelpContext property.

The function returns the value of the button the user selected. These are the possible
return values:

466 Delphi Visual Component Library Reference

MessageDlg function

Return values

mrNone mrAbort mrYes
mrOk mrRetry mrNo
mrCancel mrlgnore mrAll

The MsgDIgButtonStyle typed constant in the Dialogs unit is declared like this:
MsgDlgButtonStyle: TButtonStyle = bsAutoDetect;

This ensures that the style of the buttons matches the style used by the operating
environment your application is running under. If you prefer to always use a particular
style, change the value of the MsgDIgButtonStyle. See the Style property for bitmap
buttons for the possible values and their meanings.

The MsgDIgGlyphs typed constant in the Dialogs unit is declared like this:
MsgDlgGlyphs: Boolean = True;

This declaration ensures that bitmaps (or glyphs) appear on the message dialog box
buttons. If you prefer that the bitmaps are not present, change the value of
MsgDlgButtonStyle to False.

Example

This example uses a button on a form. When the user clicks the button, a message box
appears, asking if the user wants to exit the application. If the user chooses Yes, another
dialog box appears informing the user the application is about to end. When user
chooses OK, the application ends.

procedure TForml.ButtonlClick(Sender: TObject);
begin
if MessageDlg('Welcome to my Object Pascal application. Exit now?',
mtInformation, [mbYes, mbNo], 0) = mrYes then
begin
MessageDlg ('Exiting the Object Pascal application.', mtInformation,
[mbOk], 0);
Close;
end;
end;

This example uses a button on a form. When the user clicks the button, a message box
appears with a Yes, No, and Cancel button on it:

procedure TForml.ButtonlClick(Sender: TObject);
begin

MessageDlg('Are you there?', mtConfirmation, mbYesNoCancel, 0);
end;

See also

Kind property, MessageDIgPos function, ModalResult property, MessageBox method,
ModalResult property, ShowMessage procedure, ShowMessagePos procedure

Delphi Visual Component Library Reference 467

MessageDIgPos function

MessageDIgPos function Dialogs

Declaration

function MessageDlgPos(const Msg: string; AType: TMsgDlgType;
AButtons: TMsgDlgButtons; HelpCtx: Longint; X, Y: Integer): Word;

The MessageDlg function displays a message dialog box in your application at the
position you specify. The message box displays the value of the Msg string constant.

The AType parameter determines the type of message box that appears. These are the
possible values:

Value Meaning

mtWarning A message box containing yellow exclamation point symbol.

mtError A message box containing a red stop sign.

mtInformation A message box containing a blue “i”.

mtConfirmation A message box containing a green question mark.

mtCustom A message box containing no bitmap. The caption of the message box is the

name of the application’s executable file.

The AButtons parameter determines which buttons appear in the message box. AButtons
is of type TMsgDIgBtns, which is a set, so you can include multiple buttons within the
set. These are the values you can include in the set:

Value Meaning

mbYes A button with a green check mark and the text “Yes’ on its button face

mbNo zfA button with a red circle and slash mark through the circle and the text ‘No” on its button
ace

mbOK A button with a green check mark and the text ‘OK” on its button face

mbCancel A button with a red X and the text ‘Cancel’ on its button face

mbHelp A button with a cyan question mark and the text ‘Help’ on its button face

mbAbort A button with a red check mark and the text “Abort’ on its face

mbRetry A button with two green circular arrows and the text ‘Retry” on its face

mblgnore A button with a green man walking away and the text ‘Ignore” on its face

mbAll A button with a green double check marks and the text “All’ on its face

In addition to the individual set values, VCL defines three constants that are predefined
sets which include common button combinations:

Value Meaning
mbYesNoCancel A set that puts the Yes, No, and Cancel buttons in the message box
mbOkCancel A set that puts the OK and Cancel buttons in the message box

mbAbortRetrylgnore A set that puts an Abort, Retry, and Ignore buttons in the message box

When using these constants, remember not to add the brackets [] to define the set. These
constants are already predefined sets.

468 Delphi Visual Component Library Reference

MessageDIgPos function
The HelpCtx parameter determines which Help screen is available for the message box.
For more information about Help context values, see the HelpContext property.

The X and Y integer parameters are the screen coordinates in pixels where the top left
corner of the message box appears.

The function returns the value of the button the user selected. These are the possible
return values:

Return values

mrNone mrAbort mrYes
mrOk mrRetry mrNo
mrCancel mrignore mrAll

The MsgDIgButtonStyle constant in the Dialogs unit is declared like this:
MsgDlgButtonStyle: TButtonStyle = bsAutoDetect;

This ensures that the style of the buttons matches the style used by the operating
environment your application is running under. If you prefer to always use a particular
style, change the value of the MsgDIgButtonStyle. See the Style property for bitmap
buttons for the possible values and their meanings.

The MsgDIgGlyphs typed constant in the Dialogs unit is declared like this:

MsgDlgGlyphs: Boolean = True; m

This declaration ensures that bitmaps (or glyphs) appear on the message dialog box
buttons. If you prefer that the bitmaps are not present, change the value of
MsgDIgButtonStyle to False.

Example

This example displays a confirmation style message box at screen coordinates 125, 25
that asks users if they want to color the form green. If the user chooses Yes, the form
turns bright green:

procedure TForml.ButtonlClick(Sender: TObject);
var
ButtonSelected: Word;
begin
if MessageDlgPos(‘Color the form green?', mtConfirmation,
[mbYes, mbNo], 0, 125, 25) := mrYes then
Color := clLime;
end;

This example uses a button on a form. When the user clicks the button, a message box
appears with a Yes, No, and Cancel button on it:

procedure TForml.ButtonlClick(Sender: TObject);
begin

MessageDlgPos ('Are you there?', mtConfirmation, mbYesNoCancel, 0, 200, 200);
end;

Delphi Visual Component Library Reference 469

Metafile property
See also

Kind property, MessageBox method, MessageDlg function, ModalResult property,
ShowMessage procedure, ShowMessagePos procedure

Metafile property

Applies to
TPicture object

Declaration
property Metafile: TMetafile

The Metafile property specifies the contents of the TPicture object as a Windows metafile
graphic (WMF file format). If Metafile is referenced when the TPicture contains a Bitmap
or Icon graphic, the graphic won’t be converted. Instead, the original contents of the
TPicture are discarded and Metafile returns a new, blank metafile.

Example

The following line of code displays the pixels-per-inch of the coordinate mapping of a
metafile. The Inch property of the metafile stored in the MyGraphic is converted to text
and assigned to the Caption of Labell.

Labell.Caption := IntToStr (MyGraphic.Metafile.Inch);
See also
Graphic property
Min property

Applies to
TScrollBar component

Declaration
property Min: Integer;

The Min property along with the Max property determines the number of possible
positions the scroll box can have on the scroll bar. The LargeChange and SmallChange
properties use the number of positions to determine how far to move the scroll box
when the user uses the scroll bar.

For example, if Max is 3000 and Min is 0, the scroll box can assume 3000 positions on a
horizontal scroll bar. If the LargeChange property setting is 1000 and the scroll box
position is at the far left of the scroll bar (Position is 0), the user can click the scroll bar
three times to the right of the scroll box before the scroll box is moved all the way to the
right of the scroll bar (3000/1000 = 3).

470 Delphi Visual Component Library Reference

MinFontSize property

If you want to change the Min, Max, and Position values all at run time, call the
SetParams method.

Example
The following code sets the minimum position to the value specified in an edit box, and
sets the maximum position to 1000 more than the minimum position.

ScrollBarl.Min := StrToInt (Editl.Text);
ScrollBarl.Max := ScrollBarl.Min + 1000;

See also
LargeChange property, Max property, Position property, SetParams method, SmallChange
property

MinFontSize property

Applies to
TFontDialog component

Declaration

property MinFontSize: Integer;

The MinFontSize property determines the smallest font size available in the Font dialog m
box. Use the MinFontSize property when you want to limit the font sizes available to the

user. To limit the font sizes available, the Options set property of the Font dialog box

must also contain the value fdLimitSize. If fdLimitSize is False, setting the MinFontSize

property has no affect on number of fonts available in the Font dialog box.

The default value is 0, which means there is no minimum font size specified.

Example

This example uses a Font dialog box, a button, and a label on a form. When the user
clicks the button, the Font dialog box appears. The font sizes available are within the
range of 10 to 14. When the user chooses OK, the selected font is applied to the caption

of the label.
procedure TForml.ButtonlClick(Sender: TObject);
begin
FontDialogl.Options := [fdLimitSize];

FontDialogl.MaxFontSize := 14;
FontDialogl.MinFontSize := 10;
if FontDialogl.Execute then
Labell.Font := FontDialogl.Font;
end;

See also
MinFontSize property

Delphi Visual Component Library Reference 471

Minimize method

Minimize method

Applies to
TApplication component

Declaration
procedure Minimize;

The Minimize method shrinks your application into an icon on your Windows desktop.

Example
This example uses a button named Shrink on a form. When the user clicks the button, the
application minimizes to an icon:

procedure TForml.ShrinkClick(Sender: TObject);
begin

Application.Minimize;
end;

See also
Application variable, Icon property

MinPage property

Note

Applies to
TPrintDialog component

Declaration
property MinPage: Integer;

The MinPage property determines the smallest page number the user can use when
specifying pages to print. If the user specifies a number less than the value of MinPage, a
warning message appears and the user must enter a valid number or close the dialog
box. The default value is 0.

The user can specify pages numbers only if the Options property set includes the value
poPageNums.

Example

This example uses a button and a Print dialog on a form. When the user clicks the
button, the code sets the lowest and the highest possible page numbers the user can
select and displays the dialog box:

procedure TForml.ButtonlClick(Sender: TObject);
begin

with PrintDialogl do

begin

472 Delphi Visual Component Library Reference

Options :
MinPage :=
FromPage

ToPage
MaxPage

Execute;

end;
end;

See also

MaxPage property

MinValue property

poPageNums] ;

1= 2;
:= 10;
:= 10;
PrintRange := prPagelNums;

MinValue property

Applies to

TCurrencyField, TFloatField, TIntegerField, TSmallintField, TWordField component

Declaration

property MinValue: Longint;

The MinValue property limits the minimum value in the field. Assigning a value less

than MinValue raises an exception.

Example

{ Limit the field to 1 to 10}
Fieldl.MaxValue
Fieldl.MinValue

See also

1= 10;
= 1;

MaxValue property

MKDir procedure

System

Declaration

procedure MkDir(S:

The MkDir procedure creates a new subdirectory with the path specified by stringS.

string);

The last item in the path cannot be an existing file name.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for an I/O error.

CreateDir performs the same function as MkDir, but it takes a null-terminated string
rather than a Pascal-style string.

Delphi Visual Component Library Reference

473

ModalResult property

Example
uses Dialogs;

begin
{$1-}
{ Get directory name from TEdit control }
MkDir (Editl.Text);
if IOResult <> 0 then
MessageDlg('Cannot create directory', mtWarning, [mbOk], 0)
else
MessageDlg ('New directory created', mtInformation, [mbOk], 0);
end;

See also
ChDir procedure, GetDir procedure, RmDir procedure

ModalResult property

Applies to
TBitBtn, TButton, TForm components

Declaration
property ModalResult: TModalResult;

Run-time only. The ModalResult property for forms is used to terminate a modal form.
By default, ModalResult is 0. Setting ModalResult to any nonzero value ends the form’s
modal state. When the user chooses to close a modal form, the button click sets
ModalResult to close the form. The value assigned to ModalResult becomes the return
value of the ShowModal function call which displayed the modal form.

Button controls have a ModalResult property also that is read only. Use a button’s
ModalResult property when you want a click of the button to close a modal form. For
example, if you create a dialog box with two buttons, OK and Cancel, set the
ModalResult property to mrOK for the OK button and mrCancel for the Cancel button.
When the user chooses either of these two buttons, the dialog box’s modal state ends
because ModalResult is greater than mrNone and the dialog box disappears. Using
ModalResult, you don’t have to write an event handler just to close the dialog box.

These constants are possible ModalResult values:

Constant Value
mrNone 0

mrOk idOK
mrCancel idCancel
mrAbort idAbort
mrRetry idRetry
mrlgnore idIgnore

474 Delphi Visual Component Library Reference

Mode property

Constant Value
mrYes idYes
mrNo idNo
mrAll mrNo + 1
Example

The following methods in a form are used as a modal dialog box. The methods cause the
dialog box to terminate when the user clicks either the OK or Cancel button, returning
mrOK or mrCancel from ShowModal, respectively:

procedure TMyDialogBox.OKButtonClick(Sender: TObject);
begin

ModalResult := mrOK;
end;

procedure TMyDialogBox.CancelButtonClick(Sender: TObject);
begin

ModalResult := mrCancel;
end;

You could also set the ModalResult value to mrOK for the OK button and mrCancel for
the Cancel button to accomplish the same thing. When the user clicks either button, the
dialog box closes.

See also
Kind property, ShowModal method

Mode property

Applies to
TPen object; TMediaPlayer component

For pen objects

Declaration
property Mode: TPenMode;

The Mode property determines how the pen draws lines on the canvas. The following
table describes the behavior for each pen mode.

Mode Pixel color

pmBlack Always black.

pmWhite Always white.

pmNop Unchanged.

pmNot Inverse of screen color.

pmCopy Pen color specified in Color property.

Delphi Visual Component Library Reference 475

Mode property

Mode Pixel color

pmNotCopy Inverse of pen color.

pmMergePenNot Combination of pen color and inverse of screen color.

pmMaskPenNot Combination of colors common to both pen and inverse of screen.
pmMergeNotPen Combination of screen color and inverse of pen color.

pmMaskNotPen Combination of colors common to both screen and inverse of pen.

pmMerge Combination of pen color and screen color.

pmNotMerge Inverse of pmMerge combination of pen color and screen color.

pmMask Combination of colors common to both pen and screen.

pmNotMask Inverse of pmMask combination of colors common to both pen and screen.
pmXor Combination of colors in either pen or screen, but not both.

pmNotXor Inverse of pmXor combination of colors in either pen or screen, but not both.
Example

The following code sets the mode of the pen of the Canvas of Form1 to the inverse of the
pen Color.

Forml.Canvas.Pen.Mode := pmNotCopy;

See also
Pen property, TPen object

For media player controls

Declaration
property Mode: TMPModes;

Run-time and read only. The Mode property specifies the mode of the currently open
multimedia device. The following table lists the possible values for Mode:

Value Mode
mpNotReady Not ready
mpStopped Stopped
mpPlaying Playing
mpRecording Recording
mpSeeking Seeking
mpPaused Paused
mpOpen Open
Example

The following code declares an array of strings named ModeStr, indexed by the
TMPModes type. The Caption of a form is then set to the string describing the current
mode of the device:

const

476 Delphi Visual Component Library Reference

Modified property

ModeStr: array[TMPModes] of string[10] = (’Not ready', ‘Stopped', ‘Playing',
‘Recording', ‘Seeking', ‘Paused', ‘Open');
{Later in your code}
Caption := ModeStr([MediaPlayerl.Mode];

For batch move components

Declaration
property Mode: TBatchMode;
The Mode property specifies what the TBatchMove object will do:

Property Purpose

batAppend Append records to the destination table. The destination table must already exist.
This is the default mode.

batUpdate Update records in the destination table with matching records from the source table.

The destination table must exist and must have an index defined to match records.

bat AppendUpdate If a matching record exists in the destination table, update it. Otherwise, append
records to the destination table. The destination table must exist and must have an
index defined to match records.

batCopy Create the destination table based on the structure of the source table. The
destination table must not already exist—if it does, the operation will delete it.

batDelete Delete records in the destination table that match records in the source table. The
destination table must already exist and must have an index defined.

Example

BatchMovel.Mode := batAppendUpdate;

Modified property

Note

Applies to
TBitmap, TGraphic, Tlcon, TMetafile objects, TDBEdit, TDBMemo, TEdit, TMaskEdit,
TMemo, TOLEContainer, TQuery, TStoredProc, TTable components

For graphics objects

Declaration
property Modified: Boolean;

The Modified property specifies if the graphics object has been changed or edited. If
Modified is True, the graphics object has changed. If Modified is False, the graphics object
is in the same state as when the object was loaded.

The Modified property only indicates if bitmap objects have been modified. Modified is
not True if the graphics object contains an icon or metafile graphic.

Delphi Visual Component Library Reference 477

Modified property

If the graphics object was modified, you can save the changes to a file with the
SaveToFile method. The next time the application is run, the object can be loaded from
the file with the LoadFromFile method.

Example
The following code saves the bitmap object in Graphic1 to a file if it was modified.

if Graphicl.Modified then Graphicl.SaveToFile('myfile.bmp');

For OLE containers

Declaration
property Modified: Boolean;

The Modified property specifies if the OLE object in an OLE container component was
changed or edited since the OLE container was initialized. If Modified is True, the OLE
object was changed. If Modified is False, the OLE object is in the same state as when the
OLE container was initialized.

If the OLE object was modified, changes to the object are lost when the OLE container
application is closed unless the object is saved to a file with the SaveToFile method. The
next time the OLE container application is run, the object should be loaded from the file
with the LoadFromFile method.

Example
The following code saves the object in OLEContainer1 to the file OBJ.OLE if it was
modified.

if OLEContainerl.Modified then OLEContainerl.SaveToFile('OBL.OLE');

For edit boxes and memos

Declaration
property Modified: Boolean;

Run-time only. The Modified property determines whether the text of an edit box or
memo control was changed since it was created or since the last time the Modified
property was set to False. If Modified is True, the text was changed. If Modified is False, the
text was not changed.

Example
procedure TForml.ButtonlClick(Sender: TObject);
begin
if Editl.Modified = True then
begin

MessageDlg('Edit box text was modified',
mtInformation, [mbOK], 0);

478 Delphi Visual Component Library Reference

Monochrome property

Editl.Modified := False;
end
else
MessageDlg ('Edit box text was not modified',
mtInformation, [mbOK], 0);
end;

See also
Text property

For tables, queries, and stored procedures

Declaration
property Modified: Boolean;

Run-time and read only. The Modified property is True if a field in the current record has
been changed. It is reset to False when the record is updated through a call to the Cancel
or Post methods.

See also
UpdateRecord method

Monochrome property @

Applies to
TBitmap object

Declaration
property Monochrome: Boolean;

The Monochrome property determines if the bitmap displays in monochrome. If True, the
bitmap is monochrome. If False, the bitmap displays in color.

Example
The following code create Bitmapl and sets its Monochrome property to True.

var
Bitmapl: TBitmap;
begin
Bitmapl := TBitmap.Create;
Bitmapl.Monochrome := True;
end;

Delphi Visual Component Library Reference 479

MouseToCell method

MouseToCell method

Applies to
TDrawGrid, TStringGrid components

Declaration
procedure MouseToCell (X, Y: Integer; var ACol, ARow: Longint);

The MouseToCell method returns the column and row of the cell the mouse pointer is
positioned on. The X and Y parameters are the screen coordinates of the mouse pointer.
The ACol parameter is the number of the column where the mouse pointer is positioned,
and the ARow parameter is the number of the row.

Usually the MouseToCell method is used in a mouse event handler, which supplies the
mouse coordinates to the method call.

Example

This example uses a string grid on a form. When the user selects a cell in the grid and
releases the mouse button, the column and row coordinates for the cell appear in the
cell. The code for displaying the coordinates is written in the OnMouselUp event handler:

procedure TForml.FormCreate (Sender: TObject);
begin

StringGridl.DefaultColWidth := 100;
end;

procedure TForml.StringGridlMouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

var
Column, Row: Longint;
begin
StringGridl.MouseToCell (X, Y, Column, Row);
StringGridl.Cells[Column, Row] := 'Col ' + IntToStr(Column) +
",Row ' + IntToStr (Row);
end;
See also

CellRect method, OnMouseDown event, OnMouseMove event, OnMouseUp event

Move method

Applies to
TList, TStringList, TStrings objects

Declaration

procedure Move (CurIndex, NewIndex: Integer);

480 Delphi Visual Component Library Reference

Move procedure

The Move method changes the position of an item in the list of a list object or in a list of
strings in a string object by giving the item a new index value. The Curlndex parameter is
the item’s current index, and the NewlIndex parameter is the item’s new index value.

If a string in a string object has an associated object in the Objects property, Move moves
both the string and the object.

Example

This example uses a list box and a button on a form. The list box contains items when
the form appears. When the user clicks the button, the fifth item in the list box is moved
to the top of the list box:

procedure TForml.FormCreate (Sender: TObject);
var
I: Integer;
begin
for T := 1 to 5 do
ListBoxl.Items.Add('Item ' + IntToStr(I));
end;

procedure TForml.ButtonlClick(Sender: TObject);
begin

ListBoxl.Items.Move (4, 0);
end;

See also m

Add method, Delete method, Exchange method, Objects property, Strings property

Move procedure System

Declaration
procedure Move(var Source, Dest; Count: Word);

The Move procedure copies Count bytes from a Source to Dest. No range-checking is
performed.

When the segment parts of Source and Dest are equal, Move compensates for overlaps
between the source and destination blocks. If the source and destination overlap but
their segment parts are not equal, Move will not compensate for overlaps and there is a
50% chance that Move will not work correctly. Borland Pascal’s static and dynamic
(heap) memory allocation schemes never create overlapping variables whose addresses
have different segment parts, so this problem can only occur if the addresses of Source
and Dest are modified or normalized by your program, or if they are provided by an
external source.

Whenever possible, use SizeOf to determine the count.

Example

var

Delphi Visual Component Library Reference 481

MoveBy method

A: array(l..4] of Char;

B: Longint;
begin

Move (A, B, SizeOf(A)); { SizeOf = safety! }
end;

See also
FillChar procedure, SizeOf function

MoveBy method

Applies to
TTable, TQuery, TStoredProc components

Declaration
procedure MoveBy (Distance: Integer);

The MoveBy method moves the dataset cursor by Distance records. If Distance is
negative, the move is backward. If Distance is positive, the movement is forward. If
Distance is zero, no move is done.

If the dataset is in Insert or Edit state, MoveBy will perform an implicit Post of any
pending data.
Example

{ Skip three records forward }

Tablel.MoveBy (3);

See also
First method, Last method, Next method, Prior method

MovedCount property

Applies to
TBatchMove component

Declaration

property MovedCount: Longint;

Run-time and read only. MovedCount is the number of records which were actually
processed by the Execute method. This includes any records which had integrity or data
size problems.

482 Delphi Visual Component Library Reference

MoveTo method

Example

with BatchMovel do
begin
Execute;
MessageDlg (IntToStr (MoveCount) + ‘ records read’, mtInformation, [mbOK], 0);
end;

See also
ChangedCount property, KeyViolCount property, ProblemCount property, RecordCount

property

MoveTo method

Applies to
TCanvas, TOutlineNode objects

For canvases

Applies to

TCanvas object m

Declaration
procedure MoveTo(X, Y: Integer);

The MoveTo method changes the current drawing position to the coordinates passed in
X and Y. The current position is given by the PenPos property. You should use MoveTo
to set the current position rather than setting PenPos directly.

Example
The following code draws a line from the upper-eft corner of a form to the point clicked
with the mouse:

procedure TForml.FormMouseDown (Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
Canvas.MoveTo (0, 0);
Canvas.LineTo (X, Y);

end;

See also
LineTo method

Delphi Visual Component Library Reference 483

MoveTo method

For outline nodes

Applies to
TOutlineNode object

Declaration

procedure MoveTo(Destination: Longint; AttachMode: TAttachMode);

Description

The MoveTo method moves an outline item from one location to another within an
outline (TOutline component). The Destination parameter determines where to move the
item. Pass the Index value of another outline item in the Destination parameter. The
AttachMode parameter specifies how you want to attach the item to the destination
position. These are the possible values of AttachMode:

Value Meaning

oaAdd The item is attached as if added with the Add method. The moved item becomes the last
sibling of the item specified by the Destination parameter. The moved item will share the
same parent as the Destination item.

0aAddChild The item is attached as if added with the AddChild method. The moved item becomes the
last child of the item specified by the Destination parameter. The Destination item will
become the parent of the moved item.

oalnsert The item is attached as if inserted with the Insert method. The moved item replaces the
Destination item in the outline, while the Destination item and all other following items are
moved down one row.

MoveTo returns the new Index value of the moved item.
Note When an item is moved, all its subitems move with it.

When an item (and any subitems) is moved, the other items in the outline are reindexed
to obtain new valid Index values. This happens automatically unless Beginlpdate has
been called.

Example
The following code moves the selected item to become the first item in the outline.

with Outlinel.Items[Outlinel.SelectedItem] do
MoveTo (0, oalnsert);

See also
ChangeLevel By method

484 Delphi Visual Component Library Reference

MSecsPerDay constant

MSecsPerDay constant SysuUtils

Declaration
MSecsPerDay = 24 * 60 * 60 * 1000;

MSecsPerDay declares the number of milliseconds per day.

MultiSelect property

Applies to
TListBox, TFileListBox components

Declaration
property MultiSelect: Boolean;

The MultiSelect property determines whether the user can select more than one element
at a time from the list. If MultiSelect is True, the user can select multiple items. If
MultiSelect if False, multiple items can be selected in the list box at the same time. The
default value is False.

Example
This line of code ensures that the user can select multiple items in a list box:

ListBoxl.MultiSelect := True; ﬂ

See also
ExtendedSelect property, Selected property

Name property

Applies to
All components; TFieldDef, TFieldDefs, TIndexDef, TIndexDefs, TFont, TParam, TParams
objects

For components

Declaration
property Name: TComponentName;

The Name property contains the name of the component as referenced by other
components. By default, Delphi assigns sequential names based on the type of the
component, such as ‘Buttonl’, ‘Button2’, and so on. You may change these to suit your
needs.

Delphi Visual Component Library Reference 485

Name property

Note Change component names only at design time.

Example
The following code lists the names of all the components of Form1 in a list box.

var
I: Integer;
begin
for T := 0 to Forml.ComponentCount-1 do
ListBoxl.Items.Add(Forml.Components[I].Name);
end;

For font objects

Declaration
property Name: TFontName;

The Name property of a font object determines the name of the font contained within the
font object.

Example

This code sets the font for all text that appears on the form to Times New Roman. If the
controls on the form have their ParentFont property set to True, text on these controls
will also be in Times New Roman.

procedure TForml.FormCreate(Sender: TObject);
begin

Font.Name := 'Times New Roman';
end;

See also
ParentFont property

For TIndexDef objects

Declaration
property Name: string;

Run-time and read only. Name is the name of the index.

For TParam objects

Declaration
property Name: string;

The Name property is the name of the parameter.

486 Delphi Visual Component Library Reference

NativeToAnsi procedure

Example

{ Change the name of the first parameter column to ‘CustNo’ }
Params[0] .Name := ‘CustNo’;

For TFieldDef objects

Declaration
property Name: string;

Run-time and read only. Name is the name of the physical field within the table.

Example

{ Display the field name and number }
with FieldDefl do
MessageDlg (Name + ' is field ' + IntToStr(FieldNo), mtInformation, [mbOK], 0);

See also
TField component

NativeToAnsi procedure DB

Declaration ﬂ
procedure NativeToAnsi(Locale: TLocale; NativeStr: PChar; var AnsiStr: string);

The NativeToAnsi procedure translates native characters in NativeStr to the ANSI
character set according to Locale. NativeToAnsi returns the translated string in AnsiStr.

NetFileDir property

Applies to

TSession component

Declaration
property NetFileDir: string;

Run-time only. The NetFileDir property specifies the directory that contains the BDE
network control file, PDOXUSRS.NET. This property enables multiple users to share
Paradox tables on network drives. NetFileDir overrides the specification defined for the
Paradox driver in the BDE Configuration Utility.

All applications that need to share the same Paradox database must specify the same
directory, and all must have read/write/create rights for the directory.

Delphi Visual Component Library Reference 487

New procedure

See also
Session variable

New procedure System

Declaration
procedure New(var P: Pointer);
function New(<pointer type>): Pointer;

The New procedure creates a new dynamic variable and sets a pointer variable to point
to it. Reference the newly created variable as P/

If there is not enough space available in the heap to allocate to the new variable a run-
time error occurs. However, {$1+} lets you handle run-time errors using exceptions. For
more information on handling run-time library exceptions, see Handling RTL
Exceptions in the Help system.

The New function returns a pointer value and applies to all data types, not just object
types.

The parameter passed to New is the type of pointer pointing to the object, rather than the
pointer variable itself.

Example

type
Strl8 = string[18];
var
P: "Strl8;
begin
New (P) ;
P* := 'Now you see it...';
Dispose(P); { Now you don't... }
end;

See also
Dispose procedure, FreeMem procedure, GetMem procedure

NewPage method

Applies to
TPrinter object

Declaration

procedure NewPage;

488 Delphi Visual Component Library Reference

NewStr function

The NewPage method forces the current print job to begin printing on a new page in the
printer. It also increments the value of the PageNumber property and resets the value of
the Pen property of the Canvas back to (0, 0).

Example
This example uses a button on a form. When the user clicks the button, a rectangle is
printed twice, one per page.

To run this example successfully, you must add the Printers unit to the uses clause of
your unit.

procedure TForml.ButtonlClick(Sender: TObject);
begin
with Printer do
begin
BeginDoc;
Canvas.Rectangle (10, 10, 200, 200);
NewPage;
Canvas.Rectangle (10, 10, 200, 200);
EndDoc;
end;
end;

See also
BeginDoc method, EndDoc method, Printer variable

NewStr function SysUtils ﬂ

Declaration

function NewStr(const S: string): PString;

The NewStr function allocates a copy of the string S on the heap and returns a pointer to
the newly allocated string. When your application finishes using the allocated string,
you should use DisposeStr to dispose of the string on the heap.

Do not change the length of strings allocated with NewStr. Increasing the length of the
string overwrites other variables on the heap. Decreasing the length of the string
prevents some of the memory from being deallocated.

Example
The following code allocates space for and places the string ‘New String” in memory.
The pointer S points to the new string:

var
S: PString;
begin
S := NewStr('New String');

DisposeStr(S);

Delphi Visual Component Library Reference 489

Next method

See also
DisposeStr procedure

Next method

Applies to
TForm, TMediaPlayer, TQuery, TStoredProc, TTable components

The Next method either activates the next form, media track, or record.

For forms

Declaration
procedure Next;
The Next method makes the next child form in the form sequence the active form.

For example, if you have three child forms within a parent form in your MDI
application and Form2 is the active form, the Next method makes Form3 the active form.
Calling Next again makes Form4 active. The next time your application calls Next, the
sequence starts over again and Form2 becomes the active form once again.

The Next method applies only to forms that are MDI parent forms (have a FormStyle
property value of fsMDIForm).

Example
The following code activates the next child of Form1.

Forml.Next;

See also
Arrangelcons method, Cascade method, Previous method, Tile method

For media player controls

Declaration
procedure Next;

The Next method goes to the beginning of the next track of the currently loaded
medium. If the current position is at the last track when Next is called, Next makes the
current position the beginning of the last track. If the multimedia device doesn’t use
tracks, Next goes to the end of the medium. Next is called when the Next button on the
media player control is clicked at run time.

Upon completion, Next stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.

490 Delphi Visual Component Library Reference

NormalizeTopMosts method

The Wait property determines whether control is returned to the application before the
Next method has completed. The Notify property determines whether Next generates an
OnNotify event.

Example
The following code opens a WAV audio file and fast-forwards to the end of the
medium.

MediaPlayerl.DeviceType := dtWAVAudio;
MediaPlayerl.FileName := ‘c:\chimes.wav';
MediaPlayerl.Open;

MediaPlayerl.Next;

See also
Position property, Previous method, Tracks property

For tables, queries, and stored procedures

Declaration
procedure Next;

The Next method moves the cursor forward by one record. If the cursor is already on the
last record, it does not move. If the dataset is in Insert or Edit state, Next will perform an
implicit Post of any pending data.

Example ﬂ

{ Move to the next record }
Tablel.Next;
if Tablel.Eof then { No more records };

See also
First method, Last method, MoveBy method, Prior method

NormalizeTopMosts method

Applies to
TApplication component

Declaration
procedure NormalizeTopMosts;

The NormalizeTopMosts method makes forms that have been designated as topmost
forms (their FormStyle is fsStayOnTop) behave as if they were not topmost forms. You'll
find this method convenient to use if you want a message box or dialog box to appear
on top of a topmost form.

Delphi Visual Component Library Reference 491

Notify property

For example, while you do not have to call NormalizeTopMosts to use the Delphi
methods and functions that display message boxes (such as MessageBox and
MessageDlg), you should call it if you want to call Windows API functions directly to
display a message box. If you neglect to call NormalizeTopMosts, the message box won't
display on top of the form, but the form remains on top. Any time you call Windows
API functions to display a window on top of a form, call NormalizeTopMosts first.

To return the forms designated as fsStayOnTop to be topmost again, call
RestoreTopMosts.

Example
The following code normalizes topmost forms before calling the MessageBox function in
the WinProcs unit. After the message box is closed, the topmost forms are restored.
begin
Application.NormalizeTopMosts;
MessageBox (Forml.Handle, 'This should be on top.', 'Message Box', MB_OK);

Application.RestoreTopMosts;
end;

See also
FormStyle property, RestoreTopMosts method

Notify property

Applies to
TMediaPlayer component

Declaration
property Notify: Boolean;

Run-time only. The Notify property determines whether the next call to a media control
method (Back, Close, Eject, Next, Open, Pause, PauseOnly, Play, Previous, StartRecording,
Resume, Rewind, Step, or Stop) generates an OnNotify event when the method has
completed.

If Notify is True, the next media control method generates OnNotify event upon
completion and stores the notification message in the NotifyValue property. If Notify is
False, the method does not generate an OnNotify event and NotifyValue remains
unchanged.

Notify affects only the next call to a media control method. After an OnNotify event,
Notify must be reset to affect any subsequent media control methods.

By default, Play and StartRecording function as if Notify is True. You must set Notify to
False before calling Play or StartRecording to prevent an OnNotify event from being
generated when playing or recording has finished. By default, all other media control
methods function as if Notify is False.

492 Delphi Visual Component Library Reference

NotifyValue property

Note Set Notify to True if the next media control is expected to take a long time, so your
application is notified when the media control method has completed. If you setNotify
to True, you might want to set Wait to False so that control returns to the application
before the media control method is finished.

Note If you try to resume a device that doesn’t support Resurme, the device is resumed as if
you called the Play method. If you have assigned True to Notify before calling Resume (or
any other media control method), Notify doesn’t affect the call to Resume. Resume does
not generate an OnNotify event upon completion, and NotifyValue remains unchanged.

