msResize.ocx



FOUNDATION MEMBER OF THE

�



Copyright ( Mathias Schiffer 1997, all rights reserved





msResize is an ActiveX-control (32 bit) that automatically resizes and repositions all controls on a form when the user resizes th
e
 window.



Do you know my other controls? Visit

http://www.comports.com/Schiffer









Table of contents:







1) Foreword



2) Introduction



	2.1 - What is msResize?

	2.2 - System-requirements

	2.3 - Registering the OCX

	2.4 - Description 
o
f included files

	2.5 - How to use it



3) Reference



	3.1 - Properties

	3.2 - Methods

	3.3 - Events

	3.4 - Special

	3.5 - Limitations



4) Registration



	4.1 - Prices

	4.2 - Payment

	4.3 - Invitation



5) Disclaimer



�

1 - Foreword

































Dear developer,





I hope you like this control and find it usable. If so, I’ll be thankful for any recommendation to other developers. You’re free to distribute the shareware-version as you like (see chapter „disclaimer“).



This documentation describes all important features and aspects of using msResize. If not already done so I recommend to print this documentation as a printed manual is mostly looked at as more comfortable than a digital document. OK, paper offers no cool „Find“-function - but you can still search the digital version when needed.



If you have any problems that are not covered by this documentation or you have suggestions for new features or more comfortable handling, if you found bugs (although the product has been tested to a nearly paranoid extent) or would like to get a full version of this control please feel free to contact me.



I am always thankful for your comments and will support you where I can.



Finally, please excuse my english - I’m trying to do what I can but I’m also sure I’m very very far from perfect - which will of course also have effects on this documentation.









Mathias Schiffer



E-Mail: Schiffer@comports.com



�

2 - Introduction







2.1 - What is msResize?



msResize is an ActiveX-component (which is nothing else than an OLE-component given a new name in fact) that can save you a whole lot of work when it comes to producing an application with user-resizable forms.



You can simply put an instance of the control onto a form (it is invisible at runtime) and add two function-calls (which are methods of the control), one for getting the current layout (that will be the default layout for any resizing) and one that resizes and repositions the controls on the form msResize has been placed on (for a quick tour see chapter 2.5 - „How to use it“).



The control optionally offers you to exclude a recalculation of position or size for every single control (see chapter 3.4 - „Specials“).







2.2 - System requirements





You can use msResize with any programming language or other product (e.g. Microsoft Visual Basic, ActiveX-supporting WebBrowsers, Microsoft Access 97, Borland Delphi, ...) that supports the usage of OCX-controls. Nevertheless the runtimes for Microsoft Visual Basic 5 are required for the control to work. They are quite large so I didn’t include them in this archive. If you can’t find them on the net just e-mail me and I’ll help you out.







2.3 - Registering the control (with the Windows-registry)





An OCX-control must always be registered before you can use it. I have not included a setup for this control because it would have enlarged the archive too much. To register the control with the windows-registry (this must also be done by the setup-program you use to distibute your application using msResize - installation-wizards usually do this for you) just execute this commandline:



regsvr32.exe [path]msresize.ocx



Where [path] is the directory where the file msResize.ocx is located (the system-subdirectory of your Windows-directory is recommended, in that case [path] can be left out as well as for any other case where the location of msResize.ocx is in the path-environment).





Example: If the file msResize.ocx is located in C:\MYCONTROLS\ the call would be



regsvr32.exe c:\mycontrols\msresize.ocx





If you experience any problems first try unregistering the control and then registering it again (as described above): To unregister the control simply use:



regsvr32.exe -u msresize.ocx



You can use „Start“, „Execute...“ in Windows’s Explorer to type in the above commands. You can also simply „drag“ the file msResize.ocx over the file regsvr32.exe to register it (unregistering however does not work this way).





2.4 - Description of included files





This archive should contain these files:



msResize.ocx		The control itself

msResize.doc		This document

msResize.vbp		A Visual Basic sample project

msResize.frm		A part of the sample project

msResize.frx		A part of the sample project

msResize.exe		The compiled sample project

readme.txt		A first information

order.doc		Order-form, please use this to order licenses







2.5 - How to use it





Handling the control is easy: After adding it to your project just place an instance of the control on the form you want to automatically be adjusted to the user’s resize-actions. A first instance of the control will be named „Resize1“ which is what I will refer to in all further description.





