
XZ(1) XZ Utils XZ(1)

NAME
xz, unxz, xzcat, lzma, unlzma, lzcat − Compress or decompress .xz and .lzma files

SYNOPSIS
xz [option]... [file]...

unxz is equivalent toxz −−decompress.
xzcat is equivalent toxz −−decompress −−stdout.
lzma is equivalent toxz −−format=lzma.
unlzma is equivalent toxz −−format=lzma −−decompress.
lzcat is equivalent toxz −−format=lzma −−decompress −−stdout.

When writing scripts that need to decompress files, it is recommended to always use the namexz with
appropriate arguments (xz −d or xz −dc) instead of the namesunxz andxzcat.

DESCRIPTION
xz is a general-purpose data compression tool with command line syntax similar togzip(1) andbzip2(1).
The native file format is the.xz format, but also the legacy .lzma format and raw compressed streams with
no container format headers are supported.

xz compresses or decompresses eachfile according to the selected operation mode. If nofilesare given or
file is −, xz reads from standard input and writes the processed data to standard output.xz will refuse (dis-
play an error and skip thefile) to write compressed data to standard output if it is a terminal. Similarly, xz
will refuse to read compressed data from standard input if it is a terminal.

Unless−−stdout is specified,files other than− are written to a new file whose name is derived from the
sourcefile name:

• When compressing, the suffix of the target file format (.xz or .lzma) is appended to the source filename
to get the target filename.

• When decompressing, the.xz or .lzma suffix is removed from the filename to get the target filename.
xz also recognizes the suffixes.txz and.tlz, and replaces them with the.tar suffix.

If the target file already exists, an error is displayed and thefile is skipped.

Unless writing to standard output,xz will display a warning and skip thefile if any of the following
applies:

• File is not a regular file. Symbolic links are not followed, thus they are never considered to be regular
files.

• File has more than one hardlink.

• File has setuid, setgid, or sticky bit set.

• The operation mode is set to compress, and thefile already has a suffix of the target file format (.xz or
.txz when compressing to the.xz format, and.lzma or .tlz when compressing to the.lzma format).

• The operation mode is set to decompress, and thefile doesn’t hav ea suffix of any of the supported file
formats (.xz, .txz, .lzma, or .tlz).

After successfully compressing or decompressing thefile, xz copies the owner, group, permissions, access
time, and modification time from the sourcefile to the target file. If copying the group fails, the permissions
are modified so that the target file doesn’t become accessible to users who didn’t hav epermission to access
the sourcefile. xz doesn’t support copying other metadata like access control lists or extended attributes
yet.

Once the target file has been successfully closed, the sourcefile is removed unless−−keepwas specified.
The sourcefile is never removed if the output is written to standard output.

SendingSIGINFO or SIGUSR1 to thexz process makes it print progress information to standard error.
This has only limited use since when standard error is a terminal, using−−verbosewill display an automat-
ically updating progress indicator.

Tukaani 2009-08-27 1

XZ(1) XZ Utils XZ(1)

Memory usage
The memory usage ofxz varies from a few hundred kilobytes to several gigabytes depending on the com-
pression settings. The settings used when compressing a file affect also the memory usage of the decom-
pressor. Typically the decompressor needs only 5% to 20 % of the amount of RAM that the compressor
needed when creating the file. Still, the worst-case memory usage of the decompressor is several gigabytes.

To prevent uncomfortable surprises caused by huge memory usage,xz has a built-in memory usage limiter.
The default limit is 40 % of total physical RAM. While operating systems provide ways to limit the mem-
ory usage of processes, relying on it wasn’t deemed to be flexible enough.

When compressing, if the selected compression settings exceed the memory usage limit, the settings are
automatically adjusted downwards and a notice about this is displayed. As an exception, if the memory
usage limit is exceeded when compressing with−−format=raw , an error is displayed andxz will exit with
exit status1.