Example

The following code sets Notify to True after opening and playing the Microsoft Video for
the Windows file named DUCK.AVI. When the Play method is completed, an OnNotify
event occurs, which displays a message.

procedure TForml.BitBtnlClick(Sender: TObject);
begin
with MediaPlayerl do begin
FileName := 'duck.avi';
Open;
Play;
Notify := True;
end;
end;
procedure TForml.MediaPlayerlNotify(Sender: TObject);
begin
if MediaPlayerl.NotifyValue=nvSuccessful then
MessageDlg ('Done playing video.', mtInformation, [mbOK], 0);
end;

NotifyValue property

Applies to
TMediaPlayer component

Declaration
property NotifyValue: TMPNotifyValues;

Run-time and read only. The NotifyValue property reports the result of the last media
control method (Back, Close, Eject, Next, Open, Pause, PauseOnly, Play, Previous,
StartRecording, Resume, Rewind, Step, or Stop) that requested a notification. Set Notify to
True before calling a media control method to request notification.

The following table lists the possible values for NotifyValue.

Value Result
nvSuccessful Command completed successfully
nvSuperseded Command was superseded by another command

Delphi Visual Component Library Reference 493

Now function

Value Result

nvAborted Command was aborted by the user
nvFailure Command failed

Example

This example uses a media player component named MediaPlayerl. When the
application runs, the code attempts to play a CD in the CD audio device, and displays a
message dialog box indicating whether the attempt to play the CD was successful.

Before you can run this example, you must have a CD audio device installed correctly.

procedure TForml.FormCreate(Sender: TObject);

begin
with MediaPlayerl do
begin
DeviceType := dtCDAudio;
Open;
Play;

if NotifyValue <> nvSuccessful then
MessageDlg ('Error playing CD audio', mtError, [mbOk], 0)

else
MessageDlg('Playing CD audio', mtInformation, [mbOk], 0);

Visible := False;
end;
end;

See also
OnNotify event

Now function SysUtils

Declaration
function Now: TDateTime;

The Now function returns the current date and time, corresponding to Date + Time.

Example
This example uses a label and a button on a form. When the user clicks the button, the

current date and time appear as the caption of the label.

procedure TForml.ButtonlClick(Sender: TObject);
begin
Labell.Caption := 'The date and time is ' + DateTimeToStr (Now);

end;

See also
Date function, DateTimeToStr function, Time function

494 Delphi Visual Component Library Reference

NullStr constant

NullStr constant SysUtils

Declaration
NullStr: PString = @EmptyStr;
NullStr declares a pointer to EmptyStr.

NullStr is the return value for many string handling routines when the string is empty.

NumGlyphs property

Applies to
TBitBtn, TSpeedButton components

Declaration
property NumGlyphs: TNumGlyphs;

The NumGlyphs property indicates the number of images that are in the graphic
specified in the Glyph property for use on a bitmap button or speed button.

If you have multiple images in a bitmap, you must specify the number of images that
are in the bitmap with the NumGlyphs property. All images must be the same size and
next to each other in a row. Valid NumGlyphs values are 1 to 4. The default value is 1.

You can provide up to four images on a bitmap button or speed button with a single ﬂ
bitmap. Delphi then displays one of these images depending on the state of the button.
Only one image is required in a bitmap.

Image position Speed button

in bitmap state Description

First Up This image appears when the button is unselected. If no other
images exist in the bitmap, Delphi uses this image for all other
images.

Second Disabled This image usually appears dimmed and indicates that the

button can’t be selected.

Third Down This image appears when a button is clicked. The up state image
then reappears when the user releases the mouse button.

Fourth Stay down This image appears when a button stays down indicating that it
remains selected.

If only one image is present, Delphi attempts to represent the other states by altering the
image slightly for the different states, although the stay down state is always the same as
the up state. If you aren’t satisfied with the results, you can provide additional images in
the bitmap.

Example
This example uses a speed button and a label on a form. When the example runs, the
number of images in the specified bitmap appears as the caption of the label.

Delphi Visual Component Library Reference 495

ObjClass property

procedure TForml.FormActivate(Sender: TObject);
begin
SpeedButtonl.Glyph.LoadFromFile('C:\WINDOWS\CARS.BMP');
Labell.Caption := IntToStr(SpeedButtonl.NumGlyphs) + ' image(s)';
end;

See also
Glyph property

ObjClass property

Applies to
TOLEContainer component

Declaration
property ObjClass: string;

Specify the OLE class of an object in the ObjClass property. The class of an object is
typically the application name of the OLE server application without the .EXE
extension. See the documentation for the OLE server for specific information about its
OLE class.

At design time, specifying the ObjClass property displays the Insert Object dialog box
and initializes the OLE object. At run time, the ObjClass property is specified
automatically when you initialize the OLE object with the PInitInfo property.

Example
The following code tests to determine if “Paintbrush Picture” is the object class. If so, a
message is displayed in Labell when Button1 is clicked.

procedure TForml.ButtonlClick(Sender: TObject);

begin
if OLEContainerl.ObjClass = 'Paintbrush Picture' then
Labell.Caption := 'The object is a Paintbrush Picture';
end;
See also

ObjDoc property, Objltem property

ObjDoc property

Applies to
TOLEContainer component

Declaration

property ObjDoc: string;

496 Delphi Visual Component Library Reference

ObjectMenultem property

Specify the OLE document of an object in the ObjDoc property. The document of an
object is typically the name of the file containing the OLE information. See the OLE
server documentation for specific information about its OLE documents.

At design time, specifying the ObjDoc property displays the Insert Object dialog box and
initializes the OLE object. At run time, the ObjDoc property is specified automatically
when you initialize the OLE object with the Plnitlnfo property, if the object is linked to
data in a file.

Example
The following code tests to determine if “‘c:\windows\256color.bmp’ is the object
document. If so, a message is displayed in Label1 when Button1 is clicked.

procedure TForml.ButtonlClick(Sender: TObject);

begin
if OLEContainerl.ObjDoc = 'c:\windows\256color.bmp' then
Labell.Caption := 'The object document is c:\windows\256color.bmp';
end;
See also

ObjClass property, Objltem property

ObjectMenultem property

Applies to
TForm component

Declaration a

property ObjectMenultem: TMenultem;

ObjectMenultem is used to specify the OLE object menu item. If you create a menu item
and specify it as the OLE object menu item with the ObjectMenultem property, the item is
automatically enabled when an OLE object in an OLE container is selected.

The OLE object menu item can be used to activate or convert the selected object. All you
need to do is specify the menu item in the ObjectMenultem component. The processing
of activating or converting the object is handled by the OLE server application.

Example

The following code assigns MyObject1 to the ObjectMenultem property of Form1l. When
an OLE container that contains an object is selected, the caption of the MyObject1l menu
item can be modified by the OLE server and the functionality of MyObject1 will be
handled by the server.

Forml.ObjectMenultem := MyObjectl;

Delphi Visual Component Library Reference 497

Objects property

Objects property

Applies to
TStringList, TStrings objects; TStringGrid component

For string objects

Declaration
property Objects[Index: Integer]: TObject;

Run-time only. The Objects property gives you access to an object in the list of objects
associated with the list of strings. Each string in the list of strings can have an associated
object.

The most common use of objects in a string and string list objects is to associate bitmaps
with strings so that you can use the bitmaps in owner-draw controls. For example, if
you have an owner-draw list box, you can add a string ‘Banana’ and a bitmap of a
banana to the Ifems property of the list box using the AddObject method. You can then
access the ‘Banana’ string using the Strings property or the bitmap using the Objects

property.
Specify the object you want to access with its position in the list as the value of thelndex

parameter. The index is zero-based, so the first object in the list of objects has a value of
0, the second object has a value of 1, and so on.

To associate an object with an existing string, assign the object to the Objects property
using the same index as that of the existing string in the Strings property. For example, if
a string object named Fruits contains the string ‘Banana’ and an existing bitmap of a
banana called BananaBitmap, you could make the following assignment:

Fruits.Objects[Fruits.IndexOf (‘Banana’)] := BananaBitmap;

Example

The following code allows the user to specify a bitmap file with the OpenDialog1 open
dialog box component when Form1 is created. Then, the bitmap file specified is added to
the Items list of ListBox1.

If ListBox1 is an owner-draw control (specified by a Style property of IbOwnerDrawFixed
or [bOwnerDrawVariable), the second procedure is the OnDrawltem event handler for
ListBox1. The bitmap in the Object property and the text of an item are retrieved and

displayed in Listbox1.
procedure TForml.FormCreate(Sender: TObject);
var
TheBitmap: TBitmap;
begin
if OpenDialogl.Execute then
begin

TheBitmap := TBitmap.Create;
TheBitmap.LoadFromFile (OpenDialogl.FileName) ;

498 Delphi Visual Component Library Reference

Objltem property

ListBoxl.Items.AddObject (OpenDialogl.FileName, TheBitmap);
end;
end;

procedure TForml.ListBoxIDrawlItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);
var
DrawBitmap: TBitmap;
begin
DrawBitmap := TBitmap(ListBoxl.Items.Objects[Index]);
with ListBoxl.Canvas do
begin
Draw(Rect.Left, Rect.Top + 4, DrawBitmap);
TextOut (Rect.Left + 2 + DrawBitmap.Width, Rect.Top + 2, ListBoxl.Items[Index]);
end;
end;

See also
AddObject method, InsertObject method, IndexOf method, IndexOfObject method

For string grids

Declaration
property Objects[ACol, ARow: Integer]: TObject;

Run-time only. The Objects property is an array of objects, one for each cell in the grid.

The ColCount and RowCount values define the size of the array of objects. Use the Objects
property to access an object within a particular cell. ACol is the column coordinate of the

cell, and ARow is the row coordinate of the cell. a

If you put an object into the Objects array, the object will still exist even if the string grid
is destroyed. You must destroy the object explicitly.

Example
The following code stores a TBitmap object called MyBitmap in row 3, column 10 of
StringGridl.

StringGridl.Objects (10, 3] := MyBitmap;

See also
Cells property, Cols property, Free method, Rows property

Objltem property

Applies to
TOLEContainer component

Delphi Visual Component Library Reference 499

0dd function

Declaration
property ObjItem: string;

Specify the OLE item of an object in the Objltemn property. The item of an object is a
discrete unit of data within the OLE document containing the OLE information. See the
OLE server documentation for specific information about its OLE documents.

At design time, specifying the Objltem property displays the Paste Special dialog box
and initializes the OLE object. At run time, the Objltem property is specified
automatically when you initialize the OLE object with the Plnitlnfo property, if the
object linked is a more specific piece of data than is specified by the ObjDoc property.

Example

The following code tests to determine if “29 8 337 96” is the object item (this could be the
item if you copied a portion of a Paintbrush picture to the Clipboard and wanted to link
to the bitmap defined by the coordinates (29, 8) and (337, 96)). If so, a message is
displayed in Labell when Button1 is clicked.

procedure TForml.ButtonlClick(Sender: TObject);
begin
if OLEContainerl.ObjDoc = '29 8 337 96' then
Labell.Caption := 'The object item is 29 8 337 96';
end;

See also
ObjClass property

Odd function System

Declaration
function 0dd(X: Longint): Boolean;
The Odd function tests if the argument is an odd number.

Odd returns True if X is an odd number.

Example

begin
if 0dd(5) then
Canvas.TextOut (10, 10, '5 is odd.")
else
Canvas.TextOut (10, 10, 'Something is odd!');
end;

500 Delphi Visual Component Library Reference

OEMConvert property

OEMConvert property

Applies to
TEdit, TMemo components

Declaration

property OEMConvert: Boolean;

Description

The OEMConvert property determines whether the text in the control is converted to
OEM characters. If True, the text is converted. If False, the characters remain as ANSI
characters. The default value is False. You should have the text converted to OEM

characters if the text consists of file names.

Ofs function

System

Declaration
function O0fs(X): Word;

The Ofs function returns the offset of a specified object.

X is any variable, or a procedure or function identifier. The result of type Word is the

offset part of the address of X.

Example

function MakeHexWord(w: Word): string;

const
hexChars: array [0..SF] of Char ='0123456789ABCDEF";

var
HexStr : string;

begin
HexStr := '';
HexStr := HexStr + hexChars[Hi(w) shr 4];
HexStr := HexStr + hexChars[Hi(w) and SF];
HexStr := HexStr + hexChars([Lo(w) shr 4];
HexStr := HexStr + hexChars[Lo(w) and SF];

MakeHexWord := HexStr;
end;

procedure TForml.ButtonlClick(Sender: TObject);

var
i: Integer;
Y: Integer;
S: string;
begin
Y := 10;
S := 'The current code segment is $' + MakeHexWord(CSeg);

Delphi Visual Component Library Reference 501

OLEObjAllocated method

Canvas.TextOut (5, Y, S);

Y := Y + Canvas.TextHeight (S) + 5;

S := 'The global data segment is $' + MakeHexWord (DSeg);
Canvas.TextOut (5, Y, S);

Y := Y + Canvas.TextHeight (S) + 5;

S := 'The stack segment is $' + MakeHexWord(SSeg) ;
Canvas.TextOut (5, Y, S);

Y := Y + Canvas.TextHeight (S) + 5;

S := 'The stack pointer is at $' + MakeHexWord(SPtr);
Canvas.TextOut (5, Y, S);

Y := Y + Canvas.TextHeight (S) + 5;

S := 'i is at offset $' + MakeHexWord(Ofs(i));
Canvas.TextOut (5, Y, S);

Y := Y + Canvas.TextHeight (S) + 5;

S := 'in segment $' + MakeHexWord(Seg(1));
Canvas.TextOut (5, Y, S);
end;
See also

Addr function, Seg function

OLEObjAllocated method

Applies to
TOLEContainer component

Declaration
function OleObjAllocated: Boolean;

The OLEObjAllocated method specifies whether an OLE container has been initialized
and therefore contains an OLE object. OLEObjAllocated returns True if an OLE object has
been allocated, or False if the OLE container is empty.

Example
The following code only initializes OLEContainer1 if it does not already contain an OLE
object, assuming ThelnitInfo points to valid initialization information.

if not OLEContainerl.0OLEObjAllocated then
OLEContainerl.PInitInfo := TheInitInfo;

See also
PlnitInfo property

OnActivate event

Applies to
TApplication, TForm, TOLEContainer components

502 Delphi Visual Component Library Reference

OnActivate event

For forms

Declaration
property OnActivate: TNotifyEvent;

The OnActivate event for a form occurs when the form becomes active. A form becomes
active when focus is transferred to it (when the user clicks on the form, for example).

For MDI child windows (forms with FormStyle property values of fsMDIChild),
OnActivate occurs only when focus is shifted from one child to another. If focus is shifted
from a non-MDI child window to an MDI child, the OnActivate event occurs for the MDI
parent form.

Note The OnActivate event of the application (T Application), not the form, occurs when
Windows switches control from another application to your application.

Example

The following code adds the caption of Form2 to a list box in Form1 when a Form?2 is
activated. To refer to Form1 in Form2’s OnActivate event handler you must include the
name of the unit in which Form1 is declared to a uses clause in Form2’s unit. To avoid a
circular unit reference (if Form?2 is already referenced by Form1’s uses clause), put the
new uses clause in the implementation section of Form2’s unit.

procedure TForm2.FormActivate(Sender: TObject);

begin
Forml.ListBoxl.Items.Add(Screen.ActiveForm.Caption);

end;

See also
ActiveForm property, Show method, ShowModal method

For OLE containers

Declaration
property OnActivate: TNotifyEvent;

The OnActivate event for an OLE container occurs when the OLE object is activated as
specified by the AutoActivate property.

Delphi Visual Component Library Reference 503

OnActivate event

Note

Example

The following code displays the number of times an OLE container has been activated in
Labell. The code assumes that TimesActivated is an Integer field of Form1 that is initialized
to 0 in the OnCreate event of Form1.

procedure TForml.0leContainerlActivate(Sender: TObject);

begin

TimesActivated := TimesActivated + 1;

Forml.Labell.Caption := 'Times activated: '+IntToStr(TimesActivated);
end;

For an application

Declaration
property OnActivate: TNotifyEvent;

The OnActivate event for an application occurs when the application becomes active.
Your application becomes active when it is initially run or when focus is shifted from
another Windows application to your application.

Search Help for “Handling Application Events” for more information about creating
event handlers for application events.

Example

The following code is the entire unit which assigns the ApplicationActivate procedure to
the OnActivate event of the application. Note that ApplicationActivate is declared as a
method of Form1. The code that you add is notes with comments. The rest of the code is
generated by Delphi.

unit Unitl;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs;

type

TForml = class(TForm)
procedure ApplicationActivate(Sender: TObject); {Add this declaration line}
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Forml: TForml;

504 Delphi Visual Component Library Reference

OnActiveControlChange event

implementation
{SR *.DFM}

procedure TForml.ApplicationActivate(Sender: TObject); {Write this procedure}
begin

{Put code for your Application.OnActivate here}
end;

procedure TForml.FormCreate(Sender: TObject);
begin

Application.OnActivate := ApplicationActivate; {Write this line of code}
end;

end.

See also
Application variable, OnDeactivate event

OnActiveControlChange event

Applies to

TScreen component

Declaration
property OnActiveControlChange: TNotifyEvent;

The OnActiveControlChange event occurs when the focus on the screen shifts from one

control to another. This change in focus means that a new control is now the value of the a
ActiveControl property of the screen. Use the OnActiveControlChange event to specify

special processing you want to occur just before the new control becomes the active

control.

Example
This example uses an edit box and a memo on a form. When the user switches the focus
between the two controls, the control that currently has the focus becomes red:

type
TForml = class(TForm)
Editl: TEdit;
Memol: TMemo;
Buttonl: TButton;
procedure FormCreate(Sender: TObject);
private
{ Private declarations }
public
procedure ColorControl (Sender: TObject);
end;

var
Forml: TForml;

Delphi Visual Component Library Reference 505

OnActiveFormChange event

implementation
{SR *.DFM}

procedure TForml.ColorControl (Sender: TObject);
begin
if Editl.Focused then
Editl.Color := clRed
else
Editl.Color := clWindow;
if Memol.Focused then
Memol.Color := clRed
else
Memol.Color := clWindow;

procedure TForml.FormCreate(Sender: TObject);
begin

Screen.OnActiveControlChange := ColorControl;
end;

See also
ActiveControl property, ActiveForm property, OnActiveFormChange event

OnActiveFormChange event

Applies to
TScreen component

Declaration
property OnActiveFormChange: TNotifyEvent;

The OnActiveFormChange event occurs when a new form becomes the active form on the
screen (the form becomes the value of the ActiveForm property). Use the
OnActiveFormChange event to specify any special processing to occur just before a new
form becomes the active form.

Example

This example uses a two forms with a button on the first form. When the user clicks the
button, the second form appears. As the user switches between forms, the form that is
active is colored aqua:

type
TForml = class(TForm)
Buttonl: TButton;
procedure FormCreate(Sender: TObject);
procedure ButtonlClick(Sender: TObject);
private
{ Private declarations }
public
procedure ColorForm(Sender: TObject);

506 Delphi Visual Component Library Reference

end;

var
Forml: TForml;

implementation
(SR *.DFM}

uses Unit2;

OnApply event

procedure TForml.ColorForm(Sender: TObject);

begin
Color := clBtnFace;
Form2.Color := clBtnFace;

Screen.ActiveForm.Color := clAqua;

end;

procedure TForml.FormCreate(Sender: TObject);

begin
Screen.OnActiveFormChange
end;

:= ColorForm;

procedure TForml.ButtonlClick(Sender: TObject);

begin
Form2.Show;
end;

See also

ActiveForm property, OnActiveControlChange event

OnApply event

Applies to
TFontDialog component

Declaration

property OnApply: TFDApplyEvent

The OnApply event occurs when the user clicks the Apply button in the Font dialog box.
The Apply button won't appear in the Font dialog box unless the form has anOnApply

event handler. The user can use the Apply button to apply the font selected in the dialog
box to a component immediately before the dialog box is closed.

Example

This code displays the Font dialog box and puts an Apply button in it. When the user

clicks the Apply button, the font selected in the dialog box is applied to the Button1

button while the dialog box is still open.

procedure TForml.ButtonlClick(Sender: TObject);

begin
FontDialogl.Execute;

Delphi Visual Component Library Reference

507

OnCalcFields event

end;

procedure TForml.FontDialoglApply (Sender: TObject; Wnd: Word);
begin

Buttonl.Font := FontDialogl.Font;
end;

See also
Execute method, Font property

OnCalcFields event

Applies to
TTable, TQuery, TStoredProc components

Declaration
property OnCalcFields: TDataSetNotifyEvent;

The OnCalcFields event is used to set the values of calculated fields. OnCalcFields is called
when a dataset reads a record from the database. In addition, if the dataset’s
AutoCalcFields property is True, OnCalcFields is called when a non-calculated field is
modified while the dataset is in Edit or Insert state.

Typically, the OnCalcFields event will be called often, so it should be kept short.
OnCalcFields should not perform any actions that modify the dataset (or the linked
dataset if it is part of a master-detail relationship), because this can lead to recursion.

While the OnCalcFields event is executed, a dataset will be put in CalcFields state. When a
dataset is in CalcFields state, you cannot set the values of any fields other than calculated
fields. After OnCalcFields is completed, the dataset will return to its previous state.

The first call to the OnCalcFields event handler may occur before all components in your
application have been initialized. If your handler requires access to another component,
use the Edit | Creation Order command to ensure that the components are created in the
correct order.

OnChange event

Applies to

TBitmap, TBrush, TCanvas, TFont, TGraphic, TGraphicsObject, TMetafile, TPen, TPicture,
TStringList objects; TComboBox, TDBComboBox, TDBEdit, TDBLookupCombo, TDBMemo,
TDBRadioGroup, TDDEClientltem, TDDEServerltem, TDirectoryListBox, TDriveComboBox,
TEdit, TFileListBox, TFilterComboBox, TMaskEdit, TMemo, TQuery, TScrollBar, TTable,
TTabSet, TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

508 Delphi Visual Component Library Reference

OnChange event

For tab set controls

Declaration
property OnChange: TTabChangeEvent;

The OnChange event occurs just before a new tab is selected (the TabIndex value is about
to change). To prevent the Tablndex value from changing, you need to write code in the
OnChange event handler to stop it from doing so.

Example
The following code uses a check box and a tab set control on a form. If the check box is
checked, another tab on the tab set can’t be selected.

procedure TForml.TabSetl1Change (Sender: TObject; NewTab: Integer;
var AllowChange: Boolean);

begin
AllowChange := not CheckBoxl.Checked;

end;

For DDE client item and DDE server item controls

Declaration
property OnChange: TNotifyEvent;

An OnChange event occurs when the value of the Value property of a DDE client item or
DDE server item component changes.

If the value changed is that of a DDE client item component, the DDE server application a
continuously updates the Value property of the DDE client item component.

If the value changed is that of a DDE server item component, your application can
change the Value property of the DDE server item component by assigning a new value
to it. The DDE client can change Value by poking data (transferring data from the DDE
client to the DDE server). See the documentation of the DDE client application for
information about how data is poked. Delphi DDE client applications poke data using
the PokeData method.

Example
The following code updates the contents of an edit box with the linked text from a DDE
server when the data is updated.

procedure TForml.DdeClientItemlChange (Sender: TObject);
begin

Editl.Text := DDEClientIteml.Text;
end;

Delphi Visual Component Library Reference 509

OnChange event

For data-aware components

Declaration
property OnChange: TNotifyEvent;

The OnChange event for data-aware controls occurs when the contents of the field the
control is accessing changes. Specify any special processing you want to occur at that
time in the OnChange event handler

Example
The following code displays a message if the data accessed by DBMermo1 changes.

procedure TForml.DBMemolChange (Sender: TObject);
begin

MessageDlg('Data has changed',mtInformation, [mbOK],0);
end;

For fields

Declaration
property OnChange: TFieldNotifyEvent;

OnChange is activated when the contents of the field are modified. If a data-aware
control is linked to the field, OnChange is not activated until the control attempts to store
the changes into the current record.

You can take any special actions required by the event by assigning a method to this
property.

Example

Fieldl.OnChange := CapitalizeFirstLetter;

For other components and objects

Declaration
property OnChange: TNotifyEvent;

The OnChange event specifies which event handler should execute when the contents of
a component or object changes.

For graphics objects, OnChange occurs when the specific graphics item encapsulated by
the object changes. For example, the OnChange event for a pen occurs when the Color,
Mode, Style, or Width properties of the TPen object are modified.

For components, OnChange occurs when the main value or values of the component are
modified. For example, OnChange occurs when the Text property of an edit box is
modified.

510 Delphi Visual Component Library Reference

OnChanging event

For combo boxes, the OnChange event also occurs when an item is selected in the drop
down list.

For string list objects, the OnChange event occurs when a change to a string stored in the
list of strings changes.

Example

This example uses a color grid on a form. The color grid is a component on the Samples
page of the Component palette. When the user clicks a color rectangle or drags the
mouse cursor across the color grid, the color of the form changes.

procedure TForml.ColorGridlChange (Sender: TObject);

begin
Color := ColorGridl.ForegroundColor;
end;
See also
OnChanging event

OnChanging event

Applies to
TCanuvas object

Declaration
property OnChanging: TNotifyEvent;

An OnChanging event occurs immediately before the graphic contained in the canvas is
modified.

OnClick event

Applies to

TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,
TDBImage, TDBListBox, TDBLookupCombo, TDBLookupList, TDBMemo, TDBNavigator,
TDBRadioGroup, TDBText, TDirectoryListBox, TDrawGrid, TDriveComboBox, TFileListBox,
TFilterComboBox, TForm, TGroupBox, TImage, TLabel, TListBox, TMaskEdit, TMediaPlayer,
TMemo, TMenultem, TNotebook, TOutline, TPaintBox, TPanel, TRadioButton, TScrollBar,
TScrollBox, TSpeedButton, TStringGrid, TTabSet components

For the media player components

Declaration

property OnClick: EMPNotify;

Delphi Visual Component Library Reference 511

OnClick event

An OnClick event occurs when the user presses and releases the mouse button when the
mouse pointer is over one of the control buttons of the media player control, or when
the user presses Spacebar when the media player control has focus. When the media
player control has focus, the user can select which control button to click when the
Spacebar is pressed with the Left Arrow or Right Arrow keys.

Example

This example uses a label and a media player on a form. When the user clicks one of the
media player buttons, the caption of the label indicates which button was clicked. For
this example to run successfully, you must have a CD audio device installed correctly.

procedure TForml.FormCreate (Sender: TObject);
begin
MediaPlayerl.DeviceType := dtCDAudio;
MediaPlayerl.Open;
MediaPlayerl.Left := 20;
MediaPlayerl.Top := 12;
Labell.Top := 44;
Labell.Left := 20;
Labell.Color := clYellow;
Labell.Font.Name := 'Arial';
Labell.Caption := 'Click Me';
end;

procedure TForml.MediaPlayerl1Click(Sender: TObject; Button: TMPBtnType;
var DoDefault: Boolean);
begin
case Button of

btPlay :

begin
Labell.Caption := 'Playing';
Labell.Left := 20;

end;

btPause:

begin
Labell.Caption := 'Paused';
Labell.Left := 48;

end;

btStop:

begin
Labell.Caption := 'Stopped';
Labell.Left 76;

end;

btNext:

begin
Labell.Caption := 'Next';
Labell.Left := 104;

end;

btPrev:

begin
Labell.Caption := 'Previous';
Labell.Left := 132;

512 Delphi Visual Component Library Reference

OnClick event

end;

btEject:

begin
Labell.Caption := 'Eject';
Labell.Left := 244;

end;

end;
end;

See also
OnPostClick event

For database navigators

Declaration
property OnClick: ENavClick;

The OnClick event occurs when the user presses and releases the mouse button with the
mouse pointer over one of the database navigator control buttons, or when the user
presses Spacebar while the database navigator has focus. Calling the Click method also
triggers OnClick.

Example
The following code determines which database navigator button was clicked and
displays a message identifying the name of the button.

procedure TForml.DBNavigatorlClick(Sender: TObject; Button: TNavigateBtn);
var
BtnName: string;

begin
case Button of
nbFirst : BtnName := 'nbFirst';
nbPrior : BtnName := 'nbPrior';
nbNext . BtnName := 'nbNext';
nbLast : BtnName := 'nbLast';
nbInsert : BtnName := 'nbInsert';

nbDelete : BtnName := 'nbDelete';
nbEdit : BtnName := 'nbEdit';
nbPost : BtnName := 'nbPost';

nbCancel : BtnName := 'nbCancel';
nbRefresh: BtnName := 'nbRefresh';
end;
MessageDlg (BtnName + ' button clicked.', mtInformation, [mbOK], 0);
end;

Delphi Visual Component Library Reference 513

OnClose event

For forms and other components

Declaration

property OnClick: TNotifyEvent;

The OnClick event occurs when the user clicks the component. Typically, this is when
the user presses and releases the primary mouse button with the mouse pointer over the
component. This event can also occur when

The user selects an item in a grid, outline, list, or combo box by pressing an arrow
key.

The user presses Spacebar while a button or check box has focus.

The user presses Enter when the active form has a default button (specified by the
Default property).

The user presses Esc when the active form has a cancel button (specified by the Cancel
property).

The user presses the accelerator key for a button or check box. For example, if the

value of the Caption property of a check box is ‘&Bold’, the B is underlined at run time
and the OnClick event of the check box is triggered when the user presses Alt+B.

The Checked property of a radio button is set to True.
The value of the Checked property of a check box is changed.

The Click method of a menu item is called.

The user presses the accelerator key for a button or check boxFor a form, an OnClick
event occurs when the user clicks a blank area of the form or on a disabled component.

Example
The form in this example changes color each time the user clicks it:

procedure TForml.FormClick(Sender: TObject);
begin

Randomize;

Color := Random(65535);
end;

See also
Click method, OnDbIClick event

OnClose event

Applies to
TDDEClientConv, TForm components

514 Delphi Visual Component Library Reference

OnClose event

For forms

Declaration
property OnClose: TCloseEvent;

The OnClose event specifies which event handler to call when a form is about to close.
The handler specified by OnClose might, for example, test to make sure all fields in a
data-entry form have valid contents before allowing the form to close.

A form is closed by the Close method or when the user chooses Close from the form'’s
system menu.

The TCloseEvent type of OnClose has an Action parameter. The value of Action
determines whether the form can actually close. These are the possible values of Action:

Value Meaning

caNone The form is not allowed to close, so nothing happens.

caHide The form is not closed, but just hidden. Your application can still access a hidden form.
caFree The form is closed and all allocated memory for the form is freed.

caMlinimize The form is minimized, rather than closed. This is the default action for MDI child forms.

Example
This example displays a message dialog box when the user attempts to close the form. If
the user clicks the Yes button, the form closes; otherwise, the form remains open.

procedure TForml.FormClose(Sender: TObject; var Action: TCloseAction);

begin
if MessageDlg('Close application ?', mtConfirmation,
[mbYes, mbNo], 0) = mrYes then
Action := caFree
else
Action := caNone;
end;
See also

OnCloseQuery event, OnOpen event

For DDE components

Declaration
property OnClose: TNotifyEvent;

An OnClose event occurs when a DDE conversation is terminated. A conversation is
terminated when one of the applications involved is closed, or when the CloseLink
method is called.

Example
The following code displays a message when a conversation is closed.

Delphi Visual Component Library Reference 515

OnCloseQuery event

procedure TForml.DdeClientConvlClose(Sender: TObject);
begin

MessageDlg('This conversation is finished!', mtInformation, [mbOK],0);
end;

OnCloseQuery event

Applies to
TForm component

Declaration
property OnCloseQuery: TCloseQueryEvent;

The OnCloseQuery event occurs when an action to close the form takes place (when the
Close method is called or when the user chooses Close from the form’s System menu).
An OnCloseQuery event handler contains a Boolean CanClose variable that determines
whether a form is allowed to close. It's default value is True. See the TCloseQueryEvent
type for more information about CanClose.

You can use an OnCloseQuery event handler to ask users if they are sure they really want
the form closed immediately. For example, you can use the handler to display a message
box that prompts the user to save a file before closing the form.

Example

When the user attempts to close the form in this example, a message dialog appears that
asks the user if it is OK to close the form. If the user chooses the OK button, the form
closes. If the user chooses Cancel, the form doesn’t close.

procedure TForml.FormCloseQuery (Sender: TObject; var CanClose: Boolean);
begin
if MessageDlg('Close the form?', mtConfirmation,
[mbOk, mbCancel], 0) = mrCancel then
CanClose := False;
end;

See also
Close method, OnClose event

OnColEnter event

Applies to
TDBGrid component

Declaration

property OnColEnter: TNotifyEvent;

516 Delphi Visual Component Library Reference

OnColExit event

The OnColEnter event occurs when the user clicks a cell in a column or moves to a
column with the Tab key within the data grid. Use the OnColEnter event to specify any
processing you want to occur as soon as a column is entered.

Example
The following code concatenates an asterisk to the display label of a field when the
column is entered.

procedure TForml.DBGridlColEnter (Sender: TObject);
begin
with DBGridl.SelectedField do
DisplaylLabel := '* ' + DisplayLabel;
end;

See also
OnColExit event

OnColExit event

Applies to
TDBGrid component

Declaration

property OnColExit: TNotifyEvent;

clicks a cell in another column. Use the OnColExit event to specify any special processing

The OnColExit event occurs when the user uses the Tab key to move out of a column or
you want to occur when exiting the column. a

Example

The following code deletes the first two characters from the display label of the selected
field when exiting a column. Note that FirstTime is a Boolean field that prevents
characters from being deleted the first time a column is exited. Use this code in
conjunction with code in the example of OnColEnter to modify the appearance of the
display label of columns while they are entered.

procedure TForml.DBGridlColExit (Sender: TObject);
var
TheLabel: string;
begin
if FirstTime then
FirstTime := False
else
begin
with DBGridl.SelectedField do
begin
TheLabel := DisplayLabel;
Delete(TheLabel, 1, 2);

Delphi Visual Component Library Reference 517

OnCollapse event

DisplayLabel := TheLabel;
end;
end;
end;

See also
OnColExit event

OnCollapse event

Applies to
TOutline component

Declaration
property OnCollapse: EOutlineChange;

An OnCollapse event occurs when an expanded outline item that has subitems is
collapsed. An expanded outline item is collapsed when the user double-clicks it at run
time, when the FullCollapse method is called, or when its Expanded property is set to
False. When collapsed, the subitems no longer appear in the outline and the plus picture
or closed picture for the parent item is displayed if the appropriate OutlineStyle has been
selected.

