

RT Editor 0.6.2

�

� SOM \o "1-5" �

1. RT Editor 0.6.2	� PULSVAIA _Toc370323993 � PAGRIF _Toc370323993 �3��

1.1 RT email newsletter	� PULSVAIA _Toc370323994 � PAGRIF _Toc370323994 �3��

1.2 Download	� PULSVAIA _Toc370323995 � PAGRIF _Toc370323995 �3��

2. Introduction	� PULSVAIA _Toc370323996 � PAGRIF _Toc370323996 �4��

3. Tutorial for RT Scene Editor 0.6.2	� PULSVAIA _Toc370323997 � PAGRIF _Toc370323997 �5��

3.1 Start the editor	� PULSVAIA _Toc370323998 � PAGRIF _Toc370323998 �5��

3.2 The first thing to do : SAVE THE FILE !	� PULSVAIA _Toc370323999 � PAGRIF _Toc370323999 �7��

3.3 Select a view	� PULSVAIA _Toc370324000 � PAGRIF _Toc370324000 �7��

3.3.1 Center a point in a view	� PULSVAIA _Toc370324001 � PAGRIF _Toc370324001 �7��

3.3.2 Zoom a view	� PULSVAIA _Toc370324002 � PAGRIF _Toc370324002 �7��

3.4 The Edit menu	� PULSVAIA _Toc370324003 � PAGRIF _Toc370324003 �7��

3.5 Creating the first scene	� PULSVAIA _Toc370324004 � PAGRIF _Toc370324004 �8��

3.5.1 Creating a sphere	� PULSVAIA _Toc370324005 � PAGRIF _Toc370324005 �8��

3.5.2 Create a lamp	� PULSVAIA _Toc370324006 � PAGRIF _Toc370324006 �8��

3.5.3 Create the image	� PULSVAIA _Toc370324007 � PAGRIF _Toc370324007 �8��

3.6 A new material	� PULSVAIA _Toc370324008 � PAGRIF _Toc370324008 �9��

3.7 Modify name and material	� PULSVAIA _Toc370324009 � PAGRIF _Toc370324009 �11��

4. User Manual for RTED (RT Editor) 0.6.2	� PULSVAIA _Toc370324010 � PAGRIF _Toc370324010 �12��

4.1 Features of the editor	� PULSVAIA _Toc370324011 � PAGRIF _Toc370324011 �12��

4.2 COMMANDS:	� PULSVAIA _Toc370324012 � PAGRIF _Toc370324012 �12��

4.3 Object types	� PULSVAIA _Toc370324013 � PAGRIF _Toc370324013 �17��

4.3.1 Primitive	� PULSVAIA _Toc370324014 � PAGRIF _Toc370324014 �17��

4.3.1.1 sphere	� PULSVAIA _Toc370324015 � PAGRIF _Toc370324015 �17��

4.3.1.2 cylinder	� PULSVAIA _Toc370324016 � PAGRIF _Toc370324016 �17��

4.3.1.3 cone	� PULSVAIA _Toc370324017 � PAGRIF _Toc370324017 �17��

4.3.1.4 box	� PULSVAIA _Toc370324018 � PAGRIF _Toc370324018 �17��

4.3.2 Composite	� PULSVAIA _Toc370324019 � PAGRIF _Toc370324019 �17��

4.3.2.1 brep	� PULSVAIA _Toc370324020 � PAGRIF _Toc370324020 �17��

4.3.2.1.1 Editing brep	� PULSVAIA _Toc370324021 � PAGRIF _Toc370324021 �17��

4.3.2.1.2 Brep special commands	� PULSVAIA _Toc370324022 � PAGRIF _Toc370324022 �17��

4.3.2.1.3 Rotation brep	� PULSVAIA _Toc370324023 � PAGRIF _Toc370324023 �17��

4.3.2.1.4 Sweep brep	� PULSVAIA _Toc370324024 � PAGRIF _Toc370324024 �18��

4.3.2.1.5 Creating brep object from truetype font	� PULSVAIA _Toc370324025 � PAGRIF _Toc370324025 �19��

4.3.2.2 NURBSmesh	� PULSVAIA _Toc370324026 � PAGRIF _Toc370324026 �19��

4.3.2.3 bezier	� PULSVAIA _Toc370324027 � PAGRIF _Toc370324027 �19��

4.3.2.4 blob	� PULSVAIA _Toc370324028 � PAGRIF _Toc370324028 �19��

4.3.2.5 CSG	� PULSVAIA _Toc370324029 � PAGRIF _Toc370324029 �19��

4.3.2.5.1 intersection	� PULSVAIA _Toc370324030 � PAGRIF _Toc370324030 �19��

4.3.2.5.2 subtract	� PULSVAIA _Toc370324031 � PAGRIF _Toc370324031 �19��

4.3.2.5.3 union	� PULSVAIA _Toc370324032 � PAGRIF _Toc370324032 �22��

4.3.3 Curve	� PULSVAIA _Toc370324033 � PAGRIF _Toc370324033 �22��

4.3.3.1 Editing Curves	� PULSVAIA _Toc370324034 � PAGRIF _Toc370324034 �22��

4.3.3.2 polyline	� PULSVAIA _Toc370324035 � PAGRIF _Toc370324035 �22��

4.3.3.3 beziercurve	� PULSVAIA _Toc370324036 � PAGRIF _Toc370324036 �22��

4.3.3.4 NURBScurve	� PULSVAIA _Toc370324037 � PAGRIF _Toc370324037 �22��

4.3.4 Lamp	� PULSVAIA _Toc370324038 � PAGRIF _Toc370324038 �22��

4.3.4.1 pointlamp	� PULSVAIA _Toc370324039 � PAGRIF _Toc370324039 �22��

4.3.4.2 arealamp	� PULSVAIA _Toc370324040 � PAGRIF _Toc370324040 �22��

4.3.5 Pseudo	� PULSVAIA _Toc370324041 � PAGRIF _Toc370324041 �22��

4.3.5.1 anim	� PULSVAIA _Toc370324042 � PAGRIF _Toc370324042 �22��

4.3.5.2 flip	� PULSVAIA _Toc370324043 � PAGRIF _Toc370324043 �22��

4.3.5.3 field	� PULSVAIA _Toc370324044 � PAGRIF _Toc370324044 �23��

4.3.5.3.1 How to use Field Object	� PULSVAIA _Toc370324045 � PAGRIF _Toc370324045 �23��

4.3.5.3.2 How to write a Field object	� PULSVAIA _Toc370324046 � PAGRIF _Toc370324046 �23��

4.3.5.4 Deformation Graph	� PULSVAIA _Toc370324047 � PAGRIF _Toc370324047 �25��

4.3.5.4.1 Creating a deformation graph	� PULSVAIA _Toc370324048 � PAGRIF _Toc370324048 �25��

4.3.6 Camera	� PULSVAIA _Toc370324049 � PAGRIF _Toc370324049 �26��

4.4 Library directory	� PULSVAIA _Toc370324050 � PAGRIF _Toc370324050 �26��

4.5 Undo feature	� PULSVAIA _Toc370324051 � PAGRIF _Toc370324051 �26��

4.6 Definition of configuration file	� PULSVAIA _Toc370324052 � PAGRIF _Toc370324052 �27��

5. File definition for RT Editor	� PULSVAIA _Toc370324053 � PAGRIF _Toc370324053 �28��

5.1 Introduction	� PULSVAIA _Toc370324054 � PAGRIF _Toc370324054 �28��

5.2 Basic arguments	� PULSVAIA _Toc370324055 � PAGRIF _Toc370324055 �28��

5.2.1 How data are organised in a file	� PULSVAIA _Toc370324056 � PAGRIF _Toc370324056 �28��

5.2.2 A simple scene (Tut01.RT)	� PULSVAIA _Toc370324057 � PAGRIF _Toc370324057 �29��

5.2.3 Some hints	� PULSVAIA _Toc370324058 � PAGRIF _Toc370324058 �31��

5.2.4 Adding a new sphere (Tut02.rt)	� PULSVAIA _Toc370324059 � PAGRIF _Toc370324059 �31��

5.2.5 Changing the color of an object (Tut03.rt)	� PULSVAIA _Toc370324060 � PAGRIF _Toc370324060 �31��

5.2.6 Modifying the parameters (Tut04.rt)	� PULSVAIA _Toc370324061 � PAGRIF _Toc370324061 �31��

5.2.7 Adding a box (Tut05.rt)	� PULSVAIA _Toc370324062 � PAGRIF _Toc370324062 �32��

5.2.8 The brep object	� PULSVAIA _Toc370324063 � PAGRIF _Toc370324063 �32��

5.2.9 Cylinder	� PULSVAIA _Toc370324064 � PAGRIF _Toc370324064 �32��

5.2.10 Cone Lamp	� PULSVAIA _Toc370324065 � PAGRIF _Toc370324065 �33��

5.2.11 Creating a coloured background (Tut06.rt)	� PULSVAIA _Toc370324066 � PAGRIF _Toc370324066 �33��

5.2.12 Applying a texture mapping to an object (Tut07.rt)	� PULSVAIA _Toc370324067 � PAGRIF _Toc370324067 �33��

5.3 Advanced argument	� PULSVAIA _Toc370324068 � PAGRIF _Toc370324068 �34��

5.3.1 Limits of the raytracer	� PULSVAIA _Toc370324069 � PAGRIF _Toc370324069 �34��

5.3.2 A transformation of an object (Tut08.rt , Tut09.rt) or a lamp	� PULSVAIA _Toc370324070 � PAGRIF _Toc370324070 �34��

5.3.3 Group of objects	� PULSVAIA _Toc370324071 � PAGRIF _Toc370324071 �35��

5.3.4 Building a csg node (Tut10.rt)	� PULSVAIA _Toc370324072 � PAGRIF _Toc370324072 �36��

5.3.5 NURBS mesh	� PULSVAIA _Toc370324073 � PAGRIF _Toc370324073 �36��

5.3.6 Bezier Mesh	� PULSVAIA _Toc370324074 � PAGRIF _Toc370324074 �37��

5.3.7 Understanding the view	� PULSVAIA _Toc370324075 � PAGRIF _Toc370324075 �38��

5.3.8 Other attribute on param section	� PULSVAIA _Toc370324076 � PAGRIF _Toc370324076 �39��

5.3.9 Adding comment	� PULSVAIA _Toc370324077 � PAGRIF _Toc370324077 �39��

5.3.10 Creating stereogram	� PULSVAIA _Toc370324078 � PAGRIF _Toc370324078 �40��

5.3.11 Using hierarchy	� PULSVAIA _Toc370324079 � PAGRIF _Toc370324079 �40��

5.4 Appendix	� PULSVAIA _Toc370324080 � PAGRIF _Toc370324080 �40��

5.4.1 If something goes wrong	� PULSVAIA _Toc370324081 � PAGRIF _Toc370324081 �40��

5.5 Object types	� PULSVAIA _Toc370324082 � PAGRIF _Toc370324082 �41��

5.5.1 Primitive	� PULSVAIA _Toc370324083 � PAGRIF _Toc370324083 �41��

5.5.1.1 sphere	� PULSVAIA _Toc370324084 � PAGRIF _Toc370324084 �41��

5.5.1.2 cylinder	� PULSVAIA _Toc370324085 � PAGRIF _Toc370324085 �41��

5.5.1.3 cone	� PULSVAIA _Toc370324086 � PAGRIF _Toc370324086 �41��

5.5.1.4 box	� PULSVAIA _Toc370324087 � PAGRIF _Toc370324087 �41��

5.5.2 Composite	� PULSVAIA _Toc370324088 � PAGRIF _Toc370324088 �41��

5.5.2.1 brep	� PULSVAIA _Toc370324089 � PAGRIF _Toc370324089 �41��

5.5.2.1.1 brp file format	� PULSVAIA _Toc370324090 � PAGRIF _Toc370324090 �41��

5.5.2.2 NURBSmesh	� PULSVAIA _Toc370324091 � PAGRIF _Toc370324091 �42��

5.5.2.3 bezier	� PULSVAIA _Toc370324092 � PAGRIF _Toc370324092 �42��

5.5.2.4 blob	� PULSVAIA _Toc370324093 � PAGRIF _Toc370324093 �42��

5.5.2.5 CSG	� PULSVAIA _Toc370324094 � PAGRIF _Toc370324094 �42��

5.5.2.5.1 intersection	� PULSVAIA _Toc370324095 � PAGRIF _Toc370324095 �42��

5.5.2.5.2 subtract	� PULSVAIA _Toc370324096 � PAGRIF _Toc370324096 �42��

5.5.2.5.3 union	� PULSVAIA _Toc370324097 � PAGRIF _Toc370324097 �42��

5.5.3 Curve	� PULSVAIA _Toc370324098 � PAGRIF _Toc370324098 �42��

5.5.3.1 polyline	� PULSVAIA _Toc370324099 � PAGRIF _Toc370324099 �42��

5.5.3.2 beziercurve	� PULSVAIA _Toc370324100 � PAGRIF _Toc370324100 �42��

5.5.3.3 NURBScurve	� PULSVAIA _Toc370324101 � PAGRIF _Toc370324101 �42��

5.5.4 Lamp	� PULSVAIA _Toc370324102 � PAGRIF _Toc370324102 �42��

5.5.4.1 pointlamp	� PULSVAIA _Toc370324103 � PAGRIF _Toc370324103 �42��

5.5.4.2 arealamp	� PULSVAIA _Toc370324104 � PAGRIF _Toc370324104 �42��

5.5.5 Pseudo	� PULSVAIA _Toc370324105 � PAGRIF _Toc370324105 �42��

5.5.5.1 anim	� PULSVAIA _Toc370324106 � PAGRIF _Toc370324106 �42��

5.5.5.2 flip	� PULSVAIA _Toc370324107 � PAGRIF _Toc370324107 �42��

5.5.5.3 field	� PULSVAIA _Toc370324108 � PAGRIF _Toc370324108 �43��

5.5.5.3.1 How to write a Field object	� PULSVAIA _Toc370324109 � PAGRIF _Toc370324109 �43��

5.5.5.4 Deformation Graph	� PULSVAIA _Toc370324110 � PAGRIF _Toc370324110 �45��

5.5.6 Camera	� PULSVAIA _Toc370324111 � PAGRIF _Toc370324111 �45��

6. File format	� PULSVAIA _Toc370324112 � PAGRIF _Toc370324112 �46��

6.1 Definition of the file format	� PULSVAIA _Toc370324113 � PAGRIF _Toc370324113 �48��

6.2 File .bmp	� PULSVAIA _Toc370324114 � PAGRIF _Toc370324114 �48��

6.3 File .brp	� PULSVAIA _Toc370324115 � PAGRIF _Toc370324115 �48��

6.4 File .bzr	� PULSVAIA _Toc370324116 � PAGRIF _Toc370324116 �49��

6.5 File .rt	� PULSVAIA _Toc370324117 � PAGRIF _Toc370324117 �50��

6.5.1 Section View	� PULSVAIA _Toc370324118 � PAGRIF _Toc370324118 �50��

6.5.2 Section parameters	� PULSVAIA _Toc370324119 � PAGRIF _Toc370324119 �51��

6.5.3 Section texture	� PULSVAIA _Toc370324120 � PAGRIF _Toc370324120 �52��

6.5.4 Section material	� PULSVAIA _Toc370324121 � PAGRIF _Toc370324121 �52��

6.5.5 Section lamp	� PULSVAIA _Toc370324122 � PAGRIF _Toc370324122 �53��

6.5.6 Section object	� PULSVAIA _Toc370324123 � PAGRIF _Toc370324123 �54��

6.6 Tecnical Information	� PULSVAIA _Toc370324124 � PAGRIF _Toc370324124 �59��

6.6.1 How the program works	� PULSVAIA _Toc370324125 � PAGRIF _Toc370324125 �59��

6.6.2 Limits of the raytracer	� PULSVAIA _Toc370324126 � PAGRIF _Toc370324126 �59��

6.7 Bibliography	� PULSVAIA _Toc370324127 � PAGRIF _Toc370324127 �59��

�

RT Editor 0.6.2

RTED (RT Editor) is a freeware program. Read file “licence.wri”.

If you are interested on this program, you have created some good images or you have found some bugs please send a mail to “sergio.per@iol.it”, or you can write to:

	Sergio Perani

	Via Filippo Turati, 27

	05100 Terni (TR) , Italy

RT email newsletter

You can subscribe to RT email newsletter.

Subscribe to RT: The best way to hear about new content and preview

upcoming events on RT is to subscribe to RT email newsletter.

You can subscribe sending the message "SUBSCRIBE" to "sergio.per@iol.it".

You can unsubscribe if you send the message "NO SUBSCRIBE".

Download

The home page for RT program is :

	http://www.geocities.com/SiliconValley/3526

if the page is moved you can ask me (sergio.per@iol.it) the new url.

You can download the last version of the program at SimTel:

	http://www.coast.net/SimTel/win95/graphics.html

OR

	ftp://ftp.coast.net

OR in any SimTel mirror site.

The program can work with:

processor :386

OS: Windows 3.1 + Win32s

RAM: 4 Meg

But it works better with:

processor: 486 or better

RAM: 8 Meg or better

Video: true color display

Introduction

The program RT is a raytracer with the following features:

(Ray Casting and Ray Tracing

(Antialiasing

(Depth bitmap for stereogram

(VRML 1.0 output

(Texture mapping (from bitmap Windows .bmp with 24 bit color)

Models of illumination

(Phong

Sources of light (Lamp)

(Point

(Cone

(Area

Geometric Models

(Box

(Sphere

(Cylinder

(CSG General

(Boundary Representation (with Phong interpolation)

(Bezier mesh

(Polyline

The program reads a text file, which describes the scene and returns a bitmap file.

Tutorial for RT Scene Editor 0.6.2

This tutorial explains step by step how to create a scene with RT Editor program.

Start the editor

From file manager (for Windows 3.1 or Windows NT) or explorer (for Windows 95) click on rted.exe file. The program will start and you will see this:

� INCORPORA Word.Picture.6 ���

All is divided in four view windows: front, top, side, preview.

Any view window shows the scene from a different point of view.

Front: seen in the plane X-Z.

Top: seen in the plane X-Y.

Side: seen in the plane Y-Z.

Preview : like in the final rendering.

All the views are empty except for an object in the centre of each one. This object is the default camera.

�

The camera may appear differently from the picture, if you have modified the camera shape.

If you move the mouse onto it and click with the left button you will select the camera. The camera will change the color (it could became green) and some strange symbols will be visible.

These symbols describe the view of the scene in the final rendering. They are:

The VRP

�

VRP is the center of the image window (the final image rendered) .

The VUP

�

This symbol shows the “up” of the view.

The VPN

�

This symbol shows the direction where you look the scene.

The IMAGE PLANE is the base of the yellow pyramid.

The PRP

�

This symbol defines the position of the observer.

If you click with left button of the mouse far from the camera, you deselect it and all will became as when starting.

To modify the view you should change the position of the VRP, the VUP, the VPN.

To modify the VRP:

1) click on the VRP symbol with left button of the mouse. In the status bar you should read “VRP”

2) move the cursor in the new position for the VRP

3) press ‘m’ key and you will move it (‘m’ for move)

To make camera able to view your scene you have to SET it.

You should click onto camera with right button and you will see this:

�

�

The first thing to do : SAVE THE FILE !

First you must create a directory where to save your scene. You can save it in “c:\rted\Scenes\edtut1\” directory. You must create it with File manager or explorer or other programs. Then from menu “File” select “Save As...”. A Dialog box will pop up.

Select the directory, then choose a file name which finishes with “.rt”. You can choose “edtut1.rt”.

Press OK button.

Now you have created the scene file. On the title of the window you should see this:

�

Select a view

A window view may be selected. If a view is selected a small black triangle is shown in the top-left. To selected another view click in the new view.

Center a point in a view

To center a point in a view you only have to open the “Command” menu and choose the command “center” or, more easily, use the key “c” and click with the mouse in the point you want to center the scene.

Zoom a view

To zoom is as easy as to center: open the “Command” menu and choose zoom in/out or use the keys “i”/ “o” .

The Edit menu

The main menu is the edit menu. There you find the main commands to build and modify a scene. You can edit graphic objects, material, textures, mapping.

�
Creating the first scene

Creating a sphere

The scene is now empty. No object, no lamp is in. Select the front view. This will be the view where you will work.

Now will add an object in the scene. Move the cursor in a zone of view window far from the camera. Click with the right button of the mouse. A menu will pop up. This allow to create a new object in that position.

�

Then the scene will be:

�

Create a lamp

Now you should add a light source in the scene if you want to render it. It is simple like to create a sphere. Create a point lamp like in the picture above.

�

The pointlamp object look like a sphere but they are quite different; the pointlamp is invible but allow to see the other objects. To see what type of an object is, select him, then on the status bar you will see the name of the object and the type.

Create the image

Now you can render the image. Use Command “Action|Create image”. The views will disappear and the program will start to render. If you have a true color display you will see the correct image, else you will see an approximate image. The status bar will show the line under rendering and a guess of the time remaining.

The final image will be:

�

You can return to the wireframe views using command “Window|All views”.

The image size is 100x100 pixels. If you think it is too small you can change it. To do it, select the camera then click right button on the camera.

This action will show a menu that allow to modify the object. This menu is the same for every object except for the last item “Special”, which may be different from type to type. For camera use “Special|General”.

“dimx” is the horizontal dimension (in pixels), “dimy” is the vertical dimension (in pixels), “focald” the focal distance (the distance from PRP to VRP), “high” is the dimension of the window on the projection plain.

�

Try to change:

dimx from 100 to 320

dimy from 100 to 200

high from 2 to 0.5

Now render again the scene. The output will be bigger.

A new material

You can also create a new material. By using the command “Edit|Material|Create” this dialog box will pop up:

�

You will write the name you have choosen for your new material and another dialog box will appear:

�

This dialog box allows you to choose the color of your material by clicking “Od” and “Os”.