If source file cannot be decompressed without exceeding the memory usage limit, an error message is dis-
played and the file is skipped. Note that compressed files may contain many blocks, which may have been
compressed with different settings. Typically all blocks will have roughly the same memory requirements,
but it is possible that a block later in the file will exceed the memory usage limit, and an error about too low
memory usage limit gets displayed after some data has already been decompressed.

The absolute value of the active memory usage limit can be seen near the bottom of the output of
−−long−help. The default limit can be overriden with−−memory=limit.

OPTIONS
Integer suffixes and special values

In most places where an integer argument is expected, an optional suffix is supported to easily indicate
large integers. There must be no space between the integer and the suffix.

k or kB
The integer is multiplied by 1,000 (10ˆ3). For example,5k or 5kB equals5000.

Ki or KiB
The integer is multiplied by 1,024 (2ˆ10).

M or MB
The integer is multiplied by 1,000,000 (10ˆ6).

Mi or MiB
The integer is multiplied by 1,048,576 (2ˆ20).

G or GB
The integer is multiplied by 1,000,000,000 (10ˆ9).

Gi or GiB
The integer is multiplied by 1,073,741,824 (2ˆ30).

A special valuemax can be used to indicate the maximum integer value supported by the option.

Operation mode
If multiple operation mode options are given, the last one takes effect.

−z, −−compress
Compress. This is the default operation mode when no operation mode option is specified, and no
other operation mode is implied from the command name (for example,unxz implies −−decom-
press).

−d, −−decompress, −−uncompress
Decompress.

−t, −−test
Test the integrity of compressedfiles. No files are created or removed. This option is equivalent to
−−decompress −−stdoutexcept that the decompressed data is discarded instead of being written
to standard output.

Tukaani 2009-08-27 2

XZ(1) XZ Utils XZ(1)

−l, −−list
View information about the compressed files. No uncompressed output is produced, and no files
are created or removed. In list mode, the program cannot read the compressed data from standard
input or from other unseekable sources.

This feature has not been implemented yet.

Operation modifiers
−k, −−keep

Keep (don’t delete) the input files.

−f, −−force
This option has several effects:

• If the target file already exists, delete it before compressing or decompressing.

• Compress or decompress even if the input is not a regular file, has more than one hardlink, or
has setuid, setgid, or sticky bit set. The setuid, setgid, and sticky bits are not copied to the tar-
get file.

• If combined with−−decompress −−stdoutand xz doesn’t recognize the type of the source
file, xz will copy the source file as is to standard output. This allows usingxzcat −-force like
cat(1) for files that have not been compressed withxz. Note that in future,xz might support
new compressed file formats, which may make xz decompress more types of files instead of
copying them as is to standard output.−−format= formatcan be used to restrictxz to decom-
press only a single file format.

• Allow writing compressed data to a terminal, and reading compressed data from a terminal.

−c, −−stdout, −−to-stdout
Write the compressed or decompressed data to standard output instead of a file. This implies
−−keep.

−S .suf, −−suffix=.suf
When compressing, use.suf as the suffix for the target file instead of.xz or .lzma. If not writing
to standard output and the source file already has the suffix .suf, a warning is displayed and the file
is skipped.

When decompressing, recognize also files with the suffix .suf in addition to files with the.xz, .txz,
.lzma, or .tlz suffix. If the source file has the suffix .suf, the suffix is removed to get the target file-
name.

When compressing or decompressing raw streams (−−format=raw), the suffix must always be
specified unless writing to standard output, because there is no default suffix for raw streams.

−−files[=file]
Read the filenames to process fromfile; if file is omitted, filenames are read from standard input.
Filenames must be terminated with the newline character. If fi lenames are given also as command
line arguments, they are processed before the filenames read fromfile.

−−files0[=file]
This is identical to−−files[=file] except that the filenames must be terminated with the null charac-
ter.

Basic file format and compression options
−F format, −−format=format

Specify the file format to compress or decompress:

• auto: This is the default. When compressing,auto is equivalent toxz. When decompressing,
the format of the input file is autodetected. Note that raw streams (created with−−for-
mat=raw) cannot be autodetected.

