
XHTML™ Events Module

An updated events syntax for XML-based markup languages

W3C Working Draft 21 December 1999

This version:
http://www.w3.org/TR/1999/WD-xhtml-events-19991221
(Postscript version, PDF version, ZIP archive, or Gzip’d TAR archive)

Latest version:
http://www.w3.org/TR/xhtml-events

Previous version:
None

Editors:
Ted Wugofski, Gateway
Patrick Schmitz, Microsoft
Shane P. McCarron, Applied Testing and Technology

Copyright © 1999 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark,
document use and software licensing rules apply.

Abstract
This specification defines the XHTML Event Module, a module that provides XML languages
with the ability to represent in syntax the semantics of the Document Object Model (DOM) Level
2 event interfaces [DOM2] [p.29] .

The DOM specifies an event model that provides the following features:

the event system is generic,
a means is provided for registering event handlers,
events may be routed through a tree structure, and
context information for each event is available.

In addition, the DOM provides an event flow architecture that describes how events are
captured, bubbled, and canceled. In summary, event flow is the process through which an event
originates from the DOM implementation and is passed into the document object model. The
methods of event capture and event bubbling, along with various event listener registration
techniques, allow the event to then be handled in a number of ways. It can be handled locally at
the target Node level or centrally from a Node higher in the document tree.

- 1 -

XHTML™ Events ModuleXHTML Event Module

http://www.w3.org/Consortium/Legal/copyright-software
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/TR/xhtml-events
http://www.w3.org/TR/1999/WD-xhtml-events-19991221
http://www.w3.org/

The XHTML Event Module contains an event-target, event-listener, and an event
element. The event-target element is used to attach an event handler to an element. The
event-listener element is used to represent the DOM event handler. The event element is
used to represent the DOM event.

The design of the XHTML Event Module is such that it can be used together with XHTML
modules [XMOD [p.29]] and SMIL modules [SMOD [p.29]].

Status of this document
This section describes the status of this document at the time of its publication. Other
documents may supersede this document. The latest status of this document series is
maintained at the W3C.

This is the first public working draft of the of the XHTML Event Module specification. It is
guaranteed to change; anyone implementing it should realize that we will not allow ourselves to
be restricted by experimental implementations when deciding whether to change the
specifications.

This specification is a Working Draft of the HTML Working Group for review by W3C members
and other interested parties. It is a draft document and may be updated, replaced, or obsoleted
by other documents at any time. It is inappropriate to use W3C Working Drafts as reference
material or to cite them as other than "work in progress".

Publication as a Working Draft does not imply endorsement by the W3C membership, nor of
members of the HTML, SYMM, nor DOM working groups. This is still a draft document and may
be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite
W3C Working Draft as other than "work in progress."

This document has been produced as part of the W3C HTML Activity and SYMM Activity). The
authors of this document are members of the HTML Working Group and the SYMM Working
Group.

This document is for public review. Comments on the normative aspects of this document or the
integration with XHTML should be sent to the public mailing list www-html@w3.org. Comments
regarding the integration with SMIL should be sent to the public mailing list www-smil@w3.org.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Contents
1. Overview of the DOM Event Model [p.5]
2. Event Module Elements [p.7]

2.1 The event Element
2.2 The eventlistener Element

3. Using the Event Module in XHTML [p.11]

- 2 -

XHTML Event ModuleStatus of this document

http://www.w3.org/TR
http://lists.w3.org/Archives/Public/www-smil/
http://www.w3.org/Archives/Public/www-html/
http://www.w3.org/AudioVideo/Group/
http://www.w3.org/AudioVideo/Group/
http://www.w3.org/MarkUp/Group/
http://www.w3.org/AudioVideo/
http://www.w3.org/MarkUp/

3.1 Integrating the Event Module into XHTML
3.2 Registering an Event Handler
3.3 Event Bubbling
3.4 Responding Once to an Event
3.5 Handling Multiple Events
3.6 Preventing the Bubbling of Events
3.7 Capturing an Event
3.8 Declaring an Immediate Event
3.9 Dispatching an Event from within the Document

4. Using the Event Module in SMIL [p.19]
4.1 Integrating the Event Module into SMIL
4.2 Registering an Event Handler
4.3 Responding to an Event
4.4 Synchronizing Event Handlers
4.5 Handling Multiple Events
4.6 Responding Once to an Event
4.7 Preventing the Bubbling of an Event
4.8 Capturing an Event
4.9 Declaring an Immediate Event
4.10 Synchronizing Events
4.11 Synchronizing on Multiple Events

Appendix A. A Comparison with BECSS [p.27]
Appendix B. References [p.29]

- 3 -

ContentsXHTML Event Module

- 4 -

XHTML Event ModuleContents

1. Overview of the DOM Event Model
The Document Object Model (DOM) Level 2 specifies an event model that provides the following
features:

the event system is generic
a means is provided for registering event handlers
events may be routed through a tree structure
context information for each event is available

The DOM Level 2 specification [DOM2 [p.29]] further specifies three classes of events: user
interface events, user interface logical events, and mutation events. In addition to these three
events, the XHTML Event Module specifies a trigger event.

