GROMACS Documentation
Release 2025.0

GROMACS development team

Feb 10, 2025

CONTENTS

1 Downloads 2
1.1 Sourcecode e 2
1.2 Regression tests it e e e e e e e e e e e e e e e e 2

2 Installation guide 3
2.1 Installation guide for exotic configurations oo 3

2.1.1 Special instructions for building GROMACS on less-common systems 3
2.2 Introduction to building GROMACS e 5
2.2.1 Quick and dirty installation L. e e 5
2.2.2 Quick and dirty cluster installation Lo 5
223 Typicalinstallation L e 6
224 Buildingolder versionsl oo 6
2.3 PrerequiSites e e e e e e 6
231 Platform 6
232 Compiler e e e e e e e e e e 7
2.3.3 Compiling with parallelization options 8
234 CMaKe i e e e 11
2.3.5 Fast Fourier Transform library 11
2.3.6 Other optional build components 13
24 Doing abuild of GROMACS e 14
24.1 ConfiguringwithCMake e 14
242 Compilingand linking e 25
243 Installing GROMACS 25
244 Getting access to GROMACS after installation 25
2.4.5 Testing GROMACS for correctness v v v v v v v i i e e e e et e e e o 26
24.6 Testing GROMACS for performance 27
247 Havingdifficulty? e 27
2.5 Special instructions for some platforms Lo oL 27
2.5.1 Buildingon Windows L e e 27
252 BuildingonCray e e e 28
253 Intel XeonPhi. 28
254 NVIDIAGrace v v v ittt e et e e e e e 28
2.6 Tested platforms L e 28
277 SUpPPOTt . ..o e 29
3 User guide 30
3.1 Known issues affecting users of GROMACS 30
3.1.1 “Cannot find a working standard library” error with ROCm Clang 30
3.1.2 Expanded ensemble does not checkpoint correctly 30
3.1.3 Compiling with GCC 12 on POWERSY architectures 31
3.1.4 Launching multiple instances of GROMACS on the same machine with AMD GPUs . . 31
3.1.5 NbnxmTest crash with oneAPI12024.1 31
3.1.6 Separate PME ranks with thread-MPI and CUDA do not work with small systems 31
32 Gettingstarted . . . L. L L e e e e 31

33

34

3.5

3.6

3.7

3.8

39

3.10

32.1 Flow Chart e e e e 31

3.2.2 Setting up your envirOnment v v v v vt e e e e e e e e e e e e e e e 33
3.2.3 Flowchart of typical simulation e 33
324 Importantfiles. L. 33
32,5 Tutorial material L. e 34
32.6 Backgroundreading 35
SyStem preparation v v v i v e 35
33,1 Stepstoconsider e e e e e e e e e e e e 35
332 Tipsandtricks e 36
Managing long simulations L oL e 36
34.1 Appendingtooutputfileso 37
342 Backingupyourfiles 37
343 Extendinga.tprfile e e 37
344 Changing mdp options forarestart oL 38
3.4.5 Restarts without checkpointfiles oL o oL 38
3.4.6 Arecontinuations €Xact? L i i e e e e e e 38
347 Reproducibility e 38
Answers to frequently asked questions (FAQs) o e 39
3.5.1 Questions regarding GROMACS installation 39
3.5.2 Questions concerning system preparation and preprocessing 39
3.5.3 Questions regarding simulation methodology, 40
3.5.4 Parameterization and Force Fields 41
3.5.5 Analysis and Visualization e e e e e 41
Force fieldsin GROMACS e 42
3.6.1 AMBER 42
3,62 CHARMM e 42
3,63 GROMOS 43
3.64 OPLS . . . 43
Molecular dynamics parameters (.mdp Options)o i e e e 43
3.7.1 General information L e 43
Useful mdrun features o e e e 86
3.8.1 Re-running asimulation oL 86
3.8.2 Running a simulation in reproducible mode oL 86
3.8.3 Halting running simulations e e e 86
3.8.4 Running multi-simulations L e e 86
3.8.5 Controlling the length of the simulation 88
Getting good performance frommdrun oo oo oo 88
39.1 Hardware background information L oL 88
3.9.2 Work distribution by parallelization in GROMACS 89
3.9.3 Parallelizationschemes L e 90
39.4 Running mdrun withinasinglenode 93
39.5 Running mdrunonmore thanonenode 97
3.9.6 Avoiding communication for constraints 99
39.7 Findingouthow torun mdrunbetter 99
39.8 RunningmdrunwithGPUSs e 101
3.9.9 Running the OpenCL versionof mdrun 105
39.10 Running SYCL versionof mdrun. 106
39.11 Running HIP versionof mdrun 106
3.9.12 Performance checklist 106
Common errors when using GROMACS e 108
3.10.1 Common errors during USAZE . . . « « v v v v v v vt e e e e e e e e e e e e e e 108
3.10.2 Errorsinpdb2gmx e 108
3.103 Errorsin @rompp e e e 110
3104 Errorsinmdruno L e e e e e e e 114
Command-linereference L e 116
3.11.1 molecular dynamics simulation suite L. oL 117
3012 gmxanaeig oL e e e e e e e e e e e 124
3013 gmxanalyze oL e e e e e 127

3.114

3.11.5

3.11.6

3.11.7

3.11.8

3.11.9

3.11.10
3.11.11
3.11.12
3.11.13
3.11.14
3.11.15
3.11.16
3.11.17
3.11.18
3.11.19
3.11.20
3.11.21
3.11.22
3.11.23
3.11.24
3.11.25
3.11.26
3.11.27
3.11.28
3.11.29
3.11.30
3.11.31
3.11.32
3.11.33
3.11.34
3.11.35
3.11.36
3.11.37
3.11.38
3.11.39
3.11.40
3.11.41
3.11.42
3.11.43
3.11.44
3.11.45
3.11.46
3.11.47
3.11.48
3.11.49
3.11.50
3.11.51
3.11.52
3.11.53
3.11.54
3.11.55
3.11.56
3.11.57
3.11.58
3.11.59
3.11.60
3.11.61

gmX angle e e e 130

gmxawh ..o 132
gmxbar e e 133
gmxbundle e 135
gmxcheck. e 136
gmx chi e 138
EMX CIUSIEr e e e e 141
emX ClUSESIZE e e e 145
gmxconfrmsl e 146
EMX CONVEIt-IPr o oo ot e e e e e 148
EMX CONVETT-LI] . .« v v v vt ittt e e e e e e e e e e e 149
EMX COVAL & . v v v v e et i e 150
EMX CUITENT . . v v v v vttt e e e e e et e e e e e e e e e e e e e e e 152
emx density e e e e 154
gmx densmapl e e e e 156
gmxdensorder 157
gmxdielectric 159
gmx dipoles e 160
emX diSTe e e e e e e e 163
emX diStanCe e e e e e e e e 165
emx dOS e 167
EMX ASSP . . . e e e e e e e 168
emMX dUMP e e e e e e e e e 171
gmxdyecouplo e e e e e e 172
gmxeditconf L e 173
EMX ENECONV . . . o b v v it e e e e e e e e e e e e e e e e e 176
SMX CNEMAL .« . v v v v v et e 177
EMX ENCIZY . o v v v e 179
gmx extract-Cluster e 183
gmx filter e 184
gmx freevolume L. e 185
gMX Zangle e e e e e e e 187
gmx genconf 189
QMX ZENHOMN . . v v v ettt e e e e e e e e e e e e e e e e e e e 190
GMX ZENTESIT . . v v v v v vt e 191
GMX GIOMPP . o v v v v e et e 192
GMX GYTALE . . . o oo e e e e e e e e e e e e e e e 195
gmx gyrate-legacy L. 196
gmx h2order. oL 198
gmxhbond e 199
gmx hbond-legacy L 201
gmxhelix e 204
gmx helixorient e 206
gmx help e 207
gmx hydorder e 207
gmx insert-molecules oL e 209
gmxlie e 210
gmxmake_edi 211
gmxmake ndx 215
gmxmdmat e e e e e e 215
emxmdrun e e e e e e e 217
emxmindiSt e e e 222
gmxmk_angndXx e e e e 224
emxmsd ... e e e 224
EMX NMEIZ . o v v v e e i e 226
EMX NMENS . . v v v et v e 228
GMXNMI . . vt v v e ettt e e e e e e e e e e e e e e e e e e e 229
GMX NMETA] . . . v ot ottt e e e e e e e e e e e e e e e e e e e 230

3.11.62 gmx nonbonded-benchmark 231

301.63 gmX Order L e e e e e e e e e e e e e e e 233
3.11.64 gmxpairdisto e e e e 235
3.11.65 gmx pdb2gmx e e 237
3.11.66 gMX PME_EITOT . . . v v v v e v v e 240
3.11.67 gmx polystat e e e e e 241
3.11.68 gmx potential L. e e e e e e e e e 242
3.11.69 gmx principal oL e e e e e e e 244
30170 gmXramao L e e e e e e e e e e e e e e e e e e 245
30171 gmxrdf . oL 245
3.11.72 gmxreport-methods 248
3173 @MXTMS . o v v v o e 248
30174 gmxrmsdiSt L. e e e e e e e e e e e e 250
3AL75 gmxrmst . .. e e e e e 252
31176 gmxrotact 254
30177 gmX1otmat . . . oL o. . e e e e e e e e e e e e 255
30178 gmxsaltbr L . e e e e 256
3179 gmx sans-1€gacy e e e e e e e e e e e e e e 257
3180 @mMX SaSa .« . . . i e e e e e e e e e e e e e e e e e e e 259
3.11.81 gmxsaxs-legacy e 261
3.11.82 gmx scattering e e e e e e 262
30183 gmxselect e e e e e 264
30184 gmxsham L . L e e e e e e e e 266
3185 @MX SIZEPS . v v v e 268
30186 gmxsolvate oL e e e e e e e e e e e e e 270
30187 gmX SOTIeNt oo e e e e e e e e e e e e e e e e 271
3.011.88 gmxspatial e e e e e 273
30189 gmx spol e e e e e e e e e e 274
3190 gmxtcaf L e e e e e e e e 276
3191 gmXtraj . . . o o o e e e e e e e e e e e e 277
3.11.92 gmX trajectory o oLt e e e e e e e e e e e e 280
30193 gmXtrjeat e e e e e e e e e 281
30194 gmXICONV . . . L v v it e e e e e e e e e e e e 283
3195 gmxtrjorder L. e e e e e e e e e e e e e e 286
31196 gmMX tUNE_PME . . . o v v v e 288
3.11.97 gmxvanhove e 293
31198 gmxvelace 294
31199 gmxwham oL 296
3.11.100gmx wheel e e e e e e e e e 300
BALI0IEMX X2E0D « o v v o e 301
3AL.102gMX XPM2PS .+ v o v e 302
3.11.103Command-line interface and conventions 304
3.11.104Commands by name oL e e e e e e 305
3.11.105Commands by tOpIC v v vt e e e e e e e e e e e e e e e e 308
31.106Special toPICS .« « v v v v v e 314
3.11.107Command changes between versions o 322
3.12 Terminology e e 327
32,1 Pressureo Lo e e e e e e e e e e e e 327
3.12.2 Periodic boundary conditionso 328
3.12.3 Thermostats e e e e e e 329
3.12.4 Energy ConServation v v vttt e e e e e e e e e e e e e e e e e 330
3,125 AvVerage StruCture o vt i i e e e e e e e e e e e e 330
3.12.6 Blowingup e 331
3.12.7 Diagnosing an unstable systemo 331
3.12.8 Molecular dynamics e e e e e e e e e e e 332
3129 Forcefield 333
3.13 Environment Variables L e 333
3.13.1 OutputControl e 333

3.13.2 Debugging e e e e e e e e e e
3.13.3 Performance and Run Control
3.13.4 OpenCLmanagement vt v v vt v vttt e e e
3.13.5 Analysisand Core Functions
3.14 Floating point arithmetic e
3.15 Security when using GROMACS e
3.16 Policy for deprecating GROMACS functionality,
Short How-To guides
4.1 Beginners e e e e e e
4.1.1 0 RESOUICES . . . v v v v i it e e e e e e e e e e e
42 Adding aResiduetoaForceField
421 Addinganewresidue oL
422 Modifyingaforcefield
4.3 Watersolvation Ll e e e e
44 Nonwater sOlVeNt o v it e e e e e e e e
4.4.1 Making anon-aqueous solventbox L. Lo
45 Mixedsolvent e
4.6 Making Disulfide Bonds
4.7 Running membrane simulations in GROMACS
47.1 Running Membrane Simulations e
472 Adding waters with genbox
473 External material L e
4.8 Parameterization of novel molecules Lo L
4.8.1 EXOHC SPECIeS o v v i e e
4.9 Potentialof Mean Force L
4.10 Single-Point Energy o e e e e e e
4.11 CarbonNanotube e e
4.11.1 RobertJohnson’s Tips e
4.11.2 Andrea Minoia’s tutorial
4.12 Visualization Software e e
4.12.1 Topology bonds vs Renderedbonds
4.13 Extracting Trajectory Information e
4.14 External tools to perform trajectory analysis L L oo,
4.15 PlottingData L e e e e e e e e e
4151 Software e e
4.16 Micelle CIUStEIrING o v v v e
Reference Manual
5.1 Prefaceand Disclaimer e e
5.1.1 Citation information e
5.1.2 GROMACS is Free Software v i i i ittt et e e e e
52 Introduction e e e e e e
5.2.1 Computational Chemistry and Molecular Modeling
5.2.2 Molecular Dynamics Simulations Lo o
5.2.3 Energy Minimization and Search Methods
53 Definitionsand Units L L e e e e e e e
53.1 Notation o e e e e e
532 MDUNIS . . v v vt e e e e e e e e e e e e e e e e e e
533 Reducedunitsl e
534 Mixed or Double precision
54 Algorithms L e e e e e e e e e
5.4.1 Periodic boundary conditions oL L. e e e
542 Thegroupconcept e e e
543 Molecular Dynamicso e e e e e e
544 Shell molecular dynamics. Lo
5.4.5 Constraintalgorithms e e e e
5.4.6 Simulated Annealing e e e e e e e

342
342
342
342
342
343
343
343
343
344
344
344
344
345
345
345
346
346
347
347
347
347
348
349
349
349
349
350
350

352
352
353
353
354
354
355
357
359
359
359
360
361
362
362
365
366
389
389
392

5.5

5.6

5.7

5.8

59

5.4.77 Stochastic DynamiCs o i i e e e e e e e e e e e e 393

5.4.8 Brownian Dynamicso e e e e e e e e 393
549 Energy Minimization it e e e e e e e e e e e e 394
5.4.10 Normal-Mode Analysis e 395
5.4.11 Freeenergy calculations 396
54.12 Replicaexchange 398
5.4.13 Essential Dynamics sampling e 399
5.4.14 Expanded Ensemble e 400
5.4.15 Parallelization e e 400
5.4.16 Domain decompoSition L. e 400
Interaction function and force fields L o L 406
5.5.1 Non-bonded interactions i e e 406
552 BondedinteraCtions u e e e e e 411
553 Restraints e e e 423
5.54 Polarization e e e e e e 432
5.5.5 Freeenergy interactionst i i e e e e e 433
55.6 Methods e 440
5.5.7 Virtual interaction Sit€s e e e e e e e 441
5.5.8 Long Range Electrostatics i e e 445
5.5.9 Long Range Van der Waals interactions 448
55.10 Forcefield e e 451
Topologies e 455
5.6.1 Particletype e e e e e e e e e e 455
5.6.2 Parameterfiles L. e 457
5.6.3 Molecule definition e 460
5.6.4 Constraintalgorithms Lo o 461
5.6.5 pdb2gmxinputfiles 462
5.,6.6 Fileformats e 469
5.6.7 Force field organization e e e e 482
Fileformats L e 484
57.1 Summary of file formats Lo 484
5.7.2 Fileformatdetails 486
Special TOPICS . . & v v o o e 499
5.8.1 Free energy implementationt i 499
5.8.2 Potential of meanforce L e 500
5.83 Non-equilibriumpulling 501
5.84 Collective variables: thepullcode 501
5.8.5 Adaptive biasing with AWH 506
5.8.6 EnforcedRotation. e 516
5.87 Electricfields L e 525
5.8.8 Computational Electrophysiology 526
5.8.9 Calculating a PMF using the free-energycode 529
5.8.10 Removing fastest degrees of freedom L 529
5.8.11 Viscosity calculation e e e e e e 532
5.8.12 Shearsimulations e 533
5.8.13 Tabulated interaction functions Lo e 534
5.8.14 Hybrid Quantum-Classical simulations (QM/MM) with CP2K interface 535
5.8.15 MiMiC Hybrid Quantum Mechanical/Molecular Mechanical simulations 538
5.8.16 Using VMD plug-ins for trajectory file /O 542
5.8.17 Interactive Molecular Dynamics i i 542
5.8.18 Embedding proteins into the membranes Lo 543
5.8.19 Applying forces from three-dimensional densities 544
5.8.20 Collective Variable simulations with the Colvars module 547
5.821 UsingPLUMED e 548
5.8.22 Neural Network Potentials 549
Run parameters and Programs Lo e 550
5.9.1 Online documentationt i e e e 550
592 Filetypes 551

Vi

59.3 RunParameters e e e e e e 551

510 AnalySisS . . . L e e e e e e e e e e e e 552
5.10.1 Using Groups . . . v v v v v o e e e e e e e e e e e e e e e e e e e 552
5.10.2 Looking at your trajectoryttt e e e e e e e 555
5.10.3 General properties L. e e e e e e e e e 555
5.10.4 Radial distribution functions L. oL 555
5.10.5 Correlation functions 557
5.10.6 Curve fitting in GROMACS 558
5.10.7 Mean Square Displacement oL o 560
5.10.8 Bonds/distances, angles and dihedrals oL oo 560
5.10.9 Radius of gyration and distanceso o 562
5.10.10 Root mean square deviations in StrUCtUIe v v v v v v v v v v e e 563
5.10.11 Covariance analysis v v v v v v i e e e e e e e e e e e e 564
5.10.12 Dihedral principal component analysis oL 565
5.10.13 Hydrogenbonds L e 565
5.10.14 Protein-related items L. L 567
5.10.15 Interface-relateditems 569

5.11 Some implementation details e e e e 570
5.11.1 Single Sum Virial in GROMACS o e 570
5.11.2 Optimizations ot vttt i e e e e e e e 573

5.12 Averages and fluctuations e e 574
5.12.1 Formulae for averaging e 574
5.12.2 Implementation o .. e e e e e e e e e e e e e e e e 575

5.13 Bibliography o L e e e e e e e 578

6 gmxapi Python package 587

6.1 Full installation inStructions o ottt e e e e e e e e e 587
6.1.1 OVerview e e e e e 588
6.1.2 Background 589
6.1.3 Installing the Pythonpackage 591
6.1.4 Accessing gmxapi documentation 596
6.1.5 Testing e e e e e e e e e e e e e e 597
6.1.6 Troubleshooting e e e e 597

6.2 Usingthe Pythonpackage e 600
6.2.1 Noteson parallelismand MPI oo o 600
6.2.2 Running simple simulations oL 602
6.2.3 Running ensemble simulations L. L e 602
6.2.4 Input arguments and “ensemble” syntax o e 602
6.2.5 Accessingcommandlinetools oL o 603
6.2.6 Preparing simulations L. L e 603
6.2.7 Using arbitrary Python functions 604
6.2.8 Subgraphs e e 604
6.2.9 LOoOPING i e e e e e e e e e e e e e e 605
6.2.10 LoggIng e e e e e e e e e 605
6.2.11 More 606

6.3 gmxapi Python module reference L o oo oo, 606
6.3.1 Interface CONCEPLS v v vt e e e e e e 607
6.3.2 gmxapibasicpackage e e e 608
6.3.3 Simulationmodule 611
6.3.4 UtNtes o o e e e e e e e e 613
6.3.5 Statusmessagesand Logging oL oL 615
6.3.6 Exceptionsmodule e 616
6.3.7 gmx.ersionmodule L e e e e e 617
6.3.8 Core APL e 618

7 (Non-)Bonded LIBrary (NB-LIB) API 622

7.1 Guide to Writing MD Programs e e e e e 622

7.1.1 Global Definitions 622

vii

7.1.2 DefineParticle Data
7.1.3 Defining Coordinates, Velocities and Force Buffers
7.1.4 Writingthe MD Program L
8 Developer Guide
8.1 Contribute to GROMACS e
8.1.1 Checklist e e
8.1.2 Preparing code for submissiono e e e
8.1.3 Alternatives e e e e e
8.1.4 Do youhave more questions? e e e
8.1.5 Removing functionality L e e e e
8.2 Codebase OVEIVIEW i i i e e e e e e e
8.2.1 Source code organizationl
8.2.2 Documentation organization o..i e e e e e e e
8.3 Build system OVEeIVIew e e e e e e e
8.3.1 Buildtypes e e e e e e e e e e
83.2 CMakecache variables L
8.3.3 Externallibraries e
8.3.4 Special targets e e e e e e e e e e e e
8.3.5 Passing information to sourcecode Lo
8.4 Change Management v v v v v et e
8.4.1 Gettingstarted L. e e e e e e e e e e e e e e
842 Labels e
843 CodeReview e e e
8.4.4 More IttiPS L. e e e e e e
8.5 Relocatable binaries e e e
8.5.1 Finding shared libraries i e e e
8.5.2 Findingdatafiles e e e e
853 Knownissues
8.6 Documentation gEneration it . et e e e e e e e e e e e e e e e
8.6.1 Building the GROMACS documentation
8.6.2 Neededbuildtools e
8.7 Styleguidelines e e e e e e e e
8.7.1 Guidelines for code formatting L oo
8.7.2 Guidelines for #include directives oL o
8.7.3 Naming conventions v ittt e e e e e e e
8.7.4 Allowed language features i i e e e e e
8.7.5 Guidelines for creating meaningful issue reports
8.7.6 Guidelines for formatting of gitcommits oL,
877 Errorhandling
8.8 Development-time tools L. e e e
8.8.1 Using DoXygen o i it e e e e
8.8.2 Automation and Infrastructure L
8.8.3 Source tree checker scripts L Lo e e e
8.8.4 Automatic source code formatting
8.8.5 Unittesting o L e e e e e e e e e
8.8.6 Physical validation e
8.9 Known issues relevant for developers L L e e
8.9.1 Issues with GPU timer withOpenCL,
8.9.2 GPUemulationdoesnotwork
8.9.3 OpenCL on NVIDIA Volta and later broken
8.9.4 PME decomposition automated task assignment broken L.
9 Doxygen documentation
10 C++ API
10.1 Public C++APL e
1011 Overview o e e
10.1.2 Client build system SUpport i e e

629
629
630
631
631
631
631
632
632
634
636
636
637
642
642
643
643
644
645
645
647
649
650
650
651
652
652
653
654
654
655
656
658
662
663
664
666
666
679
690
693
698
701
703
704
704
704
704

705

706
706
706
706

viii

10.1.3 gmxapi CMake package i i e e e e 707

10.1.4 gromacs (and gromacs$SGROMACS_SUFFIX packages) 708

11 Release notes 710
11.1 GROMACS 2025 SEIIES . « + v v v o v e e e e e e e e e e e e e e e e e e e 710
11.1.1 Patchreleases i i i i e e e e e e e e e e 710

11.1.2 Majorrelease i i i i e e e e 710

11.2 GROMACS 2024 SEIIES . . .« v v e 718
11.2.1 Patchreleases e e e e e e e e 718

11.2.2 Majorrelease oo v v it i e e e e e e e 731

11.3 Older (unmaintained) GROMACS series o i v v i it i i e et et e 738
11.4 GROMACS 2023 SEIICS '+ v v v v v v e 738
11.4.1 Patchreleases 0 i e e e e e e e e 738
11.42 Majorrelease e 751

11.5 GROMACS 2022 SETI€S . . & v v e v o e 758
11.5.1 Patchreleases 0 i i i i e e e e e e 758
11.52 Majorrelease v v i v v i i e e e e e e e e e e 771

11.6 . GROMACS 2021 SETICS . . . v v v v e 783
11.6.1 Patchreleases e e e e e e e e 783
11.6.2 Majorreleasettt e e e e e 794

11.7 GROMACS 2020 SEIIES . « + v v v o v e 803
11.7.1 Patchreleases i i i i e e e e e e e e e e 803
11.72 Majorrelease i i i i e e e e e e 816

11.8 GROMACS 2019 S€ries v v i i e e e e e e e e e e e e e e e e 823
11.8.1 Patchreleases e e e e e e e e 823
11.8.2 Majorrelease oo v v it i e e e e e 834

11.9 GROMACS 2018 SEIIeS . . « v v v i v e e e e e e e e e e e e e e e e e e e s e e 841
11.9.1 Patchreleases i i i e e e e e e e e e e e 841
11.9.2 Majorrelease i i i e e 857

11.10 GROMACS 2016 SEII€S . . .« v v v i i e 872
11.10.1 Patchreleases i i i i e e e e e e 872
11.10.2 Majorrelease o v v v v v et e e e e e e e e e e e e e e e e e e e 889
Python Module Index 907

GROMACS Documentation, Release 2025.0

The release notes can be found online at http://manual.gromacs.org/current/release-notes/index.html

CONTENTS 1

http://manual.gromacs.org/current/release-notes/index.html

CHAPTER
ONE

DOWNLOADS

Please reference this documentation as https://doi.org/10.5281/zenodo.14846105.

To cite the source code for this release, please cite https://doi.org/10.5281/zenodo.14846130.

1.1 Source code

* As ftp ftp://ftp.gromacs.org/gromacs/gromacs-2025.0.tar.gz
* As https https://ftp.gromacs.org/gromacs/gromacs-2025.0.tar.gz
¢ (mdS5sum 4e9f043fea964cb2b4dd72d6£39ea006)

Other source code versions may be found at the web site.

1.2 Regression tests

* https://ftp.gromacs.org/regressiontests/regressiontests-2025.0.tar.gz

¢ (md5sum bee79b13a6d7d66eaa6f0e2cd20dc009)

https://doi.org/10.5281/zenodo.14846105
https://doi.org/10.5281/zenodo.14846130
ftp://ftp.gromacs.org/gromacs/gromacs-2025.0.tar.gz
https://ftp.gromacs.org/gromacs/gromacs-2025.0.tar.gz
https://manual.gromacs.org/
https://ftp.gromacs.org/regressiontests/regressiontests-2025.0.tar.gz

CHAPTER
TWO

INSTALLATION GUIDE

2.1 Installation guide for exotic configurations

2.1.1 Special instructions for building GROMACS on less-common systems
These instructions pertain to building GROMACS 2025.0. This document is complementary to the up-to-date
installation instructions instructions.

The configurations listed here are expected to work, but are not recommended for typical users.

SYCL GPU acceleration for AMD and NVIDIA GPUs using Intel oneAPI DPC++

AMD and NVIDIA GPUs can also be used with Intel oneAPI BaseKit and Codeplay oneAPI plugins.

For most users, we recommend using CUDA (page 17) for NVIDIA GPUs and AdaptiveCpp (page 19) for AMD
GPUs instead.

AMD GPUs

After installing Intel oneAPI toolkit 2024.0 or newer, a compatible ROCm version, and the Codeplay plugin,
set up the environment by running source /opt/intel/oneapi/setvars.sh orloading an appropriate
module load on an HPC system.

Then, configure GROMACS using the following command (replace g£xXYZ with the target architecture):

cmake .. —-DCMAKE_C_COMPILER=icx —-DCMAKE_CXX_COMPILER=icpx \
-DGMX_GPU=SYCL -DGMX_SYCL=DPCPP \
-DGMX_GPU_NB_CLUSTER_SIZE=8 -DGMX_GPU_FFT_LIBRARY=vkfft \
—DSYCL_CXX_FLAGS_EXTRA='—-fsycl-targets=amd_gpu_gfxXYZ'

NVIDIA GPUs

After installing Intel oneAPI toolkit 2024.0 or newer, a compatible CUDA version, and the Codeplay plugin,
set up the environment by running source /opt/intel/oneapi/setvars.sh orloading an appropriate
module load on an HPC system.

Then, configure GROMACS using the following command:

cmake .. -DCMAKE_C_COMPILER=icx —-DCMAKE_CXX_COMPILER=icpx \
-DGMX_GPU=SYCL —-DGMX_SYCL=DPCPP \
-DGMX_GPU_NB_CLUSTER_SIZE=8 -DGMX_GPU_FFT_LIBRARY=vkfft \
-DSYCL_CXX_FLAGS_EXTRA=-fsycl-targets=nvptx64-nvidia-cuda

https://manual.gromacs.org/documentation/current/install-guide/index.html
https://manual.gromacs.org/documentation/current/install-guide/index.html
https://developer.codeplay.com/products/oneapi/amd/home/
https://developer.codeplay.com/products/oneapi/nvidia/home/

GROMACS Documentation, Release 2025.0

For more recent NVIDIA GPUs, compiling for a specific compute capability can be beneficial for per-
formance. This is possible by setting the —fsycl-targets parameter of SYCL_CXX_FLAGS_EXTRA.
For example for an Ampere architecture GPU such as the NVIDIA A100, set -DSYCL_CXX_FLAGS_—
EXTRA=-fsycl-targets=nvidia_gpu_sm_80. Possible values are given in the DPC++ user manual.

SYCL GPU acceleration for NVIDIA GPUs using AdaptiveCpp

For most users, we recommend using CUDA (page 17) for NVIDIA GPUs.

Build and install AdaptiveCpp with CUDA backend (we recommend using the mainline Clang, not the ROCm-
bundled one).

Then, use the following command to build GROMACS (make sure to use the same compiler and set target GPU
architecture instead of sm_XY):

cmake .. —-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ \
—-DGMX_GPU=SYCL -DGMX_SYCL=ACPP -DACPP_TARGETS='cuda:sm_ XY'

Static linking

Dynamic linking of the GROMACS executables will lead to a smaller disk footprint when installed, and so is the
default on platforms where we believe it has been tested repeatedly and found to work. In general, this includes
Linux, Windows, Mac OS X and BSD systems. Static binaries take more space, but on some hardware and/or
under some conditions they are recommended or even necessary, most commonly when you are running large
parallel simulation using MPI libraries (e.g. Cray).

* To link GROMACS binaries statically against the internal GROMACS libraries, set -DBUILD_SHARED_—
LIBS=0FF.

e To link statically against external (non-system) libraries as well, set —-DGMX_PREFER_STATIC_-
LIBS=ON. Note, that in general cmake picks up whatever is available, so this option only instructs cmake
to prefer static libraries when both static and shared are available. If no static version of an external library
is available, even when the aforementioned option is ON, the shared library will be used. Also note that the
resulting binaries will still be dynamically linked against system libraries on platforms where that is the de-
fault. To use static system libraries, additional compiler/linker flags are necessary, e.g. —static-1libgcc
—-static-libstdc++.

* To attempt to link a fully static binary set -DGMX_BUILD_SHARED_EXE=OFF. This will prevent CMake
from explicitly setting any dynamic linking flags. This option also sets -DBUILD_SHARED_LIBS=0FF
and -DGMX_PREFER_STATIC_LIBS=ON by default, but the above caveats apply. For compilers
which don’t default to static linking, the required flags have to be specified. On Linux, this is usually
CFLAGS=-static CXXFLAGS=-static.

Building on Solaris

The built-in GROMACS processor detection does not work on Solaris, so it is strongly recommended that you
build GROMACS with —-DGMX_HWLOC=on and ensure that the CMAKE_PREF IX_PATH includes the path where
the hwloc headers and libraries can be found. At least version 1.11.8 of hwloc is recommended.

2.1. Installation guide for exotic configurations 4

https://intel.github.io/llvm-docs/UsersManual.html
https://github.com/AdaptiveCpp/AdaptiveCpp

GROMACS Documentation, Release 2025.0

RISC-V with VEC unit

GROMACS runs on RISC-V. The non-bonded kernel can be ran on the VEC vector unit, when
available. To enable this, add -DENABLE_NBNXM_CPU_VECTORIZATION=on to the CMAKE_-
CXX_FLAGS. A clang compiler is required with version >=I19. If you want to check which
loops have been vectorized, add -Rpass=loop-vectorize -Rpass-missed=loop-vectorize
-Rpass—-analysis=loop-vectorize to the CMAKE_CXX_FLAGS. When calling gmx mdrun, set the
GMX_NBNXN_PLAINC_1X1 environment variable to choose the correct kernel.