• xz: Compress to the.xz file format, or accept only.xz files when decompressing.

Tukaani 2009-08-27 3

XZ(1) XZ Utils XZ(1)

• lzma or alone: Compress to the legacy .lzma file format, or accept only.lzma files when
decompressing. The alternative name alone is provided for backwards compatibility with
LZMA Utils.

• raw: Compress or uncompress a raw stream (no headers). This is meant for advanced users
only. To decode raw streams, you need to set not only−−format=raw but also specify the fil-
ter chain, which would normally be stored in the container format headers.

−C check, −−check=check
Specify the type of the integrity check, which is calculated from the uncompressed data. This
option has an effect only when compressing into the.xz format; the.lzma format doesn’t support
integrity checks. The integrity check (if any) is verified when the.xz file is decompressed.

Supportedcheck types:

• none: Don’t calculate an integrity check at all. This is usually a bad idea. This can be useful
when integrity of the data is verified by other means anyway.

• crc32: Calculate CRC32 using the polynomial from IEEE-802.3 (Ethernet).

• crc64: Calculate CRC64 using the polynomial from ECMA-182. This is the default, since it is
slightly better than CRC32 at detecting damaged files and the speed difference is negligible.

• sha256: Calculate SHA-256. This is somewhat slower than CRC32 and CRC64.

Integrity of the .xz headers is always verified with CRC32. It is not possible to change or disable
it.

−0 ... −9
Select compression preset. If a preset level is specified multiple times, the last one takes effect.

The compression preset levels can be categorised roughly into three categories:

−0 ... −2
Fast presets with relatively low memory usage.−1 and −2 should give compression
speed and ratios comparable tobzip2 −1andbzip2 −9, respectively. Currently−0 is not
very good (not much faster than−1 but much worse compression). In future,−0 may be
indicate some fast algorithm instead of LZMA2.

−3 ... −5
Good compression ratio with low to medium memory usage. These are significantly
slower than levels 0−2.

−6 ... −9
Excellent compression with medium to high memory usage. These are also slower than
the lower preset levels. The default is−6. Unless you want to maximize the compression
ratio, you probably don’t want a higher preset level than −7 due to speed and memory
usage.

The exact compression settings (filter chain) used by each preset may vary betweenxz versions.
The settings may also vary between files being compressed, ifxz determines that modified settings
will probably give better compression ratio without significantly affecting compression time or
memory usage.

Because the settings may vary, the memory usage may vary too. The following table lists the max-
imum memory usage of each preset level, which won’t be exceeded even in future versions ofxz.

FIXME: The table below is just a rough idea.

Preset Compression Decompression
−0 6MiB 1 MiB
−1 6MiB 1 MiB
−2 10MiB 1 MiB
−3 20MiB 2 MiB

Tukaani 2009-08-27 4

XZ(1) XZ Utils XZ(1)

−4 30MiB 3 MiB
−5 60MiB 6 MiB
−6 100MiB 10 MiB
−7 200MiB 20 MiB
−8 400MiB 40 MiB
−9 800MiB 80 MiB

When compressing,xz automatically adjusts the compression settings downwards if the memory
usage limit would be exceeded, so it is safe to specify a high preset level even on systems that
don’t hav elots of RAM.

−−fast and−−best
These are somewhat misleading aliases for−0 and−9, respectively. These are provided only for
backwards compatibility with LZMA Utils.Av oid using these options.

Especially the name of−−best is misleading, because the definition of best depends on the input
data, and that usually people don’t want the very best compression ratio anyway, because it would
be very slow.

−e, −−extreme
Modify the compression preset (−0 ... −9) so that a little bit better compression ratio can be
achieved without increasing memory usage of the compressor or decompressor (exception: com-
pressor memory usage may increase a little with presets−0 ... −2). The downside is that the com-
pression time will increase dramatically (it can easily double).

