
Overview of the intervals package

Richard Bourgon

06 June 2009

Contents

1 Introduction 1

2 Interpretation of objects 2
2.1 As a subset of Z or R . 3
2.2 As a set of meaningful, possibly overlapping intervals 4

3 Floating point and intervals over R 7

4 Notes on implementation 9
4.1 Endpoint representation . 9
4.2 Efficiency . 9
4.3 Checking validity . 10

5 Session information 10

1 Introduction

The intervals packages defines two S4 classes which represent collections of
intervals over either the integers (Z) or the real number line (R). An instance of
either class consists of a two-column matrix of endpoints, plus additional slots
describing endpoint closure and whether the intervals are to be thought of as
being over Z or R.

> library(intervals)

> x <- Intervals(matrix(1:6, ncol = 2))

> x

Object of class Intervals

3 intervals over R:

[1, 4]

[2, 5]

[3, 6]

> x[2,2] <- NA

> x[3,1] <- 6

> x

1

Object of class Intervals

3 intervals over R:

[1, 4]

[2, NA]

[6, 6]

Objects of class Intervals represent collections of intervals with common
endpoint closure, e.g., all left-closed, right-open. More control over endpoints
is permitted with the Intervals_full class. (Both classes are derived from
Intervals_virtual, which is not intended for use by package users.)

> y <- as(x, "Intervals_full")

> y <- c(y, Intervals_full(c(2,3,5,7)))

> closed(y)[2:3,1] <- FALSE

> closed(y)[4,2] <- FALSE

> rownames(y) <- letters[1:5]

> y

Object of class Intervals_full

5 intervals over R:

a [1, 4]

b (2, NA]

c (6, 6]

d [2, 5)

e [3, 7]

The size method gives measure — counting measure over Z or Lebesgue
measure over R — for each interval represented in an object. The empty method
identifies intervals that are in fact empty sets, which over R is not the same thing
as having size 0. (Valid objects must have each right endpoint no less than the
corresponding left endpoint. When one or both endpoints are open, however,
valid intervals may be empty.)

> size(x)

[1] 3 NA 0

> empty(x)

[1] FALSE NA FALSE

> empty(y)

[1] FALSE NA TRUE FALSE FALSE

2 Interpretation of objects

An Intervals or Intervals_full object can be thought of in two different
modes, each of which is useful in certain contexts:

1. As a (non-unique) representation of a subset of Z or R.

2. As a collection of (possibly overlapping) intervals, each of which has a
meaningful identity.

2

● ●

●

●

● ●

●

●

a c

d

e

1 2 3 4 5 6 7

Figure 1: The Intervals_full object y, plotted with plot(y). The second
row contains an NA endpoint, and is not shown in the plot. The empty interval
is plotted as a hollow point. By default, vertical placement avoids overlaps but
is compact.

2.1 As a subset of Z or R
The intervals package provides a number of basic tools for working in the first
mode, where an object represents a subset of Z or R but the rows of the
endpoint matrix do not have any external identity. Basic tools include re-

duce, which returns a sorted minimal representation equivalent to the original
(dropping any intervals with NA endpoints), as well as interval_union, inter-
val_complement, and interval_intersection.

> reduce(y)

Object of class Intervals_full

1 interval over R:

[1, 7]

> interval_intersection(x, x + 2)

Object of class Intervals

2 intervals over R:

[3, 4]

[6, 6]

> interval_complement(x)

Object of class Intervals

3 intervals over R:

3

(-Inf, 1)

(4, 6)

(6, Inf)

Note that combining x and its complement in order to compute a union re-
quires mixing endpoint closure types; coercion to Intervals_full is automatic.

> interval_union(x, interval_complement(x))

Object of class Intervals_full

1 interval over R:

(-Inf, Inf)

The distance_to_nearest function treats its to argument in the first mode,
as just a subset of Z or R; it treats its from argument, however, in the second
mode, returning one distance for every row of the from object. In the example
below, we also look at performance for large data sets (less than one second on
a 2 GHz Intel Core 2 Duo Macintosh, although the time shown below will likely
differ). A histogram of d is given in Figure 2.

> B <- 100000

> left <- runif(B, 0, 1e8)

> right <- left + rexp(B, rate = 1/10)

> v <- Intervals(cbind(left, right))

> head(v)

Object of class Intervals

6 intervals over R:

[89346565.6787157, 89346578.7312074]

[8734528.32456678, 8734539.59384101]

[70845473.1618986, 70845475.8958628]

[16631298.0465591, 16631303.3358477]

[44932203.3207864, 44932218.7735821]

[79755224.4737744, 79755245.8314965]

> mean(size(v))

[1] 10.04129

> dim(reduce(v))

[1] 99013 2

> system.time(d <- distance_to_nearest(sample(1e8, B), v))

user system elapsed

0.232 0.052 0.284

2.2 As a set of meaningful, possibly overlapping intervals

In some applications, each row of an object’s endpoint matrix has a meaningful
identity, and particular points from Z or R may be found in more than one row.
To support this mode, objects may be given row names, which are propagated

4

Distance to nearest interval

d

F
re

qu
en

cy

0 1000 2000 3000 4000 5000

0
50

00
10

00
0

20
00

0
30

00
0

Figure 2: Histogram of distances from a random set of points to the nearest
point in v. There is also a distance_to_nearest method for comparing two
sets of intervals.

through calculations when appropriate. The c methods simply stack objects
(like rbind), preserving row names and retaining redundancy, if any.

