Mathematical Markup Language (MathML) Version 2.0

W3C Proposed Recommendation 08 January 2001

This version: http://www.w3.0rg/TR/2001/PR-MathML2-20010108
Also available asHTML zip archive XHTML zip archive, XML zip archive, PDF (screen)PDF (paper)
Latest version: http://www.w3.org/TR/MathML2
Previous version:
http://mww.w3.0rg/TR/2000/CR-MathML2-20001113
Editors: David Carlisle (NAG)
Patrick lon (Mathematical Reviews, American Mathematical Society)
Robert Miner (Design Science, Inc.)
Nico Poppelier (Penta Scope)
Principal Authors: Ron Ausbrooks, Stephen Buswell, Stéphane Dalmas, Stan Devitt, Angel Diaz, Roger Hunter,
Bruce Smith, Neil Soiffer, Robert Sutor, Stephen Watt

Copyright(© 1998-2001 W3® (MIT, INRIA, Keio), All Rights Reserved/V3C liability, trademarkdocument usand
software licensingules apply.

Abstract

This specification defines the Mathematical Markup Language, or MathML. MathML is an XML application for de-
scribing mathematical notation and capturing both its structure and content. The goal of MathML is to enable mathe
matics to be served, received, and processed on the World Wide Web, just as HTML has enabled this functionality fc
text.

This specification of the markup language MathML is intended primarily for a readership consisting of those who will
be developing or implementing renderers or editors using it, or software that will communicate using MathML as a
protocol for input or output. It imot a User's Guide but rather a reference document.

This document begins with background information on mathematical notation, the problems it poses, and the philosopt
underlying the solutions MathML proposes. MathML can be used to encode both mathematical notation and matheme
ical content. About thirty of the MathML tags describe abstract notational structures, while another about one hundre
and fifty provide a way of unambiguously specifying the intended meaning of an expression. Additional chapters dis
cuss how the MathML content and presentation elements interact, and how MathML renderers might be implemente
and should interact with browsers. Finally, this document addresses the issue of MathML characters and their relatic
to fonts.

While MathML is human-readable, it is anticipated that, in all but the simplest cases, authors will use equation edi
tors, conversion programs, and other specialized software tools to generate MathML. Several early versions of su
MathML tools already exist, and a number of others, both freely available software and commercial products, are unds
development.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may supersede this
document. The latest status of this document series is maintained at the W3C.

On 8 January 2001, this document enters a Proposed Recommendation review period. From that date until 5 Febru
2001, W3C Advisory Committee representatives are encouraged to review this specification and return comments
w3t-math@w3.orgwhich is visible to the W3C Team only.

http://www.w3.org/TR/2001/PR-MathML2-20010108/
file:PR-MathML2-20010108.zip
file:XHTML-MathML-20010108.zip
file:XML-MathML-20010108.zip
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/2000/CR-MathML2-20001113/
http://www.w3.org/Consortium/Legal/ipr-notice.html#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice.html#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents.html
http://www.w3.org/Consortium/Legal/copyright-software.html
mailto:w3t-math@w3.org

After the review, the W3C Director will announce the document’s disposition: it may become a W3C Recommendatior
(possibly with minor changes), it may revert to Working Draft status, or it may be dropped as a W3C work item. This
announcement should not be expected sooner than 14 days after the end of the review.

The MathML 2 specification was a W3C Candidate Recommendation for a review period which ended on 14 Decembe
2000. During that period the W3C Math Working Group members encouraged implementation using the specificatio
and comment on it; the Working Group continues to do so. A repoitnpementation and Interoperabiliexperiences

and issues was made public shortly after the end of the Candidate Recommendation review period. It is intended that tl
will be updated from time to time by the follow-on activity that oversees the MathML Recommendation, whatever that
may be. The W3C Math Working Group has maintained a public Web pageg/www.w3.org/MathAvhich contains
further background information.

Public discussion of MathML and issues of support through the W3C for mathematics on the Web takestplagebn
lic mailing list of the Math Working Groulist archive$. To subscribe send an emaili@w-math-request@w3.org
with the wordsubscribe in the subject line.

The experience with early implementations of the MathML 2.0 specification encouraged the Working Group to ask the
W3C Director to advance this document to Proposed Recommendation status.

Publication as a Proposed Recommendation does not imply endorsement by the W3C membership. This is still a dr:
document and may be updated, replaced or made obsolete by other documents at any time. It is inappropriate to c
W3C Proposed Recommendations as other than "work in progress.”

This document has been produced by \WeC Math Working Grougas part of the activity of th&/3C User Interface
Domain The goals of the W3C Math Working Group are discussed in/tt3 Math WG Charte(revised February
2000 from original of 11 June 1998). A list pfrticipants in the W3C Math Working Groigavailable.

A list of current W3C Technical Reports can be foundhép://www.w3.org/TR

MathML 2.0 is a revision of the earlier correct§dd3C Recommendation MathML 1.01t differs from it in that all
chapters have been updated and two new ones and some appendices added.

Chapters 1 and 2, which are introductory material, have been revised to reflect the changes elsewhere in the docume
and in the rapidly evolving Web environment. Chapters 3 and 4 have been extended to describe new functionalities add
as well as smaller improvements of material already proposed. Chapter 5 has been newly written to reflect changes
the technology available. The major tables in Chapter 6 have been regenerated and reorganized to reflect an improy
list of characters useful for mathematics, and the text revised to reflect the new situation in regard to Unicode. Chapt
7 has been completely revised since Web technology has changed. A new Chapter 8 on the DOM for MathML has be
added; the latter points to new appendices D and E for detailed listings.

The appendices have been reorganized into normative and non-normative groups. Appendices D, E and G are complet
new.

http://www.w3.org/Math/iandi/
http://www.w3.org/Math/
mailto:www-math@w3.org
mailto:www-math@w3.org
http://lists.w3.org/Archives/Public/www-math/
http://www.w3.org/Math/
http://www.w3.org/UI/
http://www.w3.org/UI/
http://www.w3.org/Math/W3CDocs/mathcharter.html
http://www.w3.org/TR/
http://www.w3.org/1999/07/REC-MathML-19990707/

Contents

1 Introduction 10
1.1 Mathematics and its Notation 10
1.2 Origins and Goals 11

1.2.1 The History of MathML 11
1.2.2 Limitations of HTML 11

1.2.3 Requirements for Mathematics Markup2
1.2.4 Design Goals of MathML 13
1.3 The Role of MathML on the Web 14

131 Layered Design of Mathematical Web Servicdg
1.3.2 Relation to Other Web Technology 5

2 MathML Fundamentals 18

2.1 MathML Overview 18

21.1 Taxonomy of MathML Elements18
2.1.2 Presentation Markup20

2.13 Content Markup 21

2.1.4 Mixing Presentation and Conten21

2.2 MathML in a Document 22

2.3 Some MathML Examples 23

2.3.1 Presentation Example23

2.3.2 Content Examples25

2.3.3 Mixed Markup Examples 27

24 MathML Syntax and Grammar 29

24.1 MathML Syntax and Grammar29

2.4.2 An XML Syntax Primer 30

2.4.3 Children versus Arguments30

24.4 MathML Attribute Values 31

2.4.5 Attributes Shared by all MathML Elements$6
2.4.6 Collapsing Whitespace in Inpu37

3 Presentation Markup 38

3.1 Introduction 38

3.1.1 What Presentation Elements Represei&
3.1.2 Terminology Used In This ChapteB9
3.13 Required Arguments40

3.14 Elements with Special Behaviord 1

3.1.5 Bidirectional Layout 42

3.1.6 Summary of Presentation Elementt3

3.2 Token Elements 43

3.2.1 MathML characters in token elementg4

3.2.2 Mathematics style attributes common to token eleme#fs

3.2.3 Identifier i) 48

3.24 Numberifn) 49

3.25 Operator, Fence, Separator or Accen) (50
3.2.6 Text fitext) 60

3.2.7 Spacen(space) 61

3.2.8 String Literalfs) 63

3.2.9 Adding new character glyphs to MathMbg(lyph) 64
3.3 General Layout Schemata 65

3.3.1 Horizontally Group Sub-Expressionséw) 65
3.3.2 Fractionso(frac) 67

3.3.3 Radicalsn(sqrt, mroot) 69

3.34 Style Changengtyle) 70

3.35 Error Messagenérror) 75

3.3.6 Adjust Space Around Contenfpadded) 76
3.3.7 Making Sub-Expressions Invisiblephantom) 79

3.3.8 Expression Inside Pair of Fencesdnced) 81
3.3.9 Enclose Expression Inside Notatiaefclose) 84
3.4 Script and Limit Schemata 85

3.4.1 Subscriptr{sub) 86

3.4.2 Superscripisup) 87

3.4.3 Subscript-superscript Paitsftbsup) 87
3.4.4 Underscriptrunder) 88

3.45 Overscriptfover) 89

3.4.6 Underscript-overscript Paitynderover) 91
3.4.7 Prescripts and Tensor Indicesafltiscripts) 92
3.5 Tables and Matrices 94

3.5.1 Table or Matrixftable) 94

3.5.2 Row in Table or Matrixu(tr) 97

3.5.3 Labeled Row in Table or Matrixx{abeledtr) 98
3.54 Entry in Table or Matrixu(td) 99

3.5.5 Alignment Markers 100

3.6 Enlivening Expressions 108

3.6.1 Bind Action to Sub-Expressiongction) 108
4 Content Markup 110

4.1 Introduction 110

41.1 The Intent of Content Markupi10
4.1.2 The Scope of Content Markupl 10
4.1.3 Basic Concepts of Content Markugd11
4.2 Content Element Usage Guide 112
421 Overview of Syntax and Usagd 12
4.2.2 Containers 121

4.2.3 Functions, Operators and Qualifier&25
424 Relations 130

4.2.5 Conditions 130

4.2.6 Syntax and Semantics 32

4.2.7 Semantic Mappings134

42.8 Constants and Symbold 34

4.2.9 MathML element types 134

4.3 Content Element Attributes 135

43.1 Content Element Attribute Valued 35

4.3.2 Attributes Modifying Content Markup Semantic$35
4.3.3 Attributes Modifying Content Markup Renderind 37
4.4 The Content Markup Elements 138

4.4.1 Token Elements 142

4.4.2 Basic Content Elementsi45

443 Arithmetic, Algebra and Logic 158

444 Relations 175

4.4.5 Calculus and Vector Calculugd 79

4.4.6 Theory of Sets 188

4.4.7 Sequences and Serie$95

4.4.8 Elementary classical functiond 99

4.4.9 Statistics 202

4.4.10 Linear Algebra 205

4411 Semantic Mapping Elementg11

4.4.12 Constant and Symbol Element213

5 Combining Presentation and Content Markup 220
5.1 Why Two Different Kinds of Markup? 220
5.2 Mixed Markup 221

5.2.1 Reasons to Mix Markup221

5.2.2 Combinations that are prohibite®23

5.2.3 Presentation Markup Contained in Content Mark2p4
5.2.4 Content Markup Contained in Presentation Markapg4
5.3 Parallel Markup 225

5.3.1 Top-level Parallel Markup 225

5.3.2 Fine-grained Parallel Markup226

5.3.3 Parallel Markup via Cross-Referencesandxref 227
5.3.4 Annotation Cross-References using XLin&:andhref 228
54 Tools, Style Sheets and Macros for Combined Markup 230

54.1 Notational Style Sheets230
5.4.2 Content-Faithful Transformation231
5.4.3 Style Sheets for Extension232

6 Characters, Entities and Fonts 235
6.1 Introduction 235
6.2 MathML Characters 235

6.2.1 Unicode Character Data236

6.2.2 Special Characters Not in Unicod236

6.2.3 Mathematical Alphabetic Symbol Character836
6.2.4 Non-Marking Characters237

6.3 Character Symbol Listings 238

6.3.1 Special Constants239

6.3.2 Character Tables (ASCII format@39

6.3.3 Tables arranged by Unicode blocR39

6.3.4 Negated Mathematical Charactez{0

6.3.5 Variant Mathematical Characterg40

6.3.6 Mathematical Alphabetic Characterg41
6.3.7 MathML Character Names241

6.4 Differences from Characters in MathML 1 242
6.4.1 Coverage 242

6.4.2 Fewer Non-marking Characters242

6.4.3 ISO Tables 242

6.4.4 Status of Character Encoding342

7 The MathML Interface 244

7.1 Embedding MathML in other Documents 244
7.1.1 MathML and Namespaces45

7.1.2 The Top-Levehath Element 247

7.1.3 Invoking MathML Processors248

7.1.4 Mixing and Linking MathML and HTML 249
7.1.5 Using CSS with MathML 250

7.2 Generating, Processing and Rendering MathML 251
7.2.1 MathML Compliance 252

7.2.2 Handling of Errors 253

7.2.3 Attributes for unspecified data253

7.3 Future Extensions 254

7.3.1 Macros and Style Sheetg254

7.3.2 XML Extensions to MathML 255

8 Document Object Model for MathML 256
8.1 Introduction 256

8.1.1 hasFeature String257

8.1.2 MathML DOM Extensions 257

A Parsing MathML 258

Al DOCTYPE Declaration for MathML 258
A.2 MathML as a DTD Module 258

A3 Namespace prefix declarations 259

A4 Use of MathML without a DTD 259

A5 SGML 259

A.6 The MathML DTD 259

B Content Markup Validation Grammar 303
C Content Element Definitions 309

Cl1 About Content Markup Elements 309

Cl1 The Default Definitions 309

C.l1.2 The Structure of an MMLdefinition.310
C.2 Definitions of MathML Content Elements 312
C21 Token Elements 312

C.22 Basic Content Elements313

c.2.3 Arithmetic Algebra and Logic 322

C.24 Relations 340

C.25 Calculus and Vector Calculus344

C.2.6 Theory of Sets 351

Cc.2.7 Sequences and Serie356

c.2.8 Elementary Classical Function858

C.2.9 Statistics 367

C.2.10 Linear Algebra 371

C.2.11 Constants and Symbol Element¥76

D Document Object Model for MathML 385
D.1 IDL Interfaces 385

D.1.1 Miscellaneous Object Definitions385

D.1.2 Generic MathML Elements386

D.1.3 Presentation Elements393

D.14
D.2

D.21
D.2.2

E.1l
E.2
E2.1
E.2.2
E.2.3
E.2.4
E.2.5
E.2.6
E.2.7
E.2.8
E.2.9
E.2.10
E.2.11
E.2.12
E.2.13
E.2.14
E.2.15
E.2.16
E.2.17
E.2.18
E.2.19
E.2.20
E.2.21
E.2.22
E.2.23
E.2.24
E.2.25
E.2.26
E.2.27
E.2.28
E.2.29
E.2.30
E.2.31
E.2.32
E.2.33
E.2.34
E.2.35
E.2.36
E.2.37
E.2.38
E.2.39
E.2.40
E.2.41
E.2.42

Content Elements414

MathML DOM Tables 432

Chart of MathML DOM Inheritance 432

Table of Elements and MathML DOM Representatiod$3
MathML Document Object Model Bindings (Non-Normative) 438
MathML Document Object Model IDL Binding 438
MathML Document Object Model Java Binding 450
org/w3c/mathmldom/MathMLDOMImplementation.javd50
org/w3c/mathmldom/MathMLDocument.jav&ds0
org/w3c/mathmldom/MathMLNodeList.javad50
org/w3c/mathmldom/MathMLElement.java50
org/w3c/mathmldom/MathMLContainer.java51
org/w3c/mathmldom/MathMLMathElement.javd52
org/w3c/mathmldom/MathMLSemanticsElement.java?2
org/w3c/mathmldom/MathMLANnnotationElement.jav&52
org/w3c/mathmldom/MathMLXMLAnNnotationElement.javd53
org/w3c/mathmldom/MathMLPresentationElement.ja¥a3
org/w3c/mathmldom/MathMLGlyphElement.javd53
org/w3c/mathmldom/MathMLSpaceElement.jaw$3
org/w3c/mathmldom/MathMLPresentationToken.ja¥a4
org/w3c/mathmldom/MathMLOperatorElement.javd4
org/w3c/mathmldom/MathMLStringLitElement.javd55
org/w3c/mathmldom/MathMLPresentationContainer.ja#85
org/w3c/mathmldom/MathMLStyleElement.javd55
org/w3c/mathmldom/MathMLPaddedElement.ja¥a6
org/w3c/mathmldom/MathMLFencedElement.jav6
org/w3c/mathmldom/MathMLEnNcloseElement.javh6
org/w3c/mathmldom/MathMLActionElement.javd57
org/w3c/mathmldom/MathMLFractionElement.jaw57
org/w3c/mathmldom/MathMLRadicalElement.jav&57
org/w3c/mathmldom/MathMLScriptElement.javds8
org/w3c/mathmldom/MathMLUnderOverElement.jav 8
org/w3c/mathmldom/MathMLMultiScriptsElement.javds9
org/w3c/mathmldom/MathMLTableElement.javé60
org/w3c/mathmldom/MathMLTableRowElement.jav61
org/w3c/mathmldom/MathMLLabeledRowElement.javs 1
org/w3c/mathmldom/MathMLTableCellElement.javé62
org/w3c/mathmldom/MathMLAIlignGroupElement.javd62
org/w3c/mathmldom/MathMLAlignMarkElement.jav&62
org/w3c/mathmldom/MathMLContentElement.jav63
org/w3c/mathmldom/MathMLContentToken.jav463
org/w3c/mathmldom/MathMLCnElement.javd63
org/w3c/mathmldom/MathMLCiElement.java63
org/w3c/mathmldom/MathMLCsymbolElement.javé64
org/w3c/mathmldom/MathMLContentContainer.javto4
org/w3c/mathmldom/MathMLApplyElement.java&65
org/w3c/mathmldom/MathMLFnElement.javd65
org/w3c/mathmldom/MathMLLambdaElement.javtss
org/w3c/mathmldom/MathMLSetElement.javd66

E.2.43
E.2.44
E.2.45
E.2.46
E.2.47
E.2.48
E.2.49
E.2.50
E.2.51
E.2.52
E.2.53
E.3
E.3.1
E.3.2
E.3.3
E.3.4
E.3.5
E.3.6
E.3.7
E.3.8
E.3.9
E.3.10
E.3.11
E.3.12
E.3.13
E.3.14
E.3.15
E.3.16
E.3.17
E.3.18
E.3.19
E.3.20
E.3.21
E.3.22
E.3.23
E.3.24
E.3.25
E.3.26
E.3.27
E.3.28
E.3.29
E.3.30
E.3.31
E.3.32
E.3.33
E.3.34
E.3.35
E.3.36
E.3.37

org/w3c/mathmldom/MathMLListElement.javd66
org/w3c/mathmldom/MathMLBvarElement.javd66
org/w3c/mathmldom/MathMLPredefinedSymbol.javi6
org/w3c/mathmldom/MathMLIntervalElement.javd67
org/w3c/mathmldom/MathMLConditionElement.javé67
org/w3c/mathmldom/MathMLDeclareElement.jav67
org/w3c/mathmldom/MathMLVectorElement.javd68
org/w3c/mathmldom/MathMLMatrixElement.java68
org/w3c/mathmldom/MathMLMatrixrowElement.javd69
org/w3c/mathmldom/MathMLPiecewiseElement.jay#®9
org/w3c/mathmldom/MathMLCaseElement.jav0
MathML Document Object Model ECMAScript Binding 470
Object MathMLDOMImplementation470

Object MathMLDocument 470

Object MathMLNodelList 471

Object MathMLElement 471

Object MathMLContainer 471

Object MathMLMathElement471

Object MathMLSemanticsElemen#72

Object MathMLAnNnNotationElement472

Object MathMLXMLAnNnNnotationElement472

Object MathMLPresentationElement72

Object MathMLGlyphElement472

Object MathMLSpaceElemen#73

Object MathMLPresentationToke®73

Object MathMLOperatorElemen#73

Object MathMLStringLitElement473

Object MathMLPresentationContainet74

Object MathMLStyleElement474

Object MathMLPaddedElemen#74

Object MathMLFencedElemen#74

Object MathMLEnNcloseElemen#74

Object MathMLActionElement474

Object MathMLFractionElement475

Object MathMLRadicalElemen#475

Object MathMLScriptElement475

Object MathMLUnderOverElemen#75

Object MathMLMultiScriptsElement475

Object MathMLTableElement476

Object MathMLTableRowElemen#77

Object MathMLLabeledRowElemen#77

Object MathMLTableCellElementd77

Object MathMLAlignGroupElement478

Object MathMLAlignMarkElement 478

Object MathMLContentElement78

Object MathMLContentToken478

Object MathMLCnElement479

Object MathMLCiElement 479

Object MathMLCsymbolElemeni479

E.3.38 Object MathMLContentContaine#79
E.3.39 Object MathMLApplyElement 479
E.3.40 Object MathMLFnElement480
E.3.41 Object MathMLLambdaElemen#80
E.3.42 Object MathMLSetElement480
E.3.43 Object MathMLListElement 480
E.3.44 Object MathMLBvarElement480
E.3.45 Object MathMLPredefinedSymbo#80
E.3.46 Object MathMLIntervalElement481
E.3.47 Object MathMLConditionElement481
E.3.48 Object MathMLDeclareElemen#81
E.3.49 Object MathMLVectorElement481
E.3.50 Object MathMLMatrixElement 482
E.3.51 Object MathMLMatrixrowElement 482
E.3.52 Object MathMLPiecewiseElemen#82
E.3.53 Object MathMLCaseElemen#83

F Operator Dictionary (Non-Normative) 484

F.1 Format of operator dictionary entries 484

F.2 Indexing of operator dictionary 485

F.3 Choice of entity names 485

F.4 Notes on 1space and rspace attributes 485

F.5 Operator dictionary entries 485

G Sample CSS Style Sheet for MathML (Non-Normative) 491
H Glossary (Non-Normative) 498

I Working Group Membership and Acknowledgments (Non-Normative) 502
1.1 The Math Working Group Memberships 502

1.2 Acknowledgments 503

J Changes (Non-Normative) 504

K References (Non-Normative) 507

Chapter 1

Introduction

1.1 Mathematics and its Notation

A distinguishing feature of mathematics is the use of a complex and highly evolved system of two-dimensional symboli
notations. As J.R. Pierce has written in his book on communication theory, mathematics and its notations should not |
viewed as one and the same thifge]]. Mathematical ideas exist independently of the notations that represent
them. However, the relation between meaning and notation is subtle, and part of the power of mathematics to descri
and analyze derives from its ability to represent and manipulate ideas in symbolic form. The challenge in putting
mathematics on the World Wide Web is to capture both notation and content (that is, meaning) in such a way the
documents can utilize the highly-evolved notational forms of written and printed mathematics, and the potential fol
interconnectivity in electronic media.

Mathematical notations are constantly evolving as people continue to make innovations in ways of approaching ar
expressing ideas. Even the commonplace notations of arithmetic have gone through an amazing variety of styles, |
cluding many defunct ones advocated by leading mathematical figures of their dlayi1 929. Modern mathematical
notation is the product of centuries of refinement, and the notational conventions for high-quality typesetting are quit
complicated. For example, variables and letters which stand for numbers are usually typeset today in a special matt
matical italic font subtly distinct from the usual text italic. Spacing around symbols for operations such asand/

is slightly different from that of text, to reflect conventions about operator precedence. Entire books have been devote
to the conventions of mathematical typesetting, from the alignment of superscripts and subscripts, to rules for choosir
parenthesis sizes, and on to specialized notational practices for subfields of mathematics (for instancelyL 95},

[el Pl } or in the EX literature | Jand [.

Notational conventions in mathematics, and in printed text in general, guide the eye and make printed expressions mu
easier to read and understand. Though we usually take them for granted, we rely on hundreds of conventions such
paragraphs, capital letters, font families and cases, and even the device of decimal-like numbering of sections such
we are using in this document (an invention due to G. Peano, who is probably better known for his axioms for the natur:
numbers). Such notational conventions are perhaps even more important for electronic media, where one must conte
with the difficulties of on-screen reading.

However, there is more to putting mathematics on the Web than merely finding ways of displaying traditional mathe
matical notation in a Web browser. The Web represents a fundamental change in the underlying metaphor for knowled:
storage, a change in whidhterconnectivity plays a central role. It is becoming increasingly important to find ways of
communicating mathematics which facilitate automatic processing, searching and indexing, and reuse in other math
matical applications and contexts. With this advance in communication technology, there is an opportunity to expan
our ability to represent, encode, and ultimately to communicate our mathematical insights and understanding with ea
other. We believe that MathML is an important step in developing mathematics on the Web.

10

1.2 Origins and Goals
1.2.1 The History of MathML

The problem of encoding mathematics for computer processing or electronic communication is much older than th
Web. The common practice among scientists before the Web was to write papers in some encoded form based
the ASCII character set, and e-mail them to each other. Several markup methods for mathematics, in pgiicular T
[], were already in wide use in 1992 just before the Web rose to prominence;§ J%

Since its inception, the Web has demonstrated itself to be a very effective method of making information available
to widely separated groups of individuals. However, even though the World Wide Web was initially conceived and
implemented by scientists for scientists, the possibilities for including mathematical expressions in HTML has beel
very limited. At present, most mathematics on the Web consists of text with images of scientific notation (in GIF or
JPEG format), which are difficult to read and to author, or of entire documents in PDF form.

The World Wide Web Consortium (W3C) recognized that lack of support for scientific communication was a serious
problem. Dave Raggett included a proposal for HTML Math in the HTML 3.0 working draft in 1994. A panel dis-
cussion on mathematical markup was held at the WWW Conference in Darmstadt in April 1995. In November 1995
representatives from Wolfram Research presented a proposal for doing mathematics in HTML to the W3C team. |
May 1996, the Digital Library Initiative meeting in Champaign-Urbana played an important role in bringing together
many interested parties. Following the meeting, an HTML Math Editorial Review Board was formed. In the intervening
years, this group has grown, and was formally reconstituted as the first W3C Math Working Group in March 1997. The
second W3C Math Working Group was chartered in July 1998 with a term which was later extended to run to the en
of the year 2000.

The MathML proposal reflects the interests and expertise of a very diverse group. Many contributions to the devel
opment of MathML deserve special mention, some of which we touch on here. One such contribution concerns th
guestion of accessibility, especially for the visually handicapped. T. V. Raman is particularly notable in this regard
Neil Soiffer and Bruce Smith from Wolfram Research shared their experience with the problems of representing matt
ematics in connection with the design of Mathematica 3.0; this expertise was an important influence in the design c
the presentation elements. Paul Topping from Design Science also contributed his expertise in mathematical formattil
and editing. MathML has benefited from the participation of a number of working group members involved in other
mathematical encoding efforts in the SGML and computer-algebra communities, including Stephen Buswell from Stilc
Technologies, Nico Poppelier at first with Elsevier Science, Stéphane Dalmas from INRIA (Sophia Antipolis), Stan De-
vitt at first with Waterloo Maple, Angel Diaz and Robert S. Sutor from IBM, and Stephen M. Watt from the University

of Western Ontario. In particular, MathML has been influenced by the OpenMath project, the work of the ISO 12083
working group, and Stilo Technologies’ work on a ‘semantic’ mathematics DTD fragment. The American Mathematical
Society has played a key role in the development of MathML. Among other things, it has provided two working group
chairs: Ron Whitney led the group from May 1996 to March 1997, and Patrick lon, who has co-chaired the group witt
Robert Miner from The Geometry Center from March 1997 to June 1998, and since July 1998 with Angel Diaz of IBM.

1.2.2 Limitations of HTML

The demand for effective means of electronic scientific communication remains high. Ever increasingly, researcher
scientists, engineers, educators, students and technicians find themselves working at dispersed locations and rely
on electronic communication. At the same time, the image-based methods that are currently the predominant mes
of transmitting scientific notation over the Web are primitive and inadequate. Document quality is poor, authoring is
difficult, and mathematical information contained in images is not available for searching, indexing, or reuse in othe
applications.

The most obvious problems with HTML for mathematical communication are of two types.

11

Display Problems. Consider the equatior?2= 10. This equation is sized to match the surrounding line in 14pt type
on the system where it was authored. Of course, on other systems, or for other font sizes, the equation is too small
too large. A second point to observe is that the equation image was generated against a white background. Thus, i
reader or browser resets the page background to another color, the anti-aliasing in the image results in white ‘halo:
Next, consider the equation= —2Ev*—4ac W, which is an example with the equation’s horizontal alignment axis above
the tops of the lower-case letters in the surrounding text.

This equation has a descender which places the baseline for the equation at a point about a third of the way fro

the bottom of the image. One can pad the image like this; 2=V —4ac szm, so that the centerline of the image and

the baseline of the equation coincide, but this causes problems with the inter-line spacing, resulting in the equatic
becoming difficult to read. Moreover, center alignment of images is handled in slightly different ways by different
browsers, making it impossible to guarantee proper alignment for different clients.

Image-based equations are generally harder to see, read and comprehend than the surrounding text in the brow
window. Moreover, these problems become worse when the document is printed. The resolution of the equations
images will be around 70 dots per inch, while the surrounding text will typically be 300, 600 or more dots per inch. The
disparity in quality is judged to be unacceptable by most people.

Encoding Problems. Consider trying to search this document for part of an equation, for example, the ‘=10’ from the
first equation above. In a similar vein, consider trying to cut and paste an equation into another application; even moi
demanding is to cut and paste a sub-expression. Using image-based methods, neither of these common needs ca
adequately addressed. Although the use ofathe attribute in the document source can help, it is clear that highly
interactive Web documents must provide a more sophisticated interface between browsers and mathematical notatio

Another problem with encoding mathematics as images is that it requires more bandwidth. Markup describing an equ
tion is typically smaller and more compressible than an image of the equation. In addition, by using markup-base
encoding, more of the rendering process is moved to the client machine.

1.2.3 Requirements for Mathematics Markup

Some display problems associated with including mathematical notation in HTML documents as images could b
addressed by improving image handling by browsers. However, even if image handling were improved, the problem c
making the information contained in mathematical expressions available to other applications would remain. Therefore
in planning for the future, it is not sufficient merely to upgrade image-based methods. To integrate mathematical materi
fully into Web documents, a markup-based encoding of mathematical notation and content is required.

In designing any markup language, it is essential to consider carefully the needs of its potential users. In the case
MathML, the needs of potential users cover a broad spectrum, from education to research, and on to commerce.

The education community is a large and important group that must be able to put scientific curriculum materials on th
Web. At the same time, educators often have limited time and equipment, and are severely hampered by the difficulty
authoring technical Web documents. Students and teachers need to be able to create mathematical content quickly .
easily, using intuitive, easy-to-learn, low-cost tools.

Electronic textbooks are another way of using the Web which will potentially be very important in education. Manage-
ment consultant Peter Drucker has prophesied the end of big-campus residential higher education and its distributi
over the Web. Electronic textbooks will need to be interactive, allowing intercommunication between the text and sci
entific software and graphics.

The academic and commercial research communities generate large volume of dense scientific material. Increasing
research publications are being stored in databases, such as the highly sugdesstel and mathematics preprint

server and archivat Los Alamos National Laboratory. This is especially true in some areas of physics and mathematics
where academic journal prices have been increasing at an unsustainable rate. In addition, databases of information

12

http://xxx.lanl.gov
http://xxx.lanl.gov

mathematical research, suchMsthematical ReviewandZentralblatt fur Mathematikoffer millions of records on the
Web containing mathematics.

To accommodate the research community, a design for mathematical markup must facilitate the maintenance and c
eration of large document collections, for which automatic searching and indexing are important. Because of the larc
collection of legacy documents containing mathematics, especialigdntfie ability to convert between existing for-
mats and any new one is also very important to the research community. Finally, the ability to maintain information for
archival purposes is vital to academic research.

Corporate and academic scientists and engineers also use technical documents in their work to collaborate, to rec
results of experiments and computer simulations, and to verify calculations. For such uses, mathematics on the W
must provide a standard way of sharing information that can be easily read, processed and generated using commo
available, easy-to-use tools.

Another general design requirement is the ability to render mathematical material in other media such as speech
braille, which is extremely important for the visually impaired.

Commercial publishers are also involved with mathematics on the Web at all levels from electronic versions of prin
books to interactive textbooks and academic journals. Publishers require a method of putting mathematics on the W
that is capable of high-quality output, robust enough for large-scale commercial use, and preferably compatible wit
their previous, often SGML-based, production systems.

124 Design Goals of MathML

In order to meet the diverse needs of the scientific community, MathML has been designed with the following ultimate
goals in mind.

MathML should:

Encode mathematical material suitable for teaching and scientific communication at all levels.

Encode both mathematical notation and mathematical meaning.

Facilitate conversion to and from other mathematical formats, both presentational and semantic. Outpu
formats should include:

— graphical displays

— speech synthesizers

— input for computer algebra systems

— other mathematics typesetting languages, suclpés T

— plain text displays, e.g. VT100 emulators

— print media, including braille

Itis recognized that conversion to and from other notational systems or media may entail loss of information
in the process.

Allow the passing of information intended for specific renderers and applications.

Support efficient browsing of lengthy expressions.

Provide for extensibility.

Be well suited to template and other mathematics editing techniques.

° Be human legible, and simple for software to generate and process.

No matter how successfully MathML may achieve its goals as a markup language, it is clear that MathML will only
be useful if it is implemented well. To this end, the W3C Math Working Group has identified a short list of additional

implementation goals. These goals attempt to describe concisely the minimal functionality MathML rendering anc
processing software should try to provide.

° MathML expressions in HTML (and XHTML) pages should render properly in popular Web browsers, in

accordance with reader and author viewing preferences, and at the highest quality possible given the cap
bilities of the platform.

13

http://www.ams.org/mathscinet
http://www.zblmath.fiz-karlsruhe.de

° HTML (and XHTML) documents containing MathML expressions should print properly and at high-quality
printer resolutions.

° MathML expressions in Web pages should be able to react to user gestures, such those as with a mouse, ¢
to coordinate communication with other applications through the browser.
° Mathematical expression editors and converters should be developed to facilitate the creation of Web page

containing MathML expressions.

These goals have begun to be addressed for the near term by using embedded elements such as Java applets, |
ins and ActiveX controls to render MathML. However, the extent to which these goals are ultimately met depends ot
the cooperation and support of browser vendors, and other software developers. The W3C Math Working Group hz
continued to work with the working groups for the Document Object Model (DOM) and the Extensible Style Language
(XSL) to ensure that the needs of the scientific community will be met in the future, and feels that MathML 2.0 shows
considerable progress in this area over the situation that obtained at the time of the MathML 1.0 Recommendation (Ap!
1998).

1.3 The Role of MathML on the Web
131 Layered Design of Mathematical Web Services

The design goals of MathML require a system for encoding mathematical material for the Web which is flexible and
extensible, suitable for interaction with external software, and capable of producing high-quality rendering in severs
media. Any markup language that encodes enough information to do all these tasks well will of necessity involve som
complexity.

At the same time, it is important for many groups, such as students, to have simple ways to include mathematics in We
pages by hand. Similarly, other groups, such as tdecbmmunity, would be best served by a system which allowed
the direct entry of markup languages likeXTinto Web pages. In general, specific user groups are better served by
specialized kinds of input and output tailored to their needs. Therefore, the ideal system for communicating mathemati
on the Web should provide both specialized services for input and output, and general services for interchange
information and rendering to multiple media.

In practical terms, the observation that mathematics on the Web should provide for both specialized and general nee
naturally leads to the idea of a layered architecture. One layer consists of powerful, general software tools exchangin
processing and rendering suitably encoded mathematical data. A second layer consists of specialized software toc
aimed at specific user groups, which are capable of easily generating encoded mathematical data that can then be shi
with a particular audience.

MathML is designed to provide the encoding of mathematical information for the bottom, more general layer in a
two-layer architecture. It is intended to encode complex notational and semantic structure in an explicit, regular, an
easy-to-process way for renderers, searching and indexing software, and other mathematical applications.

As a consequence, raw MathML markumist primarily intended for direct use by authors. While MathML is human-
readable, which helps a lot in debugging it, in all but the simplest cases it is too verbose and error-prone for han
generation. Instead, it is anticipated that authors will use equation editors, conversion programs, and other specializ
software tools to generate MathML. Alternatively, some renderers and systems supporting mathematics may conve
other kinds of input directly included in Web pages into MathML on the fly, in response to a cut-and-paste operation
for example.

In some ways, MathML is analogous to other low-level, communication formats such as Adobe’s PostScript language
You can create PostScript files in a variety of ways, depending on your needs; experts write and modify them b
hand, authors create them with word processors, graphic artists with illustration programs, and so on. Once you ha

14

a PostScript file, however, you can share it with a very large audience, since devices which render PostScript, such
printers and screen previewers, are widely available.

Part of the reason for designing MathML as a markup language for a low-level, general, communication layer is tc
stimulate mathematical Web software development in the layer above. MathML provides a way of coordinating the
development of modular authoring tools and rendering software. By making it easier to develop a functional piece of
larger system, MathML can stimulate a ‘critical mass’ of software development, greatly to the benefit of potential user:
of mathematics on the Web.

One can envision a similar situation for mathematical data. Authors are free to create MathML documents using th
tools best suited to their needs. For example, a student might prefer to use a menu-driven equation editor that c
write out MathML to an XHTML file. A researcher might use a computer algebra package that automatically encodes
the mathematical content of an expression, so that it can be cut from a Web page and evaluated by a colleague. .
academic journal publisher might use a program that convgsmarkup to HTML and MathML. Regardless of the
method used to create a Web page containing MathML, once it exists, all the advantages of a powerful and genel
communication layer become available. A variety of MathML software could all be used with the same document tc
render it in speech or print, to send it to a computer algebra system, or to manage it as part of a large Web docume
collection. To render high-quality printed mathematics the MathML encoding will often be converted back to standarc
typesetting and composition languages, includigy Which is widely appreciated for the job it does in this regard.
Finally, one may expect that eventually MathML will be integrated into other arenas where mathematical formulas
occur, such as spreadsheets, statistical packages and engineering tools.

The W3C Math Working Group has been working with vendors to ensure that a variety of MathML software will soon
be available, including both rendering and authoring tools. A current list of MathML software is maintained on the
public Math page at the World Wide Web Consortium

1.3.2 Relation to Other Web Technology

The original conception of an HTML Math was a simple, straightforward extension to HTML that would be natively
implemented in browsers. However, very early on, the explosive growth of the Web made it clear that a general extensic
mechanism was required, and that mathematics was only one of many kinds of structured data which would have to |
integrated into the Web using such a mechanism.

Given that MathML must integrate into the Web as an extension, it is extremely important that MathML, and MathML
software, can interact well with the existing Web environment. In particular, MathML has been designed with three kinds
of interaction in mind. First, in order to create mathematical Web content, it is important that existing mathematical
markup languages can be converted to MathML, and that existing authoring tools can be modified to generate MathMl
Second, it must be possible to embed MathML markup seamlessly in HTML markup, as it evolves, in such a way the
it will be accessible to future browsers, search engines, and all the kinds of Web applications which now manipulat
HTML. Finally, it must be possible to render MathML embedded in HTML in today’s Web browsers in some fashion,

evenifitis less than ideal. As HTML evolves into XHTML, all the preceding requirements become increasingly needed

The World Wide Web is a fully international and collaborative movement. Mathematics is a language used all over the
world. The mathematical notation in science and engineering is embedded in a matrix of local natural languages. T}
W3C strives to be a constructive force in the spread of possibilities for communication throughout the world. Therefore
MathML will encounter problems of internationalization. This version of MathML is not knowingly incompatible with
the needs of languages which are written from left to right. However the default orientation of MathML 2 is left-to-right,
and it is clear that the needs for the writing of mathematical formulas embedded in some natural languages may not y
be met. So-called bi-directional technology is still in development, and better support for formulas in that context mus
be a matter for future developers.

15

http://www.w3.org/Math

1.3.2.1 Existing Mathematical Markup Languages

Perhaps the most important influence on mathematical markup languages of the last two decadgX iypesdtting
system developed by Donald Knuthi{]. TEX is a de facto standard in the mathematical research community,
and it is pervasive in the scientific community at largeX Bets a standard for quality of visual rendering, and a great
deal of effort has gone into ensuring MathML can provide the same visual rendering quality. Moreover, because of th
many legacy documents irgX, and because of the large authoring community verseg¥g a priority in the design

of MathML was the ability to convertgX mathematics input into MathML format. The feasibility of such conversion
has been demonstrated by prototype software.

Extensive work on encoding mathematics has also been done in the SGML community, and SGML-based encodir
schemes are widely used by commercial publishers. ISO 12083 is an important markup language which contains
DTD fragment primarily intended for describing the visual presentation of mathematical notation. Because I1SO 1208:
mathematical notation and its derivatives share many presentational aspectgXyiin@ because SGML enforces
structure and regularity more thapX, much of the work in ensuring MathML is compatible witpXalso applies well

to 1ISO 12083.

MathML also pays particular attention to compatibility with other mathematical software, and in particular, with com-
puter algebra systems. Many of the presentation elements of MathML are derived in part from the mechanism c
typesetting boxes. The MathML content elements are heavily indebted to the OpenMath project and the work by Stil
Technologies on a mathematical DTD fragment. The OpenMath project has close ties to both the SGML and cormr
puter algebra communities, and has laid a foundation for an SGML- and XML-based means of communication betwee
mathematical software packages, amongst other things. The feasibility of both generating and interpreting MathML i
computer algebra systems has been demonstrated by prototype software.

1.3.2.2 HTMIL Extension Mechanisms

As noted above, the success of HTML has led to enormous pressure to incorporate a wide variety of data types a
software applications into the Web. Each new format or application potentially places new demands on HTML and ol
browser vendors. For some time, it has been clear that a general extension mechanism is necessary to accommodate
extensions to HTML. At the very beginning, the working group began its work thinking of a plain extension to HTML
in the spirit of the first mathematics support suggested for HTML 3.2. But for a good humber of reasons, once we gc
into the details, this proved to be not so good an idea. Since work first began on MathML, XNIL][has emerged

as the dominant such general extension mechanism.

XML stands for Extensible Markup Language. It is designed as a simplified version of SGML, the meta-language use
to define the grammar and syntax of HTML. One of the goals of XML is to be suitable for use on the Web, and in
the context of this discussion it can be viewed as the general mechanism for extending HTML. As its name implies
extensibility is a key feature of XML; authors are free to declare and use new elements and attributes. At the samr
time, XML grammar and syntax rules carefully enforce regular document structure to facilitate automatic processing
and maintenance of large document collections. Mathematically speaking XML is essentially a notation for decorate
rooted planar trees, and thus of great generality as an encoding tool.

Since the setting up of the first W3C Math Working Group, XML has garnered broad industry support, including that of
major browser vendors. The migration of HTML to an XML form has been important to the W3C, and has resulted in
the XHTML Recommendation which delivers a new modularized form of HTML. MathML can be viewed as another
module which fits very well with the new XHTML. Indeed in Sectiér? there is a new DTD for mathematics which

is the result of collaboration with the W3C HTML Working Group.

Furthermore, other applications of XML for all kinds of document publishing and processing promise to become in-
creasingly important. Consequently, both on theoretical and pragmatic grounds, it has made a great deal of sense
specify MathML as an XML application.

16

1.3.2.3 Browser Extension Mechanisms

By now, as opposed to the situation when tethML 1.0 Recommendatiowas adopted, the details of a general
model for rendering and processing XML extensions to HTML are largely clear. Formatting Properties, developec
by the Cascading Style Sheets and Formatting Properties Working Group for CSS and made available through tl
Document Object Model (DOM), will be applied to MathML elements to obtain stylistic control over the presentation
of MathML. Further development of these Formatting Properties falls within the charters of both the CSS&FP and the
XSL working groups. For an introduction to this topic see the discussion in Chagter detailed commentary on how

to render MathML with current systems consult th€C Math WG Home Page

Until style sheet mechanisms are capable of delivering native browser rendering of MathML, however, it is necessary
extend browser capabilities by using embedded elements to render MathML. It is already possible to instruct a brows
to use a particular embedded renderer to process embedded XML markup such as MathML, and to coordinate tl
resulting output with the surrounding Web page, however the results are not yet entirely as one wishes. Seé.Chapter

For specialized processing, such as connecting to a computer algebra system, the capability of calling out to oth
programs is likely to remain highly desirable. However, for such an interaction to be really satisfactory, it is necessar
to define a document object model rich enough to facilitate complicated interactions between browsers and embedd
elements. For this reason, the W3C Math Working Group has coordinated its efforts closely with the Document Objec
Model (DOM) Working Group. The results are described in Chapter

For processing by embedded elements, and for inter-communication between scientific software generally, a style she
based layout model is in some ways less than ideal. It can impose an additional implementation burden in a settir
where it may offer few advantages, and it imposes implementation requirements for coordination between browsers a
embedded renderers that will likely be unavailable in the immediate future.

For these reasons, the MathML specification defines an attribute-based layout model, which has proven very effecti
for high-quality rendering of complicated mathematical expressions in several independent implementations. MathMI
presentation attributes utilize W3C Formatting Properties where possible. Also, MathML elementg aasepityle

andid attributes to facilitate their use with CSS style sheets. However, at present, there are few settings where CS
machinery is currently available to MathML renderers.

The use of CSS style sheet mechanisms has been mentioned above. The mechanisms of XSL have also recently bec
available for the transformation of XML documents to effect their rendering. Indeed the alternative forms of this presen
recommendation, including the definitive public HTML version, have been prepared from an underlying XML source
using XSL transformation language tools. As further developments in this direction become available to MathML, it
is anticipated their use will become the dominant method of stylistic control of MathML presentation meant for use in
rendering environments which support those mechanisms.

17

http://www.w3.org/TR/1998/REC-MathML-19980407/
http://www.w3.org/Math

Chapter 2

MathML Fundamentals

2.1 MathML Overview

This chapter introduces the basic ideas of MathML. The first section describes the overall design of MathML. The
second section presents a number of motivating examples, to give the reader something concrete to refer to wh
reading subsequent chapters of the MathML specification. The final section describes basic features of the MathV
syntax and grammar, which apply to all MathML markup. In particular, Se@idshould be readefore Chapter3,
Chapter4 and Chapteb.

A fundamental challenge in defining a markup language for mathematics on the Web is reconciling the need to enco
both the presentation of a mathematical notation and the content of the mathematical idea or object which it represen

The relationship between a mathematical notation and a mathematical idea is subtle and deep. On a formal level, t
results of mathematical logic raise unsettling questions about the correspondence between systems of symbolic lo
and the phenomena they model. At a more intuitive level, anyone who uses mathematical notation knows the differen
that a good choice of notation can make; the symbolic structure of the notation suggests the logical structure. F
example, the Leibniz notation for derivatives ‘suggests’ the chain rule of calculus through the symbolic cancellation o

. .dfdx _ df
fractlons.&a = G-

Mathematicians and teachers intuitively understand this very well; part of their expertise lies in choosing notation tha
emphasizes key aspects of a problem while hiding or diminishing extraneous aspects. It is commonplace in mathemat
and science to write one thing when strictly technically something else is meant, because long experience shows tt
actually communicates the idea better at some higher level than rigorous detail.

In many other settings, though, mathematical notation is used to encode the full, precise meaning of a mathematic
object. Mathematical notation is capable of prodigious rigor, and when used carefully, it can be virtually free of ambi-
guity. Moreover, it is precisely this lack of ambiguity which makes it possible to describe mathematical objects so tha
they can be used by software applications such as computer algebra systems and voice renderers. In situations wt
such inter-application communication is of paramount importance, the nuances of visual presentation generally play
minimal role.

MathML allows authors to encode both the notation which represents a mathematical object and the mathematic
structure of the object itself. Moreover, authors can mix both kinds of encoding in order to specify both the presentatiol
and content of a mathematical idea. The remainder of this section gives a basic overview of how MathML can be use
in each of these ways.

211 Taxonomy of MathML Elements

All MathML elements fall into one of three categories: presentation elements, content elements and interface elemen
Each of these categories is described in detail in Ch&p&hapterd and Chapter, respectively.

18

Presentation elements describe mathematical notation’s visually oriented two-dimensional structure. Typical exampl
are themrow element, which is usually employed to indicate a horizontal row of pieces of expressions, arghe
element, which is used to mark up a base expression and a superscript to it. As a general rule, each presentation elen
corresponds to a single kind of notational ‘schema’ such as a row, a superscript, a subscript, an underscript and so
Any formula is made by putting together parts which ultimately can be analyzed down to the simplest items such a
digits, letters, or other symbol characters.

Although the previous paragraph was concerned with the display aspect of mathematical notation, and hence wi
presentation markup, the same observation about decomposition applies equally well to abstract mathematical objec
and hence to content markup. For example, in the context of content markup a superscript would typically be denoted
an exponentiation operation that would require two operands: a ‘base’ and an ‘exponent’. This is no coincidence, sinc
as a general rule, mathematical notation’s layout closely follows the logical structure of the underlying mathematica
objects.

The recursive nature of mathematical objects and notation is strongly reflected in MathML markup. In use, most pre
sentation or content elements contain some number of other MathML elements corresponding to the constituent piec
out of which the original object is recursively built. The original schema is commonly callepathet schema, and

the constituent pieces are calleidid schemata. More generally, MathML expressions can be regarded as trees, where
each node corresponds to a MathML element, the branches under a ‘parent’ node correspond to its ‘children’, and tl
leaves in the tree correspond to atomic notation or content units such as numbers, characters, etc.

Most leaf nodes in a MathML expression tree are eitl@onically empty elements with no bodies, otoken elements.
Canonically empty elements represent symbols directly in MathML, for example, the content etemest> does

this. MathML token elements are the only MathML elements permitted to contain MathML character data. MathML
character data consists of Unicode characters with the infrequent addition of special character constructions done w
themglyph element. A third kind of leaf node permitted in MathML is thenotation element, which is used to hold

data which is not in MathML format.

The most important presentation token elementsiaren andmo for representing identifiers, numbers and operators
respectively. Typically a renderer will employ slightly different typesetting styles for each of these kinds of character
data: numbers are usually in upright font, identifiers in italics, and operators have extra space around them. In conte
markup, there are only three tokenrs,, cn and csymbol, for identifiers, numbers and new symbols introduced in
the document itself, respectively. In content markup, separate elements are provided for commonly used functions a
operators. Thepply elementis provided for user-defined extensions to the base set.

In terms of markup, most MathML elements are denoted bt tag and arend tag, which enclose the markup for

their contents. In the case of tokens, the content is character data, and in most other cases, the content is the markug
child elements. Elements in a third category, called canonically empty elements, do not require any contents, and &
denoted by a single tag of the formaame/>. An example of this kind of markup isplus/> in content markup.