Example
The following code displays the text from a collapsed outline item in a message dialog
box.

procedure TForml.OutlinelCollapse(Sender: TObject; Index: Longint);
var

TheStr: string;
begin

TheStr := Outlinel.Iltems[Index].Text;

MessageDlg(TheStr+' has collapsed.', mtInformation, [mbOK],0);
end;

See also
OnExpand event, PictureClosed property, PicturePlus property

OnColumnMoved event

Applies to
TDrawGrid, TStringGrid components

Declaration

property OnColumnMoved: TMovedEvent;

518 Delphi Visual Component Library Reference

OnCreate event

The OnColumnMoved event occurs when the user moves a column using the mouse. The
user can move a column only if the Options property set includes the value goColMoving.

Example

The following code permits one column to be moved (assuming [goColMoving] is
specified for the Options property at design time), then locks the columns by preventing
any more moves.

procedure TForml.StringGridlColumnMoved (Sender: TObject; FromIndex, ToIndex: Longint);
begin

StringGridl.Options := StringGridl.Options - [goColMoving];
end;

See also
OnRowMoved event

OnCreate event

Applies to
TForm component

Declaration
property OnCreate: TNotifyEvent;

The OnCreate event specifies which event handler to call when the form is first created.
You can write code in the event handler that sets initial values for properties and does
any processing you want to occur before the user begins interacting with the form. a

Delphi creates a form when the application is run by calling the Create method.

Note When writing code in an OnCreate event handler, don’t fully qualify a component
reference by including the name of the form in the reference. For example, if the form is
named Form1 and contains an Edit] edit box control, don’t refer to the edit box control
with the Form1.Edit1 name. Because Form1 doesn't yet exist when this code executes,
your application would crash if you used the fully qualified name. Instead, simply use
the name Edit1.

When a form is being created and its Visible property is True, the following events occur
in the order listed:

OnActivate
OnShow
OnCreate
OnPaint

Example
This very simple OnCreate event handler assures that the form is the same color as the
Windows system color of your application workspace:

Delphi Visual Component Library Reference 519

OnDataChange event

procedure TForml.FormCreate(Sender: TObject);
begin

Color := clAppWorkSpace;
end;

Note The Color property in this example is not prefaced with the name of the form. If you
write the statement like this,

Forml.Color := clAppWorkSpace;
the application won’t run without error, because Form1 does not yet exist at the time this
code is executed.

See also
OnActivate event, OnDestroy event, OnPaint event

OnDataChange event

Applies to
TDataSource component

Declaration
property OnDataChange: TDataChangeEvent;

The OnDataChange occurs when the State property changes from dslnactive, or when a
data-aware control notifies the TDataSource that something has changed.

Notification occurs when the following items change because of field modification or
scrolling to a new record: field component, record, dataset component, content, and
layout. The Field parameter to the method may be nil if more than one of the fields
changed simultaneously (as in a move to a different record). Otherwise, Field is the field
which changed.

See also
OnStateChange event, State property

OnDblClick event

Applies to

TComboBox, TDBComboBox, TDBEdit, TDBGrid, TDBImage, TDBListBox,
TDBLookupCombo, TDBLookupList, TDBMemo, TDBNavigator, TDBText,
TDirectoryListBox, TDrawGrid, TDriveComboBox, TEdit, TFileListBox, TFilterComboBox,
TForm, TGroupBox, TImage, TLabel, TListBox, TMaskEdit, TMemo, TNotebook,
TOLEContainer, TOutline, TPaintBox, TPanel, TRadioButton, TScrollBox, TSpeedButton,
TStringGrid components

520 Delphi Visual Component Library Reference

OnDeactivate event

Declaration
property OnDblClick: TNotifyEvent;

The OnDbIClick event occurs when the user double-clicks the mouse button while the
mouse pointer is over the component.

Example
This example notifies the user that the form was double-clicked.

procedure TForml.FormClick(Sender: TObject);
begin

MessageDlg('You double-clicked the form', mtInformation, [mbOk], 0);
end;

See also
OnClick event

OnDeactivate event

Applies to
TApplication component

Declaration

property OnDeactivate: TNotifyEvent;

Windows application. Use the OnDeactive event to do any special processing you want

The OnDeactivate event occurs when the user switches from your application to another
to occur before your application is deactivated. a

Note Search Help for “Handling Application Events” for more information about creating
event handlers for application events.

Example
The following code minimizes an application when it’s deactivated. Note that
AppDeactivate should be declared a method of TForm1.

procedure TForml.FormCreate(Sender: TObject);
begin

Application.OnDeactivate := AppDeactivate;
end;

procedure TForml.AppDeactivate(Sender: TObject);
begin

Application.Minimize;
end;

See also
OnActivate event

Delphi Visual Component Library Reference 521

OnDestroy event

OnDestroy event

Applies to
TForm component

Declaration
property OnDestroy: TNotifyEvent;

The OnDestroy event occurs when a form is about to be destroyed. A form is destroyed
by the Destroy, Free, or Release methods, or when the main form of the application is
closed.

Example

The following code explicitly allocates memory for a a pointer in the OnCreate event of
Form1, then releases the memory in the OnDestroy event. Assume that MyPtr is a Pointer
type field of TForm]1.

procedure TForml.FormCreate(Sender: TObject);
begin

New (MyPtr) ;
end;
procedure TForml.FormDestroy (Sender: TObject);
begin

Dispose (MyPtr) ;
end;

See also
OnCreate event

OnDragDrop event

Applies to

TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,
TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBLookupList, TDBMemo,
TDBNavigator, TDBText, TDBRadioGroup, TDirectoryListBox, TDrawGrid,
TDriveComboBox, TEdit, TFileListBox, TFilterComboBox, TForm, TGroupBox, TImage,
TListBox, TMaskEdit, TMemo, TNotebook, TOLEContainer, TOutline, TPaintBox, TPanel,
TRadioButton, TScrollBar, TScrollBox, TShape, TStringGrid, TTabSet components

Declaration
property OnDragDrop: TDragDropEvent;

The OnDragDrop event occurs when the user drops an object being dragged. Use the
OnDragDrop event handler to specify what you want to happen when the user drops an
object. The Source parameter of the OnDragDrop event is the object being dropped, and
the Sender is the control the object is being dropped on. The X and Y parameters are the
coordinates of the mouse positioned over the control.

522 Delphi Visual Component Library Reference

OnDragOver event

Example

This code comes from an application that contains a list box and three labels, each with a
different font and color. The user can select a label and drag it to a list box and drop it.
When the label is dropped, the items in the list box assume the color and font of the
dropped label. This is the OnDragDrop event handler.

procedure TForml.ListBoxlDragDrop(Sender, Source: TObject; X, Y: Integer);

begin
if (Sender is TListBox) and (Source is TLabel) then
begin
(Sender as TListBox).Font := (Source as TLabel).Font;
end;
end;

The Source in this example is the label, and the Sender is the list box.

See also
DragCursor property, DragMode property, OnDragOver event, OnEndDrag event

OnDragQOver event

Applies to

TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,

TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBLookupList, TDBMemo,

TDBNavigator, TDBText, TDBRadioGroup, TDirectoryListBox, TDrawGrid,

TDriveComboBox, TEdit, TFileListBox, TFilterComboBox, TForm, TGroupBox, TImage,

TListBox, TMaskEdit, TMemo, TNotebook, TOLEContainer, TOutline, TPaintBox, TPanel,
TRadioButton, TScrollBar, TScrollBox, TShape, TStringGrid, TTabSet components a

Declaration
property OnDragOver: TDragOverEvent;

The OnDragOver event occurs when the user drags an object over a component. Usually
you'll use an OnDragOver event to accept an object so the user can drop it.

The OnDragOuver event accepts an object when its Accept parameter is True.

Usually, you will want the cursor to change shape, indicating that the control can accept
the dragged object if the user drops it. You can change the shape of the cursor by
changing the value of the DragCursor property for the control at either design or run
time before an OnDragOuver event occurs.

Example
This OnDragOver event handler permits the list box to accept a dropped label:

procedure TForml.ListBoxlDragOver (Sender, Source: TObject; X, Y: Integer;
State: TDragState; var Accept: Boolean);

begin
Accept := Source is TLabel;

end;

Delphi Visual Component Library Reference 523

OnDrawCell event

The Source parameter identifies what is being dragged. The Sender is the control being
dragged over.

This code permits the list box to accept any dropped control:

procedure TForml.ListBoxIDragOver (Sender, Source: TObject; X, Y: Integer;
State: TDragState; var Accept: Boolean);

begin
Accept := True;

end;

See also
DragMode property, OnDragDrop event, OnEndDrag event, TDragState type

OnDrawCell event

Applies to
TDrawGrid, TStringGrid components

Declaration
property OnDrawCell: TDrawCellEvent;

The OnDrawCell event occurs whenever the contents of a grid cell need to be
redisplayed. For example, it occurs when the user selects a cell or scrolls the grid. How a
cell is redrawn depends on the value of the DefaultDrawing property.

If DefaultDrawing is False, you must write the code that handles all drawing within the
cell in the OnDrawCell event handler.

Example
The following code draws a focus rectangle around each of the cells of StringGrid1.

procedure TForml.StringGridlDrawCell (Sender: TObject; Col, Row: Longint;
Rect: TRect; State: TGridDrawState);

begin
StringGridl.Canvas.DrawFocusRect (Rect);

end;

OnDrawDataCell event

Applies to
TDBGrid component

Declaration

property OnDrawDataCell: TDrawDataCellEvent;

524 Delphi Visual Component Library Reference

OnDrawltem event

The OnDrawDataCell event occurs whenever the contents of a data grid cell need to be
redisplayed. For example, it occurs when the user selects a cell or scrolls the grid. How a
cell is redrawn depends on the value of the DefaultDrawing property.

If DefaultDrawing is False, you must write the code that handles all the drawing within
the cell in the OnDrawDataCell event handler.

Example

The following code fills the cells of DBGridl with the pattern defined by the Brush of the
Canvas of DBGrid].

procedure TForml.DBGridl.DrawDataCell (Sender: TObject; Rect: TRect; Field: TField;
State: TGridDrawState)

begin
DBGridl.Canvas.FillRect (Rect);

end;

OnDrawltem event

Applies to
TComboBox, TDBComboBox, TDBListBox, TListBox, TOutline components

Declaration
property OnDrawltem: TDrawltemEvent;

The OnDrawltem event occurs whenever an item in an owner-draw outline, list box, or

combo box needs to be redisplayed. For example, it occurs when the user selects an item

or scrolls the outline, list box, or combo box. OnDrawltem events occur only for outlines a
with the Style value 0sOwnerDraw, list boxes with the Style values IbOwnerDrawFixed or
IbOwnerDrawVariable, and for combo boxes with the Style values csOwnerDrawFixed or
csOwnerDrawVariable.

OnDrawltem passes four parameters to its handler describing the item to be drawn:

a reference to the control containing the item

the index of the item in that control

a rectangle in which to draw

the state of the item (selected, focused, and so on)

The size of the rectangle that contains the item is determined either by the ItemHeight
property for fixed owner-draw controls or by the response to the OnMeasureltem event
for variable owner-draw controls.

Example
Here is a typical handler for an OnDrawltem event. In the example, a list box with the
IbOwnerDrawFixed style draws a bitmap to the left of each string.

procedure TForml.ListBoxIDrawlItem(Control: TWinControl; Index: Integer; Rect: TRect;
State: TOwnerDrawState);

Delphi Visual Component Library Reference 525

OnDrawTab event

var
Bitmap: TBitmap; { temporary variable for the item’s bitmap }
Offset: Integer; { text offset width }
begin
with (Control as TListBox).Canvas do { draw on the control canvas, not on the form }
begin
FillRect (Rect); { clear the rectangle }
Offset := 2; { provide default offset }
Bitmap := TBitmap(Items.Objects[Index]); { get the bitmap for this item }
if Bitmap <> nil then
begin
BrushCopy (Bounds (Rect.Left + 2, Rect.Top, Bitmap.Width, Bitmap.Height), Bitmap,
Bounds (0, 0, Bitmap.Width, Bitmap.Height), clRed); { render the bitmap }
Offset := Bitmap.width + 6; { add four pixels between bitmap and text }
end;
TextOut (Rect.Left + Offset, Rect.Top, Items[Index]) { display the text }
end;
end;

Note that the Rect parameter automatically provides the proper location of the item
within the control’s canvas.

See also
ItemHeight property, OnMeasureltem event

OnDrawTab event

Applies to
TTabSet component

Declaration
property OnDrawTab: TDrawTabEvent;

The OnDrawTab event occurs when a tab needs to redisplay only for tab set controls that
have the Style property value of tsOwnerDraw. For example, it happens when the user
selects a tab or scrolls the tabs using an owner-draw tab set control.

You must write the code in the OnDrawTab event handler to draw the tab.

OnDrawTab occurs just after the OnMeasureTab event, which contains the code to
calculate the width of the tab needed. The height of the tab is determined by the value of
the TabHeight property of the tab set control. The code you write in the OnDrawTab
event handler, therefore, must use the width determined with the OnMeasureTab event
to draw the tab.

Example

The following code loads a bitmap from the Objects property of the Tabs list of the
DriveTabSet tab set component. This bitmap is then drawn on the tab, along with the text
from the Tabs list.

526 Delphi Visual Component Library Reference

OnDropDown event

procedure TFMForm.DriveTabSetDrawTab (Sender: TObject; TabCanvas: TCanvas;
R: TRect; Index: Integer; Selected: Boolean);
var
Bitmap: TBitmap;
begin
Bitmap := TBitmap(DriveTabSet.Tabs.Objects[Index]);
with TabCanvas do
begin
Draw(R.Left, R.Top + 4, Bitmap);
TextOut (R.Left + 2 + Bitmap.Width, R.Top + 2, DriveTabSet.Tabs[Index]);
end;
end;

See also
OnMeasureTab event, TabHeight property

OnDropDown event

Applies to
TComboBox, TDBListBox, TDBComboBox, TDBLookupCombo, TListBox components

Declaration
property OnDropDown: TNotifyEvent;

The OnDropDown event occurs when the user opens (drops down) a combo box or list
box.

Example a

The following code doesn’t sort the items in a combo box until the user opens it.

procedure TForml.ComboBox1DropDown (Sender: TObject);
begin

ComboBox1.Sorted := True;
end;

OnEndDrag event

Applies to

TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,
TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBMemo, TDBNavigator,
TDBText, TDBRadioGroup, TDirectoryListBox, TDrawGrid, TDriveComboBox, TEdit,
TFileListBox, TFilterComboBox, TGroupBox, TImage, TListBox, TMaskEdit, TMemo,
TNotebook, TOLEContainer, TOutline, TPanel, TRadioButton, TScrollBar, TScrollBox,
TShape, TStringGrid, TTabSet components

Delphi Visual Component Library Reference 527

OnEnter event

Declaration
property OnEndDrag: TEndDragEvent;

The OnEndDrag event occurs whenever the dragging of an object ends, either by
dropping the object or by canceling the dragging. Use the OnEndDrag event handler to
specify any special processing you want to occur when dragging stops. If the dragged
object was dropped and accepted by the control, the Target parameter of the OnEndDrag
event is True. If the object was not dropped successfully, the value of Target is nil.

Example

This code displays a message in a label named Status. The message displayed depends
on whether or not the dragged label control was dropped into and accepted by a list box
control successfully:

procedure TForml.LabelEndDrag(Sender, Target: TObject; X, Y: Integer);
var

S: string;
begin
S := (Sender as TLabel).Name + ' was dropped... and ';

if Target <> nil then S := S + 'accepted!'
else S := S + 'rejected!';
Status.Caption := S;

end;

The Target parameter is the list box and Sender is the label.

See also
EndDrag method, OnDragDrop event

OnEnter event

Note

Note

Applies to
All windowed controls

Declaration
property OnEnter: TNotifyEvent;

The OnEnter event occurs when a component becomes active. Use the OnEnter event
handler to specify any special processing you want to occur when a component
becomes active.

The OnEnter event does not occur when switching between forms or between another
Windows application and your application.

The OnEnter event for a TPanel or THeader component never occurs as panels and
headers never receive focus.

528 Delphi Visual Component Library Reference

OnException event

Example

This example uses an edit box and a memo control on a form. When either the edit box
or the memo is the active control, it is colored yellow. When the active control becomes
inactive, the color of the control returns to the Windows system color for a window.

procedure TForml.EditlEnter (Sender: TObject);
begin

Editl.Color := clYellow;
end;

procedure TForml.EditlExit (Sender: TObject);
begin

Editl.Color := clWindow;
end;

procedure TForml.MemolEnter (Sender: TObject);
begin

Memol.Color := clYellow;
end;

procedure TForml.MemolExit (Sender: TObject);
begin

Memol.Color := clWindow;
end;

See also
ActiveControl property, OnActivate event, OnExit event

OnException event

Applies to
TApplication component

Declaration
property OnException: TExceptionEvent;

The OnException event occurs when an unhandled exception occurs in your application.
By default, the HandleException method calls the OnException event handler, which calls
ShowException to display a message dialog box appears indicating an error occurred.
You can change this behavior by specifying what processing you want to occur in the
OnException event handler.

Note ~ Search Help for “Handling Application Events” for more information about creating
event handlers for application events.

Example
The following code defines the default exception handling of the application, assuming
AppException is declared a method of TForm1.

procedure TForml.FormCreate (Sender: TObject);
begin

Delphi Visual Component Library Reference 529

OnExecuteMacro event

Application.OnException := AppException;
end;
procedure TForml.AppException(Sender: TObject; E: Exception);
begin
Application.ShowException
end;

OnExecuteMacro event

Applies to
TDDEServerConv component

Declaration
property OnExecuteMacro : TMacroEvent;

The OnExecuteMacro event occurs when a DDE client application sends a macro to a
DDE server conversation component. Write code to process the macro in the
OnExecuteMacro event handler. See the DDE client application documentation for
information about how it sends macros. If the DDE client is a Delphi application, a
macro is sent with the ExecuteMacro method of the TDDEClientConv component.

Example
The following code clears the contents of a memo in the server application if the
appropriate message is sent from the client application.

procedure TForml.DdeServerConvlExecuteMacro(Sender: TObject; Msg: TStrings);
begin
if Msg.Strings[0] = 'Edit|Clear' then
Memol.Clear;
end;

OnExit event

Applies to

All windowed controls

Declaration
property OnExit: TNotifyEvent;

The OnExit event occurs when the input focus shifts away from one control to another.
Use the OnExit event handler when you want special processing to occur when this
control ceases to be active.

Note The OnExit event does not occur when switching between forms or between another
Windows application and your application.

Note The OnExit event for a TPanel or THeader component never occurs as panels and headers
never receive focus.

530 Delphi Visual Component Library Reference

OnExpand event

Note The ActiveControl property is updated before an OnExit event occurs.

Example

This example uses an edit box and a memo control on a form. When either the edit box
or the memo is the active control, it is colored yellow. When the active control becomes
inactive, the color of the control returns to the Windows system color for a window.

procedure TForml.EditlEnter (Sender: TObject);
begin

Editl.Color := clYellow;
end;

procedure TForml.EditlExit (Sender: TObject);
begin

Editl.Color := clWindow;
end;

procedure TForml.MemolEnter (Sender: TObject);
begin

Memol.Color := clYellow;
end;

procedure TForml.MemolExit (Sender: TObject);
begin

Memol.Color := clWindow;
end;

See also
OnEnter event

OnExpand event

Applies to
TOutline component

Declaration
property OnExpand: EOutlineChange;

An OnExpand event occurs when a collapsed outline item having subitems is expanded.
A collapsed outline item is expanded when the user double-clicks on it at run time,
when its Expanded property is set to True, or when the FullExpand method of the
TOutlineNode object is called. When expanded, the subitems appear in the outline and
the minus picture or open picture for the parent item is displayed if the appropriate
OutlineStyle has been selected.

Example

The following code displays the text from a collapsed outline item in a message dialog
box.

procedure TForml.OutlinelExpand(Sender: TObject; Index: Longint);

Delphi Visual Component Library Reference 531

OnFind event

var
TheStr: string;
begin
TheStr := Outlinel.Iltems[Index].Text;
MessageDlg(TheStr+' has expanded.', mtInformation, [mbOK],O0);
end;

See also
OnCollapse event, PictureMinus property, PictureOpen property

OnFind event

Applies to
TFindDialog, TReplaceDialog components

Declaration
property OnFind: TNotifyEvent;

The OnFind event occurs whenever the user chooses the Find Next button in the Find or
Replace dialog box. Use the OnFind event to specify what you want to happen when the
user chooses the Find Next button.

Example
The following text compares the FindText to the Text of the Items of Outlinel. If the string
is found, a message is displayed and I-1 specifies the index of the matching item.

procedure TForml.FindDialoglFind (Sender: TObject);
var
I: Integer;
Found: Boolean;
begin
I:=1;
Found := False;
repeat
if Outlinel.Items[I].Text = FindDialogl.FindText then
begin
MessageDlg('Found!', mtInformation, [mbOK], 0);
Found := True;
end;
I :=1I+1;
until (I > Outlinel.ItemCount) or (Found);
end;

See also
OnReplace event

532 Delphi Visual Component Library Reference

OnGetEditMask event

OnGetEditMask event

Applies to
TDrawGrid, TStringGrid components

Declaration
property OnGetEditMask: TGetEditEvent;

The OnGetEditMask event occurs when the Options property set contains the value
goEditing and the grid needs to redisplay the text of a cell in the grid using a specified
edit mask. For example, the grid needs to redisplay the text when the user scrolls the
grid or the user changes the data.

You write the code to specify the edit mask for the cell in the OnGetEditMask event
handler.

Example
This example specifies an edit mask commonly used to display American telephone
numbers for the cell in column 2, row 3 of the string grid:

procedure TForml.StringGridlGetEditMask (Sender: TObject; ACol,
ARow: Longint; var Value: OpenString);
begin
if ACol = 2 then
if ARow = 3 then
Value := "I\ (999\)000-0000;1";
end;

See also
EditMask property, OnGetEditText event

OnGetEditText event

Applies to
TDrawGrid, TStringGrid components

Declaration
property OnGetEditText: TGetEditEvent;

The OnGetEditText event occurs when the Options property set contains the value
goEditing and the grid needs to redisplay the text of a cell in the grid. For example, the
grid needs to redisplay the text when the user scrolls the grid or the user changes the
data.

You write the code to retrieve the text of the cell in the OnGetEditText event handler.

When the user edits data in a grid, the OnSetEditText event occurs to change the actual
data, then the OnGetEditText event occurs to display the changed data in the grid.

Delphi Visual Component Library Reference 533

OnGetText event

Example
The following code appends "My ‘ to any text entered in StringGrid1.

procedure TForml.StringGridlGetEditText (Sender: TObject; ACol,
ARow: Longint; var Value: OpenString);

begin
Value := 'My ' + Value;

end;

See also
OnGetEditMask event, OnSetEditText event

OnGetText event

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration
property OnGetText: TFieldGetTextEvent;

The OnGetText event is activated when the DisplayText or Text properties are referenced.
The DisplayText parameter indicates if the event should supply the text in display
format or in edit format for the Text property. If OnGetText has been assigned a method,
the default processing for DisplayText or Text does not occur; the event handler is
expected to perform any conversion required to display the value.

By assigning a method to this property, you can take any special actions required by the
event.

Example

Fieldl.OnGetText := MyFormatMethod;

OnHide event

Applies to

TForm component

Declaration
property OnHide: TNotifyEvent;

The OnHide event occurs just before the form is hidden on the screen. Use the OnHide
event to specify any special processing you want to happen just before the form
disappears.

534 Delphi Visual Component Library Reference

A form that is an MDI child form (FormStyle is fsMDIChild) loses its window handle

OnHide event

when it is hidden. If your application performs some operation that causes the window

handle to come back, such as adding items to a list box on the form, an exception is

raised.

Example

This example uses two forms, each with a label and a button. When the user clicks a

button, the other form appears and the current form disappears. Also, a message
appears in the label of the form that is showing, indicating that the other form is hidden.
This is the implementation section of Unit1:

implementation

{$R *.DFM)

uses Unit2;

procedure TForml.ButtonlClick(Sender: TObject);

begin

Form2.Show;

Hide;
end;

procedure TForml.FormHide (Sender: TObject);

begin

Form2.Labell.Caption :

end;

end.

'Forml is hiding';

This is the implementation section of Unit2:

implementation

{SR *.DFM}

uses Unitl;

procedure TForm2.ButtonlClick(Sender: TObject);

begin

Forml.Show;

Hide;
end;

procedure TForm2.FormHide (Sender: TObject);

begin

Forml.Labell.Caption :

end;

end.

See also
OnShow event

'"Form2 is hiding';

Delphi Visual Component Library Reference

535

OnHelp event

OnHelp event

Applies to
TApplication component

Declaration
property OnHelp: THelpEvent;

The OnHelp event occurs when your application receives a request for help. Use the
OnHelp event handler to specify any special processing you want to occur when help is
requested.

The HelpContext and the HelpJump methods automatically trigger the OnHelp event.

Note Search Help for “Handling Application Events” for more information about creating

event handlers for application events.
Example
The following code changes the Help file for the application to the results of the Open
dialog component. AppHelp should be assigned to the OnHelp event handler of
Application in the OnCreate event of Form1.

function TForml.AppHelp (Command: Word; Data: Longint): Boolean;

begin

if OpenDialogl.Execute then
Application.HelpFile := OpenDialogl.FileName;

end;
See also
HelpCommand method, HelpContext property, HelpFile property, THelpEvent type

OnHint event

Applies to
TApplication component

Declaration
property OnHint: TNotifyEvent;

The OnHint event occurs when the user positions the mouse pointer over a control with
a Hint property value other than an empty string (). Use the OnHint event handler to
perform any special processing you want to happen when the OnHint event occurs.

A common use of the OnHint event is to display the value of a control or menu item’s
Hint property as the caption of a panel control (I'Panel), thereby using the panel as a
status bar. Using the Hint property, you can specify a Help Hint and a usually longer
hint that appears elsewhere when the OnHint event occurs.

536 Delphi Visual Component Library Reference

Note

OnHint event

Search Help for “Handling Application Events” for more information about creating
event handlers for application events.

Example

This example uses a panel component, a menu, and an edit box on a form. You can
design the menu as you want, but remember to include a value for the Hint property for
each menu item in the menu. Also, specify a value for the Hint property of the edit box.
Align the panel at the bottom of the form (choose alBottom as the value of the Align
property), and left justify the caption of the panel (choose taLeft[ustify as the value of the
Alignment property).

The OnHint event is an event of the TApplication component. You can’t use the Object
Inspector to generate an empty event handler for TApplication, so you will need to write
your own OnHint event handler. To accomplish this, you create a method of the TForm1
object and give it an appropriate name, such as DisplayHint. You write the method in the
implementation part of the unit, but you must also remember to declare the method in
the TForm1 type declaration in the public section.

In the DisplayHint method, you assign the Hint property of the application to the Caption
property of the panel component.

One task remains. The OnHint event is an event of TApplication, so you must assign the
new method you created as the method used by the OnHint event. You can do this in
the form’s OnCreate event handler.

This code shows the complete type declaration, the new method, and the OnCreate event
handler. When the user runs the application and positions the cursor over the edit box
or a menu item on the menu, the specified hint appears as the caption of the panel at the
bottom of the form:

type
TForml = class(TForm)
Buttonl: TButton;
Panell: TPanel;
Editl: TEdit;
procedure FormCreate(Sender: TObject);
private
{ Private declarations }
public
procedure DisplayHint (Sender: TObject);
end;

var
Forml: TForml;

implementation
{SR *.FRM}

procedure TForml.DisplayHint (Sender: TObject);
begin

Panell.Caption := Application.Hint;
end;

Delphi Visual Component Library Reference 537

Onldle event

procedure TForml.FormCreate(Sender: TObject);
begin

Application.OnHint := DisplayHint;
end;

See also
OnCreate event

Onldle event

Applies to
TApplication component

Declaration
property OnIdle: TIdleEvent

The Onldle event occurs whenever the application is idle. Use the Onldle event handler
to specify any special processing to occur when your application is idle. Your
application is idle when it is processing code, for example, or when it is waiting for
input from the user.

The TldleEvent type has a Boolean parameter Done that is True by default. When Done is
True, the Windows API WaitMessage function is called when Onldle returns. WaitMessage
yields control to other applications until a new message appears in the message queue
of your application. If Done is False, WaitMessage is not called.

Note Search Help for “Handling Application Events” for more information about creating
event handlers for application events.

Example
The following code allows other applications to be processed while Application is idle.
Appldle should be declared as a method of TForm]1.

procedure TForml.FormCreate(Sender: TObject);
begin

Application.OnIdle := AppIdle;
end;

procedure TForml.AppIdle(Sender: TObject; var Done: Boolean);
begin

Done := True;
end;

538 Delphi Visual Component Library Reference

OnKeyDown event

OnKeyDown event

Applies to

TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,
TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBMemo, TDirectoryListBox,
TDrawGrid, TDriveComboBox, TEdit, TFileListBox, TFilterComboBox, TForm, TListBox,
TMaskEdit, TMemo, TOLEContainer, TOutline, TRadioButton, TScrollBar, TStringGrid
components

Declaration
property OnKeyDown: TKeyEvent;

The OnKeyDown event occurs when a user presses any key while the control has focus.
Use the OnKeyDown event handler to specify special processing to occur when a key is
pressed. The OnKeyDown handler can respond to all keyboard keys including function
keys and keys combined with the Shift, Alt, and Ctrl keys and pressed mouse buttons. The
Key parameter of the OnKeyDown event handler is of type Word; therefore, you must use
virtual key codes to determine the key pressed. You can find a table of virtual key codes
in the Help system; search for the topic Virtual Key Codes.

Example
This event handler displays a message dialog when the user presses Alt+F10:

procedure TForml.FormKeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);
begin
if ((Shift = [ssAlt]) and (Key = VK_F10)) then
MessageDlg ('Alt+F10 pressed down', mtInformation, [mbOK], 0);
end;

See also
KeyPreview property, OnKeyPress event, OnKeylUp event

OnKeyPress event

Applies to

TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,
TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBMemo, TDirectoryListBox,
TDrawGrid, TDriveComboBox, TEdit, TFileListBox, TFilterComboBox, TForm, TListBox,
TMaskEdit, TMemo, TOLEContainer, TOutline, TRadioButton, TScrollBar, TStringGrid
components

Declaration

property OnKeyPress: TKeyPressEvent;

Delphi Visual Component Library Reference 539

OnKeyUp event

The OnKeyPress event occurs when a user presses a single character key. Use the
OnKeyPress event handler when you want something to happen as a result of pressing a
single key.

The Key parameter in the OnKeyPress event handler is of type Char; therefore, the
OnKeyPress event registers the ASCII character of the key pressed. Keys that don't
correspond to an ASCII Char value (Shift or F1, for example) don’t generate an
OnKeyPress event. Key combinations (such as Shift+A), generate only one OnKeyPress
event (for this example, Shift+A results in a Key value of “A” if Caps Lock is off). If you
want to respond to non-ASCII keys or key combinations, use the OnKeyDown or
OnKeyUp event handlers.

Example
This event handler displays a message dialog box specifying which key was pressed:
procedure TForml.FormKeyPress(Sender: TObject; var Key: Char);
begin
MessageDlg(Key + ' has been pressed', mtInformation, [mbOK], 0)
end;

See also
KeyPreview property

OnKeyUp event

Applies to

TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,
TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBMemo, TDirectoryListBox,
TDrawGrid, TDriveComboBox, TEdit, TFileListBox, TFilterComboBox, TForm, TListBox,
TMaskEdit, TMemo, TOLEContainer, TOutline, TRadioButton, TScrollBar, TStringGrid
components

Declaration
property OnKeyUp: TKeyEvent;

The OnKeylp event occurs when the user releases a key that has been pressed. Use the
OnKeyUp event handler when you want special processing to occur when a key is
released. The OnKeyUp handler can respond to all keyboard keys including function
keys and keys combined with the Shift, Alt, and Ctrl keys and pressed mouse buttons. The
Key parameter of the OnKeylUp event handler is of type Word; therefore, you must use
virtual key codes to determine the key pressed. You can find a table of virtual key codes
in the Help system; search for the topic Virtual Key Codes.

Example

The following code changes a form'’s color to aqua when a key is pressed. When the key
is released, the form’s color reverts to the original color. Note that the KeyPreview
property of the form must be set to True to capture all key presses, even if a control has
focus:

540 Delphi Visual Component Library Reference

OnlLogin event

{In the declarations section of the form}
var
FormColor: TColor;

(OnKeyDown event handler}

procedure TForml.FormKeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);

begin
FormColor := Forml.Color;
Forml.Color := clAqua;

end;

{OnKeyUp event handler}

procedure TForml.FormKeyUp (Sender: TObject; var Key: Word;
Shift: TShiftState);

begin
Forml.Color := FormColor;

end;

See also
KeyPreview property, OnKeyDown event, OnKeyPress event

OnLogin event

Applies to
TDataBase component

Declaration a
property OnLogin: TLoginEvent;

The OnLogin event is activated whenever a TDatabase component assigned to an SQL
database is opened and the LoginPrompt property is True. Use the OnLogin event to set
login parameters. The OnLogin event gets a copy of the TDatabase's login parameters
array, Params. Use the Values property to change these parameters:

LoginParams.Values['SERVER NAME'] := 'MYSERVERNAME';
LoginParams.Values['USER NAME'] := 'MYUSERNAME';
LoginParams.Values|['PASSWORD'] := 'MYPASSWORD';

When control returns from your OnLogin event handler, these parameters will be used
to establish a connection.

Note For Paradox, dBASE, and ASCII databases, the only possible parameter is PATH, so the
OnlLogin event will not be activated.

OnMeasureltem event

Applies to
TComboBox, TDBComboBox, TDBListBox, TListBox components

Delphi Visual Component Library Reference 541

OnMeasureTab event

Declaration
property OnMeasureltem: TMeasureltemEvent;

The OnMeasureltem event occurs whenever an application needs to redisplay an item in
an owner-draw list box or combo box with a variable style. That is, for a list box, the
Style property is IbOwnerDrawVariable, or for a combo box, the Style property is
csOwnerDrawVariable.

The OnMeasureltem event passes three parameters to its handler describing the item to
measure:

¢ The control containing the item
* The index of the item in the control
¢ The height of the item

The OnMeasureltem event handler should specify the height in pixels that the given item
will occupy in the control. The Height parameter is a var parameter, which initially
contains the default height of the item or the height of the item text in the control’s font.
The handler can set Height to a value appropriate to the contents of the item, such as the
height of a graphical image to be displayed within the item.