“Od”is the diffuse color, and if you want to change the color of an object you have to change this. A dialog box will pop up to show you the colors you can choose.

“Os” is the specular color, you have to use it if you want to change the color of highlight.

The other parameters are related to other characteristics of the material as reflection, refraction and others.

For better hints, look at the Tutorial for RT File Format in “manual.wri”.

You can also preview the characteristics of your material simply by clicking “preview”.

The material you have created will be saved and will be a part of your library of materials.

�

Modify name and material

To modify names you have to use the command “Edit|Object|Modify comm”. A dialog box will pop up:

�

In this way you can change the name of the object and the material.

User Manual for RTED (RT Editor) 0.6.2

Features of the editor

- mixed editing (editor and text)

- on screen selection for objects

- editing tools

REMEMBER: Don’ t work with unnamed file, always save it. If you don’ t have a named file, you haven’ t a directory where to get model and to save undo.

In the title bar, you will see:

RT Scene Editor - c:\Dir\foo.rt [actuallay]

actuallay is the name of the layer that is now selected. When you start to create a scene, you will start from layer “default”.

The layers are usefull when you work with a great number of objects. No problem, create a new layer and put in this all the object you need to edit. The layers are usefull also to create a group of objects. Follow this:

1) Create a new layer with the same name of the group

2) Add in this layer the objects that you want in the group

3) Use command Layer|Group. The program will create the group and will put it in default layer.

You can open a group with command Layer|Open Group. The program will recreate the layer.

If you open a group you will not loose the trasformation (rotation, scale, translation) applied to group. The program will keep an empty group to remember of them when you will want to rebuild the group.

Read first the Section “Tutorial for RT Editor”, where is explained how to build the first scene.

COMMANDS:

Left button of the mouse

	1) Select an object. If you click with left button on a object in the selected view you select the object.

	You can edit some types of object if you select them.

Right button of the mouse

	Active only in 3D views. click on objects and view (VUP, VPN, VRP, PRP).

	If you select multiple object, a dialog box pops up and ask you an item.

	If it starts with “$” it is an object, with an “*” is a lamp, with a “&” is a view value.

	If you select an object or a lamp then will appear a submenu with action for objects or lamps:

	translate, rotate, scale. If you select translate then click for new object position.

File|Load ...

	You can load a .rt file.

File|Save

	You can save actual .rt file. If the file has no name, no action will be made.

File|Save as...

	You can save the actual file with a new name.

	Remeber: save the new file in the same directory. If you must save in another, you must copy all the 	referenced file *.brp, *.bzr.

File|Exit

Exit the program.

Edit|Duplicate

Duplicate an object.

Edit|Object|Create

you must choose an object type. Then a specific dialog box will pop up. You must always

give the name to the object.

- sphere

- brep

- box

- cylinder

- intersection

- subtraction

- union		

- bezier

- polyline

- anim

- deformgraph

and so on...

Look after to see more about how to modify polyline, anim and deformgraph.

Edit|Object|Modify

You must choose the object name from the list. A dialog box will pop up, where you can edit the object characteristics.

Edit|Object|Modify Comm

You must choose the object name from the list.

A dialog box will pop up. You can change the object name, its material and texture and apply the current mapping, if you have created one.

Edit|Object|Delete

	You must choose the object name from the list.

	The program will delete the object from the scene.

Edit|Object|Traslate

	You must choose the object name from the list.

	Choose the translation values for x,y,z axes.

Edit|Object|Rotate

	You must choose the object name from the list.

	Then you choose the rotation angle for x, y, and z axes.

Edit|Object|Scale

	You must choose the object name from the list.

	Then you choose the scale factor for x, y, and z axes.

	Choose negative values for mirroring.

Edit|Object|Special

	Special menu for object. Not all the objects have a special menu.

Edit|Object|Extra Info

	You can change some extra caracteristic for objects.

	style is the type of visualization: normal, fastview and box.

	fastview is usefull for object with a great number of lines. With fastview the program

	show only a line every n times, where n is a value in the fastview attribute.

	With box you will see only the box of the object.

Edit|Material|Create

	A dialog box will appear. Give the name of the new material, then the material editor will appear.

	Look in manual or in tutorial for attribute meaning.

	

Edit|Material|Modify

	You must choose the material name from the list.

	The material editor dialog box will appare.

	Look in manual or in tutorial for attribute meaning.

Edit|Material|Delete

	You must choose the material name from the list.

	The program will delete the material from the scene.

Edit|Mapping|Create

You must choose the mapping type from the list. A new mapping will be created. The mapping created will be the selected mapping.You can apply it to objects using the command “Edit|Object|Modify Comm”.

Edit|Mapping|Get from ...

Get the selected mapping from an object. You must choose from the object list.

Edit|Mapping|Delete

Delete the selected mapping.

Edit|Mapping|Show

Show the mapping on view windows, so you can edit it. You can edit only the mapping, to return to normal edit mode use command “Edit|Mapping|Hide”.

Edit|Mapping|Hide

Hide the mapping and return to normal mapping mode.

Edit|Texture|Create

You must choose a texture from the list. In the list there are the texture found in the texture path.

	

Edit|Texture|Delete

	You must choose the texture name from the list. This command will not delete the texture from you disk but only 	from the scene.

Edit|Param

	You can edit varius parameters from the param section.

	Look in the tutorial for more information.

Command|Redraw 3D

	Redraw the front, top, left views. You can press “F5” key.

Command|Preview

	Redraw the preview. You can press “F9” key.

Command|Zoom In

Zoom in the selected view window. This command does not work with the preview window. You can press the “i” key.

Command|Zoom Out

Zoom out the selected view window. This command does not work with the preview window. You can press the “o” key.

Command|Center

	Allow to change the center of the front, top, left views.

	Click with the left mouse in the new center of the window.

Command|Axes

	Show or hide the axes.

Command|Object editing

Turn on or turn off the possibility to edit internally the object.

If Object editing is turned on, the object may handle the mouse commands.

Command|Find Object

Change the view for the selected view window (only for front, top and side).

First an object must be choosed[?] , then the view window will be changed to show the entire object.

Window|Single window

Show only the selected window.

Window|All windows

	Allow to return to the edit windows.

Window|Show image

	Show the last rendered image.

Window|Front view

	Show only the front view.

Window|Top view

	Show only the top view.

Window|Side view

	Show only the side view.

Window|Preview view

Show only the preview view.

Action|Create Image

Create and display the image on the view.

Action|Create all frames

Create all the frames of a animation.

Action|Prolog

Show the prolog console.

Animate|Go to frame ...

Select a frame of the animation, and enter in the animation mode.

Animate|NFrame

Set the number of frame in the animation.

Animate|End

Exit from the animation mode.

Help|About

Information about the program.

Layer|Create

Create a layer. You must enter the new name.

Layer|Delete

Delete a layer.

Layer|Add to ...

Add an object to a layer. An object can be in more than a layer.

Layer|Remove from ...

Remove an object from a layer.

Layer|Group

Create a group from the selected layer.

Layer|Open group ...

Trasform a group in a layer.

Layer|Select

Select a layer. You will see only the object in the layer.

Insert|File RT

Ask for a .rt file. It will insert the .rt file in the actual scene.

Insert|File DXF

Ask for a .dxf file. It will insert the .dxf file in the actual scene. It generate .brp files and a .rt file in the scene directory.

Insert|File RAW

Ask for a .raw file. It will create a .brp file in the scene directory.

Option|General

You can change some editor values:

UseColor		use colors to draw object in wireframe mode.

DirectBox		show all the objects like boxs.

Background		the color of the background.

SelectedColor		the color of the selected object.

UseGrid		use the grid for polyline editing.

GridDim		dimension of the grid.

InvertY		invert the y axes on Top view.

Option|Interface

You can change some interface values:

DimPixel	pixel dimension, during image costruction.

		0 no draw

		1 normal

		2..6 bigger image

CBitmap 	hold image in memory, after image creation.

MultiTask31	multitasking for Windows 3.1.

Object types

There are many types of object. Here is a description of their characteristics and way to edit them.

Primitive

sphere

cylinder

cone

box

Composite

brep

brep (Boundary representation) objects are solid objects formed by polygon. brep objects may be internal or external to .rt file. When you create a brep object you must include a model from the current directory.

Editing brep

You can move the vertices of a brep object. You should edit only inline brep objects .

Follow this steps:

1) Select a brep object.

2) Click on a vertex. A red square will appear.

3) Move the mouse in the new position and press ‘m’ key.

Brep special commands

Use command “Edit|Object|Special”. You will see the special menu for brep object.

Info

give information on the status of the brep object. This can tell you if the model is an inline model or if it is an external model (in this case you will see also the file name).

Include In Scene	

if the brep object is external, include a copy inside the .rt file. Files with inline models can became very large.

External Model

if the model is internal, you can save the model in a brep file.

Save

refresh the brep file (only for external models).

Rotation brep

To build a brep you need to rotate a polyline around an axis. The rotation axis will be the Y axis. To see the axis press the F12 key or use Command|Axis. The polyline can be open or close. (Use the special menu for open or close a polyline).

If the polyline is open you need that the first and the last point of the curve are on the Y axis, like in the picture.

 �

The first and the last point can not be exactly on the axis but near; the program will move them for you.

The curve can be closed:

�

All the points must be all positive or all negative.

To make a rotation of a polyline you must choose “rotation” from the special menu of the polyline.

The program will ask for the name of the new object, the number of subdivisions and the angle of rotation.

Sweep brep

You may build a sweep brep only from a closed polyline. Choose “sweep” from the special menu of the polyline.

The program will ask for the name and the height of the new object.

It is possible to build more complex sweep object, with hole, following a path or with deformations.

Before you have to create a shape to sweep. This must be a group of polylines. Follow this procedure:

1) Create a new layer with the name of the shape (es. test_shape).

2) Select the new layer

3) Select the top view

4) Draw the external and the internal polyline (you must draw one external polyline and one or more internal polyline or no internal polyline).

�

5) Use command Layer|Group to create group “test_shape”.

6) Now in the default layer, draw a polyline that will be the sweep path (in the front or side view) with name “path1”.

7) Select the group “test_shape” and call the special menu of the object.

8) Choose “Sweep”.

9) In the dialog box give a name to the brep object, and choose “path1” in the path listbox.

At the end you will have a sweep brep.

You can also deform the shape when it follow the path. You need a deformation graph (“deformgraph”).

Creating brep object from truetype font

You must follow this steps:

1) the option ConvertText must be on, in Option|General

2) Create a layer (es. ‘new_text’) and select it.

3) Choose ‘Insert|Text’ command, then select the font and the character dimension (greater than 100 for better resolution).

4) insert you text string

At this time you should see the text on the top view (if not, try to press ‘o’ key sometimes on top view). Each letter of the string is composed by one or more polyline. Now you can create a brep object using sweep.

5) Use layer|group command

6) Execute ‘Edit|Object|Special’ then choose sweep.

NURBSmesh

bezier

blob

You can create blob objects.