UI Events
User interface events. These events are generated by user interaction through an external
device (such as a mouse, keyboard, or remote control).

UI Logical Events
Device independent user interface events such as focus change messages or element
triggering notifications.

Mutation Events
Mutation events are caused by any action which modifies the structure of the document.

Trigger Events
Trigger events are artificial events that are not associated with the user interface or
mutations in the document. They are typically created (or asserted) through scripts or
inserted through the document object model.

The [DOM2 [p.29]] provides an event flow architecture that describes how events are captured,
bubbled, and canceled. In summary, event flow is the process through which an event originates
from the DOM implementation and is passed into the document object model. The methods of
event capture and event bubbling, along with various event listener registration techniques,
allow the event to then be handled in a number of ways. It can be handled locally at the target
Node level or centrally from a Node higher in the document tree.

- 5 -

1. Overview of the DOM Event ModelXHTML Event Module

Each event has a Node toward which the event is directed by the DOM implementation. This
Node is the event target. In Figure 1, the event target is the node N4 . Figure 1 also shows how
the event traverses the nodes of the document tree. The event flows from the root node to the
target node passing through nodes N1 , N2 , and then to the target node N4 . After the event is
processed by the target node, it flows back to the root node N1 .

Event capture is the process by which an ancestor of the event’s target can register to intercept
events of a given type before they are received by the event’s target. In Figure 1, nodes N1 and
N2 , as ancestors of the target node, can capture the event prior to the event reaching N4 .

Event bubbling is the process by which an ancestor of the event’s target can register to handle
the events of a given type after they are received by the event’s target. In Figure 1, nodes N1

and N2 , as ancestors of the target node, can handle the event after it has reached N4 .

For any given event type, capturing is either enabled or it is disabled. If any ancestor to the
target node enables capturing, all ancestors of the target node (who handle the appropriate
event type) will capture the event. Likewise, if any ancestor to the target node disables
capturing, all ancestors of the target node (who handle the appropriate event type) can no longer
capture the event.

Similarly, for any given event type, bubbling is either enabled or disabled.

- 6 -

XHTML Event Module1. Overview of the DOM Event Model

2. Event Module Elements
This section is normative.

This working draft proposes the event [p.7] and eventlistener [p.8] elements to support the
features of the DOM Event Model.

The event element and the eventlistener element are named after the corresponding DOM
interfaces. To avoid ambiguity in the text, when the element is referenced, the word element is
used, as in:

event element
eventlistener element

If the DOM implementation is being referenced, only the event and eventlistener term is used, as
in event and eventlistener.

There is some question whether the event element is actually needed. The working group is
still exploring whether the semantics of the event element may be collapsed into the
eventlistener element, thus reducing the syntax. In addition, there is some concern that
since the semantics of the event element and eventlistener element are not absolutely the
same as the DOM classes of the same name, that perhaps these elements should have different
names.

2.1 The event Element
<!ENTITY % event-content "EMPTY" >
<!ELEMENT event (%event-content;)*
<!ATTLIST event
 id ID #IMPLIED
 type NMTOKEN #REQUIRED
 active %Boolean #IMPLIED
 cancelable %Boolean #IMPLIED
 bubbles %Boolean #IMPLIED
>

The event element provides a means for content authors to declare a trigger [p.5] event within
a document or presentation. A trigger event may activated immediately, or it may be activated
through some other means. The event element has the following attributes:

id
The id attribute is a document-unique identifier for the element. The value of this identifier
is often used to manipulate the element through a DOM interface. Note that the id attribute
and the type [p.8] attribute are not the same. The id value specifies a particular
instance of an event. The type [p.8] value specifies a class of events that may be
instantiated by several event elements within a document.

- 7 -

2. Event Module ElementsXHTML Event Module

type
The type of the event. The type attribute is used for associating an event handler with an
event.

active
The active attribute is true when the all of the conditions for activating the event are true.
Content authors use this attribute to declare an event without it actually occurring and then
activate the event through a DOM interface or through synchronization. The default value
for active is true, which means that the event is immediately activated.

cancelable
Some events are specified as cancelable. Cancellation is accomplished through the
eventlistener [p.8] element’s prevent-default [p.9] attribute or through the
DOM Event interface’s preventDefault() method. The default value for the
cancelable attribute is false, which means that the event cannot be canceled.

bubbles
Some events are specified as bubbling, which means that they follow the bubbling rules of
the DOM event flow. The default value for the bubbles attribute is true, which means that
the event will bubble upward after being dispatched to the target Node.

