This chapter describes functions for multidimensional root-finding (solving nonlinear systems with n equations in n unknowns). The library provides low level components for a variety of iterative solvers and convergence tests. These can be combined by the user to achieve the desired solution, with full access to the intermediate steps of the iteration. Each class of methods uses the same framework, so that you can switch between solvers at runtime without needing to recompile your program. Each instance of a solver keeps track of its own state, allowing the solvers to be used in multi-threaded programs.
The problem of multidimensional root finding requires the simultaneous solution of n equations, f_i, in n variables, x_i, In general there are no bracketing methods available for n dimensional systems, and no way of knowing whether any solutions exist. All algorithms proceed from an initial guess using a variant of the Newton iteration, where x, f are vector quantities and J is the Jacobian matrix J_{ij} = d f_i / d x_j. Additional strategies can be used to enlarge the region of convergence. These include requiring a decrease in the norm |f| on each step proposed by Newton's method, or taking steepest-descent steps in the direction of the negative gradient of |f|.
Several root-finding algorithms are available within a single framework. The user provides a high-level driver for the algorithms, and the library provides the individual functions necessary for each of the steps. There are three main phases of the iteration. The steps are,
The evaluation of the Jacobian matrix can be problematic, either because programming the derivatives is intractable or because computation of the n^2 terms of the matrix becomes too expensive. For these reasons the algorithms provided by the library are divided into two classes according to whether the derivatives are available or not.
The state for solvers with an analytic Jacobian matrix is held in a
GSL::MultiRoot::FdfSolver object. The updating procedure requires both
the function and its derivatives to be supplied by the user.
The state for solvers which do not use an analytic Jacobian matrix is held in
a GSL::MultiRoot::FSolver object. The updating procedure uses only
function evaluations (not derivatives). The algorithms estimate the matrix J
or J^{-1} by approximate methods.
Two types of solvers are available. The solver itself depends only on the
dimension of the problem and the algorithm and can be reused for different problems.
The FdfSolver requires derivatives of the function to solve.
GSL::MultiRoot::FSolver.alloc(T, n)FSolver class of type T
for a system of n dimensions. The type is given by a constant or a string,
GSL::MultiRoot::FdfSolver.alloc(T, n)FdfSolver class of type T
for a system of n dimensions. The type is given by a constant,
GSL::MultiRoot::FSolver#set(func, x)Vector, and func
is a MultiRoot:Function object.GSL::MultiRoot::FdfSolver#set(func_fdf, x)Vector, and func_fdf
is a MultiRoot:Function_fdf object.GSL::MultiRoot::FSolver#nameGSL::MultiRoot::FdfSolver#nameGSL::MultiRoot:Function.alloc(proc, dim, params)See example below:
# x: vector, current guess
# params: a scalar or an array
# f: vector, function value
proc = Proc.new { |x, params, f|
a = params[0]; b = params[1]
x0 = x[0]; x1 = x[1]
f[0] = a*(1 - x0)
f[1] = b*(x1 - x0*x0)
}
params = [1.0, 10.0]
func = MultiRoot::Function.alloc(proc, 2, params)
fsolver = MultiRoot::FSolver.alloc("broyden", 2)
x = [-10, -5] # initial guess
fsolver.set(func, x)GSL::MultiRoot:Function_fdf.alloc(proc, dim, params)See the example below:
procf = Proc.new { |x, params, f|
a = params[0]; b = params[1]
x0 = x[0]; x1 = x[1]
f[0] = a*(1 - x0)
f[1] = b*(x1 - x0*x0)
}
procdf = Proc.new { |x, params, jac|
a = params[0]; b = params[1]
jac.set(0, 0, -a)
jac.set(0, 1, 0)
jac.set(1, 0, -2*b*x[0])
jac.set(1, 1, b)
}
params = [1.0, 10.0]
func_fdf = MultiRoot::Function_fdf.alloc(procf, procdf, n, params)
fdfsolver = MultiRoot::FdfSolver.alloc("gnewton", n)
x = [-10.0, -5.0]
fdfsolver.set(func_fdf, x)GSL::MultiRoot::FSolver#interateGSL::MultiRoot::FdfSolver#interateThese methods perform a single iteration of the solver self. If the iteration encounters an unexpected problem then an error code will be returned,
The solver maintains a current best estimate of the root at all times. This information can be accessed with the following auxiliary methods.