Let us take the very simple example af€ b)?, and we can now see how the principles discussed above play out in
practice. One form of presentation markup for this example is:

<mrow>
<msup>
<mfenced>
<mrow>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
</mrow>
</mfenced>

19

<mn>2</mn>
</msup>
</mrow>

This example demonstrates a number of presentation elements. The first element, one that is used a greatwdeal is
This element is used to denote a row of horizontally aligned material. The material contained betweerothe
and</mrow> tags is considered to be an argument tonthew element. Thus the whole expression here is contained

in anmrow element. As previously noted, almost all mathematical expressions decompose into subexpressions. The
subexpressions can, in turn, also be contained imram element. For example, a + b is also contained imas.

Themfenced element is used to provide fences (braces, brackets, and parentheses) around formula material. It defau
to using parentheses.

Note the use of thai element for displaying the variables a and b andiifielement for marking the + operator.

Themsup element is for expressions involving superscripts and takes two arguments, in order, the base expression (he
(atb)) and the exponent expression (here, 2).

The content markup for the same example is:

<mrow>
<apply>
<power/>
<apply>
<plus/>
<ci>a</ci>
<ci>b</ci>
</apply>
<cn>2</cn>
</apply>
</mrow>
Here, theapply content element means apply an operation to an expression. In this exampleyétreclement (for
exponentiation), which requires no body, and the sinpilars element (for addition) are bo#ipplied. Observe that both
operators take two arguments, the order being particularly significant in the case of the power operator. But the ord
of the children is crucial in the use of theply since the first child, the operator, takes as argument list the remaining
ones.

Note the use of thei element to mark up the variables a and b, andcthelement to mark up the number 2.

2.1.2 Presentation Markup

MathML presentation markup consists of about 30 elements which accept over 50 attributes. Most of the elemen
correspond tdayout schemata, which contain other presentation elements. Each layout schema corresponds to a two-
dimensional notational device, such as a superscript or subscript, fraction or table. In addition, there are the presentat
token elementsii, mo andmn introduced above, as well as several other less commonly used token elements. The
remaining few presentation elements are empty elements, and are used mostly in connection with alignment.

The layout schemata fall into several classes. One group of elements is concerned with scripts, and contains e
ments such assub, munder, andmnultiscripts. Another group focuses on more general layout and includes,
mstyle, andmfrac. A third group deals with tables. The.ction elementis in a category by itself, and allows coding

of various kinds of actions on notation, such as occur in an expression which toggles between two pieces of notation.

An important feature of many layout schemata is that the order of child schemata is significant. For example, the firs
child of anmfrac element is the numerator and the second child is the denominator. Since the order of child schemata |

20

not enforced at the XML level by the MathML DTD, the information added by ordering is only available to a MathML
processor, as opposed to a generic XML processor. When we want to emphasize that a MathML elementtsuach as
requires children in a specific order, we will refer to themuasiments, and think of thenfrac element as a notational
‘constructor’.

2.1.3 Content Markup

Content markup consists of about 120 elements accepting roughly a dozen attributes. The majority of these elemel
are empty elements corresponding to a wide variety of operators, relations and named functions. Examples of this s
includepartialdiff, leq andtan. Others such asatrix andset are used to encode various mathematical data
types, and a third, important category of content elements suehas are used to apply operations to expressions
and also to make new mathematical objects from others.

The apply element is perhaps the single most important content element. It is used to apply a function or operatior
to a collection of arguments. The positions of the child schemata are again significant, with the first child denoting th
function to be applied, and the remaining children denoting the arguments of the function in order. Notedppl the
construct always uses prefix notation, like the programming language LISP. In particular, even binary operations suc
as subtraction are marked up by applying a prefix subtraction operator to two arguments. For exaipleuld be
marked up as

<mrow>
<apply>

<minus/>

<ci>a</ci>

<ci>b</ci>
</apply>
</mrow>
A number of functions and operations require one or more quantifiers to be well-defined. For example, in addition tc
an integrand, a definite integral must specify the limits of integration and the bound variable. For this reason, there al
severalqualifier schemata such asrar andlowlimit. They are used with operators suchiasf andint.

The declare construct is especially important for content markup that might be evaluated by a computer algebra
system. Theleclare element provides a basic assignment mechanism, where a variable can be declared to be of
certain type, with a certain value.

In both the presentation and content markup examples, mathematical expressions are recursively decomposed i
nested, simpler MathML elements specifying each stage of the decomposition. The examples in the following sectior
illustrate this with more complex expressions.

214 Mixing Presentation and Content

Different kinds of markup will be found most appropriate for different kinds of tasks. Documents written before the
World Wide Web became important were most often intended only for visual communication of information, so that
legacy data is probably best translated into pure presentation markup, since semantic information about what the autt
meant can only be guessed at heuristically. By contrast, some mathematical applications and pedagogically-orient
authoring tools will likely choose to be entirely content-based. The majority of applications fall somewhere in betweer
these extremes. For these applications, the most appropriate markup is a mixture of both presentation and cont:
markup.

The rules for mixing presentation and content markup derive from the general principle that mixed content shoul
only be allowed in places where it makes sense. For content markup embedded in presentation markup this basice

21

means that any content fragments should be semantically meaningful, and should not require additional argumer
or quantifiers to be fully specified. For presentation markup embedded in content markup, this usually means th
presentation markup must be contained in a content token element, so that it will be treated as an indivisible notation
unit used as a variable or function name.

Another option is to use #emantics element. Thaemantics element is used to bind MathML expressions to various
kinds of annotations. One common use for temantics element is to bind a piece of content markup to some
presentation markup as a semantic annotation. In this way, an author can specify a non-standard notation to be u:
when displaying a particular content expression. Another use afdhentics element is to bind some other kind of
semantic specification, such as an OpenMath expression, to a MathML expression. In this weyathd cs element

can be used to extend the scope of MathML content markup.

2.2 MathML in a Document

The discussion above has actually been of fragmentary formulas outside the context of any document. To be mo
specific let us look at what corresponds to a programming language’s "Hello World!" example. We shall provide more
complete code for an XHTML 1.0 document containing the square of a sum of two variables mentioned above. It woul
be

<html xmlns="http://wuw.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>
<title>MathML’s Hello Square</title>
</head>

<body>
<p> This is a perfect square:</p>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<msup>
<mfenced>
<mrow>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
</mrow>
</mfenced>
<mn>2</mn>
</msup>
</mrow>
</math>

</body>
</html>

Here we have the normal structure of an XHTML document. It begins with the stashtag > embellished with an
XML namespace declaration and language assertiohsad element contains a title as is customary. Therxtheiy>

22

beginning also has a namespace declaration of an abbreviative prefixulétidye used for the standard MathML
namespace. Next comes a simple paragraph. Finally we gettheelement which also has a namespace association
declared. Inside thaath element is MathML markup as we are beginning to be used to it. The reasons why one
might have to do a more complex namespace declaration for MathML are explained in Chapégrhave to do with
present-day limitations in some XML handling, that may be expected to go away.

For the next level of technical detail concerning such matter®asTYPE statements and the like, see the discussion
in Chapter7.

2.3 Some MathML Examples

We continue below to display examples in the form of fragments of MathML markup such as would appeatdnside
elements in real documents. For the sake of clearer exposition of principles, the examples in Chapters 3, 4, 5 anc
follow this form of giving examples as MathML fragments.

231 Presentation Examples
Notation:x? + 4x + 4 = 0.

Markup:

<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<mrow>
<mn>4</mn>
<mo>⁢</mo>
<mi>x</mi>
</mrow>
<mo>+</mo>
<mn>4</mn>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mrow>

Note the use of nestetrow elements to denote terms, for example, the left-hand side of the equation functioning as an
operand of ‘=". Marking terms greatly facilitates spacing for visual rendering, voice rendering, and line breaking. The
InvisibleTimes MathML character entity is used here to indicate to a renderer that there are special spacing rule:
between the 4 and the x, and that the 4 and the x should not be broken onto separate lines. In fact, this use of an en
which was introduced in MathML 1.0 is no longer the way that is preferred. Ultimately all ordinary character data is
given by Unicode values. However, although a charactegIarvisibleTimes; iS expected in Unicode 3.2, and there

is a suggested code point for under consideration in a Unicode amendment, there is no Unicode 3.0 character to be u
at present. We could use the expected numerical character reference ࠎ but for clarity we will continue to us
entity references in these examples. The situation is explicitly discussed in Sg¢&tard in Chapte6.

23

Notation:x = ~b=vb*—4ac.

Markup:

<mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mo>-</mo>
<mi>b</mi>
</mrow>
<mo>±</mo>
<msqrt>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
<mo>-</mo>
<mrow>
<mn>4</mn>
<mo>⁢</mo>
<mi>a</mi>
<mo>⁢</mo>
<mi>c</mi>
</mrow>
</mrow>
</msqrt>
</mrow>
<mrow>
<mn>2</mn>
<mo>⁢</mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>

Themfrac andmsqrt elements are used for generating fractions and square roots, respectively.

Notice that the ‘plus or minus’ sign is given by a special entity n&®ieusMinus ;, though in this case there already

is a Unicode character �B1;. MathML provides a very comprehensive list of character names for mathematice
symbols. In addition to the mathematical symbols needed for screen and print rendering, MathML provides symbols t
facilitate audio rendering. For audio rendering, it is important to be able to automatically determine whether

<mrow>
<mi>z</mi>
<mfenced>
<mrow>
<mi>x</mi>

24

<mo>+</mo>
<mi>y</mi>
</mrow>
</mfenced>
</mrow>

should be read az times the quantit plusy’ or ‘z of x plusy'. The character⁢ (U+2062) and
⁡ (U+2061) provide a way for authors to directly encode the distinction for audio renderers. For
instance, in the first caganvisibleTimes; (U+2062) should be inserted after the line containingzidathML also
introduces entities likⅆ (U+2146) representing a ‘differential d’, which renders with slightly different spacing in
print and can be rendered as ‘d’ or ‘with respect to’ in speech. Unless content tags, or some other mechanism, are us
to eliminate the ambiguity, authors should always use these characters here referred to as entities, in order to make tt
documents more accessible.

Notation:A = [Xy }
zZ W

Markup:

<mrow>
<mi>A</mi>
<mo>=</mo>
<mfenced open="[" close="]">
<mtable>
<mtr>
<mtd><mi>x</mi></mtd>
<mtd><mi>y</mi></mtd>
</mtr>
<mtr>
<mtd><mi>z</mi></mtd>
<mtd><mi>w</mi></mtd>
</mtr>
</mtable>
</mfenced>
</mrow>

Themtable element denotes that a MathML table is being created.mklespecifies a row of the table and thed
element holds the data for an element of a row. Most elements have a number of attributes that control the details
their screen and print rendering. For example, there are several attributes fdrthed element that controls what
delimiters should be used at the beginning and the end of the grouped expression above. The attributes for opera
elements given usingmo> are set to default values determined by a dictionary. For the suggested MathML operator
dictionary, see Appendik.

2.3.2 Content Examples
Notation:x? + 4x + 4 = 0.

Markup:

<mrow>

<apply>
<eq/>

25

<apply>
<plus/>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>
</apply>
<apply>
<times/>
<cn>4</cn>
<ci>x</ci>
</apply>
<cn>4</cn>
</apply>
<cn>0</cn>
</apply>
</mrow>
Note that theapply element is used for relations, operators and functions.

Notation:x = *bizi‘/f*i“ac.

Markup:

<mrow>
<apply>
<eq/>
<ci>x</ci>
<apply>
<divide/>
<apply>
<mo>&PlusMinus ;</mo>
<apply>
<minus/>
<ci>b</ci>
</apply>
<apply>
<root/>
<apply>
<minus/>
<apply>
<power/>
<ci>b</ci>
<cn>2</cn>
</apply>
<apply>
<times/>
<cn>4</cn>
<ci>a</ci>
<ci>c</ci>
</apply>

26

</apply>
<cn>2</cn>
</apply>
</apply>
<apply>
<times/>
<cn>2</cn>
<ci>a</ci>
</apply>
</apply>
</apply>
</mrow>
MathML content markup does not directly contain an element for the ‘plus or minus’ operation. Therefore, we use the
mo element to declare that we want the presentation markup for this operator to act as a content operator. This is a simj
example of how presentation and content markup can be mixed to extend content markup.

Notation:A = < Xy >
Z W

Markup:

<mrow>
<apply>
<eq/>
<ci>A</ci>
<matrix>
<matrixrow>
<ci>x</ci>
<ci>y</ci>
</matrixrow>
<matrixrow>
<ci>z</ci>
<cid>w</ci>
</matrixrow>
</matrix>
</apply>
</mrow>
Here we have used theatrix element, and theatrixrow element to wrap the entries in a row of the matrix. Note
that, by default, the rendering of the content elemerttrix includes enclosing parentheses, so we need not directly
encode them. This is quite different from the presentation elemeintl e which may or may not refer to a matrix, and
hence requires explicit encoding of parentheses if they are desired.

2.3.3 Mixed Markup Examples
rd

Notation:/—x.
/ X

Markup:

27

<mrow>
<semantics>
<mrow>
<msubsup>
<mo>&int ;</mo>
<mn>1</mn>
<mi>t</mi>
</msubsup>
<mfrac>
<mrow>
<mo>&dd ; </mo>
<mi>x</mi>
</mrow>
<mi>x</mi>
</mfrac>
</mrow>
<annotation-xml encoding="MathML-Content">
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>1</cn></lowlimit>
<uplimit><ci>t</ci></uplimit>
<apply>
<divide/>
<cn>1</cn>
<ci>x</ci>
</apply>
</apply>
</annotation-xml>
</semantics>
</mrow>

In this example, we use theemantics element to provide a MathML content expression to serve as a ‘semantic
annotation’ for a presentation expression. In the display markup, we have ussabs@ap element to attach a subscript
and a superscript to an expression, in this case the integral sign. We also usedé&intitieandⅆ to specify the
integral and differential symbols.

The semantics element has as its first child the expression being annotated, and the subsequent children are tt
annotations. There is no restriction on the kind of annotation that can be attached usiegdheics element. For
example, one might give &X encoding, or computer algebra input in an annotation. The type of annotation is specified
by theencoding attribute and thennotation andannotation-xml elements.

Another common use of theemantics element arises when one wants to use a content coding, and provide a sugges-
tion for its presentation. In such a case, applied to the formula above we would have the markup:

<semantics>
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>1</cn></lowlimit>
<uplimit><ci>t</ci></uplimit>

28

<apply>
<divide/>
<cn>1</cn>
<ci>x</ci>
</apply>
</apply>
<annotation-xml encoding="MathML-Presentation">
<mrow>
<msubsup>
<mo>&int ; </mo>
<mn>1</mn>
<mi>t</mi>
</msubsup>
<mfrac>
<mrow>
<mo>&dd ; </mo>
<mi>x</mi>
</mrow>
<mi>x</mi>
</mfrac>
</mrow>
</annotation-xml>
</semantics>

This kind of annotation is useful when something other than the default rendering of the content encoding is desired. F
example, by default, some renderers might layout the integrand something liRedX1/Specifying that the integrand
should by preference render as/x instead can be accomplished with the use of a MathML Presentation annotation
as shown. Be aware, however, that renderers are not required to take into account information contained in annotatio
and what use is made of them, if any, will depend on the renderer.

2.4 MathML Syntax and Grammar
24.1 MathML Syntax and Grammar

MathML is an application of {VIL], or Extensible Markup Language, and as such its syntax is governed by the rules of

XML syntax, and its grammar is in part specified by a DTD, or Document Type Definition. In other words, the details

of using tags, attributes, entity references and so on are defined in the XML language specification, and the details abc
MathML element and attribute names, which elements can be nested inside each other, and so on are specified in

MathML DTD. This is in AppendixA.

The W3C in seeking to increase the flexibility of the use of XML for the Web, and to encourage modularization of appli-
cations built with XML, has found that the basic form of a DTD is not sufficiently flexible. Therefore, a W3C Working
Group was created to develop a specification for XML Schemias | }, which are specification documents

that will eventually supersede DTDs. MathML 2.0 is consciously designed so that mathematics may take advantac
of the latest in the evolving Web technology. Thus, there is to be a schema for MathML. For further information on a
MathML schema see Appendix and theMathML Home Page

However, MathML also specifies some syntax and grammar rules in addition to the general rules it inherits as an XMl
application. These rules allow MathML to encode a great deal more information than would ordinarily be possible
with pure XML, without introducing many more elements, and using a substantially more complex DTD or schema. A

29

http://www.w3.org/Math

grammar for content markup expressions is given in AppeBdi®f course, one drawback to using MathML specific
rules is that they are invisible to generic XML processors and validators.

There are basically two kinds of additional MathML grammar and syntax rules. One kind involves placing additional
criteria on attribute values. For example, it is not possible in pure XML to require that an attribute value be a positive
integer. The second kind of rule specifies more detailed restrictions on the child elements (for example on ordering
than are given in the DTD or even a schema. For example, it is not possible in XML to specify that the first child be
interpreted one way, and the second in another.

The following sections discuss features both of XML syntax and grammar in general, and of MathML in particular.
Throughout the remainder of the MathML specification, we will usually take care to distinguish between usage requiret
by XML syntax and the MathML DTD (and schema) and usage required by MathML specific rules. However, we will

frequently allude to ‘MathML errors’ without identifying which part of the specification is being violated.

2.4.2 An XML Syntax Primer

Since MathML is an application of XML, the MathML specification uses the terminology of XML to describe it.
Briefly, XML data is composed of Unicode characters (which include ordinary ASCII characters), ‘entity references’
(informally called ‘entities’) such a< which usually represent ‘extended characters’, and ‘elements’ suchias
fontstyle="normal"> x </mi>.

An element quite often encloses other XML data called its ‘content’, or ‘body’, between a ‘start tag’ (sometimes called
a ‘begin tag") and an ‘end tag’, much as in HTML. There are also ‘empty elements’ sugbilas/>, whose start

tag ends with/> to indicate that the element has no content or end tag. The start tag can contain hamed paramete
called ‘attributes’, such agontstyle="normal" in the example above. For further details on XML, consult the XML
specification ML].

As XML is case-sensitive, MathML element and attribute names are case-sensitive. For reasons of legibility, th
MathML specification defines them almost all in lowercase.

In formal discussions of XML markup, a distinction is maintained between an element, suclhassaglement, and

the tagxmrow> and</mrow> marking it. What is between thenrow> start tag and the/mrow> end tag is the content,

or body, of themrow element. An ‘empty element’ such asne is defined to have no body, and so has a single tag of
the form<none/>. Usually, the distinction between elements and tags will not be so finely drawn in this specification.
For instance, we will sometimes refer to therow> and<none/> elements, really meaning the elements whose tags
these are, in order that references to elements are visually distinguishable from references to attributes. However, t
words ‘element’ and ‘tag’ themselves will be used strictly in accordance with XML terminology.

2.4.3 Children versus Arguments

Many MathML elements require a specific number of child elements or attach additional meanings to children in certail
positions. As noted above, these kinds of requirements are MathML specific, and cannot be given entirely using XMl
syntax and grammar. When the children of a given MathML element are subject to these kinds of additional conditions
we will often refer to them aarguments instead of merely as children, in order to emphasize their MathML specific
usage. Note that, especially in Chapsethe term ‘argument’ is usually used in this technical sense, unless otherwise
noted, and therefore refers to a child element.

In the detailed discussions of element syntax given with each element throughout the MathML specification, the numbe
of required arguments and their order is implicitly indicated by giving hames for the arguments at various positions
This information is also given for presentation elements in the table of argument requirements in $éci@md for
content elements in Appendik

A few elements have other requirements on the number or type of arguments. These additional requirements are ¢
scribed together with the individual elements.

30

2.4.4 MathML Attribute Values

According to the XML language specification, attributes given to elements must have one of the forms

attribute—-name = "value"
or
attribute—-name = ’value’

where whitespace around the '=" is optional.

Attribute names are generally shown imenospaced font within descriptive text in this specification, just as the
monospaced font is used for examples.

An attribute’s value, which in general in MathML can be a string of arbitrary characters, must be surrounded by a pai
of either double quotes') or single quotes?(). The kind of quotes not used to surround the value may be included
within it.

MathML uses a more complicated syntax for attribute values than the generic XML syntax required by the MathML
DTD. These additional rules are intended for use by MathML applications, and it is a MathML error to violate them,
though they cannot be enforced by XML processing. The MathML syntax of each attribute value is specified in the
table of attributes provided with the description of each element, using a notation described below. When MathML
applications process attribute values, whitespace is ignored except to separate letter and digit sequences into individ
words or numbers. Attribute values may contain any MathML characters listed in S6ciparmitted by the syntax
restrictions for an attribute. Character data can be included directly in attribute values, or by using entity references :
described in Sectiof.2.1.

In particular, the characters ’, & and< can be included in MathML attribute values (when permitted by the attribute
value syntax) using the entity referenéemot ;, ', & and<, respectively.

The MathML DTD provided in Appendi® declares most attribute value types@4TA strings. This permits increased
interoperability with existing SGML and XML software and allows extension to the lists of predefined values. Similar
sorts of considerations apply with XML schemas.

2.4.4.1 Syntax notations used in the MathML specification

To describe the MathML-specific syntax of permissible attribute values, the following conventions and notations are
used for most attributes in the present document.

31

Notation What it matches

number decimal integer or rational number (a string of digits with one decimal point), optionally starting
with -’

unsigned-number decimal integer or real number, no sign

integer decimal integer, optionally starting with *-’

positive-integer decimal integer, unsigned, not O

string arbitrary string (always the entire attribute value)

character single non-whitespace character, or MathML entity reference; whitespace separation is optiong

#rrggbb RGB color value; the three pairs of hexadecimal digits in the example #5599dd define propor-
tions of red, green and blue on a scale of x00 through xFF, which gives a strong sky blue.

h-unit unit of horizontal length (allowable units are listed below)

V-unit unit of vertical length (allowable units are listed below)

css-fontfamily explained in the CSS subsection below

css-color-name explained in the CSS subsection below

other italicized words explained in the text for each attribute

form + one or more instances of 'form’

form * zero or more instances of 'form’

fif2...fn one instance of each form, in sequence, perhaps separated by whitespace

fr|f2|...]fn any one of the specified forms

[form] an optional instance of 'form’

(form) same as form

word in plain text that word, literally present in the attribute value (unless it is obviously part of an explanatory
phrase)

guoted symbol that symbol, literally present in attribute value (e.g. "+" or '+")

The order of precedence of the syntax notation operators is, from highest to lowest precedence:

. form + or form *
° f1f2 ... fn (sequence of forms)
. f1|f2]...|fn (alternative forms)

A string can contain arbitrary characters which are specifiable within XJUATA attribute values. See Chaptefor a
dicussion and complete listing of MathML characters. No syntax rule in MathML includesng as only part of an
attribute value, only as the entire value.

Adjacent keywords and numbers must be separated by whitespace in the actual attribute values, except for unit ider
fiers (denoted byi-unit or v-unit syntax symbols) following numbers. Whitespace is not otherwise required, but is
permitted between any of the tokens listed above, except (for compatibility with CSS) immediately before unit identi-
fiers, between the ’-’ signs and digits of negative numbers, or betweekrggbb andrgb

Numerical attribute values for dimensions that should depend upon the current font can be given in font-related unit:
or in named absolute units (described in a separate subsection below). Horizontal dimensions are conventionally giv
in em’s, and vertical dimensions iax’s, by immediately following a number by one of the unit identifiefsor ex. For
example, the horizontal spacing around an operator such as ‘+’ is conventionally gans) though other units can be
used. Using font-related units is usually preferable to using absolute units, since it allows renderings to grow or shrin
in proportion to the current font size.

For most numerical attributes, only those in a subset of the expressible values are sensible; values outside this suk
are not errors, unless otherwise specified, but rather are rounded up or down (at the discretion of the renderer) to t
closest value within the allowed subset. The set of allowed values may depend on the renderer, and is not specified
MathML.

If a numerical value within an attribute value syntax description is declared to allow a minus sign ('-Buebgr or
integer, it is not a syntax error when one is provided in cases where a negative value is not sensible. Instead, the vall

32

should be handled by the processing application as described in the preceding paragraph. An explicit plus sign ('+') |
not allowed as part of a numerical value except when it is specifically listed in the syntax (as a quoted '+’ or "+"), and
its presence can change the meaning of the attribute value (as documented with each attribute which permits it).

The symbols-unit, v-unit, css-fontfamily, andcss-color-name are explained in the following subsections.

2.4.4.2 Attributes with units

Some attributes accept horizontal or vertical lengths as numbers followed by a ‘unit identifier’ (often just called a ‘unit’).
The syntax symbols-unit andv-unit refer to a unit for horizontal or vertical length, respectively. The possible units
and the lengths they refer to are shown in the table below; they are the same for horizontal and vertical lengths, but tl
syntax symbols are distinguished in attribute syntaxes as a reminder of the direction each is used in.

The unit identifiers and meanings are taken from CSS. However, the syntax of numbers followed by unit identifiers ir
MathML is not identical to the syntax of length values with units in CSS style sheets, since humbers in CSS cannot en
with decimal points, and are allowed to start with '+’ signs.

The possible horizontal or vertical units in MathML are:

Unit identifier Unit description

em em (font-relative unit traditionally used for horizontal lengths)
ex ex (font-relative unit traditionally used for vertical lengths)

px pixels, or pixel size of the current display

in inches (1 inch = 2.54 centimeters)

cm centimeters

mm millimeters

pt points (1 point = 1/72 inch)

pc picas (1 pica = 12 points)

% percentage of default value

The typesetting unitsm andex are defined in Appendik, and discussed further under ‘Additional notes’ below.

% is a ‘relative unit’; when an attribute value is givenms(for any numerical value), the value being specified is the
default value for the property being controlled multipliedbdivided by 100. The default value (or the way in which

it is obtained, when it is not constant) is listed in the table of attributes for each element, and its meaning is described |
the subsequent documentation about that attribute. ffheded element has its own syntax fgrand does not allow

it as a unit identifier.)

For consistency with CSS, length units in MathML are rarely optional. When they are, the unit symbol is enclosec
in square brackets in the attribute syntax, following the number to which it appliesywger [h-unit]. The
meaning of specifying no unit is given in the documentation for each attribute; in general it is that the number given is ¢
multiplier for the default value of the attribute. (In such cases, specifying the numhevithout a unit is equivalent to
specifying the numbetnn times 100 followed by;,. For examplegmo maxsize="2"> (</mo> is equivalent taxmo
maxsize="200%"> (</mo>.)

As a special exception (also consistent with CSS), a numerical value equal to 0 need not be followed by a unit identifie
even if the syntax specified here requires one. In such cases, the unit identifier (or lack of one) would not matter, sin
0 times any unit is 0.

For most attributes, the typical unit which would be used to describe them in typesetting is chosen as the one used
that attribute’s default value in this specification; when a specific default value is not given, the typical unit is usually
mentioned in the syntax table or in the documentation for that attribute. The most common uait®ase. However,

any unit can be used, unless otherwise specified for a specific attribute.

33

Additional notes about units

Note that some attributes, eframespacing on a<mtable>, can contain more than one numerical value, each fol-
lowed by its own unit.

It is conventional to use the font-relative uait mainly for vertical lengths, anem mainly for horizontal lengths, but

this is not required. These units are relative to the font and font size which would be used for rendering the element i
whose attribute value they are specified, which means they should be intergfitetesttributes such asontfamily
andfontsize are processed, if those occur on the same element, since changing the current font or font size can chan
the length of one of these units.

The definition of the length of each unit, but not the MathML syntax for length values, is as specified in CSS, excep
that if a font provides specific values fem andex which differ from the values defined by CSS (the font size and
‘X’-height respectively), those values should be used.

2.4.4.3 CSS-compatible attributes

Several MathML attributes, listed below, correspond closely to text rendering properties defined originatiysii [

In MathML 1.01, the names and values of these attributes were aligned with the CSS Recommendation where possib
This was done so that renderers in CSS environments could query the environment for the corresponding property wh
determining the default values for the attributes.

Allowing style properties to be set both via MathML attributes and CSS stylesheets has drawbacks. At a minimum
its confusing, and at worst, it leads to the meaning of equations being inadvertently changed by document-wide CS
changes. For these reasons, these attributes havedeeescatedin their place, MathML 2.0 introduces four new
mathematical style attributes. These attributes use logical values to better capture the abstract categories of letter-I
symbols used in math, and afford a much cleaner separation between MathML and CSS. See€3Se2tmnmore
details.

For reference, a table showing the correspondence of the deprecated MathML 1.01 style attribute with the CSS cou
terparts is given below:

MathML attribute CSS property syntax symbol MathML elements refer to

fontsize font-size - presentation tokenstyle Section3.2.2
fontweight font-weight - presentation tokemsstyle Section3.2.2
fontstyle font-style - presentation tokemsstyle Section3.2.2
fontfamily font-family css-fontfamily presentation tokemsstyle Section3.2.2
color color css-color-name presentation tokens;yle Section3.3.4
background background css-color-name mstyle Section3.3.4

See also Sectioh.4.5below for a discussion of thelass, style andid attributes for use with style sheets.

Order of processing attributes versus style sheets

CSS or analogous style sheets can specify changes to rendering properties of selected MathML elements. Since ren
ing properties can also changed by attributes on an element, or changed automatically by the renderer, it is necessar
specify the order in which changes from various sources occur. An example of automatic adjustment is what happel
for fontsize, as explained in the discussion seriptlevel in Section3.3.4 In the case of ‘absolute’ changes, i.e.,
setting a new property value independent of the old value (as opposed to ‘relative’ changes, such as increments or m
tiplications by a factor), the absolute change performed last will be the only absolute change which is effective, so th
sources of changes which should have the highest priority must be processed last.

In the case of CSS, the order of processing of changes from various sources which affect one MathML element
rendering properties should be as follows:

34

(first changes; lowest priority)

° Automatic changes to properties or attributes based on the type of the parent element, and this element
position in the parent, as for the changesséatsize in relation toscriptlevel mentioned above; such
changes will usually be implemented by the parent element itself before it passes a set of rendering propertie
to this element

From a style sheet from the reader: styles whichmatedeclared ‘important’

Explicit attribute settings on this MathML element

From a style sheet from the author: styles whichmrnedeclared ‘important’

From a style sheet from the author: styles whielhdeclared ‘important’

From a style sheet from the reader: styles whichdeclared ‘important’

(last changes; highest priority)

Note that the order of the changes derived from CSS style sheets is specified by CSS itself (this is the order specifi
by CSS2). The following rationale is related only to the issue of where in this pre-existing order the changes caused t
explicit MathML attribute settings should be inserted.

Rationale: MathML rendering attributes are analogous to HTML rendering attributes sagh@s which the CSS
section on cascading order specifies should be processed with the same priority. Furthermore, this choice of priori
permits readers, by declaring certain CSS styles as ‘important’, to decide which of their style preferences should overric
explicit attribute settings in MathML. Since MathML expressions, whether composed of ‘presentation’ or ‘content’
elements, are primarily intended to convey meaning, with their ‘graphic design’ (if any) intended mainly to aid in that
purpose but not to be essential in it, it is likely that readers will often want their own style preferences to have priority;
the main exception will be when a rendering attribute is intended to alter the meaning conveyed by an expression, whic
is generally discouraged in the presentation attributes of MathML.

2444 Deftault values of attributes

Default values for MathML attributes are in general given along with the detailed descriptions of specific elements ir
the text. Default values shown in plain text in the tables of attributes for an element are literal (unless they are obviousl
explanatory phrases), but when italicized are descriptions of how default values can be computed.

Default values described asherited are taken from the rendering environment, as described wdegil e, or in some

cases (described individually) from the values of other attributes of surrounding elements, or from certain parts of thos
values. The value used will always be one which could have been specified explicitly, had it been known; it will never
depend on the content or attributes of the same element, only on its environment. (What it means when used mze
however, depend on those attributes or the content.)

Default values described astomatic should be computed by a MathML renderer in a way which will produce a high-
quality rendering; how to do this is not usually specified by the MathML specification. The value computed will always
be one which could have been specified explicitly, had it been known, but it will usually depend on the element conter
and possibly on the rendering environment.

Other italicized descriptions of default values which appear in the tables of attributes are explained for each attribut
individually.

The single or double quotes which are required around attribute values in an XML start tag are not shown in the table
of attribute value syntax for each element, but are shown around example attribute values in the text.

Note that, in general, there is no value which can be given explicitly for a MathML attribute which will simulate the
effect of not specifying the attribute at all for attributes which ateerited or automatic. Giving the words ‘inherited’

or ‘automatic’ explicitly will not work, and is not generally allowed. Furthermore, even for presentation attributes for
which a specific default value is documented herenifieyle element (Sectiod.3.4 can be used to change this for

35

the elements it contains. Therefore, the MathML DTD declares most presentation attribute default vales 28D,
which prevents XML preprocessors from adding them with any specific default value. This point of view is carried
through to the MathML schema.

2.4.4.5 Attribute values in the MathML DTD

Inan XML DTD, allowed attribute values can be declared as general strings, or they can be constrained in various way
either by enumerating the possible values, or by declaring them to be certain special data types. The choice of an XM
attribute type affects the extent to which validity checks can be performed using a DTD.

The MathML DTD specifies formal XML attribute types for all MathML attributes, including enumerations of legiti-
mate values in some cases. In general, however, the MathML DTD is relatively permissive, frequently declaring attribut
values as strings; this is done to provide for interoperability with SGML parsers while allowing multiple attributes on
one MathML element to accept the same values (sudras andfalse), and also to allow extension to the lists of
predefined values.

At the same time, even though an attribute value may be declared as a string in the DTD, only certain values ai
legitimate in MathML, as described above and in the rest of this specification. For example, many attributes expec
numerical values. In the sections which follow, the allowed attribute values are described for each element. To determir
when these constraints are actually enforced in the MathML DTD, consult Appéndieowever, lack of enforcement

of a requirement in the DTD doemt imply that the requirement is not part of the MathML language itself, or that it
will not be enforced by a particular MathML renderer. (See Secti@for a description of how MathML renderers
should respond to MathML errors.)

Furthermore, the MathML DTD is provided for convenience; although it is intended to be fully compatible with the
text of the specification, the text should be taken as definitive if there is a contradiction. (Any contradictions which may
exist between various chapters of the text should be resolved by favoring Chdpsty then ChapteB, Chapters,

then Sectior?.4, and then other parts of the text.) For the MathML schema the situation will be the same: the published
Recommendation text takes precedence. Though this is what is intended to happen, there is a practical difficulty. If tf
system processing the MathML uses a validating parser, whether it be based on a DTD or on a schema, the process \
probably simply stop when it hits something held to be incorrect syntax, whether or not further MathML processing in
full harmony with the specification would have processed the piece correctly.

245 Attributes Shared by all MathML Elements

In order to facilitate use with style sheet mechanisms suck@si|] and [] all MathML elements acceptlass,

style, andid attributes in addition to the attributes described specifically for each element. MathML renderers not
supporting CSS may ignore these attributes. MathML specifies these attribute values as general strings, even if sty
sheet mechanisms have more restrictive syntaxes for them. That is, any value for them is valid in MathML.

In order to facilitate compatibility with linking mechanisms, all MathML elements acceptlheak:href attribute.

All MathML elements also accept tharef attribute for use in parallel markup (Sectibrd). Theid is also used in this
context.

Every MathML element, because of a legacy from MathML 1.0, also acceptdefhecatedttribute other (Sec-

tion 7.2.3 which was conceived for passing non-standard attributes without violating the MathML DTD. MathML
renderers are only required to process this attribute if they respond to any attributes which are not standard in MathM
However, the use afther is strongly deprecated when there are already other ways within MathML of passing specific
information.

See also Sectiod.2.2for a list of MathML attributes which can be used on most presentation token elements.

36

2.4.6 Collapsing Whitespace in Input

MathML ignores whitespace occurring outside token elements. Non-whitespace characters are not allowed there. Whit
pace occurring within the content of token elements is ‘trimmed’ from the ends, i.e., all whitespace at the beginning an
end of the content is removed. Whitespace internal to content of MathML elements is ‘collapsed’ canonically, i.e., eac
sequence of 1 or more whitespace characters is replaced with one space character (sometimes called a blank charac

In MathML, as in XML, ‘whitespace’ means simple spaces, tabs, newlines, or carriage returns, i.e., characters witl
hexadecimal Unicode cod&%0020, U+0009, U+0004A, or U+000D, respectively.

For examplegmo> (</mo> is equivalent tamo> (</mo>, and

<mtext>
Theorem
1:

</mtext>

is equivalent tomtext>Theorem 1:</mtext>.

Authors wishing to encode whitespace characters at the start or end of the content of a token, or in sequences other tl
a single space, without having them ignored, mustgesp; or other ‘whitespace’ non-marking entities as described
in Section6.2.4 For example, compare

<mtext>
Theorem
1:
</mtext>

with

<mtext>
 Theorem 1:
</mtext>

When the first example is rendered, there is no whitespace before ‘Theorem’, one space between ‘Theorem’ and ‘1:’, al
no whitespace after ‘1:". In the second example, a single space is rendered before ‘Theorem’, two spaces are rende
before ‘1", and there is no whitespace after the ‘1:’.

Note that thexml : space attribute does not apply in this situation since XML processors pass whitespace in tokens to a
MathML processor; it is the MathML processing rules which specify that whitespace is trimmed and collapsed.

For whitespace occurring outside the content of the token eleménts, mo, ms, mtext, ci, cn andannotation, an
mspace element should be used, as opposed tataxt element containing only ‘whitespace’ entities.

37

Chapter 3

Presentation Markup

3.1 Introduction

This chapter specifies the ‘presentation’ elements of MathML, which can be used to describe the layout structure c
mathematical notation.

3.1.1 What Presentation Elements Represent

Presentation elements correspond to the ‘constructors’ of traditional mathematical notation - that is, to the basic kinc
of symbols and expression-building structures out of which any particular piece of traditional mathematical notation i
built. Because of the importance of traditional visual notation, the descriptions of the notational constructs the elemen
represent are usually given here in visual terms. However, the elements are medium-independent in the sense t
they have been designed to contain enough information for good spoken renderings as well. Some attributes of the
elements may make sense only for visual media, but most attributes can be treated in an analogous way in audio as v
(for example, by a correspondence between time duration and horizontal extent).

MathML presentation elements only suggest (i.e. do not require) specific ways of rendering in order to allow for
medium-dependent rendering and for individual preferences of style. This specification describes suggested visual re
dering rules in some detail, but a particular MathML renderer is free to use its own rules as long as its renderings al
intelligible.

The presentation elements are meant to express the syntactic structure of mathematical notation in much the same v
as titles, sections, and paragraphs capture the higher-level syntactic structure of a textual document. Because of this,
example, a single row of identifiers and operators, suckx asd / b, will often be represented not just by oaeow
element (which renders as a horizontal row of its arguments), but by multiple nestedlements corresponding to

the nested sub-expressions of which one mathematical expression is composed - in this case,

<mrow>
<mi> x </mi>
<mo> + </mo>
<mrow>
<mi> a </mi>
<mo> / </mo>
<mi> b </mi>
</mrow>
</mrow>

Similarly, superscripts are attached not just to the preceding character, but to the full expression constituting their bas
This structure allows for better-quality rendering of mathematics, especially when details of the rendering environmer

38

such as display widths are not known to the document author; it also greatly eases automatic interpretation of tf
mathematical structures being represented.

Certain MathML characters are used to name operators or identifiers that in traditional notation render the same as ott
symbols, such aⅆ, &ExponentialkE;, or ⅈ, or operators that usually render invisibly,
such akInvisibleTimes;, ⁡, Or ⁣. These are distinct notational symbols or
objects, as evidenced by their distinct spoken renderings and in some cases by their effects on linebreaking and spac
in visual rendering, and as such should be represented by the appropriate specific entity references. For example,
expression represented visually d$x)’ would usually be spoken in English a$ bf X' rather than just f x'; this is
expressible in MathML by the use of tedpplyFunction; operator after thef’, which (in this case) can be aurally
rendered as ‘of’.

The complete list of MathML entities is described in Chater

3.1.2 Terminology Used In This Chapter

It is strongly recommended that, before reading the present chapter, one read 3etbanMathML syntax and
grammar, which contains important information on MathML notations and conventions. In particular, in this chapter it
is assumed that the reader has an understanding of basic XML terminology described in 5écjamd the attribute

value notations and conventions described in Secidnt

The remainder of this section introduces MathML-specific terminology and conventions used in this chapter.

3.1.2.1 Types of presentation elements

The presentation elements are divided into two clasBden elements represent individual symbols, nhames, numbers,
labels, etc. In general, tokens can have only characters as content. The only exceptions are the vertical alignme
elementmalignmark, mglyph, and entity referenced.ayout schemata build expressions out of parts, and can have
only elements as content (except for whitespace, which they ignore). There are also a few empty elements used only
conjunction with certain layout schemata.

All individual ‘'symbols’ in a mathematical expression should be represented by MathML token elements. The primary
MathML token element types are identifiers (e.g. variables or function names), numbers, and operators (includin
fences, such as parentheses, and separators, such as commas). There are also token elements for representing t
whitespace that has more aesthetic than mathematical significance, and for representing ‘string literals’ for compatibilif
with computer algebra systems. Note that although a token element represents a single meaningful ‘symbol’ (nam
number, label, mathematical symbol, etc.), such symbols may be comprised of more than one character. For exam|
sin and24 are represented by the single tokeas>sin</mi> and<mn>24</mn> respectively.

In traditional mathematical notation, expressions are recursively constructed out of smaller expressions, and ultimate
out of single symbols, with the parts grouped and positioned using one of a small set of notational structures, which ce
be thought of as ‘expression constructors’. In MathML, expressions are constructed in the same way, with the layol
schemata playing the role of the expression constructors. The layout schemata specify the way in which sub-expressic
are builtinto larger expressions. The terminology derives from the fact that each layout schema corresponds to a differe
way of ‘laying out’ its sub-expressions to form a larger expression in traditional mathematical typesetting.

3.1.2.2 Terminology for other classes of elements and their relationships

The terminology used in this chapter for special classes of elements, and for relationships between elements, is
follows: The presentation elements are the MathML elements defined in this chapter. These elements are listed in
Section3.1.6 Thecontent elements are the MathML elements defined in Chaptehe content elements are listed in
Sectiord.4.

39

A MathML expression is a single instance of any of the presentation elements with the exception of the empty elements
none Ormprescripts, Or is a single instance of any of the content elements which are allowed as content of presentatior
elements (described in Sectiér?.4). A sub-expression of an expressiol is any MathML expression that is part of

the content o, whetherdirectly or indirectly, i.e. whether it is a ‘child’ ofE or not.

Since layout schemata attach special meaning to the number and/or positions of their children, a child of a layout scher
is also called aargument of that element. As a consequence of the above definitions, the content of a layout scheme
consists exactly of a sequence of zero or more elements that are its arguments.

3.1.3 Required Arguments

Many of the elements described herein require a specific number of arguments (always 1, 2, or 3). In the detailed d
scriptions of element syntax given below, the number of required arguments is implicitly indicated by giving names
for the arguments at various positions. A few elements have additional requirements on the number or type of argt
ments, which are described with the individual element. For example, some elements accept sequences of zero or m
arguments - that is, they are allowed to occur with no arguments at all.

Note that MathML elements encoding rendered spiaceount as arguments of the elements in which they appear. See
Section3.2.7for a discussion of the proper use of such space-like elements.

3.1.3.1 Inferred mrows

The elements listed in the following table as requiring 1* argumesgft, mstyle, merror, menclose, mpadded,
mphantom, mtd, andmath) actually accept any number of arguments. However, if the number of arguments is 0, or is
more than 1, they treat their contents as a singferred mrow formed from all their arguments. Although theth
element is not a presentation element, it is listed below for completeness.

For example,

<mtd>
</mtd>

is treated as if it were

<mtd>
<mrow>
</mrow>

</mtd>

and

<msqrt>
<mo> - </mo>
<mn> 1 </mn>
</msqrt>

is treated as if it were

<msqrt>

<mrow>
<mo> - </mo>
<mn> 1 </mn>

40

</mrow>
</msqrt>
This feature allows MathML data not to contain (and its authors to leave out) mamyelements that would otherwise
be necessary.

In the descriptions in this chapter of the above-listed elements’ rendering behaviors, their content can be assumed
consist of exactly one expression, which may be®sw element formed from their arguments in this manner. However,
their argument counts are shown in the following table as 1*, since they are most naturally understood as acting on
single expression.

3.1.3.2 Table of argument requirements

For convenience, here is a table of each element’'s argument count requirements, and the roles of individual argume
when these are distinguished. An argument count of 1* indicates an intereachs described above.

Element Required argument count Argument roles (when these differ by position)
mrow 0 or more

mfrac 2 numerator denominator
msqrt 1*

mroot 2 base index

mstyle 1*

merror 1*

mpadded 1*

mphantom 1*

mfenced 0 or more

menclose 1*

msub 2 base subscript

msup 2 base superscript
msubsup 3 base subscript superscript
munder 2 base underscript

mover 2 base overscript
munderover 3 base underscript overscript

mmultiscripts 1 or more base (subscript superscript)* [<mprescripts/> (presubscript presuperscript)*

mtable 0 or more rows 0 or morgtr ormlabeledtr elements
mlabeledtr 1 or more a label and 0 or moied elements

mtr 0 or more 0 or moratd elements

mtd 1*

maction 1 or more depend oactiontype attribute

math 1*

3.14 Elements with Special Behaviors

Certain MathML presentation elements exhibit special behaviors in certain contexts. Such special behaviors are di
cussed in the detailed element descriptions below. However, for convenience, some of the most important classes
special behavior are listed here.

Certain elements are considered space-like; these are defined in Se2tibhis definition affects some of the sug-
gested rendering rules fab elements (Sectiof.2.5.

Certain elements, e.gsup, are able to embellish operators that are their first argument. These elements are listed ir
Section3.2.5 which precisely defines an ‘embellished operator’ and explains how this affects the suggested renderin
rules for stretchy operators.

41

Certain elements treat their arguments as the arguments of an ‘infewedf they are not given exactly one argument,
as explained in Sectioh 1.3

In MathML 1.x, themtable element could infemtr elements around its arguments, andile element could infer
mtd elements. In MathML 2.0ptr andmtd elements must be explicit. However, for backward compatibility renderers
may wish to continue supporting inferredr andmtd elements.

3.1.5 Bidirectional Layout

The term ’bidirectional layout’ refers to the fact that letters from certain scripts, in particular Arabic and Hebrew, are
written from right to left, and that mixing these with numbers or letters from scripts written left- to-right results in text
runs of two differing directions within the same line or paragraph.

For ordinary text, Unicode defines a bidirectional algorittini[]. This algorithm assumes that the order of characters

in a 'backing store’ is in logical order (i.e. in the order it would be pronounced or typed in), and defines how the
characters get reordered for display based on character properties and other directives. HTML, CSS, XSL, and SV
adopt this algorithm and provide ways to control it via markup or styling.

In mathematical expressions, bidirectional layout is more difficult than it is in text. In part, this is due to the 2-
dimensional nature of mathematical layout, and the fact that spatial relationships are often used to convey meanil
in mathematics notation. Another factor is the lack of established conventions for bidirectional mathematics layout
since this is relatively uncommon, even in right-to-left contexts.

For these reasons, MathML 2.0 only adopts a restricted version of the Unicode Bidirectional algorithm, as described |
the remainder of this section.

3.1.5.1 Bidirectional Layout in Token Elements

For MathML token elements that can contain textdxt, mo, mi, mn andms), the implicit part of the Unicode bidirec-
tional algorithm Bidi] is applied when its content is rendered visually (i.e. characters are reordered based on characte
properties). The base directionality is left-to-right.

The implicit part of the Unicode bidirectional algorithm is identical to straightforward left-to-right layout if there is only
one character, or if there are no strong right-to-left characters (i.e. no characters from the Arabic, Hebrew, or simile
scripts).

Applications are not required to apply the Unicode bidirectional algorithm if they do not render strong right-to-left
characters.

Please note that for the transfinite cardinals represented by Hebrew characters, the codepoints U+2135-U+2138 (ALl
SYMBOL, BET SYMBOL, GIMEL SYMBOL, DALET SYMBOL) should be used. These are strong left-to-right.

3.1.5.2 Bidirectional Layout of Mathematics Formulas

MathML 2.0 does not address right-to-left or bidirectional layout in mathematics formulas. Only left-to-right layout is
supported. Right-to-left layout of mathematical formulas may be addressed in a future version of MathML.

42

3.1.6 Summary of Presentation Elements

3.1.6.1 Token Elements
mi

mn

mo

mtext

mspace

ms

mglyph

3.1.6.2 General Layout Schemata

mrow
mfrac
msqrt
mroot
mstyle
merror
mpadded
mphantom
mfenced
menclose

3.1.6.3 Script and Limit Schemata

msub

msup

msubsup
munder

mover
munderover
mmultiscripts

3.1.64 Tables and Matrices

mtable

mlabeledtr

mtr

mtd

maligngroup andmalignmark

3.1.6.5 Enlivening Expressions

maction

3.2 Token Elements

identifier

number

operator, fence, or separator

text

space

string literal

adding new character glyphs to MathML

group any number of sub-expressions horizontally

form a fraction from two sub-expressions

form a square root (radical without an index)

form a radical with specified index

style change

enclose a syntax error message from a preprocessor

adjust space around content

make content invisible but preserve its size

surround content with a pair of fences

enclose content with a stretching symbol such as a long division sign.

attach a subscript to a base

attach a superscript to a base

attach a subscript-superscript pair to a base
attach an underscript to a base

attach an overscript to a base

attach an underscript-overscript pair to a base
attach prescripts and tensor indices to a base

table or matrix

row in a table or matrix with a label or equation number
row in a table or matrix

one entry in a table or matrix

alignment markers

bind actions to a sub-expression

Token elements in presentation markup are broadly intended to represent the smallest units of mathematical notati
which carry meaning. Tokens are roughly analogous to words in text. However, because of the precise, symbolic n:

43

ture of mathematical notation, the various categories and properties of token elements figure prominently in MathMl
markup. By contrast, in textual data, individual words rarely need to be marked up or styled specially.

Frequently tokens consist of a single character denoting a mathematical symbol. Other cases, e.g. function nam
involve multi-character tokens. Further, because traditional mathematical notation makes wide use of symbols distit
guished by their typographical properties (e.g. a Fraktur 'g’ for a Lie algebra, or a bold 'x’ for a vector), care must be
taken to insure that styling mechanisms respect typographical properties which carry meaning. Consequently, chare
ters, tokens, and typographical properties of symbols are closely related to one another in MathML.