The interval_overlap method works in this mode. In the next example
we use it to identify rows of v which are at least partially redundant, i.e., which
intersect at least one other row of v. All rows overlap themselves, so we look
for rows that overlap at least two rows:

> rownames(v) <- sprintf("%06i", 1:nrow(v))

> io <- interval_overlap(v, v)

> head(io, n = 3)

$`000001`

[1] 1

$`000002`

[1] 2

$`000003`

[1] 3

> n <- sapply(io, length)

> sum(n > 1)

[1] 1955

> k <- which.max(n)

> io[k]

5

$`002723`

[1] 2723 32908 78038

> v[k,]

Object of class Intervals

1 interval over R:

002723 [51659394.800663, 51659424.9491307]

> v[io[[k]],]

Object of class Intervals

3 intervals over R:

002723 [51659394.800663, 51659424.9491307]

032908 [51659405.1616266, 51659414.5838721]

078038 [51659405.4410234, 51659419.3632795]

The which_nearest method also respects row identity, for both its to and
from arguments. In addition to computing the distance from each from interval
to the nearest point in to, it also returns the row index of the to interval (or
intervals, in case of ties) located at the indicated distance.

Another function which operates in this mode is clusters, which takes a set
of points or intervals and identifies maximal groups which cluster together —
which are separated from one another by no more than a user-specified threshold.
The following code is taken from the clusters documentation:

> B <- 100

> left <- runif(B, 0, 1e4)

> right <- left + rexp(B, rate = 1/10)

> y <- reduce(Intervals(cbind(left, right)))

> w <- 100

> c2 <- clusters(y, w)

> c2[1:3]

[[1]]

Object of class Intervals

2 intervals over R:

[368.363803718239, 372.503521507606]

[423.708616290241, 426.031748544782]

[[2]]

Object of class Intervals

3 intervals over R:

[686.433725059032, 695.915765305561]

[730.20518058911, 764.996966218281]

[849.269276950508, 863.005137098533]

[[3]]

Object of class Intervals

2 intervals over R:

[1059.95753780007, 1068.73573756543]

[1070.96883933991, 1079.80115717235]

6

3 Floating point and intervals over R
When type == "R", interval endpoints are not truly in R, but rather, in the
subset which can be represented by floating point arithmetic. (For the mo-
ment, this is also true when type == "Z". See Section 4.1.) This limits the
endpoint values which can be represented; more importantly, if computations
are performed on interval endpoints, it means that floating point error can af-
fect whether or not endpoints coincide, whether intervals which meet at or near
endpoints overlap one another, etc.

In spite of this potentially serious limitation, it is still often convenient to
work with intervals with non-integer endpoints, including data where adjacent
intervals exactly meet at a non-integer endpoint. To address this, the intervals
package takes the following approach:

� Floating point representations of interval endpoints are assumed to be
exactly equal (in the sense of == in R or C++) if and only if the user
intends the real values corresponding to these representations to be exactly
equal.

� For cases where floating point error and approximate equality are a con-
cern, tools are provided to permit distinguishing between ambiguous and
unambiguous intersection, union, etc.

In the next example, y1 does not literally overlap y2[2,], although R’s
all.equal function asserts that the gap between them is smaller than the de-
fault tolerance for equivalence up to floating point precision.

> delta <- .Machine[["double.eps"]]^0.5

> y1 <- Intervals(c(.5, 1 - delta / 2))

> y2 <- Intervals(c(.25, 1, .75, 2))

> y1

Object of class Intervals

1 interval over R:

[0.5, 0.999999992549419]

> y2

Object of class Intervals

2 intervals over R:

[0.25, 0.75]

[1, 2]

> all.equal(y1[1,2], y2[2,1])

[1] TRUE

> interval_intersection(y1, y2)

Object of class Intervals

1 interval over R:

[0.5, 0.75]

7

The expand and contract methods, used with type = "relative", permit
consideration of the maximal and minimal interval sets which are consistent with
the nominal endpoints — from the point of view of endpoint relative difference.
The contract method, for example, contracts each interval in a collection so
that the relative difference between original and contracted endpoints is equal
to tolerance delta. Thus, if a relative difference less than or equal to delta is
our criterion for approximate floating point equality, the contracted object has
endpoints which are approximately equal to those of the original — even though
the contracted object is a proper subset of the original. The expand method is
similar, but generates a proper superset.

> contract(y1, delta, "relative")

Object of class Intervals

1 interval over R:

[0.500000007450581, 0.999999977648258]

We compute two separate intersections which bound the nominal intersec-
tion:

> inner <- interval_intersection(

+ contract(y1, delta, "relative"),

+ contract(y2, delta, "relative")

+)

> inner

Object of class Intervals

1 interval over R:

[0.500000007450581, 0.749999988824129]

> outer <- interval_intersection(

+ expand(y1, delta, "relative"),

+ expand(y2, delta, "relative")

+)

> outer

Object of class Intervals

2 intervals over R:

[0.499999992549419, 0.750000011175871]

[0.999999985098839, 1.00000000745058]

Finally, we identify points which may or may not be in the intersection,
depending on whether we make a conservative, literal, or anti-conservative in-
terpretation of the nominal endpoints.

> interval_difference(outer, inner)

Object of class Intervals_full

3 intervals over R:

[0.499999992549419, 0.500000007450581)

(0.749999988824129, 0.750000011175871]

[0.999999985098839, 1.00000000745058]

The expand and contract methods have other uses as well. Here, we elim-
inate gaps of size 2 or smaller:

8

> x <- Intervals(c(1,10,100,8,50,200), type = "Z")

> x

Object of class Intervals

3 intervals over Z:

[1, 8]

[10, 50]

[100, 200]

> w <- 2

> close_intervals(contract(reduce(expand(x, w/2)), w/2))

Object of class Intervals

2 intervals over Z:

[1, 50]

[100, 200]

4 Notes on implementation

4.1 Endpoint representation

For the moment, interval endpoints are always stored using R’s numeric data
type. Although this is wasteful from an memory and speed point of view, we do
it for two reasons. First, use of R’s Inf and -Inf — not possible with the integer
type — is very convenient when computing complements. Second, the range of
integers which can be represented using the numeric data type is considerably
greater:

> .Machine$integer.max

[1] 2147483647

> numeric_max <- with(.Machine, double.base^double.digits)

> options(digits = ceiling(log10(numeric_max)))

> numeric_max

[1] 9007199254740992

4.2 Efficiency

All computations are accomplished by treating intervals as pairs of tagged end-
points, sorting these endpoints (along with their tags), and then making a single
pass through the results. Computational complexity for set operations is there-
fore O(n log n), where input object i contains ni rows and n =

∑
i ni. The same

sorting approach is also used for interval_overlap, although if every interval
in a query object of m rows overlaps every intervals in a target object of n rows,
generating output alone must of necessity be O(mn).

Sorted endpoint vectors are not retained in memory. If one wishes to query a
particular object over and over, repeated sorting would be inefficient; in practice
so far, however, such repeated querying has not been needed.

9

4.3 Checking validity

The code behind which_nearest and reduce (key methods in the intervals
package, which may be directly called by the user and are also used internally
in numerous locations) is written in C++ for efficiency. The compiled code
makes a number of assumptions about the SEXP objects passed in as arguments,
but does not explicitly check these assumptions. Nonetheless, when the R wrap-
pers for the compiled code are applied to valid objects from the Intervals or
Intervals_full classes, all assumptions will always be met. This design deci-
sion was taken so that the requirements for individual objects and their contents
could be gathered together in a single, natural location: the classes’ validity
functions.

The intervals package provides replacement methods — e.g., type and closed

— which implement error checking and preserve object validity. R’s implemen-
tation of S4 classes, however, leaves object data slots exposed to the user. As a
consequence, a user can directly manipulate the data slots of a valid Intervals

or Intervals_full object in a way that invalidates the object, but does not
generate any warning or error.

To prevent invalid objects from being passed to compiled code — and po-
tentially generating segmentation faults or other problems — all wrapper code
in this package includes a check_valid argument. This argument is set to TRUE

by default, so that validObject is called on relevant objects before handing
them off to the compiled code. For efficiency, users may choose to override this
extra check if they are certain they have not manually assigned inappropriate
content to objects’ data slots.

5 Session information

� R version 3.2.2 (2015-08-14), x86_64-pc-linux-gnu

� Base packages: base, datasets, grDevices, graphics, methods, stats, utils

� Other packages: intervals 0.15.1

� Loaded via a namespace (and not attached): tools 3.2.2

10

	1 Introduction
	2 Interpretation of objects
	2.1 As a subset of Z or R
	2.2 As a set of meaningful, possibly overlapping intervals

	3 Floating point and intervals over R
	4 Notes on implementation
	4.1 Endpoint representation
	4.2 Efficiency
	4.3 Checking validity

	5 Session information