−M limit, −−memory=limit
Set the memory usage limit. If this option is specied multiple times, the last one takes effect. The
limit can be specified in multiple ways:

• The limit can be an absolute value in bytes. Using an integer suffix like MiB can be useful.
Example:−−memory=80MiB

• The limit can be specified as a percentage of physical RAM. Example:−−memory=70%

• The limit can be reset back to its default value (currently 40 % of physical RAM) by setting it
to 0.

• The memory usage limiting can be effectively disabled by settinglimit to max. This isn’t rec-
ommended. It’s usually better to use, for example,−−memory=90%.

The currentlimit can be seen near the bottom of the output of the−−long-helpoption.

−T threads, −−threads=threads
Specify the maximum number of worker threads to use. The default is the number of available
CPU cores. You can see the current value ofthreadsnear the end of the output of the−−long−help
option.

The actual number of worker threads can be less thanthreadsif using more threads would exceed
the memory usage limit. In addition to CPU-intensive worker threads,xz may use a few auxiliary
threads, which don’t use a lot of CPU time.

Multithr eaded compression and decompression are not implemented yet, so this option has
no effect for now.

Custom compressor filter chains
A custom filter chain allows specifying the compression settings in detail instead of relying on the settings
associated to the preset levels. Whena custom filter chain is specified, the compression preset level options
(−0 ... −9 and−−extreme) are silently ignored.

A fi lter chain is comparable to piping on the UN*X command line. When compressing, the uncompressed
input goes to the first filter, whose output goes to the next filter (if any). The output of the last filter gets
written to the compressed file. The maximum number of filters in the chain is four, but typically a filter
chain has only one or two filters.

Tukaani 2009-08-27 5

XZ(1) XZ Utils XZ(1)

Many filters have limitations where they can be in the filter chain: some filters can work only as the last fil-
ter in the chain, some only as a non-last filter, and some work in any position in the chain. Depending on
the filter, this limitation is either inherent to the filter design or exists to prevent security issues.

A custom filter chain is specified by using one or more filter options in the order they are wanted in the fil-
ter chain. That is, the order of filter options is significant! When decoding raw streams (−−format=raw),
the filter chain is specified in the same order as it was specified when compressing.

Filters take filter-specificoptionsas a comma-separated list. Extra commas inoptionsare ignored. Every
option has a default value, so you need to specify only those you want to change.

−−lzma1[=options], −−lzma2[=options]
Add LZMA1 or LZMA2 filter to the filter chain. These filter can be used only as the last filter in
the chain.

LZMA1 is a legacy filter, which is supported almost solely due to the legacy .lzma file format,
which supports only LZMA1. LZMA2 is an updated version of LZMA1 to fix some practical
issues of LZMA1. The.xz format uses LZMA2, and doesn’t support LZMA1 at all. Compression
speed and ratios of LZMA1 and LZMA2 are practically the same.

LZMA1 and LZMA2 share the same set ofoptions:

preset=preset
Reset all LZMA1 or LZMA2optionsto preset. Presetconsist of an integer, which may
be followed by single-letter preset modifiers. The integer can be from0 to 9, matching the
command line options−0 ... −9. The only supported modifier is currentlye, which
matches−−extreme.

The default preset is 6, from which the default values for the rest of the LZMA1 or
LZMA2 optionsare taken.

dict=size
Dictionary (history buffer) size indicates how many bytes of the recently processed
uncompressed data is kept in memory. One method to reduce size of the uncompressed
data is to store distance-length pairs, which indicate what data to repeat from the dictio-
nary buffer. The bigger the dictionary, the better the compression ratio usually is, but dic-
tionaries bigger than the uncompressed data are waste of RAM.

Typical dictionary size is from 64 KiB to 64 MiB. The minimum is 4 KiB. The maxi-
mum for compression is currently 1.5 GiB. The decompressor already supports dictionar-
ies up to one byte less than 4 GiB, which is the maximum for LZMA1 and LZMA2
stream formats.

