previous next contents elements attributes properties index

®

W3C

Scalable Vector Graphics (SVG) 1.0
Specification

W3C Proposed Recommendation 19 July, 2001

Thisversion:
http://www.w3.0rg/TR/2001/PR-SV G-20010719/

(Available as. PDF, zip archive of HTML)
Latest version:
http://www.w3.org/ TR/SVG/
Previous version:
http://www.w3.0rg/TR/2000/CR-SV G-20001102/
Editor:
Jon Ferraiolo <jferraio@adobe.com>
Authors:
See author list

Copyright ©1998, 1999, 2000, 2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C
liability, trademark, document use and software licensing rules apply.

Abstract

This specification defines the features and syntax for Scalable Vector Graphics (SVG), a
language for describing two-dimensional vector and mixed vector/raster graphicsin XML.

Status of this document

This section describes the status of this document at the time of its publication. Other documents

may super sede this document. The latest status of this document series is maintained at the W3C.

On 19 July, 2001, this document enters a Proposed Recommendation review period. From that

http://www.w3.org/
http://www.w3.org/TR/2001/PR-SVG-20010719/index.html
http://www.w3.org/TR/2001/PR-SVG-20010719/PR-SVG-20010719.pdf
http://www.w3.org/TR/2001/PR-SVG-20010719/PR-SVG-20010719.zip
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/2000/CR-SVG-20001102/
mailto:jferraio@adobe.com
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720

date until 16 August, 2001, W3C Advisory Committee representatives are encouraged to review
this specification and return comments to w3t-svg@wa3.org, which is visible to the W3C Team

only.

After the review, the W3C Director will announce the document's disposition: it may become a
W3C Recommendation (possibly with minor changes), it may revert to Working Draft status, or
it may be dropped as a W3C work item. This announcement should not be expected sooner than
14 days after the end of the review.

The SV G specification was a W3C Candidate Recommendation for areview period which ended
on 02 February, 2001. During that period the W3C SV G Working Group members encouraged
implementation using the specification and comment on it; the Working Group continues to do
so. A report on implementation status was made at the end of the Candidate Recommendation
review period. It isintended that thiswill be updated from time to time by the follow-on activity
that oversees the SVG Recommendation, whatever that may be. The W3C SV G Working Group
has maintained a public Web page http://www.w3.org/Graphics/SV G/ which contains further
background information. A list of changes since the updated Candidate Recommendation

specification of 02 November, 2000 is available.

Public discussion of issues related to vector graphics on the Web and SVG in particular takes
place on the public mailing list of the SV G Working Group (list archives). To subscribe send an

email to ww svg- r equest @V3. or g with theword subscr i be in the subject line.

The substantial implementation experience with generators, viewers and transcoders based on the
SV G specification and the amount of SV G content that has been devel oped to date encouraged
the Working Group to ask the W3C Director to advance this document to Proposed
Recommendation status.

Publication as a Proposed Recommendation does not imply endorsement by the W3C
membership. Thisis still adraft document and may be updated, replaced or made obsol ete by
other documents at any time. It isinappropriate to cite W3C Proposed Recommendations as
other than "work in progress.”

There are patent disclosures and license commitments associated with the SV G 1.0 specification.
These may be found on the SV G 1.0 Patent Statements in conformance with W3C policy.

This document has been produced by the W3C SV G Working Group as part of the activity of the
Graphics Activity within the W3C Document Formats Domain. The goals of the W3C SVG
Working Group are discussed in the W3C SVG WG Charter (11 November 2000). The authors
of this document are the SV G Working Group members. The editor is Jon Ferraiolo.

A list of current W3C Technical Reports can be found at http://www.w3.0rg/TR/.

Available languages

The English version of this specification is the only normative version. However, for trandations
in other languages see http://www.w3.org/Graphics/SV G/svg-updates/transl ations.html.

mailto:w3t-svg@w3.org
http://www.w3.org/Graphics/SVG/Test/BE-ImpStatus
http://www.w3.org/Graphics/SVG/
file:///D|/PR-SVG-20010719/changes.html
mailto:www-svg@w3.org
http://lists.w3.org/Archives/Public/www-svg/
http://www.w3.org/2001/07/SVG10-IPR-statements.html
http://www.w3.org/Consortium/Process/#ipr
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/Activity
http://www.w3.org/DF/
http://www.w3.org/Graphics/SVG/Group/SVGcharter
http://www.w3.org/TR/
http://www.w3.org/Graphics/SVG/svg-updates/translations.html

Table of Contents

o Expanded Table of Contents
« Copyright notice

e 1 Introduction

« 2 Concepts
« 3 Rendering Model

o 4 Basic Data Types and Interfaces

» 5 Document Structure

« 6Styling

7 Coordinate Systems, Transformations and Units
« 8Paths

« 9 Basic Shapes

« 10 Text

« 11 Painting: Filling, Stroking and Marker Symbols
e 12 Color

» 13 Gradients and Patterns

« 14 Clipping, Masking and Compositing

« 15 Filter Effects

« 16 Interactivity

o 17 Linking

« 18 Scripting

o 19 Animation

« 20 Fonts

o 21 Metadata

o 22 Backwards Compatibility

« 23 Extensibility

« Appendix A: DTD

« Appendix B: SVG Document Object Model (DOM)
« Appendix C: IDL Definitions

« Appendix D: Java L anguage Binding

« Appendix E: ECMA Script Language Binding

« Appendix F: Implementation Requirements

« Appendix G: Conformance Criteria

o Appendix H: Accessibility Support

o Appendix |: Internationalization Support

e Appendix J Minimizing SVG File Sizes

o Appendix K: References

o Appendix L: Element Index
o Appendix M: Attribute Index
o Appendix N: Property Index

o Appendix O: Index

The authors of the SV G 1.0 specification are the people who participated in the SVG 1.0
working group as members or aternates.

Authors:
John Bowler, Microsoft Corporation <johnbo@microsoft.com>

Craig Brown, Canon <cmb@research.canon.com.au>
Milt Capsimalis, Autodesk Inc. <milt@autodesk.com>
Richard Cohn, Adobe Systems Incorporated <richard@covero.com>

Lee Cole, Quark <lcole@quark.com>

Thomas E Deweese, Kodak <thomas.deweese@kodak.com>
David Dodds, L exica <ddodds@I exica.net>

Andrew Donoho, IBM <awd@us.ibm.com>

David Duce, Oxford Brookes University <daduce@brookes.ac.uk>

Jerry Evans, Sun Microsystems <jerry.evans@Eng.sun.com>

Jon Ferraiolo, Adobe Systems Incorporated <jferraio@adobe.com>

Jun Fujisawa, Canon <fujisawa.jun@canon.co.jp>

Scott Furman, Netscape Communications Corporation <fur@netscape.com>

Brent Getlin, Macromedia <bgetlin@macromedia.com>

Peter Graffagnino, Apple <pgraff @apple.com>
Rick Graham, BitFlash Inc. <rick@bitflash.com>
Vincent Hardy, Sun Microsystems, <vincent.hardy @sun.com>

L ofton Henderson, OASIS, <lofton@rockynet.com>

Jan Christian Herlitz , Excosoft, <J-C.Herlitz@excosoft.se>
Alan Hester, Xerox Corporation <Alan.Hester @usa.xerox.com>
Bob Hopgood, RAL (CCLRC) <frah@inf.rl.ac.uk>

Dean Jackson, CSIRO <dean.jackson@cmis.csiro.au>
Christophe Jolif, ILOG <jolif @ilog.fr>

mailto:johnbo@microsoft.com
mailto:cmb@research.canon.com.au
mailto:milt@autodesk.com
mailto:richard@covero.com
mailto:lcole@quark.com
mailto:thomas.deweese@kodak.com
mailto:ddodds@lexica.net
mailto:awd@us.ibm.com
mailto:daduce@brookes.ac.uk
mailto:jerry.evans@Eng.sun.com
mailto:jferraio@adobe.com
mailto:fujisawa.jun@canon.co.jp
mailto:fur@netscape.com
mailto:bgetlin@macromedia.com
mailto:pgraff@apple.com
mailto:rick@bitflash.com
mailto:vincent.hardy@sun.com
mailto:lofton@rockynet.com
mailto:J-C.Herlitz@excosoft.se
mailto:Alan.Hester@usa.xerox.com
mailto:frah@inf.rl.ac.uk
mailto:dean.jackson@cmis.csiro.au
mailto:jolif@ilog.fr

Kelvin Lawrence, IBM <klawrenc@us.ibm.com>

Hakon Lie, Opera <howcome@operasoftware.com >
ChrisLilley, W3C <chris@w3.org>
Philip Mansfield, IntraNet Solutions, Inc. <philipm@schemasoft.com>

Kevin McCluskey, Netscape Communications Corporation <kmcclusk @netscape.com>

Tuan Nguyen, Microsoft Corporation <tuann@microsoft.com>

Troy Sandal, Visio Corporation <TroyS@visio.com>

Peter Santangeli, Macromedia <psantangeli @macromedia.com>

Haroon Sheikh, Corel Corporation <haroons@corel.ca>

Gavriel State, Corel Corporation <gavriel SQCOREL.CA>

Robert Stevahn, Hewlett-Packard Company <rstevahn@boi.hp.com>
Timothy Thompson, Kodak <timothy.thompson@kodak.com>

Rick Y ardumian, Canon <richard.yardumian@ecis.canon.com>

Shenxue Zhou, Quark <szhou@quark.com>

previous next contents elements attributes properties index

W3C TV WAC cssp

mailto:klawrenc@us.ibm.com
mailto:howcome@operasoftware.com
mailto:chris@w3.org
mailto:philipm@schemasoft.com
mailto:kmcclusk@netscape.com
mailto:tuann@microsoft.com
mailto:TroyS@visio.com
mailto:psantangeli@macromedia.com
mailto:haroons@corel.ca
mailto:gavriels@COREL.CA
mailto:rstevahn@boi.hp.com
mailto:timothy.thompson@kodak.com
mailto:richard.yardumian@cis.canon.com
mailto:szhou@quark.com
http://validator.w3.org/
http://jigsaw.w3.org/css-validator

previous next contents elements attributes properties index

19 July, 2001

Expanded Table of Contents

o Expanded Table of Contents
o Copyright notice

o W3C Document Copyright Notice and License

o W3C Software Copyright Notice and License

« 1 Introduction
o 1.1About SVG
o 1.2 SVG MIME type, file name extension and Macintosh filetype
o 1.3 SVG Namespace, Public Identifier and System Identifier
o 1.4 Compatibility with Other Standards Efforts
o 1.5 Terminology
o 1.6 Definitions
» 2 Concepts
o 2.1 Explaining the name: SVG
o 2.2 Important SVG concepts

o 2.3 Optionsfor using SVG in Web pages
« 3 Rendering Model
o 3.1 Introduction

o0 3.2 The painters model
o 3.3 Rendering Order
o 3.4 How groups are rendered

o 3.5 How elements are rendered

o 3.6 Types of graphics e ements

= 3.6.1 Painting shapes and text

s 3.6.2 Painting raster images

o 3.7 Filtering painted regions

o 3.8 Clipping, masking and object opacity

o 3.9 Parent Compositing

o 4 Basic Data Types and Interfaces

o 4.1 Basic datatypes

o 4.2 Recognized color keyword names
o 4.3 Basic DOM interfaces
o 5 Document Structure

o 5.1 Defining an SV G document fragment: the 'svg' e ement

» 5.1.1 Overview
s 5.1.2 The'svg' element
o 5.2 Grouping: the''g' element

= 5.2.1 Overview
» 5.2.2The'g element

o 5.3 References and the 'defs element
= 5.3.1 Overview
= 5.3.2 URI reference attributes
» 5.3.3 The'defs element

0 5.4 The'desc' and 'title’ elements

o 5.5 The'symbol' element

0 5.6 The'use e ement

o 5.7 The'image e ement

o 5.8 Conditional processing

= 5.8.1 Conditional processing overview
= 5.8.2 The 'switch' element

= 5.8.3 The requiredFeatures attribute

= 5.8.4 The requiredExtensions attribute
= 5.8.5 The systemL anguage attribute

o 5.9 Specifying whether external resources are required for proper rendering

o 5.10 Common attributes

s 5.10.1 Attributes common to all elements: id and xml:base

= 5.10.2 The xml:lang and xml:space attributes
o 5.11 DOM interfaces
« 6Styling
o 6.1 SVG's styling properties

o 6.2 Usage scenarios for styling

o 6.3 Alternative ways to specify styling properties

o 6.4 Specifying properties using the presentation attributes

O

O

O

6.5 Entity definitions for the presentation attributes

6.6 Styling with XSL

6.7 Styling with CSS

6.8 Case sensitivity of property names and values

6.9 Facilities from CSS and XSL used by SVG

6.10 Referencing external style sheets

6.11 The 'style' element

6.12 The class attribute

6.13 The style attribute

6.14 Specifying the default style sheet language

6.15 Property inheritance

6.16 The scope/range of styles

6.17 User agent style sheet

6.18 Aural style sheets

6.19 DOM interfaces

o 7 Coordinate Systems, Transformations and Units

O

O

O

O

O

O

e 8 Paths

O

O

O

7.1 Introduction

7.2 Theinitial viewport

7.3 Theinitial coordinate system

7.4 Coordinate system transformations

7.5 Nested transformations

7.6 The transform attribute

7.7 The viewBox attribute

7.8 The preserveAspectRatio attribute

7.9 Establishing a new viewport

7.10 Units

7.11 Object bounding box units

7.12 DOM interfaces

8.1 Introduction

8.2 The 'path' element

8.3 Path Data

» 8.3.1 General information about path data
s 8.3.2 The "moveto" commands

s 8.3.3 The"closgpath" command

s 8.3.4 The"lineto" commands

» 8.3.5 The curve commands

s 8.3.6 The cubic Bézier curve commands

» 8.3.7 The quadratic Bézier curve commands

= 8.3.8 Thedliptical arc curve commands
= 8.3.9 The grammar for path data
o 8.4 Distance along a path
o 8.5 DOM interfaces
o 9 Basic Shapes

o 9.1 Introduction

o 9.2 The rect' e ement

o 9.3 The'circle e ement
0 9.4 The'dlipse e ement
o 9.5 The'lin€ e ement

o 9.6 The'polyline' e ement

o 9.7 The'polygon' e ement

o 9.8 The grammar for points specifications in 'polyline’ and 'polygon’ el ements
o 9.9 DOM interfaces

o 10 Text
o 10.1 Introduction

o 10.2 Characters and their corresponding glyphs
o 10.3 Fonts, font tables and baselines
o 10.4 The 'text' element
o 10.5 The 'tspan' element
o 10.6 The 'tref' element
o 10.7 Text layout
= 10.7.1 Text layout introduction

s 10.7.2 Setting the inline-progression-direction

s 10.7.3 Glyph orientation within atext run
= 10.7.4 Relationship with bidirectionality
o 10.8 Text rendering order

o 10.9 Alignment properties

= 10.9.1 Text alignment properties

= 10.9.2 Basdline alignment properties

o 10.10 Font selection properties

o 10.11 Spacing properties

o 10.12 Text decoration

o 10.13 Text on a path
= 10.13.1 Introduction to text on a path
= 10.13.2 The 'textPath' element
= 10.13.3 Text on a path layout rules

o 10.14 Alternate glyphs

o 10.15 White space handling

o 10.16 Text selection and clipboard operations

o 10.17 DOM interfaces

« 11 Painting: Filling, Stroking and Marker Symbols

o 11.1 Introduction

o 11.2 Specifying paint

o 11.3 Fill Properties

o 11.4 Stroke Properties

o 11.5 Controlling visibility

o 11.6 Markers
= 11.6.1 Introduction
= 11.6.2 The 'marker' element
= 11.6.3 Marker properties

s 11.6.4 Details on how markers are rendered

o 11.7 Rendering properties

= 11.7.1 Color interpolation properties: 'color-interpolation' and
‘color-interpol ation-filters

s 11.7.2 The'color-rendering' property

= 11.7.3 The 'shape-rendering' property

s 11.7.4 The 'text-rendering' property

s 11.7.5 The'image-rendering' property

o 11.8 Inheritance of painting properties
o 11.9 DOM interfaces

e 12 Color
o 12.1 Introduction

o 12.2 The'color' property

o 12.3 Color profile descriptions

s 12.3.1 Overview of color profile descriptions

s 12.3.2 Alternative ways for defining a color profile description

s 12.3.3 The'color-profile' element

= 12.3.4 @color-profile when using CSS styling

= 12.3.5'color-profile' property
o 12.4 DOM interfaces
« 13 Gradients and Patterns
o 13.1 Introduction
o 13.2 Gradients
= 13.2.1 Introduction
= 13.2.2 Linear gradients
» 13.2.3 Radial gradients
= 13.2.4 Gradient stops
o 13.3 Patterns
o 13.4 DOM interfaces
14 Clipping, Masking and Compositing

o 14.1 Introduction

o 14.2 Simple alpha compositing
o 14.3 Clipping paths
= 14.3.1 Introduction
» 14.3.2 Theinitial clipping path

s 14.3.3 The'overflow' and 'clip' properties

= 14.3.4 Clip to viewport vs. clip to viewBox
= 14.3.5 Establishing a new clipping path
o 14.4 Masking
o 14.5 Object and group opacity: the 'opacity’ property
o 14.6 DOM interfaces
« 15 Filter Effects
o 15.1 Introduction

o 15.2 An example
o 15.3 The filter' e ement
o 15.4 The filter' property

O

O

15.5 Filter effects region

15.6 Accessing the background image

15.7 Filter primitives overview

= 15.7.1 Overview
s 15.7.2 Common attributes
» 15.7.3 Filter primitive subregion

15.8 Light source e ements and properties

= 15.8.1 Introduction

= 15.8.2 Light source ‘feDistantLight'

= 15.8.3 Light source 'fePointLight’

= 15.8.4 Light source 'feSpotLight'

= 15.8.5 The''lighting-color' property
15.9 Filter primitive 'feBlend'

15.10 Filter primitive 'feColorMatrix'

15.11 Filter primitive 'feComponentTransfer'

15.12 Filter primitive 'feComposite

15.13 Filter primitive 'feConvolveMatrix'

15.14 Filter primitive ‘feDiffuseLighting'

15.15 Filter primitive 'feDisplacementM ap'

15.16 Filter primitive 'feFlood'

15.17 Filter primitive 'feGaussianBlur'

15.18 Filter primitive 'felmage'

15.19 Filter primitive 'feMerge

15.20 Filter primitive 'feM orphology"

15.21 Filter primitive 'feOffseat'

15.22 Filter primitive 'feSpecularLighting'

15.23 Filter primitive 'feTile

15.24 Filter primitive 'feTurbulence

15.25 DOM interfaces

e 16 Interactivity

O

O

O

O

16.1 Introduction

16.2 Complete list of supported events

16.3 User interface events

16.4 Pointer events

o 16.5 Processing order for user interface events

[}

16.6 The 'pointer-events' property

o 16.7 Magnification and panning
o 16.8 Cursors
= 16.8.1 Introduction to cursors

s 16.8.2 The'cursor' property

s 16.8.3 The'cursor' element
o 16.9 DOM interfaces

e 17 Linking
o 17.1 Links out of SVG contents: the 'a element

o 17.2 Linking into SV G content: URI fragments and SV G views

= 17.2.1 Introduction: URI fragments and SV G views
n 17.2.2 SVG fragment identifiers
» 17.2.3 Predefined views: the 'view' element
o 17.3 DOM interfaces
» 18 Scripting
o 18.1 Specifying the scripting language

» 18.1.1 Specifying the default scripting lanquage

s 18.1.2 Local declaration of a scripting language

o 18.2 The 'script' element
o 18.3 Event handling
o 18.4 Event attributes
o 18.5 DOM interfaces
o 19 Animation
o 19.1 Introduction

o 19.2 Animation elements
= 19.2.1 Overview
= 19.2.2 Relationship to SMIL Animation
= 19.2.3 Animation elements example

n 19.2.4 Attributes to identify the target element for an animation

= 19.2.5 Attributes to identify the target attribute or property for an
animation

» 19.2.6 Attributes to control the timing of the animation

s 19.2.7 Attributes that define animation values over time

O

O

= 19.2.8 Attributes that control whether animations are additive

= 19.2.9 Inheritance

= 19.2.10 The 'animate’ element

» 19.2.11 The 'set’ element

= 19.2.12 The 'animateMotion' element

= 19.2.13 The 'animateColor' element

s 19.2.14 The 'animateTransform' element

= 19.2.15 Elements, attributes and properties that can be animated
19.3 Animation using the SVG DOM

19.4 DOM interfaces

« 20 Fonts

O

O

O

O

20.1 Introduction

20.2 Overview of SVG fonts

20.3 The 'font' element

20.4 The 'glyph' element

20.5 The 'missing-glyph' element

20.6 Glyph selection rules

20.7 The 'hkern' and 'vkern' elements

20.8 Describing afont

s 20.8.1 Overview of font descriptions

» 20.8.2 Alternative ways for providing afont description
s 20.8.3 The 'font-face' e ement
20.9 DOM interfaces

o 21 Metadata

O

O

O

O

21.1 Introduction

21.2 The 'metadata element

21.3 An example

21.4 DOM interfaces

o 22 Backwards Compatibility

o 23 Extenshility

O

O

O

O

23.1 Foreign namespaces and private data

23.2 Embedding foreign object types

23.3 The 'foreignObject' el ement

23.4 An example

o 23.5 Adding private elements and attributes to the DTD
o 23.6 DOM interfaces
o Appendix A: DTD
« Appendix B: SVG Document Object Model (DOM)
o B.1SVG DOM Overview
o B.2 Naming Conventions
o B.3 Interface SV GException
o B.4 Feature strings for the hasFeatur e method call
o B.5 Relationship with DOM2 events
o B.6 Relationship with DOM2 CSS object model (CSS OM)
= B.6.1 Introduction

s B.6.2 User agents that do not support styling with CSS

= B.6.3 User agents that support styling with CSS
= B.6.4 Extended interfaces
o B.7Invalid values
« Appendix C: IDL Definitions
Appendix D: Java L anguage Binding
« Appendix E: ECMA Script Language Binding
« Appendix F: Implementation Reguirements

o F.1 Introduction

o F.2 Error processing

o F.3Version control

o F.4 Clamping values which are restricted to a particular range

o F.5 'path' e ement implementation notes

o F.6 Elliptical arc implementation notes

s F.6.1 Elliptical arc syntax

s F.6.2 Out-of-range parameters

s F.6.3 Parameterization alternatives

s F.6.4 Conversion from center to endpoint parameterization

= F.6.5 Conversion from endpoint to center parameterization

= F.6.6 Correction of out-of-range radii

o F.7 Text salection implementation notes

o F.8 Printing implementation notes

o Appendix G: Conformance Criteria

o G.1 Introduction

o G.2 Conforming SVG Document Fragments

o G.3 Conforming SVG Stand-Alone Files

o G.4 Conforming SV G Included Document Fragments
o G.5 Conforming SVG Generators

o G.6 Conforming SVG Interpreters

o G.7 Conforming SVG Viewers

« Appendix H: Accessibility Support

o H.1 WAI Accessibility Guidelines

o H.2 SVG Content Accessibility Guidelines
« Appendix |: Internationalization Support

o 1.1 Introduction

o 1.2 Internationalization and SVG

o 1.3 SVG Internationalization Guidelines
« Appendix J Minimizing SVG File Sizes

o Appendix K: References

o K.1 Normative references

o K.2 Informative references

o Appendix L: Element Index
o Appendix M: Attribute Index
o Appendix N: Property Index

o Appendix O: Index

previous next contents elements attributes properties index

previous next contents elements attributes properties index

19 July, 2001

Copyright Notice

Copyright © 2001 World Wide Web Consortium, (M assachusetts I nstitute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All
Rights Reserved.

This document is published under the W3C Document Copyright Notice and License. The
bindings within this document are published under the W3C Software Copyright Notice and
License. The software license requires "Notice of any changes or modifications to the W3C files,

including the date changes were made." Consequently, modified versions of the DOM bindings
must document that they do not conform to the W3C standard; in the case of the IDL binding,
the pragma prefix can no longer be ‘w3c.org'; in the case of the Java binding, the package names
can no longer be in the 'org.w3c' package.

W3C Document Copyright Notice and License

Note: This section isacopy of the W3C Document Notice and License and could be found at
http://www.w3.0rg/Consortium/L egal/copyright-documents-19990405.

Copyright © 1994-2001 World Wide Web Consortium, (M assachusetts I nstitute of
Technology, I nstitut National de Recher che en Informatique et en Automatique, Keio
University). All Rights Reserved.

http://www.w3.or g/Consortium/L egal/

Public documents on the W3C site are provided by the copyright holders under the following
license. The software or Document Type Definitions (DTDs) associated with W3C specifications
are governed by the Software Notice. By using and/or copying this document, or the W3C

document from which this statement is linked, you (the licensee) agree that you have read,
understood, and will comply with the following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document
from which this statement is linked, in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the document, or
portions thereof, that you use:

1. Alink or URL to the original W3C document.

2. The pre-existing copyright notice of the original author, or if it doesn't exist, a notice of
the form: "Copyright © [$date-of-document] World Wide Web Consortium,
(Massachusetts I nstitute of Technology, Institut National de Recherche en Informatique
et en Automatique, Keio University). All Rights Reserved.

http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)

http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.inria.fr/
http://www.keio.ac.jp/

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of thisNOTICE should be provided. We request
that authorship attribution be provided in any software, documents, or other items or products
that you create pursuant to the implementation of the contents of this document, or any portion
thereof.

No right to create modifications or derivatives of W3C documentsis granted pursuant to this
license. However, if additional requirements (documented in the Copyright FAQ) are satisfied,
the right to create modifications or derivatives is sometimes granted by the W3C to individuals
complying with those requirements.

THISDOCUMENT ISPROVIDED "AS1S" AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESSFOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF
THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTSWILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS
THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity

pertaining to this document or its contents without specific, written prior permission. Titleto
copyright in this document will at all times remain with copyright holders.

W3C Software Copyright Notice and License

Note: Thissection isacopy of the W3C Software Copyright Notice and License and could be
found at http://www.w3.org/Consortium/L egal/copyright-software-19980720

Copyright © 1994-2001 World Wide Web Consortium, (M assachusetts | nstitute of
Technology, Institut National de Recherche en Infor matique et en Automatique, Keio
University). All Rights Reserved.

http://www.w3.or g/Consortium/L egal/

This W3C work (including software, documents, or other related items) is being provided by the
copyright holders under the following license. By obtaining, using and/or copying this work, you
(the licensee) agree that you have read, understood, and will comply with the following terms
and conditions:

Permission to use, copy, and modify this software and its documentation, with or without
modification, for any purpose and without fee or royalty is hereby granted, provided that you
include the following on ALL copies of the software and documentation or portions thereof,
including modifications, that you make:

1. Thefull text of thisNOTICE in alocation viewable to users of the redistributed or
derivative work.

http://www.w3.org/Consortium/Legal/IPR-FAQ.html
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.keio.ac.jp/

2. Any pre-existing intellectual property disclaimers. If none exist, then anotice of the
following form: "Copyright © [$date-of-software] World Wide Web Consortium,

(Massachusetts I nstitute of Technology, |nstitut National de Recherche en Informatique
et en Automatique, Keio University). All Rights Reserved.
http://www.w3.org/Consortium/Legal/."

3. Notice of any changes or modifications to the W3C files, including the date changes were
made. (We recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION ISPROVIDED "AS1S," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE
OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity
pertaining to the software without specific, written prior permission. Title to copyright in this
software and any associated documentation will at all times remain with copyright holders.

previous next contents elements attributes properties index

http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.inria.fr/
http://www.keio.ac.jp/

previous next contents elements attributes properties index

19 July, 2001

1 Introduction

Contents

o 1.1 About SVG

« 1.2 SVG MIME type, file name extension and Macintosh filetype
« 1.3 SVG Namespace, Public Identifier and System Identifier

o 1.4 Compatibility with Other Standards Efforts

o 1.5 Terminology

« 1.6 Definitions

1.1 About SVG

This specification defines the features and syntax for Scalable Vector Graphics (SVG).

SV G isalanguage for describing two-dimensional graphicsin XML [XML10]. SVG alows for three types
of graphic objects: vector graphic shapes (e.g., paths consisting of straight lines and curves), images and
text. Graphical objects can be grouped, styled, transformed and composited into previously rendered
objects. The feature set includes nested transformations, clipping paths, apha masks, filter effects and
template objects.

SV G drawings can be interactive and dynamic. Animations can be defined and triggered either
declaratively (i.e., by embedding SV G animation elementsin SV G content) or via scripting.

Sophisticated applications of SV G are possible by use of a supplemental scripting language which accesses
SV G Document Object Model (DOM), which provides complete access to all elements, attributes and

properties. A rich set of event handlers such as onmouseover and onclick can be assigned to any SVG
graphical object. Because of its compatibility and leveraging of other Web standards, features like scripting
can be done on XHTML and SV G elements simultaneously within the same Web page.

SV G isalanguage for rich graphical content. For accessibility reasons, if thereis an original source
document containing higher-level structure and semantics, it is recommended that the higher-level
information be made available somehow, either by making the original source document available, or
making an aternative version available in an aternative format which conveys the higher-level
information, or by using SVG's facilities to include the higher-level information within the SVG content.
For suggested techniques in achieving greater accessibility, see Accessibility.

http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/REC-xml

1.2 SVG MIME type, file name extension and
Macintosh filetype

The MIME typefor SVGis"i mage/ svg+xni " (see [RFC3023]). The W3C will register this MIME type
around the time when SV G is approved as a W3C Recommendation.

It is recommended that SV G files have the extension " . svg" (al lower case) on all platforms. Itis
recommended that gzip-compressed SV G files have the extension " . svgz" (al lower case) on all

platforms.

It isrecommended that SV G files stored on Macintosh HFS file systems be given afiletype of " svg " (al
lower case, with a space character as the fourth letter). It is recommended that gzip-compressed SVG files

stored on Macintosh HFS file systems be given afiletype of " svgz" (all lower case).

1.3 SVG Namespace, Public Identifier and System
Identifier

The following are the SVG 1.0 namespace, public identifier and system identifier:
SV G Namespace:
http://www.w3.0rg/2000/svg
Public Identifier for SVG 1.0:
PUBLIC "-//W3C//DTD SVG 1.0/EN"
System Identifier for SVG 1.0:
http://www.w3.0rg/TR/2001/PR-SV G-20010719/DTD/svg10.dtd

The following is an example document type declaration for an SV G document:

<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 1. 0//EN'
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTDY svg10. dtd" >

1.4 Compatibility with Other Standards Efforts

SVG leverages and integrates with other W3C specifications and standards efforts. By leveraging and
conforming to other standards, SV G becomes more powerful and makes it easier for usersto learn how to
incorporate SVG into their Web sites.

The following describes some of the ways in which SV G maintains compatibility with, leverages and
integrates with other W3C efforts:

o SVGisan application of XML and is compatible with the "Extensible Markup Language (XML)
1.0" Recommendation [XML 10]

o SVG iscompatible with the "Namespacesin XML" Recommendation [XML-NS]

o SVG utilizes"XML Linking Language (XLink)" [XLINK] for URI referencing and requires support
for base URI specifications defined in "XML Base" [XML-BASE].

« SVG'ssyntax for referencing element IDs is a compatible subset of the ID referencing syntax in
"XML Pointer Language (X Pointer)" [XPTR].

« SVG content can be styled by either CSS (see " Cascading Style Sheets (CSS) level 2" specification
[CSS2]) or XSL (see"XSL Transformations (XSLT) Version 1.0" [XSLT]). (See Styling with CSS

http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.w3.org/TR/REC-xml#sec-prolog-dtd
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xlink
http://www.w3.org/TR/xmlbase
http://www.w3.org/TR/xptr
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xslt

and Styling with XSL)

« SVG supports relevant properties and approaches common to CSS and XSL, plus selected
semantics and features of CSS (see SVG's styling properties and SVG's Use of Cascading Style
Shesets).

« External style sheets are referenced using the mechanism documented in " Associating Style Sheets
with XML documents Version 1.0" [XML-SS].

o SVG includes a complete Document Object Model (DOM) and conforms to the "Document Object
Model (DOM) level 1" Recommendation [DOM1]. The SVG DOM has a high level of

compatibility and consistency withthe HTML DOM that is defined in the DOM Level 1
specification. Additionally, the SVG DOM supports and incorporates many of the facilities
described in "Document Object Model (DOM) level 2" [DOM2], including the CSS object model

and event handling.

« SVG incorporates some features and approaches that are part of the " Synchronized Multimedia
Integration Language (SMIL) 1.0 Specification" [SMIL 1], including the 'switch' element and the
systemL anguage attribute.

« SVG'sanimation features (see Animation) were developed in collaboration with the W3C
Synchronized Multimedia (SY MM) Working Group, developers of the Synchronized Multimedia
Integration Language (SMIL) 1.0 Specification [SMIL1]. SVG's animation features incorporate and
extend the general-purpose XML animation capabilities described in the "SMIL Animation”
specification [SMILANIM].

« SVG has been designed to alow future versions of SMIL to use animated or static SVG content as
media components.

» SVG attempts to achieve maximum compatibility with both HTML 4 [HTML4] and XHTML (tm)
1.0 [XHTML]. Many of SVG'sfacilities are modeled directly after HTML, including its use of CSS
[CSS2], its approach to event handling, and its approach to its Document Object Model [DOM2].

« SVGiscompatible with W3C work on internationalization. References (W3C and otherwise)
include: [UNICODE] and [CHARMOD]. Also, see Internationalization Support.

« SVGiscompatible with W3C work on Web Accessibility [WAI]. Also, see Accessibility Support.

In environments which support [DOM2] for other XML grammars (e.g., XHTML [XHTML]) and which
also support SVG and the SVG DOM, a single scripting approach can be used simultaneously for both
XML documents and SV G graphics, in which case interactive and dynamic effects will be possible on
multiple XML namespaces using the same set of scripts.

1.5 Terminology

Within this specification, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" areto be
interpreted as described in RFC 2119 (see [RFC2119]). However, for readability, these words do not

appear in all uppercase lettersin this specification.

At times, this specification recommends good practice for authors and user agents. These recommendations
are not normative and conformance with this specification does not depend on their realization. These
recommendations contain the expression "We recommend ...", "This specification recommends ...", or
some similar wording.

http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2/
http://www.w3.org/TR/REC-smil/
http://www.w3.org/TR/REC-smil/
http://www.w3.org/TR/smil-animation/
http://www.w3.org/TR/html401/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/DOM-Level-2/
http://www.unicode.org/unicode/standard/versions/
http://www.w3.org/TR/charmod/
http://www.w3.org/WAI/
http://www.w3.org/TR/DOM-Level-2/
http://www.w3.org/TR/xhtml1/
http://www.ietf.org/rfc/rfc2119.txt

1.6

Definitions

basic shape

canvas

Standard shapes which are predefined in SV G as a convenience for common graphical operations.
Specificaly: 'rect', 'circle, 'dlipse, 'ling, 'polyling, 'polygon'.

a surface onto which graphics elements are drawn, which can be real physical mediasuch asa
display or paper or an abstract surface such as a allocated region of computer memory. See the
discussion of the SVG canvasin the chapter on Coordinate Systems, Transformations and Units.

clipping path

acombination of 'path’, 'text' and basic shapes which serve as the outline of a (in the absense of
antialiasing) 1-bit mask, where everything on the "inside" of the outline is allowed to show through
but everything on the outside is masked out. See Clipping paths.

container element

An element which can have graphics elements and other container elements as child elements.

Specifically: 'svd', 'd, 'defs 'symbal’, ‘clipPath', 'mask’, 'pattern’, 'marker’, 'a and 'switch'.

current innermost SV G document fragment

The XML document sub-tree which starts with the most immediate ancestor 'svg' element of a given
SVG element

current SV G document fragment

The XML document sub-tree which starts with the outermost ancestor 'svg' element of agiven SVG
element, with the requirement that all container elements between the outermost 'svg' and this
element are al elementsin the SV G language

current transformation matrix (CTM)

fill

font

glyph

Transformation matrices define the mathematical mapping from one coordinate system into another
using a 3x3 matrix using the equation [x'y' 1] =[x y 1] * matrix. The current transformation matrix
(CTM) defines the mapping from the user coordinate system into the viewport coordinate system.
See Coordinate system transformations

The operation of painting the interior of a shape or the interior of the character glyphsin atext
string.

A font represents an organized collection of glyphs in which the various glyph representations will
share a common look or styling such that, when a string of charactersis rendered together, the result
is highly legible, conveys a particular artistic style and provides consistent inter-character alignment
and spacing.

A glyph represents a unit of rendered content within afont. Often, there is a one-to-one
correspondence between characters to be drawn and corresponding glyphs (e.g., often, the character
"A" isrendered using a single glyph), but other times multiple glyphs are used to render asingle
character (e.g., use of accents) or asingle glyph can be used to render multiple characters (e.g.,
ligatures). Typically, aglyph is defined by one or more shapes such as a path, possibly with
additional information such as rendering hints that help afont engine to produce legible text in
small sizes.

graphics element

One of the element types that can cause graphics to be drawn onto the target canvas. Specificaly:

'path’, 'text’, 'rect’, 'circle, 'dlipse, 'line, 'polyling, 'polygon’, 'image’ and 'use’.

graphics referencing element
A graphics element which uses areference to a different document or element as the source of its
graphical content. Specifically: 'use and 'image’.

local URI reference

A Uniform Resource Identifier [URI] that does not include an <absoluteURI> or <relativeURI> and
thus represents a reference to an element within the current document. See References and the 'defs
element.

mask

a container element which can contain graphics elements or other container elements which define a
set of graphicsthat is to be used as a semi-transparent mask for compositing foreground objectsinto
the current background. See Masks.

non-local URI reference

A Uniform Resource Identifier [URI] that includes an <absoluteURI> or <relativeURI> and thus

(usually) represents a reference to a different document or an element within a different document.
See References and the 'defs’ element.

paint
A paint represents away of putting color values onto the canvas. A paint might consist of both color

values and associated alpha values which control the blending of colors against already existing
color values on the canvas. SV G supports three types of built-in paint: color, gradients and patterns.

presentation attribute

An XML attribute on an SV G element which specifies avalue for a given property for that element.
See Styling.

property
A parameter that helps specify how a document should be rendered. A completelist of SVG's
properties can be found in Property Index. Properties are assigned to elementsin the SV G language
either by presentation attributes on elements in the SV G language or by using a styling language
such as CSS[CSS?]. See Styling.

shape

A graphics element that is defined by some combination of straight lines and curves. Specifically:
'path’, 'rect’, 'circl€e, 'élipse, 'lin€, 'polyling, 'polygon'.

stroke
The operation of painting the outline of a shape or the outline of character glyphsin atext string.
SVG canvas

the canvas onto which the SV G content is rendered. See the discussion of the SVG canvasin the
chapter on Coordinate Systems, Transformations and Units.

SV G document fragment

The XML document sub-tree which starts with an 'svg' element. An SV G document fragment can

consist of a stand-alone SV G document, or afragment of a parent XML document enclosed by an
'svg' element. When an 'svg' element is a descendant of another 'svg' element, there are two SVG

document fragments, one for each 'svg' element. (One SV G document fragment is contained within
another SV G document fragment.)

SVG viewport
the viewport within the SV G canvas which defines the rectangular region into which SV G content

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/REC-CSS2/

isrendered. See the discussion of the SV G viewport in the chapter on Coordinate Systems,
Transformations and Units.

text content element

One of SVG's elements that can define atext string that is to be rendered onto the canvas. SVG's
text content elements are the following: 'text’, 'tspan’, 'tref’, 'textPath' and 'altGlyph'.

transformation

A modification of the current transformation matrix (CTM) by providing a supplemental

transformation in the form of a set of simple transformations specifications (such as scaling, rotation
or trandation) and/or one or more transformation matrices. See Coordinate system transformations

transformation matrix

Transformation matrices define the mathematical mapping from one coordinate system into another
using a 3x3 matrix using the equation [X' y' 1] =[x y 1] * matrix. See current transformation matrix
(CTM) and Coordinate system transformations

URI Reference

A Uniform Resource |dentifier [URI] which serves as areferenceto afile or to an element within a
file. See References and the 'defs element.

user agent

The general definition of auser agent is an application that retrieves and renders Web content,
including text, graphics, sounds, video, images, and other content types. A user agent may require
additional user agents that handle some types of content. For instance, a browser may run a separate
program or plug-in to render sound or video. User agentsinclude graphical desktop browsers,
multimedia players, text browsers, voice browsers, and assistive technol ogies such as screen
readers, screen magnifiers, speech synthesizers, onscreen keyboards, and voice input software.

A "user agent" may or may not have the ability to retrieve and render SV G content; however, an
"SV G user agent" retrieves and renders SV G content.

user coordinate system

In general, a coordinate system defines locations and distances on the current canvas. The current

user coordinate system is the coordinate system that is currently active and which is used to define
how coordinates and lengths are located and computed, respectively, on the current canvas. See

initial user coordinate system and Coordinate system transformations.

user space
A synonym for user coordinate system.

user units

A coordinate value or length expressed in user units represents a coordinate value or length in the
current user coordinate system. Thus, 10 user units represents alength of 10 unitsin the current user
coordinate system.

viewport
arectangular region within the current canvas onto which graphics elements are to be rendered. See

the discussion of the SV G viewport in the chapter on Coordinate Systems, Transformations and
Units.

viewport coordinate system

In general, a coordinate system defines locations and distances on the current canvas. The viewport
coordinate system is the coordinate system that is active at the start of processing of an 'svg'
element, before processing the optional viewBox attribute. In the case of an SV G document
fragment that is embedded within a parent document which uses CSS to manage its layout, then the

http://www.ietf.org/rfc/rfc2396.txt

viewport coordinate system will have the same orientation and lengths asin CSS, with the origin at
the top-left on the viewport. See The initial viewport and Establishing a new viewport.

viewport space
A synonym for viewport coordinate system.

viewport units

A coordinate value or length expressed in viewport units represents a coordinate value or length in
the viewport coordinate system. Thus, 10 viewport units represents a length of 10 unitsin the

viewport coordinate system.

previous next contents elements attributes properties index

previous next contents elements attributes properties index

19 July, 2001

2 Concepts

Contents

e 2.1 Explaining the name: SVG

o 2.2 Important SV G concepts

e 2.3 Optionsfor using SVG in Web pages

2.1 Explaining the name: SVG

SVG stands for Scalable Vector Graphics, an XML grammar for stylable graphics, usable as an
XML Namespace.

Scalable

To be scalable means to increase or decrease uniformly. In terms of graphics, scalable means not
being limited to asingle, fixed, pixel size. On the Web, scalable means that a particular
technology can grow to alarge number of files, alarge number of users, awide variety of
applications. SV G, being a graphics technology for the Web, is scalable in both senses of the
word.

SVG graphics are scalable to different display resolutions, so that for example printed output
uses the full resolution of the printer and can be displayed at the same size on screens of different
resolutions. The same SV G graphic can be placed at different sizes on the same Web page, and
re-used at different sizes on different pages. SV G graphics can be magnified to see fine detail, or
to aid those with low vision.

SV G graphics are scalable because the same SV G content can be a standal one graphic or can be
referenced or included inside other SV G graphics, thereby allowing a complex illustration to be
built up in parts, perhaps by severa people. The symbol, marker and font capabilities promote
re-use of graphical components, maximise the advantages of HT TP caching and avoid the need
for a centralized registry of approved symbols.

Vector

Vector graphics contain geometric objects such as lines and curves. This gives greater flexibility
compared to raster-only formats (such as PNG and JPEG) which have to store information for
every pixel of the graphic. Typically, vector formats can aso integrate raster images and can
combine them with vector information such as clipping paths to produce a complete illustration;

SV G is no exception.

Since al modern displays are raster-oriented, the difference between raster-only and vector
graphics comes down to where they are rasterized; client side in the case of vector graphics, as
opposed to already rasterized on the server. SV G gives control over the rasterization process, for
exampleto allow anti-aliased artwork without the ugly aliasing typical of low quality vector
implementations. SV G also provides client-side raster filter effects, so that moving to a vector

format does not mean the loss of popular effects such as soft drop shadows.

Graphics

Most existing XML grammars represent either textual information, or represent raw data such as
financial information. They typically provide only rudimentary graphical capabilities, often less
capable than the HTML 'img' element. SV G fills agap in the market by providing arich,
structured description of vector and mixed vector/raster graphics; it can be used standalone, or as
an XML namespace with other grammars.

XML

XML, aW3C Recommendation for structured information exchange, has become extremely

popular and is both widely and reliably implemented. By being written in XML, SVG builds on
this strong foundation and gains many advantages such as a sound basis for internationalization,
powerful structuring capability, an object model, and so on. By building on existing,
cleanly-implemented specifications, XML-based grammars are open to implementation without a
huge reverse engineering effort.

Namespace

It is certainly useful to have a standalone, SV G-only viewer. But SV G is also intended to be used
as one component in a multi-namespace XML application. This multiplies the power of each of
the namespaces used, to allow innovative new content to be created. For example, SVG graphics
may be included in a document which uses any text-oriented XML namespace - including
XHTML. A scientific document, for example, might also use MathML for mathematicsin the
document. The combination of SVG and SMIL leads to interesting, time based, graphically rich
presentations.

SVG isagood, genera-purpose component for any multi-namespace grammar that needs to use
graphics.

Stylable

The advantages of style sheetsin terms of presentational control, flexibility, faster download and
improved maintenance are now generally accepted, certainly for use with text. SV G extends this
control to the realm of graphics.

The combination of scripting, DOM and CSSis often termed "Dynamic HTML" and iswidely
used for animation, interactivity and presentational effects. SV G allows the same script-based
manipulation of the document tree and the style sheet.

file:///TR/REC-xml
http://www.w3.org/TR/MathML2/

2.2 Important SVG concepts

Graphical Objects

With any XML grammar, consideration has to be given to what exactly is being modelled. For
textual formats, modelling istypically at the level of paragraphs and phrases, rather than
individual nouns, adverbs, or phonemes. Similarly, SVG models graphics at the level of
graphical objects rather than individual points.

SVG provides a genera path element, which can be used to create a huge variety of graphical
objects, and also provides common basic shapes such as rectangles and ellipses. These are
convenient for hand coding and may be used in the same ways as the more general path element.
SV G provides fine control over the coordinate system in which graphical objects are defined and
the transformations that will be applied during rendering.

Symbols

It would have been possible to define some standard symbols that SVG would provide. But
which ones? There would always be additional symbols for electronics, cartography, flowcharts,
etc., that people would need that were not provided until the "next version”. SVG allows usersto
create, re-use and share their own symbols without requiring a centralized registry. Communities
of users can create and refine the symbols that they need, without having to ask a committee.
Designers can be sure exactly of the graphical appearance of the symbols they use and not have
to worry about unsupported symbols.

Symbols may be used at different sizes and orientations, and can be restyled to fit in with the rest
of the graphical composition.

Raster Effects

Many existing Web graphics use the filtering operations found in paint packages to create blurs,
shadows, lighting effects and so on. With the client-side rasterization used with vector formats,
such effects might be thought impossible. SV G allows the declarative specification of filters,
either singly or in combination, which can be applied on the client side when the SVG is
rendered. These are specified in such away that the graphics are still scalable and displayable at
different resolutions.

Fonts

Graphically rich material is often highly dependent on the particular font used and the exact
spacing of the glyphs. In many cases, designers convert text to outlines to avoid any font
substitution problems. This means that the original text is not present and thus searchability and
accessibility suffer. In response to feedback from designers, SV G includes font elements so that
both text and graphical appearance are preserved.

Animation

Animation can be produced via script-based manipulation of the document, but scripts are
difficult to edit and interchange between authoring tools is harder. Again in response to feedback
from the design community, SV G includes declarative animation elements which were designed
collaboratively by the SVG and SYMM working groups. This allows the animated effects
common in existing Web graphics to be expressed in SVG.

2.3 Options for using SVG in Web pages

There are avariety of waysin which SV G content can be included within a Web page. Here are
some of the options:

« A stand-alone SVG Web page
In this case, an SV G document (i.e., a Web resource whose MIME typeis
"I mage/ svg+xm ") isloaded directly into a user agent such as a\Web browser. The
SV G document is the Web page that is presented to the user.

« Embedding by reference
In this case, a parent Web page references a separately stored SV G document and
specifies that the given SVG document should be embedded as a component of the parent
Web page. For HTML or XHTML, here are three options:

o The HTML/XHTML 'img' element is the most common method for using
graphicsin HTML pages. For faster display, the width and height of the image
can be given as attributes. One attribute that isrequired is alt, used to give an
alternate textual string for people browsing with images off, or who cannot see the
images. The string cannot contain any markup. A longdesc attribute lets you point
to alonger description - often in HTML - which can have markup and richer
formatting.

o The HTML/XHTML 'object’ element can contain other elements nested within it,
unlike 'img', which is empty. This means that several different formats can be
offered, using nested 'object’ elements, with afinal textual alternative (including
markup, links, etc). The outermost element which can be displayed will be used.

o The HTML/XHTML 'applet' element which can invoke a Java applet to view
SV G content within the given Web page. These applets can do many things, but a
common task is to use them to display images, particularly ones in unusual
formats or which need to be presented under the control of a program for some
other reason.

« Embeddinginline
In this case, SV G content is embedded inline directly within the parent Web page. An
exampleisan XHTML Web page with an SV G document fragment textually included
within the XHTML.

o External link, usingthe HTML 'a’ element
This allows any stand-alone SV G viewer to be used, which can (but need not) be a
different program to that used to display HTML. This option typically is used for unusual
image formats.

« Referenced from a CSS2 or XSL property

When a user agent supports CSS-styled XML content or XSL Formatting Objects and the
user agent is a Conforming SV G Viewer, then that user agent must support the ability to

http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xsl/

reference SV G resources wherever CSS or XSL properties allow for the referencing of
raster images, including the ability to tile SV G graphics wherever necessary and the
ability to composite the SV G into the background if it has transparent portions. Examples
include the "background-image' and 'list-style-image' properties that are included in both

CSSand XSL.

previous next contents elements attributes properties index

http://www.w3.org/TR/REC-CSS2/colors.html#propdef-background-image
http://www.w3.org/TR/REC-CSS2/generate.html#propdef-list-style-image

previous next contents elements attributes properties index

19 July, 2001

3 Rendering Model

Contents

e 3.1 Introduction

e 3.2 The painters model
o 3.3 Rendering Order
e 3.4 How groups are rendered

¢ 3.5 How elements are rendered

e 3.6 Types of graphics elements

o 3.6.1 Painting shapes and text

o 3.6.2 Painting raster images

e 3.7 Filtering painted regions

« 3.8 Clipping, masking and object opacity

e 3.9 Parent Compositing

3.1 Introduction

Implementations of SV G are expected to behave as though they implement arendering (or
imaging) model corresponding to the one described in this chapter. A real implementation is not
required to implement the model in this way, but the result on any device supported by the
implementation shall match that described by this model.

The appendix on conformance requirements describes the extent to which an actual

implementation may deviate from this description. In practice an actual implementation will
deviate slightly because of limitations of the output device (e.g. only alimited range of colors
might be supported) and because of practical limitations in implementing a precise mathematical
model (e.g. for realistic performance curves are approximated by straight lines, the
approximation need only be sufficiently precise to match the conformance requirements.)

3.2 The painters model

SVG uses a"painters model” of rendering. Paint is applied in successive operations to the output
device such that each operation paints over some area of the output device. When the area
overlaps a previously painted area the new paint partially or completely obscures the old. When
the paint is not completely opaque the result on the output device is defined by the
(mathematical) rules for compositing described under Simple Alpha Blending.

3.3 Rendering Order

Elementsin an SV G document fragment have an implicit drawing order, with the first elements
in the SV G document fragment getting "painted” first. Subsequent elements are painted on top of
previously painted elements.

3.4 How groups are rendered

Grouping elements such as the 'g' (see container elements) have the effect of producing a
temporary separate canvas initialized to transparent black onto which child elements are painted.
Upon the completion of the group, any filter effects specified for the group are applied to create a
modified temporary canvas. The modified temporary canvas is composited into the background,
taking into account any group-level masking and opacity settings on the group.

3.5 How elements are rendered

Individual graphics elements are rendered asif each graphics element represented its own group;

thus, the effect is as if atemporary separate canvasis created for each graphics element. The
element isfirst painted onto the temporary canvas (see Painting shapes and text and Painting

raster images below). Then any filter effects specified for the graphics element are applied to

create amodified temporary canvas. The modified temporary canvasis then composited into the
background, taking into account any clipping, masking and object opacity settings on the

graphics element.

3.6 Types of graphics elements

SV G supports three fundamental types of graphics elements that can be rendered onto the
canvas:

« Shapes, which represent some combination of straight line and curves

« Text, which represents some combination of character glyphs

« Raster images, which represent an array of values that specify the paint color and opacity
(often termed apha) at a series of points on arectangular grid. (SV G requires support for
specified raster image formats under conformance regquirements.)

3.6.1 Painting shapes and text

Shapes and text can befilled (i.e., apply paint to the interior of the shape) and stroked (i.e., apply
paint along the outline of the shape). A stroke operation is centered on the outline of the object;
thus, in effect, half of the paint falls on the interior of the shape and half of the paint falls outside
of the shape.

For certain types of shapes, marker symbols (which themselves can consist of any combination

of shapes, text and images) can be drawn at selected vertices. Each marker symbol is painted as
if its graphical content were expanded into the SVG document tree just after the shape object
which is using the given marker symbol. The graphical contents of amarker symbol are rendered
using the same methods as graphics elements. Marker symbols are not applicable to text.

Thefill is painted first, then the stroke, and then the marker symbols. The marker symbols are
rendered in order along the outline of the shape, from the start of the shape to the end of the
shape.

Each fill and stroke operation has its own opacity settings; thus, you can fill and/or stroke a
shape with a semi-transparently drawn solid color, with different opacity values for the fill and
stroke operations.

Thefill and stroke operations are entirely independent painting operations; thus, if you both fill
and stroke a shape, half of the stroke will be painted on top of part of the fill.

SV G supports the following built-in types of paint which can be used in fill and stroke
operations:

« Solid color
« Gradients (linear and radial)

o Patterns

3.6.2 Painting raster images

When araster image is rendered, the original samples are "resampled” using standard algorithms
to produce samples at the positions required on the output device. Resampling requirements are
discussed under conformance requirements.

3.7 Filtering painted regions

SVG alows any painting operation to be filtered. (See Filter Effects)

In this case the result must be as though the paint operations had been applied to an intermediate
canvasinitialized to transparent black, of a size determined by the rules given in Filter Effects

then filtered by the processes defined in Filter Effects.

3.8 Clipping, masking and object opacity

SVG dlows any painting operation to be limited to a subregion of the output device by clipping
and masking. Thisis described in Clipping, Masking and Compositing

Clipping uses a path to define aregion of the output device to which paint can be applied. Any
painting operation executed within the scope of the clipping must be rendered such that only
those parts of the device that fall within the clipping region are affected by the painting
operation. A clipping path can be thought of as a mask wherein those pixels outside the clipping
path are black with an alpha value of zero and those pixels inside the clipping path are white with
an alphavalue of one. "Within" is defined by the same rules used to determine the interior of a
path for painting. The clipping path istypically anti-aliased on low-resolution devices (see
‘shape-rendering’). Clipping is described in Clipping paths.

Masking uses the luminance of the color channels and apha channel in areferenced SVG
element to define a supplemental set of apha values which are multiplied to the alpha values
already present in the graphics to which the mask is applied. Masking is described in Masking.

A supplemental masking operation may also be specified by applying a"global" opacity to a set
of rendering operations. In this case the mask is infinite, with a color of white and an alpha
channel of the given opacity value. (See 'opacity’ property.)

In al cases the SV G implementation must behave as though all painting and filtering isfirst
performed to an intermediate canvas which has been initialized to transparent black. Then, alpha
values on the intermediate canvas are multiplied by the implicit alpha vaues from the clipping
path, the alpha values from the mask, and the alpha values from the 'opacity’ property. The
resulting canvas is composited into the background using simple alpha blending. Thusif an area

of the output device is painted with a group opacity of 50% using opaque red paint followed by
opaque green paint the result is as though it had been painted with just 50% opague green paint.
This is because the opagque green paint completely obscures the red paint on the intermediate
canvas before the intermediate as awhole is rendered onto the output device.

3.9 Parent Compositing

SV G document fragments can be semi-opaque. In many environments (e.g., Web browsers), the
SV G document fragment has afinal compositing step where the document as awhole is blended
tranglucently into the background canvas.

previous next contents elements attributes properties index

previous next contents elements attributes properties index

19 July, 2001

4 Basic Data Types and Interfaces

Contents

« 4.1 Basic datatypes
« 4.2 Recognized color keyword names
« 4.3Basic DOM interfaces

4.1 Basic data types

The common data types for SVG's properties and attributes fall into the following categories:

« <integer>: An <integer> is specified as an optional sign character ('+' or '-') followed by one or more digits"0" to "9". If the sign character is not
present, the number is non-negative.
Unless stated otherwise for a particular attribute or property, the range for a <integer> encompasses (at a minimum) -2147483648 to 2147483647.
Within the SVG DOM, an <integer> is represented as an long or an SV GAnimatedinteger.

« <number> (real number value): The specification of real number valuesis different for property values than for XML attribute values.

0 CSS2[CSS2] states that a property value which isa<number> is specified in decimal notation (i.e., a <decimal-number>), which consists of
either an <integer>, or an optional sign character followed by zero or more digits followed by adot (.) followed by one or more digits. Thus,
for conformance with CSS2, any property in SV G which accepts <number> valuesis specified in decimal notation only.

o For SVG's XML attributes, to provide as much scalability in numeric values as possible, real number values can be provided either in decimal
notation or in scientific notation (i.e., a <scientific-number>), which consists of a <decimal-number> immediately followed by the |etter "e"
or "E" immediately followed by an <integer>.

Unless stated otherwise for a particular attribute or property, a <number> has the capacity for at least a single-precision floating point number (see
[ICC32]) and has arange (at a minimum) of -3.4e+38F to +3.4e+38F.

It is recommended that higher precision floating point storage and computation be performed on operations such as coordinate system
transformations to provide the best possible precision and to prevent round-off errors.

Conforming High-Quality SVG Viewers are required to use at least double-precision floating point (see [|CC32]) intermediate cal culations on certain

numerical operations.
Within the SVG DOM, a<number> is represented as afloat or an SV GAnimatedNumber.

« <length>: A length is a distance measurement. The format of a <length> is a <number> optionally followed immediately by a unit identifier. (Note
that a <number> has different formulations depending on whether it is applied to a property or an XML attribute.)
If the <length> is expressed as a value without a unit identifier (e.g., 48), then the <length> represents a distance in the current user coordinate
system.
If one of the unit identifiersis provided (e.g., 12mm), then the <length> is processed according to the description in Units.

Percentage values (e.g., 10%) depend on the particular property or attribute to which the percentage value has been assigned. Two common cases are:
(a) when a percentage value represents a percent of the viewport (refer to the section that discusses Unitsin general), and (b) when a percentage value
represents a percent of the bounding box on a given object (refer to the section that describes Object bounding box units).

Within the SVG DOM, a<length> is represented as an SV GL ength or an SV GAnimatedL ength.

« <coordinate>: A <coordinate> represents a <length> in the user coordinate system that is the given distance from the origin of the user coordinate

system along the relevant axis (the x-axis for X coordinates, the y-axisfor Y coordinates).
Within the SVG DOM, a <coordinate> is represented as an SV GL ength or an SV GAnimatedL ength since both values have the same syntax.

« <list of xxx> (where xxx represents a value of some type): A list consists of a separated sequence of values. The specification of listsis different for
property values than for XML attribute values.

o Listsin property values are either comma-separated, with optional white space before or after the comma, or space-separated, as specified
either in the CSS2 specification (if the property is defined there) or in this specification (if the property is not defined in the CSS2
specification).

o Unless explicitly described differently, lists within SVG's XML attributes can be either comma-separated, with optional white space before or
after the comma, or white space-separated.

White spacein listsis defined as one or more of the following consecutive characters: "space” (Unicode code 32), "tab" (9), "line feed" (10),
"carriage return” (13) and "form-feed" (12).

Within the SVG DOM, a<list of xxx> is represented by various custom interfaces, such as SVGTransformList.

Here is a description of the grammar for a <list of xxx>:

Li st OF XXX:
XXX
| XXX comma-wsp XXX

conma- wWsp:
(wsp+ conma? wsp*) | (comma wsp*)

http://www.w3.org/TR/REC-CSS2/
http://www.color.org/ICC-1A_1999-04.PDF
http://www.color.org/ICC-1A_1999-04.PDF
http://www.w3.org/TR/REC-CSS2/

conmma:

wsp:
(#x20 | #x9 | #xD | #xA)

where XXX represents a particular type of value.

« <number-optional-number>: A specia case of <list of xxx> where there are at least one and at most two entriesin the list and the entries are of type
<number>.

« <angle>: Anangle valueis a<number> optionally followed immediately with an angle unit identifier. Angle unit identifiers are:
0 deg: degrees
o grad: grads
o rad: radians

For properties defined in [CSS2], an angle unit identifier must be provided. For SV G-specific attributes and properties, the angle unit identifier is

optional. If not provided, the angle value is assumed to be in degrees.
The corresponding SVG DOM interface definition for <angle> is an SV GAngle or an SV GAnimatedAngle.

« <color>: The basic type <color> is a CSS2-compatible specification for a color in the SRGB color space [SRGB]. <color> appliesto SVG's use of the
‘color' property and is a component of the definitions of properties 'fill', 'stroke' 'stop-color', 'flood-color' and 'lighting-color', which also offer optional
|CC-based color specifications.

SVG supports all of the syntax alternatives for <color> defined in [CSS2-color-types], with the exception that SV G contains an expanded list of
recognized color keywords names.

A <color> is either a keyword (see Recognized color keyword names) or a numerical RGB specification.

In addition to these color keywords, users may specify keywords that correspond to the colors used by objects in the user's environment. The
normative definition of these keywords is[CSS2 system colors].

The format of an RGB value in hexadecimal notation isa'# immediately followed by either three or six hexadecimal characters. The three-digit
RGB notation (#rgb) is converted into six-digit form (#rrggbb) by replicating digits, not by adding zeros. For example, #b0 expands to #ffbb00. This
ensures that white (#fffff) can be specified with the short notation (#fff) and removes any dependencies on the color depth of the display. The format
of an RGB value in the functional notation is'rgh(' followed by a comma-separated list of three numerical values (either three integer values or three
percentage values) followed by ')'. The integer value 255 corresponds to 100%, and to F or FF in the hexadecimal notation: rgb(255,255,255) =
rgb(100%,100%,100%) = #FFF. White space characters are allowed around the numerical values. All RGB colors are specified in the sRGB color
space (see [SRGB]). Using sRGB provides an unambiguous and objectively measurable definition of the color, which can be related to international
standards (see [COLORIMETRY]).

The corresponding SVG DOM interface definitions for <color> are defined in [DOM2-CSS]; in particular, see the [DOM2-CSS-RGBCOL OR].
SVG's extension to color, including the ability to specify |CC-based colors, are represented in DOM interface SV GColor.

« <paint>: Thevaluesfor properties fill' and 'stroke' are specifications of the type of paint to use when filling or stroking a given graphics element.
The available options and syntax for <paint> is described in Specifying paint.
Within the SVG DOM, <paint> is represented as an SV GPaint.

« <percentage>: The format of a percentage value is a <number> immediately followed by a'%'. Percentage values are always relative to another
value, for example alength. Each attribute or property that allows percentages al so defines the reference distance measurement to which the
percentage refers.

Within the SVG DOM, a <percentage> is usually represented as an SV GL ength or an SV GAnimatedL ength.

« <transform-list>: The detailed description of the possible values for a <transform-list> are detailed in Modifying the User Coordinate System: the
transform attribute.

Within the SVG DOM, <transform-list> is represented as an SV GTransformList or an SVGAnimatedTransformList.

« <uri> (Uniform Resource ldentifiers [URI] references): A URI isthe address of aresource on the Web. For the specification of URI referencesin
SVG, see URI references.
Within the SVG DOM, <uri> is represented as a DOM String or an SV GAnimatedString.

« <frequency>: Frequency values are used with aural properties. The normative definition of frequency values can be found in [CSS2-AURAL]. A
frequency value is a<number> immediately followed by afrequency unit identifier. Frequency unit identifiers are:

o Hz: Hertz
o kHz: kilo Hertz

Frequency values may not be negative.
The corresponding SVG DOM interface definitions for <frequency> are defined in [DOM2-CSS].

« <time>: A time valueis a<number> immediately followed by atime unit identifier. Time unit identifiers are:
o ms: milliseconds
0 s seconds

Time values are used in CSS properties and may not be negative.
The corresponding SVG DOM interface definitions for <time> are defined in [DOM2-CSS].

4.2 Recognized color keyword names

The following isthelist of recognized color keywords that can be used as a keyword value for data type <color>:

http://www.w3.org/TR/REC-CSS2/
http://www.iec.ch/nr1899.htm
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-color
http://www.w3.org/TR/REC-CSS2/ui.html#system-colors
http://www.iec.ch/nr1899.htm
http://www.hike.te.chiba-u.ac.jp/ikeda/CIE/publ/abst/15-2-86.html
http://www.w3.org/TR/DOM-Level-2-Style/css.html
http://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-RGBColor
http://www.w3.org/TR/REC-CSS2/aural.html
http://www.w3.org/TR/DOM-Level-2-Style/css.html
http://www.w3.org/TR/DOM-Level-2-Style/css.html

aliceblue
antiquewhite
agua
aquamarine
azure

beige

bisgue

black
blanchedalmond
blue
blueviolet
brown
burlywood
cadetblue
chartreuse
chocolate
coral
cornflowerblue
cornsilk
crimson

cyan
darkblue
darkcyan
darkgoldenrod
darkgray
darkgreen
darkgrey
darkkhaki
darkmagenta
darkolivegreen
darkorange
darkorchid
darkred
darksalmon
darkseagreen
darkslateblue
darkdlategray
darkslategrey
darkturquoise
darkviolet
deeppink
deepskyblue
dimgray
dimgrey
dodgerblue
firebrick
floralwhite
forestgreen
fuchsia
gainsboro
ghostwhite
gold
goldenrod
gray

grey

green
greenyellow
honeydew
hotpink
indianred
indigo

ivory

khaki
lavender
lavenderblush
lawngreen
lemonchiffon
lightblue
lightcoral
lightcyan

rgb(240, 248, 255)
rgh(250, 235, 215)
rgh(0, 255, 255)
rgb(127, 255, 212)
rgb(240, 255, 255)
rgh(245, 245, 220)
rgb(255, 228, 196)
rghb(0, 0, 0)
rgh(255, 235, 205)
rgb(O, 0, 255)
rgh(138, 43, 226)
rgb(165, 42, 42)
rgh(222, 184, 135)
rgb(95, 158, 160)
rgb(127, 255, 0)
rgh(210, 105, 30)
rgb(255, 127, 80)
rgb(100, 149, 237)
rgh(255, 248, 220)
rgh(220, 20, 60)
rgh(0, 255, 255)
rgb(0, 0, 139)
rgh(0, 139, 139)
rgh(184, 134, 11)
rgh(169, 169, 169)
rgb(0, 100, 0)
rgh(169, 169, 169)
rgb(189, 183, 107)
rgb(139, 0, 139)
rgb(85, 107, 47)
rgb(255, 140, 0)
rgh(153, 50, 204)
rgb(139, 0, 0)
rgh(233, 150, 122)
rgh(143, 188, 143)
rgb(72, 61, 139)
rgb(47, 79, 79)
rgb(47, 79, 79)
rgb(0, 206, 209)
rgb(148, 0, 211)
rgh(255, 20, 147)
rgb(0, 191, 255)
rgb(105, 105, 105)
rgb(105, 105, 105)
rgb(30, 144, 255)
rghb(178, 34, 34)
rgh(255, 250, 240)
rgb(34, 139, 34)
rgh(255, 0, 255)
rgh(220, 220, 220)
rgh(248, 248, 255)
rgh(255, 215, 0)
rgb(218, 165, 32)
rgb(128, 128, 128)
rgh(128, 128, 128)
rgb(0, 128, 0)
rgb(173, 255, 47)
rgh(240, 255, 240)
rgh(255, 105, 180)
rgh(205, 92, 92)
rgh(75, 0, 130)
rgh(255, 255, 240)
rgh(240, 230, 140)
rgh(230, 230, 250)
rgh(255, 240, 245)
rgb(124, 252, 0)
rgh(255, 250, 205)
rgb(173, 216, 230)
rgh(240, 128, 128)
rgh(224, 255, 255)

lightpink
lightsalmon
lightseagreen
lightskyblue
lightslategray
lightslategrey
lightsteelblue
lightyellow
lime
limegreen
linen
magenta
maroon

rgb(255, 182, 193)
rgh(255, 160, 122)
rgh(32, 178, 170)
rgb(135, 206, 250)
rgb(119, 136, 153)
rgb(119, 136, 153)
rgh(176, 196, 222)
rgh(255, 255, 224)
rgb(0, 255, 0)
rgb(50, 205, 50)
rgh(250, 240, 230)
rgb(255, 0, 255)
rgh(128, 0, 0)

mediumaguamarine rgb(102, 205, 170)

mediumblue
mediumorchid
mediumpurple
mediumseagreen
mediumslateblue

rgb(0, O, 205)
rgb(186, 85, 211)
rgb(147, 112, 219)
rgb(60, 179, 113)
rgb(123, 104, 238)

mediumspringgreen rgb(0, 250, 154)

mediumturquoise
mediumvioletred
midnightblue
mintcream
mistyrose
moccasin
navajowhite
navy

oldlace

olive
olivedrab
orange
orangered
orchid
palegoldenrod
palegreen

pal eturquoise
palevioletred
papayawhip
peachpuff
peru

pink

plum
powderblue
purple

red
rosybrown
royalblue
saddlebrown
salmon
sandybrown
seagreen
seashell
sienna

silver
skyblue
slateblue
slategray
dlategrey
snow
springgreen
steelblue

tan

teal

thistle
tomato
turquoise
violet

wheat

white

rgb(72, 209, 204)
rgh(199, 21, 133)
rgb(25, 25, 112)
rgh(245, 255, 250)
rgh(255, 228, 225)
rgh(255, 228, 181)
rgh(255, 222, 173)
rgb(0, 0, 128)
rgh(253, 245, 230)
rgh(128, 128, 0)
rgh(107, 142, 35)
rgh(255, 165, 0)
rgh(255, 69, 0)
rgh(218, 112, 214)
rgh(238, 232, 170)
rgh(152, 251, 152)
rgh(175, 238, 238)
rgh(219, 112, 147)
rgh(255, 239, 213)
rgh(255, 218, 185)
rgh(205, 133, 63)
rgh(255, 192, 203)
rgh(221, 160, 221)
rgh(176, 224, 230)
rgh(128, 0, 128)
rgh(255, 0, 0)
rgh(188, 143, 143)
rgh(65, 105, 225)
rgh(139, 69, 19)
rgh(250, 128, 114)
rgh(244, 164, 96)
rgb(46, 139, 87)
rgh(255, 245, 238)
rgh(160, 82, 45)
rgh(192, 192, 192)
rgh(135, 206, 235)
rgh(106, 90, 205)
rgh(112, 128, 144)
rgh(112, 128, 144)
rgh(255, 250, 250)
rgb(O, 255, 127)
rgh(70, 130, 180)
rgh(210, 180, 140)
rgb(0, 128, 128)
rgh(216, 191, 216)
rgh(255, 99, 71)
rgh(64, 224, 208)
rgh(238, 130, 238)
rgh(245, 222, 179)
rgh(255, 255, 255)

lightgoldenrodyellow rgb(250, 250, 210) whitesmoke rgh(245, 245, 245)

lightgray rgh(211, 211, 211) yellow rgh(255, 255, 0)
lightgreen rgb(144, 238, 144) yellowgreen rgh(154, 205, 50)
lightgrey rgh(211, 211, 211)

4.3 Basic DOM interfaces

The following interfaces are defined below: SV GElement, SV GAnimatedBoolean, SV GAnimatedString, SVGStringList, SV GAnimatedEnumeration,
SVGAnimatedinteger, SVGNumber, SV GAnimatedNumber, SVGNumberList, SVGAnimatedNumberList, SVGL ength, SV GAnimatedL ength,
SVGLengthList, SVGAnimatedL engthList, SVGAngle, SVGAnimatedAngle, SVGColor, SVGICCColor, SVGRect, SVGAnimatedRect, SVGUnitTypes,
SVGStylable, SVGLocatable, SV GTransformable, SVGTests, SV GLangSpace, SV GExternal ResourcesRequired, SV GFitToViewBox, SVGZoomAndPan,
SVGViewSpec, SVGURIReference, SVGCSSRule, SV GRenderinglntent.

Interface SVGElement

All of the SVG DOM interfaces that correspond directly to elementsin the SV G language (e.g., the SV GPathElement interface corresponds directly to the
'path’ element in the language) are derivative from base class SV GElement.

IDL Definition

interface SVCEl ement : El enment {
attribute DOVBtring id;
/1 rai ses DOVException on setting
attribute DOVBtring xm base;
/1 rai ses DOVException on setting
readonly attribute SVGSVGEl enment owner SVGEl enent ;
readonly attribute SVGEl ement vi ewportEl enent;

b

Attributes
DOMString id
The value of theid attribute on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.
DOM String xmlbase
Corresponds to attribute xml:base on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.
readonly SVGSV GElement ownerSV GElement
The nearest ancestor 'svg' element. Null if the given element is the outermost 'svg' element.
readonly SV GElement viewportElement

The element which established the current viewport. Often, the nearest ancestor 'svg' element. Null if the given element is the outermost 'svg'
element.

Interface SVGAnimatedBoolean

Used for attributes of type boolean which can be animated.
IDL Definition

i nterface SVGAni mat edBool ean {

attribute bool ean baseVal ;
/1 rai ses DOVException on setting
readonly attribute bool ean ani nval ;

b

Attributes
boolean baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.

readonly boolean animVal

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the given attribute or
property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGAnimatedString

Used for attributes of type DOM String which can be animated.
IDL Definition

interface SVGAni matedString {

attribute DOVBtring baseVal ;
/1 raises DOVException on setting
readonly attri bute DOVBtring aninVal;

b

Attributes
DOM String baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.
readonly DOM String animVal

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the given attribute or
property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGStringList

Thisinterface defines alist of DOM String objects.

SVGStringList has the same attributes and methods as other SV GxxxList interfaces. Implementers may consider using a single base class to implement the
various SV GxxxList interfaces.

IDL Definition

interface SVGStringList {
readonly attribute unsigned | ong nunberOf It ens;

voi d clear ()
rai ses(DOVException);

DOVString initialize (in DOVString new tem)
rai ses(DOVException, SVGException);

DOVString getltem (in unsigned |ong index)
rai ses(DOVException);

DOMString insertltemBefore (in DOVString newmtem in unsigned |ong index)
rai ses(DOVException, SVGException);

DOVString replaceltem (in DOVString newtem in unsigned |ong index)
rai ses(DOVException, SVGException);

DOVString renmoveltem (in unsigned | ong index)
rai ses(DOVException);

DOVSt ring appendltem (in DOVString newl tem)
rai ses(DOVException, SVGException);

H

Attributes
readonly unsigned long numberOfltems
The number of itemsin the list.
Methods
clear
Clears al existing current items from the list, with the result being an empty list.
No Parameters
No Return Value
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
initialize
Clears al existing current items from the list and re-initializes the list to hold the single item specified by the parameter.

Parameters

in DOM String newltem The item which should become the only member of the list.
Return value

DOMString Theitem being inserted into the list.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong type of object for the given list.

getltem
Returns the specified item from the list.
Parameters
inunsigned long index The index of the item from the list which isto be returned. The first item is number 0.
Return value
DOMString The selected item.
Exceptions
DOMException INDEX_SIZE_ERR: Raised if the index number is negative or greater than or equal to numberOfltems.
insertltemBefore

Inserts anew item into the list at the specified position. The first item is number O. If newltemisaready in aligt, it is removed from its
previous list beforeit isinserted into thislist.

Parameters

in DOM String newltem The item which isto be inserted into the list.

inunsigned longindex The index of the item before which the new item isto be inserted. The first item is number O.
If the index is equal to O, then the new item isinserted at the front of the list. If theindex is greater than or
equal to numberOfltems, then the new item is appended to the end of thelist.

Return value
DOMString The inserted item.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong type of object for the given list.

replaceltem
Replaces an existing item in the list with a new item. If newltemisaready in alist, it is removed from its previous list beforeit is inserted
into this list.
Parameters
in DOM String newltem The item which isto be inserted into the list.
inunsigned longindex The index of the item which isto be replaced. Thefirst item is number 0.
Return value
DOMSItring The inserted item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
INDEX_SIZE_ERR: Raised if theindex number is negative or greater than or equal to numberOfltems.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong type of object for the given list.
removeltem
Removes an existing item from the list.
Parameters
inunsigned long index Theindex of the item which isto be removed. Thefirst item is number O.
Return value
DOMString The removed item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater than or equal to numberOfltems.
appendltem
Inserts anew item at the end of the list. If newltem isaready in alist, it isremoved from its previous list before it isinserted into this list.
Parameters
in DOM String newltem The item which isto be inserted into the list. The first item is number 0.
Return value

DOMString The inserted item.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong type of object for the given list.

Interface SVGAnimatedEnumeration

Used for attributes whose value must be a constant from a particular enumeration and which can be animated.
IDL Definition

interface SVGAni mat edEnuneration {

attribute unsigned short baseVal;
/'l rai ses DOVException on setting
readonly attribute unsigned short aninVval;

b

Attributes
unsigned short baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.
readonly unsigned short animVal

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the given attribute or
property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGAnimatedinteger

Used for attributes of basic type 'integer' which can be animated.
IDL Definition

interface SVGAni mat edl nt eger {

attribute | ong baseVal;
/'l rai ses DOVException on setting
readonly attribute | ong aninval;

Attributes
long baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.
readonly long animVal

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the given attribute or
property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGNumber

Used for attributes of basic type 'number'.
IDL Definition

interface SVG\unber {

attribute float val ue;
/1 rai ses DOVException on setting

}s

Attributes
float value
The value of the given attribute.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.

Interface SVGAnimatedNumber
Used for attributes of basic type 'number’ which can be animated.
IDL Definition

interface SVGAni mat edNunber {

attribute float baseVal;
/1 rai ses DOVException on setting
readonly attribute float aninval;

b

Attributes
float baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.

readonly float animVal

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the given attribute or
property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGNumberList

Thisinterface defines alist of SVGNumber objects.

SVGNumberList has the same attributes and methods as other SV GxxxList interfaces. Implementers may consider using a single base class to implement the
various SV GxxxList interfaces.

IDL Definition

interface SVGNunber Li st {
readonly attribute unsigned | ong nunber O | t ens;

voi d clear ()
rai ses(DOVException);

SVGN\unber initialize (in SVGNunber newitem)
rai ses(DOVException, SVGException);

SVGNunber getltem (in unsigned |ong index)
rai ses(DOVException);

SVG\unber insertltenBefore (in SVG\unber newitem in unsigned |ong index)
rai ses(DOVException, SVGException);

SVGN\unber replaceltem (in SVGNunber newitem in unsigned |ong index)
rai ses(DOVException, SVGException);

SVG\unber renmoveltem (in unsigned | ong index)
rai ses(DOVException);

SVG\unber appendltem (in SVGNunmber newlitem)
rai ses(DOVException, SVGException);

s

Attributes
readonly unsigned long numberOfltems
The number of itemsin the list.
Methods
clear
Clears al existing current items from the list, with the result being an empty list.
No Parameters
No Return Value
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
initialize
Clears al existing current items from the list and re-initializes the list to hold the single item specified by the parameter.
Parameters

in SVGNumber newltem The item which should become the only member of the list.
Return value
SVGNumber Theitem being inserted into the list.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong type of object for the given list.
getltem
Returns the specified item from the list.
Parameters
inunsigned long index The index of the item from the list which isto be returned. The first item is number O.
Return value
SVGNumber The selected item.
Exceptions
DOMException INDEX_SIZE_ERR: Raised if the index number is negative or greater than or equal to numberOfltems.
insertltemBefore

Inserts anew item into the list at the specified position. The first item is number O. If newltemisaready in aligt, it is removed from its
previous list beforeit isinserted into thislist.

Parameters

in SYGNumber newltem The item which isto be inserted into the list.

inunsigned longindex Theindex of the item before which the new item isto be inserted. The first item is number O.
If the index is equal to O, then the new item isinserted at the front of the list. If theindex is greater than or
equal to numberOfltems, then the new item is appended to the end of the list.

Return value
SVGNumber Theinserted item.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong type of object for the given list.

replaceltem
Replaces an existing item in the list with a new item. If newltemisaready in alist, it is removed from its previous list beforeit isinserted
into this list.
Parameters
in SVGNumber newltem The item which isto be inserted into the list.
inunsigned longindex Theindex of the item which isto be replaced. Thefirst item is number 0.
Return value
SVGNumber Theinserted item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
INDEX_SIZE_ERR: Raised if theindex number is negative or greater than or equal to numberOfltems.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong type of object for the given list.
removeltem

Removes an existing item from the list.
Parameters
inunsigned long index The index of the item which isto be removed. Thefirst item is number O.
Return value
SVGNumber The removed item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater than or equal to numberOfltems.
appendltem

Inserts anew item at the end of the list. If newltem isaready in alist, it isremoved from its previous list before it isinserted into this list.
Parameters

in SVGNumber newltem The item which isto be inserted into the list. The first item is number O.
Return value

SVGNumber Theinserted item.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong type of object for the given list.

Interface SVGAnimatedNumberList

Used for attributes which take alist of nhumbers and which can be animated.

IDL Definition

interface SVGAni mat edNurber Li st {

readonly attribute SVG\unberlLi st baseVal;

b

Attributes

readonly attribute SVG\unberList aninVal;

readonly SVGNumberList baseVal
The base value of the given attribute before applying any animations.
readonly SVGNumberList animVal

If the given attribute or property is being animated, then this attribute contains the current animated value of the attribute or property, and
both the object itself and its contents are readonly. If the given attribute or property is not currently being animated, then this attribute
contains the same value as 'baseVal'.

Interface SVGLength

The SV GLength interface corresponds to the <length> basic data type.

IDL Definition

interface SVGength {

/1 Length Unit

const
const
const
const
const
const
const
const
const
const
const

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

Types

short
short
short
short
short
short
short
short
short
short
short

SVG_LENGTHTYPE_UNKNOWN
SVG_LENGTHTYPE_NUVBER
SVG_LENGTHTYPE_PERCENTAGE
SVG_LENGTHTYPE_EMS
SVG_LENGTHTYPE_EXS
SVG_LENGTHTYPE_PX
SVG_LENGTHTYPE_CM
SVG_LENGTHTYPE_MM
SVG_LENGTHTYPE_I N
SVG_LENGTHTYPE_PT
SVG_LENGTHTYPE_PC

(IO T T TR I I TR TR TR T
BooNoarwoNRO

e

readonly attribute unsigned short unitType;
attribute float val ue;

/'l rai ses DOVException on setting

attribute float val uel nSpeci fi edUni ts;

/1 rai ses DOVException on setting

attribute DOVBtring val ueAsStri ng;

/1 rai ses DOVException on setting

voi d newval ueSpeci fiedUnits (in unsigned short unitType, in float valuelnSpecifiedUnits);
voi d convert ToSpecifiedUnits (in unsigned short unitType);

Definition group Length Unit Types
Defined constants
SVG_LENGTHTYPE_UNKNOWN Theunit typeis not one of predefined unit types. It isinvalid to attempt to define a new value of this

type or to attempt to switch an existing value to this type.

SVG_LENGTHTYPE_NUMBER No unit type was provided (i.e., aunitless value was specified), which indicates avalue in user

units.
SVG_LENGTHTYPE_PERCENTAGE A percentage value was specified.
SVG_LENGTHTYPE_EMS A value was specified using the "em" units defined in CSS2.
SVG_LENGTHTYPE_EXS A value was specified using the "ex" units defined in CSS2.
SVG_LENGTHTYPE_PX A value was specified using the "px" units defined in CSS2.
SVG_LENGTHTYPE_CM A value was specified using the "cm" units defined in CSS2.
SVG_LENGTHTYPE_MM A value was specified using the "mm" units defined in CSS2.
SVG_LENGTHTYPE_IN A value was specified using the "in" units defined in CSS2.
SVG_LENGTHTYPE_PT A value was specified using the "pt" units defined in CSS2.
SVG_LENGTHTYPE_PC A value was specified using the "pc" units defined in CSS2.

Attributes

readonly unsigned short unitType
The type of the value as specified by one of the constants specified above.
float value

The value as an floating point value, in user units. Setting this attribute will cause valuelnSpecifiedUnits and valueAsString to be updated
automatically to reflect this setting.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.
float valuelnSpecifiedUnits

The value as an floating point value, in the units expressed by unitType. Setting this attribute will cause value and valueAsString to be
updated automatically to reflect this setting.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.
DOM String valueAsString

The value as a string value, in the units expressed by unitType. Setting this attribute will cause value and valuel nSpecifiedUnits to be updated
automatically to reflect this setting.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.
M ethods
newV alueSpecifiedUnits
Reset the value as a number with an associated unitType, thereby replacing the values for al of the attributes on the object.
Parameters

inunsigned short unitType The unitType for the value (e.g., SYVG_LENGTHTYPE_MM).
in float valuelnSpecifiedUnits The new value.

No Return Vaue
No Exceptions
convertToSpecifiedUnits

Preserve the same underlying stored value, but reset the stored unit identifier to the given unitType. Object attributes unitType,
valueAsSpecified and valueAsString might be modified as aresult of this method. For example, if the original value were "0.5cm" and the
method was invoked to convert to millimeters, then the unitType would be changed to SVG_LENGTHTYPE_MM, valueAsSpecified would
be changed to the numeric value 5 and valueAsString would be changed to "5mm".

Parameters

in unsigned short unitType The unitTypeto switch to (e.g., SYG_LENGTHTYPE_MM).
No Return Vaue
No Exceptions

Interface SVGAnimatedLength
Used for attributes of basic type 'length’ which can be animated.
IDL Definition

interface SVGAni mat edLength {

readonly attribute SVG.ength baseVal;
readonly attribute SVG.ength aninVal;

b

Attributes
readonly SV GLength baseVal
The base value of the given attribute before applying any animations.
readonly SV GLength animVal

If the given attribute or property is being animated, contains the current animated value of the attribute or property, and both the object itself
and its contents are readonly. If the given attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGLengthList

Thisinterface defines alist of SVGLength objects.

SVGLengthList has the same attributes and methods as other SV GxxxList interfaces. Implementers may consider using a single base class to implement the
various SVGxxxList interfaces.

IDL Definition

interface SVGL.engt hLi st {
readonly attribute unsigned | ong nunberCf It ens;

voi d clear ()
rai ses(DOVException);

SVG.,ength initialize (in SVGength newtem)
rai ses(DOVException, SVGException);

SVG.ength getltem (in unsigned |ong index)
rai ses(DOVException);

SVGLength insertltenBefore (in SVG.ength newtem in unsigned |ong index)
rai ses(DOVException, SVGException);

SVGLength replaceltem (in SVGength newitem in unsigned |ong index)
rai ses(DOVException, SVGException);

SVG.ength renoveltem (in unsigned |ong index)
rai ses(DOMVException);

SVG.engt h appendltem (in SVG.ength newitem)
rai ses(DOVException, SVGException);

b

Attributes
readonly unsigned long numberOfltems
The number of itemsin thelist.

Methods
clear
Clears al existing current items from the list, with the result being an empty list.
No Parameters
No Return Value
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
initialize
Clears all existing current items from the list and re-initializes the list to hold the single item specified by the parameter.
Parameters
in SVGLength newltem Theitem which should become the only member of thelist.
Return value
SVGLength Theitem being inserted into the list.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong type of object for the given list.
getltem
Returns the specified item from the list.
Parameters
inunsigned long index Theindex of the item from the list which isto be returned. The first item is number O.
Return value
SVGLength The selected item.
Exceptions

DOMException INDEX_SIZE_ERR: Raised if the index number is negative or greater than or equal to numberOfltems.
insertltemBefore

Inserts anew item into the list at the specified position. The first item is number O. If newltemisaready in aligt, it is removed from its
previous list beforeit isinserted into thislist.

Parameters

in SVGLength newltem Theitem which isto be inserted into thelist.

inunsigned long index Theindex of the item before which the new item is to be inserted. The first item is number 0.
If theindex is equal to 0, then the new item isinserted at the front of the list. If the index is greater than or
equa to numberOfitems, then the new item is appended to the end of thelist.

Return value
SVGLength Theinserted item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong type of object for the given list.
replaceltem
Replaces an existing item in the list with anew item. If newltem isalready in alist, it isremoved from its previous list beforeiit is inserted

into thislist.
Parameters

in SVGLength newltem Theitem which isto be inserted into the list.
inunsigned long index Theindex of the item which isto be replaced. Thefirst item is number 0.

Return value
SVGLength Theinserted item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.

INDEX_SIZE_ERR: Raised if the index number is negative or greater than or equal to numberOfltems.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong type of object for the given list.

removeltem
Removes an existing item from the list.
Parameters

inunsigned long index Theindex of the item which isto be removed. Thefirst item is number O.
Return value

SVGLength The removed item.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.

INDEX_SIZE_ERR: Raised if the index number is negative or greater than or equal to numberOfltems.
appendltem

Inserts anew item at the end of the list. If newltem isaready in alist, it isremoved from its previous list before it isinserted into this list.
Parameters

in SVGLength newltem Theitem which isto be inserted into the list. The first item is number O.
Return value

SVGLength Theinserted item.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong type of object for the given list.

Interface SVGAnimatedLengthList

Used for attributes of type SVGLengthList which can be animated.
IDL Definition

interface SVGAni mat edLengt hLi st {

readonly attribute SVG.engthLi st baseVal ;
readonly attribute SVG.engthLi st aninVal ;

b

Attributes
readonly SVGLengthList baseVal
The base value of the given attribute before applying any animations.
readonly SVGLengthList animval

If the given attribute or property is being animated, contains the current animated value of the attribute or property, and both the object itself
and its contents are readonly. If the given attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGAngle

The SVGAnNgle interface corresponds to the <angle> basic data type.
IDL Definition

interface SVGAngl e {

/1 Angle Unit Types

const unsigned short SVG ANGLETYPE_UNKNOMW
const unsigned short SVG ANGLETYPE_UNSPEC! FI ED
const unsigned short SVG ANGLETYPE_DEG

const unsi gned short SVG ANGLETYPE_RAD

oo
wWNEQe

const unsigned short SVG ANGLETYPE_GRAD = 4;
readonly attribute unsigned short unitType;
attribute float val ue;
/1 rai ses DOVException on setting
attribute float val uel nSpeci fi edUni ts;
/1 rai ses DOVException on setting
attribute DOVBtring val ueAsStri ng;

/1 rai ses DOVException on setting

voi d newval ueSpeci fiedUnits (in unsigned short unitType, in float val uelnSpecifiedUnits);
voi d convert ToSpecifiedUnits (in unsigned short unitType);

b

Definition group Angle Unit Types
Defined constants
SVG_ANGLETYPE_UNKNOWN Theunit typeis not one of predefined unit types. It isinvalid to attempt to define anew value of this
type or to attempt to switch an existing value to this type.

SVG_ANGLETYPE_UNSPECIFIED No unit type was provided (i.e., a unitless value was specified). For angles, a unitless valueis treated
the same as if degrees were specified.

SVG_ANGLETYPE_DEG The unit type was explicitly set to degrees.
SVG_ANGLETYPE_RAD The unit typeisradians.
SVG_ANGLETYPE_GRAD The unit typeis grads.

Attributes
readonly unsigned short unitType
The type of the value as specified by one of the constants specified above.
float value

The angle value as a floating point value, in degrees. Setting this attribute will cause val uelnSpecifiedUnits and valueAsString to be updated
automatically to reflect this setting.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.
float valuelnSpecifiedUnits

The angle value as a floating point value, in the units expressed by unitType. Setting this attribute will cause value and valueAsString to be
updated automatically to reflect this setting.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.
DOM String valueAsString

The angle value as a string value, in the units expressed by unitType. Setting this attribute will cause value and valuelnSpecifiedUnits to be
updated automatically to reflect this setting.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.
M ethods
newV alueSpecifiedUnits
Reset the value as a number with an associated unitType, thereby replacing the values for all of the attributes on the object.
Parameters

inunsigned short unitType The unitType for the angle value (e.g., SYG_ANGLETY PE_DEG).
in float valuelnSpecifiedUnits The angle value.

No Return Vaue
No Exceptions
convertToSpecifiedUnits

Preserve the same underlying stored value, but reset the stored unit identifier to the given unitType. Object attributes unitType,
valueAsSpecified and valueAsString might be modified as aresult of this method.

Parameters
in unsigned short unitType The unitTypeto switch to (e.g., SYVG_ANGLETY PE_DEG).

No Return Value
No Exceptions

Interface SVGAnimatedAngle

Corresponds to all properties and attributes whose val ues can be basic type 'angle' and which are animatable.

IDL Definition

interface SVGAni mat edAngl e {

readonly attribute SVGAngl e baseVal;
readonly attribute SVGAngl e ani nval ;
b

Attributes
readonly SVGAnNgle baseVal
The base value of the given attribute before applying any animations.
readonly SVGAngle animVa
If the given attribute or property is being animated, contains the current animated value of the attribute or property, and both the object itself

and its contents are readonly. If the given attribute or property is not currently being animated, contains the same value as 'baseVal'.
Interface SVGColor

The SVGColor corresponds to color value definition for properties 'stop-color', ‘flood-color' and 'lighting-color' and is a base class for interface SV GPaint. It
incorporates SV G's extended notion of color, which incorporates | CC-based color specifications.

Interface SVGColor does not correspond to the <color> basic data type. For the <color> basic data type, the applicable DOM interfaces are defined in
[DOM2-CSS]; in particular, see the [DOM2-CSS-RGBCOL OR].

IDL Definition

interface SVGCol or : css:: CSSVal ue {
/1 Col or Types

const unsigned short SVG_COLORTYPE_UNKNOAN = 0;
const unsigned short SVG COLORTYPE_RGBCOLOR = 1;
const unsigned short SVG COLORTYPE_RGBCOLOR_| CCCOLOR = 2;
const unsi gned short SVG COLORTYPE_CURRENTCOLOR = 3
readonly attribute unsigned short col or Type;
readonly attribute css::RGBCol or rgbColor;
readonly attribute SVA CCCol or i ccCol or;
voi d set RGBCol or (in DOVBtring rgbCol or)
rai ses(SVGException);
voi d set RGBCol or I CCCol or (in DOMString rgbColor, in DOVString iccColor)
rai ses(SVGException);
voi d setCol or (in unsigned short colorType, in DOMString rgbColor, in DOVBtring iccColor)
rai ses(SVGException);
b
Definition group Color Types
Defined constants
SVG_COLORTYPE_UNKNOWN The color typeis not one of predefined types. It isinvalid to attempt to define anew value
of thistype or to attempt to switch an existing value to this type.
SVG_COLORTYPE_RGBCOLOR An sRGB color has been specified without an aternative |CC color specification.
SVG_COLORTYPE_RGBCOLOR_ICCCOLOR An sRGB color has been specified along with an alternative |CC color specification.
SVG_COLORTYPE_CURRENTCOLOR Corresponds to when keyword ‘currentColor' has been specified.
Attributes
readonly unsigned short colorType
The type of the value as specified by one of the constants specified above.
readonly css::RGBColor rgbColor
The color specified in the SRGB color space.
readonly SV GICCColor iccColor
The aternate |CC color specification.
Methods
setRGBColor
Modifies the color value to be the specified SRGB color without an alternate |CC color specification.
Parameters
in DOM String rgbColor The new color value.
No Return Vaue
Exceptions

SVGException SVG_INVALID_VALUE_ERR: Raised if one of the parameters has an invalid value.
setRGBColorl CCColor
Modifies the color value to be the specified SRGB color with an alternate |CC color specification.

Parameters

in DOM String rgbColor The new color value.
in DOMString iccColor The alternate |CC color specification.

No Return Vaue
Exceptions
SVGException SVG_INVALID_VALUE_ERR: Raised if one of the parameters has an invalid value.
setColor

Sets the colorType as specified by the parameters. If col or Type requires an RGBColor, then r gbCol or must be avalid RGBColor
object; otherwise, r gbCol or must be null. If col or Type requires an SVGICCColor, theni ccCol or must be avalid SYGICCColor
object; otherwise, i ccCol or must be null.

Parameters

in unsigned short colorType One of the defined constants for colorType.
in DOM String rgbColor The specification of an SRGB color, or null.
in DOM String iccColor The specification of an ICC color, or null.

No Return Value
Exceptions
SVGException SVG_INVALID_VALUE_ERR: Raised if one of the parameters has an invalid value.

Interface SVGICCColor

The SVGICCColor expresses an | CC-based color specification.
IDL Definition

interface SVA CCCol or {

attribute DOVBtring colorProfile;
/1 rai ses DOVException on setting
readonly attribute SVG\unberlList colors;

b

Attributes
DOM String colorProfile

The name of the color profile, which isthe first parameter of an ICC color specification.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.
readonly SVGNumberList colors

Thelist of color values that define this ICC color. Each color value is an arbitrary floating point number.

Interface SVGRect

Rectangles are defined as consisting of a (x,y) coordinate pair identifying aminimum X value, aminimum Y value, and awidth and height, which are
usually constrained to be non-negative.

IDL Definition

interface SVGRect {

attribute float x;

/1 rai ses DOVException on setting
attribute float vy;

/] raises DOVException on setting
attribute float w dth;

/1 rai ses DOVException on setting
attribute float height;

/1 rai ses DOVException on setting

b

Attributes
float x
Corresponds to attribute x on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.

float y
Corresponds to attribute y on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.
float width
Corresponds to attribute width on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.
float height
Corresponds to attribute height on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.

Interface SVGAnimatedRect

Used for attributes of type SV GRect which can be animated.
IDL Definition

interface SVGAni mat edRect {

readonly attribute SVGRect baseVal;
readonly attribute SVGRect aninVval;

b

Attributes
readonly SV GRect baseVal
The base value of the given attribute before applying any animations.
readonly SVGRect animVval

If the given attribute or property is being animated, contains the current animated value of the attribute or property, and both the object itself
and its contents are readonly. If the given attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGUnitTypes

The SVGUnitTypes interface defines acommonly used set of constants and is a base interface used by SV GGradientElement, SV GPatternElement,
SV GClipPathElement, SV GMaskElement, and SV GFilterElement.

IDL Definition

interface SVGQUnit Types {

/1l Unit Types

const unsigned short SVG UN T_TYPE_UNKNOMW = 0;
const unsigned short SVG UNI T_TYPE USERSPACEONUSE =1
const unsigned short SVG UN T_TYPE_OBJECTBOUNDI NGBOX = 2;

b

Definition group Unit Types
Defined constants

SVG_UNIT_TYPE_UNKNOWN The typeis not one of predefined types. It isinvalid to attempt to define a new value of this
type or to attempt to switch an existing value to this type.

SVG_UNIT_TYPE_USERSPACEONUSE Corresponds to value userSpaceOnUse.
SVG_UNIT_TYPE_OBJECTBOUNDINGBOX Corresponds to value objectBoundingBox.

Interface SVGStylable

IDL Definition

interface SVGStyl abl e {

readonly attribute SVGAni matedString cl assNane;
readonly attribute css::CSSStyl eDecl aration style;

css:: CSSVal ue getPresentati onAttribute (in DOVString nanme);
H

Attributes
readonly SV GAnimatedString className
Corresponds to attribute class on the given element.
readonly css::CSSStyleDeclaration style

Corresponds to attribute style on the given element. If the user agent does not support styling with CSS, then this attribute must always have
the value of null.

Methods
getPresentationAttribute

Returns the base (i.e., static) value of a given presentation attribute as an object of type CSSValue. The returned object islive; changesto the
objects represent immediate changes to the objects to which the CSSValue is attached.

Parameters
in DOM String name Retrieves a"presentation attribute” by name.
Return value

css::CSSValue The static/base value of the given presentation attribute as a CSSValue, or NULL if the given attribute does not have
a specified value.

No Exceptions

Interface SVGLocatable

Interface SVGLocatable isfor al elements which either have a transform attribute or don't have a transform attribute but whose content can have a bounding
box in current user space.

IDL Definition

interface SVGLocatabl e {

readonly attribute SVCGEl enent near est Vi ewport El enent ;
readonly attribute SVCEl enent farthest Vi ewport El ement ;

SVGRect getBBox ();
SVGvatrix getCTM ()
SVGvatri x get ScreenCIM ();
SVGwatri x get TransfornToEl ement (in SVGEl ement el ement)
rai ses(SVGException);
H

Attributes
readonly SV GElement nearestViewportElement

The element which established the current viewport. Often, the nearest ancestor 'svg' element. Null if the current element is the outermost
'svg' element.

readonly SV GElement farthestViewportElement
The farthest ancestor 'svg' element. Null if the current element is the outermost 'svg' element.

Methods
getBBox
Returns the tight bounding box in current user space (i.e., after application of the transform attribute, if any) on the geometry of all contained
graphics elements, exclusive of stroke-width and filter effects).
No Parameters
Return value
SVGRect An SVGRect object that defines the bounding box.
No Exceptions
getCTM
Returns the transformation matrix from current user units (i.e., after application of the transform attribute, if any) to the viewport coordinate
system for the nearestViewportElement.
No Parameters
Return value
SVGMatrix An SVGMatrix object that definesthe CTM.
No Exceptions
getScreenCTM

Returns the transformation matrix from current user units (i.e., after application of the transform attribute, if any) to the parent user agent's

notice of a"pixel". For display devices, idedly this represents a physical screen pixel. For other devices or environments where physical pixel
sizes are not known, then an agorithm similar to the CSS2 definition of a"pixel" can be used instead.

No Parameters
Return value
SVGMatrix An SVGMatrix object that defines the given transformation matrix.
No Exceptions
getTransformToElement

Returns the transformation matrix from the user coordinate system on the current element (after application of the transform attribute, if any)
to the user coordinate system on parameter el enent (after application of its transform attribute, if any).

Parameters
in SVGElement element The target element.
Return value
SVGMatrix An SVGMatrix object that defines the transformation.
Exceptions
SVGException SVG_MATRIX_NOT_INVERTABLE: Raised if the currently defined transformation matrices make it impossible to

compute the given matrix (e.g., because one of the transformationsis singular).
Interface SVGTransformable
Interface SV GTransformable contains properties and methods that apply to all elements which have attribute transform.

IDL Definition

interface SVGIransfornable : SVG.ocatable {
readonly attribute SVGAni mat edTr ansfornLi st transform
H

Attributes
readonly SVGAnimatedTransformList transform
Corresponds to attribute transform on the given element.

Interface SVGTests

Interface SV GTests defines an interface which applies to al elements which have attributes requiredFeatures, requiredExtensions and systemL anguage.

IDL Definition

interface SVGTests {

readonly attribute SVGStringLi st requiredFeatures;
readonly attribute SVGStringList requiredExtensions;
readonly attribute SVGStringLi st systenlanguage;

bool ean hasExtension (in DOVBtring extension);

}s

Attributes
readonly SV GStringList requiredFeatures
Corresponds to attribute requiredFeatures on the given element.
readonly SVGStringList requiredExtensions
Corresponds to attribute requiredExtensions on the given element.
readonly SVGStringList systemLanguage
Corresponds to attribute systemL anguage on the given element.

Methods
hasExtension
Returns true if the user agent supports the given extension, specified by a URI.
Parameters

in DOM String extension The name of the extension, expressed asa URI.
Return value

boolean True or false, depending on whether the given extension is supported.
No Exceptions

Interface SVGLangSpace

Interface SV GLangSpace defines an interface which applies to all elements which have attributes xml:lang and xml:space.

IDL Definition

interface SVGLangSpace {

attribute DOVBtring xm | ang;

/1 rai ses DOVException on setting
attribute DOVBtring xm space;

/1 rai ses DOVException on setting

}s

Attributes
DOM String xmllang
Corresponds to attribute xml:lang on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.

DOM String xmlspace
Corresponds to attribute xml:space on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.

Interface SVGExternalResourcesRequired

Interface SV GExternal ResourcesRequired defines an interface which appliesto all elements where this element or one of its descendants can reference an
external resource.

IDL Definition

i nterface SVCExternal ResourcesRequired {

readonly attribute SVGAni mat edBool ean ext er nal Resour cesRequi r ed;

H

Attributes
readonly SV GA nimatedBoolean external ResourcesRequired
Corresponds to attribute external ResourcesRequired on the given element.

Interface SVGFitToViewBox

Interface SVGFitToViewBox defines DOM attributes that apply to elements which have XML attributes viewBox and preserveAspectRatio.
IDL Definition

interface SVGFitToVi ewBox {

readonly attribute SVGAni mat edRect Vi ewBox;
readonly attribute SVGAni mat edPreserveAspect Rati o preserveAspectRati o;
H
Attributes

readonly SV GAnimatedRect viewBox
Corresponds to attribute viewBox on the given element.

readonly SV GAnimatedPreserveAspectRatio preserveAspectRatio
Corresponds to attribute preserveAspectRatio on the given element.

Interface SVGZoomAndPan
The SVGZoomAndPan interface defines attribute "zoomAndPan" and associated constants.
IDL Definition

interface SV&GZoomAndPan {

/'l Zoom and Pan Types

const unsi gned short SVG ZOOVANDPAN UNKNOWN
const unsigned short SVG ZOOVANDPAN DI SABLE
const unsigned short SVG ZOOVANDPAN MAGNI FY

0;

I
NPl

attribute unsigned short zoomAndPan;
/1 raises DOVException on setting
}

Definition group Zoom and Pan Types
Defined constants

SVG_ZOOMANDPAN_UNKNOWN The enumeration was set to avalue that is not one of predefined types. It isinvalid to attempt to
define anew value of thistype or to attempt to switch an existing value to this type.

SVG_ZOOMANDPAN_DISABLE Corresponds to value disable.

SVG_ZOOMANDPAN_MAGNIFY Corresponds to value magnify.

Attributes
unsigned short zoomAndPan
Corresponds to attribute zoomAndPan on the given element. The value must be one of the zoom and pan constants specified above.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly attribute.

Interface SVGViewSpec

The interface corresponds to an SVG View Specification.
IDL Definition

interface SVGVi ewSpec :
SVGZoomAndPan,
SVGFi t ToVi ewBox {

readonly attribute SVGIransfornList transform

readonly attribute SVCEl enent vi ewTar get ;
readonly attribute DOVBtring vi ewBoxSt ri ng;
readonly attribute DOVString preserveAspect Rati oString;
readonly attribute DOVBtring transfornString;
readonly attribute DOVBtring vi ewTar get Stri ng;
H
Attributes

readonly SVGTransformList transform

Corresponds to the transform setting on the SVG View Specification.
readonly SV GElement viewTarget

Corresponds to the viewTarget setting on the SV G View Specification.
readonly DOM String viewBoxString

Corresponds to the viewBox setting on the SVG View Specification.
readonly DOM String preserveAspectRatioString

Corresponds to the preserveAspectRatio setting on the SVG View Specification.
readonly DOM String transformString

Corresponds to the transform setting on the SVG View Specification.
readonly DOM String viewTargetString

Corresponds to the viewTarget setting on the SV G View Specification.

Interface SVGURIReference

Interface SVGURIReference defines an interface which appliesto all elements which have the collection of XLink attributes, such as xlink:href, which
define a URI reference.

IDL Definition

interface SVGURI Ref erence {

readonly attribute SVGAni matedString href;

}s

Attributes

readonly SV GAnimatedString href
Corresponds to attribute xlink:href on the given element.

Interface SVGCSSRule

SVG extends interface CSSRule with interface SV GCSSRule by adding an SV GColorProfileRule rule to allow for specification of 1CC-based color.

Itislikely that this extension will become part of a future version of CSS and DOM.

IDL Definition

interface SVGCSSRul e :
/] Additional

}s

css:: CSSRul e {
CSS Rul eType to support | CC col or specifications
const unsigned short COLOR_PROFILE RULE = 7;

Definition group Additional CSS RuleTypeto support ICC color specifications
Defined constants

COLOR_PROFILE_RULE Theruleisan @color-profile.

Interface SVGRenderingIntent

The SV GRenderingl ntent defines the enumerated list of possible values for 'rendering-intent' attributes or descriptors.

IDL Definition

interface SVCGRenderingl ntent {

/'l Rendering Intent Types

const
const
const
const
const
const

}s

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

short
short
short
short
short
short

RENDERI

Definition group Rendering Intent Types
Defined constants

RENDERING_INTENT_UNKNOWN

RENDERING_INTENT_AUTO

RENDERING_INTENT_PERCEPTUAL

555555

ENT_UNKNOWN

ENT_AUTO

ENT_PERCEPTUAL

ENT_RELATI VE_COLORI METRI C
ENT_SATURATI ON
ENT_ABSOLUTE_COLORI METRI C

arwNRO

The type is not one of predefined types. It isinvalid to attempt to define a new
value of thistype or to attempt to switch an existing value to this type.
Corresponds to a value of auto.

Corresponds to avalue of perceptual.

RENDERING_INTENT_RELATIVE_COLORIMETRIC Corresponds to avalue of relative-colorimetric.
RENDERING_INTENT_SATURATION
RENDERING_INTENT_ABSOLUTE_COLORIMETRIC Corresponds to avalue of absolute-colorimetric.

Corresponds to a value of saturation.

previous next contents elements attributes properties index

previous next contents elements attributes properties index

19 July, 2001

5 Document Structure

Contents

« 5.1 Defining an SV G document fragment: the 'svg' element

o 5.1.1 Overview
o 5.1.2 The'svg element

« 5.2 Grouping: the'g' element

o 5.2.1 Overview
0 5.2.2The'q element

« 5.3 References and the 'defs’ element
o 5.3.1 Overview
o 5.3.2 URI reference attributes
o 5.3.3 The'defs element

o 5.4 The'desc' and 'title' elements

e 5.5 The'symbol' element

o 5.6 The'use' element

o 5.7 The'image element

« 5.8 Conditional processing

o 5.8.1 Conditional processing overview
o 5.8.2 The'switch' element

o 5.8.3 The requiredFeatures attribute

o 5.8.4 The requiredExtensions attribute
o 5.8.5 The systemL anguage attribute

« 5.9 Specifying whether external resources are required for proper rendering
o 5.10 Common attributes

o 5.10.1 Attributes common to all elements: id and xml:base

o 5.10.2 The xml:lang and xml:space attributes
o 5.11 DOM interfaces

5.1 Defining an SVG document fragment: the 'svg' element

5.1.1 Overview

An SV G document fragment consists of any number of SV G elements contained within an 'svg' element.

An SV G document fragment can range from an empty fragment (i.e., no content inside of the 'svg' element), to avery simple SVG document
fragment containing a single SV G graphics element such as a'rect', to acomplex, deeply nested collection of container elements and graphics

elements.

An SVG document fragment can stand by itself as a self-contained file or resource, in which case the SVG document fragment isan SVG
document, or it can be embedded inline as a fragment within a parent XML document.

The following example shows simple SV G content embedded as a fragment within a parent XML document. Note the use of XML
namespaces to indicate that the 'svg' and 'ellipse’ elements belong to the SVG namespace:

<?xm version="1.0" standal one="yes"?>

<parent xm ns="http://sonmepl ace. org"
xm ns: svg="http://ww. w3. or g/ 2000/ svg" >
<l-- parent contents here -->
<svg: svg w dt h="4cm' hei ght="8cni >
<svg:ellipse cx="2cm' cy="4cm' rx="2cm' ry="1lcnm' />
</ svg: svg>
<l-- ... -->
</ parent >

This example shows a dightly more complex (i.e., it contains multiple rectangles) stand-alone, self-contained SVG document:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20010719/ / EN'
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTD/ svg10. dt d" >
<svg w dt h="5cnm' hei ght="4cni >
<desc>Four separate rectangles
</ desc>
<rect x="0.5cn y="0.5cn w dth="2cnt height="1cn'/>
<rect x="0.5cm y="2cn' w dth="1cn' hei ght="1.5cn/>
<rect x="3cnm y="0.5cm" wi dth="1.5cn height="2cm'/>
<rect x="3.5cnt" y="3cm' wi dth="1cm' hei ght="0.5cnm'/>

<I-- Show outline of canvas using 'rect' element -->
<rect x=".0lcnm' y=".01lcni wi dth="4.98cni" hei ght="3.98cnt
fill="none" stroke="blue" stroke-wi dth=".02cm" />
</ svg>

View this example as SV G (SV G-enabled browsers only)

'svg' elements can appear in the middle of SVG content. Thisis the mechanism by which SVG document fragments can be embedded within
other SV G document fragments.

Another use for 'svg' elements within the middle of SVG content is to establish a new viewport. (See Establishing a new viewport.)

5.1.2 The 'svg' element

<IENTITY % svgExt "" >
<! ELEMENT svg (desc|title|netadata| defs|

path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| vi ew| swi t ch| a| al t @ yphDef |

script|styl el synbol | mar ker | cl i pPat h| mask|
linearGradient|radial Gadient|pattern|filter|cursor|font]|
ani mat e| set | ani nmat eMbt i on| ani mat eCol or | ani mat eTr ansf or nj
color-profile|font-face

%¢eExt ; ¥%svgExt;)* >

<! ATTLI ST svg
xm ns CDATA #FI XED "http://ww. w3. or g/ 2000/ svg"
Y%t dAttrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assList; #l MPLIED
style %5tyl eSheet; #l MPLI ED
%°r esentationAttributes-All;
vi ewBox %W/ ewBoxSpec; #| MPLI ED
preserveAspect Rati 0 %r eserveAspect Rati oSpec; 'xM dYM d neet’
zoomAndPan (disable | magnify) 'magnify’
%gr aphi csEl enent Event s;
%docunent Event s;
X %Coor di nate; #l MPLI ED
y %Coordi nate; #l MPLI ED
wi dt h %.ength; # MPLI ED
hei ght %.ength; #l MPLI ED
content Scri pt Type %Cont ent Type; "text/ecnascript"
content Styl eType %Content Type; "text/css" >

file:///D|/PR-SVG-20010719/images/struct/StandAlone01.svg

Attribute definitions:
xmins [:prefix] = "resource-name"

Standard XML attribute for identifying an XML namespace. Refer to the "Namespacesin XML" Recommendation [XML-NS].
Animatable: no.

X = "<coordinate>"

(Has no meaning or effect on outermost 'svg' elements.)

The x-axis coordinate of one corner of the rectangular region into which an embedded 'svg' element is placed.
If the attribute is not specified, the effect isasif avalue of "0" were specified.

Animatable: yes.

y = "<coordinate>"

(Has no meaning or effect on outermost 'svg' elements.)

The y-axis coordinate of one corner of the rectangular region into which an embedded 'svg' element is placed.
If the attribute is not specified, the effect isasif avalue of "0" were specified.

Animatable: yes.

width = "<length>"

For outermost 'svg' elements, the intrinsic width of the SV G document fragment. For embedded 'svg' elements, the width of the
rectangular region into which the 'svg' element is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.

If the attribute is not specified, the effect isas if avalue of "100%" were specified.
Animatable: yes.

height = "<length>"

For outermost 'svg' elements, the intrinsic height of the SV G document fragment. For embedded 'svg' elements, the height of the
rectangular region into which the 'svg' element is placed.
A negative valueis an error (see Error processing). A vaue of zero disables rendering of the element.

If the attribute is not specified, the effect isasif avalue of "100%" were specified.
Animatable: yes.

Attributes defined el sewhere:

YostdArttrs;, %olangSpaceAttrs;, class, %graphicsElementEvents;, Y%odocumentEvents;, %otestAttrs;, external ResourcesRequired,
viewBox, preserveAspectRatio, zoomAndPan, contentScriptType, contentStyleType, style, %PresentationAttributes-All;.

If an SV G document islikely to be referenced as a component of another document, the author will often want to include a viewBox attribute
on the outermost 'svg' element of the referenced document. This attribute provides a convenient way to design SV G documents to scale-to-fit
into an arbitrary viewport.

5.2 Grouping: the 'g' element

5.2.1 Overview

The'g' element is a container element for grouping together related graphics elements.

Grouping constructs, when used in conjunction with the 'desc’ and 'title' elements, provide information about document structure and
semantics. Documents that are rich in structure may be rendered graphically, as speech, or as braille, and thus promote accessibility.

A group of elements, aswell asindividual objects, can be given a name using the id attribute. Named groups are needed for several purposes
such as animation and re-usable objects.

An example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 20010719/ / EN'
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTDY svg10. dt d" >
<svg w dt h="5cnm' hei ght="5cni >
<desc>Two groups, each of two rectangles
</ desc>
<g id="groupl" fill="red" >
<rect x="1lcnf y="l1lcni w dth="1cn hei ght="1cnt />
<rect x="3cn y="1lcni' w dth="1cnt height="1cnt />
</ g>
<g id="group2" fill="Dblue" >
<rect x="1l1lcnt y="3cnt w dth="1cni' hei ght="1cni" />
<rect x="3cnl y="3cnt width="1cnt height="1cm' />
</ g>

http://www.w3.org/TR/REC-xml-names/

<I-- Show outline of canvas using 'rect' element -->
<rect x=".0lcnm' y=".01lcni wi dth="4.98cni hei ght="4.98cnt
fill="none" stroke="blue" stroke-w dth=".02cnm />

</ svg>

View this example as SV G (SV G-enabled browsers only)

A 'g' element can contain other 'g' elements nested within it, to an arbitrary depth. Thus, the following is possible:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20010719/ / EN'
"http://ww. w3. org/ TR/ 2001/ PR- SVG- 20010719/ DTD/ svg10. dt d" >
<svg w dth="4in" height="3in">
<desc>Groups can nest
</ desc>
<g>
<g>
<g>
</ g>
</ g>
</ g>
</ svg>

Any element that is not contained within a'g' istreated (at least conceptualy) asif it werein its own group.

5.2.2 The 'g' element

<IENTITY % gExt "" >

<l ELEMENT g (desc|title| netadatal defs]|
path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| vi ew swi t ch| al al t & yphDef |
script|styl e| synbol | mar ker| cl i pPat h| mask|
| i near Gradi ent | radi al G adi ent| pattern|filter|cursor]|font|
ani mat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf or
color-profile|lfont-face
%eExt ; YgExt;)* >

<I ATTLI ST g
Y%t dAttrs;
Y% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
cl ass % assList; #l MPLI ED
style ¥styl eSheet; #l MPLI ED
%PresentationAttributes-All;
transform %ransfornlist; #l MPLIED
%r aphi csEl enent Events; >

Attributes defined el sewhere:

Y%stdAttrs;, %langSpaceAttrs;, class, transform, %graphicsElementEvents;, %testAttrs;, external ResourcesRequired, style,
%PresentationAttributes-All;.

5.3 References and the 'defs' element

5.3.1 Overview

SV G makes extensive use of URI references [URI] to other objects. For example, to fill arectangle with alinear gradient, you first define a
'linearGradient' element and giveit an ID, asin:

<linearGradient id="MyGadient">. ..</linearG adi ent>

Y ou then reference the linear gradient as the value of the 'fill' property for the rectangle, asin:

file:///D|/PR-SVG-20010719/images/struct/grouping01.svg
http://www.ietf.org/rfc/rfc2396.txt

<rect style="fill:url (#WGadient)"/>
In SVG, the following facilities allow URI references:
« the'a eement
« the'dtGlyph' element
« the'animate’ element
« the'animateColor' element
« the'animateMotion' element
« the'animateTransform' element
« the'clip-path' property
« the'color-profile’ element, the ‘color-profile' property and the 'src' descriptor on an @color-profile definition
« the'cursor' element and ‘cursor' property

« the'felmage’ element

« the'fill' property

« the filter' element and filter' property

« the'image' element

« the'linearGradient' element

« the'marker','marker-start','marker-mid' and 'marker-end' properties

« the'mask' property

« the'pattern’ element

« the'radialGradient' element
« the'script' element

« the'stroke' property

« the'textpath’ element
« the'tref' element

o the'set' element

o the'use element

URI references are defined in either of the following forms:

<URI - r ef erence>
<URI - r ef erence>

[<absoluteURI > | <relativeURI>] ["#" <element|D>] -or-
[<absoluteURI > | <relativeURI>] ["#xpointer(id(" <elenmentIiD> "))"]

where <element|D> isthe ID of the referenced element.

(Note that the two forms above (i.e., #<elementl D> and #xpointer(id(<element| D>))) are formulated in syntaxes compatible with "XML
Pointer Language (XPointer)" [XPTR]. These two formulations of URI references are the only XPointer formulations that are required in

SVG 1.0 user agents.)

SV G supports two types of URI references:

« loca URI references, where the URI reference does not contain an <absoluteURI> or <relativeURI> and thus only contains a
fragment identifier (i.e., #<elementl D> or #xpointer(id<elementI D>))

« non-local URI references, where the URI reference does contain an <absoluteURI> or <relativeURI>

The following rules apply to the processing of URI references:
« URI references to elements that do not exist shall be treated as invalid references.

« URI references to elements which are inappropriate targets for the given reference shall be treated asinvalid references. For example,
the 'clip-path’ property can only refer to 'clipPath’ elements. The property setting clip-path:url (#MyElement) is an invalid reference if
the referenced element is not a 'clipPath'.

Invalid references represent an error (see Error processing) in all cases except for the xlink:href attribute on the 'a element when either of the
following istrue:

« thereferenceislocal (i.e., to an element within the current document)

« thereferenceisexterna (i.e., to aresource outside the current document), that resource cannot be located, and attribute
external ResourcesRequired has been set to true on the referencing element or one of its ancestors.

It is recommended that, wherever possible, referenced elements be defined inside of a'defs element. Among the elements that are aways
referenced: 'altGlyphDef', 'clipPath’, ‘cursor', filter', 'linearGradient', 'marker’, 'mask’, 'pattern’, 'radial Gradient' and 'symboal'. Defining these

http://www.w3.org/TR/xptr

elementsinside of a'defs element promotes understandability of the SV G content and thus promotes accessibility.