2.2 Introduction to building GROMACS

These instructions pertain to building GROMACS 2025.0. You might also want to check the up-to-date installation
instructions.

2.2.1 Quick and dirty installation

1. Get the latest version of your C and C++ compilers.

Check that you have CMake version 3.28 or later.

Get and unpack the latest version of the GROMACS tarball.
Make a separate build directory and change to it.

Run cmake with the path to the source as an argument

Run make, make check,and make install

NS R » N

Source GMXRC to get access to GROMACS
Or, as a sequence of commands to execute:

tar xfz gromacs-2025.0.tar.gz

cd gromacs-2025.0

mkdir build

cd build

cmake .. —-DGMX_BUILD_OWN_FFTW=ON -DREGRESSIONTEST_DOWNLOAD=ON
make

make check

sudo make install

source /usr/local/gromacs/bin/GMXRC

This will download and build first the prerequisite FFT library followed by GROMACS. If you already have
FFTW installed, you can remove that argument to cmake. Overall, this build of GROMACS will be correct and
reasonably fast on the machine upon which cmake ran. On another machine, it may not run, or may not run fast.
If you want to get the maximum value for your hardware with GROMACS, you will have to read further. Sadly,
the interactions of hardware, libraries, and compilers are only going to continue to get more complex.

2.2.2 Quick and dirty cluster installation

On a cluster where users are expected to be running across multiple nodes using MPI, make one installation
similar to the above, and another using ~-DGMX_MPI=on. The latter will install binaries and libraries named
using a default suffix of _mpi ie gmx_mpi. Hence it is safe and common practice to install this into the same
location where the non-MPI build is installed.

2.2. Introduction to building GROMACS 5

https://manual.gromacs.org/documentation/current/install-guide/index.html
https://manual.gromacs.org/documentation/current/install-guide/index.html

GROMACS Documentation, Release 2025.0

2.2.3 Typical installation
As above, and with further details below, but you should consider using the following CMake options (page 15)
with the appropriate value instead of xxx :

e -DCMAKE_C_COMPILER=xxx equal to the name of the C99 compiler (page 7) you wish to use (or the
environment variable CC)

* -DCMAKE_CXX_COMPILER=xxx equal to the name of the C++17 compiler (page 7) you wish to use (or
the environment variable CXX)

e —DGMX_MP I=on to build using MPI support (page 10)

e —DGMX_GPU=CUDA to build with NVIDIA CUDA support enabled.

* —-DGMX_GPU=0penCL to build with OpenCL support enabled.

e —DGMX_GPU=SYCL to build with SYCL support enabled (using Intel oneAPI DPC++ by default).

e —DGMX_SYCL=ACPP to build with SYCL support using AdaptiveCpp (hipSYCL), requires ~DGMX_—
GPU=SYCL.

* —DGMX_SIMD=xxx to specify the level of SIMD support (page 15) of the node on which GROMACS will
run

e —DGMX_DOUBLE=0n to build GROMACS in double precision (slower, and not normally useful)

e -DCMAKE_PREFIX_PATH=xxx to add anon-standard location for CMake to search for libraries, headers
or programs (page 17)

¢ —DCMAKE_INSTALL_PREFIX=xxx to install GROMACS to a non-standard location (page 15) (default
/usr/local/gromacs)

e —DBUILD_SHARED_LIBS=0off to turn off the building of shared libraries to help with szatic linking
(page 4)

e -DGMX_FFT_LIBRARY=xxx to select whether to use fftw3, mk1 or fftpack libraries for FFT sup-
port (page 11)

e -DCMAKE_BUILD_TYPE=Debug to build GROMACS in debug mode

2.2.4 Building older versions

Installation instructions for old GROMACS versions can be found at the GROMACS documentation page.

2.3 Prerequisites

2.3.1 Platform

GROMACS can be compiled for many operating systems and architectures. These include any distribution of
Linux, macOS or Windows, and architectures including 64-bit x86 (AMD64/x86-64), several PowerPC including
POWERY9, ARM v8, and RISC-V.

2.3. Prerequisites 6

https://www.khronos.org/opencl/
https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.khronos.org/sycl/
https://github.com/AdaptiveCpp/AdaptiveCpp
http://manual.gromacs.org/documentation

GROMACS Documentation, Release 2025.0

2.3.2 Compiler

GROMACS can be compiled on any platform with ANSI C99 and C++17 compilers, and their respective standard
C/C++ libraries. Good performance on an OS and architecture requires choosing a good compiler. We recommend
gcc, because it is free, widely available and frequently provides the best performance.

You should strive to use the most recent version of your compiler. Since we require full C++17 support the
minimum compiler versions supported by the GROMACS team are

* GNU (gec/libstdc++) 11
e LLVM (clang/libc++) 14
¢ Microsoft (MSVC) 2019

Other compilers may work (Cray, Pathscale, older clang) but do not offer competitive performance. We recom-
mend against PGI because the performance with C++ is very bad.

The Intel classic compiler (icc/icpe) is no longer supported in GROMACS. Use Intel’s newer clang-based compiler
from oneAPI, or gcc.

The xlc compiler is not supported and version 16.1 does not compile on POWER architectures for GROMACS-
2025.0. We recommend to use the GCC compiler, version 9.x to 11.x. Note: there are known issues (page 30)
with GCC 12 and newer.

You may also need the most recent version of other compiler toolchain components beside the compiler itself (e.g.
assembler or linker); these are often shipped by your OS distribution’s binutils package.

C++17 support requires adequate support in both the compiler and the C++ library. The gcc and MSVC compilers
include their own standard libraries and require no further configuration. If your vendor’s compiler also manages
the standard library library via compiler flags, these will be honored. For configuration of other compilers, read
on.

On Linux, the clang compilers typically use for their C++ library the libstdc++ which comes with g++. For
GROMACS, we require the compiler to support libstc++ version 11 or higher. To select a particular libstdc++
library for a compiler whose default standard library does not work, provide the path to g++ with ~-DGMX_—
GPLUSPLUS_PATH=/path/to/g++. Note that if you then build a further project that depends on GROMACS
you will need to arrange to use the same compiler and libstdc++.

To build with clang and llvm’s libcxx standard library, use ~-DCMAKE_CXX_FLAGS=-stdlib=libc++.

If you are running on Mac OS X, Apple has unfortunately explicitly disabled OpenMP support in their Clang-based
compiler, and running without OpenMP support means you would need to use thread-MPI for any parallelism -
which is the reason the GROMACS configuration script now stops rather than just issues a warning you might
miss. Instead of turning off OpenMP, you can try to download the unsupported libomp distributed by the R project
or compile your own version - but this will likely have to be updated any time you upgrade the major Mac OS
version. Alternatively, you can download a version of gcc; just make sure you actually use your downloaded gcc
version, since Apple by default links /ust/bin/gcc to their own compiler.

For all non-x86 platforms, your best option is typically to use gcc or the vendor’s default or recommended com-
piler, and check for specialized information below.

For updated versions of gcc to add to your Linux OS, see
e Ubuntu: Ubuntu toolchain ppa page
* RHEL/CentOS: EPEL page or the RedHat Developer Toolset

2.3. Prerequisites 7

https://mac.r-project.org/openmp/
https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/test
https://fedoraproject.org/wiki/EPEL

GROMACS Documentation, Release 2025.0

2.3.3 Compiling with parallelization options

For maximum performance you will need to examine how you will use GROMACS and what hardware you plan
to run on. Often OpenMP parallelism is an advantage for GROMACS, but support for this is generally built into
your compiler and detected automatically.

GPU support
GROMACS supports a variety of GPU acceleration options. For end-users, here are the recommended options
based on your hardware:

e AMD GPUs: SYCL (with AdaptiveCpp)

* Apple M-series: OpenCL

¢ Intel GPUs: SYCL (with Intel oneAPI DPC++)

* NVIDIA GPUs: CUDA

CUDA

CUDA is the recommended backend for NVIDIA GPUs.
Supported hardware:
* NVIDIA GPUs (all supported by the CUDA toolkit)
Requirements:
» CUDA toolkit version 12.1 or newer
* GPU with compute capability 5.0 or higher
Best practices:
* Use the latest CUDA version and NVIDIA driver compatible with your hardware
* Match your gce version with nvece’s host compiler (prefer the latest gcc/clang version supported by nvce)

More information can be found in the CUDA GPU acceleration (page 17) section.

OpenCL

OpenCL is deprecated, but is currently the only backend supporting Apple M-series GPUs.

Supported hardware:
¢ AMD GCN-based GPUs (RDNA-series GPUs, such as RX 5500 or RX 6900, are not supported)
* Apple M-series GPUs
* Intel GPUs (special compilation options required; Intel DataCenter GPU Max are not supported)

NVIDIA GPUs (only prior to Volta architecture; newer GPUs, such as V100 or GTX 10xx-series, are not
supported)

Requirements:
* The minimum OpenCL version unknown.

More information can be found in the OpenCL GPU acceleration (page 18) section.

2.3. Prerequisites 8

http://en.wikipedia.org/wiki/OpenMP

GROMACS Documentation, Release 2025.0

SYCL

SYCL is the recommended backend for Intel and AMD GPUs. For Intel GPUs, we recommend using the In-
tel oneAPI DPC++ compiler, while for AMD GPUs we recommend using AdaptiveCpp compiler with ROCm
runtime.

Supported hardware:

* AMD GPUs: GFX9 (Vega, Raven), CDNA-series, RDNA-series GPUs (using either oneAPI or Adap-
tiveCpp)

* Intel GPUs: All current integrated/discrete GPUs (using oneAPI)
* NVIDIA GPUs: All GPUs (using either one API or AdaptiveCpp)
Requirements:
* oneAPI DPC++ compiler: 2024.0 or newer (Codeplay plugin required for NVIDIA/AMD Support), or
* AdaptiveCpp: 23.10 or newer.
Limitations:
¢ Intel GPUs and SSCP/generic compilation flow not supported with AdaptiveCpp.
* ROCm or CUDA toolkits are required for AMD and NVIDIA GPUs respectively.

More information can be found in the SYCL GPU acceleration Intel (page 19) and SYCL GPU acceleration AMD
(page 19) sections.

HIP

Supported hardware:

* AMD GPUs: GFX9, CDNA 1/2, RDNA 1/2/3 GPUs
Requirements:

* ROCm runtime 5.2 or newer
Limitations:

* Available from GROMACS 2025

* GROMACS 2025 supports only main non-bonded kernels

Experimental branch: * Experimental feature branch supporting all compute kernels: HIP feature branch * Sup-
ported by AMD and aimed to get merged in the next major release * Updated together with 2025 releases to be
based on latest fixes * For support, contact acmnpv here

More information can be found in the AMD-HIP (page 21) section.

Important Notes

* Only one GPU backend can be configured per build
* CPU code always runs alongside GPU acceleration

¢ Choose latest drivers while watching for performance regressions on older hardware

2.3. Prerequisites 9

https://gitlab.com/gromacs/gromacs/-/tree/4947-hip-feature-enablement
mailto:paul.bauer.q@gmail.com

GROMACS Documentation, Release 2025.0

MPI support

GROMACS can run in parallel on multiple cores of a single workstation using its built-in thread-MPI. No user
action is required in order to enable this.

If you wish to run in parallel on multiple machines across a network, you will need to have an MPI library
installed that supports the MPI 2.0 standard. That’s true for any MPI library version released since about 2009,
but the GROMACS team recommends the latest version (for best performance) of either your vendor’s library,
OpenMPI or MPICH.

To compile with MPI set your compiler to the normal (non-MPI) compiler and add ~-DGMX_MP I=on to the cmake
options. It is possible to set the compiler to the MPI compiler wrapper but it is neither necessary nor recommended.

GPU-aware MPI support

In simulations using multiple GPUs, an MPI implementation with GPU support allows communication to be per-
formed directly between the distinct GPU memory spaces without staging through CPU memory, often resulting
in higher bandwidth and lower latency communication. The only current support for this in GROMACS is with
a CUDA build targeting Nvidia GPUs using “CUDA-aware” MPI libraries. For more details, see Introduction to
CUDA-aware MPI.

To use CUDA-aware MPI for direct GPU communication we recommend using the latest OpenMPI version
(>=4.1.0) with the latest UCX version (>=1.10), since most GROMACS internal testing on CUDA-aware sup-
port has been performed using these versions. OpenMPI with CUDA-aware support can be built following the
procedure in these OpenMPI build instructions.

For GPU-aware MPI support of Intel GPUs, use Intel MPI no earlier than version 2018.8. Such a version is
found in the oneAPI SDKs starting from version 2023.0. At runtime, the LevelZero SYCL backend must be used
(setting environment variable ONEAPI_DEVICE_SELECTOR=level_zero:gpu will typically suffice) and
GPU-aware support in the MPI runtime selected.

For GPU-aware MPI support on AMD GPUs, several MPI implementations with UCX support can work, we
recommend the latest OpenMPI version (>=4.1.4) with the latest UCX (>=1.13) since most of our testing was
done using these version. Other MPI flavors such as Cray MPICH are also GPU-aware and compatible with
ROCm.

With GMX_MPI=0N, GROMACS attempts to automatically detect GPU support in the underlying MPI library
at compile time, and enables direct GPU communication when this is detected. However, there are some cases
when GROMACS may fail to detect existing GPU-aware MPI support, in which case it can be manually enabled
by setting environment variable GMX_FORCE_GPU_AWARE_MPI=1 at runtime (although such cases still lack
substantial testing, so we urge the user to carefully check correctness of results against those using default build
options, and report any issues).

NVSHMEM Support for GPU kernel-initiated communication

In simulations using multiple GPUs, NVSHMEM provides a programming interface that allows GPU-initiated di-
rect communication between distinct GPU memory spaces. This approach leverages NVSHMEM’s global address
space, often resulting in higher bandwidth and lower latency communication.

Support for this feature in GROMACS is currently enabled by building with NVSHMEM
support (GMX_NVSHMEM=ON) and specifying the NVSHMEM root directory (NVSHMEM -
ROOT=<Path-to-NVSHMEM-Lib-Root-dir>). This setup targets NVIDIA GPUs and utilizes the
NVSHMEM library for efficient inter-GPU data transfers. It should be noted that the NVSHMEM build is not
compatible with cuFFTMp, an issue that may be resolved in a future release.

This is an experimental feature. The current implementation performs well for small system sizes (up to 300,000
particles). Performance improvements are planned for future releases, where we expect the NVSHMEM-based
implementation to be faster across all input sizes compared to MPI.

2.3. Prerequisites 10

http://www.open-mpi.org
http://www.mpich.org
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://www.open-mpi.org/faq/?category=buildcuda
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/gpu-support.html
https://developer.nvidia.com/nvshmem

GROMACS Documentation, Release 2025.0

2.3.4 CMake

GROMACS builds with the CMake build system, requiring at least version 3.28. You can check whether CMake
is installed, and what version it is, with cmake —--version. If you need to install CMake, then first check
whether your platform’s package management system provides a suitable version, or visit the CMake installation
page for pre-compiled binaries, source code and installation instructions. The GROMACS team recommends you
install the most recent version of CMake you can.

2.3.5 Fast Fourier Transform library

Many simulations in GROMACS make extensive use of fast Fourier transforms, and a software library to perform
these is always required. We recommend FFTW (version 3 or higher only) or Intel MKL. The choice of library can
be set with cmake —-DGMX_FFT_LIBRARY=<name>, where <name> is one of £ftw3, mkl, or fftpack.
FFTPACK is bundled with GROMACS as a fallback, and is acceptable if simulation performance is not a priority.
When choosing MKL, GROMACS will also use MKL for BLAS and LAPACK (see linear algebra libraries
(page 22)). Generally, there is no advantage in using MKL with GROMACS, and FFTW is often faster. With
PME GPU offload support using CUDA, a GPU-based FFT library is required. The CUDA-based GPU FFT
library cuFFT is part of the CUDA toolkit (required for all CUDA builds) and therefore no additional software
component is needed when building with CUDA GPU acceleration.

Using FFTW

FFTW is likely to be available for your platform via its package management system, but there can be compatibility
and significant performance issues associated with these packages. In particular, GROMACS simulations are
normally run in “mixed” floating-point precision, which is suited for the use of single precision in FFTW. The
default FFTW package is normally in double precision, and good compiler options to use for FFTW when linked
to GROMACS may not have been used. Accordingly, the GROMACS team recommends either

* that you permit the GROMACS installation to download and build FFTW from source automatically for
you (use cmake -DGMX_BUILD_OWN_FFTW=ON), or

* that you build FFTW from the source code.

If you build FFTW from source yourself, get the most recent version and follow the FFTW installation guide.
Choose the precision for FFTW (i.e. single/float vs. double) to match whether you will later use mixed or double
precision for GROMACS. There is no need to compile FFTW with threading or MPI support, but it does no harm.
On x86 hardware, compile with all of ——enable-sse2, ——enable-avx, and ——enable—-avx?2 flags. On
Intel processors supporting 512-wide AVX, including KNL, add ——enable-avx512 too. FFTW will create a
fat library with codelets for all different instruction sets, and pick the fastest supported one at runtime. On ARM
architectures with SIMD support use ——enable-neon flag; on IBM Power8 and later, use ——enable-vsx
flag. If you are using a Cray, there is a special modified (commercial) version of FFTs using the FFTW interface
which can be slightly faster.

Relying on ~-DGMX_BUILD_OWN_FFTW=0N works well in typical situations, but does not work on Windows,
when using ninja build system, when cross-compiling, with custom toolchain configurations, etc. In such cases,
please build FFTW manually.

Using MKL

To target either Intel CPUs or GPUs, use OneAPI MKL (>=2021.3) by setting up the environment,
e.g., through source /opt/intel/oneapi/setvars.sh or source /opt/intel/oneapi/mkl/
latest/env/vars. sh or manually setting environment variable MKLROOT=/full/path/to/mkl. Then
run CMake with setting -DGMX_FFT_LIBRARY=mk1 and/or -DGMX_GPU_FFT_LIBRARY=mk]1.

2.3. Prerequisites 11

http://www.cmake.org/install/
http://www.cmake.org/install/
http://www.fftw.org
https://software.intel.com/en-us/intel-mkl
http://www.fftw.org
http://www.fftw.org/doc/Installation-and-Customization.html#Installation-and-Customization

GROMACS Documentation, Release 2025.0

Using oneMath Interface Library

The oneMath interface library (earlier called oneMKL interface library, not to be confused with Intel oneMKL)
enables the SYCL backend for GROMACS with cuFFT, rocFFT, or closed-source oneMath using Intel DPC++ and
Codeplay’s plugins for NVIDIA and AMD GPUs. To use, Intel DPC++ must be installed along with Codeplay’s
plugins for NVIDIA and AMD GPU s as required, and CUDA and/or ROCm as required. The environment should
be initialized as with the MKL instructions above.

To use the oneMath interface library, download, build and install oneMath as directed in the oneMath documenta-
tion, making sure that suitable DFT backends are enabled. Then, when building GROMACS, set -DGMX_GPU_ -
FFT_LIBRARY=ONEMATH

Using double-batched FFT library

Generally MKL will provide better performance on Intel GPUs, however this alternative open-source library from
Intel is useful for very large FFT sizes in GROMACS.

cmake -DGMX_GPU_FFT_LIBRARY=BBFFT \
—-DCMAKE_PREFIX PATH=SPATH TO_BBFFT_INSTALL

Note: in GROMACS 2023, the option was called DBFFT.

Using ARM Performance Libraries

The ARM Performance Libraries provides FFT transforms implementation for ARM architectures. Preliminary
support is provided for ARMPL in GROMACS through its FFTW-compatible API. Assuming that the ARM HPC
toolchain environment including the ARMPL paths are set up (e.g. through loading the appropriate modules like
module load Module-Prefix/arm-hpc-compiler—X.Y/armpl/X.Y)use the following cmake op-
tions:

cmake -DGMX_FFT_LIBRARY=fftw3 \
—-DFFTWF_LIBRARY="S{ARMPI_DIR}/lib/libarmpl_lp64.so" \
—-DFFTWF_INCLUDE_DIR=S{ARMPL_DIR}/include

Using cuFFTMp

Decomposition of PME work to multiple GPUs is supported with NVIDIA GPUs when using a CUDA build.
This requires building GROMACS with the NVIDIA cuFFTMp (cuFFT Multi-process) library, shipped with
the NVIDIA HPC SDK, which provides distributed FFTs including across multiple compute nodes. To enable
cuFFTMp support use the following cmake options:

cmake -DGMX_USE_CUFFTMP=0ON \
-DcuFFTMp_ROOT=<path to NVIDIA HPC SDK math_libs folder>

Please make sure cuFFTMp’s hardware and software requirements are met before trying to use GPU PME de-
composition feature. In particular, cuFFTMp internally uses NVSHMEM, and it is vital that the NVSHMEM
and cuFFTMp versions in use are compatible. Some versions of the NVIDIA HPC SDK include two versions
of NVSHMEM, where the cuFFTMp compatible variant can be found at Linux_x86_64/<SDK_version>/
comm_libs/<CUDA_version>/nvshmem_cufftmp_compat. If that directory does not exist in the SDK,
then there only exists a single (compatible) version at Linux_x86_64/<SDK_version>/comm_libs/
<CUDA_version>/nvshmem. The version can be selected by, prior to both compilation and running, updating
the LD_LIBRARY_PATH environment variable as follows:

export LD_LIBRARY_PATH=<path to compatible NVSHMEM folder>/lib:$LD_LIBRARY_
~PATH

It is advisable to refer to the NVSHMEM FAQ page for any issues faced at runtime.

2.3. Prerequisites 12

https://uxlfoundation.github.io/oneMath/building_the_project_with_dpcpp.html
https://uxlfoundation.github.io/oneMath/building_the_project_with_dpcpp.html
https://github.com/uxlfoundation/oneMath#supported-configurations
https://github.com/intel/double-batched-fft-library
https://github.com/intel/double-batched-fft-library
https://docs.nvidia.com/hpc-sdk/cufftmp
https://docs.nvidia.com/hpc-sdk/cufftmp/usage/requirements.html
https://developer.nvidia.com/nvshmem
https://docs.nvidia.com/hpc-sdk/nvshmem/api/faq.html#general-faqs

GROMACS Documentation, Release 2025.0

Using heFFTe

Decomposition of PME work to multiple GPUs is supported with PME offloaded to any vendor’s GPU when
building GROMACS linked to the heFFTe library. HeFFTe uses GPU-aware MPI to provide distributed FFTs
including across multiple compute nodes. It requires a CUDA build to target NVIDIA GPUs and a SYCL build to
target Intel or AMD GPUs. To enable heFFTe support, use the following cmake options:

cmake -DGMX_USE_HEFFTE=ON \
-DHeffte_ROOT=<path to heFFTe folder>

You will need an installation of heFFTe configured to use the same GPU-aware MPI library that will be used by
GROMACS, and with support that matches the intended GROMACS build. It is best to use the same C++ compiler
and standard library also. When targeting Intel GPUs, add ~-DHeffte_ENABLE_ONEAPI=ON -DHeffte_-
ONEMKL_ROOT=<path to oneMKL folder>. When targeting AMD GPUs, add ~-DHeffte_ENABLE_-
ROCM=ON -DHeffte_ROCM_ROOT=<path to ROCm folder>.

Using VKFFT

VKFFT is a multi-backend GPU-accelerated multidimensional Fast Fourier Transform library which aims to pro-
vide an open-source alternative to vendor libraries.

GROMACS includes VKFFT support with two goals: portability across GPU platforms and performance improve-
ments. VKFFT can be used with OpenCL and SYCL backends:

» For SYCL builds, VKFFT provides a portable backend which currently can be used on AMD and NVIDIA
GPUs with AdaptiveCpp and Intel oneAPI DPC++; it generally outperforms rocFFT hence it is recom-
mended as default on AMD. Note that VKFFT is not supported with PME decomposition (which requires
HeFFTe) since HeFFTe does not have a VKFFT backend.

* For OpenCL builds, VKFFT provides an alternative to CIFFT. It is the default on macOS and when building
with Visual Studio. On other platforms it is not extensively tested, but it likely outperforms CIFFT and can
be enabled during cmake configuration.

e For AMD-HIP (page 21), VKFFT is the default FFT backend, as it supports both consumer and data center
hardware.

To enable VKFFT support, use the following CMake option:

[cmake —-DGMX_GPU_FFT_LIBRARY=VKFFT }

GROMACS bundles VKFFT with its source code, but an external VKFFT can also be used (e.g. to benefit from
improvements in VKFFT releases more recent than the bundled version) in the following manner:

cmake -DGMX_GPU_FFT_LIBRARY=VKFFT \
—DGMX_EXTERNAL_VKFFT=ON -DVKFFT_INCLUDE_DIR=<path to VkKFFT directory>

2.3.6 Other optional build components

* Run-time detection of hardware capabilities can be improved by linking with hwloc. By default this is
turned off since it might not be supported everywhere, but if you have hwloc installed it should work by just
setting ~-DGMX_HWLOC=0ON

* Hardware-optimized BLAS and LAPACK libraries are useful for a few of the GROMACS utilities focused
on normal modes and matrix manipulation, but they do not provide any benefits for normal simulations.
Configuring these is discussed at linear algebra libraries (page 22).

* An external TNG library for trajectory-file handling can be used by setting ~-DGMX_EXTERNAL_ -
TNG=yes, but TNG 1.7.10 is bundled in the GROMACS source already.

2.3. Prerequisites 13

https://icl.utk.edu/fft/
https://github.com/DTolm/VkFFT
https://github.com/AdaptiveCpp/AdaptiveCpp
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html

GROMACS Documentation, Release 2025.0

* The Imfit library for Levenberg-Marquardt curve fitting is used in GROMACS. Only Imfit 7.0 is supported.
A reduced version of that library is bundled in the GROMACS distribution, and the default build uses
it. That default may be explicitly enabled with ~-DGMX_USE_LMFIT=internal. To use an external
Imfit library, set -DGMX_USE_LMFIT=external, and adjust CMAKE_PREFIX_PATH as needed. Imfit
support can be disabled with -DGMX_USE_LMFIT=none.

* zlib is used by TNG for compressing some kinds of trajectory data.

* Building the GROMACS documentation is optional, and requires and other software. Refer to https:
//manual.gromacs.org/current/dev-manual/documentation-generation.html or the docs/dev-manual/
documentation—-generation.rst file in the sources.

* The GROMACS utility programs often write data files in formats suitable for the Grace plotting tool, but it
is straightforward to use these files in other plotting programs, too.

* Set -DGMX_PYTHON_PACKAGE=0ON when configuring GROMACS with CMake to enable additional
CMake targets for the gmxapi Python package and sample_restraint package from the main GROMACS
CMake build. This supports additional testing and documentation generation.

2.4 Doing a build of GROMACS

This section will cover a general build of GROMACS with CMake (page 11), but it is not an exhaustive discussion
of how to use CMake. There are many resources available on the web, which we suggest you search for when
you encounter problems not covered here. The material below applies specifically to builds on Unix-like systems,
including Linux, and Mac OS X. For other platforms, see the specialist instructions below.

2.4.1 Configuring with CMake

CMake will run many tests on your system and do its best to work out how to build GROMACS for you. If your
build machine is the same as your target machine, then you can be sure that the defaults and detection will be
pretty good. However, if you want to control aspects of the build, or you are compiling on a cluster head node for
back-end nodes with a different architecture, there are a few things you should consider specifying.

The best way to use CMake to configure GROMACS is to do an “out-of-source” build, by making another directory
from which you will run CMake. This can be outside the source directory, or a subdirectory of it. It also means
you can never corrupt your source code by trying to build it! So, the only required argument on the CMake
command line is the name of the directory containing the CMakeLists.txt file of the code you want to build.
For example, download the source tarball and use

tar xzf gromacs-2025.0.tgz
cd gromacs-2025.0

mkdir build-gromacs

cd build-gromacs

cmake

You will see cmake report a sequence of results of tests and detections done by the GROMACS build system.
These are written to the cmake cache, kept in CMakeCache. txt. You can edit this file by hand, but this is not
recommended because you could make a mistake. You should not attempt to move or copy this file to do another
build, because file paths are hard-coded within it. If you mess things up, just delete this file and start again with
cmake.

If there is a serious problem detected at this stage, then you will see a fatal error and some suggestions for how
to overcome it. If you are not sure how to deal with that, please start by searching on the web (most computer
problems already have known solutions!) and then consult the user discussion forum. There are also informational
warnings that you might like to take on board or not. Piping the output of cmake through less or tee can be
useful, too.

Once cmake returns, you can see all the settings that were chosen and information about them by using e.g. the
curses interface

2.4. Doing a build of GROMACS 14

https://manual.gromacs.org/current/dev-manual/documentation-generation.html
https://manual.gromacs.org/current/dev-manual/documentation-generation.html
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5

GROMACS Documentation, Release 2025.0

[ccmake .. }

You can actually use ccmake (available on most Unix platforms) directly in the first step, but then most of the
status messages will merely blink in the lower part of the terminal rather than be written to standard output. Most
platforms including Linux, Windows, and Mac OS X even have native graphical user interfaces for cmake, and it
can create project files for almost any build environment you want (including Visual Studio or Xcode). Check out
running CMake for general advice on what you are seeing and how to navigate and change things. The settings
you might normally want to change are already presented. You may make changes, then re-configure (using c),
so that it gets a chance to make changes that depend on yours and perform more checking. It may take several
configuration passes to reach the desired configuration, in particular if you need to resolve errors.

When you have reached the desired configuration with ccmake, the build system can be generated by pressing
g. This requires that the previous configuration pass did not reveal any additional settings (if it did, you need to
configure once more with c). With cmake, the build system is generated after each pass that does not produce
errors.

You cannot attempt to change compilers after the initial run of cmake. If you need to change, clean up, and start
again.

Where to install GROMACS

GROMACS is installed in the directory to which CMAKE_INSTALL_PREFIX points. It may not be the source
directory or the build directory. You require write permissions to this directory. Thus, without super-user privi-
leges, CMAKE_INSTALL_PREFIX will have to be within your home directory. Even if you do have super-user
privileges, you should use them only for the installation phase, and never for configuring, building, or running
GROMACS!

Using CMake command-line options

Once you become comfortable with setting and changing options, you may know in advance how you will con-
figure GROMACS. If so, you can speed things up by invoking cmake and passing the various options at once on
the command line. This can be done by setting cache variable at the cmake invocation using -DOPTION=VALUE.
Note that some environment variables are also taken into account, in particular variables like CC and CXX.

For example, the following command line

cmake .. —-DGMX_GPU=CUDA -DGMX_MPI=ON \
—-DCMAKE_INSTALL_PREFIX=/home/marydoe/programs

can be used to build with CUDA GPUs, MPI and install in a custom location. You can even save that in a shell
script to make it even easier next time. You can also do this kind of thing with ccmake, but you should avoid
this, because the options set with —D will not be able to be changed interactively in that run of ccmake.

SIMD support

GROMACS has extensive support for detecting and using the SIMD capabilities of many modern HPC CPU
architectures. If you are building GROMACS on the same hardware you will run it on, then you don’t need to read
more about this, unless you are getting configuration warnings you do not understand. By default, the GROMACS
build system will detect the SIMD instruction set supported by the CPU architecture (on which the configuring is
done), and thus pick the best available SIMD parallelization supported by GROMACS. The build system will also
check that the compiler and linker used also support the selected SIMD instruction set and issue a fatal error if
they do not.

Valid values are listed below, and the applicable value with the largest number in the list is generally the one
you should choose. In most cases, choosing an inappropriate higher number will lead to compiling a binary that
will not run. However, on a number of processor architectures choosing the highest supported value can lead to
performance loss, e.g. on Intel Skylake-X/SP and AMD Zen (first generation).

2.4. Doing a build of GROMACS 15

http://www.cmake.org/runningcmake/

GROMACS Documentation, Release 2025.0

1. None For use only on an architecture either lacking SIMD, or to which GROMACS has not yet been ported
and none of the options below are applicable.

2. SSE2 This SIMD instruction set was introduced in Intel processors in 2001, and AMD in 2003. Essentially
all x86 machines in existence have this, so it might be a good choice if you need to support dinosaur x86
computers too.

3. SSE4.1 Presentin all Intel core processors since 2007, but notably not in AMD Magny-Cours. Still, almost
all recent processors support this, so this can also be considered a good baseline if you are content with slow
simulations and prefer portability between reasonably modern processors.

4. AVX_128_FMA AMD Bulldozer, Piledriver (and later Family 15h) processors have this but it is NOT
supported on any AMD processors since Zenl.