Dictionary size has the biggest effect on compression ratio. Dictionary size and match
finder together determine the memory usage of the LZMA1 or LZMA2 encoder. The
same dictionary size is required for decompressing that was used when compressing, thus
the memory usage of the decoder is determined by the dictionary size used when com-
pressing.

lc=lc Specify the number of literal context bits. The minimum is0 and the maximum is4; the
default is3. In addition, the sum oflc andlp must not exceed4.

lp=lp Specify the number of literal position bits. The minimum is0 and the maximum is4; the
default is0.

pb=pb Specify the number of position bits. The minimum is0 and the maximum is4; the default
is 2.

mode=mode
Compressionmodespecifies the function used to analyze the data produced by the match
finder. Supportedmodesare fast andnormal. The default isfast for presets0−2 and
normal for presets3−9.

Tukaani 2009-08-27 6

XZ(1) XZ Utils XZ(1)

mf=mf Match finder has a major effect on encoder speed, memory usage, and compression ratio.
Usually Hash Chain match finders are faster than Binary Tree match finders. Hash Chains
are usually used together withmode=fast and Binary Trees withmode=normal. The
memory usage formulas are only rough estimates, which are closest to reality whendict
is a power of two.

hc3 Hash Chain with 2- and 3-byte hashing
Minimum value fornice: 3
Memory usage:dict * 7.5 (if dict <= 16 MiB);
dict * 5.5 + 64 MiB (if dict > 16 MiB)

hc4 Hash Chain with 2-, 3-, and 4-byte hashing
Minimum value fornice: 4
Memory usage:dict * 7.5

bt2 Binary Tree with 2-byte hashing
Minimum value fornice: 2
Memory usage:dict * 9.5

bt3 Binary Tree with 2- and 3-byte hashing
Minimum value fornice: 3
Memory usage:dict * 11.5 (if dict <= 16 MiB);
dict * 9.5 + 64 MiB (if dict > 16 MiB)

bt4 Binary Tree with 2-, 3-, and 4-byte hashing
Minimum value fornice: 4
Memory usage:dict * 11.5

nice=nice
Specify what is considered to be a nice length for a match. Once a match of at leastnice
bytes is found, the algorithm stops looking for possibly better matches.

nice can be 2−273 bytes. Higher values tend to give better compression ratio at expense
of speed. The default depends on thepresetlevel.

depth=depth
Specify the maximum search depth in the match finder. The default is the special value0,
which makes the compressor determine a reasonabledepthfrom mf andnice.

Using very high values fordepthcan make the encoder extremely slow with carefully
crafted files.Av oid setting thedepthover 1000 unless you are prepared to interrupt the
compression in case it is taking too long.

When decoding raw streams (−−format=raw), LZMA2 needs only the value ofdict. LZMA1
needs alsolc, lp, andpb.

−−x86[=options]

−−powerpc[=options]

−−ia64[=options]

−−arm[=options]

−−armthumb[=options]

−−sparc[=options]
Add a branch/call/jump (BCJ) filter to the filter chain. These filters can be used only as non-last
filter in the filter chain.

A BCJ filter converts relative addresses in the machine code to their absolute counterparts. This
doesn’t change the size of the data, but it increases redundancy, which allows e.g. LZMA2 to get
better compression ratio.

Tukaani 2009-08-27 7

XZ(1) XZ Utils XZ(1)

The BCJ filters are always reversible, so using a BCJ filter for wrong type of data doesn’t cause
any data loss. However, applying a BCJ filter for wrong type of data is a bad idea, because it tends
to make the compression ratio worse.

Different instruction sets have hav edifferent alignment:

Filter Alignment Notes
x86 1 32-bit and 64-bit x86
PowerPC 4 Big endian only
ARM 4 Little endian only
ARM-Thumb 2 Little endian only
IA-64 16 Big or little endian
SPARC 4 Big or little endian

Since the BCJ-filtered data is usually compressed with LZMA2, the compression ratio may be
improved slightly if the LZMA2 options are set to match the alignment of the selected BCJ filter.
For example, with the IA-64 filter, it’s good to setpb=4 with LZMA2 (2ˆ4=16). The x86 filter is
an exception; it’s usually good to stick to LZMA2’s default four-byte alignment when compressing
x86 executables.