3.2.1 MathML characters in token elements

Character data in MathML markup is only allowed to occur as part of the content of token elements. The only exceptiol
is whitespace between elements, which is ignored. Token elements can contain any sequence of zero or more Unice
characters. In particular, tokens with empty content are allowed, and should typically render invisibly, with no width
except for the normal extra spacing for that kind of token element. The exceptions to this are the empty elemen
mspace andmglyph. Themspace element’s width depends upon its attribute values. dmeyph element renders

using the character described by its attributes.

While all Unicode character data is valid in token element content, MathML 2.0 distinguishes a special subset of name
Unicode 3.2 characters, called MathML characters in this document. The complete list of MathML characters is define
in Chapter6. MathML characters can be either represented directly as Unicode character data, or indirectly via numeri
or character entity references. See Chapter a discussion of the advantages and disadvantages of numeric character
references versus entity references. New mathematics characters that arise, or non-standard glyphs for existing Mathl
characters, may be represented by means aighgph element.

Apart from themglyph element, thenalignmark element is the only other element allowed in the content of tokens.
See SectioR.5.5for details.

Token elements (other thaspace andmglyph) should be rendered as their content (i.e. in the visual case, as a closely-
spaced horizontal row of standard glyphs for the characters in their content). Rendering algorithms should also take in
account the mathematics style attributes as described below, and modify surrounding spacing by rules or attribut
specific to each type of token element.

3.2.1.1 Letter-like symbol characters

A large class of mathematical symbols are single letter identifiers typically used as variable names in formulas. Differer
font variants of a letter are treated as separate symbols. For example, a Fraktur 'g’ might denote a Lie algebra, whi
a Roman 'g’ denotes the corresponding Lie group. These letter-like symbols are traditionally typeset differently thar
the same characters appearing in text, using different spacing and ligature conventions. These characters must alsc
treated specially by style mechanisms, since arbitrary style transformations can change meaning in an expression.

For these reasons, Unicode 3.1 will be adding more than nine hundred Math Alphabet characters corresponding to lett
like symbols. These characters are in the Secondary Multilingual Plane (SMP). See @hapterore information.

As valid Unicode data, these characters are permitted in MathML 2.0, and as tools and fonts for them become wide
available, we anticipate they will be the predominant way of denoting letter-like symboils.

Until support for SMP characters is widely available, however, it is still necessary to provide an alternative encoding
using only Basic Multilingual Plane (BMP) characters together with markup. MathML 2.0 defines a correspondence
between token elements with certain combinations of BMP character data andttheariant attribute and tokens
containing SMP Math Alphabet characters. Processing applications that accept SMP characters are required to treat
corresponding BMP and attribute combinations identically. The next section discussestvariant attribute in

more detail, and a complete technical description of the corresponding characters is given inS2&ion

44

3.2.2 Mathematics style attributes common to token elements

MathML 2.0 introduces four newnathematics style attributes. These attributes are valid on all presentation token
elements exceptspace andmglyph, and on no other elements exceptyle. The attributes are:

Name values default

mathvariant normal | bold | italic | bold-italic | double-struck | bold-fraktur | scriptgrmal €xcept on <mi>)
bold-script | fraktur | sans-serif | bold-sans-serif | sans-serif-italic | sans-
serif-bold-italic | monospace

mathsize small | normal | big | number v-unit inherited
mathcolor #rgb | #rrggbb | html-color-name inherited
mathbackground #rgb | #rrggbb | html-color-name inherited

(See Sectiorz.4.4for terminology and notation used in attribute value descriptions.)

The mathematics style attributes define logical classes of token elements. Each class is intended to correspond fti
collection of typographically-related symbolic tokens that have a meaning within a given math expression, and therefor
need to be visually distinguished and protected from inadvertent document-wide style changes which might change the
meanings.

When MathML rendering takes place in an environment where CSS is available, the mathematics style attributes ce
be viewed as predefined selectors for CSS style rules. See Séctidmnd AppendixG for further discussion and a
sample CSS style sheet. When CSS is not available, it is up to the internal style mechanism of the rendering applicati
to visually distinguish the different logical classes.

At a theoretical level, renderers have a complete freedom in mapping mathematics style attributes to specific rende
ing properties. However, in practice, the mathematics style attribute names and values suggest obvious typographi
properties, and renderers should attempt to respect these natural interpretations as far as possible. For example, it is
sonable to render a token with thethvariant attribute set tsans-serif in Helvetica or Arial. However, rendering

the token in a Times Roman font could be seriously misleading and should be avoided.

A issue arises in that the natural interpretations ofrtliehvariant attribute values only make sense for certain char-
acters. For example, there is no clear cut rendering for a 'fraktur’ alpha, or a 'bold italic’ Kanji character. In general, the
only cases that have a clear interpretation are exactly the ones that correspond to SMP Math Alphabet characters.

Consequently, style sheet authors and application developers are encouraged in the strongest possible terms to res
the obvious typographical interpretation of thethvariant attribute when applied to characters that have SMP Math
Alphabet counterparts. In all other cases, it is up to the renderer to determine what effect, if arytitheriant
attribute will have. For example, a renderer might sensibly choose to display a token with the cionirit@ character

with no SMP counterpart) in bold face font if it has thethvariant attribute set tdbold or to bold-fraktur,

and to display it in a default Roman font if tethvariant attribute is set tdraktur. As this example indicates,
authors should refrain from using thethvariant attribute with characters that do not have SMP counterparts, since
renderings may not be useful or predictable.

Finally, there is a redundancy problem with tieethvariant attribute that must be dealt with as a special case. When
themathvariant attribute is used on amni element containing a single character from the specific ranges of BMP
character data detailed in Secti6r2.3 the resulting rendering will be visually indistinguishable fromreinelement

with no attributes containing the corresponding SMP character. Therefore MathML 2.0 mandates that processing app
cations treat these two representations as equivalent. This is primarily an issue for applications that support searchi
and/or equality testing.

Tokens elements also permid, xref, class andstyle attributes for compatibility with style sheet mechanisms, as
described in Sectiof.4.5 However, some care must be taken when using CSS generally. Using CSS to produce visua
effects that alter the meaning of an equation should be especially avoided, since MathML is used in many non-CS

45

environments. Similarly, care should be taken to insure arbitrary document-wide style transformations do not affec
mathematics expressions in such a way that meaning is altered.

Since MathML expressions are often embedded in a textual data format such as XHTML, the surrounding text an
the MathML must share rendering attributes such as font size, so that the renderings will be compatible in style. Fc
this reason, most attribute values affecting text rendering are inherited from the rendering environment, as shown

the ‘default’ column in the table above. (In cases where the surrounding text and the MathML are being rendered b
separate software, e.g. a browser and a plug-in, it is also important for the rendering environment to provide the MathM
renderer with additional information, such as the baseline position of surrounding text, which is not specified by an
MathML attributes.) Note, however, that MathML 2.0 doesn’t specify the mechanism by which style information is

inherited from the rendering environment. For example, one browser plug-in might choose to rely completely on the
CSS inheritance mechanism and use the fully resolved CSS properties for rendering, while another application mig
only consult a style environment at the root node, and then use its own internal style inheritance rules.

Most MathML renderers will probably want to rely on some degree to additional, internal style processing algorithms. Ir
particular, inheritance of theathvariant attribute does not follow the CSS model. The default value for this attribute

is normal (non-slanted) for all tokens excepi. Formi tokens, the default depends on the number of characters in
tokens’ content. (Theeprecatedontslant attribute also behaves this way.) See Sectiéh3for details.

3.2.2.1 Deprecated style attributes on token elements

The MathML 1.01 style attributes listed below have béeprecatedn MathML 2.0. In rendering environments that
support CSS, it is preferable to use CSS to control the rendering properties corresponding to these attributes. Howe\
as explained above, direct manipulation of these rendering properties by whatever means should usually be avoided.

If both a new mathematics style attribute and conflicting deprecated attributes are given, the new math style attribu
value should be used. For example

<mi fontweight=’bold’ mathvariant=’normal’> a </mi>
should render in a normal weight font, and

<mi fontweight=’bold’ mathvariant=’sans-serif’> a </mi>
should render in a normal weight sans serif font. In the example

<mi fontweight=’bold’ mathvariant=’fraktur’> al </mi>

themathvariant attribute still overridegontweight attribute, even thoughraktur generally shouldn’t be applied
to a’1’ since there is no corresponding SMP letter-like Math Alphabetic character. In the absence of fonts containin
Fraktur digits, this would probably render as a Fraktur 'a’ followed by a Roman "1’ in most renderers.

Atthe same time, the MathML 1.01 attributes still serve a purpose. Since they correspond directly to rendering propertie
needed for mathematics layout, they are very useful for describing MathML layout rules and algorithms. For this reasor
and for backward compatibility, the MathML rendering rules suggested in this chapter continue to be described in term
of the rendering properties described by these MathML 1.01 style attributes.

The deprecated attributes are:

Name values default

fontsize number v-unit inherited

fontweight normal | bold inherited

fontstyle normal | italic normalkefcept on <mi>)
fontfamily string | css-fontfamily inherited

color #rgb | #rrggbb | html-color-name inherited

46

Thefontsize attribute specifies the desired font sizeunit represents a unit of vertical length (see Secfigh4.3.
The most common unit for specifying font sizes in typesettingtigpoints).

If the requested size of the current font is not available, the renderer should approximate it in the manner likely to lea
to the most intelligible, highest quality rendering.

Many MathML elements automatically chanfyentsize in some of their children; see the discussiogefiptlevel
in the section omstyle, Section3.3.4

The value of thefontfamily attribute should be the name of a font that may be available to a MathML renderer,

or information that permits the renderer to select a font in some manner; acceptable values and their meanings ¢
dependent on the specific renderer and rendering environment in use, and are not specified by MathML (but see the n
aboutcss-fontfamily below). (Note that the renderer's mechanism for finding fonts by name may be case-sensitive.)

If the value offontfamily is not recognized by a particular MathML renderer, this should never be interpreted as a
MathML error; rather, the renderer should either use a font that it considers to be a suitable substitute for the request
font, or ignore the attribute and act as if no value had been given.

Note that any use of thontfamily attribute is unlikely to be portable across all MathML renderers. In particular, it
should never be used to try to achieve the effect of a reference to a non-ASCIl MathML character (for example, by usin
a reference to a character in some symbol font that maps ordinary characters to glyphs for non-ASCII characters). As
corollary to this principle, MathML renderers should attempt to always produce intelligible renderings for the MathML
characters listed in Chaptéreven when these characters are not available in the font family indicated. Such a rendering
is always possible - as a last resort, a character can be rendered to appear as an XML-style entity reference using on
the entity names given for the same character in Chapter

The symbolcss-fontfamily refers to a legal value for théont-family property in CSS, which is a comma-
separated list of alternative font family names or generic font types in order of preference, as documented in mor
detail in CSS{LSS]. MathML renderers are encouraged to make use of the CSS syntax for specifying fonts when
this is practical in their rendering environment, even if they do not otherwise support CSS. (See also the subsectic
CSS-compatible attributes within Sectignt.4.3.

3222 Color-related attributes

Themathcolor (and depreciatedolor) attribute controls the color in which the content of tokens is rendered. Addi-
tionally, when inherited fronmstyle or from a MathML expression’s rendering environment, it controls the color of
all other drawing by MathML elements, including the lines or radical signs that can be dranfrby, mtable, or
msqrt.

The values ofmathcolor, color, mathbackground, andbackground can be specified as a string consisting of '#
followed without intervening whitespace by either 1-digit or 2-digit hexadecimal values for the red, green, and blue
components, respectively, of the desired color, with the same number of digits used for each component (or as tl
keyword ‘transparent’ fobackground). The hexadecimal digits are not case-sensitive. The possible 1-digit values
range from O (component not present) to F (component fully present), and the possible 2-digit values range from C
(component not present) to FF (component fully present), with the 1-digit xabeéng equivalent to the 2-digit value

xx (rather tharx0). % x0 would be a more strictly correct notation, but renders terribly in some browsers.

These attributes can also be specified astafl -color-name, which is defined below.

The color syntax described above is a subset of the syntax afother andbackground-color properties of CSS.
Thebackground-color syntax is in turn a subset of the full C®8ckground property syntax, which also permits
specification of (for example) background images with optional repeats. The more general attribute clagreund

is used in MathML to facilitate possible extensions to the attribute’s scope in future versions of MathML.

47

Color values on either attribute can also be specified as@h-color-name, thatis, as one of the color-name keywords
definedin [] (aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver,

teal, white, andyellow). Note that the color name keywords are not case-sensitive, unlike most keywords in MathML
attribute values for compatibility with CSS and HTML.

The suggested MathML visual rendering rules do not define the precise extent of the region whose background
affected by using the&ackground attribute onmstyle, except that, whemstyle's content does not have negative
dimensions and its drawing region is not overlapped by other drawing due to surrounding negative spacing, this regic
should lie behind all the drawing done to render the content afisghg1e, but should not lie behind any of the drawing
done to render surrounding expressions. The effect of overlap of drawing regions caused by negative spacing on t
extent of the region affected by theckground attribute is not defined by these rules.

3.2.3 Identifier (mi)
3.2.3.1 Description

An mi element represents a symbolic name or arbitrary text that should be rendered as an identifier. Identifiers ce
include variables, function names, and symbolic constants.

Not all ‘mathematical identifiers’ are representeddiyelements - for example, subscripted or primed variables should
be represented usimgub ormsup respectively. Conversely, arbitrary text playing the role of a ‘term’ (such as an ellipsis
in a summed series) can be represented using aement, as shown in an example in Secioh6.4

It should be stressed that is a presentation element, and as such, it only indicates that its content should be renderec
as an identifier. In the majority of cases, the contents ofiawill actually represent a mathematical identifier such as

a variable or function name. However, as the preceding paragraph indicates, the correspondence between notations
should render like identifiers and notations that are actually intended to represent mathematical identifiers is not perfe
For an element whose semantics is guaranteed to be that of an identifier, see the descrptiarChfapterd.

3.2.3.2 Attributes

mi elements accept the attributes listed in Sectidgh2 but in one case with a different default value:

Name values default

mathvariant normal | bold | italic | bold-italic | double-struck (Hepends on content; described below)
bold-fraktur | script | bold-script | fraktur | sans-serif
| bold-sans-serif | sans-serif-italic | sans-serif-bold-
italic | monospace

fontstyle @deprecated normal | italic (depends on content; described below)

A typical graphical renderer would render ah element as the characters in its content, with no extra spacing around
the characters (except spacing associated with neighboring elements). Thendefawdiriant andfontstyle would
(typically) benormal (non-slanted) unless the content is a single character, in which case it waitdie:. Note that

this rule formathvariant andfontstyle attributes is specific tai elements; the default value for thethvariant
andfontstyle attributes on other MathML token elementsitsrmal.

Note that for purposes of determining equivalences of Math Alphabet characters (See &&cliand Sectior8.2.1.)
the value of thenathvariant attribute should be resolved first, including the special defaulting behavior described
above.

3.2.3.3 Examples

48

<mi> x </mi>

<mi> D </mi>

<mi> sin </mi>

<mi mathvariant=’script’> L </mi>

<mi></mi>

Anmi element with no content is allowedni></mi> might, for example, be used by an ‘expression editor’ to represent
alocation in a MathML expression which requires a ‘term’ (according to conventional syntax for mathematics) but doe:
not yet contain one.

Identifiers include function names such as ‘sin’. Expressions such ag 'siould be written using theApplyFunc-
tion; operator (which also has the short nafag ;) as shown below; see also the discussion of invisible operators in
Section3.2.5

<mrow>
<mi> sin </mi>
<mo> ⁡ </mo>
<mi> x </mi>

</mrow>

Miscellaneous text that should be treated as a ‘term’ can also be representedibglament, as in:

<mrow>
<mn> 1 </mn>
<mo> + </mo>
<mi> ... </mi>
<mo> + </mo>
<mi> n </mi>
</mrow>

When ammi is used in such exceptional situations, explicitly settingftbetstyle attribute may give better results
than the default behavior of some renderers.

The names of symbolic constants should be representetl@lements:

<mi> π </mi>

<mi> ⅈ </mi>

<mi> ⅇ </mi>

Use of special entity references for such constants can simplify the interpretation of MathML presentation element:
See Chaptes for a complete list of character entity references in MathML.

3.24 Number n)
3.24.1 Description

An mn element represents a ‘numeric literal’ or other data that should be rendered as a numeric literal. Generall
speaking, a numeric literal is a sequence of digits, perhaps including a decimal point, representing an unsigned intec
or real number.

The mathematical concept of a ‘number’ can be quite subtle and involved, depending on the context. As a consequen:
not all mathematical numbers should be represented waingxamples of mathematical numbers that should be repre-
sented differently are shown below, and include complex numbers, ratios of numbers shown as fractions, and names
numeric constants.

49

Conversely, sincen is a presentation element, there are a few situations where it may desirable to include arbitrary
text in the content of amn that should merely render as a numeric literal, even though that content may not be unam-
biguously interpretable as a number according to any particular standard encoding of numbers as character sequen
As a general rule, however, tha element should be reserved for situations where its content is actually intended to
represent a numeric quantity in some fashion. For an element whose semantics are guaranteed to be that of a partic
kind of mathematical number, see the descriptionroin Chapterd.

3.24.2 Attributes
mn elements accept the attributes listed in SecBidh2

A typical graphical renderer would render am element as the characters of its content, with no extra spacing around
them (except spacing from neighboring elements suafiogisUnlike mi, mn elements are (typically) rendered in an
unslanted font by default, regardless of their content.

3.24.3 Examples

<mn> 2 </mn>

<mn> 0.123 </mn>

<mn> 1,000,000 </mn>
<mn> 2.1e10 </mn>
<mn> OxFFEF </mn>
<mn> MCMLXIX </mn>
<mn> twenty one </mn>

3.2.4.4 Numbers that should not be written using mn alone

Many mathematical numbers should be represented using presentation elements othearalwene; this includes
complex numbers, ratios of numbers shown as fractions, and names of numeric constants. Examples of MathML repr
sentations of such numbers include:

<mrow>
<mn> 2 </mn>
<mo> + </mo>
<mrow>
<mn> 3 </mn>
<mo> ⁢ </mo>
<mi> &ImaginaryIl; </mi>
</mrow>
</mrow>
<mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac>
<mi> π </mi>
<mi> ⅇ </mi>

3.25 Operator, Fence, Separator or Accentr(o)
3.2.5.1 Description

An mo element represents an operator or anything that should be rendered as an operator. In general, the notatio
conventions for mathematical operators are quite complicated, and therefore MathML provides a relatively sophisticate

50

mechanism for specifying the rendering behavior omarelement. As a consequence, in MathML the list of things
that should ‘render as an operator’ includes a number of notations that are not mathematical operators in the ording
sense. Besides ordinary operators with infix, prefix, or postfix forms, these include fence characters such as bract
parentheses, and ‘absolute value’ bars, separators such as comma and semicolon, and mathematical accents suct
bar or tilde over a symbol.

The term ‘operator’ as used in the present chapter means any symbol or notation that should render as an operal
and that is therefore representable bynarelement. That is, the term ‘operator’ includes any ordinary operator, fence,
separator, or accent unless otherwise specified or clear from the context.

All such symbols are represented in MathML with elements since they are subject to essentially the same rendering
attributes and rules; subtle distinctions in the rendering of these classes of symbols, when they exist, are supported us
the boolean attributegence, separator andaccent, which can be used to distinguish these cases.

A key feature of theno element is that its default attribute values are set on a case-by-case basis from an ‘operato
dictionary’ as explained below. In particular, default valuestiatce, separator andaccent can usually be found in
the operator dictionary and therefore need not be specified omeagkment.

Note that some mathematical operators are represented nat bements alone, but byo elements ‘embellished’

with (for example) surrounding superscripts; this is further described below. Conversely, as presentation elements,
elements can contain arbitrary text, even when that text has no standard interpretation as an operator; for an example,
the discussion ‘Mixing text and mathematics’ in Sectibf.6 See also Chapterfor definitions of MathML content
elements that are guaranteed to have the semantics of specific mathematical operators.

3.2.5.2 Attributes

mo elements accept the attributes listed in Seclidn2 and the additional attributes listed here. Most attributes get their
default values from the Sectidh2.5.7 as described later in this section. When a dictionary entry is not found for a
givenmo element, the default value shown here in parentheses is used.

Name values default

form prefix | infix | postfix set by position of operator in anow (rule given
below); used witmo content to index operator dic-
tionary

fence true | false set by dictionary (false)

separator true | false set by dictionary (false)

Ispace number h-unit | namedspace set by dictionary (thickmathspace)

rspace number h-unit | namedspace set by dictionary (thickmathspace)

stretchy true | false set by dictionary (false)

symmetric true | false set by dictionary (true)

maxsize number [v-unit | h-unit] | namedspace | infinity ~ set by dictionary (infinity)

minsize number [v-unit | h-unit] | namedspace set by dictionary (1)

largeop true | false set by dictionary (false)

movablelimits true | false set by dictionary (false)

accent true | false set by dictionary (false)

h-unit represents a unit of horizontal length, aneinit represents a unit of vertical length (see Secfioh4.).
namedspace IS One Ofveryverythinmathspace, verythinmathspace, thinmathspace, mediummathspace, thick-
mathspace, verythickmathspace, Or veryverythickmathspace. These values are settable by itayle element
which is discussed in Sectidh3.4 The default values oferyverythinmathspace... veryverythickmathspace
are 1/18em...7/18em, respectively.

If no unit is given withmaxsize Or minsize, the number is a multiplier of the normal size of the operator in the
direction (or directions) in which it stretches. These attributes are further explained below.

51

Typical graphical renderers show abh elements as the characters of their content, with additional spacing around the
element determined from the attributes listed above. Detailed rules for determining operator spacing in visual renderin
are described in a subsection below. As always, MathML does not require a specific rendering, and these rules ¢
provided as suggestions for the convenience of implementors.

Renderers without access to complete fonts for the MathML character set may choose not to redelearent as
precisely the characters in its content in some cases. For exafapbe,≤ </mo> might be rendered as= to a
terminal. However, as a general rule, renderers should attempt to render the contenbaflament as literally as
possible. That isgmo> ≤ </mo> and<mo> &1t;= </mo> should render differently. (The first one should render
as a single character representing a less-than-or-equal-to sign, and the second one as the two-charactee=sequence

3.2.5.3 Examples with ordinary operators

<mo> + </mo>

<mo> < </mo>

<mo> ≤ </mo>

<mo> <= </mo>

<mo> ++ </mo>

<mo> ∑ </mo>

<mo> .NOT. </mo>

<mo> and </mo>

<mo> ⁢ </mo>

<mo mathvariant=’bold’> + </mo>

3.2.5.4 Examples with fences and separators

Note that theno elements in these examples don’t need expfigiice or separator attributes, since these can be found
using the operator dictionary as described below. Some of these examples could also be encodedn&ingdhe
element described in Secti@3.8

(a+h)

<mrow>
<mo> (</mo>
<mrow>
<mi> a </mi>
<mo> + </mo>
<mi> b </mi>
</mrow>
<mo>) </mo>
</mrow>

[0,1)

<mrow>
<mo> [</mo>
<mrow>
<mn> 0 </mn>
<mo> , </mo>
<mn> 1 </mn>

52

</mrow>
<mo>) </mo>
</mrow>

fxy)

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> , </mo>
<mi> y </mi>
</mrow>
<mo>) </mo>
</mrow>
</mrow>

3.2.5.5 Invisible operators

Certain operators that are ‘invisible’ in traditional mathematical notation should be represented using specific entit
references withimo elements, rather than simply by nothing. The entity references used for these ‘invisible operators’
are:

Full name Short name Examples of use
⁢ ⁢ Xy
⁡ ⁡ f(X) sinx
⁣ ⁣ my2

The MathML representations of the examples in the above table are:

<mrow>
<mi> x </mi>
<mo> ⁢ </mo>
<mi> y </mi>

</mrow>

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mi> x </mi>
<mo>) </mo>
</mrow>
</mrow>

<mrow>
<mi> sin </mi>

53

<mo> ⁡ </mo>
<mi> x </mi>
</mrow>

<msub>
<mi> m </mi>
<mrow>
<mn> 1 </mn>
<mo> ⁣ </mo>
<mn> 2 </mn>
</mrow>
</msub>

The reasons for using specifie elements for invisible operators include:

. such operators should often have specific effects on visual rendering (particularly spacing and linebreakin
rules) that are not the same as either the lack of any operator, or spacing represeiipadayor mtext
elements;

. these operators should often have specific audio renderings different than that of the lack of any operator;

° automatic semantic interpretation of MathML presentation elements is made easier by the explicit specifica

tion of such operators.

For example, an audio renderer might rendéx) (represented as in the above examples) by speaking ‘f of x’, but
use the word ‘times’ in its rendering ofy. Although its rendering must still be different depending on the structure

of neighboring elements (sometimes leaving out ‘of’ or ‘times’ entirely), its task is made much easier by the use of ¢
differentmo element for each invisible operator.

3.2.5.6 Names for other special operators

MathML also includesⅆ for use in amo element representing the differential operator symbol usually
denoted by ‘d’. The reasons for explicitly using this special entity are similar to those for using the special entities for
invisible operators described in the preceding section.

3.2.5.7 Detailed rendering rules for mo elements

Typical visual rendering behaviors fas elements are more complex than for the other MathML token elements, so the
rules for rendering them are described in this separate subsection.

Note that, like all rendering rules in MathML, these rules are suggestions rather than requirements. Furthermore, r
attempt is made to specify the rendering completely; rather, enough information is given to make the intended effect «
the various rendering attributes as clear as possible.

The operator dictionary

Many mathematical symbols, such as an integral sign, a plus sign, or a parenthesis, have a well-established, predictal
traditional notational usage. Typically, this usage amounts to certain default attribute valuesements with specific
contents and a specifitorm attribute. Since these defaults vary from symbol to symbol, MathML anticipates that
renderers will have an ‘operator dictionary’ of default attributesrforelements (see Appendi) indexed by each

mo element’s content anglorm attribute. If anmo element is not listed in the dictionary, the default values shown in
parentheses in the table of attributes fiershould be used, since these values are typically acceptable for a generic
operator.

54

Some operators are ‘overloaded’, in the sense that they can occur in more than one form (prefix, infix, or postfix)
with possibly different rendering properties for each form. For example, ‘+’ can be either a prefix or an infix operator.
Typically, a visual renderer would add space around both sides of an infix operator, while only on the left of a prefix
operator. The orm attribute allows specification of which form to use, in case more than one form is possible according
to the operator dictionary and the default value described below is not suitable.

Default value of the form attribute

The form attribute does not usually have to be specified explicitly, since there are effective heuristic rules for inferring
the value of theform attribute from the context. If it is not specified, and there is more than one possible form in the
dictionary for armo element with given content, the renderer should choose which form to use as follows (but see the
exception for embellished operators, described later):

° If the operator is the first argument in anow of length (i.e. number of arguments) greater than one (ignoring
all space-like arguments (see Sectdi.?) in the determination of both the length and the first argument),
the prefix form is used;

. if it is the last argument in anrow of length greater than one (ignoring all space-like arguments), the postfix
form is used;
° in all other cases, including when the operator is not part afrarr, the infix form is used.

Note that these rules make reference torthew in which themo element lies. In some situations, thisow might be
an inferrednrow implicitly present around the arguments of an element suefz@st or mtd.

Opening (left) fences should haterm="prefix", and closing (right) fences should haierm="postfix"; separators are
usually ‘infix’, but not always, depending on their surroundings. As with ordinary operators, these values do not usuall
need to be specified explicitly.

If the operator does not occur in the dictionary with the specified form, the renderer should use one of the forms the
is available there, in the order of preference: infix, postfix, prefix; if no forms are available for thengivelament
content, the renderer should use the defaults given in parentheses in the table of attrilmtes for

Exception for embellished operators

There is one exception to the above rules for choosingcaelement’s defaulform attribute. Anmo element that is
‘embellished’ by one or more nested subscripts, superscripts, surrounding text or whitespace, or style changes beha
differently. It is the embellished operator as a whole (this is defined precisely, below) whose positionriowais
examined by the above rules and whose surrounding spacing is affected by its form, noteleenent at its core;
however, the attributes influencing this surrounding spacing are taken frofio tekement at the core (or from that
element’s dictionary entry).

For example, the ‘# in a+4b should be considered an infix operator as a whole, due to its position in the middle of
anmrow, but its rendering attributes should be taken fromibelement representing the ‘+’, or when those are not
specified explicitly, from the operator dictionary entry fato form="infix"> + </mo>. The precise definition of an
‘embellished operator’ is:

anmo element;
or one of the elementssub, msup, msubsup, munder, mover, munderover, mmultiscripts, mfrac, Or
semantics (Sectiond.2.6, whose first argument exists and is an embellished operator;

° or one of the elemenisstyle, mphantom, Or mpadded, such that amrow containing the same arguments
would be an embellished operator;
or anmaction element whose selected sub-expression exists and is an embellished operator;
or anmrow Whose arguments consist (in any order) of one embellished operator and zero or more space-lik
elements.

55

Note that this definition permits nested embellishment only when there are no intervening enclosing elements not in tt
above list.

The above rules for choosing operator forms and defining embellished operators are chosen so that in all ordinary cas
it will not be necessary for the author to specif§an attribute.

Rationale for definition of embellished operators

The following notes are included as a rationale for certain aspects of the above definitions, but should not be importa
for most users of MathML.

Anmfrac is included as an ‘embellisher’ because of the common notation for a differential operator:

<mfrac>
<mo> ⅆ </mo>
<mrow>
<mo> ⅆ </mo>
<mi> x </mi>
</mrow>
</mfrac>

Since the definition of embellished operator affects the use of the attributes related to stretching, it is important that
includes embellished fences as well as ordinary operators; thus it applies:io algment.

Note that amrow containing a single argument is an embellished operator if and only if its argument is an embellished
operator. This is because anow with a single argument must be equivalent in all respects to that argument alone (as
discussed in Sectiagh 3.1). This means that ato element that is the sole argument ofaew will determine its default

form attribute based on thatrow’s position in a surrounding, perhaps inferradow (if there is one), rather than based

on its own position in therow in which it is the sole argument.

Note that the above definition defines eveky element to be ‘embellished’ - that is, ‘embellished operator’ can be
considered (and implemented in renderers) as a special class of MathML expressions, afonbialspecific case.

Spacing around an operator

The amount of space added around an operator (or embellished operator), when it occursd, @an be directly
specified by thé space andrspace attributes. These values are in ems if no units are given. By convention, operators
that tend to bind tightly to their arguments have smaller values for spacing than operators that tend to bind less tightl
This convention should be followed in the operator dictionary included with a MathML rendergeX]ribiese values

can only be one of three values; typically they are 3/18em, 4/18em, and 5/18em. MathML does not impose this limit.

Some renderers may choose to use no space around most operators appearing within subscripts or superscripts, :
done in BX.

Non-graphical renderers should treat spacing attributes, and other rendering attributes described here, in analogous w
for their rendering medium. For example, more space might translate into a longer pause in an audio rendering.

3.2.5.8 Stretching of operators, fences and accents

Four attributes govern whether and how an operator (perhaps embellished) stretches so that it matches the size of ot
elementsistretchy, symmetric, maxsize, andminsize. If an operator has the attributgretchy=true, then it
(that is, each character in its content) obeys the stretching rules listed below, given the constraints imposed by the for

56

and font rendering system. In practice, typical renderers will only be able to stretch a small set of characters, and qui
possibly will only be able to generate a discrete set of character sizes.

There is no provision in MathML for specifying in which direction (horizontal or vertical) to stretch a specific character
or operator; rather, whestretchy=true it should be stretched in each direction for which stretching is possible. It is
up to the renderer to know in which directions it is able to stretch each character. (Most characters can be stretched in
most one direction by typical renderers, but some renderers may be able to stretch certain characters, such as diagc
arrows, in both directions independently.)

Theminsize andmaxsize attributes limit the amount of stretching (in either direction). These two attributes are given
as multipliers of the operator’'s normal size in the direction or directions of stretching, or as absolute sizes using unit:
For example, if a character hasxsize="3", then it can grow to be no more than three times its normal (unstretched)
size.

Thesymmetric attribute governs whether the height and depth above and beloxxithef the character are forced to

be equal (by forcing both height and depth to become the maximum of the two). An example of a situation where on
might setsymmetric=false arises with parentheses around a matrix not aligned on the axis, which frequently occurs
when multiplying non-square matrices. In this case, one wants the parentheses to stretch to cover the matrix, where
stretching the parentheses symmetrically would cause them to protrude beyond one edge of the magrixeftie c
attribute only applies to characters that stretch vertically (otherwise it is ignored).

If a stretchymo element is embellished (as defined earlier in this section)néhelement at its core is stretched to a
size based on the context of the embellished operator as a whole, i.e. to the same size as if the embellishments w
not present. For example, the parentheses in the following example (which would typically be set to be stretchy by th
operator dictionary) will be stretched to the same size as each other, and the same size they would have if they were |
underlined and overlined, and furthermore will cover the same vertical interval:

<mrow>
<munder>
<mo> (</mo>
<mo> _ </mo>
</munder>
<mfrac>
<mi> a </mi>
<mi> b </mi>
</mfrac>
<mover>
<mo>) </mo>
<mo> ‾ </mo>
</mover>
</mrow>

Note that this means that the stretching rules given below must refer to the context of the embellished operator as
whole, not just to thao element itself.

Example of stretchy attributes

This shows one way to set the maximum size of a parenthesis so that it does not grow, even though its default value
stretchy=true.

<mrow>
<mo maxsize="1"> (</mo>

57

<mfrac>
<mi> a </mi> <mi> b </mi>
</mfrac>
<mo maxsize="1">) </mo>
</mrow>

The above should render &%) as opposed to the default renderi(r@.

Note that each parenthesis is sized independently; if only one of themndiad ze="1", they would render with
different sizes.

Vertical Stretching Rules

° If a stretchy operator is a direct sub-expression afiasw element, or is the sole direct sub-expression of an
mtd element in some row of a table, then it should stretch to cover the height and depth (above and belov
the axis) of the non-stretchy direct sub-expressions inidftew element or table row, unless stretching is
constrained byiinsize Or maxsize attributes.

In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its cor
If symmetric=true, then the maximum of the height and depth is used to determine the size, before appli-
cation of theminsize Ormaxsize attributes.

. The preceding rules also apply in situations wherentties element is inferred.

Most common opening and closing fences are defined in the operator dictionary to stretch by default; and they stret
vertically. Also, operators such ∑, ∫, /, and vertical arrows stretch vertically by default.

In the case of a stretchy operator in a table cell (i.e. withim&dh element), the above rules assume each cell of the
table row containing the stretchy operator covers exactly one row. (Equivalently, the valuerofithyen attribute is
assumed to be 1 for all the table cells in the table row, including the cell containing the operator.) When this is not the
case, the operator should only be stretched vertically to cover those table cells that are entirely within the set of tab
rows that the operator’s cell covers. Table cells that extend into rows not covered by the stretchy operator’s table ce
should be ignored. See Sectidrb.4.2for details about theowspan attribute.

Horizontal Stretching Rules

° If a stretchy operator, or an embellished stretchy operator, is a direct sub-expressiamatian, mover,
or munderover element, or if it is the sole direct sub-expression ofnad element in some column of a
table (seatable), then it, or themo element at its core, should stretch to cover the width of the other direct
sub-expressions in the given element (or in the same table column), given the constraints mentioned above

. If a stretchy operator is a direct sub-expression ofiander, mover, Or munderover element, or if it is
the sole direct sub-expression of mtd element in some column of a table, then it should stretch to cover
the width of the other direct sub-expressions in the given element (or in the same table column), given the
constraints mentioned above.

° In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its cor

By default, most horizontal arrows and some accents stretch horizontally.

In the case of a stretchy operator in a table cell (i.e. withim&d element), the above rules assume each cell of the
table column containing the stretchy operator covers exactly one column. (Equivalently, the value dfituespan
attribute is assumed to be 1 for all the table cells in the table row, including the cell containing the operator.) Wher
this is not the case, the operator should only be stretched horizontally to cover those table cells that are entirely with
the set of table columns that the operator’s cell covers. Table cells that extend into columns not covered by the stretcl
operator’s table cell should be ignored. See Se@ién.2for details about theowspan attribute.

58

The rules for horizontal stretching included elements to allow arrows to stretch for use in commutative diagrams
laid out usingntable. The rules for the horizontal stretchiness include scripts to make examples such as the following
work:

<mrow>
<mi> x </mi>
<munder>
<mo> → </mo>
<mtext> maps to </mtext>
</munder>
<mi> y </mi>
</mrow>

This displays ag W) y.

Rules Common to both Vertical and Horizontal Stretching

If a stretchy operator is not required to stretch (i.e. if it is not in one of the locations mentioned above, or if there are nc
other expressions whose size it should stretch to match), then it has the standard (unstretched) size determined by
font and current fontsize.

If a stretchy operator is required to stretch, but all other expressions in the containing element (as described above) «
also stretchy, all elements that can stretch should grow to the maximum of the normal unstretched sizes of all elemer
in the containing object, if they can grow that large. If the valugifsize or maxsize prevents this then that (min or

max) size is used.

For example, in amrow containing nothing but vertically stretchy operators, each of the operators should stretch to the
maximum of all of their normal unstretched sizes, provided no other attributes are set that override this behavior. C
course, limitations in fonts or font rendering may result in the final, stretched sizes being only approximately the same

3.2.5.9 Other attributes of mo

The largeop attribute specifies whether the operator should be drawn larger than nordabifaystyle=true in

the current rendering environment. This roughly correspondgXts \displaystyle style setting. MathML uses
two attributesdisplaystyle andscriptlevel, to control orthogonal presentation features th@f €ncodes into
one ‘style’ attribute with value§displaystyle, \textstyle, \scriptstyle, and\scriptscriptstyle. These
attributes are discussed further in Sectio®4describing thestyle element. Note that these attributes can be specified
directly on amnstyle element’s start tag, but not on most other elements. Examples of large operators éiclugle
and∏.

Themovablelimits attribute specifies whether underscripts and overscripts attached taotleiement should be
drawn as subscripts and superscripts whesplaystyle=false. movablelimits=false means that underscripts

and overscripts should never be drawn as subscripts and superscripts. In gerglalystyle is true for displayed
mathematics andalse for inline mathematics. Alsodisplaystyle is false by default within tables, scripts and
fractions, and a few other exceptional situations detailed in Se8tibd Thus, operators withovablelimits=true

will display with limits (i.e. underscripts and overscripts) in displayed mathematics, and with subscripts and superscript
in inline mathematics, tables, scripts and so on. Examples of operators that typicallydhav@elimits=true are

sum, prod, andlim.

The accent attribute determines whether this operator should be treated by default as an accent (diacritical mark
when used as an underscript or overscript; s@gder, mover, andmunderover (Section3.4.4 Section3.4.5and
Section3.4.9.

59

The separator attribute may affect automatic linebreaking in renderers that position ordinary infix operators at the
beginnings of broken lines rather than at the ends (that is, which avoid linebreaking just after such operators), sinc
linebreaking should be avoided just before separators, but is acceptable just after them.

The fence attribute has no effect in the suggested visual rendering rules given here; it is not needed for properly
rendering traditional notation using these rules. It is provided so that specific MathML renderers, especially non-visue
renderers, have the option of using this information.

3.2.6 Text @text)
3.2.6.1 Description

An mtext element is used to represent arbitrary text that should be rendered as itself. In generadxthelement is
intended to denote commentary text.

Note that some text with a clearly defined notational role might be more appropriately marked upiusing; this
is discussed further below.

An mtext element can be used to contain ‘renderable whitespace’, i.e. invisible characters that are intended to alter tt
positioning of surrounding elements. In non-graphical media, such characters are intended to have an analogous effe
such as introducing positive or negative time delays or affecting rhythm in an audio renderer. This is not related to an
whitespace in the source MathML consisting of blanks, newlines, tabs, or carriage returns; whitespace present direc
in the source is trimmed and collapsed, as described in Settof Whitespace that is intended to be rendered as part

of an element’s content must be represented by entity refereneepate elements (unless it consists only of single
blanks between non-whitespace characters).

Renderable whitespace can have a positive or negative widthg@kinSpace; and​, Or zero
width, as inkZeroWidthSpace ;. The complete list of such characters is given in Chaftdiote that there is no formal
distinction in MathML between renderable whitespace characters and any other class of charactexs, ar in any
other element.

Renderable whitespace can also include characters that affect alignment or linebreaking. Some of these characters ¢

Entity name Purpose (rough description)

&Newlineg; start a new line and do not indent

&IndentingNewLine; start a new line and do indent

⁠ do not allow a linebreak here

&GoodBreak; if a linebreak is needed on the line, here is a good spot
&BadBreak; if a linebreak is needed on the line, try to avoid breaking here

For the complete list of MathML entities, consult Chagier

3.2.6.2 Attributes
mtext elements accept the attributes listed in Sectiéh2

See also the warnings about the legal grouping of ‘space-like elements’ in S8@iGnand about the use of such
elements for ‘tweaking’ or conveying meaning in Secti8.a

3.2.6.3 Examples

<mtext> Theorem 1: </mtext>

<mtext>   </mtext>

<mtext>      </mtext>
<mtext> /* a comment */ </mtext>

60

3.2.6.4 Mixing text and mathematics

In some cases, text embedded in mathematics could be more appropriately represented owsingelements. For
example, the expression ‘there exidts 0 such thaff (x) <1’ is equivalenttald > 0> f(x) < 1 and could be represented
as:

<mrow>
<mo> there exists </mo>
<mrow>
<mrow>
<mi> δ </mi>
<mo> > </mo>
<mn> 0 </mn>
</mrow>
<mo> such that </mo>
<mrow>
<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mi> x </mi>
<mo>) </mo>
</mrow>
</mrow>
<mo> < </mo>
<mn> 1 </mn>
</mrow>
</mrow>
</mrow>

An example involving ami element isx+x2+---+x". In this example, ellipsis should be represented usingiaement,

since it takes the place of a term in the sum (see Se&tdR mi).

On the other hand, expository text within MathML is best represented wittt exit element. An example of this is:
Theorem 1: ifx > 1, thenx? > x.

However, when MathML is embedded in HTML, or another document markup language, the example is probably bes
rendered with only the two inequalities represented as MathML at all, letting the text be part of the surrounding HTML.

Another factor to consider in deciding how to mark up text is the effect on rendering. Text enclosetbiglament is
unlikely to be found in a renderer’s operator dictionary, so it will be rendered with the format and spacing appropriate
for an ‘unrecognized operator’, which may or may not be better than the format and spacing for ‘text’ obtained by usinc
anmtext element. An ellipsis entity in ani element is apt to be spaced more appropriately for taking the place of a
term within a series than if it appeared inmtext element.

3.2.7 Spacern{space)

3.2.7.1 Description

An mspace empty element represents a blank space of any desired size, as set by its attributes. It can also be used
make linebreaking suggestions to a visual renderer. Note that the default values for attributes have been chosen so 1

61

they typically will have no effect on rendering. Thus, hepace element is generally used with one or more attribute
values explicitly specified.

3.2.7.2 Attributes

In addition to the attributes listed belongpace permitsid, xref, class andstyle attributes, as described in Sec-
tion2.4.5

Name values default
width number h-unit | namedspace Oem
height number v-unit Oex
depth number v-unit Oex
linebreak auto | newline | indentingnewline | nobreak | goodbreak | badbreak auto

h-unit andv-unit represent units of horizontal or vertical length, respectively (see Settiof.).

The linebreak attribute is used to give a linebreaking hint to a visual renderer. The default vatue ds which
indicates that a renderer should use whatever default linebreaking algorithm it would normally use. The meaning of th
other possible values for thanebreak attribute are described above in the discussion on renderable whitespace in the
mtext element. See Sectidh2.6for detalils.

In the case when both dimensional attributes and a linebreaking attribute are set, the linebreaking attribute is ignored

Note the warning about the legal grouping of ‘space-like elements’ given below, and the warning about the use ©
such elements for ‘tweaking’ or conveying meaning in Sec8dha See also the other elements that can render as
whitespace, namelytext, mphantom, andmaligngroup.

3.2.7.3 Definition of space-like elements

A number of MathML presentation elements are ‘space-like’ in the sense that they typically render as whitespace, ar
do not affect the mathematical meaning of the expressions in which they appear. As a consequence, these elements o
function in somewhat exceptional ways in other MathML expressions. For example, space-like elements are handle
specially in the suggested rendering rulesfoegiven in SectiorB.2.5 The following MathML elements are defined to

be ‘space-like’:

anmtext, mspace, maligngroup, Ormalignmark element;

anmstyle, mphantom, Ormpadded element, all of whose direct sub-expressions are space-like;

anmaction element whose selected sub-expression exists and is space-like;

anmrow all of whose direct sub-expressions are space-like.

Note that amphantom is not automatically defined to be space-like, unless its content is space-like. This is because
operator spacing is affected by whether adjacent elements are space-like. Sinpadireom element is primarily
intended as an aid in aligning expressions, operators adjacenhithantom should behave as if they were adjacent to

the contents of themphantom, rather than to an equivalently sized area of whitespace.

3.2.74 Legal grouping of space-like elements

Authors who insert space-like elementsmphantom elements into an existing MathML expression should note that
such elementare counted as arguments, in elements that require a specific number of arguments, or that interpre
different argument positions differently.

Therefore, space-like elements inserted into such a MathML element should be grouped with a neighboring argume
of that element by introducing airow for that purpose. For example, to allow for vertical alignment on the right edge
of the base of a superscript, the expression

62

<msup>
<mi> x </mi>
<malignmark edge="right"/>
<mn> 2 </mn>

</msup>

is illegal, becausasup must have exactly 2 arguments; the correct expression would be:

<msup>
<mrow>
<mi> x </mi>
<malignmark edge="right"/>
</mrow>
<mn> 2 </mn>
</msup>

See also the warning about ‘tweaking’ in Sectif.a

3.2.8 String Literal (ms)
3.2.8.1 Description

Thems element is used to represent ‘string literals’ in expressions meant to be interpreted by computer algebra syster
or other systems containing ‘programming languages’. By default, string literals are displayed surrounded by doubl
guotes. As explained in Secti@n?2.§ ordinary text embedded in a mathematical expression should be marked up with
mtext, Or in some caseaso Or mi, but never withms.

Note that the string literals encoded lay are ‘Unicode strings’ rather than ‘ASCII strings’. In practice, non-ASCII
characters will typically be represented by entity references. For exarpiegamp</ms> represents a string literal
containing a single charactét, and<ms>& ; amp ; </ms> represents a string literal containing 5 characters, the first
one of which is.

Like all token elementsys does trim and collapse whitespace in its content according to the rules of Sectidinso
whitespace intended to remain in the content should be encoded as described in that section.

3.2.8.2 Attributes

ms elements accept the attributes listed in Secliéh?, and additionally:

Name values default
Iquote string "
rquote string "

In visual renderers, the content of aa element is typically rendered with no extra spacing added around the string,
and a quote character at the beginning and the end of the string. By default, the left and right quote characters are b
the standard double quote characiguot ;. However, these characters can be changed withdhete andrquote
attributes respectively.

The content ofs elements should be rendered with visible ‘escaping’ of certain characters in the content, including
at least ‘double quote’ itself, and preferably whitespace other than individual space characters. The intent is for th
viewer to see that the expression is a string literal, and to see exactly which characters form its content. For exampl

<ms>double quote is "</ms> might be rendered as "double quote is \"".

63

3.2.9 Adding new character glyphs to MathML (mglyph)
3.2.9.1 Description

Unicode defines a large number of characters used in mathematics, and in most cases, glyphs representing these ¢
acters are widely available in a variety of fonts. Although these characters should meet almost all users needs, MathM
recognizes that mathematics is not static and that new characters are added when convenient. Characters that bec
well accepted will likely be eventually incorporated by the Unicode Consortium or other standards bodies, but tha
is often a lengthy process. In the meantime, a mechanism is necessary for accessing glyphs from non-standard fo
representing these characters.

Themglyph element is the means by which users can directly access glyphs for characters that are not defined t
Unicode, or not known to the renderer. Similarly, thelyph element can also be used to select glyph variants for
existing Unicode characters, as might be desirable when a glyph variant has begun to differentiate itself as a ne
character by taking on a distinguished mathematical meaning.

The mglyph element names a specific character glyph, and is valid inside any MathML leaf content listed in Sec-
tion 3.1.6(mi, etc.) or Sectiod.2.2(c1, etc.) unless otherwise restricted by an attribute (gage=2 to<cn>). In order

for a visually-oriented renderer to render the character, the renderer must be told what font to use and what index with
that font to use.

3.2.9.2 Attributes

mglyph elements accept the attributes listed in Sectidh2 and the additional attributes listed here.

Name values default
alt string required
fontfamily string | css-fontfamily required
index integer required

The alt attribute provides an alternate name for the glyph. If the specified font can’t be found, the renderer may ust
this name in a warning message or some unknown glyph notation. The name might also be used by an audio renderel
symbol processing system and should be chosen to be descriptivéodtitamily andindex uniquely identify the
mglyph; two mglyphs with the same values fdontfamily andindex should be considered identical by applications
that must determine whether two characters/glyphs are identicalaTihattribute should not be part of the identity

test.

Thefontfamily andindex attributes name a font and position within that font. All font properties apart from -
family are inherited. Variants of the font (e.g., bold) that may be inherited may be ignored if the variant of the font is
not present.

Authors should be aware that rendering requires the fonts referenaggl pyh, which the MathML renderer may not
have access to or may be not be supported by the system on which the renderer runs. For these reasons, authors
encouraged to usgglyph only when absolutely necessary, and not for stylistic purposes.

3.2.9.3 Example

The following example illustrates how a researcher might useghgph construct with an experimental font to work
with braid group notation.

<mrow>
<mi><mglyph fontfamily="my-braid-font" index="2" alt="23braid"/></mi>
<mo>+</mo>

64

<mi><mglyph fontfamily="my-braid-font" index="5" alt="132braid"/></mi>

<mo>=</mo>

<mi><mglyph fontfamily="my-braid-font" index="3" alt="13braid"/></mi>
</mrow>

This might render as:

3.3 General Layout Schemata

Besides tokens there are several families of MathML presentation elements. One family of elements deals with variol
‘scripting’ notations, such as subscript and superscript. Another family is concerned with matrices and tables. Th
remainder of the elements, discussed in this section, describe other basic notations such as fractions and radicals
deal with general functions such as setting style properties and error handling.