You need an external program to do it :Winblob. You can find it at:

ftp://ftp.povray.org/pub/povray/utilities/general/winblobs.zip

Create a blob object and save it in .blb file format, then use command “Edit|Object|Create” and choose “blob”.

CSG

intersection

subtract

union

Curve

Editing Curves

If you click with left button of the mouse on a curve in a selected view, you select the curve. The curve will change color, and its control points will appear on display (you will see a little square for any control point). If you click again far form the curve, you deselect it.

If on a selected curve you press the left button of the mouse in a control point, the square will become red., you have selected the control point. There are some actions you can do in this situation:

(press key ‘d’. This delete the control point.

(press key ‘a’. A new point control will be added in the cursor position.

(press key ‘m’. You move the control point position. The new position will be the same of the cursor.

You can also click and drag on a control point to move it.

You can use the grid (Option|General...) to limit the positions of the point.

polyline

You can use the polyline in many way. You can use it to build brep objects.

Remember to work always in the Top view!

It is possible to build rotation brep or sweep brep.

beziercurve

NURBScurve

Lamp

Lamp like object. Lamp becames obsolete. Instead you can use objects which have the same behaviour of a lamp.

If you execute command Edit|Object|Create you should see the list of object type. You can also see pointlamp type (like if you are using Edit|Lamp|Create). A pointlamp object shows like a sphere in a editor view, but in rendering it is equal to a lamp.

Because it is an object, it will not be present in all layer; you can also include it in a group or animate it.

	pointlamp

	arealamp

Pseudo

These[?] object types are not true objects, because generaly you cannot render it, but they are used to model other object or for special purpose.

anim

Animation object. It can animate an object by translating it. You can create a anim object using a curve (translation path) and an object which you can render.

flip

Try to render inside a shere or a box. You should see a darker image that you render outside the same object. Thi is the standard behaviour, but if you want you can invert the “inside” of an object with the “outside”. You must create a flip object, which inverts all the surface normals of an object. You may use on any object that you can render.

1) Execute command “Edit|Object|Create”

2) Choose “flip”

3) Choose the object that you want to flip.

You cannot modify a flipped object.

field

How to use Field Object

Field object are used to deform brep objects. You should not try to render it. Field objects are completely programmable, you can write you own field.

A field is a vector field. It exists only inside a volume. In the editor you will se a solid object (like a box) and inside two curves, each of a different color. One is the curve before to apply the field on it, the other the same curve after to apply it.

You can move a field object like any other object, you can translate, rotate, scale it. To apply it, select a brep object (click on it with left button of the mouse) the press ‘f’ key. You must choose which field object apply (you may have more that one in your layer).

Field will be applied only to control points that are inside the field volume, so you can change only a portion of an object.

It is better that you use brep object with inline models.

In directory “Library\field” you can find some predefinite fields:

hammer

lhammer

bend

taper

Every field can be customized with same specific parameters (different from field to field), which modify its behaviour. You can change them with Edit|Object|Modify command.

If you want to modify a field variable, choose it in the listbox, then click the “update” button to see the value of the variable and the range (from,to). To change a variable value use “change” button.

How to write a Field object

You can write your own field. You must write your own .rt file using a text editor.

Look at this example (equal to “library\field\lhammer.rt”) :

{ material

	name _field1;

	model { phong

	 Ks 0.2;

	 Kt 0;

	 ni 1;

	 Ka 0.2;

	 Kd 0.6;

	 n 10;

	 Od (0,0,1);

	 Os (0.5,0.5,0.5);

	}

}

{ material

	name _field2;

	model { phong

	 Ks 0.2;

	 Kt 0;

	 ni 1;

	 Ka 0.2;

	 Kd 0.6;

	 n 10;

	 Od (1,0,0);

	 Os (0.5,0.5,0.5);

	}

}

{ object

	name lhammer;

	model { field

		{ object

			name obj000001;

			material standard;

				model { box

				xmin -2;

				xmax 2;

				ymin -1;

				ymax 1;

				zmin -1;

				zmax 1;

			}

		}

		decoration { object

				name decoration;

				material _field1;

				model { polyline

					open 1;

					p (0 , 0 , -0.45);

					p (0 , 0 , -0.4);

					p (0 , 0 , -0.35);

					p (0 , 0 , -0.3);

					p (0 , 0 , -0.25);

					p (0 , 0 , -0.2);

					p (0 , 0 , -0.15);

					p (0 , 0 , -0.1);

					p (0 , 0 , -0.05);

					p (0 , 0 , 0);

					p (0 , 0 , 0.05);

					p (0 , 0 , 0.1);

					p (0 , 0 , 0.15);

					p (0 , 0 , 0.2);

					p (0 , 0 , 0.25);

					p (0 , 0 , 0.3);

					p (0 , 0 , 0.35);

					p (0 , 0 , 0.4);

					p (0 , 0 , 0.45);

				}

			}

		dfmat _field2;

		

		param {

			strenght value 1 from 0 to 5;		

		}

		mat {

			strenght "1;";

			rx "strenght - abs(z) ;";

			ry "0;";

			rz "0;";

		}

	}

}

.

The definition of the two material are outside the field object declaration, but them are used to define the color of the two curve which describe the field behavior.

The first object is the volume field. It can be any raytracing object, but it must be closed (like a box, a sphere or a cylinder).

The decoration must be a curve, it is the curve before apply the field.

dfmat is the material for the transformated curve.

param section list all the variables that you can modify from editor (using Edit|Object|Modify). A variable in param section can be any identifier different from “x”,”y”,”z”,“rx”,”ry”,”rz”. The definition follow the form :

		variable value defvalue from minvalue to maxvalue;		

where variable is the variable name, defvalue if the default value, minvalue and maxvalue the mininum and maximum value for the variable. You must also define the variable in the next mat section at the default value.

mat section describes the field in all the space. You must write a list of variable definitions, using mathematic expressions. Some variables are special :

x,y,z are predefefinite variables. They are a point in the space in the form P(x,y,z).

rx,ry,rz are the return variables. You must always define them. They are the three components of the field vector at point P(x,y,z).

In mat section you may use x,y,z and any variable defined in mat section before the first use. You can define new variables following this expression:

	var “vardef;”;

var is the name of the new variable (case sensitive).

vardef is an expression.

In expression you can use ‘(‘ and ‘)’ (for precedence in evalutation) and the following functions:

+, - , * , /

abs

sqrt

exp,log

sin, cos, tan

asin,acos,atan

zero

zero is usefull if you must write expression like x/y. Sometimes y can be equal to 0 and you will get an error computing x/0. You can rewrite the expression like x/(y+zero(y)).

	Deformation Graph

Creating a deformation graph

A deformation graph is used for a general sweep operation, to deform the shape of the sweep.

You can work only in the Top view and only in the range 0 <= x <= 1. Draw a curve in the range like in the picture.

�

This curve start from point (0,1) to point (1,0). You can see it like a function f(x). The 1-value means an unmodified shape, greater than 1 a bigger shape and smaller than 1 a reduced shape. When the program creates the sweep , it divides the interval from 0 to 1 in as many parts as the times it uses the shape.

To create a deformation graph from this curve use command Edit|Object|Create and choose deformgraph.

A deformation graph can be in any layer, when you create a general sweep you can select it also if in a different layer.

Camera

Library directory

The library directory contains some usefull .rt files. You should not open this files, you must include them int your scene with “Insert|Library|*” or with “Insert|File RT” command. They are organized in subdirectory:

field		standard field objects (described below)

material 	common materials

param		common sets of rendering variables

In material subdirectory:

glass 		green glass

In material subdirectory:

fast		faster raytracing rendering

hquality		high quality rendering

Undo feature

If you work with a .rt file which name is “name.rt”, the program will create a directory “name.rtd”, and will put some files in it. Inside there is the directory “editor” which contains files used by the scene editor. Inside there is a directory “UNDO”. After every action RTED will put there a copy of the scene. This because the program can crash in every time so you will have you work save.

Definition of configuration file

The position of the configuration file of the program RTED is definited in file win.ini in the section [Rtw] in record Ini.

Es.

[Rtw]

Ini = c:\rt\rtw.ini

Section view

Definitions of the metods to display image during creation.

Dimpixel.

Dimension of pixel of image showed during creation. 3 means that the image will occupate a grid of 3x3 pixel. You can use it when you create a small image.

Use Editor|Interface... to change this value.

CBitmap

If the value is 1 RTED keep a copy of the bitmap in memory.

Use Editor|Interface... to change this value.

Section Dir

Definition of directory used by the program.

TextureDir.

Directory where the program looks for the textures.

ModelDir.

Directory where the program looks for geometric models.

 File definition for RT Editor

Introduction

This part explains step by step how to create a scene that you can render with RT program. There are explained some advanced features too.

The scene is described by a text file; the extension used is “rt”.

You must write a .rt file using a text editor, like the dos edit, windows notepad or the editor which you prefer. You must be able to use one of it, to read a file and to save it.

That is not the only a way to create a .rt file. You may use the RT Editor. It creates a .rt file in the same format explained here.

For all paragraphs in the form :

title (Tutxx.rt)

there is a .rt file which uses a specific characteristic. You can find that file in the “examples\tutorial” directory; so you can print this and not the examples.

Basic arguments

How data are organised in a file

The .rt file is a text file.

This is an example which describes the way data are subdivided:

{ section1

	{ subsection1

		attribute1 value;

	}

	attribute2 value;

}

{ section2

}

.

This file cannot be read by RT, it is only a template to show the highlight of the structure of a .rt file. The real identifiers used in a real .rt file are described after, with their meanings.

The parts of file separated by { and } are called sections. The file ends with a dot (.) .

The word after { is the type of the section.

A section can contain other sections (called subsections) or attribute.

A section contains some attributes. Every attribute has a value. The value depends on the attribute, name. The attribute values can be also subsection.

The attribute that can be in a section depends on the type of the section.

The sections describe things in the scene. The attributes tell how things are made. If a section needs the data of another one, the first one must follow the second.

Don’ t worry if you don’ t understand exactly, you will understand when you see the examples.

A simple scene (Tut01.RT)

Look at file TUT01.RT.

Tut01.rt is the simplest scene you can render. All sections are needed.

This scene is a sphere with a light source (lamp) .

Here a short description of the sections used:

vcr

view coordinate reference, it describes the 3d view of the scene.

lamp

is a light source.

material

describes the physical characteristics of an object, if it is red or white, if it is opaque or transparent.

object

is an object of the scene.

They can be declared in any order, except in the case of materials which must precede objects, because, the object sections reference to the material section.

For lamps, materials, and objects vary types of model exist. For example an object can be a sphere (like in this case) or a box or other. All the objects have some attributes that are common to all objects, (the part before model) while others that are specific to the particular type of object. The common attributes in the section object that must always be declared are name and material.

Give a look to the section object. The common attribute can be:

name

is the name of the object. All objects in the scene must have an unique name; if not the new object will override the old.

material

is the name of the material which describes the physical characteristics of an object. It must exist a material section which declares a material which name will be used in a object section.