The target node for the event corresponding to an event element is the event element itself.

2.2 The eventlistener Element
<!ENTITY % eventlistener-content "EMPTY" >
<!ELEMENT eventlistener (%eventlistener-content;)*
<!ATTLIST eventlistener
 id ID #IMPLIED
 type NMTOKEN #REQUIRED
 register-with IDREF #IMPLIED
 trigger-once %Boolean #IMPLIED
 use-capture %Boolean #IMPLIED
 prevent-capture %Boolean #IMPLIED
 prevent-bubble %Boolean #IMPLIED
 prevent-default %Boolean #IMPLIED
>

The eventlistener element provides a means for handling events of a particular type. The
eventlistener element has the following attributes:

id
The id attribute is a document-unique identifier. The value of this identifier is often used to
manipulate the element through a DOM interface.

type
The type attribute specifies the event type for which the content author is registering. The
type attribute has the following syntax:

 Eventhandler-types ::= ((EventSource ".") ? Event-type)*
 Event-source ::= Id-value
 Event-type ::= NMTOKEN

The type attribute provides a means of having an eventlistener register for multiple

- 8 -

XHTML Event Module2.2 The eventlistener Element

event types.
register-with

The register-with attribute specifies the target Node for this eventlistener element.
The default value for the register-with attribute is "empty", which means that the
eventlistener element registers with its parent Node. Otherwise, register-with is
the value of desired target Node element’s id attribute.

trigger-once
The trigger-once attribute specifies whether the eventlistener element should be
removed from its target Node after the eventlistener has processed the event. The
default value for the trigger-once attribute is false, which means that the
eventlistener remains registered with the it’s target Node.

use-capture
If true, the use-capture attribute indicates that the content author wishes to initiate
capture. After initiating capture, all events of the specified type will be dispatched to the
registered eventlistener before being dispatched to any elements beneath the
eventlistener element’s target Node in the tree. Events which are bubbling upward
through the tree will not trigger an eventlistener designated to use capture. The default
value for the use-capture attribute is false, which means that event flow proceeds
normally.

prevent-bubble
The prevent-bubble attribute is used to end the bubbling phase of the event flow. If this
attribute is true for any eventlistener elements registered on the same target Node
during bubbling, the bubbling phase will cease at that level and the event will not be
propagated upward within the tree. The default value for prevent-bubble attribute is
false: events will continue to bubble.

prevent-capture
The prevent-capture attribute is used to end the capturing phase of event flow. If this
attribute is true for any eventlistener elements registered on the same target Node
during capturing, the capturing phase will cease at that level and the event will not be
propagated any further down. The default value for prevent-capture attribute is false;
events will continue through the capture phase.

prevent-default
If an event is cancelable, the prevent-default attribute is used to signify that the event
is to be canceled. If, during any stage of event flow, the prevent-default attribute is
true, the event is canceled and any default action associated with the event will not occur.
Setting this attribute to true for a non-cancelable event has no effect. The default value for
the prevent-default attribute is false: events will not be canceled.

2.3. The Event Module Namespace
The Event Module will use the "http://www.w3.org/2000/event" namespace.

- 9 -

2.3. The Event Module NamespaceXHTML Event Module

- 10 -

XHTML Event Module2.3. The Event Module Namespace

3. Using the Event Module in XHTML
This section is informative.

The Event Module may be integrated into XHTML to add extensibility to the event handling
already present through a variety of properties. This section is informative: it is provided as a
way of explaining how the Event Module may be used with XHTML.

3.1. Integrating the Event Module into XHTML
The first step of using the Event Module is to determine how it integrates with the other modules
already in XHTML. One possible integration is to:

1. add the eventlistener [p.8] element to the content model for any existing XHTML
element that supports intrinsic events

2. add the XHTML script element to the content model for the eventlistener [p.8]
element

Adding the eventlistener [p.8] element to existing XHTML content models integrates the
Event Module into XHTML; adding the script element to the eventlistener [p.8]
element’s content model integrates XHTML into the Event Module.

When an eventlistener [p.8] element contains a script element, the script element
content is evaluated when the eventlistener [p.8] element processes an event. In
addition, the DOM 2 Event object that corresponds to the event is available to the enclosed
script element content through a "theEvent" object.

3.2. Registering an Event Handler
Content authors that wish to register an event handler for an element use the eventlistener
[p.8] element.

Example 3.1

 <eventlistener id="a" type="(onclick)">
 <script>
 ... some scripting code ...
 </script>
 </eventlistener>

In Example 3.1, an eventlistener [p.8] element is registered with the img element. This
eventlistener [p.8] element will be triggered when an onclick event targets or bubbles
through the img element.