All BCJ filters support the sameoptions:

start=offset
Specify the startoffset that is used when converting between relative and absolute
addresses. Theoffset must be a multiple of the alignment of the filter (see the table
above). Thedefault is zero. In practice, the default is good; specifying a customoffset is
almost never useful.

Specifying a non-zero startoffset is probably useful only if the executable has multiple
sections, and there are many cross-section jumps or calls. Applying a BCJ filter sepa-
rately for each section with proper start offset and then compressing the result as a single
chunk may give some improvement in compression ratio compared to applying the BCJ
filter with the defaultoffsetfor the whole executable.

−−delta[=options]
Add Delta filter to the filter chain. The Delta filter can be used only as non-last filter in the filter
chain.

Currently only simple byte-wise delta calculation is supported. It can be useful when compressing
e.g. uncompressed bitmap images or uncompressed PCM audio. However, special purpose algo-
rithms may give significantly better results than Delta + LZMA2. This is true especially with
audio, which compresses faster and better e.g. with FLAC.

Supportedoptions:

dist=distance
Specify thedistanceof the delta calculation as bytes.distancemust be 1−256. The
default is 1.

For example, withdist=2 and eight-byte input A1 B1 A2 B3 A3 B5 A4 B7, the output
will be A1 B1 01 02 01 02 01 02.

Other options
−q, −−quiet

Suppress warnings and notices. Specify this twice to suppress errors too. This option has no effect
on the exit status. That is, even if a warning was suppressed, the exit status to indicate a warning is
still used.

−v, −−verbose
Be verbose. If standard error is connected to a terminal,xz will display a progress indicator. Spec-
ifying −−verbosetwice will give even more verbose output (useful mostly for debugging).

Tukaani 2009-08-27 8

XZ(1) XZ Utils XZ(1)

−Q, −−no−warn
Don’t set the exit status to2 ev en if a condition worth a warning was detected. This option doesn’t
affect the verbosity level, thus both−−quiet and−−no−warn have to be used to not display warn-
ings and to not alter the exit status.

−h, −−help
Display a help message describing the most commonly used options, and exit successfully.

−H, −−long−help
Display a help message describing all features ofxz, and exit successfully

−V, −−version
Display the version number ofxz and liblzma.

EXIT STATUS
0 All is good.

1 An error occurred.

2 Something worth a warning occurred, but no actual errors occurred.

Notices (not warnings or errors) printed on standard error don’t affect the exit status.

ENVIRONMENT
XZ_OPT

A space-separated list of options is parsed fromXZ_OPT before parsing the options given on the
command line. Note that only options are parsed fromXZ_OPT; all non-options are silently
ignored. Parsing is done withgetopt_long(3) which is used also for the command line arguments.

LZMA UTILS COMP ATIBILITY
The command line syntax ofxz is practically a superset oflzma, unlzma, and lzcat as found from LZMA
Utils 4.32.x. In most cases, it is possible to replace LZMA Utils with XZ Utils without breaking existing
scripts. There are some incompatibilities though, which may sometimes cause problems.

Compression preset levels
The numbering of the compression level presets is not identical inxz and LZMA Utils. The most important
difference is how dictionary sizes are mapped to different presets. Dictionary size is roughly equal to the
decompressor memory usage.