For some type of object, called metaobjects, you must not include the attribute material, but these are not real object. They are explained later.

model

its value is a subsection which name is the type of the object: in this case sphere. It must be the last attribute in the section.

The sphere is the most simple object. It has only two attributes: center and radius.

center

is the center of the sphere. It is described in the point format "(x , y , z)".

radius

is a real, the radius of the sphere.

For material section , it is the same. There is a common part, but you can use only the common attribute name. Now is available only a type of material: phong, so you must always use phong. It will be used by one or more object section (a material never used is not an error). The name must be unique, if not it will delete old definition.

We can divide its attribute into three groups: the group which start with letter K (coefficient) , which start with O (colors) , the others.

The K attributes are:

Ka

is the ambient-reflection coefficient.

Kd

is the diffusive-reflection coefficient.

Ks

is the specular-reflection coefficient.

Kt

the transmission coefficient.

They determinates the object color and the direction of the ray when it intersects an object with this characteristics.

Ka allows to show object without a lamp, using a special ambient lamp, but you don’ t get good results with Ka attribute.

Some examples:

Ka=0, Kd=0.7, Ks=0, Kt=0 an opaque object

Ka=0, Kd=0.6, Ks=0.1, Kt=0 a reflexive object

Ka=0, Kd=0.1, Ks=0.7, Kt=0 a mirror

Ka=0, Kd=0.3, Ks=0, Kt=0.8 a transparent object

The O attributes are:

Od

is the diffuse color. If you want change the color of an object change this, it is what you intend for color of an object.

Os

is the specular color. If you want to change the color of the highlight, change Os.

They are specificated in color format "(r , g , b)" where r, g, b are the red, green, blue component, which must be real numbers between 0 and 1 and 1 means all color , 0 no color.

The other parameters are:

n

the specular-reflection exponent. Defines how large must be the reflex of light sources on object.

ni

the index of refraction. Determinates the deviation of the ray when it crosses a transparent object.

The same is true for lamp. The common attribute is only the name (must be unique).

A model is pointlamp, which can transmit the same energy at any distance. It is all in a point. pointlamp has attributes pos and color.

pos

the position of the lamp. The lamp is all in a point. It is in the point format "(x , y , z)".

color

color of the lamp. A rgb color in the format "(r , g , b)".

Remember that sometimes you can' t see the object because there are not light sources.

A complex thing is to put the view in a way that you can observe the object you want.

The view described is more complex, but you can make some images without understanding it. If you want to learn it go to paragraph "Understanding the 3D view". If you don' t want for now, you can use an empirical way, but for a simple use. You can copy every time the vcr section of the file tut01.rt which we will call the standard view (for program RT).

It is sufficient you follow a simple rule : your object must have all its points with x coordinates > 0 and the distance from x axis * 2 < x coordinate.

For example:

 point (-3 , 0 , 2) is out the view

 because x < 0 , for the first condition

 point (7 , 3 , 10) is out the view

 because sqrt(3*3+10*10) * 2 = 20.8 < 7, for the second condition

 point (17 , 3 , 3) is ok

You must not calculate it for all the points of an object: you can compute only for the center or another point so you will see that part. Then , if you want, you can move it empirically to see it better.

Some hints

A .rt file is a little verbose. A good technique is to start form some already written files and to modify them, adding sections using copy and paste in a text editor.

A text file is slower to read than a binary file, but it is simple to edit and understand. It is more flexible.

Next versions or RT will improve the file format, adding new features or modifying olds, but old formats will be always compatible, so all you learn you can always use: the program will auto-translate old characteristics into new. Another bonus of text file format is that you can easily write a program which outputs a scene description in text file format, while it is complex to do in binary mode.

Adding a new sphere (Tut02.rt)

You must only add two section. One material, one object.

You can use copy and paste for file Tut01.rt. Copy the last two section and paste then in the end of file, before the dot (“.”). Change the name of material and the object, and change the sphere position. Change the name attribute of the last two sections; subst “name mat1;” with “name mat2;” and “name sph1;” with “name sph2;” so RT can distinguish them. Then you must move the last object, because it occupies the same space of object sp1 and you will see only one. Move it up, changing the coordinates of the center. You can see this transformation in file tut02.rt.

Changing the color of an object (Tut03.rt)

In previous example you could use the same material for the two sphere. You use two different material if you want change the characteristic of one. If you want to change the color change Od in the material section with name “m2”. Look at file tut03.rt.

Modifying the parameters (Tut04.rt)

Now you may want to change some image characteristics, like the image dimension: in fact a 100 x 100 image may be too small. To do this, you must add a new section.

Look at file tut04.rt . There is a new param section.

Param section allows to change the parameters which determinate the way to build the image. Below are described the principal attribute of param section:

dimx, dimy

represent the image dimension in pixel (default is 100x100).

If you change the image dimension, and horizontal dimension becames different from vertical, you can affect the aspect ratio, so circles became ellipses and squares rectangles. To avoid this you must change the view window in the view section (look at paragraph “Understanding the view”), or , simply, always use squared image of any dimension, with dimx = dimy.

shade

is the way the color will be computed. The allowed values are “phong” and “noshadowsphong”. The default is “phong”. “phong” and “noshadowphong” are similar, but “noshadowphong” does not compute the shadows. It is faster, but the image could be lighter.

mode

is the number of deviation allowed for a ray. If you set =0 you will not see transparency and reflection. Don’ t specificate big value. A value of 5 or 7 is good for transparence.

anti_alias

is a technique for creating a smoothed image. Set to 1 if you want, o if not. The program will use adaptive antialiasing.

backcolor

is the color of the background. its value is in rgb format.

buildhier if set to 1, create an automatic hierarchy to speedup the creation of the image. If set to 0 no hierarchy is used. This will be explained later.

Adding a box (Tut05.rt)

A box is parallel to the x, y, z axes. It is simple like a sphere.

You must only specificate the max and the min value for x, y and z, like in file tut05.rt.

The brep object

Brep stands for boundary representation. You define a solid describing its boundary surface.

You use polygon to make the surface. Every object with a boundary surface is contained in a .brp file.

The .brp file is a text editor, but this can be very complex and boring to write. You can use other program like 3D Studio for creating a model, save it like a .dxf file and convert it with program dxf2rt. Remember : dxf2rt convert only object formed by polyline not from 3dface.

Look at his declaration in a .rt file :

{ object

	name breptest;

	...			

	model {

		name mm1;

		constr 1.2;

		interp 0;

	}

}

This includes a brep object with name “breptest”. It looks for model in the file “mm1.brp”. First it look in the current directory, then, if RT haven’ t find it, the program will look in the common model directory.

A particular subset are the brep formed only from triangles. They have particular possibility not allowed for general brep (for now).

The attribute interp create a smooted brep object, but you need that all the faces of the object are triangles.

Cylinder

It is possible to create a cylinder.

The syntax is:

	{ cylinder

		high 1;

		radius 0.5;

	}

The cylinder axes is the z axes. The default values are 1 for high , 0.5 for radius.

Cone Lamp

You may create a lamp which lights only in a conic area.

	{ conelamp

		pos (0 , 0 , 0);

		color (1,1,1);

		dir (0 , 0 , -1);

		ang 0;

	}

pos and color are like for the point lamp.

dir

a vector which gives the illumination direction.

ang

an angle which tells how large is the conic area of the lamp.

Creating a coloured background (Tut06.rt)

Using a box you can create your own background. It is sufficient you make a big box which cover all the image window and is back to all the object. You can give it the color you want. Set its material with Kt = 0 and also Ks = 0 if you don’ t want reflection on it. Look at tut06.rt.

Applying a texture mapping to an object (Tut07.rt)

You can apply a bitmap to an object. If you use a box as a background you can use a bitmap as background. But , if you want, you can apply a texture mapping to any object.

Before you need a bitmap. It must be a .bmp file, in Windows 3.0 bitmap file format and only at 24bit format (16 million of colors). If , for example, its name is “bitm.bmp” you must put it in the same directory where is the file or in the default texture directory. Put the bitmap in the same directory with your .rt file if it is the only file will use that bitmap, while put it in the common directory if more files use it.

You can preload in memory the bitmap with a new section:

{ texture name bitm; }

After in any object section you can use the attribute texture to apply the bitmap: the colors of bitmap will override the Od parameter.

You must write like this:

{ object

	name ...;

	texture bitm;

}

You have not finished. You have told what texture to apply, not how to apply. In fact you must add a new common attribute “mapping”.

A mapping associate every point in a 3d system (in this case in the object 3d system) with a point of the bitmap, and then with a color.

There are many types of mapping, one of this is the planar.

This is an example of the definition of a planar mapping:

mapping { mapping

 model { planar

 center (0 , 0 , 0);

 assx (0 , 1 , 0);

 assy (0 , 0 , -1);

 moltx 0.130;

 molty 0.130;

}

mapping is a common attribute of an object section. The value is a subsection of mapping type. The mapping section follows the same rule of the already seen sections: a common part for all mapping types (null in this case), a model attribute, always present and always the last in the section. For now the allowed values are: planar, spherical and cylinder.

In this case is planar.

The planar model put the bitmapped texture on a plane in the space, fill all the plane with periodic replies of the same and then it projects the points in the plane in all the space; in this way planar mapping associates every point in the space with a color. Obvious, this will affect only the object in which the mapping is declared.

center, assx, assy defines the plane and the position of the bitmap. The plane contains the center point and it is parallel to vector assx and assy. Also they defines a reference system on the plane: center is the origin and assx and assy the axes. The primary bitmap will lies in the space defined by disequations : 0 <= x <= 1 and 0 <= y <= 1.

You can modify the dimension of the image with moltiplicative factor moltx and molty, which enlarge the image in horizontal and vertical.

Advanced argument

Limits of the raytracer

The program works with any number of object and of light source. There are some constraints to follow:

(you must use only closed objects. A closed object is for any line in the space, the intersection with the object consists or in no intersection point or in a even number of intersection points. It is possible to create objects non closed (es. with the brep). This object are wrong. The program does not control if an object is closed.

(Compenetrations between objects are forbidden. Two objects cannot share the same point of the space. The program does not control this. If you want the same effect of a compenetration use a csg node of type union.

This limits are true if you want transparent objects. An object with material characteristic with Kt equal to 0, the object is not transparent and you can use open objects.

The program never checks if things are good, it thinks you know what are you doing.

A transformation of an object (Tut08.rt , Tut09.rt) or a lamp

transf describes an object rotated, translated, scalated.

 { object

 name transfname;

 model { transf

 s x x x;

 r x x x;

 s x x x;

 t x x x;

	

 {object

 }

 }

 }

the object transformation is described by a sequence of r(rotation),

s(scale), t(translation). The object in the transf. Section can be any type of object, also another transf. transf is a metaobject.

In Tut08.rt there is a box rotated. The box, centered in the origin, is rotated around z axes.

In Tut09.rt a sphere becomes an ellipsoid. The sphere, centred in the origin, is scaled in y axes.

If you want to apply a transformation to an object, you must check if the object is centred in the origin, because the rotation and the scale are made on this assumption. If not, the object will be rotate and scaled as you want, but also it will be moved in a unwanted position.