GSL::MultiRoot::FSolver#rootGSL::MultiRoot::FdfSolver#rootGSL::MultiRoot::FSolver#fGSL::MultiRoot::FdfSolver#ff(x) (Vector) at the current estimate
of the root for the solver self.GSL::MultiRoot::FSolver#dxGSL::MultiRoot::FdfSolver#dxGSL::MultiRoot::FSolver#test_delta(epsabs, epsrel)GSL::MultiRoot::FdfSolver#test_delta(epsabs, epsrel)This method tests for the convergence of the sequence by comparing the last step
dx with the absolute error epsabs and relative error epsrel
to the current position x.
The test returns GSL::SUCCESS if the following condition is achieved,
|dx_i| < epsabs + epsrel |x_i|
for each component of x and returns GSL::CONTINUE otherwise.
GSL::MultiRoot::FSolver#test_residual(epsabs)GSL::MultiRoot::FdfSolver#test_residual(epsabs)This method tests the residual value f against the absolute error
bound epsabs. The test returns GSL::SUCCESS if the following
condition is achieved,
sum_i |f_i| < epsabs
and returns GSL::CONTINUE otherwise. This criterion is suitable for
situations where the precise location of the root, x, is unimportant
provided a value can be found where the residual is small enough.
GSL::MultiRoot::Function#solve(x0, max_iter = 1000, eps = 1e-7, type = "hybrids")GSL::MultiRoot::FSolver#solve(max_iter = 1000, eps = 1e-7)GSL::MultiRoot::FSolver.solve(fsolver, max_iter = 1000, eps = 1e-7)See sample script examples/multiroot/fsolver3.rb.
proc = Proc.new { |x, params, f|
a = params[0]; b = params[1]
x0 = x[0]; x1 = x[1]
f[0] = a*(1 - x0)
f[1] = b*(x1 - x0*x0)
}
params = [1.0, 10.0]
func = MultiRoot::Function.alloc(proc, 2, params)
fsolver = MultiRoot::FSolver.alloc("hybrid", 2)
x = [-10, -5]
fsolver.set(func, x)
iter = 0
begin
iter += 1
status = fsolver.iterate
root = fsolver.root
f = fsolver.f
printf("iter = %3u x = % .3f % .3f f(x) = % .3e % .3e\n",
iter, root[0], root[1], f[0], f[1])
status = fsolver.test_residual(1e-7)
end while status == GSL::CONTINUE and iter < 1000
n = 2
procf = Proc.new { |x, params, f|
a = params[0]; b = params[1]
x0 = x[0]; x1 = x[1]
f[0] = a*(1 - x0)
f[1] = b*(x1 - x0*x0)
}
procdf = Proc.new { |x, params, jac|
a = params[0]; b = params[1]
jac.set(0, 0, -a)
jac.set(0, 1, 0)
jac.set(1, 0, -2*b*x[0])
jac.set(1, 1, b)
}
params = [1.0, 10.0]
f = MultiRoot::Function_fdf.alloc(procf, procdf, n, params)
fdfsolver = MultiRoot::FdfSolver.alloc("gnewton", n)
x = [-10.0, -5.0]
fdfsolver.set(f, x)
iter = 0
begin
iter += 1
status = fdfsolver.iterate
root = fdfsolver.root
f = fdfsolver.f
printf("iter = %3u x = % .3f % .3f f(x) = % .3e % .3e\n",
iter, root[0], root[1], f[0], f[1])
status = fdfsolver.test_residual(1e-7)
end while status == GSL::CONTINUE and iter < 1000