5.3.2 URI reference attributes

A URI reference is specified within an href attribute in the XLink [XLINK] namespace. If the default prefix of 'xlink:' is used for attributesin
the XLink namespace, then the attribute will be specified as xlink:href. The value of this attribute is a URI reference for the desired resource
(or resource fragment).

The value of the href attribute must be a URI reference as defined in [RFC2396], or must result in a URI reference after the escaping
procedure described below is applied. The procedure is applied when passing the URI reference to a URI resolver.

Some characters are disallowed in URI references, even if they are allowed in XML ; the disallowed characters include all non-ASCI|
characters, plus the excluded characterslisted in Section 2.4 of [RFC2396], except for the number sign (#) and percent sign (%) and the

square bracket characters re-allowed in [RFC2732]. Disallowed characters must be escaped as follows:
1. Each disallowed character is converted to UTF-8 [REC2279] as one or more bytes.

2. Any bytes corresponding to a disallowed character are escaped with the URI escaping mechanism (that is, converted to %41H, where
HH is the hexadecimal notation of the byte value).

3. Theorigina character is replaced by the resulting character sequence.

Becauseit isimpractical for any application to check that avalueisaURI reference, this specification follows the lead of [REC2396] in this
matter and imposes no such conformance testing requirement on SV G applications.

If the URI referenceis relative, its absolute version must be computed by the method of [XML-Base] before use.

For locators into XML resources, the format of the fragment identifier (if any) used within the URI reference is specified by the XPointer
specification [XPTR].

Additional XLink attributes can be specified that provide supplemental information regarding the referenced resource. These additional
attributes are included in the DTD in the following entities. The two entity definitions differ only in the value of xlink:show, which hasthe
value other in the first entity and the value embed in the second. The first entity definition is used in most element definitions which reference
resources. The second entity definition is used by elements 'use, 'image’ and 'felmage'.

<IENTITY % xl i nkRef Attrs
"xm ns: xl i nk CDATA #FI XED ' http://ww. w3. org/ 1999/ xI i nk'
xlink:type (sinple) #FIXED 'sinple'
xlink:role %JRI; # MPLI ED
xlink:arcrole %JRI; #l MPLI ED
xlink:title CDATA #l MPLI ED
xlink: show (other) 'other'
xlink:actuate (onLoad) #FIXED 'onLoad'" >

<IENTITY % xl i nkRef At t r sEnbed
"xm ns: x| i nk CDATA #FI XED ' http://ww. w3. or g/ 1999/ x| i nk'
xlink:type (sinple) #FIXED 'sinple'
xlink:role %JRI; #l MPLIED
xlink:arcrole %JRI; #l MPLI ED
xlink:title CDATA #l MPLI ED
xl i nk: show (enbed) 'enbed
xlink:actuate (onLoad) #FI XED 'onLoad' " >

xmins[:prefix] = "resource-name"
Standard XML attribute for identifying an XML namespace. This attribute makes the XLink [XLink] namespace available to the
current element. Refer to the "Namespacesin XML" Recommendation [XML-NS].
Animatable: no.

xlink:type = 'ssmple’

Identifies the type of XLink being used. In SVG, only simple links are available. Refer to the "XML Linking Language (XLink)"

[XLink].
Animatable: no.

xlink:role = '<uri>'
A URI reference that identifies some resource that describes the intended property. The value must be a URI reference as defined in

[REC2396], except that if the URI scheme used is allowed to have absolute and relative forms, the URI portion must be absol ute.

When no value is supplied, no particular role value isto be inferred. Disallowed URI reference charactersin these attribute values
must be specially encoded as described earlier in this section. Refer to the "XML Linking Language (XLink)" [XLink].

Animatable: no.

http://www.w3.org/TR/xlink
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2732.txt
http://www.ietf.org/rfc/rfc2279.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/xptr
http://www.w3.org/TR/xlink
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xlink
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/xlink

xlink:arcrole = '<uri>'

A URI reference that identifies some resource that describes the intended property. The value must be a URI reference as defined in
[REC2396], except that if the URI scheme used is allowed to have absolute and relative forms, the URI portion must be absol ute.
When no valueis supplied, no particular role value is to be inferred. Disallowed URI reference characters in these attribute values
must be specially encoded as described earlier in this section. The arcrole attribute corresponds to the [RDF] notion of a property,
where the role can be interpreted as stating that "starting-resource HAS arc-role ending-resource." This contextual role can differ from
the meaning of an ending resource when taken outside the context of this particular arc. For example, aresource might generically
represent a "person,” but in the context of a particular arc it might have the role of "mother" and in the context of a different arc it
might have the role of "daughter.” Refer to the"XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:title = '<string>'
Thetitle attribute is used to describe the meaning of alink or resource in a human-readable fashion, along the same lines as the role or
arcrole attribute. A valueis optional; if avalueis supplied, it should contain a string that describes the resource. The use of this
information is highly dependent on the type of processing being done. It may be used, for example, to make titles available to
applications used by visually impaired users, or to create atable of links, or to present help text that appears when a user lets a mouse
pointer hover over a starting resource. Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:show = 'embed'
An application traversing to the ending resource should load its presentation in place of the presentation of the starting resource. Refer
tothe"XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:actuate = ‘onL oad'
Indicates that the application should traverse to the ending resource immediately on loading the starting resource. Refer to the "XML
Linking Language (XLink)" [XLink].
Animatable: no.

5.3.3 The 'defs' element

The 'defs element is a container element for referenced elements. For understandability and accessibility reasons, it is recommended that,
whenever possible, referenced elements be defined inside of a'defs.

The content model for 'defs isthe same as for the 'g' element; thus, any element that can be achild of a'g' can also be achild of a'defs, and
viceversa

Elements that are descendants of a'defs are not rendered directly; they are prevented from becoming part of the rendering tree just asif the
'defs element were a'g' element and the 'display’ property were set to none. Note, however, that the descendants of a 'defs’ are always present
in the source tree and thus can always be referenced by other elements; thus, the value of the 'display’ property on the 'defs element or any of
its descendants does not prevent those elements from being referenced by other elements.

<IENTITY % def sext "" >

<! ELEMENT defs (desc|title|netadataldefs|
path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| vi e swi t ch| a] al t @ yphDef |
script|styl el synbol | marker | cl i pPat h| mask|
linearGradient|radial Gadient|pattern|filter|cursor|font]|
ani mat e| set | ani nmat eMbt i on| ani mat eCol or | ani mat eTr ansf or nj
color-profile|font-face
%ceExt ; Ydef sExt;) * >

<! ATTLI ST defs
YstdAttrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % asslList; #l MPLIED
style %5tyl eSheet; #l MPLI ED
%resentationAttributes-All;
transform % ransforniist; #l MPLI ED
%r aphi csEl enent Events; >

Attributes defined el sewhere:

Y%stdAttrs;, %langSpaceAttrs;, class, transform, %testAttrs;, external ResourcesRequired, style, %PresentationAttributes-All;,
%graphicsElementEvents;.

To provide some SV G user agents with an opportunity to implement efficient implementationsin streaming environments, creators of SVG

http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/xlink
http://www.w3.org/TR/xlink
http://www.w3.org/TR/xlink
http://www.w3.org/TR/xlink

content are encouraged to place al elements which are targets of local URI references within a'defs' element which is adirect child of one of
the ancestors of the referencing element. For example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20010719/ / EN'
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTD/ svg10. dt d" >
<svg w dt h="8cni' hei ght="3cni' >
<desc>Local URI references within ancestor's 'defs' elenent.</desc>
<def s>
<linearG adient id="Gadient01l">
<stop of fset="20% stop-col or="#39F" />
<stop of fset="90% stop-color="#F3F" />
</linear G adi ent >

</ def s>
<rect x="1cni y="1cnt' wi dth="6cn' hei ght="1cnf
fill="url (#Gadient01)" />
<I-- Show outline of canvas using 'rect' elenment -->
<rect x=".0lcnm' y=".01lcni wi dth="7.98cni hei ght="2.98cnt
fill="none" stroke="blue" stroke-w dth=".02cm" />
</ svg>

View this example as SV G (SV G-enabled browsers only)

In the document above, the linear gradient is defined within a'defs element which is the direct child of the 'svg' element, which in turnisan
ancestor of the 'rect' element which references the linear gradient. Thus, the above document conforms to the guideline.

5.4 The 'desc' and 'title' elements

Each container element or graphics element in an SV G drawing can supply a'desc' and/or a 'title' description string where the description is
text-only. When the current SV G document fragment is rendered as SV G on visual media, 'desc' and 'title' elements are not rendered as part of
the graphics. User agents may, however, for example, display the 'title' element as atooltip, as the pointing device moves over particular
elements. Alternate presentations are possible, both visual and aural, which display the ‘desc’ and 'title’ elements but do not display 'path’
elements or other graphics elements. Thisis readily achieved by using a different (perhaps user) style sheet. For deep hierarchies, and for
following 'use' element references, it is sometimes desirable to allow the user to control how deep they drill down into descriptive text.

<IENTITY % desckExt "" >
<! ELEMENT desc (#PCDATA %descExt;)* >

<! ATTLI ST desc
Y%t dAttrs;
% angSpaceAttrs;
class %l asslList; #l MPLI ED
style %Gtyl eSheet; #l MPLI ED
oGt ruct uredText; >

Attributes defined el sewhere:
Y%stdAttrs;, %langSpaceAttrs;, class, style.

<IENTITY %titleExt "" >
<IELEMENT title (#PCDATA % itleExt;)* >
<I ATTLI ST title

Y%t dAttrs;

% angSpaceAttrs;

class %l asslList; #l MPLI ED

styl e %Styl eSheet; #l MPLI ED

o6t ruct ur edText; >

Attributes defined el sewhere:
Y%stdAttrs;, %langSpaceAttrs;, class, style.

The following is an example. In typical operation, the SV G user agent would not render the ‘desc' and 'title' elements but would render the
remaining contents of the'g’ element.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg SYSTEM "htt p://wwmv. wW3. or g/ TR/ 2001/ PR- SVG 20010719/ DTDY svg10. dt d" >
<svg w dt h="4i n" hei ght="3in">

file:///D|/PR-SVG-20010719/images/struct/defs01.svg

<g>
<title>
Conmpany sal es by region
</[title>
<desc>
This is a bar chart which shows
conpany sal es by region.
</ desc>
<l-- Bar chart defined as vector data -->
</ g>
</ svg>

Description and title elements can contain marked-up text from other namespaces. Here is an example:

<?xm version="1.0" standal one="yes"?>
<svg w dth="4in" hei ght="3in"
xm ns="http://ww.w3. or g/ 2000/ svg" >
<desc xm ns: nydoc="http://exanpl e. org/ mydoc" >
<nydoc:title>This is an exanple SVG file</mydoc:title>
<nmydoc: para>The gl obal description uses markup fromthe
<nydoc: enph>nmydoc</ nydoc: enph> nanespace. </ nydoc: par a>
</ desc>
<g>
<!-- the picture goes here -->
</ g>
</ svg>

Authors should always provide a 'title' child element to the outermost 'svg' element within a stand-alone SV G document. The 'title’ child
element to an 'svg' element serves the purposes of identifying the content of the given SV G document fragment. Since users often consult

documents out of context, authors should provide context-rich titles. Thus, instead of atitle such as "Introduction”, which doesn’t provide
much contextual background, authors should supply atitle such as "Introduction to Medieval Bee-Keeping" instead. For reasons of
accessibility, user agents should always make the content of the 'title' child element to the outermost 'svg' element available to users. The

mechanism for doing so depends on the user agent (e.g., as a caption, spoken).

The DTD definitions of many of SVG's elements (particularly, container and text elements) place no restriction on the placement or number
of the 'desc’ and 'title' sub-elements. This flexibility is only present so that there will be a consistent content model for container elements,

because some container elementsin SV G allow for mixed content, and because the mixed content rules for XML [XML-MIXED] do not
permit the desired restrictions. Representations of future versions of the SV G language might use more expressive representations than DTDs
which allow for more restrictive mixed content rules. It is strongly recommended that at most one 'desc’ and at most one 'title' element appear
asachild of any particular element, and that these elements appear before any other child elements (except possibly 'metadata’ elements) or
character data content. If user agents need to choose among multiple 'desc’ or 'title' elements for processing (e.g., to decide which string to use
for atooltip), the user agent shall choose the first one.

5.5 The 'symbol' element

The 'symbol' element is used to define graphical template objects which can be instantiated by a'use' element.

The use of 'symbol' elements for graphics that are used multiple times in the same document adds structure and semantics. Documents that are
rich in structure may be rendered graphically, as speech, or as braille, and thus promote accessibility.

The key distinctions between a'symbol' and a'g’ are:

« A 'symbol' element itself is not rendered. Only instances of a'symbol’ element (i.e., areferenceto a'symbol' by a'use’ element) are
rendered.

« A 'symbol' element has attributes viewBox and preserveAspectRatio which allow a'symbol’ to scale-to-fit within a rectangular
viewport defined by the referencing 'use’ element.

Closely related to the 'symbol’ element are the 'marker' and 'pattern’ elements.

http://www.w3.org/TR/REC-xml#sec-mixed-content

<IENTITY % synmbol Ext "" >

<! ELEMENT synbol (desc|title|netadataldefs]|
path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| view swi tch| al al t G yphDef |
script|styl e| synbol | marker | cl i pPat h| mask]|
|l i near G adi ent|radi al G adient|pattern|filter]|cursor|font|
ani mat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf or nj
color-profile|font-face
%€ eExt ; Y%synbol Ext;)* >

<! ATTLI ST synbol
YstdAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
cl ass % asslList; #l MPLI ED
style ¥styl eSheet; #l MPLI ED
%Pr esentati onAttributes-All;
Vi ewBox %/i ewBoxSpec; #l MPLI ED
preserveAspect Rati o %reserveAspect Rati oSpec; 'xM dYM d neet’
%r aphi csEl enent Events; >

Attributes defined el sewhere:

Y%stdAttrs;, %olangSpaceAttrs;, class, external ResourcesRequired, viewBox, preserveAspectRatio, style, %PresentationAttributes-All;,
%graphicsElementEvents;.

'symbol' elements are never rendered directly; their only usage is as something that can be referenced using the 'use’ element. The 'display’
property does not apply to the 'symbol’ element; thus, 'symbol’ elements are not directly rendered even if the 'display’ property is set to avalue
other than none, and 'symbol’ elements are available for referencing even when the 'display’ property on the 'symbol' element or any of its
ancestors is set to none.

5.6 The 'use' element

Any 'svg', 'symbol', 'g’, graphics element or other 'use' is potentially atemplate object that can be re-used (i.e., "instanced") in the SVG
document viaa'use' element. The 'use’ element references another element and indicates that the graphical contents of that element is
included/drawn at that given point in the document.

Unlike 'image’, the 'use’ element cannot reference entire files.

The 'use’ element has optiona attributes x, y, width and height which are used to map the graphical contents of the referenced element onto a
rectangular region within the current coordinate system.

The effect of a'use’ element isasif the contents of the referenced element were deeply cloned into a separate non-exposed DOM tree which
had the 'use’ element as its parent and all of the 'use’ element’s ancestors as its higher-level ancestors. Because the cloned DOM treeis
non-exposed, the SV G Document Object Model (DOM) only contains the 'use’ element and its attributes. The SVG DOM does not show the
referenced element's contents as children of ‘use’ element.

For user agents that support Styling with CSS, the conceptual deep cloning of the referenced element into a non-exposed DOM tree also
copies any property values resulting from the CSS cascade [CSS2-CASCADE] on the referenced element and its contents. CSS2 selectors can

be applied to the original (i.e., referenced) elements because they are part of the formal document structure. CSS2 selectors cannot be applied
to the (conceptually) cloned DOM tree because its contents are not part of the formal document structure.

Property inheritance, however, works asiif the referenced element had been textually included as a deeply cloned child of the 'use' element.
The referenced element inherits properties from the 'use’ element and the 'use’ element's ancestors. An instance of areferenced element does
not inherit properties from the referenced element's original parents.

If event attributes are assigned to referenced elements, then the actual target for the event will be the SV GElementl nstance object within the
"instance tree" corresponding to the given referenced element.

The behavior of the 'visibility' property conformsto this model of property inheritance. Thus, specifying 'visibility:hidden' on a'use' element
does not guarantee that the referenced content will not be rendered. If the 'use' element specifies 'visibility:hidden' and the element it
references specifies 'visibility:hidden' or 'visibility:inherit', then that one element will be hidden. However, if the referenced element instead
specifies 'visibility:visible, then that element will be visible even if the 'use’ element specifies 'visibility:hidden'.

Animations on areferenced element will cause the instance to also be animated.

A 'use’ element has the same visual effect asif the 'use’ element were replaced by the following generated content:

http://www.w3.org/TR/REC-CSS2/cascade.html

o Ifthe'use’ element referencesa'symbol’ element:

In the generated content, the 'use’ will be replaced by 'g’, where all attributes from the 'use' element except for X, y, width, height and
xlink:href are transferred to the generated 'g' element. An additional transformation translate(x,y) is appended to the end (i.e.,
right-side) of the transform attribute on the generated 'g’, where x and y represent the values of the x and y attributes on the 'use’
element. The referenced 'symbol’ and its contents are deep-cloned into the generated tree, with the exception that the 'symbol’ is
replaced by an 'svg'. This generated 'svg' will always have explicit values for attributes width and height. If attributes width and/or
height are provided on the 'use’ element, then these attributes will be transferred to the generated 'svg'. If attributes width and/or height
are not specified, the generated 'svg' element will use values of 100% for these attributes.

o Ifthe'use’ element referencesan 'svg' element:

In the generated content, the 'use’ will be replaced by 'g', where all attributes from the 'use' element except for x, y, width, height and
xlink:href are transferred to the generated 'g' element. An additional transformation translate(x,y) is appended to the end (i.e.,
right-side) of the transform attribute on the generated 'g’, where x and y represent the values of the x and y attributes on the 'use’
element. The referenced 'svg' and its contents are deep-cloned into the generated tree. If attributes width and/or height are provided on
the'use’ element, then these values will override the corresponding attributes on the 'svg' in the generated tree.

o Otherwise:

In the generated content, the 'use’ will be replaced by 'g', where all attributes from the 'use' element except for X, y, width, height and
xlink:href are transferred to the generated 'g' element. An additional transformation translate(x,y) is appended to theend (i.e.,
right-side) of the transform attribute on the generated 'g', where x and y represent the values of the x and y attributes on the 'use'
element. The referenced object and its contents are deep-cloned into the generated tree.

For user agents that support Styling with CSS, the generated 'g' element carries along with it the "cascaded" property values on the 'use'
element which result from the CSS cascade [CSS2-CA SCADE]. Additionally, the copy (deep clone) of the referenced resource carries along

with it the "cascaded" property values resulting from the CSS cascade on the origina (i.e., referenced) elements. Thus, the result of various
CSS selectors in combination with the class and style attributes are, in effect, replaced by the functional equivalent of a style attribute in the

generated content which conveys the "cascaded" property values.

Example Use01 below has asimple 'use' on a'rect'.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 20010719/ / EN'
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTD/ svg10. dt d" >
<svg wi dt h="10cni{ hei ght ="3cn' vi ewBox="0 0 100 30">
<desc>Exanpl e UseOl - Sinple case of 'use' on a 'rect'</desc>

<def s>
<rect id="MyRect" wi dth="60" height="10"/>
</ def s>
<rect x=".1" y=".1" width="99.8" height="29.8"
fill="none" stroke="blue" stroke-w dth=".2" />

<use x="20" y="10" xlink: href="#MWRect" />

</ svg>

Example Use01

View this example as SV G (SV G-enabled browsers only)

The visual effect would be equivalent to the following document:

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20010719/ /EN'
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTDY svg10. dt d" >

<svg w dt h="10cnt' hei ght ="3cn' vi ewBox="0 0 100 30">
<desc>Exanpl e Use01- Gener at edContent - Sinple case of
<l-- 'defs' section left out -->

use' on a 'rect'</desc>

<rect x=".1" y=".1" width="99.8" height="29.8"

http://www.w3.org/TR/REC-CSS2/cascade.html
file:///D|/PR-SVG-20010719/images/struct/Use01.svg

fill="none" stroke="blue" stroke-w dth=".2" />

<l-- Start of generated content. Replaces 'use' -->
<g transform="transl ate(20, 10)">
<rect w dth="60" hei ght="10"/>
</ g>
<!-- End of generated content -->

</ svg>

View this example as SVG (SV G-enabled browsers only)

Example Use02 below has a'use’ on a'symbol'.

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20010719/ / EN'
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTD/ svg10. dt d" >

<svg w dt h="10cnt hei ght="3cn' vi ewBox="0 0 100 30">

<desc>Exanpl e Use02 - 'use' on a 'synbol'</desc>
<def s>
<synbol id="M/Synbol" viewBox="0 0 20 20">
<desc>MySynbol - four rectangles in a grid</desc>

<rect x="1" y="1" width="8" height="8"/>

<rect x="11" y="1" width="8" height="8"/>
<rect x="1" y="11" width="8" height="8"/>
<rect x="11" y="11" wi dth="8" hei ght="8"/>

</ symbol >
</ def s>
<rect x=".1" y=".1" width="99.8" height="29.8"
fill="none" stroke="blue" stroke-w dth=".2" />

<use x="45" y="10" w dth="10" hei ght="10"
x| i nk: href =" #W/Synbol " />
</ svg>

Example Use02

View this example as SV G (SV G-enabled browsers only)

The visual effect would be equivalent to the following document:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20010719/ / EN'
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTDY svg10. dt d" >
<svg w dt h="10cnt hei ght="3cnm' vi ewBox="0 0 100 30">
<desc>Exanpl e Use02- GeneratedContent - 'use' on a 'synbol'</desc>

<l-- 'defs' section left out -->

<rect x=".1" y=".1" width="99.8" height="29.8"

fill="none" stroke="blue" stroke-w dth=".2" />
<l-- Start of generated content. Replaces 'use' -->
<g transform="transl ate(45, 10)" >
<l-- Start of referenced 'synbol'. 'synmbol' replaced by 'svg',

with x,y,w dth, hei ght =0, 0, 100% 100% - - >
<svg w dt h="10" hei ght ="10"
vi ewBox="0 0 20 20">
<rect x="1" y="1" wi dth="8" height="8"/>
<rect x="11" y="1" width="8" height="8"/>
<rect x="1" y="11" width="8" height="8"/>
<rect x="11" y="11" wi dth="8" hei ght="8"/>
</ svg>
<!-- End of referenced synbol -->

file:///D|/PR-SVG-20010719/images/struct/Use01-GeneratedContent.svg
file:///D|/PR-SVG-20010719/images/struct/Use02.svg

</ g>
<I-- End of generated content -->

</ svg>

View this example as SV G (SV G-enabled browsers only)

Example Use03 illustrates what happens when a'use' has a transform attribute.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20010719/ / EN'
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTD/ svg10. dt d" >
<svg wi dt h="10cn{ hei ght="3cnt vi ewBox="0 0 100 30">
<desc>Exanpl e Use03 - 'use' with a "transform attribute</desc>
<def s>
<rect id="MyRect" x="0" y="0" width="60" hei ght="10"/>
</ def s>
<rect x=".1" y=".1" width="99.8" height="29.8"
fill="none" stroke="blue" stroke-w dth=".2" />
<use xlink: href="#M/Rect"
transforme"transl ate(20,2.5) rotate(10)" />
</ svg>

Example Use03

View this example as SV G (SV G-enabled browsers only)

The visual effect would be equivalent to the following document:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 20010719/ / EN'
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTD/ svg10. dt d" >
<svg w dt h="10cn' hei ght="3cni vi ewBox="0 0 100 30">
<desc>Exanpl e Use03-GeneratedContent - 'use' with a '"transforml attribute</desc>

<l-- 'defs' section left out -->

<rect x=".1" y=".1" wi dth="99.8" height="29.8"
fill="none" stroke="blue" stroke-w dth=".2" />

<I-- Start of generated content. Replaces 'use' -->
<g transfornm="transl ate(20,2.5) rotate(10)">
<rect x="0" y="0" width="60" height="10"/>
</ g>
<I-- End of generated content -->

</ svg>

View this example as SV G (SV G-enabled browsers only)

Example Use04 illustrates a 'use’ element with various methods of applying CSS styling.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 20010719// EN'
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTDY svg10. dt d" >
<svg w dth="12cn hei ght="3cnf vi ewBox="0 0 1200 300">
<desc>Exanpl e Use04 - 'use' with CSS styling</desc>
<defs style=" /* rule 9 */ stroke-miterlimt: 10" >
<path id="MPath" d="M300 50 L900 50 L900 250 L300 250"
cl ass="M/Pat hC ass"
style=" /* rule 10 */ stroke-dasharray: 300, 100" />

file:///D|/PR-SVG-20010719/images/struct/Use02-GeneratedContent.svg
file:///D|/PR-SVG-20010719/images/struct/Use03.svg
file:///D|/PR-SVG-20010719/images/struct/Use03-GeneratedContent.svg

</ def s>
<style type="text/css">

<! [CDATA[
/* rule 1 */ #MyUse { fill: blue }
/* rule 2 */ #MWPath { stroke: red }
/* rule 3 */ use { fill-opacity: .5}
/* rule 4 */ path { stroke-opacity: .5}
/* rule 5 */ .MUseC ass { stroke-linecap: round }
/* rule 6 */ .MPathCd ass { stroke-linejoin: bevel }
/* rule 7 */ use > path { shape-rendering: optimzeQuality }
/* rule 8 */ g > path { visibility: hidden }

11>

</styl e>

<rect x="0" y="0" w dth="1200" hei ght="300"
style="fill:none; stroke:blue; stroke-w dth:3"/>

<g style=" /* rule 11 */ stroke-w dth: 40">

<use id="MyUse" xlink:href="#M/Path"

cl ass="M/Used ass"
style="/* rule 12 */ stroke-dashoffset:50" />

</ g>

</ svg>

Example Use04

View this example as SV G (SV G-enabled browsers only)

The visua effect would be equivalent to the following document. Observe that some of the style rules above apply to the generated content
(i.e., rules 1-6, 10-12), whereas others do not (i.e., rules 7-9). The rules which do not affect the generated content are:

« Rules7 and 8: CSS selectors only apply to the formal document tree, not on the generated tree; thus, these selectors will not yield a
match.

« Rule9: The generated tree only inherits from the ancestors of the 'use’ element and does not inherit from the ancestors of the
referenced element; thus, this rule does not affect the generated content.

In the generated content bel ow, the selectors that yield a match have been transferred into inline 'style' attributes for illustrative purposes.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20010719/ / EN'
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTDY svg10. dt d" >
<svg wi dth="12cm' hei ght="3cni vi ewBox="0 0 1200 300">
<desc>Exanpl e Use04- GeneratedContent - 'use' with a 'transforml attribute</desc>

<I-- 'style' and 'defs' sections left out -->

<rect x="0" y="0" width="1200" hei ght="300"
style="fill:none; stroke:blue; stroke-w dth:3"/>
<g style="/* rule 11 */ stroke-w dth:40">

<I-- Start of generated content. Replaces 'use' -->
<g style="/* rule 1 */ fill:blue;
/* rule 3 */ fill-opacity:.5;
/* rule 5 */ stroke-linecap:round;
/* rule 12 */ stroke-dashof fset: 50" >
<path d="M300 50 L900 50 L900 250 L300 250"
style="/* rule 2 */ stroke:red,;
/* rule 4 */ stroke-opacity:.5;
/* rule 6 */ stroke-linejoin: bevel;
/* rule 10 */ stroke-dasharray: 300, 100" />
</ g>
<!-- End of generated content -->

</ g>
</ svg>

file:///D|/PR-SVG-20010719/images/struct/Use04.svg

View this example as SV G (SV G-enabled browsers only)

When a'use' references another element which is another 'use’ or whose content contains a 'use’ element, then the deep cloning approach
described aboveis recursive.

<IENTITY % useExt "" >
<! ELEMENT use (%lescTit| eMetadat a;, (ani mat e| set | ani mat eMot i on| ani mat eCol or | ani nat eTr ansf orm

Y%geExt ; YuseExt;)*) >

<! ATTLI ST use
Y%stdAttrs;
%l i nkRef At t r sEnbed;
xlink: href %JRI; #REQUI RED
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
cl ass % asslList; #l MPLI ED
style ¥styl eSheet; #l MPLI ED
%PresentationAttributes-All;
transform %ransfornlist; #l MPLIED
%r aphi csEl enent Event s;
X YCoordi nate; #l MPLI ED
y %Coordi nate; #l MPLI ED
wi dt h %.ength; #l MPLI ED
hei ght %.engt h; #l VPLI ED >

Attribute definitions;
X = "<coordinate>"

The x-axis coordinate of one corner of the rectangular region into which the referenced element is placed.
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

y = "<coordinate>"

The y-axis coordinate of one corner of the rectangular region into which the referenced element is placed.
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

width = "<length>"

The width of the rectangular region into which the referenced element is placed.
Animatable: yes.

height = "<length>"

The height of the rectangular region into which the referenced element is placed.
Animatable: yes.

xlink:href = "<uri>"

A URI reference to an element/fragment within an SVG document.
Animatable: yes.

Attributes defined el sewhere:

%stdAttrs;, %oxlinkRef AttrsEmbed;, Y%testAttrs;, %langSpaceAttrs;, external ResourcesRequired, class, style,
Y% PresentationAttributes-All;, transform, %graphicsElementEvents;.

5.7 The 'image' element

The 'image’ element indicates that the contents of a complete file are to be rendered into a given rectangle within the current user coordinate
system. The 'image’ element can refer to raster image files such as PNG or JPEG or to fileswith MIME type of "image/svg+xml".
Conforming SV G viewers need to support at least PNG, JPEG and SV G format files.

The result of processing an 'image’ is aways a four-channel RGBA result. When an 'image’ element references a raster image file such as
PNG or JPEG files which only has three channels (RGB), then the effect is asif the object were converted into a 4-channel RGBA image with
the alpha channel uniformly set to 1. For a single-channel raster image, the effect is asif the object were converted into a 4-channel RGBA

file:///D|/PR-SVG-20010719/images/struct/Use04-GeneratedContent.svg

image, where the single channel from the referenced object is used to compute the three color channels and the alpha channel is uniformly set
to 1.

When an 'image’ element references araster image file such as PNG or JPEG files, then the raster image is fitted into the region specified by
thex, y, width and height attribute. Attribute preserveAspectRatio determines both the size and aspect ratio of the raster when fitted into the
region specified by X, y, width and height. For example, if preserveAspectRatio="xMinY Min meet", then the aspect ratio of the raster would
be preserved (which means that the scale factor from image's coordinates to current user space coordinates would be the same for both X and
Y), the raster would be sized as large as possible while ensuring that the entire raster fits within the viewport, and the top/left of the raster
would be aligned with the top/left of the viewport. If preserveAspectRatio="none", then the aspect ratio of the raster would not be preserved.
The image would be fitted such that the top/left corner of the raster exactly aligns with coordinate (x,y) and the bottom/right corner of the
raster exactly aligns with coordinate (x+width,y+height).