331 Horizontally Group Sub-Expressionsfirow)
3.3.1.1 Description

An mrow element is used to group together any number of sub-expressions, usually consisting of one @6 more
elements acting as ‘operators’ on one or more other expressions that are their ‘operands’.

Several elements automatically treat their arguments as if they were containedriowa@lement. See the discussion
of inferredmrows in Sectior.1.3 See alsmfenced (Section3.3.8, which can effectively form amrow containing its
arguments separated by commas.

3.3.1.2 Attributes
This element only permitsd, xref, class andstyle attributes, as described in Sectipd .5

mrow elements are typically rendered visually as a horizontal row of their arguments, left to right in the order in which
the arguments occur, or audibly as a sequence of renderings of the arguments. The description irB 2egtibn
suggested rendering rules fas elements assumes that all horizontal spacing between operators and their operands i
added by the rendering @b elements (or, more generally, embellished operators), not by the renderingmafotire

they are contained in.

MathML is designed to allow renderers to automaticadihebreak expressions (that is, to break excessively long ex-
pressions into several lines), without requiring authors to specify explicitly how this should be done. This is becaus:
linebreaking positions can’'t be chosen well without knowing the width of the display device and the current font size,
which for many uses of MathML will not be known except by the renderer at the time of each rendering.

Determining good positions for linebreaks is complex, and rules for this are not described here; whether and how
is done is up to each MathML renderer. Typically, linebreaking will involve selection of ‘good’ points for insertion of
linebreaks between successive argumenig o elements.

Although MathML does not require linebreaking or specify a particular linebreaking algorithm, it has several features
designed to allow such algorithms to produce good results. These include the use of special entities for certain operatc
including invisible operators (see Secti8r.9, or for providing hints related to linebreaking when necessary (see
Section3.2.6, and the ability to use nestedtows to describe sub-expression structure (see below).

65

mrow of one argument

MathML renderers are required to treatatow element containing exactly one argument as equivalent in all ways to the
single argument occurring alone, provided there are no attributes amrdlveslement’s start tag. If there are attributes

on themrow element’s start tag, no requirement of equivalence is imposed. This equivalence condition is intended t
simplify the implementation of MathML-generating software such as template-based authoring tools. It directly affects
the definitions of embellished operator and space-like element and the rules for determining the default value of th
form attribute of amo element; see Sectidh2.5and SectiorB.2.7. See also the discussion of equivalence of MathML
expressions in Chaptér

3.3.1.3 Proper grouping of sub-expressions using mrow

Sub-expressions should be grouped by the document author in the same way as they are grouped in the mathemat
interpretation of the expression; that is, according to the underlying ‘syntax tree’ of the expression. Specifically, opere
tors and their mathematical arguments should occur in a single; more than one operator should occur directly in
onemrow only when they can be considered (in a syntactic sense) to act together on the interleaved arguments, e.g. 1
a single parenthesized term and its parentheses, for chains of relational operators, or for sequences of terms separ
by + and-. A precise rule is given below.

Proper grouping has several purposes: it improves display by possibly affecting spacing; it allows for more intelligen
linebreaking and indentation; and it simplifies possible semantic interpretation of presentation elements by comput
algebra systems, and audio renderers.

Although improper grouping will sometimes result in suboptimal renderings, and will often make interpretation other
than pure visual rendering difficult or impossible, any grouping of expressionsmsigs allowed in MathML syntax;
that is, renderers should not assume the rules for proper grouping will be followed.

Precise rule for proper grouping

A precise rule for when and how to nest sub-expressions usiog is especially desirable when generating MathML
automatically by conversion from other formats for displayed mathematics, sugXaw/fich don't always specify
how sub-expressions nest. When a precise rule for grouping is desired, the following rule should be used:

Two adjacent operators (o elements, possibly embellished), possibly separated by operands (i.e. anything other thar
operators), should occur in the saamsow only when the left operator has an infix or prefix form (perhaps inferred),
the right operator has an infix or postfix form, and the operators are listed in the same group of entries in the operat
dictionary provided in Appendik. In all other cases, nestadows should be used.

When forming a nestedlrow (during generation of MathML) that includes just one of two successive operators with the
forms mentioned above (which mean that either operator could in principle act on the intervening operand or operand:
it is necessary to decide which operator acts on those operands directly (or would do so, if they were present). Ideall
this should be determined from the original expression; for example, in conversion from an operator-precedence-bas
format, it would be the operator with the higher precedence. If this cannot be determined directly from the original
expression, the operator that occurs later in the suggested operator dictionary (Appesatixoe assumed to have a
higher precedence for this purpose.

Note that the above rule has no effect on whether any MathML expression is valid, only on the recommended way ¢
generating MathML from other formats for displayed mathematics or directly from written notation.

(Some of the terminology used in stating the above rule in defined in Sextidn)

66

3.3.1.4 Examples

As an example, 2ty-z should be written as:

<mrow>
<mrow>
<mn> 2 </mn>
<mo> ⁢ </mo>
<mi> x </mi>
</mrow>
<mo> + </mo>
<mi> y </mi>
<mo> - </mo>
<mi> z </mi>
</mrow>

The proper encoding ok{(y) furnishes a less obvious example of nestirgws:

<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> , </mo>
<mi> y </mi>
</mrow>
<mo>) </mo>
</mrow>

In this case, a nestetkow is required inside the parentheses, since parentheses and commas, thought of as fence ai
separator ‘operators’, do not act together on their arguments.

3.3.2 Fractions fifrac)
3.3.2.1 Description

Themfrac elementis used for fractions. It can also be used to mark up fraction-like objects such as binomial coefficient:
and Legendre symbols. The syntax fdirac is

<mfrac> numerator denominator </mfrac>

3.3.2.2 Attributes of mfrac

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
linethickness number [v-unit] | thin | medium | thick 1 (rule thickness)
numalign left | center | right center
denomalign left | center | right center

bevelled true | false false

67

Thelinethickness attribute indicates the thickness of the horizontal ‘fraction bar’, or ‘rule’, typically used to render
fractions. A fraction withLinethickness="0" renders without the bar, and might be used within binomial coefficients.
A linethickness greater than one might be used with nested fractions. These cases are shown below:

a a

(6) B

[

d
In general, the value dfinethickness can be a number, as a multiplier of the default thickness of the fraction bar

(the default thickness is not specified by MathML), or a number with a unit of vertical length (see Sedétibg), or
one of the keywordaedium (same as 1)thin (thinner than 1, otherwise up to the renderer);iotck (thicker than 1,
otherwise up to the renderer).

The numalign anddenomalign attributes control the horizontal alignment of the numerator and denominator re-
spectively. Typically, numerators and denominators are centered, but a very long numerator or denominator might k
displayed on several lines and a left alignment might be more appropriate for displaying them.

Thebevelled attribute determines whether the fraction is displayed with the numerator above the denominator sep
arated by a horizontal line or whether a diagonal line is used to separate a slightly raised numerator from a slightl
lowered denominator. The latter form corresponds to the attribute value heirgand provides for a more compact
form for simple numerator and denominators. An example illustrating the bevelled form is show below:

1 1
N X3+ %

Themfrac element setdisplaystyle to false, or if it was already false incremenigriptlevel by 1, within
numerator anddenominator. These attributes are inherited by every element from its rendering environment, but can be
set explicitly only on thenstyle element. (See Sectidh3.4)

3.3.2.3 Examples

The examples shown above can be represented in MathML as:

<mrow>
<mo> (</mo>
<mfrac linethickness="0">
<mi> a </mi>
<mi> b </mi>
</mfrac>
<mo>) </mo>
</mrow>
<mfrac linethickness="2">
<mfrac>
<mi> a </mi>
<mi> b </mi>
</mfrac>
<mfrac>
<mi> ¢ </mi>
<mi> d </mi>
</mfrac>
</mfrac>

<mfrac>
<mn> 1 </mn>

68

<mrow>
<msup>
<mi> x </mi>
<mn> 3 </mn>
</msup>
<mo> + </mo>
<mfrac>
<mi> x </mi>
<mn> 3 </mn>
</mfrac>
</mrow>
</mfrac>
<mo> = </mo>
<mfrac bevelled="true">
<mn> 1 </mn>
<mrow>
<msup>
<mi> x </mi>
<mn> 3 </mn>
</msup>
<mo> + </mo>
<mfrac>
<mi> x </mi>
<mn> 3 </mn>
</mfrac>
</mrow>
</mfrac>

A more generic example is:

<mfrac>
<mrow>
<mn> 1 </mn>
<mo> + </mo>
<msqrt>
<mn> 5 </mn>
</msqrt>
</mrow>
<mn> 2 </mn>
</mfrac>

3.3.3 Radicals fisqrt, mroot)
3.3.3.1 Description

These elements construct radicals. Thgrt element is used for square roots, whiletheot elementis used to draw
radicals with indices, e.g. a cube root. The syntax for these elements is:

<msqrt> base </msqrt>
<mroot> base index </mroot>

69

Themroot element requires exactly 2 arguments. Howewggrt accepts any number of arguments; if this number is
not 1, its contents are treated as a single ‘infetresk’ containing its arguments, as described in Secldn3

3.3.3.2 Attributes
This element only permitsd, xref, class andstyle attributes, as described in Sectidd.5

Themroot element incrementscriptlevel by 2, and setdisplaystyle to false, within index, but leaves both
attributes unchanged withitase. Themsqrt element leaves both attributes unchanged within all its arguments. These
attributes are inherited by every element from its rendering environment, but can be set explicitly nstyda. (See
Section3.3.4)

3.34 Style Changer{style)
3.3.4.1 Description

Themstyle element is used to make style changes that affect the rendering of its comtarnytse can be given any
attribute accepted by any MathML presentation element provided that the attribute value is inherited, computed or hz
a default value; presentation element attributes whose values are required are not acceptedtyl thelement. In
additionmstyle can also be given certain special attributes listed below.

Themstyle element accepts any number of arguments. If this number is not 1, its contents are treated as a sing
‘inferredmrow’ formed from all its arguments, as described in Sec8dn3

Loosely speaking, the effect of thestyle element is to change the default value of an attribute for the elements it
contains. Style changes work in one of several ways, depending on the way in which default values are specified for
attribute. The cases are:

. Some attributes, such @dsplaystyle or scriptlevel (explained below), are inherited from the sur-
rounding context when they are not explicitly set. Specifying such an attribute natgne element sets
the value that will be inherited by its child elements. Unless a child element overrides this inherited value, it
will pass it on to its children, and they will pass it to their children, and so on. But if a child element does
override it, either by an explicit attribute setting or automatically (as is commasciaiptlevel), the new
(overriding) value will be passed on to that element’s children, and then to their children, etc, until it is again
overridden.

° Other attributes, such dsinethickness onmfrac, have default values that are not normally inherited.
That is, if thelinethickness attribute is not set on the start tag ofmfrac element, it will normally use
the default value of, even if it was contained in a largefrac element that set this attribute to a different
value. For attributes like this, specifying a value withmstyle element has the effect of changing the
default value for all elements within its scope. The net effect is that setting the attribute valueswvgthe
propagates the change to all the elements it contains directly or indirectly, except for the individual element:
on which the value is overridden. Unlike in the case of inherited attributes, elements that explicitly override
this attribute have no effect on this attribute’s value in their children.

° Another group of attributes, such asretchy andform, are computed from operator dictionary informa-
tion, position in the enclosingrow, and other similar data. For these attributes, a value specified by an
enclosingnstyle overrides the value that would normally be computed.

Note that attribute values inherited fromasityle in any manner affect a given element in thetyle’s content only

if that attribute is not given a value in that element’s start tag. On any element for which the attribute is set explicitly,
the value specified on the start tag overrides the inherited value. The only exception to this rule is when the value give
on the start tag is documented as specifying an incremental change to the value inherited from that element’s context
rendering environment.

70

Note also that the difference between inherited and non-inherited attributessetfiy, explained above, only matters
when the attribute is set on some element withintheyle’s contents that has children also setting it. Thus it never
matters for attributes, such aslor, which can only be set on token elements (omenyle itself).

There is one exceptional elemenpadded, whose attributes cannot be set witkityle. Thempadded element shares
several attribute names with tlhepace andmo elements. Thus, when the attributesith, height anddepth are spec-
ified on ammstyle element, they apply only to thespace element, and not the corresponding attributespaidded.
Similarly, whenlspace is set withmstyle, it applies only to theno element.

3.34.2 Attributes

As stated aboveystyle accepts all attributes of all MathML presentation elements which do not have required values.
That is, all attributes which have an explicit default value or a default value which is inherited or computed are accepte
by themstyle element.

This element also accepid, xref, class andstyle attributes, as described in Sectidd.5

Additionally, mstyle can be given the following special attributes that are implicitly inherited by every MathML ele-
ment as part of its rendering environment:

Name values default
scriptlevel [+’ | -] unsigned-integer inherited
displaystyle true | false inherited
scriptsizemultiplier number 0.71
scriptminsize number v-unit 8pt

color #rgb | #rrggbb | html-color-name inherited
background #rgb | #rrggbb | transparent | html-color-name transparent
veryverythinmathspace number h-unit 0.0555556em
verythinmathspace number h-unit 0.111111em
thinmathspace number h-unit 0.166667em
mediummathspace number h-unit 0.222222em
thickmathspace number h-unit 0.277778em
verythickmathspace number h-unit 0.333333em
veryverythickmathspace number h-unit 0.388889%em

scriptlevel and displaystyle

MathML uses two attributesiisplaystyle andscriptlevel, to control orthogonal presentation features th2¢ T
encodes into ongtyle attribute with values \displaystyle, \textstyle, \scriptstyle, and \scriptscriptstyle. The correspond-
ing values odisplaystyle andscriptlevel for those EX styles would becrue ando, false and0, false and1,
andfalse and2, respectively.

The main effect of theisplaystyle attribute is that it determines the effect of other attributes such aa#peop and
movablescripts attributes ofmo. The main effect of thecriptlevel attribute is to control the font size. Typically,

the higher thecriptlevel, the smaller the font size. (Non-visual renderers can respond to the font size in an analogous
way for their medium.) More sophisticated renderers may also choose to use these attributes in other ways, such
rendering expressions withisplaystyle=false in a more vertically compressed manner.

These attributes are given initial values for the outermost expression of an instance of MathML based on its renderir
environment. A short list of layout schemata described below modify these values for some of their sub-expression
Otherwise, values are determined by inheritance whenever they are not directly specified on a given element’s start t

For an instance of MathML embedded in a textual data format (such as HTML) in ‘display’ mode, i.e. in place of a
paragraphdisplaystyle = true andscriptlevel = 0 for the outermost expression of the embedded MathML; if

71

the MathML is embedded in ‘inline’ mode, i.e. in place of a charaetegplaystyle = false andscriptlevel =

0 for the outermost expression. See Chaptéor further discussion of the distinction between ‘display’ and ‘inline’
embedding of MathML and how this can be specified in particular instances. In general, a MathML renderer may
determine these initial values in whatever manner is appropriate for the location and context of the specific instance
MathML it is rendering, or if it has no way to determine this, based on the way it is most likely to be used; as a last
resort it is suggested that it use the most generic valiigglaystyle = "true" andscriptlevel ="0".

The MathML layout schemata that typically display some of their arguments in smaller type or with less vertical spacing
namely the elements for scripts, fractions, radicals, and tables or matricédsspetystyle to false, and in some
cases increasecriptlevel, for those arguments. The new values are inherited by all sub-expressions within those
arguments, unless they are overridden.

The specific rules by which each element moditiesplaystyle and/orscriptlevel are given in the specifica-

tion for each element that does so; the complete list of elements that modify either attribute are: the ‘scripting’ ele
mentsmsub, msup, msubsup, munder, mover, munderover, andmmultiscripts; and the elementsfrac, mroot,
andmtable.

Whennstyle is given ascriptlevel attribute with no sign, it sets the valuesdfriptlevel within its contents to the

value given, which must be a nonnegative integer. When the attribute value consists of a sign followed by an integer, tf
value ofscriptlevel is incremented (for '+’) or decremented (for '-’) by the amount given. The incremental syntax
for this attribute is an exception to the general rules for setting inherited attributesngsinte, and is not allowed by

any other attribute omstyle.

Whenever thescriptlevel is changed, either automatically or by being explicitly incremented, decremented, or set,
the current font size is multiplied by the valuesafriptsizemultiplier to the power of the change #itriptlevel.

For example, ifscriptlevel is increased by 2, the font size is multiplied &yriptsizemultiplier twice in suc-
cession; ifscriptlevel is explicitly set to 2 when it had been 3, the font size is divided&yiptsizemultiplier.
References tdontsize in this section should be interpreted to mean eitherfihret size attribute or thenathsize
attribute.

The default value okcriptsizemultiplier is less than one (in fact, it is approximately the square root of 1/2),
resulting in a smaller font size with increasiagriptlevel. To prevent scripts from becoming unreadably small, the
font size is never allowed to go below the valuesetiptminsize as a result of a change seriptlevel, though it

can be set to a lower value using thentsize attribute (Sectior3.2.2 onmstyle or on token elements. If a change to
scriptlevel would cause the font size to become lower tBaniptminsize using the above formula, the font size
is instead set equal tcriptminsize within the sub-expression for whidtriptlevel was changed.

In the syntax forscriptminsize, v-unit represents a unit of vertical length (as described in Se&idnt.9. The
most common unit for specifying font sizes in typesettingtigpoints).

Explicit changes to théontsize attribute have no effect on the valuesafriptlevel.

Further details on scriptlevel for renderers

For MathML renderers that support CSS style sheets, or some other analogous style sheet mechanism, absolute
relative changes téontsize (or other attributes) may occur implicitly on any element in response to a style sheet.
Changes tfontsize of this kind also have no effect asxriptlevel. A style sheet-induced changefontsize
overridesscriptminsize in the same way as for an explicit changefientsize in the element’s start tag (dis-
cussed above), whether it is specified in the style sheet as an absolute or a relative change. (However, any subseqt
scriptlevel-induced change téontsize will still be affected by it.) As is required for inherited attributes in CSS,

the style sheet-modifiefbntsize is inherited by child elements.

If the same element is subject to both a style sheet-induced and an autoseatipt(level-related) change to its
ownfontsize, thescriptlevel-related change is done first - in fact, in the simplest implementation of the element-

72

specific rules foscriptlevel, this change would be done by the element’s parent as part of producing the rendering
properties it passes to the given element, since it is the parent element that knows wheilpefevel should be
changed for each of its child elements.

If the element’s owrfontsize is changed by a style sheet and it also chargesptlevel (and thusfontsize) for

one of its children, the style sheet-induced change is done first, followed by the change inherited by that child. If mor
than one child'sscriptlevel is changed, the change inherited by each child has no effect on the other children. (As
a mnemonic rule that applies to a ‘parse tree’ of elements and their children, style sheet-induced chgvges i@

can be associated to nodes of the tree, i.e. to MathML elementscan@tlevel-related changes can be associated

to the edges between parent and child elements; then the order of the associated changes corresponds to the ord
nodes and edges in each path down the tree.) For general information on the relative order of processing of propert
set by style sheets versus by attributes, see the appropriate subsection of CSS-compatible attributes 4Seétion

If scriptlevel is changed incrementally by astyle element that also sets certain other attributes, the overall effect
of the changes may depend on the order in which they are processed. In such cases, the attributes in the following |
should be processed in the following order, regardless of the order in which they occur in the XML-format attribute list
of themstyle start tag:scriptsizemultiplier, scriptminsize, scriptlevel, fontsize.

Note thatscriptlevel can, in principle, attain any integral value by being decremented sufficiently, even though it can
only be explicitly set to nonnegative values. Negative valuesoiptlevel generated in this way are legal and should
work as described, generating font sizes larger than those of the surrounding expressiagsciSipteevel is initially

0 and never decreases automatically, it will always be nonnegative unless it is decremented pasif:ysing

Explicit decrements ofcriptlevel after the font size has been limited byriptminsize as described above would
produce undesirable results. This might occur, for example, in a representation of a continued fraction, in which th
scriptlevel was decremented for part of the denominator back to its value for the fraction as a whole, if the continue
fraction itself was located in a place that had a higliptlevel. To prevent this problem, MathML renderers should,
when decrementingcriptlevel, use as the initial font size the value the font size would have had if it had never
been limited byscriptminsize. They should not, however, ignore the effects of explicit setting&atsize, even

to values belovgcriptminsize.

Since MathML renderers may be unable to make use of arbitrary font sizes with good results, they may wish to modif
the mapping from scriptlevel to fontsize to produce better renderings in their judgment. In particular, if fontsizes have
to be rounded to available values, or limited to values within a range, the details of how this is done are up to th
renderer. Renderers should, however, ensure that a series of incremental changégtbevel resulting in its return

to the same value for some sub-expression that it had in a surrounding expression results in the same fontsize for tl
sub-expression as for the surrounding expression.

Color and background attributes

The color attribute controls the color in which the content of tokens is rendered. Additionally, when inherited from
mstyle or from a MathML expression’s rendering environment, it controls the color of all other drawing by MathML
elements, including the lines or radical signs that can be drawtt byc, mtable, ormsqrt.

Note that thebackground attribute, though not inherited, has the default value ‘transparent’ (as in CSS2), which
effectively allows an element’s parent to control its background.

The values otolor andbackground can be specified as a string consisting of '#' followed without intervening whites-
pace by either 1-digit or 2-digit hexadecimal values for the red, green, and blue components, respectively, of the desir
color, with the same number of digits used for each component (or as the keyword ‘transpareatidgtound).

The hexadecimal digits are not case-sensitive. The possible 1-digit values range from 0 (component not present) tc
(component fully present), and the possible 2-digit values range from 00 (component not present) to FF (compone

73

fully present), with the 1-digit valug being equivalent to the 2-digit value (rather tharx0). % x0 would be a more
strictly correct notation, but renders terribly in some browsers.

These attributes can also be specified astafl-color-name, which is defined in the following subsection.

CSS compatibility of color attributes

The color syntax described above is a subset of the syntax ebther andbackground-color properties of CSS2.
(Thebackground-color syntax is in turn a subset of the full CS82ckground property syntax, which also permits
specification of (for example) background images with optional repeats. The more general attribute.cigggreund

is used in MathML to facilitate possible extensions to the attribute’s scope in future versions of MathML.)

Color values on either attribute can also be specified as@h-color-name, thatis, as one of the color-name keywords
defined in |] (aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver, teal, white,
and yellow). Note that the color name keywords are not case-sensitive, unlike most keywords in MathML attribute
values for compatibility with CSS and HTML.

Precise background region not specified

The suggested MathML visual rendering rules do not define the precise extent of the region whose background
affected by using the&ackground attribute onmstyle, except that, whemstyle's content does not have negative
dimensions and its drawing region is not overlapped by other drawing due to surrounding negative spacing, this regic
should lie behind all the drawing done to render the content afighig e, but should not lie behind any of the drawing
done to render surrounding expressions. The effect of overlap of drawing regions caused by negative spacing on t
extent of the region affected by theckground attribute is not defined by these rules.

Meaning of named mathspaces

The spacing between operators is often one of a small number of potential values. MathML nhames these values a
allows their values to be changed. Because the default values for spacing around operators that are given in the oper:
dictionary AppendixF are defined using these named spaces, changing their values will produce tighter or loosel
spacing. These values can be used anywharaait or v—unit unit is allowed. See Sectidh4.4.2

The predefinedamedspaces areveryverythinmathspace, verythinmathspace, thinmathspace, mediummath-
space, thickmathspace, verythickmathspace, Or veryverythickmathspace. The default values oferyvery-
thinmathspace... veryverythickmathspace are 1/18em...7/18em, respectively.

3.3.4.3 Examples

The example of limiting the stretchiness of a parenthesis shown in the section on <mo>,

<mrow>
<mo maxsize="1"> (</mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo maxsize="1">) </mo>

</mrow>

can be rewritten usingstyle as:

<mstyle maxsize="1">
<mrow>

74

<mo> (</mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo>) </mo>
</mrow>
</mstyle>

3.35 Error Message ferror)
3.3.5.1 Description

Themerror element displays its contents as an ‘error message’. This might be done, for example, by displaying the cor
tents in red, flashing the contents, or changing the background color. The contents can be any expression or express
sequence.

merror accepts any number of arguments; if this number is not 1, its contents are treated as a single finésrraed
described in SectioA.1.3

The intent of this element is to provide a standard way for programgthatate MathML from other input to report
syntax errors in their input. Since it is anticipated that preprocessors that parse input syntaxes designed for easy he
entry will be developed to generate MathML, it is important that they have the ability to indicate that a syntax error
occurred at a certain point. See Sectioh.2

The suggested use nérror for reporting syntax errors is for a preprocessor to replace the erroneous part of its input
with anmerror element containing a description of the error, while processing the surrounding expressions normally
as far as possible. By this means, the error message will be rendered where the erroneous input would have appea
had it been correct; this makes it easier for an author to determine from the rendered output what portion of the inpt
was in error.

No specific error message format is suggested here, but as with error messages from any program, the format shoulc
designed to make as clear as possible (to a human viewer of the rendered error message) what was wrong with the in
and how it can be fixed. If the erroneous input contains correctly formatted subsections, it may be useful for these to t
preprocessed normally and included in the error message (within the contents.@ftle element), taking advantage

of the ability ofmerror to contain arbitrary MathML expressions rather than only text.

3.3.5.2 Attributes

This element only permitsd, xref, class andstyle attributes, as described in Sectidpd .5

3.3.5.3 Example

If a MathML syntax-checking preprocessor received the input

<mfraction>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mn> 2 </mn>

</mfraction>

which contains the non-MathML elemenfraction (presumably in place of the MathML elementrac), it might
generate the error message

<merror>
<mtext> Unrecognized element: mfraction;

75

arguments were: </mtext>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mtext> and </mtext>
<mn> 2 </mn>
</merror>

Note that the preprocessor’s input is not, in this case, valid MathML, but the error message it outputs is valid MathML

3.3.6 Adjust Space Around Content fipadded)
3.3.6.1 Description

An mpadded element renders the same as its content, but with its overall size and other dimensions (such as baselil
position) modified according to its attributes. Thgadded element does not rescale (stretch or shrink) its content; its
only effect is to modify the apparent size and position of the ‘bounding box’ around its content, so as to affect the
relative position of the content with respect to the surrounding elements. The name of the element reflects the use
mpadded to effectively add ‘padding’, or extra space, around its content. If the ‘padding’ is negative, it is possible for
the content olpadded to be rendered outside thgadded element’s bounding box; see below for warnings about
several potential pitfalls of this effect.

The mpadded element accepts any number of arguments; if this number is not 1, its contents are treated as a sing
‘inferredmrow’ as described in Sectiod.1.3

It is suggested that audio renderers add (or shorten) time delays based on the attributes representing horizontal sp
(width andlspace).

3.3.6.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default

width [+| -] unsigned-number (% [pseudo-unit | | pseudo-unit | h-unit | namedspace) same as content
Ispace [+ |- Junsigned-number (% [pseudo-unit | | pseudo-unit | h-unit) 0

height [+ |- Junsigned-number (% [pseudo-unit | | pseudo-unit | v-unit) same as content
depth [+] - Junsigned-number (% [pseudo-unit | | pseudo-unit | v-unit) same as content

(The pseudo-unit syntax symbol is described below.)

These attributes modify the dimensions of the ‘bounding box’ ofrpedded element. The dimensions (which have

the same names as the attributes) are defined in the next subsection. Depending on the format of the attribute val
a dimension may be set to a new value, or to an incremented or decremented version of the content’s correspondi
dimension. Values may be specified as multiples or percentages of any of the dimensions of the normal rendering of tl
element’s content (using so-called ‘pseudo-units’), or they can be set directly using standard unitsZS&étian

If an attribute value begins with-aor - sign, it specifies an increment or decrement of the corresponding dimension
by the following length value (interpreted as explained below). Otherwise, the corresponding dimension is set directl
to the following length value. Note that theand- do not mean that the following value is positive or negative, even
when an explicit length unithtunit or v-unit) is given. In particular, these attributes cannot directly set a dimension to

a negative value.

Length values (after the optional sign, which is not part of the length value) can be specified in several formats. Eac
format begins with amnsigned-number, which may be followed by & sign and an optional ‘pseudo-unit’ (denoted by
pseudo-unit in the attribute syntaxes above), by a pseudo-unit alone, or by one of the length units (denbtedidy

76

or v-unit) specified in Sectio2.4.4.2 not including’. The possible pseudo-units are the keywordldth, 1space,
height, anddepth; they each represent the length of the same-named dimension mpdheed element’'s content
(not of thempadded element itself). The lengths representedhbynit or v-unit are described in Sectidh4.4.2

In any of these formats, the length value specified is the product of the specified number and the length represented
the unit or pseudo-unit. The result is multiplied by 0.0% i given. If no pseudo-unit is given aftér the one with the
same name as the attribute being specified is assumed.

Some examples of attribute formats using pseudo-units (explicit or default) are as falkgyd="100% height"
anddepth="1.0 height" both set the depth of thepadded element to the height of its contedepth="105%" sets
the depth to 1.05 times the content’s depth, and eitketh="+100%" or depth="200%" sets the depth to twice the
content’s depth.

Dimensions that would be positive if the content was rendered normally cannot be made negativepadiug;

a positive dimension is set to 0 if it would otherwise become negative. Dimensions that are initially 0 can be made
negative, but this should generally be avoided. See the warnings below on the use of negative spacing for ‘tweaking’
conveying meaning.

The rules given above imply that all of the following attribute settings have the same effect, which is to leave the
content’s dimensions unchanged:

<mpadded width="+0em"> ... </mpadded>
<mpadded width="+0%"> ... </mpadded>
<mpadded width="-0Oem"> ... </mpadded>
<mpadded width="- 0 height"> ... </mpadded>
<mpadded width="100%"> ... </mpadded>
<mpadded width="100% width"> ... </mpadded>
<mpadded width="1 width"> ... </mpadded>
<mpadded width="1.0 width"> ... </mpadded>
<mpadded> ... </mpadded>

3.3.6.3 Meanings of dimension attributes
See Appendi+ for further information about some of the typesetting terms used here.

The width attribute refers to the overall horizontal width of a bounding box. By default (i.e. vilsgace is not
modified), the bounding box of the content of mprdded element should be rendered flush with the left edge of the
mpadded element’s bounding box. Thus, increasingith alone effectively adds space on the right edge of the box.

Thelspace attribute refers to the amount of space between the left edge of a bounding box and the start of the renderir
of its contents’ bounding box. Unlike the other dimensidrsace does not correspond to a real property of a bounding
box, but exists only transiently during the computations done by each instampadafed. It is provided so that there

is a way to add space on the left edge of a bounding box.

The rationale behind usingidth andlspace to control horizontal padding instead of more symmetric attributes, such
as a hypotheticatspace andlspace, is that it is desirable to have a ‘width’ pseudo unit, in part because ‘width’ is an
actual property of a bounding box.

Theheight attribute refers to the amount of vertical space between the baseline (the line along the bottom of mos
letter glyphs in normal text rendering) and the top of the bounding box.

Thedepth attribute refers to the amount of vertical space between the bottom of the bounding box and the baseline.

MathML renderers should ensure that, except for the effects of the attributes, relative spacing between the contents
mpadded and surrounding MathML elements is not modified by replacingided element with amrow element

77

with the same content. This holds even if linebreaking occurs withimpla@ded element. However, if ampadded
element with non-default attribute values is subjected to linebreaking, MathML does not define how its attributes o
rendering interact with the linebreaking algorithm.

3.3.6.4 Warning: nonportability of ‘tweaking’

A likely temptation for the use of thepadded andmspace elements (and perhaps alsphantom andmtext) will be
for an author to improve the spacing generated by a specific renderer by slightly modifying it in specific expressions
i.e. to ‘tweak’ the rendering.

Authors are strongly warned thaifferent MathML renderers may use different spacing rules for computing the relative
positions of rendered symbols in expressions that have no explicit modifications to their spacing; if renderer B improve
upon renderer A's spacing rules, explicit spacing added to improve the output quality of renderer A may produce ver
poor results in renderer B, very likely worse than without any ‘tweaking’ at all.

Even when a specific choice of renderer can be assumed, its spacing rules may be improved in successive versions
that the effect of tweaking in a given MathML document may grow worse with time. Also, when style sheet mechanisms
are extended to MathML, even one version of a renderer may use different spacing rules for users with different styl
sheets.

Therefore, it is suggested that MathML markup never msedded or mspace elements to tweak the rendering of
specific expressions, unless the MathML is generated solely to be viewed using one specific version of one MathM
renderer, using one specific style sheet (if style sheets are available in that renderer).

In cases where the temptation to improve spacing proves too strong, carefuhpad®$d, mphantom, or the alignment
elements (SectioB.5.5 may give more portable results than the direct insertion of extra spacensgiage or mtext.
Advice given to the implementors of MathML renderers might be still more productive, in the long run.

3.3.6.5 Warning: spacing should not be used to convey meaning

MathML elements that permit ‘negative spacing’, namedpace, mpadded, andmtext, could in theory be used to
simulate new notations or ‘overstruck’ characters by the visual overlap of the renderings of more than one MathML
sub-expression.

This practice istrongly discouraged in all situations, for the following reasons:

it will give different results in different MathML renderers (so the warning about ‘tweaking’ applies);

it is likely to appear much worse than a more standard construct supported by good renderers;

such expressions are almost certain to be uninterpretable by audio renderers, computer algebra systems, t
searches for standard symbols, or other processors of MathML input.

More generally, any construct that uses spacing to convey mathematical meaning, rather than simply as an aid to viewi

expression structure, is discouraged. That is, the constructs that are discouraged are those that would be interpre
differently by a human viewer of rendered MathML if all explicit spacing was removed.

If such constructs are used in spite of this warning, they should be enclosedriazt i cs element that also provides
an additional MathML expression that can be interpreted in a standard way.

For example, the MathML expression

<mrow>
<mpadded width="0"> <mi> C </mi> </mpadded>
<mspace width="0.3em"/>
<mtext> | </mtext>

</mrow>

78

forms an overstruck symbol in violation of the policy stated above; it might be intended to represent the set of comple:
numbers for a MathML renderer that lacks support for the standard symbol used for this purpose. This kind of constru
should always be avoided in MathML, for the reasons stated above; indeed, it should never be necessary for stand:
symbols, since a MathML renderer with no better method of rendering them is free to use overstriking internally, so tha
it can still support general MathML input.

However, if for whatever reason such a construct is used in MathML, it should always be encloseehimaics
element such as

<semantics>
<mrow>
<mpadded width="0"> <mi> C </mi> </mpadded>
<mspace width="0.3em"/>
<mtext> | </mtext>
</mrow>
<annotation-xml encoding="MathML-Presentation">
<mi> ℂ </mi>
</annotation-xml>
</semantics>

which provides an alternative, standard encoding for the desired symbol, which is much more easily interpreted the
the construct using negative spacing. (The alternative encoding in this example uses MathML presentation elemen
the content elements described in Chapgtehould also be considered.)

(The above warning also applies to most uses of rendering attributes to alter the meaning conveyed by an expressi
with the exception of attributes ari (such agontweight) used to distinguish one variable from another.)

3.3.7 Making Sub-Expressions Invisiblerfphantom)
3.3.7.1 Description

The mphantom element renders invisibly, but with the same size and other dimensions, including baseline position,
that its contents would have if they were rendered normafiyantom can be used to align parts of an expression by
invisibly duplicating sub-expressions.

Themphantom element accepts any number of arguments; if this number is not 1, its contents are treated as a sing
‘inferredmrow’ formed from all its arguments, as described in Sec8dn3

3.3.7.2 Attributes
This element only permitsd, xref, class andstyle attributes, as described in Sectidpd .5

Note that it is possible to wrap both aphantom and anmpadded element around one MathML expression, as in
<mphantom><mpadded attribute-settings> ... </mpadded></mphantom>, to change its size and make it in-
visible at the same time.

MathML renderers should ensure that the relative spacing between the contentsphbanom element and the sur-
rounding MathML elements is the same as it would be ifithantom element were replaced by anow element with
the same content. This holds even if linebreaking occurs withinphentom element.

For the above reasomphanton is not considered space-like (SectiBr2.7) unless its content is space-like, since the
suggested rendering rules for operators are affected by whether nearby elements are space-like. Even so, the warr
about the legal grouping of space-like elements may apply to usgshahtom.

79

There is one situation where the preceding rule for renderingphantom may not give the desired effect. When
anmphantom is wrapped around a subsequence of the arguments of@n the default determination of thiorm
attribute for anmno element within the subsequence can change. (See the default valuef ofihattribute described in
Section3.2.5) It may be necessary to add an expligitrm attribute to such amo in these cases. This is illustrated in
the following example.

3.3.7.3 Examples

In this examplemphantom is used to ensure alignment of corresponding parts of the numerator and denominator of a
fraction:

<mfrac>

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>

<mrow>
<mi> x </mi>
<mphantom>

<mo form="infix"> + </mo>
<mi> y </mi>
</mphantom>
<mo> + </mo>
<mi> z </mi>
</mrow>
</mfrac>

This would render as something like

X+y+z

X +z
rather than as

X+Yy+2z

X+z

The explicit attribute settingorm="infix" on the mo element inside thephantom sets theform attribute to what it
would have been in the absence of the surroundiithntom. This is hecessary since otherwise, thgign would be
interpreted as a prefix operator, which might have slightly different spacing.

Alternatively, this problem could be avoided without any explicit attribute settings, by wrapping each of the arguments
<mo>+</mo> and<mi>y</mi> in itS ownmphantom element, i.e.

<mfrac>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

80

</mrow>
<mrow>
<mi> x </mi>
<mphantom>
<mo> + </mo>
</mphantom>
<mphantom>
<mi> y </mi>
</mphantom>
<mo> + </mo>
<mi> z </mi>
</mrow>
</mfrac>

3.3.8 Expression Inside Pair of Fencesfenced)
3.3.8.1 Description

Themfenced element provides a convenient form in which to express common constructs involving fences (i.e. braces
brackets, and parentheses), possibly including separators (such as comma) between the arguments.

For examplegmfenced> <mi>x</mi> </mfenced> renders as ¥)’ and is equivalent to

<mrow> <mo> (</mo> <mi>x</mi> <mo>) </mo> </mrow>

and<mfenced> <mi>x</mi> <mi>y</mi> </mfenced> renders as X, y)' and is equivalent to

<mrow>
<mo> (</mo>
<mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow>
<mo>) </mo>

</mrow>

Individual fences or separators are represented usinglements, as described in Secti®2.5 Thus, anymfenced
element is completely equivalent to an expanded form described below; either form can be used in MathML, at th
convenience of an author or of a MathML-generating program. A MathML renderer is required to render either of thes
forms in exactly the same way.

In general, amfenced element can contain zero or more arguments, and will enclose them between fencesdn;an

if there is more than one argument, it will insert separators between adjacent arguments, using an additionabwested
around the arguments and separators for proper grouping (S&ctidh The general expanded form is shown below.
The fences and separators will be parentheses and comma by default, but can be changed using attributes, as show
the following table.

3.3.8.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
open string (

close string)
separators character * ,

81

A genericmfenced element, with all attributes explicit, looks as follows:

<mfenced open="opening-fence"
close="closing-fence"
separators="sep#l sep#2 ... sep#(n-1)" >
arg#l

arg#n
</mfenced>

Theopening-fence andclosing-fence are arbitrary strings. (Since they are used as the contenteiements, any
whitespace they contain will be trimmed and collapsed as described in S2ctiGn

The value okeparators is a sequence of zero or more separator characters (or entity references), optionally separate
by whitespace. Eackep#i consists of exactly one character or entity reference. Tdugmrators=", ;" is equivalent
{0 separators=" , ; ".

The generahfenced element shown above is equivalent to the following expanded form:

<mrow>
<mo fence="true"> opening-fence </mo>
<mrow>
arg#l
<mo separator="true"> sep#l </mo>

<mo separator="true"> sep#(n-1) </mo>
arg#n
</mrow>
<mo fence="true"> closing-fence </mo>
</mrow>

Each argument except the last is followed by a separator. Theraeris added for proper grouping, as described in
Section3.3.1

When there is only one argument, the above form has no separatorsgsitwe arg#l </mrow> iS equivalent to
arg#l (as described in Sectidh3.]), this case is also equivalent to:

<mrow>
<mo fence="true"> opening-fence </mo>
arg#l
<mo fence="true"> closing-fence </mo>
</mrow>

If there are too many separator characters, the extra ones are ignored. If separator characters are given, but there are
few, the last one is repeated as necessary. Thus, the default vakiesab tors="," is equivalent teseparators=",",
separators=",,", etc. If there are no separator characters provided but some are needed, for exaryHe ifcors="

"or " and there is more than one argument, then no separator elements are inserted at all - that is, the<«ements
separator="true"> sep#i </mo> are left out entirely. Note that this is different from inserting separators consisting

of mo elements with empty content.

Finally, for the case with no arguments, i.e.

82

<mfenced open="opening-fence"
close="closing-fence"
separators="anything" >
</mfenced>

the equivalent expanded form is defined to include just the fences withinan

<mrow>
<mo fence="true"> opening-fence </mo>
<mo fence="true"> closing-fence </mo>
</mrow>

Note that not all ‘fenced expressions’ can be encoded hyfanced element. Such exceptional expressions include
those with an ‘embellished’ separator or fence or one enclosedz&ie element, a missing or extra separator or
fence, or a separator with multiple content characters. In these cases, it is necessary to encode the expression usin
appropriately modified version of an expanded form. As discussed above, it is always permissible to use the expand
form directly, even when it is not necessary. In particular, authors cannot be guaranteed that MathML preprocesso
won't replace occurrences af enced with equivalent expanded forms.

Note that the equivalent expanded forms shown above include attributes aio #lements that identify them as
fences or separators. Since the most common choices of fences and separators already occur in the operator dictior
with those attributes, authors would not normally need to specify those attributes explicitly when using the expande
form directly. Also, the rules for the defaulbrm attribute (Sectior8.2.9 cause the opening and closing fences to be
effectively given the valuesorm="prefix" andform="postfix" respectively, and the separators to be given the value
form="infix".

Note that it would be incorrect to usg€enced with a separator of, for instance, ‘+’, as an abbreviation for an expression
using ‘+’ as an ordinary operator, e.g.

<mrow>
<mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi>
</mrow>
This is because the signs would be treated as separators, not infix operators. That is, it would render as if they were
marked up asmo separator="true">+</mo>, which might therefore render inappropriately.

3.3.8.3 Examples
(a+h)

<mfenced>
<mrow>
<mi> a </mi>
<mo> + </mo>
<mi> b </mi>
</mrow>
</mfenced>

Note that the aboverow is necessary so that th€enced has just one argument. Without it, this would render incor-
rectly as ‘@, +,b)’.

[0.1)
<mfenced open="[">

83

<mn> 0 </mn>
<mn> 1 </mn>
</mfenced>

fxy)

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mfenced>
<mi> x </mi>
<mi> y </mi>

</mfenced>
</mrow>
3.3.9 Enclose Expression Inside Notatiormenclose)

3.3.9.1 Description

Themenclose element renders its content inside the enclosing notation specifieddwtis ion attribute. menclose
accepts any number of arguments; if this number is not 1, its contents are treated as a single tinéarredntaining
its arguments, as described in Sectdh.3

3.3.9.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
notation longdiv | actuarial | radical longdiv

Whennotation has the valu@ongdiv, the contents are drawn enclosed by a long division symbol. A complete exam-
ple of long division is accomplished by also usifighble andmalign. Whennotation is specified aactuarial,

the contents are drawn enclosed by an actuarial symbol. The caseafion=radical is equivalent to theisqrt
schema.

3.3.9.3 Examples

The following markup might be used to encode an elementary US-style long division problem.

<mtable columnspacing=’0’ rowspacing=’0’>
<mtr>
<mtd></mtd>
<mtd columnalign=’right’><mn>10</mn></mtd>
</mtr>
<mtr>
<mtd columnalign=’right’><mn>131</mn></mtd>
<mtd columnalign=’right’>
<menclose notation=’longdiv’><mn>1413</mn></menclose>
</mtd>
</mtr>

84

<mtr>
<mtd></mtd>
<mtd columnalign=’right’>
<mrow>
<munder>
<mn>131</mn>
<mo> _ </mo>
</munder>
<mphantom><mn>3</mn></mphantom>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd></mtd>
<mtd columnalign=’right’><mn>103</mn></mtd>
</mtr>
</mtable>

This might be rendered roughly as:
10

131)1413
131

103
An example of usingienclose for actuarial notation is

<msub>
<mi>a</mi>
<mrow>
<menclose notation=’actuarial’>
<mi>n</mi>
</menclose>
<mo>&it ;</mo>
<mi>i</mi>
</mrow>
</msub>

which renders roughly as

a
nli

3.4 Script and Limit Schemata

The elements described in this section position one or more scripts around a base. Attaching various kinds of scrif
and embellishments to symbols is a very common notational device in mathematics. For purely visual layout, a singl
general-purpose element could suffice for positioning scripts and embellishments in any of the traditional script locatior
around a given base. However, in order to capture the abstract structure of common notation better, MathML provide
several more specialized scripting elements.

In addition to sub/superscript elements, MathML has overscript and underscript elements that place scripts above a
below the base. These elements can be used to place limits on large operators, or for placing accents and lines abov

85

below the base. The rules for rendering accents differ from those for overscripts and underscripts, and this differenc
can be controlled with theccent andaccentunder attributes, as described in the appropriate sections below.

Rendering of scripts is affected by theriptlevel anddisplaystyle attributes, which are part of the environment
inherited by the rendering process of every MathML expression, and are describedstydier (Section3.3.4). These
attributes cannot be given explicitly on a scripting element, but can be specified on the start tag of a surseuydiag
element if desired.

MathML also provides an element for attachment of tensor indices. Tensor indices are distinct from ordinary subscript
and superscripts in that they must align in vertical columns. Tensor indices can also occur in prescript positions.

Because presentation elements should be used to describe the abstract notational structure of expressions, itis impot
that the base expression in all ‘scripting’ elements (i.e. the first argument expression) should be the entire expressi
that is being scripted, not just the rightmost character. For examxgi@?(should be written as:

<msup>
<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
</mrow>
<mo>) </mo>
</mrow>
<mn> 2 </mn>
</msup>

3.4.1 Subscript fisub)
3.4.1.1 Description

The syntax for thesub element is:

<msub> base subscript </msub>

34.1.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
subscriptshift number v-unit automatic (typical unit is ex)

Thesubscriptshift attribute specifies the minimum amount to shift the baselinefcript down.
v-unit represents a unit of vertical length (see Secfigh4.2).

Themsub element incrementscriptlevel by 1, and setdisplaystyle to false, within subscript, but leaves both
attributes unchanged withibase. (These attributes are inherited by every element through its rendering environment,
but can be set explicitly only onistyle; see Sectior3.3.4)

86

3.4.2 Superscript fusup)
3.4.2.1 Description

The syntax for thexsup element is:

<msup> base superscript </msup>

3.4.2.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
superscriptshift number v-unit automatic (typical unit is ex)

Thesuperscriptshift attribute specifies the minimum amount to shift the baselineypdrscript up.
v-unit represents a unit of vertical length (see Secfigh4.2.

Themsup elementincrementscriptlevel by 1, and setdisplaystyle to false, within superscript, but leaves both
attributes unchanged withibase. (These attributes are inherited by every element through its rendering environment,
but can be set explicitly only onstyle; see Sectio3.3.4)

3.4.3 Subscript-superscript Pair fisubsup)
3.4.3.1 Description

Themsubsup element is used to attach both a subscript and superscript to a base expression. Note that both scripts ¢
positioned tight against the basg? versusx.

The syntax for thesubsup element is:

<msubsup> base subscript superscript </msubsup>

3.4.3.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
subscriptshift number v-unit automatic (typical unit is ex)
superscriptshift number v-unit automatic (typical unit is ex)

The subscriptshift attribute specifies the minimum amount to shift the baselineub$cript down. Thesuper-
scriptshift attribute specifies the minimum amount to shift the baselineidrscript up.

v-unit represents a unit of vertical length (see Secfigh4.).

Themsubsup element incrementscriptlevel by 1, and setdisplaystyle to false, within subscript andsuper-
script, but leaves both attributes unchanged withire. (These attributes are inherited by every element through its
rendering environment, but can be set explicitly onlymsfiyle; see Sectiod.3.4)

87

3.4.3.3 Examples

The msubsup is most commonly used for adding sub/superscript pairs to identifiers as illustrated above. However,
another important use is placing limits on certain large operators whose limits are traditionally displayed in the scrip
positions even when rendered in display style. The most common of these is the integral. For example,

/Ole?(dx

would be represented as

<mrow>
<msubsup>
<mo> ∫ </mo>
<mn> 0 </mn>
<mn> 1 </mn>
</msubsup>
<mrow>
<msup>
<mi> ⅇ </mi>
<mi> x </mi>
</msup>
<mo> ⁢ </mo>
<mrow>
<mo> ⅆ </mo>
<mi> x </mi>
</mrow>
</mrow>
</mrow>

3.4.4 Underscript fnunder)
3.4.4.1 Description

The syntax for thewunder element is:

<munder> base underscript </munder>

3.4.4.2 Attributes
In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
accentunder true | false automatic

The accentunder attribute controls whethatnderscript is drawn as an ‘accent’ or as a limit. The main difference
between an accent and a limit is that the limit is reduced in size whereas an accent is the same size as the base. A sec
difference is that the accent is drawn closer to the base.

The default value ofccentunder is false, unlessinderscript is anmo element or an embellished operator (see Sec-
tion 3.2.9. If underscript is anmo element, the value of itsccent attribute is used as the default valueotentunder.

If underscript is an embellished operator, thecent attribute of themno element at its core is used as the default value.
As with all attributes, an explicitly given value overrides the default.

88

Here is an example (accent versus underscoipt)y + z versusx+ Yy + z. The MathML representation for this example
N—— ———

is shown below.

If the base is an operator withbvablelimits=true (or an embellished operator whose element core hasov-

ablelimits=true), anddisplaystyle=false, thenunderscript is drawn in a subscript position. In this case, the

accentunder attribute is ignored. This is often used for limits on symbols suctsas; .