There are two important methods for this control that provide its basic functionality: First you’ll need to tell the control what state of your form you want it to use as layout for a later resizing of the form:



Resize1.FormLoaded



Although this method’s name has been chosen because it will usually be called in the Form_Load-event (recommended as the last command in this procedure), you can of course nevertheless call this method whenever you want the control to capture a new layout (for example if you repositioned a control on your form from code and you want msResize to use this new setting you should call this method after the change).



Notice that if you add controls to your form at runtime (that is: from code) you will need to call this method again to update the layout-information msResize uses.





The other important method of the control is the one that actually does the repositioning and resizing of the controls on the form:



Resize1.FormResized



Although this method’s name has been chosen because it will usually be called in the Form_Resize-event (recommended as the last command in this event unless there is some other code that is dependant on the controls’ new layout), you can of course nevertheless call this method whenever you want the control to perform a recalculation and repositioning/resizing of your form’s controls.





You will want to suppress the recalculation of size and/or position of controls in some cases (as an example you will probably not want a vertical scrollbar to become wider when the user changes the form’s size, it would look ugly). That’s why you can use any control’s Tag-property to exclude recalculation of position or size for this control. Please refer to chapter 3.4 („Special“) on how to accomplish this.

�

3 -  Reference







3.1 - Properties





Info...



A double click on this property during designtime displays the information-screen.





Enabled



If set to True (default), msResize will do its work when the user resizes the form. If set to False it won’t.



Type: Boolean





Index



Standard property: Has no effect on the control’s behaviour. It does not seem too much sense to use an array of instances of msResize, but nevertheless the property is provided for compatibility-reasons.



Type: Integer





KeepVisible



If set to True (default), all controls remain visible during their replacement and resizement. If set to False controls will first be hidden, then repositioned/resized and then be made visible again (provided they had been visible before). This can increase speed but it might in some few cases produce unwanted effects. If you set this property to False make sure everything works as expected before distributing your application.



Type: Boolean





Left



Standard-property that has no special function for msResize. Notice that the control is invisible at runtime, so this value only refers to the position of the control in your design-environment.





MaxHeight



If greater than 0, sets a maximum form height for your form. If the user tries to resize the form to a greater height the form’s vertical size will be auto-resized to this value.



Type: Long





MaxWidth



If greater than 0, sets a maximum form width for your form. If the user tries to resize the form to a greater height the form’s horizontal size will be auto-resized to this value.



Type: Long





MinHeight



If greater than 0, sets a maximum height for your form. If the user tries to resize the form to a greater height the form’s vertical size will be auto-resized to this value. It is recommended to set a minimum size for your form if you have the Enabled-property set to true, otherwise very small sizes make the form look rather ugly.



If you don’t want to set a minimum height for your form and still don’t want your form to look ugly for small heights you might want to implement the following code in your Form_Resize-event. This code will vertically reposition and resize the controls on your form only if a minimum height is provided (in this case 2000), otherwise it won’t:



Resize1.RepositionTop = (Me.Height > 2000) ‘ True if Height > 2000,

Resize1.ResizeHeight = (Me.Height > 2000)  ‘ False otherwise.

Resize1.FormResized ‘ Call the resize-method. Optionally add code

	                   ‘ for a minimum width before calling this.



Type: Long





MinWidth



If greater than 0, sets a minimum width for your form. If the user tries to resize the form to a greater height the form’s horizontal expansion will be auto-resized to this value. It is recommended to set a minimum size for your form if you have the Enabled-property set to true, otherwise very small sizes make the form look rather ugly.



If you don’t want to set a minimum width for your form and still don’t want your form to look ugly for small widths you might want to implement the following code in your Form_Resize-event. This code will horizontally reposition and resize the controls on your form only if a minimum width is provided (in this case 2000), otherwise it won’t:



Resize1.RepositionLeft = (Me.Width > 2000) ‘ True if Width > 2000,

Resize1.ResizeWidth = (Me.Width > 2000) 	  ‘ False otherwise.

Resize1.FormResized ‘ Call the resize-method. Optionally add code

                    ‘ for a minimum height before calling this.



Type: Long





RepositionLeft



If set to True (default), a call to the FormResize-method will recalculate and reset the Left-property for all controls on your form. If set to False, the horizontal position of the controls on your form will remain the same no matter what width the user has resized your form to.



To disable the horizontal repositioning for single controls leave this property set to True and use the control’s Tag-property (refer to the following chapter „Specials“).