- 11 -

3. Using the Event Module in XHTMLXHTML Event Module

If the content author wishes to be more specific when declaring an eventlistener [p.8]
element, they may add the target Node’s identifier to the type [p.8] attribute’s value.

Example 3.2

 <eventlistener id="a" type="id(b)(onclick)">
 <script>
 ... some scripting code ...
 </script>
 </eventlistener>

In Example 3.2, the eventlistener [p.8] element is still registered with the img element.
In this example, however, the eventlistener [p.8] will only be triggered when an
onclick event has the img element as its target Node.

3.3. Event Bubbling
As specified in [DOM2 [p.29]], if bubbling is not prevented at the target Node, the event will
follow the target Node’s parent chain upward, checking for any eventlistener [p.8]
elements registered on each successive Node. Therefore, the following example provides the
same behavior as that in Example 3.1.

Example 3.3

<div class="top">
 <eventlistener type="(onclick)">
 ...
 </eventlistener>

</div>

In Example 3.3, if the bubbling of the onclick event is not prevented by the img element, it will
bubble up to the parent Node (the div element) and it’s registered eventlistener [p.8] .
Where we see a difference in behavior is if we introduce a second object to the tree.

Example 3.4

<div class="top">
 <eventlistener type="(onclick)">
 ...
 </eventlistener>

</div>

In Example 3.4, we can no longer distinguish, declaratively, between events bubbling from
"start" image and events bubbling from "stop" image.

- 12 -

XHTML Event Module3.3. Event Bubbling

If the content author wishes to distinguish between these two types of events, they could write:

Example 3.5

<div class="top">
 <eventlistener type="id(start)(onclick)">
 ...
 </eventlistener>
 <eventlistener type="id(stop)(onclick)">
 ...
 </eventlistener>

</div>

In Example 3.5, the first eventlistener [p.8] specifies the target Node with the "start"
identifier and the second eventlistener [p.8] element specifies the target Node with the
"stop" identifier.

Note: the author could have achieved a similar behavior by simply encapsulating the
eventlistener [p.8] elements within their respective img elements.

3.4. Responding Once to an Event
In the previous examples, the eventlistener [p.8] element would respond each and
everytime the corresponding event passed through its registered Node. Content authors may
use the trigger-once [p.9] attribute to control whether an eventlistener [p.8]
unregisters from its Node after it has been triggered.

Example 3.6

<div>

 <eventlistener id="cow-click" type="id(cow)(onclick)" trigger-once=true >
 ...
 </eventlistener>
 <eventlistener id="cat-click" type="id(cat)(onclick)" trigger-once=true >
 ...
 </eventlistener>
</div>

In Example 3.6, the onclick event is generated each and everytime that the user clicks on the
"cow" image. The "cow-click" event handler only responds to the first instance of the onclick
event. The same behavior is provided by the "cat-click" event handler for onclick events
targeting the "cat" image.

- 13 -

3.4. Responding Once to an EventXHTML Event Module

3.5. Handling Multiple Events
Content authors may also register an eventlistener [p.8] that responds to multiple
events.

Example 3.7

<eventlistener type="(onclick)(onstopkey)">
 ...
</eventlistener>

In Example 3.7, the eventlistener [p.8] element is listening for two events: an onclick
event and an onstopkey event. In response to either of these events, the eventlistener
[p.8] is triggered and the script is executed.

3.6. Preventing the Bubbling of Events
The DOM event model specifies that events continue to bubble up the document tree until an
event handler cancels bubbling. Content authors may declaratively control bubbling through the
prevent-bubble [p.9] attribute. For example:

Example 3.8

<div>
 <eventlistener id="b" type="(onclick)" ...>
 ...
 </eventlistener>

 <div>
 <eventlistener id="a" type="(onclick)" prevent-bubble="true">
 ...
 </eventlistener>

 </div>
</div>

In Example 3.8, we have two event handers for the onclick event. If the user clicks on the
"stop" image, it is handled by event handler "a". Since event handler "a" cancels the bubbling
action, it is not handled by event handler "b".

Content authors may procedurally control bubbling through script that accesses the DOM:

Example 3.9

<div>
 <eventlistener id="b" type="(onclick)" ...>
 ...
 </eventlistener>

- 14 -

XHTML Event Module3.5. Handling Multiple Events

 <div>
 <eventlistener id="a" type="(onclick)">
 <script>
 ... some scripting code ...
 theEvent.preventBubble();
 ... some scripting code ...
 </script>
 </eventlistener>

 </div>
</div>

In Example 3.9, the preventBubble() method is called, ending the bubbling phase of event
flow.