If you know the center of an object, you should first translate it to the origin of the axis, then you can rotate or scale it how you want. The object will be scaled and rotated, but the center will not move from the origin. Now you can remove the center in the original position.

You can now apply a transformation to a lamp too. The syntax is similar.

{ lamp

 name transfname;

 model { transf

 s x x x;

 r x x x;

 s x x x;

 t x x x;

	

 {lamp

 }

 }

 }

This is usefull for some special effects, like to scale a cone lamp.

Group of objects

group describes a group of objects. The syntax is:

 { object

 name groupname;

 model { group

 { object

 ...

 }

 { object

 ...

 }

 ...

 }

 }

The object in the group can be anyone, also other groups. group is a metaobject.

What can you do with this ?

1) you can group more objects in a logical way (for example, an computer is a complex object, a group of monitor, keyword, desktop and so on).

2) you can translate or rotate or scale a group of objects only with a transf section.

Building a csg node (Tut10.rt)

CSG stands for constructive solid geometry.

In tut10.rt you can see, from left to right the subtraction, the union and the intersection between two spheres.

You must give the two objects, like attributes :first and second. This attribute values can be also other csg node.

The material is not needed, csg node use the material of the associate objects.

Remember : objects in csg node must be always closed.

Look at file tut10.rt for an example of all tree case.

NURBS mesh

A NURBS mesh is a series of NURBS patches. The NURBS mesh is described in a .nrb file. following this format.

Look at the definition of a .nrb file:

{ NURBS

 { patch

	orderx 4;

	ordery 4;

	dimx 4;

	dimy 4;

	{ 0; 1; 2; 3; 4; 5; 6; 7; }

	{ 0; 1; 2; 3; 4; 5; 6; 7; }

 (1.40000, 0.00000, 2.40000),1;

 (1.40000, -0.78400, 2.40000),1;

 (0.78400, -1.40000, 2.40000),1;

 (0.00000, -1.40000, 2.40000),1;

 (1.33750, 0.00000, 2.53125),1;

 (1.33750, -0.74900, 2.53125),1;

 (0.74900, -1.33750, 2.53125),1;

 (0.00000, -1.33750, 2.53125),1;

 (1.43750, 0.00000, 2.53125),1;

 (1.43750, -0.80500, 2.53125),1;

 (0.80500, -1.43750, 2.53125),1;

 (0.00000, -1.43750, 2.53125),1;

 (1.50000, 0.00000, 2.40000),1;

 (1.50000, -0.84000, 2.40000),1;

 (0.84000, -1.50000, 2.40000),1;

 (0.00000, -1.50000, 2.40000),1;

 }

}

.

This file contains only a patch, but you can have .nrb files with more patches.

orderx and ordery are the order of the surface for x and y parameters.

dimx and dimy are the dimension of the array of control points.

The two sections without names are the knot section for x and y parameter; the follows a the list of control points, in the form:

	(x , y , z) , w;

where w is the weight.

If you have .nrb file you can add it to a .rt file in the same way that a .brp file.

Bezier Mesh

I suppose you know what a bezier patch is. The bezier mesh is a series of path which form an object.

To add a bezier mesh, you must add a new subsection to attribute “model” in a section “object”.

	{ bezier

		name xxx;

		cache x;

		div x;

	}

Only name is needed.

“name” is the name of the model. The model is in a .bzr file in the model path (the same for brep model).

“cache” tells is rt must record the data needed to render the object. The value for “cache” must be 1 if you want to record, 0 if not. Default value is 1.

RT will convert bezier mesh in a brep object. “div” tells RT how accurate must be the convertion.

There is a new .bzr format. A bezier mesh is a series of bezier patch. Here there is a template :

{ bezier

 { patch

 (1.40000, 0.00000, 2.40000)

 (1.40000, -0.78400, 2.40000)

 (0.78400, -1.40000, 2.40000)

 (0.00000, -1.40000, 2.40000)

 (1.33750, 0.00000, 2.53125)

 (1.33750, -0.74900, 2.53125)

 (0.74900, -1.33750, 2.53125)

 (0.00000, -1.33750, 2.53125)

 (1.43750, 0.00000, 2.53125)

 (1.43750, -0.80500, 2.53125)

 (0.80500, -1.43750, 2.53125)

 (0.00000, -1.43750, 2.53125)

 (1.50000, 0.00000, 2.40000)

 (1.50000, -0.84000, 2.40000)

 (0.84000, -1.50000, 2.40000)

 (0.00000, -1.50000, 2.40000)

 }

 { patch

 (0.00000, -1.40000, 2.40000)

 }

}

.

Understanding the view

The complete format (not all are used by RT) is:

{ vrc

 vrp (0 , 0 , 0);

 prp (0 , 0 , -10);

 vup (0 , 0 , 1);

 vpn (1 , 0 , 0);

 umax 3;

 umin 0;

 vmax 3;

 vmin 0;

 type 1;

 f 1;

 b 0;

 fon 0;

 bon 0;

}

All the scene is described in an absolute system.

With param vcr, vup, vpn, you describe a second system, the observer system. So, if you want to modify the view, you must modify only some parameter in vcr section. The tree axes are called u,v,n.

So if you want to modify the view, you must modify only some parameter in vcr system.

vrc

is the origin of the new coordinate system.

vpn

defines the n axis.

vup

defines the v axis.

Fixed this three parameter, the new system is defined. The image will be on plane uv. We can define which part of plane we want to represent the image, with:

Umin, Umax, Vmin, Vmax

the min and max value on the u,v axes, which represent the image that we want to see.

The others parameters are :

prp

describes the position of the observer. IMPORTANT: its coordinates are in the vcr system and not in the absolute system like other parameters. The rays will start from prp point and will go through the window and in the scene.

type

is the way of representation: o means parallel projection, 1 means perspective projection.

Example:

If you want to center an object at position (10,20,5) you must follow this procedure.

1) fix parameter prp, Umin, Umax, Vmin, Vmax. They will not change if you move the system.

2) put vcr in a point quiet near the object. Es. (0,10,0).

3) the n axis is the direction where you see. We can set vpn equal to (10,10,5) so it is in the direction exactly (vcr + vpn = object position). Don’t worry if vpn is not a versor.

4) You can use vup to set the top of the image. You can set it to (0,0,1). Don’t worry if vup is not a versor or it is not vertical to vpn, but it is important that vup and vpn are not parallel.

If you want an aspect ratio = 1 you must follow the rule :

dimx / dimy = (Umax - Umin) / (Vmax - Vmin)

where dimx and dimy are attributes of param section, while Umax, Umin, Vmax, Vmin are attributes of vcr section.

Other attribute on param section

Other attributes that you may encounter in the param section are:

render

is the type of output. The allowed values are : “raytracing” (standard), “depth”, “vrml”, “t_analysis”, “preview”.

“raytracing” is the standard output.

“vrml” outputs a .wrl file. It is in VRML 1.0 file format. You can see it with a VRML browser.

“t_analysis” outputs a .ana file. It describes some characteristics of the objects in the scene.

“preview” outputs a .bmp file. It is a preview image of the scene.

toll

is a value used in intersection calculus. Intersection is true if the distance is less then toll. This avoid the noise. If in your image you get some noise you may change this.

anti_al_toll

if it is low RT makes a more in depth analysis for antialiasing.

ambientcolor

is the ambient lamp color. Default is (1,1,1). You don’ t need to change this.

backcolor

color of the background. The default is (0,0,0).

ambient_ni

value for refraction coefficient of the vacuum. Default is 1.

Adding comment

You can add your comment to .rt files.

They use the C++ style:

1) you can put you comments from "/*" to "*/"

2) you can start comments from "//" until the end of line

For example:

 /* RT example

 more line, this is a comment

 */

 {object

 ...

 model { sphere // comment until the end of line

 ...

 }

 }

 .

Remember that if you use with some automatic programs which work on .rt file you will lose these comments!

Creating stereogram

There are two phases to create stereogram:

1) create a depth bitmap with program rtw

2) create the stereo bitmap from depth bitmap with another program.

1) from file .rt you want to create a stereogram, modify or add the attribute render equal to “depth”. Add if you want the attribute depthmax, depthmin, depthback.

depthmax is the max value allowed in the depth image, depthmin is the min. depthback is the value for dot without objects (the background).

The default values are: depthmax 64, depthmin 48, depthback 64. Remember that the output is a grey scale image, but in the 24bit format. For some use you must convert it.

2) use you own program to create the stereogram

Using hierarchy

If in the param section of a .rt file exist attribute buildhier with value 1, then the program will use an hierarchy for speedup the creation of the image.

If it is the first time that it loads the .rt file (for example demo.rt) then the program creates an hierarchy and save it in a file with extension .rt_ and the same name (it will be demo.rt_ in the example). The next time you load the file to create the image, it will find the saved file and load the hierarchy without creation.

If you have changed some object, or added or deleted, you may encounter an error or a wrong image; in this case you should delete the .rt_ file.

You should not delete the file if you change a section different from object section.

Appendix

If something goes wrong

If you get an error or an unknown exception, perhaps you have find a bug in the program. You could contact the authors to inform about it. We like to know the file which make the problem and your computer configuration. We will correct the bug or will explain you which was the cause.

If you get an error when you load a scene, perhaps there is an error in the .rt file. Error code 1 means generic error, the program cannot explain you what type of error is. But you obtain the position in which the error was encountered, so you can read the file and modify it.

Sometimes the position could be a little incorrect, a little moved forward, but at least a line.

Object types

There are many types of object. Here is a description of their characteristics and way to edit them.

Primitive

sphere

cylinder

cone

box

Composite

brep

brep object are described in brp file format.

brp file format

The description of a simple file .brp:

	{ pbrep

		vertices

		3

		0	0	0	

		1	0	0

		1	1	0

		0	1	0

		faces

		1

		{ 1 { 4 0 1 2 3 } }

	}

This is a simple object. It is a square in the plane x-y with edge of 1.

Remember this is an open brep, you cannot assume it will be a transparent object.

There are definite four vertices, which we call A for (0,0,0) , B for (1,0,0) , C for (1,1,0) , D for (0,1,0) . It is definite one face with one contour. A face can have more than a contour; in this case the first contour is the external contour, while the others are holes in the face.

Every face has a normal versor, which describes the external side of a face. We can tell this to the program with the order we put the vertices in the contour description:

x exit

. enter

� INCORPORA Paint.Picture ���	

ABCD	anticlockwise

� INCORPORA Paint.Picture ���

ADCB	clockwise

If you have a hole, the order of the hole contour must be opposite to the external.

NURBSmesh

bezier

blob

Blob use only external model. The blob models are stored in .blb format, the same that the program Winblob. You can find it at:

ftp://ftp.povray.org/pub/povray/utilities/general/winblobs.zip

CSG

intersection

subtract

union

Curve

polyline

beziercurve

NURBScurve

Lamp

pointlamp

arealamp

Pseudo

anim

flip

field

How to write a Field object

You can write your own field. You must write your own .rt file using a text editor.