5. AVX_256 Intel processors since Sandy Bridge (2011). While this code will work on the AMD Bulldozer
and Piledriver processors, it is significantly less efficient than the AVX_128_FMA choice above - do not be
fooled to assume that 256 is better than 128 in this case.

6. AVX2_128 AMD Zen/Zen2 and Hygon Dhyana microarchitecture processors; it will enable AVX?2 with 3-
way fused multiply-add instructions. While these microarchitectures do support 256-bit AVX2 instructions,
hence AVX2_256 is also supported, 128-bit will generally be faster, in particular when the non-bonded
tasks run on the CPU - hence the default Avx2_128. With GPU offload, however, AVX2_256 can be
faster on Zen processors.

7. AVX2_256 Present on Intel Haswell (and later) processors (2013) and AMD Zen3 and later (2020); it will
also enable 3-way fused multiply-add instructions.

8. AVX_512 Skylake-X desktop and Skylake-SP Xeon processors (2017) and AMD Zen4 (2022); on Intel it
will generally be fastest on the higher-end desktop and server processors with two 512-bit fused multiply-
add units (e.g. Core 19 and Xeon Gold). However, certain desktop and server models (e.g. Xeon Bronze
and Silver) come with only one AVX512 FMA unit and therefore on these processors AVX2_256 is faster
(compile- and runtime checks try to inform about such cases). On AMD it is beneficial to use starting with
Zen4. Additionally, with GPU accelerated runs AVX2_256 can also be faster on high-end Skylake CPUs
with both 512-bit FMA units enabled.

9. AVX_512_KNL Knights Landing Xeon Phi processors.
10. I1BM_VSX Power7, Power8, Power9 and later have this.

11. ARM_NEON_ASIMD 64-bit ARMvS and later. For maximum performance on NVIDIA Grace (ARMV9),
we strongly suggest at least GNU >= 13, LLVM >= 16.

12. ARM_SVE 64-bit ARMvS8 and later with the Scalable Vector Extensions (SVE). The SVE vector length
is fixed at CMake configure time. The default vector length is automatically detected, and this can be
changed via the GMX_SIMD_ARM_SVE_LENGTH CMake variable. If compiling for a different target ar-
chitecture than the compilation machine, GMX_SIMD_ARM_ SVE_LENGTH should be set to the hardware
vector length implemented by the target machine. There is no expected performance benefit from setting
a smaller value than the implemented vector length, and setting a larger length can lead to unexpected
crashes. Minimum required compiler versions are GNU >= 10, LLVM >=13, or ARM >= 21.1. For maxi-
mum performance we strongly suggest the latest gcc compilers, or at least LLVM 14 or ARM 22.0. Lower
performance has been observed with LLVM 13 and Arm compiler 21.1.

The CMake configure system will check that the compiler you have chosen can target the architecture you have
chosen. mdrun will check further at runtime, so if in doubt, choose the lowest number you think might work, and
see what mdrun says. The configure system also works around many known issues in many versions of common
HPC compilers.

A further GMX_SIMD=Reference option exists, which is a special SIMD-like implementation written in plain
C that developers can use when developing support in GROMACS for new SIMD architectures. It is not designed
for use in production simulations, but if you are using an architecture with SIMD support to which GROMACS
has not yet been ported, you may wish to try this option instead of the default GMX_SIMD=None, as it can often
out-perform this when the auto-vectorization in your compiler does a good job. And post on the GROMACS user
discussion forum, because GROMACS can probably be ported to new SIMD architectures in a few days.

2.4. Doing a build of GROMACS 16

https://gromacs.bioexcel.eu/c/gromacs-user-forum/5
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5

GROMACS Documentation, Release 2025.0

CMake advanced options

The options that are displayed in the default view of ccmake are ones that we think a reasonable number of
users might want to consider changing. There are a lot more options available, which you can see by toggling the
advanced mode in ccmake on and off with t. Even there, most of the variables that you might want to change
have a CMAKE_ or GMX__ prefix. There are also some options that will be visible or not according to whether their
preconditions are satisfied.

Helping CMake find the right libraries, headers, or programs

If libraries are installed in non-default locations, their location can be specified using the following variables:
* CMAKE_INCLUDE_PATH for header files
e CMAKE_LIBRARY_PATH for libraries
e CMAKE_PREFIX_PATH for header, libraries and binaries (e.g. /usr/local).

The respective include, 1ib, or bin is appended to the path. For each of these variables, a list of paths can be
specified (on Unix, separated with “:”’). These can be set as environment variables like:

[CM:\KEiPREFIXiPATH=/opt/fftw:/opt/cuda cmake .. }

(assuming bash shell). Alternatively, these variables are also cmake options, so they can be set like -DCMAKE_ —
PREFIX_PATH=/opt/fftw:/opt/cuda.

The CC and CXX environment variables are also useful for indicating to cmake which compilers to use. Similarly,
CFLAGS/CXXFLAGS can be used to pass compiler options, but note that these will be appended to those set
by GROMACS for your build platform and build type. You can customize some of this with advanced CMake
options, such as CMAKE_C_FLAGS and its relatives.

See also the page on CMake environment variables.

CUDA GPU acceleration

If you have the CUDA Toolkit installed, you can use cmake with:

[cmake .. —DGMX_GPU=CUDA -DCUDA_TOOLKIT ROOT _DIR=/usr/local/cuda }

(or whichever path has your installation). In some cases, you might need to specify manually which of your C++
compilers should be used, e.g. with the advanced option CUDA_HOST_COMPILER.

By default, code will be generated for the most common CUDA architectures. However, to reduce build time
and binary size we do not generate code for every single possible architecture, which in rare cases (say, Tegra
systems) can result in the default build not being able to use some GPUs. If this happens, or if you want to remove
some architectures to reduce binary size and build time, you can alter the target CUDA architectures. This can
be done either with the GMX_CUDA_TARGET_SM or GMX_CUDA_TARGET_COMPUTE CMake variables, which
take a semicolon delimited string with the two digit suffixes of CUDA (virtual) architectures names, for instance
“60;75;86”. For details, see the “Options for steering GPU code generation” section of the nvcc documentation.

The GPU acceleration has been tested on AMD64/x86-64 platforms with Linux, Mac OS X and Windows oper-
ating systems, but Linux is the best-tested and supported of these. Linux running on POWER 8/9 and ARM v§
CPUs also works well.

Experimental support is available for compiling CUDA code, both for host and device, using clang (version 6.0
or later). A CUDA toolkit is still required but it is used only for GPU device code generation and to link against
the CUDA runtime library. The clang CUDA support simplifies compilation and provides benefits for develop-
ment (e.g. allows the use code sanitizers in CUDA host-code). Additionally, using clang for both CPU and GPU
compilation can be beneficial to avoid compatibility issues between the GNU toolchain and the CUDA toolkit.
clang for CUDA can be triggered using the GMX_CLANG_CUDA=0ON CMake option. Target architectures can be

2.4. Doing a build of GROMACS 17

https://gitlab.kitware.com/cmake/community/-/wikis/doc/cmake/Useful-Variables
https://developer.nvidia.com/cuda-zone
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#options-for-steering-cuda-compilation

GROMACS Documentation, Release 2025.0

selected with GMX_CUDA_TARGET_SM, virtual architecture code is always embedded for all requested archi-
tectures (hence GMX_CUDA_TARGET_COMPUTE is ignored). Note that this is mainly a developer-oriented
feature but its performance is generally close to that of code compiled with nvcc.

OpenCL GPU acceleration

The primary targets of the GROMACS OpenCL support is accelerating simulations on AMD and Intel hardware.
For AMD, we target both discrete GPUs and APUs (integrated CPU+GPU chips), and for Intel we target the
integrated GPUs found on modern workstation and mobile hardware. The GROMACS OpenCL on NVIDIA
GPUs works, but performance and other limitations make it less practical (for details see the user guide).

To build GROMACS with OpenCL support enabled, two components are required: the OpenCL headers and the
wrapper library that acts as a client driver loader (so-called ICD loader). The additional, runtime-only dependency
is the vendor-specific GPU driver for the device targeted. This also contains the OpenCL compiler. As the GPU
compute kernels are compiled on-demand at run time, this vendor-specific compiler and driver is not needed for
building GROMACS. The former, compile-time dependencies are standard components, hence stock versions can
be obtained from most Linux distribution repositories (e.g. opencl-headers and ocl-icd-libopencll
on Debian/Ubuntu). Only the compatibility with the required OpenCL version unknown needs to be ensured.
Alternatively, the headers and library can also be obtained from vendor SDKs, which must be installed in a path
found in CMAKE_PREFIX_PATH

To trigger an OpenCL build the following CMake flags must be set

[cmake .. —DGMX_GPU=0OpenCL }

To build with support for Intel integrated GPUs, it is required to add ~-DGMX_GPU_NB_CLUSTER_SIZE=4 to
the cmake command line, so that the GPU kernels match the characteristics of the hardware. The Neo driver is
recommended.

On Mac OS, an AMD GPU can be used only with OS version 10.10.4 and higher; earlier OS versions are known
to run incorrectly.

By default, on Linux, any clFFT library on the system will be used with GROMACS, but if none is found then the
code will fall back on a version bundled with GROMACS. To require GROMACS to link with an external library,
use

cmake .. —-DGMX_GPU=0OpenCL -DclFFT_ROOT_DIR=/path/to/your/clFFT \
—DGMX_EXTERNAL_CLFFT=TRUE

On Windows with MSVC and on macOS, VKFFT is used instead of clFFT, but this can provide performance
benefits on other platforms as well.

SYCL GPU acceleration
SYCL is a modern portable heterogeneous acceleration API, with multiple implementations targeting different
hardware platforms (similar to OpenCL).
GROMACS can be used with different SYCL compilers/runtimes to target the following hardware:
¢ Intel GPUs using Intel oneAPI DPC++ (both OpenCL and LevelZero backends),
e AMD GPUs with AdaptiveCpp (previously known as hipSYCL),
There is also experimental support for:
* AMD GPUs with oneAPI with Codeplay AMD plugin,
* NVIDIA GPUs with either AdaptiveCpp or oneAPI with Codeplay NVIDIA plugin.

In table form:

2.4. Doing a build of GROMACS 18

https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://github.com/intel/compute-runtime/releases
https://github.com/DTolm/VkFFT
https://www.khronos.org/sycl/
https://www.khronos.org/opencl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://github.com/AdaptiveCpp/AdaptiveCpp
https://developer.codeplay.com/products/oneapi/amd/home/
https://github.com/AdaptiveCpp/AdaptiveCpp
https://developer.codeplay.com/products/oneapi/nvidia/home/

GROMACS Documentation, Release 2025.0

GPU vendor AdaptiveCpp Intel oneAPI DPC++

Intel not supported supported
AMD supported experimental (requires Codeplay plugin)
NVIDIA experimental experimental (requires Codeplay plugin)

Here, “experimental support” means that the combination has received limited testing and is expected to work
(with possible limitations), but is not recommended for production use. Please refer to a separate section in the
installation guide (page 3) to use them.

The SYCL support in GROMACS is intended to replace OpenCL as an acceleration mechanism for AMD and
Intel hardware.

For NVIDIA GPUs, we strongly advise using CUDA. Apple M1/M2 GPUs are not supported with SYCL but can
be used with OpenCL.

Codeplay ComputeCpp is not supported. Open-source Intel LLVM can be used in the same way as Intel oneAPI
DPC++.

Note: SYCL support in GROMACS and the underlying compilers and runtimes are less mature than either
OpenCL or CUDA. Please, pay extra attention to simulation correctness when you are using it.

SYCL GPU acceleration for Intel GPUs

You should install the recent Intel oneAPI DPC++ compiler toolkit. For GROMACS 2025, version 2025.0 is
recommended, and 2024.0 is the earliest supported. Using open-source Intel LLVM is possible, but not extensively
tested. We also recommend installing the most recent Neo driver.

With the toolkit installed and added to the environment (usually by running source /opt/intel/oneapi/
setvars. sh or using an appropriate module load on an HPC system), the following CMake flags must be
set:

cmake .. —-DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx \
—-DGMX_GPU=SYCL —-DGMX_SYCL=DPCPP

When compiling for Intel Data Center GPU Max (also knows as Ponte Vecchio / PVC), we recommend passing
additional flags for compatibility and improved performance:

cmake .. —-DCMAKE_C_COMPILER=icx —DCMAKE_CXX_COMPILER=icpx \
-DGMX_GPU=SYCL -DGMX_SYCL=DPCPP \
—-DGMX_GPU_NB_NUM_CLUSTER_PER_CELL_X=1 -DGMX_GPU_NB_CLUSTER_SIZE=8

You might also consider using double-batched FFT library (page 12).

SYCL GPU acceleration for AMD GPUs

Using AdaptiveCpp 24.02.0 and ROCm 5.7-6.2 is recommended. The earliest supported version is AdaptiveCpp
23.10.

We strongly recommend using the clang compiler bundled with ROCm for building both AdaptiveCpp and GRO-
MACS. Mainline Clang releases can also work.

The following CMake command can be used when configuring AdaptiveCpp to ensure that the proper Clang is
used (assuming ROCM_PATH is set correctly, e.g. to /opt /rocm in the case of default installation):

cmake .. —-DCMAKE_C_COMPILER=S{ROCM_PATH}/1llvm/bin/clang \
-DCMAKE_CXX_COMPILER=S{ROCM_PATH}/llvm/bin/clang++ \
-DLLVM_DIR=S{ROCM PATH}/1llvm/lib/cmake/1llvm/

2.4. Doing a build of GROMACS 19

https://github.com/AdaptiveCpp/AdaptiveCpp
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://developer.codeplay.com/products/oneapi/amd/home/
https://developer.codeplay.com/products/oneapi/nvidia/home/
https://www.khronos.org/sycl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://github.com/intel/llvm
https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://github.com/intel/llvm
https://github.com/intel/compute-runtime/releases
https://github.com/AdaptiveCpp/AdaptiveCpp/releases/tag/v24.02.0

GROMACS Documentation, Release 2025.0

After compiling and installing AdaptiveCpp, the following settings can be used for building GROMACS itself (set
ACPP_TARGETS to the target hardware):

cmake .. —-DCMAKE_C_COMPILER=S/ROCM_PATH//llvm/bin/clang \
—-DCMAKE_CXX_COMPILER=S{ROCM PATH}/1llvm/bin/clang++ \
-DGMX_GPU=SYCL -DGMX_SYCL=ACPP -DACPP_TARGETS='hip:gfxXYZ"'

Multiple target architectures can be specified, e.g., -DACPP_TARGETS="hip:gfx908, gfx90a'. Having
both RDNA (gfx1xyz)and GCN/CDNA (gfx9xx) devices in the same build is possible but will incur a minor
performance penalty compared to building for GCN/CDNA devices only. If you have multiple AMD GPUs of
different generations in the same system (e.g., integrated APU and a discrete GPU) the ROCm runtime requires
code to be available for each device at runtime, so you need to specify every device in ACPP_TARGETS when
compiling to avoid ROCm crashes at initialization.

By default, VKFFT is used to perform FFT on GPU. You can switch to rocFFT by passing ~-DGMX_GPU_FFT_—
LIBRARY=rocFFT CMake flag. Please note that rocFFT is not officially supported and tends not to work on
most consumer GPUs.

AMD GPUs can also be targeted via Intel oneAPI DPC++; please refer to a separate section (page 3) for the build
instructions.

SYCL GPU compilation options

The following flags can be passed to CMake in order to tune GROMACS:

—DGMX_GPU_NB_CLUSTER_SIZE
changes the data layout of non-bonded kernels. When compiling with Intel oneAPI DPC++, the default
value is 4, which is optimal for most Intel GPUs except Data Center MAX (Ponte Vecchio), for which 8
is better. When compiling with AdaptiveCpp, the default value is 8, which is the only supported value for
AMD and NVIDIA devices.

—-DGMX_GPU_NB_NUM CLUSTER PER CELL_X,-DGMX GPU_NB_NUM CLUSTER PER CELL Y,

—DGMX_GPU_NB_NUM_CLUSTER_PER_CELL_Z
Sets the number of clusters along X, Y, or Z in a pair-search grid cell, default 2. When targeting Intel Ponte

Vecchio GPUs, set -DGMX_GPU_NB_NUM_CLUSTER_PER_CELIL_X=1 and leave the other values as the
default.

—-DGMX_GPU_NB_DISABLE_CLUSTER PAIR_SPLIT
Disables cluster pair splitting in the GPU non-bonded kernels. This is only supported in SYCL, and it is
compatible with and improves performance on GPUs with 64-wide execution like AMD GCN and CDNA
family. This option is automatically enabled in all builds that target GCN or CDNA GPUs (but not RDNA).

2.4. Doing a build of GROMACS 20

https://github.com/DTolm/VkFFT
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://github.com/AdaptiveCpp/AdaptiveCpp

GROMACS Documentation, Release 2025.0

AMD HIP GPU acceleration

HIP is the AMD interoperability layer for the ROCm toolkit used to target AMD devices.

In GROMACS 2025 there is only limited support for using HIP as the device backend for AMD devices, with
only NBNxM kernels offload being available.

Build instructions

In order to use HIP as the device backend, you need to have the ROCm toolkit installed, including the rocPrim
libraries. The minimum version required by GROMACS is ROCm 5.2, but we recommend a recent version to take
advantage of library improvements.

You can then configure the build like this

cmake .. —-DCMAKE_HIP_COMPILER=S{ROCM PATH}/bin/amdclang++ \
-DCMAKE_PREFIX_PATH=S5{ROCM_PATH} \
—-DGMX_GPU=HIP

By default GROMACS will generate code for a range of different CDNA devices. In case you want to narrow the
scope of the code generation, or want to target RDNA or GCN devices, you can specify the architectures using
this flag

—-DGMX_HIP_TARGET_ARCH=gfxXYZ,gfxABCD

When detecting a 64-wide execution architecture and no 32-wide versions, GROMACS will automatically config-
ure with

—DGMX_GPU_NB_DISABLE_CLUSTER_PAIR_SPLIT=ON

to improve performance on those devices. In case any 32-wide architectures are present, the maximum execution
width will be restricted to be 32-wide, even on devices that support 64-wide execution.

When GROMACS is built with explicit 64-wide execution (and conflicting support for 32-wide devices), any
32-wide devices detected will be not be used.

Static linking

Please refer to a dedicated section (page 4).

gmxapi C++ API

For dynamic linking builds and on non-Windows platforms, an extra library and headers are installed by setting
—DGMXAPI=0ON (default). Build targets gmxapi-cppdocs and gmxapi-cppdocs—dev produce documen-
tation in docs/api-user and docs/api-dev, respectively. For more project information and use cases,
refer to the tracked Issue 2585, associated GitHub gmxapi projects, or DOI 10.1093/bioinformatics/bty484.

gmxapi is not yet tested on Windows or with static linking, but these use cases are targeted for future versions.

2.4. Doing a build of GROMACS 21

https://rocm.docs.amd.com/en/latest/index.html
https://rocm.docs.amd.com/en/latest/index.html
https://rocm.docs.amd.com/projects/rocPRIM/en/latest/index.html
https://gitlab.com/gromacs/gromacs/-/issues/2585
https://github.com/kassonlab/gmxapi
https://doi.org/10.1093/bioinformatics/bty484

GROMACS Documentation, Release 2025.0

Portability of a GROMACS build

A GROMACS build will normally not be portable, not even across hardware with the same base instruction set, like
x86. Non-portable hardware-specific optimizations are selected at configure-time, such as the SIMD instruction
set used in the compute kernels. This selection will be done by the build system based on the capabilities of the
build host machine or otherwise specified to cmake during configuration.

Often it is possible to ensure portability by choosing the least common denominator of SIMD support, e.g. SSE2
for x86. In rare cases of very old x86 machines, ensure that you use cmake —-DGMX_USE_RDTSCP=off if
any of the target CPU architectures does not support the RDTSCP instruction. However, we discourage attempts
to use a single GROMACS installation when the execution environment is heterogeneous, such as a mix of AVX
and earlier hardware, because this will lead to programs (especially mdrun) that run slowly on the new hardware.
Building two full installations and locally managing how to call the correct one (e.g. using a module system) is
the recommended approach. Alternatively, one can use different suffixes to install several versions of GROMACS
in the same location. To achieve this, one can first build a full installation with the least-common-denominator
SIMD instruction set, e.g. ~-DGMX_ SIMD=SSE2, in order for simple commands like gmx grompp to work on all
machines, then build specialized gmx binaries for each architecture present in the heterogeneous environment. By
using custom binary and library suffixes (with CMake variables -DGMX_BINARY_SUFFIX=xxx and ~-DGMX_ -
LIBS_SUFFIX=xxx), these can be installed to the same location.

Portability of binaries across GPUs is generally better, targeting multiple generations of GPUs from the same
vendor is in most cases possible with a single GROMACS build. CUDA builds will by default be able to run
on any NVIDIA GPU supported by the CUDA toolkit used since the GROMACS build system generates code
for these at build-time. With SYCL multiple target architectures of the same GPU vendor can be selected when
using AdaptiveCpp (i.e. only AMD or only NVIDIA). The SSCP/generic compilation mode of AdaptiveCpp is
currently not supported. With OpenCL, due to just-in-time compilation of GPU code for the device in use, this is
not a concern.

Linear algebra libraries

As mentioned above, sometimes vendor BLAS and LAPACK libraries can provide performance enhancements for
GROMACS when doing normal-mode analysis or covariance analysis. For simplicity, the text below will refer
only to BLAS, but the same options are available for LAPACK. By default, CMake will search for BLAS, use it if
it is found, and otherwise fall back on a version of BLAS internal to GROMACS. The cmake option ~-DGMX_ —
EXTERNAL_BLAS=on will be set accordingly. The internal versions are fine for normal use. If you need to
specify a non-standard path to search, use ~-DCMAKE_PREFIX_PATH=/path/to/search. If you need to
specify a library with a non-standard name (e.g. ESSL on Power machines or ARMPL on ARM machines), then
set -DGMX_BLAS_USER=/path/to/reach/lib/libwhatever.a.

If you are using Intel MKL for FFT, then the BLAS and LAPACK it provides are used automatically. This could
be over-ridden with GMX_BLAS_USER, etc.

On Apple platforms where the Accelerate Framework is available, these will be automatically used for BLAS and
LAPACK. This could be over-ridden with GMX_BLAS_ USER, etc.

Building with MiMiC QM/MM support

MiMiC QM/MM interface integration will require linking against MiMiC communication library, that estab-
lishes the communication channel between GROMACS and CPMD. The MiMiC Communication library can be
downloaded here. Compile and install it. Check that the installation folder of the MiMiC library is added to
CMAKE_PREFIX_PATH if it is installed in non-standard location. Building QM/MM-capable version requires
double-precision version of GROMACS compiled with MPI support:

¢ —-DGMX_DOUBLE=ON —-DGMX_MPI=ON -DGMX_MIMIC=ON

2.4. Doing a build of GROMACS 22

https://developer.nvidia.com/cuda-zone
https://www.khronos.org/sycl/
https://github.com/AdaptiveCpp/AdaptiveCpp
https://github.com/AdaptiveCpp/AdaptiveCpp
https://www.khronos.org/opencl/
https://software.intel.com/en-us/intel-mkl
https://gitlab.com/MiMiC-projects/CommLib

GROMACS Documentation, Release 2025.0

Building with CP2K QM/MM support
CP2K QM/MM interface integration will require linking against libcp2k library, that incorporates CP2K function-
ality into GROMACS.

1. Download, compile and install CP2K (version 8.1 or higher is required). CP2K latest distribution can be
downloaded here. For CP2K specific instructions, please follow. You can also check instructions on the
official CP2K web-page.

2. Make 1ibcp2k. a library by executing the following command:

[make ARCH=<your arch file> VERSION=<your version like psmp> libcp2k J

The library archive (e.g. libcp2k.a) should appear in the <cp2k dir>/1lib/<arch>/
<version>/ directory.

3. Configure GROMACS with cmake, adding the following flags:

Build should be static: —-DBUILD_SHARED_LIBS=0FF -DGMXAPI=OFF -DGMX_INSTALI_-
NBLIB_API=OFF

Double precision in general is better than single for QM/MM (however both options are viable): ~-DGMX_ -
DOUBLE=0ON

FFT, BLAS and LAPACK libraries should be the same between CP2K and GROMACS. Use the following
flags to do so:

¢ —DGMX_FFT_LIBRARY=<your library like fftw3> -DFFTWF_LIBRARY=<path
to library> -DFFTWF_INCLUDE_DIR=<path to directory with headers>

e —DGMX_BLAS_USER=<path to your BLAS>
¢ —-DGMX_LAPACK_USER=<path to your LAPACK>
4. Compilation of QM/MM interface is controled by the following flags:

—-DGMX_CP2K=0ON
Activates QM/MM interface compilation

-DCP2K_DIR="<path to cp2k>/lib/local/psmp
Directory with libcp2k.a library

—-DCP2K_LINKER_FLAGS="<combination of LDFLAGS and LIBS>" (optional for CP2K

9.1 or newer)
Other libraries used by CP2K. Typically that should be combination of LDFLAGS and LIBS from

the ARCH file used for CP2K compilation. Sometimes ARCH file could have several lines defining
LDFLAGS and LIBS or even split one line into several using “\”. In that case all of them should be
concatenated into one long string without any extra slashes or quotes. For CP2K versions 9.1 or newer,
CP2K_LINKER_FLAGS is not required but still might be used in very specific situations.

Building with Colvars support

GROMACS bundles the Colvars library in its source distribution. The library and its interface with GROMACS are
enabled by default when building GROMACS. This behavior may also be enabled explicitly with -DGMX_USE_ —
COLVARS=internal. Alternatively, Colvars support may be disabled with ~-DGMX_USE_COLVARS=none.
How to use Colvars in a GROMACS simulation is described in the User Guide, as well as in the Colvars docu-
mentation.

2.4. Doing a build of GROMACS 23

https://github.com/cp2k/cp2k/releases/
https://github.com/cp2k/cp2k/blob/master/INSTALL.md
https://www.cp2k.org/howto
https://colvars.github.io/
https://colvars.github.io/gromacs-2025/colvars-refman-gromacs.html
https://colvars.github.io/gromacs-2025/colvars-refman-gromacs.html

GROMACS Documentation, Release 2025.0

Building with PLUMED support

GROMACS bundles the interface from version 2.10 of the PLUMED library in its source distribution. The in-
terface is compatible with any PLUMED version. The interface is enabled by default with GROMACS unless
GROMACS is built on Windows. You can explicitly enable the interface with ~-DGMX_USE_PLUMED=0N or
deactivate it with ~-DGMX_USE_PLUMED=0FF. By default the option is set to AUTO, during the configuration
CMake will try to activate PLUMED and in case it does not succeed it will output a “soft” warning. If the user
forces the option ON, when PLUMED cannot be activated the configuration will fail with an error message. The
User Guide contains the instructions on how to use PLUMED in a GROMACS simulation.

Building with Neural Network potential support

To build GROMACS with support for Neural Network potentials, it has to be compiled with a suitable machine
learning library. At the moment, only models trained in Pytorch are supported. To be able to load them in
GROMACS, it has to be built with the Pytorch C++ API or Libtorch, which can be downloaded from the Pytorch
website. The website offers versions including pre-CXX11 and CXX11 ABI versions on Linux. You must use the
same ABI version as you use when building the rest of GROMACS, which does not support or test the pre-CXX11
ABI. So get (or build) the CXX11 ABI version of Libtorch. For the same reason, it is also not possible to use the
Libtorch version that ships with a conda installation of Pytorch, because it is built with the pre-CXX11 ABI by
default. The NNP interface is enabled by default when a Libtorch installation is found in the CMAKE_PREFIX_ -
PATH, or Torch_DIR s setto a TorchConfig.cmake or torch-config.cmake usually found under
share/cmake/Torch/ in the libtorch installation directory. It may also be explicitly enabled with ~-DGMX_ —
NNPOT=TORCH or disabled with —-DGMX_NNPOT=0FF.

In addition, GROMACS provides support to specify custom Pytorch extensions at build time that may be used by
the NNP model. The path to the extension library may be specified via the TORCH_EXTENSION_PATH variable.
Note that CMake will search for a file called 1ibtorch_extension. so in the specified directory.

Changing the names of GROMACS binaries and libraries

It is sometimes convenient to have different versions of the same GROMACS programs installed. The most
common use cases have been single and double precision, and with and without MPI. This mechanism can also be
used to install side-by-side multiple versions of mdrun optimized for different CPU architectures, as mentioned
previously.

By default, GROMACS will suffix programs and libraries for such builds with _d for double precision and/or
_mpi for MPI (and nothing otherwise). This can be controlled manually with GMX_DEFAULT_SUFFIX (ON/
OFF), GMX_BINARY_SUFFIX (takes a string) and GMX_LIBS_SUFFIX (also takes a string). For instance, to
set a custom suffix for programs and libraries, one might specify:

cmake .. —-DGMX_DEFAULT_SUFFIX=OFF -DGMX_BINARY_SUFFIX=_mod \
-DGMX_LIBS_SUFFIX=_mod

Thus the names of all programs and libraries will be appended with _mod.

Changing installation tree structure

By default, a few different directories under CMAKE_INSTALL_PREFIX are used when when GROMACS is in-
stalled. Some of these can be changed, which is mainly useful for packaging GROMACS for various distributions.
The directories are listed below, with additional notes about some of them. Unless otherwise noted, the directories
can be renamed by editing the installation paths in the main CMakeLists.txt.

bin/
The standard location for executables and some scripts. Some of the scripts hardcode the absolute installa-
tion prefix, which needs to be changed if the scripts are relocated. The name of the directory can be changed
using CMAKE_INSTALL_BINDIR CMake variable.

2.4. Doing a build of GROMACS 24

https://www.plumed.org/
https://pytorch.org/
https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/
https://pytorch.org/tutorials/advanced/cpp_extension.html

GROMACS Documentation, Release 2025.0

include/gromacs/
The standard location for installed headers.

1lib/
The standard location for libraries. The default depends on the system, and is determined by CMake. The
name of the directory can be changed using CMAKE_INSTALL_LIBDIR CMake variable.

lib/pkgconfig/
Information about the installed 1ibgromacs library for pkg—config is installed here. The 1ib/ part
adapts to the installation location of the libraries. The installed files contain the installation prefix as absolute
paths.

share/cmake/
CMake package configuration files are installed here.

share/gromacs/
Various data files and some documentation go here. The first part can be changed using CMAKE_—
INSTALL_DATADIR, and the second by using GMX_INSTALIL_DATASUBDIR Using these CMake vari-
ables is the preferred way of changing the installation path for share/gromacs/top/, since the path to
this directory is built into 1 ibgromacs as well as some scripts, both as a relative and as an absolute path
(the latter as a fallback if everything else fails).

share/man/
Installed man pages go here.

2.4.2 Compiling and linking

Once you have configured with cmake, you can build GROMACS with make. It is expected that this will always
complete successfully, and give few or no warnings. The CMake-time tests GROMACS makes on the settings
you choose are pretty extensive, but there are probably a few cases we have not thought of yet. Search the web
first for solutions to problems, but if you need help, ask on the user discussion forum, being sure to provide as
much information as possible about what you did, the system you are building on, and what went wrong. This
may mean scrolling back a long way through the output of make to find the first error message!

If you have a multi-core or multi-CPU machine with N processors, then using

[make -j N

will generally speed things up by quite a bit. Other build generator systems supported by cmake (e.g. ninja)
also work well.

2.4.3 Installing GROMACS
Finally, make install will install GROMACS in the directory given in CMAKE_INSTALL_PREFIX. If this

is a system directory, then you will need permission to write there, and you should use super-user privileges only
for make install and not the whole procedure.

2.4.4 Getting access to GROMACS after installation

GROMACS installs the script GMXRC in the bin subdirectory of the installation directory (e.g. /usr/local/
gromacs/bin/GMXRC), which you should source from your shell:

[source /your/installation/prefix/here/bin/GMXRC

It will detect what kind of shell you are running and set up your environment for using GROMACS. You may wish
to arrange for your login scripts to do this automatically; please search the web for instructions on how to do this
for your shell.

Many of the GROMACS programs rely on data installed in the share /gromacs subdirectory of the installation
directory. By default, the programs will use the environment variables set in the GMXRC script, and if this is not

2.4. Doing a build of GROMACS 25

https://gromacs.bioexcel.eu/c/gromacs-user-forum/5

GROMACS Documentation, Release 2025.0

available they will try to guess the path based on their own location. This usually works well unless you change
the names of directories inside the install tree. If you still need to do that, you might want to recompile with the
new install location properly set, or edit the GMXRC script.