3.7. Capturing an Event
Content authors that wish to capture an event use the eventlistener [p.8] element:

Example 3.10

<eventlistener type="(onclick)(onstopkey)" use-capture="true" >
 ...
</eventlistener>

...
</html>

In Example 3.10, the eventlistener [p.8] is specified as a peer to the "stop" image.
Following the rules for event capturing outlined in [DOM2 [p.29]], if a user clicks on the object,
the onclick event is dispatched to the target Node and any registered event listeners are
triggered.

Unlike previous examples, the use-capture [p.9] attribute is "true", therefore the
eventlistener [p.8] element intercepts the message before it reaches the target Node.
This permits event handling to be centralized and isolated at a higher location in the document
hierarchy.

After the eventlistener [p.8] has captured the event, it can let the event continue to
propagate down the hierarchy to the target Node, or it can stop propagation by setting the
prevent-capture [p.9] attribute to "true".

Example 3.11

<eventlistener type="(onclick)" use-capture="true" prevent-capture="true" >
 ...
</eventlistener>

- 15 -

3.7. Capturing an EventXHTML Event Module

In Example 3.11, the eventlistener [p.8] element captures the event and, by canceling
the propagation of the event, effectively hides the event from img element. This behavior can
also be accomplished through script:

Example 3.12

<eventlistener type="(onclick)" use-capture="true" >
 <script>
 ... some scripting code ...
 theEvent.preventCapture();
 ... some scripting code ...
 </script>
</eventlistener>

In Example 3.12, the event node’s preventCapture() method is used to end the capturing
phase of event flow and overrule the declarative syntax.

3.8. Declaring an Immediate Event
Content authors can specify an event that is immediately dispatched by setting the active
[p.8] attribute to true. For example:

Example 3.13

<eventlistener type="(foo)">
 ...
</eventlistener>

 <event type="foo" />

In Example 3.13, the eventlistener [p.8] element is associated with a "foo" event. At
some point in processing the document, the img element is processed and the event is
immediately dispatched (since the img element contains an event element), triggering the
eventlistener [p.8] element .

While this provides a simple syntax for declaring an event within a document, its real value may
be that it provides a framework for the insertion of immediate events into the document through
the DOM. For example, consider this reduction of the previous example:

Example 3.14

<eventlistener type="(foo)">
 <script>
 ... some scripting code ...
 </script>
</eventlistener>

- 16 -

XHTML Event Module3.8. Declaring an Immediate Event

In Example 3.14, we have removed the explicit declaration of the event (the event element was
removed). The object might be a media player and the media player might insert the "foo" event
through the DOM. Furthermore, the event [p.7] element and the eventlistener [p.8]
element may both be inserted into the document. In this way, the event (represented by the
event [p.7] element) and its associated behavior (represented by the eventlistener
[p.8] element) can both be delivered in real-time.

3.9. Dispatching an Event from within the Document
Events can be dispatched by inserting an event [p.7] element through the Document Object
Model, or by declaring an event [p.7] element from within the document. For example:

Example 3.15

 <event type="foo" active=false />
 <eventlistener type="(foo)">
 ...
 </eventlistener>

In this example, we declare an event [p.7] element that is a "foo" event. The active
[p.8] attribute for this event [p.7] element is false, which means that while we have
declared the event, it is not currently available to the event flow architecture. If the active
[p.8] attribute is set to true (perhaps through a DOM interface), the appropriate
eventlistener [p.8] will receive the event.

- 17 -

3.9. Dispatching an Event from within the DocumentXHTML Event Module

- 18 -

XHTML Event Module3.9. Dispatching an Event from within the Document

4. Using the Event Module in SMIL
This section is informative.

The Event Module may be integrated into SMIL to add event handling. This section is
informative; it is provided as a way of explaining how the Event Module may be used with SMIL.
Much of this syntax may evolve if and when SMIL adopts a user event model.

4.1. Integrating the Event Module into SMIL
The first step of using the Event Module is to determine how it integrates with the other modules
already in SMIL. One possible integration is to:

1. add the eventlistener [p.8] element to the content model of the timing structure
elements

2. add the eventlistener [p.8] element to the content model of the media object
elements

3. add timing properties to the eventlistener [p.8] element

Adding the eventlistener [p.8] element to the various SMIL element content models
provides a means of integrating the Event Module into the SMIL language; adding the timing
properties to the eventlistener [p.8] element provides a means of scheduling and
synchronizing event handlers.

4.2. Registering an Event Handler
Content authors that wish to register an event handler use the eventlistener [p.8]
element:

Example 4.1

<par>
 <eventlistener type="(onclick)" />

</par>
...
</smil>

In Example 4.1, an eventlistener [p.8] element is specified as a peer to the img
element.