When an 'image’ element references an SV G file, then the 'image’ element establishes a new viewport for the SV G file as described in
Establishing a new viewport. The bounds for the new viewport are defined by attributes x, y, width and height. Except for the implicit
coordinate system trandation that may occur due to the processing of the x and y attributes (see establishing a new viewport), the 'image’
element itself does not cause any coordinate system transformations. Thus, the initial coordinate system for the referenced SV G file will be
identical to the coordinate system for the new viewport. If it is necessary for the referenced SV G file to be scaled to fit into the viewport
established by the 'image’ element, then that outermost 'svg' element on the referenced SV G file will need to have a viewBox attribute or the

referencing file will need to include appropriate transformations, perhaps by including an appropriate transform attribute on the 'image’
element or one of its ancestors or by placing the image’ element within an 'svg' element which has an appropriate viewBox attribute.

The resource referenced by the 'image’ element represents a separate document which generates its own parse tree and document object model
(if theresource is XML). Thus, there is no inheritance of properties into theimage.

Unlike 'use, the 'image’ element cannot reference elements within an SVG file.

<IENTITY % i mageExt "" >
<! ELEMENT i mage (%lescTitl eMet adat a;, (ani nat e| set| ani mat eMbti on| ani nat eCol or | ani mat eTr ansf orm
%geExt ; % mageExt;)*) >

<I ATTLI ST i mage
YstdAttrs;
%l i nkRef At t r sEnbed:;
xlink: href %JRI; #REQUI RED
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
class %l assList; #l MPLI ED
style %styl eSheet; #l MPLI ED
%Pr esent ati onAttri butes-Col or;
%r esentati onAttributes-G aphics;
%Pr esent ati onAttribut es-1mges;
%Pr esent ati onAttributes-Viewports;
transform % ransforniist; #l MPLI ED
preserveAspect Rati o %reserveAspect Rati oSpec; 'xM dYM d neet'
%r aphi csEl enent Event s;
X %Coor di nate; #l MPLI ED
y % Coordi nate; #l MPLI ED
wi dth %.engt h; #REQUI RED
hei ght %.ength; #REQUI RED >

Attribute definitions:
X = "<coordinate>"

The x-axis coordinate of one corner of the rectangular region into which the referenced document is placed.
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

y = "<coordinate>"

The y-axis coordinate of one corner of the rectangular region into which the referenced document is placed.
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

width = "<length>"

The width of the rectangular region into which the referenced document is placed.
A negative valueis an error (see Error processing). A vaue of zero disables rendering of the element.
Animatable: yes.

height = "<length>"

The height of the rectangular region into which the referenced document is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

xlink:href = "<uri>"

A URI reference.
Animatable: yes.

Attributes defined el sewhere:

Y%stdAttrs;, YoxlinkRefAttrsEmbed:;, Y%testAttrs;, YolangSpaceAttrs;, external ResourcesRequired, class, style,
Y% PresentationAttributes-Col or;, %oPresentati onAttributes-Graphics;, %Presentati onAttributes-lmages;,
% PresentationAttributes-Viewports;, transform, preserveAspectRatio, %graphicsElementEvents;.

An example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20010719/ / EN'
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTDY svg10. dt d" >
<svg w dth="4in" height="3in">
<desc>This graphic links to an external inage
</ desc>
<i mage x="200" y="200" wi dt h="100px" hei ght="100px"
x| i nk: href =" nyi mage. png" >
<title>My i mage</title>
</ i mage>
</ svg>

5.8 Conditional processing

5.8.1 Conditional processing overview

SV G contains a'switch' element along with attributes requiredFeatures, requiredExtensions and systemL anguage to provide an ability to
specify alternate viewing depending on the capabilities of a given user agent or the user's language.

<IENTITY %testAttrs
"requiredFeat ures %-eaturelist; #l MPLI ED
r equi r edExt ensi ons %kxt ensi onLi st; #| MPLI ED
syst enLanguage %.anguageCodes; #| MPLI ED" >

Attributes requiredFeatures, requiredExtensions and systemL anguage act as tests and return either true or false results. The 'switch' renders
the first of its children for which all of these attributes test true. If the given attribute is not specified, then atrue value is assumed.

5.8.2 The 'switch' element

The 'switch' element evaluates the requiredFeatures, requiredExtensions and systemL anguage attributes on its direct child elementsin order,

and then processes and renders the first child for which these attributes evaluate to true. All others will be bypassed and therefore not
rendered. If the child element is a container element such asa'g’, then the entire subtree is either processed/rendered or bypassed/not
rendered.

Note that the values of properties 'display’ and 'visibility' have no effect on 'switch' element processing. In particular, setting 'display’ to none
on achild of a'switch' element has no effect on true/fal se testing associated with 'switch' element processing.

<IENTITY % sw tchExt "" >
<! ELEMENT swi tch (%lescTitl eMet adat a;,

(path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| swi tch| al forei gnObj ect |
ani mat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf or m
%¢ceExt; ¥%swit chExt;)*) >

<! ATTLI ST swi tch
YstdAttrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #I MPLI ED
class %l assList; #l MPLI ED
style %5tyl eSheet; #l MPLI ED
%PresentationAttributes-All;
transform % ransforniist; #l MPLI ED
%r aphi csEl enent Events; >

Attributes defined el sewhere:

Y%stdAttrs;, %langSpaceAttrs;, class, transform, %graphi csElementEvents;, %testAttrs;, external ResourcesRequired, style,
%PresentationAttributes-All;.

For more information and an example, see Embedding foreign object types.

5.8.3 The requiredFeatures attribute

Definition of requiredFeatures:
requiredFeatures = list-of-features

Thevalueisalist of feature strings, with the individual values separated by white space. Determines whether all of the named features
are supported by the user agent. Only feature strings defined in this section (see below) are allowed. If all of the given features are
supported, then the attribute evaluates to true; otherwise, the current element and its children are skipped and thus will not be
rendered.

Animatable: no.

All feature strings referring to language capabilities begin with " org.w3c.svg" . All feature strings referring to SVG DOM capabilities begin
with " org.w3c.dom.svg" .

The following are the feature strings for the requiredFeatures attribute. These same feature strings apply to the hasFeature method call that is
part of the SYG DOM's support for the DOMImplementation interface defined in [DOM 2-CORE] (see Feature strings for the hasFeature

method call).
« Thefeature string " org.w3c.svg" indicates that the user agent supports at least one of the following (all of which are described

subsequently): " org.w3c.svg.static" , " org.w3c.svg.animation" , " org.w3c.svg.dynamic" or " org.w3c.dom.svg" . (Because the
feature string " org.w3c.svg" can be ambiguous in some circumstances, it is recommended that more specific feature strings be used.)

« Thefeature string " org.w3c.dom.svg" indicates that the user agent supports at least one of the following (all of which are described
subsequently): " org.w3c.dom.svg.static”, " org.w3c.dom.svg.animation" or " org.w3c.dom.svg.dynamic" . (Because the feature
string " org.w3c.dom.svg" can be ambiguous in some circumstances, it is recommended that more specific feature strings be used.)

« Thefeature string " org.w3c.svg.static" indicates the availability of all of the language capabililities defined in:
o Basic Data Types and Interfaces

o Document Structure

o Styling

o Coordinate Systems, Transformations and Units
o Paths

0 Basic Shapes

o Text

o Painting: Filling, Stroking and Marker Symbols

o Color
o Gradients and Patterns

o Clipping, Masking and Compositing
o Filter Effects

o Fonts

http://www.w3.org/TR/DOM-Level-2-Core/

o The'switch' element

o The requiredFeatures attribute

o The reguiredExtensions attribute
o The systemL anguage attribute

For SVG viewers, " org.w3c.svg.static' indicates that the viewer can process and render successfully al of the language features
listed above.

« Thefeature string " org.w3c.dom.svg.static" indicates the availability of all of the DOM interfaces and methods that correspond to
the language features for " org.w3c.svg.static" .

« Thefeature string " org.w3c.svg.animation" includes all of the language capabilities defined for " org.w3c.svg.static" plusthe
availability of all of the language capabililities defined in Animation. For SV G viewers running on media capable of rendering
time-based material, such as displays, " org.w3c.svg.animation" indicates that the viewer can process and render successfully al of
the corresponding language features.

» Thefeature string " org.w3c.dom.svg.animation" corresponds to the availability of DOM interfaces and methods that correspond to
the language features for " org.w3c.svg.animation™ .

« Thefeature string " org.w3c.svg.dynamic" includes all of the language capabilities defined for " org.w3c.svg.animation” plusthe
availability of al of the language capabililities defined in Relationship with DOM2 events, Linking and Interactivity and Scripting.

For SV G viewers running on media capable of rendering time-based material, such as displays, " org.w3c.svg.dynamic" indicates that
the viewer can process and render successfully all of the corresponding language features.

« Thefeature string " org.w3c.dom.svg.dynamic" corresponds to the availability of DOM interfaces and methods that correspond to the
language features for " org.w3c.svg.dynamic" .

« Thefeature string " org.w3c.svg.all" corresponds to the availability of al of the language capabilities defined in this specification.
« Thefeature string " org.w3c.dom.svg.all" corresponds to the availability of al of the DOM interfaces defined in this specification.

If the attribute is not present, then itsimplicit return valueis "true". If anull string or empty string value is given to attribute requiredFeatures,
the attribute returns "false".

requiredFeatures is often used in conjunction with the 'switch' element. If the requiredFeatures is used in other situations, then it represents a
simple switch on the given element whether to render the element or not.

5.8.4 The requiredExtensions attribute

The requiredExtensions attribute defines alist of required language extensions. Language extensions are capabilities within a user agent that
go beyond the feature set defined in this specification. Each extension isidentified by a URI reference.

Definition of requiredExtensions:

requiredExtensions = list-of-extensions
Thevaueisalist of URI references which identify the required extensions, with the individual values separated by white space.
Determines whether al of the named extensions are supported by the user agent. If al of the given extensions are supported, then the

attribute evaluates to true; otherwise, the current element and its children are skipped and thus will not be rendered.
Animatable: no.

If agiven URI reference contains white space within itself, that white space must be escaped.

If the attribute is not present, then itsimplicit return valueis "true". If anull string or empty string value is given to attribute
requiredExtensions, the attribute returns "false”.

requiredExtensions is often used in conjunction with the 'switch' element. If the requiredExtensionsis used in other situations, then it
represents a simple switch on the given element whether to render the element or not.

The URI names for the extension should include versioning information, such as "http://example.org/SV GExtensionXY Z/1.0", so that script
writers can distinguish between different versions of a given extension.

5.8.5 The systemLanguage attribute

The attribute value is a comma-separated list of language names as defined in [RFC3066].

Evaluatesto "true" if one of the languages indicated by user preferences exactly equals one of the languages given in the value of this
parameter, or if one of the languages indicated by user preferences exactly equals a prefix of one of the languages given in the value of this
parameter such that the first tag character following the prefix is"-".

Evaluates to "false" otherwise.

Note: This use of a prefix matching rule does not imply that language tags are assigned to languages in such away that it is always true that if
auser understands a language with a certain tag, then this user will also understand all languages with tags for which thistag is a prefix.

The prefix rule simply alows the use of prefix tagsif thisisthe case.

http://www.ietf.org/rfc/rfc3066.txt

Implementation note: When making the choice of linguistic preference available to the user, implementers should take into account the fact
that users are not familiar with the details of language matching as described above, and should provide appropriate guidance. As an example,
users may assume that on selecting "en-gh", they will be served any kind of English document if British English is not available. The user
interface for setting user preferences should guide the user to add "en" to get the best matching behavior.

Multiple languages MAY be listed for content that isintended for multiple audiences. For example, content that is presented simultaneously
in the original Maori and English versions, would call for:

<t ext systeniLanguage="m, en"><!-- content goes here --></text>

However, just because multiple languages are present within the object on which the systemL anguage test attribute is placed, this does not
mean that it isintended for multiple linguistic audiences. An example would be a beginner's language primer, such as"A First Lesson in
Latin," which isclearly intended to be used by an English-literate audience. In this case, the systemL anguage test attribute should only
include "en".

Authoring note: Authors should realize that if several aternative language objects are enclosed in a 'switch', and none of them matches, this
may lead to situations where no content is displayed. It is thus recommended to include a"catch-all" choice at the end of such a'switch' which
isacceptablein all cases.

For the systemLanguage attribute: Animatable: no.

If the attribute is not present, then itsimplicit return value is "true”. If anull string or empty string value is given to attribute systemL anguage,
the attribute returns "false".

systemLanguage is often used in conjunction with the 'switch' element. If the systemLanguage is used in other situations, then it represents a
simple switch on the given element whether to render the element or not.

5.9 Specifying whether external resources are required for proper
rendering

Documents often reference and use the contents of other files (and other Web resources) as part of their rendering. In some cases, authors
want to specify that particular resources are required for adocument to be considered correct.

Attribute external ResourcesRequired is available on all container elements and to all elements which potentially can reference externa
resources. It specifies whether referenced resources that are not part of the current document are required for proper rendering of the given
container element or graphics element.

Attribute definition:
external ResourcesRequired = "false | true"
false

(The default value.) Indicates that resources external to the current document are optional. Document rendering can proceed
even if external resources are unavailable to the current element and its descendants.

true

Indicates that resources external to the current document are required. If an external resourceis not available, progressive
rendering is suspended until that resource and all other required resources become available, have been parsed and are ready to
be rendered. If atimeout event occurs on arequired resource, then the document goes into an error state (see Error processing).
The document remains in an error state until all required resources become available.

This attribute applies to all types of resource references, including style sheets, color profiles (see Color profile descriptions) and fonts
specified by a URI Reference using a 'font-face' element or a CSS @font-face specification. In particular, if an element sets
external ResourcesRequired="true", then all style sheets must be available since any style sheet might affect the rendering of that element.

Attribute external ResourcesRequired is not inheritable (from a sense of attribute value inheritance), but if set on a container element, its value
will apply to al elements within the container.

Because setting external ResourcesRequired="true" on a container element can have the effect of disabling progressive display of the contents
of that container, tools that generate SV G content are cautioned against using simply setting external ResourcesRequired="true" on the
outermost 'svg' element on auniversal basis. Instead, it is better to specify external ResourcesRequired="true" on those particular graphics

elements or container elements which specify need the availability of external resourcesin order to render properly.

For external ResourcesRequired: Animatable: no.

5.10 Common attributes

5.10.1 Attributes common to all elements: id and xml:base

Theid and xml:base attributes are available on all SVG elements:

<IENTITY %stdAttrs
"id I D #l MPLI ED
xm : base %Rl ; #l MPLI ED' >

Attribute definitions:

id = "name"
Standard XML attribute for assigning a unique name to an element. Refer to the "Extensible Markup Language (XML) 1.0"
Recommendation [XML10].
Animatable: no.

xml:base = "<uri>"

Specifies abase URI other than the base URI of the document or external entity. Refer to the "XML Base" specification
[XML-BASE].
Animatable: no.

5.10.2 The xml:lang and xml:space attributes

Elements that might contain character data content have attributes xml:lang and xml:space:

<IENTITY % | angSpaceAttrs
"xm : [ang NMIOKEN #| MPLI ED
xm : space (defaul t|preserve) #l MPLIED' >

Attribute definitions:

xml:lang = "languagel D"
Standard XML attribute to specify the language (e.g., English) used in the contents and attribute values of particular elements. Refer to
the "Extensible Markup Language (XML) 1.0" Recommendation [XML10].
Animatable: no.

xml:space = "{default | preserve}"

Standard XML attribute to specify whether white space is preserved in character data. The only possible values are default and
preserve. Refer to the "Extensible Markup Language (XML) 1.0" Recommendation [XML 10] and to the discussion white space
handling in SVG.

Animatable: no.

5.11 DOM interfaces

The following interfaces are defined below: SV GDocument, SVGSV GElement, SV GGElement, SV GDefsElement, SV GDescElement,
SVGTitleElement, SV GSymbol Element, SV GUseElement, SV GElementinstance, SV GElementInstancel ist, SV GlmageElement,
SV GSwitchElement, GetSV GDocument.

Interface SVGDocument

When an 'svg' element is embedded inline as a component of a document from another namespace, such as when an 'svg' element is
embedded inline within an XHTML document [XHTML], then an SVGDocument object will not exist; instead, the root object in the

document object hierarchy will be a Document object of a different type, such as an HTMLDocument object.

However, an SV GDocument object will indeed exist when the root element of the XML document hierarchy is an 'svg' element, such aswhen
viewing astandalone SVG file (i.e.,, afilewith MIME type "image/svg+xml"). In this case, the SV GDocument object will be the root object
of the document object model hierarchy.

In the case where an SV G document is embedded by reference, such as when an XHTML document has an 'object’ element whose href

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

attribute references an SV G document (i.e., a document whose MIME typeis "image/svg+xml" and whose root element is thus an 'svg'
element), there will exist two distinct DOM hierarchies. The first DOM hierarchy will be for the referencing document (e.g., an XHTML
document). The second DOM hierarchy will be for the referenced SVG document. In this second DOM hierarchy, the root object of the
document object model hierarchy is an SV GDocument object.

The SVGDocument interface contains asimilar list of attributes and methods to the HTML Document interface described in the Document
Object Model (HTML) Level 1 chapter of the [DOM 1] specification.

IDL Definition

i nterface SVG@ocunent
Docunent ,
events: : Docunment Event {

readonly attribute DOVString title;

readonly attribute DOVString referrer;
readonly attribute DOVString domai n;
readonly attribute DOVString URL;
readonly attribute SVGSVCGEl enent root El enent;
b
Attributes
readonly DOM String title

Thetitle of adocument as specified by the title sub-element of the 'svg' root element (i.e., <svg><title>Here isthe
title</title>...</svg>)

readonly DOM String referrer

Returns the URI of the page that linked to this page. The value is an empty string if the user navigated to the page directly (not
through alink, but, for example, via a bookmark).

readonly DOM String domain

The domain name of the server that served the document, or anull string if the server cannot be identified by a domain name.
readonly DOM String URL

The complete URI of the document.
readonly SVGSV GElement rootElement

Theroot 'svg' element in the document hierarchy.

Interface SVGSVGElement

A key interface definition is the SV GSV GElement interface, which isthe interface that corresponds to the 'svg' element. This interface

contains various miscellaneous commonly-used utility methods, such as matrix operations and the ability to control the time of redraw on
visual rendering devices.

SVGSVGElement extends ViewCSS and DocumentCSS to provide access to the computed values of properties and the override style sheet as
described in DOM2.

IDL Definition

i nterface SVGSVGEl enent
SVCEl enent
SVGTest s,
SVG.angSpace,
SVGEXt er nal Resour cesRequi red,
SVGSt yl abl e,
SVGL.ocat abl e,
SVGFi t ToVi ewBox,
SV&ZoomAndPan,
events: : Event Tar get,
event s: : Docunent Event,
css: : Vi ewCSs,
css: : Docunent CSS {

readonly attribute SVGAni mat edLength x;
readonly attribute SVGAni mat edLength v;
readonly attribute SVGAni mat edLengt h wi dt h;
readonly attribute SVGAni mat edLengt h hei ght;
attribute DOVBtring content Scri pt Type;

http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html
http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html

/1 rai ses DOVException on setting
attribute DOVString content Styl eType;
/1 raises DOVException on setting
readonly attribute SVCGRect Vi ewport;
readonly attribute float pixelUnitToMIIineterX;
readonly attribute float pixelUnitToMIIlineterY,;
readonly attribute float screenPixel TOMIIineterX;
readonly attribute float screenPixel ToOMIIineterY;
attri bute bool ean useCurrent Vi ew,
/1 rai ses DOVException on setting
readonly attribute SVGVi ewSpec current Vi ew,
attribute float currentScal e;
/1 rai ses DOVException on setting
readonly attribute SVGPoint currentTransl ate;

unsi gned | ong suspendRedraw (in unsigned long nax_wait_milliseconds)

voi d unsuspendRedraw (in unsigned | ong suspend_handle_id)
rai ses(DOVException);
voi d unsuspendRedrawAl | ();
voi d forceRedraw ();
voi d pauseAni mations ();
voi d unpauseAni mations ();
bool ean ani mati onsPaused ();
f1 oat getCurrentTinme ();
voi d setCurrentTime (in float seconds);
NodelLi st getlntersectionList (in SVGRect rect, in SVGEl ement referenceEl ement);
NodelLi st get Encl osureList (in SVCRect rect, in SVGEl ement referenceEl ement);
bool ean checklntersection (in SVCGEl enent el enent, in SVCRect rect);
bool ean checkEncl osure (in SVCGEl enment el enent, in SVGRect rect);
voi d deselectAll ();
SVG\unber creat eSVG\unber ();
SVGL.engt h createSVG.ength ();
SVGANgl e createSVGAngle ();
SVGPoi nt createSVGPoint ();
SVGwvat ri x createSvawatrix ();
SVGRect createSVGRect ();
SVGTr ansform createSVGIransform ();
SVGTr ansform creat eSVGTransfornFromvatrix (in SVGvatrix matrix);
El emrent getEl ementByld (in DOVBtring elenentld);
b
Attributes

readonly SV GAnimatedL ength x

Corresponds to attribute x on the given 'svg' el ement.
readonly SVGAnimatedLength y

Corresponds to attribute y on the given 'svg' element.
readonly SV GAnimatedL ength width

Corresponds to attribute width on the given 'svg' element.
readonly SV GAnimatedL ength height

Corresponds to attribute height on the given 'svg' element.
DOM String contentScriptType

Corresponds to attribute contentScriptType on the given 'svg' element.

Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly
attribute.

DOM String contentStyleType
Corresponds to attribute contentStyleType on the given 'svg' element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly
attribute.

readonly SV GRect viewport

The position and size of the viewport (implicit or explicit) that correspondsto this 'svg' element. When the user agent is
actually rendering the content, then the position and size values represent the actual values when rendering. The position and
size values are unitless values in the coordinate system of the parent element. If no parent element exists (i.e., 'svg' el ement
represents the root of the document tree), if this SV G document is embedded as part of another document (e.g., viathe HTML

‘object’ element), then the position and size are unitless values in the coordinate system of the parent document. (If the parent
uses CSS or XSL layout, then unitless values represent pixel units for the current CSS or XSL viewport, as described in the
CSS2 specification.) If the parent element does not have a coordinate system, then the user agent should provide reasonable
default values for this attribute.
The object itself and its contents are both readonly.

readonly float pixelUnitToMillimeterX

Size of apixel units (as defined by CSS2) along the x-axis of the viewport, which represents a unit somewhere in the range of
70dpi to 120dpi, and, on systems that support this, might actually match the characteristics of the target medium. On systems
where it isimpossible to know the size of a pixel, a suitable default pixel sizeis provided.

readonly float pixelUnitToMillimeterY
Corresponding size of apixel unit along the y-axis of the viewport.
readonly float screenPixel ToMillimeterX

User interface (Ul) eventsin DOM Level 2 indicate the screen positions at which the given Ul event occurred. When the user
agent actually knows the physical size of a"screen unit", this attribute will express that information; otherwise, user agents
will provide a suitable default value such as .28mm.

readonly float screenPixel ToMillimeterY
Corresponding size of a screen pixel along the y-axis of the viewport.
boolean useCurrentView

Theinitial view (i.e., before magnification and panning) of the current innermost SV G document fragment can be either the
"standard" view (i.e., based on attributes on the 'svg' element such asfitBoxToViewport) or to a"custom" view (i.e., a
hyperlink into a particular 'view' or other element - see Linking into SV G content: URI fragments and SV G views). If the

initial view isthe "standard" view, then this attribute is false. If the initial view isa"custom™ view, then this attribute is true.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly
attribute.

readonly SV GViewSpec currentView

The definition of theinitial view (i.e., before magnification and panning) of the current innermost SV G document fragment.
The meaning depends on the situation:

» If theinitia view was a"standard" view, then:

= the valuesfor viewBox, preserveAspectRatio and zoomAndPan within currentView will match the values for
the corresponding DOM attributes that are on SV GSV GElement directly

» thevaluesfor transform and viewTarget within currentView will be null
= |f theinitial view wasalink into a'view' element, then:

= thevaluesfor viewBox, preserveAspectRatio and zoomAndPan within currentView will correspond to the
corresponding attributes for the given 'view' element

= thevaluesfor transform and viewTarget within currentView will be null
= If theinitial view was alink into another element (i.e., other than a'view'), then:

= thevaluesfor viewBox, preserveAspectRatio and zoomAndPan within currentView will match the values for
the corresponding DOM attributes that are on SV GSV GElement directly for the closest ancestor 'svg' element

= thevaluesfor transform within currentView will be null
= theviewTarget within currentView will represent the target of the link

= [f theinitial view was alink into the SVG document fragment using an SV G view specification fragment identifier
(i.e., #svgView(...)), then:
= thevaluesfor viewBox, preserveAspectRatio, zoomAndPan, transform and viewTarget within currentView will
correspond to the values from the SV G view specification fragment identifier

The object itself and its contents are both readonly.

float currentScale
This attribute indicates the current scale factor relative to the initial view to take into account user magnification and panning
operations, as described under Magnification and panning. DOM attributes currentScale and currentTrand ate are equivalent to

the 2x3 matrix [ab c d e f] = [currentScale 0 O currentScale currentTranslate.x currentTranglate.y]. If "magnification” is
enabled (i.e., zoomAndPan="magnify"), then the effect is asif an extra transformation were placed at the outermost level on
the SV G document fragment (i.e., outside the outermost 'svg' element).

Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly
attribute.

readonly SV GPoint currentTranslate
The corresponding trandlation factor that takes into account user "magnification”.
Methods

suspendRedraw

Takes atime-out value which indicates that redraw shall not occur until: () the corresponding
unsuspendRedraw(suspend_handle_id) call has been made, (b) an unsuspendRedrawAll() call has been made, or (c) its timer
has timed out. In environments that do not support interactivity (e.g., print media), then redraw shall not be suspended.
suspend_handle_id = suspendRedraw(max_wait_milliseconds) and unsuspendRedraw(suspend_handle_id) must be packaged
as balanced pairs. When you want to suspend redraw actions as a collection of SVG DOM changes occur, then precede the
changes to the SVG DOM with a method call similar to suspend_handle _id = suspendRedraw(max_wait_milliseconds) and
follow the changes with a method call similar to unsuspendRedraw(suspend_handle_id). Note that multiple suspendRedraw
calls can be used at once and that each such method call is treated independently of the other suspendRedraw method calls.

Parameters

in unsigned long max_wait_milliseconds The amount of time in milliseconds to hold off before redrawing the device.
Values greater than 60 seconds will be truncated down to 60 seconds.

Return value

unsigned long A number which acts as a unique identifier for the given suspendRedraw() call. This vaue must be
passed as the parameter to the corresponding unsuspendRedraw() method call.

No Exceptions

unsuspendRedraw
Cancels a specified suspendRedraw() by providing a unique suspend_handle_id.
Parameters

in unsigned long suspend_handle_id A number which acts as a unique identifier for the desired suspendRedraw() call.
The number supplied must be a value returned from a previous call to
suspendRedraw()

No Return Value
Exceptions
DOMException This method will raise a DOMException with value NOT_FOUND_ERR if aninvalid value (i.e., no
such suspend_handle_id is active) for suspend_handle_id is provided.
unsuspendRedrawAll

Cancelsal currently active suspendRedraw() method calls. This method is most useful at the very end of a set of SVG DOM
callsto ensure that al pending suspendRedraw() method calls have been cancelled.

No Parameters

No Return Value

No Exceptions
forceRedraw

In rendering environments supporting interactivity, forces the user agent to immediately redraw al regions of the viewport that
require updating.

No Parameters

No Return Value

No Exceptions
pauseAnimations

Suspends (i.e., pauses) al currently running animations that are defined within the SV G document fragment corresponding to
this 'svg' element, causing the animation clock corresponding to this document fragment to stand still until it is unpaused.

No Parameters

No Return Vaue

No Exceptions
unpauseA nimations

Unsuspends (i.e., unpauses) currently running animations that are defined within the SVG document fragment, causing the
animation clock to continue from the time at which it was suspended.

No Parameters
No Return Value
No Exceptions
animationsPaused
Returnstrueif this SV G document fragment isin a paused state.
No Parameters
Return value
boolean Boolean indicating whether this SV G document fragment isin a paused state.
No Exceptions
getCurrentTime

Returns the current time in seconds relative to the start time for the current SVG document fragment.

No Parameters
Return value
float The current time in seconds.

No Exceptions
setCurrentTime
Adjusts the clock for this SVG document fragment, establishing a new current time.
Parameters
in float seconds The new current time in seconds relative to the start time for the current SV G document fragment.

No Return Vaue
No Exceptions
getIntersectionList
Returnsthe list of graphics elements whose rendered content intersects the supplied rectangle, honoring the 'pointer-events
property value on each candidate graphics element.
Parameters

in SVGRect rect The test rectangle. The values arein the initial coordinate system for the current
'svg' element.

in SVGElement referenceElement If not null, then only return elements whose drawing order has them below the
given reference element.

Return value
NodeList A list of Elements whose content intersects the supplied rectangle.

No Exceptions

getEnclosurelist
Returns the list of graphics elements whose rendered content is entirely contained within the supplied rectangle, honoring the
'pointer-events property value on each candidate graphics element.
Parameters
in SVGRect rect The test rectangle. The values arein the initial coordinate system for the current
'svg' element.
in SVGElement referenceElement If not null, then only return elements whose drawing order has them below the
given reference element.

Return value
NodeList A list of Elements whose content is enclosed by the supplied rectangle.

No Exceptions

checklIntersection
Returns true if the rendered content of the given element intersects the supplied rectangle, honoring the 'pointer-events
property value on each candidate graphics element.

Parameters
in SVGElement element The element on which to perform the given test.
in SVGRect rect The test rectangle. The values arein theinitial coordinate system for the current 'svg'
element.
Return value

boolean True or false, depending on whether the given element intersects the supplied rectangle.

No Exceptions

checkEnclosure
Returns true if the rendered content of the given element is entirely contained within the supplied rectangle, honoring the
'pointer-events' property value on each candidate graphics element.

Parameters
in SVGElement element The element on which to perform the given test.
in SVGRect rect The test rectangle. The values are in theinitial coordinate system for the current 'svg'
element.
Return value

boolean True or false, depending on whether the given element is enclosed by the supplied rectangle.