GROMACS also installs a CMake cache file to help with building client software (using the -C option when con-
figuring the client software with CMake.) For an installation at /your/installation/prefix/here, hints
files will be installed at /your/installation/prefix/share/cmake/gromacs${GMX_LIBS_-
SUFFIX}/gromacs—hints${GMX_LIBS_SUFFIX}.cmake where ${GMX_LIBS_SUFFIX} is as doc-
umented above (page 24).

2.4.5 Testing GROMACS for correctness

Since 2011, the GROMACS development uses an automated system where every new code change is subject to
regression testing on a number of platforms and software combinations. While this improves reliability quite a lot,
not everything is tested, and since we increasingly rely on cutting edge compiler features there is non-negligible
risk that the default compiler on your system could have bugs. We have tried our best to test and refuse to use
known bad versions in cmake, but we strongly recommend that you run through the tests yourself. It only takes
a few minutes, after which you can trust your build.

The simplest way to run the checks is to build GROMACS with ~-DREGRESSIONTEST_DOWNLOAD, and run
make check. GROMACS will automatically download and run the tests for you. Alternatively, you can down-
load and unpack the GROMACS regression test suite https:/ftp.gromacs.org/regressiontests/regressiontests-2025.
(O.tar.gz tarball yourself and use the advanced cmake option REGRESSIONTEST_PATH to specify the path to
the unpacked tarball, which will then be used for testing. If the above does not work, then please read on.

The regression tests are also available from the download section. Once you have downloaded them, unpack the
tarball, source GMXRC as described above, and run . /gmxtest.pl all inside the regression tests folder. You
can find more options (e.g. adding double when using double precision, or ~only expanded to run just the
tests whose names match “expanded”) if you just execute the script without options.

Hopefully, you will get a report that all tests have passed. If there are individual failed tests it could be a sign of
a compiler bug, or that a tolerance is just a tiny bit too tight. Check the output files the script directs you to, and
try a different or newer compiler if the errors appear to be real. If you cannot get it to pass the regression tests,
you might try dropping a line to the GROMACS user discussion forum, but then you should include a detailed
description of your hardware, and the output of gmx mdrun -version (which contains valuable diagnostic
information in the header).

Non-standard suffix

If your gmx program has been suffixed in a non-standard way, then the . /gmxtest.pl —-suffix option will
let you specify that suffix to the test machinery. You can use ./gmxtest.pl —double to test the double-
precision version. You can use ./gmxtest.pl —-crosscompiling to stop the test harness attempting to
check that the programs can be run. You canuse . /gmxtest.pl -mpirun srun if your command to run an
MPI program is called srun.

Running MPI-enabled tests

The make check target also runs integration-style tests that may run with MPI if GMX_MPI=ON was
set. To make these work with various possible MPI libraries, you may need to set the CMake vari-
ables MPIEXEC, MPIEXEC_NUMPROC_FLAG, MPIEXEC_PREFLAGS and MPIEXEC_POSTFLAGS so that
mdrun-mpi-test_mpi would run on multiple ranks via the shell command

MPIEXEC MPIEXEC_NUMPROC_FLAG NUMPROC MPIEXEC_PREFLAGS} \
mdrun-mpi-test_mpi MPIEXEC_POSTFLAGS} -otherflags

A typical example for SLURM is

2.4. Doing a build of GROMACS 26

https://cmake.org/cmake/help/latest/manual/cmake.1.html#options
https://ftp.gromacs.org/regressiontests/regressiontests-2025.0.tar.gz
https://ftp.gromacs.org/regressiontests/regressiontests-2025.0.tar.gz
../download.html
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5

GROMACS Documentation, Release 2025.0

cmake .. -DGMX_MPI=on -DMPIEXEC=srun -DMPIEXEC_NUMPROC_FLAG=-n \
-DMPIEXEC_PREFLAGS= —-DMPIEXEC_POSTFLAGS=

2.4.6 Testing GROMACS for performance

We are still working on a set of benchmark systems for testing the performance of GROMACS. Until that is
ready, we recommend that you try a few different parallelization options, and experiment with tools such as gmx
tune_pme.

2.4.7 Having difficulty?

You are not alone - this can be a complex task! If you encounter a problem with installing GROMACS, then there
are a number of locations where you can find assistance. It is recommended that you follow these steps to find the
solution:

1. Read the installation instructions again, taking note that you have followed each and every step correctly.

2. Search the GROMACS webpage and user discussion forum for information on the error. Adding
site:https://gromacs.bioexcel.eu/c/gromacs—user—-forum/5 to a Google search may
help filter better results. It is also a good idea to check the gmx-users mailing list archive at https://
mailman-1.sys.kth.se/pipermail/gromacs.org_gmx-users

3. Search the internet using a search engine such as Google.

4. Ask for assistance on the GROMACS user discussion forum. Be sure to give a full description of what you
have done and why you think it did not work. Give details about the system on which you are installing.
Copy and paste your command line and as much of the output as you think might be relevant - certainly
from the first indication of a problem. In particular, please try to include at least the header from the mdrun
logfile, and preferably the entire file. People who might volunteer to help you do not have time to ask you
interactive detailed follow-up questions, so you will get an answer faster if you provide as much information
as you think could possibly help. High quality bug reports tend to receive rapid high quality answers.

2.5 Special instructions for some platforms

Some less common configurations are described in a separate manual section (page 3).

2.5.1 Building on Windows

Building on Windows using native compilers is rather similar to building on Unix, so please start by reading the
above. Then, download and unpack the GROMACS source archive. Make a folder in which to do the out-of-
source build of GROMACS. For example, make it within the folder unpacked from the source archive, and call it
build-gromacs.

For CMake, you can either use the graphical user interface provided on Windows, or you can use a command line
shell with instructions similar to the UNIX ones above. If you open a shell from within your IDE (e.g. Microsoft
Visual Studio), it will configure the environment for you, but you might need to tweak this in order to get either
a 32-bit or 64-bit build environment. The latter provides the fastest executable. If you use a normal Windows
command shell, then you will need to either set up the environment to find your compilers and libraries yourself,
or run the vcvarsall.bat batch script provided by MSVC (just like sourcing a bash script under Unix).

With the graphical user interface, you will be asked about what compilers to use at the initial configuration stage,
and if you use the command line they can be set in a similar way as under UNIX.

Unfortunately, -DGMX_BUILD_OWN_FFTW=0N (see Using FFTW (page 11)) does not work on Windows, be-
cause there is no supported way to build FFTW on Windows. You can either build FFTW some other way (e.g.
MinGW), or use the built-in fftpack (which may be slow), or using MKL (page 11).

2.5. Special instructions for some platforms 27

http://www.gromacs.org
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5
https://mailman-1.sys.kth.se/pipermail/gromacs.org_gmx-users
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5

GROMACS Documentation, Release 2025.0

For the build, you can either load the generated solutions file into e.g. Visual Studio, or use the command line
with cmake —-build so the right tools get used.

2.5.2 Building on Cray

GROMACS builds mostly out of the box on modern Cray machines, but you may need to specify the use of static
binaries with ~-DGMX_BUILD_SHARED_EXE=off, and you may need to set the F77 environmental variable to
ftn when compiling FFTW. The ARM ThunderX2 Cray XC50 machines differ only in that the recommended
compiler is the ARM HPC Compiler (armclang).

2.5.3 Intel Xeon Phi

Xeon Phi processors, hosted or self-hosted, are supported. The Knights Landing-based Xeon Phi processors
behave like standard x86 nodes, but support a special SIMD instruction set. When cross-compiling for such
nodes, use the AVX_512_KNL SIMD flavor. Knights Landing processors support so-called “clustering modes”
which allow reconfiguring the memory subsystem for lower latency. GROMACS can benefit from the quadrant or
SNC clustering modes. Care needs to be taken to correctly pin threads. In particular, threads of an MPI rank should
not cross cluster and NUMA boundaries. In addition to the main DRAM memory, Knights Landing has a high-
bandwidth stacked memory called MCDRAM. Using it offers performance benefits if it is ensured that mdrun
runs entirely from this memory; to do so it is recommended that MCDRAM is configured in “Flat mode” and
mdrun is bound to the appropriate NUMA node (use e.g. numactl —--membind 1 with quadrant clustering
mode).

2.5.4 NVIDIA Grace

For best performance on Grace, use GCC >= 13.1 or LLVM >= 17, and set the -DCMAKE_-
CXX_FLAGS=-mcpu=neoverse-v2 —-DCMAKE_C_FLAGS=-mcpu=neoverse-v2 ﬂags when conﬁgur-
ing GROMACS.

With short-range non-bonded interactions calculations on the CPU (-nb cpu or when building without GPU
support), performance can be improved by also setting the ~-DGMX_ STMD=ARM_NEON_ASIMD CMake option.

At minimum any compiler being used for Grace should implement neoverse-v2, such as GNU >= 12.3 and LLVM
>= 16. There is a significant improvement in Arm performance between gcc-13 and gecc-12 so GNU >= 13.1 is
strongly recommended. The -mcpu=neoverse-v2 flag ensures that the compiler is not defaulting to the older
ArmvS8-A target.

On both GNU and LLVM, the GROMACS CPU version of the short-range non bonded interactions implemented
with NEON SIMD instructions significantly outperforms the SVE version. This can be selected by setting GMX_ —
SIMD=ARM_NEON_ASIMD at compilation. There can be a small performance benefit to using SVE for CPU work
outside this kernel, therefore when the short-range non bonded interactions run on the GPU it is recommended to
stay with GMX_SIMD=ARM_SVE which is the default option when available.

2.6 Tested platforms

While it is our best belief that GROMACS will build and run pretty much everywhere, it is important that we tell
you where we really know it works because we have tested it. Every commit in our git source code repository is
currently tested with a range of configuration options on x86 with gcc versions 11-14, clang versions including 14,
18, and 19, CUDA versions 12.1, 12.5.1, and 12.6, nvcxx version 24.7 HIP version 5.7.1 and 6.2.2 AdaptiveCPP
23.10 and 24.02 with ROCm 5.7.1 and 6.2 (respectively), and oneAPI version 2024.0 and 2024.2 (including
CUDA 12.0.1 and ROCm 6.1.3 backends).

For this testing, we use Ubuntu 22.04 and 24.04 operating systems. Other compiler, library, and OS versions are
tested less frequently. For details, you can have a look at the continuous integration server used by the GitLab
project, which uses GitLab runner on a local k8s x86 cluster with NVIDIA, AMD, and Intel GPU support.

2.6. Tested platforms 28

https://gitlab.com/gromacs/gromacs/
https://gitlab.com/gromacs/gromacs/

GROMACS Documentation, Release 2025.0

We test irregularly on ARM v8, Fujitsu A64FX, Cray, Power9, and other environments, and with other compilers
and compiler versions, too.

2.7 Support

Please refer to the manual for documentation, downloads, and release notes for any GROMACS release.
Visit the user forums for discussions and advice.

Report bugs at https://gitlab.com/gromacs/gromacs/-/issues

2.7. Support 29

http://manual.gromacs.org/
http://forums.gromacs.org/
https://gitlab.com/gromacs/gromacs/-/issues

CHAPTER
THREE

USER GUIDE

This guide provides
 material introducing GROMACS
* practical advice for making effective use of GROMACS.

For getting, building and installing GROMACS, see the Installation guide (page 3). For background on algorithms
and implementations, see the reference manual part (page 352) of the documentation. If you have questions not
answered by these resources, please visit the GROMACS user discussion forum and search for a potential answer
or ask a question from the community.

Please reference this documentation as https://doi.org/10.5281/zenodo.14846105.

To cite the source code for this release, please cite https://doi.org/10.5281/zenodo.14846130.

3.1 Known issues affecting users of GROMACS

Here is a non-exhaustive list of issues that are we are aware of that are affecting regular users of GROMACS.

3.1.1 “Cannot find a working standard library” error with ROCm Clang
Some Clang installations don’t contain a compatible C++ standard library. In such cases, you might have to install
g++ and help CMake find it by setting -DGMX_GPLUSGPLUS_PATH=/path/to/bin/g++.

On Ubuntu 22.04, installing GCC 12 standard library (with sudo apt install libstdc++-12-dev)
usually works well even without setting ~-DGMX_ GPLUSGPLUS_PATH.

Issue 4679

3.1.2 Expanded ensemble does not checkpoint correctly

In the legacy simulator, because of shortcomings in the implementation, successful expanded-ensemble MC steps
that occurred on checkpoint steps were not recorded in the checkpoint. If that checkpoint was used for a restart,
then it would not necessarily behave correctly and reproducibly afterwards. So checkpointing of expanded-
ensemble simulations is disabled for the legacy simulator.

Checkpointing of expanded ensemble in the modular simulator works correctly.

To work around the issue, either avoid —~update gpu (so that it uses the modular simulator path which does not
have the bug), or use an older version of GROMACS (which does do the buggy checkpointing), or refrain from
restarting from checkpoints in the affected case.

Issue 4629

30

https://gromacs.bioexcel.eu/c/gromacs-user-forum/5
https://doi.org/10.5281/zenodo.14846105
https://doi.org/10.5281/zenodo.14846130
https://gitlab.com/gromacs/gromacs/-/issues/4679
https://gitlab.com/gromacs/gromacs/-/issues/4629

GROMACS Documentation, Release 2025.0

3.1.3 Compiling with GCC 12 on POWER9 architectures

There are multiple failing unit tests after compilation with GCC 12.2 and 12.3 on POWERS architectures. It is
possible that other GCC 12 and newer versions are affected.

Issue 4823

3.1.4 Launching multiple instances of GROMACS on the same machine with
AMD GPUs

When GROMACS is built with AdaptiveCpp 23.10 or earlier for AMD GPUs, launching more than 4 instances of
GROMACS (even on different GPUs) can lead to reduced performance.

The issue is completely avoided when each process is limited to a single GPU using ROCR_VISIBLE DEVICES
environment variable. This is already the recommended setting on some of the relevant supercomputers.

Building with AdaptiveCpp 24.02 also prevents the problem from arising.
Issue 4965

3.1.5 NbnxmTest crash with oneAPI 2024.1

When building with oneAPI 2024.1, the NbnxmTest test can segfault in some cases. Using oneAPI 2024.2 or
newer should resolve the issue.

Issue 5247

3.1.6 Separate PME ranks with thread-MPI and CUDA do not work with small
systems

Running GROMACS 2024.x and 2025.0 with thread-MPI and CUDA and a separate PME rank gives incorrect
energies after step zero and fails after some steps with fatal error.

With 2024, the issue is only triggered with direct GPU communication is explicitly enabled (GMX_ENABLE_ -
DIRECT_GPU_COMM). In 2025, the direct GPU communication has been disabled for thread-MPI builds of GRO-
MACS to avoid this issue. Once it has been fixed, direct GPU communication will be made default for both MPI
and thread-MPI builds.

As a workaround, build GROMACS with library (“real”’) MPL.

You can also continue using thread-MPI, but disable direct GPU communication for the GROMACS 2024 series
by not setting GMX_ENABLE_DIRECT_GPU_COMM.

Issue 5283

3.2 Getting started

3.2.1 Flow Chart

This is a flow chart of a typical GROMACS MD run of a protein in a box of water. Several steps of energy
minimization may be necessary, these consist of cycles: gmx grompp (page 192) -> gmx mdrun (page 217).

3.2. Getting started 31

https://gitlab.com/gromacs/gromacs/-/issues/4823
https://gitlab.com/gromacs/gromacs/-/issues/4965
https://gitlab.com/gromacs/gromacs/-/issues/5247
https://gitlab.com/gromacs/gromacs/-/issues/5283

GROMACS Documentation, Release 2025.0

Generate a GROMACS topology
gmx pdb2gmx

conf.gro

Enlarge the box

gmx editconf topol.top

conf.gro

\ 4
Solvate protein
gmx solvate

é)nf. gr’(>!opol.top

Generate mdrun input file
gmx grompp

opol.tpr

Run the simulation (EM or MD)
gmx mdrun <

ﬁj.xtc / traj.%ner.edr

Analysis Analysis
gmx ... gmx energy

eiwit.pdb

grompp.mdp

Continuation
state.cpt

In this chapter we assume the reader is familiar with Molecular Dynamics and familiar with Unix, including the
use of a text editor such as jot, emacs or vi. We furthermore assume the GROMACS software is installed

properly on your system. When you see a line like

[ls =1

you are supposed to type the contents of that line on your computer terminal.

3.2. Getting started

32

GROMACS Documentation, Release 2025.0

3.2.2 Setting up your environment

In order to check whether you have access to GROMACS, please start by entering the command:

[gmx -version }

This command should print out information about the version of GROMACS installed. If this, in contrast, returns
the phrase

[gmx: command not found. J

then you have to find where your version of GROMACS is installed. In the default case, the binaries are located
in /usr/local/gromacs/bin, however, you can ask your local system administrator for more information,
and then follow the advice for Getting access to GROMACS after installation (page 25).

3.2.3 Flowchart of typical simulation

A typical simulation workflow with GROMACS is illustrated here (page 31).

3.2.4 Important files

Here is an overview of the most important GROMACS file types that you will encounter.

Molecular Topology file (. top)
The molecular topology file is generated by the program gmx pdb2gmx (page 237). gmx pdb2gmx (page 237)

translates a pdb (page 491) structure file of any peptide or protein to a molecular topology file. This topology file
contains a complete description of all the interactions in your peptide or protein.

Topology #include file mechanism

When constructing a system topology in a fop (page 493) file for presentation to grompp, GROMACS uses a
built-in version of the so-called C preprocessor, cpp (in GROMACS 3, it really was cpp). cpp interprets lines like:

[#include "ions.itp" J

by looking for the indicated file in the current directory, the GROMACS share/top directory as indicated by
the GMXLIB environment variable, and any directory indicated by a —I flag in the value of the include run
parameter (page 44) in the mdp (page 489) file. It either finds this file or reports a warning. (Note that when
you supply a directory name, you should use Unix-style forward slashes ‘/’, not Windows-style backslashes ' for
separators.) When found, it then uses the contents exactly as if you had cut and pasted the included file into the
main file yourself. Note that you should not go and do this copy-and-paste yourself, since the main purposes of
the include file mechanism are to re-use previous work, make future changes easier, and prevent typos.

Further, cpp interprets code such as:

#ifdef POSRES WATER

; Position restraint for each water oxygen

[position_restraints]

8 i funct fex fcy fcz
1 1 1000 1000 1000

#endif

by testing whether the preprocessor variable POSRES_WATER was defined somewhere (i.e. “if defined”). This
could be done with #define POSRES_WATER earlier in the rop (page 493) file (or its # include files), with
a -D flag in the include run parameter as above, or on the command line to cpp. The function of the —D flag is

3.2. Getting started 33

GROMACS Documentation, Release 2025.0

borrowed from the similar usage in cpp. The string that follows —D must match exactly; using -DPOSRES will
not trigger #ifdef POSREor #ifdef DPOSRES. This mechanism allows you to change your mdp (page 489)
file to choose whether or not you want position restraints on your solvent, rather than your fop (page 493) file.
Note that preprocessor variables are not the same as shell environment variables.

Molecular Structure file (. gro, .pdb)

When gmx pdb2gmx (page 237) is executed to generate a molecular topology, it also translates the structure file
(pdb (page 491) file) to a GROMOS structure file (gro (page 487) file). The main difference between a pdb
(page 491) file and a gromos file is their format and that a gro (page 487) file can also hold velocities. However,
if you do not need the velocities, you can also use a pdb (page 491) file in all programs. To generate a box of
solvent molecules around the peptide, the program gmx solvate (page 270) is used. First the program gmx editconf
(page 173) should be used to define a box of appropriate size around the molecule. gmx solvate (page 270) solvates
a solute molecule (the peptide) into any solvent (in this case, water). The output of gmx solvate (page 270) is a
gromos structure file of the peptide solvated in water. gmx solvate (page 270) also changes the molecular topology
file (generated by gmx pdb2gmx (page 237)) to add solvent to the topology.

Molecular Dynamics parameter file (.mdp)

The Molecular Dynamics Parameter (mdp (page 489)) file contains all information about the Molecular Dynamics
simulation itself e.g. time-step, number of steps, temperature, pressure etc. The easiest way of handling such a
file is by adapting a sample mdp file (page 489) file.

Index file (. ndx)

Sometimes you may need an index file to specify actions on groups of atoms (e.g. temperature coupling, acceler-
ations, freezing). Usually the default index groups will be sufficient, so for this demo we will not consider the use
of index files.

Run input file (. tpr)

The next step is to combine the molecular structure (gro (page 487) file), topology (fop (page 493) file) MD-
parameters (mdp (page 489) file) and (optionally) the index file (ndx (page 490)) to generate a run input file (rpr
(page 495) extension). This file contains all information needed to start a simulation with GROMACS. The gmx
grompp (page 192) program processes all input files and generates the run input /pr (page 495) file.

Trajectory file (.trr, .tng, or .xtc)

Once the run input file is available, we can start the simulation. The program which starts the simulation is called
gmx mdrun (page 217). The only input file of gmx mdrun (page 217) that you usually need in order to start a run
is the run input file (zpr (page 495) file). The typical output files of gmx mdrun (page 217) are the trajectory file
(trr (page 495) file), a logfile (log (page 488) file), and perhaps a checkpoint file (cpt (page 486) file).

3.2.5 Tutorial material

There are several tutorials available that cover aspects of using GROMACS. There are also third-party-tutorials.
Further information can also be found in the How fo (page 342) section.

3.2. Getting started 34

https://tutorials.gromacs.org/
http://www.mdtutorials.com/gmx/

GROMACS Documentation, Release 2025.0

3.2.6 Background reading

Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J. (1981) Intermolecular Forces, chapter
Interaction models for water in relation to protein hydration, pp 331-342. Dordrecht: D. Reidel Publishing
Company Dordrecht

Kabsch, W., Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-
bonded and geometrical features. Biopolymers 22, 2577-2637.

Mierke, D.F., Kessler, H. (1991). Molecular dynamics with dimethyl sulfoxide as a solvent. Conformation
of a cyclic hexapeptide. J. Am. Chem. Soc. 113, 9446.

Stryer, L. (1988). Biochemistry vol. 1, p. 211. New York: Freeman, 3 edition.

3.3 System preparation

There are many ways to prepare a simulation system to run with GROMACS. These often vary with the kind
of scientific question being considered, or the model physics involved. A protein-ligand atomistic free-energy
simulation might need a multi-state topology, while a coarse-grained simulation might need to manage defaults
that suit systems with higher density.

3.3.1 Steps to consider

The following general guidance should help with planning successful simulations. Some stages are optional for
some kinds of simulations.

1.

Clearly identify the property or phenomena of interest to be studied by performing the simulation. Do not
continue further until you are clear on this! Do not run your simulation and then seek to work out how to
use it to test your hypothesis, because it may be unsuitable, or the required information was not saved.

. Select the appropriate tools to be able to perform the simulation and observe the property or phenomena of

interest. It is important to read and familiarize yourself with publications by other researchers on similar
systems. Choices of tools include:

* software with which to perform the simulation (consideration of force field may influence this deci-
sion)

* the force field, which describes how the particles within the system interact with each other. Select
one that is appropriate for the system being studied and the property or phenomena of interest. This is
a very important and non-trivial step!

* how you will analyze your simulation data to make your observations.

. Obtain or generate the initial coordinate file for each molecule to be placed within the system. Many differ-

ent software packages are able to build molecular structures and assemble them into suitable configurations.

. Generate the raw starting structure for the system by placing the molecules within the coordinate file as

appropriate. Molecules may be specifically placed or arranged randomly. Several non-GROMACS tools are
useful here; within GROMACS gmx solvate (page 270), gmx insert-molecules (page 209) and gmx genconf
(page 189) solve frequent problems.

. Obtain or generate the topology file for the system, using (for example) gmx pdb2gmx (page 237), gmx x2top

(page 301), SwissParam (for CHARMM forcefield), CHARMM-GUI , Automated Topology Builder (for
GROMOS96 53A6) or your favourite text editor in concert with Chapter 5 (page 406) of the GROMACS
Reference Manual. For the AMBER force fields, antechamber or acpype might be appropriate.

. Describe a simulation box (e.g. using gmx editconf (page 173)) whose size is appropriate for the eventual

density you would like, fill it with solvent (e.g. using gmx solvate (page 270)), and add any counter-ions
needed to neutralize the system (e.g. using gmx grompp (page 192) and gmx insert-molecules (page 209)).
In these steps you may need to edit your topology file to stay current with your coordinate file.

3.3.

System preparation 35

http://swissparam.ch/
https://www.charmm-gui.org/
https://atb.uq.edu.au/
https://ambermd.org/antechamber/antechamber.html
https://github.com/alanwilter/acpype

GROMACS Documentation, Release 2025.0

7. Run an energy minimization on the system (using gmx grompp (page 192) and gmx mdrun (page 217)). This
is required to sort out any bad starting structures caused during generation of the system, which may cause
the production simulation to crash. It may be necessary also to minimize your solute structure in vacuo
before introducing solvent molecules (or your lipid bilayer or whatever else). You should consider using
flexible water models and not using bond constraints or frozen groups. The use of position restraints and/or
distance restraints should be evaluated carefully.

8. Select the appropriate simulation parameters for the equilibration simulation (defined in mdp (page 489)
file). You need to choose simulation parameters that are consistent with how force field was derived. You
may need to simulate at NVT with position restraints on your solvent and/or solute to get the temperature
almost right, then relax to NPT to fix the density (with the recommendation to use the c-rescale barostat),
then move further (if needed) to reach your production simulation ensemble (e.g. NVT, NVE). If you
have problems here with the system blowing up (page 331), consider using the suggestions on that page,
e.g. position restraints on solutes, or not using bond constraints, or using smaller integration timesteps, or
several gentler heating stage(s).

9. Run the equilibration simulation for sufficient time so that the system relaxes sufficiently in the target
ensemble to allow the production run to be commenced (using gmx grompp (page 192) and gmx mdrun
(page 217), then gmx energy (page 179) and Visualization Software (page 348)).

10. Select the appropriate simulation parameters for the production simulation (defined in mdp (page 489) file).
In particular, be careful not to re-generate the velocities. You still need to be consistent with how the force
field was derived and how to measure the property or phenomena of interest.

3.3.2 Tips and tricks

Database files

The share/top directory of a GROMACS installation contains numerous plain-text helper files with the . dat
file extension. Some of the command-line tools (see Command-line reference (page 116)) refer to these, and each
tool documents which files it uses, and how they are used.

If you need to modify these files (e.g. to introduce new atom types with VDW radii into vdwradii.dat),
you can copy the file from your installation directory into your working directory, and the GROMACS tools will
automatically load the copy from your working directory rather than the standard one. To suppress all the standard
definitions, use an empty file in the working directory.

3.4 Managing long simulations

Molecular simulations often extend beyond the lifetime of a single UNIX command-line process. It is useful to
be able to stop and restart the simulation in a way that is equivalent to a single run. When gmx mdrun (page 217)
is halted, it writes a checkpoint file that can restart the simulation exactly as if there was no interruption. To do
this, the checkpoint retains a full-precision version of the positions and velocities, along with state information
necessary to restart algorithms e.g. that implement coupling to external thermal reservoirs. A restart can be
attempted using e.g. a gro (page 487) file with velocities, but since the gro (page 487) file has significantly less
precision, and none of the coupling algorithms will have their state carried over, such a restart is less continuous
than a normal MD step.

Such a checkpoint file is also written periodically by gmx mdrun (page 217) during the run. The interval is given
by the —cpt flag to gmx mdrun (page 217). When gmx mdrun (page 217) attempts to write each successive
checkpoint file, it first renames the old file with the suffix _prewv, so that even if something goes wrong while
writing the new checkpoint file, only recent progress can be lost.

gmx mdrun (page 217) can be halted in several ways:
* the number of simulation nsteps (page 45) can expire
* the user issues a termination signal (e.g. with Ctrl-C on the terminal)

¢ the job scheduler issues a termination signal when time expires

3.4. Managing long simulations 36

GROMACS Documentation, Release 2025.0

* when gmx mdrun (page 217) detects that the length specified with —-maxh has elapsed (this option is useful
to help cooperate with a job scheduler, but can be problematic if jobs can be suspended)

* some kind of catastrophic failure, such as loss of power, or a disk filling up, or a network failing

To use the checkpoint file for a restart, use a command line such as

[gmx mdrun —-cpi state

which directs mdrun to use the checkpoint file (which is named state. cpt by default). You can choose to give
the output checkpoint file a different name with the —cpo flag, but if so then you must provide that name as input
to —cpi when you later use that file. You can query the contents of checkpoint files with gmx check (page 136)
and gmx dump (page 171).

3.4.1 Appending to output files

By default, gmx mdrun (page 217) will append to the old output files. If the previous part ended in a regular way,
then the performance data at the end of the log file will will be removed, some new information about the run
context written, and the simulation will proceed. Otherwise, mdrun will truncate all the output files back to the
time of the last written checkpoint file, and continue from there, as if the simulation stopped at that checkpoint in
a regular way.

You can choose not to append the output files by using the ~-noappend flag, which forces mdrun to write each
output to a separate file, whose name includes a “.partXXXX" string to describe which simulation part is contained
in this file. This numbering starts from zero and increases monotonically as simulations are restarted, but does
not reflect the number of simulation steps in each part. The simulation-part (page 46) option can be used
to set this number manually in gmx grompp (page 192), which can be useful if data has been lost, e.g. through
filesystem failure or user error.

Appending will not work if any output files have been modified or removed after mdrun wrote them, because the
checkpoint file maintains a checksum of each file that it will verify before it writes to them again. In such cases,
you must either restore the file, name them as the checkpoint file expects, or continue with —-noappend. If your
original run used —de f fnm, and you want appending, then your continuations must also use —~de f fnm.

3.4.2 Backing up your files

You should arrange to back up your simulation files frequently. Network file systems on clusters can be configured
in more or less conservative ways, and this can lead gmx mdrun (page 217) to be told that a checkpoint file has
been written to disk when actually it is still in memory somewhere and vulnerable to a power failure or disk that
fills or fails in the meantime. The UNIX tool rsync can be a useful way to periodically copy your simulation
output to a remote storage location, which works safely even while the simulation is underway. Keeping a copy of
the final checkpoint file from each part of a job submitted to a cluster can be useful if a file system is unreliable.

3.4.3 Extending a .tpr file

If the simulation described by 7pr (page 495) file has completed and should be extended, use the gmx convert-tpr
(page 148) tool to extend the run, e.g.

gmx convert-tpr -s previous.tpr -extend timetoextendby -o next.tpr
gmx mdrun -s next.tpr -cpi state.cpt

The time can also be extended using the —unt il and —nsteps options. Note that the original mdp (page 489)
file may have generated velocities, but that is a one-time operation within gmx grompp (page 192) that is never
performed again by any other tool.

3.4. Managing long simulations 37

GROMACS Documentation, Release 2025.0

3.4.4 Changing mdp options for a restart

If you wish to make changes to your simulations settings other than length, then you should do so in the mdp
(page 489) file or topology, and then call

gmx grompp —f possibly-changed.mdp -p possibly-changed.top -c original.gro
——t state.cpt -o new.tpr
gmx mdrun -s new.tpr -cpi state.cpt

to instruct gmx grompp (page 192) to copy the full-precision coordinates and velocities in the checkpoint file into
the new 7pr (page 495) file. You should consider your choices for t init (page 45), init—-step (page 45),
nsteps (page 45) and simulation-part (page 46). You should generally not regenerate velocities with
gen-vel (page 59), and generally select cont inuat ion (page 60) so that constraints are not re-applied before
the first integration step.

3.4.5 Restarts without checkpoint files

It used to be possible to continue simulations without the checkpoint files. As this approach could be unreliable
or lead to unphysical results, only restarts from checkpoints are permitted now.

3.4.6 Are continuations exact?

If you had a computer with unlimited precision, or if you integrated the time-discretized equations of motion by
hand, exact continuation would lead to identical results. But since practical computers have limited precision and
MD is chaotic, trajectories will diverge very rapidly even if one bit is different. Such trajectories will all be equally
valid, but eventually very different. Continuation using a checkpoint file, using the same code compiled with the
same compiler and running on the same computer architecture using the same number of processors without GPUs
(see next section) would lead to binary identical results. However, by default the actual work load will be balanced
across the hardware according to the observed execution times. Such trajectories are in principle not reproducible,
and in particular a run that took place in more than one part will not be identical with an equivalent run in one part
- but neither of them is better in any sense.