Following the rules for event bubbling outlined in [DOM2 [p.29]], if a user clicks on the image,
the onclick event is dispatched to the target Node (image "c") and any event handlers
registered to this Node are triggered. If bubbling is not canceled, the event will follow the target
Node’s parent chain upward, checking for any event handlers registered on each successive
Node.

- 19 -

4. Using the Event Module in SMILXHTML Event Module

In Example 4.1, the onclick event would bubble to the par element, which has registered the
eventlistener [p.8] element.

Content authors may also associate an event handler with a region:

Example 4.2

<head>
 <layout>
 <region id="a" top="5" />
 <eventlistener register-with="a" type="(onclick)" />
 </layout>
</head>
<body>
 <text region="a" src="text.html" dur="10s" />
</body>
</smil>

In Example 4.2, the eventlistener [p.8] element is bound to region "a" using the
register-with [p.9] [p.9] attribute (region is an empty element).

4.3. Responding to an Event
Registering an eventlistener [p.8] element is of little value unless there is a means of
responding to an event. In SMIL, content authors may control other media elements and
timelines by referring to the eventlistener [p.8] element.

Example 4.3

<par>

 <eventlistener id="a" type="(onclick)" />
 <audio id="b" begin="id(a)(trigger)" ... />
</par>
...
</smil>

In Example 4.3, the eventlistener [p.8] element is specified as a peer to the audio
element and the img element. The audio element begins playing when the eventlistener
[p.8] element is triggered. In practical terms, this means that the audio object will begin
playing when the img has been clicked.

4.4. Synchronizing Event Handlers
Adding temporal properties to the eventlistener [p.8] element provides a means for
synchronizing event handlers. Content authors can enable and disable eventlistener
[p.8] elements over time and change eventlistener [p.8] elements depending on time.
For example:

- 20 -

XHTML Event Module4.3. Responding to an Event

Example 4.4

<par>
 <eventlistener id="a" type="(onclick)" begin="2s"/>
 <audio id="b" begin="id(a)(trigger)" ... />

</par>

In Example 4.4, the eventlistener [p.8] element is not registered during the first 2
seconds of displaying the image. Using SMIL, we can then have different eventlistener
[p.8] elements based on the current position in the timeline. For example:

Example 4.5

<par>
 <eventlistener id="a" type="(onclick)" end="2s"/>
 <eventlistener id="d" type="(onclick)" begin="2s"/>
 <audio id="b" begin="id(a)(trigger)" end="id(e)(begin)"... />
 <audio id="e" begin="id(b)(trigger)" ... />

</par>

In Example 4.5, there are two eventlistener [p.8] elements. The first eventlistener
[p.8] element, "a", is active during the first 2 seconds of the timeline. The second
eventlistener [p.8] element, "d" is active starting at 2 seconds and ending when the
timeline is complete. There are two audio files that conditionally play depending on which
eventlistener [p.8] element is triggered.

4.5. Handling Multiple Events
Content authors may also register an eventlistener [p.8] that responds to multiple
events.

Example 4.6

<par>
 <eventlistener id="a" type="(onclick)(onstopkey)" end="2s"/>
 <audio id="b" end="id(a)(trigger)"... />

</par>
...
</smil>

In Example 4.6, the eventlistener [p.8] element is listening for two events: an onclick
event and an onstopkey event. In response to either of these events, the eventlistener
[p.8] element is triggered, subsequently causing the audio object to stop playing.

The previous examples illustrated eventlistener [p.8] elements that responded to a
particular type of event for all of their descendants. In some situations, content authors may wish
to handle specific events for specific children. For example:

- 21 -

4.5. Handling Multiple EventsXHTML Event Module

Example 4.7

<par>
 <eventlistener id="a" type="id(stop)(onclick), onstopkey" end="2s"/>
 <audio id="b" end="id(a)(trigger)"... />

</par>
...
</smil>

In Example 4.7, the eventlistener [p.8] element responds to onclick events targeting
the "stop" image but not onclick events targeting the "play" image.

Event handlers are implicitly associated with an element when an element refers to an event
with that element’s id:

Example 4.8

<par>
 <audio id="b" end="id(stop)(onclick)"... />

</par>
...
</smil>

In Example 4.8, the audio element refers to an onclick event for the element with an id of
"stop".

4.6. Responding Once to an Event
Content authors may use the trigger-once [p.9] attribute to control whether an
eventlistener [p.8] unregisters from its target Node after it has been triggered.