Within underscript, munder always setslisplaystyle to false, but incrementscriptlevel by 1 only whenac-
centunder is false. Within base, it always leaves both attributes unchanged. (These attributes are inherited by every
element through its rendering environment, but can be set explicitly ontgoyile; see Sectior’.3.4)

3.44.3 Examples

The MathML representation for the example shown above is:

<mrow>
<munder accentunder="true">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mo> ⏟ </mo>
</munder>

<mtext> versus </mtext>
<munder accentunder="false">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mo> ⏟ </mo>
</munder>
</mrow>

3.45 Overscript fnover)
3.4.5.1 Description

The syntax for thaover element is:

<mover> base overscript </mover>

3.4.5.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

89

Name values default
accent true | false automatic

The accent attribute controls whethesverscript is drawn as an ‘accent’ (diacritical mark) or as a limit. The main
difference between an accent and a limit is that the limit is reduced in size whereas an accent is the same size as
base. A second difference is that the accent is drawn closer to the base. This is shown below (accent versus limit);
Versusx.

. . —N— —
These differences also apply to ‘mathematical accents’ such as bars over expressipnsz versusx—+y+z The
MathML representation for each of these examples is shown below.

The default value oficcent is false, unlessverscript is anmo element or an embellished operator (see Sed@iarp.
If overscript is anmo element, the value of itsccent attribute is used as the default valuea@fcent for mover. If
overscript is an embellished operator, thecent attribute of theno element at its core is used as the default value.

If the base is an operator witlbvablelimits=true (or an embellished operator whaose element core hasov-
ablelimits=true), anddisplaystyle=false, thenoverscript is drawn in a superscript position. In this case, the
accent attribute is ignored. This is often used for limits on symbols sudsas ;.

Within overscript, mover always setglisplaystyle to false, but incrementscriptlevel by 1 only whenaccent
is false. Within base, it always leaves both attributes unchanged. (These attributes are inherited by every elemen
through its rendering environment, but can be set explicitly onlystyle; see Sectio.3.4)

3.4.5.3 Examples

The MathML representation for the examples shown above is:

<mrow>
<mover accent="true">
<mi> x </mi>
<mo> ^ </mo>
</mover>
<mtext> versus </mtext>
<mover accent="false">
<mi> x </mi>
<mo> ^ </mo>
</mover>
</mrow>

<mrow>
<mover accent="true">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mo> ‾ </mo>
</mover>

<mtext> versus </mtext>

90

<mover accent="false">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mo> ‾ </mo>
</mover>
</mrow>
3.4.6 Underscript-overscript Pair munderover)

3.4.6.1 Description

The syntax for theunderover element is:

<munderover> base underscript overscript </munderover>

3.4.6.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
accent true | false automatic
accentunder true | false automatic

Themunderover element is used so that the underscript and overscript are vertically spaced equally in relation to the
base and so that they follow the slant of the base as in the second expression shown below:

[ee]

/

0
versus

(o0

/

0
The MathML representation for this example is shown below.

The difference in the vertical spacing is too small to be noticed on a low resolution display at a normal font size, bu
is noticeable on a higher resolution device such as a printer and when using large font sizes. In addition to the visu
differences, attaching both the underscript and overscript to the same base more accurately reflects the semantics of
expression.

The accent andaccentunder attributes have the same effect as the attributes with the same namesean(Sec-

tion 3.4.5 andmunder (Section3.4.4), respectively. Their default values are also computed in the same manner as
described for those elements, with the default valueaefent depending oroverscript and the default value afc-
centunder depending omnderscript.

If the base is an operator wittovablelimits=true (or an embellished operator whaseelement core hasovable-
limits=true), anddisplaystyle=false, thenunderscript andoverscript are drawn in a subscript and superscript

91

position, respectively. In this case, thecent andaccentunder attributes are ignored. This is often used for limits on
symbols such agsum;.

Within underscript, munderover always setslisplaystyle to false, but incrementscriptlevel by 1 only when
accentunder isfalse. Within overscript, munderover always setdisplaystyletofalse, butincrementscriptlevel
by 1 only wheraccent is false. Within base, it always leaves both attributes unchanged. (These attributes are inherited
by every element through its rendering environment, but can be set explicitly oakytgie; see Sectior3.3.4).

3.4.6.3 Examples

The MathML representation for the example shown above with the first expression made using semekateand
mover elements, and the second one usingamderover element, is:

<mrow>
<mover>
<munder>
<mo> ∫ </mo>
<mn> 0 </mn>
</munder>
<mi> ∞ </mi>
</mover>
<mtext> versus </mtext>
<munderover>
<mo> ∫ </mo>
<mn> 0 </mn>
<mi> ∞ </mi>
</munderover>
</mrow>

3.4.7 Prescripts and Tensor Indicesnmultiscripts)
3.4.7.1 Description

The syntax for themultiscripts elementis:

<mmultiscripts>

base

(subscript superscript)x*

[<mprescripts/> (presubscript presuperscript)*]
</mmultiscripts>
Presubscripts and tensor notations are represented by a single element,scripts. This element allows the rep-
resentation of any number of vertically-aligned pairs of subscripts and superscripts, attached to one base expressi
It supports both postscripts (to the right of the base in visual notation) and prescripts (to the left of the base in visue
notation). Missing scripts can be represented by the empty elemeat

The prescripts are optional, and when present are gifien the postscripts, because prescripts are relatively rare
compared to tensor notation.

The argument sequence consists of the base followed by zero or more pairs of vertically-aligned subscripts and sup
scripts (in that order) that represent all of the postscripts. This list is optionally followed by an empty elgment
scripts and a list of zero or more pairs of vertically-aligned presubscripts and presuperscripts that represent all of th

92

prescripts. The pair lists for postscripts and prescripts are given in a left-to-right order. If no subscript or superscrip
should be rendered in a given position, then the empty elefarrt should be used in that position.

The base, subscripts, superscripts, the optional separator eleprenicripts, the presubscripts, and the presuper-
scripts, are all direct sub-expressions oftheltiscripts element, i.e. they are all at the same level of the expression
tree. Whether a script argument is a subscript or a superscript, or whether it is a presubscript or a presuperscript is det
mined by whether it occurs in an even-numbered or odd-numbered argument position, respectively, ignoring the emp
elemeniprescripts itself when determining the position. The first argument, the base, is considered to be in position
1. The total number of arguments must be oddpifescripts is not given, or even, ifitis.

The empty elemenisprescripts andnone are only allowed as direct sub-expressionamiltiscripts.

3.4.7.2 Attributes
Same as the attributes @ubsup.

Themmultiscripts element incrementscriptlevel by 1, and setglisplaystyle to false, within each of its
arguments excepiase, but leaves both attributes unchanged withise. (These attributes are inherited by every element
through its rendering environment, but can be set explicitly onlystyle; see Sectio.3.4)

3.4.7.3 Examples
Two examples of the use afwltiscripts are:

oF1(a;2).

<mrow>
<mmultiscripts>
<mi> F </mi>
<mn> 1 </mn>
<none/>
<mprescripts/>
<mn> 0 </mn>
<none/>
</mmultiscripts>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mrow>
<mo> ; </mo>
<mi> a </mi>
<mo> ; </mo>
<mi> z </mi>
</mrow>
<mo>) </mo>
</mrow>
</mrow>

R, (wherek and| are different indices)

<mmultiscripts>

93

<mi> R </mi>
<mi> i </mi>
<none/>
<none/>
<mi> j </mi>
<mi> k </mi>
<none/>
<mi> 1 </mi>
<none/>
</mmultiscripts>

35 Tables and Matrices

Matrices, arrays and other table-like mathematical notation are marked upritgibgle, mtr, mlabeledtr andmtd
elements. These elements are similar toTtheLE, TR andTD elements of HTML, except that they provide specialized
attributes for the fine layout control necessary for commutative diagrams, block matrices and so on.

Themlabeledtr element represents a labeled row of a table and can be used for numbered equations. The first chil
of mlabeledtr is the label. A label is somewhat special in that it is not considered an expression in the matrix and is
not counted when determining the number of columns in that row.

3.5.1 Table or Matrix (mtable)
3.5.1.1 Description

A matrix or table is specified using thesable element. Inside of thetable element, onlymtr or mlabeledtr
elements may appear.

In MathML 1.x, themtable element could infentr elements around its arguments, andile element could infer

mtd elements. In other words, if some argument tan@able was not amtr element, a MathML application was to
assume a row with a single column (i.e. the argument was effectively wrapped with an inferde&imilarly, if some
argument to a (possibly inferredr element was not antd element, that argument was to be treated as a table entry
by wrapping it with an inferreéitd element. MathML 2.@leprecatethe inference ohtr andmtd elementsmtr and

mtd elements must be used insidemyfable andmtr respectively.

Table rows that have fewer columns than other rows of the same table (whether the other rows precede or follow ther
are effectively padded on the right with emptyd elements so that the number of columns in each row equals the
maximum number of columns in any row of the table. Note that the ugsedflements with non-default values of
therowspan Or columnspan attributes may affect the numbermwid elements that should be given in subsequemt
elements to cover a given number of columns. Note also that the labehiba®deledtr element is not considered a
column in the table.

3.5.1.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

94

Name values default
align (top | bottom | center | baseline | axis) [rownumber] axis
rowalign (top | bottom | center | baseline | axis) + baseline
columnalign (left | center | right) + center
groupalign group-alignment-list-list left
alignmentscope (true | false) + true
columnwidth (‘auto | number h-unit | namedspace | fit) + auto
width auto | number h-unit auto
rowspacing (number v-unit) + 1.0ex
columnspacing (number h-unit | namedspace) + 0.8em
rowlines (none | solid | dashed) + none
columnlines (none | solid | dashed) + none
frame none | solid | dashed none
framespacing (number h-unit | namedspace) (number v-unit | namedspace) 0.4em 0.5e)
equalrows true | false false
equalcolumns true | false false
displaystyle true | false false

side left | right | leftoverlap | rightoverlap right
minlabelspacing number h-unit 0.8em

Note that the default value for eachmafwlines, columnlines andframe is the literal string ‘none’, meaning that the
default is to render no lines, rather than that there is no default.

As described in Sectiofi.4.4 the notation(x | y)+ means one or more occurrences of eithar y, separated by
whitespace. For example, possible valuesfirumnalign areleft, left left,andleft right center center.
If there are more entries than are necessary (e.g. more entries than coluneeduerialign), then only the first

entries will be used. If there are fewer entries, then the last entry is repeated as often as necessary. For example
columnalign="right center" and the table has three columns, the first column will be right aligned and the second anc
third columns will be centered. The label imaabeledtr is not considered as a column in the table and the attribute
values that apply to columns do not apply to labels.

The align attribute specifies where to align the table with respect to its environrmens. means to align the center

of the table on the environment’s axis. (The axis of an equation is an alignment line used by typesetters. It is the lin
on which a minus sign typically lies. The center of the table is the midpoint of the table’s vertical extente) and
baseline both mean to align the center of the table on the environment’s basetiper bottom aligns the top or
bottom of the table on the environment's baseline.

If the align attribute value ends with aownumber between 1 ana (for a table withn rows), the specified row is
aligned in the way described above, rather than the table as a whole; the top (first) row is numbered 1, and the bottc
(last) row is numbered. The same is true if the row number is negative, between -1@rekeept that the bottom row

is referred to as -1 and the top row as ©Other values ofownumber are illegal.

Therowalign attribute specifies how the entries in each row should be aligned. For examplmeans that the tops
of each entry in each row should be aligned with the tops of the other entries in that rowo Tinmalign attribute
specifies how the entries in each column should be aligned.

Thegroupalign andalignmentscope attributes are described with the alignment elemeri$igngroup andma-
lignmark, in Section3.5.5

Thecolumnwidth attribute specifies how wide a column should be. 3treo value means that the column should be as
wide as needed, which is the default. If an explicit value is given, then the column is exactly that wide and the content
of that column are made to fit in that width. The contents are linewrapped or clipped at the discretion of the rendere
If fit is given as a value, the remaining page width after subtracting the widths for columns specified and/or

95

specific widths is divided equally among tl&t columns and this value is used for the column width. If insufficient
room remains to hold the contents of thiet columns, renderers may linewrap or clip the contents of threcolumns.

When thecolumnwidth is specified as a percentage, the value is relative to the width of the table. That is, a renderel
should try to adjust the width of the column so that it covers the specified percentage of the entire table width.

Thewidth attribute specifies the desired width of the entire table and is intended for visual user agents. When the valu
is a percentage value, the value is relative to the horizontal space a MathML renderer has available for the table eleme
When the value iauto, the MathML renderer should calculate the table width from its contents using whatever layout
algorithm it chooses.

MathML 2.0 does not specify a table layout algorithm. In particular, it is the responsibility of a MathML renderer to
resolve conflicts between the dth attribute and other constraints on the width of a table, such as explicit values for
columnwidth attributes, and minimum sizes for table cell contents. For a discussion of table layout algorithms, see
Cascading Style Sheets, level 2

The rowspacing and columnspacing attributes specify how much space should be added between each row and
column. However, spacing before the first row and after the last row (i.e. at the top and bottom of the table) is given b
the second number in the value of theamespacing attribute, and spacing before the first column and after the last
column (i.e. on the left and on the right of the table) is given by the first number in the value tfdhespacing
attribute.

In those attributes’ syntaxeh;unit or v-unit represents a unit of horizontal or vertical length, respectively (see Sec-
tion 2.4.4.9. The units shown in the attributes’ default values ¢r ex) are typically used.

Therowlines andcolumnlines attributes specify whether and what kind of lines should be added between each row
and column. Lines before the first row or column and after the last row or column are given usfiigutleaattribute.

If a frame is desired around the table, thweame attribute is used. If the attribute value is not ‘none’, tifarames-
pacing is used to add spacing between the lines of the frame and the first and last rows and columns of the table.
frame="none", then the&ramespacing attribute is ignored. Thérame andframespacing attributes are not part of
therowlines/columnlines, rowspacing/columnspacing options because having them be so would often require
thatrowlines andcolumnlines would need to be fully specified instead of just giving a single value. For example,

if a table had five columns and it was desired to have no frame around the table but to have lines between the columi
thencolumnlines="none solid solid solid solid none" would be necessary. If the frame is separated from
the internal lines, onlgolumnlines="so0lid" is needed.

Theequalrows attribute forces the rows all to be the same total height when setu® Theequalcolumns attribute
forces the columns all to be the same width when setktee.

Thedisplaystyle attribute specifies the value displaystyle (described undetistyle in Section3.3.4) within

each cell gtd element) of the table. Settinfisplaystyle=true can be useful for tables whose elements are whole
mathematical expressions; the default valueadfse is appropriate when the table is part of an expression, for example,
when it represents a matrix. In either caseriptlevel (Section3.3.4 is not changed for the table cells.

Theside attribute specifies what side of a table a label for a table row should should be placed. This attribute is intende
to be used for labeled expressionsléfft or right is specified, the label is placed on the left or right side of the table
row respectively. The other two attribute values are variationsedit andright: if the labeled row fits within the

width allowed for the table without the label, but does not fit within the width if the label is included, then the label
overlaps the row and is displayed above the rowifalign for that row istop; otherwise the label is displayed below

the row.

If there are multiple labels in a table, the alignment of the labels within the virtual column that they form is left-aligned
for labels on the left side of the table, and right-aligned for labels on the right side of the table. The alignment can b
overridden by specifyingolumnalignment for amlabeledtr element.

96

http://www.w3.org/TR/CSS2/tables.html#width-layout

Theminlabelspacing attribute specifies the minimum space allowed between a label and the adjacent entry in the
row.

3.5.1.3 Examples

A 3 by 3 identity matrix could be represented as follows:

<mrow>
<mo> (</mo>
<mtable>
<mtr>
<mtd> <mn>1</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
</mtr>
<mtr>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>1</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
</mtr>
<mtr>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>1</mn> </mtd>
</mtr>
</mtable>
<mo>) </mo>
</mrow>

This might be rendered as:

1 00
010
0 01

Note that the parentheses must be represented explicitly; they are not partmhtie element’'s rendering. This
allows use of other surrounding fences, such as brackets, or none at all.

3.5.2 Row in Table or Matrix (mtr)
3.5.2.1 Description

An mtr element represents one row in a table or matrixm&n element is only allowed as a direct sub-expression of
anmtable element, and specifies that its contents should form one row of the table. Each argumanisgblaced in
a different column of the table, starting at the leftmost column.

As described in SectioB.5.1, mtr elements are effectively padded on the right witld elements when they are shorter
than other rows in a table.

3.5.2.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

97

Name values default

rowalign top | bottom | center | baseline | axis inherited
columnalign (left | center | right) + inherited
groupalign group-alignment-list-list inherited

Therowalign andcolumnalign attributes allow a specific row to override the alignment specified by the same at-
tributes in the surroundingtable element.

As with mtable, if there are more entries than necessary in the valu®bimnalign (i.e. more entries than columns
in the row), then the extra entries will be ignored. If there are fewer entries than columns, then the last entry will be
repeated as many times as needed.

Thegroupalign attribute is described with the alignment elements,igngroup andmalignmark, in Section3.5.5

3.5.3 Labeled Row in Table or Matrix (mlabeledtr)
3.5.3.1 Description

Anmlabeledtr element represents one row in a table that has a label on either the left or right side, as determined b
theside attribute. The label is the first child efiabeledtr. The rest of the children represent the contents of the row
and are identical to those used farr; all of the children except the first must fhed elements.

An mlabeledtr element is only allowed as a direct sub-expression afitable element. Each argument afia-
beledtr except for the first argument (the label) is placed in a different column of the table, starting at the leftmost
column.

Note that the label element is not considered to be a cell in the table row. In particular, the label element is not take
into consideration in the table layout for purposes of width and alignment calculations. For example, in the case of a
mlabeledtr with a label and a single centeradd child, the child is first centered in the enclosifigable, and then

the label is placed. Specifically, the childrst centered in the space that remains in the table after placing the label.

While MathML 2.0 does not specify an algorithm for placing labels, implementors of visual renderers may find the
following formatting model useful. To place a label, an implementor might think in terms of creating a larger table, with
an extra column on both ends. Thelumnwidth attributes of both these border columns would be se&titoso that

they expand to fill whatever space remains after the inner columns have been laid out. Finally, depending on the valu
of side andminlabelspacing, the label is placed in whatever border column is appropriate, possibly shifted down if
necessary.

3.5.3.2 Attributes

The attributes fomlabeledtr are the same as fartr. Unlike the attributes for thatable element, attributes of
mlabeledtr that apply to column elements also apply to the label. For example, in a one column table,

<mlabeledtr rowalign=’top’>

means that the label and other entries in the row are vertically aligned along their top. To force a particular alignmer
on the label, the appropriate attribute would normally be set onthestart tag that surrounds the label content.

3.5.3.3 Equation Numbering

One of the important uses miabeledtr is for numbered equations. Imaabeledtr, the label represents the equation
number and the elements in the row are the equation being numberedidéi@andminlabelspacing attributes of
mtable determine the placement of the equation number.

98

In larger documents with many numbered equations, automatic numbering becomes important. While automatic equ
tion numbering and automatically resolving references to equation numbers is outside the scope of MathML, thes
problems can be addressed by the use of style sheets or other means. The mlabeledtr construction provides suppor
both of these functions in a way that is intended to facilitate XSLT processingnllt®ledtr element can be used to
indicate the presence of a numbered equation, and the first child can be changed to the current equation number, al
with incrementing the global equation number. For cross references, an id on either the mlabeledtr element or on t
first element itself could be used as a target of any link.

<mtable>
<mlabeledtr id=’e-is-m-c-square’>
<mtd>
<mtext> (2.1) </mtext>
</mtd>
<mtd>
<mrow>
<mi>E</mi>
<mo>=</mo>
<mrow>
<mi>m</mi>
<mo>&it ;</mo>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mtd>
</mlabeledtr>
</mtable>

This should be rendered as:
E=mc (2.1)

3.54 Entry in Table or Matrix (mtd)
3.54.1 Description

An mtd element represents one entry, or cell, in a table or matrixm#d element is only allowed as a direct sub-
expression of amtr or anmlabeledtr element.

Themtd element accepts any number of arguments; if this number is not 1, its contents are treated as a single ‘inferre
mrow’ formed from all its arguments, as described in Sec8dn3

3.54.2 Attributes

Name values default
rowspan number 1
columnspan number 1
rowalign top | bottom | center | baseline | axis inherited
columnalign left | center | right inherited
groupalign group-alignment-list inherited

99

The rowspan and columnspan attributes allow a specific matrix element to be treated as if it occupied the number
of rows or columns specified. The interpretation of how this larger element affects specifying subsequent rows an
columns is meant to correspond with the similar attributes for HTML 4.01 tables.

Therowspan andcolumnspan attributes can be used aroundretdl element that represents the label inlabeledtr
element. Also, the label oflabeledtr element is not considered to be part of a previntigspan andcolumnspan.

Therowalign andcolumnalign attributes allow a specific matrix element to override the alignment specified by a
surroundingntable or mtr element.

Thegroupalign attribute is described with the alignment elements,igngroup andmalignmark, in Section3.5.5

3.55 Alignment Markers
3.5.5.1 Description

Alignment markers are space-like elements (see Se8tibi) that can be used to vertically align specified points within
a column of MathML expressions by the automatic insertion of the necessary amount of horizontal space betwee
specified sub-expressions.

The discussion that follows will use the example of a set of simultaneous equations that should be rendered with vertic
alignment of the coefficients and variables of each term, by inserting spacing somewhat like that shown here:

8.44x + 55 y = 0

3.1x - 0.7y =-1.1

If the example expressions shown above were arranged in a column but not aligned, they would appear as:

8.44x + 55y = 0

3.1x - 0.7y = -1.1
(For audio renderers, it is suggested that the alignment elements produce the analogous behavior of altering the rhyt
of pronunciation so that it is the same for several sub-expressions in a column, by the insertion of the appropriate tirr
delays in place of the extra horizontal spacing described here.)

The expressions whose parts are to be aligned (each equation, in the example above) must be given as the table elem
(i.e. as themtd elements) of one column of amtable. To avoid confusion, the term ‘table cell’ rather than ‘table
element’ will be used in the remainder of this section.

All interactions between alignment elements are limited tarteble column they arise in. That is, every column of

a table specified by amtable element acts as an ‘alignment scope’ that contains within it all alignment effects arising
from its contents. It also excludes any interaction between its own alignment elements and the alignment elements insi
any nested alignment scopes it might contain.

The reasomtable columns are used as alignment scopes is that they are the only general way in MathML to arrange
expressions into vertical columns. Future versions of MathML may provideeahgnscope element that allows an
alignment scope to be created around any MathML element, but even then, table columns would still sometimes ne
to act as alignment scopes, and since they are not elements themselves, but rather are made from corresponding par
the content of severaltr elements, they could not individually be the content of an alignment scope element.

An mtable element can be given the attribut®ignmentscope=false to cause its columns not to act as alignment
scopes. This is discussed further at the end of this section. Otherwise, the discussion in this section assumes that 1
attribute has its default value otue.

3.5.5.2 Specifying alignment groups

To cause alignment, it is necessary to specify, within each expression to be aligned, the points to be aligned wi
corresponding points in other expressions, and the beginning ofagé@alment group of sub-expressions that can be

100

horizontally shifted as a unit to effect the alignment. Each alignment group must contain one alignment point. It is als
necessary to specify which expressions in the column have no alignment groups at all, but are affected only by tt
ordinary column alignment for that column of the table, i.e. bydbeumnalign attribute, described elsewhere.

The alignment groups start at the locations of invist®¥a igngroup elements, which are rendered with zero width
when they occur outside of an alignment scope, but within an alignment scope are rendered with just enough horizont
space to cause the desired alignment of the alignment group that follows them. A simple algorithm by which a MathML
application can achieve this is given later. In the example above, each equation would has@ Ggagroup element

before each coefficient, variable, and operator on the left-hand side, one befersigine and one before the constant

on the right-hand side.

In general, a table cell containimynaligngroup elements containg alignment groups, with thigh group consisting
of the elements entirely after thidh maligngroup element and before théHl)-th; no element within the table cell's
content should occur entirely before its fitstl igngroup element.

Note that the division into alignment groups does necessarily fit the nested expression structure of the MathML
expression containing the groups - that is, it is permissible for one alignment group to consist of the engrofioa#

of another one, and the beginning of a third one, for example. This can be seen in the MathML markup for the presel
example, given at the end of this section.

The nested expression structure formedhbyws and other layout schemata should reflect the mathematical structure of
the expression, not the alignment-group structure, to make possible optimal renderings and better automatic interpre
tions; see the discussion of proper grouping in section Segtibf Insertion of alignment elements (or other space-like
elements) should not alter the correspondence between the structure of a MathML expression and the structure of 1
mathematical expression it represents.

Although alignment groups need to coincide with the nested expression structure of layout schemata, there are nonet
less restrictions on where aaligngroup element is allowed within a table cell. Theligngroup element may only
be contained within elements of the following types (which are themselves contained in the table cell):

anmrow element, including an inferreti-ow such as the one formed by a multi-argumetd element;
anmstyle element;

anmphantom element;

anmfenced element;

anmaction element, though only its selected sub-expression is checked,;

asemantics element.

These restrictions are intended to ensure that alignment can be unambiguously specified, while avoiding complexitit
involving things like overscripts, radical signs and fraction bars. They also ensure that a simple algorithm suffices
accomplish the desired alignment.

Note that some positions for araligngroup element, although legal, are not useful, such as fonanigngroup
element to be an argument of afienced element. When inserting araligngroup element before a given element

in pre-existing MathML, it will often be necessary, and always acceptable, to form annewelement to contain

just themaligngroup element and the element it is inserted before. In general, this will be necessary except wher
themaligngroup element is inserted directly into airow or into an element that can form an inferrecbw from its
contents. See the warning about the legal grouping of ‘space-like elements’ in Sketion

For the table cells that are divided into alignment groups, every element in their content must be part of exactly on
alignment group, except the elements from the above list that camaigngroup elements inside them, and the-
ligngroup elements themselves. This means that, within any table cell containing alignment groups, the first complet
element must be amligngroup element, though this may be preceded by the start tags of other elements.

This requirement removes a potential confusion about how to align elements before thelfirghgroup element,
and makes it easy to identify table cells that are left out of their column’s alignment process entirely.

101

Note that it is not required that the table cells in a column that are divided into alignment groups each contain the san
number of groups. If they don't, zero-width alignment groups are effectively added on the right side of each table cel
that has fewer groups than other table cells in the same column.

3.5.5.3 Table cells that are not divided into alignment groups

Expressions in a column that are to have no alignment groups should contadn fgnhgroup elements. Expressions

with no alignment groups are aligned using only ¢eeéumnalign attribute that applies to the table column as a whole,
and are not affected by thgoupalign attribute described below. If such an expression is wider than the column width
needed for the table cells containing alignment groups, all the table cells containing alignment groups will be shifted a
a unit within the column as described by thelumnalign attribute for that column. For example, a column heading
with no internal alignment could be added to the column of two equations given above by preceding them with anothe
table row containing antext element for the heading, and using the defaultumnalign="center" for the table, to
produce:

equations with aligned variables
8.44x + 65 y = O
3.1x - 0.7y = -1.1

or, with a shorter heading,

some equations
8.44x + 55 y = 0
3.1x - 0.7y = -1.1

3.5.5.4 Specifying alignment points using malignmark

Each alignment group’s alignment point can either be specified by atgnmark element anywhere within the align-
ment group (except within another alignment scope wholly contained inside it), or it is determined automatically from
thegroupalign attribute. Thegroupalign attribute can be specified on the group’s precedisilii gngroup element

or on its surroundingitd, mtr, or mtable elements. In typical cases, using eoupalign attribute is sufficient to
describe the desired alignment points, samadignmark elements need to be provided.

Themalignmark element indicates that the alignment point should occur on the right edge of the preceding element
or the left edge of the following element or character, depending oadge attribute ofmalignmark. Note that it may

be necessary to introduce ahow to group amalignmark element with a neighboring element, in order not to alter
the argument count of the containing element. (See the warning about the legal grouping of ‘space-like elements’ i
Section3.2.7).

When anmalignmark element is provided within an alignment group, it can occur in an arbitrarily deeply nested
element within the group, as long as it is not within a nested alignment scope. It is not subject to the same restrictior
on location asnaligngroup elements. However, its immediate surroundings need to be such that the element to its
immediate right or left (depending on iégge attribute) can be unambiguously identified. If no such element is present,
renderers should behave as if a zero-width element had been inserted there.

For the purposes of alignment, an element X is considered to be to the immediate left of an element Y, and Y t
the immediate right of X, whenever X and Y are successive arguments of one (possibly inferedjement, with X
coming before Y. In the case af enced elements, MathML applications should evaluate this relation as iitheced
element had been replaced by the equivalent expanded form invalying Similarly, anmaction element should be
treated as if it were replaced by its currently selected sub-expression. In all other cases, no relation of ‘to the immedia
left or right’ is defined for two elements X and Y. However, in the case of content elements interspersed in presentatio

102

markup, MathML applications should attempt to evaluate this relation in a sensible way. For example, if a rendere
maintains an internal presentation structure for rendering content elements, the relation could be evaluated with resp
to that. (See Chaptdrand Chapteb for further details about mixing presentation and content markup.)

Unlike all other elements in MathMImalignmark elements are allowed to occur within the content of token elements,
such asmn, mi, or mtext. When this occurs, the character immediately before or aftendhegnmark element will

carry the alignment point; in all other cases, the element to its immediate left or right will carry the alignment point.
The rationale for this is that it is sometimes desirable to align on the edges of specific characters within multi-characte
token elements.

If there is more than onealignmark element in an alignment group, all but the first one will be ignored. MathML
applications may wish to provide a mode in which they will warn about this situation, but it is not an error, and should
trigger no warnings by default. (Rationale: it would be inconvenient to have to remove all unnecessaymark
elements from automatically generated data, in certain cases, such as when they are used to specify alignment
‘decimal points’ other than the '’ character.)

3.5.5.5 Attributes

In addition to the attributes listed below, thelignmark element permitdd, xref, class andstyle attributes, as
described in Sectiof.4.5

Name values default
edge left | right left

malignmark has one attributesdge, which specifies whether the alignment point will be found on the left or right
edge of some element or character. The precise location meant by ‘left edge’ or ‘right edge’ is discussed below. |
edge="right", the alignment point is the right edge of the element or character to the immediate lefnafittymmark
element. Ifedge="left", the alignment point is the left edge of the element or character to the immediate right of the
malignmark element. Note that the attribute refers to the choice of edge rather than to the direction in which to look
for the element whose edge will be used.

Formalignmark elements that occur within the content of MathML token elements, the preceding or following charac-
ter in the token element’s content is used; if there is no such character, a zero-width character is effectively inserted f
the purpose of carrying the alignment point on its edge. For all ethetgnmark elements, the preceding or following
element is used; if there is no such element, a zero-width element is effectively inserted to carry the alignment point.

The precise definition of the ‘left edge’ or ‘right edge’ of a character or glyph (e.g. whether it should coincide with an
edge of the character’s bounding box) is not specified by MathML, but is at the discretion of the renderer; the rendere
is allowed to let the edge position depend on the character’s context as well as on the character itself.

For proper alignment of columns of numbers (usitgupalign values ofleft, right, ordecimalpoint), itis likely

to be desirable for the effective width (i.e. the distance between the left and right edges) of decimal digits to be constar
even if their bounding box widths are not constant (e.g. if ‘1" is narrower than other digits). For other characters, sucl
as letters and operators, it may be desirable for the aligned edges to coincide with the bounding box.

The ‘left edge’ of a MathML element or alignment group refers to the left edge of the leftmost glyph drawn to render
the element or group, except that explicit space representesidaye or mtext elements should also count as ‘glyphs’

in this context, as should glyphs that would be drawn if notdfsitantom elements around them. The ‘right edge’ of an
element or alignment group is defined similarly.

3.5.5.6 Attributes

In addition to the attributes listed below, thelignmark element permitdd, xref, class andstyle attributes, as
described in SectioR.4.5

103

Name values default
groupalign left | center | right | decimalpoint inherited

maligngroup has one attributegroupalign, which is used to determine the position of its group’s alignment point
when nomalignmark element is present. The following discussion assumes thathhdgnmark element is found
within a group.

In the example given at the beginning of this section, there is one column of 2 table cells, with 7 alignment groups ir
each table cell; thus there are 7 columns of alignment groups, with 2 groups, one above the other, in each column. The
columns of alignment groups should be given thgrédupalign values ‘decimalpoint left left decimalpoint left left
decimalpoint’, in that order. How to specify this list of values for a table cell or table column as a whole, using attributes
on elements surrounding theligngroup element is described later.

If groupalign is ‘left’, ‘right’, or ‘center’, the alignment point is defined to be at the group’s left edge, at its right edge,
or halfway between these edges, respectively. The meanings of ‘left edge’ and ‘right edge’ are as discussed above
relation tomalignmark.

If groupalign is ‘decimalpoint’, the alignment point is the right edge of the last character before the decimal point.
The decimal point is the first ‘" character (ASCII 0x2e) in the fitstelement found along the alignment group’s base-
line. More precisely, the alignment group is scanned recursively, depth-first, for thenfelgment, descending into all
arguments of each element of the typesw (including inferrednrows), mstyle, mpadded, mphantom, mfenced, Or
msqrt, descending into only the first argument of each ‘scripting’ elemesil{, msup, msubsup, munder, mover,
munderover, mmultiscripts) or of eachmroot or semantics element, descending into only the selected sub-
expression of eachaction element, and skipping the content of all other elements. Thenfirsto found always
contains the alignment point, which is the right edge of the last character before the first decimal point in the content c
themn element. If there is no decimal point in the element, the alignment point is the right edge of the last character
in the content. If the decimal point is the first character ofdiheslement’s content, the right edge of a zero-width
character inserted before the decimal point is used. lhimelement is found, the right edge of the entire alignment
group is used (as fgtroupalign="right").

In order to permit alignment on decimal pointsdn elements, a MathML application can convert a content expression
into a presentation expression that renders the same way before searching for decimal points as described above.

If characters other than ‘" should be used as ‘decimal points’ for alignment, they should be precedad diymark
elements within then token’s content itself.

For any of thegroupalign values, if an explicihalignmark element is present anywhere within the group, the position
it specifies (described earlier) overrides the automatic determination of alignment point frgpotipalign value.

3.5.5.7 Inheritance of groupalign values

Itis not usually necessary to pugaoupalign attribute on everyaligngroup element. Since this attribute is usually

the same for every group in a column of alignment groups to be aligned, it can be inherited from an attribute on th
mtable that was used to set up the alignment scope as a whole, or fromtther mtd elements surrounding the
alignment group. It is inherited via an ‘inheritance path’ that proceeds frosble through successively contained

mtr, mtd, andmaligngroup elements. There is exactly one element of each of these kinds in this path frotatsre

to any alignment group inside it. In general, the valugodupalign will be inherited by any given alignment group
from the innermost element that surrounds the alignment group and provides an explicit setting for this attribute.

Note, however, that eactitd element needs, in general, a list g@foupalign values, one for eachaligngroup
element inside it, rather than just a single value. Furthermonetailor mtable element needs, in general, a list of lists
of groupalign values, since it spans multipieeable columns, each potentially acting as an alignment scope. Such
lists of group-alignment values are specified using the following syntax rules:

104

group-alignment left | right | center | decimalpoint

group-alignment-list := group-alignment +

group-alignment-list-list := (’{’ group-alignment-list ’}’) +

As described in Sectiof.4.4 | separates alternatives;represents optional repetition (i.e. 1 or more copies of what
precedes it), with extra values ignored and the last value repeated if necessary to cover additional table columns
alignment group columns;’ and ’’ represent literal braces; arf{dand) are used for grouping, but do not literally
appear in the attribute value.

The permissible values of thgoupalign attribute of the elements that have this attribute are specified using the above
syntax definitions as follows:

Element type groupalign attribute syntax default value

mtable group-alignment-list-list left

mtr group-alignment-list-list inherited fromtable attribute
mtd group-alignment-list inherited from withintr attribute
maligngroup group-alignment inherited from withiatd attribute

In the example near the beginning of this section, the group alignment values could be specified arté\edey
ment usinggroupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, or on everyr element using
groupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, or (most conveniently) onitheble as a
whole usinggroupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, which provides a single braced
list of group-alignment values for the single column of expressions to be aligned.

3.5.5.8 MathML representation of an alignment example

The above rules are sufficient to explain the MathML representation of the example given near the start of this sectiol
To repeat the example, the desired rendering is:

8.44x + 55 y = 0
3.1x - 0.7y = -1.1

One way to represent that in MathML is:

<mtable groupalign="decimalpoint left left decimalpoint left left decimalpoint">
<mtr>
<mtd>
<mrow>
<mrow>

<mrow>
<maligngroup/>
<mn> 8.44 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> x </mi>

</mrow>

<maligngroup/>

<mo> + </mo>

<mrow>
<maligngroup/>
<mn> 55 </mn>

105

<mo> ⁢ </mo>
<maligngroup/>
<mi> y </mi>
</mrow>
</mrow>
<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mn> 0 </mn>
</mrow>
</mtd>
<mtd>
<mrow>
<mrow>
<mrow>
<maligngroup/>
<mn> 3.1 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> x </mi>
</mrow>
<maligngroup/>
<mo> - </mo>
<mrow>
<maligngroup/>
<mn> 0.7 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> y </mi>
</mrow>
</mrow>
<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mrow>
<mo> - </mo>
<mn> 1.1 </mn>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>

3.5.5.9 Further details of alignment elements

The alignment elements:1igngroup andmalignmark can occur outside of alignment scopes, where they are ignored.
The rationale behind this is that in situations in which MathML is generated, or copied from another document, withou
knowing whether it will be placed inside an alignment scope, it would be inconvenient for this to be an error.

An mtable element can be given the attribut®ignmentscope=false to cause its columns not to act as alignment

106

scopes. In general, this attribute has the syiftaxue | false) +;ifitsvalue is a list of boolean values, each boolean
value applies to one column, with the last value repeated if necessary to cover additional columns, or with extra value
ignored. Columns that are not alignment scopes are part of the alignment scope surroundituplleelement, if

there is one. Use aflignmentscope=false allows nested tables to contaialignmark elements for aligning the

inner table in the surrounding alignment scope.

As discussed above, processing of alignment for content elements is not well-defined, since MathML does not speci
how content elements should be rendered. However, many MathML applications are likely to find it convenient to
internally convert content elements to presentation elements that render the same way. Thus, as a general rule, e
if a renderer does not perform such conversions internally, it is recommended that the alignment elements should |
processed as if it did perform them.

A particularly important case for renderers to handle gracefully is the interaction of alignment elements with the
trix content element, since this element may or may not be internally converted to an expression contaitubdan
element for rendering. To partially resolve this ambiguity, it is suggested, but not required, thataftthie: element

is converted to an expression involving atable element, that thetable element be given the attributd ign-
mentscope=false, which will make the interaction of theatrix element with the alignment elements no different
than that of a generic presentation element (in particular, it will allow it to comtaini gnmark elements that operate
within the alignment scopes created by the columns oftatble that contains theatrix element in one of its table
cells).

The effect of alignment elements within table cells that have non-default values e6éthenspan or rowspan at-
tributes is not specified, except that such use of alignment elements is not an error. Future versions of MathML ma
specify the behavior of alignment elements in such table cells.

The effect of possible linebreaking of amable element on the alignment elements is not specified.

3.5.5.10 A simple alignment algorithm

A simple algorithm by which a MathML applications can perform the alignment specified in this section is given here.
Since the alignment specification is deterministic (except for the definition of the left and right edges of a character)
any correct MathML alignment algorithm will have the same behavior as this one.nftadhe column (alignment
scope) can be treated independently; the algorithm given here applies igatsiee column, and takes into account

the alignment elements, tlgg-oupalign attribute described in this section, and i umnalign attribute described
undemtable (Section3.5.1]).

First, a rendering is computed for the contents of each table cell in the column, using zero widtm&righgroup
andmalignmark elements. The final rendering will be identical except for horizontal shifts applied to each alignment
group and/or table cell. The positions of alignment points specified bynahygnmark elements are noted, and the
remaining alignment points are determined usitgupalign values.

For each alignment group, the horizontal positions of the left edge, alignment point, and right edge are noted, allowin
the width of the group on each side of the alignment point (left and right) to be determined. The sum of these twc
‘side-widths’, i.e. the sum of the widths to the left and right of the alignment point, will equal the width of the alignment
group.

Second, each column of alignment groups, from left to right, is scannedtiThean covers thigh alignment group in
each table cell containing any alignment groups. Table cells with no alignment groups, or with fewiealigament
groups, are ignored. Each scan computes two maximums over the alignment groups scanned: the maximum width to 1
left of the alignment point, and the maximum width to the right of the alignment point, of any alignment group scanned.

The sum of all the maximum widths computed (two for each column of alignment groups) gives one total width, which
will be the width of each table cell containing alignment groups. Call the maximum number of alignment groups in one

107

cell n; each such cell's width is divided intm2adjacent sections, calledil.@nd R{) for i from 1 ton, using the &
maximum side-widths computed above; for eactine width of all sections called L(is the maximum width of any
cell’s ith alignment group to the left of its alignment point, and the width of all sections callgdsRtie maximum
width of any cell'sith alignment group to the right of its alignment point.

The alignment groups are then positioned in the unique way that places the part othegabup to the left of its
alignment point in a section calledil(and places the part of eadn group to the right of its alignment point in

a section called R). This results in the alignment point of eaith group being on the boundary between adjacent
sections Li) and R{), so that all alignment points @th groups have the same horizontal position.

The widths of the table cells that contain no alignment groups were computed as part of the initial rendering, and ma
be different for each cell, and different from the single width used for cells containing alignment groups. The maximurm
of all the cell widths (for both kinds of cells) gives the width of the table column as a whole.

The position of each cell in the column is determined by the applicable part of the valueaefltlvenalign attribute

of the innermost surroundingtable, mtr, ormtd element that has an explicit value for it, as described in the sections
on those elements. This may mean that the cells containing alignment groups will be shifted within their column, ir
addition to their alignment groups having been shifted within the cells as described above, but since each such cell h
the same width, it will be shifted the same amount within the column, thus maintaining the vertical alignment of the
alignment points of the corresponding alignment groups in each cell.

3.6 Enlivening Expressions
3.6.1 Bind Action to Sub-Expressionfiaction)

There are many ways in which it might be desirable to make mathematical content active. Adding a link to a MathML
sub-expression is one basic kind of interactivity. See Sectibrt However, many other kinds of interactivity cannot

be easily accommodated by generic linking mechanisms. For example, in lengthy mathematical expressions, the abil
to ‘fold’ expressions might be provided, i.e. a renderer might allow a reader to toggle between an ellipsis and a muc
longer expression that it represents.

To provide a mechanism for binding actions to expressions, MathML providesattieion element. This element
accepts any number of sub-expressions as arguments.

3.6.1.1 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
actiontype (described below) (required attribute, no default value)
selection positive-integer 1

By default, MathML applications that do not recognize the specifietiiontype should render the selected sub-
expression as defined below. If no selected sub-expression exists, it is a MathML error; the appropriate rendering in th
case is as described in Sectibr2.2on the treatment of MathML errors.

Since a MathML-compliant application is not required to recognize any partieatarontypes, an application can be
fully MathML compliant just by implementing the above-described default behavior.

The selection attribute is provided for thosectiontypes that permit someone viewing a document to select one
of several sub-expressions for viewing. Its value should be a positive integer that indicates one of the sub-expressio

108

of themaction element, numbered from 1 to the number of children of the element. When this is the case, the sub
expression so indicated is defined to be the ‘selected sub-expression'mafdtieon element; otherwise the ‘selected
sub-expression’ does not exist, which is an error. Whers#fiection attribute is not specified (including for action-
types for which it makes no sense), its default value is 1, so the selected sub-expression will be the first sub-expressic

Furthermore, as described in Chapigeif a MathML application responds to a user command to copy a MathML sub-
expression to the environment's ‘clipboard’, amction elements present in what is copied should be given selection
attributes that correspond to their selection state in the MathML rendering at the time of the copy command.

A suggested list okctiontypes and their associated actions is given below. Keep in mind, however, that this list is
mainly for illustration, and recognized values and behaviors will vary from application to application.

<maction actiontype="toggle" selection="positive-integer" > (first expression) (second expression)... </maction>
For this action type, a renderer would alternately display the given expressions, cycling through them wher
a reader clicked on the active expression, starting with the selected expression and updatngdhéon
attribute value as described above. Typical uses would be for exercises in education, ellipses in long corr
puter algebra output, or to illustrate alternate notations. Note that the expressions may be of significantl
different size, so that size negotiation with the browser may be desirable. If size negotiation is not available
scrolling, elision, panning, or some other method may be necessary to allow full viewing.

<maction actiontype="statusline"> (expression) (message) </maction>
In this case, the renderer would display the expression in context on the screen. When a reader clicked on tt
expression or moved the mouse over it, the renderer would send a rendering of the message to the brows
statusline. Since most browsers in the foreseeable future are likely to be limited to displaying text on their
statusline, authors would presumably use plain text imiagxt element for the message in most circum-
stances. For nomtext messages, renderers might provide a natural language translation of the markup, but
this is not required.

<maction actiontype="tooltip"> (expression) (message) </maction>
Here the renderer would also display the expression in context on the screen. When the mouse pauses o\
the expression for a long enough delay time, the renderer displays a rendering of the message in a poj
up ‘tooltip’ box near the expression. These message boxes are also sometimes called ‘balloon help’ boxe
Presumably authors would use plain text inmarext element for the message in most circumstances. For
nonmtext messages, renderers may provide a natural language translation of the markup if full MathML
rendering is not practical, but this is not required.

<maction actiontype="highlight" my:color="red" my:background="yellow"> expression </maction>
In this case, a renderer might highlight the enclosed expression on a ‘mouse-over’ event. In the example give
above, non-standard attributes from another namespace are being used to pass additional information to re
derers that support them, without violating the MathML DTD (see Sedcti@r). Themy: color attribute
changes the color of the characters in the presentation, whiteythe.ckground attribute changes the color
of the background behind the characters.

<maction actiontype="menu" selection="1" > (menu item 1) (menu item 2) ... </maction>
This action type instructs a renderer to provide a pop up menu. This allows a one-to-many linking capability.
Note that the menu items may be other <maction actiontype="menu">...</maction> expressions, thereb
allowing nested menus. It is assumed that the user choosing a menu item would invoke some kind of actioi
associated with that item. Such action might be completely handled by the renderer itself or it might trigger
some kind of event within the browser that could be linked to other programming logic.

109

Chapter 4

Content Markup

4.1 Introduction
41.1 The Intent of Content Markup

As has been noted in the introductory section of this Recommendation, mathematics can be distinguished by its use
a (relatively) formal language, mathematical notation. However, mathematics and its presentation should not be viewe
as one and the same thing. Mathematical sums or products exist and are meaningful to many applications complett
without regard to how they are rendered aurally or visually. The intent of the content markup in the Mathematical
Markup Language is to provide an explicit encoding of tihderlying mathematical structure of an expression, rather

than any particular rendering for the expression.

There are many reasons for providing a specific encoding for content. Even a disciplined and systematic use of pr
sentation tags cannot properly capture this semantic information. This is because without additional information it i
impossible to decide whether a particular presentation was chosen deliberately to encode the mathematical structure
simply to achieve a particular visual or aural effect. Furthermore, an author using the same encoding to deal with bot
the presentation and mathematical structure might find a particular presentation encoding unavailable simply becau
convention had reserved it for a different semantic meaning.

The difficulties stem from the fact that there are many to one mappings from presentation to semantics and vice vers
For example the mathematical construét multiplied by €' is often encoded using an explicit operator agdin< e.

In different presentational contexts, the multiplication operator might be invisible€’, or rendered as the spoken
word ‘times’. Generally, many different presentations are possible depending on the context and style preferences of t
author or reader. Thus, giveH € out of context it may be impossible to decide if this is the name of a chemical or a
mathematical product of two variablesande.

Mathematical presentation also changes with culture and time: some expressions in combinatorial mathematics tod
have one meaning to a Russian mathematician, and quite another to a French mathematician; see4sgfioan
example. Notations may lose currency, for example the use of musical sharp and flat symbols to denote maxima al
minima [}: A notation in use in 1644 for the multiplication mentioned above Bds e].

When we encode the underlying mathematical structure explicitly, without regard to how it is presented aurally ot
visually, we are able to interchange information more precisely with those systems that are able to manipulate th
mathematics. In the trivial example above, such a system could substitute values for the veriabtksand evaluate

the result. Further interesting application areas include interactive textbooks and other teaching aids.

4.1.2 The Scope of Content Markup

The semantics of general mathematical notation is not a matter of consensus. It would be an enormous job to system:
cally codify most of mathematics - a task that can never be complete. Instead, MathML makes explicit a relatively smal
number of commonplace mathematical constructs, chosen carefully to be sufficient in a large number of applications.

110

addition, it provides a mechanism for associating semantics with new notational constructs. In this way, mathematic:
concepts that are not in the base collection of elements can still be encoded (8&ttipn

The base set of content elements is chosen to be adequate for simple coding of most of the formulas used from kind
garten to the end of high school in the United States, and probably beyond through the first two years of college, that
up to A-Level or Baccalaureate level in Europe. Subject areas covered to some extent in MathML are:

arithmetic, algebra, logic and relations
calculus and vector calculus

set theory

sequences and series

elementary classical functions
statistics

linear algebra

It is not claimed, or even suggested, that the proposed set of elements is complete for these areas, but the provision
author extensibility greatly alleviates any problem omissions from this finite list might cause.

4.1.3 Basic Concepts of Content Markup

The design of the MathML content elements are driven by the following principles:

° The expression tree structure of a mathematical expression should be directly encoded by the MathMl
content elements.

° The encoding of an expression tree should be explicit, and not dependent on the special p&Ghag of
or on additional processing such as operator precedence parsing.

. The basic set of mathematical content constructs that are provided should have default mathematical sema
tics.

. There should be a mechanism for associating specific mathematical semantics with the constructs.

The primary goal of the content encoding is to establish explicit connections between mathematical structures and the
mathematical meanings. The content elements correspond directly to parts of the underlying mathematical expressi
tree. Each structure has an associated default semantics and there is a mechanism for associating new mathema
definitions with new constructs.

Significant advantages to the introduction of content-specific tags include:

° Usage of presentation elements is less constrained. When mathematical semantics are inferred from presen
tion markup, processing agents must either be quite sophisticated, or they run the risk of inferring incomplete
or incorrect semantics when irregular constructions are used to achieve a particular aural or visual effect.

. It is immediately clear which kind of information is being encoded simply by the kind of elements that are
used.
. Combinations of semantic and presentation elements can be used to convey both the appearance and

mathematical meaning much more effectively than simply trying to infer one from the other.