3.4.7 Reproducibility

The following factors affect the reproducibility of a simulation, and thus its output:

Precision (mixed / double) with double giving “better” reproducibility.

Number of cores, due to different order in which forces are accumulated. For instance (a+b)+c is not
necessarily binary identical to a+(b+c) in floating-point arithmetic.

Type of processors. Even within the same processor family there can be slight differences.

Optimization level when compiling.

Optimizations at run time: e.g. the FFTW library that is typically used for fast Fourier transforms determines
at startup which version of their algorithms is fastest, and uses that for the remainder of the calculations.
Since the speed estimate is not deterministic, the results may vary from run to run.

Random numbers used for instance as a seed for generating velocities (in GROMACS at the preprocessing
stage).

Uninitialized variables in the code (but there should not be any)

Dynamic linking to different versions of shared libraries (e.g. for FFTs)

Dynamic load balancing, since particles are redistributed to processors based on elapsed wallclock time,
which will lead to (a+b)+c != a+(b+c) issues as above

Number of PME-only ranks (for parallel PME simulations)

3.4. Managing long simulations 38

GROMACS Documentation, Release 2025.0

* MPI reductions typically do not guarantee the order of the operations, and so the absence of associativity
for floating-point arithmetic means the result of a reduction depends on the order actually chosen

* On GPUs, the reduction of e.g. non-bonded forces has a non-deterministic summation order, so any fast
implementation is non-reproducible by design.

The important question is whether it is a problem if simulations are not completely reproducible. The answer is
yes and no. Reproducibility is a cornerstone of science in general, and hence it is important. The Central Limit
Theorem tells us that in the case of infinitely long simulations, all observables converge to their equilibrium values.
Molecular simulations in GROMACS adhere to this theorem, and hence, for instance, the energy of your system
will converge to a finite value, the diffusion constant of your water molecules will converge to a finite value, and
so on. That means all the important observables, which are the values you would like to get out of your simulation,
are reproducible. Each individual trajectory is not reproducible, however.

However, there are a few cases where it would be useful if trajectories were reproducible, too. These include
developers doing debugging, and searching for a rare event in a trajectory when, if it occurs, you want to have
manually saved your checkpoint file so you can restart the simulation under different conditions, e.g. writing
output much more frequently.

In order to obtain this reproducible trajectory, it is important to look over the list above and eliminate the factors
that could affect it. Further, using

[gmx mdrun —-reprod

1

will eliminate all sources of non-reproducibility that it can, i.e. same executable + same hardware + same shared
libraries + same run input file + same command line parameters will lead to reproducible results.

3.5 Answers to frequently asked questions (FAQs)

3.5.1 Questions regarding GROMACS installation

1. Do I need to compile all utilities with MPI?

With one rarely-used exception (pme_error (page 240)), only mdrun (page 217) is able to use the MPI
(page 10) parallelism. So you only need to use the ~-DGMX_MP I=on flag when configuring (page 14) for a
build intended to run the main simulation engine mdrun (page 217). Generally that is desirable when running
on a multi-node cluster, and necessary when using multi-simulation algorithms. Usually also installing a
build of GROMACS configured without MPI is convenient for users.

2. Should my version be compiled using double precision?

In general, GROMACS only needs to be build in its default mixed-precision mode. For more details, see the
discussion in Chapter 2 of the reference manual. Sometimes, usage may also depend on your target system,
and should be decided upon according to the individual instructions (page 27).

3.5.2 Questions concerning system preparation and preprocessing

1. Where can I find a solvent coordinate file (page 484) for use with solvate (page 270)?

Suitable equilibrated boxes of solvent structure files (page 484) can be found in the SGMXDIR/share/
gromacs/top directory. That location will be searched by default by solvate (page 270), for example by
using —cs spc216.gro as an argument. Other solvent boxes can be prepared by the user as described
on the manual page for solvate (page 270) and elsewhere. Note that suitable topology files will be needed
for the solvent boxes to be useful in grompp (page 192). These are available for some force fields, and may
be found in the respective subfolder of SGMXDIR/share/gromacs/top.

2. How to prevent solvate (page 270) from placing waters in undesired places?

Water placement is generally well behaved when solvating proteins, but can be difficult when setting up
membrane or micelle simulations. In those cases, waters may be placed in between the alkyl chains of the

3.5. Answers to frequently asked questions (FAQs) 39

https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Central_limit_theorem

GROMACS Documentation, Release 2025.0

lipids, leading to problems later during the simulation (page 331). You can either remove those waters by
hand (and do the accounting for molecule types in the ropology (page 493) file), or set up a local copy of the
vdwradii.dat file from the $GMXLIB directory, specific for your project and located in your working
directory. In it, you can increase the vdW radius of the atoms, to suppress such interstitial insertions.
Recommended e.g. at a common tutorial is the use of 0.375 instead of 0.15.

1. How do I provide multiple definitions of bonds / dihedrals in a topology?

You can add additional bonded terms beyond those that are normally defined for a residue (e.g. when
defining a special ligand) by including additional copies of the respective lines under the [bonds 1],
[pairs], [angles] and [dihedrals] sections in the [moleculetype] section for
your molecule, found either in the ifp (page 488) file or the ropology (page 493) file. This will add those
extra terms to the potential energy evaluation, but will not remove the previous ones. So be careful with
duplicate entries. Also keep in mind that this does not apply to duplicated entries for [bondtypes 1, [
angletypes],or [dihedraltypes 1, in force-field definition files, where duplicates overwrite
the previous values.

2. Do Ireally need a gro (page 487) file?

The gro (page 487) file is used in GROMACS as a unified structure file (page 484) format that can be read by
all utilities. The large majority of GROMACS routines can also use other file types such as pdb (page 491),
with the limitations that no velocities are available in this case (page 34). If you need a text-based format
with more digits of precision, the g96 (page 487) format is suitable and supported.

3. Do I always need to run pdb2gmx (page 237) when I already produced an izp (page 488) file elsewhere?

You don’t need to prepare additional files if you already have all itp (page 488) and rop (page 493) files
prepared through other tools.

Examples for those can be found in the System Preparation section of this user guide (page 35).
4. How can I build in missing atoms?

GROMACS has no support for building coordinates of missing non-hydrogen atoms. If your system is
missing some part, you will have to add the missing pieces using external programs to avoid the missing
atom (page 109) error. This can be done using programs such as Chimera in combination with Modeller,
Swiss PDB Viewer, Maestro. Do not run a simulation that had missing atoms unless you know exactly why
it will be stable.

5. Why is the total charge of my system not an integer like it should be?

In floating point (page 341) math, real numbers can not be displayed to arbitrary precision (for more on
this, see e.g. Wikipedia). This means that very small differences to the final integer value will persist, and
GROMACS will not lie to you and round those values up or down. If your charge differs from the integer
value by a larger amount, e.g. at least 0.01, this usually means that something went wrong during your
system preparation

3.5.3 Questions regarding simulation methodology

1. Should I couple a handful of ions to their own temperature-coupling bath?

No. You need to consider the minimal size of your temperature coupling groups, as explained in Thermostats
(page 329) and more specifically in What not to do (page 329), as well as the implementation of your chosen
thermostat as described in the reference manual.

2. Why do my grompp restarts always start from time zero?
You can choose different values for t init (page 45) and init-step (page 45).
3. Why can’t I do conjugate gradient minimization with constraints?

Minimization with the conjugate gradient scheme can not be performed with constraints as described in the
reference manual, and some additional information on Wikipedia.

3.5. Answers to frequently asked questions (FAQs) 40

http://www.mdtutorials.com/gmx/lysozyme/03_solvate.html
https://www.cgl.ucsf.edu/chimera/
https://salilab.org/modeller/
https://spdbv.unil.ch/
https://www.schrodinger.com/maestro
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Conjugate_gradient_method

GROMACS Documentation, Release 2025.0

4. How do I hold atoms in place in my energy minimization or simulation?

Groups may be frozen in place using freeze groups (see the reference manual). It is more common to
use a set of position restraints, to place penalties on movement of the atoms. Files that control this kind of
behaviour can be created using genrestr (page 191).

5. How do I extend a completed a simulation to longer times?

Please see the section on Managing long simulations (page 36). You can either prepare a new mdp
(page 489) file, or extend the simulation time in the original 7pr (page 495) file using convert-tpr (page 148).

6. How should I compute a single-point energy?

This is best achieved with the —rerun option to mdrun (page 217). See the Re-running a simulation
(page 86) section.

3.5.4 Parameterization and Force Fields

1. T want to simulate a molecule (protein, DNA, etc.) which complexes with various transition metal ions,
iron-sulfur clusters, or other exotic species. Parameters for these exotic species aren’t available in force
field X. What should I do?

First, you should consider how well MD (page 332) will actually describe your system (e.g. see some of
the recent literature). Many species are infeasible to model without either atomic polarizability, or QM
treatments. Then you need to prepare your own set of parameters and add a new residue to your force field
(page 333) of choice. Then you will have to validate that your system behaves in a physical way, before
continuing your simulation studies. You could also try to build a more simplified model that does not rely
on the complicated additions, as long as it still represents the correct real object in the laboratory.

2. Should I take parameters from one force field and apply them inside another that is missing them?

NO. Molecules parametrized for a given force field (page 333) will not behave in a physical manner when
interacting with other molecules that have been parametrized according to different standards. If your
required molecule is not included in the force field you need to use, you will have to parametrize it yourself
according to the methodology of this force field.

3.5.5 Analysis and Visualization

1. Why am I seeing bonds being created when I watch the trajectory?

Most visualization softwares determine the bond status of atoms depending on a set of predefined distances.
So the bonding pattern created by them might not be the one defined in your fopology (page 493) file.
What matters is the information encoded in there. If the software has read a 7pr (page 495) file, then the
information is in reliable agreement with the topology you supplied to grompp (page 192).

2. When visualizing a trajectory from a simulation using PBC, why are there holes or my peptide leaving the
simulation box?

Those holes and molecules moving around are just a result of molecules ranging over the box boundaries
and wrapping around (page 328), and are not a reason for concern. You can fix the visualization using
trjconv (page 283) to prepare the structure for analysis.

3. Why is my total simulation time not an integer like it should be?

As the simulation time is calculated using floating point arithmetic (page 341), rounding errors can occur
but are not of concern.

3.5. Answers to frequently asked questions (FAQs) 41

https://dx.doi.org/10.1021%2Facs.chemrev.6b00440

GROMACS Documentation, Release 2025.0

3.6 Force fields in GROMACS

3.6.1 AMBER

AMBER (Assisted Model Building and Energy Refinement) refers both to a set of molecular mechanical force
fields (page 333) for the simulation of biomolecules and a package of molecular simulation programs.

GROMACS supports the following AMBER force fields natively:
« AMBERY%4

AMBER96

AMBER99

AMBER99SB

AMBER99SB-ILDN

* AMBERO3

* AMBERGS

Information concerning the force field can be found using the following information:
* AMBER Force Fields - background about the AMBER force fields
¢ AMBER Programs - information about the AMBER suite of programs for molecular simulation

* ANTECHAMBER/GAFF - Generalized Amber Force Field (GAFF) which is supposed to provide param-
eters suitable for small molecules that are compatible with the AMBER protein/nucleic acid force fields.
It is available either together with AMBER, or through the antechamber package, which is also distributed
separately. There are scripts available for converting AMBER systems (set up, for example, with GAFF) to
GROMACS (amb2gmx.pl, or ACPYPE), but they do require AmberTools installation to work.

3.6.2 CHARMM

CHARMM (Chemistry at HARvard Macromolecular Mechanics) is a both a set of force fields and a software
package for molecular dynamics (page 332) simulations and analysis. Includes united atom (CHARMMI19) and
all atom (CHARMM?22, CHARMM?27, CHARMM36) force fields (page 333). The CHARMM27 force field has
been ported to GROMACS and is officially supported. CHARMM36 force field files can be obtained from the
MacKerell lab website, which regularly produces up-to-date CHARMM force field files in GROMACS format.

For using CHARMM?36 in GROMACS, please use the following settings in the mdp (page 489) file:

constraints = h-bonds
cutoff-scheme = Verlet
vdwtype = cutoff
vdw-modifier = force-switch
rlist = 1.2

rvdw = 1.2

rvdw—-switch = 1.0
coulombtype = PME

rcoulomb = 1.2

DispCorr = no

Note that dispersion correction should be applied in the case of lipid monolayers, but not bilayers.

Please also note that the switching distance is a matter of some debate in lipid bilayer simulations, and it is depen-
dent to some extent on the nature of the lipid. Some studies have found that an 0.8-1.0 nm switch is appropriate,
others argue 0.8-1.2 nm is best, and yet others stand by 1.0-1.2 nm. The user is cautioned to thoroughly investigate
the force field literature for their chosen lipid(s) before beginning a simulation!

3.6. Force fields in GROMACS 42

http://ambermd.org/
https://ambermd.org/AmberModels.php
https://ambermd.org/AmberTools.php
http://ambermd.org/antechamber/antechamber.html
https://github.com/choderalab/mmtools/blob/master/converters/amb2gmx.pl
https://github.com/alanwilter/acpype
https://ambermd.org/AmberTools.php
http://www.charmm.org/
http://mackerell.umaryland.edu/charmm_ff.shtml#gromacs

GROMACS Documentation, Release 2025.0

3.6.3 GROMOS

A Warning

The GROMOS force fields have been parametrized with a physically incorrect multiple-time-stepping scheme
for a twin-range cut-off. When used with a single-range cut-off (or a correct Trotter multiple-time-stepping
scheme), physical properties, such as the density, might differ from the intended values. Since there are
researchers actively working on validating GROMOS with modern integrators we have not yet removed the
GROMOS force fields, but you should be aware of these issues and check if molecules in your system are
affected before proceeding. Further information is available in GitLab Issue 2884 , and a longer explanation of
our decision to remove physically incorrect algorithms can be found at DOI:10.26434/chemrxiv.11474583.v1

GROMOS is is a general-purpose molecular dynamics computer simulation package for the study of biomolecular
systems. It also incorporates its own force field covering proteins, nucleotides, sugars etc. and can be applied to
chemical and physical systems ranging from glasses and liquid crystals, to polymers and crystals and solutions of
biomolecules.

GROMACS supports the GROMOS force fields, with all parameters provided in the distribution for 43al, 43a2,
45a3, 53a5, 53a6 and 54a7. The GROMOS force fields are united atom force fields (page 333), i.e. without explicit
aliphatic (non-polar) hydrogens.

* GROMOS 53a6 - in GROMACS format (J. Comput. Chem. 2004 vol. 25 (13): 1656-1676).
¢ GROMOS 53a5 - in GROMACS format (J. Comput. Chem. 2004 vol. 25 (13): 1656-1676).

* GROMOS 43alp - 43al modified to contain SEP (phosphoserine), TPO (phosphothreonine), and PTR
(phosphotyrosine) (all PO42- forms), and SEPH, TPOH, PTRH (PO4H- forms).

3.6.4 OPLS

OPLS (Optimized Potential for Liquid Simulations) is a set of force fields developed by Prof. William L. Jorgensen
for condensed phase simulations, with the latest version being OPLS-AA/M.

The standard implementations for those force fields are the BOSS and MCPRO programs developed by the Jor-
gensen group

As there is no central web-page to point to, the user is advised to consult the original literature for the united atom
(OPLS-UA) and all atom (OPLS-AA) force fields, as well as the Jorgensen group page

3.7 Molecular dynamics parameters (.mdp options)

3.7.1 General information
Default values are given in parentheses, or listed first among choices. The first option in the list is always the
default option. Units are given in square brackets. The difference between a dash and an underscore is ignored.

A sample mdp file (page 489) is available. This should be appropriate to start a normal simulation. Edit it to suit
your specific needs and desires.

3.7. Molecular dynamics parameters (.mdp options) 43

https://gitlab.com/gromacs/gromacs/-/issues/2884
https://doi.org/10.26434/chemrxiv.11474583.v1
https://www.igc.ethz.ch/gromos.html
http://zarbi.chem.yale.edu/oplsaam.html
http://zarbi.chem.yale.edu/software.html
http://zarbi.chem.yale.edu/software.html
https://doi.org/10.1021%2Fja00214a001
https://doi.org/10.1021%2Fja00214a001
https://doi.org/10.1021%2Fja9621760
http://zarbi.chem.yale.edu/

GROMACS Documentation, Release 2025.0

Preprocessing

include

directories to include in your topology. Format: —I/home/john/mylib -I../otherlib

define

defines to pass to the preprocessor, default is no defines. You can use any defines to control options in your
customized topology files. Options that act on existing rop (page 493) file mechanisms include

-DFLEXIBLE will use flexible water instead of rigid water into your topology, this can be useful
for normal mode analysis.

—-DPOSRES will trigger the inclusion of posre . i tp into your topology, used for implementing
position restraints.

Run control

integrator

(Despite the name, this list includes algorithms that are not actually integrators over time.
integrator=steep (page 44) and all entries following it are in this category)

md

A leap-frog algorithm for integrating Newton’s equations of motion.
md-vv

A velocity Verlet algorithm for integrating Newton’s equations of motion. For constant NVE simu-
lations started from corresponding points in the same trajectory, the trajectories are analytically, but
not binary, identical to the 1ntegrator=md (page 44) leap-frog integrator. The kinetic energy is
determined from the whole step velocities and is therefore slightly too high. The advantage of this in-
tegrator is more accurate, reversible Nose-Hoover and Parrinello-Rahman coupling integration based
on Trotter expansion, as well as (slightly too small) full step velocity output. This all comes at the cost
of extra computation, especially with constraints and extra communication in parallel. Note that for
nearly all production simulations the i ntegrator=md (page 44) integrator is accurate enough.

md-vv-avek

A velocity Verlet algorithm identical to i ntegrator=md-vv (page 44), except that the kinetic en-
ergy is determined as the average of the two half step kinetic energies as in the integrator=md
(page 44) integrator, and this thus more accurate. With Nose-Hoover and/or Parrinello-Rahman cou-
pling this comes with a slight increase in computational cost.

sd

An accurate and efficient leap-frog stochastic dynamics integrator. With constraints, coordinates needs
to be constrained twice per integration step. Depending on the computational cost of the force calcula-
tion, this can take a significant part of the simulation time. The temperature for one or more groups of
atoms (t c-grps (page 56)) is set with re f—t (page 56), the inverse friction constant for each group
is set with tau—t (page 56). The parameters t coupl (page 55) and nsttcouple (page 56) are
ignored. The random generator is initialized with 1d-seed (page 47). When used as a thermostat,
an appropriate value for tau—t (page 56) is 2 ps, since this results in a friction that is lower than the
internal friction of water, while it is high enough to remove excess heat NOTE: temperature deviations
decay twice as fast as with a Berendsen thermostat with the same tau—t (page 56).

bd

An Euler integrator for Brownian or position Langevin dynamics. The velocity is the force divided by
a friction coefficient (bd—fric (page 47)) plus random thermal noise (ref-t (page 56)). When
bd-fric (page 47) is 0, the friction coefficient for each particle is calculated as mass/ tau-t
(page 56), as for the integrator integrator=sd (page 44). The random generator is initialized
with 1d-seed (page 47).

3.7. Molecular dynamics parameters (.mdp options) 44

GROMACS Documentation, Release 2025.0

steep

cg

A steepest descent algorithm for energy minimization. The maximum step size is emstep (page 47),
the tolerance is emt o1 (page 47).

A conjugate gradient algorithm for energy minimization, the tolerance is emtol (page 47). CG is
more efficient when a steepest descent step is done every once in a while, this is determined by
nstcgsteep (page 47). For a minimization prior to a normal mode analysis, which requires a
very high accuracy, GROMACS should be compiled in double precision.

1-bfgs

nm

tpi

A quasi-Newtonian algorithm for energy minimization according to the low-memory Broyden-
Fletcher-Goldfarb-Shanno approach. In practice this seems to converge faster than Conjugate Gra-
dients, but due to the correction steps necessary it is not (yet) parallelized.

Normal mode analysis is performed on the structure in the 7pr (page 495) file. GROMACS should be
compiled in double precision.

Test particle insertion. The last molecule in the topology is the test particle. A trajectory must be pro-
vided to mdrun -rerun. This trajectory should not contain the molecule to be inserted. Insertions
are performed nsteps (page 45) times in each frame at random locations and with random orienta-
tions of the molecule. When nst1ist (page 49) is larger than one, nst1ist (page 49) insertions
are performed in a sphere with radius rtpi (page 48) around a the same random location using the
same pair list. Since pair list construction is expensive, one can perform several extra insertions with
the same list almost for free. The random seed is set with 1d-seed (page 47). The temperature for
the Boltzmann weighting is set with ref—t (page 56), this should match the temperature of the sim-
ulation of the original trajectory. Dispersion correction is implemented correctly for TPI. All relevant
quantities are written to the file specified with mdrun -tpi. The distribution of insertion energies
is written to the file specified with mdrun -tpid. No trajectory or energy file is written. Parallel
TPI gives identical results to single-node TPI. For charged molecules, using PME with a fine grid is
most accurate and also efficient, since the potential in the system only needs to be calculated once per
frame.

tpic

Test particle insertion into a predefined cavity location. The procedure is the same as for
integrator=tpi (page 45), except that one coordinate extra is read from the trajectory, which
is used as the insertion location. The molecule to be inserted should be centered at 0,0,0. GROMACS
does not do this for you, since for different situations a different way of centering might be optimal.
Also rtpi (page 48) sets the radius for the sphere around this location. Neighbor searching is done
only once per frame, nst1ist (page 49) is not used. Parallel integrator=tpic (page 45) gives
identical results to single-rank integrator=tpic (page 45).

mimic

tinit

Enable MiMiC QM/MM coupling to run hybrid molecular dynamics. Keey in mind that its required
to launch CPMD compiled with MiMiC as well. In this mode all options regarding integration (T-
coupling, P-coupling, timestep and number of steps) are ignored as CPMD will do the integration
instead. Options related to forces computation (cutoffs, PME parameters, etc.) are working as usual.
Atom selection to define QM atoms is read from OMMM-grps (page 81)

(0) [ps] starting time for your run (only makes sense for time-based integrators)

dt

(0.001) [ps] time step for integration (only makes sense for time-based integrators)

nsteps

(0) maximum number of steps to integrate or minimize, -1 is no maximum

3.7. Molecular dynamics parameters (.mdp options) 45

GROMACS Documentation, Release 2025.0

init-step

(0) The starting step. The time at step i in a run is calculated as: t = tinit (page 45) + dt (page 45) *
(init-step (page 45) + 1). The free-energy lambda is calculated as: lambda = init—Iambda (page 72)
+ delta-lambda (page 72) * (init—-step (page 45) + i). Also non-equilibrium MD parameters can
depend on the step number. Thus for exact restarts or redoing part of a run it might be necessary to set
init-step (page 45) to the step number of the restart frame. gmx convert-tpr (page 148) does this
automatically.

simulation-part

mts

(0) A simulation can consist of multiple parts, each of which has a part number. This option specifies what
that number will be, which helps keep track of parts that are logically the same simulation. This option is
generally useful to set only when coping with a crashed simulation where files were lost.

no

Evaluate all forces at every integration step.

yes
Use a multiple timing-stepping integrator to evaluate some forces, as specified by
mts—level2-forces (page 46) every mts—levellZ-factor (page 46) integration steps.
All other forces are evaluated at every step. MTS is currently only supported with integrator=md
(page 44).

mts—-levels

(2) The number of levels for the multiple time-stepping scheme. Currently only 2 is supported.

mts-level2-forces

(longrange-nonbonded) A list of one or more force groups that will be evaluated only ev-
ery mts—level2-factor (page 46) steps. Supported entries are: longrange-nonbonded,
nonbonded, pair, dihedral, angle, pull and awh. With pair the listed pair forces (such as
1-4) are selected. With dihedral all dihedrals are selected, including cmap. All other forces, including
all restraints, are evaluated and integrated every step. When PME or Ewald is used for electrostatics and/or
LJ interactions, Longrange—nonbonded can not be omitted here.

mts-level2-factor

(2) [steps] Interval for computing the forces in level 2 of the multiple time-stepping scheme

mass-repartition-factor

(1) [] Scales the masses of the lightest atoms in the system by this factor to the mass mMin. All atoms with
a mass lower than mMin also have their mass set to that mMin. The mass change is subtracted from the
mass of the atom the light atom is bound to. If there is no bound atom a warning is generated. If there is
more than one atom bound an error is generated. If the mass of the bound atom would become lower than
mMin an error is generated. For typical atomistic systems only the masses of hydrogens are scaled. With
constraints=h-bonds (page 59), a factor of 3 will usually enable a time step of 4 fs.

comm—-mode

Linear

Remove center of mass translational velocity

Angular

Remove center of mass translational and rotational velocity

Linear—-acceleration-correction

Remove center of mass translational velocity. Correct the center of mass position assuming linear
acceleration over nstcomm (page 47) steps. This is useful for cases where an acceleration is expected
on the center of mass which is nearly constant over nstcomm (page 47) steps. This can occur for
example when pulling on a group using an absolute reference.

3.7.

Molecular dynamics parameters (.mdp options) 46

GROMACS Documentation, Release 2025.0

None

No restriction on the center of mass motion

nstcomm
(100) [steps] interval for center of mass motion removal
comm—-grps

group(s) for center of mass motion removal, default is the whole system

Langevin dynamics

bd-fric
(0) [amu ps™'] Brownian dynamics friction coefficient. When hd—-fric (page 47) is 0, the friction coeffi-
cient for each particle is calculated as mass/ tau—t (page 56).

ld-seed

(-1) [integer] used to initialize random generator for thermal noise for stochastic and Brownian dynamics.
When 1d-seed (page 47) is set to -1, a pseudo random seed is used. When running BD or SD on multiple
processors, each processor uses a seed equal to 1d—-seed (page 47) plus the processor number.

Energy minimization

emtol

(10.0) [kJ mol! nm™'] the minimization is converged when the maximum force is smaller than this value

emstep
(0.01) [nm] initial step-size

nstcgsteep
(1000) [steps] interval of performing 1 steepest descent step while doing conjugate gradient energy mini-
mization.

nbfgscorr

(10) Number of correction steps to use for L-BFGS minimization. A higher number is (at least theoretically)
more accurate, but slower.

Shell Molecular Dynamics

When shells or flexible constraints are present in the system the positions of the shells and the lengths of the
flexible constraints are optimized at every time step until either the RMS force on the shells and constraints is less
than emt ol (page 47), or a maximum number of iterations niter (page 47) has been reached. Minimization is
converged when the maximum force is smaller than emt ol (page 47). For shell MD this value should be 1.0 at
most.

niter

(20) maximum number of iterations for optimizing the shell positions and the flexible constraints.

fcstep

(0) [ps?] the step size for optimizing the flexible constraints. Should be chosen as mu/(d2V/dg2) where
mu is the reduced mass of two particles in a flexible constraint and d2V/dq2 is the second derivative of the
potential in the constraint direction. Hopefully this number does not differ too much between the flexible
constraints, as the number of iterations and thus the runtime is very sensitive to fcstep. Try several values!

3.7. Molecular dynamics parameters (.mdp options) 47

GROMACS Documentation, Release 2025.0

Test particle insertion

rtpi
(0.05) [nm] the test particle insertion radius, see integrators integrator=tpi (page 45) and
integrator=tpic (page 45)

Output control

nstxout
(0) [steps] number of steps that elapse between writing coordinates to the output trajectory file (17
(page 495)), the first and last coordinates are always written unless 0, which means coordinates are not
written into the trajectory file.

nstvout
(0) [steps] number of steps that elapse between writing velocities to the output trajectory file (177 (page 495)),
the first and last velocities are always written unless 0, which means velocities are not written into the
trajectory file.

nstfout
(0) [steps] number of steps that elapse between writing forces to the output trajectory file (trr (page 495)),
the first and last forces are always written, unless 0, which means forces are not written into the trajectory
file.

nstlog
(1000) [steps] number of steps that elapse between writing energies to the log file, the first and last energies
are always written.

nstcalcenergy

(100) number of steps that elapse between calculating the energies, 0 is never. This option is only relevant
with dynamics. This option affects the performance in parallel simulations, because calculating energies
requires global communication between all processes which can become a bottleneck at high parallelization.

nstenergy

(1000) [steps] number of steps that elapse between writing energies to the energy file (edr (page 486)),
the first and last energies are always written, should be a multiple of nstcalcenergy (page 48). Note
that the exact sums and fluctuations over all MD steps modulo nstcalcenergy (page 48) are stored
in the energy file, so gmx energy (page 179) can report exact energy averages and fluctuations also when
nstenergy (page 48) > 1

nstxout—-compressed
(0) [steps] number of steps that elapse between writing position coordinates using lossy compression (xtc
(page 497) file), the first and last coordinates are always written, unless 0, which means that there is no
compressed coordinates output.

compressed—-x—precision
(1000) [real] precision with which to write to the compressed trajectory file

compressed—-x—-grps
group(s) to write to the compressed trajectory file, by default the whole system is written (if

nstxout-compressed (page 48) > 0)

energygrps
group(s) for which to write to write short-ranged non-bonded potential energies to the energy file (not
supported on GPUs)

3.7. Molecular dynamics parameters (.mdp options) 48

GROMACS Documentation, Release 2025.0

Neighbor searching

cutoff-scheme

Verlet

Generate a pair list with buffering. The buffer size is automatically set based on
verlet-buffer—tolerance (page 49), unless this is set to -1, in which case r1ist (page 50)
will be used.

group
Generate a pair list for groups of atoms, corresponding to the charge groups in the topology. This
option is no longer supported.

nstlist

pbc

(10) [steps]

>0
Interval between steps that update the neighbor list. When dynamics and
verlet-buffer—-tolerance (page 49) set, nstlist (page 49) is actually a minimum
value and gmx mdrun (page 217) might increase it, unless it is set to 1. With parallel simulations
and/or non-bonded force calculation on the GPU, a value of 20 or 40 often gives the best performance.
With energy minimization this parameter is not used as the pair list is updated when at least one atom
has moved by more than half the pair list buffer size.

0
The neighbor list is only constructed once and never updated. This is mainly useful for vacuum simu-
lations in which all particles see each other. But vacuum simulations are (temporarily) not supported.

<0
Unused.

Xyz
Use periodic boundary conditions in all directions.

no
Use no periodic boundary conditions, ignore the box. To simulate without cut-offs, set all cut-offs and
nstlist (page 49) to 0. For best performance without cut-offs on a single MPI rank, set nst1ist
(page 49) to zero.

Xy

Use periodic boundary conditions in x and y directions only. This can be used in combination with
walls (page 60). Without walls or with only one wall the system size is infinite in the z direction.
Therefore pressure coupling or Ewald summation methods can not be used. These disadvantages do
not apply when two walls are used.

periodic—-molecules

no

molecules are finite, fast molecular PBC can be used

yes

for systems with molecules that couple to themselves through the periodic boundary conditions, this
requires a slower PBC algorithm and molecules are not made whole in the output

verlet-buffer-tolerance

(0.005) [kJ mol™! ps']

Used when performing a simulation with dynamics. This sets the maximum allowed error for pair interac-
tions per particle caused by the Verlet buffer, which indirectly sets r1ist (page 50). As both nstlist
(page 49) and the Verlet buffer size are fixed (for performance reasons), particle pairs not in the pair list can

3.7. Molecular dynamics parameters (.mdp options) 49

GROMACS Documentation, Release 2025.0

occasionally get within the cut-off distance during nst1ist (page 49) -1 steps. This causes very small
jumps in the energy. In a constant-temperature ensemble, these very small energy jumps can be estimated
for a given cut-off and r11ist (page 50). The estimate assumes a homogeneous particle distribution, hence
the errors might be slightly underestimated for multi-phase systems. (See the reference manual for details).
For longer pair-list life-time (nst1ist (page 49) -1) * dt (page 45) the buffer is overestimated, because
the interactions between particles are ignored. Combined with cancellation of errors, the actual drift of the
total energy is usually one to two orders of magnitude smaller. Note that the generated buffer size takes into
account that the GROMACS pair-list setup leads to a reduction in the drift by a factor 10, compared to a sim-
ple particle-pair based list. Without dynamics (energy minimization etc.), the buffer is 5% of the cut-off. For
NVE simulations the initial temperature is used, unless this is zero, in which case a buffer of 10% is used.
For NVE simulations the tolerance usually needs to be lowered to achieve proper energy conservation on
the nanosecond time scale. To override the automated buffer setting, use verlet-buffer—-tolerance
(page 49) =-1 and set r11ist (page 50) manually.

verlet-buffer-pressure-tolerance
(0.5) [bar]

Used when performing a simulation with dynamics and only active when verlet-buffer-tolerance
(page 49) is positive. This sets the maximum tolerated error in the average pressure due to missing Lennard-
Jones interactions of particle pairs that are not in the pair list, but come within rvdw (page 53) range as the
pair list ages. As for the drift tolerance, the (over)estimate of the pressure error is tight at short times. At
longer time it turns into a significant overestimate, because interactions limit the displacement of particles.
Note that the default tolerance of 0.5 bar corresponds to a maximum relative deviation of the density of
liquid water of 2e-5.

rlist

(1) [nm] Cut-off distance for the short-range neighbor list. With dynamics, this is by default set by the
verlet-buffer—tolerance (paged49)and verlet-buffer-pressure—tolerance (page 50)
options and the value of r1ist (page 50) is ignored. Without dynamics, this is by default set to the
maximum cut-off plus 5% buffer, except for test particle insertion, where the buffer is managed exactly and
automatically. For NVE simulations, where the automated setting is not possible, the advised procedure is
to run gmx grompp (page 192) with an NVT setup with the expected temperature and copy the resulting
value of r1ist (page 50) to the NVE setup.