After the OnMeasureltem event occurs, the OnDrawltem event occurs, rendering the item
with the measured size.

Example

Here is a typical handler for an OnMeasureltem event. The example assumes that a
variable owner-draw list box already has bitmaps associated with each of its strings. It
sets the height of the item to the height of the associated bitmap if that height is greater
than the default height.

procedure TForml.ListBoxIMeasureItem(Control: TWinControl; Index: Integer;
var Height: Integer);
var
Bitmap: TBitmap;
begin
with Control as TListBox do
begin
Bitmap := TBitmap(Items.Objects[Index]);
if Bitmap <> nil then
if Bitmap.Height > Height then Height := Bitmap.Height;
end;
end;

OnMeasureTab event

Applies to
TTabSet component

Declaration

property OnlMeasureTab: TMeasureTabEvent;

542 Delphi Visual Component Library Reference

OnMessage event

The OnMeasureTab event occurs when the Style property of the tab set control is
tsOwnerDraw and an application needs to redisplay a tab in a tab set control. In the
OnMeasureTab event handler, you write the code to calculate the width needed to draw
the tab. After the OnMeasureTab event occurs, the OnDrawTab event occurs. You write
the code to draw the tab using the width calculated in OnMeasureTab in the OnDrawTab
event handler.

The Index parameter of the TMeasureTabEvent method pointer is the position of the tab in
the tab set control. The TabWidth parameter is the width of the tab.

Example

The following code measures the width of a bitmap stored in the Objects property of the
Tabs list of the DriveTabSet tab set component. It then makes the width of the tab two
pixels wider than the bitmap width.

procedure TFMForm.DriveTabSetMeasureTab(Sender: TObject; Index: Integer;
var TabWidth: Integer);
var
BitmapWidth: Integer;
begin
BitmapWidth := TBitmap (DriveTabSet.Tabs.Objects[Index]).Width;
Inc (TabWidth, 2 + BitmapWidth);
end;

OnMessage event

Applies to
TApplication component a

Declaration
property OnMessage: TMessageEvent;

The OnMessage event occurs when your application receives a Windows message. By
creating an OnMessage event handler in your application, you can call other handlers
that respond to the message. If your application doesn’t have a specific handler for an
incoming message, the message is dispatched and Windows handles the message. An
OnMessage event handler lets your application trap a Windows message before
Windows itself processes it.

Note ~Search Help for “Handling Application Events” for more information about creating
event handlers for application events.

Example

The following code displays the time of the most recently received Windows message in
the Caption of Labell. AppMessage should be declared a method of TForm]1.

procedure TForml.FormCreate (Sender: TObject);
begin
Application.OnMessage := Applessage;

Delphi Visual Component Library Reference 543

OnMinimize event
end;
procedure TForml.AppMessage (var Msg: TMsg; var Handled: Boolean);
begin

Labell.Caption := IntToStr (Msg.Time);
end;

See also
ProcessMessages method

OnMinimize event

Applies to
TApplication component

Declaration
property OnMinimize: TNotifyEvent;

The OnMinimize event occurs when the application is minimized, either because the
user minimizes the main window, or because of a call to the Minimize method. Use the
OnMinimize event handler to put code that performs any special processing you want to
happen when the application is minimized.

See also
OnRestore event, Restore method

OnMouseDown event

Applies to

TBitBtn, TButton, TCheckBox, TDBCheckBox, TDBEdit, TDBImage, TDBListBox,
TDBLookupCombo, TDBMemo, TDBNavigator, TDBText, TDirectoryListBox, TDrawGrid,
TEdit, TFileListBox, TForm, TGroupBox, TImage, TLabel, TListBox, TMaskEdit, TMemo,
TNotebook, TOLEContainer, TOutline, TPaintBox, TPanel, TRadioButton, TScrollBox,
TShape, TSpeedButton, TStringGrid, TTabSet components

Declaration
property OnMouseDown: TMouseEvent;

The OnMouseDown event occurs when the user presses a mouse button with the mouse
pointer over a control. Use the OnMouseDown event handler when you want some
processing to occur as a result of pressing a mouse button.

The Button parameter of the OnMouseDown event identifies which mouse button was
pressed. By using the Shift parameter of the OnMouseDown event handler, you can
respond to the state of the mouse buttons and shift keys. Shift keys are the Shift, Ctrl, and
Altkeys.

544 Delphi Visual Component Library Reference

OnMouseMove event

Example

The following code creates and displays a label when a mouse button is pressed. If you
attach this event handler to the OnMouseDown event of a form, a label specifying the
coordinates of the mouse pointer appears when the user clicks the mouse button. Note
that the StdCtrls unit must be added to the uses clause of the interface section of the
form’s unit to be able to create labels dynamically.

procedure TForml.FormMouseDown (Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
var
NewLabel: TLabel;
begin
NewLabel := TLabel.Create(Forml);
NewLabel.Parent := Self;
NewLabel.Left := X;
NewLabel.Top := Y;
NewLabel .Caption :
NewLabel.Visible :
end;

"(" 4 IntToStr(X) + ',' + IntToStr(Y) + ')';
True;

See also
OnMouseMove event, OnMousellp event

OnMouseMove event

Applies to

TBitBtn, TButton, TCheckBox, TDBCheckBox, TDBEdit, TDBImage, TDBListBox,
TDBLookupCombo, TDBMemo, TDBNavigator, TDirectoryListBox, TDrawGrid, TEdit, a
TFileListBox, TForm, TGroupBox, TImage, TLabel, TListBox, TMaskEdit, TMemo, TNotebook,
TOLEContainer, TOutline, TPaintBox, TPanel, TRadioButton, TScrollBox, TShape,

TSpeedButton, TStringGrid, TTabSet components

Declaration
property OnMouseMove: TMouseMoveEvent;

The OnMouseMove occurs when the user moves the mouse pointer when the mouse
pointer is over a control. Use the OnMouseMove event handler when you want
something to happen when the mouse pointer moves within the control.

By using the Shift parameter of the OnMouseDown event handler, you can respond to the
state of the mouse buttons and shift keys. Shift keys are the Shift, Ctrl, and Alt keys.

Example

The following code updates two labels when the mouse pointer is moved. The code
assumes you have two labels on the form, IblHorz and IblVert. If you attach this code to
the OnMouseMove event of a form, [blHorz continually displays the horizontal position
of the mouse pointer, and IblVert continually displays the vertical position of the mouse
pointer while the pointer is over the form.

Delphi Visual Component Library Reference 545

OnMouseUp event

procedure TForml.FormMouseMove (Sender: TObject; Shift: TShiftState; X, Y: Integer);
begin

1blHorz.Caption := IntToStr(X);

1blVert.Caption := IntToStr(Y);
end;

See also
OnMouseDown event, OnMousellp event

OnMouseUp event

Applies to

TBitBtn, TButton, TCheckBox, TDBCheckBox, TDBEdit, TDBImage, TDBListBox,
TDBLookupCombo, TDBMemo, TDBNavigator, TDBText, TDirectoryListBox, TDrawGrid,
TEdit, TFileListBox, TForm, TGroupBox, TImage, TLabel, TListBox, TMaskEdit, TMemo,
TNotebook, TOLEContainer, TOutline, TPaintBox, TPanel, TRadioButton, TScrollBox,
TShape, TSpeedButton, TStringGrid, TTabSet components

Declaration
property OnlMouseUp: TMouseEvent;

The OnMouselp event occurs when the user releases a mouse button that was pressed
with the mouse pointer over a component. Use the OnMousellp event handler when you
want processing to occur when the user releases a mouse button.

The OnMousellp event handler can respond to left, right, or center mouse button presses
and shift key plus mouse button combinations. Shift keys are the Shift, Ctrl, and Alt keys.

Example

The following code draws a rectangle when the user presses a mouse button, moves the
mouse, and releases the mouse button. When the mouse button is released, the rectangle
appears on the form’s canvas. Its top-left and bottom-right corners are defined by the
location of the mouse pointer when the user pressed and released the mouse button.

var
StartX, StartY: Integer; {Declare in interface section of form’s unit}

{Use this code as the OnMouseDown event handler of the form:}
procedure TForml.FormMouseDown (Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
StartX := X;
StartY := Y;
end;

{Use this code as the OnMouseUp event handler of the form:}
procedure TForml.FormMouseUp (Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
begin
Forml.Canvas.Rectangle(StartX, StartY, X, VY);

546 Delphi Visual Component Library Reference

OnNewRecord event

end;

See also
OnMouseDown event, OnMouseMove event

OnNewRecord event

Applies to
TTable, TQuery, TStoredProc components

Declaration
property OnNewRecord: TDataSetNotifyEvent;

The OnNewRecord event is activated whenever a new record is added to thedataset. The
event occurs after the Beforelnsert event and before the AfterInsert event. OnNewRecord
enables you to initialize any fields of the record without marking the record asModified.
Any changes to the record after this event will cause Modified to be set.

See also
Append method, Insert method

OnNotify event

Applies to
TMediaPlayer component a

Declaration

property OnNotify: TNotifyEvent;

An OnNotify event occurs upon the completion of a media control method Back, Close,
Eject, Next, Open, Pause, PauseOnly, Play, Previous, Resume, Rewind, StartRecording, Step,
or Stop) when the Notify property is set to True before the call to the media control
method. After an OnNotify event, the Notify property must be reset to True for the next
OnNotify event to occur.

Example

Attach the following code to the OnNotify event handler of a media player named
MediaPlayer1. If the Notify property of MediaPlayer1 is set to True, this code displays the
value of the NotifyValue property in a message dialog box.

procedure TForml.MediaPlayerlNotify(Sender: TObject);

var
MyString: string;
begin
case MediaPlayerl.NotifyValue of
nvSuccessful : MyString := 'Success!';

Delphi Visual Component Library Reference 547

OnOpen event

nvSuperseded : MyString := 'Superseded!’;

nvAborted : MyString := 'Aborted!’;
nvFailure : MyString := 'Failure!';
end;

MessageDlg('Notify value indicates: ' + MyString, mtInformation, [mbOk], 0)
end;

See also
NotifyValue property, Wait property

OnOpen event

Applies to
TDDEClientConv, TDDEServerConv components

Declaration
property OnOpen: TNotifyEvent;

An OnOpen event occurs when a DDE conversation is opened. A DDE conversation can
be initiated automatically or manually. Automatically open a conversation by setting
the value of the ConnectMode property to ddeAutomatic. When the form containing the
DDE client conversation component is created at run time, the DDE conversation opens.
Manually open a conversation by setting the value of ConnectMode to ddeManual and
calling the OpenLink method.

Example
The following code sends a macro to the server and closes the link immediately after
opening it.

procedure TForml.DdeClientConvlOpen (Sender: TObject);
begin
with DDEClientConvl do
begin
ExecuteMacro('File|New', False);
CloseLink;
end;
end;

See also
OnClose event

OnPageChanged event

Applies to
TNotebook component

548 Delphi Visual Component Library Reference

OnPaint event

Declaration
property OnPageChanged: TNotifyEvent;

The OnPageChanged event occurs just after a new page becomes the active page. Use the
OnPageChanged event handler to specify special processing you want to happen at that
time.

Example
This example changes the color notebook page each time the OnPageChanged event
occurs. To set up the example, add pages to the notebook with the Object Inspector
using the Pages property.
var
NewColor: TColor;

procedure TForml.FormCreate(Sender: TObject);
begin

TabSet1.Tabs := Notebookl.Pages;
end;

procedure TForml.TabSetl1Change(Sender: TObject; NewTab: Integer;
var AllowChange: Boolean);

begin
Notebookl.PageIndex := TabSetl.TabIndex;

end;

procedure TForml.NotebooklPageChanged (Sender: TObject);
begin

NewColor := Notebookl.Color + 3475;

Notebookl.Color := NewColor;
end;

See also
ActivePage property, Pages property

OnPaint event

Applies to
TForm, TPaintBox component

Declaration
property OnPaint: TNotifyEvent;

The OnPaint event occurs when Windows requires the form or paint box to paint, such
as when the form or paint box receives focus or becomes visible when it wasn’t
previously. Your application can use this event to draw on the canvas of the form or
paint box.

Delphi Visual Component Library Reference 549

OnPassword event

Example

The following code is an entire unit that loads a background bitmap onto the Canvas of
the main form in the OnPaint event handler.

unit Unitl;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms, Dialogs;

type
TForml = class(TForm)
procedure FormPaint (Sender: TObject);
procedure FormCreate(Sender: TObject);
private
TheGraphic: TBitmap; { Add this declaration for the graphic}
public
{ Public declarations }
end;

var
Forml: TForml;

implementation
{SR *.DFM}
procedure TForml.FormPaint (Sender: TObject); { OnPaint event handler}
begin
Forml.Canvas.Draw(0, 0, TheGraphic); { Draw the graphic on the Canvas }

end;

procedure TForml.FormCreate(Sender: TObject); { OnCreate event handler }
begin
TheGraphic := TBitmap.Create; { Create the bitmap object }
TheGraphic.LoadFromFile('C:\APP\BKGRND.BMP'); { Load the bitmap from a file}
end;

end.

See also
Canvas property

OnPassword event

Applies to

TSession component

Declaration

property OnPassword: TPasswordEvent;

550 Delphi Visual Component Library Reference

OnPokeData event

Run-time only. The OnPassword event is activated whenever a Paradox table is opened
and the Borland Database Engine reports that the application does not have sufficient
access rights. The value of Sender is the Session component. Continue determines whether
the caller will make another attempt to access the database. The procedure should add
any available additional passwords and set Continue to True. If there are no additional
passwords available, set Continue to False.

If no OnPassword event is defined, Session will create a default dialog box for the user to
enter a new password.

OnPokeData event

Applies to
TDDEServerItem component

Declaration
property OnPokeData: TNotifyEvent

The OnPokeData event occurs when the DDE client application pokes data to your DDE
server application. When a client pokes data, it sends text to the linked DDE server. The
Text and Lines properties will be updated to contain the poked data, then the
OnPokeData event occurs.

If the DDE client is a Delphi application that uses a TDDEClientConv component, data is
poked when the PokeData or PokeDataLines method is called.

Example

The following code uses a Boolean variable FInPoke to protect poked data from being
lost by a DDE server application. DoOnPoke is the OnPokeData event handler for the
DDE server item component named DDETestItern. When data is poked, FInPoke is set to
True, the poked data is stored in the Lines property of Memo2, and FInPoke is set back to
False.

The data should be protected because the server data is updated when the Lines of
Memol are updated by the user. DoOnChange, the OnChange event handler for Memol,
tests FInPoke before updating the server data in DDETestItem. Otherwise, data poked
from the client could be lost when Memo1.Lines is changed.

var
FInPoke: Boolean;

procedure TDdeSrvrForm.doOnPoke (Sender: TObject);
begin

FInPoke := True;

Memo2.Lines := DdeTestItem.Lines;

FInPoke := False;
end;

Delphi Visual Component Library Reference 551

OnPopup event

procedure TDdeSrvrForm.doOnChange (Sender: TObject);
begin
if not FInPoke then
DdeTestItem.Lines := Memol.Lines;
end;

See also
OnExecuteMacro event

OnPopup event

Applies to
TPopupMenu component

Declaration

property OnPopup: TNotifyEvent;

The OnPopup event occurs whenever a pop-up menu appears either because the user
right-clicks the component when the pop-up menu’s AutoPopup is True or because the

Popup method executed. Use the OnPopup event handler when you want some special
processing to occur when the component’s pop-up menu appears.

Example

The following code enables the Paste item from the pop-up menu if the Clipboard has
text data.

procedure TForml.PopupMenulPopup (Sender: TObject);
begin

Pastel.Enabled := Clipboard.HasFormat (CF_TEXT);
end;

See also
PopupMenu property

OnPostClick event

Applies to
TMediaPlayer component

Declaration
property OnPostClick: EMPPostNotify;

An OnPostClick event is generated after the code of the OnClick event handler has been
called. If Wait is True when the media player was clicked, OnPostClick won't be called
until the completion of the OnClick code. If Wait is False, control can return to the

552 Delphi Visual Component Library Reference

OnReplace event

application before completion of the OnClick code; therefore, the OnPostClick event may
occur before the actions initiated by the OnClick event have completed.

For example, if the user clicks the Play button and the DoDefault parameter of the
OnClick event handler for the media player is True, the media is played. If the media is
long enough, it will still be playing when the OnPostClick event is generated if Wait is
True. If Wait is False, however, OnPostClick won’t occur until the media has finished

playing.

See also
OnClick event

OnReplace event

Applies to
TReplaceDialog components

Declaration
property OnReplace: TNotifyEvent;

The OnReplace event occurs whenever the user chooses either the Replace or the Replace
All button in the Replace dialog box. Use the OnReplace event to specify the processing
that replaces text.

Because the OnReplace event occurs when the user chooses either the Replace or Replace

All button, the code you write in the OnReplace event handler should determine which

button was chosen and supply the appropriate logic. Use the frReplace and frReplaceAll a
values in the Options set to determine which button was chosen.

Example
The following code calls the user-defined routine DoReplace if the Replace button was

clicked, or calls the user-defined routine DoReplaceAll if the ReplaceAll button was
clicked.

procedure TForml.ReplaceDialoglReplace(Sender: TObject);
begin

if (ReplaceDialogl.Options*[frReplace])=[frReplace] then DoReplace

else if (ReplaceDialogl.Options*[frReplaceAll])=[frReplaceAll] then DoReplaceAll;
end;

See also
OnFind event

OnResize event

Applies to
TDBNavigator, TForm, TPanel, TScrollBox components

Delphi Visual Component Library Reference 553

OnRestore event

Declaration
property OnResize: TNotifyEvent;

The OnResize event occurs whenever the form is resized while an application is running.
Use the OnResize event handler when you want something to happen in your
application when the form is resized.

Example
The following code keeps the right edge on Button1 against the right edge of Form1
when Form1 is resized.

procedure TForml.FormResize(Sender: TObject);
begin

Buttonl.Left := (Forml.Width)-Buttonl.Width;
end;

OnRestore event

Applies to
TApplication component

Declaration
property OnRestore: TNotifyEvent;

The OnRestore event occurs when the previously minimized application is restored to its
normal size, either because the user restores the application, or because the application
calls the Restore method. Use the OnRestore event handler to put code that performs any
special processing you want to happen as the application is restored.

See also
Minimize method, OnMinimize event

OnRowMoved event

Applies to

TDrawGrid, TStringGrid components
Declaration

property OnRowlMoved: TMovedEvent;

The OnRowMoved event occurs when the user moves a row using the mouse. The user
can move a row only if the Options property set includes the value goRowMoving.

Example
The following code displays the number of rows a row was moved in a label.

554 Delphi Visual Component Library Reference

OnScroll event

procedure TForml.StringGridlRowMoved (Sender: TObject; FromIndex, ToIndex: Longint);

begin
Labell := IntToStr(Abs (FromIndex-ToIndex));
end;
See also
OnColumnMoved event

OnScroll event

Applies to
TScrollBar component

Declaration
property OnScroll: TScrollEvent;

The OnScroll event occurs whenever the user uses the scroll bar control. Use the OnScroll
event handler if you want something to happen when the user uses the scroll bar
control. Within the handler, write the code that responds to the user using the scroll bar.

Example

The following code repositions the thumb tab position by varying amounts. If Page Up
was pressed, the box moves up only one. If Page Down was pressed, the box moves down
10. This shows how you can use the OnScroll event handler to move the thumb tab by
different increments than specified by the LargeChange and SmallChange properties.

procedure TForml.ScrollBarlScroll (Sender: TObject; ScrollCode: TScrollCode; a
var ScrollPos: Integer);
begin
if ScrollCode = scPageUp then ScrollPos := ScrollPos - 1
else if ScrollCode = scPageDown then ScrollPos := ScrollPos + 10;
Labell.Caption := IntToStr(ScrollPos);
end;

OnSelectCell event

Applies to
TDrawGrid, TStringGrid component

Declaration
property OnSelectCell: TSelectCellEvent;

The OnSelectCell event occurs when the user selects a cell in a draw grid or string grid.
Use the OnSelectCell event handler to write the code that handles the selecting of a cell.
Using the CanSelect parameter of the event handler type, your code can determine
whether the user can select a cell or not.

Delphi Visual Component Library Reference 555

OnSetEditText event

Example
The following code determines that the user cannot select a cell containing the text ‘No’.

procedure TForml.StringGridlSelectCell (Sender: TObject; Col, Row: Longint;
var CanSelect: Boolean);

begin
CanSelect := mot (StringGridl.Cells[Col,Row]='No')

end;

OnSetEditText event

Applies to
TDrawGrid, TStringGrid component

Declaration
property OnSetEditText: TSetEditTextEvent;

The OnSetEditText event occurs when the user edits the text in the grid. The user can edit
the text only if the Options property set contains the value goEditing. The OnSetEditText
event makes the actual changes to the data. Use the OnSetEditText event handler to write
the code to handle the changes to the text within a cell of the grid.

When the user edits data in a grid, the OnSetEditText event occurs to change the actual
data, then the OnGetEditText event occurs to display the changed data in the grid.

See also
OnGetEditText event

OnSetText event

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration
property OnSetText: TFieldSetTextEvent;

The OnSetText event is activated when the Text property is assigned a value. If
OnSetText has been assigned a method, the default processing for Text does not occur.
The event handler must store the text provided by Text.

By assigning a method to this property, you can take any special actions required by the
event.

556 Delphi Visual Component Library Reference

OnShow event

OnShow event

Applies to
TForm component

Declaration
property OnShow: TNotifyEvent;

The OnShow event occurs just before a form becomes visible. Use the OnShow event to
specify any special processing you want to happen before the form appears.

Example
This example colors the form and changes its caption when it becomes visible:

procedure TForml.FormShow (Sender: TObject);
begin

Color := clLime;

Caption := 'I am showing';
end;

See also
OnHide event

OnShowHint event

Applies to a
TApplication component

Declaration

property OnShowHint: TShowHintEvent;

The OnShowHint event occurs when the application is about to display a hint window
for a Help Hint for a particular control. By writing an event handler for OnShowHint,
you can change the appearance and behavior of the Help Hint. Use the HintStr,
CanShow, and HintInfo parameters of the TShowHintEvent method pointer to modify the
Help Hint and its window. The HintInfo parameter is of type THintInfo, a record.

Example
This example uses three speed buttons on a panel. The code changes the color, width,
and position of the text in the Help Hint for the third speed button.

You must declare the DoShow method in the type declaration of the form. Once it is
declared, write the code for the DoShow method in the implementation part of the unit.
Finally, in the OnCreate event handler for the form, assign the method to the
OnShowHint event of the application.

Delphi Visual Component Library Reference 557

OnSized event

type
TForml = class(TForm)
Panell: TPanel;
SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
procedure FormCreate(Sender: TObject);
private
{ Private declarations }
public
procedure DoShowHint (var HintStr: string; var CanShow: Boolean;
var HintInfo: THintInfo;
end;

var
Forml: TForml;

implementation
(SR *.DFM}

procedure TForml.DoShowHint (var HintStr: string; var CanShow: Boolean;
var HintInfo: THintInfo);

begin
if HintInfo.HintControl = SpeedButton3 then
begin
with HintInfo do
begin
HintColor := clAqua; { Changes only for this hint }
MaxHintWidth := 120; {Hint text word wraps if width is greater than 120 }
Inc (HintPos.X, SpeedButton3.Width); { Move hint to right edge }
end;
end;
end;

procedure TForml.FormCreate(Sender: TObject);
begin

Application.OnShowHint := DoShowHint;
end;

end.

See also
Hint property, OnHint event, ParentShowHint property, ShowHint property

OnSized event

Applies to
THeader component

Declaration

property OnSized: TSectionEvent;

558 Delphi Visual Component Library Reference

OnSizing event

An OnSized event is generated when a sizing operation of a header is complete. A user
can resize the header section at run time if the AllowResize property is set to True. Your
application can resize the header section at run time by assigning a new value to the
SectionWidth property.

Example
The following code displays the new width of the sized header section in a label.
procedure TForml.HeaderlSized(Sender: TObject; ASection, AWidth: Integer);
begin
Labell.Caption := IntToStr(AWidth);
end;

See also
OnSizing event

OnSizing event

Applies to
THeader component

Declaration
property OnSizing: TSectionEvent;

An OnSizing event is generated for each mouse movement when a user is resizing a
header by clicking and dragging at run time. a

Example
The following code displays the width of the header section that is being resized. As the
user drags the mouse pointer, the label is continuously updated.

procedure TForml.HeaderlSized(Sender: TObject; ASection, AWidth: Integer);
begin

Labell.Caption := IntToStr(AWidth);
end;

See also
AllowResize property, OnSized event

OnStateChange event

Applies to

TDataSource component

Delphi Visual Component Library Reference 559

OnStatusLineEvent event

Declaration
property OnStateChange: TNotifyEvent;
OnStateChange is activated when the State property changes.

By assigning a method to this property, you can react programmatically to state
changes. For example, this event is useful for enabling or disabling buttons (for
example, enabling an edit button only when a table is in edit mode), or displaying
processing messages.

Note ~ OnChangeState can occur even for nil datasets, so it is important to protect any reference
to the DataSet property with a nil test:

if DataSourcel.Dataset <> nil then

See also
OnDataChange event

OnStatusLineEvent event

Applies to
TOLEContainer component

Declaration
property OnStatusLineEvent: TStatusLineEvent;

An OnStatusLineEvent event occurs if an OLE server application has a message to
display in the status line of the OLE container application when an OLE object is
activated in place. Typically, your OLE container application handles an
OnStatusLineEvent event by displaying the message string in its own status bar.

Example
The following code displays the status line message from the OLE server in Panell.

procedure TForml.0leContainerlStatusLineEvent (Sender: TObject; Msg: string);
begin

Panell.Caption := Msg;
end;

OnTimer event

Applies to

TTimer component

Declaration

property OnTimer: TNotifyEvent;

560 Delphi Visual Component Library Reference

OnToplLeftChanged event

The OnTimer event is used to execute code at regular intervals. Place the code you want
to execute within the OnTimer event handler.

The Interval property of a timer component determines how frequently the OnTimer
event occurs. Each time the specified interval passes, the OnTimer event occurs.

Example

Here is an example of an OnTimer event handler that moves a ball slowly across the
screen:

procedure TForml.TimerlTimer (Sender: TObject);
begin

Timerl.Interval := 100;

Shapel.Left := Shapel.Left + 1;
end;

See also
Interval property

OnTopLeftChanged event

Applies to
TDrawGrid, TStringGrid components

Declaration
property OnTopLeftChanged: TNotifyEvent;

The OnTopLeftChanged event occurs whenever the value of either the TopRow property
or LeftCol property changes.

Example
The following code displays the latest top row and left column of StringGrid1.

procedure TForml.StringGridlTopLeftChanged (Sender: TObject);
begin
with StringGridl do
MessageDlg('The top row is now '+IntToStr (TopRow)+
' and the left col is now '+IntToStr(LeftCol), mtInformation, [mbOK],O0);
end;

OnUpdateData event

Applies to
TDataSource component

Delphi Visual Component Library Reference 561

OnValidate event

Declaration
property OnUpdateData: TNotifyEvent;

OnUpdateData is activated by the Post or UpdateRecord method of a dataset component
when the current record is about to be updated in the database. It causes all data-aware
controls connected to the data source to be notified of the pending update, allowing
them to change their associated fields to the current values in the controls. By assigning
a method to this property, you can react programmatically to updates.

See also
BeforePost event

OnValidate event

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField, TSmallintField,
TStringField, TTimeField, TVarBytesField, TWordField components

Declaration

property OnValidate: TFieldNotifyEvent;

The OnValidate event is activated when a field is modified. If a data-aware control is
linked to the field, changes in the control do not activate OnValidate until the control
attempts to store the results of those changes into the current record.

By assigning a method to this property, you can perform any special validation required
for the field.

Example

Fieldl.OnValidate := ValidateFieldRange;

Open method

Applies to
TClipboard object; TDatabase, TMediaPlayer, TQuery, TStoredProc, TTable components

For the Clipboard

Declaration
procedure Open;

The Open method opens the Clipboard and prevents other applications from changing
its contents until the Clipboard is closed. If you are adding a single item to the

562 Delphi Visual Component Library Reference

Open method

Clipboard, your application doesn’t have to call Open. If you want to add a series of
items to the Clipboard, however, Open prevents the contents from being overwritten
with each addition.

When your application has added all items to the Clipboard, it should call the Close
method.

Example

The following code opens a Clipboard object before two items (text from an edit box and
an OLE object from an OLE container) are copied to the Clipboard. Then the Clipboard
is closed.

Clipboard.Open;
Editl.CopyToClipboard;
OLEContainerl.CopyToClipboard;
Clipboard.Close;

See also
Clear method, Clipboard variable, Close method

For media player controls

Declaration
procedure Open;

The Open method opens a multimedia device. The multimedia device type must be
specified in the DeviceType property before you can open a device.

Upon completion, Open stores a numerical error code in the Error property, and the a
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Open method is completed. The Notify property determines whether Open generates an
OnNotify event.

Example

This example begins playing an audio CD when the application begins running. When
the application is closed, the CD automatically stops playing. For this example to run
successfully, you must have an audio CD device installed correctly.

procedure TForml.FormCreate(Sender: TObject);
begin
with MediaPlayerl do
begin
DeviceType := dtCDAudio;
Visible := False;
Open;
Play;
end;
end;

Delphi Visual Component Library Reference 563

OpenCurrent method

See also
AutoOpen property, Close method

For tables, queries, and stored procedures

Declaration
procedure Open;

The Open method opens the dataset, putting it in Browse state. It is equivalent to setting the
Active property to True.

For TQuery, Open executes the SELECT statement in the SQL property. If the statement
does not return a result set (for example, an INSERT or UPDATE statement), then use
ExecSQL instead of Open.

For TStoredProc, use Open to execute the stored procedure if the procedure returns a
result set. If the stored procedure returns a single row, use ExecProc instead.

Example

try

Tablel.Open;
except

on EDataBaseError do { The dataset could not be opened };
end;

See also
Close method

For databases

Declaration
procedure Open;

The Open method connects the TDatabase component to the server (or BDE for Paradox
and dBASE databases). This is the same as setting Connected to True.

Example

Databasel.Open;

OpenCurrent method

Applies to
TDirectoryListBox component

564 Delphi Visual Component Library Reference

OpenDatabase method

Declaration
procedure OpenCurrent;

The OpenCurrent method opens the directory selected in the directory list box, as if the
user had double-clicked the directory.

Example

This example uses a directory list box, a button, and a label on a form. When the user
selects a directory in the directory list box and clicks the button, the selected directory
opens, and the path of the second directory displayed in the list box appears as the
caption of the label.

procedure TForml.ButtonlClick(Sender: TObject);
begin

DirectoryListBoxl.OpenCurrent;

Labell.Caption := DirectoryListBoxl.GetItemPath(1);
end;

OpenDatabase method

Applies to

TSession component

Declaration
function OpenDatabase(const DatabaseName: string): TDatabase;

The OpenDatabase method attempts to find a TDatabase component with a DatabaseName a
property matching the DatabaseName parameter by calling the FindDatabase method. If

no such database can be found, it creates a new database component. OpenDatabase

returns either the found database component or the one created. The database returned

will be opened during this process. OpenDatabase increments the Session’s reference

count of the number of open database connections.

Use OpenDatabase with CloseDatabase in a try...finally block to ensure that database
connections are handled properly.

Example

Database := Session.OpenDatabase (’'DBDEMOS’);
try
begin
{Do Something}
finally
Session.CloseDatabase ('DBDEMOS’) ;
end;

See also
Session variable

Delphi Visual Component Library Reference 565

OpenLink method

OpenLink method

Applies to
TDDEClientConv component

Declaration
function OpenLink: Boolean;

The OpenLink method initiates a new DDE conversation. If the conversation was
successfully opened, an OnOpen event occurs and OpenLink returns True. If the
conversation wasn’t successfully opened, OpenLink returns False.

Example
The following code requests data if a link is open.

if OpenLink then DDEClientConvl.RequestData (DDEClientIteml.DDEItem);

See also
CloseLink method

Options property

Applies to

TIndexDef object; TColorDialog, TDBGrid, TDBLookupCombo, TDBLookupList, TDrawGrid,
TFindDialog, TFontDialog, TOpenDialog, TOutline, TPrintDialog, TReplaceDialog,
TSaveDialog, TStringGrid components

The Options property is a set of options that affects how dialog boxes, outlines, and grids
appear and behave. The possible values contained within the set vary depending on the
type of dialog box or if the component is an outline or grid control.

For Color dialog boxes

Declaration
property Options: TColorDialogOptions;

These are the possible values that can be included in the Options set:

Value Meaning

cdFullOpen Displays the custom coloring options when the Color dialog opens

cdPreventFullOpen Disables the Create Custom Colors button in the Color dialog box so the user cannot
create their own custom colors.

cdShowHelp Adds a Help button to the Color dialog box.

566 Delphi Visual Component Library Reference

Options property

The default value is [], the empty set, meaning all of these values are False and none of
the options are in effect.

Example

This example displays the Color dialog box with a Help button and the Create Custom
Colors button dimmed. The form is colored whatever color the user chooses.

procedure TForml.ButtonlClick(Sender: TObject);

begin

ColorDialogl.Options := [cdPreventFullOpen, cdShowHelp];
if ColorDialogl.Execute then

Color
end;

See also

:= ColorDialogl.Color;

Color property, CustomColors property

For Font dialog boxes

Declaration

property Options: TFontDialogOptions;

These are the possible values that can be included in the Options set for the Fonts dialog

box:

Value
fdAnsiOnly

fdEffects

fdFixedPitchOnly
fdForceFontExist

fdLimitSize

fdNoFaceSel
fdNoOEMFonts
fdScalableOnly
fdNoSimulations

fdNoSizeSel
fdNoStyleSel
fdNoVectorFonts
fdShowHelp

Meaning

If True, the user can select fonts that use the Windows character set only; that is, the
user can’t choose a font that contains only symbols because they aren’t displayed in
the Font combo box.

If True, the Effects check boxes and the Color list box appear in the Font dialog box.
The user uses the Effects check boxes to specify strikeout or underlined text and the
Color list box to select a color for the selected font. IffdEffects is False, the Effects check
boxes and Color list box don’t appear in the Font dialog box.

If True, only monospaced fonts are displayed in the Font combo box.

If True and the user enters a font name in the Font combo box and chooses OK, a
message dialog box appears informing the user the font name is invalid.

If True, the MinFontSize and MaxFontSize properties can limit the number of fonts
available in the dialog box.