Expressions described in terms of content elements must still be rendered. For common expressions, default visl
presentations are usually clear. ‘Take care of the sense and the sounds will take care of themselves’ wrote Lewis Carr
[]. Default presentations are included in the detailed description of each element occurring in &dction

To accomplish these goals, the MathML content encoding is based on the concept of an expression tree. A conte
expression tree is constructed from a collection of more primitive objects, referred to heseinaggers andoperators.
MathML possesses a rich set of predefined container and operator objects, as well as constructs for combining contain
and operators in mathematically meaningful ways. The syntax and usage of these content elements and construction
described in the next section.

111

4.2 Content Element Usage Guide

Since the intent of MathML content markup is to encode mathematical expressions in such a way that the mathematic
structure of the expression is clear, the syntax and usage of content markup must be consistent enough to facilit
automated semantic interpretation. There must be no doubt when, for example, an actual sum, product or functic
application is intended and if specific numbers are present, there must be enough information present to reconstri
the correct number for purposes of computation. Of course, it is still up to a MathML-compliant processor to decide
what is to be done with such a content-based expression, and computation is only one of many options. A render
or a structured editor might simply use the data and its own built-in knowledge of mathematical structure to rende
the object. Alternatively, it might manipulate the object to build a new mathematical object. A more computationally
oriented system might attempt to carry out the indicated operation or function evaluation.

The purpose of this section is to describe the intended, consistent usage. The requirements involve more than jt
satisfying the syntactic structure specified by an XML DTD. Failure to conform to the usage as described below will
result in a MathML error, even though the expression may be syntactically valid according to the DTD.

In addition to the usage information contained in this section, Sedtidmives a complete listing of each content
element, providing reference information about their attributes, syntax, examples and suggested default semantics &
renderings. The rules for using presentation markup within content markup are explained in S&cickn informal

EBNF grammar describing the syntax for the content markup is given in App@ndix

421 Overview of Syntax and Usage

MathML content encoding is based on the concept of an expression tree. As a general rule, the terminal nodes in t
tree represent basic mathematical objects, such as numbers, variables, arithmetic operations and so on. The intel
nodes in the tree generally represent some kind of function application or other mathematical construction that builc
up a compound object. Function application provides the most important example; an internal node might represent tl
application of a function to several arguments, which are themselves represented by the terminal nodes underneath
internal node.

The MathML content elements can be grouped into the following categories based on their usage:

containers

operators and functions
qualifiers

relations

conditions

semantic mappings
constants and symbols

These are the building blocks out of which MathML content expressions are constructed. Each category is discussed
a separate section below. In the remainder of this section, we will briefly introduce some of the most common elemen
of each type, and consider the general constructions for combining them in mathematically meaningful ways.

4.2.1.1 Constructing Mathematical Objects

Content expression trees are built up from basic mathematical objects. At the lowedkldualdes are encapsulated

in non-empty elements that define their type. Numbers and symbols are markeddiethelementsn andci. More
elaborate constructs such as sets, vectors and matrices are also marked using elements to denote their types, but re
than containing data directly, thesentainer elements are constructed out of other elements. Elements are used in order
to clearly identify the underlying objects. In this way, standard XML parsing can be used and attributes can be used t
specify global properties of the objects.

112

The containers such &gn>12345<cn/> , <ci>x</ci> and<csymbol definitionURL="mySymbol.htm" encod-
ing="text">S</csymbol>represent mathematical numbers , identifiers and externally defined symbols. Below, we
will look at operator elements such gslus or sin, which provide access to the basic mathematical operations and
functions applicable to those objects. Additional containers suele@for sets, anchatrix for matrices are provided

for representing a variety of common compound objects.

For example, the number 12345 is encoded as

<cn>12345</cn>

The attributes an@CDATA content together provide the data necessary for an application to parse the number. Fol
example, a default base of 10 is assumed, but to communicate that the underlying data was actually written in base
simply set thebase attribute to 8 as in

<cn base="8">12345</cn>

while the complex number 3 + 4i can be encoded as

<cn type="complex-cartesian">3<sep/>4</cn>
Such information makes it possible for another application to easily parse this into the correct number.

As another example, the scalar symb@ encoded as

<ci>v</ci>

By default,ci elements represent elements from a commutative field (see Appenhdia vector is intended then this
fact can be encoded as

<ci type="vector">v</ci>

This invokes default semantics associated withvidiet or element, namely an arbitrary element of a finite-dimensional
vector space.

By using theci andcsymbol elements we have made clear that we are referring to a mathematical identifier or symbol
but this does not say anything about how it should be rendered. By default a symbol is rendered@isof deymbol
element were actually the presentation elenteinfsee Sectior8.2.3. The actual rendering of a mathematical symbol
can be made as elaborate as necessary simply by using the more elaborate presentational constructs (as describe
Chapter3) in the body of theci or csymbol element.

The default rendering of a simpta-tagged object is the same as for the presentation elemaemith some provision
for overriding the presentation of tl€DATA by providing explicitnn tags. This is described in detail in SectibA.

The issues for compound objects such as sets, vectors and matrices are all similar to those outlined above for numb
and symbols. Each such object has global properties as a mathematical object that impact how it is to be parsed. This n
affect everything from the interpretation of operations that are applied to it to how to render the symbols representin
it. These mathematical properties are captured by setting attribute values.

4.2.1.2 Constructing General Expressions

The notion of constructing a general expression tree is essentially that of applying an operator to sub-objects. F
example, the suma + b can be thought of as an application of the addition operator to two arguraertd b. In
MathML, elements are used for operators for much the same reason that elements are used to contain objects. They
recognized at the level of XML parsing, and their attributes can be used to record or modify the intended semantics. F
example, with the MathMIplus element, setting th@efinitionURL andencoding attributes as in

113

<plus definitionURL="www.example.com/VectorCalculus.htm"
encoding="text"/>

can communicate that the intended operation is vector-based.

There is also another reason for using elements to denote operators. There is a crucial semantic distinction betwe
the function itself and the expression resulting from applying that function to zero or more arguments which must be
captured. This is addressed by making the functions self-contained objects with their own properties and providin
an explicitapply construct corresponding to function application. We will considerathely construct in the next
section.

MathML contains many pre-defined operator elements, covering a range of mathematical subjects. However, an ir
portant class of expressions involve unknown or user-defined functions and symbols. For these situations, MathM
provides a generalsymbol element, which is discussed below.

4.2.1.3 The apply construct

The most fundamental way of building up a mathematical expression in MathML content markuggg tgeonstruct.

An apply element typically applies an operator to its arguments. It corresponds to a complete mathematical expressio
Roughly speaking, this means a piece of mathematics that could be surrounded by parentheses or ‘logical bracke
without changing its meaning.

For example,X + y) might be encoded as

<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>
</apply>
The opening and closing tags afply specify exactly the scope of any operator or function. The most typical way of
usingapply is simple and recursive. Symbolically, the content model can be described as:

<apply>

op

a

b </apply>
where theoperands a and b are containers or other content-based elements themselves jsad operator or function.
Note that sincexpply is a container, this allowspply constructs to be nested to arbitrary depth.

An apply may in principle have any number of operands:

<apply> op a b [c...] <apply>
For example,X + y + 2) can be encoded as

<apply>
<plus/>
<ci> a </ci>
<ci> b </ci>
<ci> ¢ </ci>
</apply>

114

Mathematical expressions involving a mixture of operations result in nested occurrerggd of For examplea x +
b would be encoded as
<apply>
<plus/>
<apply>
<times/>
<ci> a </ci>
<ci> x </ci>
</apply>
<ci> b </ci>
</apply>
There is no need to introduce parentheses or to resort to operator precedence in order to parse the expression corre
The apply tags provide the proper grouping for the re-use of the expressions within other constructs. Any expressiol
enclosed by aapply element is viewed as a single coherent object.

An expression such af (+ G)(x) might be a product, as in

<apply>
<times/>
<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>
</apply>
<ci> x </ci>
</apply>
or it might indicate the application of the functién+ G to the argument. This is indicated by constructing the sum

<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>
</apply>
and applying it to the argumenrtas in

<apply>
<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>
</apply>
<ci> x </ci>
</apply>
Both the function and the arguments may be simple identifiers or more complicated expressions.

In MathML 1.0, another construction closely related to the use cdjipay element with operators and arguments was
thereln element. Thereln element was used to denote that a mathematical relation holds between its arguments, a
opposed to applying an operator. Thus, the MathML markup for the expressigiwas given in MathML 1.0 by:

115

<reln>
<1t/>
<ci> x </ci>
<ci> y </ci>
</reln>
In MathML 2.0, theapply construct is used with all operators, including logical operators. The expression above
becomes

<apply>
<1t/>
<ci> x </ci>
<ci> y </ci>
</apply>
in MathML 2.0. The use oteln with relational operators is supported for reasons of backwards compatibility, but
deprecatedAuthors creating new content are encouraged taapgéy in all cases.

4.2.1.4 Explicitly defined functions and operators

The most common operations and functions suchlas andsin have been predefined explicitly as empty elements
(see Sectiont.4). They havetype anddefinitionURL attributes, and by changing these attributes, the author can
record that a different sort of algebraic operation is intended. This allows essentially the same notation to be re-used f
a discussion taking place in a different algebraic domain.

Due to the nature of mathematics the notation must be extensible. The key to extensibility is the ability of the user t
define new functions and other symbols to expand the terrain of mathematical discourse.

It is always possible to create arbitrary expressions, and then to use them as symbols in the language. Their propert
can then be inferred directly from that usage as was done in the previous section. However, such an approach wot
preclude being able to encode the fact that the construct was a known symbol, or to record its mathematical properti
except by actually using it. Thesymbol element is used as a container to construct a new symbol in much the same way
thatci is used to construct an identifier. (Note that ‘symbol’ is used here in the abstract sense and has no connectic
with any presentation of the construct on screen or paper). The difference in usagedsyilitail should refer to

some mathematically defined concept with an external definition referenced diaftivei t ionURL attribute, whereas

ci is used for identifiers that are essentially ‘local’ to the MathML expression and do not use any external definition
mechanism. The target of thiefinitionURL attribute on thecsymbol element may encode the definition in any
format; the particular encoding in use is given by #aeoding attribute.

To usecsymbol to describe a completely new function, we write for example

<csymbol definitionURL="www.example.com/VectorCalculus.htm"
encoding="text">
Christoffel
</csymbol>

The definitionURL attribute specifies a URI that provides a written definition for theistoffel symbol. Sug-
gested default definitions for the content elements of MathML appear in Appéndia format based on OpenMath,
although there is no requirement that a particular format be used. The role @étheitionURL attribute is very
similar to the role of definitions included at the beginning of many mathematical papers, and which often just refer to ¢
definition used by a particular book.

116

MathML 1.0 supported the use of tHa to encode the fact that a construct is explicitly being used as a function or
operator. To record the fact that- G is being used semantically as if it were a function, it was encoded as:

<fn>
<apply>
<plus/>
<ci>F</ci>
<ci>G</ci>
</apply>
</fn>

This usage, although allowed in MathML 2.0 for reasons of backwards compatibility, islepwcatedThe fact that

a construct is being used as an operator is clear from the position of the construct as the first chitgppf yhéf it is
required to add additional information to the construct, it should be wrappeddmnamtics element, for example:

<semantics definitionURL="www.example.com/vectorfuncs/plus.htm"
encoding="Mathematica">
<apply>
<plus/>
<ci>F</ci>
<ci>G</ci>
</apply>
</semantics>

MathML 1.0 supported the use 6éfinitionURL with fn to refer to external definitions for user-defined functions.

This usage, although allowed for reasons of backwards compatibilit\gsecatedn MathML 2.0 in favor of using
csymbol to define the function, and thespply to link the function to its arguments. For example:

<apply>
<csymbol definitionURL="http://www.example.org/function_spaces.html#my_def"
encoding="text">
BigK
</csymbol>
<ci>x</ci>
<ci>y</ci>
</apply>

4.2.1.5 The inverse construct
Given functions, it is natural to have functional inverses. This is handled byntherse element.

Functional inverses can be problematic from a mathematical point of view in that they implicitly involve the definition
of an inverse for an arbitrary functidgh Even at the K-through-12 level the concept of an invérsé of many common
functionsF is not used in a uniform way. For example, the definitions used for the inverse trigonometric functions may
differ slightly depending on the choice of domain and/or branch cuts.

MathML adopts the view: i is a function from a domai® to D’, then the inversé of F is a function oveiD’ such
thatG(F (x)) = x for x in D. This definition does not assert that such an inverse exists for all or indeedraby or that
it is single-valued anywhere. Also, depending on the functions involved, additional properties $U&G(@¥ =y fory
in D’ may hold.

117

Theinverse element is applied to a function whenever an inverse is required. For example, application of the inverse
sine function to, i.e. sim? (), is encoded as:

<apply>
<apply> <inverse/> <sin/> </apply>
<ci> x </ci>
</apply>
While arcsin is one of the predefined MathML functions, an explicit reference to'$i) might occur in a document
discussing possible definitions afcsin.

4.2.1.6 The declare construct

Consider a document discussing the vectors(a, b, ¢) andB = (d, g,), and later including the expressivr= A + B.
It is important to be able to communicate the fact that wher@wandB are used they represent a particular vector. The
properties of that vector may determine aspects of operators spthias

The simple fact thaf is a vector can be communicated by using the markup
<ci type="vector">A</ci>

but this still does not communicate, for example, which vector is involved or its dimensions.

Thedeclare construct is used to associate specific properties or meanings with an object. The actual declaration itse
is not rendered visually (or in any other form). However, it indirectly impacts the semantics of all affected uses of the
declared object.

Declarations must occur at the beginning afieeh element. The scope of a declaration is the eniiteh element

in which the declaration is made. Theope attribute of adeclare may be included but has no effect since the
two possible values afocal or global now have the same meaning. Tgkobal attribute value is still allowed for
backwards compatibility with MathML 1.0., but teprecateih MathML 2.0.

The uses of theleclare element range from resetting default attribute values to associating an expression with a
particular instance of a more elaborate structure. Subsequent uses of the original expression (within the scope of t
declare) play the same semantic role as would the paired object.

For example, the declaration

<declare>
<ci> A </ci>
<vector>
<ci> a </ci>
<ci> b </ci>
<ci> ¢ </ci>
</vector>
</declare>

specifies thaf stands for the particular vectaa, (b, c) so that subsequent usesfdés inV = A + B can take this into
account. Whereclare is used in this way, the actual encoding

<apply>
<eq/>
<ci> V </ci>

<apply>

118

<plus/>
<ci> A </ci>
<ci> B </ci>
</apply>
</apply>
remains unchanged but the expression can be interpreted properly as vector addition.

There is no requirement to declare an expression to stand for a specific object. For example, the declaration

<declare type="vector">
<ci> A </ci>
</declare>

specifies thalA is a vector without indicating the number of components or the values of specific components. The
possible values for theype attribute include all the predefined container element names sugécasr, matrix or
set (see Sectiod.3.2.9.

4.2.1.7 The lambda construct

The lambda calculus allows a user to construct a function from a variable and an expression. For example, the lamb
construct underlies the common mathematical idiom illustrated here:

Let f be the function taking to x? + 2

There are various notations for this concept in mathematical literature, sa¢k, &{x)) = F or A(x, [F]) =F, wherex
is a free variable irf.

This concept is implemented in MathML with tiembda element. A lambda construct withinternal variables is
encoded by aambda element withn+1 children. All but the last child must berar elements containing the identifiers
of the internal variables. The last child is an expression defining the function. This is typicalppap, but can also
be any container element.

The following constructa (x, sinfx+1)):

<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<sin/>
<apply>
<plus/>
<ci> x </ci>
<cn> 1 </cn>
</apply>
</apply>
</lambda>
To usedeclare andlambda to construct the functiof for which f(x) = x% + x + 3 use:

<declare type="£fn">
<ci> f </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<plus/>

119

<apply>
<power/>
<ci> x </ci>
<cn> 2 </cn>
</apply>
<ci> x </ci>
<cn> 3 </cn>
</apply>
</lambda>
</declare>

The following markup declares and constructs the funclisnch thatl(x, y) is the integral fromx to y of t* with respect
tot.

<declare type="fn">
<ci> J </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<bvar><ci> y </ci></bvar>
<apply> <int/>
<bvar>
<ci> t </ci>
</bvar>
<lowlimit>
<ci> x </ci>
</lowlimit>
<uplimit>
<ci> y </ci>
</uplimit>
<apply> <power/>
<ci>t</ci>
<cn>4</cn>
</apply>
</apply>
</lambda>
</declare>

The functiond can then in turn be applied to an argument pair.

4.2.1.8 The use of qualifier elements and the condition construct

The last example of the preceding section illustrates the ugeadffier elementdowlimit, uplimit, andbvar used

in conjunction with theint element. A number of common mathematical constructions involve additional data that is
either implicit in conventional notation, such as a bound variable, or thought of as part of the operator rather than a
argument, as is the case with the limits of a definite integral.

Content markup uses qualifier elements in conjunction with a number of operators, including integrals, sums, serie
and certain differential operators. Qualifier elements appear in the sapg element with one of these operators. In
general, they must appear in a certain order, and their precise meaning depends on the operators being used. For det
see Sectiod.2.3.2

120

The qualifier elemerbvar is also used in another important MathML construction. Thadition element is used
to place conditions on bound variables in other expressions. This allows MathML to define sets by rule, rather tha
enumeration, for example. The following markup, for instance, encodes the| get 1:

<set>
<bvar><ci> x </ci></bvar>
<condition>
<apply>
<1t/>
<ci> x </ci>
<cn> 1 </cn>
</apply>
</condition>
</set>

4.2.1.9 Rendering of Content elements

While the primary role of the MathML content element set is to directly encode the mathematical structure of ex-
pressions independent of the notation used to present the objects, rendering issues cannot be ignored. Each con
element has a default rendering, given in Sectighand several mechanisms (including Sectio® 3.9 are provided

for associating a particular rendering with an object.

4.2.2 Containers
Containers provide a means for the construction of mathematical objects of a given type.

Tokens ci, cn, csymbol
Constructors interval, list, matrix, matrixrow, set, vector, apply, reln, fn, lambda, piecewise, piece, other
Specials declare

4.2.2.1 Tokens

Token elements are typically the leaves of the MathML expression tree. Token elements are used to indicate mathem
ical identifiers, numbers and symbols.

It is also possible for the canonically empty operator elements suekpasin andcos to be leaves in an expression
tree. The usage of operator elements is described in Secfidh

cn Thecn element is the MathML token element used to represent numbers. The supported types of numbers includ
real, integer, rational, complex-cartesian, andcomplex-polar, with real being the default type.
An attributebase (with default valuetl0) is used to help specify how the content is to be parsed. The content
itself is essentiallfPCDATA, separated bysep/> when two parts are needed in order to fully describe a
number. For example, the real number 3 is constructedchy type="real"> 3 </cn>, while the ratio-
nal number 3/4 is constructed @&sn type="rational"> 3<sep/>4 </cn>. The detailed structure and
specifications are provided in Sectiér.1.1

ci Theci element, or ‘content identifier’ is used to construct a variable, or an identifieypA attribute indicates the
type of object the symbol represents. Typically,represents a real scalar, but no default is specified. The
content is eithePCDATA or a general presentation construct (see Se&ibrf). For example,

<ci>
<msub>

121

<mi>c</mi>
<mn>1</mn>
</msub>

</ci>
encodes an atomic symbol that displays visuallg@aahich, for purposes of content, is treated as a single

symbol representing a real number. The detailed structure and specifications are provided irdSeétidn

csymbol Thecsymbol element, or ‘content symbol’ is used to construct a symbol whose semantics are not part of the

4.2.2.2

core content elements provided by MathML, but defined externadlymbol does not make any attempt

to describe how to map the arguments occurring in any application of the function into a new MathML
expression. Instead, it depends ondtgfinitionURL attribute to point to a particular meaning, and the
encoding attribute to give the syntax of this definition. The content afsgmbol is eitherPCDATA or a
general presentation construct (see Sectidng. For example,

<csymbol definitionURL="www.example.com/ContDiffFuncs.htm"
encoding="text">
<msup>
<mi>C</mi>
<mn>2</mn>
</msup>

</csymbol> _ . . _
encodes an atomic symbol that displays visuallyCasand that, for purposes of content, is treated as a

single symbol representing the space of twice-differentiable continuous functions. The detailed structure an
specifications are provided in Sectiénrt.1.3

Constructors

MathML provides a number of elements for combining elements into familiar compound objects. The compound object
include things like lists and sets. Each constructor produces a new type of object.

interval Theinterval element is described in detail in Sectibr.2.4 It denotes an interval on the real line with the

values represented by its children as end points.clileeure attribute is used to qualify the type of interval
being represented. For example,

<interval closure="open-closed">
<ci> a </ci>
<ci> b </ci>

</interval> _ .
represents the open-closed interval often writigr].

set and list The set andlist elements are described in detail in SectibiA.6.1and Sectiort.4.6.2 Typically, the

child elements of a possibly empty st element are the actual components of an ordéked-or example,
an ordered list of the three symbalsh, andc is encoded as

<list> <ci> a </ci> <ci> b </ci> <ci> ¢ </ci> </list> ' _
Alternatively, bvar and condition elements can be used to define lists where membership depends on

satisfying certain conditions. Aerder attribute can be used to specify what ordering is to be used. When
the nature of the child elements permits, the ordering defaults to a numeric or lexicographic ordering. Set:
are structured much the same as lists except that there is no implied ordering aggdhef set may be
normal or multiset with multiset indicating that repetitions are allowed. For both sets and lists, the
child elements must be valid MathML content elements. The type of the child elements is not restricted. For
example, one might construct a list of equations, or of inequalities.

matrix and matrixrow Thematrix element is used to represent mathematical matrices. It is described in detail in

Section4.4.10.2 It has zero or more child elements, all of which aterixrow elements. These in turn

122

expect zero or more child elements that evaluate to algebraic expressions or numbers. These sub-eleme
are often real numbers, or symbols as in

<matrix>
<matrixrow> <cn> 1 </cn> <cn> 2 </cn> </matrixrow>
<matrixrow> <cn> 3 </cn> <cn> 4 </cn> </matrixrow>

</matrix>
Thematrixrow elements must always be contained inside of a matrix, and all rows in a given matrix must

have the same number of elements. Note that the behavior akthe x andmatrixrow elements is sub-
stantially different from thetable andmtr presentation elements.

vector Thevector elementis described in detail in Sectibrd.10.1 It constructs vectors from andimensional vector
space so that its child elements typically represent real or complex valued scalars as in the three-element
vector

<vector>
<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>
</apply>
<cn> 3 </cn>
<cn> 7 </cn>
</vector>
apply Theapply element is described in detail in Sectidrl.2.1 Its purpose is to apply a function or operator to its
arguments to produce an expression representing an element of the codomain of the function. It is involve
in everything from forming sums such as b as in

<apply>
<plus/>
<ci> a </ci>
<ci> b </ci>
</apply>
through to using the sine function to construct g)rgs in

<apply>

<sin/>

<ci> a </ci>
</apply>
or constructing integrals. Its usage in any particular setting is determined largely by the properties of the
function (the first child element) and as such its detailed usage is covered together with the functions ant
operators in Section.2.3

reln Thereln elementis described in detail in Sectiért.2.2 It was used in MathML 1.0 to construct an expression

suchas=Db, asin

<reln><eq/>
<ci> a </ci>
<ci> b </ci>

</reln>
indicating an intended comparison between two mathematical values. MathML 2.0 takes the view that this

should be regarded as the application of a boolean function, and as such could be constructgsbiiging

123

The use ofreln with logical operators is supported for reasons of backwards compatibilitgemrecated
in favor of apply.

fn The £fn element was used in MathML 1.0 to make explicit the fact that an expression is being used as a functior

or operator. This is allowed in MathML 2.0 for backwards compatibility, butdsrecatedas the use of an
expression as a function or operator is clear from its position as the first childegfpary. fn is discussed
in detail in Sectiont.4.2.3

lambda The lambda element is used to construct a user-defined function from an expression and one or more free

variables. The lambda construct witlinternal variables takest+1 children. The first (second, up i is a
bvar containing the identifiers of the internal variables. The last is an expression defining the function. This
is typically anapply, but can also be any container element. The following constdtssin x)
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<sin/>
<ci> x </ci>
</apply>
</lambda>
The following constructs the constant functidifx, 3)

<lambda>
<bvar><ci> x </ci></bvar>
<cn> 3 </cn>

</lambda>

piecewise, piece, otherwisd he piecewise, piece, otherwise elements are used to support ‘piecewise’ declara-

4223

tions of the form ‘H(x) = O if x less than OH(x) = 1 otherwise’.

<piecewise>
<piece>
<cn> 0 </cn>
<apply><lt/><ci> x </ci> <cn> 0 </cn></apply>
</piece>
<otherwise>
<ci> x </ci>
</otherwise>

</piecewise> . _ -
Thepiecewise elements are discussed in detail in Sectioh2.16

Special Constructs

Thedeclare construct is described in detail in Sectiénrt.2.8 It is special in that its entire purpose is to modify the
semantics of other objects. It is not rendered visually or aurally.

The need for declarations arises any time a symbol (including more general presentations) is being used to represent
instance of an object of a particular type. For example, you may wish to declare that the symbolic idéntifimrsents

a vector. The single argument form can be used to set properties of objects by setting the default values of implie
attribute values to specific values.

The declaration

<declare type="vector"><ci>V</ci></declare>

resets the default type attribute ofi>V</ci> to vector for all affected occurrences &ici>V</ci>. This avoids
having to write<ci type="vector">V</ci> every time you use the symbol.

124

More generallydeclare can be used to associate expressions with specific content. For example, the declaration

<declare>
<ci>F</ci>
<lambda>
<bvar><ci> U </ci></bvar>
<apply>
<int/>
<bvar><ci> x </ci></bvar>
<lowlimit><cn> 0 </cn></lowlimit>
<uplimit><ci> a </ci></uplimit>
<ci> U </ci>
</apply>
</lambda>
</declare>

associates the symbBlwith a new function defined by thiambda construct. Within the scope where the declaration
is in effect, the expression

<apply>
<ci>F</ci>
<ci> U </ci>

</apply>

stands for the integral & from O toa.

The declare element can also be used to change the definition of a function or operator. For example, if the URL
http://.../MathML:noncommutplus described a non-commutative plus operation encoded in Maple syntax, then
the declaration

<declare definitionURL="http://.../MathML:noncommutplus"
encoding="Maple">
<plus/>
</declare>

would indicate that all affected usesifus are to be interpreted as having that definitiopdis.

4.2.3 Functions, Operators and Qualifiers
The operators and functions defined by MathML can be divided into categories as shown in the table below.

125

unary arithmetic factorial,minus, abs, conjugate, arg, real, imaginary, floor, ceiling

unary logical not

unary functional inverse, ident, domain, codomain, image

unary elementary classical functionsin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arc-
sin, arccos, arctan, arccosh, arccot, arccoth, arccsc, arccsch, arc-
sec, arcsech, arcsinh, arctanh, exp, 1n, log

unary linear algebra determinant, transpose

unary calculus and vector calculus divergence, grad, curl, laplacian
unary set-theoretic card

binary arithmetic quotient, divide, minus, power, rem
binary logical implies, equivalent, approx

binary set operators setdiff

binary linear algebra vectorproduct, scalarproduct, outerproduct
n-ary arithmetic plus, times, max, min, gcd, lcm

n-ary statistical mean, sdev, variance, median, mode
n-ary logical and, or, xor

n-ary linear algebra selector

n-ary set operator union, intersect, cartesianproduct
n-ary functional fn, compose

integral, sum, product operators int, sum, product

differential operator diff, partialdiff

quantifier forall, exists

From the point of view of usage, MathML regards functions (for examsple and cos) and operators (for example
plus andtimes) in the same way. MathML predefined functions and operators are all canonically empty elements.

Note that the:symbol element can be used to construct a user-defined symbol that can be used as a function or operatt

4.2.3.1 Predefined functions and operators

MathML functions can be used in two ways. They can be used as the operator withippanelement, in which case
they refer to a function evaluated at a specific value. For example,

<apply>
<sin/>
<cn>5</cn>
</apply>
denotes a real number, namely sin(5).
MathML functions can also be used as arguments to other operators, for example
<apply>
<plus/><sin/><cos/>
</apply>

denotes a function, namely the result of adding the sine and cosine functions in some function space. (The defal
semantic definition oplus is such that it infers what kind of operation is intended from the type of its arguments.)

The number of child elements in theply is defined by the element in the first (i.e. operator) position.
Unary operators are followed by exactly one other child element withirafhdy.

Binary operators are followed by exactly two child elements.

126

N-ary operators are followed by two or more child elements.

The one exception to these rules is thatlare elements may be inserted in any position except the fiegtlare
elements are not counted when satisfying the child element count fasEry containing a unary or binary operator
element.

Integral, sum, product and differential operators are discussed below in S&&iar2

4.2.3.2 Operators taking Qualifiers
The table below contains the qualifiers and the operators defined as taking qualifiers in MathML.

qualifiers lowlimit, uplimit, bvar, degree, logbase, interval, condition, domainofapplication, momentabout
operators int, sum, product, root, diff, partialdiff, 1imit, log, moment, min, max, forall, exists

Operators taking qualifiers are canonically empty functions that differ from ordinary empty functions only in that they
support the use of specigalifier elements to specify their meaning more fully. They are used in exactly the same way
as ordinary operators, except that when they are used as operators, certain qualifier elements are also permitted to b
the enclosingapply. Qualifiers always follow the operator and precede the argument if it is present. If more than one
qualifier is present, they appear in the ordesr, lowlimit, uplimit, interval, condition, domainofapplica-
tion, degree, momentabout, logbase. A typical example is:
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<interval><cn>0</cn><cn>1</cn></interval>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>
</apply>
</apply>
It is also valid to use qualifier schema with a function not applied to an argument. For example, a function acting or
integrable functions on the interval [0,1] might be denoted:
<fn>
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>1</cn></uplimit>
</apply>
</fn>
In addition to the defined usage in MathML, qualifier schema may be used with any user-defined symbol (e.g. usin
csymbol) or construct. The meaning of such a usage is not defined by MathML; it would normally be user-defined
using thedefinitionURL attribute.

The meaning and usage of qualifier schema varies from function to function. The following list summarizes the usag

of qualifier schema with the MathML functions taking qualifiers.

int The int function accepts th@owlimit, uplimit, bvar, interval, condition anddomainofapplication
schemata. If bothowlimit anduplimit schema are present, they denote the limits of a definite integral.
The domain of integration may alternatively be specified usitigerval, condition Or domainofappli-
cation. Thebvar schema signifies the variable of integration. When used with each qualifier schema
is expected to contain a single child schema; otherwise an error is generated.

127

diff Thediff function accepts thevar schema. Thevar schema specifies with respect to which variable the deriva-
tive is being taken. Thevar may itself contain alegree schema that is used to specify the order of the
derivative, i.e. a first derivative, a second derivative, etc. For example, the second derivativitrofespect
toxis:

<apply>
<diff/>
<bvar>
<ci> x </ci>
<degree>
<cn> 2 </cn>
</degree>
</bvar>
<apply><fn><ci>f</ci></fn>
<ci> x </ci>
</apply>
</apply>
partialdiff Thepartialdiff operator accepts zero or marear schemata, and an optiordgree qualifier schema.
Thebvar schema specify, in order, the variables with respect to which the derivative is being taken. Each
bvar element may contain aegree schema which is used to specify the order of the derivative being
taken with respect to that variable. The optiodagree schema qualifier associated with thertiald-
iff element itself (that is, appearing as a child of the enclosisigly element rather than of one of the
bvar qualifiers) is used to represent the total degree of the differentiation. degefee schema used with
partialdiff is expected to contain a single child schema. For example,

<apply>
<partialdiff/>
<bvar>
<degree><cn>2</cn></degree>
<cid>x</ci>
</bvar>
<bvar><ci>y</ci></bvar>
<bvar><ci>x</ci></bvar>
<degree><cn>4</cn></degree>
<ci type="fn">f</ci>
</apply>
denotes the mixed partial derivative{ d®x dy dx) f.
sum, product The sum and product functions accept thevar, lowlimit, uplimit, interval, condition and
domainofapplication schemata. If bothowlimit anduplimit schemata are present, they denote the
limits of the sum or product. The limits may alternatively be specified usingiherval, condition or
domainofapplication schema. Thévar schema signifies the internal variable in the sum or product. A
typical example might be:

<apply>
<sum/>
<bvar><ci>i</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>100</cn></uplimit>

<apply>

128

<power/>
<ci>x</ci>
<ci>i</ci>
</apply>
</apply>
When used withlsum or product, each qualifier schema is expected to contain a single child schema; other-
wise an error is generated.

limit Thelimit function accepts zero or mokerar schemata, and optionabndition andlowlimit schemata.

A condition may be used to place constraints on Bvar. Thebvar schema denotes the variable with
respect to which the limit is being taken. Thewlimit schema denotes the limit point. When used with
limit, thebvar andlowlimit schemata are expected to contain a single child schema; otherwise an error
is generated.

log Thelog function accepts only theogbase schema. If present, thesgbase schema denotes the base with respect

to which the logarithm is being taken. Otherwise, the log is assumed to be base 10. When useg vifite
logbase schema is expected to contain a single child schema; otherwise an error is generated.

moment Themoment function accepts thé@egree andmomentabout schema. If present, thiegree schema denotes

min, max

the order of the moment. Otherwise, the moment is assumed to be the first order moment. When used wit
moment, thedegree schema is expected to contain a single child schema; otherwise an error is generated
If present, themomentabout schema denotes the point about which the moment is taken. Otherwise, the
moment is assumed to be the moment about zero.

Themin andmax functions accept avar schema in cases where the maximum or minimum is being taken
over a set of values specified byendition schema together with an expression to be evaluated on that set.
In MathML1.0, thebvar element was optional when using@ndition; if a condition element containing

a single variable was given by itself followingman or max operator, the variable was implicitly assumed to

be bound, and the expression to be maximized or minimized (if absent) was assumed to be the single bour
variable. This usage seprecateih MathML 2.0 in favor of explicitly stating the bound variable(s) and the
expression to be maximized or minimized in all cases.mheandmax elements may also be applied to a list

of values in which case no qualifier schemata are used. For examples of all three usages, seé.&&cfion

forall, exists The universal and existential quantifier operattysall andexists are used in conjuction with one or

morebvar schemata to represent simple logical assertions. There are two ways of using the logical quantifie
operators. The first usage is for representing a simple, quantified assertion. For example, the statement ‘the
existsx< 9’ would be represented as:

<apply>

<exists/>

<bvar><ci> x </ci></bvar>

<app1y><1t/>

<ci> x </ci><cn> 9 </cn>

</apply>
</apply>
The second usage is for representing implications. Hypotheses are givenhyia ion element following
the bound variables. For example the statement ‘fax &lB, x < 10’ would be represented as:

<apply>
<forall/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><1t/>
<ci> x </ci><cn> 9 </cn>

129

</apply>
</condition>
<apply><1lt/>
<ci> x </ci><cn> 10 </cn>
</apply>
</apply>
Note that in both usages one or marear qualifiers are mandatory.

4.2.4 Relations

binary relation neq, equivalent, approx, factorof
binary logical relation implies

binary set relation in, notin, notsubset, notprsubset
binary series relation tendsto

n-ary relation eq, leq, 1t, geq, gt

n-ary set relation subset, prsubset

The MathML content tags include a number of canonically empty elements which denote arithmetic and logical rela
tions. Relations are characterized by the fact that, if an external application were to evaluate them (MathML does nc
specify how to evaluate expressions), they would typically return a truth value. By contrast, operators generally retur
a value of the same type as the operands. For example, the result of evaduatirig either true or false (by contrast,

1 + 2 is again a number).

Relations are bracketed with their arguments usingfifdy element in the same way as other functions. In MathML
1.0, relational operators were bracketed usiegn. This usage, although still supported, is ndeprecatedn favor

of apply. The element for the relational operator is the first child element o&gipay. Thus, the example from the
preceding paragraph is properly marked up as:

<apply>
<1t/>
<ci>a</ci>
<ci>b</ci>
</apply>
Itis an error to enclose a relation in an element other #a1ly or reln.

The number of child elements in theply is defined by the element in the first (i.e. relation) position.
Unary relations are followed by exactly one other child element withinaihel y.

Binary relations are followed by exactly two child elements.

N-ary relations are followed by zero or more child elements.

The one exception to these rules is thatlare elements may be inserted in any position except the fiestlare
elements are not counted when satisfying the child element count fapy containing a unary or binary relation
element.

425 Conditions
condition condition

The condition element is used to define the ‘such that’ construct in mathematical expressions. Condition element:
are used in a number of contexts in MathML. They are used to construct objects like sets and lists by rule instead of k
enumeration. They can be used with therall andexists operators to form logical expressions. And finally, they

130

can be used in various ways in conjunction with certain operators. For example, they can be used witklament
to specify domains of integration, or to specify argument lists for operatoraike@ndmax.

Thecondition element is always used together with one or merer elements.

The exact interpretation depends on the context, but generally speakirgnihietion element is used to restrict the
permissible values of a bound variable appearing in another expression to those that satisfy the relations contained
thecondition. Similarly, when theondition element contains get, the values of the bound variables are restricted

to that set.

A condition element contains a single child that is eitheapply, or areln element {eprecated Compound condi-
tions are indicated by applying relations suctaas inside the child of the condition.

4.2.5.1 Examples

The following encodes ‘there existsuch thak® < 3’

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><1t/>
<apply>
<power/>
<ci>x</ci>
<cn>5</cn>
</apply>
<cn>3</cn>
</apply>
</condition>
</apply>
The next example encodes ‘for alln N there exist prime nhumbers g such thatp+q = 2x'.

<apply>
<forall/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><in/>
<ci>x</ci>
<csymbol encoding="OpenMath"
definitionURL="http://www.openmath.org/cd/setnamel.ocd">
N
</csymbol>
</apply>
</condition>

<apply><exists/>
<bvar><ci>p</ci></bvar>
<bvar><ci>q</ci></bvar>
<condition>

131

<apply><and/>
<apply><in/><ci>p</ci>
<csymbol encoding="OpenMath"
definitionURL="http://www.openmath.org/cd/setnamel.ocd">
P
</csymbol>
</apply>
<apply><in/><ci>q</ci>
<csymbol encoding="OpenMath"
definitionURL="http://www.openmath.org/cd/setnamel.ocd">
P
</csymbol>
</apply>
<apply><eq/>
<apply><plus/><ci>p</ci><ci>q</ci></apply>
<apply><times/><cn>2</cn><ci>x</ci></apply>
</apply>
</apply>
</condition>
</apply>
</apply>
A third example shows the use of quantifiers wibhdition. The following markup encodes ‘there exigts 3 such
thatxs = 4.
<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><1lt/><ci>x</ci><cn>3</cn></apply>
</condition>
<apply>
<eq/>
<apply>
<power/><ci>x</ci><cn>2</cn>
</apply>
<cn>4</cn>
</apply>
</apply>

4.2.6 Syntax and Semantics
mappings semantics, annotation, annotation-xml

The use of content markup rather than presentation markup for mathematics is sometimes refeseachigiasagging

[}. The parse-tree of a valid element structure using MathML content elements corresponds directly to the
expression tree of the underlying mathematical expression. We therefore regard the content tagging itself as encoding
syntax of the mathematical expression. This is, in general, sufficient to obtain some rendering and even some symbol
manipulation (e.g. polynomial factorization).

However, even in such apparently simple expressionX asY, some additional information may be required for
applications such as computer algebra. ArandY integers, or functions, etc.? ‘Plus’ represents addition over which

132

field? This additional information is referred to &snantic mapping. In MathML, this mapping is provided by the
semantics, annotation andannotation-xml elements.

The semantics element is the container element for the MathML expression together with its semantic mappings.
semantics expects a variable number of child elements. The first is the element (which may itself be a complex
element structure) for which this additional semantic information is being defined. The second and subsequent childre
if any, are instances of the elemeatmotation and/Orannotation-xml.

Thesemantics element also accepts tdefinitionURL andencoding attributes for use by external processing ap-
plications. One use might be a URI for a semantic content dictionary, for example. Since the semantic mapping informs
tion might in some cases be provided entirely bydhéinitionURL attribute, theannotation Or annotation-xml
elements are optional.

The annotation element is a container for arbitrary data. This data may be in the form of text, computer algebra
encodings, C programs, or whatever a processing application expettsation has an attributencoding defining

the form in use. Note that the content modelamhotation is PCDATA, SO care must be taken that the particular
encoding does not conflict with XML parsing rules.

The annotation-xml element is a container for semantic information in well-formed XML. For example, an XML
form of the OpenMath semantics could be given. Another possible use here is to embed, for example, the presentati
tag form of a construct given in content tag form in the first child elemestnéntics (or vice versa)annotation-

xml has an attributencoding defining the form in use.

For example:

<semantics>
<apply>
<divide/>
<cn>123</cn>
<cn>456</cn>
</apply>
<annotation encoding="Mathematica">
N[123/456, 39]
</annotation>
<annotation encoding="TeX">
$0.269736842105263157894736842105263157894\1dots$
</annotation>
<annotation encoding="Maple">
evalf (123/456, 39);
</annotation>
<annotation-xml encoding="MathML-Presentation">
<mrow>
<mn> 0.269736842105263157894 </mn>
<mover accent=’true’>
<mn> 736842105263157894 </mn>
<mo> &0OverBar; </mo>
</mover>
</mrow>
</annotation-xml>
<annotation-xml encoding="OpenMath">
<OMA xmlns="http://www.openmath.org/OpenMath">
<0MS cd="arithl" name="divide"/>

133

<OMI>123</0MI>
<0OMI>456</0MI>
</0MA>
</annotation-xml>
</semantics>

where0MA is the element defining the additional semantic information.

Of course, providing an explicit semantic mapping at all is optional, and in general would only be provided where there
is some requirement to process or manipulate the underlying mathematics.

4.2.7 Semantic Mappings

Although semantic mappings can easily be provided by various proprietary, or highly specialized encodings, there al
no widely available, non-proprietary standard schemes for semantic mapping. In part to address this need, the goal
the OpenMath effort is to provide a platform-independent, vendor-neutral standard for the exchange of mathematic
objects between applications. Such mathematical objects include semantic mapping information. The OpenMath groi
has defined an XML syntax for the encoding of this informatiom§ 1) This element set could provide the
basis of onennotation-xml element set.

An attractive side of this mechanism is that the OpenMath syntax is specified in XML, so that a MathML expression
together with its semantic annotations can be validated using XML parsers.

4.2.8 Constants and Symbols

MathML provides a collection of predefined constants and symbols which represent frequently-encountered conceg
in K-12 mathematics. These include symbols for well-known sets, suchtagsers andrationals, and also some
widely known constant symbols suchfsl se, true, exponentiale.

4.2.9 MathML element types

MathML functions, operators and relations can all be thought of as mathematical functions if viewed in a sufficiently
abstract way. For example, the standard addition operator can be regarded as a function mapping pairs of real numb
to real numbers. Similarly, a relation can be thought of as a function from some space of ordered pairs into the set «
values true, false. To be mathematically meaningful, the domain and codomain of a function must be precisely specifie
In practical terms, this means that functions only make sense when applied to certain kinds of operands. For examp
thinking of the standard addition operator, it makes no sense to speak of ‘adding’ a set to a function. Since MathMl
content markup seeks to encode mathematical expressions in a way that can be unambiguously evaluated, it is
surprise that the types of operands is an issue.

MathML specifies the types of arguments in two ways. The first way is by providing precise instructions for processing
applications about the kinds of arguments expected by the MathML content elements denoting functions, operators a
relations. These operand types are defined in a dictionary of default semantic bindings for content elements, which
given in AppendixC. For example, the MathML content dictionary specifies that for real scalar arguments the plus
operator is the standard commutative addition operator over a field. The elemédras atype attribute with a default

value ofreal. Thus some processors will be able to use this information to verify the validity of the indicated operations.

Although MathML specifies the types of arguments for functions, operators and relations, and provides a mechanism fi
typing arguments, a MathML-compliant processor is not required to do any type checking. In other words, a MathML
processor will not generate errors if argument types are incorrect. If the processor is a computer algebra system, it m
be unable to evaluate an expression, but no MathML error is generated.

134

4.3 Content Element Attributes
43.1 Content Element Attribute Values

Content element attributes are all of the tyypATA, that is, any character string will be accepted as valid. In addition,
each attribute has a list of predefined values, which a content processor is expected to recognize and process. The ree
that the attribute values are not formally restricted to the list of predefined values is to allow for extension. A processo
encountering a value (not in the predefined list) which it does not recognize may validly process it as the default valu
for that attribute.

4.3.2 Attributes Modifying Content Markup Semantics

Each attribute is followed by the elements to which it can be applied.

4.3.2.1 base

cn indicates numerical base of the number. Predefined values: any numeric string. The defaultMalue is

4.3.2.2 closure

interval indicates closure of the interval. Predefined valug@gn, closed, open-closed, closed-open. The default
value isclosed

4.3.2.3 definitionURL

csymbol, declare, semantics, any operator elemergoints to an external definition of the semantics of the symbol

or construct being declared. The value is a URL or URI that should point to some kind of definition. This

definition overrides the MathML default semantics. At present, MathML does not specify the format in which

external semantic definitions should be given. In particut@re is no requirement that the target of the URI

be loadable and parsable. An external definition could, for example, define the semantics in human-readable

form. Ideally, in most situations the definition pointed to by #f initionURL attribute would be some

standard, machine-readable format. However, there are reasons why MathML does not require such a forme

e No such format currently exists. There are several projects underway to develop and implement stan
dard semantic encoding formats, most notably the OpenMath effort. By nature, the development of &
comprehensive system of semantic encoding is a very large enterprise, and while much work has bee
done, much additional work remains. Even thoughdbeinitionURL is designed and intended for
use with a formal semantic encoding language such as OpenMath, it is premature to require any on
particular format.

e There will always be situations where some non-standard format is preferable. This is particularly true
in situations where authors are describing new ideas. It is anticipated that in the near term, there will
be a variety of renderer-dependent implementations ofi¢liénitionURL attribute.

— Atranslation tool might simply prompt the user with the specified definition in situations where
the proper semantics have been overridden, and in this case, human-readable definitions will b
most useful.

— Other software may utilize OpenMath encodings.

— Still other software may use proprietary encodings, or look for definitions in any of several for-
mats.

As a consequence, authors need to be aware that there is no guarantee a generic renderer will be al

to take advantage of information pointed to by e initionURL attribute. Of course, when widely-
accepted standardized semantic encodings are available, the definitions pointed to can be replace
without modifying the original document. However, this is likely to be labor intensive.

135

There is no default value for thief initionURL attribute, i.e. the semantics are defined within the MathML
fragment, and/or by the MathML default semantics.

4.3.24 encoding

annotation, annotation-xml, csymbol, semantics, all operator elementidicates the encoding of the annotation, or
in the case otsymbol , semantics and operator elements, the syntax of the target referred teby-
nitionURL. Predefined values arathML-Presentation, MathML-Content. Other typical valuesTexX,
OpenMath. The default value is ", i.e. unspecified.

4325 nargs

declare indicates number of arguments for function declarations. Pre-defined vaktgs:or any numeric string. The
default value igl.

4.3.2.6 occurrence

declare indicates occurrence for operator declarations. Pre-defined valpesix, infix, function-model. The
default value iSunction-model.

4.3.2.7 order

list indicates ordering on the list. Predefined valuesticographic, numeric. The default value iaumeric.

4.3.2.8 scope

declare indicates scope of applicability of the declaration. Pre-defined valuesl, global (deprecated
e local means the containing MathML element.
e global means the containingath element.
In MathML 2.0, a declare has been restricted to occur only at the beginningaafraelement. Thus, there
is no difference between the two possiblepe values and the scope attribute may be safely ionored. The
global attribute value has beeteprecatedor this role aslocal better represents the concept. Ideally, one
would like to make document-wide declarations by setting the value afdbpe attribute to beglobal-

document. However, the proper mechanism for document-wide declarations very much depends on details

of the way in which XML will be embedded in HTML, future XML style sheet mechanisms, and the under-

lying Document Object Model. Since these supporting technologies are still in flux at present, the MathML
specification does not includg obal-document as a pre-defined value of tleope attribute. It is antic-
ipated, however, that this issue will be revisited in future revisions of MathML as supporting technologies
stabilize. In the near term, MathML implementors that wish to simulate the effect of a document-wide dec-

laration are encouraged to pre-process documents in order to distribute document-wide declarations to ea

individualmath element in the document.

4.3.2.9 type

cn indicates type of the number. Predefined valuesiotation, integer, rational, real, float, complex-
polar, complex-cartesian, constant. The default value iseal. Notes. Each data type implies that the

data adheres to certain formatting conventions, detailed below. If the data fails to conform to the expectec

format, an error is generated. Details of the individual formats are:

136

real A real number is presented in decimal notation. Decimal notation consists of an optional sign (‘+’ or
‘") followed by a string of digits possibly separated into an integer and a fractional part by a ‘deci-
mal point’. Some examples are 0.3, 1, and -31.56. If a diffebant is specified, then the digits are
interpreted as being digits computed to that base.

e-notation A real number may also be presented in scientific notation. Such numbers have two parts (a
mantissa and an exponent) separated by ‘e’ or ‘E’. The first part is a real number, while the second par
is an integer exponent indicating a power of the base. For example, 12.3e5 represents 12.Ptimes 10

integer An integer is represented by an optional sign followed by a string of 1 or more ‘digits’. What a
‘digit’ is depends on th@ase attribute. Ifbase is present, it specifies the base for the digit encoding,
and it specifies it base 10. Thuase="16’ specifies a hex encoding. Whease > 10, letters are added
in alphabetical order as digits. The legitimate valuestate are therefore between 2 and 36.

rational A rational number is two integers separated<dagp/>. If base is present, it specifies the base
used for the digit encoding of both integers.

complex-cartesian A complex number is of the form two real point numbers separatedsby/>.

complex-polar A complex number is specified in the form of a magnitude and an angle (in radians). The
raw data is in the form of two real numbers separateddsp/>.

constant The constant type is used to denote named constants. For example, an instaxce afype=
"constant">π</cn>should be interpreted as having the semantics of the mathematical constant
Pi. The data for a constanh tag may be one of the following common constants:

Symbol Value

π The usuakpi; of trigonometry: approximately 3.141592653...
ⅇ (Or ⅇ) The base for natural logarithms: approximately 2.718281828 ...
&Imaginaryl; (Orⅈ) Square root of -1

&gamma ; Euler’s constant: approximately 0.5772156649...