No Exceptions
desel ectAll

Unselects any selected objects, including any selections of text strings and type-in bars.
No Parameters
No Return Vaue
No Exceptions
createSV GNumber
Creates an SVGNumber object outside of any document trees. The object isinitialized to avalue of zero.
No Parameters
Return value
SVGNumber An SVGNumber object.
No Exceptions
createSV GLength
Creates an SV GLength object outside of any document trees. The object isinitialized to the value of O user units.
No Parameters
Return value
SVGLength An SVGLength object.
No Exceptions
createSVGAnNgle
Creates an SVGAnNgle object outside of any document trees. The object isinitialized to the value O degrees (unitless).
No Parameters
Return value
SVGAnNgle An SVGAnNgle object.
No Exceptions
createSV GPoint

Creates an SV GPoint object outside of any document trees. The object isinitialized to the point (0,0) in the user coordinate
system.

No Parameters
Return value
SVGPoint An SVGPoint object.
No Exceptions
createSV GMatrix
Creates an SVGMatrix object outside of any document trees. The object isinitialized to the identity matrix.
No Parameters
Return value
SVGMatrix An SVGMatrix object.
No Exceptions
createSV GRect
Creates an SV GRect object outside of any document trees. The object isinitialized such that all values are set to 0 user units.
No Parameters
Return value
SVGRect An SVGRect object.
No Exceptions
createSV GTransform

Creates an SV GTransform object outside of any document trees. The object is initialized to an identity matrix transform
(SVG_TRANSFORM_MATRIX).

No Parameters
Return value
SVGTransform An SV GTransform object.
No Exceptions
createSV GTransformFromMatrix

Creates an SV GTransform object outside of any document trees. The object is initialized to the given matrix transform (i.e.,
SVG_TRANSFORM_MATRIX).

Parameters
in SVGMatrix matrix The transform matrix.

Return value
SVGTransform An SVGTransform object.
No Exceptions
getElementByld

Searches this SVG document fragment (i.e., the search is restricted to a subset of the document tree) for an Element whose id
isgiven by elementld. If an Element is found, that Element is returned. If no such element exists, returns null. Behavior is not
defined if more than one element hasthisid.

Parameters

in DOM String elementld The unique id value for an element.
Return value

Element The matching element.
No Exceptions

Interface SVGGElement

The SVGGElement interface corresponds to the 'g' element.
IDL Definition

interface SVGGEl enent
SVCEIl enent
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi red,
SVGSt yl abl e,
SVGTIr ansf or mabl e,
events:: Event Target {};

Interface SVGDefsElement

The SV GDefsElement interface corresponds to the 'defs’ element.
IDL Definition

i nterface SVGDef sEl enent :
SVGEl enent
SVGTest s,
SVG@LangSpace,
SVGEXt er nal Resour cesRequi red,
SVGSt yl abl e,
SVGTr ansf or nabl e,
events:: Event Target {};

Interface SVGDescElement

The SV GDescElement interface corresponds to the 'desc’ element.
IDL Definition

i nterface SVG@escEl enent
SVGEl enent ,
SVGLangSpace,
SVGStyl abl e {};

Interface SVGTitleElement

The SVGTitleElement interface corresponds to the 'title' element.
IDL Definition

interface SVGTitl eEl ement :
SVGEl enent
SVGLangSpace,
SVGStyl abl e {};

Interface SVGSymbolElement

The SV GSymbol Element interface corresponds to the 'symbol* element.
IDL Definition

i nterface SVGSynbol El enent
SVCEl enent
SVGLangSpace,
SVGEXt er nal Resour cesRequi red,
SVGSt yl abl e,
SVGFi t ToVi ewBox,
events:: Event Target {};

Interface SVGUseElement

The SVGUseElement interface corresponds to the 'use' element.
IDL Definition

interface SVG@UseEl enent
SVCEl enent
SVGURI Ref er ence,
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi red,
SVGSt yl abl e,
SVGTr ansf or nabl e,
events: : Event Target {

readonly attribute SVGAni mat edLengt h X;

readonly attribute SVGAni mat edLength y;

readonly attribute SVGAni mat edLength wi dt h;

readonly attribute SVGAni mat edLength hei ght ;

readonly attribute SVGEl enentl nstance instanceRoot;
readonly attribute SVGEl enentl| nstance ani mat edl nst anceRoot ;

}s

Attributes

readonly SV GAnimatedL ength x

Corresponds to attribute x on the given 'use’ element.
readonly SVGAnimatedLength y

Corresponds to attribute y on the given 'use' element.
readonly SV GAnimatedL ength width

Corresponds to attribute width on the given 'use' element.
readonly SV GAnimatedL ength height

Corresponds to attribute height on the given 'use’ element.
readonly SV GElementlnstance instanceRoot

The root of the "instance tree". See description of SV GElementlnstance for a discussion on the instance tree.

readonly SV GElementlnstance animatedl nstanceRoot

If the 'href* attribute is being animated, contains the current animated root of the "instance tree". If the 'href' attribute is not
currently being animated, contains the same value as 'instanceRoot'. The root of the "instance tree". See description of
SV GElementlnstance for a discussion on the instance tree.

Interface SVGElementinstance

For each 'use' element, the SVG DOM maintains a shadow tree (the "instance tree") of objects of type SV GElementInstance. A

SV GElementl nstance represents a single node in the instance tree. The root object in the instance tree is pointed to by the instanceRoot
attribute on the SV GUseElement object for the corresponding 'use' element.

If the 'use’ element references a simple graphics element such as a 'rect’, then there is only a single SV GElementlnstance object, and the
correspondingElement attribute on this SV GElementlnstance object is the SV GRectElement that corresponds to the referenced 'rect’ element.

If the 'use’ element references a'g' which contains two 'rect’ elements, then the instance tree contains three SV GElementInstance objects, a
root SV GElementlnstance object whose correspondingElement is the SV GGElement object for the 'g', and then two child
SV GElementlnstance objects, each of which has its correspondingElement that is an SV GRectElement object.

If the referenced object isitself a'use, or if there are 'use’ subelements within the referenced object, the instance tree will contain recursive
expansion of the indirect references to form a complete tree. For example, if a'use’ element referencesa'd’, and the 'q' itself contains a'use,
and that 'use' references a 'rect’, then the instance tree for the original (outermost) 'use will consist of a hierarchy of SV GElementInstance
objects, asfollows:

SVCEl enment | nst ance #1 (parent Node=null, firstChild=#2, correspondi ngEl ement is the 'g")
SVCGEl enent | nst ance #2 (parent Node=#1, firstChild=#3, correspondi ngEl ement is the other 'use')
SVGEl enment | nst ance #3 (parent Node=#2, firstChild=null, corresponding El ement is the '"rect')

IDL Definition

i nterface SVGEl enentlnstance : events::Event Target {
readonly attribute SVGEl ement correspondi ngEl enment ;
readonly attribute SVGUseEl enent correspondi ngUseEl enment ;
readonly attribute SVGEl enent | nstance parent Node;
readonly attribute SVGEl ement | nstanceLi st chil dNodes;
readonly attribute SVGEl ementlnstance firstChild;
readonly attribute SVGEl ementlnstance |astChild;
readonly attribute SVGEl enent | nstance previousSibling;
readonly attribute SVCGEl enentl nstance next Si bling;

b

Attributes
readonly SV GElement correspondingElement
The corresponding element to which this object is an instance. For example, if a'use' element references a 'rect' element, then
an SVGElementInstance is created, with its correspondingElement being the SV GElementlnstance object for the 'rect’ element.
readonly SV GUseElement correspondingUseElement

The corresponding 'use’ element to which this SV GElementl nstance object belongs. When 'use' elements are nested (e.g., a
'use’ references another 'use’ which references a graphics element such as a 'rect'), then the correspondingUseElement is the
outermost 'use' (i.e., the one which indirectly references the 'rect’, not the one with the direct reference).

readonly SV GElementInstance parentNode

The parent of this SV GElementlnstance within the instance tree. All SV GElementl nstance objects have a parent except the
SV GElementInstance which corresponds to the element which was directly referenced by the 'use' element, in which case

parentNodeis null.
readonly SV GElementInstanceList childNodes

An SV GElementlnstancelist that contains all children of this SV GElementlnstance within the instance tree. If there are no
children, thisis an SVGElementinstanceL.ist containing no entries (i.e., an empty list).

readonly SV GElementlnstance firstChild

Thefirst child of this SV GElementlnstance within the instance tree. If thereis no such SV GElementinstance, this returns null.
readonly SV GElementInstance lastChild

The last child of this SV GElementlnstance within the instance tree. If there is no such SV GElementInstance, this returns null.
readonly SV GElementl| nstance previousSibling

The SV GElementlnstance immediately preceding this SV GElementinstance. If there is no such SV GElementinstance, this
returns null.

readonly SV GElementlnstance nextSibling

The SV GElementlnstance immediately following this SVGElementInstance. If thereis no such SV GElementInstance, this
returns null.

Interface SVGElementinstanceList

The SVGElementinstancelist interface provides the abstraction of an ordered collection of SV GElementlnstance objects, without defining or
constraining how this collection is implemented.

IDL Definition

interface SVCEl enent | nstancelist {
readonly attribute unsigned |ong | ength;

SVCEl ement I nstance item (in unsigned |long index);

H

Attributes
readonly unsigned long length
The number of SV GElementlnstance objectsin the list. The range of valid child indicesis 0 to length-1 inclusive.
M ethods
item
Returns the indexth item in the collection. If index is greater than or equal to the number of nodes in the list, this returns null.
Parameters
in unsigned long index Index into the collection.
Return value

SV GElementlnstance The SV GElementlnstance object at the indexth position in the SV GElementInstanceL.ist, or null
if that is not avalid index.

No Exceptions

Interface SVGImageElement

The SV GImageElement interface corresponds to the 'image’ element.
IDL Definition

i nterface SVA nageEl enent
SVGEl enent
SVGURI Ref er ence,
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or nabl e,
events:: Event Target {

readonly attribute SVGAni matedLength Xx;

readonly attribute SVGAni matedLength y;

readonly attribute SVGAni mat edLength wi dt h;

readonly attribute SVGAni mat edLength hei ght;

readonly attribute SVGAni nat edPreserveAspect Rati o preserveAspect Rati o;

b

Attributes
readonly SV GAnimatedL ength x
Corresponds to attribute x on the given 'image’ element.
readonly SVGAnimatedLength y
Corresponds to attribute y on the given image’ element.

readonly SV GAnimatedL ength width

Corresponds to attribute width on the given 'image’ element.
readonly SV GAnimatedL ength height

Corresponds to attribute height on the given 'image’ element.
readonly SV GAnimatedPreserveAspectRatio preserveAspectRatio

Corresponds to attribute preserveAspectRatio on the given element.

Interface SVGSwitchElement

The SV GSwitchElement interface corresponds to the 'switch' element.
IDL Definition

interface SVGSwi t chEl enent
SVGEl enent
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTIr ansf or nabl e,
events:: Event Target {};

Interface GetSVGDocument

In the case where an SV G document is embedded by reference, such aswhen an XHTML document has an 'object’ element whose href (or
equivalent) attribute references an SV G document (i.e., adocument whose MIME typeis "image/svg+xml* and whose root element is thus an
'svg' element), the SV G user agent is required to implement the GetSV GDocument interface for the element which references the SVG
document (e.g., the HTML 'object’ or comparable referencing elements).

IDL Definition

i nterface Get SVGocunent {

SVGDocunent get SVGocunent ()
rai ses(DOVException);
b

Methods
getSVGDocument

Returns the SV GDocument object for the referenced SVG document.

No Parameters
Return value

SVGDocument The SV GDocument object for the referenced SV G document.
Exceptions
DOMException NOT_SUPPORTED_ERR: No SVGDocument object is available.

previous next contents elements attributes properties index

previous next contents elements attributes properties index

19 July, 2001

6 Styling

Contents

6.1 SVG's styling properties

6.2 Usage scenarios for styling

6.3 Alternative ways to specify styling properties

6.4 Specifying properties using the presentation attributes

6.5 Entity definitions for the presentation attributes
6.6 Styling with XSL

6.7 Styling with CSS

6.8 Case sensitivity of property names and values
6.9 Facilities from CSS and XSL used by SVG
6.10 Referencing external style sheets

6.11 The 'style' element

6.12 The class attribute

6.13 The style attribute

6.14 Specifying the default style sheet language
6.15 Property inheritance

6.16 The scope/range of styles
6.17 User agent style sheset
6.18 Aural style sheets

6.19 DOM interfaces

6.1 SVG's styling properties

SV G uses styling properties to describe many of its document parameters. Styling properties define how the graphics elementsin the SVG
content are to be rendered. SV G uses styling properties for the following:

Parameters which are clearly visual in nature and thus lend themselves to styling. Examplesinclude all attributes that define how an
object is"painted," such asfill and stroke colors, linewidths and dash styles.

Parameters having to do with text styling such as 'font-family' and ‘font-size'.
Parameters which impact the way that graphical elements are rendered, such as specifying clipping paths, masks, arrowheads, markers

SV G shares many of its styling properties with CSS [CSS2] and XSL [XSL]. Except for any additional SV G-specific rules explicitly
mentioned in this specification, the normative definition of properties that are shared with CSS and XSL isthe definition of the property from

and filter effects.

the CSS2 specification [CSS2].

The following properties are shared between CSS2 and SVG. Most of these properties are also defined in XSL:

« Font properties:

o font'

o ‘font-family'

o ‘font-size

o ‘font-size-adjust'
o ‘'font-stretch'

o ‘font-style

http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/REC-CSS2/

o ‘font-variant'
o 'font-weight'
« Text properties:
o 'direction'
o 'letter-spacing'
0 'text-decoration’
0 'unicode-bidi'
o 'word-spacing'
« Other properties for visual media:
o 'clip' (Only applicable to outermost 'svg’)

o 'color' is used to provide a potentia indirect value (currentColor) for the 'fill', 'stroke’, 'stop-color', 'flood-color', 'lighting-color'

properties. (The SV G properties which support color allow a color specification which is extended from CSS2 to accommodate
color definitions in arbitrary color spaces. See Color profile descriptions.

o 'cursor'

o 'display
o 'overflow' (Only applicable to elements which establish a new viewport)
o 'visibility'

The following SV G properties are not defined in [CSS2]. The complete normative definitions for these properties are found in this
specification:
« Clipping, Masking and Compositing properties:
o 'clip-path’
o 'clip-rule
0 ‘mask'
o ‘opacity’
« Filter Effects properties:
o 'enable-background'
o filter

o 'flood-color'
o ‘'flood-opacity'
o 'lighting-color'
« Gradient properties:
o 'stop-color'
0 'stop-opacity’
« Interactivity properties:
0 'pointer-events
« Color and Painting properties:
o 'color-interpolation’
o 'color-interpolation-filters
o 'color-profile
o 'color-rendering'
o fill'
o ‘fill-opacity'
o ‘fill-rule
o 'image-rendering'
o ‘marker'

o 'marker-end'
o 'marker-mid'
o 'marker-start'
o 'shape-rendering'

http://www.w3.org/TR/REC-CSS2/

0 'stroke

0 'stroke-dasharray'

0 'stroke-dashoffset'

o 'stroke-linecap'

o 'stroke-lingjoin’

0 'stroke-miterlimit’

0 'stroke-opacity’

0 'stroke-width'

0 'text-rendering’
Text properties:

o 'alignment-baseline'

0 'baseline-shift'

0 'dominant-baseline'

o 'glyph-orientation-horizontal'

o 'glyph-orientation-vertica'
o 'kerning'

o 'text-anchor'

0 'writing-mode'

A table that lists and summarizes the styling properties can be found in the Property Index.

6.2 Usage scenarios for styling

SV G has many usage scenarios, each with different needs. Here are three common usage scenarios:

1

SVG content used as an exchange for mat (style sheet language-independent):

In some usage scenarios, reliable interoperability of SV G content across software tools is the main goal. Since support for a particular
style sheet languages is not guaranteed across all implementations, it is areguirement that SV G content can be fully specified without
the use of a style sheet language.

. SVG content generated asthe output from XSLT [XSLT]:

XSLT offersthe ability to take a stream of arbitrary XML content as input, apply potentially complex transformations, and then
generate SV G content as output. XSLT can be used to transform XML data extracted from databases into an SV G graphical
representation of that data. It is arequirement that fully specified SVG content can be generated from XSLT.

. SVG content styled with CSS[CSS2]:

CSSisawidely implemented declarative language for assigning styling properties to XML content, including SVG. It represents a
combination of features, simplicity and compactness that makesiit very suitable for many applications of SVG. It is areguirement that
CSS styling can be applied to SVG content.

6.3 Alternative ways to specify styling properties

Styling properties can be assigned to SV G elements in the following two ways:

Presentation attributes

Styling properties can be assigned using SV G's presentation attributes. For each styling property defined in this specification, thereisa
corresponding XML presentation attribute available on all relevant SV G elements. Detailed information on the presentation attributes
can be found in Specifying properties using the presentation attributes.

The presentation attributes are style sheet language independent and thus are applicable to usage scenario 1 above (i.e., tool
interoperability). Because it is straightforward to assign valuesto XML attributes from XSLT, the presentation attributes are well-suited
to usage scenario 2 above (i.e., SVG generation from XSLT). (See Styling with XSL below.)

Conforming SV G Interpreters and Conforming SVG Viewers are required to support SV G's presentation attributes.

CSss

http://www.w3.org/TR/xslt
http://www.w3.org/TR/REC-CSS2/

To support usage scenario 3 above, SVG content can be styled with CSS. For more information, see Styling with CSS.

Conforming SV G Interpreters and Conforming SVG Viewers that support CSS styling of generic (i.e., text-based) XML content are
required to support CSS styling of SVG content.

6.4 Specifying properties using the presentation attributes

For each styling property defined in this specification (see Property Index), there is a corresponding XML attribute (the presentation attribute)
with the same name that is available on all relevant SV G elements. For example, SVG has a fill' property that defines how to paint the interior
of ashape. There is acorresponding presentation attribute with the same name (i.e,, fill) that can be used to specify avalue for the 'fill' property
on agiven element.

The following example shows how the 'fill' and 'stroke' properties can be assigned to arectangle using the fill and stroke presentation attributes.
The rectangle will befilled with red and outlined with blue:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20010719/ / EN"
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTDY svg10. dt d" >
<svg wi dt h="10cm' hei ght="5cn' vi ewBox="0 0 1000 500" >
<rect x="200" y="100" wi dth="600" hei ght="300"
fill="red" stroke="blue" stroke-w dth="3"/>
</ svg>

View this example as SV G (SV G-enabled browsers only)

The presentation attributes offer the following advantages:

« Broad support. All versions of Conforming SVG Interpreters and Conforming SVG Viewers are required to support the presentation
attributes.

« Simplicity. Styling properties can be attached to elements by simply providing a value for the presentation attribute on the proper
elements.

« Restyling. SVG content that uses the presentation attributes is highly compatible with downstream processing using XSLT [XSLT] or
supplemental styling by adding CSS style rules to override some of the presentation attributes.

« Convenient generation using XSLT [XSLT]. In some cases, XSLT can be used to generate fully styled SVG content. The
presentation attributes are compatible with convenient generation of SVG from XSLT.

In some situations, SV G content that uses the presentation attributes has potential limitations versus SVG content that is styled with a style
sheet language such as CSS (see Styling with CSS). In other situations, such aswhen an XSLT style sheet generates SV G content from
semantically rich XML source files, the limitations below may not apply. Depending on the situation, some of the following potential
limitations may or may not apply to the presentation attributes:

« Styling attached to content. The presentation attributes are attached directly to particular elements, thereby diminishing potential
advantages that comes from abstracting styling from content, such as the ability to restyle documents for different uses and
environments.

« Flattened data model. In and of themselves, the presentation attributes do not offer the higher level abstractions that you get with a
styling system, such as the ability to define named collections of properties which are applied to particular categories of elements. The
result isthat, in many cases, important higher level semantic information can be lost, potentially making document reuse and restyling
more difficult.

« Potential increasein file size. Many types of graphics use similar styling properties across multiple elements. For example, a company
organization chart might assign one collection of styling properties to the boxes around temporary workers (e.g., dashed outlines, red
fill), and a different collection of styling properties to permanent workers (e.g., solid outlines, blue fill). Styling systems such as CSS
allow collections of propertiesto be defined once in afile. With the styling attributes, it might be necessary to specify presentation
attributes on each different element.

« Potential difficulty when embedded into a CSS-styled parent document. When SV G content is embedded in other XML, and the
desireisto style al aspects of the compound document with CSS, use of the presentation attributes might introduce complexity and
difficulty. Inthis case, it is sometimes easier if the SV G content does not use the presentation attributes and instead is styled using CSS
facilities.

For user agents that support CSS, the presentation attributes must be trandlated to corresponding CSS style rules according to rules described in
section 6.4.4 of the CSS2 specification, Precedence of non-CSS presentational hints, with the additional clarification that the presentation
attributes are conceptually inserted into a new author style sheet which isthe first in the author style sheet collection. The presentation
attributes thus will participate in the CSS2 cascade asif they were replaced by corresponding CSS style rules placed at the start of the author
style sheet with a specificity of zero. In general, this means that the presentation attributes have lower priority than other CSS style rules
specified in author style sheets or style attributes.

User agents that do not support CSS must ignore any CSS style rules defined in CSS style sheets and style attributes. In this case, the CSS
cascade does not apply. (Inheritance of properties, however, does apply. See Property inheritance.)

file:///D|/PR-SVG-20010719/images/styling/PresentationAttributes.svg
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/REC-CSS2/cascade.html#q12
http://www.w3.org/TR/REC-CSS2/cascade.html

An limportant declaration within a presentation attribute definition is an error.

Animation of presentation attributes is equivalent to animating the corresponding property. Thus, the same effect occurs from animating the
presentation attribute with attributeType="XML" as occurs with animating the corresponding property with attributeType="CSS".

6.5 Entity definitions for the presentation attributes
The following entities are defined in the DTD for all of the presentation attributesin SVG:

<!-- The following presentation attributes have to do with specifying color. -->
<IENTITY % PresentationAttri butes-Col or
"col or %ol or; #!| MPLI ED
color-interpolation (auto | sRG | linearRG | inherit) #l MPLIED
color-rendering (auto | optimn zeSpeed | optimzeQuality | inherit) # MPLIED " >

<!-- The follow ng presentation attributes apply to container elenents. -->
<IENTITY % Presentati onAttri butes-Contai ners
"enabl e- background %nabl eBackgr oundVal ue; #l MPLIED " >

<!-- The following presentation attributes apply to 'feFlood elenments. -->
<IENTITY % Presentati onAttributes-feFl ood
"fl ood-col or %6VGCol or; #l MPLI ED
fl ood-opacity % pacityVal ue; # MPLIED " >

<l-- The follow ng presentation attributes apply to filling and stroking operations. -->
<IENTITY % PresentationAttributes-Fill Stroke

"fill %aint; #l MPLIED

fill-opacity %pacityVal ue; #l MPLI ED

fill-rule % ipFill Rule; # MPLIED

stroke %aint; #l MPLI ED

stroke-dasharray %strokeDashArrayVal ue; #l MPLI ED

stroke- dashof f set %St rokeDashOf f set Val ue; #l MPLI ED
stroke-linecap (butt | round | square | inherit) #l MPLI ED
stroke-linejoin (mter | round | bevel | inherit) #l MPLIED
stroke-mterlimt %5trokeMterlLimtValue; #l MPLI ED
stroke-opacity %pacityVal ue; #l MPLI ED

stroke-w dt h %strokeW dt hval ue; #l MPLIED " >

<l-- The follow ng presentation attributes apply to filter primtives. -->
<IENTITY % PresentationAttributes-FilterPrimtives
"color-interpolation-filters (auto | sRGB | linearRG&B | inherit) # MPLIED " >
<l-- The followi ng presentation attributes have to do with selecting a font to use. -->

<IENTITY % Presentati onAttributes-Font Specification
"font-fam ly %-ontFami | yVal ue; #l MPLI ED
font-size %ontSizeVal ue; #l MPLI ED
font-size-adjust %ontSizeAdj ust Val ue; #l MPLI ED
font-stretch (normal | wider | narrower | ultra-condensed | extra-condensed |
condensed | seni-condensed | sem -expanded | expanded |
extra-expanded | ultra-expanded | inherit) #l MPLI ED

font-style (nornmal | italic | oblique | inherit) #l MPLIED
font-variant (normal | small-caps | inherit) #l MPLIED
font-weight (nornmal | bold | bolder | lighter | 100 | 200 | 300 |

400 | 500 | 600 | 700 | 800 | 900 | inherit) #I MPLIED " >

<l-- The followi ng presentation attributes apply to gradient 'stop' elenents. -->
<IENTITY % PresentationAttributes-G adi ents
"st op-col or %BVCCol or; #l MPLI ED
stop-opacity % pacityVal ue; #l MPLIED " >

<!-- The following presentation attributes apply to graphics el enents. -->
<IENTITY % Presentati onAttributes-G aphics
"clip-path % i pPat hVal ue; #l MPLI ED
clip-rule %JipFillRule; # MPLIED
cursor %CursorVal ue; #l MPLI ED
display (inline | block | list-item] run-in | conpact | marker |
table | inline-table | table-rowgroup | tabl e-header-group |
tabl e-footer-group | table-row | table-colum-group | table-colum |
table-cell | table-caption | none | inherit) # MPLI ED

http://www.w3.org/TR/REC-CSS2/cascade.html#important-rules

filter 9%ilterValue; #l MPLI ED

i mage-rendering (auto | optimn zeSpeed | optim zeQuality | inherit) #l MPLIED
mask %hskVal ue; #l MPLI ED

opacity %pacityVal ue; #l MPLI ED

pointer-events (visiblePainted | visibleFill | visibleStroke | visible |
painted | fill | stroke | all | none | inherit) #l MPLIED
shape-rendering (auto | optim zeSpeed | crispEdges | geonetricPrecision | inherit) # MPLIED
text-rendering (auto | optimzeSpeed | optinizelLegibility | geonmetricPrecision | inherit)
#| MPLI ED

visibility (visible | hidden | inherit) # MPLIED " >
<l-- The following presentation attributes apply to 'inmage' elenents. -->
<IENTITY % Presentati onAttri butes-Inages

"color-profile CDATA #l MPLIED " >

<!--The followi ng presentation attributes apply to 'feDi ffuselLighting' and 'feSpecularlighting'

el ements. -->
<IENTITY % Presentati onAttributes-LightingEffects
"lighting-col or %5VGCol or; #l MPLIED " >

<l-- The follow ng presentation attributes apply to marker operations. -->
<IENTITY % Presentati onAttributes-Markers
"mar ker -start %ar ker Val ue; #l MPLI ED
mar ker-m d %har ker Val ue; #| MPLI ED
mar ker - end %var ker Val ue; #l MPLIED " >

<
<

-- The follow ng presentation attributes apply to text content elenents. -->

ENTI TY % Presentati onAttri butes- Text Cont ent El enent s

"al i gnment - baseline (baseline | top | before-edge | text-top | text-before-edge |
mddle | bottom| after-edge | text-bottom| text-after-edge |

i deographic | lower | hanging | mathematical | inherit) # MPLI ED
basel i ne-shift 9Basel i neShi ft Val ue; #l MPLI ED
direction (Itr | rtl | inherit) # MPLIED
domi nant - basel i ne (auto | autosense-script | no-change | reset]|
i deographic | lower | hanging | mathematical | inherit) # MPLIED

gl yph-orientation-horizontal %3 yphOrientationHorizontal Val ue; #l MPLI ED
gl yph-orientation-vertical %3 yphOrientationVertical Val ue; #l MPLI ED
kerni ng %er ni ngVal ue; #l MPLI ED

| etter-spaci ng %spaci ngVal ue; #l MPLI ED

text-anchor (start | middle | end | inherit) #l MPLIED

t ext - decorati on % ext Decor ati onVal ue; #| VPLI ED

uni code-bidi (normal | enbed | bidi-override | inherit) #l MPLIED
wor d- spaci ng %gpaci ngVal ue; #lI MPLIED " >

<!-- The follow ng presentation attributes apply to 'text' elenments. -->
<IENTITY % Presentati onAttri butes-TextEl ements
"witing-mode (lr-tb | rl-tb | tb-rI | Ir | rl | tb | inherit) # MPLIED " >
<!-- The following presentation attributes apply to elenents that establish vieworts. -->
<IENTITY % Presentati onAttributes-Viewports
"clip % ipVval ue; # MPLI ED
overflow (visible | hidden | scroll | auto | inherit) # MPLIED " >
<!--The following represents the conplete |ist of presentation attributes. -->
<IENTITY % PresentationAttributes-All

"oFresentati onAttri butes-Color;
%°r esent ati onAttri but es- Cont ai ners;
o%r esent ati onAttri but es-f eFl ood;
%r esentati onAttributes-Fill Stroke;
%resentati onAttributes-FilterPrimtives;
%r esent ati onAttri but es- Font Speci ficati on;
%°r esent ati onAttri but es- G adi ents;
%r esent ati onAttri but es- Graphics;
%resentati onAttri butes-1 mages;
%resent ati onAttri but es-LightingEffects;
%°r esent ati onAttri but es- Mar kers;
%°r esent ati onAttri but es- Text Cont ent El enent s;
oPr esent ati onAttri but es- Text El enent s;
%resentati onAttributes-Viewports;" >

6.6 Styling with XSL

XSL style sheets (see [XSLT]) define how to transform XML content into something else, usually other XML. When XSLT isused in

conjunction with SVG, sometimes SV G content will serve as both input and output for XSL style sheets. Other times, XSL style sheets will
take non-SV G content as input and generate SV G content as output.