Example 4.9

<par>

 <eventlistener id="cow-click" type="id(cow)(onclick)" trigger-once=true />
 <eventlistener id="cat-click" type="id(cat)(onclick)" trigger-once=true />
 <par begin="id(cow-click)(trigger)" ... />
 <audio id="moo" ... />
 <video id="cow-jump" ... />
 </par>
 <par begin="id(cat-click)(trigger)" ... />
 <audio id="meow" ... />
 <video id="cat-fiddle" ... />
 </par>
</par>
...
</smil>

- 22 -

XHTML Event Module4.6. Responding Once to an Event

In Example 4.9, the onclick event is generated each and every time that the user selects the
"cow" image. The event handler "cow-click", however, only responds to the first instance of the
onclick event, ignoring subsequent onclick events. The same behavior is provided by the
"cat-click" event handler for onclick events targeting the "cat" image.

4.7. Preventing the Bubbling of an Event
The [DOM2 [p.29]] event model specifies that events continue to bubble up the document tree
until an event handler cancels bubbling. Content authors may declaratively control bubbling
through the prevent-bubble [p.9] attribute. For example:

Example 4.10

<par>
 <eventlistener id="c" type="(onclick)" ... />

 <par>
 <eventlistener id="a" type="(onclick)" prevent-bubble="true" />
 <audio id="b" end="id(a)(trigger)" ... />

 </par>
</par>
...
</smil

In Example 4.10, we have two eventlistener [p.8] elements for the onclick event. If
the user clicks on the "stop" image, it is handled by event handler "a". Since event handler "a"
cancels the bubbling action, it is not handled by event handler "c".

4.8. Capturing an Event
Content authors that wish to capture an event use the eventlistener [p.8] element:

Example 4.11

<par>
 <eventlistener use-capture="true" type="(onclick)" />

</par>
...
</smil>

In Example 4.11, the eventlistener [p.8] element is specified as a peer to image element
"c". Following the rules for event capturing outlined in [DOM2 [p.29]], if a user clicks on the
image, the onclick event is dispatched to the target Node (image "c") and any registered event
handlers are triggered.

Unlike the previous example, the use-capture [p.9] attribute is "true", therefore the
eventlistener [p.8] element intercepts the message from the descendent target Node.
This permits event handling to be centralized and isolated at a higher location in the document

- 23 -

4.7. Preventing the Bubbling of an EventXHTML Event Module

hierarchy.

After the eventlistener [p.8] element has captured the event, it can let the event
continue to propagate down the hierarchy to the target Node, or it can stop propagation by
setting the prevent-capture [p.9] attribute to "true".

Example 4.12

<par>
 <eventlistener use-capture="true" prevent-capture="true" type="(onclick)" />

</par>

In Example 4.12, the eventlistener [p.8] element captures the event and, by canceling
the propagation of the event, effectively hides the event from image element "c".

4.9. Declaring an Immediate Event
Content authors can specify an event that fires immediately upon activation of the enclosing
timeline:

Example 4.13

<par>
 <eventlistener id="a" type="(onintroend)" />
 <seq>
 <audio id="b" ... />
 <event type="onintroend" />
 <video id="d" ... />
 </seq>

 ...
</par>

In Example 4.13, we have an audio element that plays and then a video element that plays.
At the end of the audio element, an onintroend event is generated which triggers the display
of an img element.

While this provides a simple syntax for declaring an event within a document, its real value may
be that it provides a framework for the insertion of immediate events into the document through
the DOM. For example, consider this reduction of the previous example:

Example 4.14

<par>
 <eventlistener id="a" type="(onintroend)" />
 <seq>
 <audio id="b" ... />
 <video id="d" ... />
 </seq>

 ...
</par>

- 24 -

XHTML Event Module4.9. Declaring an Immediate Event

In Example 4.14, we have removed the explicit declaration of the event. Rather, the audio player
may generate an onintroend event and insert the corresponding event [p.7] element into
the document using a DOM interface, thereby triggering the eventlistener [p.8] element.

4.10. Synchronizing Events
The event [p.7] element provides a means for declaring events that are timed or
synchronized with other element timelines. For example:

Example 4.15

<par>
 <eventhandler id="a" type="(foo)" />
 <audio id="b" ... />
 <event type="foo" begin="id(b)2s" />
 <video id="d" ... />

 ...
</par>

In Example 4.15, the event [p.7] element is synchronized with the audio element "b": two
seconds into playing the audio, the "foo" event is dispatched and caught by the
eventlistener [p.8] . This causes the img element to be rendered.

As in the previous section, this provides a framework for inserting timed events through a DOM
interface.

Example 4.16

<par>
 <eventhandler id="a" type="(foo)" />
 <audio id="b" ... />
 <video id="d" ... />

 ...
</par>

In Example 4.16, the event [p.7] element is no longer declared, but an external process
could insert an event [p.7] element while the document is rendering and have the "foo"
event triggered at the appropriate time. This is important in a streaming architecture when
triggered events might be streamed prior to the actual time at which they should fire.