∞ (Or&infty;) Infinity. Proper interpretation varies with context

&true; the logical constantrue

&false; the logical constantalse

&NotANumber; (Or &NaN;) represents the result of an ill-defined floating point division

ci indicates type of the identifier. Predefined valuasteger, rational, real, float, complex, complex-polar,
complex-cartesian, constant, or the name of any content element. The meanings of the attribute values
shared withcn are the same as those listed for dreelement. The attribute valueomplex is intended
for use when an identifier represents a complex number but the particular representation (such as polar
cartesian) is either not known or is irrelevant. The default value is ™, i.e. unspecified.

declare indicates type of the identifier being declared. Predefined values: any content element name. The default valt
isci,i.e.ageneric identifier

set indicates type of the set. Predefined valuestmal, multiset. multiset indicates that repetitions are allowed.
The default value iaormal.

tendsto is used to capture the notion of one quantity approaching another. It occurs as a container so that it can mo
easily be used in the construction of a limit expression. Predefined valbess, below, two-sided. The
default value isabove.

4.3.3 Attributes Modifying Content Markup Rendering
4.3.3.1 type

Thetype attribute, in addition to conveying semantic information, can be interpreted to provide rendering information.
For example in

<ci type="vector">V</ci>
a renderer could display a boltdfor the vector.

137

4.3.3.2 General Attributes

All content elements support the following general attributes that can be used to modify the rendering of the markup.
class

style

id

other

Theclass, style andid attributes are intended for compatibility with Cascading Style Sheets (CSS), as described in
Section2.4.5

Content or semantic tagging goes along with the (frequently implicit) premise that, if you know the semantics, you cat
always work out a presentation form. When an author’'s main goal is to mark up re-usable, evaluatable mathematic
expressions, the exact rendering of the expression is probably not critical, provided that it is easily understandabl
However, when an author’s goal is more along the lines of providing enough additional semantic information to make
document more accessible by facilitating better visual rendering, voice rendering, or specialized processing, controllir
the exact notation used becomes more of an issue.

MathML elements accept an attribuieher (see Sectiorr.2.3, which can be used to specify things not specifically
documented in MathML. On content tags, this attribute can be used by an author to expre&seace between
equivalent forms for a particular content element construct, where the selection of the presentation has nothing to
with the semantics. Examples might be

° inline or displayed equations
° script-style fractions
° use ofx with a dot for a derivative over gd t

Thus, if a particular renderer recognized a display attribute to select between script-style and display-style fractions, ¢
author might write

<apply other=’display="scriptstyle"’>
<divide/>
<mn> 1 </mn>
<mi> x </mi>

</apply>

to indicate that the rendering 1is preferred.

The information provided in thether attribute is intended for use by specific renderers or processors, and therefore,
the permitted values are determined by the renderer being used. It is legal for a renderer to ignore this informatiol
This might be intentional, as in the case of a publisher imposing a house style, or simply because the renderer does |
understand them, or is unable to carry them out.

4.4 The Content Markup Elements

This section provides detailed descriptions of the MathML content tags. They are grouped in categories that broad
reflect the area of mathematics from which they come, and also the grouping in the MathML DTD. There is no linguistic
difference in MathML between operators and functions. Their separation here and in the DTD is for reasons of historice
usage.

When working with the content elements, it can be useful to keep in mind the following.

° The role of the content elements is analogous to data entry in a mathematical system. The information the
is provided is there to facilitate the successful parsing of an expression as the intended mathematical obje
by a receiving application.

138

MathML content elements do not by themselves ‘perform’ any mathematical evaluations or operations. They
do not ‘evaluate’ in a browser and any ‘action’ that is ultimately taken on those objects is determined en-
tirely by the receiving mathematical application. For example, editing programs and applications geared tc
computation for the lower grades would typically leave 3 + 4 as is, whereas computational systems targeting
a more advanced audience might evaluate this as 7. Similarly, some computational systems might evalua
sin(0) to 0, whereas others would leave it unevaluated. Yet other computational systems might be unable t
deal with pure symbolic expressions like sinénd may even regard them as data entry errors. None of this
has any bearing on the correctness of the original MathML representation. Where evaluation is mentioned ¢
all in the descriptions below, it is merely to help clarify the meaning of the underlying operation.

Apart from the instances where there is an explicit interaction with presentation tagging, there is no requirec
rendering (visual or aural) - only a suggested default. As such, the presentations that are included in thi
section are merely to help communicate to the reader the intended mathematical meaning by associatic
with the same expression written in a more traditional notation.

The available content elements are:

token elements

- cn

— ci

— csymbol (MathML 2.0)
basic content elements

— apply

— reln (deprecated)

— fn (deprecated for externally defined functions)
- interval

- inverse

— sep

- condition

— declare

- lambda

— compose

- ident

— domain (MathML 2.0)

— codomain (MathML 2.0)
— image (MathML 2.0)

— domainofapplication (MathML 2.0)
— piecewise (MathML 2.0)
— piece (MathML 2.0)

— otherwise (MathML 2.0)
arithmetic, algebra and logic
- quotient

— exp

- factorial

— divide

— max andmin

— minus

— plus

— power

— rem

- times

139

— root

— gcd

- and

- or

- xor

— not

- implies

- forall

- exists

- abs

- conjugate

— arg(MathML 2.0)

— real (MathML 2.0)

— imaginary (MathML 2.0)
— lcm (MathML 2.0)

— floor (MathML 2.0)

— ceiling (MathML 2.0)
relations

- eq

— neq

- 1t

- g€q

- leq

— equivalent (MathML 2.0)
— approx (MathML 2.0)

— factorof (MathML 2.0)
calculus and vector calculus
- int

- diff

— partialdiff

- lowlimit

- uplimit

- bvar

- degree

— divergence (MathML 2.0)
— grad (MathML 2.0)

— curl (MathML 2.0)

— laplacian (MathML 2.0)
theory of sets

- set

- list

- union

- intersect

- in

- notin

- subset

— prsubset

- notsubset

140

notprsubset

setdiff

card (MathML 2.0)
cartesianproduct (MathML 2.0)

sequences and series

sum
product
limit

tendsto

elementary classical functions

exp
1n

log

sin

cos

tan

sec

csc

cot
sinh
cosh
tanh
sech
csch
coth
arcsin
arccos
arctan
arccosh
arccot
arccoth
arccsc
arccsch
arcsec
arcsech
arcsinh
arctanh

statistics

mean
sdev

variance

median

mode

moment

momentabout (MathML 2.0)

linear algebra

vector
matrix
matrixrow

141

- determinant

- transpose

- selector

— vectorproduct (MathML 2.0)

— scalarproduct (MathML 2.0)

— outerproduct (MathML 2.0)
° semantic mapping elements

- annotation

- semantics

- annotation-xml
. constant and symbol elements

— integers (MathML2.0)

— reals (MathML2.0)

— rationals (MathML2.0)

— naturalnumbers (MathML2.0)

— complexes (MathML2.0)

— primes (MathML2.0)

— exponentiale (MathML2.0)

— imaginaryi (MathML2.0)

— notanumber (MathML2.0)

— true (MathML2.0)

— false (MathML2.0)

— emptyset (MathML2.0)

— pi(MathML2.0)

— eulergamma (MathML2.0)

— infinity (MathML2.0)

4.4.1 Token Elements
44.1.1 Number (cn)
Discussion

The cn element is used to specify actual numerical constants. The content model must provide sufficient informatior
that a number may be entered as data into a computational system. By default, it represents a signed real number in b
10. Thus, the content normally consistsP@DATA restricted to a sign, a string of decimal digits and possibly a decimal
point, or alternatively one of the predefined symbolic constants sugpigs

The cn element uses the attributgpe to represent other types of numbers such as, for example, integer, rational, real
or complex, and uses the attributese to specify the numerical base.

In addition to simplePCDATA, cn accepts as conteRCDATA separated by the (empty) elemerp. This determines the
different parts needed to construct a rational or complex-cartesian number.

The cn element may also contain arbitrary presentation markup in its content (see Chlagptethat its presentation
can be very elaborate.

Alternative input notations for numbers are possible, but must be explicitly defined by usiagfthei tionURL and
encoding attributes, to refer to a written specification of how a sequence of real numbers separaseg byshould
be interpreted.

142

Attributes

All attributes areCDATA:

type Allowed values areeal, integer, rational, complex-cartesian, complex-polar, constant
base Number CDATA for XML DTD) between 2 and 36.

definitionURL URL or URI pointing to an alternative definition.

encoding Syntax of the alternative definition.

Examples

<cn type="real"> 12345.7 </cn>

<cn type="integer"> 12345 </cn>

<cn type="integer" base="16"> AB3 </cn>

<cn type="rational"> 12342 <sep/> 2342342 </cn>
<cn type="complex-cartesian"> 12.3 <sep/> 5 </cn>
<cn type="complex-polar"> 2 <sep/> 3.1415 </cn>
<cn type="constant"> π </cn>

Default Rendering

By default, a contiguous block @fCDATA contained in an element should render as if it were wrapped inman
presentation element.

If an application supports bidirectional text rendering, then the rendering witkin @ement follows the Unicode
bidirectional rendering rules just as if it were wrapped imarpresentation element.

Similarly, presentation markup contained irc@a element should render as it normally would. A mixturePGDATA
and presentation markup should render as if it were wrapped ir @ element, with contiguous blocks 8EDATA
wrapped inmn elements.

However, not all mathematical systems that encounter content based tagging do visual or aural rendering. The receivi
applications are free to make use of a number in the manner in which they normally handle numerical data. Som
systems might simplify the rational number 12342/2342342 to 6171/1171171 while pure floating point based systerr
might approximate this as 0.5269085385e-2. All numbers might be re-expressed in base 10. The role of MathML i
simply to record enough information about the mathematical object and its structure so that it may be properly parsec

The following renderings of the above MathML expressions are included both to help clarify the meaning of the cor-
responding MathML encoding and as suggestions for authors of rendering applications. In each case, no mathemati
evaluation is intended or implied.

. 12345.7

. 12345

AB316

12342/ 2342342
12.3+5i

Polar(2, 3.1415)
Tt

143

4.4.1.2 Identifier (ci)
Discussion

Theci element is used to name an identifier in a MathML expression (for example a variable). Such names are used
identify mathematical objects. By default they are assumed to represent complex scalars €ldraent may contain
arbitrary presentation markup in its content (see Chaj)tso that its presentation as a symbol can be very elaborate.

The ci element uses theype attribute to specify the type of object that it represents. Valid types indudeger,
rational, real, float, complex, complex-polar, complex-cartesian, constant, and more generally, any of
the names of the MathML container elements (e«g:tor) or their type values. ThéefinitionURL andencoding
attributes can be used to extend the definitiore Dto include other types. For example, a more advanced use might
require avector (complex).

Examples
<ci> x </ci>
<ci type="vector"> V </ci>

<ci>
<msub>
<mi>x</mi>
<mi>a</mi>
</msub>
</ci>

Default Rendering

If the content of aci element is tagged using presentation tags, that presentation is used. If no such tagging is supplie
then thePCDATA content would typically be rendered as if it were the content afiaalement.

If an application supports bidirectional text rendering, then the rendering witkinh @ement follows the Unicode
bidirectional rendering rules just as if it were wrapped imarpresentation element.

A renderer may wish to make use of the value of the type attribute to improve on this. For example, a symbol of type
vector might be rendered using a bold face. Typical renderings of the above symboils are:

° X
° \
U Xi

4.4.1.3 Externally defined symbol (csymbol)
Discussion

The csymbol element allows a writer to create an element in MathML whose semantics are externally defined (i.e. not
in the core MathML content). The element can then be used in a MathML expression as for example an operator ¢
constant. Attributes are used to give the syntax and location of the external definition of the symbol semantics.

Use ofcsymbol for referencing external semantics can be contrasted with use ekttamtics to attach additional
information in-line (ie. within the MathML fragment) to a MathML construct. See Secti@ra

144

Attributes

All attributes areCDATA:

definitionURL Pointer to external definition of the semantics of the symbol. MathML does not specify a particular
syntax in which this definition should be written.

encoding Gives the syntax of the definition pointed to by definitionURL. An application can then test the value of this
attribute to determine whether it is able to process the target afdhinitionURL. This syntax might be
text, or a formal syntax such as OpenMath.

Examples

<!- reference to OpenMath formal syntax definition of Bessel function ->
<apply>

<csymbol encoding="OpenMath"

definitionURL="http://www.openmath.org/cd/BesselFunctions.ocd">
<msub><mi>J</mi><mn>0</mn></msub>

</csymbol>

<ci>y</ci>
</apply>

<!- reference to human readable text description of Boltzmann’s constant ->
<csymbol encoding="text"
definitionURL="www.example.org/universalconstants/Boltzmann.htm">
k
</csymbol>

Detault Rendering

By default, a contiguous block GICDATA contained in asymbol element should render as if it were wrapped iman
presentation element.

If an application supports bidirectional text rendering, then the rendering witiigrebol element follows the Unicode
bidirectional rendering rules just as if it were wrapped imarpresentation element.

Similarly, presentation markup contained incaymbol element should render as it normally would. A mixture of
PCDATA and presentation markup should render as if it were contained wrappediroarelement, with contiguous
blocks of PCDATA wrapped imnmo elements. The examples above would render by default as

. Jo(y)

. k

As csymbol is used to support reference to externally defined semantics, it is a MathML error to have embedded conter
MathML elements within thesymbol element.

4.4.2 Basic Content Elements
44.2.1 Apply (apply)
Discussion

The apply element allows a function or operator to be applied to its arguments. Nearly all expression construction in
MathML content markup is carried out by applying operators or functions to arguments. The first ciplslLgfis the
operator to be applied, with the other child elements as arguments or qualifiers.

145

The apply element is conceptually necessary in order to distinguish between a function or operator, and an instanc
of its use. The expression constructed by applying a function to O or more arguments is always an element from tt
codomain of the function.

Proper usage depends on the operator that is being applied. For examplenséheperator may have zero or more
arguments, while theinus operator requires one or two arguments to be properly formed.

If the object being applied as a function is not already one of the elements known to be a function (&uciasor
plus) then it is treated as if it were the content of&anelement.

Some operators such @sff andint make use of ‘named’ arguments. These special arguments are elements that
appear as children of thepply element and identify ‘parameters’ such as the variable of differentiation or the domain
of integration. These elements are discussed further in Settiod.2

Examples

<apply>
<factorial/>
<cn>3</cn>

</apply>

<apply>
<plus/>
<cn>3</cn>
<cn>4</cn>

</apply>

<apply>
<sin/>
<ci>x</ci>

</apply>

Detault Rendering

A mathematical system that has been passegpahy element is free to do with it whatever it normally does with such
mathematical data. It may be that no rendering is involved (e.g. a syntax validator), or that the ‘function application’ is
evaluated and that only the result is rendered (e.g. sir(0).

When an unevaluated ‘function application’ is rendered there are a wide variety of appropriate renderings. The choic
often depends on the function or operator being applied. Applications of basic operations guab ase generally
presented using an infix notation while applicationssof would use a more traditional functional notation such as
sin(x). Consult the default rendering for the operator being applied.

Applications of user-defined functions (segymbol, fn) that are not evaluated by the receiving or rendering application
would typically render using a traditional functional notation unless an alternative presentation is specified using th
semantics tag.

146

4.4.2.2 Relation (reln)
Discussion

Thereln element was used in MathML 1.0 to construct an equation or relation. Relations were constructed in a manne
exactly analogous to the use &fply. This usage isleprecateih MathML 2.0 in favor of the more generally usable

apply.

The first child ofreln is the relational operator to be applied, with the other child elements acting as arguments. See
Section4.2.4for further details.

Examples

<reln>
<eq/>
<ci> a </ci>
<ci> b </ci>
</reln>

<reln>
<1t/>
<ci> a </ci>
<ci> b </ci>
</reln>

Default Rendering

° a=>b
a<b

4.4.2.3 Function (fn)
Discussion

The £n element makes explicit the fact that a more general (possibly constructed) MathML object is being used in the
same manner as if it were a pre-defined function suadiar plus.

fn has exactly one child element, used to give the name (or presentation form) of the functionfMibersed as the
first child of an apply, the number of following arguments is determined by the contentsfif.the

In MathML 1.0, fn was also the primary mechanism used to extend the collection of ‘known’ mathematical functions.
This usage is nowleprecatedh favor of the more generally applicabteymbol element. (New functions may also be
introduced by usingeclare in conjunction with alambda expression.)

Examples

<fn><ci> L </ci> </fn>

<apply>
<fn>

147

<apply>
<plus/>
<ci> f </ci>
<ci> g </ci>
</apply>
</fn>
<ci>z</ci>
</apply>

Default Rendering

An fn object is rendered in the same way as its content. A rendering application may add additional adornments suc
as parentheses to clarify the meaning.

° L

° (f+9)z

4.4.2.4 Interval (interval)
Discussion

Theinterval element is used to represent simple mathematical intervals of the real number line. It takes an attribut
closure, which can take on any of the valuegen, closed, open-closed, Or closed-open, with a default value of
closed.

More general domains are constructed by using:thelition andbvar elements to bind free variables to constraints.

The interval element expectsither two child elements that evaluate to real numharsne child element that is a
condition defining theinterval.

Examples

<interval>
<ci> a </ci>
<ci> b </ci>
</interval>
<interval closure="open-closed">
<ci> a </ci>
<ci> b </ci>
</interval>

Default Rendering

° [a,m
° (a,b

4.4.2.5 Inverse (inverse)
Discussion

The inverse element is applied to a function in order to construct a generic expression for the functional inverse of
that function. (See also the discussioniafrerse in Section4.2.1.5. As with other MathML functionsinverse may

148

either be applied to arguments, or it may appear alone, in which case it represents an abstract inversion operator act
on other functions.

A typical use of theinverse element is in an HTML document discussing a number of alternative definitions for a
particular function so that there is a need to write and definé (x). To associate a particular definition witf2),
use thelefinitionURL andencoding attributes.

Examples

<apply>
<inverse/>
<ci> f </ci>

</apply>

<apply>
<inverse definitionURL="../MyDefinition.htm" encoding="text"/>
<ci> f </ci>

</apply>

<apply>
<apply><inverse/>
<ci type="matrix"> a </ci>
</apply>
<ci> A </ci>
</apply>

Detault Rendering

The default rendering for a functional inverse makes use of a parenthesized exponefit &

4.4.2.6 Separator (sep)
Discussion

The sep element is used to separ&®€DATA into separate tokens for parsing the contents of the various specialized
forms of thecn elements. For examplegp is used when specifying the real and imaginary parts of a complex number
(see Sectiod.4.]). If it occurs between MathML elements, it is a MathML error.

Examples

<cn type="complex-cartesian"> 3 <sep/> 4 </cn>

Detault Rendering

Thesep element is not directly rendered (see Sectich).

149

4.4.2.7 Condition (condition)
Discussion

Thecondition element is used to place a condition on one or more free variables or identifiers. The conditions may
be specified in terms of relations that are to be satisfied by the variables, including general relationships such as ¢
membership.

It is used to define general sets and lists in situations where the elements cannot be explicitly enumerated. Conditit
contains either a singlepply or reln element; theapply element is used to construct compound conditions. For
example, it is used below to describe the set okallch thatx < 5. See the discussion on sets in SectlohG See
Sectiond.2.5for further details.

Examples

<condition>
<apply><in/><ci> x </ci><ci type="set"> R </ci></apply>
</condition>

<condition>
<apply>
<and/>
<apply><gt/><ci> x </ci><cn> 0 </cn></apply>
<apply><1t/><ci> x </ci><cn> 1 </cn></apply>
</apply>
</condition>

<apply>
<max/>
<bvar><ci> x </ci></bvar>
<condition>
<apply> <and/>
<apply><gt/><ci> x </ci><cn> 0 </cn></apply>
<apply><1lt/><ci> x </ci><cn> 1 </cn></apply>
</apply>
</condition>
<apply>
<minus/>
<ci> x </ci>
<apply>
<sin/>
<ci> x </ci>
</apply>
</apply>
</apply>

Detault Rendering

° xeR

150

x>0Ax<1
o max{X—sinx|0<x< 1}

4.4.2.8 Declare (declare)
Discussion

The declare construct has two primary roles. The first is to change or set the default attribute values for a specific
mathematical object. The second is to establish an association between a ‘name’ and an object. Once a declaration i
effect, the ‘name’ object acquires the new attribute settings, and (if the second object is present) all the properties of ti
associated object.

The various attributes of thé&eclare element assign properties to the object being declared or determine where the
declaration is in effect.

The scope of a declaration is ‘local’ to the surrounding container elementsddye attribute can only be assigned

to local, but is intended to support future extensions. As discussed in Se€c8dh8 MathML contains no provision

for making document-wide declarations at present, though it is anticipated that this capability will be added in future
revisions of MathML, when supporting technologies become available.

declare takes one or two children. The first child, which is mandatory, is a the object affected by the declaration. This
is usually aci element providing the identifier that is being declared as in:

<declare type="vector"> <ci> V </ci> </declare>

The second child, which is optional, is a constructor initializing the variable:

<declare type="vector">
<ci> V </ci>
<vector>
<cn> 1 </cn><cn> 2 </cn><cn> 3 </cn>
</vector>
</declare>

The constructor type and the type of the element declared must agree. For example, if the type attribute of the declarati
is fn, the second child (constructor) must be an element equivalent f@ alement. (This would include actuah
elementslambda elements and any of the defined functions in the basic set of content tags.) If no type is specified in
the declaration then the type attribute of the declared name is set to the type of the constructor (second child) of tt
declaration. The type attribute of the declaration can be especially useful in the special case of the second element be
a semantic tag.

Attributes

All attributes areCDATA:

type defines the MathML element type of the identifier declared.

scope defines the scope of application of the declaration.

nargs number of arguments for function declarations.

occurrence describes operator usagem®fix, infix or function-model indications.
definitionURL URI pointing to detailed semantics of the function.

encoding syntax of the detailed semantics of the function.

151

Examples

The declaration

<declare type="fn" nargs="2">
<ci> f </ci>
<apply>
<plus/>
<ci> F </ci><ci> G </ci>
</apply>
</declare>

declaresf to be a two-variable function with the property tHgk, y) = (F+ G)(X, V).

The declaration

<declare type="£fn">
<ci> J </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<apply><1ln/>
<ci> x </ci>
</apply>
</lambda>
</declare>

associates the nandavith a one-variable function defined so tldgy) = In y. (Note that because of the type attribute of
thedeclare element, the second argument must be something of function type , namely a known functicm Jike
alambda construct.)

The type attribute on the declaration is only necessary if the type cannot be inferred from the type of the seconc
argument.

Even when a declaration is in effect it is still possible to override attributes values selectively<ad itype="set">
S </ci>. This capability is needed in order to write statements of the formslbet a member of.

Default Rendering

Since thedeclare construct is not directly rendered, most declarations are likely to be invisible to a reader. However,
declarations can produce quite different effects in an application which evaluates or manipulates MathML conten
While the declaration

<declare>
<ci> v </ci>
<vector>
<cn> 1 </cn>
<cn> 2 </cn>
<cn> 3 </cn>
</vector>
</declare>

is active the symbol acquires all the properties of the vector, and even its dimension and components have meaningfu
values. This may affect howis rendered by some applications, as well as how it is treated mathematically.

152

4.4.2.9 Lambda (1ambda)
Discussion

Thelambda elementis used to construct a user-defined function from an expression and one or more free variables. Tt
lambda construct with internal variables takas+1 children. The firsh children identify the variables that are used as
placeholders in the last child for actual parameter values. See Sécti@n2for further details.

Examples

The first example presents a simple lambda construct.

<lambda>
<bvar><ci> x </ci></bvar>
<apply><sin/>
<apply>
<plus/>
<ci> x </ci>
<cn> 1 </cn>
</apply>
</apply>
</lambda>
The next example constructs a one-argument function in which the arglrseetifies the upper bound of a specific
definite integral.

<lambda>
<bvar><ci> b </ci></bvar>
<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<ci> a </ci>
</lowlimit>
<uplimit>
<ci> b </ci>
</uplimit>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
</apply>
</apply>
</lambda>

Such constructs are often used in conjunction withlare to construct new functions.
Default Rendering
. A(X,sinx+1)

A(b, f f(x)dx)

153

4.4.2.10 Function composition (compose)
Discussion

The compose element represents the function composition operator. Note that MathML makes no assumption about th
domain and codomain of the constituent functions in a composition; the domain of the resulting composition may b
empty.

To override the default semantics for thempose element, or to associate a more specific definition for function
composition, use théefinitionURL andencoding attributes. See Sectigh2.3for further details.

Examples

<apply>
<compose/>
<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>
</apply>

<apply>
<compose/>
<ci type="fn"> f </ci>
<ci type="fn"> g </ci>
<ci type="fn"> h </ci>
</apply>

<apply>
<apply><compose/>
<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>
</apply>
<ci> x </ci>
</apply>

<apply>
<fn><ci> f </ci></fn>
<apply>
<fn><ci> g </ci></fn>
<ci> x </ci>
</apply>
</apply>

Default Rendering

fog
fogoh
(fog)(x)
f(9(x))

154

4.4.2.11 Identity function (ident)
Discussion

The ident element represents the identity function. MathML makes no assumption about the function space in whict
the identity function resides. That is, proper interpretation of the domain (and hence codomain) of the identity functior
depends on the context in which it is used.

To override the default semantics for théent element, or to associate a more specific definition, uselétieni-
tionURL andencoding attributes (see Sectigh2.3.

Examples

<apply>
<eq/>
<apply><compose/>
<fn><ci> f </ci></fn>
<apply><inverse/>
<fn><ci> f </ci></fn>
</apply>
</apply>
<ident/>
</apply>

Default Rendering
fofl=id

4.4.2.12 Domain (domain)
Discussion
Thedomain element denotes the domain of a given function, which is the set of values over which it is defined.

To override the default semantics for themain element, or to associate a more specific definition, useédliéni-
tionURL andencoding attributes (see Sectigh2.3.

Examples

If fis afunction from the reals to the rationals, then:

<apply>
<eq/>
<apply><domain/>
<fn><ci> f </ci></fn>
</apply>
<reals/>
</apply>

Detault Rendering
domair(f) =R

155

4.4.2.13 codomain (codomain)
Discussion

The codomain element denotes the codomain of a given function, which is a set containing all values taken by the
function. It is not necessarily the case that every point in the codomain is generated by the function applied to som
point of the domain. (For example | may know that a function is integer-valued, so its codomain is the integers, withou
knowing (or stating) which subset of the integers is mapped to by the function.)

Codomain is sometimes also called Range.

To override the default semantics for thedomain element, or to associate a more specific definition, usédiiéni-
tionURL andencoding attributes (see Sectigh2.3.

Examples

If fis afunction from the reals to the rationals, then:

<apply>
<eq/>
<apply><codomain/>
<fn><ci> f </ci></fn>
</apply>
<rationals/>
</apply>

Detault Rendering
codomairif) =Q

4.4.2.14 Image (image)
Discussion

The image element denotes the image of a given function, which is the set of values taken by the function. Every point
in the image is generated by the function applied to some point of the domain.

To override the default semantics for theage element, or to associate a more specific definition, useldlieni-
tionURL andencoding attributes (see Sectigh2.3.

Examples

The realsin function is a function from the reals to the reals, taking values between -1 and 1.

<apply>
<eq/>
<apply><image/>
<sin/>
</apply>
<interval>
<cn>-1</cn>
<cn> 1</cn>
</interval>
</apply>

156

Default Rendering
imagegsin) = [—1,1]

4.4.2.15 Domain of Application (domainofapplication)
Discussion

Thedomainofapplication element denotes the domain over which a given function is being applied. It is intended
to be a more general alternative to specification of this domain using such qualifier elemenés abowlimit or
condition.

To override the default semantics for themainofapplication element, or to associate a more specific definition,
use thedefinitionURL andencoding attributes (see Sectigh2.3.

Examples

The integral of a functiorf over an arbitrary domai@ .

<apply>
<int/>
<domainofapplication>
<ci> C </ci>
</domainofapplication>
<ci> f </ci>
</apply>

Default Rendering

The default rendering depends on the particular function being applied.

Jet

4.4.2.16 Piecewise declaration (piecewise, piece, otherwise)
Discussion

Thepiecewise, piece, andotherwise elements are used to support ‘piecewise’ declarations of the foi(w)' = 0
if X less than OH(X) = 1 otherwise’.

The declaration is constructed using flie cewise element. This contains one or maresce elements, and optionally
oneotherwise element. Eaclpiece element contains exactly two children. The first child defines the value taken by
thepiecewise expression when the condition specified in the associated second childpafiteis true.

otherwise allows the specification of a value to ba taken by phecewise function when none of the conditions
(second child elements of thetece elements) is true, i.e. a default value.

It should be noted that no ‘order of execution’ is implied by the ordering opilee child elements withipiecewise.

It is the responsibility of the author to ensure that the subsets of the function domain defined by the second children
thepiece elements are disjoint, or that, where they overlap, the values of the corresponding first childrepiefine
elements coincide. If this is not the case, the meaning of the expression is undefined.

Thepiecewise elements areonstructors (see Sectiod.2.2.9.

157

Examples

<piecewise>
<piece>
<cn> 0 </cn>
<apply><1lt/><ci> x </ci> <cn> 0 </cn></apply>
</piece>
<otherwise>
<ci> x </ci>
</otherwise>
</piecewise>
The following might be a definition of abs)(

<apply>
<eq/>
<apply>
<abs/>
<ci> x </ci>
</apply>
<piecewise>
<piece>
<apply><minus/><ci> x </ci></apply>
<apply><1lt/><ci> x </ci> <cn> 0 </cn></apply>
</piece>
<piece>
<cn> 0 </cn>
<apply><eq/><ci> x </ci> <cn> 0 </cn></apply>
</piece>
<piece>
<ci> x </ci>
<apply><gt/><ci> x </ci> <cn> 0 </cn></apply>

</piece>
</piecewise>
</apply>
Detault Rendering
—x ifx<0
Xl=¢ 0 ifx=0
x ifx>0

4.4.3 Arithmetic, Algebra and Logic
4.4.3.1 Quotient (quotient)
Discussion

The quotient element is the operator used for division modulo a particular base. Whequthaent operator is
applied to integer argumerasandb, the result is the ‘quotient af divided byb’. That is,quotient returns the unique
integerg such that=q b+ r. (In common usagey is called the quotient andis the remainder.)

158

Thequotient element takes the attribusief initionURL andencoding attributes, which can be used to override the
default semantics.

Thequotient element is ainary arithmetic operator (See Sectiod.2.3.

Example

<apply>
<quotient/>
<ci> a </ci>
<ci> b </ci>
</apply>
Various mathematical applications will use this data in different ways. Editing applications might choose an image suc
as shown below, while a computationally based application would evaluate it to 2axth8randb=5.

Default Rendering

There is no commonly used notation for this concept. Some possible renderings are

° quotient ofa divided byb
. integer partof /b
. la/b]

4.4.3.2 Factorial (factorial)
Discussion
Thefactorial element is used to construct factorials.

Thefactorial element takes théefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thefactorial element is amary arithmetic operator (See Sectiod.2.3.

Example

<apply>
<factorial/>
<ci> n </ci>

</apply>
If this were evaluated at= 5 it would evaluate to 120.

Default Rendering

n!

159

4.4.3.3 Division (divide)
Discussion
Thedivide element is the division operator.

The divide element takes th@efinitionURL andencoding attributes, which can be used to override the default
semantics.

Thedivide element is ainary arithmetic operator (see Sectiod.2.3.

Example

<apply>
<divide/>
<ci> a </ci>
<ci> b </ci>

</apply>

As a MathML expression, this does not evaluate. However, on receiving such an expression, some applications m
attempt to evaluate and simplify the value. For example, wdreh andb=2 some mathematical applications may
evaluate this to 2.5 while others will treat is as a rational number.

Detault Rendering
a/b

4.4.3.4 Maximum and minimum (max, min)
Discussion

The elementsiax andmin are used to compare the values of their arguments. They return the maximum and minimum
of these values respectively.

Themax andmin elements take théefinitionURL andencoding attributes that can be used to override the default
semantics.

Themax andmin elements ar@-ary arithmetic operators (see Sectiod.2.3.

Examples

When the objects are to be compared explicitly they are listed as arguments to the function as in:

<apply>
<max/>
<ci> a </ci>
<ci> b </ci>
</apply>
The elements to be compared may also be described using bound variablesanifii &ion element and an expression
to be maximized (or minimized), as in:

160

<apply>
<min/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><notin/><ci> x </ci><ci type="set"> B </ci></apply>
</condition>
<apply>
<power/>
<ci> x </ci>
<cn> 2 </cn>
</apply>
</apply>
Note that the bound variable must be stated even if it might be implicit in conventional notation. In MathML1.0, the
bound variable and expression to be evaluai@ad@uld be omitted in the example below: this usagddgrecatedn
MathML2.0 in favor of explicitly stating the bound variable and expression in all cases:

<apply>
<max/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci>x</ci><ci type="set">B</ci></apply>
<apply><notin/><ci>x</ci><ci type="set">C</ci></apply>
</apply>
</condition>
<ci>x</ci>
</apply>

Default Rendering

max{a, b}
ming{ x| x¢ B}
max{xe BAxX¢C}

4.4.3.5 Subtraction (minus)
Discussion
Theminus element is the subtraction operator.

Theminus element takes th@efinitionURL andencoding attributes, which can be used to override the default
semantics.

Theminus element can be used asigary arithmetic operator (e.g. to representx), or as abinary arithmetic operator
(e.g. to represent).

Example

161

<apply> <minus/>
<ci> x </ci>
<ci> y </ci>

</apply>

If this were evaluated a¢=5 andy=2 it would yield 3.

Default Rendering

X—=y

4.4.3.6 Addition (plus)
Discussion
Theplus element is the addition operator.

The plus element takes th@efinitionURL and encoding attributes, which can be used to override the default
semantics.

Theplus element is am-ary arithemtic operator (see Sectiod.2.3.

Example

<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>
<ci> z </ci>
</apply>

If this were evaluated at=5,y =2 andz=1 it would yield 8.

Detault Rendering

X+y+2z

4.4.3.7 Exponentiation (power)
Discussion

Thepower element is a generic exponentiation operator. That is, when applied to argunaeits, it returns the value
of ‘ato the power ob'.

The power element takes the@efinitionURL andencoding attributes, which can be used to override the default
semantics.

Thepower element is ainary arithmetic operator (See Sectiod.2.3.

162

Example

<apply>
<power/>
<ci> x </ci>
<cn> 3 </cn>

</apply>

If this were evaluated a¢= 5 it would yield 125.

Default Rendering
x3

4.4.3.8 Remainder (rem)
Discussion

The rem element is the operator that returns the ‘remainder’ of a division modulo a particular base. Whem the
operator is applied to integer argumeatandb, the result is the ‘remainder afdivided byb'. That is,rem returns the
unigue integen; such thal = q b+ r, wherer < g. (In common usagej is called the quotient andis the remainder.)

Therem element takes théefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Therem element is ainary arithmetic operator (See Sectiod.2.3.

Example

<apply>
<rem/>
<ci> a </ci>
<ci> b </ci>
</apply>

If this were evaluated at= 15 andb = 8 it would yield 7.

Default Rendering

amodb

4.4.3.9 Multiplication (times)
Discussion
Thetimes element is the multiplication operator.

times takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

163

Example

<apply>
<times/>
<ci> a </ci>
<ci> b </ci>
</apply>
If this were evaluated & = 5.5 andb = 3 it would yield 16.5.

Default Rendering
ab

4.4.3.10 Root (root)
Discussion

Theroot element is used to construct roots. The kind of root to be taken is specifiediéyrae element, which
should be given as the second child of #ly element enclosing theoot element. Thus, square roots correspond
to the case whergegree contains the value 2, cube roots correspond to 3, and so ondégxee is present, a default
value of 2 is used.

The root element takes théefinitionURL and encoding attributes, which can be used to override the default
semantics.

Theroot element is amperator taking qualifiers (see Sectiod.2.3.9.

Example
Thenth root ofais is given by
<apply>
<root/>
<degree><ci type=’integer’> n </ci></degree>

<ci> a </ci>
</apply>

Detault Rendering
va

4.4.3.11 Greatest common divisor (gcd)

Discussion

Thegcd element is used to denote the greatest common divisor of its arguments.

Thegcd takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Thegcd element is am-ary operator (see Sectiod.2.3.

164

Example

<apply> <gcd/>
<ci> a </ci>
<ci> b </ci>
<ci> ¢ </ci>
</apply>
If this were evaluated & = 15,b =21,c =48, it would yield 3.

Detault Rendering
geda, b, c)

This default rendering is English-language locale specific: other locales may have different default renderings.

4.4.3.12 And (and)
Discussion
Theand element is the boolean ‘and’ operator.

Theand element takes théefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Theand element is am-ary logical operator (see Sectiod.2.3.

Example

<apply>
<and/>
<ci> a </ci>
<ci> b </ci>
</apply>

If this were evaluated and bothandb had truth values ofrue, then the result would berue.

Default Rendering

anb

4.4.3.13 Or (or)

Discussion

Theor element is the boolean ‘or’ operator.

Theor element takes théef initionURL andencoding attributes, which can be used to override the default semantics.

Theor element is am-ary logical operator (See Sectiod.2.3.

165

Example

<apply>
<or/>
<ci> a </ci>
<ci> b </ci>
</apply>

Detault Rendering
avb

4.4.3.14 Exclusive Or (xor)

Discussion

Thexor element is the boolean ‘exclusive or’ operator.

xor takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Thexor element is am-ary logical operator (See Sectiod.2.3.

Example

<apply>
<xor/>
<ci> a </ci>
<ci> b </ci>
</apply>

Default Rendering

axorb

4.4.3.15 Not (not)
Thenot operator is the boolean ‘not’ operator.

Thenot element takes the attribudéefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thenot element is anary logical operator (See Sectiod.2.3.

Example

<apply>

<not/>

<ci> a </ci>
</apply>

166

Default Rendering

—a

4.4.3.16 Implies (implies)
Discussion
Theimplies element is the boolean relational operator ‘implies’.

Theimplies element takes thé@efinitionURL andencoding attributes, which can be used to override the default
semantics.

Theimplies element is ainary logical operator (See Sectiod.2.4).

Example

<apply>
<implies/>
<ci> A </ci>
<ci> B </ci>
</apply>
Mathematical applications designed for the evaluation of such expressions would evaluateithiswdena = false
andb = true.

Default Rendering
A=B

4.4.3.17 Universal quantifier (forall)
Discussion

The forall element represents the universal quantifier of logic. It must be used in conjunction with one or more
bound variables, an optionabndition element, and an assertion, which should take the form afpany element.
In MathML 1.0, thereln element was also permitted here: this usage is now deprecated.

The forall element takes th@efinitionURL andencoding attributes, which can be used to override the default
semantics.

Theforall element is ajuantifier (See Sectiod.2.3.9.

Examples

The first example encodes a simple identity.

<apply>
<forall/>
<bvar><ci> x </ci></bvar>
<apply><eq/>
<apply>

167

<minus/><ci> x </ci><ci> x </ci>
</apply>
<cn>0</cn>
</apply>
</apply>
The next example is more involved, and makes use of an optienalition element.

<apply>
<forall/>
<bvar><ci> p </ci></bvar>
<bvar><ci> q </ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci> p </ci><rationals/></apply>
<apply><in/><ci> q </ci><rationals/></apply>
<apply><1lt/><ci> p </ci><ci> q </ci></apply>
</apply>
</condition>
<apply><1lt/>
<ci> p </ci>
<apply>
<power/>
<ci> q </ci>
<cn> 2 </cn>
</apply>
</apply>
</apply>
The final example uses both therall andexists quantifiers.

<apply>
<forall/>
<bvar><ci> n </ci></bvar>
<condition>
<apply><and/>
<apply><gt/><ci> n </ci><cn> 0 </cn></apply>
<apply><in/><ci> n </ci><integers/></apply>
</apply>
</condition>
<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<bvar><ci> y </ci></bvar>
<bvar><ci> z </ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci> x </ci><integers/></apply>
<apply><in/><ci> y </ci><integers/></apply>
<apply><in/><ci> z </ci><integers/></apply>

168

</apply>
</condition>
<apply>
<eq/>
<apply>
<plus/>
<apply><power/><ci> x </ci><ci> n </ci></apply>
<apply><power/><ci> y </ci><ci> n </ci></apply>
</apply>
<apply><power/><ci> z </ci><ci> n </ci></apply>
</apply>
</apply>
</apply>

Default Rendering
Vx:x—x=0

VpeQ,qeQ,p<q:p<
Vn>0neZ:IXeZyelzeZ:X"+y'=2"

4.4.3.18 Existential quantifier (exists)
Discussion

Theexists element represents the existential quantifier of logic. It must be used in conjuction with one or more bounc
variables, an optionatondition element, and an assertion, which may take the form of eithetpaly or reln
element.

The exists element takes th@efinitionURL andencoding attributes, which can be used to override the default
semantics.

Theexists element is guantifier (see Sectiod.2.3.9.

Example

The following example encodes the sense of the expression ‘there existaiah thatf (x) = 0'.

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<apply><eq/>
<apply>
<fn><ci> f </ci></fn>
<ci> x </ci>
</apply>
<cn>0</cn>
</apply>
</apply>

Detault Rendering
Ix: f(x)=0

169

4.4.3.19 Absolute Value (abs)
Discussion
Theabs element represents the absolute value of a real quantity or the modulus of a complex quantity.

Theabs element takes théefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Theabs element is anary arithmetic operator (See Sectiod.2.3.

Example

The following example encodes the absolute valug of

<apply>

<abs/>

<ci> x </ci>
</apply>

Default Rendering

X

4.4.3.20 Complex conjugate (conjugate)
Discussion
Theconjugate element represents the complex conjugate of a complex quantity.

Theconjugate element takes théefinitionURL andencoding attributes, which can be used to override the default
semantics.

Theconjugate element is anary arithmetic operator (See Sectiod.2.3.

Example

The following example encodes the conjugate efi .

<apply>
<conjugate/>
<apply>
<plus/>
<ci> x </ci>
<apply><times/>
<cn> &Imaginaryl; </cn>
<ci> y </ci>
</apply>
</apply>
</apply>

170

Default Rendering

X+1y

4.4.3.21 Argument (arg)
Discussion

Thearg operator (introduced in MathML 2.0) gives the ‘argument’ of a complex number, which is the angle (in radians)
it makes with the positive real axis. Real negative humbers have argument equal to +

Thearg element takes théefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Thearg element is anary arithmetic operator (See Sectiod.2.3.

Example

The following example encodes the argument operatior-dny.

<apply>
<arg/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<cn> &Imaginaryl; </cn>
<ci> y </ci>
</apply>
</apply>
</apply>

Default Rendering
arg(x—+1y)

4.4.3.22 Real part (real)

Discussion

Thereal operator (introduced in MathML 2.0) gives the real part of a complex number, that is the x compoxrent in
'y

Thereal element takes the attributescoding anddef initionURL that can be used to override the default semantics.

Thereal element is amary arithmetic operator (See Sectiod.2.3.

Example

The following example encodes the real operatioxeti y.

171

<apply>
<real/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<cn> &Imaginaryl; </cn>
<ci> y </ci>
</apply>
</apply>
</apply>
A MathML-aware evaluation system would return theomponent, suitably encoded.

Detault Rendering
O(x+iy)

4.4.3.23 Imaginary part (imaginary)
Discussion

The imaginary operator (introduced in MathML 2.0) gives the imaginary part of a complex number, that is, the y
component ik +iy.

The imaginary element takes the attributeacoding anddefinitionURL that can be used to override the default
semantics.

Theimaginary element is anary arithmetic operator (See Sectiod.2.3.

Example

The following example encodes the imaginary operation 6n y.

<apply>
<imaginary/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<cn> &Imaginaryl; </cn>
<ci> y </ci>
</apply>
</apply>
</apply>
A MathML-aware evaluation system would return theomponent, suitably encoded.

Detault Rendering
O(x+iy)

172

4.4.3.24 Lowest common multiple (1cm)

Discussion

Thelcm element (introduced in MathML 2.0) is used to denote the lowest common multiple of its arguments.
Thelcm takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Thelcm element is am-ary operator (see Sectiod.2.3.

Example

<apply> <lcm/>
<ci> a </ci>
<ci> b </ci>
<ci> ¢ </ci>
</apply>
If this were evaluated a&t=2,b=4,c=6 it would yield 12.

Default Rendering
lcm(a, b, c)

This default rendering is English-language locale specific: other locales may have different default renderings.

4.4.3.25 Floor (f1loor)

Discussion

Thefloor element (introduced in MathML 2.0) is used to denote the round-down (towards -infinity) operator.
Thefloor takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Thefloor element is amnary operator (see Sectiod.2.3.

Example

<apply> <floor/>
<ci> a </ci>
</apply>
If this were evaluated & = 15.015, it would yield 15.

<apply> <forall/>
<bvar><ci> a </ci></bvar>
<apply><and/>
<apply><leq/>
<apply><floor/>
<ci>a</ci>
</apply>
<ci>a</ci>

173

</apply>
<apply><1lt/>
<ci>a</ci>
<apply><plus/>
<apply><floor/>
<ci>a</ci>
</apply>
<cn>1</cn>
</apply>
</apply>
</apply>
</apply>

Default Rendering

a]

4.4.3.26 Ceiling (ceiling)

Discussion

Theceiling element (introduced in MathML 2.0) is used to denote the round-up (towards +infinity) operator.
Theceiling takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Theceiling element is amary operator (see Sectiod.2.3.

Example

<apply> <ceiling/>
<ci> a </ci>
</apply>
If this were evaluated & = 15.015, it would yield 16.

<apply> <forall/>
<bvar><ci> a </ci></bvar>
<apply><and/>
<apply><1lt/>
<apply><minus/>
<apply><ceiling/>
<ci>a</ci>
</apply>
<cn>1</cn>
</apply>
<ci>a</ci>
</apply>
<apply><leq/>
<ci>a</ci>
<apply><ceiling/>

174

<ci>a</ci>
</apply>

</apply>
</apply>

</apply>

Default Rendering

[a]

4.4.4 Relations

4.4.4.1 Equals (eq)

Discussion

Theeq element is the relational operator ‘equals’.

Theeq element takes théefinitionURL andencoding attributes, which can be used to override the default semantics.

Theequals element is am-ary relation (see Sectiod.2.3.2.

Example

<apply>
<eq/>
<ci> a </ci>
<ci> b </ci>
</apply>
If this were tested a = 5.5 andb = 6 it would yield the truth valu€alse.

Default Rendering

a=>hb

4.4.4.2 Not Equals (neq)

Discussion

Theneq element is the ‘not equal to’ relational operator.

neq takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Theneq element is ainary relation (See Sectiod.2.4).

Example

<apply>
<neq/>
<ci> a </ci>
<ci> b </ci>
</apply>
If this were tested ad = 5.5 andb = 6 it would yield the truth valuerue.

175

Default Rendering
a#£b

4.4.4.3 Greater than (gt)

Discussion

Thegt element is the ‘greater than’ relational operator.

Thegt element takes th&ef initionURL andencoding attributes, which can be used to override the default semantics.

Thegt element is am-ary relation (See Sectiod.2.4).

Example

<apply>
<gt/>
<ci> a </ci>
<ci> b </ci>
</apply>
If this were tested a = 5.5 andb = 6 it would yield the truth valug¢alse.

Default Rendering

a>b

4.4.4.4 Less Than (1t)

Discussion

Thelt element is the ‘less than’ relational operator.

Thelt elementtakes théefinitionURL andencoding attributes, which can be used to override the default semantics.

Thelt elementis am-ary relation (See Sectiod.2.4).

Example

<apply>
<1t/>
<ci> a </ci>
<ci> b </ci>
</apply>
If this were tested a = 5.5 andb = 6 it would yield the truth value ‘true’.

Default Rendering

a<b

176

4.4.4.5 Greater Than or Equal (geq)
Discussion
Thegeq element is the relational operator ‘greater than or equal’.

Thegeq element takes théef initionURL andencoding attributes, which can be used to override the default seman-
tics.

Thegeq element is am-ary relation (see Sectiod.2.4).

Example

<apply>
<geq/>
<ci> a </ci>
<ci> b </ci>
</apply>

If this were tested foa= 5.5 andb = 5.5 it would yield the truth valuerue.

Detault Rendering

a>b

4.4.4.6 Less Than or Equal (1eq)
Discussion
Theleq element is the relational operator ‘less than or equal’.

Theleq element takes théefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Theleq element is am-ary relation (see Sectiod.2.4).

Example

<apply>
<leq/>
<ci> a </ci>
<ci> b </ci>
</apply>

If a=5.4 andb = 5.5 this will yield the truth valuerue.

Detault Rendering

a<b

177

4.4.4.7 Equivalent (equivalent)
Discussion
Theequivalent element is the ‘equivalence’ relational operator.

Theequivalent element takes the attributeacoding anddefinitionURL that can be used to override the default
semantics.

Theequivalent element is am-ary relation (See Sectiod.2.3.9.

Example

<apply>
<equivalent/>
<ci> a </ci>

<apply>
<not/>
<apply> <not/> <ci> a </ci> </apply>
</apply>
</apply>
This yields the truth valuerue for all values ofa.

Default Rendering

a=-(-a

4.4.4.8 Approximately (approx)
Discussion

Theapprox element is the relational operator ‘approximately equal’. This is a generic relational operator and no specific
arithmetic precision is implied

The approx element takes the attributeacoding anddefinitionURL that can be used to override the default se-
mantics.

Theapprox element is ainary relation (see Sectiod.2.3.9.

Example

<apply>
<approx/>
<cn type="rational"> 22 <sep/> 7 </cn>
<cn type="constant"> π </cn>
</apply>

Detault Rendering

a~b

178

4.4.4.9 Factor Of (factorof)
Discussion

Thefactorof element is the relational operator element on two integensdb specifying whether one is an integer
factor of the other.

Thefactorof element takes théefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thefactorof element is atbinary relational operator (see Sectiod.2.4).

Example

<apply>
<factorof/>
<ci> a </ci>
<ci> b </ci>
</apply>

Default Rendering
alb

445 Calculus and Vector Calculus
4.4.5.1 Integral (int)
Discussion

The int element is the operator element for an integral. The lower limit, upper limit and bound variable are given by
(optional) child elementsowlimit, uplimit andbvar in the enclosingipply element. The integrand is also specified
as a child element of the enclosiagply element.

The domain of integration may be specified by using eithetmtrerval element or a&ondition element. In such
cases, if a bound variable of integration is intended, it must be specified explicitly. (The condition may involve more
than one symbol.)

