Proposal for a RTP++/PES++ header syntax

Guido Franceschini – CSELT

Contribution to the joint IETF-MPEG meeting in New York, 25/4/1999

Background
The current specifications for mapping the MPEG-4 Sync Layer in RTP for the Internet [1] is consistent with the analogous mapping over PES in MPEG-2 [2]. They both perform an hybrid mapping, so that part of the MPEG-4 Sync Layer fields are actually replaced by the RTP or PES header respectively, while the remaining fields are left in the RTP or PES payload (in the so-called "payload-header").

The consequence of these mappings is that information which belongs to the MPEG-4 Sync Layer, and which would be configured by means of a unique descriptor (the SLConfigDescriptor in the Object Descriptor), goes, from an RTP/PES point of view, partly in the header, partly in the payload. The "payload-header" functionally complements the RTP/PES header, but from an RTP/PES point of view is considered part of the payload!

This approach sounds tricky when considering that both the PES/RTP header and the “payload-header” should be probably parsed at once and share various elements. For example, in RTP, DTSs are being included in the “payload-header”, whereas CTSs are mapped in the RTP header (if they consume less then 32 bits; if they consume more than 32 bits at least some portion of it should be represented in the “payload-header” as well!).

Thus the first question is: what are the advantages of keeping the RTP/PES header parsing de-coupled from the "payload-header" parsing ?

If there are no pros for doing that, why don't "elevate" the “payload-header” so that it becomes an integral part of the RTP/PES header ?

Proposal

The proposal is to elevate the “payload-header” so that it becomes an integral part of the RTP/PES header (hereafter indicated as RTP++/PES++). This way the RTP++ or PES++ header would be semantically identical to SL header, except for additional restrictions in the syntax. In other words, there would be three different syntax representations (MPEG4, RTP++, PES++) for a single SL semantic, and the whole MPEG-4 architecture would remain unchanged.

In fact both RTP and PES allow for extensions in the headers. By recognizing and exploiting these already existing features of RTP and PES header syntax, it should be possible to maintain the core meaning of [1] and [2], while elevating the "payload-header".

The goal is thus to find a correct way to elevate the “payload-header” to the level of the main RTP or PES header, so that the entire MPEG-4 SL gets mapped into the RTP/PES header.

For PES, multiple options exists for reaching this goal; Annex 1 roughly describes (some of) them.

For RTP instead the guidelines provided in [3], section 5.3 "Profile specific modifications

to the RTP Header" apparently make it more difficult.

[3] presents three options for accommodating additional needs:

- the usage of a payload header for a particular payload format (the solution which is currently exploited in [1])

- the usage of the X bit to announce an extension header (in the MPEG-4 case the RTP Extension Header would than carry the SL remaining fields). This solution however wastes 4 bytes (the initial 4 bytes of the extension header) and is also discouraged in [3].

- the definition, by profile, of additional fields in the RTP Header.

For this last option [3] expresses requirements that could make this option less attractive, and therefore need further consideration and clarification:

- it is required that a profile is independent of payload format; it is not clear what exactly a profile should be, and whether an "MPEG-4" profile is possible.

- it is required that the header extensions are made of fixed fields, which would further increment the inefficiency of the RTP header syntax for the carriage of MPEG-4 streams.

The ideal solution would instead consist of, maybe, an “MPEG-4” profile, stating that the RTP header is extended with optional and variable length fields (actually: with the “payload-header”).

Protection aspects

In the [1] there is still an element of fundamental importance that has been left out: the protection tools.

In the RTP history, different protection tools have been defined for each different payload format, and specific extension headers too. It would be fully consistent with the RTP tradition to define an MPEG-4 payload format defining its own protection tools. Since however an MPEG-4 stream can be any of a quite large set of very different media streams, a generic protection tool should be considered. The proposal [4] for a generic payload format seems the best fit for this need.

The proposal is therefore to:

· Support a variety of protection tools.

· Adopt the ideas on this subject contained in the generic payload format from [4], and restrict its applicability to the MPEG-4 payload format.
Conclusion

This contribution argues that the “payload-header” should be elevated so that it can be considered as an extension of RTP or PES headers. The preferred solution is the usage of the same structure of the “payload-header” (no waste of any additional byte), with just an explicit indication to make use of it contained in the “main” RTP/PES header. Moreover, it supports the idea of an MPEG-4 payload format borrowing the support to the generic protection tools presented in [4].

References

[1] draft-ietf-avt-rtp-mpeg4-01.txt

[2] ISO/IEC W2664 (PDAM-7 to MPEG-2 Systems)

[3] draft-ietf-avt-rtp-new-03.txt

[4] draft-guillemot-genrtp-00.txt

Annex 1: Possible solutions within PES

The current PES syntax as proposed in [2] is the following:

PES_packet() {

packet_start_code_prefix
24
bslbf

stream_id
8
uimsbf

PES_packet_length
16
uimsbf

if(stream_id != program_stream_map

&& stream_id != padding_stream

&& stream_id != private_stream_2

&& stream_id != ECM

&& stream_id != EMM

&& stream_id != program_stream_directory

&& stream_id != DSMCC_stream

&& stream_id != ITU-T Rec. H.222.1 type E_stream

&& stream_id != ISO/IEC14496-1_FlexMux_stream) {

'10'
2
bslbf

PES_scrambling_control
2
bslbf

PES_priority
1
bslbf

data_alignment_indicator
1
bslbf

copyright
1
bslbf

original_or_copy
1
bslbf

PTS_DTS_flags
2
bslbf

ESCR_flag
1
bslbf

ES_rate_flag
1
bslbf

DSM_trick_mode_flag
1
bslbf

additional_copy_info_flag
1
bslbf

PES_CRC_flag
1
bslbf

PES_extension_flag
1
bslbf

PES_header_data_length
8
uimsbf

if (PTS_DTS_flags =='10') {

'0010'
4
bslbf

PTS [32..30]
3
bslbf

marker_bit
1
bslbf

PTS [29..15]
15
bslbf

marker_bit
1
bslbf

PTS [14..0]
15
bslbf

marker_bit
1
bslbf

}

if (PTS_DTS_flags ==‘11’) {

'0011'
4
bslbf

PTS [32..30]
3
bslbf

marker_bit
1
bslbf

PTS [29..15]
15
bslbf

marker_bit
1
bslbf

PTS [14..0]
15
bslbf

marker_bit
1
bslbf

'0001'
4
bslbf

DTS [32..30]
3
bslbf

marker_bit
1
bslbf

DTS [29..15]
15
bslbf

marker_bit
1
bslbf

DTS [14..0]
15
bslbf

marker_bit
1
bslbf

}

if (ESCR_flag=='1') {

reserved
2
bslbf

ESCR_base[32..30]
3
bslbf

marker_bit
1
bslbf

ESCR_base[29..15]
15
bslbf

marker_bit
1
bslbf

ESCR_base[14..0]
15
bslbf

marker_bit
1
bslbf

ESCR_extension
9
uimsbf

marker_bit
1
bslbf

}

if (ES_rate_flag == '1') {

marker_bit
1
bslbf

ES_rate
22
uimsbf

marker_bit
1
bslbf

}

if (DSM_trick_mode_flag == '1') {

trick_mode_control
3
uimsbf

if (trick_mode_control == fast_forward) {

field_id
2
bslbf

intra_slice_refresh
1
bslbf

frequency_truncation
2
bslbf

}

else if (trick_mode_control == slow_motion) {

rep_cntrl
5
uimsbf

}

else if (trick_mode_control == freeze_frame) {

field_id
2
uimsbf

reserved
3
bslbf

}

else if (trick_mode_control == fast_reverse') {

field_id
2
bslbf

intra_slice_refresh
1
bslbf

frequency_truncation
2
bslbf

else if (trick_mode_control == slow_reverse) {

rep_cntrl
5
uimsbf

}

else

reserved
5
bslbf

}

if (additional_copy_info_flag == '1') {

marker_bit
1
bslbf

additional_copy_info
7
bslbf

}

if (PES_CRC_flag == '1') {

previous_PES_packet_CRC
16
bslbf

}

if (PES_extension_flag == '1') {

PES_private_data_flag
1
bslbf

pack_header_field_flag
1
bslbf

program_packet_sequence_counter_flag
1
bslbf

P-STD_buffer_flag
1
bslbf

reserved
3
bslbf

PES_extension_flag_2
1
bslbf

if (PES_private_data_flag == '1') {

PES_private_data
128
bslbf

}

if (pack_header_field_flag == '1') {

pack_field_length
8
uimsbf

pack_header()

}

if(program_packet_sequence_counter_flag== '1'){

marker_bit
1
bslbf

program_packet_sequence_counter
7
uimsbf

marker_bit
1
bslbf

MPEG1_MPEG2_identifier
1
bslbf

original_stuff_length
6
uimsbf

}

if (P-STD_buffer_flag == '1') {

'01'
2
bslbf

P-STD_buffer_scale
1
bslbf

P-STD_buffer_size
13
uimsbf

}

if (PES_extension_flag_2 == '1'){

marker_bit
1
bslbf

PES_extension_field_length
7
uimsbf

for(i=0;i<PES_extension_field_length;i++) {

reserved
8
bslbf

}

}

}

for (i=0;i<N1;i++) {

stuffing_byte
8
bslbf

}

for (i=0;i<N2;i++) {

PES_packet_data_byte
8
bslbf

}

}

else if (stream_id == program_stream_map

|| stream_id == private_stream_2

|| stream_id == ECM

|| stream_id == EMM

|| stream_id == program_stream_directory

|| stream_id == DSMCC_stream

|| stream_id == ITU-T Rec. H.222.1 type E stream

|| stream_id == ISO/IEC 14496-1_FlexMux_stream) {

for (i=0;i<PES_packet_length;i++) {

PES_packet_data_byte
8
bslbf

}

}

else if (stream_id == padding_stream) {

for (i=0;i<PES_packet_length;i++) {

padding_byte
8
bslbf

}

}

}

It is possible to modify this syntax in at least the following 3 ways, in order to have all the MPEG-4 SL fields represented by a PES++ header:

1. define a brand new syntax for PES in case of stream_id = “ISO/IEC14496-1_SL-packetized_stream”

2. modify the "traditional" PES syntax, at the end, by adding:

if (stream_id = SLpacketizedStream) {

<the intended content of “Payload-Header”>

}

3. define a new PES_extension_header, carrying <the intended content of “Payload-Header”>