4.11. Synchronizing on Multiple Events
As previously shown, multiple events may be handled by the same eventlistener [p.8]
element. For example:

- 25 -

4.10. Synchronizing EventsXHTML Event Module

Example 4.17

<par>
 <eventlistener id="a" type="(foo)(onclick)" />
 <audio id="b" ... />
 <event id="c" type="foo" begin="id(b)10s" />
 <video id="d" ... />

 ...
</par>

In Example 4.17, the eventlistener [p.8] element responds to an onclick event and a
"foo" event (the "foo" event occurs 10 seconds into the audio). Therefore, the eventlistener
[p.8] element will be triggered when the user clicks on a child of the par element or after 10
seconds, whichever occurs first.

- 26 -

XHTML Event Module4.11. Synchronizing on Multiple Events

Appendix A. A Comparison with BECSS

A recent working draft [BECSS] [p.29] defines a means of declaring standalone behaviors that
can be attached to HTML or XML elements without modification of the document type definition
(DTD).

1. While not explicitly stated, the requirements for the BECSS solution appear to be:
2. Scripts can be defined external to a document
3. External scripts can be reused across multiple documents
4. External scripts can be combined for use by a document
5. The documents DTD does not need to be modified
6. A means of extending the properties and behaviors of an element without requiring new

DOM interfaces

The requirements for the XHTML Event Module defined in this draft were:

To expose the DOM event model to an XML document
To allow for new event types without modification to the DOM or the DTD.
To only require XML in the implementation.
To be able to integrate with HTML, SMIL, and other languages

The BECSS solution is considerably more expressive since it provides a mechanism for
extending the properties and behaviors of an element (albeit this is benefit is not available to
languages other than ECMAScript). There was no requirement on the XHTML Event Module for
such capability.

The BECSS solution also provides a means of reusing event "sheets" across multiple
documents (Requirements 1-4, above [p.27]). External definition of events could be
accomplished by linking, but reuse is limited until a selector syntax is introduced (adding
complexity). There was no requirement on the XHTML Event Module for such capability.

The BECSS solution does require user agents to implement CSS in addition to XML. This limits
its usefulness in languages that do require CSS (such as SMIL) and small platforms such as that
proposed by the Wireless Applications Protocol Forum [REF]. The XHTML Event Module
focused on ensuring that event handlers and events could participate in the SMIL time model
and its intrinsic timeline behaviors.

In conclusion, while there is some overlap in functionality (they both expose the event model to
programmers), the functionalities are not identical. Each solution has benefits (BECSS exposes
custom properties and XHTML events simply integrate with XML), and each has its deficiencies
(BECSS is complexity and requires CSS and XHTML event have no selector syntax). More
importantly, these two solutions can be simultaneously supported if so desired.

- 27 -

Appendix A. A Comparison with BECSSXHTML Event Module

- 28 -

XHTML Event ModuleAppendix A. A Comparison with BECSS

Appendix B. References
[BECSS] Behavioral Extensions to CSS, Apparao V., et.al., http://www.w3.org/TR/becss. This
document is a work in progress.

[DOM2] Document Object Model (DOM) Level 2 Specification, Wood L., et.al.,
http://www.w3.org/TR/WD-DOM-Level-2 . This document is a work in progress.

[SMOD] SMIL Modules

[XMOD] XHTML Modules

[WAIEVT] http://www.w3.org/WAI/PF/Group/DOM/Events-19990813

- 29 -

Appendix B. ReferencesXHTML Event Module

http://www.w3.org/TR/WD-DOM-Level-2
http://www.w3.org/TR/becss

	XHTML� Events Module
	An updated events syntax for XML-based markup languages
	W3C Working Draft 21 December 1999

	Abstract
	Status of this document
	Contents

	1. Overview of the DOM Event Model
	2. Event Module Elements
	2.1 The event Element
	2.2 The eventlistener Element
	2.3. The Event Module Namespace

	3. Using the Event Module in XHTML
	3.1. Integrating the Event Module into XHTML
	3.2. Registering an Event Handler
	3.3. Event Bubbling
	3.4. Responding Once to an Event
	3.5. Handling Multiple Events
	3.6. Preventing the Bubbling of Events
	3.7. Capturing an Event
	3.8. Declaring an Immediate Event
	3.9. Dispatching an Event from within the Document

	4. Using the Event Module in SMIL
	4.1. Integrating the Event Module into SMIL
	4.2. Registering an Event Handler
	4.3. Responding to an Event
	4.4. Synchronizing Event Handlers
	4.5. Handling Multiple Events
	4.6. Responding Once to an Event
	4.7. Preventing the Bubbling of an Event
	4.8. Capturing an Event
	4.9. Declaring an Immediate Event
	4.10. Synchronizing Events
	4.11. Synchronizing on Multiple Events

	Appendix A. A Comparison with BECSS
	Appendix B. References