Theint element takes théefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Theint element is amperator taking qualifiers (See Sectiod.2.3.9.

Examples

This example specifieslowlimit, uplimit, andbvar.
<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>

179

<cn> 0 </cn>
</lowlimit>
<uplimit>

<ci> a </ci>
</uplimit>
<apply>

<ci> f </ci>

<ci> x </ci>
</apply>

</apply>

This example specifies the domain of integration withiaterval element.

<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>
<interval>
<ci> a </ci>
<ci> b </ci>
</interval>
<apply><cos/>
<ci> x </ci>
</apply>
</apply>

The final example specifies the domain of integration withadition element.

<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>
<condition>
<apply><in/>
<ci> x </ci>
<ci type="set"> D </ci>
</apply>
</condition>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
</apply>
</apply>

Default Rendering

a

/f(x) dx

0

180

b

/ cosxdx

/ f(x) dx

xeD

4.4.5.2 Differentiation (diff)
Discussion

Thediff element is the differentiation operator element for functions of a single variable. It may be applied directly
to an actual function such as sine or cosine, thereby denoting a function which is the derivative of the original function
or it can be applied to an expression involving a single variable such a3, sin€osk). or a polynomial inx. For the
expression case the actual variable is designatecbbgaelement that is a child of the containiagply element. The

bvar element may also containdagree element, which specifies the order of the derivative to be taken.

The diff element takes thé@efinitionURL and encoding attributes, which can be used to override the default
semantics.

Thediff element is amperator taking qualifiers (See Sectiod.2.3.9.

Examples

The derivative of a functiori (often displayed a$’) can be written as:

<apply>
<diff/>
<ci> f </ci>
</apply>

The derivative with respect toof an expression i such as (x) can be written as:

<apply>
<diff/>
<bvar>
<ci> x </ci>
</bvar>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
</apply>
</apply>

Default Rendering
f /
df (x)
dx

181

4.4.5.3 Partial Differentiation (partialdiff)
Discussion

The partialdiff element is the partial differentiation operator element for functions or algebraic expressions in
several variables.

In the case of algebraic expressions, the bound variables are givierabyelements, which are children of the con-
taining apply element. Thévar elements may also contagegree element, which specify the order of the partial
derivative to be taken in that variable.

For the expression case the actual variable is designatedobyraelement that is a child of the containingply
element. The&var elements may also contairiagree element, which specifies the order of the derivative to be taken.

Where a total degree of differentiation must be specified, this is indicated by uskegtae element at the top level,
i.e. without any associatéslrar, as a child of the contaioningpply element.

For the case of partial differentation of a function, the contaiaisigly takes two child elements: firstly a list of indices
indicating by position which coordinates are involved in constructing the partial derivatives, and secondly the actua
function to be partially differentiated. The coordinates may be repeated.

The partialdiff element takes th@efinitionURL andencoding attributes, which can be used to override the
default semantics.

Thepartialdiff element is awperator taking qualifiers (See Sectiod.2.3.9.

Examples

<apply><partialdiff/>
<bvar><ci> x </ci><degree><ci> m </ci></degree></bvar>
<bvar><ci> y </ci><degree><ci> n </ci></degree></bvar>
<degree><ci> k </ci></degree>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
<ci> y </ci>
</apply>
</apply>

<apply><partialdiff/>
<bvar><ci> x </ci></bvar>
<bvar><ci> y </ci></bvar>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
<ci> y </ci>
</apply>
</apply>

<apply><partialdiff/>
<list><cn>1</cn><cn>1</cn><cn>3</cn></list>
<ci type="fn">f</ci>

</apply>

182

Default Rendering

2
oxay
D113(f)

f(xy)

4.4.54 Lower limit (lowlimit)
Discussion

Thelowlimit element is the container element used to indicate the ‘lower limit’ of an operator using qualifiers. For
example, in an integral, it can be used to specify the lower limit of integration. Similarly, it can be used to specify the
lower limit of an index for a sum or product.

The meaning of theowlimit element depends on the context it is being used in. For further details abogthilifiers
are used in conjunction with operators taking qualifiers, consult Se¢tib8.2

Example

<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<ci> a </ci>
</lowlimit>
<uplimit>
<ci> b </ci>
</uplimit>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
</apply>
</apply>

Default Rendering

The default rendering of theowlimit element and its contents depends on the context. In the preceding example, it
should be rendered as a subscript to the integral sign:

b
/f(x) dx

Consult the descriptions of individual operators that make use dfdhgimit construct for default renderings.

183

4.4.5.5 Upper limit (uplimit)
Discussion

Theuplimit element is the container element used to indicate the ‘upper limit' of an operator using qualifiers. For
example, in an integral, it can be used to specify the upper limit of integration. Similarly, it can be used to specify the
upper limit of an index for a sum or product.

The meaning of theplimit element depends on the context it is being used in. For further details aboyt:hbifiers
are used in conjunction with operators taking qualifiers, consult Se¢tib.2

Example

<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<ci> a </ci>
</lowlimit>
<uplimit>
<ci> b </ci>
</uplimit>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
</apply>
</apply>

Default Rendering

The default rendering of theplimit element and its contents depends on the context. In the preceding example, it
should be rendered as a superscript to the integral sign:
b

/f(x) dx

a
Consult the descriptions of individual operators that make use afghenit construct for default renderings.

4.4.5.6 Bound variable (bvar)
Discussion

The bvar element is the container element for the ‘bound variable’ of an operation. For example, in an integral it
specifies the variable of integration. In a derivative, it indicates the variable with respect to which a function is being
differentiated. When thevar element is used to qualify a derivative, thear element may contain a chiltkgree
element that specifies the order of the derivative with respect to that variablévaheslement is also used for the
internal variable in sums and products and for the bound variable used with the universal and existential quantifiel
forall andexists.

The meaning of thevar element depends on the context it is being used in. For further details aboguhbifiers are
used in conjunction with operators taking qualifiers, consult Seetiar3.2

184

Examples

<apply>
<diff/>
<bvar>
<ci> x </ci>
<degree>
<cn> 2 </cn>
</degree>
</bvar>
<apply>
<power/>
<ci> x </ci>
<cn> 4 </cn>
</apply>
</apply>

<apply>
<int/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><in/><ci> x </ci><ci> D </ci></apply>
</condition>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
</apply>
</apply>

Detault Rendering

The default rendering of thevar element and its contents depends on the context. In the preceding examples, it should
be rendered as thein the & of the integral, and as thein the denominator of the derivative symbol, respectively:

dx*

dx?

/ (%) dx

xeb
Note that in the case of the derivative, the default rendering odélgeee child of thebvar element is as an exponent.

Consult the descriptions of individual operators that make use afithe construct for default renderings.

4.4.5.7 Degree (degree)
Discussion

The degree element is the container element for the ‘degree’ or ‘order’ of an operation. There are a number of basic
mathematical constructs that come in families, such as derivatives and moments. Rather than introduce special eleme
for each of these families, MathML uses a single general construaigthe=e element for this concept of ‘order’.

The meaning of theegree element depends on the context it is being used in. For further details aboguhbfiers
are used in conjunction with operators taking qualifiers, consult Se¢tibA.2

185

Example

<apply>
<partialdiff/>
<bvar>
<ci> x </ci>
<degree>
<ci> n </ci>
</degree>
</bvar>
<bvar>
<ci> y </ci>
<degree>
<ci> m </ci>
</degree>
</bvar>
<apply><sin/>
<apply> <times/>
<ci> x </ci>
<ci> y </ci>
</apply>
</apply>
</apply>

Default Rendering

The default rendering of théegree element and its contents depends on the context. In the preceding example, the

degree elements would be rendered as the exponents in the differentiation symbols:
an+m

Iy sin(xy)
Consult the descriptions of individual operators that make use afd¢feee construct for default renderings.

4.4.5.8 Divergence (divergence)
Discussion
Thedivergence element is the vector calculus divergence operator, often called div.

Thedivergence element takes the attributeacoding anddefinitionURL that can be used to override the default
semantics.

Thedivergence element is amary calculus operator (See Sectiod.2.3.

Example

<apply>
<divergence/>
<ci> a </ci>

</apply>

186

Default Rendering

diva

4.4.5.9 Gradient (grad)

Discussion

Thegrad element is the vector calculus gradient operator, often called grad.

Thegrad element takes the attributescoding anddefinitionURL that can be used to override the default semantics.

Thegrad element is amary calculus operator (See Sectiod.2.3.

Example

<apply>
<grad/>
<ci> f</ci>

</apply>

Where for exampld is a scalar function of three real variables.

Detault Rendering
gradf

4.4.5.10 Curl (curl)

Discussion

The curl element is the vector calculus curl operator.

Thecurl element takes the attributescoding anddef initionURL that can be used to override the default semantics.

Thecurl element is amary calculus operator (See Sectiod.2.3.

Example

<apply>
<curl/>
<ci> a </ci>
</apply>

Where for exampla is a vector field.

Detault Rendering

curla

187

4.4.5.11 Laplacian (1aplacian)
Discussion
Thelaplacian element is the vector calculus laplacian operator.

The laplacian element takes the attributeacoding anddefinitionURL that can be used to override the default
semantics.

Thelaplacian element is amnary calculus operator (See Sectiod.2.3.

Example

<apply>
<eq/>
<apply><laplacian/>
<ci> f </ci>
</apply>
<apply>
<divergence/>
<apply><grad/>
<ci> f </ci>
</apply>
</apply>
</apply>
Where for exampld is a scalar function of three real variables.

Detault Rendering
02f

4.4.6 Theory of Sets
4.4.6.1 Set (set)
Discussion

Theset element is the container element that constructs a set of elements. The elements of a set can be defined eit
by explicitly listing the elements, or by using thear andcondition elements.

Theset element is aonstructor element (See Sectiod.2.2.9.

Examples

<set>
<ci> b </ci>
<ci> a </ci>
<ci> ¢ </ci>
</set>

This constructs the set b, a, ¢

188

<set>
<bvar><ci> x </ci></bvar>
<condition>
<apply><and/>
<apply><1lt/>
<ci> x </ci>
<cn> 5 </cn>
</apply>
<apply><in/>
<ci> x </ci>
<naturalnumbers/>
</apply>
</apply>
</condition>
<ci> x </ci>
</set>

This constructs the set of all natural numbers less than 5, ie. the setO0, 1, 2, 3, 4

Detault Rendering
. {a,b,c}
o {x|x<5Ax€eN}

4.4.6.2 List (1ist)
Discussion

Thelist elementis the container element that constructs a list of elements. Elements can be defined either by explicit
listing the elements, or by using thear andcondition elements.

Lists differ from sets in that there is an explicit order to the elements. Two orders are supported: lexicographic an
numeric. The kind of ordering that should be used is specified by#ter attribute.

Thelist element is aonstructor element (See Sectiod.2.2.2).

Examples

<list>
<ci> a </ci>
<ci> b </ci>
<ci> ¢ </ci>
</list>

<list order="numeric">
<bvar><ci> x </ci></bvar>
<condition>
<apply><1t/>
<ci> x </ci>

189

<cn> 5 </cn>
</apply>
</condition>
<ci> x </ci>
</list>

Detault Rendering

. [a,b,q
. [X|x< 5

4.4.6.3 Union (union)
Discussion
Theunion element is the operator for a set-theoretic union or join of two (or more) sets.

The union attribute takes théefinitionURL andencoding attributes, which can be used to override the default
semantics.

Theunion element is am-ary set operator (See Sectiod.2.3.

Example

<apply>
<union/>
<ci> A </ci>
<ci> B </ci>

</apply>

Detault Rendering
AUB

4.4.64 Intersect (intersect)
Discussion
Theintersect element is the operator for the set-theoretic intersection or meet of two (or more) sets.

Theintersect element takes théefinitionURL andencoding attributes, which can be used to override the default
semantics.

Theintersect element is am-ary set operator (See Sectiod.2.3.

Example

<apply>
<intersect/>
<ci type="set"> A </ci>
<ci type="set"> B </ci>
</apply>

190

Default Rendering
ANB

4.4.6.5 Setinclusion (in)

Discussion

Thein element is the relational operator used for a set-theoretic inclusion (‘is in’ or ‘is a member of’).

Thein elementtakes théef initionURL andencoding attributes, which can be used to override the default semantics.

Thein element is ainary set relation (See Sectiod.2.4).

Example

<apply>

<in/>

<ci> a </ci>

<ci type="set"> A </ci>
</apply>

Default Rendering

acA

4.4.6.6 Set exclusion (notin)
Discussion

Thenotin element is the relational operator element used for set-theoretic exclusion (‘is not in’ or ‘is not a member
of’).

Thenotin element takes the@efinitionURL andencoding attributes, which can be used to override the default
semantics.

Thenotin element is ainary set relation (See Sectiod.2.4).

Example

<apply>
<notin/>
<ci> a </ci>
<ci> A </ci>

</apply>

Detault Rendering
a¢A

191

4.4.6.7 Subset (subset)
Discussion
Thesubset element is the relational operator element for a set-theoretic containment (‘is a subset of’).

The subset element takes theefinitionURL andencoding attributes, which can be used to override the default
semantics.

The subset element is am-ary set relation (See Sectiod.2.4).

Example

<apply>
<subset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Detault Rendering
ACB

4.4.6.8 Proper Subset (prsubset)
Discussion
Theprsubset element is the relational operator element for set-theoretic proper containment (‘is a proper subset of’).

Theprsubset element takes théefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thesubset element is am-ary set relation (See Sectiod.2.4).

Example

<apply>
<prsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering
ACB

192

4.4.6.9 Not Subset (notsubset)
Discussion
Thenotsubset element is the relational operator element for the set-theoretic relation ‘is not a subset of’.

Thenotsubset element takes théefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thenotsubset element is ainary set relation (See Sectiod.2.4).

Example

<apply>
<notsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering
A¢ZB

4.4.6.10 Not Proper Subset (notprsubset)
Discussion
Thenotprsubset element is the operator element for the set-theoretic relation ‘is not a proper subset of’.

The notprsubset takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thenotprsubset element is ainary set relation (See Sectiod.2.4).

Example

<apply>
<notprsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Detault Rendering
AZB

193

4.4.6.11 Set Difference (setdiff)
Discussion
Thesetdiff element is the operator element for a set-theoretic difference of two sets.

The setdiff element takes théefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thesetdiff element is ainary set operator (See Sectiod.2.3.

Example

<apply>
<setdiff/>
<ci> A </ci>
<ci> B </ci>

</apply>

Detault Rendering
A\B

4.4.6.12 Cardinality (card)

Discussion

Thecard element is the operator element for the size or cardinality of a set.

Thecard element takes the attributésf initionURL andencoding that can be used to override the default semantics.

The card element is ainary set operator (see Sectiod.2.3.

Example

<apply>
<eq/>
<apply><card/>
<ci> A </ci>
</apply>
<ci> 5 </ci>
</apply>

where A is a set with 5 elements.

Default Rendering
Al =5

194

4.4.6.13 Cartesian product (cartesianproduct)
Discussion

Thecartesianproduct element is the operator element for the Cartesian product of two or more se&ndfB are
two sets, then the Cartesian producadndB is the set of all pairga, b) with ain Aandb in B.

The cartesianproduct element takes the attributésfinitionURL andencoding that can be used to override the
default semantics.

Thecartesianproduct element is a-ary set operator (See Sectiod.2.3.

Example

<apply><cartesianproduct/>
<ci> A </ci>
<ci> B </ci>

</apply>

<apply><cartesianproduct/>
<reals/>
<reals/>
<reals/>

</apply>

Detault Rendering

AxB
RxRxR
R3

4.4.7 Sequences and Series
4.4.7.1 Sum (sum)
Discussion

The sum element denotes the summation operator. Upper and lower limits for the index of a sum can be specified usin
uplimit andlowlimit. More general domains for the indices can be specified usiegdi tion involving the bound
variables. The index for the summation is specified byar element.

Thesum element takes théef initionURL andencoding attributes, which can be used to override the default seman-
tics.

The sum element is amperator taking qualifiers (see Sectiod.2.3.9.

Examples

<apply>
<sum/>

195

<bvar>

<ci> x </ci>
</bvar>
<lowlimit>

<ci> a </ci>
</lowlimit>
<uplimit>

<ci> b </ci>
</uplimit>
<apply><ci type="fn"> f </ci>

<ci> x </ci>
</apply>

</apply>

<apply>
<sum/>
<bvar>
<ci> x </ci>
</bvar>
<condition>
<apply> <in/>
<ci> x </ci>
<ci type="set"> B </ci>
</apply>
</condition>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
</apply>
</apply>

Default Rendering

4.4.7.2 Product (product)
Discussion

Theproduct element denotes the product operator. Upper and lower limits for the index of a product can be specifiec
usinguplimit andlowlimit. More general domains for the indices can be specified ustegdi tion involving the
bound variables. The index for the product is specified byza element.

Theproduct element takes théefinitionURL andencoding attributes, which can be used to override the default
semantics.

Theproduct element is amperator taking qualifiers (See Sectiod.2.3.9.

196

Examples

<apply>
<product/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<ci> a </ci>
</lowlimit>
<uplimit>
<ci> b </ci>
</uplimit>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
</apply>
</apply>

<apply>
<product/>
<bvar>
<ci> x </ci>
</bvar>
<condition>
<apply> <in/>
<ci> x </ci>
<ci type="set"> B </ci>
</apply>
</condition>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
</apply>
</apply>

Default Rendering
b

LY
X=a
|'L f(x)
Xe
44.7.3 Limit (1imit)

Discussion

Thelimit element represents the operation of taking a limit of a sequence. The limit point is expressed by specifying
alowlimit and abvar, or by specifying acondition on one or more bound variables.

The limit element takes the@efinitionURL andencoding attributes, which can be used to override the default
semantics.

197

Thelimit element is amwperator taking qualifiers (see Sectiod.2.3.2.

Examples

<apply>
<limit/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<cn> 0 </cn>
</lowlimit>
<apply><sin/>
<ci> x </ci>
</apply>
</apply>

<apply>
<limit/>
<bvar>
<ci> x </ci>
</bvar>
<condition>
<apply>
<tendsto type="above"/>
<ci> x </ci>
<ci> a </ci>
</apply>
</condition>
<apply><sin/>
<ci> x </ci>
</apply>
</apply>

Detault Rendering
lim sinx
X—

qudnx
4.4.7.4 Tends To (tendsto)
Discussion
Thetendsto element is used to express the relation that a quantity is tending to a specified value.
Thetendsto element takes the attributegpe to set the direction from which the limiting value is approached.

Thetendsto element is ainary relational operator (see Sectiod.2.9).

198

Examples

<apply>
<tendsto type="above"/>
<apply>
<power/>
<ci> x </ci>
<ecn> 2 </cn>
</apply>
<apply>
<power/>
<ci> a </ci>
<cn> 2 </cn>
</apply>
</apply>

To expressx, y) —(f(x, y), 9(X, ¥)), one might use vectors, as in:

<apply>
<tendsto/>
<vector>
<ci> x </ci>
<ci> y </ci>
</vector>
<vector>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
<ci> y </ci>
</apply>
<apply><ci type="fn"> g </ci>
<ci> x </ci>
<ci> y </ci>
</apply>
</vector>
</apply>

Default Rendering
X2\, a2

(x,y) = (f(xy),9(%,y))

4.4.8 Elementary classical functions
4.4.8.1 common trigonometric functions

The names of the common trigonometric functions supported by MathML are listed below. Since their standard inter
pretations are widely known, they are discussed as a group.

199

sin

sec
sinh
sech
arcsin
arccosh
arccsc
arcsech

Discussion

These operator elements denote the standard trigonometrical functions.

cos
csc
cosh
csch
arccos
arccot
arccsch
arcsinh

tan

cot
tanh
coth
arctan
arccoth
arcsec
arctanh

These elements all take tiefinitionURL andencoding attributes, which can be used to override the default se-

mantics.

They are allunary trigonometric operators. (see Sectiod.2.3.

Examples

<apply>
<sin/>
<ci> x </ci>
</apply>
<apply>
<sin/>
<apply>
<plus/>
<apply><cos/>
<ci> x </ci>
</apply>
<apply>
<power/>
<ci> x </ci>
<cn> 3 </cn>
</apply>
</apply>
</apply>

Default Rendering

° sinx

. sin(cosx+ x°)

4.4.8.2 Exponential (exp)

Discussion

Theexp element represents the exponential function associated with the inverse afftivection. In particular, exp(1)

is approximately 2.718281828.

200

The exp element takes thé@efinitionURL andencoding attributes, which may be used to override the default se-
mantics.

Theexp element is anary arithmetic operator (See Sectiod.2.3.

Example

<apply>

<exp/>

<ci> x </ci>
</apply>

Default Rendering
e

4.4.8.3 Natural Logarithm (1n)

Discussion

Theln element represents the natural logarithm function.

Theln elementtakes théef initionURL andencoding attributes, which can be used to override the default semantics.

Theln element is amary calculus operator (See Sectiod.2.3.

Example

<apply>
<ln/>
<ci> a </ci>
</apply>
If a=e¢, (whereeis the base of the natural logarithms) this will yield the value 1.

Default Rendering

Ina

4.4.8.4 Logarithm (1og)
Discussion

The log element is the operator that returns a logarithm to a given base. The base may be specified aigitag«
element, which should be the first element following, i.e. the second child of the containiagply element. If the
logbase element is not present, a default base of 10 is assumed.

Thelog element takes théefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Thelog element can be used as eitheraparator taking qualifiers Or aunary calculus operator (See Sectiod.2.3.9.

201

Example

<apply>
<log/>
<logbase>
<cn> 3 </cn>
</logbase>
<ci> x </ci>
</apply>

This markup represents ‘the base 3 logarithm of x’. For natural logarithms basd e dglement should be used instead.

Default Rendering

logz x

449 Statistics

4.4.9.1 Mean (mean)

Discussion

mean iS the operator element representingiéan or average.

mean takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Example
mean iS ann-ary operator (see Sectiod.2.3.
<apply>

<mean/>

<ci> X </ci>
</apply>

Detault Rendering
X or (X)

4.4.9.2 Standard Deviation (sdev)
Discussion
sdev is the operator element representing the statisttaatiard deviation operator.

sdev takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

202

Example
sdev IS ann-ary operator (See Sectiod.2.3.
<apply>

<sdev/>

<ci> X </ci>
</apply>

Detault Rendering
a(X)

4.4.9.3 Variance (variance)
Discussion
variance is the operator element representing the statistimaince operator.

variance takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Example
variance iS ann-ary operator (see Sectiod.2.3.
<apply>

<variance/>

<ci> X </ci>
</apply>

Default Rendering
o(X)?

4.4.9.4 Median (median)
Discussion
median iS the operator element representing the statisticalian operator.

median takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Example

median iS ann-ary operator (see Sectiod.2.3.

<apply>
<median/>
<ci> X </ci>

</apply>

203

Default Rendering
mediar{X)

4.4.9.5 Mode (mode)
Discussion
mode is the operator element representing the statisticale operator.

mode takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Example

mode iS ann-ary operator (see Sectiod.2.3.

<apply>
<mode/>
<ci> X </ci>
</apply>

Default Rendering
modeX)

44.9.6 Moment (moment)
Discussion

Themoment element represents the statistioalment operator. Use the qualifielegree for thenin * n-th moment'.
Use the qualifiemomentabout for the p in ‘moment aboup'.

moment takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Example

moment IS anoperator taking qualifiers (See Sectiod.2.3.9. The third moment of the distributiod about the poinp
IS written:

<apply>
<moment />
<degree>
<cn> 3 </cn>
</degree>
<momentabout>
<ci> p </ci>
</momentabout>
<ci> X </ci>
</apply>

204

Default Rendering
(X3)

4.4.9.7 Point of Moment (momentabout)
Discussion

Themomentabout element is ajualifier element used with theoment element to represent statistical moments. Use
the qualifiermomentabout for the pin ‘moment aboutp'.

momentabout takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Example

The third moment of the distributiod about the poinp is written:

<apply>
<moment/>
<degree>
<cn> 3 </cn>
</degree>
<momentabout>
<ci> p </ci>
</momentabout>
<ci> X </ci>
</apply>

Default Rendering
(X3)

4.4.10 Linear Algebra

4.4.10.1 Vector (vector)

Discussion

vector is the container element for a vector. The child elements form the components of the vector.

For purposes of interaction with matrices and matrix multiplication, vectors are regarded as equivalent to a matri
consisting of a single column, and the transpose of a vector behaves the same as a matrix consisting of a single row.

Example

vector is aconstructor element (see Sectigh2.2.2.

<vector>
<cn> 1 </cn>
<cn> 2 </cn>
<cn> 3 </cn>
<ci> x </ci>
</vector>

205

Default Rendering

X WN

1, 2,3

4.4.10.2 Matrix (matrix)
Discussion

Thematrix element is the container element for matrix rows, which are representegtbyxrow. Thematrixrows
contain the elements of a matrix.

Example

matrix iS aconstructor element (see Secticgh2.2.).

<matrix>
<matrixrow>
<cn> 0 </cn> <cn> 1 </cn> <cn> 0 </cn>
</matrixrow>
<matrixrow>
<cn> 0 </cn> <cn> 0 </cn> <cn> 1 </cn>
</matrixrow>
<matrixrow>
<cn> 1 </cn> <cn> 0 </cn> <cn> 0 </cn>
</matrixrow>
</matrix>

Detault Rendering

4.4.10.3 Matrix row (matrixrow)
Discussion

Thematrixrow element is theontainer element for the rows of a matrix.

Example

matrixrow iS @ constructor element (see Sectibh.2.2).

<matrixrow>
<cn> 1 </cn>
<cn> 2 </cn>

206

</matrixrow>

<matrixrow>
<cn> 3 </cn>
<ci> x </ci>

</matrixrow>

Default Rendering

Matrix rows are not directly rendered by themselves outside of the context of a matrix.

4.4.10.4 Determinant (determinant)
Discussion
Thedeterminant element is the operator for constructing the determinant of a matrix.

determinant takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Example

determinant iS aunary operator (See Sectiod.2.3.

<apply>
<determinant/>
<ci type="matrix"> A </ci>
</apply>
Detault Rendering
detA

4.4.10.5 Transpose (transpose)
Discussion
Thetranspose element is the operator for constructing the transpose of a matrix.

transpose takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Example

transpose IS aunary operator (See Sectiod.2.3.

<apply>
<transpose/>
<ci type="matrix"> A </ci>
</apply>
Default Rendering
AT

207

4.4.10.6 Selector (selector)
Discussion

The selector element is the operator for indexing into vectors matrices and lists. It accepts one or more arguments
The first argument identifies the vector, matrix or list from which the selection is taking place, and the second anc
subsequent arguments, if any, indicate the kind of selection taking place.

Whenselector is used with a single argument, it should be interpreted as giving the sequence of all elements in the
list, vector or matrix given. The ordering of elements in the sequence for a matrix is understood to be first by column
then by row. That is, for a matrixd; j), where the indices denote row and column, the ordering woulthhea 1 o, ...

az1, a2 ... etc.

When three arguments are given, the last one is ignored for a list or vector, and in the case of a matrix, the second a
third arguments specify the row and column of the selected element.

When two arguments are given, and the first is a vector or list, the second argument specifies an element in the list
vector. When a matrix and only one indeis specified as in

<apply>
<selector/>
<matrix>
<matrixrow>
<cn> 1 </cn> <cn> 2 </cn>
</matrixrow>
<matrixrow>
<cn> 3 </cn> <cn> 4 </cn>
</matrixrow>
</matrix>
<cn> 1 </cn>
</apply>
it refers to the-th matrixrow. Thus, the preceding example selects the following row:

<matrixrow> <cn> 1 </cn> <cn> 2 </cn> </matrixrow>
selector takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

selector is classified as an n-ary linear algebra operator even though it can take only one, two, or three arguments.

Example

<apply>
<selector/>
<ci type="matrix"> A </ci>
<cn> 3 </cn>
<cn> 2 </cn>
</apply>

Default Rendering

Theselector construct renders in a manner that indicates which sub-element of the parent object is selected. For ve
tors and matrices this is normally done by specifying the parent object together with subscripted indices. For exampl
the selection

208

<apply>
<selector/>
<ci type="vector">V</ci>
<cn> 1 </cn>
</apply>
would have a default rendering of
Vi

Selecting the (1,2) element of a 2 by 2 matrix would have a default rendering as
5 4]
3 4 12

4.4.10.7 Vector product (vectorproduct)
Discussion
Thevectorproduct is the operator element for deriving the vector product of two vectors.

The vectorproduct element takes the attributeée@finitionURL andencoding that can be used to override the
default semantics.

Thevectorproduct element is ainary vector operator (see Sectiod.2.3.

Example

<apply>
<eq/>
<apply><vectorproduct/>
<ci type="vector"> A </ci>
<ci type="vector"> B </ci>
</apply>
<apply><times/>
<ci> a </ci>
<ci> b </ci>

<apply><sin/>
<ci> θ </ci>
</apply>
<ci type="vector"> N </ci>
</apply>
</apply>

whereA andB are vectorsN is a unit vector orthogonal t& andB, a, b are the magnitudes of A, B argiils the angle
between A and B.

Detault Rendering
A x B =absinBN

209

4.4.10.8 Scalar product (scalarproduct)
Discussion
Thescalarproduct is the operator element for deriving the scalar product of two vectors.

The scalarproduct element takes the attributeée@finitionURL andencoding that can be used to override the
default semantics.

Thescalarproduct element is ainary vector operator (See Sectiod.2.3.

Example

<apply>
<eq/>
<apply><scalarproduct/>
<ci type="vector"> A </ci>
<ci type="vector">B </ci>
</apply>
<apply><times/>
<ci> a </ci>
<ci> b </ci>
<apply><cos/>
<ci> θ </ci>
</apply>
</apply>
</apply>
where A and B are vectora, b are the magnitudes of A, B arfiis the angle between A and B.

Default Rendering
A.B

4.4.10.9 Outer product (outerproduct)
Discussion
Theouterproduct is the operator element for deriving the outer product of two vectors.

Theouterproduct element takes the attributésfinitionURL andencoding that can be used to override the default
semantics.

Theouterproduct element is ainary vector operator (See Sectiod.2.3.

Example

<apply>
<outerproduct/>
<ci type="vector">A</ci>
<ci type="vector">B</ci>
</apply>
where A and B are vectors.

210

Default Rendering
A.B

4.4.11 Semantic Mapping Elements

This section explains the use of the semantic mapping eleraen#sitics, annotation andannotation-xml.

4.4.11.1 Annotation (annotation)
Discussion
Theannotation element is the container element for a semantic annotation in a non-XML format.

Theannotation element takes the attribuéacoding to define the encoding being used.

Example

Theannotation element is a semantic mapping element. It is always usedsaiiAntics.

<semantics>
<apply>
<plus/>
<apply><sin/>
<ci> x </ci>
</apply>
<cn> 5 </cn>
</apply>
<annotation encoding="TeX">
\sin x + 5
</annotation>
</semantics>

Detault Rendering

None. The information contained in annotations may optionally be used by a renderer able to process the kind
annotation given.

4.4.11.2 Semantics (semantics)
Discussion

Thesemantics element is the container element that associates additional representations with a given MathML con
struct. Thesemantics element has as its first child the expression being annotated, and the subsequent children ar
the annotations. There is no restriction on the kind of annotation that can be attached using the semantics element. |
example, one might give g2X encoding, or computer algebra input in an annotation.

The representations that are XML based are enclosed an@dtation-xml element while those representations that
are to be parsed &EDATA are enclosed in amnnotation element.

Thesemantics element takes théefinitionURL andencoding attributes, which can be used to reference an external
source for some or all of the semantic information.

211

An important purpose of theemantics construct is to associate specific semantics with a particular presentation,
or additional presentation information with a content construct. The default renderingeabatics element is the
default rendering of its first child. When a MathML-presentation annotation is provided, a MathML renderer may
optionally use this information to render the MathML construct. This would typically be the case when the first child is
a MathML content construct and the annotation is provided to give a preferred rendering differing from the default for
the content elements.

Use ofsemantics to attach additional information in-line to a MathML construct can be contrasted with use of the
csymbol for referencing external semantics. See Sectidnl.3

Examples

Thesemantics element is a semantic mapping element.

<semantics>
<apply>
<plus/>
<apply>
<sin/>
<ci> x </ci>
</apply>
<cn> 5 </cn>
</apply>
<annotation encoding="Maple">
sin(x) + 5
</annotation>
<annotation-xml encoding="MathML-Presentation">

</annotation-xml>

<annotation encoding="Mathematica">
Sin[x] + 5

</annotation>

<annotation encoding="TeX">
\sin x + 5

</annotation>

<annotation-xml encoding="OpenMath">
<OMA xmlns="http://www.openmath.org/OpenMath">

<0MS cd="transcl" name="sin"/>

<OMI>5</0MI>
</0MA>

</annotation-xml>

</semantics>

Default Rendering

The default rendering of semantics element is the default rendering of its first child.

212

4.4.11.3 XML-based annotation (annotation-xml)
Discussion

The annotation-xml container element is used to contain representations that are XML based. It is always used
together with thesemantics element, and takes the attributecoding to define the encoding being used.

annotation-xml iS @ Semantic mapping element.

Example

<semantics>
<apply>
<plus/>
<apply><sin/>
<ci> x </ci>
</apply>
<cn> 5 </cn>
</apply>
<annotation-xml encoding="OpenMath">
<OMA><0MS name="plus" cd="arithl"/>
<0OMA><0OMS name="sin" cd="transcl"/>
<0OMV name="x"/>
</0MA>
<0MI>5</0MI>
</0MA>
</annotation-xml>
</semantics>

See also the discussion ®mantics above.

Detault Rendering

None. The information may optionally be used by a renderer able to process the kind of annotation given.

4.4.12 Constant and Symbol Elements

This section explains the use of the Constant and Symbol elements.

4.4.12.1 integers (integers)
Discussion

integers represents the set of all integers.

Example

<apply>
<in/>
<cn type="integer"> 42 </cn>
<integers/>

</apply>

213

Default Rendering
42¢ 7

4.4.12.2 reals (reals)
Discussion

reals represents the set of all real numbers.

Example

<apply>
<in/>
<cn type="real"> 44.997 </cn>
<reals/>

</apply>

Detault Rendering
44997 R

4.4.12.3 Rational Numbers (rationals)

Discussion

rationals represents the set of all rational numbers.

Example

<apply>
<in/>
<cn type="rational"> 22 <sep/>7</cn>
<rationals/>

</apply>

Detault Rendering
22/7€Q

4.4.12.4 Natural Numbers (naturalnumbers)

Discussion

naturalnumbers represents the set of all natural numbers, ie. non-negative integers.

214

Example

<apply>
<in/>
<cn type="integer">1729</cn>
<naturalnumbers/>

</apply>

Detault Rendering
1729e N

4.4.12.5 complexes (complexes)
Discussion

complexes represents the set of all complex numbers, i.e. numbers which may have a real and an imaginary part.

Example

complexes represents the set of all complex numbers, i.e. numbers which may have a real and an imaginary part.

Example
<apply>
<in/>
<cn type="complex-cartesian">17<sep/>29</cn>
<complexes/>
</apply>
Default Rendering
17+29ieC

4.4.12.6 primes (primes)
Discussion

primes represents the set of all natural prime numbers, i.e. integers greater than 1 which have no positive integer fact
other than themselves and 1.

Example

<apply>
<in/>
<cn type="integer">17</cn>
<primes/>

</apply>

215

Default Rendering
17¢P

4.4.12.7 Exponential e (exponentiale)
Discussion

exponentiale represents the mathematical constant which is the exponential base of the natural logarithms, commonl
writtene. It is approximately 2.718281828..

Example

<apply> <eq/>
<apply>
<1ln/>
<exponentiale/>
</apply>
<cn>1</cn>
</apply>

Detault Rendering

Ine=1

4.4.12.8 Imaginary i (imaginaryi)
Discussion

imaginaryi represents the mathematical constant which is the square root of -1, commonly written

Example

<apply> <eq/>
<apply>
<power/>
<imaginaryi/>
<cn>2</cn>
</apply>
<cn>-1</cn>
</apply>

Default Rendering
iZ=-1

4.4.12.9 Not A Number (notanumber)
Discussion

notanumber represents the result of an ill-defined floating point operation, sometimes also/SaNed

216

Example

<apply> <eq/>
<apply>
<divide/>
<cn>0</cn>
<cn>0</cn>
</apply>
<notanumber/>
</apply>

Detault Rendering
0/0=NaN

4.4.12.10 True (true)
Discussion

true represents the logical constant for truth.

Example

<apply> <eq/>
<apply>
<or/>
<true/>
<ci type = "logical">P</ci>
</apply>
<true/>
</apply>

Default Rendering

truev P =true

4.4.12.11 False (false)

Discussion

false represents the logical constant for falsehood.

Example

<apply> <eq/>
<apply>
<and/>
<false/>
<ci type = "logical">P</ci>

217

</apply>
<false/>
</apply>

Default Rendering

falsen P =false

4.4.12.12 Empty Set (emptyset)
Discussion

emptyset represents the empty set.

Example

<apply>
<neq/>
<integers/>
<emptyset/>

</apply>

Default Rendering
7Z+0

4.4.12.13 pi(pi)
Discussion

pi represents the mathematical constant which is the ratio of a circle’s circumference to its diameter, approximatel
3.141592653.

Example

<apply>

<approx/>

<pi/>

<cn type = "rational">22<sep/>7</cn>
</apply>

Default Rendering
i~ 22/7

218

4.4.12.14 Euler gamma (eulergamma)
Discussion

eulergamma represents Euler’s constant, approximately 0.5772156649

Example

<eulergamma/>

Default Rendering
Y

4.4.12.15 infinity (infinity)
Discussion

infinity represents the concept of infinity. Proper interpretation depends on context.

Example

<infinity/>

Detault Rendering

o0

219

Chapter 5

Combining Presentation and Content Markup

Presentation markup and content markup can be combined in two ways. The first manner is to intersperse content ¢
presentation elements in what is essentially a single tree. This is ealied markup. The second manner is to provide
both an explicit presentation and an explicit content in a pair of trees. This is cadiadle]l markup. This chapter
describes both mixed and parallel markup, and how they may used in conjunction with style sheets and other tools.

51 Why Two Different Kinds of Markup?
Chapters 3 and 4 describe two kinds of markup for encoding mathematical material in documents.

Presentation markup capturesnotational structure. It encodes the notational structure of an expression in a sufficiently
abstract way to facilitate rendering to various media. Thus, the same presentation markup can be rendered with relat
ease on screen in either wide and narrow windows, in ASCII or graphics, in print, or it can be enunciated in a sensibl
way when spoken. It does this by providing information such as structured grouping of expression parts, classificatio
of symbols, etc.

Presentation markup doest directly concern itself with the mathematical structure or meaning of an expression. In
many situations, notational structure and mathematical structure are closely related, so a sophisticated processing ap
cation may be able to heuristically infer mathematical meaning from notational structure, provided sufficient context i
known. However, in practice, the inference of mathematical meaning from mathematical notation must often be left t
the reader.

Employing presentation tags alone may limit the ability to re-use a MathML object in another context, especially
evaluation by external applications.

Content markup capturesnathematical structure. It encodes mathematical structure in a sufficiently regular way in order

to facilitate the assignment of mathematical meaning to an expression by application programs. Though the details

mapping from mathematical expression structure to mathematical meaning can be extremely complex, in practice, the
is wide agreement about the conventional meaning of many basic mathematical constructions. Consequently, much
the meaning of a content expression is easily accessible to a processing application, independently of where or how it
displayed to the reader. In many cases, content markup could be cut from a Web browser and pasted into a mathemat
software tool with confidence that sensible values will be computed.

Since content markup isot directly concerned with how an expression is displayed, a renderer must infer how an ex-

pression should be presented to a reader. While a sufficiently sophisticated renderer and style-sheet mechanism coul
principle allow a user to read mathematical documents using personalized notational preferences, in practice, render
content expressions with notational nuances may still require intervention of some sort.

Employing content tags alone may limit the ability of the author to precisely control how an expression is rendered.

220

Both content and presentation tags are necessary in order to provide the full expressive capability one would expect ir
mathematical markup language. Often the same mathematical notation is used to represent several completely differ:
concepts. For example, the notatidmay be intended (in polynomial algebra) as itfile power of the variablg, or as

thei-th component of a vectot (in tensor calculus). In other cases, the same mathematical concept may be displayec
in one of various notations. For instance, the factorial of a number might be expressed with an exclamation mark,
Gamma function, or a Pochhammer symbol.

Thus the same notation may represent several mathematical ideas, and, conversely, the same mathematical idea ¢
has several notations. In order to provide authors with the ability to precisely control notation while at the same time
encoding meanings in a machine-readable way, both content and presentation markup are needed.

In general, if it is important to control exactly how an expression is rendered, presentation markup will generally be
more satisfactory. If it is important that the meaning of an expression can be interpreted dependably and automatical
then content markup will generally be more satisfactory.

5.2 Mixed Markup

MathML offers authors elements for both content and presentation markup. Whether to use one or the other, or
combination of both, depends on what aspects of rendering and interpretation an author wishes to control, and wk
kinds of re-use he or she wishes to facilitate.

5.21 Reasons to Mix Markup

In many common situations, an author or authoring tool may choose to generate either presentation or content mark
exclusively. For example, a program for translating legacy documents would most likely generate pure presentatic
markup. Similarly, an educational software package might very well generate only content markup for evaluation ir
a computer algebra system. However, in many other situations, there are advantages to mixing both presentation &
content markup within a single expression.

If an author is primarily presentation-oriented, interspersing some content markup will often produce more accessibls
more re-usable results. For example, an author writing about linear algebra might write:

<mrow>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>
</apply>
<mo>+</mo>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
wherev is a vector and the superscript denotes a vector componenk igralreal variable. On account of the linear
algebra context, a visually impaired reader may have directed his or her voice synthesis software to render superscri
as vector components. By explicitly encoding the power, the content markup yields a much better voice rendering the
would likely happen by default.

221

If an author is primarily content-oriented, there are two reasons to intersperse presentation markup. First, using prese
tation markup provides a way of modifying or refining how a content expression is rendered. For example, one migh
write:

<apply>
<in/>
<ci><mi mathvariant="bold">v</mi></ci>
<ci>S</ci>

</apply>

In this case, the use of embedded presentation markup allows the author to spegighthat be rendered in boldface.
In the same way, it is somtimes the case that a completely different notation is desired for a content expression. F
example, here we express a fact about factonetsn!/(n-1)!, using the ascending factorial notation:

<apply>
<equivalent/>
<ci>n</ci>
<apply>
<divide/>
<semantics>
<apply>
<factorial/>
<ci>n</ci>
</apply>
<annotation-xml encoding="MathML-Presentation">
<msup>
<mn>1</mn>
<mover accent="true">
<mi>n</mi>
<mo>&0verBar ;</mo>
</mover>
</msup>
</annotation-xml>
</semantics>
<semantics>
<apply>
<factorial/>
<apply><minus/><ci>n</ci><cn>1</cn></apply>
</apply>
<annotation-xml encoding="MathML-Presentation">
<msup>
<mn>1</mn>
<mover accent="true">
<mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow>
<mo>&0verBar ;</mo>
</mover>
</msup>
</annotation-xml>
</semantics>

222

</apply>
</apply>)
This content expression would render using the given notatiog%fays:

A second reason to use presentation within content markup is that there is a continually growing list of areas of discour:
that do not have pre-defined content elements for encoding their objects and operators. As a consequence, any sys
of content markup inevitably requires an extension mechanism that combines notation with semantics in some wa
MathML content markup specifies several ways of attaching an external semantic definitions to content objects. It i
necessary, however, to use MathML presentation markup to specify how such user-defined semantic extensions sho
be rendered.

For example, the ‘rank’ operator from linear algebra is not included as a pre-defined MathML content element. Thus
to express the statement rank¢)=1 we use aemantics element to bind a semantic definition to the symizwik.

<apply>
<eq/>
<apply>
<semantics>
<mi>rank</mi>
<annotation-xml encoding="OpenMath">
<OMS name="rank" cd="linalg3" xmlns="http://www.openmath.org/OpenMath"/>
</annotation-xml>
</semantics>
<apply>
<times/>
<apply> <transpose/> <ci>u</ci> </apply>
<ci>v</ci>
</apply>
</apply>
<cn>1</cn>
</apply>
Here, the semantics of rank have been given using a symbol from an OpenMath content dictionary (CD).

5.2.2 Combinations that are prohibited

The main consideration when presentation markup and content markup are mixed together in a single expression is tl
the result should still make sense. When both kinds of markup are contained in a presentation expression, this mee
it should be possible to render the resulting mixed expressions simply and sensibly. Conversely, when mixed markt
appears in a content expression, it should be possible to simply and sensibly assign a semantic interpretation to f
expression as whole. These requirements place a few natural constraints on how presentation and content markup
be mixed in a single expression, in order to avoid ambiguous or otherwise problematic expressions.

Two examples illustrate the kinds of problems that must be avoided in mixed markup. Consider:

<mrow>
<bvar> x </bvar> <mo> + </mo> <bvar> y </bvar>
</mrow>

In this example, the content elemeartar has been indiscriminately embedded in a presentation expressionbgiice
requires an enclosing context for its meaning, this expression is unclear.

Similarly, consider:

223

<apply>

<ci> x </ci> <mo> + </mo> <ci> y </ci>
</apply>
Here, themo element is problematic. Should a renderer infer that the usual arithmetic operator is intended, and act as
the prefix content elemeptLlus had been used? Or should this be literally interpreted as the opzrapmlied to two
argumentsgmo>+</mo> and<mi>y</mi> ? Even if we were to decide thaho>+</mo> was the operator, then what
should its meaning be? These questions do not have particularly compelling answers, so this kind of mixing of conter
and presentation markup is also prohibited.

5.2.3 Presentation Markup Contained in Content Markup

The use of presentation markup within content markup is limited to situations that do not effect the ability of content
markup to unambiguously encode mathematical meaning. Specifically, presentation markup may only appear in conte
markup in three ways:

1. within ci andcn token elements
2. within the csymbol element
3. within the semantics element

Any other presentation markup occurring within a content markup is a MathML error. More detailed discussion of these
three cases follows:

Presentation markup within token elements. The token elementsi andcn are permitted to contain any sequence
of MathML characters (defined in Chapt®; presentation elements, agdp empty elements. Contiguous
blocks of MathML characters iai and cn elements are rendered as if they were wrappedgii@ndmn
elements respectively. If a token element contains both MathML characters and presentation elements, co
tiguous blocks of MathML characters (if any) are treated as if wrapped or mn elements as appropriate,
and the resulting collection of presentation elements are rendered as if wrappetkiswagiement.

Presentation markup within the csymbol element. The csymbol element may contain either MathML characters
interspersed with presentation markup, or content elements of the container type. It is a MathML error for a
csymbol element to contain both presentation and content elements. Whesithieol element contains
both raw data and presentation markup, the same rendering rules that apply to content elements of the tok
type should be used.

Presentation markup within the semantics element. One of the main purposes of themantics element is to
provide a mechanism for incorporating arbitrary MathML expressions into content markup in a semantically
meaningful way. In particular, any valid presentation expression can be embedded in a content expressic
by placing it as the first child of aemantics element. The meaning of this wrapped expression should be
indicated by one or more annotation elements also contained éeita@tics element. Suggested rendering
for asemantics element is discussed in Sectidr?.a

5.24 Content Markup Contained in Presentation Markup

The guiding principle for embedding content markup within presentation expressions is that the resulting expressio
should still have an unambiguous rendering. In general, this means that embedded content expressions must be sen
tically meaningful, since rendering of content markup depends on its meaning.

Certain content elements derive part of their semantic meaning from the surrounding context, such as whather a
element is qualifying an integral, logical quantifier or lambda expression. Another example would be whieghsrea
element occurs in aoot or partialdiff element. Thus, in a presentation context, elements such as these do not have
a clearly defined meaning, and hence there is no obvious choice for a rendering. Consequently, they are not allowed.

224

Using the terminology of Sectiof.2.1, we see that operator, relation, container, constant and symbol elements make
sense on their own, while elements of the qualifier and condition type do not. (Notentteatval may be used either
as a general container, or as a qualifier.)

Outside these categories, certain elements deserve specific comment: the etemesnte, sep, annotation and
annotation-xml can only appear in very specific contexts and consequently are not permitted as direct sub-expressior
of any presentation element. Finally, the elemesiiantics carries with it sufficient information to be permitted in
presentation.

The complete list of content elements thatnot appear as a child in a presentation elementrigotation, annotation-
xml, sep, declare, bvar, condition, degree, logbase, lowlimit, uplimit.

Note that within presentation markup, content expressions may only appear in locations where it is valid for any
MathML expression to appear. In particular, content expressions may not appear within presentation token elements.
this regard mixing presentation and content are asymmetrical.

Note that embedding content markup in presentation will often require applications to render operators outgige of an
ply context. E.g., it may be necessary to renslet, plus, root or sin outside of an application. Content/presentation
mixing does not introduce any new requirements, however, since unapplied operators are already permitted in conte
expressions, for example:

<apply>
<compose/>
<sin/>
<apply>
<inverse/>
<root/>
</apply>
</apply>

5.3 Parallel Markup

Some applications are able to make uséah presentation and content information. For these applications it is desir-
able to provide both forms of markup for the same mathematical expression. This ispeadiéel markup.

Parallel markup is achieved with thkemantics element. Parallel markup for an expression can be used on its own, or
can be incorporated as part of a larger content or presentation tree.

5.3.1 Top-level Parallel Markup

In many cases what is desired is to provide presentation markup and content markup for a mathematical expression
a whole. To achieve this, a singlemantics element is used pairing two markup trees, with the first branch being the
MathML presentation markup, and the second branch being the MathML content markup.

The following example encodes the boolean arithmetic expresaidn(€+d) in this way.

<semantics>
<mrow>
<mrow><mo>(</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>
<mo>⁢</mo>
<mrow><mo>(</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>

225

</mrow>
<annotation-xml encoding="MathML-Content">
<apply><and/>
<apply><xor/><ci>a</ci> <ci>b</ci></apply>
<apply><xor/><ci>c</ci> <ci>d</ci></apply>
</apply>
</annotation-xml>
</semantics>

This example is non-trivial in the sense that the content markup could not be easily derived from the presentation markt
alone.

5.3.2 Fine-grained Parallel Markup

Top-level pairing of independent presentation and content markup is sufficient for many, but not all, situations. Appli-
cations that allow treatment afib-expressions of mathematical objects require the ability to associate presentation,
content or information with thearts of an object with mathematical markup. Top-