Type: Boolean





RepositionTop



If set to True (default), a call to the FormResize-method will recalculate and reset the Top-property for all controls on your form. If set to False, the vertical position of the controls on your form will remain the same no matter what height the user has resized your form to.



To disable the vertical repositioning for single controls leave this property set to True and use the control’s Tag-property (refer to the following chapter „Specials“).



Type: Boolean





ResizeHeight



If set to True (default), a call to the FormResize-method will recalculate and reset the Height-property for all controls on your form. If set to False, the vertical size of the controls on your form will remain the same no matter what height the user has resized your form to.



To disable the vertical resizing for single controls leave this property set to True and use the control’s Tag-property (refer to the following chapter „Special“).



Type: Boolean





ResizeWidth



If set to True (default), a call to the FormResize-method will recalculate and reset the Width-property for all controls on your form. If set to False, the horizontal size of the controls on your form will remain the same no matter what width the user has resized your form to.



To disable the horizontal resizing for single controls leave this property set to True and use the control’s Tag-property (refer to the following chapter „Special“).



Type: Boolean





Tag



Standard-property that has no special function for msResize.





Top



Standard-property that has no special function for msResize. Notice that the control is invisible at runtime, so this value only refers to the position of the control in your design-environment.





Version



Contains the control’s version-number as a string. If you want to evaluate this expression in your application you should not use it as a string but convert it to a numeric expression first (string-comparison would make a version „12.0“ look older than „2.0“). For Visual Basic, use the Val-function to convert the version-string to a numeric expression, for example:



If Val(Resize1.Version) < 2.2 Then ‘[...]



Type: String

�3.2 - Methods





The control offers these two methods that provide its basic functionality:





FormLoaded



Used to initialize msResize: The current layout of the form will be used as a basis for all later calls of the FormResized-method. When this method is called it overwrites its old layout information, even if the Enabled-property of msResize should be set to False.



You will usually (but not neccessarily) call this method after the form has been initialized or painted. If you add controls to the form at runtime you should also call this method after the addition, otherwise the new control(s) on your form will not be adjusted in a later call to the FormResized-method.



Example:



Sub Form_Load()

	Resize1.FormLoaded

End Sub





FormResized



Used to reposition and resize the controls that have been on the form at the time of the last call to the FormLoaded-method. Properties of msResize and Tag-entries of the controls on the form (see the following chapter „Specials“) determine the recalculated values for the controls’ new properties Top, Left, Width and Height.



Example:



Sub Form_Resize()

	Resize1.FormResized

End Sub









3.3 - Events





None. msResize does not fire any events.







3.4 - Special





For each single control on your form you can determine to not change any of the four properties Top, Left, Width and Height (that are responsible for the control’s appearance of course). 



If you want all controls on your form to keep one (or more) of these properties as fixed values you should use the msResize-properties RepositionTop, RepositionLeft, ResizeHeight and ResizeWidth. These should generally be set according to the wished behaviour of the majority of the controls on your form.



To exclude the recalculation of a property for a single control use its Tag-property for one (or a combination of) the following expressions:



NoTop

NoLeft

NoHeight

NoWidth



These expressions are not case-sensitive (so „NOTOP“ is the same as „NoTop“, „notop“,...). If you want to use a combination of these expressions there is no rule at all, use them like what you think to be most comfortable for you. In other words: „NoTop, NoWidth“ produce the same effect as „NoTopNoWidth“, „notopnowidth“, „Whatever I want - at least I know I want notop and nowidth to be recalculated“,...



Notice that the Tag-property is referred to every time the FormResized-method is called.



Examples:



‘ To not change a horizontal scrollbar’s height if form is resized:

HScroll1.Tag = “NoHeight“



‘ To not change a picturebox’s size when form gets resized:

Picture1.Tag = “NoHeight, NoWidth“



‘ To not change a buttons position and size when form gets resized:

Command1.Tag = “NoTop, NoLeft, NoHeight, NoWidth“





If you need a control’s Tag-property for other things in your application you will need to buffer its contents, for example:



Sub Form_Resize

Dim Buffer As String

 ‘ The command button’s Tag-property is used for something

 ‘ else, so save its content and reset it after resizing:



 Buffer = Command1.Tag ‘ Save current content

 Command1.Tag = “NoTop, NoLeft, NoHeight, NoWidth“ ‘ Set flags

 Resize1.FormResized   ‘ Adjust all controls on the form to its new size

 Command1.Tag = Buffer ‘ Reset the button’s Tag-property



End Sub









3.5 - Limitations





msResize currently handles any control that has either Top-, Left-, Height- and Width-properties or X1-, Y1-, X2-, Y2-properties that define the appearance of its instances.



Controls that don’t offer either of these properties will not be handled by msRezise. If a control offers Top- and Left-properties but no Height- and Width-properties (or similar cases) the existing properties will be handled by msResize. The same applies for the X- and Y-properties of course.

�

4) Registration



This version of msResize is shareware. It is not limited in any way. The only thing that happens is that during runtime the Info-window will appear before your form is displayed - in a compiled EXE as well as when running your project in the design-environment.



It is recommend to use the registration-form provided in the accompanying file 
order
.
doc
 for both e-mail- and snailmail-orders.







4.1 - Prices





You can order any of these components:



msResize.ocx	= 	10 US$



msResize.ctl	=	15 US$



The ctl-version allows you to implement the control in your project without needing to install an OCX on a target-machine. A ctl-version of a control becomes part of the EXE-file when compiling your application.



Sourcecode	=	50 US$



Some developers trust nobody (I must admit that occasionally I think they’re right) and are only satisfied when they have a proof a control they want to use in their applications is not evil and does not produce unwanted effects. You can therefore also order the sourcecode for the control. Notice that for ordering the sourcecode you must agree to use it for this purpose only, you will not be allowed to compile the sourcecode or implement it in your application.





Multiple developer-licenses will be cheaper (per license, of course) - please contact me if you need more than one license. If you are company and you want to distribute the full version of msResize please contact me as well:





Mathias Schiffer

Mattschoe-Moll-Weg 26

D - 52064 Aachen

Germany



E-Mail: Schiffer@comports.com





Notice: These addresses might be subject to change. Always try to e-mail me first. If you can’t reach me search the internet for „Mathias Schiffer“ and find my „Controls“-homepage. My current e-mail-address will always be listed there.







4.2 -  Payment





Credit cards:




I can accept American Express, VISA and EuroCard credit-cards. If you include your full postal address, your creditcard-number and its expiry-date in your order it will be processed at once. By the way, of these three I am paying the highest fee for accepting VISA (if the sum is below a certain level, 15 US$ definitely is). So if you have multiple creditcards you can help me to keep this product inexpensive...




Cash/other:



If you don’t have a credit card please mail me and we’ll see how to handle things. As international cheques produce high bank-fees (that are usually more expensive then the registration-fee itself in this case) this will probably mean: „Send cash“ (if you do not live in the US you can send the amount in your currency). If you think this is not acceptable just contact me and we’ll surely find a solution.



Applies to Germany only (where the mentioned fees do not appear):

Sie können entsprechenden Betrag in DM (bitte Tageskurs beachten) auch auf mein Konto überweisen: Mathias Schiffer, Konto-Nr. 200 241 05, Sparkasse Aachen (BLZ: 390 500 00).







4.3 - Invitation



I am always developing new controls. You’ll find them described on http://www.comports.com/Schiffer (if that link should be „dead“ some day search the internet for „Mathias Schiffer“ and you’ll probably find my „controls“-homepage).



I invite you to try out my other controls listed there. I am always looking for people who would like to help me by beta-testing new controls. I’d be happy to hear from you if you’d like to support me as a beta-tester.









5 - Disclaimer





All the software included in this package - including its documentation - is copyrighted material that you may not change in any way. You have the right and are encouraged to distribute the whole shareware-package in an unaltered state to anyone - that includes CD-ROMs, DVDs, disks, uploads to public servers and mailboxes, offering it on your homepage and whatever comes to your mind. I’d be delighted if you’d let me know you’re distributing the software (you don’t need to tell me if you absolutely don’t want to though).



If you want to charge anything for the distribution charge whatever you like (if it’s too much people just won’t buy your distribution so I really don’t care how much you charge) but do take measurements to ensure the user knows he does not pay for the control but for your distribution.



The material is provided „as is“ and there are no warranties, neither expressively nor implicitely. Usage is all at your own risk. The author cannot be held liable for any effects that appear.



I encourage you to mail me to receive the latest shareware-version if you want to distribute it in any way. Although this is not a „must“ it is strongly recommended. I’m sure you want to offer the latest version available, not some outdated stuff - am I right?



msResize






msResize






 - � SEITE �2� -






- � SEITE �
11
� -





This document has been designed as a printable manual. You’re free to print as many copies of it as you want.