If True, when the dialog box appears, no font name is selected in the Font combo box.
If True, only fonts that aren’t vector fonts are displayed in the Font combo box.
If True, only fonts that can be scaled are displayed in the Font combo box.

If True, only fonts that aren’t GDI font simulations are displayed in the Font combo
box.

If True, when the dialog box appears, no size is selected in the Size combo box.
If True, when the dialog box appears, no style is selected in the Style combo box.
Same as fiNoOEMFonts.

If True, a Help button appears in the dialog box.

Delphi Visual Component Library Reference 567

Options property

Value Meaning

fAdTrueTypeOnly If True, only TrueType fonts are displayed in the Font list box.

fAdWysiwyg If True, only fonts that are available to both the printer and the screen appear in the
Font combo box.

The default value is [fdEffects], meaning that only the fdEffects option is in effect.

Example
This example sets the options of the Font dialog box so that when the dialog box
displays, only TrueType fonts show in the list of fonts and no font size is selected:

procedure TForml.ButtonlClick(Sender: TObject);
begin
FontDialogl.Options := [fdTrueTypeOnly, fdNoSizeSel];
if FontDialogl.Execute then
Memol.Font := FontDialogl.Font;
end;

See also
Font property

For Print dialog boxes

Declaration
property Options: TPrintDialogOptions;
These are the possible values that can be included in the Options set for the Print dialog

box:

Value Meaning

poHelp If True, a Help button appears in the dialog box.

poPageNums If True, the Pages radio button is enabled and the user can specify a range of pages
to print.

poPrintToFile If True, a Print to File check box appears in the dialog box, giving the user the option
to print to a file rather than to a printer.

poSelection If True, the Selection radio button is enabled and the user can choose to print
selected text.

poWarning If True and if no printer is installed, a warning message appears when the user

chooses OK.

poDisablePrintToFile If True and poPrintToFile is True, the Print to File check box is dimmed when the
dialog box appears. If poPrintToFile is False, setting poDisablePrintToFile to True has
no effect because the dialog box won't have a Print to File check box.

The default value is [], the empty set, meaning that none of the possible options are in
effect.

568 Delphi Visual Component Library Reference

Options property

Example
This example displays the Printer dialog box that includes a Help button. If users try to
print when no printer is installed, they will see a warning message.

procedure TForml.ButtonlClick(Sender: TObject);
begin
PrinterDialogl.Options := [poHelp, poWarning];
if PrinterDialogl.Execute then

end;

See also
PrintRange property, PrintToFile property

For Open and Save dialog boxes

Declaration
property Options: TOpenOptions;

These are the possible values that can be included in the Options set for the Open and
Save dialog boxes:

Value Meaning

of AllowMultiSelect When True, this option allows users to select more than one file in the File Name
list box.

ofCreatePrompt When True, this option displays a dialog box with a message if the user enters a

file name that doesn’t exist in the File Name edit box and chooses OK. The
message tells the user the file doesn’t exist and asks if the user wants to create a
new file with that name.

ofExtensionDifferent This option is set when the file name returned from the dialog box has an
extension that differs from the default file extension, the value in the DefaultExt
property. Your application can then use this information. Setting an
ofExtensionDifferent value with the Object Inspector has no meaning.

ofFileMustExist If True, this option displays a dialog box with a message if the user enters a file
that doesn’t exist in the File Name edit box and chooses OK. The message informs
the user the file can’t be found and asks the user to make sure they entered the
correct path and file name.

ofHideReadOnly If True, this option hides the Read Only check box in the dialog box.

ofNoChangeDir If True, this option sets the current directory to whatever the current directory
was when the dialog box first appeared and ignores any directory changes the
user made while using the dialog box.

ofNoReadOnlyReturn If True, a message box appears informing the user if the selected file is read-only.

ofNoTestFileCreate This option applies only when the user wants to save a file on a create-no-modify
network share point, which can’t be opened again once it has been opened. If
ofNoTestFileCreateis True, your application won't check for write protection, a full
disk, an open drive door, or network protection when saving the file because
doing so creates a test file. Your application will then have to handle file
operations carefully so that a file isn’t closed until you really want it to be.

ofNoValidate If True, this option doesn’t prevent the user from entering invalid characters in a
file name. If ofNoValidate is False and the user enters invalid characters for a file
name in the File Name edit box, a message dialog box appears informing the user
the file name contains invalid characters.

Delphi Visual Component Library Reference 569

Options property

Value Meaning

ofOverwritePrompt If True, this option displays a message dialog box if the user attempts to save a file
that already exists. The message informs the user the file exists and lets the user
choose to overwrite the existing file or not.

0fReadOnly If True, the Read Only check box is checked when the dialog box is displayed.

ofPathMustExist If this option is True, the user can type only existing path names as part of the file
name in the File Name edit box. If the user enters a path name that doesn’t exist, a
message box appears informing the user that the path name is invalid.

ofShareAware If True, the dialog box ignores all sharing errors and returns the name of the
selected file even though a sharing violation occurred. If ofShareAware is False, a
sharing violation results in a message box informing the user of the problem.

ofShowHelp If True, this option displays a Help button in the dialog box.

The default value is [], the empty set, meaning that none of the options are in effect.

Example

This example uses an Open dialog box and a button on a form. The code forces the user
to enter valid file name characters, prevents the read-only check box from appearing in
the dialog box, and let’s the user choose to overwrite a file if the user selects a file that
doesn’t exist; the selected file name appears in a label on the form:

procedure TForml.ButtonlClick(Sender: TObject);
begin
OpenDialogl.Options := [ofNoValidate, ofHideReadOnly, ofCreatePrompt];
if OpenDialogl.Execute then
Labell.Caption := OpenDialogl.FileName;
end;

For Find and Replace dialog boxes

Declaration
property Options: TFindOptions

The value of the Options property is the selected set of options that determine how the
Find and Replace dialog boxes appear and behave. These are the possible values that
can be contained in the Options set:

Value Meaning

frDisableMatchCase When True, the Match Case check box is dimmed and users cannot check it. When
it is False, users can check the Match Case check box.

frDisableUpDown When True, the Direction Up and Down buttons are dimmed and the user cannot
select either of them. When it is False, users can select one of the Direction Up and
Down buttons.

frDisableWholeWord When True, the Match Whole Word check box is dimmed and user cannot select it.
When it is False, users can check the check box.

frDown When True, the Down button is selected in the dialog box and the search direction
is down. When frDown is False, the Up button is selected, and the search direction
is up. frDown can be set a design time, or users can change its value at run time
when they use the dialog box.

570 Delphi Visual Component Library Reference

Options property

Value Meaning

frFindNext This is a flag that is set when the user chooses the Find Next button. When
frFindNext is True, your application should search for the string in the FindText
property.

frHideMatchCase When True, the Match Case check box is not visible in the dialog box. When it is
False, the Match Case check box is visible.

frHideWholeWord When True, the Match Whole Word check box is not visible in the dialog box.
When it is False, the Match Whole Word check box is visible.

frHidelUpDown When True, the Direction Up and Down buttons are not visible in the dialog box.
When it is False, the Direction Up and Down buttons are visible.

frMatchCase When True, the Match Case check box is checked. When it is False, the Match Case

check box is unchecked. You can set frMatchCase at design time, or users can
change the value at run time.

frReplace frReplace is a flag set by the system that indicates your application should replace
the current occurrence of the FindText string with the ReplaceText string. frReplace
applies only to the Replace dialog box.

frReplaceAll frReplaceAll is a flag set by the system that indicates your application should
replace all occurrences of the FindText string with the ReplaceText string.
frReplaceAll applies only to the Replace dialog box.

ShowHel When True, a Help button appears in the dialog box when the dialog box displays.
P P pp! & S play:
When frShowHelp is False, no Help button is present.
WholeWord When True, the Match Whole Word check box is checked in the dialog box. You
8
can set frWholeWord at design time, or users can change its value at run time as
they use the dialog box.

The default value is [frDown], meaning that only the frDown option is in effect.

Example

The following code calls the user-defined routine SearchDown if the Down button is
selected in FindDialog1 or it calls the user-defined routine SearchUp if the Up button is
selected.

if (FindDialogl.Options*[frDown])=[frDown] then SearchDown
else SearchUp;

For outlines

Declaration
property Options: TOutlineOptions;

The Options property determines how the items in an outline are drawn. These are the
possible values that can be contained in the Options set:

Value Meaning

ooDrawTreeRoot The first item (Index value of 1) is connected to the root item by the outline tree.
This means that the tree will extend from the top of the outline to all the first level
items. Without ooDrawTreeRoot, all first level items appear leftmost in the outline,
not connected by the tree.

Delphi Visual Component Library Reference 571

Options property

Value
ooDrawFocusRect

ooStretchBitmaps

Meaning

The outline draws a focus rectangle around the selected item.

The outline stretches the standard bitmaps (PictureLeaf, PictureOpen, PictureClosed,
PicturePlus, PictureMinus) to fit in the size of the item, determined by the size of the
Font of the Text. Without ooStretchBitmap, the bitmaps won't be stretched. They will
be cropped if larger than the height of the item text, or won't fill up the entire item
space if smaller than the text.

Example

The following code draws the tree of the outline to the root (extending from the first
level items to the top of the outline).

Outlinel.Options

See also

:= [ooDrawTreeRoot];

OutlineStyle property, Style property

For draw and string grids

Declaration

property Options: TGridOptions;

These are the possible values that can be included in the Options set for the draw and

string grid controls:

Value

goFixedHorzLine
goFixedVertLine

goHorzLine
goVertLine
goRangeSelect

goDrawFocusSelected
goRowSizing
goColSizing

goRowMoving
goColMoving

goEditing

goAlwaysShowEditor

Meaning

When True, horizontal lines appear between the rows within nonscrolling regions.
When True, vertical lines appear between the columns within nonscrolling
regions.

When True, horizontal lines appear between the rows.

When True, vertical lines appear between the columns.

When True, the user can select a range of cells at one time. When goEditing is True,
the user can no longer select a range of cells.

When True, the cell with the focus is colored the same as other cells in a selected
block are colored. When False, the cell with the focus remains the color of all
unselected cells, the color specified with the grid Color property.

When True, rows can be resized individually except for fixed or nonscrolling rows.

When True, columns can be resized individually except for fixed or nonscrolling
columns.

When True, the user can move a row to a new location in the grid using the mouse.

When True, the user can move a column to a new location in the grid using the
mouse.

When True, the user can edit the text in the grid. When goEditing is True, the user
cannot select a range of cells at one time.

When True, the grid is in automatic edit mode if goEditing is also True. When the
grid is in automatic edit mode, the user does not have to press Enter or F2before
editing the contents of a cell. When goAlwaysShowEditor is False and goEditing is
True, the user must press Enter or F2 before editing the contents of a cell. If
goEditing is False, setting goAlwaysShowEditor to True has no effect.

572 Delphi Visual Component Library Reference

Options property

Value Meaning

goTabs When True, the user can use the Tab and Shift-Tab keys to move from column to
column in the grid.

goRowSelect When True, the user can select only whole rows at a time instead of individual
cells.

goThumbTracking When True, the contents of the grid scrolls while the user is moving the thumb tab
of the grid scroll bar. When False, the contents of the grid doesn’t scroll until the
user releases the thumb tab in its new position.

Example

This code changes the look of the grid; only horizontal lines appear in both the body of
the grid and in the nonscrolling regions when the user clicks the ChangeGridStyle button:

procedure TForml.ChangeGridStyleClick(Sender: TObject);

begin

DrawGridl.Options

end;

For data grids

:= [goFixedHorzLine, goHorzLine];

Declaration

property Options: TDBGridOptions;

These are the possible values that can be included in the Options set for the data grid

control:

Value
dgEditing

dgAlwaysShowEditor

dgTitles
dgIndicator

dgColumnResize
dgColLines

dgRowLines
dgTabs

dgRowSelect
dgAlwaysShowSelection

Meaning

When True, allows the user to edit data in the data grid. When the ReadOnly
property is True and dgEditing is True, users can still use the Insert key to insert a
blank row, or press the Down Arrow key when positioned at the bottom of the grid

to append a blank row, although they won't be able to enter text in the new row.

When True, the grid is in automatic edit mode as long as gdEditing is also True.
When the grid is in automatic edit mode, the user does not have to press Enter or
F2 before editing the contents of a cell. When gdAlwaysShowEditor is False and

gdEditing is True, the user must press Enter or F2 before editing the contents of a

cell. If gdEditing is False, setting gdAlwaysShowEditor to True has no effect.

When True, the column titles are visible.

When True, a small pointer is visible that indicates which column is the current

one.

When True, the columns can be resized. A column can’t be resized, however, until
its field has been added to the grid. To add a field to the grid, choose Add from

the Fields editor.

When True, lines between the columns appear.
When True, lines between the rows appear.

When True, users press the Tab key and the Shift-Tab keys to move among the

columns of the data grid.

When True, the user can select whole rows only instead of individual cells.

When True, the cell selected in the grid continues to display as selected even if the

data grid doesn’t have the focus.

Delphi Visual Component Library Reference 573

Options property

Value Meaning

dgConfirmDelete When True, a message box appears if the user uses Cir/+Delete to delete a row in
the grid. The message box asks for confirmation that the row should really be
deleted.

dgCancelOnExit When True, if an insert is pending and no modifications were made by the user,

the insert will be cancelled when the user exits the grid. This prevents the
inadvertent posting of partial or blank records.

Example
This line of code displays column titles, makes the column indicator visible, and permits
the user to edit the data displayed in the data grid:

procedure TForml.FormClick(Sender: TObject);
begin

DBGridl.Options := [dgIndicator, dgEditing, dgTitles];
end;

See also
ReadOnly property

For database lookup combo boxes and list boxes

Applies to
TDBLookupCombo, TDBLookupList components

Declaration

property Options: TDBLookupListOptions;

The Options property determines how multiple columns in database lookup combo
boxes and database lookup list boxes appear. These are the possible values that can be

part of the Options set:
Value Meaning
loColLines When True, lines separate the columns displayed in the control. WhenFualse, no lines appear

between the columns.

loRowLines When True, lines separate the rows displayed in the control. When False, no lines appear
between the rows.

loTitles When True, the field names appear as titles above the columns in the control. When False,
no titles appear.

To display multiple columns, use the LookupDisplay property.

Example
This code displays three fields in a database lookup list box, displays the field names as
titles for the columns, and separates the columns with lines:

procedure TForml.FormCreate(Sender: TObject);
begin
DBLookupListl.LookupDisplay := 'Company;City;Country';

574 Delphi Visual Component Library Reference

Ord function

DBLookupListl.Options := [loColLines,loTitles];
end;

See also
LookupDisplay property

For TIndexDef objects

Declaration
property Options: TIndexOptions;

Run-time and read only. Options is the set of characteristics of the index. Possible
elements are those of the TIndexOptions type: ixPrimary, ixUnique, ixDescending,
ixNonMaintained, and ixCaselnsensitive.

Ord function System

Declaration
function Ord(X): Longint;
The Ord function returns the ordinal value of an ordinal-type expression.

X is an ordinal-type expression. The result is of type Longint, and its value is the ordinal
position of X.

Example a

uses Dialogs;

type
Colors = (RED,BLUE,GREEN);
var
S: string;
begin
S := 'BLUE has an ordinal value of ' + IntToStr(Ord(BLUE)) + #13#10;
S := 'The ASCII code for "c" is ' + IntToStr(Ord('c')) + ' decimal';
MessageDlg (S, mtInformation, [mbOk], 0);
end;
See also
Chr function

Orientation property

Applies to
TPrinter object

Delphi Visual Component Library Reference 575

Origin typed constant

Declaration
property Orientation: TPrinterOrientation;

Run-time only. The value of the Orientation property determines if the print job prints
vertically or horizontally on a page. These are the possible values:

Value Meaning

poPortrait The print job prints vertically on the page.
poLandscape The print job prints horizontally on the page.
Example

This example uses two radio buttons on a form named Landscape and Portrait. The form
also includes a button. When the user selects an orientation by clicking one of the radio
buttons and then clicks the button to print one line of text, the print job prints using the
selected orientation:

procedure TForml.ButtonlClick(Sender: TObject);
begin
Printer.BeginDoc;
Printer.Canvas.TextOut (100,100, 'Hi there');
Printer.EndDoc;
end;

procedure TForml.PortraitClick(Sender: TObject);
begin

Printer.Orientation := poPortrait;
end;

procedure TForml.LandscapeClick(Sender: TObject);
begin

Printer.Orientation := poLandscape;
end;

See also
Printer variable

Origin typed constant WinCrt

Declaration
const Origin: TPoint = (X: 0; Y: 0);

The Origin typed constant contains the virtual screen coordinates of the character cell
displayed in the upper left corner of the CRT window.

Origin is a read-only variable; do not assign values to it.

576 Delphi Visual Component Library Reference

OutlineStyle property

OutlineStyle property

Applies to
TOutline component

Declaration
property OutlineStyle: TOutlineStyle;

The OutlineStyle property determines how the outline structure is displayed within the
TOutline component. The following table describes the outline styles.

Style Description

osPictureText Displays open picture (specified in PictureOpen), closed picture (specified in
PictureClosed), leaf picture (specified in PictureLeaf) and item text (specified in
Text).

osPlusMinusPictureText Displays plus picture (specified in PicturePlus), minus picture (specified in
PictureMinus), open picture, closed picture, leaf picture, and item text.

osPlusMinusText Displays plus picture, minus picture, and item text.

osText Displays item text.

osTreePictureText Displays outline tree, open picture, closed picture, leaf picture, and item text.
osTreeText Displays outline tree and item text.

Example

The following code displays pictures only if they are monochrome. The first choice is
Open and Closed pictures. If they aren’t monochrome, the code tests Plus and Minus
pictures. The final resort is to simply display text. a

with Outlinel do
if (PictureOpen.Monochrome and PictureClosed.Monochrome) then
OutlineStyle := osPictureText
else if (PicturePlus.Monochrome and PictureMinus.Monochrome) then
OutlineStyle := osPlusMinusText
else OutlineStyle := osText;

OutOfMemoryError procedure SysUtils

Declaration
procedure OutOfMemoryError;

OutOfMemoryError raises the EOutOfMemory exception.

Output variable System

Declaration

var Output: TextFile;

Delphi Visual Component Library Reference 577

Overload property

The Output variable is a write-only file associated with the operating system’s standard
output file, which is usually the display.

In many of Delphi's standard file-handling routines, the file variable parameter can be
omitted. Instead the routine operates on the Input or Output file variable. The following
standard file-handling routines operate on the Output file when no file parameter is
specified:

* Write

* Writeln

Since Windows does not support text-oriented input and output, Input and Output files
are unassigned by default in a Windows application. Any attempt to read or write to
them will produce an I/O error.

If the application uses the WinCrt unit, Input and Output will refer to a scrollable text
window.

See also
Input variable, TextFile type

Overload property

Applies to
TStoredProc component

Declaration
property Overload: Word;

Oracle servers allow overloading of stored procedures in an Oracle package; that is,
different procedures with the same name.

Set the Overload property to specify the procedure to execute on an Oracle server. If
Overload is zero (the default), there is assumed to be no overloading. If Overload is one
(1), then Delphi will execute the first stored procedure with the overloaded name; if it is
two (2), it will execute the second, and so on.

See also
StoredProcName property

Owner property

Applies to

All components

Declaration

property Owner: TComponent;

578 Delphi Visual Component Library Reference

Pack method

Run-time and read only. The Owner property indicates which component owns the
component.

The form owns all components that are on it. In turn, the form is owned by the
application.

When one component is owned by another, the memory for the owned component is
freed when its owner’s memory is freed. This means that when a form is destroyed, all
the components on the form are destroyed also. Finally, when the memory for the
application itself is freed, the memory for the form (and all its owned components) is
also freed.

Don’t confuse ownership of a component with being the parent of a component. A
parent is a windowed control that contains a child window. The parent and the owner
of a windowed component can be different components.

Example

The example assumes there are two edit box controls on the form. When the form
displays, the code inserts the name of the Edit1 control’s owner (TForm1) into Edit1 itself,
and displays the size of the owner in bytes in the second edit box (Edit2).

procedure TForml.FormCreate(Sender: TObject);

var
TC: TComponent;
Size: Word;

SizeStr: string;

begin
TC := Editl.Owner;
Editl.Text := TC.ClassName;
Size := TC.InstanceSize;
Str(Size, SizeStr);
Edit2.Text := SizeStr;

end;

See also
Components property, Destroy method, Free method, Parent property

Pack method

Applies to
TList object

Declaration
procedure Pack;

The Pack method deletes all nil items from the list of pointers kept by the List property of
a list object. Items become nil when the Delete or Remove’ method has been called to
delete them from the list.

Delphi Visual Component Library Reference 579

PageHeight property

Example

This example assumes there are two edit box controls on the form. The code creates a list
object and adds two strings to it. The second string in the list is anil string. The code
counts the number of strings in the list and displays the number in the Edit1 control. The
code then packs the list, removing the nil string, and counts the strings in the list again.
The second count displays in the Edit2 control:

procedure TForml.FormCreate(Sender: TObject);
var
MyList: TList;
I: Integer;
Buffer: string;
begin
MyList := TList.Create; {Create a list of TList}
MyList.Add (PChar ('Another string')); {Add a string}
MyList.Add(PChar (NIL)); {Add a Nil string}
Str(MyList.Count, Buffer);
Editl.Text := Buffer; {Put count into Editl}
Mylist.Pack; {Pack the list.}
Str(MyList.Count, Buffer);
Edit2.Text := Buffer; {Put count into Edit2}
MyList.Free; {Free memory for list}
end;

See also
Expand method, Remove method, Capacity property

PageHeight property

Applies to
TPrinter object

Declaration

property PageHeight: Integer;

Run-time and read only. The PageHeight property contains the height of the currently
printing page in pixels.

Example

This code displays the page height of the currently printing page in an edit box.

To run this code successfully, you must add Printers to the uses clause of your unit.

Editl.Text := IntToStr(Printer.PageHeight);

See also
PageNumber property, PageWidth property, Printer variable

580 Delphi Visual Component Library Reference

Pagelndex property

Pagelndex property

Applies to
TNotebook, TTabbedNotebook components

Declaration
property PageIndex: Integer;

The value of the Pagelndex property determines which page displays in the notebook or
tabbed notebook component. Changing the Pagelndex value changes the page in the
control.

Each string in the Pages property is automatically assigned a Pagelndex value when the
page is created. The first page receives a value of 0, the second has a value of 1, and so
on. If you delete a string from the Pages property, the Pagelndex values are reassigned so
that the values always begin with 0 and continue to increase without any gaps between
values.

Example

This example assumes that a notebook component and a tab set component are on a
form. It demonstrates how you can use the tab set and notebook component together to
allow the user to click on a tab to access a page in the notebook component.

This code assigns the strings in the Pages property of the notebook component to the
Tabs property of the tab set component. Because the code is in the OnCreate event
handler when the form first appears, the tab set component has one tab for each page in
the notebook component.

procedure TForml.FormCreate (Sender: TObject);

begin
TabSetl.Tabs := Notebookl.Pages; a
end;

Changing the Pagelndex value of a notebook or component changes the page displayed.
This code assigns the Tablndex value of the tab the user clicks on to the Pagelndex
property of the notebook component. When the user clicks the tab labeled with a page
name, that page is displayed in the notebook component.

procedure TForml.TabSet1Click(Sender: TObject);
begin

Notebookl.PageIndex := TabSetl.TabIndex;
end;

See also
ActivePage property, TTabSet component

Delphi Visual Component Library Reference 581

PageNumber property

PageNumber property

Applies to
TPrinter object

Declaration
property PageNumber: Integer;

Run-time and read only. The PageNumber property contains the number of the current
page. Each time an application calls the NewPage method, NewPage increments the value
of PageNumber.

Example

This example uses a button on a form. When the user clicks the button, one line of text is
printed on six separate pages. As each page is printed, a message indicating the number
of the page being printed appears on the form.

To run this example successfully, you must add Printers to the uses clause of your unit.

procedure TForml.ButtonlClick(Sender: TObject);
var
I, X, Y: Integer;
begin
Printer.BeginDoc;
X = 10;
Y := 10;
for T := 1 to 6 do
begin
Printer.Canvas.TextOut (100, 100, 'Object Pascal is great');
Canvas.TextOut (X, Y, 'Printing page ' + IntToStr(Printer.PageNumber));
Printer.NewPage;
Y := Y + 20;
end;
Printer.EndDoc;
end;

See also
NewPage method, Printer variable

Pages property

Applies to
TNotebook, TTabbedNotebook components

Declaration

property Pages: TStrings;

582 Delphi Visual Component Library Reference

PageWidth property

The Pages property contains the strings that identify the individual pages of the
notebook or tabbed notebook control. Both these controls create a separate page for each
string in the Pages property. For example, if Pages contains three strings, First, Second,
and Third, the control has three separate pages.

You can access the various pages in a notebook or tabbed notebook control with either
the ActivePage or Pagelndex property.

Example
The following code ensures that the Pages of Notebook1 correspond with the value of the
Tabs property of TabSet1.

Notebookl.Pages := TabSetl.Tabs;

See also
TTabSet component

PageWidth property

Applies to
TPrinter object

Declaration
property PageWidth: Integer;

Run-time and read only. The PageWidth property contains the value of width of the
currently printing page in pixels.

Example a
The code uses an edit box on a form. The code creates a printer object and displays the
current width of a page in pixels in the edit box when the form first appears.

To run this example, you must add the Printers unit to the uses clause of your unit.

procedure TForml.FormCreate(Sender: TObject);
begin

Editl.Text := IntToStr(Printer.PageWidth) + ' pixels';
end;

See also
PageHeight property, PageNumber property, Printer variable

Palette property

Applies to
TBitmap object

Delphi Visual Component Library Reference 583

ParamBindMode property

Declaration
property Palette: HPalette;

The Palette property controls a bitmap’s color mapping. The Palette of a bitmap contains
up to 256 colors that can be used to display the bitmap onscreen.

If the bitmap is drawn by an application running in the foreground, as many colors of
Palette as will be added to the Windows system palette. Any additional colors will be
mapped to the existing colors of the system palette. If the bitmap is drawn by an
application running in the background and another application has loaded the system
palette with its own colors, the bitmap’s colors will be mapped to the system palette.

Example
The following code selects the Palette from Form1 for Form2.

SelectPalette(Form2.Canvas.Handle, Forml.Canvas.Palette, True);

ParamBindMode property

Applies to
TStoredProc component

Declaration
property ParamBindMode; TParamBindMode;

ParamBindMode determines how the elements of the Params array will be matched with
stored procedure parameters. If ParamBindMode is set to pbByName (the default),
parameters will be bound based on their names in the stored procedure. If
ParamBindMode is set to ppByNumber, parameters will be bound based on the order in
which they are defined in the stored procedure. Use this setting if you are building your
parameters list, and you don’t want to use the parameter names defined in the stored
procedure.

Example

ParamBindMode := pbByName;

ParamByName method

Applies to
TParams object; TQuery, TStoredProc component

584 Delphi Visual Component Library Reference

ParamCount function

For TParam objects

Declaration
function ParamByName (const Value: string): TParam;

The ParamByName method finds a parameter with the name passed in Value. If a match
is found, ParamByName returns the parameter. Otherwise, an exception is raised. Use
this method rather than a direct reference to the Items property if you need to get a
specific parameter to avoid depending on the order of the entries.

Example

try
{ Assign a value of 999 to the CustNo parameter }
Params.ParamByName (‘CustNo’).AsInteger := 999;
except
{ If it doesn't exist, then }
on EDatabaseError do
{ Create a new parameter for CustNo and assign a value of 999 to it }
with Params.CreateParam(ftInteger, ‘CustNo’, ptInput) do
AsInteger := 999;
end;

For queries and stored procedures

Declaration
function ParamByName (const Value: string): TParam;

The ParamByName method returns the element of the Params property whose Narme
property matches Value. Use it to assign values to parameters in a dynamic query by
name.

Example

Queryl.ParamByName (‘CustNo’).AsString := ‘1231';

ParamCount function System

Declaration
function ParamCount: Word;

The ParamCount function returns the number of parameters passed to the program on
the command line. Separate parameters with spaces or tabs.

Example

begin
if ParamCount = 0 then

Delphi Visual Component Library Reference 585

ParamCount property

Canvas.TextOut (10, 10, 'No parameters on command line')
else
Canvas.TextOut (10, 10, IntToStr(ParamCount) + ' parameter(s)');
end;

See also
ParamStr function

ParamCount property

Applies to
TQuery, TStoredProc component

For query components

Declaration
property ParamCount: Word;

Run-time and read only. The ParamCount property specifies how many entries the
TQuery has in its Params array, that is, how many parameters the query has. Adding a
new item to Params will automatically increase the value; removing an item will
automatically decrease the value.

Example

for I := 0 to Queryl.ParamCount - 1 do
Queryl.Params[I].AsInteger := I;

See also
Params property

For stored procedures

Declaration
property ParamCount: Word;

Run-time and read only. ParamCount specifies the total number of input and output
parameters to the stored procedure, and is automatically maintained by changes to the
Params property. Use ParamCount to iterate over the Params.

Example

{ Set all parameters to an empty string }
with StoredProcl do
for T := 0 to ParamCount - 1 do
Param[I].AsString := '’;

586 Delphi Visual Component Library Reference

Params property

Params property

Applies to
TDatabase, TQuery, TStoredProc component

For stored procedures

Declaration
property Params: TParams;

The Params property holds the parameters to be passed to the stored procedure.

Example

{ Copy all parameters from StoredProcl to StoredProc2 }
StoredProcl.CopyParams (StoredProc2.Params) ;

See also
CopyParams method, ParamCount property

For queries

Declaration
property Params[Index: Word]: TParam;

When you enter a query, Delphi creates a Params array for the parameters of a dynamic

SQL statement. Params is a zero-based array of TParam objects with an element for each
parameter in the query; that is, the first parameter is Params|[0], the second Params[1], a
and so on. The number of parameters is specified by ParamCount. Read-only and run

time only.

Note Use the ParamByName method instead of Params to avoid dependencies on the order of
the parameters.

Example
For example, suppose a TQuery component named Query2 has the following statement
for its SQL property:

INSERT

INTO COUNTRY (NAME, CAPITAL, POPULATION)
VALUES (:Name, :Capital, :Population)

An application could use Params to specify the values of the parameters as follows:

Query?2.Params[0] .AsString := 'Lichtenstein';
Query?2.Params[1].AsString := 'Vaduz';
Query2.Params([2] .AsInteger := 420000;

Delphi Visual Component Library Reference 587

ParamStr function

These statements would bind the value “Lichtenstein” to the :Name parameter,
“Vaduz” to the :Capital parameter, and 420000 to the :Population parameter.

For database components

Declaration
property Params: TStrings;

The Params property holds the parameters required to open a database on an SQL
server. By default, these parameters are specified in the BDE Configuration Utility. You
can customize these parameters for an application-specific alias with the Database
Parameters Editor.

For desktop databases, Params will specify only the directory path for the database. For
server databases, Params will specify a variety of parameters, including the server name,
database name, user name, and password.

ParamStr function System

Declaration
function ParamStr(Index): string;
The ParamStr function returns a specified command-line parameter.

Index is an expression of type Word. ParamStr returns the parameter from the command
line that corresponds to Index, or an empty string if Index is greater than ParamCount. For
example, an Index value of 2 returns the second command-line parameter.

ParamStr(0) returns the path and file name of the executing program (for example, C:\
BPAMYPROG.EXE).

Example

var
I: Word;
Y: Integer;
begin
Y := 10;
for T := 1 to ParamCount do begin
Canvas.TextOut (5, Y, ParamStr(I));
Y := Y + Canvas.TextHeight (ParamStr(I)) + 5;
end;
end;

See also
ParamCount function

588 Delphi Visual Component Library Reference

ParamType property

ParamType property

Applies to
TParam object

Declaration

property ParamType: TParamType;

ParamType is used to identify the type of the parameter for a stored procedure. Possible
values are those of the TParamType type: ptUnknown, ptInput, ptOutput, ptinputOutput, or
ptResult. Normally Delphi will set this property, but if the server does not provide the
necessary information, you may have to set it yourself.

Example

StoredProcl.Params.ParamByName (‘CustNo’) .ParamType := ptInput;

Parent property

Applies to
All controls; TMenultem component; TOutlineNode object

For controls

Declaration

property Parent: TWinControl; a
The Parent property contains the name of the parent of the control. The parent of a

control is the windowed control that contains the control. If one control (parent)

contains others, the contained controls are child controls of the parent. For example, if

your application includes three radio buttons in a group box, the group box is the parent

of the three radio buttons, and the radio buttons are the child controls of the group box.

Don’t confuse the Parent property with the Owner property. A form is the owner of all
the components on it, whether or not they are windowed controls. A child control is
always a windowed control contained within another windowed control (its parent). If
you put three radio buttons in a group box on a form, the owner of the radio buttons is
still the form, while the parent is the group box.

If you are creating a new control, you must assign a Parent property value for the new
control. Usually, this is a form, panel, group box, or some control that is designed to
contain another. It is possible to assign any windowed control as the parent, but the
contained control is likely to be painted over.

When the parent of a control is destroyed, all controls that are its children are also
destroyed.

Delphi Visual Component Library Reference 589

Parent property

Example

To set up the form for this example, put a group box on the form and add a radio button
to the group box. Put two labels and a button on the form. This code displays the name
of the parent of the radio button and the class name of the owner of the radio button in
the captions of the two labels when the user clicks the button:

procedure TForml.ButtonlClick(Sender: TObject);
begin
Labell.Caption := RadioButtonl.Parent.Name + ' is the parent';
Label2.Caption := RadioButtonl.Owner.ClassName +
' is the class name of the owner';
end;

This example uses a button and a group box on a form. When the user clicks the button,
the button moves inside the group box, because the group box is now the parent of the
button.

procedure TForml.ButtonlClick(Sender: TObject);
begin

Buttonl.Parent := GroupBoxl;
end;

See also
Controls property, Owner property

For menu items

Declaration
property Parent: TMenultem;

Run-time and read only. The Parent property of a menu item identifies the parent menu
item of this menu item.

Example

This example assumes there are two edit boxes on a form as well as a main menu that
contains menu items. One of the menu items has Save as the value of its Caption
property, so the value of its Name property is Savel. The code displays the name of the
parent of the Savel menu item in the Edit] control, and it displays the class name of the
parent in the Edit2 control when the form first appears.

procedure TForml.FormCreate(Sender: TObject);
begin

Editl.Text := Savel.Parent.Name;

Edit2.Text := Savel.Parent.ClassName;
end;

590 Delphi Visual Component Library Reference

ParentColor property

For outline nodes

Declaration
property Parent: TOutlineNode;

The Parent property of an outline node identifies the parent outline item of this outline
node. A parent outline item is one level higher and contains the child outline node as a
subitem.

Example
The following code tests to see if the currently selected item has a sibling. True will be
assigned to HasSibling if so.

var
HasSibling: Boolean;
begin
with Outlinel[Outlinel.SelectedItem] do
HasSibling := (Parent.GetPrevChild <> -1) or (Parent.GetNextChild <> -1);
end;

See also
Topltem property

ParentColor property

Applies to

TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit, TDBGrid, TDBText,
TDBListBox, TDBLookupCombo, TDBLookupList, TDBMemo, TDBRadioGroup,
TDirectoryListBox, TDrawGrid, TDriveComboBox, TEdit, TFileListBox, TFilterComboBox,
TGroupBox, TLabel, TListBox, TMaskEdit, TMemo, TNotebook, TOutline, TPaintBox, TPanel,
TRadioButton, TScrollBox, TStringGrid components

Declaration
property ParentColor: Boolean;

The ParentColor property determines where a control looks for its color information. If

ParentColor is True, the control uses the color in its parent component’s Color property. If
ParentColor is False, the control uses its own Color property. Except for the radio group,
database radio group, label and database text controls, the default value is False.

By using ParentColor, you can ensure that all the controls on a form have a uniform
appearance. For example, if you change the background color of your form to gray, by
default, the controls on the form will also have a gray background.

To specify a different color for a particular control, specify the desired color as the value
of that control’s Color property, and ParentColor becomes False automatically.

Delphi Visual Component Library Reference 591

ParentCtl3D property

Example

This code uses a label control and a timer component on the form. When the OnTimer
event occurs, the label turns red if the label’s ParentColor property is True. If the
ParentColor property is False, ParentColor is set to True. The result is the label flashes red
on and off. Every other time an OnTimer event occurs, the label turns red. The other
times, the label assumes the color of its parent, Form1.

procedure TForml.TimerlTimer (Sender: TObject);
begin
if Labell.ParentColor then
Labell.Color := clRed
else
Labell.ParentColor := True;
end;

See also
Color property, Parent property, ParentFont property

ParentCt|3D property

Applies to

TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit, TDBGrid, TDBlmage,
TDBLookupCombo, TDBLookupList, TDBListBox, TDBNavigator, TDBMemo,
TDBRadioGroup, TDirectoryListBox, TDrawGrid, TDriveComboBox, TEdit, TFileListBox,
TFilterComboBox, TGroupBox, TListBox, TMaskEdit, TMemo, TNotebook, TOLEContainer,
TOutline, TPanel, TRadioButton, TScrollBox, TStringGrid components

Declaration
property ParentCt13D: Boolean;

The ParentCtI3D property determines where a component looks to determine if it
should appear three dimensional. If ParentCtI3D is True, the component uses the
dimensionality of its parent component’s Ct!3D property. If ParentCti3D is False, the
control uses its own Ct3D property. The default value is True.

By using ParentCtI3D, you can ensure that all the components on a form have a uniform
appearance. For example, if you want all components on a form to appear three
dimensional, set the form’s Ct/3D property to True and each component’s ParentCtI3D
property to True. Not only will all components have a three-dimensional appearance,
but if you decide you prefer a two-dimensional appearance, you only have to change
the CtI3D property of the form and all the components will become two dimensional.

To specify a different dimensionality for a particular component, specify the
dimensionality (True for 3D or False for 2D) as the value of that control’s Ct/3D property,
and ParentCtI3D becomes False automatically.

592 Delphi Visual Component Library Reference

ParentFont property

Example
This code uses a group box and a button on a form. The code displays the group box in
two dimensions when the user clicks the button:

procedure TForml.ButtonlClick(Sender: TObject);
begin
if GroupBoxl.ParentCtl3d = True then
begin
GroupBox1.ParentCtl3d := False;
GroupBox1.Ctl3d := False;
end;
end;

See also
CtI3D property, Parent property, ParentColor property, ParentFont property

ParentFont property

Applies to

TBitBtn, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit, TDBGrid,
TDBImage, TDBLookupCombo, TDBLookupList, TDBListBox, TDBMemo, TDBRadioGroup,
TDBText, TDirectoryListBox, TDrawGrid, TDriveComboBox, TEdit, TFileListBox,
TFilterComboBox, TForm, TGroupBox, THeader, TListBox, TMaskEdit, TMemo, TNotebook,
TOLEContainer, TOutline, TPaintBox, TPanel, TRadioButton, TScrollBox, TSpeedButton,
TStringGrid components

Declaration
property ParentFont: Boolean;
The ParentFont property determines where a control looks for its font information. If a

ParentFont is True, the control uses the font in its parent component’s Font property. If
ParentFont is False, the control uses its own Font property.

By using ParentFont, you can ensure that all the controls on a form have a uniform
appearance. For example, if you want all the controls in a form to use 12-point Courier
for their font, you can set the form’s Font property to that font. By default, all the
controls on that form will use the same font.

To specify a different font for a particular control, specify the desired font as the value of
the control’s Font property, and ParentFont becomes False automatically.

When the ParentFont is True for a form, the form uses the value of the application’s Font
property.

Example

This example uses a timer component and a label control. When an OnTimer event
occurs and the label uses its parent’s font, the code changes the label’s ParentFont
property to False and changes the label’s font size to 30 points. When an OnTimer event
occurs and the label doesn’t use its parent’s font, the code sets its ParentFont to True. The

Delphi Visual Component Library Reference 593

ParentShowHint property

result is that the label’s font grows and shrinks alternately, each time an OnTimer event
occurs.

procedure TForml.TimerlTimer (Sender: TObject);
begin
if Labell.ParentFont = True then
Labell.Font.Size := 30
else
Labell.ParentFont := True;
end;

This example uses a button on a form. When the user clicks the button, the font type and
color change for all components on all forms in the application.

procedure TForml.ButtonlClick(Sender: TObject);
begin
ParentFont := True;
if Application.Font.Name = 'System' then
begin
Application.Font.Color := clNavy;
Application.Font.Name := 'New Times Roman';
end
else
begin
Application.Font.Color := clBlack;
Application.Font.Name := 'System'
end;
end;

See also

Application variable, Font property, Parent property, ParentColor property, ParentCtI3D
property, TApplication component

ParentShowHint property

Applies to
All controls

Declaration
property ParentShowHint: Boolean;

The ParentShowHint property determines where a control looks to find out if Help Hint,
specified as the value of the Hint property for the control, should be shown. If
ParentShowHint is True, the control uses the ShowHint property value of its parent. If
ParentShowHint is False, the control uses its own ShowHint property.

By using ParentShowHint, you can ensure that all the controls on a form either show
their Help Hints or don’t show them. By default, ParentShowHint is True.

594 Delphi Visual Component Library Reference

PasswordChar property

If don’t want all the controls to have Help Hints, set the ShowHint property for those
controls you do want to have Help Hints to True, and ParentShowHint becomes False
automatically.

You can enable or disable all Help Hints for the entire application using the ShowHint
property of the application.

Example

This example uses an edit box, a memo, and a check box on a form. For each of these
controls, the ParentShowHint property is True, the default value. When the code runs, the
ShowHint property of the form is set to True and hints are assigned to each control.
Because each control looks to its parent, the form, to find out whether to display a Help
Hint, and because the form’s ShowHint property is True, the Help Hints are available.

procedure TForml.FormCreate(Sender: TObject);
begin

ShowHint := True;

Editl.Hint := 'Enter text';

Memol.Hint := 'Enter lots of text';

CheckBoxl.Hint := 'Check or uncheck me';
end;

See also
Hint property, ParentColor property, ParentCtI3D property, ParentFont property

PasswordChar property

Applies to
TDBEdit, TEdit, TMaskEdit components a

Declaration
property PasswordChar: Char;

The PasswordChar property lets you create an edit box that displays special characters in
place of the entered text. By default, PasswordChar is the null character (ANSI character
zero), meaning that the control displays its text normally. If you set PasswordChar to any
other character, the control displays that character in place of each character in the
control’s text.

Example
The following code displays asterisks for each character in an edit box called
PasswordField:

PasswordField.PasswordChar := '*’;

Delphi Visual Component Library Reference 595

PasteFromClipboard method

PasteFromClipboard method

Applies to
TDBEdit, TDBImage, TDBMemo, TEdit, TMaskEdit, TMemo components

Declaration
procedure PasteFromClipboard;

The PasteFromClipboard method copies the contents of the Clipboard to the control,
inserting the contents where the cursor is positioned.

Example

This example uses two edit boxes and a button on a form. When the user clicks the
button, text is cut from the Edit1 edit box and pasted into the Edit2 edit box:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Editl.SelectAll;

Editl.CutToClipboard;

Edit2.Clear;

Edit2.PasteFromClipboard;

Editl.SetFocus;
end;

See also
Clear method, ClearSelection method, CopyToClipboard method, CutToClipboard method

PasteSpecialDIg function ToCtr

Declaration

function PasteSpecialDlg (Form: TForm; const Fmts: array of BOleFormat;
HelpContext: THelpContext; var Format: Word; var Handle: THandle;
var PInitInfo: Pointer) : Boolean;

PasteSpecialDlg displays the Paste Special dialog box. Use this function to paste an OLE
object from the Windows Clipboard into a TOLEContainer component. Specify the OLE
object initialization information by using the Paste Special dialog box.

PasteSpecialDlg returns True if the user specifies an OLE object and chooses OK in the
Paste Special dialog box. PasteSpecialDIg returns False if the user doesn’t specify an OLE
object or chooses Cancel in the dialog box.

596 Delphi Visual Component Library Reference

PasteSpecialDIg function

These are the parameters of PasteSpecialDlg:

Field

Form
Fmts

HelpContext

Format

Handle

PlnitInfo

Description
The form that will own the Paste Special dialog box

This is the array of object formats to register for pasting. An object format is specified in
a BOLEFormat record. Each type of data you want to allow to be pasted should be
passed as an element of the Fmts array.

To paste OLE objects, you should register a new Clipboard format for OLE objects with
the Windows API function RegisterClipboardFormat before calling PasteSpecialDIg. Then,
you should specify a BOLEFormat array element for OLE objects. To paste other data
types, such as text or bitmaps, specify a BOLEFormat array element for each other type
of data.

A help context identification number to be used if the user chooses Help from within
the Paste Special dialog box. If you pass 0 for HelpContext, no Help button will appear in
the Paste Special dialog box. Pass a number other than 0 if you want to provide context-
sensitive online Help.

Format is modified by PasteSpecialDIg to specify the Clipboard format of the data
selected by the user in the Paste Special dialog box. If the object is an OLE object,Format
specifies the Clipboard format registered with RegisterClipboardFormat, prior to the call
to PasteSpecialDIg. If the object is a type other than an OLE object, Format specifies its
Clipboard format (for example, if the data is text, format specifiesCF_TEXT).

Handle is modified by PasteSpecialDIg to provide a handle to the data on the Clipboard.
If the data is a type other than an OLE object, use the THandle returned in the Handle
parameter to access the data.

If InsertOLEObject returns True, InsertOLEObjectDIg modifies the PlnitInfo pointer
parameter to point to OLE initialization information. Initialize the OLE object by
assigning this pointer to the PInitInfo property. When your application is finished with
the PlnitInfo pointer, it should be released with ReleaseOLEInitInfo.

Example

The following code registers a new Clipboard format for embedded OLE objects and
creates a object formats array for FEmbedClipFmt. If an embedded OLE object is on the
Clipboard, the Paste Special Dialog box is displayed. If the user selects the object and
chooses OK, then OLEContainer1 is initialized.

var

FEmbedClipFmt: Word;

Fmts: array[0..0] of BOLEFormat;
TheFormat: Word;

TheHandle: THandle;

TheInfo: Pointer;

begin

FEmbedClipFmt := RegisterClipboardFormat ('Embedded Object');
Fmts[0].fmtId := FEmbedClipFmt;
Fmts[0].fmtMedium := BOLEMediumCalc (FEmbedClipFmt);
Fmts[0].fmtIsLinkable := False;
StrPCopy (Fmts[0].fmtName, '%s');
StrPCopy (Fmts[0].fmtResultName, '%s');
if PasteSpecialEnabled(Self, Fmts) then
if PasteSpecialDlg(Forml, Fmts, 0, TheFormat, TheHandle, TheInfo) then
OLEContainerl.PInitInfo := ThelInfo;

end;

Delphi Visual Component Library Reference 597

PasteSpecialEnabled function

See also
InsertOLEObjectDlg function, LinksDIg procedure, PasteSpecial Enabled function

PasteSpecialEnabled function ToCtr

Declaration
function PasteSpecialEnabled(Form: TForm; const Fmts: array of BOleFormat): Boolean;

PasteSpecialEnabled determines if the Paste Special dialog box is enabled. If so,
PasteSpecialEnabled returns True and PasteSpecial Dlg can be successfully called. If not,
PasteSpecialEnabled returns False and nothing will happen if you call PasteSpecial DIg.

The Paste Special dialog box is enabled if any of the object formats specified by theFmts
parameter is on the Clipboard.

Example
The following code calls PasteSpecialDlg if the Paste Special dialog box is enabled or
displays a message if it is not enabled.

var
Pasted: Boolean;

begin
if PasteSpecialEnabled(Self, Fmts) then
Pasted := PasteSpecialDlg(Forml, Fmts, 0, TheFormat, TheHandle, TheInfo)
else
MessageDlg (‘There are no OLE objects on the Clipboard’, mtInformation, [mbOK], 0);
end;

See also
HasFormat method

Pause method

Applies to
TMediaPlayer component

Declaration
procedure Pause;

The Pause method pauses the open multimedia device. If the device is already paused
when Pause is called, the device resumes playing or recording by calling the Resume
method. Pause is called when the Pause button on the media player control is clicked at
run time.

Upon completion, Pause stores a numerical error code in the Error property and the
corresponding error message in the ErrorMessage property.

598 Delphi Visual Component Library Reference

Pause method

The Wait property determines whether control is returned to the application before the
Pause method has completed. The Notify property determines whether Pause generates
an OnNotify event.

Example

This example uses a media player, a timer, and a button on a form. Only the button is
visible when the application runs. When the user clicks the button, the . WAV file plays.
When the user clicks the button again, the WAV file pauses. The caption of the button
changes, depending on whether the WAV file is playing, paused, or stopped.

To run this example, you must have the CHIMES.WAV file in your Windows directory
and have a device that plays WAV audio files:

procedure TForml.FormActivate(Sender: TObject);
var
WinDir: PChar;
begin
MediaPlayerl.Visible := False;
GetMem(WinDir, 144);
GetWindowsDirectory (WinDir, 144);
StrCat (WinDir, '\chimes.wav');
MediaPlayerl.FileName := StrPas(WinDir);
MediaPlayerl.Open;
FreeMem (WinDir, 144);
Buttonl.Caption := 'Play';
end;

procedure TForml.ButtonlClick(Sender: TObject);
begin
if Buttonl.Caption = 'Play' then
begin
Buttonl.Caption := 'Pause';
MediaPlayerl.Play;
end
else
begin
Buttonl.Caption := 'Play’';
MediaPlayerl.Pause;
end;
end;

procedure TForml.TimerlTimer (Sender: TObject);
begin
if MediaPlayerl.Mode = mpStopped then
Buttonl.Caption := ‘Play’;
end;

See also
PauseOnly method, Play method, StartRecording method, Stop method

Delphi Visual Component Library Reference 599

PauseOnly method

PauseOnly method

Applies to
TMediaPlayer component

Declaration
procedure PauseOnly;

The PauseOnly method only pauses the open multimedia device. If the device is already
paused when PauseOnly is called, the device will remain paused.

Upon completion, PauseOnly stores a numerical error code in the Error property and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
PauseOnly method has completed. The Notify property determines whether PauseOnly
generates an OnNotify event.

Example

The following code illustrates the difference between Pause and PauseOnly. After the
second call to Pause, MediaPlayer] resumes playing. After the second call to PauseOnly,
MediaPlayer1 is still paused.

with MediaPlayerl do begin
MediaPlayerl.Play;
MediaPlayerl.Pause;
{ Now its paused }
MediaPlayerl.Pause;
{ Now its playing }
MediaPlayerl.PauseOnly;
{ Now its paused }
MediaPlayerl.PauseOnly;
{ Now its still paused }
end;

See also
Pause method, Play method, Resume method, StartRecording method, Stop method

Pen property

Applies to
TCanvas object; TShape component

Declaration
property Pen: TPen;

A canvas object’s Pen property determines what kind of pen the canvas uses for
drawing lines and shape outlines.

600 Delphi Visual Component Library Reference

PenPos property

Example
The following code prints a rectangle that uses a pen 40 pixels wide when the user clicks
the button on the form:

procedure TForml.ButtonlClick(Sender: TObject);

begin
Printer.Canvas.Pen.Width := 40;
Printer.BeginDoc;
Printer.Canvas.Rectangle (30, 30, 400, 600);
Printer.EndDoc;

end;

Before running this code, you must add the Printers unit to the uses clause of your unit.

See also
TBrush object, TFont object

PenPos property

Applies to
TCanvas object

Declaration
property PenPos: TPoint;

The PenPos property is the current drawing position of the pen. You should use the
MoveTo method to set the drawing position, rather than changing PenPos directly.

See also
MoveTo method a

Pi function System

Declaration
function Pi: Real;
The Pi function returns the value of Pi, which is defined as 3.1415926535897932385.

Precision varies, depending on whether the compiler is in 80x87 or software-only mode.

Example

var
S: string;
begin
Str(Pi:10:11, S);
Canvas.TextOut (10, 10, 'Pi = ' + S);
end;

Delphi Visual Component Library Reference 601

Picture property

Picture property

Applies to
TDBImage, TImage components

Declaration
property Picture: TPicture;

The Picture property determines the image that appears on the image control. The
property value is a TPicture object which can contain an icon, metafile, or bitmap
graphic.

Example

This example uses two picture components. When the form first appears, two bitmaps
are loaded into the picture components and stretched to fit the size of the components.
To try this code, substitute names of bitmaps you have available.

procedure TForml.FormCreate(Sender: TObject);
begin
Imagel.Stretch := True;
Image2.Stretch := True;
Imagel.Picture.LoadFromFile ('BITMAPL.BMP');
Image2.Picture.LoadFromFile ('BITMAP2.BMP');
end;

See also

Bitmap property, Icon property, Metafile property, LoadFromFile method, SaveToFile
method

PictureClosed property

Applies to
TOutline component

Declaration
property PictureClosed: TBitmap;

The PictureClosed property determines the picture displayed in the TOutline component
that represents an item, which contains subitems but is not expanded. By default, the
PictureClosed property contains a picture of a closed file folder. The OutlineStyle property
must be set to osPictureText, osPlusMinusPictureText, or osTreePictureText to display the
PictureClosed picture.

Example
The following code loads a new bitmap for the PictureClosed property of Outlinel.

Outlinel.PictureClosed.LoadFromFile('C:\closed.bmp');

602 Delphi Visual Component Library Reference

PictureLeaf property

See also
PictureLeaf property, PictureMinus property, PictureOpen property, PicturePlus property

PictureLeaf property

Applies to
TOutline component

Declaration
property PicturelLeaf: TBitmap;

The PictureLeaf property determines the picture displayed in the TOutline component
that represents an item that contains no subitems. By default, the PictureLeaf property
contains a bitmap of a document. The OutlineStyle property must be set to osPictureText,
osPlusMinusPictureText, or osTreePictureText to display the PictureLeaf picture.

Example
The following code tests the Width of the leaf picture. If it is wider than ten pixels, the
OutlineStyle is changed so that the leaf picture is not displayed.

if OQutlinel.PictureLeaf.Width > 10 then
Outlinel.OutlineStyle := osTreeText;

See also
PictureClosed property, PictureMinus property, PictureOpen property, PicturePlus
property

PictureMinus property

Applies to

TOutline component

Declaration
property PictureMinus: TBitmap;

The PictureMinus property determines the picture displayed in the TOutline component
that represents an item, which contains subitems and is expanded. By default, the
PictureMinus property contains a bitmap of a minus sign. The OutlineStyle property
must be set to osPlusMinusPictureText or osPlusMinusText to display the PictureMinus
picture.

Example
The following code displays the same picture for the plus and minus states of Outlinel.
The same graphic appears whether an item is expanded or collapsed.

Outlinel.PictureMinus := Outlinel.PicturePlus;

Delphi Visual Component Library Reference 603

PictureOpen property

See also
PictureClosed property, PictureLeaf property, PictureOpen property, PicturePlus property

PictureOpen property

Applies to
TOutline component

Declaration
property PictureOpen: TBitmap;

The PictureOpen property determines the picture displayed in the TOutline component
that represents an item, which contains subitems and is expanded. By default, the
PictureOpen property contains a bitmap of an open file folder. The OutlineStyle property
must be set to osPictureText, osPlusMinusPictureText, or osTreePictureText to display the
PictureOpen picture.

Example
The following code copies text (‘Hello world”) into the PictureOpen bitmap.

Outlinel.PictureOpen.Canvas.TextOut (0, 0, ‘Hello world’);

See also
PictureClosed property, PictureLeaf property, PictureMinus property, PicturePlus property

PicturePlus property

Applies to

TOutline component

Declaration
property PicturePlus: TBitmap;

The PicturePlus property determines the bitmap displayed in the TOutline component
that represents an item, which contains subitems but is not expanded. By default, the
PicturePlus property contains a bitmap of a plus sign. The OutlineStyle property must be
set to osPlusMinusPictureText or osPlusMinusText to display the PicturePlus picture.

Example
The following code allows the user to specify the graphic for the PicturePlus property of
Outlinel by using the Open dialog box .

if OpenDialogl.Execute then
Outlinel.PicturePlus.LoadFromFile (OpenDialogl.FileName);

604 Delphi Visual Component Library Reference

Pie method

See also
PictureClosed property, PictureLeaf property, PictureMinus property, PictureOpen
property

Pie method

Applies to
TCanuvas object

Declaration
procedure Pie(X1, Y1, X2, Y2, X3, Y3, X4, Y4: Longint);

The Pie method draws the section of an ellipse bounded by the rectangle (X1, Y1) and
(X2, Y2) on the canvas. The section drawn is determined by two lines radiating from the
center of the ellipse through the points (X3, Y3) and (X4, Y4).

Example

This code draws a section of an ellipse on the form’s canvas when the user clicks the
button on the form:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Forml.Canvas.Pie(10, 10, 200, 200, 61, 3, 200, 61);
end;

See also
Ellipse method

Plnitinfo property

Applies to
TOLEContainer component; TOLEDropNotify object

Declaration
property PInitInfo: Pointer;

PlnitInfo specifies a pointer to the OLE object initialization information. Assigning a
pointer, which points to valid OLE initialization information, to the PInitInfo property
initializes the OLE object in the OLE container.

Typically, a valid Plnitlnfo pointer can be obtained by using the InsertOLEObjectDlg or
PasteSpecialDlg functions, or as a property of the TOLEDropNotify object passed in the
Source parameter of the OnDragDrop event when an OLE object is dropped on a form.

Delphi Visual Component Library Reference 605

Pitch property

Example
The following code initializes OLEContainerl when an OLE object is dropped on the
Form1 at run time. Attach this code to the OnDragDrop event handler of Form1.

procedure TForml.FormDragDrop (Sender, Source: TObject; X, Y: Integer);
begin
if Source is TOLEDropNotify then
with Source as TOLEDropNotify do
OLEContainerl.PInitInfo := Source.PInitInfo;
end;

Pitch property

Note

Applies to
TFont object

Declaration
property Pitch: TFontPitch;

The Pitch property specifies the pitch or width of the characters of a font. Characters
with variable pitch can have varying widths. For example, the following characters are
in a variable pitch font. Note that the width of ten ‘i’ characters is less than the width of
ten ‘M’ characters.

Hiiiiiiii
MMMMMMMMMM

The following characters are in a fixed-pitch font. Note that ten ‘i’ characters are the
same width as ten ‘M’ characters:

1111111111
MMMMMMMMMM

Here are the possible values for Pitch:

Value Meaning

fpDefault The font pitch is set to the default value, which depends on the font specified in the Name
property.

fpFixed The font pitch is set to fixed. All characters in the font have the same width.

fpVariable The font pitch is set to variable. The characters in the font have different widths.

Setting the Pitch of a fixed-width font to fpVariable or a variable-width font to fpFixed
might have no effect on the appearance of a font, or might cause another font to be
substituted. For example, setting the pitch of MS Serif (a variable-pitch font, by default)
to fpFixed causes Courier to be displayed.

Example
The following code toggles the pitch of the Font of Labell from variable to fixed or from
fixed to variable.

606 Delphi Visual Component Library Reference

Pixels property

if Labell.Font.Pitch = fpFixed then
Labell.Font.Pitch := fpVariable
else
if Labell.Font.Pitch = fpVariable then
Labell.Font.Pitch := fpFixed;

See also
Font property

Pixels property

Applies to
TCanvas object

Declaration
property Pixels[X, Y: Longint]: TColor;

The Pixels array enables you to access any pixel on the canvas directly, to either set or
read the color there. Each element in Pixels contains the color of the corresponding pixel
in the canvas. The array indexes, X and Y, specify the horizontal and vertical
coordinates of the pixel, respectively.

Example
This example draws a red line when the form becomes active. Attach the following code
to the OnActivate event handler:

procedure TForml.FormActivate(Sender: TObject);
var
W: Word;
begin
for W := 10 to 200 do
Canvas.Pixels[W, 10] := clRed;
end;

PixelsPerInch property

Applies to
TFont object; TForm, TScreen components
Declaration

property PixelsPerInch: Integer;

There are three different properties called PixelsPerInch: one for forms, one for the
screen, and one for fonts.

Delphi Visual Component Library Reference 607

PixelsPerlnch property

Note

For forms

Declaration
property PixelsPerInch: Integer;

The PixelsPerInch property for a form determines how many pixels per inch are used to
display a form. A higher value displays a smaller form at run time, and a lower value
displays a larger form. This property is useful when your application runs on a
computer system that uses a screen resolution different than the one you used to create
the application. By specifying the pixels per inch used by the other computer system,
you can be assured that the form appears as you designed it when your application
runs.

Although you can change the PixelsPerInch value with the Object Inspector, you won't
see the results until you run your application. Also, you must set the Scaled property to
be True, or a change in the PixelsPerInch value has no effect.

Example
This example adds 30 to the form’s PixelsPerlnch property if the screen’s PixelsPerlnch
property is greater than 100:

procedure TForml.FormActivate(Sender: TObject);
begin
Forml.Scaled := True;
if Screen.PixelsPerInch > 100 then
Forml.PixelsPerInch := Forml.PixelsPerInch + 30;
end;

See also
Scaled property

For the screen

Declaration
property PixelsPerInch: Integer;

Read and run-time only. The PixelsPerInch property determines how many pixels are in
an inch using the current video driver. The value in PixelsPerInch is retrieved from
Windows when Delphi loads.

Example
This example adds 30 to the form’s PixelsPerInch property if the screen’s PixelsPerlnch
property is greater than 100:

procedure TForml.FormActivate(Sender: TObject);
begin

Forml.Scaled := True;

if PixelsPerInch > 100 then

608 Delphi Visual Component Library Reference

Play method

Forml.PixelsPerInch := Forml.PixelsPerInch + 30;
end;

See also
Screen variable

For fonts

Declaration
property PixelsPerInch: Integer;

The PixelsPerlnch property affects printer fonts only and should not be modified. Delphi
uses the PixelsPerlnch property to ensure that when a font is copied from the form’s
canvas to the printer, the font is the same size in points. For example, if the font is 8
points on the screen, Delphi makes sure the font is 8 points when it is printed.

If you want to modify the size of a font, use the Size and Height properties.

See also
Height property, Size property

Play method

Applies to
TMediaPlayer component

Declaration a
procedure Play;

The Play method plays the media loaded in the open multimedia device. Play is called

when the Play button on the media player control is clicked at run time.

Upon completion, Play stores a numerical error code in the Error property and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Play method has completed. The Notify property determines whether Play generates an
OnNotify event.

If the StartPos property is set, playing starts at the position specified in StartPos.
Otherwise, playing starts at the current position, specified in the Position property.
Similarly, if the EndPos property is set, playing stops at the position specified in EndPos.
Otherwise, playing stops at the end of the medium.

Whether the medium (specified in the Position property) is rewound before playing
starts depends on the AutoRewind property.

Delphi Visual Component Library Reference 609

Point function

Example
This example uses a media player and a button on a form. When the application runs,
only the button is visible. When the user clicks the button, the WAV file plays.

To run this example, the file CHIMES.WAYV must be in your Windows directory.

procedure TForml.FormActivate(Sender: TObject);
var
WinDir: PChar;
begin
MediaPlayerl.Visible := False;
GetMem(WinDir, 144);
GetWindowsDirectory (WinDir, 144);
StrCat (WinDir, '\CHIMES.WAV');
MediaPlayerl.FileName := StrPas(WinDir);
MediaPlayerl.Open;
FreeMem(WinDir, 144);
end;

procedure TForml.ButtonlClick(Sender: TObject);
begin

MediaPlayerl.Play;
end;

See also

Capabilities property, Pause method, PauseOnly method, StartRecording method, Stop
method

Point function

Declaration
function Point (AX, AY: Integer): TPoint;

The Point function takes the x- and y-coordinates passed inAX and AY and returns a
TPoint record. You'll most often use Point to construct a parameter for a function that
requires one or more TPoint.

Example
The following code uses the Polygon method to draw a right triangle on a form called
Form1:

Polygon([Point (10, 10), Point (10, 20), Point (20, 20)]);

See also
Rect function

610 Delphi Visual Component Library Reference

PokeData method

PokeData method

Applies to
TDDEClientConv component

Declaration
function PokeData(Item: string; Data: PChar): Boolean;

The PokeData method sends data to a DDE server application. Text data from a linked
control in the DDE client application is transferred to the linked section of the DDE
server application. Item specifies the linked item in the DDE server. Data is a null-
terminated string that specifies the text data to transfer to the DDE server.

The usual direction of data flow is from the DDE server to the DDE client application.
Some DDE server applications won't accept poked data. PokeData returns True if the
data was successfully transferred, or False if the data was not successfully transferred.

If you need to poke a string list rather than a single string, use the PokeDataLines method.

Note If either the ExecuteMacro or ExecuteMacroLines method was called with its WaitFlg
parameter set to True prior to calling PokeData, you must wait until the server
application has completed executing the macro before calling PokeData. Depending on
the DDE server application, calling PokeData before the DDE server application has
completed executing the macro might cause the macro to execute unsuccessfully or
produce unpredictable results.

Example

The following code pokes the data that is in Edit]1 to the DDE server. The DDE item of
the conversation is specified in the DDEItem property of DDEClientltem1. TheData is a
PChar variable.

DDEClientConvl.PokeData (DDEClientIteml.DDEItem, StrPCopy (TheData, Editl.Text));

See also
PokeDataLines method, StrPCopy function

PokeDataLines method

Applies to
TDDEClientConv component

Declaration
function PokeDatalines(Item: string; Data: TStrings): Boolean;

The PokeDataLines method sends data to a DDE server application. Text data from a
linked control in the DDE client application is transferred to the linked section of the
DDE server application. Item specifies the linked item in the DDE server. Data is a
TStrings object that specifies the text data to transfer to the DDE server.

Delphi Visual Component Library Reference 611

Polygon method

The usual direction of data flow is from the DDE server to the DDE client application.
Some DDE server applications won'’t accept poked data. PokeDataLines returns True if
the data was successfully transferred, or False if the data was not successfully
transferred.

If you need to poke a single string rather than a string list, use the PokeData method.

Note If either the ExecuteMacro or ExecuteMacroLines method was called with its WaitFlg
parameter set to True prior to calling PokeDataLines, you must wait until the server
application has completed executing the macro before calling PokeDataLines. Depending
on the DDE server application, calling PokeDataLines before the DDE server application
has completed executing the macro might cause the macro to execute unsuccessfully or
produce unpredictable results.

Example
The following code pokes the data that is in Memo1 to the DDE server. The DDE item of

the conversation is specified in the DDEItem property of DDEClientltem1. TheData is a
PChar variable.

DDEClientConvl.PokeData (DDEClientIteml.DDEItem, Memol.Lines));

See also
PokeData method

Polygon method

Applies to
TCanuvas object

Declaration
procedure Polygon(Points: array of TPoint);

The Polygon method draws a series of lines on the canvas, connecting the points passed
to it in Points (much as the PolyLine method would), then closes the shape by drawing a
line from the last point to the first point. After drawing the complete shape, Polygon fills
the shape using the current brush.

Example
This example draws a polygon in the specified shape, and fills it with the color teal:

procedure TForml.FormActivate(Sender: TObject);
begin
Canvas.Brush.Color := clTeal;
Canvas.Polygon([Point (10, 10), Point (30, 10),
Point (130, 30), Point (240, 120)]);
end;

See also
PolyLine method

612 Delphi Visual Component Library Reference

PolyLine method

PolyLine method

Applies to
TCanuvas object

Declaration
procedure Polyline(Points: array of TPoint);

The PolyLine method draws a series of lines on the canvas with the current pen,
connecting each of the points passed to it in Points.

Example
This example paints a series of connected lines in the color red:

procedure TForml.FormPaint (Sender: TObject);
begin
Canvas.Pen.Color := clRed;
Canvas.PolyLine([Point (5, 5), Point (100, 40), Point (150, 120),
Point (140, 200), Point (80, 100), Point(5, 5)1);
end;

See also
Pen property, Polygon method

Popup method

Applies to
TPopupMenu component a

Declaration
procedure Popup (X, Y: Integer);

The Popup method displays a pop-up menu onscreen at the coordinates indicated by the
values (in pixels) of X and Y.

Example
This example uses a pop-up menu. When the user presses the mouse button, the pop-up
menu appears near the upper left corner of the form:

procedure TForml.FormMouseDown (Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
PopupMenul.AutoPopup := False;
PopupMenul.Popup (Forml.Left + 10, Forml.Top + 40);

end;

Delphi Visual Component Library Reference 613

PopupComponent property

See also
AutoPopup property, OnPopup event, PopupMenu property

PopupComponent property

Applies to
TPopupMenu component

Declaration
property PopupComponent: TComponent;

Run-time only. The PopupComponent property contains the name of the component the
user last clicked that displayed the pop-up menu. If your application has multiple
controls that share the same pop-up menu, you can use PopupComponent to determine
which of them last displayed the menu.

If you activate a pop-up menu by explicitly calling the Popup method, you should
specify the name of the component you want to associate with the pop-up menu in the
PopupComponent property

Example

This example uses two edit boxes, two memos, and one pop-up menu on a form. The
pop-up menu contains Cut, Copy, and Paste commands. This code makes the pop-up
menu available to both edit boxes and both memos:

procedure TForml.FormCreate(Sender: TObject);

begin
PopupMenul.AutoPopup := True;
Editl.PopupMenu := PopupMenul;
Edit2.PopupMenu := PopupMenul;
Memol.PopupMenu := PopupMenul;
Memo?2 . PopupMenu := PopupMenul ;

end;

These are the cut, copy, and paste OnClick events for the commands on the pop-up
menu. The code only allows the user to cut and copy text from the edit boxes, and to
paste text into the memo boxes.

procedure TForml.CopylClick(Sender: TObject);
begin
if PopupMenul.PopupComponent = Editl then
Editl.CopyToClipboard
else
if PopupMenul.PopupComponent = Edit2 then
Edit2.CopyToClipboard;
end;

procedure TForml.CutlClick(Sender: TObject);
begin
if PopupMenul.PopupComponent = Editl then

614 Delphi Visual Component Library Reference

PopupMenu property

Editl.CutToClipboard
else
if PopupMenul.PopupComponent = Edit2 then
Edit2.CutToClipboard;
end;

procedure TForml.PastelClick(Sender: TObject);
begin
if PopupMenul.PopupComponent = Memol then
Memol.PasteFromClipboard
else
if PopupMenul.PopupComponent = Memo2 then
Memo2 . PasteFromClipboard;
end;

See also
AutoPopup property, OnPopup event, PopupMenu property

PopupMenu property

Applies to

TBitBtn, TButton, TCheckBox, TComboBox, TDBCheckBox, TDBComboBox, TDBEdit,
TDBGrid, TDBImage, TDBLookupCombo, TDBLookupList, TDBListBox, TDBMemo,
TDBNavigator, TDBText, TDBRadioGroup, TDirectoryListBox, TDrawGrid,
TDriveComboBox, TEdit, TFileListBox, TForm, TGroupBox, TImage, TLabel, TListBox,
TMaskEdit, TMemo, TNotebook, TPanel, TPaintBox, TRadioButton, TScrollBar, TScrollBox,
TStringGrid components

Declaration
property PopupMenu: TPopupMenu; a

The PopupMenu property identifies the name of the pop-up menu that appears when the
user selects the component and presses the right mouse button (if the pop-up menu’s
AutoPopup property is True), or when the Popup method of the pop-up menu executes.

Example
This example assigns the pop-up menu named MyPopupMenu to the form:
procedure TForml.FormActivate(Sender: TObject);
begin
PopupMenu := MyPopupMenu;
end;

See also
OnPopup event

Delphi Visual Component Library Reference 615

Pos function

Pos function System

Declaration

function Pos(Substr: string; S: string): Byte;

The Pos function searches for a substring in a string.
Substr and S are string-type expressions.

Pos searches for Substr within S and returns an integer value that is the index of the first
character of Substr within S.

If Substr is not found, Pos returns zero.

Example
var S: string;
begin
S = 123.5";
{ Convert spaces to zeroes }
while Pos(' ', S) > 0 do
S[Pos(' ', S)] := '0';
end;
See also

Concat function, Copy function, Delete procedure, Insert procedure, Length function

Position property

Applies to
TControlScrollBar, TForm, TMediaPlayer, TScrollBar components

The Position property determines the visual position of a component or the current
position within media loaded in a media player.

For forms

Declaration

property Position: TPosition;

616 Delphi Visual Component Library Reference

Position property

The Position property determines the size and placement of the form when it appears in
your application. These are the possible values:

Value
poDesigned

poDefault

poDefaultPosOnly

poDefaultSizeOnly

poScreenCenter

Meaning

The form appears positioned on the screen and with the same height and width as
it had at design time.

The form appears in a position on the screen and with a height and width
determined by Delphi. Each time you run the application, the form moves slightly
down and to the right. The right side of the form is always near the far right side
of the screen, and the bottom of the form is always near the bottom of the screen,
regardless of the screen’s resolution.

The form displays with the size you created it at design time, but Delphi chooses
its position on the screen. Each time you run the application, the form moves
slightly down and to the right. When the form can no longer move down and to
the right and keep the same size while remaining entirely visible on the screen, the
form displays at the top-left corner of the screen.

The form appears in the position you left it at design time, but Delphi chooses its
size. The right side of the form is always near the far right side of the screen, and
the bottom of the form is always near the bottom of the screen, regardless of the
screen’s resolution.

The form remains the size you left it at design time, but is positioned in the center
of the screen.

The default value is poDesigned.

Example

This code assures that the first form will appear centered on the screen:

procedure TForml.FormCreate(Sender: TObject);

begin

Position := poScreenCenter;

end;

For scroll bars

Declaration

property Position: Integer;

The Position property determines the position of the thumb tab on a scroll bar. When the
user scrolls the scroll bar, the value of Position changes. You can also change where the
thumb tab appears on the scroll bar by changing the value of Position.

For TControlScrollBar components, the value of the Range property determines the
number of possible positions on a scroll bar that a thumb tab can assume. The default
value is 0, which positions the thumb tab at the far left.

For TScrollBar components, the number of possible positions on the scroll bar is
determined by the difference between the Max property and the Min property. If the
Min and Position values are both 0, the thumb tab is positioned to the far left on a
horizontal scroll bar and to the top of a vertical scroll bar. If Min is 10, Position can be no

less than 10.

Delphi Visual Component Library Reference 617

Position property

Example
This code places the thumb tab in the middle of the scroll bar:

ScrollBarl.Max := 1000;
ScrollBarl.Min := 500;
ScrollBarl.Position := 750;

See also

HorzScrollBar property, Increment property, LargeChange property, SmallChange
property, VertScrollBar property

For media player controls

Declaration
property Position: Longint;

Run-time only. The Position property specifies the current position within the currently
loaded medium. The value of Position is specified according to the current time format,
which is specified in the TimeFormat property.

Position defaults to the beginning of the medium. If the medium supports multiple
tracks, Position defaults to the beginning of the first track.

Example

The following code shows the position of the currently playing . WAV audio file
(CARTOON.WAY in this example) in the Caption of a label. The current position is
updated by Timer1.

procedure TForml.BitBtnlClick(Sender: TObject);
begin
with MediaPlayerl do begin
DeviceType := dtWaveAudio;
FileName := 'CARTOON.WAV';
Open;
TimeFormat := tfMilliseconds;
Labell.Caption := IntToStr(Position);
Play;
end;
end;

procedure TForml.TimerlTimer (Sender: TObject);
begin

Labell.Caption := IntToStr(MediaPlayerl.Position);
end;

See also
Length property, Start property, TrackPosition property, Tracks property

618 Delphi Visual Component Library Reference

Post method

For Find and Replace dialog boxes

Applies to
TFindDialog, TReplaceDialog component

Declaration
property Position: TPoint;

The Position property determines where the Find or Replace dialog box appears
onscreen.

Example
This example uses a Find dialog box and a button on a form. When the user clicks the
button, the Find dialog box appears on screen at location 100, 200.

procedure TForml.ButtonlClick(Sender: TObject);
begin

FindDialogl.Position := Point (100, 200);

if FindDialogl.Execute then ;
end;

See also
CloseDialog method

Post method

Applies to
TTable, TQuery, TStoredProc components

Declaration
procedure Post;

The Post method writes the current record to the database. Post should be called after
calling Append or Insert and making any desired changes to the fields of the current
record.

Post behaves differently depending on a dataset’s state.
¢ In Edit state, Post modifies the current record.
* In Insert state, Post inserts or appends a new record.

¢ In SetKey state, Post commits the changes to the search key buffer, and returns the
dataset to Browse state.

Posting can be done explicitly, or implicitly as part of another procedure. When an
application moves off the current record, Delphi calls Post implicitly. Calls to the Next,
MoveBy, Prior, First, and Last methods perform a Post if the table is in Edit or Insert state.

Delphi Visual Component Library Reference 619

Precision property

The Append, AppendRecord, Insert, and InsertRecord methods also implicitly perform a
Post of any pending data.

Note If the record can not be written to the database for some reason, the dataset will remain
in Edit state.

Example

with Tablel do
begin
Append;
FieldByName(‘CustNo’).AsString := ‘9999';
{ Fill in other fields here }
if { you are sure you want to do this} then Post
else { if you changed your mind } Cancel;
end.

See also
Cancel method

Precision property

Applies to
TBCDField, TCurrencyField, TFloatField components

Declaration

property Precision: Integer;

The Precision property is used in formatting numeric fields. The value of Precision is the
number of decimal places to the right of the decimal point the numeric value should be
formatted to before rounding begins. The default value is 15 decimal places.

Pred function System

Declaration
function Pred(X);
The Pred function returns the predecessor of the argument.
X is an ordinal-type expression. The result, of the same type as X, is the predecessor
of X.
Example
uses Dialogs;

type
Colors = (RED,BLUE,GREEN);

620 Delphi Visual Component Library Reference

PrefixSeg variable

var
S: string;
begin
S := 'The predecessor of 5 is ' + IntToStr(Pred(5)) + #13#10;
S := S + 'The successor of 10 is ' + IntToStr(Succ(10)) + #13#10;
if Succ(RED) = BLUE then
S := S + '"In the type Colors, RED is the predecessor of BLUE.';
MessageDlg (S, mtInformation, [mbOk], 0);
end;

See also
Dec procedure, Inc procedure, Succ function

PrefixSeg variable System

Declaration
var PrefixSeg: Word;

In a program, the PrefixSeg variable contains the selector (segment address) of the
Program Segment Prefix (PSP) created by DOS and Windows when the application was
executed.

In a library, PrefixSeg is always 0.

For a complete description of the PSP, refer to your Windows manuals.

Prepare method

Applies to
TQuery, TStoredProc components

For stored procedures

Declaration
procedure Prepare;

The Prepare method prepares the stored procedure to be executed. This allows the server
to load the procedure and otherwise prepare for execution.

Example

StoredProcl.Prepare;

See also
Prepared property, UnPrepare method

Delphi Visual Component Library Reference 621

Prepared property

For queries

Declaration
procedure Prepare;

The Prepare method sends a parameterized query to the database engine for parsing and
optimization. A call to Prepare is not required to use a parameterized query. However, it
is strongly recommended, because it will improve performance for dynamic queries
that will be executed more than once. If a query is not explicitly prepared, each time it is
executed, Delphi automatically prepares it.

Prepared is a Boolean property of TQuery that indicates if a query has been prepared.

If a query has been executed, an application must call Close before calling Prepare again.
Generally, an application should call Prepare once—for example, in the OnCreate event
of the form—then set parameters using the Params property, and finally call Open or
ExecSQL to execute the query. Each time the query is to be executed with different
parameter values, an application must call Close, set the parameter values, and then
execute the query with Open or ExecSQL.

See also
Text property

Prepared property

Applies to
TQuery, TStoredProc components

For stored procedures

Declaration
property Prepared: Boolean;

Run-time only. The Prepared property is True if the stored procedure has been submitted
to the server for optimization purposes. Setting Prepared to True will not execute the
procedure; it simply advises the server that the procedure will need to be executed at
some future time. Setting Prepared to True is equivalent to calling the Prepare method;
setting it to False is equivalent to calling the UnPrepare method.

Example

{ Make sure that the server is aware that we will be executing the procedure }
with StoredProcl do
if not Prepared then Prepared := True;

See also
Prepare method, UnPrepare method

622 Delphi Visual Component Library Reference

Preview property

For queries

Declaration
property Prepared: Boolean;

Run-time only. The Prepared property specifies if the Prepare method has been called to
prepare the TQuery. While preparing a query is not required, it is highly recommended
in most cases.

Note Close the TQuery by setting the Active property to False before changing Prepared.

Example

if not Queryl.Prepared then
begin
Queryl.Close;
Queryl.Prepared := True;
end;

See also
Params property, UnPrepare method

Preview property

Applies to

TReport component

Declaration

property Preview: Boolean; a

The Preview property determines whether a report should be viewed onscreen or
printed. If Preview is True, the report appears onscreen when the report is run. If Preview
is False, the report is printed.

Example

This example uses a report component and a button on a form. When the user clicks the
button, a message appears if the Preview property is True. If Preview is True, the MyReport
report is sent to the screen; if Preview is False, the report prints on the printer.

procedure TForml.ButtonlClick(Sender: TObject);
begin
Reportl.ReportName := ‘MyReport’;
if Reportl.Preview then
Application.MessageBox('Sending the report to the screen', 'Message box', MB_OK);
Reportl.Run;
end;

Delphi Visual Component Library Reference 623

Previous method

See also
ReportName property, Run method

Previous method

Applies to
TForm, TMediaPlayer components

The Previous method activates the previous form or media player track.

For forms

Declaration
procedure Previous;

The Previous method makes the previous child form in the form sequence the active
form.

For example, if you have three child forms within a parent form in your MDI
application and Form4 is the active form, the Previous method makes Form3 the active
form. Calling Previous again makes Form2 active. The next time your application calls
Previous, the sequence starts over again and Form4 becomes the active form once again.

The Previous method applies only to forms that are MDI parent forms (have a FormStyle
property value of fsMDIForm).

Example
This code sample activates the previous child window of the parent (Form1) when the
user selects a menu item named Previous on a menu.

procedure TForml.PreviouslClick(Sender: TObject);
begin

Previous;
end;

See also
Arrangelcons method, Cascade method, Next method, Tile method

For media players

Declaration
procedure Previous;

The Previous method sets the current position to the beginning of the previous track if
the position was at the beginning of a track when Previous was called. If the position is at
the first track or somewhere other than the beginning of a track when Previous was

624 Delphi Visual Component Library Reference

Print method

called, Previous sets the current position to the beginning of the current track. If the
device doesn’t use tracks, Previous sets the current position to the beginning of the
medium, which is specified in the Start property. Previous is called when the Previous
button on the media player control is clicked at run time.

Upon completion, Previous stores a numerical error code in the Error property and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Previous method has completed. The Notify property determines whether Previous
generates an OnNotify event.

Example

The following code rewinds the media after playing has completed. Normally, setting
AutoRewind to True would accomplish the same result, but if EndPos is set, AutoRewind
has no effect. This code is essentially an AutoRewind for media with EndPos set.

with MediaPlayerl do
begin
EndPos := 3000;
Play;
Previous;
end;

See also
AutoRewind property, Next method, Position property, Tracks property

Print method

Applies to
TForm, TReport components

For forms

Declaration
procedure Print;

The Print method prints the form.

Example
This example uses a button named PrintButton on a form. When the user chooses the
button, the form prints.

procedure TForml.PrintButtonClick(Sender: TObject);
begin

Print;
end;

Delphi Visual Component Library Reference 625

PrintCopies property

See also
PrintScale property

For reports

Declaration
function Print: Boolean;

The Print method determines whether a ReportSmith report prints. Print sends a DDE
message to ReportSmith Runtime and looks for a DDE message from ReportSmith
Runtime in return. If Print returns True, ReportSmith Runtime received the message to
print the report. If Print returns False, ReportSmith Runtime could not receive the DDE
message at the current time.

Example
This example notifies the user if the report is being printed:

procedure TForml.ButtonlClick(Sender: TObject);
begin
if Reportl.Print = True then
MessageDlg('Printing the report', mtInformation, [mbOK], 0) ;
end;

See also
Preview property, PrintCopies property, Run method

PrintCopies property

Applies to
TReport component

Declaration
property PrintCopies: Word;

The value of the PrintCopies property determines how many copies of the report are
printed when you run a report. Specify the number of copies you want printed when
your report runs. The default value is 1.

Example
The following code reads the number of copies to print from an edit box.

Reportl.PrintCopies := StrToInt (Editl.Text);

See also
EndPage property, StartPage property

626 Delphi Visual Component Library Reference

Printer variable

Printer variable Printers

Declaration
Printer: TPrinter;

The Printer variable declares an instance of the TPrinter object. Use Printer when you
want to print using the TPrinter object.

Printer is declared in the Printers unit. Whenever you use Printer and the TPrinter object,
you must add Printers to the uses clause of your unit.

Example
This example prints a one-line print job when the user clicks the button on the form:

procedure TForml.ButtonlClick(Sender: TObject);

begin
Printer.BeginDoc;
Printer.Canvas.TextOut (100,100, 'Programming is easy');
Printer.EndDoc;

end;

Printerindex property

Applies to
TPrinter object

Declaration

property PrinterIndex: Integer;
Run-time only property. The Printerlndex property specifies which printer listed in the a
Printers property is the currently selected printer.

To select the default printer, set the value of PrinterIndex to -1.

Example

The following code asks the user if they want to use the default printer. If they choose
yes, PrinterIndex specifies the default printer. The code assumes that Printer is a TPrinter
object.

if (MessageDlg('Do you want to use the default printer',
mtInformation, mbYesNoCancel,(0)=idYes) then
Printer.PrinterIndex := -1;

See also
Printers property

Delphi Visual Component Library Reference 627

Printers property

Printers property

Applies to
TPrinter object

Declaration
property Printers: TStrings;

Run-time and read only. The Printers property is a list of all printers installed in
Windows.

Example
The following code displays the names of all printers in ListBox1.

begin
ListBoxl.Items := Printerl.Printers;
end;

See also
Printer variable

Printing property

Applies to
TPrinter object

Declaration
property Printing: Boolean;

Run-time and read only. The Printing property determines whether a print job is
printing. Printing is True when your application has called the BeginDoc method, but the
EndDoc method (or the Abort method) hasn’t been called yet.

Example
This code terminates the print job if the job is currently printing:

if Printer.Printing then
Abort;

See also
Aborted property

628 Delphi Visual Component Library Reference

PrintRange property

PrintRange property

Applies to
TPrintDialog component

Declaration
property PrintRange: TPrintRange;

The PrintRange property determines the type of print range the application uses to print
a file. These are the possible settings:

Value Meaning

prAllPages If set at run time, the user chose to print all pages of the print job. If you set the PrintRange
value to prAllPages at design time, the All Pages radio button is selected when the Print
dialog box first appears.

prSelection If set at run time, the user chose to print only selected text. If you set thePrintRange value
to prSelection at design time, the Selection radio button is selected when the Print dialog
box first appears.

prPageNums If set at run time, the user chose to specify a range of pages to print. If you set the
PrintRange value to prPageNum at design time, the Pages radio button is selected when
the Print dialog box first appears, and the user can specify a print range by page numbers.
The page numbers are set through the MinPage and MaxPage properties.

The default value is prAllPages.

Note The PrintRange property can have the value prSelection only if the Options property set
includes poSelection. Also, the PrintRange property can have the value prPageNums only
if the Options property set includes poPageNums. If you select either of these PrintRange
values at design time, but neglect to set the corresponding Options values to True, only
the All Pages option will be enabled when your application displays the Print dialog

box. a

Example
The following code allows the printing of selected text.

PrintDialogl.Options := PrintDialogl.Options + [poSelection];
PrintDialogl.PrintRange := prSelection;

See also
Options property, PrintToFile property

PrintScale property

Applies to

TForm component

Delphi Visual Component Library Reference 629

PrintToFile property

Declaration
property PrintScale: TPrintScale;

The PrintScale property determines the proportions of a printed form. These are the
possible values:

Value Meaning

poNone No special scaling occurs; therefore, the printed form and how the form appears
onscreen may have somewhat different proportions.

poProportional The form is printed so that it maintains the same size that is has on the screen (the
same number of pixels per inch is used).

poPrintToFit The form is printed using the same screen proportions, but in a size that just fits the
printed page.

The default value is poProportional.

Example
The following code maintains the proportions of the form when it is printed.

Forml.PrintScale := poProportional;
Forml.Print;

See also
Print method

PrintToFile property

Applies to
TPrintDialog component

Declaration
property PrintToFile: Boolean;

The PrintToFile property determines if the user has chosen to print the print job to a file
rather than to a printer. If True, the user has checked the Print to File check box. If False,
the user has unchecked the Print to File check box. If PrintToFile is set to True at design
time, the Print to File check box is checked when the Print dialog box appears in your
application. The default value is False.

Note The Print to File check box appears in the Print dialog box, only if theOptions property set
includes poPrintToFile. Otherwise, your users won't have the option of choosing to print
to a file.

Example
This example displays a print dialog box with its Print to File check box checked:

procedure TForml.BitBtnlClick(Sender: TObject);
begin

630 Delphi Visual Component Library Reference

Prior method

with PrintDialogl do
begin
Options := [poPrintToFile];
PrintToFile := True;
if Execute then
end;
end;

Prior method

Applies to
TTable, TQuery, TStoredProc components

Declaration
procedure Prior;

The Prior method moves the current record position of the dataset backward by one
record. If the dataset is in Insert or Edit state, Prior will perform an implicit Post of any
pending data.

Example

{ Move to the previous record }
Tablel.Prior;
if Tablel.BOF then { No more records };

See also
First method, Last method, MoveBy method, Next method

PrivateDir property

Applies to

TSession component

Declaration
property PrivateDir: string;

Run-time only. PrivateDir specifies the path of the directory in which to store temporary
files (for example, files used to process local SQL statements). You should set this
property if there will be only one instance of the application running at a time.
Otherwise, the temporary files from multiple application instances will interfere with
each other.

See also
Session variable

Delphi Visual Component Library Reference 631

ProblemCount property

ProblemCount property

Applies to
TBatchMove component

Declaration
property ProblemCount: Longint;

Run-time and read only. ProblemCount is the number of records which could not be
added to Destination without loss of data due to field width constraints. If
AbortOnProblem is True, then this number will be one, since the operation will be aborted
when the problem occurs.

Example

MessageDlg (IntToStr (BatchMovel.ProblemCount) + ' records had problems’,
mtInformation, [mbOK], 0);

See also
ProblemTableName property

ProblemTableName property

Applies to
TBatchMove component

Declaration
property ProblemTableName: TFileName;

If the Execute method is unable to move a record to Destination without data loss (caused
by a field width conflict), the record will be placed in a new table with the name
supplied in ProblemTableName. If AbortOnProblem is True, then there will be at most one
record in this table since the operation will be aborted with that first record.
ProblemCount will have the number of records placed in the new table. If
ProblemTableName is not specified, the data in the record will still be trimmed and placed
in the destination table.

Example

BatchMovel.ProblemTableName := ‘PROB.DB’;

ProcessMessages method

Applies to
TApplication component

632 Delphi Visual Component Library Reference

ProcessMessages method

Declaration
procedure ProcessMessages;

The ProcessMessages method interrupts the execution of your application so that
Windows can respond to events. For example, the user might want to move a form on
the screen while your application is doing some complex processing that would
ordinarily prevent Windows from responding to keyboard or mouse events. By calling
ProcessMessages, your application permits Windows to process these events at the time
ProcessMessages is called. The ProcessMessages method cycles the Windows message loop
until it is empty and then returns control to your application.

Example

This example uses two buttons that are long enough to accommodate lengthy captions
on a form. When the user clicks the button with the caption Ignore Messages, the code
begins to generate a long series of random numbers. If the user tries to resize the form
while the handler is running, nothing happens until the handler is finished. When the
user clicks the button with the caption Process Messages, more random numbers are
generated, but Windows can still respond to a series of mouse events, such as resizing
the form.

Note How quickly these event handlers run depends on the microprocessor of your
computer. A message appears on the form informing you when the handler has finished

executing.
procedure TForml.FormCreate(Sender: TObject);
begin
Buttonl.Caption := 'Ignore Messages';
Button2.Caption := 'Process Messages';
end;

procedure TForml.ButtonlClick(Sender: TObject);
var
I, J, X, Y: Word;
begin
I:=0;
J := 0;
while T < 64000 do
begin
Randomize;
while J < 64000 do
begin
Y := Random(J);
Inc(J);
end;
X := Random(I);
Inc(I);
end;
Canvas.TextOut (10, 10, 'The ButtonlClick handler is finished');
end;

procedure TForml.Button2Click(Sender: TObject);
var

Delphi Visual Component Library Reference 633

Ptr function

I, J, X, Y: Word;
begin
I:=0;
J :=0;
while I < 64000 do
begin
Randomize;
while J < 64000 do
begin
Y := Random(J);
Inc(J);
Application.ProcessMessages;
end;
X := Random(I);
Inc(I);
end;
Canvas.TextOut (10, 10, 'The Button2Click handler is finished');
end;

Ptr function System

Declaration
function Ptr(Seg, Ofs: Word): Pointer;

The Ptr function converts a segment base and an offset address to a pointer-type value.
Seg and Ofs are expressions of type Word.

The result is a pointer that points to the address given by Seg and Ofs. Like nil, the result
of Ptr is assignment compatible with all pointer types. The function result can be
immediately dereferenced only if it is typecast:

if Byte(Ptr(Seg0040, $49)”) = 7 then
Writeln('Video mode = mono');

Example

var P: "Byte;
begin

P := Ptr($40, $49);

Canvas.TextOut (10, 10, 'Current video mode is ' + IntToStr(P"));
end;

See also
Addr function

634 Delphi Visual Component Library Reference

PtrRec

PtrRec SysUtils

Declaration

PtrRec = record
Ofs, Seg: Word;
end;

PtrRec declares a utility record that stores the offset and segment of a pointer as type
Word.

See also
Ofs function, Seg function

Random function System

Declaration
function Random [(Range: Word)];
The Random function returns a random number within the range 0 <= X <Range.

If Range is not specified, the result is a real-type random number within the range
0<=X<1.

To initialize the Random number generator, call Randomize, or assign a value to the
RandSeed variable.

Example

var
I: Integer;
begin
Randomize;
for T := 1 to 50 do begin
{ Write to window at random locations }
Canvas.TextOut (Random(Width), Random(Height), 'Boo!');
end;
end;

See also
Randomize procedure, RandSeed variable

Randomize procedure System

Declaration

procedure Randomize;

Delphi Visual Component Library Reference 635

RandSeed variable

The Randomize procedure initializes the built-in random number generator with a
random value (obtained from the system clock).

The random number generator should be initialized by making a call to Randomize, or
by assigning a value to RandSeed.

Example

var
I: Integer;
begin
Randomize;
for T := 1 to 50 do begin
{ Write to window at random locations }
Canvas.TextOut (Random(Width), Random(Height), 'Boo!');
end;
end;

See also
Random function, RandSeed variable

RandSeed variable System

Declaration
var RandSeed: LongInt;
The RandSeed variable stores the built-in random number generator's seed.

By assigning a specific value to RandSeed, the Random function can repetitively generate
a specific sequence of random numbers.

This is useful for applications that deal with data encryption, statistics, and simulations.

See also
Random function, Randomize procedure

Range property

Applies to
TControlScrollBar component

Declaration
property Range: Integer;

The value of the Range property determines how far a horizontal or vertical form scroll
bar can be scrolled. It also represents the virtual size of the form. For example, if the
Range value of a horizontal scroll bar is 500, and the client width of the form is 200, the

636 Delphi Visual Component Library Reference

Read method

scroll bar position can range from 0 to 300. While the client width of the form is 200, the
virtual client width of the form is 500, because the user can scroll the form that far.

If the value of Range for a horizontal scroll bar is less than the client width of the form or
scroll box, no horizontal scroll bar appears on the form. Likewise, if the value of Range
for a vertical scroll bar is less than the client height of the form or scroll box, no vertical
scroll bar appears.

For a horizontal scroll bar, the Range is calculated to be the distance of the right edge of
the control that is the farthest to the right in the scroll bar or form from the left edge of
the scroll box or form plus an amount specified as the value of the Margin property. If
the form or scroll box contains one or more controls that are right-aligned (their Align
value is alRight), the width of these controls is also added to the Range calculation.

For a vertical scroll bar, the Range is calculated to be the distance of the bottom edge of
the control farthest away from the top edge of the scroll box or form from the top of the
scroll box or form plus an amount specified as the value of the Margin property. If the
form or scroll box contains one or more controls that are bottom-aligned (their Align
value is alBottom), the height of these controls is also added to the Range calculation.

Example

This example uses a button on a form. When the user clicks the button, a vertical scroll
bar alternately appears and disappears on the form, because the value of the Range
property changes with each click.

procedure TForml.ButtonlClick(Sender: TObject);
begin
ClientHeight := 300;

VertScrollBar.Visible := True;
if VertScrollBar.Range = 290 then
VertScrollBar.Range := 500

else
VertScrollBar.Range := 290;

end;
See also G

ClientHeight property, ClientWidth property, HorzScrollBar property, VertScrollBar
property, Visible property

Read method

Applies to

TBlobStream object

Declaration

function Read(var Buffer; Count: Longint): Longint;

The Read method copies up to Count bytes from the current position in the field to Buffer.
Buffer must have at least Count bytes allocated for it. Read returns the number of bytes

Delphi Visual Component Library Reference 637

Read procedure

transferred (which may be less than the number requested in Count.) Transfers which
require crossing a selector boundary in the destination will be handled correctly.

Example

BlobStreaml.Read (MyBuf, 4096);

See also
TBlobField component, TBytesField component, TVarBytesField component

Read procedure System

Declaration
Typed files:
procedure Read(F , V1 [, V2,...,Vn]);
Text files:
procedure Read([var F: Text;] VI [, V2,...,Vn]);
The Read procedure can be used in the following ways.

e For typed files, it reads a file component into a variable.
¢ For text files, it reads one or more values into one or more variables.

With a type string variable

* Read reads all characters up to, but not including, the next end-of-line marker or until
Eof(F) becomes True; it does not skip to the next line after reading. If the resulting
string is longer than the maximum length of the string variable, it is truncated.

o After the first Read, each subsequent Read sees the end-of-line marker and returns a
zero-length string.

¢ Use multiple ReadIn calls to read successive string values.

When the extended syntax is enabled, Read can read null-terminated strings into zero-
based character arrays.

With type integer or type real variables

* Read skips any blanks, tabs, or end-of-line markers preceding the numeric string.

¢ If the numeric string does not conform to the expected format, an I/O error occurs;
otherwise, the value is assigned to the variable.

¢ The next Read starts with the blank, tab, or end-of-line marker that terminated the
numeric string.

See also
Eof function, ReadKey function, Readln procedure, Write procedure, Writeln procedure

638 Delphi Visual Component Library Reference

ReadBool method

ReadBool method

Applies to
TIniFile object

Declaration
function ReadBool (const Section, Ident: string; Default: Boolean): Boolean;
The ReadBool method retrieves a Boolean value in an .INI file.

The Section constant identifies the section of the .INI file in which to search for the value.
For example, the WIN.INI for Windows contains a [Desktop] section.

The Ident parameter is the name of the identifier of which you want the value.

The Default parameter is the default value.

Example
This example reads the DELPHLINI file and displays on the form the status of your auto
save options.

To run this application, you must add the IniFiles unit to the uses clause of your unit.

procedure TForml.FormActivate(Sender: TObject);
var
DelphiIni: TIniFile;
begin
DelphiIni := TIniFile.Create('Delphi.Ini');
with DelphilIni do
begin
if ReadBool ('AutoSave', 'EditorFiles', True) = True then
Canvas.TextOut (10, 10, 'Auto saving editor files.')
else
Canvas.TextOut (10, 10, 'Not auto saving editor files.');
if ReadBool ('AutoSave', 'DesktopFile', True) = True then
Canvas.TextOut (10, 50, 'Auto saving desktop file.')
else
Canvas.TextOut (10, 50, 'Not auto saving desktop file.');
end;
DelphiIni.Free;
end;

See also
ReadInteger method, ReadSection method, ReadString method, WriteBool method

ReadBuf function WinCrt

Declaration

function ReadBuf (Buffer: PChar; Count: Word): Word;

Delphi Visual Component Library Reference 639

ReadFrom method

The ReadBuf function inputs a line from the CRT window.

Buffer points to a line buffer that can store up to Count characters. Count contains the
number of characters to read.

Only Count-2 characters can be input because an end-of-line marker (a #13 followed by
a #10) is automatically appended to the line when the user presses Enter.

If CheckEof is True, the user can terminate the input line by pressing Ctrl+Z, and the line
will have an end-of-line marker (#26) appended to it.

ReadBuf returns the number of characters read, including the end-of-line or end-of-file
marker.

Example
uses WinCrt;

var
C: PChar;

begin
GetMem(C, 20);
C := #0#0#0#0%0#0#04#040#040#0#04040#0#040%0#0;
Writeln('Type a phrase up to 20 characters long:');
ReadBuf (C, 20);
Writeln(' You typed: ');
Writeln(C);

end;

See also
ReadKey function

ReadFrom method

Applies to
TBitmap, TGraphic, Tlcon, TMetafile, TPicture objects

Declaration
procedure ReadFrom(const Filename: string); virtual;

The ReadFrom method reads an image from the file named in FileName.

Example
To read an image into a bitmap object called MyBitmap from the file MYBITMAP.BMP,

MyBitmap.ReadFrom(‘'MYBITMAP.BMP');

See also
SaveToFile method

640 Delphi Visual Component Library Reference

Readln procedure

Readin procedure System

Declaration
procedure Readln([var F: Text;] V1 [, V2, ...,Vn]);
The Readln procedure reads a line of text and then skips to the next line of the file.

ReadIn(F) with no parameters causes the current file position to advance to the
beginning of the next line if there is one; otherwise, it goes to the end of the file.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for I/O errors.

Example
uses WinCrt;

var
s : string;

begin
Write('Enter a line of text: ');
Readln(s);
Writeln('You typed: ',s);
Writeln('Hit <Enter> to exit');
Readln;

end;

See also
Read procedure, Writeln procedure

ReadInteger method

Applies to
TIniFile object

Declaration
function ReadInteger(const Section, Ident: string; Default: Longint): Longint;

The ReadInteger method retrieves an integer value in an .INI file.

The Section constant identifies the section of the .INI file in which to search for the value.
For example, the WIN.INI for Windows contains a [Desktop] section.

The Ident parameter is the name of the identifier of which you want the value.

The Default parameter is the default value.

Delphi Visual Component Library Reference 641

ReadKey function

Example
This example reads settings in the WIN.INI file and displays on the form the value of a
few settings.