The following example uses an external XSL style sheet to transform SV G content into modified SVG content (see Referencing external style
sheets). The style sheet setsthe 'fill' and 'stroke' properties on all rectanglesto red and blue, respectively:

mystyl e. xsl

<?xm version="1.0" standal one="no"?>
<xsl :styl esheet xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Transforn versi on="1.0">

<!-- Add DCCTYFE -->
<xsl:tenmplate match="/">
<xsl : text di sabl e-out put - escapi ng="yes" ><! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20010719//EN'
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTDY svg10. dt d" >
</ xsl : text >
<xsl : appl y-tenpl ates/ >
</ xsl :tenpl at e>

<!-- Add styling to all 'rect' elenents -->
<xsl :tenplate match="rect">
<xsl : copy>
<xsl:copy-of select="@"/>
<xsl:attribute nane="fill">red</xsl:attribute>
<xsl:attribute nane="stroke">bl ue</xsl:attribute>
<xsl:attribute nane="stroke-w dt h">3</xsl:attribute>
</ xsl : copy>
</ xsl:tenpl ate>

<!-- default is to copy input elenment -->
<xsl:tenplate match="*| @|text()">
<xsl : copy>
<xsl :apply-tenpl ates select="*|@|text()"/>
</ xsl : copy>
</ xsl:tenpl ate>
</ xsl : styl esheet >

SVG file to be transforned by nystyl e. xsl

<?xm version="1.0" standal one="no"?>
<svg wi dt h="10cn' hei ght ="5cni >

<rect x="2cm' y="1cm' wi dth="6cnf height="3cni'/>
</ svg>

SVG content after applying nystyle. xsl

<?xm version="1.0" encodi ng="utf-8"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 20010719//EN"
"http://ww. w3. org/ TR/ 2001/ PR- SVG- 20010719/ DTDJ svg10. dt d" >
<svg wi dt h="10cni hei ght ="5cn{ >
<rect x="2cnt y="1lcm' w dth="6cni" height="3cm' fill="red" stroke="blue" stroke-w dth="3"/>
</ svg>

6.7 Styling with CSS

SV G implementations that support CSS are required to support the following:
« External CSS style sheets referenced from the current document (see Referencing external style sheets)

« Internal CSS style sheets (i.e., style sheets embedded within the current document, such as within an SV G 'style' element)
« Inlinestyle(i.e., CSS property declarations within a style attribute on a particular SVG element)

The following example shows the use of an external CSS style sheet to set the 'fill' and 'stroke’ properties on all rectanglesto red and blue,
respectively:

nystyl e. css

http://www.w3.org/TR/xslt

rect {
fill: red;
st roke: bl ue;
stroke-width: 3

}
SVG file referencing nystyle.css

<?xm version="1.0" standal one="no"?>
<?xm -styl esheet href="nystyle.css" type="text/css"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20010719/ /EN'
"http://ww. w3. org/ TR 2001/ PR- SVG 20010719/ DTDY svg10. dt d" >
<svg wi dt h="10cnt hei ght="5cn{ vi ewBox="0 0 1000 500" >
<rect x="200" y="100" wi dth="600" hei ght="300"/>
</ svg>

View this example as SVG (SV G-enabled browsers only)

CSS style sheets can be embedded within SV G content inside of a'style’ element. The following example uses an internal CSS style sheet to
achieve the same result as the previous example:

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 20010719/ / EN"
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTDY svg10. dt d" >

<svg wi dt h="10cnf hei ght ="5cn vi ewBox="0 0 1000 500" >

<def s>
<style type="text/css"><![CDATA
rect {
fill: red,;

stroke: bl ue;
stroke-width: 3

]11></style>
</ def s>
<rect x="200" y="100" wi dt h="600" hei ght="300"/>
</ svg>

View this example as SV G (SV G-enabled browsers only)

Note how the CSS style sheet is placed within a CDATA construct (i.e., <! [CDATA[...]]>).Placinginternal CSS style sheetswithin
CDATA blocks is sometimes necessary since CSS style sheets can include characters, such as">", which conflict with XML parsers. Evenif a
given style sheet does not use characters that conflict with XML parsing, it is highly recommended that internal style sheets be placed inside
CDATA blocks.

Implementations that support CSS are also required to support CSSinline style. Similar to the style attribute in HTML, CSSinline style can be
declared within a style attribute in SV G by specifying a semicolon-separated list of property declarations, where each property declaration has
the form "name: value".

The following example shows how the fill' and 'stroke' properties can be assigned to a rectangle using the style attribute. Just like the previous
example, the rectangle will be filled with red and outlined with blue:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 20010719/ / EN"
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTDY svg10. dt d" >
<svg wi dt h="10cn' hei ght="5cnm' vi ewBox="0 0 1000 500">
<rect x="200" y="100" wi dt h="600" hei ght="300"
style="fill:red; stroke:blue; stroke-w dth:3"/>
</ svg>

View this example as SVG (SV G-enabled browsers only)

In an SV G user agent that supports CSS style sheets, the following facilities from [CSS2] must be supported:
o CSS2 selectors within style sheets (reference: [Selectors)).

« Externa CSS style sheets[XML-SS], CSS style sheets within 'style’ elements and CSS declaration blocks within style attributes
attached to specific SVG eements.

« CSS2 rulesfor assigning property values, cascading and inheritance.
« @font-face, @media, @import and @charset rules within style sheets.
« CSS2's dynamic pseudo-classes :hover, :active and :focus and pseudo-classes :first-child, :visited, :link and :lang. The remaining CSS2

file:///D|/PR-SVG-20010719/images/styling/ExternalCSSStyleSheet.svg
file:///D|/PR-SVG-20010719/images/styling/InternalCSSStyleSheet.svg
http://www.w3.org/TR/REC-xml#sec-cdata-sect
http://www.w3.org/TR/html401/present/styles.html#h-14.2.2
file:///D|/PR-SVG-20010719/images/styling/StyleAttribute.svg
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/selector.html
http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/REC-CSS2/syndata.html#q8
http://www.w3.org/TR/REC-CSS2/cascade.html
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/media.html#at-media-rule
http://www.w3.org/TR/REC-CSS2/cascade.html#at-import
http://www.w3.org/TR/REC-CSS2/syndata.html#x66
http://www.w3.org/TR/REC-CSS2/selector.html#dynamic-pseudo-classes
http://www.w3.org/TR/REC-CSS2/selector.html#q15

pseudo-classes, including those having to do with generated content, are not part of the SV G language definition. (Note: an SVG
element gains focus when it is selected. See Text selection.)

« For the purposes of aural media, SV G represents a CSS-stylable XML grammar. In user agents that support aural style sheets, CSS
aural style properties can be applied as defined in [CSS2]. (See Aural style sheets.)

« CSS style sheets defined within a'style' element can be immediate character data content of the 'style’ element or can be embedded
within a CDATA block.

SV G defines an @color-profile at-rule [CSS2-ATRULES] for defining color profiles so that ICC color profiles can be applied to CSS-styled
SV G content.

6.8 Case sensitivity of property names and values

Property declarations via presentation attributes are expressed in XML [XML10], which is case-sensitive. CSS property declarations specified
either in CSS style sheets or in a style attribute, on the other hand, are generally case-insensitive with some exceptions (see section 4.1.3
Characters and case in the CSS2 specification).

Because presentation attributes are expressed as XML attributes, presentation attributes are case-sensitive and must match the exact name as
listed under "Entity definitions for the presentation attributes’, above. When using a presentation attribute to specify avalue for the fill'
property, the presentation attribute must be specified as'fill' and not "FILL" or 'Fill'. Keyword values, such as"itaic" in
font-style="italic",arealso case-sensitive and must be specified using the exact case used in the specification which defines the
given keyword. For example, the keyword "sRGB" must have lowercase "s" and uppercase "RGB".

Property declarations within CSS style sheets or in a style attribute must only conform to CSS rules, which are generally more lenient with
regard to case sensitivity. However, to promote consistency across the different ways for expressing styling properties, it is strongly
recommended that authors use the exact property names (usually, lowercase letters and hyphens) as defined in the relevant specification and
express al keywords using the same case asis required by presentation attributes and not take advantage of CSS's ability to ignore case.

6.9 Facilities from CSS and XSL used by SVG

SV G shares various relevant properties and approaches common to CSS and X SL, plus the semantics of many of the processing rules.
SV G shares the following facilities with CSS and XSL:

« Shared properties. Many of SVG's properties are shared between CSS2, XSL and SVG. (Seelist of shared properties).

« Syntax rules. (The normative references are [CSS2 syntax and basic data types] and [The grammar of CSS2].)

« Allowable datatypes. (The normative reference is [CSS2 syntax and basic data types]), with the exception that SVG alows <length>
and <angle> values without a unit identifier. See Units.)

« |nheritance rules.

« The color keywords from CSS2 that correspond to the colors used by objects in the user's environment. (The normative referenceis
[CSS2 system colors].)

« For implementations that support CSS styling of SV G content, then that styling must be compatible with various other rulesin CSS.
(See Styling with CSS.)

6.10 Referencing external style sheets

External style sheets are referenced using the mechanism documented in " Associating Style Sheets with XML documents Version 1.0"
[XML-SS].
6.11 The 'style' element

The 'style’ element allows style sheets to be embedded directly within SV G content. SVG's 'styl€' element has the same attributes as the
corresponding element in HTML (see HTML's 'style’ element).

http://www.w3.org/TR/REC-CSS2/generate.html
http://www.w3.org/TR/REC-CSS2/aural.html
http://www.w3.org/TR/REC-CSS2/aural.html
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-xml#sec-cdata-sect
http://www.w3.org/TR/REC-CSS2/syndata.html#at-rules
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-CSS2/syndata.html#q4
http://www.w3.org/TR/REC-CSS2/syndata.html#q4
http://www.w3.org/TR/REC-CSS2/syndata.html
http://www.w3.org/TR/REC-CSS2/grammar.html
http://www.w3.org/TR/REC-CSS2/syndata.html
http://www.w3.org/TR/REC-CSS2/ui.html#system-colors
http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/html401/present/styles.html#h-14.2.3

<! ELEMENT styl e (#PCDATA) >
<I ATTLI ST style
st dAttrs;
xm : space (preserve) #FIXED "preserve"
type % Cont ent Type; #REQUI RED
nedi a %vkedi aDesc; #| MPLI ED
title %ext; #l MPLIED >

Attribute definitions:

type = content-type
This attribute specifies the style sheet language of the element's contents. The style sheet language is specified as a content type (e.g.,
"text/css"), as per [REC2045]. Authors must supply avalue for this attribute; there is no default value.
Animatable: no.

media = media-descriptors

This attribute specifies the intended destination medium for style information. It may be a single media descriptor or a
comma-separated list. The default value for this attribute is "all". The set of recognized media-descriptors are the list of mediatypes
recognized by CSS2 [CSS2 Recognized media types].

Animatable: no.

title = advisory-title
(For compatibility with [HTMLA4]) This attribute specifies an advisory title for the 'style’ element.
Animatable: no.

Attributes defined el sewhere:
%stdAttrs;, xml:space.

The syntax of style data depends on the style sheet language.

Some style sheet languages might allow awider variety of rulesin the 'style’ element than in the style attribute. For example, with CSS, rules
can be declared within a'style' element that cannot be declared within a style attribute.

An example showing the 'style' element is provided above (see example).

6.12 The class attribute

Attribute definitions:
class=list

This attribute assigns a class name or set of class namesto an element. Any number of elements may be assigned the same class name
or names. Multiple class names must be separated by white space characters.
Animatable: yes.

The class attribute assigns one or more class names to an element. The element may be said to belong to these classes. A class name may be
shared by several element instances. The class attribute has several roles:

« Asastyle sheet selector (when an author wishes to assign style information to a set of elements).
« For general purpose processing by user agents.

In the following example, the 'text' element is used in conjunction with the class attribute to markup document messages. Messages appear in
both English and French versions.

<!-- English nessages -->

<text class="info" |ang="en">Variable declared tw ce</text>

<text class="warning" |ang="en">Undecl ared vari abl e</text>

<text class="error" |ang="en">Bad syntax for variable nane</text>

<!-- French nessages -->

<text class="info" lang="fr">Variable décl arée deux fois</text>
<text class="warning" lang="fr">Variable indéfinie</text>

<text class="error" lang="fr">Erreur de syntaxe pour variabl e</text>

In an SV G user agent that supports CSS styling, the following CSS style rules would tell visual user agents to display informational messages
in green, warning messagesin yellow, and error messagesin red:

text.info { color: green }
text.warning { color: yellow}

http://www.ietf.org/rfc/rfc2045.txt
http://www.w3.org/TR/REC-CSS2/media.html#media-types
http://www.w3.org/TR/html401/

text.error { color: red }

6.13 The style attribute

The style attribute allows per-element style rules to be specified directly on a given element. When CSS styling is used, CSSinline styleis
specified by including semicolon-separated property declarations of the form "name : value" within the style attribute

Attribute definitions:

style = style
This attribute specifies style information for the current element. The style attribute specifies style information for a single element. The
style sheet language of inline style rulesis given by the value of attribute contentStyleType on the 'svg' element. The syntax of style

data depends on the style sheet language.
Animatable: no.

The style attribute may be used to apply a particular style to an individual SVG element. If the style will be reused for several elements, authors
should use the 'styl€' element to regroup that information. For optimal flexibility, authors should define styles in external style sheets.

An example showing the style attribute is provided above (see example).

6.14 Specifying the default style sheet language

The contentStyleType attribute on the 'svg' element specifies the default style sheet language for the given document fragment.
contentStyleType = "%ContentType;"

Identifies the default style sheet language for the given document. This attribute sets the style sheet language for the style attributes that
are available on many elements. The value %ContentType; specifies amediatype, per [REC2045]. The default valueis "text/css'.
Animatable: no.

6.15 Property inheritance

Whether or not the user agent supports CSS, property inheritance in SV G follows the property inheritance rules defined in the CSS2
specification. The normative definition for property inheritance is section 6.2 of the CSS2 specification (see Inheritance).

The definition of each property indicates whether the property can inherit the value of its parent.

In SVG, asin CSS2, most elements inherit computed values [CSS2-COMPUTED]. For cases where something other than computed values are
inherited, the property definition will describe the inheritance rules. For specified values [CSS2-SPECIFIED] which are expressed in user units,
in pixels (e.g., "20px") or in absolute values [CSS2-COM PUTED)], the computed value equal s the specified value. For specified values which
use certain relative units (i.e., em, ex and percentages), the computed value will have the same units as the value to which it isrelative. Thus, if
the parent element has a ‘font-size' of "10pt" and the current element has a ‘font-size' of "120%", then the computed value for 'font-size' on the
current element will be "12pt". In cases where the referenced value for relative unitsis not expressed in any of the standard SV G units (i.e.,
CSS units or user units), such as when a percentage is used relative to the current viewport or an object bounding box, then the computed value
will bein user units.

Note that SV G has some facilities wherein a property which is specified on an ancestor element might effect its descendant element, even if the
descendant element has a different assigned value for that property. For example, if a'clip-path’ property is specified on an ancestor element,
and the current element has a 'clip-path’ of 'none', the ancestor's clipping path still applies to the current element because the semantics of SVG
state that the clipping path used on a given element is the intersection of al clipping paths specified on itself and all ancestor elements. The key
concept is that property assignment (with possible property inheritance) happens first. After properties values have been assigned to the various
elements, then the user agent applies the semantics of each assigned property, which might result in the property assignment of an ancestor
element affecting the rendering of its descendants.

6.16 The scope/range of styles

The following define the scope/range of style sheets:
Stand-alone SVG document

Thereis one parse tree. Style sheets defined anywhere within the SV G document (in style elements or style attributes, or in external
style sheets linked with the style sheet processing instruction) apply across the entire SV G document.

Stand-alone SVG document embedded in an HTML or XML document with the'img', 'object’ (HTML) or 'image’ (SVG) elements
There are two completely separate parse trees; one for the referencing document (perhaps HTML or XHTML), and one for the SVG

document. Style sheets defined anywhere within the referencing document (in style elements or style attributes, or in external style
sheets linked with the style sheet processing instruction) apply across the entire referencing document but have no effect on the

http://www.ietf.org/rfc/rfc2045.txt
http://www.w3.org/TR/REC-CSS2/cascade.html#inheritance
http://www.w3.org/TR/REC-CSS2/cascade.html#computed-value
http://www.w3.org/TR/REC-CSS2/cascade.html#specified-value
http://www.w3.org/TR/REC-CSS2/cascade.html#computed-value

referenced SV G document. Style sheets defined anywhere within the referenced SV G document (in style elements or style attributes, or
in external style sheets linked with the style sheet processing instruction) apply across the entire SVG document, but do not affect the
referencing document (perhaps HTML or XHTML). To get the same styling across both the [X]HTML document and the SVG
document, link them both to the same style sheet.

Stand-alone SV G content textually included in an XML document

Thereisasingle parse tree, using multiple namespaces; one or more subtrees are in the SV G namespace. Style sheets defined anywhere
within the XML document (in style elements or style attributes, or in external style sheets linked with the style sheet processing
instruction) apply across the entire document, including those parts of it in the SV G namespace. To get different styling for the SVG
part, use the style attribute, or put an ID on the 'svg' element and use contextual CSS selectors, or use XSL selectors.

6.17 User agent style sheet

The user agent shall maintain a user agent style sheet [CSS2-CASCADE-RULES] for elementsin the SVG namespace for visual media
[CSS2-VISUAL]. The user agent style sheet below is expressed using CSS syntax; however, user agents are required to support the behavior
that corresponds to this default style sheet even if CSS style sheets are not supported in the user agent:

svg, synbol, image, marker, pattern, foreignObject { overflow hidden }
svg { width:attr(width); height:attr(height) }

Thefirst line of the above user agent style sheet will cause the initial clipping path to be established at the bounds of the initial viewport.
Furthermore, it will cause new clipping paths to be established at the bounds of the listed elements, all of which are elements that establish a
new viewport. (Refer to the description of SVG's use of the 'overflow' property for more information.)

The second line of the above user agent style sheet will cause the width and height attributes on the 'svg' element to be used as the default
values for the 'width' and 'height' properties during [CSS2-LAY OUT].

6.18 Aural style sheets

For the purposes of aural media, SV G represents a stylable XML grammar. In user agents that support CSS aural style sheets, aura style
properties [CSS2-AURAL] can be applied as defined in [CSS2].

Aural style properties can be applied to any SVG element that can contain character data content, including 'desc', 'title, 'tspan'. 'tref'. ‘altGlyph'
and 'textPath’. On user agents that support aural style sheets, the following [CSS2] properties can be applied:

‘azimuth' [CSS2-azimuth

‘cue [CSS2-cue]

‘cue-after' [CSS2-cue-after
‘cue-before! [CSS2-cue-before]
‘elevation’ [CSS2-elevation
'pause’ [CSS2-pause]
'pause-after' [CSS2-pause-after]
'pause-before’ [CSS2-pause-before]
‘pitch’ [CSS2-pitch
"pitch-range’ [CSS2-pitch-range]
‘play-during' [CSS2-play-during]
'richness [CSS2-richness]
'speak’ [CSS2-speak
‘speak-header' [CSS2-speak-header
‘speak-numeral’ [CSS2-speak-numeral]
‘speak-punctuation’ [CSS2-speak-punctuation]
'speech-rate’ [CSS2-speech-rate]
'stress' [CSS2-stress]
‘voice-family' [CSS2-voice-family]
‘volume' [CSS2-volume]

For user agents that support aural style sheets and also support [DOM 2], the user agent is required to support the DOM interfaces defined in
[DOM2-CSS] that correspond to aural properties [CSS2-AURAL]. (See Relationship with DOM2 CSS object model.)

http://www.w3.org/TR/REC-CSS2/cascade.html#cascade
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-width
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-height
http://www.w3.org/TR/REC-CSS2/visuren.html
http://www.w3.org/TR/REC-CSS2/aural.html
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-azimuth
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue-after
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue-before
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-elevation
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause-after
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause-before
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pitch
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pitch-range
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-play-during
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-richness
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak
http://www.w3.org/TR/REC-CSS2/tables.html#propdef-speak-header
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak-numeral
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak-punctuation
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speech-rate
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-stress
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-voice-family
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-volume
http://www.w3.org/TR/DOM-Level-2/
http://www.w3.org/TR/DOM-Level-2-Style/css.html
http://www.w3.org/TR/REC-CSS2/aural.html

6.19 DOM interfaces

The following interfaces are defined below: SV GStyleElement.

Interface SVGStyleElement

The SV GStyleElement interface corresponds to the 'style’ element.
IDL Definition

interface SVGStyl eEl ement : SVCEl enent {
attribute DOVBtring xm space;
/1 rai ses DOVException on setting
attribute DOVBtring type;
/'l rai ses DOVException on setting
attribute DOVString nedia;
/1 rai ses DOVException on setting
attribute DOVBtring title;
/'l rai ses DOVException on setting
b

Attributes
DOM String xmlspace
Corresponds to attribute xml:space on the given element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly
attribute.

DOMString type
Corresponds to attribute type on the given 'style' element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly
attribute.

DOMString media
Corresponds to attribute media on the given 'style’ el ement.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly
attribute.

DOMString title
Corresponds to attribute title on the given 'style’ element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value of areadonly
attribute.

previous next contents elements attributes properties index

previous next contents elements attributes properties index

19 July, 2001

7 Coordinate Systems, Transformations and Units

Contents

o 7.1 Introduction
e 7.2 Theinitia viewport

o 7.3 Theinitia coordinate system

o 7.4 Coordinate system transformations
« 7.5 Nested transformations

» 7.6 Thetransform attribute

« 7.7 The viewBox attribute

7.8 The preserveAspectRatio attribute
o 7.9 Establishing a new viewport

» 7.10 Units

« 7.11 Object bounding box units

« 7.12 DOM interfaces

7.1 Introduction

For all media, the SVG canvas describes "the space where the SV G content is rendered.” The canvasis infinite for each dimension
of the space, but rendering occurs relative to a finite rectangular region of the canvas. This finite rectangular region is called the
SV G viewport. For visual media[CSS2-VISUAL], the SVG viewport is the viewing area where the user sees the SVG content.

The size of the SVG viewport (i.e., its width and height) is determined by a negotiation process (see Establishing the size of the
initial viewport) between the SVG document fragment and its parent (real or implicit). Once that negotiation process is completed,
the SV G user agent is provided the following information:

« anumber (usually an integer) that represents the width in "pixels' of the viewport
« anumber (usualy an integer) that represents the height in "pixels’ of the viewport

« (highly desirable but not required) areal number value that indicates the size in real world units, such as millimeters, of a
"pixel" (i.e., apx unit as defined in [CSS2 lengths])

Using the above information, the SVG user agent determines the viewport, an initial viewport coordinate system and an initial user
coordinate system such that the two coordinates systems are identical. Both coordinates systems are established such that the origin
matches the origin of the viewport (for the root viewport, the viewport origin is at the top/left corner), and one unit in the initial
coordinate system equals one "pixel" in the viewport. (See Initial coordinate system.) The viewport coordinate system is also called
viewport space and the user coordinate system is also called user space.

Lengthsin SVG can be specified as:
« (if nounit identifier is provided) valuesin user space -- for example, "15"
« (if aunitidentifier is provided) alength expressed as an absolute or relative unit measure -- for example, "15mm" or "5em"

The supported length unit identifiers are: em, ex, px, pt, pc, cm, mm, in, and percentages.

A new user space (i.e., a new current coordinate system) can be established at any place within an SVG document fragment by
specifying transformations in the form of transformation matrices or simple transformation operations such as rotation, skewing,
scaling and trandation. Establishing new user spaces via coordinate system transformations are fundamental operationsto 2D

graphics and represent the usual method of controlling the size, position, rotation and skew of graphic objects.

http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/syndata.html#length-units

New viewports a so can be established. By establishing a new viewport, you can redefine the meaning of percentages units and

provide a new reference rectangle for "fitting" a graphic into a particular rectangular area. ("Fit" means that a given graphicis
transformed in such away that its bounding box in user space aligns exactly with the edges of a given viewport.)

7.2 The initial viewport

The SV G user agent negotiates with its parent user agent to determine the viewport into which the SVG user agent can render the
document. In some circumstances, SV G content will be embedded in or referenced by a containing document. This containing
document might include attributes, properties and/or other parameters (explicit or implicit) which specify or provide hints about the
dimensions of the viewport for the SVG content. SVG content itself optionally can provide information about the appropriate
viewport region for the content via the width and height XML attributes on the outermost 'svg' element. The negotiation process
uses any information provided by the containing document and the SV G content itself to choose the viewport location and size.

When the SV G content is a separately stored resource that is embedded by reference, such as the use of the 'object’ element in
[XHTML], and the referencing document is styled using CSS[CSS2] or XSL [XSL], and if there are CSS-compatible positioning
properties [CSS2-POSN] specified on the referencing element (e.g., the ‘object’ element) that are sufficient to establish the width of
the viewport, then these positioning properties establish the viewport's width; otherwise, the intrinsic width of the SV G content as
specified by the the width attribute on the outermost 'svg' element establishes the viewport's width. Similarly, if there are
positioning properties [CSS2-POSN] specified on the referencing element that are sufficient to establish the height of the viewport,
then these positioning properties establish the viewport's height; otherwise, the height attribute on the outermost 'svg' element
establishes the viewport's height.

When the SV G content is embedded inline within a containing document, and that document is styled using CSS [CSS2] or XSL
[XSL], then if there are CSS-compatible positioning properties [CSS2-POSN] specified on the outermost 'svg' element that are
sufficient to establish the width of the viewport, then these positioning properties establish the viewport's width; otherwise, the
width attribute on the outermost 'svg' element establishes the viewport's width. Similarly, if there are positioning properties
[CSS2-POSN] specified on the outermost 'svg' element that are sufficient to establish the height of the viewport, then these
positioning properties establish the viewport's height; otherwise, the height attribute on the outermost 'svg' el ement establishes the
viewport's height.

If the width or height attributes on the outermost 'svg' element arein user units (i.e., no unit identifier has been provided), then the
value is assumed to be equivalent to the same number of "px" units (see Units).

In the following example, an SV G graphic is embedded within a parent XML document which is formatted using CSS layout rules.
Since CSS positioning properties are not provided on the outermost 'svg' element, the width="100px" and height="200px"
attributes determine the size of theinitial viewport:

<?xm version="1.0" standal one="yes" ?>
<parent xm ns="http://sonme.url">

<l-- SVG graphic -->
<svg xm ns="http://ww. w3. or g/ 2000/ svg'

wi dt h="100px" hei ght ="200px" >

<pat h d="ML00, 100 00, 400, 300, 100"/ >

<!-- rest of SVG graphic would go here -->
</ svg>

</ parent >

The initia clipping path for the SVG document fragment is established according to the rules described in The initial clipping path.

7.3 The initial coordinate system

For the outermost 'svg' element, the SV G user agent determines an initial viewport coordinate system and an initial user coordinate
system such that the two coordinates systems are identical. The origin of both coordinate systemsis at the origin of the viewport,
and one unit in theinitial coordinate system equals one "pixel” (i.e., apx unit as defined in [CSS2 |engths]) in the viewport. In most
cases, such as stand-alone SV G documents or SV G document fragments embedded within XML parent documents where the
parent's layout is determined by CSS[CSS2] or XSL [XSL], theinitial viewport coordinate system (and therefore the initial user
coordinate system) hasits origin at the top/left of the viewport, with the positive x-axis pointing towards the right, the positive
y-axis pointing down, and text rendered with an "upright" orientation, which means glyphs are oriented such that Roman characters
and full-size ideographic characters for Asian scripts have the top edge of the corresponding glyphs oriented upwards and the right
edge of the corresponding glyphs oriented to the right.

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/REC-CSS2/visuren.html#positioning-scheme
http://www.w3.org/TR/REC-CSS2/visuren.html#positioning-scheme
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/REC-CSS2/visuren.html#positioning-scheme
http://www.w3.org/TR/REC-CSS2/visuren.html#positioning-scheme
http://www.w3.org/TR/REC-CSS2/syndata.html#length-units
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xsl/

If the SVG implementation is part of auser agent which supports styling XML documents using CSS2-compatible px units, then
the SV G user agent should get itsinitial value for the size of apx unit in real world units to match the value used for other XML
styling operations; otherwise, if the user agent can determine the size of a px unit from its environment, it should use that value;
otherwise, it should choose an appropriate size for one px unit. In all cases, the size of a px must be in conformance with the rules

described in [CSS2 lengths].

Example Initial Coords below shows that the initial coordinate system has the origin at the top/left with the x-axis pointing to the
right and the y-axis pointing down. The initial user coordinate system has one user unit equal to the parent (implicit or explicit) user
agent's "pixel".

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DID SVG 20010719/ /EN'
"http://ww. w3. org/ TR/ 2001/ PR- SVG 20010719/ DTD/ svg10. dt d" >
<svg wi dt h="300px" hei ght="100px" >
<desc>Exanple Initial Coords - SVG s initial coordinate systenx/desc>

<g fill="none" stroke="bl ack" stroke-w dth="3" >
<line x1="0" y1="1.5" x2="300" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="100" />

</ g>

<g fill="red" stroke="none" >
<rect x="0" y="0" width="3" height="3" />
<rect x="297" y="0" w dth="3" height="3" />
<rect x="0" y="97" wi dth="3" height="3" />

</ g>

<g font-size="14" font-fam|y="Verdana" >
<text x="10" y="20">(0,0)</text>
<text x="240" y="20">(300,0)</text>
<text x="10" y="90">(0, 100)</text>

</ g>

</ svg>

(0,0) (300,0)

(0,100)

Example Initial Coords
View this example as SV G (SV G-enabled browsers only)

7.4 Coordinate system transformations

A new user space (i.e., anew current coordinate system) can be established by specifying transformations in the form of a
transform attribute on a container element or graphics element or a viewBox attribute on an 'svg’, 'symbol’, ‘'marker’, 'pattern’ and
the 'view' element. The transform and viewBox attributes transform user space coordinates and lengths on sibling attributes on the
given element (see effect of the transform attribute on sibling attributes and effect of the viewBox attribute on sibling attributes)
and all of its descendants. Transformations can be nested, in which case the effect of the transformations are cumulative.

Example OrigCoordSys below shows a document without transformations. The text string is specified in the initial coordinate
system.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DID SVG 20010719/ / EN"
"http://ww. w3. org/ TR/ 2001/ PR- SVG- 20010719/ DTD/ svg10. dt d" >
<svg wi dt h="400px" hei ght="150px" >
<desc>Exanpl e OrigCoordSys - Sinple transformations: original picture</desc>
<g fill="none" stroke="bl ack" stroke-w dth="3" >
<l-- Draw the axes of the original coordinate system-->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="150" />

http://www.w3.org/TR/REC-CSS2/syndata.html#length-units
file:///D|/PR-SVG-20010719/images/coords/InitialCoords.svg

</ g>
<g>
<text x="30" y="30" font-size="20" font-fam|y="Verdana" >
ABC (orig coord system
</text>
</ g>
</ svg>

ABC (orig coord system)

Example OrigCoordSys

View this example as SV G (SV G-enabled browsers only)

Example NewCoordSys establishes a new user coordinate system by specifying transform="translate(50,50)" on the third 'g'
element below. The new user coordinate system hasits origin at location (50,50) in the origina coordinate system. The result of
this transformation is that the coordinate (30,30) in the new user coordinate system gets mapped to coordinate (80,80) in the
original coordinate system (i.e., the coordinates have been translated by 50 unitsin X and 50 unitsin Y).

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DID SVG 20010719/ /EN"
"http://ww. w3. org/ TR/ 2001/ PR- SVG- 20010719/ DTD/ svg10. dt d" >
<svg wi dt h="400px" hei ght ="150px" >
<desc>Exanpl e NewCoor dSys - New user coordi nate systenx/desc>
<g fill="none" stroke="bl ack" stroke-w dth="3" >
<l-- Draw the axes of the original coordinate system-->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="150" />
</ g>
<g>
<text x="30" y="30" font-size="20" font-famly="Verdana"