Look at this example (equal to “library\field\lhammer.rt”) :

{ material

	name _field1;

	model { phong

	 Ks 0.2;

	 Kt 0;

	 ni 1;

	 Ka 0.2;

	 Kd 0.6;

	 n 10;

	 Od (0,0,1);

	 Os (0.5,0.5,0.5);

	}

}

{ material

	name _field2;

	model { phong

	 Ks 0.2;

	 Kt 0;

	 ni 1;

	 Ka 0.2;

	 Kd 0.6;

	 n 10;

	 Od (1,0,0);

	 Os (0.5,0.5,0.5);

	}

}

{ object

	name lhammer;

	model { field

		{ object

			name obj000001;

			material standard;

				model { box

				xmin -2;

				xmax 2;

				ymin -1;

				ymax 1;

				zmin -1;

				zmax 1;

			}

		}

		decoration { object

				name decoration;

				material _field1;

				model { polyline

					open 1;

					p (0 , 0 , -0.45);

					p (0 , 0 , -0.4);

					p (0 , 0 , -0.35);

					p (0 , 0 , -0.3);

					p (0 , 0 , -0.25);

					p (0 , 0 , -0.2);

					p (0 , 0 , -0.15);

					p (0 , 0 , -0.1);

					p (0 , 0 , -0.05);

					p (0 , 0 , 0);

					p (0 , 0 , 0.05);

					p (0 , 0 , 0.1);

					p (0 , 0 , 0.15);

					p (0 , 0 , 0.2);

					p (0 , 0 , 0.25);

					p (0 , 0 , 0.3);

					p (0 , 0 , 0.35);

					p (0 , 0 , 0.4);

					p (0 , 0 , 0.45);

				}

			}

		dfmat _field2;

		

		param {

			strenght value 1 from 0 to 5;		

		}

		mat {

			strenght "1;";

			rx "strenght - abs(z) ;";

			ry "0;";

			rz "0;";

		}

	}

}

.

The definition of the two material are outside the field object declaration, but them are used to define the color of the two curve which describe the field behavior.

The first object is the volume field. It can be any raytracing object, but it must be closed (like a box, a sphere or a cylinder).

The decoration must be a curve, it is the curve before apply the field.

dfmat is the material for the transformated curve.

param section list all the variables that you can modify from editor (using Edit|Object|Modify). A variable in param section can be any identifier different from “x”,”y”,”z”,“rx”,”ry”,”rz”. The definition follow the form :

		variable value defvalue from minvalue to maxvalue;		

where variable is the variable name, defvalue if the default value, minvalue and maxvalue the mininum and maximum value for the variable. You must also define the variable in the next mat section at the default value.

mat section describes the field in all the space. You must write a list of variable definitions, using mathematic expressions. Some variables are special :

x,y,z are predefefinite variables. They are a point in the space in the form P(x,y,z).

rx,ry,rz are the return variables. You must always define them. They are the three components of the field vector at point P(x,y,z).

In mat section you may use x,y,z and any variable defined in mat section before the first use. You can define new variables following this expression:

	var “vardef;”;

var is the name of the new variable (case sensitive).

vardef is an expression.

In expression you can use ‘(‘ and ‘)’ (for precedence in evalutation) and the following functions:

+, - , * , /

abs

sqrt

exp,log

sin, cos, tan

asin,acos,atan

zero

zero is usefull if you must write expression like x/y. Sometimes y can be equal to 0 and you will get an error computing x/0. You can rewrite the expression like x/(y+zero(y)).

	Deformation Graph

Camera

File format

The file format is defined in a formal way for sintax, in a informal for the semantic.

Definition of the metalanguage:

Definition

A = B 	means A is defined like B

Sequence

A + B means A is tied with B

Selection

A | B	means A or B

Repetition

{A } means that it is possible repeat A a inprecisate number or time (also zero).

Optional

[A] means A or nothing

Non rapprentable simble

‘description’ in this way you can indicate a simbol the you can’t print

Also:

(An identificator in bold means a terminal simbol, a normal identificator means a non terminal simbol.

Numeric definition

plus = ‘the simbol +’

dot = ‘the simbol .’

digit = [0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9]

number_integer = [- | plus |] + digit + { digit }

number_float = number_integer + [. + { digit }]

number_real = number_float + [E + number_integer]

number_integer

is an integer number (es. 18554).

number_float

is a number with comma (es. 34.87653).

number_real

is a number in scientific format (es. 13.47E-2).

definition of identificator

alfama = [A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | X | Y | Z]

alfami = [a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | x | y | z]

alfa = [alfama | alfami]

ident_first = [alfa | _]

ident_other = [alfa | digit | _]

ident = ident_first + [{ ident_other }]

ident_first

is the first character of an identifer.

ident_other

the type of all characters of an identifier but the first.

ident

declaretion of an identifier.

definition of a separator

(between identifiers or numbers or other)

ret_carriage = 'carriage return (ASCII = 13) '

space = ' '

tab = ' tabulation character (ASCII = 6) '

sep = { [space | ret_carriage | tab] }

The separator is used to separe two identifiers.

There is no difference between space, carriage return and tabulation.

Now we will use a new meta-operator dot (.), with the meaning of “ + sep +”.

For example: a . b	is the same of “a b” or of “a b”

Other common definition

vector = (. number_real . { , . number_real } .)

matrix = [. number_real . { [, | ;] . number_real } .]

point = (. number_real . , . number_real . , . number_real .)

color = point

matrix

this definition is meaningfull if the groups which are separated from ; have the same number of elements separated from , .

For example [2 , 3 ; 4 1.2] is correct, [3, 1; 7] is not correct.

Section

For the text type definition the common way to represent the structured data is to create a section which contains the data with similar definition.

The definition prototype is :

section = { . sectionname . defsection . }

sectionname = ident

section

definition of whole section.

sectionname

definition of the type of the section.

defsection

declaration of the data in the section. It is impossible to define this non terminal; it must be defined every time.

Definition of the file format

File .bmp

It is the standard file format for bitmap defined for Windows 3.0.

You can use only bitmap with 24bit.

File .brp

Definition of a geometric model of type Boundary Representation.

A face is defined by some contours. The first contour is the extern contour, which must be always included; the other contours describe the holes in the face.

A contour of a face is defined by the values of vertex indexes which limit it.

You must verificate the condition that all vertices of all contours in a face are complanar.

filebrp = { . pbrep . section_vertex . section_face . } . dot

section_vertex = { . vertices . defvertex . }

section_face = { . faces . defface . }

defvertex = number_vertex . { vertex }

number_vertex = number_integer

vertex = number_real . number_real . number_real

defface = number_face . { defcontour }

defcontour = { . number_contour . { . contour . } . }

contour = number_index . { index }

number_index = number_integer

index = number_integer

filebrp

definition of file .brp.

section_vertex

definition of all vertex. All the vertex are definited by a sequence of vertex definition. It is possible to associate an index to every vertex, 0 to the first, 1 to the next and so on.

defvertex

definition of the verteces.

number_vertex

definition of the number of the verteces in a brep model.

vertex

definition of a single vertex. A vertex is a point in the space.

sections_face

definition of all faces.

defface

definition of the faces.

defcontour

definition of the contours in a face.

contour

definition of a contour.

number_index

number of verteces in a contour.

index

index of a vertex of a contour.

Example of file .brp:

{ pbrep

vertices

10

16 0 54

16 10 54

8 16 54

0 10 54

0 0 54

16 0 30

16 10 30

8 16 30

0 10 30

0 0 30

faces

 7

 { 1

	{ 5 0 1 2 3 4 }

 }

 { 1

	{ 4 1 2 7 6 }

 }

 { 1

	{ 4 2 3 8 7 }

 }

 { 1

	{ 4 3 4 9 8 }

 }

 { 1

	{ 4 4 0 5 9 }

 }

 { 1

	{ 4 1 0 5 6 }

 }

 { 1

	{ 5 5 6 7 8 9 }

 }

}

File .bzr

Definition of a geometric model of type Bezier mesh.

File .rt

The file describes a raytracer scene.

It is so defined :

filebrp = section_rt . dot

section_rt = { [section_view | section_param | section_texture | section_material |

		section_lamp | section_object] }

filebrp

definition of the entire file .rt .

Section View

This section defines the 3D view of a raytracer scene with the sistem VRC (3D viewing-reference coordinate).

To define exactly all the attributes you can see in [1].

section_view = { . vcr . { [def_vrp | def_prp | def_vup | def_vpn | def_umax | def_umin | def_vmax |

		def_vmin | def_type | def_f | def_b | def_fon | def_bon] } . }

def_vrp = vrp . point . ;

def_prp = prp . point . ;

def_vup = vup . point . ;

def_vpn = vpn . point . ;

def_umax = umax . number_real . ;

def_umin = umin . number_real . ;

def_vmax = vmax . number_real . ;

def_vmin = vmin . number_real . ;

def_type = type . number_integer . ;

def_f = f . number_real . ;

def_b = b . number_real . ;

def_fon = fon . number_integer . ;

def_bon = bon . number_integer . ;

section_view

complete definition of the view 3D.

def_vrp

definition of the view reference point (VRP) , the origin of VCR system.

With the VPN defines the plane of the image.

def_prp

definition of the projection reference point (PRP).

def_vup

definition of the view up vector (VUP), which limit the v axis on the image plane.

def_vpn

definition of the view-plane normal (VPN), is the n axis of the VRC system.

With the VPN defines the plane of the image.

def_umax

def_umin

def_vmax

def_vmin

definition of limitis of the image window on the view plane.

def_type

Type of projection.

1 means perspective projection , while 0 means parallel projection.

def_f

the front distance (F). This parameter will be ignored.

def_b

the la back distance (B). This parameter will be ignored.

def_fon

This parameter will be ignored.

def_bon

This parameter will be ignored.

Section parameters

This section defines the parameters which change the execution of the raytracer.

section_param = { . param . { [def_toll | def_mode | def_shade | def_anti_alias |

	def_anti_al_toll | def_dimx | def_dimy | def_ambientcolor | def_backcolor |

	def_buildhier | def_modifydef | def_depthmax | def_depthmin |

	def_depthback] } . }

def_toll = toll . number_real . ;

def_mode = mode . number_integer . ;

def_shade = shade . ident . ;

def_anti_alias = anti_alias . number_integer . ;

def_anti_al_toll = anti_al_toll . number_real . ;

def_dimx = dimx . number_integer . ;

def_dimy = dimy . number_integer . ;

def_ambientcolor = ambientcolor . color . ;

def_backcolor = backcolor . color . ;

def_buildhier = buildhier . number_integer . ;

def_modifydef = modifydef . number_integer . ;

def_depthmax = depthmax . number_integer . ;

def_depthmin = depthmin . number_integer . ;

def_depthback = depthback . number_integer . ;

def_toll

definition of the standard tollerance value.

def_mode

max value of ray deviations. 0 == raycasting.

def_shade

type of shading, an identifier recognize from the system. The standard value is “phong”.