Electrostatics

coulombtype

Cut-off

Plain cut-off with pair list radius r1ist (page 50) and Coulomb cut-off rcoulomb (page 51),
where rlist (page 50) >= rcoulomb (page 51). Note that with the (default) setting of
coulomb-modifier (page 51) =Potential-shift not only the potentials between interacting pairs
are shifted to be zero at the cut-off, but the same shift is also applied to excluded pairs. This does not
lead to forces between excluded pairs, but does add a constant offset to the total Coulomb potential.

Ewald

Classical Ewald sum electrostatics. The real-space cut-off rcoulomb (page 51) should be equal
to r1ist (page 50). Use e.g. rlist (page 50) =0.9, rcoulomb (page 51) =0.9. The highest
magnitude of wave vectors used in reciprocal space is controlled by fourierspacing (page 53).
The relative accuracy of direct/reciprocal space is controlled by ewa ld-rtol (page 54).

NOTE: Ewald scales as O(N*?) and is thus extremely slow for large systems. It is included mainly for
reference - in most cases PME will perform much better.

PME

Fast smooth Particle-Mesh Ewald (SPME) electrostatics. Direct space is similar to the Ewald
sum, while the reciprocal part is performed with FFTs. Grid dimensions are controlled with
fourierspacing (page 53) and the interpolation order with pme—-order (page 54). With a grid
spacing of 0.1 nm and cubic interpolation the electrostatic forces have an accuracy of 2-3*10*. Since
the error from the vdw-cutoff is larger than this you might try 0.15 nm. When running in parallel

3.7. Molecular dynamics parameters (.mdp options) 50

GROMACS Documentation, Release 2025.0

the interpolation parallelizes better than the FFT, so try decreasing grid dimensions while increasing
interpolation.

P3M-AD

Particle-Particle Particle-Mesh algorithm with analytical derivative for for long-range electrostatic in-
teractions. The method and code is identical to SPME, except that the influence function is optimized
for the grid. This gives a slight increase in accuracy.

Reaction-Field

Reaction field electrostatics with Coulomb cut-off rcoulomb (page 51), where r1ist (page 50) >=
rvdw (page 53). The dielectric constant beyond the cut-off is epsilon—rf (page 52). The dielectric
constant can be set to infinity by setting epsilon-rf (page 52) =0.

User

Currently unsupported. gmx mdrun (page 217) will now expect to find a file table . xvg with user-
defined potential functions for repulsion, dispersion and Coulomb. When pair interactions are present,
gmx mdrun (page 217) also expects to find a file tablep.xvg for the pair interactions. When the
same interactions should be used for non-bonded and pair interactions the user can specify the same file
name for both table files. These files should contain 7 columns: the x value, f (x), -f' (%), g (x),
-g'(x),h(x),-h' (%), where f (x) is the Coulomb function, g (x) the dispersion function and
h (x) the repulsion function. When vdwt ype (page 52) is not set to User the values for g, -g', h
and —h"' are ignored. For the non-bonded interactions x values should run from O to the largest cut-off
distance + table-extension (page 53) and should be uniformly spaced. For the pair interactions
the table length in the file will be used. The optimal spacing, which is used for non-user tables, is
0.002 nm when you run in mixed precision or 0. 0005 nm when you run in double precision. The
function value at x=0 is not important. More information is in the printed manual.

PME-Switch
Currently unsupported. A combination of PME and a switch function for the direct-space part (see
above). rcoulomb (page 51) is allowed to be smaller than r11st (page 50).

PME-User

Currently unsupported. A combination of PME and user tables (see above). rcoulomb (page 51) is
allowed to be smaller than r11ist (page 50). The PME mesh contribution is subtracted from the user
table by gmx mdrun (page 217). Because of this subtraction the user tables should contain about 10
decimal places.

PME-User-Switch

Currently unsupported. A combination of PME-User and a switching function (see above). The
switching function is applied to final particle-particle interaction, i.e. both to the user supplied function
and the PME Mesh correction part.

coulomb-modifier

Potential-shift
Shift the Coulomb potential by a constant such that it is zero at the cut-off. This makes the potential
the integral of the force. Note that this does not affect the forces or the sampling.
None
Use an unmodified Coulomb potential. This can be useful when comparing energies with those com-
puted with other software.
rcoulomb-switch
(0) [nm] where to start switching the Coulomb potential, only relevant when force or potential switching is
used
rcoulomb

(1) [nm] The distance for the Coulomb cut-off. Note that with PME this value can be increased by the PME
tuning in gmx mdrun (page 217) along with the PME grid spacing.

3.7. Molecular dynamics parameters (.mdp options) 51

GROMACS Documentation, Release 2025.0

epsilon-r

(1) The relative dielectric constant. A value of 0 means infinity.

epsilon-rf

(0) The relative dielectric constant of the reaction field. This is only used with reaction-field electrostatics.
A value of 0 means infinity.

Van der Waals

vdwtype

Cut—-off

PME

Plain cut-off with pair list radius r1ist (page 50) and VAW cut-off rvdw (page 53), where r1ist
(page 50) >= rvdw (page 53).

Fast smooth Particle-mesh Ewald (SPME) for VAW interactions. The grid dimensions are controlled
with fourierspacing (page 53) in the same way as for electrostatics, and the interpolation order
is controlled with pme-order (page 54). The relative accuracy of direct/reciprocal space is con-
trolled by ewald-rtol—-1j (page 54), and the specific combination rules that are to be used by the
reciprocal routine are set using 1 j—pme—-comb—-rule (page 54).

Shift

This functionality is deprecated and replaced by using vdwtype=Cut-off (page 52) with
vdw-modifier=Force—switch (page 52). The LJ (not Buckingham) potential is decreased over
the whole range and the forces decay smoothly to zero between rvdw—switch (page 53) and rvdw

(page 53).

Switch

This functionality is deprecated and replaced by using vdwtype=Cut-off (page 52) with
vdw-modifier=Potential-switch (page 52). The LJ (not Buckingham) potential is normal
outto rvdw—switch (page 53), after which it is switched off to reach zero at rvdw (page 53). Both
the potential and force functions are continuously smooth, but be aware that all switch functions will
give rise to a bulge (increase) in the force (since we are switching the potential).

User

Currently unsupported. See coulombtype=User (page 51) for instructions. The function value at
zero is not important. When you want to use LJ correction, make sure that rvdw (page 53) corresponds
to the cut-off in the user-defined function. When coulombt ype (page 50) is not set to User the values
for the f and —£' columns are ignored.

vdw-modifier

Potential-shift

Shift the Van der Waals potential by a constant such that it is zero at the cut-off. This makes the
potential the integral of the force. Note that this does not affect the forces or the sampling.

None

Use an unmodified Van der Waals potential. This can be useful when comparing energies with those
computed with other software.

Force-switch

Smoothly switches the forces to zero between rvdw—switch (page 53) and rvdw (page 53). This
shifts the potential shift over the whole range and switches it to zero at the cut-off. Note that this is
more expensive to calculate than a plain cut-off and it is not required for energy conservation, since
Potential-shift conserves energy just as well.

3.7. Molecular dynamics parameters (.mdp options) 52

GROMACS Documentation, Release 2025.0

Potential-switch

Smoothly switches the potential to zero between rvdw—switch (page 53) and rvdw (page 53).
Note that this introduces articifically large forces in the switching region and is much more expensive
to calculate. This option should only be used if the force field you are using requires this.

rvdw-switch

rvdw

(0) [nm] where to start switching the LJ force and possibly the potential, only relevant when force or
potential switching is used

(1) [nm] distance for the LJ or Buckingham cut-off

DispCorr

no

do not apply any correction

EnerPres

apply long-range dispersion corrections for Energy and Pressure

Ener

apply long-range dispersion corrections for Energy only

Tables

table—-extension

(1) [nm] Extension of the non-bonded potential lookup tables beyond the largest cut-off distance. With
actual non-bonded interactions the tables are never accessed beyond the cut-off. But a longer table length
might be needed for the 1-4 interactions, which are always tabulated irrespective of the use of tables for the
non-bonded interactions.

energygrp-table

Currently unsupported. When user tables are used for electrostatics and/or VAW, here one can give pairs of
energy groups for which separate user tables should be used. The two energy groups will be appended to
the table file name, in order of their definition in energygrps (page 48), separated by underscores. For
example, if energygrps = Na Cl Sol and energygrp-table = Na Na Na C1l, gmx mdrun
(page 217) will read table_Na_Na.xvg and table_Na_Cl.xvg in addition to the normal table.
xvg which will be used for all other energy group pairs.

Ewald

four

four

four

ierspacing

(0.12) [nm] For ordinary Ewald, the ratio of the box dimensions and the spacing determines a lower bound
for the number of wave vectors to use in each (signed) direction. For PME and P3M, that ratio determines
a lower bound for the number of Fourier-space grid points that will be used along that axis. In all cases, the
number for each direction can be overridden by entering a non-zero value for that fourier—nx (page 53)
direction. For optimizing the relative load of the particle-particle interactions and the mesh part of PME, it
is useful to know that the accuracy of the electrostatics remains nearly constant when the Coulomb cut-off
and the PME grid spacing are scaled by the same factor. Note that this spacing can be scaled up along with
rcoulomb (page 51) by the PME tuning in gmx mdrun (page 217).

ier—-nx

ier—-ny

3.7. Molecular dynamics parameters (.mdp options) 53

GROMACS Documentation, Release 2025.0

fourier—nz

(0) Highest magnitude of wave vectors in reciprocal space when using Ewald. Grid size when using PME or
P3M. These values override fourierspacing (page 53) per direction. The best choice is powers of 2,
3,5 and 7. Avoid large primes. Note that these grid sizes can be reduced along with scaling up rcoulomb
(page 51) by the PME tuning in gmx mdrun (page 217).

pme—order

(4) The number of grid points along a dimension to which a charge is mapped. The actual order of the PME
interpolation is one less, e.g. the default of 4 gives cubic interpolation. Supported values are 3 to 12 (max
8 for P3M-AD). When running in parallel, it can be worth to switch to 5 and simultaneously increase the
grid spacing. Note that on the CPU only values 4 and 5 have SIMD acceleration and GPUs only support the
value 4.

ewald-rtol

(10) The relative strength of the Ewald-shifted direct potential at rcoulomb (page 51) is given by
ewald-rtol (page 54). Decreasing this will give a more accurate direct sum, but then you need more
wave vectors for the reciprocal sum.

ewald-rtol-1j
(103) When doing PME for VdW-interactions, ewald-rtol—17j (page 54) is used to control the relative
strength of the dispersion potential at rvdw (page 53) in the same way as ewald-rtol (page 54) controls
the electrostatic potential.

1j-pme—-comb-rule
(Geometric) The combination rules used to combine VdW-parameters in the reciprocal part of LJ-PME.
Geometric rules are much faster than Lorentz-Berthelot and usually the recommended choice, even when
the rest of the force field uses the Lorentz-Berthelot rules.
Geometric

Apply geometric combination rules

Lorentz-Berthelot
Apply Lorentz-Berthelot combination rules

ewald-geometry

3d
The Ewald sum is performed in all three dimensions.

3dc

The reciprocal sum is still performed in 3D, but a force and potential correction applied in the z
dimension to produce a pseudo-2D summation. If your system has a slab geometry in the x—y plane
you can try to increase the z-dimension of the box (a box height of 3 times the slab height is usually
ok) and use this option.

epsilon-surface

(0) This controls the dipole correction to the Ewald summation in 3D. The default value of zero means it is
turned off. Turn it on by setting it to the value of the relative permittivity of the imaginary surface around
your infinite system. Be careful - you should not use this if you have free mobile charges in your system.
This value does not affect the slab 3DC variant of the long-range corrections.

3.7. Molecular dynamics parameters (.mdp options) 54

GROMACS Documentation, Release 2025.0

Temperature coupling

ensemble-temperature-setting

auto
With this setting gmx grompp (page 192) will determine which of the next three settings is available
and choose the appropriate one. When all atoms are coupled to a temperature bath with the same
temperature, a constant ensemble temperature is chosen and the value is taken from the temperature
bath.

constant
The system has a constant ensemble temperature given by ensemble-temperature (page 55). A
constant ensemble temperature is required for certain sampling algorithms such as AWH.

variable
The system has a variable ensemble temperature due to simulated annealing or simulated tempering.
The system ensemble temperature is set dynamically during the simulation.

not-available

The system has no ensemble temperature.

ensemble—-temperature
(-1) [K]

The ensemble temperature for the system. The input value is only wused with
ensemble—-temperature-setting=constant. By default the ensemble temperature is copied
from the temperature of the thermal bath (when used).

tcoupl
no
No temperature coupling.
berendsen

Temperature coupling with a Berendsen thermostat to a bath with temperature re -t (page 56), with
time constant tau—t (page 56). Several groups can be coupled separately, these are specified in the
tc—grps (page 56) field separated by spaces. This is a historical thermostat needed to be able to
reproduce previous simulations, but we strongly recommend not to use it for new production runs.
Consult the manual for details.

nose-hoover

Temperature coupling using a Nose-Hoover extended ensemble. The reference temperature and cou-
pling groups are selected as above, but in this case tau—t (page 56) controls the period of the tem-
perature fluctuations at equilibrium, which is slightly different from a relaxation time. For NVT sim-
ulations the conserved energy quantity is written to the energy and log files.

andersen

Temperature coupling by randomizing a fraction of the particle velocities at each timestep. Reference
temperature and coupling groups are selected as above. tau—t (page 56) is the average time between
randomization of each molecule. Inhibits particle dynamics somewhat, but has little or no ergodicity
issues. Currently only implemented with velocity Verlet, and not implemented with constraints.

andersen-massive

Temperature coupling by randomizing velocities of all particles at infrequent timesteps. Reference
temperature and coupling groups are selected as above. tau-t (page 56) is the time between ran-
domization of all molecules. Inhibits particle dynamics somewhat, but has little or no ergodicity
issues. Currently only implemented with velocity Verlet.

v-rescale

Temperature coupling using velocity rescaling with a stochastic term (JCP 126, 014101). This thermo-
stat is similar to Berendsen coupling, with the same scaling using t au—t (page 56), but the stochastic
term ensures that a proper canonical ensemble is generated. The random seed is set with 1d-seed

3.7. Molecular dynamics parameters (.mdp options) 55

GROMACS Documentation, Release 2025.0

(page 47). This thermostat works correctly even for tau—t (page 56) =0. For NVT simulations the
conserved energy quantity is written to the energy and log file.

nsttcouple

(-1) The interval between steps that couple the temperature. The default value of -1 sets nsttcouple
(page 56) equal to 100, or fewer steps if required for accurate integration (5 steps per tau for first order
coupling, 20 steps per tau for second order coupling). Note that the default value is large in order to reduce
the overhead of the additional computation and communication required for obtaining the kinetic energy.
For velocity Verlet integrators nsttcouple (page 56) is set to 1.

nh-chain-length

(10) The number of chained Nose-Hoover thermostats for velocity Verlet integrators, the leap-
frog integrator=md (page 44) integrator only supports 1. Data for the NH chain vari-
ables is not printed to the edr (page 486) file by default, but can be turned on with the
print-nose-hoover-chain-variables (page 56) option.

print—-nose-hoover—-chain-variables

no
Do not store Nose-Hoover chain variables in the energy file.

yes
Store all positions and velocities of the Nose-Hoover chain in the energy file.

tc—grps

groups to couple to separate temperature baths

tau-t

[ps] time constant for coupling (one for each group in tc—grps (page 56)), -1 means no temperature
coupling

ref-t

[K] reference temperature for coupling (one for each group in t c-grps (page 56))

Pressure coupling

pcoupl
no
No pressure coupling. This means a fixed box size.
Berendsen

Exponential relaxation pressure coupling with time constant tau-p (page 57). The box is scaled
every nstpcouple (page 57) steps. This barostat does not yield a correct thermodynamic ensemble;
it is only included to be able to reproduce previous runs, and we strongly recommend against using it
for new simulations. See the manual for details.

C-rescale

Exponential relaxation pressure coupling with time constant t au—p (page 57), including a stochastic
term to enforce correct volume fluctuations. The box is scaled every nstpcouple (page 57) steps.
It can be used for both equilibration and production.

Parrinello—-Rahman

Extended-ensemble pressure coupling where the box vectors are subject to an equation of motion. The
equation of motion for the atoms is coupled to this. No instantaneous scaling takes place. As for Nose-
Hoover temperature coupling the time constant t au—p (page 57) is the period of pressure fluctuations
at equilibrium. This is a good method when you want to apply pressure scaling during data collection,
but beware that you can get very large oscillations if you are starting from a different pressure. For
simulations where the exact fluctations of the NPT ensemble are important, or if the pressure coupling
time is very short, it may not be appropriate, as the previous time step pressure is used in some steps
of the GROMACS implementation for the current time step pressure.

3.7.

Molecular dynamics parameters (.mdp options) 56

GROMACS Documentation, Release 2025.0

MTTK

Martyna-Tuckerman-Tobias-Klein implementation, only useable with integrator=md-vv
(page 44) or integrator=md-vv-avek (page 44), very similar to Parrinello-Rahman. As for
Nose-Hoover temperature coupling the time constant t au—p (page 57) is the period of pressure fluc-
tuations at equilibrium. This is probably a better method when you want to apply pressure scaling
during data collection, but beware that you can get very large oscillations if you are starting from a
different pressure. This requires a constant ensemble temperature for the system. It only supports
isotropic scaling, and only works without constraints. MTTK coupling is deprecated.

pcoupltype

Specifies the kind of isotropy of the pressure coupling used. Each kind takes one or more values for

compressibility (page 57) and ref-p (page 57). Only a single value is permitted for tau—p

(page 57).

isotropic
Isotropic pressure coupling with time constant tau-p (page 57). One value each for
compressibility (page 57) and ref—p (page 57) is required.

semiisotropic
Pressure coupling which is isotropic in the x and y direction, but different in the z direction. This
can be useful for membrane simulations. Two values each for compressibility (page 57) and
ref—p (page 57) are required, for x /vy and z directions respectively.

anisotropic

Same as before, but 6 values are needed for xx, yy, zz, xy/yx, xz/zx and yz/zy components,
respectively. When the off-diagonal compressibilities are set to zero, a rectangular box will stay rect-
angular. Beware that anisotropic scaling can lead to extreme deformation of the simulation box.

surface-tension

Surface tension coupling for surfaces parallel to the xy-plane. Uses normal pressure coupling for
the z-direction, while the surface tension is coupled to the x/y dimensions of the box. The first
ref-p (page 57) value is the reference surface tension times the number of surfaces bar nm, the
second value is the reference z-pressure bar. The two compressibility (page 57) values are
the compressibility in the x/y and z direction respectively. The value for the z-compressibility should
be reasonably accurate since it influences the convergence of the surface-tension, it can also be set to
zero to have a box with constant height.

nstpcouple
(-1) The interval between steps that couple the pressure. The default value of -1 sets nstpcouple
(page 57) equal to 100, or fewer steps if required for accurate integration (5 steps per tau for first order
coupling, 20 steps per tau for second order coupling). Note that the default value is large in order to reduce
the overhead of the additional computation and communication required for obtaining the virial and kinetic
energy. For velocity Verlet integrators nsttcouple (page 56) is set to 1.

tau-p
(5) [ps] The time constant for pressure coupling (one value for all directions).

compressibility
[bar!] The compressibility (NOTE: this is now really in bar’") For water at 1 atm and 300 K the compress-
ibility is 4.5e-5 bar’!. The number of required values is implied by pcouplt ype (page 57).

ref-p
[bar] The reference pressure for coupling. The number of required values is implied by pcoupltype
(page 57).

refcoord-scaling

no

The reference coordinates for position restraints are not modified. Note that with this option the virial
and pressure might be ill defined, see here (page 424) for more details.

3.7. Molecular dynamics parameters (.mdp options) 57

GROMACS Documentation, Release 2025.0

all

The reference coordinates are scaled with the scaling matrix of the pressure coupling.

com

Scale the center of mass of the reference coordinates with the scaling matrix of the pressure coupling.
The vectors of each reference coordinate to the center of mass are not scaled. Only one COM is
used, even when there are multiple molecules with position restraints. For calculating the COM of
the reference coordinates in the starting configuration, periodic boundary conditions are not taken into
account. Note that with this option the virial and pressure might be ill defined, see here (page 424) for
more details.

Simulated annealing

Simulated annealing is controlled separately for each temperature group in GROMACS. The reference temperature
is a piecewise linear function, but you can use an arbitrary number of points for each group, and choose either
a single sequence or a periodic behaviour for each group. The actual annealing is performed by dynamically
changing the reference temperature used in the thermostat algorithm selected, so remember that the system will
usually not instantaneously reach the reference temperature!

annealing

Type of annealing for each temperature group

no
No simulated annealing - just couple to reference temperature value.

single
A single sequence of annealing points. If your simulation is longer than the time of the last point, the
temperature will be coupled to this constant value after the annealing sequence has reached the last
time point.

periodic

The annealing will start over at the first reference point once the last reference time is reached. This is
repeated until the simulation ends.

annealing—npoints

A list with the number of annealing reference/control points used for each temperature group. Use O for
groups that are not annealed. The number of entries should equal the number of temperature groups.

annealing-time

List of times at the annealing reference/control points for each group. If you are using periodic annealing,
the times will be used modulo the last value, i.e. if the values are 0, 5, 10, and 15, the coupling will restart at
the Ops value after 15ps, 30ps, 45ps, etc. The number of entries should equal the sum of the numbers given
in annealing-npoints (page 58).

annealing-temp

List of temperatures at the annealing reference/control points for each group. The number of entries should
equal the sum of the numbers given in annealing-npoints (page 58).

Confused? OK, let’s use an example. Assume you have two temperature groups, set the group selections to
annealing = single periodic, the number of points of each group to annealing-npoints = 3
4, the times to annealing-time = 0 3 6 0 2 4 6 and finally temperatures to annealing-temp =
298 280 270 298 320 320 298. The first group will be coupled to 298K at Ops, but the reference tem-
perature will drop linearly to reach 280K at 3ps, and then linearly between 280K and 270K from 3ps to 6ps. After
this is stays constant, at 270K. The second group is coupled to 298K at Ops, it increases linearly to 320K at 2ps,
where it stays constant until 4ps. Between 4ps and 6ps it decreases to 298K, and then it starts over with the same
pattern again, i.e. rising linearly from 298K to 320K between 6ps and 8ps. Check the summary printed by gmx
grompp (page 192) if you are unsure!

3.7. Molecular dynamics parameters (.mdp options) 58

GROMACS Documentation, Release 2025.0

Velocity generation

gen-vel

no

yes

Do not generate velocities. The velocities are set to zero when there are no velocities in the input
structure file.

Generate velocities in gmx grompp (page 192) according to a Maxwell distribution at temperature
gen—-temp (page 59), with random seed gen-seed (page 59). This is only meaningful with
integrator=md (page 44).

gen—temp
(300) [K] temperature for Maxwell distribution

gen-seed

(-1) [integer] used to initialize random generator for random velocities, when gen—seed (page 59) is set
to -1, a pseudo random seed is used.

Bonds

constraints

Controls which bonds in the topology will be converted to rigid holonomic constraints. Note that typical
rigid water models do not have bonds, but rather a specialized [settles] directive, so are not affected
by this keyword.

none

No bonds converted to constraints.

h-bonds

Convert the bonds with H-atoms to constraints.

all-bonds

Convert all bonds to constraints.

h-angles

Convert all bonds to constraints and convert the angles that involve H-atoms to bond-constraints.

all-angles

Convert all bonds to constraints and all angles to bond-constraints.

constraint—-algorithm

Chooses which solver satisfies any non-SETTLE holonomic constraints.

LINCS

LINear Constraint Solver. With domain decomposition the parallel version P-LINCS is used. The
accuracy in set with 1incs-order (page 60), which sets the number of matrices in the expansion
for the matrix inversion. After the matrix inversion correction the algorithm does an iterative correction
to compensate for lengthening due to rotation. The number of such iterations can be controlled with
lincs—iter (page 60). The root mean square relative constraint deviation is printed to the log file
every nstlog (page 48) steps. If a bond rotates more than 1 incs-warnangle (page 60) in one
step, a warning will be printed both to the log file and to stderr. LINCS should not be used with
coupled angle constraints.

SHAKE

SHAKE is slightly slower and less stable than LINCS, but does work with angle constraints. The
relative tolerance is set with shake—t ol (page 60), 0.0001 is a good value for “normal” MD. SHAKE
does not support constraints between atoms on different decomposition domains, so it can only be used
with domain decomposition when so-called update-groups are used, which is usually the case when
only bonds involving hydrogens are constrained. SHAKE can not be used with energy minimization.

3.7. Molecular dynamics parameters (.mdp options) 59

GROMACS Documentation, Release 2025.0

continuation

This option was formerly known as unconstrained-start.

no

apply constraints to the start configuration and reset shells

yes
do not apply constraints to the start configuration and do not reset shells, useful for exact continuation
and reruns

shake-tol
(0.0001) relative tolerance for SHAKE

lincs-order

(4) Highest order in the expansion of the constraint coupling matrix. When constraints form triangles, an
additional expansion of the same order is applied on top of the normal expansion only for the couplings
within such triangles. For “normal” MD simulations an order of 4 usually suffices, 6 is needed for large
time-steps with virtual sites or BD. For accurate energy minimization in double precision an order of 8
or more might be required. Note that in single precision an order higher than 6 will often lead to worse
accuracy due to amplification of rounding errors. With domain decomposition, the cell size is limited by
the distance spanned by 1incs—-order (page 60) +1 constraints. When one wants to scale further than
this limit, one can decrease 1incs—-order (page 60) and increase 1incs—iter (page 60), since the
accuracy does not deteriorate when (1+ 1incs-iter (page 60))* 1incs-order (page 60) remains
constant.

lincs-iter
(1) Number of iterations to correct for rotational lengthening in LINCS. For normal runs a single step is
sufficient, but for NVE runs where you want to conserve energy accurately or for accurate energy mini-
mization in double precision you might want to increase it to 2. Note that in single precision using more
than 1 iteration will often lead to worse accuracy due to amplification of rounding errors.
lincs—-warnangle
(30) [deg] maximum angle that a bond can rotate before LINCS will complain

morse

no

bonds are represented by a harmonic potential

yes
bonds are represented by a Morse potential

Energy group exclusions

energygrp—excl

Exclusion between pairs of energy groups are currently not supported.

Walls

nwall

(0) When set to 1 there is a wall at z=0, when set to 2 there is also a wall at z=z—-box. Walls can only be
used with pbc (page 49) =xy. When set to 2, pressure coupling and Ewald summation can be used (it is
usually best to use semiisotropic pressure coupling with the x/y compressibility set to 0, as otherwise the
surface area will change). Walls interact wit the rest of the system through an optional wall-atomtype
(page 60). Energy groups wal1l0 and walll (for nwall (page 60)=2) are added automatically to monitor
the interaction of energy groups with each wall. The center of mass motion removal will be turned off in
the z-direction.

3.7. Molecular dynamics parameters (.mdp options) 60

GROMACS Documentation, Release 2025.0

wall-atomtype

the atom type name in the force field for each wall. By (for example) defining a special wall atom type in
the topology with its own combination rules, this allows for independent tuning of the interaction of each
atomtype with the walls.

wall-type

9-3

LJ integrated over the volume behind the wall: 9-3 potential
10-4

LJ integrated over the wall surface: 10-4 potential
12-6

direct LJ potential with the z distance from the wall

table
user-defined potentials indexed with the z distance from the wall, the tables are read analogously to
the energygrp—table (page 53) option, where the first name is for a “normal” energy group and
the second name is wal10 or walll, only the dispersion and repulsion columns are used
wall-r-linpot
(-1) [nm] Below this distance from the wall the potential is continued linearly and thus the force is constant.
Setting this option to a postive value is especially useful for equilibration when some atoms are beyond a
wall. When the value is <=0 (<0 for wall-type (page 61) =table), a fatal error is generated when atoms
are beyond a wall.
wall-density

[nm™3]/ [nm] the number density of the atoms for each wall for wall types 9-3 and 10-4

wall-ewald-zfac

(3) The scaling factor for the third box vector for Ewald summation only, the minimum is 2. Ewald sum-
mation can only be used with nwa 11 (page 60) =2, where one should use ewald-geomet ry (page 54)
=3dc. The empty layer in the box serves to decrease the unphysical Coulomb interaction between periodic
images.

COM pulling

Sets whether pulling on collective variables is active. Note that where pulling coordinates are applicable, there
can be more than one (set with pull-ncoords (page 62)) and multiple related mdp (page 489) variables will
exist accordingly. Documentation references to things like pull-coordl-vec (page 65) should be understood
to apply to to the applicable pulling coordinate, eg. the second pull coordinate is described by pull-coord2-vec,
pull-coord2-k, and so on.

pull

no

No center of mass pulling. All the following pull options will be ignored (and if present in the mdp
(page 489) file, they unfortunately generate warnings)

yes
Center of mass pulling will be applied on 1 or more groups using 1 or more pull coordinates.
pull-cylinder-r
(1.5) [nm] the radius of the cylinder for pull-coordl-geometry=cylinder (page 64)

pull-constr-tol

(10°) the relative constraint tolerance for constraint pulling

pull-print-com

3.7. Molecular dynamics parameters (.mdp options) 61

GROMACS Documentation, Release 2025.0

no

do not print the COM for any group

yes
print the COM of all groups for all pull coordinates to the pullx.xvg file.

pull-print-ref-value

no

do not print the reference value for each pull coordinate

yes

print the reference value for each pull coordinate to the pullx.xvg file.

pull-print-components

no

only print the distance for each pull coordinate

yes
print the distance and Cartesian components selected in pull-coordl-dim (page 65) to the
pullx.xvg file.
pull-nstxout
(50) interval for writing out the COMs of all the pull groups (0 is never) to the pul1x . xvg file.

pull-nstfout
(50) interval for writing out the force of all the pulled groups (0 is never) to the pullf . xvg file.

pull-pbc-ref-prev-step—com

no
Use the reference atom (pull—-groupl-pbcatom (page 63)) for the treatment of periodic boundary
conditions.

yes

Use the COM of the previous step as reference for the treatment of periodic boundary conditions.
The reference is initialized using the reference atom (pull-groupl-phbcatom (page 63)), which
should be located centrally in the group. Using the COM from the previous step can be useful if one
or more pull groups are large or very flexible.

pull-xout-average

no

Write the instantaneous coordinates for all the pulled groups.

yes
Write the average coordinates (since last output) for all the pulled groups. N.b., some analysis tools
might expect instantaneous pull output.

pull-fout-average

no

Write the instantaneous force for all the pulled groups.

yes
Write the average force (since last output) for all the pulled groups. N.b., some analysis tools might
expect instantaneous pull output.
pull—-ngroups
(1) The number of pull groups, not including the absolute reference group, when used. Pull groups can be

reused in multiple pull coordinates. Below only the pull options for group 1 are given, further groups simply
increase the group index number.