Before you run this example, you must add the IniFiles unit to the uses clause of your
unit.

procedure TForml.FormActivate(Sender: TObject);
var
WinIni: TIniFile;
begin
Canvas.TextOut (20, 10, 'VARIOUS WINDOWS SETTINGS');
WinIni := TIniFile.Create('Win.Ini');
with WinIni do
begin
Canvas.TextOut (10, 45, 'Border Width = ' +
IntToStr (ReadInteger ('Windows', 'BorderWidth', -1)));
Canvas.TextOut (10, 65, 'Icon Spacing = ' +
IntToStr (ReadInteger ('Desktop', 'IconSpacing', -1)));
Canvas.TextOut (10, 85, 'Grid Granularity = ' +
IntToStr (ReadInteger ('Desktop', 'GridGranularity', -1)));
Canvas.TextOut (10, 105, 'Cursor Blink Rate = ' +
IntToStr (ReadInteger ('Windows', 'CursorBlinkRate', -1)));
Canvas.TextOut (10, 125, 'Double Click Speed = ' +
IntToStr (ReadInteger ('Windows', 'DoubleClickSpeed', -1)));
end;
WinIni.Free;
end;

See also
ReadBool method, ReadSection method, ReadString method, WriteBool method

ReadKey function WinCrt

Declaration
function ReadKey: Char;
The ReadKey function reads a character from the keyboard.

ReadKey supports only standard ASCII key codes. It does not support extended key
codes, such as function and cursor keys codes.

Example
uses WinCrt;

var
C: Char;

begin
Writeln('Please press a key');

642 Delphi Visual Component Library Reference

ReadOnly property

C := Readkey;
Writeln(' You pressed ', C, ', whose ASCII value is ', Ord(C), ".");
end;
See also

KeyPressed function, ReadBuf function

ReadOnly property

Applies to

TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField, TDateField,
TDateTimeField, TDBCheckBox, TDBComboBox, TDBEdit, TDBGrid, TDBImage,
TDBListBox, TDBLookupCombo, TDBLookupList, TDBMemo, TDBRadioGroup, TEdit,
TFloatField, TGraphicField, TIntegerField, TMaskEdit, TMemo, TMemoField, TSmallintField,
TStringField, TTable, TTimeField, TVarBytesField, TWordField components

For controls

Declaration
property ReadOnly: Boolean;

The ReadOnly property determines if the user can change the contents of the control. If
ReadOnly is True, the user can’t change the contents. If ReadOnly is False, the user can
modify the contents. The default value is False.

For data-aware controls, the ReadOnly property determines whether the user can use the
data-aware control to change the value of the field of the current record, or if the user
can use the control only to display data. If ReadOnly is False, the user can change the
field’s value as long as the dataset is in edit mode.

When the ReadOnly property of a data grid is True, the user can no longer use the Insert
key to insert a new row in the grid, nor can the user append a new row at the end of the
data grid with the Down Arrow key.

Example
This code toggles the read-only state of an edit box each time the user double-clicks the
form:

procedure TForml.FormActivate(Sender: TObject);
begin

Editl.Left := 2;

Editl.Top := 2;

Editl.ReadOnly := True;

Editl.Text := 'Change Me';

Canvas.TextOut (10, 40, 'Double-click form to toggle read-only state');
end;

procedure TForml.FormDblClick(Sender: TObject);
begin

Delphi Visual Component Library Reference 643

ReadSection method

Editl.ReadOnly := not Editl.ReadOnly;
end;

See also
Alignment property, EditMask property, Options property, Title property, Visible property

For tables

Declaration

property ReadOnly: Boolean;

Use the ReadOnly property to prevent users from changing data in the table.
Note Set the Active property to False before changing ReadOnly.

Example

Tablel.Active := False;
Tablel.ReadOnly := True;
Tablel.Active := True;

See also
Exclusive property

For field components

Declaration
property ReadOnly: Boolean;

ReadOnly enables or disables modification of a field. If set to False, the default, a field can
be modified. To prevent a field from being modified, set ReadOnly to True. Ina TDBGrid,
tabbing from field to field skips over ReadOnly fields.

ReadSection method

Applies to
TIniFile object

Declaration
procedure ReadSection (const Section: string; Strings: TStrings);

The ReadSection method reads all the variables of a section of an .INI file into a string
object. The Strings parameter specifies the string list object. If you want to use a string
list that is maintained by a component such as a list box, Strings should specify the
property of the component that contains the string list. If you want to maintain the
string list independent of any components, use a TStringList object.

644 Delphi Visual Component Library Reference

ReadSectionValues method

The Section constant identifies the section of the .INI file that is read. For example, the
WINL.INI for Windows contains a [Desktop] section.

Example
This example uses a list box on a form. When the application runs, all the entries in the
Windows section of the WINLINI file appear as items in the list box.

Before you run this example, you must put the IniFiles unit in the uses clause of your
unit.

procedure TForml.FormActivate(Sender: TObject);
var
WinIni: TIniFile;
begin
WinIni := TIniFile.Create('WIN.INI');
WinIni.ReadSection('Windows', ListBoxl.Items);
WinIni.Free;
end;

See also

EraseSection method, ReadBool method, ReadInteger method, ReadSectionValues method,
ReadString method, WriteBool method, Writelnteger method, WriteString method

ReadSectionValues method

Applies to
TIniFile object

Declaration

procedure ReadSectionValues(const Section: string; Strings: TStrings);

The ReadSectionValues method reads all the variables and their values of an entire G
section of an .INI file into a string object. You can then use the Values property of string
and string list objects to access a specific string in the list of strings.

Example
This example reads the Transfer section of the DELPHLINI file into a memo and
changes one of the strings:

procedure TForml.ButtonlClick(Sender: TObject);

var
DelphiIni: TIniFile;

begin
DelphiIni := TIniFile.Create('c:\windows\delphi.ini');
Memol.Clear;
DelphiIni.ReadSectionValues('Transfer', Memol.Lines);
Memol.Lines.Values['Titlel'] := 'Picture Painter';
DelphiIni.Free;

end;

Delphi Visual Component Library Reference 645

ReadString method

Although this example doesn’t do so, your code could then write the new value to the
DELPHLINI file.

See also

EraseSection method, ReadBool method, ReadInteger method, ReadSection method,
ReadString method, Values property, WriteBool method, Writelnteger method, WriteString
method

ReadString method

Applies to
TIniFile object

Declaration
function ReadString(const Section, Ident, Default: string): string;
The ReadString method retrieves a string in an .INI file.

The Section constant identifies the section of the .INI file in which to search for the value.
For example, the WIN.INI for Windows contains a [Desktop] section.

The Ident constant is the name of the identifier of which you want the value.

The Default constant is the default string value.

Example
This example reads strings in the DELPHILINI file and displays them on the form.

Before you run this application, you must add the IniFiles unit to the uses clause of your
unit.

procedure TForml.FormActivate(Sender: TObject);
var
DelphiIni: TIniFile;
begin
Canvas.TextOut (20, 10, 'VARIOUS DELPHI SETTINGS');
DelphiIni := TIniFile.Create('Delphi.Ini');
with DelphiIni do
begin
with Canvas do
begin
TextOut (10, 50, 'Editor Font = ' +
ReadString('Editor', 'FontName', 'ERROR'));
TextOut (10, 70, 'Search Path = ' +
ReadString('Library', 'SearchPath', 'ERROR'));
TextOut (10, 90, 'Component Library = ' +
ReadString('Library', 'ComponentLibrary', 'ERROR'));
TextOut (10, 110, 'VBX Directory = ' +
ReadString('VBX', 'VBXDir', 'ERROR'));
TextOut (10, 130, 'VBX Unit Directory = ' +

646 Delphi Visual Component Library Reference

ReAllocMem function

ReadString('VBX', 'UnitDir', 'ERROR'));
end;
end;
DelphiIni.Free;
end;

See also

ReadBool method, ReadInteger method, ReadSection method, WriteBool method,
Writelnteger method, WriteString method

ReAllocMem function SysUtils

Declaration
function ReAllocMem(P: Pointer; CurSize, NewSize: Cardinal): Pointer;

ReAllocMem re-allocates a block. On entry, P points to an existing heap block, CurSize
gives the current size of the heap block, and NewSize specifies the requested new size of
the block.

If CurSize is less than NewSize, the additional bytes in the new buffer are set to zero. The
returned value is a pointer to the new block; this value is always different from the
original pointer.

See also
AllocMem function

RecalcReport method

Applies to
TReport component G

Declaration

function RecalcReport: Boolean;

The RecalcReport method recalculates and reprints the report with the new value for the
report variable previously changed with the SetVariable method.

RecalcReport sends a DDE message to ReportSmith Runtime and looks for a DDE
message in return. If RecalcReport returns True, the DDE message to recalculate the
report was sent successfully to ReportSmith Runtime. If it returns False, ReportSmith
Runtime could not receive the message at the current time.

For more information about report variables, see your ReportSmith documentation.

Example
The following code sets the ‘FirstName’ report variable to ‘Marty’, then recalculates the
report.

Delphi Visual Component Library Reference 647

Rect function

Reportl.SetVariable('FirstName’, ‘Marty’);
if not (Reportl.RecalcReport) then
MessageDlg(‘Unable to recalculate’, mtInformation, [mbOK] 0);

See also

Preview property, Print method, Run method, SetVariable method, SetVariableLines
method

Rect function

Declaration
function Rect (ALeft, ATop, ARight, ABottom: Integer): TRect;

The Rect function returns a TRect record built from the individual coordinates passed in
ALeft, ATop, ARight, and ABottom. You’'ll usually use Rect to construct parameters for
functions that require TRect, rather than setting up local variables for each one.

Example
The following code defines the display rectangle for a media player component to be
100 pixels wide, 200 pixels tall, with a top-left corner at coordinates (10, 10);

MediaPlayerl.DisplayRect := Rect (10, 10, 110, 210);

See also
Point function

RecordCount property

Applies to
TBatchMove, TQuery, TStoredProc, TTable components

For batch move components

Declaration
property RecordCount: Longint;

The RecordCount property is used to control the maximum number of records that will
be moved. If zero, all records are moved, beginning with the first record in Source. If
RecordCount is not zero, a maximum of RecordCount records will be moved, beginning
with the current record. If RecordCount exceeds the number of records remaining in
Source, no wraparound occurs; the operation is terminated.

Example

{ Limit the move to the first 1000 records }

648 Delphi Visual Component Library Reference

BatchMovel.RecordCount := 1000;

For tables, queries, and stored procedures

Rectangle method

Declaration

property RecordCount: Longint;

Run-time and read only. The RecordCount property specifies the number of records in
the dataset. The number of records reported may depend on the server and whether a

range limitation is in effect.

Rectangle method

Applies to
TCanuvas object

Declaration

procedure Rectangle (X1, Y1, X2, Y2: Integer);

The Rectangle method draws a rectangle on the canvas with its upper left corner at the
point (X1, Y1) and its lower right corner at the point (X2, Y2). Rectangle draws the
rectangle using the current brush (I'Brush) and pen (TPen) attributes.

Example

This example draws many rectangles of various sizes and colors on a form maximized

to fill the entire screen:

var
X, Y: Integer;

procedure TForml.FormActivate(Sender: TObject);
begin

WindowState := wsMaximized;

Canvas.Pen.Width := 5;

Canvas.Pen.Style := psDot;

Timerl.Interval := 50;

Randomize;
end;

procedure TForml.TimerlTimer (Sender: TObject);

begin
X := X + 4;
Y := VY + 4;

Canvas.Pen.Color := Random(65535);

Canvas.Rectangle(X, Y, X + Random(400), Y + Random(400));

if X > 700 then
Timerl.Enabled := False;
end;

Delphi Visual Component Library Reference 649

Refresh method

See also
RoundRect method

Refresh method

Applies to
All controls; TTable, TQuery, TStoredProc components

For all controls

Declaration
procedure Refresh;

The Refresh method erases whatever image is on the screen and then repaints the entire
control. Within the implementation of Refresh, the Invalidate and then the Update
methods are called.

Example
The following code refreshes all windowed controls of Form1, then refreshes Form1.

var
I: Integer;

begin
for T := 0 to Forml.ComponentCount-1 do
if Forml.Components[i] is TWinControl then
with Forml.Components[i] as TWinControl do
Refresh;
Forml.Refresh;
end;

See also
Repaint method

For tables, queries, and stored procedures

Declaration
procedure Refresh;

The Refresh method rereads all records from the dataset. Use Refresh to be certain that
data controls display the latest information from the dataset. Calling Refresh may
unexpectedly change the displayed data, potentially confusing the user.

650 Delphi Visual Component Library Reference

RegisterFormAsOLEDropTarget procedure

RegisterFormAsOLEDropTarget procedure ToCtrl

Declaration
procedure RegisterFormAsOleDropTarget (Form: TForm; const Fmts: array of BOleFormat);

RegisterFormAsOLEDropTarget registers a form as a drag-and-drop target for OLE
objects. The object formats in the Fmts array are registered so the objects can be dropped
on the form. To register an OLE object format, you must declare a new Clipboard format
for OLE objects with the Windows API function RegisterClipboardFormat prior to the call
to RegisterFormAsOLEDropTarget.

Once a form is registered, the object formats which can be dropped can be modified
with the SetFormOLEDropFormats procedure or deleted with the
ClearFormOLEDropFormats procedure.

Example

The following code registers OLE formats for linked and embedded OLE objects. Then it
creates a formats array for linked and embedded objects, as well as text. Finally,Form1 is
registered as an OLE drop target.

var
FEmbedClipFmt, FLinkClipFmt: Word;
Fmts: array[0..2] of BOLEFormat;

begin
FEmbedClipFmt := RegisterClipboardFormat ('Embedded Object');
FLinkClipFmt := RegisterClipboardFormat ('Link Source');
Fmts[0].fmtId := FEmbedClipFmt;
Fmts[0].fmtMedium := BOLEMediumCalc (FEmbedClipFmt);
Fmts([0].fmtIsLinkable := False;
StrPCopy (Fmts[0].fmtName, '%s');
StrPCopy (Fmts([0].fmtResultName, '%s');
Fmts[1].fmtId := FLinkClipFmt;
Fmts[1].fmtMedium := BOLEMediumCalc (FLinkClipFmt);
Fmts[1].fmtIsLinkable := True;
StrPCopy (Fmts[1].fmtName, '%s');
StrPCopy (Fmts[1].fmtResultName, '%s');
Fmts[2].fmtId := CT_TEXT;
Fmts([2].fmtMedium := BOLEMediumCalc (CF_TEXT);
Fmts([2].fmtIsLinkable := False;
StrPCopy (Fmts[2].fmtName, 'Text');
StrPCopy (Fmts[2].fmtResultName, 'Text');
RegisterFormAsOLEDropTarget (Self, Fmts);

end;

See also
TOLEDropNotify object

Delphi Visual Component Library Reference 651

Release method

Release method

Applies to
TForm component

Declaration
procedure Release;

The Release method destroys the form and releases its associated memory. It is much like
the Free method except that it does not destroy the form until all event handlers of the
form or event handlers of components on the form have finished executing.

Example
This example displays a message box about the form going away, calls Release, and
terminates the application.

procedure TForml.ButtonlClick(Sender: TObject);

begin
MessageDlg('This form is going away forever', mtInformation, [mbOK], 0);
Release;
Application.Terminate;

end;

See also
Free method, Destroy method

Release procedure System

Note

Declaration

procedure Release(var p: pointer);

The Release procedure returns the heap to a given state.
Release should not be used with FreeMem or Dispose.

Release is obsolete for Delphi applications.

Example
uses Crt;

var
p : pointer;
pl,p2,p3 : “Integer;

begin
ClrScr;
New(pl); { Allocate an Integer }
Mark(p); { Save heap state }
New(p2); { Allocate two more Integers }

652 Delphi Visual Component Library Reference

ReleaseHandle method
New (p3) ;

Release(p); { Memory reserved for p2” and p3" has been released; pl” may still be used}
end;

See also
Dispose procedure, FreeMem procedure, GetMem procedure, Mark procedure, New procedure

ReleaseHandle method

Applies to
TBitmap object

Declaration
function ReleaseHandle: HBitmap;

The ReleaseHandle method returns the handle to the bitmap so that the TBitmap object no
longer knows about the handle.

Example
The following code release the handle to the bitmap in MyBitmap.

MyBitmap.ReleaseHandle;

See also
ReleasePalette method

ReleaseOLElnitinfo procedure ToCtrl

Declaration G
procedure ReleaseOleInitInfo(PInitInfo: Pointer);

ReleaseOLElnitinfo frees the memory allocated for OLE object initialization information.
ReleaseOLElInitinfo should be called after calling the InsertOLEObjectDIg or
PasteSpecialDlg functions to initialize a pointer to an OLE initialization information data
structure. Pass the pointer initialized by InsertOLEObjectDlg or PasteSpecialDIg in the
PlnitInfo parameter of ReleaseOLEInitInfo.

Example

The following code uses PasteSpecialDlg to specify OLE initialization information. After
OLEContainer1 is initialized, the information is released. Fmts is assumed to be a valid
array of BOLEFormat records.

var
ClipFmt: Word;
DataHand: THandle;
Info: Pointer;

Delphi Visual Component Library Reference 653

ReleasePalette method

begin
if PasteSpecialDlg(Forml, Fmts, 0, ClipFmt, DataHand, Info) then
begin
OLEContainer.PInitInfo := Info;
ReleaseOLEInitInfo (Info);
end;
end;

See also
PlnitInfo property

ReleasePalette method

Applies to
TBitmap object
Declaration

function ReleasePalette: HPalette;

The ReleasePalette method returns the handle to the bitmap’s palette so that the TBitmap
object no longer knows about the palette.

Example
The following code release the palette of the bitmap in MyBitmap.

MyBitmap.ReleasePalette;

See also
ReleaseHandle method

Remove method

Applies to
TList object

Declaration
function Remove(Item: Pointer): Integer;

The Remove method deletes the item referenced in the Item parameter from the list of
pointers stored in the List property of a list object. The value returned is the position of
the item in the list of pointers before it was removed. After an item is removed, its
position in the list is nil.

Example
The following code adds a new object to a list in a list object and then removes it:

654 Delphi Visual Component Library Reference

RemoveAllPasswords method

type
TMyClass = class
MyString: string;
constructor Create(S: string);
end;

constructor TMyClass.Create(S: string);
begin

MyString := S;
end;

procedure TForml.ButtonlClick(Sender: TObject);
var

MyList: TList;

MyObject, SameObject: TMyClass;

begin
MyList := TList.Create; { create the list }
try
MyObject := TMyClass.Create('Semper Fidelis!'); { create a class instance }
try
MyList.Add (MyObject); { add instance to list }
SameObject := TMyClass(MyList.Items[0]); { get first element in list }
MessageDlg (SameObject .MyString, mtInformation, [mbOk], 0); { show it }
MyList.Remove (MyObject) ;
MessageDlg('Removing the object', mtInformation, [mbOk], 0);
finally
MyObject.Free;
end; { don't forget to clean up! }
finally
MyList.Free;
end;
end;
See also
Delete method

RemoveAllPasswords method

Applies to
TSession component

Declaration

procedure RemoveAllPasswords;

The RemoveAllPasswords method causes all previously entered password information to
be discarded. Any future access will require that new password information be
supplied before the table can be opened. This method affects Paradox databases only.

Delphi Visual Component Library Reference 655

RemoveComponent method

Example

Session.RemoveAllPasswords;

See also
RemovePassword method, Session variable

RemoveComponent method

Applies to

All components
Declaration

procedure RemoveComponent (AComponent: TComponent) ;

The RemoveComponent method removes the component specified in the AComponent
parameter from the component’s Components list. That position in the list becomes nil.

Example
The following code removes Button2 from the Components list of Form1.

Forml.RemoveComponent (Button2) ;

See also
InsertComponent method

RemoveControl method

Applies to
All controls

Declaration
procedure RemoveControl (AControl: TControl);

The RemoveControl method removes the control specified with the AControl parameter
from the Controls array of this control. The result is that this control is no longer the
parent of the removed control.

Example

This example uses a button placed alongside a group box. When the user clicks the
button, the group box becomes the parent of the button, so the button moves inside the
group box:

procedure TForml.ButtonlClick(Sender: TObject);
begin
RemoveControl (Buttonl) ;

656 Delphi Visual Component Library Reference

RemoveParam method

GroupBox1.InsertControl (Buttonl);
end;

Note that it was necessary to remove the button from the Controls property of the form
before the button actually appears to move into the group box.

This code accomplishes the same thing:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Buttonl.Parent := GroupBoxl;
end;

See also
Controls property, InsertControl method

RemoveParam method

Applies to
TParams object

Declaration
procedure RemoveParam(Value: TParam);

RemoveParam removes Value from the Items property.

Example

{ Move all parameter info from Params2 to Paramsl }
while Params2.Count <> 0 do

begin

Grab the first parameter from Params2 }

TempParam := Params2[0];

Remove it from Params? }

Params?2.RemoveParam (TempParam) ;

And add it to Paramsl }
Paramsl.AddParam(TempParam) ;

end;

—

—

—

See also
AddParam method

RemovePassword method

Applies to
TSession component

Delphi Visual Component Library Reference 657

Rename procedure

Declaration
procedure RemovePassword(const Password: string);
The RemovePassword method removes Password from the known set of authorizations.
Any future access will require that new password information be supplied before the
table can be opened. This method affects Paradox databases only.
Example

Session.RemovePassword ('MySecret’);

See also
RemoveAllPasswords method, Session variable

Rename procedure System

658

Declaration
procedure Rename(var F; Newname);
The Rename procedure changes the name of an external file.

F is a variable of any file type. Newname is a string-type expression or an expression of
type PChar if the extended syntax is enabled.

The external file associated with F is renamed Newname. Further operations on F operate
on the external file with the new name.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for I/O errors.

Example
uses Dialogs;

var
f : file;
begin
OpenDialogl.Title := 'Choose a file... ';
if OpenDialogl.Execute then begin
SaveDialogl.Title := 'Rename to...';
if SaveDialogl.Execute then begin
AssignFile(f, OpenDialogl.FileName);
Canvas.TextOut (5, 10, 'Renaming ' + OpenDialogl.FileName + ' to ' +
SaveDialogl.FileName);
Rename (f, SaveDialogl.FileName);
end;
end;
end;

Delphi Visual Component Library Reference

RenameFile function

See also
Erase procedure

RenameFile function SysUtils

Declaration
function RenameFile(const OldName, NewName: string): Boolean;

The RenameFile function attempts to change the name of the file specified by OldFile to
NewkFile. If the operation succeeds, RenameFile returns True. If it cannot rename the file
(for example, if a file called NewName already exists), it returns False.

Example
The following code renames a file:

if not RenameFile('OLDNAME.TXT', 'NEWNAME.TXT') then
ErrorMsg('Error renaming file!');

See also
DeleteFile function

Repaint method

Applies to
All controls

Declaration

procedure Repaint;

The Repaint method forces the control to repaint its image on the screen, but without G
erasing what already appears there. To erase before repainting, call the Refresh method

instead of Repaint.

Example
The following code repaints all windowed controls of Form1, then repaints Form]1.

var
I:. Integer;

begin
for T := 0 to Forml.ComponentCount-1 do
if Forml.Components([I] is TWinControl then
with Forml.Components[I] as TWinControl do
Repaint;
Forml.Repaint;
end;

Delphi Visual Component Library Reference 659

ReplaceText property

See also
Refresh method

ReplaceText property

Applies to
TReplaceDialog component

Declaration
property ReplaceText: string;

The ReplaceText property contains the string your application can use to replace the
string specified in the FindText property when the FindText value is found during a
search.

Example
The following code replaces the selected text in Mermol with the value of ReplaceText.

Memol.SelText := ReplaceDialogl.ReplaceText;

See also
FindText property

ReportDir property

Applies to
TReport component

Declaration
property ReportDir: string;

The value of the ReportDir is the directory where ReportSmith stores its reports and
expects to find saved reports. By specifying a report directory, you won't have to
include a path when specifying a report name.

Example

The following text lets the user use the Save dialog box component to specify where
ReportSmith saves its reports.

if SaveDialogl.Execute then
Reportl.ReportDir := SaveDialogl.FileName;

See also
ReportName property

660 Delphi Visual Component Library Reference

ReportHandle property

ReportHandle property

Applies to
TReport component

Declaration
property ReportHandle: HWND;

Run-time and read only. The value of the ReportHandle property is a Windows handle to
ReportSmith.

Example

The following code retrieves the window placement information for ReportSmith,
assuming Report1 is a valid TReport component.

var

RSWinPlacement: PWindowPlacement;
begin

GetWindowPlacement (Reportl.ReportHandle, RSWinPlacement);
end;

ReportName property

Applies to
TReport component

Declaration
property ReportName: string;

The value of the ReportName property determines which report you want to run. You G
can include a full path name as part of the report name if you have not specified a

ReportDir property value or want to run a report that is stored elsewhere. If you have
specified a ReportDir value, omit the path name and simply specify the name of the

report.

Example
The following code lets users use the Open dialog box component to specify the report
they want to run.

if OpenDialogl.Execute then
Reportl.ReportName := OpenDialogl.FileName;

See also
ReportDir property

Delphi Visual Component Library Reference 661

RequestData method

RequestData method

Applies to
TDDEClientConv component

Declaration
function RequestData(const Item: string): PChar;

The RequestData method requests data from a DDE server. Call RequestData when you
want your DDE client application to receive data from the server once, instead of being
updated continually. Another reason to use RequestData is that some DDE servers
contain DDE items that can’t be continually updated; the only way for your client to
access these items is to explicitly request the data.

Item specifies the DDE server item you want data from. The value of the DDE item
depends on the linked DDE server application. Item is typically a selectable portion of
text, such as a spreadsheet cell or a database field in an edit box. If the DDE server is an
Delphi application, Item is the name of the linked DDE server component.

Note See the documentation for the DDE server application for the specific information about
specifying DDEItem.

RequestData returns a null-terminated PChar string which contains the value of the item
requested of the DDE server. RequestData automatically allocates memory to store this
data, but you must dispose of the PChar string returned by RequestData after you have
finished processing it. This is done with the StrDispose function.

Example
The following code requests data from the DDE server and displays it in Labell. The
DDE item of the conversation is specified in the DDEItem property of DDEClientItem]1.

var
TheData: PChar;

begin
TheData := DDEClientConvl.RequestData (DDEClientIteml.DDEItem);
Labell.Caption := StrPas(TheData);

end;

See also
StrPas function

RequestLive property

Applies to
TQuery component

662 Delphi Visual Component Library Reference

Required property

Declaration
property RequestLive: Boolean;

By default, a TQuery always returns a read-only result set. Set RequestLive to True to
request a live result set. The BDE will then return a live result set if the SELECT syntax
of the query conforms to the syntax requirements for a live result set. If RequestLive is
True, but the syntax does not conform to the requirements, the BDE returns a read-only
result set (for local SQL) or an error return code (for passthrough SQL). If a query
returns a live result set, Delphi will set the CanModify property to True.

RequestLive CanModify Type of result set
False False Read-only result set
True—SELECT syntax meets requirements True Live result set
True—SELECT syntax does not meet requirements False Read-only result set
See also
Local property

Required property

Applies to

TFieldDef object; TBCDField, TBlobField, TBooleanField, TBytesField, TCurrencyField,
TDateField, TDateTimeField, TFloatField, TGraphicField, TIntegerField, TMemoField,
TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

For field components

Declaration

property Required: Boolean; a

Specifies whether a non-nil value for a field is required. The default value is False,
meaning a field does not require a value. If a field is created with the Fields Editor, then
this property is set based on the underlying table. Set Required to True for fields that
must get values (for example, a password or part number), and write an OnValidate
event handler for the field. Before a record is posted, exceptions are raised for any
required fields that have nil values.

For TFieldDef objects

Declaration
property Required: Boolean;

Run-time and read only. Reports whether or not a value for a physical field in an
underlying table is required.

Delphi Visual Component Library Reference 663

Reset procedure

Example

{ Is field required? }
if FieldDefl.Required) then
MessageDlg (Name 'is a required field’ , mtInformation, [mbOK], 0);

See also
TField component

Reset procedure System

Declaration
procedure Reset(var F [: File; RecSize: Word]);
The Reset procedure opens an existing file.

F is a variable of any file type associated with an external file using AssignFile. RecSize is
an optional expression, which can be specified only if F is an untyped file. If F is an
untyped file, RecSize specifies the record size to be used in data transfers. If RecSize is
omitted, a default record size of 128 bytes is assumed.

Reset opens the existing external file with the name assigned toF. An error results if no
existing external file of the given name exists. If F is already open, it is first closed and
then reopened. The current file position is set to the beginning of the file.

If F is assigned an empty name, such as AssignFile(F, "), then after the call to Reset, F
refers to the standard input file (standard handle number 0).

If F is a text file, F becomes read-only.
After a call to Reset, Eof(F) is True if the file is empty; otherwise, Eof(F) is False.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for I/O errors.

Example

function FileExists(FileName: string): Boolean;
{ Boolean function that returns True if the file exists; otherwise,
it returns False. Closes the file if it exists. }
var
F: file;
begin
{81}
AssignFile(F, FileName);
FileMode := 0; (Set file access to read only }
Reset (F);
CloseFile(F);
{$I+}
FileExists := (IOResult = 0) and (FileName <> '');

664 Delphi Visual Component Library Reference

Restore method

end; { FileExists }

begin
if FileExists(ParamStr(l)) then {Get file name from command line}
Canvas.TextOut (10, 10, 'File exists'

else
Canvas.TextOut (10, 10, 'File not found');
end;
See also
Append procedure, AssignFile procedure, FileClose procedure, Rewrite procedure, Truncate
procedure

Restore method

Applies to

TApplication component

Declaration
procedure Restore;

The Restore method returns your application to its previous size before it was
maximized or minimized.

Don’t confuse the Restore method with restoring a form or window to its original size.
To minimize, maximize, and restore a window or form, you change the value of the
WindowState property.

Example
This example uses a timer on a form. When the application runs and the user minimizes
the application, the application returns to its normal size when an OnTimer event occurs:

procedure TForml.TimerlTimer (Sender: TObject); a
begin

Application.Restore;
end;

See also
Borderlcons property, BorderStyle property, Minimize method

RestoreTopMosts method

Applies to
TApplication component

Delphi Visual Component Library Reference 665

Resume method

Declaration
procedure RestoreToplMosts;

The RestoreTopMosts method restores forms that were originally designated as topmost
forms (FormStyle is fsStayOnTop) and then temporarily changed to be non-topmost
forms with the NormalizeTopMosts method call. After a call to RestoreTopMosts, the
topmost forms move on top of other forms again.

Example
The following code normalizes topmost forms before calling the MessageBox function in
the WinProcs unit. After the message box is closed, the topmost forms are restored.

begin
Application.NormalizeTopMosts;
MessageBox (Forml.Handle, 'This should be on top.', 'Message Box', MB_OK);
Application.RestoreTopMosts;

end;

Resume method

Applies to
TMediaPlayer component

Declaration
procedure Resume;

The Resume method resumes playing or recording the currently paused multimedia
device. Resume is called when the Pause button on the media player control is clicked at
run time, when the device is paused.

Upon completion, Resume stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Resume method has completed. The Notify property determines whether Resume
generates an OnNotify event.

Example
The following code resumes the playing or recording of MediaPlayer1.

MediaPlayerl.Resume;

See also
Pause method, PauseOnly method

666 Delphi Visual Component Library Reference

Rewind method

Rewind method

Applies to
TMediaPlayer component

Declaration
procedure Rewind;

The Rewind method sets the current position to the beginning of the medium, which is
stored in the Start property.

Upon completion, Rewind stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.

The Wait property determines whether control is returned to the application before the
Rewind method has completed. The Notify property determines whether Rewind
generates an OnNotify event.

Example

This example uses a media player and a button on a form. When the user clicks the
button, the WAV audio media rewinds and begins playing. To run this example
successfully, you must have installed a WAV audio device correctly.

procedure TForml.FormClick(Sender: TObject);
begin
MediaPlayerl.DeviceType := dtWaveAudio;
FileName := ‘CHIMES.WAV';
Buttonl.Caption := 'Rewind and Play';
Buttonl.Width := 130;
end;
procedure TForml.ButtonlClick(Sender: TObject);
begin
MediaPlayerl.Rewind;
MediaPlayerl.Play;
end;

See also
AutoRewind property, Back method

Rewrite procedure System

Declaration
procedure Rewrite(var F: File [; Recsize: Word]);
The Rewrite procedure creates and opens a new file.

F is a variable of any file type associated with an external file using AssignFile. RecSize is
an optional expression, which can be specified only if F is an untyped file. If F is an

Delphi Visual Component Library Reference 667

RmDir procedure
untyped file, RecSize specifies the record size to be used in data transfers. If RecSize is
omitted, a default record size of 128 bytes is assumed.
Rewrite creates a new external file with the name assigned toF.

If an external file with the same name already exists, it is deleted and a new empty file is
created in its place.

If F is already open, it is first closed and then re-created. The current file position is set to
the beginning of the empty file.

If F was assigned an empty name, such as AssignFile(F,"), then after the call to Rewrite, F
refers to the standard output file (standard handle number 1).

If F is a text file, F becomes write-only.

After calling Rewrite, Eof(F) is always True.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for I/O errors.

Example

var F: TextFile;
begin
AssignFile(F, 'NEWFILE.SSS');
Rewrite(F);
Writeln(F, 'Just created file with this text in it...');
CloseFile(F);
end;

See also
Append procedure, AssignFile procedure, Reset procedure, Truncate procedure

RmDir procedure System

Declaration
procedure RmDir(S: string);
The RmDir procedure deletes an empty subdirectory.

RmDir removes the subdirectory with the path specified by S. If the path does not exist,
is non-empty, or is the currently logged directory, an I/O error occurs.

{$I+} lets you handle run-time errors using exceptions. For more information on
handling run-time library exceptions, see Handling RTL Exceptions in the Help system.

If you are using {$I-}, you must use IOResult to check for I/O errors.

668 Delphi Visual Component Library Reference

Rollback method

Example
uses Dialogs;

begin
{$1-}
{ Get directory name from TEdit control }
RmDir (Editl.Text);
if IOResult <> 0 then
MessageDlg('Cannot remove directory', mtWarning, [mbOk], 0)
else
MessageDlg ('Directory removed', mtInformation, [mbOk], 0);
end;

See also
ChDir procedure, GetDir procedure, MkDir procedure

Rollback method

Applies to
TDataBase component

Declaration

procedure Rollback;

The Rollback method rolls back the current transaction and thus cancels all modifications
made to the database since the last call to StartTransaction. Use this method only when
connected to a server database.

Example

with Databasel do
begin

StartTransaction;
{ Update one or more records in tables linked to Databasel }

Rollback;
end;

See also
Commit method

Round function System

Declaration

function Round(X: Real): Longint;

Delphi Visual Component Library Reference 669

RoundRect method

The Round function rounds a real-type value to an integer-type value.