Level xz LZMA Utils
−1 64KiB 64 KiB
−2 512KiB 1 MiB
−3 1MiB 512 KiB
−4 2MiB 1 MiB
−5 4MiB 2 MiB
−6 8MiB 4 MiB
−7 16MiB 8 MiB
−8 32MiB 16 MiB
−9 64MiB 32 MiB

The dictionary size differences affect the compressor memory usage too, but there are some other differ-
ences between LZMA Utils and XZ Utils, which make the difference even bigger:

Level xz LZMA Utils 4.32.x
−1 2MiB 2 MiB
−2 5MiB 12 MiB
−3 13MiB 12 MiB
−4 25MiB 16 MiB
−5 48MiB 26 MiB
−6 94MiB 45 MiB
−7 186MiB 83 MiB

Tukaani 2009-08-27 9

XZ(1) XZ Utils XZ(1)

−8 370MiB 159 MiB
−9 674MiB 311 MiB

The default preset level in LZMA Utils is −7 while in XZ Utils it is −6, so both use 8 MiB dictionary by
default.

Streamed vs. non-streamed .lzma files
Uncompressed size of the file can be stored in the.lzma header. LZMA Utils does that when compressing
regular files. The alternative is to mark that uncompressed size is unknown and use end of payload marker
to indicate where the decompressor should stop. LZMA Utils uses this method when uncompressed size
isn’t known, which is the case for example in pipes.

xz supports decompressing.lzma files with or without end of payload marker, but all .lzma files created by
xz will use end of payload marker and have uncompressed size marked as unknown in the.lzma header.
This may be a problem in some (uncommon) situations. For example, a.lzma decompressor in an embed-
ded device might work only with files that have known uncompressed size. If you hit this problem, you
need to use LZMA Utils or LZMA SDK to create.lzma files with known uncompressed size.

Unsupported .lzma files
The .lzma format allows lc values up to 8, andlp values up to 4. LZMA Utils can decompress files with
any lc and lp, but always creates files withlc=3 and lp=0. Creating files with otherlc and lp is possible
with xz and with LZMA SDK.

The implementation of the LZMA1 filter in liblzma requires that the sum oflc and lp must not exceed 4.
Thus,.lzma files which exceed this limitation, cannot be decompressed withxz.

LZMA Utils creates only.lzma files which have dictionary size of 2n̂ (a power of 2), but accepts files with
any dictionary size. liblzma accepts only.lzma files which have dictionary size of 2n̂ or 2 n̂ + 2ˆ(n−1).
This is to decrease false positives when autodetecting.lzma files.

These limitations shouldn’t be a problem in practice, since practically all.lzma files have been compressed
with settings that liblzma will accept.

Tr ailing garbage
When decompressing, LZMA Utils silently ignore everything after the first.lzma stream. In most situa-
tions, this is a bug. This also means that LZMA Utils don’t support decompressing concatenated.lzma
files.

If there is data left after the first.lzma stream,xz considers the file to be corrupt. This may break obscure
scripts which have assumed that trailing garbage is ignored.

NOTES
Compressed output may vary

The exact compressed output produced from the same uncompressed input file may vary between XZ Utils
versions even if compression options are identical. This is because the encoder can be improved (faster or
better compression) without affecting the file format. The output can vary even between different builds of
the same XZ Utils version, if different build options are used or if the endianness of the hardware is differ-
ent for different builds.

The above means that implementing−−rsyncable to create rsyncable.xz files is not going to happen with-
out freezing a part of the encoder implementation, which can then be used with−−rsyncable.

Embedded .xz decompressors
Embedded.xz decompressor implementations like XZ Embedded don’t necessarily support files created
with check types other thannone and crc32. Since the default is−−check=crc64, you must use
−−check=noneor −−check=crc32when creating files for embedded systems.

Outside embedded systems, all.xz format decompressors support all thecheck types, or at least are able to
decompress the file without verifying the integrity check if the particularcheck is not supported.

XZ Embedded supports BCJ filters, but only with the default start offset.

Tukaani 2009-08-27 10

XZ(1) XZ Utils XZ(1)

SEE ALSO
xzdec(1), gzip(1), bzip2(1)

XZ Utils: <http://tukaani.org/xz/>
XZ Embedded: <http://tukaani.org/xz/embedded.html>
LZMA SDK: <http://7-zip.org/sdk.html>

Tukaani 2009-08-27 11