3.7. Molecular dynamics parameters (.mdp options) 62

GROMACS Documentation, Release 2025.0

pull—-ncoords
(1) The number of pull coordinates. Below only the pull options for coordinate 1 are given, further coordi-
nates simply increase the coordinate index number.
pull-groupl-name
The name of the pull group, is looked up in the index file or in the default groups to obtain the atoms
involved.
pull-groupl-weights
Optional relative weights which are multiplied with the masses of the atoms to give the total weight for the
COM. The number of weights should be 0, meaning all 1, or the number of atoms in the pull group.
pull-groupl-pbcatom

(0) The reference atom for the treatment of periodic boundary conditions inside the group (this has no effect
on the treatment of the pbc between groups). This option is only important when the diameter of the pull
group is larger than half the shortest box vector. For determining the COM, all atoms in the group are put at
their periodic image which is closest to pull-groupl-pbcatom (page 63). A value of 0 means that the
middle atom (number wise) is used, which is only safe for small groups. gmx grompp (page 192) checks
that the maximum distance from the reference atom (specifically chosen, or not) to the other atoms in the
group is not too large. This parameter is not used with pull-coordl-geometry (page 63) cylinder. A
value of -1 turns on cosine weighting, which is useful for a group of molecules in a periodic system, e.g. a
water slab (see Engin et al. J. Chem. Phys. B 2010).

pull-coordl-type

umbrella
Center of mass pulling using an umbrella potential between the reference group and one or more
groups.

constraint

Center of mass pulling using a constraint between the reference group and one or more groups. The
setup is identical to the option umbrella, except for the fact that a rigid constraint is applied instead of
a harmonic potential. Note that this type is not supported in combination with multiple time stepping.

constant-force
Center of mass pulling using a linear potential and therefore a constant force. For this option
there is no reference position and therefore the parameters pull-coordli-init (page 65) and
pull-coordl-rate (page 65) are not used.

flat-bottom
At distances above pull-coordl-init (page 65) a harmonic potential is applied, otherwise no
potential is applied.

flat-bottom-high
At distances below pull-coordl-init (page 65) a harmonic potential is applied, otherwise no
potential is applied.

external-potential

An external potential that needs to be provided by another module.

pull-coordl-potential-provider

The name of the external module that provides the potential for the case where
pull-coordl-type=external-potential (page 63).

pull-coordl-geometry

distance

Pull along the vector connecting the two groups. Components can be selected with
pull-coordl—-dim (page 65).

3.7. Molecular dynamics parameters (.mdp options) 63

GROMACS Documentation, Release 2025.0

direction

Pull in the direction of pull-coordl-vec (page 65).

direction—-periodic
As pull-coordl-geometry=direction (page 63), butdoes not apply periodic box vector cor-
rections to keep the distance within half the box length. This is (only) useful for pushing groups apart
by more than half the box length by continuously changing the reference location using a pull rate.

With this geometry the box should not be dynamic (e.g. no pressure scaling) in the pull dimensions
and the pull force is not added to the virial.

direction-relative

As pull-coordl-geometry=direction (page 63), but the pull vector is the vector that points
from the COM of a third to the COM of a fourth pull group. This means that 4 groups need to be
supplied in pull-coordl-groups (page 65). Note that the pull force will give rise to a torque on
the pull vector, which is turn leads to forces perpendicular to the pull vector on the two groups defining
the vector. If you want a pull group to move between the two groups defining the vector, simply use
the union of these two groups as the reference group.

cylinder

Designed for pulling with respect to a layer where the reference COM is given by a local cylindrical
part of the reference group. The pulling is in the direction of pull-coordl-vec (page 65). From
the first of the two groups in pull-coordl—-groups (page 65) a cylinder is selected around the
axis going through the COM of the second group with direction pull-coordl-vec (page 65) with
radius pull-cylinder—r (page 61). Weights of the atoms decrease continuously to zero as the
radial distance goes from 0 to pull-cylinder—r (page 61) (mass weighting is also used). The
radial dependence gives rise to radial forces on both pull groups. Note that the radius should be
smaller than half the box size. For tilted cylinders they should be even smaller than half the box size
since the distance of an atom in the reference group from the COM of the pull group has both a radial
and an axial component. This geometry is not supported with constraint pulling.

angle

Pull along an angle defined by four groups. The angle is defined as the angle between two vectors:
the vector connecting the COM of the first group to the COM of the second group and the vector
connecting the COM of the third group to the COM of the fourth group.

angle—-axis
As pull-coordl-geometry=angle (page 64) but the second vector is given by

pull-coordl-vec (page 65). Thus, only the two groups that define the first vector need to be
given.

dihedral

Pull along a dihedral angle defined by six groups. These pairwise define three vectors: the vector
connecting the COM of group 1 to the COM of group 2, the COM of group 3 to the COM of group 4,
and the COM of group 5 to the COM group 6. The dihedral angle is then defined as the angle between
two planes: the plane spanned by the the two first vectors and the plane spanned the two last vectors.

transformation

Transforms other pull coordinates using a mathematical expression defined by
pull-coordl-expression (page 64). Pull coordinates of lower indices, and time, can be
used as variables to this pull coordinate. Thus, pull transformation coordinates should have a higher
pull coordinate index than all pull coordinates they transform.

pull-coordl-expression

Mathematical expression to transform pull coordinates of lower indices to a new one. The pull coordinates
are referred to as variables in the equation so that pull-coordl’s value becomes ‘x1°, pull-coord2 value
becomes ‘x2’ etc. Time can also be used a variable, becoming ‘t’. Note that angular coordinates use units
of radians in the expression. The mathematical expression are evaluated using muParser. Only relevant if
pull-coordl-geometry=transformation (page 64).

3.7. Molecular dynamics parameters (.mdp options) 64

GROMACS Documentation, Release 2025.0

pull-coordl-dx

(1e-9) Size of finite difference to use in numerical derivation of the pull coordinate with respect to other pull
coordinates. The current implementation uses a simple first order finite difference method to perform deriva-
tion so that f’(x) = (f(x+dx)-f(x))/dx Only relevant if pull-coordl-geometry=transformation

(page 64).

pull-coordl-groups
The group indices on which this pull coordinate will operate. The number of group indices required is ge-
ometry dependent. The first index is the reference group and can be 0, in which case an absolute reference of
pull-coordl-origin (page 65)is used. With an absolute reference the system is no longer translation
invariant and one should think about what to do with the center of mass motion.

pull-coordl-dim

(Y Y Y) Selects the dimensions that this pull coordinate acts on and that are printed to the output
files when pull-print-components (page 62) = pull-coordl-start=yes (page 65). With
pull-coordl—-geometry (page 63) = pull-coordl-geometry=distance (page 63), only
Cartesian components set to Y contribute to the distance. Thus setting this to Y Y N results in a dis-
tance in the x/y plane. With other geometries all dimensions with non-zero entries in pull-coordl-vec
(page 65) should be set to Y, the values for other dimensions only affect the output.
pull-coordl-origin
(0.0 0.0 0.0) The pull reference position for use with an absolute reference.
pull-coordl-vec

(0.0 0.0 0.0) The pull direction. gmx grompp (page 192) normalizes the vector.
pull-coordl-start

no

do not modify pull-coordl—-init (page 65)
yes
add the COM distance of the starting conformation to pull-coordl-init (page 65)
pull-coordl-init
(0.0) [nm] or [deg] The reference distance or reference angle at t=0.

pull-coordl-rate

(0) [nm/ps] or [deg/ps] The rate of change of the reference position or reference angle.

pull-coordl-k

(0) [kJ mol! nm™] or [kJ mol"! nm™] or [kJ mol™! rad?] or [kJ mol"!' rad™'] The force constant. For umbrella
pulling this is the harmonic force constant in kJ mol”! nm (or kJ mol! rad for angles). For constant force
pulling this is the force constant of the linear potential, and thus the negative (!) of the constant force in
kJ mol'! nm™ (or kJ mol'! rad™! for angles). Note that for angles the force constant is expressed in terms
of radians (while pull-coordl-init (page 65)and pull-coordl-rate (page 65) are expressed in
degrees).

pull-coordl-kB

(pull-k1) [kJ mol”! nm™?] or [kJ mol”! nm™] or [kJ mol'! rad?] or [kJ mol"! rad'] As pull-coordl-k
(page 65), but for state B. This is only used when free—-energy (page 72) is turned on. The force constant
is then (1 - lambda) * pull-coordl -k (page 65) + lambda * pull-coordl-kB (page 65).

3.7. Molecular dynamics parameters (.mdp options) 65

GROMACS Documentation, Release 2025.0

AWH adaptive biasing

awh

no
No biasing.
yes

Adaptively bias a reaction coordinate using the AWH method and estimate the correspond-
ing PMF. This requires a constant ensemble temperature to be available. The PMF and
other AWH data are written to the energy file (edr (page 486)) at an interval set by
awh-nstout (page 66) and can be extracted with the gmx awh tool. ~The AWH co-
ordinate can be multidimensional and is defined by mapping each dimension to a pull co-
ordinate index (and/or up to one alchemical free lambda state dimension free-energy
(page 72)). This is only allowed if pull-coordl-type=external-potential (page 63)
and pull-coordl-potential-provider (page 63) = awh for the concerned pull coordinate
indices. Pull geometry ‘direction-periodic’ and transformation coordinates that depend on time are not
supported by AWH.

awh—potential

convolved

The applied biasing potential is the convolution of the bias function and a set of harmonic umbrella
potentials (see awh—potential=umbrella (page 66) below). This results in a smooth potential
function and force. The resolution of the potential is set by the force constant of each umbrella,
see awhl-diml-force-constant (page 69). This option is not compatible with using the free
energy lambda state as an AWH reaction coordinate dimension.

umbrella

The potential bias is applied by controlling the position of a harmonic potential using Monte-Carlo
sampling. The force constant is set with awh1-diml-force-constant (page 69). The umbrella
location is sampled using Monte-Carlo every awh—nstsample (page 66) steps. This is option is
required when using the free energy lambda state as an AWH reaction coordinate dimension. Apart
from that, this option is mainly for comparison and testing purposes as there are no advantages to using
an umbrella.

awh-share-multisim

no
AWH will not share biases across simulations started with gmx mdrun (page 217) option —-multidir.
The biases will be independent.

yes

With gmx mdrun (page 217) and option ~-multidir the bias and PMF estimates for biases with
awhl-share—group (page 68) >0 will be shared across simulations with the biases with the same
awhl-share—group (page 68) value. The simulations should have the same AWH settings for
sharing to make sense. gmx mdrun (page 217) will check whether the simulations are technically
compatible for sharing, but the user should check that bias sharing physically makes sense.

awh-seed
(-1) Random seed for Monte-Carlo sampling the umbrella position, where -1 indicates to generate a seed.
Only used with awh—potential=umbrella (page 66).

awh-nstout
(100000) Number of steps between printing AWH data to the energy file, should be a multiple of
nstenergy (page 48).

awh-nstsample

(10) Number of steps between sampling of the coordinate value. This sampling is the basis for updating the
bias and estimating the PMF and other AWH observables.

3.7. Molecular dynamics parameters (.mdp options) 66

GROMACS Documentation, Release 2025.0

awh—nsamples—update

(100) The number of coordinate samples used for each AWH update. The update interval in steps is
awh-nstsample (page 66) times this value.

awh—nbias

(1) The number of biases, each acting on its own coordinate. The following options should be specified for
each bias although below only the options for bias number 1 is shown. Options for other bias indices are
obtained by replacing ‘1’ by the bias index.

awhl-error-init

(10.0) [kJ mol'!] Estimated initial average error of the PMF for this bias. This value together with an
estimate of the crossing time, based on the length of the sampling interval and the given diffusion con-
stant(s) awhl-diml-diffusion (page 69), determine the initial biasing rate. With multiple dimen-
sions, the longest crossing time is used. The error is obviously not known a priori. Only a rough estimate
of awhl—-error—-init (page 67) is needed however. As a general guideline, leave awh1-error—init
(page 67) to its default value when starting a new simulation. On the other hand, when there is a pri-
ori knowledge of the PMF (e.g. when an initial PMF estimate is provided, see the awhl-user—data
(page 68) option) then awhl-error-init (page 67) should reflect that knowledge.

awhl-growth
Each bias keeps a reference weight histogram for the coordinate samples. Its size sets the magnitude of the
bias function and free energy estimate updates (few samples corresponds to large updates and vice versa).
Thus, its growth rate sets the maximum convergence rate.
exp-linear
By default, there is an initial stage in which the histogram grows close to exponentially (but slower than
the sampling rate). In the final stage that follows, the growth rate is linear and equal to the sampling rate
(setby awh—nstsample (page 66)). The initial stage is typically necessary for efficient convergence
when starting a new simulation where high free energy barriers have not yet been flattened by the bias.
linear
As awhl-growth=exp-linear (page 67) but skip the initial stage. This may be useful if there
is a priori knowledge (see awhl—-error—init (page 67)) which eliminates the need for an initial
stage. This is also the setting compatible with awh1-target=I1ocal-boltzmann (page 68).
awhl-growth-factor
(2) [1 The growth factor v during the exponential phase with awh1-growth=exp-1inear (page 67).
Should be larger than 1.
awhl-equilibrate-histogram

no
Do not equilibrate the histogram.

yes
Before entering the initial stage (see awhl-growth=exp—-1linear (page 67)), make sure the his-
togram of sampled weights is following the target distribution closely enough (specifically, at least
80% of the target region needs to have a local relative error of less than 20%). This option would typ-
ically only be used when awhl-share-group (page 68) > 0 and the initial configurations poorly
represent the target distribution.

awhl-target

constant

The bias is tuned towards a constant (uniform) coordinate distribution in the defined sampling interval
(defined by [awh1-diml-start (page 69), awhl-diml—-end (page 69)]).

cutoff

Similar to awhl-target=constant (page 67), but the target distribution is proportional to 1/(1
+exp(F - awhl-target=cutoff (page 67))), where F is the free energy relative to the estimated
global minimum. This provides a smooth switch of a flat target distribution in regions with free energy
lower than the cut-off to a Boltzmann distribution in regions with free energy higher than the cut-off.

3.7. Molecular dynamics parameters (.mdp options) 67

GROMACS Documentation, Release 2025.0

boltzmann

The target distribution is a Boltzmann distribtution with a scaled beta (inverse temperature) factor
given by awhl-target-beta-scaling (page 68). E.g., a value of 0.1 would give the same
coordinate distribution as sampling with a simulation temperature scaled by 10.

local-boltzmann

Same target distribution and use of awh1-target-beta-scaling (page 68) but the convergence
towards the target distribution is inherently local i.e., the rate of change of the bias only depends on the
local sampling. This local convergence property is only compatible with awh1-growth=1inear
(page 67), since for awh1-growth=exp-1inear (page 67) histograms are globally rescaled in the
initial stage.

awhl-target-beta-scaling

(0) For awhl-target=boltzmann (page 68) and awhl-target=Ilocal-boltzmann (page 68) it
is the unitless beta scaling factor taking values in (0,1).

awhl-target—-cutoff
(0) [kJ mol'] For awh1-target=cutoff (page 67) this is the cutoff, should be > 0.

awhl-user-data

no
Initialize the PMF and target distribution with default values.

yes
Initialize the PMF and target distribution with user provided data. For awh—-nbias (page 67) =
1, gmx mdrun (page 217) will expect a file awhinit .xvg to be present in the run directory. For
multiple biases, gmx mdrun (page 217) expects files awhinitl.xvg, awhinit2.xvg, etc. The
file name can be changed with the —awh option. The first awh1-ndim (page 69) columns of each
input file should contain the coordinate values, such that each row defines a point in coordinate space.
Column awh1-ndim (page 69) + 1 should contain the PMF value (in kT) for each point. The target
distribution column can either follow the PMF (column awh1-ndim (page 69) + 2) or be in the same
column as written by gmx awh (page 132).

awhl-share—group

0

Do not share the bias.

positive

Share the bias and PMF estimates between simulations. This currently only works between biases
with the same index. Note that currently sharing within a single simulation is not supported. The bias
will be shared across simulations that specify the same value for awh1-share-group (page 68).
To enable this, use awh-share-multisim=yes (page 66) and the gmx mdrun (page 217) option
-multidir. Sharing may increase convergence initially, although the starting configurations can be
critical, especially when sharing between many biases. N.b., multiple walkers sharing a degenerate
reaction coordinate may have problems overlapping their sampling, possibly making it difficult to
cover the sampling interval.

awhl-target-metric-scaling

no
Do not scale the target distribution based on the AWH friction metric.

yes
Scale the target distribution based on the AWH friction metric. Regions with high friction (long
autocorrelation times) will be sampled more. The diffusion metric is the inverse of the fric-
tion metric. This scaling can be used with any awhl-target (page 67) type and is applied
after user-provided target distribution modifications (awhl-user-data (page 68)), if any. If
awhl-growth=exp-1inear (page 67), the target distribution scaling starts after leaving the initial
phase.

3.7. Molecular dynamics parameters (.mdp options) 68

GROMACS Documentation, Release 2025.0

awhl-target-metric—-scaling-limit
(10) The upper limit of scaling, relative to the average, when awhl-target-metric-scaling is
enabled. The lower limit will be the inverse of this value. This upper limit should be > 1.

awhl-ndim

(1) [integer] Number of dimensions of the coordinate, each dimension maps to 1 pull coordinate. The
following options should be specified for each such dimension. Below only the options for dimension
number 1 is shown. Options for other dimension indices are obtained by replacing ‘1’ by the dimension
index.

awhl-diml-coord—-provider

pull

The pull module is providing the reaction coordinate for this dimension. With multiple time-stepping,
AWH and pull should be in the same MTS level.

fep-lambda

The free energy free-energy (page 72) lambda state is the reaction coordinate for this di-
mension. The lambda states to use are specified by fep—lambdas (page 72), vdw-lambdas
(page 73), coul—-lambdas (page 73) etc. This is not compatible with delta-lambda. It also re-
quires calc-lambda-neighbors=-1. With multiple time-stepping, AWH should be in the slow
level. This option requires awh-potential=umbrella (page 66).

awhl-diml-coord-index
(1) Index of the pull coordinate defining this coordinate dimension.

awhl-diml-force-constant

(0) [kJ mol'' nm2] or [kJ mol'! rad?] Force constant for the (convolved) umbrella potential(s) along this
coordinate dimension.

awhl-diml-start

(0.0) [nm] or [deg] Start value of the sampling interval along this dimension. The range of allowed values
depends on the relevant pull geometry (see pull—-coordl-geometry (page 63)). For dihedral geome-
tries awhl-diml-start (page 69) greater than awh1-diml—end (page 69) is allowed. The interval
will then wrap around from +period/2 to -period/2. For the direction geometry, the dimension is made pe-
riodic when the direction is along a box vector and covers more than 95% of the box length. Note that one
should not apply pressure coupling along a periodic dimension.

awhl-diml-end
(0.0) [nm] or [deg] End value defining the sampling interval together with awh1-diml-start (page 69).

awhl-diml-diffusion

(107) [nmz/ps], [radz/ps] or [ps™'] Estimated diffusion constant for this coordinate dimension determining
the initial biasing rate. This needs only be a rough estimate and should not critically affect the results unless
it is set to something very low, leading to slow convergence, or very high, forcing the system far from
equilibrium. Not setting this value explicitly generates a warning.

awhl-diml-cover-diameter

(0.0) [nm] or [deg] Diameter that needs to be sampled by a single simulation around a coordinate value be-
fore the point is considered covered in the initial stage (see awh1-growth=exp—1inear (page 67)). A
value > 0 ensures that for each covering there is a continuous transition of this diameter across each coordi-
nate value. This is trivially true for independent simulations but not for for multiple bias-sharing simulations
(awhl-share—group (page 68)>0). For a diameter = 0, covering occurs as soon as the simulations have
sampled the whole interval, which for many sharing simulations does not guarantee transitions across free
energy barriers. On the other hand, when the diameter >= the sampling interval length, covering occurs
when a single simulation has independently sampled the whole interval.

3.7. Molecular dynamics parameters (.mdp options) 69

GROMACS Documentation, Release 2025.0

Enforced rotation

These mdp (page 489) parameters can be used enforce the rotation of a group of atoms, e.g. a protein subunit. The
reference manual describes in detail 13 different potentials that can be used to achieve such a rotation.

rotation

no
No enforced rotation will be applied. All enforced rotation options will be ignored (and if present in
the mdp (page 489) file, they unfortunately generate warnings).
yes
Apply the rotation potential specified by rot—type0 (page 70) to the group of atoms given under
the rot —group0 (page 70) option.
rot—-ngroups
(1) Number of rotation groups.
rot-group0
Name of rotation group 0 in the index file.
rot-type0
(iso) Type of rotation potential that is applied to rotation group 0. Can be of of the following: iso, iso-pf,
pm, pm—pf, rm, rm-pf, rm2, rm2-pf, flex, flex—-t, flex2,or flex2-t.
rot-massw0
(no) Use mass weighted rotation group positions.
rot-vecoO
(1.0 0.0 0.0) Rotation vector, will get normalized.
rot-pivot0
(0.0 0.0 0.0) [nm] Pivot point for the potentials iso, pm, rm, and rm2.
rot-rate0
(0) [degree ps™'] Reference rotation rate of group 0.
rot-kO0
(0) [kJ mol"! nm] Force constant for group 0.
rot-slab-dist0
(1.5) [nm] Slab distance, if a flexible axis rotation type was chosen.
rot-min—-gauss0
(0.001) Minimum value (cutoff) of Gaussian function for the force to be evaluated (for the flexible axis
potentials).
rot-eps0
(0.0001) [nm?] Value of additive constant epsilon for rm2 « and f1ex2* potentials.
rot—-fit-methodO
(rmsd) Fitting method when determining the actual angle of a rotation group (can be one of rmsd, norm,
or potential).
rot-potfit—-nsteps0

(21) For fit type potential, the number of angular positions around the reference angle for which the
rotation potential is evaluated.

rot—-potfit-step0

(0.25) For fit type potential, the distance in degrees between two angular positions.

3.7. Molecular dynamics parameters (.mdp options) 70

GROMACS Documentation, Release 2025.0

rot-nstrout
(100) Output interval (in steps) for the angle of the rotation group, as well as for the torque and the rotation
potential energy.

rot—-nstsout

(1000) Output interval (in steps) for per-slab data of the flexible axis potentials, i.e. angles, torques and slab
centers.

NMR refinement

disre

no
ignore distance restraint information in topology file
simple
simple (per-molecule) distance restraints.

ensemble

distance restraints over an ensemble of molecules in one simulation box. Normally, one would per-
form ensemble averaging over multiple simulations, using mdrun -multidir. The environment
variable GMX_DISRE_ENSEMBLE_SIZE sets the number of systems within each ensemble (usually
equal to the number of directories supplied to mdrun -multidir).

disre-weighting

equal
divide the restraint force equally over all atom pairs in the restraint

conservative

the forces are the derivative of the restraint potential, this results in an weighting of the atom pairs
to the reciprocal seventh power of the displacement. The forces are conservative when disre—tau
(page 71) is zero.

disre-mixed

no

the violation used in the calculation of the restraint force is the time-averaged violation

yes
the violation used in the calculation of the restraint force is the square root of the product of the
time-averaged violation and the instantaneous violation
disre-fc
(1000) [kJ mol™! nm] force constant for distance restraints, which is multiplied by a (possibly) different
factor for each restraint given in the fac column of the interaction in the topology file.
disre-tau

(0) [ps] time constant for distance restraints running average. A value of zero turns off time averaging.

nstdisreout

(100) [steps] period between steps when the running time-averaged and instantaneous distances of all atom
pairs involved in restraints are written to the energy file (can make the energy file very large)

orire
no
ignore orientation restraint information in topology file

yes

use orientation restraints, ensemble averaging can be performed with mdrun -multidir

3.7. Molecular dynamics parameters (.mdp options) 71

GROMACS Documentation, Release 2025.0

orire-fc
(0) [kJ mol™'] force constant for orientation restraints, which is multiplied by a (possibly) different weight
factor for each restraint, can be set to zero to obtain the orientations from a free simulation
orire-tau
(0) [ps] time constant for orientation restraints running average. A value of zero turns off time averaging.
orire-fitgrp
fit group for orientation restraining. This group of atoms is used to determine the rotation R of the system

with respect to the reference orientation. The reference orientation is the starting conformation of the first
subsystem. For a protein, backbone is a reasonable choice

nstorireout

(100) [steps] period between steps when the running time-averaged and instantaneous orientations for all
restraints, and the molecular order tensor are written to the energy file (can make the energy file very large)

Free energy calculations

free-energy

no

Only use topology A.

yes

Interpolate between topology A (lambda=0) to topology B (lambda=1) and write the derivative
of the Hamiltonian with respect to lambda (as specified with dhdl-derivatives (page 75)),
or the Hamiltonian differences with respect to other “foreign” lambda values (as specified with
calc—lambda—-neighbors (page 73)) to the energy file and/or to dhdl.xvg, where they can
be processed by, for example gmx bar (page 133). The potentials, bond-lengths and angles are inter-
polated linearly as described in the manual. When sc-alpha (page 73) is larger than zero, soft-core
potentials are used for the LJ and Coulomb interactions.

expanded

Turns on expanded ensemble simulation, where the alchemical state becomes a dynamic variable, allowing
jumping between different Hamiltonians. See the expanded ensemble options for controlling how expanded
ensemble simulations are performed. The different Hamiltonians used in expanded ensemble simulations
are defined by the other free energy options.

init-lambda
(-1) starting value for lambda (float). Generally, this should only be used with slow growth (i.e. nonzero
delta-lambda (page 72)). In other cases, init—-lambda-state (page 72) should be specified in-

stead. If a lambda vector is given, init—Ilambda (page 72) is used to interpolate the vector instead of
setting lambda directly. Must be greater than or equal to O.

delta-lambda

(0) increment per time step for lambda

init-lambda-state

(-1) starting value for the lambda state (integer). Specifies which column of the lambda
vector (coul-lambdas (page 73), vdw—-lambdas (page 73), bonded-lambdas (page 73),
restraint-lambdas (page 73), mass—lambdas (page 73), temperature—lambdas (page 73),
fep-lambdas (page 72)) should be used. This is a zero-based index: init—-lambda-state=0 means
the first column, and so on.

fep-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 75) steps. Values must be greater than or equal to 0; values greater than 1 are
allowed but should be used carefully. Free energy differences between different lambda values can then
be determined with gmx bar (page 133). fep—lambdas (page 72) is different from the other -lambdas

3.7. Molecular dynamics parameters (.mdp options) 72

GROMACS Documentation, Release 2025.0

keywords because all components of the lambda vector that are not specified will use fep-Ilambdas
(page 72).

coul-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 75) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. If soft-core potentials are used, values must be between 0 and 1. Only the
electrostatic interactions are controlled with this component of the lambda vector (and only if the lambda=0
and lambda=1 states have differing electrostatic interactions).

vdw-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 75) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. If soft-core potentials are used, values must be between 0 and 1. Only the van
der Waals interactions are controlled with this component of the lambda vector.

bonded-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 75) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. Only the bonded interactions are controlled with this component of the lambda
vector.

restraint-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 75) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. Only the restraint interactions: dihedral restraints, and the pull code restraints
are controlled with this component of the lambda vector.

mass—lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 75) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. Only the particle masses are controlled with this component of the lambda
vector.

temperature-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 75) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. Only the temperatures are controlled with this component of the lambda vector.
Note that these lambdas should not be used for replica exchange, only for simulated tempering.

calc-lambda—-neighbors

(1) Controls the number of lambda values for which Delta H values will be calculated and written out,
if init-lambda-state (page 72) has been set. These lambda values are referred to as “foreign”
lambdas. A positive value will limit the number of lambda points calculated to only the nth neighbors
of init-lambda-state (page 72): for example, if init-lambda-state (page 72) is 5 and this
parameter has a value of 2, energies for lambda points 3-7 will be calculated and writen out. A value of -1
means all lambda points will be written out. For normal BAR such as with gmx bar (page 133), a value of
1 is sufficient, while for MBAR -1 should be used.

sc—function

(beutler)
beutler

Beutler et al. soft-core function
gapsys

Gapsys et al. soft-core function

3.7. Molecular dynamics parameters (.mdp options) 73

GROMACS Documentation, Release 2025.0

sc—alpha
(0) for sc-function=beutler (page 73) the soft-core alpha parameter, a value of O results in linear
interpolation of the LJ and Coulomb interactions. Used only with sc-function=beut ler (page 73)
sc—-r-power
(6) power 6 for the radial term in the soft-core equation. Used only with sc—function=beutler
(page 73)
sc-coul

(no) Whether to apply the soft-core free energy interaction transformation to the Coulombic interaction of a
molecule. Default is no, as it is generally more efficient to turn off the Coulombic interactions linearly before
turning off the van der Waals interactions. Note that it is only taken into account when there are multiple
lambda components, and you can still turn off soft-core interactions by setting sc—alpha (page 73) to 0.
Used only with sc-function=beutler (page 73)

sc-power
(1) the power for lambda in the soft-core function, only the values 1 and 2 are supported. Used only with
sc—function=beutler (page 73)

sc-sigma
(0.3) [nm] for sc-function=beutler (page 73) the soft-core sigma for particles which have a
C6 or C12 parameter equal to zero or a sigma smaller than sc—-sigma (page 74). Used only with
sc-function=beutler (page 73)

sc—gapsys—-scale-linpoint-1j
(0.85) for sc—-function=gapsys (page 73) it is the unitless alphalL] parameter. It controls the softness
of the van der Waals interactions by scaling the point for linearizing the vdw force. Setting it to 0 will result
in the standard hard-core van der Waals interactions. Used only with sc—-function=gapsys (page 73)

sc—gapsys—scale-linpoint—-q
(0.3) [nm/e”2] For sc—-function=gapsys (page 73) the alphaQ parameter with a default value of 0.3.
It controls the softness of the Coulombic interactions. Setting it to 0 will result in the standard hard-core
Coulombic interactions. Used only with sc—-function=gapsys (page 73)

sc—gapsys—-sigma-1j
(0.3) [nm] for sc-function=gapsys (page 73) the soft-core sigma for particles which have a C6 or
C12 parameter equal to zero. Used only with sc—-function=gapsys (page 73)

couple-moltype

Here one can supply a molecule type (as defined in the topology) for calculating solvation or coupling free
energies. There is a special option system that couples all molecule types in the system. This can be
useful for equilibrating a system starting from (nearly) random coordinates. free—energy (page 72) has
to be turned on. The Van der Waals interactions and/or charges in this molecule type can be turned on
or off between lambda=0 and lambda=1, depending on the settings of couple—-Ilambda0 (page 74) and
couple-lambdal (page 75). If you want to decouple one of several copies of a molecule, you need to
copy and rename the molecule definition in the topology.

couple-lambda0
vdw—q
all interactions are on at lambda=0

vdw

the charges are zero (no Coulomb interactions) at lambda=0

the Van der Waals interactions are turned off at lambda=0; soft-core interactions will be required to
avoid singularities

3.7. Molecular dynamics parameters (.mdp options) 74

GROMACS Documentation, Release 2025.0

none

the Van der Waals interactions are turned off and the charges are zero at lambda=0; soft-core interac-
tions will be required to avoid singularities.

couple-lambdal
analogous to couple—Ilambdal (page 74), but for lambda=1

couple-intramol

no

All intra-molecular non-bonded interactions for moleculetype couple-moltype (page 74) are re-
placed by exclusions and explicit pair interactions. In this manner the decoupled state of the molecule
corresponds to the proper vacuum state without periodicity effects.

yes
The intra-molecular Van der Waals and Coulomb interactions are also turned on/off. This can be use-
ful for partitioning free-energies of relatively large molecules, where the intra-molecular non-bonded
interactions might lead to kinetically trapped vacuum conformations. The 1-4 pair interactions are not
turned off.

nstdhdl

(100) the interval for writing dH/dlambda and possibly Delta H to dhdl.xvg, 0 means no ouput, should be a
multiple of nstcalcenergy (page 48).

dhdl-derivatives
(yes)

If yes (the default), the derivatives of the Hamiltonian with respect to lambda at each nstdhd1 (page 75)
step are written out. These values are needed for interpolation of linear energy differences with gmx bar
(page 133) (although the same can also be achieved with the right calc—lambda-neighbors (page 73)
setting, that may not be as flexible), or with thermodynamic integration

dhdl-print-energy
(no)

Include either the total or the potential energy in the dhdl file. Options are ‘no’, ‘potential’, or ‘total’. This
information is needed for later free energy analysis if the states of interest are at different temperatures. If all
states are at the same temperature, this information is not needed. ‘potential’ is useful in case one is using
mdrun -rerun to generate the dhdl.xvg file. When rerunning from an existing trajectory, the kinetic
energy will often not be correct, and thus one must compute the residual free energy from the potential
alone, with the kinetic energy component computed analytically.

separate—-dhdl-file

yes

The free energy values that are calculated (as specified with calc-Ilambda-neighbors (page 73)
and dhdl-derivatives (page 75) settings) are written out to a separate file, with the default name
dhdl . xvg. This file can be used directly with gmx bar (page 133).

no

The free energy values are written out to the energy output file (ener . edr, in accumulated blocks at
every nstenergy (page 48) steps), where they can be extracted with gmx energy (page 179) or used
directly with gmx bar (page 133).
dh-hist-size
(0) If nonzero, specifies the size of the histogram into which the Delta H values (specified with
calc-lambda-neighbors (page 73)) and the derivative dH/dl values are binned, and written to
ener.edr. This can be used to save disk space while calculating free energy differences. One histogram
gets written for each foreign lambda and two for the dH/dl, at every nstenergy (page 48) step. Be

aware that incorrect histogram settings (too small size or too wide bins) can introduce errors. Do not use
histograms unless you are certain you need it.

3.7. Molecular dynamics parameters (.mdp options) 75

GROMACS Documentation, Release 2025.0

dh-hist-spacing
(0.1) Specifies the bin width of the histograms, in energy units. Used in conjunction with dh-hist-size

(page 75). This size limits the accuracy with which free energies can be calculated. Do not use histograms
unless you are certain you need it.

Expanded Ensemble calculations

nstexpanded

The number of integration steps beween attempted moves changing the system Hamiltonian in expanded
ensemble simulations. Must be a multiple of nstcalcenergy (page 48), but can be greater or less than
nstdhdl (page 75).

lmc-stats

no

No Monte Carlo in state space is performed.

metropolis—-transition
Uses the Metropolis weights to update the expanded ensemble weight of each state. Min{1,exp(-
(beta_new u_new - beta_old u_old)}

barker-transition
Uses the Barker transition critera to update the expanded ensemble weight of each state i, defined by
exp(-beta_new u_new)/(exp(-beta_new u_new)+exp(-beta_old u_old))

wang-landau
Uses the Wang-Landau algorithm (in state space, not energy space) to update the expanded ensemble
weights.

min-variance

Uses the minimum variance updating method of Escobedo et al. to update the expanded ensemble
weights. Weights will not be the free energies, but will rather emphasize states that need more sampling
to give even uncertainty.

lmc—-mc-move

no

No Monte Carlo in state space is performed.

metropolis—-transition
Randomly chooses a new state up or down, then uses the Metropolis criteria to decide whether to
accept or reject: Min{ 1,exp(-(beta_new u_new - beta_old u_old)}

barker-transition
Randomly chooses a new state up or down, then uses the Barker transition criteria to decide whether
to accept or reject: exp(-beta_new u_new)/(exp(-beta_new u_new)+exp(-beta_old u_old))

gibbs
Uses the conditional weights of the state given the coordinate (exp(-beta_i u_i) / sum_k exp(beta_i
u_i) to decide which state to move to.

metropolized-gibbs

Uses the conditional weights of the state given the coordinate (exp(-beta_i u_i) / sum_k exp(beta_i u_i)
to decide which state to move to, EXCLUDING the current state, then uses a rejection step to ensure
detailed balance. Always more efficient that Gibbs, though only marginally so in many situations,
such as when only the nearest neighbors have decent phase space overlap.

lmc-seed

(-1) random seed to use for Monte Carlo moves in state space. When Imc—-seed (page 76) is set to -1, a
pseudo random seed is us

3.7. Molecular dynamics parameters (.mdp options) 76

GROMACS Documentation, Release 2025.0

mc—temperature

Temperature used for acceptance/rejection for Monte Carlo moves. If not specified, the temperature of the
simulation specified in the first group of ref—t (page 56) is used.

wl-ratio
(0.8) The cutoff for the histogram of state occupancies to be reset, and the free energy incrementor to be
changed from delta to delta * wl1—-scale (page 77). If we define the Nratio = (number of samples at each
histogram) / (average number of samples at each histogram). w1 -ratio (page 77) of 0.8 means that means
that the histogram is only considered flat if all Nratio > 0.8 AND simultaneously all 1/Nratio > 0.8.

wl-scale

(0.8) Each time the histogram is considered flat, then the current value of the Wang-Landau incrementor for
the free energies is multiplied by w1 -scale (page 77). Value must be between 0 and 1.

init-wl-delta

(1.0) The initial value of the Wang-Landau incrementor in kT. Some value near 1 kT is usually most efficient,
though sometimes a value of 2-3 in units of kT works better if the free energy differences are large.

wl-oneovert

(no) Set Wang-Landau incrementor to scale with 1/(simulation time) in the large sample limit. There is
significant evidence that the standard Wang-Landau algorithms in state space presented here result in free
energies getting ‘burned in’ to incorrect values that depend on the initial state. when wl-oneovert
(page 77) is true, then when the incrementor becomes less than 1/N, where N is the number of samples
collected (and thus proportional to the data collection time, hence ‘1 over t’), then the Wang-Lambda in-
crementor is set to 1/N, decreasing every step. Once this occurs, wl-ratio (page 77) is ignored, but the
weights will still stop updating when the equilibration criteria set in Imc-weights-equil (page 78) is
achieved.

lmc-repeats

(1) Controls the number of times that each Monte Carlo swap type is performed each iteration. In the limit
of large numbers of Monte Carlo repeats, then all methods converge to Gibbs sampling. The value will
generally not need to be different from 1.

lmc-gibbsdelta

(-1) Limit Gibbs sampling to selected numbers of neighboring states. For Gibbs sampling, it is some-
times inefficient to perform Gibbs sampling over all of the states that are defined. A positive value of
Imc—-gibbsdelta (page 77) means that only states plus or minus Imc-gibbsdelta (page 77) are
considered in exchanges up and down. A value of -1 means that all states are considered. For less than 100
states, it is probably not that expensive to include all states.

lmc-forced—-nstart

(0) Force initial state space sampling to generate weights. In order to come up with reasonable ini-
tial weights, this setting allows the simulation to drive from the initial to the final lambda state, with
Imc-forced-nstart (page 77) steps at each state before moving on to the next lambda state. If
Imc-forced-nstart (page 77) is sufficiently long (thousands of steps, perhaps), then the weights
will be close to correct. However, in most cases, it is probably better to simply run the standard weight
equilibration algorithms.

nst-transition-matrix
(-1) Interval of outputting the expanded ensemble transition matrix. A negative number means it will only
be printed at the end of the simulation.

symmetrized-transition-matrix

(no) Whether to symmetrize the empirical transition matrix. In the infinite limit the matrix will be sym-
metric, but will diverge with statistical noise for short timescales. Forced symmetrization, by using the
matrix T_sym = 1/2 (T + transpose(T)), removes problems like the existence of (small magnitude) negative
eigenvalues.

mininum-var—-min

(100) The min-variance strategy (option of Imc-stats (page 76) is only valid for larger number of sam-
ples, and can get stuck if too few samples are used at each state. mininum-var-min (page 77) is the

3.7. Molecular dynamics parameters (.mdp options) 77

GROMACS Documentation, Release 2025.0

minimum number of samples that each state that are allowed before the min-variance strategy is activated if
selected.

init-lambda-weights
The initial weights (free energies) used for the expanded ensemble states. Default is a vector of zero weights.

format is similar to the lambda vector settings in fep—lambdas (page 72), except the weights can be any
floating point number. Units are kT. Its length must match the lambda vector lengths.
init-wl-histogram-counts

The initial counts used for the Wang-Landau histogram of visiting expanded ensemble states. The flatness
of this histogram is used to decide whether to decrement the histogram-building incrementor. This option is
only generally useful if continuing a shorter simulation from a previous one, as the smaller the incrementor
gets, the longer it takes for the histogram to become flat, often longer than a short simulation takes, requiring
the histogram population to be carried over from the previous simulation. The default is a vector of zeros.
The format is similar to the lambda vector settings in fep—lambdas (page 72). The value can be a
floating point number or an integer, as some methods increment multiple histogram bins at the same time
with fractional weights. Its length must match the lambda vector lengths.

init-lambda-counts

The initial counts used for the number of times each expanded ensemble state is visited states. Several
algorithms set by Imc-weights—-equil (page 78) use various functions of the number of visits to
each state states to decide whether to switch to different phases of weight determination. These include
number-all-lambda which requires the mumber of times each lambda state is visited to be equal to or
greater than this number, number—-samples, which requires the total number of visits to all lambda states
to be greater than or equal to this, and count-ratio, which requires the number of states visited at each
state to be within a given ratio of equal visitation. This option is only generally useful if continuing a shorter
simulation from a previous one, as most methods will reach the triggering conditions with relatively low
number of samples collected. The default is a vector of zeros. The format is similar to the lambda vector
settings in fep—lambdas (page 72). Unlike init-wl-histogram, the value can only be an integer.
Its length must match the lambda vector lengths.

lmc-weights—-equil

no
Expanded ensemble weights continue to be updated throughout the simulation.

yes
The input expanded ensemble weights are treated as equilibrated, and are not updated throughout the
simulation.

wl-delta

Expanded ensemble weight updating is stopped when the Wang-Landau incrementor falls below this
value.

number-all-lambda
Expanded ensemble weight updating is stopped when the number of samples at all of the lambda states
is greater than this value.

number-steps
Expanded ensemble weight updating is stopped when the number of steps is greater than the level
specified by this value.

number-samples
Expanded ensemble weight updating is stopped when the number of total samples across all lambda
states is greater than the level specified by this value.

count-ratio

Expanded ensemble weight updating is stopped when the ratio of samples at the least sampled lambda
state and most sampled lambda state greater than this value.

3.7. Molecular dynamics parameters (.mdp options) 78

GROMACS Documentation, Release 2025.0

simulated-tempering

(no) Turn simulated tempering on or off. Simulated tempering is implemented as expanded ensemble sam-
pling with different temperatures instead of different Hamiltonians.

sim-temp-low
(300) [K] Low temperature for simulated tempering.

sim—-temp-high
(300) [K] High temperature for simulated tempering.

simulated-tempering-scaling

Controls the way that the temperatures at intermediate lambdas are calculated from the
temperature—lambdas (page 73) part of the lambda vector.

linear
Linearly interpolates the temperatures using the values of temperature—Ilambdas (page 73), i.e.
if sim—temp-1ow (page 79) =300, sim-temp—-high (page 79) =400, then lambda=0.5 correspond
to a temperature of 350. A nonlinear set of temperatures can always be implemented with uneven
spacing in lambda.

geometric
Interpolates temperatures geometrically between sim—-temp—Iow (page 79) and sim-temp—high
(page 79). The i:th state has temperature sim—temp—1ow (page 79) * (sim—temp—high (page 79)
/ sim—temp-1low (page 79)) raised to the power of (i/(ntemps-1)). This should give roughly equal
exchange for constant heat capacity, though of course things simulations that involve protein folding
have very high heat capacity peaks.

exponential
Interpolates temperatures exponentially between sim-temp—1ow (page 79) and sim-temp—high
(page 79). The i:th state has temperature sim-temp—1low (page 79) + (sim—temp-high (page 79)
- sim-temp-1low (page 79))*((exp(temperature-lambdas (page 73) (i))-1)/(exp(1.0)-1)).

Non-equilibrium MD

acc—-grps
groups for constant acceleration (e.g. Protein Sol) all atoms in groups Protein and Sol will experience
constant acceleration as specified in the accelerate (page 79) line. Note that the kinetic energy of the
center of mass of accelerated groups contributes to the kinetic energy and temperature of the system. If this
is not desired, make each accelerate group also a separate temperature coupling group.

accelerate
(0) [nm ps~] acceleration for acc—grps (page 79); X, y and z for each group (e.g. 0.1 0.0 0.0 -0.1
0.0 0.0 means that first group has constant acceleration of 0.1 nm ps in X direction, second group the
opposite).

freezegrps
Groups that are to be frozen (i.e. their X, Y, and/or Z position will not be updated; e.g. Lipid SOL).
freezedim (page 79) specifies for which dimension(s) the freezing applies. Note that the virial and
pressure are usually not meaningful when frozen atoms are present. Note that coordinates of frozen atoms
are not scaled by pressure-coupling algorithms.

freezedim
dimensions for which groups in freezegrps (page 79) should be frozen, specify Y or N for X, Y and Z
and foreach group (e.g. Y Y N N N N means that particles in the first group can move only in Z direction.
The particles in the second group can move in any direction).

cos—acceleration
(0) [nm ps2] the amplitude of the acceleration profile for calculating the viscosity. The acceleration is in
the X-direction and the magnitude is cos—acceleration (page 79) cos(2 pi z/boxheight). Two terms
are added to the energy file: the amplitude of the velocity profile and 1/viscosity.

3.7. Molecular dynamics parameters (.mdp options) 79

GROMACS Documentation, Release 2025.0

deform

(0000 00) [nm ps’'] The velocities of deformation for the box elements: a(x) b(y) c(z) b(x) c¢(x) c(y). Each
step the box elements for which deform (page 79) is non-zero are calculated as: box(ts)+(t-ts)*deform,
off-diagonal elements are corrected for periodicity. The time ts is set to t at the first step and at steps at
which x and v are written to trajectory to ensure exact restarts. Deformation can be used together with
semiisotropic or anisotropic pressure coupling when the appropriate compressibilities are set to zero. The
diagonal elements can be used to strain a solid. The off-diagonal elements can be used to shear a solid
or a liquid. Note that the atom positions are not affected directly by this option. Instead, the deform
option only modifies the velocities of particles that are shifted by a periodic box vector such that their new
velocities match the virtual velocity flow field corresponding to the box deformation. As the deform option
never accelerates the remaining particles in the system, the matching velocity flow field should be set up
at the beginning of the simulation to make the particles follow the deformation. This can be done with the
deform-init—rflow (page 80) option. The flow field is removed from the kinetic energy by gmx mdrun
(page 217) so the actual temperature and pressure of the system are reported.

deform-init-flow

no

Do not modify the velocities. Only use this option when the velocities of the atoms in the initial
configuration already obey the flow field.

yes

When the deform (page 79) option is active, add a velocity profile corresponding to the box defor-
mation to the initial velocities. This is done after computing observables from the initial state such as
the initial temperature.

Electric fields

electric-field-x
electric—-field-y

electric-field-z

Here you can specify an electric field that optionally can be alternating and pulsed. The general expression
for the field has the form of a gaussian laser pulse:

(t—to)?

} cos [w(t — to)]

For example, the four parameters for direction x are set in the fields of electric-field-x (page 80)
(and similar for electric-field-y and electric—-field-z) like

electric-field-x = EO omega t0 sigma

with units (respectively) V nm™!, ps!, ps, ps.

In the special case that sigma = 0, the exponential term is omitted and only the cosine term is used. In
this case, t 0 must be set to 0. If also omega = 0 a static electric field is applied.

Read more at Electric fields (page 525) and in ref. /46 (page 584).

3.7. Molecular dynamics parameters (.mdp options) 80

GROMACS Documentation, Release 2025.0

Mixed quantum/classical molecular dynamics

OMMM-grps
groups to be described at the QM level for MiMiC QM/MM

OMMM

no

QM/MM is no longer supported via these .mdp options. For MiMic, use no here.

Computational Electrophysiology

Use these options to switch on and control ion/water position exchanges in “Computational Electrophysiology”
simulation setups. (See the reference manual for details).

swapcoords

no
Do not enable ion/water position exchanges.
X, Y; 2
Allow for ion/water position exchanges along the chosen direction. In a typical setup with the mem-
branes parallel to the x-y plane, ion/water pairs need to be exchanged in Z direction to sustain the
requested ion concentrations in the compartments.
swap-frequency
(1) The swap attempt frequency, i.e. every how many time steps the ion counts per compartment are de-
termined and exchanges made if necessary. Normally, it is not necessary to check at every time step. For
typical Computational Electrophysiology setups, a value of about 100 is sufficient and yields a negligible
performance impact.
split—group0
Name of the index group of the membrane-embedded part of channel #0. The center of mass of these
atoms defines one of the compartment boundaries and should be chosen such that it is near the center of the
membrane.
split—-groupl
Defines the position of the other compartment boundary.
massw-splitO
(no) Defines whether or not mass-weighting is used to calculate the split group center.

no

Use the geometrical center.

yes
Use the center of mass.

massw-splitl
(no) As above, but for split—groupl (page 81).

solvent—-group
Name of the index group of solvent molecules.

coupl-steps
(10) Average the number of ions per compartment over these many swap attempt steps. This can be used to
prevent that ions near a compartment boundary (diffusing through a channel, e.g.) lead to unwanted back
and forth swaps.

3.7. Molecular dynamics parameters (.mdp options) 81

GROMACS Documentation, Release 2025.0

iontypes
(1) The number of different ion types to be controlled. These are during the simulation exchanged with
solvent molecules to reach the desired reference numbers.

iontypeO-name
Name of the first ion type.

iontype0O-in-A
(-1) Requested (=reference) number of ions of type 0 in compartment A. The default value of -1 means: use
the number of ions as found in time step O as reference value.

iontype0O-in-B
(-1) Reference number of ions of type O for compartment B.

bulk-offsetA

(0.0) Offset of the first swap layer from the compartment A midplane. By default (i.e. bulk offset = 0.0),
ion/water exchanges happen between layers at maximum distance (= bulk concentration) to the split group
layers. However, an offset b (-1.0 < b < +1.0) can be specified to offset the bulk layer from the middle at 0.0
towards one of the compartment-partitioning layers (at +/- 1.0).

bulk-offsetB

(0.0) Offset of the other swap layer from the compartment B midplane.
threshold

(1) Only swap ions if threshold difference to requested count is reached.
cylO-r
(2.0) [nm] Radius of the split cylinder #0. Two split cylinders (mimicking the channel pores) can optionally
be defined relative to the center of the split group. With the help of these cylinders it can be counted which
ions have passed which channel. The split cylinder definition has no impact on whether or not ion/water
swaps are done.
cylO-up
(1.0) [nm] Upper extension of the split cylinder #0.
cylO-down
(1.0) [nm] Lower extension of the split cylinder #0.
cyll-r
(2.0) [nm] Radius of the split cylinder #1.
cyll-up
(1.0) [nm] Upper extension of the split cylinder #1.
cyll-down
(1.0) [nm] Lower extension of the split cylinder #1.

Density-guided simulations

These options enable and control the calculation and application of additional forces that are derived from three-
dimensional densities, e.g., from cryo electron-microscopy experiments. (See the reference manual for details)

density—guided-simulation—-active
(no) Activate density-guided simulations.
density—guided-simulation—group

(protein) The atoms that are subject to the forces from the density-guided simulation and contribute to the
simulated density.

3.7. Molecular dynamics parameters (.mdp options) 82

GROMACS Documentation, Release 2025.0

density—guided-simulation-similarity-measure
(inner-product) Similarity measure between the density that is calculated from the atom positions and the
reference density.
inner-product

Takes the sum of the product of reference density and simulated density voxel values.

relative—-entropy
Uses the negative relative entropy (or Kullback-Leibler divergence) between reference density and
simulated density as similarity measure. Negative density values are ignored.
cross—-correlation
Uses the Pearson correlation coefficient between reference density and simulated density as similarity
measure.
density-guided-simulation-atom-spreading-weight
(unity) Determines the multiplication factor for the Gaussian kernel when spreading atoms on the grid.
unity
Every atom in the density fitting group is assigned the same unit factor.
mass

Atoms contribute to the simulated density proportional to their mass.

charge
Atoms contribute to the simulated density proportional to their charge.

density-guided-simulation-force-constant
(1e+09) [kJ mol™'] The scaling factor for density-guided simulation forces. May also be negative.

density-guided-simulation-gaussian-transform-spreading-width
(0.2) [nm] The Gaussian RMS width for the spread kernel for the simulated density.
density-guided-simulation-gaussian-transform-spreading-range-in-multiples—-of-width
(4) The range after which the gaussian is cut off in multiples of the Gaussian RMS width described above.

density—-guided-simulation-reference-density-filename
(reference.mrc) Reference density file name using an absolute path or a path relative to the to the folder
from which gmx mdrun (page 217) is called.
density—guided-simulation—-nst
(1) Interval in steps at which the density fitting forces are evaluated and applied. The forces are scaled by
this number when applied (See the reference manual for details).
density-guided-simulation-normalize-densities
(true) Normalize the sum of density voxel values to one for the reference density as well as the simulated
density.
density-guided-simulation-adaptive-force-scaling
(false) Adapt the force constant to ensure a steady increase in similarity between simulated and reference
density.
true

Use adaptive force scaling.

density—-guided-simulation-adaptive-force-scaling-time—-constant

(4) [ps] Couple force constant to increase in similarity with reference density with this time constant. Larger
times result in looser coupling.

3.7. Molecular dynamics parameters (.mdp options) 83

GROMACS Documentation, Release 2025.0

density—guided-simulation-shift-vector
(0,0,0) [nm] Add this vector to all atoms in the density-guided-simulation-group before calculating forces
and energies for density-guided simulations. Affects only the density-guided simulation forces and energies.
Corresponds to a shift of the input density in the opposite direction by (-1) * density-guided-simulation-
shift-vector.

density-guided-simulation-transformation-matrix

(1,0,0,0,1,0,0,0,1) Multiply all atoms with this matrix in the density-guided-simulation-group before calcu-
lating forces and energies for density-guided simulations. Affects only the density-guided simulation forces
and energies. Corresponds to a transformation of the input density by the inverse of this matrix. The matrix
is given in row-major order. This option allows, e.g., rotation of the density-guided atom group around the
z-axis by 6 degrees by using the following input: (cos, —sin 6, 0,sin 6, cosf,0,0,0,1) .

QM/MM simulations with CP2K Interface

These options enable and control the calculation and application of additional QM/MM forces that are computed
by the CP2K package if it is linked into GROMACS. For further details about QM/MM interface implementation
follow Hybrid Quantum-Classical simulations (QM/MM) with CP2K interface (page 535).

gqmmm—-cp2k-active
(false) Activate QM/MM simulations. Requires CP2K to be linked with GROMACS

gqmmm—-cp2k—gmgroup
(System) Index group with atoms that are treated with QM.

gmmm-cp2k—gmmethod
(PBE) Method used to describe the QM part of the system.

PBE
DFT using PBE functional and DZVP-MOLOPT basis set.

BLYP
DFT using BLYP functional and DZVP-MOLOPT basis set.

INPUT

Provide an external input file for CP2K when running gmx grompp (page 192) with the —gmi
command-line option. External input files are subject to the limitations that are described in Hybrid
Quantum-Classical simulations (QM/MM) with CP2K interface (page 535).

gmmm—-cp2k—-gmcharge
(0) Total charge of the QM part.
gmmm—-cp2k—-gmmultiplicity
(1) Multiplicity or spin-state of QM part. Default value 1 means singlet state.

gmmm—-cp2k—-gmfilenames
() Names of the CP2K files that will be generated during the simulation. When using the default, empty,
value the name of the simulation input file will be used with an additional _cp2k suffix.

3.7. Molecular dynamics parameters (.mdp options) 84

GROMACS Documentation, Release 2025.0

Collective variables (Colvars) module

These options enable and control the features provided by the collective variables (Colvars) module, a software
library for enhanced sampling methods in molecular simulations. The Colvars module is described in ref. /95
(page 586) as well as other references that are reported in the log file when the corresponding features are used.
For further details about Colvars interface implementation follow Collective Variable simulations with the Colvars
module (page 547).

colvars—-active

(false) Activate Colvars computation in the current run. Requires that the Colvars library was compiled with
GROMACS, which is the default in a typical installation.

colvars—-configfile

Name of the Colvars configuration file, using options specific to Colvars that are documented at: https:
/[colvars.github.io/gromacs-2025/colvars-refman-gromacs.html. The file name can be either an absolute
path, or a path relative to the working directory when gmx grompp (page 192) is called.

colvars—-seed

(-1) [integer] Seed used to initialize the random generator associated with certain stochastic methods imple-
mented within Colvars. The default value of -1 generates a random seed.

The current implementation of the Colvars-GROMACS interface gathers the relevant atomic coordinates on one
MPI rank, where all collective variables and their forces are computed. Take this fact into account when choosing
how many atoms to include in selections.

User defined thingies

userl-grps

user2-grps

userintl (0)
userint2 (0)
userint3 (0)
userint4 (0)
userreall (0)
userreal2 (0)
userreal3 (0)

userreald (0)

These you can use if you modify code. You can pass integers and reals and groups to your subroutine.
Check the inputrec definition in src/gromacs/mdtypes/inputrec.h

Removed features

These features have been removed from GROMACS, but so that old mdp (page 489) and tpr (page 495) files
cannot be mistakenly misused, we still parse these options. gmx grompp (page 192) and gmx mdrun (page 217)
will issue a fatal error if they are set.

adress
(no)
implicit-solvent

(no)

3.7. Molecular dynamics parameters (.mdp options) 85

https://colvars.github.io/
https://colvars.github.io/gromacs-2025/colvars-refman-gromacs.html
https://colvars.github.io/gromacs-2025/colvars-refman-gromacs.html

GROMACS Documentation, Release 2025.0

3.8 Useful mdrun features

This section discusses features in gmx mdrun (page 217) that do not fit well elsewhere.

3.8.1 Re-running a simulation

The rerun feature allows you to take any trajectory file t raj. t rr and compute quantities based upon the coordi-
nates in that file using the model physics supplied in the topol. tpr file. It can be used with command lines like
mdrun -s topol -rerun traj.trr. Thatpr (page 495) could be different from the one that generated
the trajectory. This can be used to compute the energy or forces for exactly the coordinates supplied as input, or
to extract quantities based on subsets of the molecular system (see gmx convert-tpr (page 148) and gmx trjconv
(page 283)). It is easier to do a correct “single-point” energy evaluation with this feature than a 0-step simulation.

Neighbor searching is performed for every frame in the trajectory independently of the value in nstlist
(page 49), since gmx mdrun (page 217) can no longer assume anything about how the structures were generated.
Naturally, no update or constraint algorithms are ever used.

The rerun feature cannot, in general, compute many of the quantities reported during full simulations. It does only
take positions as input (ignoring potentially present velocities), and does only report potential energies, volume
and density, dH/dl terms, and restraint information. It does notably not report kinetic, total or conserved energy,
temperature, virial or pressure.

3.8.2 Running a simulation in reproducible mode

It is generally difficult to run an efficient parallel MD simulation that is based primarily on floating-point arithmetic
and is fully reproducible. By default, gmx mdrun (page 217) will observe how things are going and vary how the
simulation is conducted in order to optimize throughput. However, there is a “reproducible mode” available with
mdrun -reprod that will systematically eliminate all sources of variation within that run; repeated invocations
on the same input and hardware will be binary identical. However, running in this mode on different hardware,
or with a different compiler, etc. will not be reproducible. This should normally only be used when investigating
possible problems.

3.8.3 Halting running simulations

When gmx mdrun (page 217) receives a TERM or INT signal (e.g. when ctrl+C is pressed), it will stop at the
next neighbor search step or at the second global communication step, whichever happens later. When gmx mdrun
(page 217) receives a second TERM or INT signal and reproducibility is not requested, it will stop at the first
global communication step. In both cases all the usual output will be written to file and a checkpoint file is written
at the last step. When gmx mdrun (page 217) receives an ABRT signal or the third TERM or INT signal, it will
abort directly without writing a new checkpoint file. When running with MPI, a signal to one of the gmx mdrun
(page 217) ranks is sufficient, this signal should not be sent to mpirun or the gmx mdrun (page 217) process that
is the parent of the others.

3.8.4 Running multi-simulations

There are numerous situations where running a related set of simulations within the same invocation of mdrun are
necessary or useful. Running a replica-exchange simulation requires it, as do simulations using ensemble-based
distance or orientation restraints. Running a related series of lambda points for a free-energy computation is also
convenient to do this way, but beware of the potential side-effects related to resource utilization and load balance
discussed later.

This feature requires configuring GROMACS with an external MPI library (page 10) so that the set of simulations
can communicate. The n simulations within the set can use internal MPI parallelism also, so that mpirun -np
x gmx_mpi mdrun for x a multiple of n will use x/n ranks per simulation.

3.8. Useful mdrun features 86

GROMACS Documentation, Release 2025.0

To launch a multi-simulation, the -mult idir option is used. For the input and output files of a multi-simulation a
set of n subdirectories is required, one for each simulation. Place all the relevant input files in those directories (e.g.
named topol.tpr), and launch a multi-simualtion with mpirun -np x gmx_mpi mdrun -s topol
-multidir <names-of-directories>. If the order of the simulations within the multi-simulation is
significant, you are responsible for ordering their names when you provide them to —-multidir. Be careful with
shells that do filename globbing dictionary-style, e.g. dirl dirl0O dirll ... dir2

Examples running multi-simulations

[mpirun -np 32 gmx_mpi mdrun -multidir a b c d }

Starts a multi-simulation on 32 ranks with 4 simulations. The input and output files are found in directories a, b,
c, and d.

[mpirun -np 32 gmx_mpi mdrun —-multidir a b ¢ d —-gputasks 0000000011111111 }

Starts the same multi-simulation as before. On a machine with two physical nodes and two GPUs per node, there
will be 16 MPI ranks per node, and 8 MPI ranks per simulation. The 16 MPI ranks doing PP work on a node
are mapped to the GPUs with IDs 0 and 1, even though they come from more than one simulation. They are
mapped in the order indicated, so that the PP ranks from each simulation use a single GPU. However, the order
0101010101010101 could run faster.

Running replica-exchange simulations

When running a multi-simulation, using gmx mdrun -replex n means that a replica exchange is attempted
every given number of steps. The number of replicas is set with -multidir option, described above. All run
input files should use a different value for the coupling parameter (e.g. temperature), which ascends over the set of
input files. The random seed for replica exchange is set with —~reseed. After every exchange, the velocities are
scaled and neighbor searching is performed. See the Reference Manual for more details on how replica exchange
functions in GROMACS.

Multi-simulation performance considerations

The frequency of communication across a multi-simulation can have an impact on performance. This is highly
algorithm dependent, but in general it is recommended to set up a multi-simulation to do inter-simulation com-
munication as infrequently as possible but as frequently as necessary. However, even when members of multi-
simulation do not communicate frequently (or at all), and therefore the associated performance overhead is small
or even negligible, load imbalance can still have a significant impact on performance and resource utilization. Cur-
rent multi-simulation algorithms use a fixed interval for data exchange (e.g. replica exchange every N steps) and
therefore all members of a multi-simulation need to reach this step before the collective communication can hap-
pen and any of them can proceed to step N+1. Hence, the slowest member of the multi-simulation will determine
the performance of the entire ensemble. This load imbalance will not only limit performance but will also leave
resources idle; e.g. if one of the simulations in an n-way multi-simulation runs at half the performance of the rest,
the resources assigned to the n—1 faster running simulations will be left idle for approximately half of the wall-
time of the entire multi-simulation job. The source of this imbalance can range from inherent workload imbalance
across the simulations within a multi-simulation to differences in hardware speed or inter-node network perfor-
mance variability affecting a subset of ranks and therefore only some of the simulations. Reducing the amount
of resources left idle requires reducing the load imbalance, which may involve splitting up non-communicating
multi-simulations, or making sure to request a “compact” allocation on a cluster (if the job scheduler allows). Note
that imbalance also applies to non-communicating multi-simulations like FEP calculations since the resources as-
signed to earlier finishing simulations can not be relinquished until the entire MPI job can finish.

3.8. Useful mdrun features 87

GROMACS Documentation, Release 2025.0

3.8.5 Controlling the length of the simulation

Normally, the length of an MD simulation is best managed through the mdp (page 489) option nsteps (page 45),
however there are situations where more control is useful. gmx mdrun -nsteps 100 overrides the mdp
(page 489) file and executes 100 steps. gmx mdrun -maxh 2.5 will terminate the simulation shortly before
2.5 hours elapse, which can be useful when running under cluster queues (as long as the queuing system does not
ever suspend the simulation).

3.9 Getting good performance from mdrun

Here we give an overview on the parallelization and acceleration schemes employed by GROMACS. The aim is
to provide an understanding of the underlying mechanisms that make GROMACS one of the fastest molecular dy-
namics simulation packages. The information presented should help choosing appropriate parallelization options,
run configuration, as well as acceleration options to achieve optimal simulation performanc