“phong” uses the phong shading metod.

def_anti_alias

1 if you want to use the adaptive antialiasing, 0 if you don’t want it.

def_anti_al_toll

value used in antialiasing.

def_dimx

horizontal dimension (pixel) of the image.

def_dimy

vertical dimension (in pixel) of the image.

def_ambientcolor

this is the value of ambiental illumination.

def_backcolor

back color, the color used for a pixel in the image when the ray doesn’ t match an object.

def_buildhier

1 if you want to build a hierarchy to speed up the intersection calculus, 0 if you don’ t want it.

def_modifydef

1 if you want that the program changes the file definition, 0 if you don’t want.

def_depthmax

value used to build the depth graph.

It is the maximum value of depth allowed.

def_depthmin

value used to build the depth graph.

It is the minimum value of depth allowed.

def_depthback

value used to build the depth graph.

It is the depth value for pixel of the back.

Section texture

This section is used to declare a texture

section_texture = { . texture . name_texture . ; . }

name_texture = ident

name_texture

the name of file bitmap which contains the texture. The texture file has name name_texture + “.bmp” ed it will be in the standard directory with all other textures.

Section material

This section defines a material of a specific type and characteristic. In the section object you can use the material defined in this section.

section_material = { . material . name . name_material . ; . model . { . defmaterial . } . }

name_material = ident

defmaterial = [defmat_phong]

defmat_phong = phong . { [def_Ks | def_Kt | def_ni | def_Ka | def_Kd | def_n | def_Od | def_Os] }

def_Ks = Ks . number_real . ;

def_Kt = Kt . number_real . ;

def_ni = ni . number_real . ;

def_Ka = Ka . number_real . ;

def_Kd = Kd . number_real . ;

def_n = n . number_real . ;

def_Od = Od . color . ;

def_Os = Os . color . ;

name_material

name of the material. It must be unique to distinguish a definition from another.

defmat_phong

definition of material of type phong. See [1].

def_Ks

Specular-reflection coefficient.

def_Kt

Refraction coefficient.

def_ni

index of refraction.

def_Ka

Ambient-reflection coefficient.

def_Kd

Diffuse-reflection coefficient.

def_n

Specular-reflection exponent.

def_Od

Diffuse color.

def_Os

Specular color.

Section lamp

This section defines the lamps (or light sources) in the scene.

section_lamp = { . lamp . name . name_lamp . model . { . deflamp . } . }

name_lamp = ident

deflamp = [deflamp_point | deflamp_cone]

deflamp_point = pointlamp . { [defpoint_pos | defpoint_color] }

defpoint_pos = pos . point . ;

defpoint_color = color . color . ;

deflamp_cone = conelamp . { [defcone_pos | defcone_ang | defcone_dir | defcone_color] }

defcone_pos = pos . point . ;

defcone_ang = ang . number_real . ;

defcone_dir = dir . number_real . ;

defcone_color = color . color . ;

name_lamp

name of the lamp. It must be unique.

deflamp_point

definition of a uniform type lamp.

defpoint_pos

definition of the lamp position.

defpoint_color

definition of the lamp color.

deflamp_cone

definition of cone lamp.

defcone_pos

vertex of cone lamp.

defcone_ang

opening angle.

defcone_dir

direction of cone lamp.

defcone_color

definition of the color lamp.

Section object

This section defines the objects in the scene.

section_object = { . object . name . name_object . attrib_std . model . { . defobject . } . }

name_object = ident

attrib_std = { [attrobj_material | attrobj_toll | attrobj_texture | attrobj_mapping] }

attrobj_toll = toll . number_real . ;

attrobj_texture = texture . ident . ;

attrobj_mapping = mapping . { mapping . model . { name_mapping . defmapping } . }

name_mapping = ident

defmapping = { [attrmap_center | attrmap_assx | attrmap_assy | attrmap_moltx | attrmap_molty] }

attrmap_center = center . point . ;

attrmap_assx = assx . vector . ;

attrmap_assy = assy . vector . ;

attrmap_moltx = moltx . number_real . ;

attrmap_molty = molty . number_real . ;

defobject = [defobj_sphere | defobj_box | defobj_brep | defobj_quad | defobj_csg]

defobj_brep = brep . { [defbrep_name | defbrep_costr] }

defbrep_name = name . ident . ;

defbrep_costr = costr . number_real . ;

defobj_sphere = sphere . { [defsphere_center | defsphere_radius] }

defsphere_center = center . point . ;

defsphere_radius = radius . number_real . ;

defobj_box = box . { [defbox_xmin | defbox_xmax | defbox_ymin | defbox_ymax |

		defbox_zmin | defbox_zmax] }

defbox_xmin = xmin . number_real . ;

defbox_xmax = xmax . number_real . ;

defbox_ymin = ymin . number_real . ;

defbox_ymax = ymax . number_real . ;

defbox_zmin = zmin . number_real . ;

defbox_zmax = zmax . number_real . ;

defobj_quad = quad . { [defquad_a | defquad_b | defquad_c | defquad_d | defquad_e

		| defquad_f | defquad_g | defquad_h | defquad_i | defquad_j] }

defquad_a = a . number_real . ;

defquad_b = b . number_real . ;

defquad_c = c . number_real . ;

defquad_d = d . number_real . ;

defquad_e = e . number_real . ;

defquad_f = f . number_real . ;

defquad_g = g . number_real . ;

defquad_h = h . number_real . ;

defquad_i = i . number_real . ;

defquad_j = j . number_real . ;

defobj_csg = [intersect | union | subtract] . { [defcsg_first | defcsg_second] }

defcsg_first = first section_object [; |]

defcsg_second = second section_object [; |]

section_object

definition of an object.

name_object

name of the object. It must be unique.

attrobj_toll

value of tollerance for the intersection with the object.

attrobj_texture

name of the texture. The texture must be preload in a previous section texture. The object can ignore this value.

attrobj_mapping

mapping of the object. The object can ignore this value.

name_mapping

type of the mapping. The standard values are planar, cilindric, spherical.

defmapping

mapping characteristic, it define a reference system in the space.

attrmap_center

center of the reference system for mapping.

attrmap_assx

versor parallel to the x axis of the reference system of the mapping.

attrmap_assy

versor parallel to the y axis of the reference system of the mapping.

attrmap_moltx

scale factor for x axis of the mapping reference system.

attrmap_molty

scale factor for y axis of the mapping reference system.

defobject

definition of the object model.

defobj_brep

definition of a brep model.

defbrep_name

name of the file .brp which describes the geometric model of the object. The file .brp will have name defbrep_name + “.brp” and will be in the directory where are all the models.

defbrep_costr

value for the hierarchy of the object. If the value is equal to zero, no hierarchy will be used. Se the value is different from zero and a previus hierarchy of the object already exist, this will be used (also if it has been created with a different value). If the hierarchy doesn’ t exist, the program will create a new with compactness value equal to the value.

defobj_sphere

definition of a sphere.

defsphere_center

definition of the sphere center.

defsphere_radius

definition of the sphere ray.

defobj_box

definition of a box.

defbox_xmin

defbox_xmax

defbox_ymin

defbox_ymax

defbox_zmin

defbox_zmax

extreme values of a box oriented to the axes .

defobj_quad

definition of a quadric.

	

defquad_a

defquad_b

defquad_c

defquad_d

defquad_e

defquad_f

defquad_g

defquad_h

defquad_i

defquad_j

definition of the form of the quadric. The equation is

 A*x^2+B*y^2+C*z^2+D*x*y+E*x*z+F*y*z+G*x+H*y+I*z+J=0

defobj_csg

definition of a csg node.

defcsg_first

first object which is in the csg node.

defcsg_second

second object which is in the csg node.

Example of a file .rt :

{ vrc

	vrp (63.7424 , -77.0513 , 0);

	prp (0 , 0 , -100);

	vup (0 , 0 , 1);

	vpn (-0.637424 , 0.770513 , 0);

	umax 6;

	umin -6;

	vmax 4.5;

	vmin -4.5;

	type 1;

	f 1;

	b 0;

	fon 0;

	bon 0;

}

{ param

	toll 0.01;

	mode 5;

	shade phong;

	anti_alias 1;

	anti_al_toll 0.05;

	dimx 1024;

	dimy 768;

	ambientcolor (1,1,1);

	backcolor (0,0,0);

	ambient_ni 1;

	buildhier 1;

	modifydef 1;

	depthmax 64;

	depthmin 48;

	depthback 64;

}

{ texture

	name wood ;

}

{ material

	name mvetro;

	model { phong

		Ks 0.6;

		Kt 0.8;

		ni 1.2;

		Ka 0.0;

		Kd 0.4;

		n 10;

		Od (0.24,0.19,0.88);

		Os (0.24,0.19,0.88);

	}

}

{lamp

	name lamp1;

	model { pointlamp

		pos (5 , 0 , 3);

		color (0.7,0.7,0.7);

	}

}

{object

name watch1;

material mvetro;

toll 0.01;

model { brep

		name watch1;

		costr 1.1;

	}

}

{object

	name sph3;

	material m3;

	texture marple;

	mapping { mapping

		model { spherical

			center (10 , 2 , 0);

			assx (1 , 0 , 0);

			assy (0 , 1 , 0);

			moltx 0.1;

			molty 0.1;

		}

	}

	toll 0.01;

	model { sphere

		center (10 , 2 , 0);

		radius 0.95;

	}

}

{ object

	name tcsg;

	material m1;

	model { intersect

		first {object

			name sph1;

			material m1;

			model 	{ sphere

				center (5 , 0.5 , 0);

				radius 0.95;

			}

		};

		second {object

			name sph1;

			material m1;

			model 	{ sphere

				center (5 , -0.5 , 0);

				radius 0.95;

			}

		};

	}

}

{object

	name box1;

	material m1;

	model { box

		xmin 10;

		xmax 12;

		ymin -1;

		ymax 1;

		zmin -1;

		zmax 1;

	}

}

{object

	name sph1;

	material m1;

	model 	{ quad

		a 10;

		b -1;

		c 2;

		d 0;

		e 0;

		f 0;

		g 0;

		h 0;

		i 0;

		j -1;

	}

}

.

�

Tecnical Information

How the program works

The program RT gets the scene description in a file .rt and creates the 24 bit image in a file .bmp. RT uses geometric models and textures.

The scene description is a text file divided in some sections which describe the 3d view, the texture used, the object materials, the objects and the light sources.

Limits of the raytracer

The program works with any number of object and of light source. There are some constraints to follow:

(you must use only closed objects. A closed object is for any line in the space, the intersection with the object consists or in no intersection point or in a even number of intersection points. It is possible to create objects non closed (es. with the brep). This object are wrong. The program doesn’ t control if an object is closed.

(Compenetrations between objects are forbidden. Two objects cannot share the same point of the space. The program doesn’ t control this. If you want the same effect of a compenetration use a csg node of type union.

�

Bibliography

[1]	Foley, Van Dam, Feiner, Hughes (1992). Computer Graphics. Addison Wesley.

[2]	Microsoft Corporation (1992-1993). Microsoft Windows 16bit/32bit Api Reference.

�PAGINA �

�PAGINA �61�

