1
 EXAMPLE  1

 TEST SIMPLE ODR PROBLEM
 WITH ANALYTIC DERIVATIVES USING DODR.
 DATA SET REFERENCE:  DRAPER AND SMITH, 1981, EXERCISE I, PAGE 521-522                               
 ******************************************************* 
 * ODRPACK VERSION 2.01 OF 06-19-92 (DOUBLE PRECISION) * 
 ******************************************************* 



 *** DERIVATIVE CHECKING REPORT FOR FIT BY METHOD OF ODR ***


     FOR RESPONSE  1 OF OBSERVATION     1

                               USER                               
                           SUPPLIED     RELATIVE    DERIVATIVE 
        DERIVATIVE WRT        VALUE   DIFFERENCE    ASSESSMENT 

             BETA(  1)    -3.18D+01     4.26D-08    VERIFIED
             BETA(  2)     1.98D-05     1.30D-08    VERIFIED
          DELTA( 1, 1)    -3.37D-03     5.33D-08    VERIFIED
          DELTA( 1, 2)    -5.11D-03     7.38D-08    VERIFIED

     NUMBER OF RELIABLE DIGITS IN FUNCTION RESULTS          16
        (ESTIMATED BY ODRPACK)

     NUMBER OF DIGITS OF AGREEMENT REQUIRED BETWEEN      
     USER SUPPLIED AND FINITE DIFFERENCE DERIVATIVE FOR  
     USER SUPPLIED DERIVATIVE TO BE CONSIDERED VERIFIED      4

     ROW NUMBER AT WHICH DERIVATIVES WERE CHECKED            1

       -VALUES OF THE EXPLANATORY VARIABLES AT THIS ROW

          X( 1, 1)   1.09000000D+02
          X( 1, 2)   6.00000000D+02
 ******************************************************* 
 * ODRPACK VERSION 2.01 OF 06-19-92 (DOUBLE PRECISION) * 
 ******************************************************* 


 *** INITIAL SUMMARY FOR FIT BY METHOD OF ODR ***

 --- PROBLEM SIZE:
            N =     8          (NUMBER WITH NONZERO WEIGHT =     8)
           NQ =     1
            M =     2
           NP =     2          (NUMBER UNFIXED =     2)

 --- CONTROL VALUES:
          JOB = 00020
              = ABCDE, WHERE
                       A=0 ==> FIT IS NOT A RESTART.
                       B=0 ==> DELTAS ARE INITIALIZED TO ZERO.
                       C=0 ==> COVARIANCE MATRIX WILL BE COMPUTED USING
                               DERIVATIVES RE-EVALUATED AT THE SOLUTION.
                       D=2 ==> DERIVATIVES ARE SUPPLIED BY USER.
                               DERIVATIVES WERE CHECKED.
                               RESULTS APPEAR CORRECT.
                       E=0 ==> METHOD IS EXPLICIT ODR.
       NDIGIT =    16          (ESTIMATED BY ODRPACK)
       TAUFAC =     1.00D+00

 --- STOPPING CRITERIA:
        SSTOL =     1.49D-08   (SUM OF SQUARES STOPPING TOLERANCE)
       PARTOL =     3.67D-11   (PARAMETER STOPPING TOLERANCE)
        MAXIT =    50          (MAXIMUM NUMBER OF ITERATIONS)

 --- INITIAL WEIGHTED SUM OF SQUARES        =                    6.76620105D-01
         SUM OF SQUARED WEIGHTED DELTAS     =   0.00000000D+00
         SUM OF SQUARED WEIGHTED EPSILONS   =   6.76620105D-01

 --- FUNCTION PARAMETER SUMMARY:

       INDEX         BETA(K)    FIXED           SCALE              
                                                                   
         (K)                  (IFIXB)          (SCLB)              

           1  1.15500000D-02       NO  8.65800866D+01              
           2  5.00000000D+03       NO  2.00000000D-04              

 --- EXPLANATORY VARIABLE AND DELTA WEIGHT SUMMARY:

       INDEX      X(I,J)  DELTA(I,J)    FIXED     SCALE    WEIGHT              
                                                                               
       (I,J)                          (IFIXX)    (SCLD)      (WD)              

         1,1   1.090D+02   0.000D+00       NO  9.17D-03  1.00D+00              
         N,1   6.800D+01   0.000D+00       NO  1.47D-02  1.00D+00              
 
         1,2   6.000D+02   0.000D+00       NO  1.56D-03  1.00D+00              
         N,2   6.400D+02   0.000D+00       NO  1.56D-03  1.00D+00              

 --- RESPONSE VARIABLE AND EPSILON ERROR WEIGHT SUMMARY:

       INDEX      Y(I,L)      WEIGHT
       (I,L)                    (WE)

         1,1   9.120D-01   1.000D+00
         N,1   3.760D-01   1.000D+00

 *** ITERATION REPORTS FOR FIT BY METHOD OF ODR ***


         CUM.                 ACT. REL.   PRED. REL.
  IT.  NO. FN     WEIGHTED   SUM-OF-SQS   SUM-OF-SQS              G-N
 NUM.   EVALS   SUM-OF-SQS    REDUCTION    REDUCTION  TAU/PNORM  STEP
 ----  ------  -----------  -----------  -----------  ---------  ----

    1      18  1.96944D-01   7.0893D-01   4.1620D-01  1.510D+00   YES
    2      19  1.86553D-03   9.9053D-01   9.9572D-01  6.711D-01   YES
    3      20  7.53265D-04   5.9622D-01   5.9632D-01  4.625D-02   YES
    4      21  7.53264D-04   7.5670D-07   7.5713D-07  2.259D-05   YES
    5      22  7.53264D-04   3.2574D-13   3.3214D-13  1.810D-08   YES

 *** FINAL SUMMARY FOR FIT BY METHOD OF ODR ***

 --- STOPPING CONDITIONS:
         INFO =     1 ==> SUM OF SQUARES CONVERGENCE.
        NITER =     5          (NUMBER OF ITERATIONS)
         NFEV =    22          (NUMBER OF FUNCTION EVALUATIONS)
         NJEV =     6          (NUMBER OF JACOBIAN EVALUATIONS)
        IRANK =     0          (RANK DEFICIENCY)
        RCOND =     8.70D-02   (INVERSE CONDITION NUMBER)
        ISTOP =     0          (RETURNED BY USER FROM SUBROUTINE FCN)

 --- FINAL WEIGHTED SUMS OF SQUARES       =                     7.53263957D-04
         SUM OF SQUARED WEIGHTED DELTAS   =    5.82361429D-07
         SUM OF SQUARED WEIGHTED EPSILONS =    7.52681595D-04

 --- RESIDUAL STANDARD DEVIATION          =                     1.12046416D-02
         DEGREES OF FREEDOM               =    6

 --- ESTIMATED BETA(J), J = 1, ..., NP:

                     BETA      S.D. BETA    ---- 95%  CONFIDENCE INTERVAL ----

       1   3.65797302D-03     4.2218D-05     3.55466818D-03 TO  3.76127786D-03
       2   2.76273320D+04     2.2245D+02     2.70830140D+04 TO  2.81716499D+04

 --- ESTIMATED EPSILON(I) AND DELTA(I,*), I = 1, ..., N:

         I    EPSILON(I,1)      DELTA(I,1)      DELTA(I,2)

         1  1.67519647D-03  1.26771981D-06  1.06044027D-05
         2  2.04207811D-03  1.15465196D-05  5.06224853D-05
         3 -2.06741955D-02 -6.44374753D-06 -5.83522780D-04
         4  2.42895060D-03  1.35332858D-05  6.02457198D-05
         5  7.27227474D-03  2.10381027D-06  2.05043707D-04
         6  4.07668337D-03  2.17324633D-05  1.01143283D-04
         7  1.30331782D-02  3.89740068D-06  3.67888393D-04
         8 -8.54482325D-03 -4.62274242D-05 -2.12025259D-04

 COMPARISON OF NEW RESULTS WITH DOUBLE PRECISION CRAY YMP RESULT:

                         NORM OF BETA        SUM OF SQUARED WTD OBS ERRORS  INFO

       CRAY YMP RESULT = 
 2.762733195780256937723606824875D+04 7.532639569022918889229512018346D-04     1

  NEW TEST RESULT      = 
 2.762733195759230511612258851528D+04 7.532639569023399190791923096810D-04     1

  DIFFERENCE           =  2.10264D-07                          4.80302D-17

  RELATIVE ERROR       =  7.61073D-12                          6.37627D-14


 *** RESULTS AGREE TO WITHIN STOPPING TOLERANCE. ***


1
 EXAMPLE  2

 TEST SIMPLE OLS PROBLEM
 WITH FINITE DIFFERENCE DERIVATIVES USING DODR.
 DATA SET REFERENCE:  DRAPER AND SMITH, 1981, EXERCISE I, PAGE 521-522                               
 ******************************************************* 
 * ODRPACK VERSION 2.01 OF 06-19-92 (DOUBLE PRECISION) * 
 ******************************************************* 


 *** INITIAL SUMMARY FOR FIT BY METHOD OF OLS ***

 --- PROBLEM SIZE:
            N =     8          (NUMBER WITH NONZERO WEIGHT =     8)
           NQ =     1
            M =     2
           NP =     2          (NUMBER UNFIXED =     2)

 --- CONTROL VALUES:
          JOB = 00002
              = ABCDE, WHERE
                       A=0 ==> FIT IS NOT A RESTART.
                       B=0 ==> DELTAS ARE FIXED AT ZERO SINCE E=2.
                       C=0 ==> COVARIANCE MATRIX WILL BE COMPUTED USING
                               DERIVATIVES RE-EVALUATED AT THE SOLUTION.
                       D=0 ==> DERIVATIVES ARE ESTIMATED BY FORWARD DIFFERENCES.
                       E=2 ==> METHOD IS EXPLICIT OLS.
       NDIGIT =    16          (ESTIMATED BY ODRPACK)
       TAUFAC =     1.00D+00

 --- STOPPING CRITERIA:
        SSTOL =     1.49D-08   (SUM OF SQUARES STOPPING TOLERANCE)
       PARTOL =     3.67D-11   (PARAMETER STOPPING TOLERANCE)
        MAXIT =    50          (MAXIMUM NUMBER OF ITERATIONS)

 --- INITIAL WEIGHTED SUM OF SQUARES        =                    6.76620105D-01

 --- FUNCTION PARAMETER SUMMARY:

       INDEX         BETA(K)    FIXED           SCALE    DERIVATIVE
                                                          STEP SIZE
         (K)                  (IFIXB)          (SCLB)        (STPB)

           1  1.15500000D-02       NO  8.65800866D+01   1.00000D-10
           2  5.00000000D+03       NO  2.00000000D-04   1.00000D-10

 --- EXPLANATORY VARIABLE SUMMARY:

       INDEX      X(I,J)
       (I,J)            

         1,1   1.090D+02
         N,1   6.800D+01
 
         1,2   6.000D+02
         N,2   6.400D+02

 --- RESPONSE VARIABLE AND EPSILON ERROR WEIGHT SUMMARY:

       INDEX      Y(I,L)      WEIGHT
       (I,L)                    (WE)

         1,1   9.120D-01   1.000D+00
         N,1   3.760D-01   1.000D+00

 *** ITERATION REPORTS FOR FIT BY METHOD OF OLS ***


         CUM.                 ACT. REL.   PRED. REL.
  IT.  NO. FN     WEIGHTED   SUM-OF-SQS   SUM-OF-SQS              G-N
 NUM.   EVALS   SUM-OF-SQS    REDUCTION    REDUCTION  TAU/PNORM  STEP
 ----  ------  -----------  -----------  -----------  ---------  ----

    1       8  1.96947D-01   7.0893D-01   4.1620D-01  1.510D+00   YES
    2      11  1.86608D-03   9.9052D-01   9.9572D-01  6.711D-01   YES
    3      14  7.53847D-04   5.9603D-01   5.9612D-01  4.625D-02   YES
    4      17  7.53847D-04   3.6519D-07   3.6481D-07  2.231D-05   YES
    5      20  7.53847D-04  -6.6525D-13   7.3426D-13  8.211D-09   YES

 *** FINAL SUMMARY FOR FIT BY METHOD OF OLS ***

 --- STOPPING CONDITIONS:
         INFO =     1 ==> SUM OF SQUARES CONVERGENCE.
        NITER =     5          (NUMBER OF ITERATIONS)
         NFEV =    22          (NUMBER OF FUNCTION EVALUATIONS)
        IRANK =     0          (RANK DEFICIENCY)
        RCOND =     8.70D-02   (INVERSE CONDITION NUMBER)
        ISTOP =     0          (RETURNED BY USER FROM SUBROUTINE FCN)

 --- FINAL WEIGHTED SUMS OF SQUARES       =                     7.53846772D-04

 --- RESIDUAL STANDARD DEVIATION          =                     1.12089754D-02
         DEGREES OF FREEDOM               =    6

 --- ESTIMATED BETA(J), J = 1, ..., NP:

                     BETA      S.D. BETA    ---- 95%  CONFIDENCE INTERVAL ----

       1   3.65797271D-03     4.2220D-05     3.55466516D-03 TO  3.76128026D-03
       2   2.76273261D+04     2.2246D+02     2.70829945D+04 TO  2.81716577D+04

 --- ESTIMATED EPSILON(I,  1), I = 1, ..., N:

           INDEX           VALUE -------------->

       1 TO    4  1.67524573D-03  2.04353733D-03 -2.06907512D-02  2.43065938D-03
       5 TO    8  7.27797278D-03  4.07944774D-03  1.30434799D-02 -8.55019524D-03

 COMPARISON OF NEW RESULTS WITH DOUBLE PRECISION CRAY YMP RESULT:

                         NORM OF BETA        SUM OF SQUARED WTD OBS ERRORS  INFO

       CRAY YMP RESULT = 
 2.762732630143672940903343260288D+04 7.538467722687131359823875520476D-04     1

  NEW TEST RESULT      = 
 2.762732613563912309473380446434D+04 7.538467722687815491394713873774D-04     1

  DIFFERENCE           =  1.65798D-04                          6.84132D-17

  RELATIVE ERROR       =  6.00122D-09                          9.07521D-14


 *** RESULTS AGREE TO WITHIN STOPPING TOLERANCE. ***


1
 EXAMPLE  3

 TEST PARAMETER FIXING CAPABILITIES FOR POORLY SCALED OLS PROBLEM
 WITH ANALYTIC DERIVATIVES USING DODRC.
 DATA SET REFERENCE:  BOGGS, BYRD AND SCHNABEL, 1985, EXAMPLE 3                                      
 ******************************************************* 
 * ODRPACK VERSION 2.01 OF 06-19-92 (DOUBLE PRECISION) * 
 ******************************************************* 


 *** INITIAL SUMMARY FOR FIT BY METHOD OF OLS ***

 --- PROBLEM SIZE:
            N =    44          (NUMBER WITH NONZERO WEIGHT =    44)
           NQ =     1
            M =     1
           NP =     9          (NUMBER UNFIXED =     4)

 --- CONTROL VALUES:
          JOB = 00042
              = ABCDE, WHERE
                       A=0 ==> FIT IS NOT A RESTART.
                       B=0 ==> DELTAS ARE FIXED AT ZERO SINCE E=2.
                       C=0 ==> COVARIANCE MATRIX WILL BE COMPUTED USING
                               DERIVATIVES RE-EVALUATED AT THE SOLUTION.
                       D=4 ==> DERIVATIVES ARE SUPPLIED BY USER.
                               DERIVATIVES WERE NOT CHECKED.
                       E=2 ==> METHOD IS EXPLICIT OLS.
       NDIGIT =    16          (ESTIMATED BY ODRPACK)
       TAUFAC =     1.00D+00

 --- STOPPING CRITERIA:
        SSTOL =     1.49D-08   (SUM OF SQUARES STOPPING TOLERANCE)
       PARTOL =     3.67D-11   (PARAMETER STOPPING TOLERANCE)
        MAXIT =    50          (MAXIMUM NUMBER OF ITERATIONS)

 --- INITIAL WEIGHTED SUM OF SQUARES        =                    7.28536065D+16

 --- FUNCTION PARAMETER SUMMARY:

       INDEX         BETA(K)    FIXED           SCALE              
                                                                   
         (K)                  (IFIXB)          (SCLB)              

           1  2.81887509D-06       NO  3.54751440D+05              
           2 -2.31290549D-03       NO  4.32356620D+02              
           3  5.83035556D+00       NO  1.71516126D-01              
           4  0.00000000D+00      YES  3.54751440D+06              
           5  4.06910776D+07       NO  2.45754121D-08              
           6  1.38001105D-03      YES  7.24631878D+02              
           7  5.96038513D-02      YES  1.67774393D+01              
           8  6.70582099D+00      YES  1.49124172D-01              
           9  1.06994410D+09      YES  9.34628267D-10              

 --- EXPLANATORY VARIABLE SUMMARY:

       INDEX      X(I,J)
       (I,J)            

         1,1   2.500D-09
         N,1   1.000D+00

 --- RESPONSE VARIABLE AND EPSILON ERROR WEIGHT SUMMARY:

       INDEX      Y(I,L)      WEIGHT
       (I,L)                    (WE)

         1,1   9.882D-01   1.000D+00
         N,1   9.473D-01   1.000D+00

 *** ITERATION REPORTS FOR FIT BY METHOD OF OLS ***


         CUM.                 ACT. REL.   PRED. REL.
  IT.  NO. FN     WEIGHTED   SUM-OF-SQS   SUM-OF-SQS              G-N
 NUM.   EVALS   SUM-OF-SQS    REDUCTION    REDUCTION  TAU/PNORM  STEP
 ----  ------  -----------  -----------  -----------  ---------  ----

    1       6  1.21281D-05   1.0000D+00   1.0000D+00  1.492D+00   YES
    2       7  1.21281D-05   9.5556D-11   9.5522D-11  5.559D-06   YES

 *** FINAL SUMMARY FOR FIT BY METHOD OF OLS ***

 --- STOPPING CONDITIONS:
         INFO =     1 ==> SUM OF SQUARES CONVERGENCE.
        NITER =     2          (NUMBER OF ITERATIONS)
         NFEV =     7          (NUMBER OF FUNCTION EVALUATIONS)
         NJEV =     3          (NUMBER OF JACOBIAN EVALUATIONS)
        IRANK =     0          (RANK DEFICIENCY)
        RCOND =     1.29D-11   (INVERSE CONDITION NUMBER)
        ISTOP =     0          (RETURNED BY USER FROM SUBROUTINE FCN)

 --- FINAL WEIGHTED SUMS OF SQUARES       =                     1.21280859D-05

 --- RESIDUAL STANDARD DEVIATION          =                     5.50637947D-04
         DEGREES OF FREEDOM               =   40

 --- ESTIMATED BETA(J), J = 1, ..., NP:

                     BETA      S.D. BETA    ---- 95%  CONFIDENCE INTERVAL ----

       1   2.38645545D-06     4.4960D-07     1.47777105D-06 TO  3.29513984D-06
       2  -2.20450067D-03     4.0156D-05    -2.28565970D-03 TO -2.12334164D-03
       3   3.82273198D+00     3.8316D-02     3.74529214D+00 TO  3.90017183D+00
       4   0.00000000D+00          FIXED
       5   4.53364001D-01     5.2741D-03     4.42704540D-01 TO  4.64023461D-01
       6   1.38001105D-03          FIXED
       7   5.96038513D-02          FIXED
       8   6.70582099D+00          FIXED
       9   1.06994410D+09          FIXED

 --- ESTIMATED EPSILON(I,  1), I = 1, ..., N:

           INDEX           VALUE -------------->

       1 TO    4 -5.85324109D-05 -9.89224867D-05 -1.71864030D-04 -2.11456078D-04
       5 TO    8 -1.06612999D-04 -1.60370107D-04 -1.43278823D-04 -1.34968263D-04
       9 TO   12 -1.60812918D-04 -1.51389652D-04 -1.19183078D-04 -2.93209254D-05
      13 TO   16  1.08239237D-06  7.94004452D-05  1.18795055D-04  3.21769268D-04
      17 TO   20  4.09322682D-04  4.95327906D-04  6.44709193D-04  7.10211016D-04
      21 TO   24  6.96631790D-04  6.54863075D-04  4.84585766D-04  2.18339263D-04
      25 TO   28  1.85543339D-05 -5.72168484D-06 -6.98195693D-05 -5.27688631D-05
      29 TO   32 -3.09355634D-04 -6.82422839D-04 -1.05015195D-03 -1.24256230D-03
      33 TO   36 -1.18147768D-03 -9.69898761D-04 -3.02918582D-04  5.21338703D-04
      37 TO   40  9.05536868D-04  1.11473330D-03  7.90515099D-04  3.26581432D-04
      41 TO   44 -3.27114252D-04 -2.76556749D-04 -5.87219618D-04  9.24026601D-05

 COMPARISON OF NEW RESULTS WITH DOUBLE PRECISION CRAY YMP RESULT:

                         NORM OF BETA        SUM OF SQUARED WTD OBS ERRORS  INFO

       CRAY YMP RESULT = 
 1.069944100000000000000000000000D+09 1.212808593256056320566077522116D-05     3

  NEW TEST RESULT      = 
 1.069944100000000000000000000000D+09 1.212808593255948069755418422533D-05     1

  DIFFERENCE           =  0.00000D+00                          1.08251D-18

  RELATIVE ERROR       =  0.00000D+00                          8.92563D-14


 *** RESULTS AGREE TO WITHIN STOPPING TOLERANCE. ***


1
 EXAMPLE  4

 TEST WEIGHTING CAPABILITIES FOR ODR PROBLEM
 WITH ANALYTIC DERIVATIVES USING DODRC. 
 ALSO SHOWS SOLUTION OF POORLY SCALED ODR PROBLEM.
 (DERIVATIVE CHECKING TURNED OFF.)
 DATA SET REFERENCE:  BOGGS, BYRD AND SCHNABEL, 1985, EXAMPLE 3                                      
 ******************************************************* 
 * ODRPACK VERSION 2.01 OF 06-19-92 (DOUBLE PRECISION) * 
 ******************************************************* 


 *** INITIAL SUMMARY FOR FIT BY METHOD OF ODR ***

 --- PROBLEM SIZE:
            N =    44          (NUMBER WITH NONZERO WEIGHT =    43)
           NQ =     1
            M =     1
           NP =     9          (NUMBER UNFIXED =     6)

 --- CONTROL VALUES:
          JOB = 00030
              = ABCDE, WHERE
                       A=0 ==> FIT IS NOT A RESTART.
                       B=0 ==> DELTAS ARE INITIALIZED TO ZERO.
                       C=0 ==> COVARIANCE MATRIX WILL BE COMPUTED USING
                               DERIVATIVES RE-EVALUATED AT THE SOLUTION.
                       D=3 ==> DERIVATIVES ARE SUPPLIED BY USER.
                               DERIVATIVES WERE NOT CHECKED.
                       E=0 ==> METHOD IS EXPLICIT ODR.
       NDIGIT =    16          (ESTIMATED BY ODRPACK)
       TAUFAC =     1.00D+00

 --- STOPPING CRITERIA:
        SSTOL =     1.49D-08   (SUM OF SQUARES STOPPING TOLERANCE)
       PARTOL =     3.67D-11   (PARAMETER STOPPING TOLERANCE)
        MAXIT =    50          (MAXIMUM NUMBER OF ITERATIONS)

 --- INITIAL WEIGHTED SUM OF SQUARES        =                    1.21253014D-05
         SUM OF SQUARED WEIGHTED DELTAS     =   0.00000000D+00
         SUM OF SQUARED WEIGHTED EPSILONS   =   1.21253014D-05

 --- FUNCTION PARAMETER SUMMARY:

       INDEX         BETA(K)    FIXED           SCALE              
                                                                   
         (K)                  (IFIXB)          (SCLB)              

           1  2.38645545D-06       NO  4.19031498D+05              
           2 -2.20450067D-03       NO  4.53617462D+02              
           3  3.82273198D+00       NO  2.61593019D-01              
           4  0.00000000D+00      YES  4.19031498D+06              
           5  4.53364001D-01       NO  2.20573314D+00              
           6  1.38001105D-03       NO  7.24631878D+02              
           7  5.96038513D-02       NO  1.67774393D+01              
           8  6.70582099D+00      YES  1.49124172D-01              
           9  1.06994410D+09      YES  9.34628267D-10              

 --- EXPLANATORY VARIABLE AND DELTA WEIGHT SUMMARY:

       INDEX      X(I,J)  DELTA(I,J)    FIXED     SCALE    WEIGHT              
                                                                               
       (I,J)                          (IFIXX)    (SCLD)      (WD)              

         1,1   2.500D-09   0.000D+00       NO  4.00D+08  1.60D+13              
         N,1   1.000D+00   0.000D+00       NO  1.00D+00  1.00D-04              

 --- RESPONSE VARIABLE AND EPSILON ERROR WEIGHT SUMMARY:

       INDEX      Y(I,L)      WEIGHT
       (I,L)                    (WE)

         1,1   9.882D-01   1.000D+00
         N,1   9.473D-01   1.000D+00

 *** ITERATION REPORTS FOR FIT BY METHOD OF ODR ***


         CUM.                 ACT. REL.   PRED. REL.
  IT.  NO. FN     WEIGHTED   SUM-OF-SQS   SUM-OF-SQS              G-N      BETA -------------->
 NUM.   EVALS   SUM-OF-SQS    REDUCTION    REDUCTION  TAU/PNORM  STEP     INDEX           VALUE
 ----  ------  -----------  -----------  -----------  ---------  ----     -----           -----

    1       8  5.61552D-06   5.3688D-01   6.0227D-01  1.254D-01    NO   1 TO  3  2.61670550D-06 -1.84847540D-03  3.81743723D+00
                                                                        4 TO  6  0.00000000D+00  4.52780748D-01  1.17294940D-03
                                                                        7 TO  9  5.14825868D-02  6.70582099D+00  1.06994410D+09
    4      14  1.20726D-06   3.8806D-01   4.3619D-01  1.718D-01    NO   1 TO  3  4.42164742D-06 -1.27576009D-03  3.52384009D+00
                                                                        4 TO  6  0.00000000D+00  4.92690445D-01  1.19191347D-03
                                                                        7 TO  9  3.79861567D-02  6.70582099D+00  1.06994410D+09
    7      20  7.87180D-07   9.9505D-02   1.1349D-01  1.097D-01    NO   1 TO  3  7.45301071D-06 -1.19673931D-03  3.48901832D+00
                                                                        4 TO  6  0.00000000D+00  4.97376025D-01  1.65051648D-03
                                                                        7 TO  9  3.53474898D-02  6.70582099D+00  1.06994410D+09
   10      25  6.28791D-07   8.1375D-02   1.1318D-01  1.295D-01    NO   1 TO  3  1.15483151D-05 -1.13356151D-03  3.45980744D+00
                                                                        4 TO  6  0.00000000D+00  5.01308411D-01  2.15310228D-03
                                                                        7 TO  9  3.30381120D-02  6.70582099D+00  1.06994410D+09
   13      28  5.58511D-07   2.2830D-02   3.5267D-02  9.439D-02    NO   1 TO  3  1.64242675D-05 -1.08860021D-03  3.43773581D+00
                                                                        4 TO  6  0.00000000D+00  5.04280654D-01  2.62714475D-03
                                                                        7 TO  9  3.12106008D-02  6.70582099D+00  1.06994410D+09
   16      31  5.45208D-07   4.9324D-03   4.9324D-03  4.697D-03   YES   1 TO  3  1.95894709D-05 -1.06852377D-03  3.42732564D+00
                                                                        4 TO  6  0.00000000D+00  5.05682583D-01  2.88788569D-03
                                                                        7 TO  9  3.03155365D-02  6.70582099D+00  1.06994410D+09

 *** FINAL SUMMARY FOR FIT BY METHOD OF ODR ***

 --- STOPPING CONDITIONS:
         INFO =     1 ==> SUM OF SQUARES CONVERGENCE.
        NITER =    17          (NUMBER OF ITERATIONS)
         NFEV =    32          (NUMBER OF FUNCTION EVALUATIONS)
         NJEV =    18          (NUMBER OF JACOBIAN EVALUATIONS)
        IRANK =     0          (RANK DEFICIENCY)
        RCOND =     1.47D-05   (INVERSE CONDITION NUMBER)
        ISTOP =     0          (RETURNED BY USER FROM SUBROUTINE FCN)

 --- FINAL WEIGHTED SUMS OF SQUARES       =                     5.45208463D-07
         SUM OF SQUARED WEIGHTED DELTAS   =    3.42359109D-07
         SUM OF SQUARED WEIGHTED EPSILONS =    2.02849354D-07

 --- RESIDUAL STANDARD DEVIATION          =                     1.21389307D-04
         DEGREES OF FREEDOM               =   37

 --- ESTIMATED BETA(J), J = 1, ..., NP:

                     BETA      S.D. BETA    ---- 95%  CONFIDENCE INTERVAL ----

       1   1.95896506D-05     5.2652D-06     8.92132429D-06 TO  3.02579770D-05
       2  -1.06852151D-03     4.0956D-05    -1.15150733D-03 TO -9.85535692D-04
       3   3.42732422D+00     3.3460D-02     3.35952743D+00 TO  3.49512102D+00
       4   0.00000000D+00          FIXED
       5   5.05682776D-01     4.6737D-03     4.96213014D-01 TO  5.15152539D-01
       6   2.88789682D-03     4.2486D-04     2.02704328D-03 TO  3.74875036D-03
       7   3.03154590D-02     1.5303D-03     2.72147165D-02 TO  3.34162015D-02
       8   6.70582099D+00          FIXED
       9   1.06994410D+09          FIXED

 --- ESTIMATED EPSILON(I) AND DELTA(I,*), I = 1, ..., N:

         I    EPSILON(I,1)      DELTA(I,1)

         1  8.85704614D-05  6.98843476D-18
         2  4.81782606D-05  2.49126529D-17
         3 -2.47652440D-05 -3.12643640D-17
         4 -6.44008812D-05 -6.58477834D-15
         5  3.99462567D-05  5.03680509D-13
         6 -1.54472294D-05 -3.10491252D-12
         7 -1.08794814D-06 -1.10028017D-12
         8  3.38839665D-06  1.07375440D-11
         9 -3.34647877D-05 -5.23790915D-10
        10 -3.95633534D-05 -1.89047768D-09
        11 -2.74448529D-05 -3.06142579D-09
        12  3.77539089D-05  8.26372134D-09
        13  2.28560536D-05  1.10178971D-08
        14  5.82190084D-06  7.03986833D-09
        15 -6.81553078D-05 -1.45785334D-07
        16  1.37311975D-05  3.83594668D-08
        17 -1.58688240D-05 -3.81391617D-08
        18 -3.32724245D-05  1.87300323D-10
        19  3.37523234D-05 -1.85167391D-07
        20  4.22264215D-05 -6.36459049D-07
        21 -3.75576871D-06  1.88580887D-07
        22  2.00621152D-05 -2.22759156D-06
        23 -5.50627156D-06  1.10401389D-06
        24 -6.88013739D-05  2.19196573D-05
        25 -5.04979294D-05  2.33881198D-05
        26  2.10761672D-05 -1.14828512D-05
        27  5.74011372D-05 -3.62530551D-05
        28  3.02389774D-04  0.00000000D+00
        29  1.74166008D-04 -1.77161571D-04
        30  1.98064654D-05 -2.39431909D-05
        31 -7.90410048D-05  1.24670749D-04
        32 -1.47683404D-04  2.76450567D-04
        33 -1.12277273D-04  2.31472249D-04
        34 -4.79553114D-05  9.93157475D-05
        35  1.40511415D-04 -1.42581252D-04
        36  1.62614218D-04  7.17271525D-04
        37  1.08724514D-04  1.23259791D-03
        38 -1.15956129D-05 -4.16815657D-04
        39 -6.38721344D-05 -4.42575705D-03
        40 -1.03209160D-04 -9.45381806D-03
        41 -9.34250030D-05 -1.39895132D-02
        42 -1.23336490D-05 -3.09254631D-03
        43  1.69666481D-05  6.57971401D-03
        44  6.58708761D-05  3.70510371D-02

 COMPARISON OF NEW RESULTS WITH DOUBLE PRECISION CRAY YMP RESULT:

                         NORM OF BETA        SUM OF SQUARED WTD OBS ERRORS  INFO

       CRAY YMP RESULT = 
 1.069944100000000000000000000000D+09 5.452084633790605642698293836768D-07     1

  NEW TEST RESULT      = 
 1.069944100000000000000000000000D+09 5.452084633791027041589552851186D-07     1

  DIFFERENCE           =  0.00000D+00                          4.21399D-20

  RELATIVE ERROR       =  0.00000D+00                          7.72913D-14


 *** RESULTS AGREE TO WITHIN STOPPING TOLERANCE. ***


1
 EXAMPLE  5

 TEST DELTA INITIALIZATION CAPABILITIES
 AND USE OF ISTOP TO RESTRICT PARAMETER VALUES FOR ODR PROBLEM
 WITH ANALYTIC DERIVATIVES USING DODRC.
 DATA SET REFERENCE:  BOGGS, BYRD AND SCHNABEL, 1985, EXAMPLE 1                                      
 ******************************************************* 
 * ODRPACK VERSION 2.01 OF 06-19-92 (DOUBLE PRECISION) * 
 ******************************************************* 



 *** DERIVATIVE CHECKING REPORT FOR FIT BY METHOD OF ODR ***


     FOR RESPONSE  1 OF OBSERVATION     1

                               USER                               
                           SUPPLIED     RELATIVE    DERIVATIVE 
        DERIVATIVE WRT        VALUE   DIFFERENCE    ASSESSMENT 

             BETA(  1)    -9.79D-01     3.27D-08    VERIFIED
             BETA(  2)     9.59D-01     3.34D-08    VERIFIED
          DELTA( 1, 1)    -9.59D-01     4.04D-07    VERIFIED

     NUMBER OF RELIABLE DIGITS IN FUNCTION RESULTS          16
        (ESTIMATED BY ODRPACK)

     NUMBER OF DIGITS OF AGREEMENT REQUIRED BETWEEN      
     USER SUPPLIED AND FINITE DIFFERENCE DERIVATIVE FOR  
     USER SUPPLIED DERIVATIVE TO BE CONSIDERED VERIFIED      4

     ROW NUMBER AT WHICH DERIVATIVES WERE CHECKED            1

       -VALUES OF THE EXPLANATORY VARIABLES AT THIS ROW

          X( 1, 1)  -2.13701920D-02
 ******************************************************* 
 * ODRPACK VERSION 2.01 OF 06-19-92 (DOUBLE PRECISION) * 
 ******************************************************* 


 *** INITIAL SUMMARY FOR FIT BY METHOD OF ODR ***

 --- PROBLEM SIZE:
            N =    40          (NUMBER WITH NONZERO WEIGHT =    40)
           NQ =     1
            M =     1
           NP =     2          (NUMBER UNFIXED =     2)

 --- CONTROL VALUES:
          JOB = 01020
              = ABCDE, WHERE
                       A=0 ==> FIT IS NOT A RESTART.
                       B=1 ==> DELTAS ARE INITIALIZED BY USER.
                       C=0 ==> COVARIANCE MATRIX WILL BE COMPUTED USING
                               DERIVATIVES RE-EVALUATED AT THE SOLUTION.
                       D=2 ==> DERIVATIVES ARE SUPPLIED BY USER.
                               DERIVATIVES WERE CHECKED.
                               RESULTS APPEAR CORRECT.
                       E=0 ==> METHOD IS EXPLICIT ODR.
       NDIGIT =    16          (ESTIMATED BY ODRPACK)
       TAUFAC =     1.00D+00

 --- STOPPING CRITERIA:
        SSTOL =     1.49D-08   (SUM OF SQUARES STOPPING TOLERANCE)
       PARTOL =     3.67D-11   (PARAMETER STOPPING TOLERANCE)
        MAXIT =    50          (MAXIMUM NUMBER OF ITERATIONS)

 --- INITIAL WEIGHTED SUM OF SQUARES        =                    2.13003002D+02
         SUM OF SQUARED WEIGHTED DELTAS     =   2.22998645D-03
         SUM OF SQUARED WEIGHTED EPSILONS   =   2.13000772D+02

 --- FUNCTION PARAMETER SUMMARY:

       INDEX         BETA(K)    FIXED           SCALE              
                                                                   
         (K)                  (IFIXB)          (SCLB)              

           1  1.00000000D+00       NO  2.00000000D-01              
           2  1.00000000D+00       NO  1.00000000D+00              

 --- EXPLANATORY VARIABLE AND DELTA WEIGHT SUMMARY:

       INDEX      X(I,J)  DELTA(I,J)    FIXED     SCALE    WEIGHT              
                                                                               
       (I,J)                          (IFIXX)    (SCLD)      (WD)              

         1,1  -2.137D-02   0.000D+00       NO  2.00D+00  1.00D+00              
         N,1   1.993D+00   0.000D+00       NO  2.00D+00  1.00D+00              

 --- RESPONSE VARIABLE AND EPSILON ERROR WEIGHT SUMMARY:

       INDEX      Y(I,L)      WEIGHT
       (I,L)                    (WE)

         1,1  -1.196D+00   1.000D+00
         N,1   1.262D+00   1.000D+00

 *** ITERATION REPORTS FOR FIT BY METHOD OF ODR ***


         CUM.                 ACT. REL.   PRED. REL.
  IT.  NO. FN     WEIGHTED   SUM-OF-SQS   SUM-OF-SQS              G-N
 NUM.   EVALS   SUM-OF-SQS    REDUCTION    REDUCTION  TAU/PNORM  STEP
 ----  ------  -----------  -----------  -----------  ---------  ----

    1      15  2.61860D+01   8.7706D-01   9.9181D-01  7.180D-02    NO
    2      19  2.69487D+00   8.9709D-01   9.5185D-01  5.373D-02    NO
    3      22  1.14955D+00   5.7343D-01   5.8129D-01  2.076D-02    NO
    4      24  1.09672D+00   4.5960D-02   4.6016D-02  4.042D-03    NO
    5      26  1.08906D+00   6.9802D-03   6.9780D-03  8.578D-04    NO
    6      29  1.08621D+00   2.6219D-03   2.6215D-03  3.355D-04    NO
    7      32  1.08509D+00   1.0280D-03   1.0280D-03  1.332D-04    NO
    8      34  1.08487D+00   2.0456D-04   2.0456D-04  2.659D-05    NO
    9      37  1.08478D+00   8.1706D-05   8.1705D-05  1.063D-05    NO
   10      40  1.08475D+00   3.2663D-05   3.2663D-05  4.252D-06    NO
   11      43  1.08473D+00   1.3062D-05   1.3062D-05  1.700D-06    NO
   12      44  1.08473D+00   1.3062D-06   1.3062D-06  1.700D-07    NO
   13      48  1.08473D+00   1.0449D-06   1.0449D-06  1.360D-07    NO
   14      49  1.08473D+00   1.0449D-07   1.0449D-07  1.360D-08    NO
   15      52  1.08473D+00   4.1797D-08   4.1797D-08  5.441D-09    NO
   16      55  1.08473D+00   1.6719D-09   1.6719D-09  2.177D-10    NO

 *** FINAL SUMMARY FOR FIT BY METHOD OF ODR ***

 --- STOPPING CONDITIONS:
         INFO =     1 ==> SUM OF SQUARES CONVERGENCE.
        NITER =    16          (NUMBER OF ITERATIONS)
         NFEV =    55          (NUMBER OF FUNCTION EVALUATIONS)
         NJEV =    17          (NUMBER OF JACOBIAN EVALUATIONS)
        IRANK =     0          (RANK DEFICIENCY)
        RCOND =     4.55D-01   (INVERSE CONDITION NUMBER)
        ISTOP =     0          (RETURNED BY USER FROM SUBROUTINE FCN)

 --- FINAL WEIGHTED SUMS OF SQUARES       =                     1.08472869D+00
         SUM OF SQUARED WEIGHTED DELTAS   =    8.40017240D-03
         SUM OF SQUARED WEIGHTED EPSILONS =    1.07632852D+00

 --- RESIDUAL STANDARD DEVIATION          =                     1.68954111D-01
         DEGREES OF FREEDOM               =   38

 --- ESTIMATED BETA(J), J = 1, ..., NP:

                     BETA      S.D. BETA    ---- 95%  CONFIDENCE INTERVAL ----

       1   1.01000000D+00     5.4611D-02     8.99445893D-01 TO  1.12055411D+00
       2   1.00806508D+00     2.8682D-02     9.50000743D-01 TO  1.06612941D+00

 --- ESTIMATED EPSILON(I) AND DELTA(I,*), I = 1, ..., N:

         I    EPSILON(I,1)      DELTA(I,1)

         1  2.13840659D-01  7.72546758D-04
         2  2.25560304D-01  9.41129554D-04
         3  1.04497486D-01  5.45425660D-04
         4 -1.50874326D-01 -6.68930741D-04
         5 -2.53059717D-01 -1.47995790D-03
         6  1.00819860D-01  7.61395327D-04
         7 -2.08153575D-01 -1.47827218D-03
         8 -2.07020851D-02 -6.56435112D-05
         9  8.29941689D-02  9.01373708D-04
        10  8.32053215D-02  1.31278062D-03
        11 -2.74508126D-02 -1.60088981D-04
        12 -2.31693881D-02 -9.77002251D-05
        13  2.80662023D-01  6.40983340D-03
        14 -2.33380568D-01 -8.18107398D-03
        15  2.90886301D-01  1.07469430D-02
        16  5.51250039D-04  2.30850838D-03
        17 -8.54153789D-03  2.87442762D-03
        18 -3.14043264D-02 -2.69146898D-02
        19 -2.33002803D-02 -4.35952599D-02
        20 -1.25678379D-03  5.32820350D-02
        21 -1.97974590D-05  2.03929764D-02
        22  1.61303539D-03 -3.27077555D-03
        23  2.03791618D-02  4.03459318D-02
        24  3.79059604D-02  2.89275631D-03
        25  1.15361308D-01  1.53906991D-02
        26 -1.59261060D-01 -1.09534748D-02
        27 -4.08298033D-01 -1.48581627D-02
        28  1.32135752D-01  3.24792549D-03
        29  1.05612345D-01  2.07767148D-03
        30  9.18128552D-02  1.14522968D-03
        31 -5.70692650D-02 -1.03708418D-03
        32  3.58111933D-01  4.54918829D-03
        33  1.95909122D-01  2.02871320D-03
        34 -1.92950972D-01 -1.76449168D-03
        35 -1.71485464D-02 -2.84782108D-04
        36 -1.37149959D-01 -9.97503592D-04
        37 -2.06598358D-01 -1.25925941D-03
        38  3.24011770D-02  1.01793800D-04
        39  1.54243454D-01  5.78989068D-04
        40 -2.35594637D-01 -9.23080829D-04

 COMPARISON OF NEW RESULTS WITH DOUBLE PRECISION CRAY YMP RESULT:

                         NORM OF BETA        SUM OF SQUARED WTD OBS ERRORS  INFO

       CRAY YMP RESULT = 
 1.426988156377258620821635304310D+00 1.084728687127432200654197913536D+00     1

  NEW TEST RESULT      = 
 1.426988156353226067096784390742D+00 1.084728687476404607181734718324D+00     1

  DIFFERENCE           =  2.40326D-11                          3.48972D-10

  RELATIVE ERROR       =  1.68415D-11                          3.21714D-10


 *** RESULTS AGREE TO WITHIN STOPPING TOLERANCE. ***


1
 EXAMPLE  6

 TEST STIFF STOPPING CONDITIONS FOR UNSCALED ODR PROBLEM
 WITH ANALYTIC DERIVATIVES USING DODRC.
 DATA SET REFERENCE:  HIMMELBLAU, 1970, EXAMPLE 6.2-4, PAGE 188                                      
 ******************************************************* 
 * ODRPACK VERSION 2.01 OF 06-19-92 (DOUBLE PRECISION) * 
 ******************************************************* 



 *** DERIVATIVE CHECKING REPORT FOR FIT BY METHOD OF ODR ***


     FOR RESPONSE  1 OF OBSERVATION     6

                               USER                               
                           SUPPLIED     RELATIVE    DERIVATIVE 
        DERIVATIVE WRT        VALUE   DIFFERENCE    ASSESSMENT 

             BETA(  1)     1.00D+00     0.00D+00    VERIFIED
             BETA(  2)     6.07D-01     3.67D-08    VERIFIED
             BETA(  3)     1.82D+00     1.92D-07    VERIFIED
          DELTA( 6, 1)     3.00D+00     9.93D-08    VERIFIED
          DELTA( 6, 2)    -9.10D-01     1.92D-07    VERIFIED

     NUMBER OF RELIABLE DIGITS IN FUNCTION RESULTS          16
        (ESTIMATED BY ODRPACK)

     NUMBER OF DIGITS OF AGREEMENT REQUIRED BETWEEN      
     USER SUPPLIED AND FINITE DIFFERENCE DERIVATIVE FOR  
     USER SUPPLIED DERIVATIVE TO BE CONSIDERED VERIFIED      4

     ROW NUMBER AT WHICH DERIVATIVES WERE CHECKED            6

       -VALUES OF THE EXPLANATORY VARIABLES AT THIS ROW

          X( 6, 1)   1.00000000D+00
          X( 6, 2)   1.00000000D+00
 ******************************************************* 
 * ODRPACK VERSION 2.01 OF 06-19-92 (DOUBLE PRECISION) * 
 ******************************************************* 


 *** INITIAL SUMMARY FOR FIT BY METHOD OF ODR ***

 --- PROBLEM SIZE:
            N =    13          (NUMBER WITH NONZERO WEIGHT =    13)
           NQ =     1
            M =     2
           NP =     3          (NUMBER UNFIXED =     3)

 --- CONTROL VALUES:
          JOB = 00020
              = ABCDE, WHERE
                       A=0 ==> FIT IS NOT A RESTART.
                       B=0 ==> DELTAS ARE INITIALIZED TO ZERO.
                       C=0 ==> COVARIANCE MATRIX WILL BE COMPUTED USING
                               DERIVATIVES RE-EVALUATED AT THE SOLUTION.
                       D=2 ==> DERIVATIVES ARE SUPPLIED BY USER.
                               DERIVATIVES WERE CHECKED.
                               RESULTS APPEAR CORRECT.
                       E=0 ==> METHOD IS EXPLICIT ODR.
       NDIGIT =    16          (ESTIMATED BY ODRPACK)
       TAUFAC =     1.00D+00

 --- STOPPING CRITERIA:
        SSTOL =     2.22D-14   (SUM OF SQUARES STOPPING TOLERANCE)
       PARTOL =     2.22D-16   (PARAMETER STOPPING TOLERANCE)
        MAXIT =     2          (MAXIMUM NUMBER OF ITERATIONS)

 --- INITIAL WEIGHTED SUM OF SQUARES        =                    1.79305083D-01
         SUM OF SQUARED WEIGHTED DELTAS     =   0.00000000D+00
         SUM OF SQUARED WEIGHTED EPSILONS   =   1.79305083D-01

 --- FUNCTION PARAMETER SUMMARY:

       INDEX         BETA(K)    FIXED           SCALE              
                                                                   
         (K)                  (IFIXB)          (SCLB)              

           1  3.00000000D+00       NO  3.33333333D-01              
           2  3.00000000D+00       NO  3.33333333D-01              
           3 -5.00000000D-01       NO  3.33333333D-01              

 --- EXPLANATORY VARIABLE AND DELTA WEIGHT SUMMARY:

       INDEX      X(I,J)  DELTA(I,J)    FIXED     SCALE    WEIGHT              
                                                                               
       (I,J)                          (IFIXX)    (SCLD)      (WD)              

         1,1   0.000D+00   0.000D+00       NO  1.00D+01  1.00D+00              
         N,1   2.900D+00   0.000D+00       NO  3.45D-01  1.00D+00              
 
         1,2   0.000D+00   0.000D+00       NO  1.00D+01  1.00D+00              
         N,2   1.800D+00   0.000D+00       NO  3.33D-01  1.00D+00              

 --- RESPONSE VARIABLE AND EPSILON ERROR WEIGHT SUMMARY:

       INDEX      Y(I,L)      WEIGHT
       (I,L)                    (WE)

         1,1   2.930D+00   1.000D+00
         N,1   9.810D+00   1.000D+00

 *** ITERATION REPORTS FOR FIT BY METHOD OF ODR ***


         CUM.                 ACT. REL.   PRED. REL.
  IT.  NO. FN     WEIGHTED   SUM-OF-SQS   SUM-OF-SQS              G-N
 NUM.   EVALS   SUM-OF-SQS    REDUCTION    REDUCTION  TAU/PNORM  STEP
 ----  ------  -----------  -----------  -----------  ---------  ----

    1      21  1.48223D-02   9.1733D-01   9.1674D-01  1.050D+00   YES
    2      22  1.47797D-02   2.8741D-03   2.8968D-03  2.693D-02   YES

 *** FINAL SUMMARY FOR FIT BY METHOD OF ODR ***

 --- STOPPING CONDITIONS:
         INFO =     4 ==> ITERATION LIMIT REACHED.
        NITER =     2          (NUMBER OF ITERATIONS)
         NFEV =    22          (NUMBER OF FUNCTION EVALUATIONS)
         NJEV =     3          (NUMBER OF JACOBIAN EVALUATIONS)
        IRANK =     0          (RANK DEFICIENCY)
        RCOND =     2.28D-01   (INVERSE CONDITION NUMBER)
        ISTOP =     0          (RETURNED BY USER FROM SUBROUTINE FCN)

 --- FINAL WEIGHTED SUMS OF SQUARES       =                     1.47796721D-02
         SUM OF SQUARED WEIGHTED DELTAS   =    1.33891597D-02
         SUM OF SQUARED WEIGHTED EPSILONS =    1.39051238D-03

 --- RESIDUAL STANDARD DEVIATION          =                     3.84443391D-02
         DEGREES OF FREEDOM               =   10

 --- ESTIMATED BETA(J), J = 1, ..., NP:

                     BETA      S.D. BETA    ---- 95%  CONFIDENCE INTERVAL ----

       1   3.02127269D+00     3.6888D-02     2.93902959D+00 TO  3.10351579D+00
       2   2.95883347D+00     8.3319D-02     2.77306895D+00 TO  3.14459799D+00
       3  -5.25432714D-01     3.0453D-02    -5.93328437D-01 TO -4.57536992D-01

 --- ESTIMATED EPSILON(I) AND DELTA(I,*), I = 1, ..., N:

         I    EPSILON(I,1)      DELTA(I,1)      DELTA(I,2)

         1  2.30719900D-03 -6.95012295D-03  3.55910649D-03
         2 -1.82563237D-02  5.51320253D-02 -1.69143244D-02
         3  2.15864761D-02 -6.50743998D-02  1.16586122D-02
         4  3.12413384D-03 -9.35402855D-03  9.99213291D-04
         5  6.40415322D-03 -1.93295345D-02  9.86829589D-03
         6  2.82279358D-03 -8.48602806D-03  2.57756334D-03
         7 -1.19110059D-02  3.59974322D-02 -6.51316549D-03
         8  5.71926168D-04 -1.67110502D-03  3.01261303D-04
         9 -2.29090591D-03  6.89012388D-03 -3.54298530D-03
        10 -5.27479950D-03  1.59368352D-02 -4.86034770D-03
        11 -1.37120696D-02  4.14217198D-02 -7.49927629D-03
        12  8.43418310D-03 -2.54123018D-02  4.57142724D-03
        13  9.63073868D-03 -2.90305923D-02  5.79461938D-03

 COMPARISON OF NEW RESULTS WITH DOUBLE PRECISION CRAY YMP RESULT:

                         NORM OF BETA        SUM OF SQUARED WTD OBS ERRORS  INFO

       CRAY YMP RESULT = 
 4.261321829513978975967347651022D+00 1.477967210398420730421698010559D-02     4

  NEW TEST RESULT      = 
 4.261321829513978975967347651022D+00 1.477967210398419516115264826794D-02     4

  DIFFERENCE           =  0.00000D+00                          1.21431D-17

  RELATIVE ERROR       =  0.00000D+00                          8.21606D-16

 *** STOPPING CONDITIONS SHOW CONVERGENCE NOT ATTAINED. ***
        NO FURTHER COMPARISONS MADE BETWEEN RESULTS.


1
 EXAMPLE  7

 TEST RESTART FOR UNSCALED ODR PROBLEM
 WITH ANALYTIC DERIVATIVES USING DODRC.
 DATA SET REFERENCE:  HIMMELBLAU, 1970, EXAMPLE 6.2-4, PAGE 188                                      
 ******************************************************* 
 * ODRPACK VERSION 2.01 OF 06-19-92 (DOUBLE PRECISION) * 
 ******************************************************* 


 *** INITIAL SUMMARY FOR FIT BY METHOD OF ODR ***

 --- PROBLEM SIZE:
            N =    13          (NUMBER WITH NONZERO WEIGHT =    13)
           NQ =     1
            M =     2
           NP =     3          (NUMBER UNFIXED =     3)

 --- CONTROL VALUES:
          JOB = 20220
              = ABCDE, WHERE
                       A=2 ==> FIT IS A RESTART.
                       B=0 ==> DELTAS ARE INITIALIZED TO ZERO.
                       C=2 ==> COVARIANCE MATRIX WILL NOT BE COMPUTED.
                       D=2 ==> DERIVATIVES ARE SUPPLIED BY USER.
                               DERIVATIVES WERE CHECKED.
                               RESULTS APPEAR CORRECT.
                       E=0 ==> METHOD IS EXPLICIT ODR.
       NDIGIT =    16          (ESTIMATED BY ODRPACK)
       TAUFAC =     1.00D+00

 --- STOPPING CRITERIA:
        SSTOL =     2.22D-14   (SUM OF SQUARES STOPPING TOLERANCE)
       PARTOL =     2.22D-16   (PARAMETER STOPPING TOLERANCE)
        MAXIT =    52          (MAXIMUM NUMBER OF ITERATIONS)

 --- INITIAL WEIGHTED SUM OF SQUARES        =                    1.47796721D-02
         SUM OF SQUARED WEIGHTED DELTAS     =   1.33891597D-02
         SUM OF SQUARED WEIGHTED EPSILONS   =   1.39051238D-03

 --- FUNCTION PARAMETER SUMMARY:

       INDEX         BETA(K)    FIXED           SCALE              
                                                                   
         (K)                  (IFIXB)          (SCLB)              

           1  3.02127269D+00       NO  3.33333333D-01              
           2  2.95883347D+00       NO  3.33333333D-01              
           3 -5.25432714D-01       NO  3.33333333D-01              

 --- EXPLANATORY VARIABLE AND DELTA WEIGHT SUMMARY:

       INDEX      X(I,J)  DELTA(I,J)    FIXED     SCALE    WEIGHT              
                                                                               
       (I,J)                          (IFIXX)    (SCLD)      (WD)              

         1,1   0.000D+00  -6.950D-03       NO  1.00D+01  1.00D+00              
         N,1   2.900D+00  -2.903D-02       NO  3.45D-01  1.00D+00              
 
         1,2   0.000D+00   3.559D-03       NO  1.00D+01  1.00D+00              
         N,2   1.800D+00   5.795D-03       NO  3.33D-01  1.00D+00              

 --- RESPONSE VARIABLE AND EPSILON ERROR WEIGHT SUMMARY:

       INDEX      Y(I,L)      WEIGHT
       (I,L)                    (WE)

         1,1   2.930D+00   1.000D+00
         N,1   9.810D+00   1.000D+00

 *** ITERATION REPORTS FOR FIT BY METHOD OF ODR ***


         CUM.                 ACT. REL.   PRED. REL.
  IT.  NO. FN     WEIGHTED   SUM-OF-SQS   SUM-OF-SQS              G-N
 NUM.   EVALS   SUM-OF-SQS    REDUCTION    REDUCTION  TAU/PNORM  STEP
 ----  ------  -----------  -----------  -----------  ---------  ----

    3      23  1.47797D-02   7.3362D-07   7.4861D-07  8.411D-04   YES
    4      24  1.47797D-02   4.5525D-10   4.6927D-10  2.427D-05   YES
    5      25  1.47797D-02   4.3698D-13   4.5367D-13  7.007D-07   YES
    6      26  1.47797D-02   1.7764D-15   4.7183D-16  2.313D-08   YES
    7      27  1.47797D-02   1.5543D-15   5.0722D-19  7.195D-10   YES
    8      28  1.47797D-02  -1.7764D-15   5.5343D-22  1.204D-11   YES

 *** FINAL SUMMARY FOR FIT BY METHOD OF ODR ***

 --- STOPPING CONDITIONS:
         INFO =     1 ==> SUM OF SQUARES CONVERGENCE.
        NITER =     8          (NUMBER OF ITERATIONS)
         NFEV =    28          (NUMBER OF FUNCTION EVALUATIONS)
         NJEV =     9          (NUMBER OF JACOBIAN EVALUATIONS)
        IRANK =     0          (RANK DEFICIENCY)
        RCOND =     2.28D-01   (INVERSE CONDITION NUMBER)
        ISTOP =     0          (RETURNED BY USER FROM SUBROUTINE FCN)

 --- FINAL WEIGHTED SUMS OF SQUARES       =                     1.47796613D-02
         SUM OF SQUARED WEIGHTED DELTAS   =    1.33923007D-02
         SUM OF SQUARED WEIGHTED EPSILONS =    1.38736056D-03

 --- ESTIMATED BETA(J), J = 1, ..., NP:

           INDEX           VALUE -------------->

       1 TO    3  3.02122470D+00  2.95882000D+00 -5.25382883D-01

     N.B. NO PARAMETERS WERE FIXED BY THE USER OR DROPPED AT THE LAST
          ITERATION BECAUSE THEY CAUSED THE MODEL TO BE RANK DEFICIENT.

 --- ESTIMATED EPSILON(I) AND DELTA(I,*), I = 1, ..., N:

         I    EPSILON(I,1)      DELTA(I,1)      DELTA(I,2)

         1  2.29869910D-03 -6.94488650D-03  3.56666879D-03
         2 -1.82412535D-02  5.51109257D-02 -1.69175847D-02
         3  2.15545172D-02 -6.51210396D-02  1.16448520D-02
         4  3.10769668D-03 -9.38904997D-03  9.98372544D-04
         5  6.39050599D-03 -1.93071545D-02  9.88268089D-03
         6  2.81290078D-03 -8.49840531D-03  2.58219366D-03
         7 -1.19105692D-02  3.59845058D-02 -6.49632104D-03
         8  5.59803317D-04 -1.69129161D-03  3.04241701D-04
         9 -2.28908821D-03  6.91584984D-03 -3.56508956D-03
        10 -5.27648150D-03  1.59414362D-02 -4.86270054D-03
        11 -1.37112916D-02  4.14248928D-02 -7.48235509D-03
        12  8.41203973D-03 -2.54146622D-02  4.56155790D-03
        13  9.60776220D-03 -2.90272085D-02  5.78348338D-03

 COMPARISON OF NEW RESULTS WITH DOUBLE PRECISION CRAY YMP RESULT:

                         NORM OF BETA        SUM OF SQUARED WTD OBS ERRORS  INFO

       CRAY YMP RESULT = 
 4.261272307142888848829898051918D+00 1.477966125465374376546368040408D-02     1

  NEW TEST RESULT      = 
 4.261272307140899329169769771397D+00 1.477966125465366917235421340138D-02     1

  DIFFERENCE           =  1.98952D-12                          7.45931D-17

  RELATIVE ERROR       =  4.66884D-13                          5.04701D-15


 *** RESULTS AGREE TO WITHIN STOPPING TOLERANCE. ***


1
 EXAMPLE  8

 TEST USE OF TAUFAC TO RESTRICT FIRST STEP FOR ODR PROBLEM
 WITH FINITE DIFFERENCE DERIVATIVES USING DODRC.
 DATA SET REFERENCE:  POWELL AND MACDONALD, 1972, TABLES 7 AND 8, PAGES 153-154                      
 ******************************************************* 
 * ODRPACK VERSION 2.01 OF 06-19-92 (DOUBLE PRECISION) * 
 ******************************************************* 


 *** INITIAL SUMMARY FOR FIT BY METHOD OF ODR ***

 --- PROBLEM SIZE:
            N =    14          (NUMBER WITH NONZERO WEIGHT =    14)
           NQ =     1
            M =     1
           NP =     3          (NUMBER UNFIXED =     3)

 --- CONTROL VALUES:
          JOB = 00210
              = ABCDE, WHERE
                       A=0 ==> FIT IS NOT A RESTART.
                       B=0 ==> DELTAS ARE INITIALIZED TO ZERO.
                       C=2 ==> COVARIANCE MATRIX WILL NOT BE COMPUTED.
                       D=1 ==> DERIVATIVES ARE ESTIMATED BY CENTRAL DIFFERENCES.
                       E=0 ==> METHOD IS EXPLICIT ODR.
       NDIGIT =    16          (ESTIMATED BY ODRPACK)
       TAUFAC =     1.00D-02

 --- STOPPING CRITERIA:
        SSTOL =     1.49D-08   (SUM OF SQUARES STOPPING TOLERANCE)
       PARTOL =     3.67D-11   (PARAMETER STOPPING TOLERANCE)
        MAXIT =    50          (MAXIMUM NUMBER OF ITERATIONS)

 --- INITIAL WEIGHTED SUM OF SQUARES        =                    6.65183875D+01
         SUM OF SQUARED WEIGHTED DELTAS     =   0.00000000D+00
         SUM OF SQUARED WEIGHTED EPSILONS   =   6.65183875D+01

 --- FUNCTION PARAMETER SUMMARY:

       INDEX         BETA(K)    FIXED           SCALE    DERIVATIVE
                                                          STEP SIZE
         (K)                  (IFIXB)          (SCLB)        (STPB)

           1  2.50000000D+01       NO  3.33333333D-02   4.64159D-06
           2  3.00000000D+01       NO  3.33333333D-02   4.64159D-06
           3  6.00000000D+00       NO  3.33333333D-02   4.64159D-06

 --- EXPLANATORY VARIABLE AND DELTA WEIGHT SUMMARY:

       INDEX      X(I,J)  DELTA(I,J)    FIXED     SCALE    WEIGHT    DERIVATIVE
                                                                      STEP SIZE
       (I,J)                          (IFIXX)    (SCLD)      (WD)        (STPD)

         1,1   1.000D+00   0.000D+00       NO  1.00D+00  1.00D+00   4.64159D-06
         N,1   1.400D+01   0.000D+00       NO  7.14D-02  1.00D+00   4.64159D-06

 --- RESPONSE VARIABLE AND EPSILON ERROR WEIGHT SUMMARY:

       INDEX      Y(I,L)      WEIGHT
       (I,L)                    (WE)

         1,1   2.638D+01   1.000D+00
         N,1   2.222D+01   1.000D+00

 *** ITERATION REPORTS FOR FIT BY METHOD OF ODR ***


         CUM.                 ACT. REL.   PRED. REL.
  IT.  NO. FN     WEIGHTED   SUM-OF-SQS   SUM-OF-SQS              G-N
 NUM.   EVALS   SUM-OF-SQS    REDUCTION    REDUCTION  TAU/PNORM  STEP
 ----  ------  -----------  -----------  -----------  ---------  ----

    1      21  1.65304D-03   9.9998D-01   9.9998D-01  1.906D-01   YES
    2      30  1.14442D-03   3.0769D-01   3.0772D-01  5.736D-03   YES
    3      39  1.14442D-03   2.8528D-06   2.8589D-06  4.489D-05   YES
    4      48  1.14442D-03   9.2508D-11   9.3866D-11  7.581D-07   YES

 *** FINAL SUMMARY FOR FIT BY METHOD OF ODR ***

 --- STOPPING CONDITIONS:
         INFO =     1 ==> SUM OF SQUARES CONVERGENCE.
        NITER =     4          (NUMBER OF ITERATIONS)
         NFEV =    48          (NUMBER OF FUNCTION EVALUATIONS)
        IRANK =     0          (RANK DEFICIENCY)
        RCOND =     5.38D-03   (INVERSE CONDITION NUMBER)
        ISTOP =     0          (RETURNED BY USER FROM SUBROUTINE FCN)

 --- FINAL WEIGHTED SUMS OF SQUARES       =                     1.14441947D-03
         SUM OF SQUARED WEIGHTED DELTAS   =    1.25033077D-04
         SUM OF SQUARED WEIGHTED EPSILONS =    1.01938640D-03

 --- ESTIMATED BETA(J), J = 1, ..., NP:

           INDEX           VALUE -------------->

       1 TO    3  2.71167487D+01  3.36427043D+01  6.62121910D+00

     N.B. NO PARAMETERS WERE FIXED BY THE USER OR DROPPED AT THE LAST
          ITERATION BECAUSE THEY CAUSED THE MODEL TO BE RANK DEFICIENT.

 --- ESTIMATED EPSILON(I) AND DELTA(I,*), I = 1, ..., N:

         I    EPSILON(I,1)      DELTA(I,1)

         1  7.59801116D-03  4.97540746D-03
         2  7.39164816D-04  4.06579050D-04
         3 -6.94196648D-03 -3.28158116D-03
         4 -1.71319408D-02 -7.08391784D-03
         5 -7.84792233D-03 -2.87575737D-03
         6  3.89544361D-03  1.27960336D-03
         7  1.08567684D-02  3.22813867D-03
         8  7.23311504D-03  1.96282386D-03
         9  7.22701041D-03  1.80177855D-03
        10  7.62288350D-03  1.75618816D-03
        11  5.74541441D-03  1.22941679D-03
        12 -6.34168099D-04 -1.26609681D-04
        13 -3.71790892D-03 -6.95241813D-04
        14 -1.46591743D-02 -2.57682804D-03

 COMPARISON OF NEW RESULTS WITH DOUBLE PRECISION CRAY YMP RESULT:

                         NORM OF BETA        SUM OF SQUARED WTD OBS ERRORS  INFO

       CRAY YMP RESULT = 
 4.371487317909745229371765162796D+01 1.144419474408286127933842557525D-03     1

  NEW TEST RESULT      = 
 4.371487334212800135446741478518D+01 1.144419474408238639878687692431D-03     1

  DIFFERENCE           =  1.63031D-07                          4.74881D-17

  RELATIVE ERROR       =  3.72941D-09                          4.14953D-14


 *** RESULTS AGREE TO WITHIN STOPPING TOLERANCE. ***


1
 EXAMPLE  9

 TEST IMPLICIT MODEL FOR OLS PROBLEM
 USING DODRC.
 DATA SET REFERENCE:  FULLER, 1987, TABLE 3.2.10, PAGES 244-245                                      
 ******************************************************* 
 * ODRPACK VERSION 2.01 OF 06-19-92 (DOUBLE PRECISION) * 
 ******************************************************* 


 *** INITIAL SUMMARY FOR FIT BY METHOD OF ODR ***

 --- PROBLEM SIZE:
            N =    20          (NUMBER WITH NONZERO WEIGHT =    20)
           NQ =     1
            M =     2
           NP =     5          (NUMBER UNFIXED =     5)

 --- CONTROL VALUES:
          JOB = 00001
              = ABCDE, WHERE
                       A=0 ==> FIT IS NOT A RESTART.
                       B=0 ==> DELTAS ARE INITIALIZED TO ZERO.
                       C=0 ==> COVARIANCE MATRIX WILL BE COMPUTED USING
                               DERIVATIVES RE-EVALUATED AT THE SOLUTION.
                       D=0 ==> DERIVATIVES ARE ESTIMATED BY FORWARD DIFFERENCES.
                       E=1 ==> METHOD IS IMPLICIT ODR.
       NDIGIT =    15          (ESTIMATED BY ODRPACK)
       TAUFAC =     1.00D+00

 --- STOPPING CRITERIA:
        SSTOL =     1.49D-08   (SUM OF SQUARES STOPPING TOLERANCE)
       PARTOL =     6.06D-06   (PARAMETER STOPPING TOLERANCE)
        MAXIT =   100          (MAXIMUM NUMBER OF ITERATIONS)

 --- INITIAL SUM OF SQUARED WEIGHTED DELTAS =                    0.00000000D+00
         INITIAL PENALTY FUNCTION VALUE     =   8.39823392D-01
                 PENALTY TERM               =   8.39823392D-01
                 PENALTY PARAMETER          =   1.0D+01

 --- FUNCTION PARAMETER SUMMARY:

       INDEX         BETA(K)    FIXED           SCALE    DERIVATIVE
                                                          STEP SIZE
         (K)                  (IFIXB)          (SCLB)        (STPB)

           1 -1.00000000D+00       NO  1.00000000D+00   3.16228D-10
           2 -3.00000000D+00       NO  3.33333333D-01   3.16228D-10
           3  9.00000000D-02       NO  1.11111111D+01   3.16228D-10
           4  2.00000000D-02       NO  5.00000000D+01   3.16228D-10
           5  8.00000000D-02       NO  1.25000000D+01   3.16228D-10

 --- EXPLANATORY VARIABLE AND DELTA WEIGHT SUMMARY:

       INDEX      X(I,J)  DELTA(I,J)    FIXED     SCALE    WEIGHT    DERIVATIVE
                                                                      STEP SIZE
       (I,J)                          (IFIXX)    (SCLD)      (WD)        (STPD)

         1,1   5.000D-01   0.000D+00       NO  2.00D+00  1.00D+00   3.16228D-10
         N,1  -3.440D+00   0.000D+00       NO  2.91D-01  1.00D+00   3.16228D-10
 
         1,2  -1.200D-01   0.000D+00       NO  8.33D+00  1.00D+00   3.16228D-10
         N,2  -4.860D+00   0.000D+00       NO  2.06D-01  1.00D+00   3.16228D-10

 *** ITERATION REPORTS FOR FIT BY METHOD OF ODR ***


         CUM.      PENALTY    ACT. REL.   PRED. REL.
  IT.  NO. FN     FUNCTION   SUM-OF-SQS   SUM-OF-SQS              G-N
 NUM.   EVALS        VALUE    REDUCTION    REDUCTION  TAU/PNORM  STEP
 ----  ------  -----------  -----------  -----------  ---------  ----

 PENALTY PARAMETER VALUE =    1.0E+01
    1      13  6.95806D-02   9.1715D-01   9.2121D-01  3.787D-01   YES
    2      21  6.86021D-02   1.4063D-02   1.3989D-02  4.791D-02   YES
    3      29  6.85929D-02   1.3366D-04   1.3152D-04  2.458D-03   YES
    4      37  6.85929D-02   2.8035D-07   2.5896D-07  3.301D-04   YES
    5      45  6.85929D-02   2.2442D-09   2.0585D-09  2.466D-05   YES

 PENALTY PARAMETER VALUE =    1.0E+02
    6      71  8.58086D-02   5.8379D-01   5.8368D-01  7.423D-02   YES
    7      79  8.57904D-02   2.1187D-04   2.1044D-04  1.733D-02   YES
    8      87  8.57902D-02   2.9685D-06   2.9272D-06  6.287D-04   YES
    9      95  8.57902D-02   6.9621D-09   6.7263D-09  7.071D-05   YES

 PENALTY PARAMETER VALUE =    1.0E+03
   10     116  8.79954D-02   1.7982D-01   1.7982D-01  8.918D-03   YES
   11     124  8.79951D-02   3.5396D-06   3.4883D-06  2.281D-03   YES
   12     132  8.79951D-02   2.0851D-08   1.9954D-08  8.141D-05   YES
   13     140  8.79951D-02   1.1440D-10   1.1132D-10  7.103D-06   YES

 PENALTY PARAMETER VALUE =    1.0E+04
   14     161  8.82218D-02   2.2544D-02   2.2544D-02  9.096D-04   YES
   15     169  8.82218D-02   3.7995D-08   3.6729D-08  2.331D-04   YES
   16     177  8.82218D-02   1.6593D-10   1.5080D-10  8.213D-06   YES

 PENALTY PARAMETER VALUE =    1.0E+05
   17     195  8.82446D-02   2.3129D-03   2.3129D-03  8.969D-05   YES
   18     203  8.82446D-02   2.6031D-10   2.3349D-10  1.092D-05   YES

 *** FINAL SUMMARY FOR FIT BY METHOD OF ODR ***

 --- STOPPING CONDITIONS:
         INFO =     2 ==> PARAMETER CONVERGENCE.
        NITER =    18          (NUMBER OF ITERATIONS)
         NFEV =   217          (NUMBER OF FUNCTION EVALUATIONS)
        IRANK =     0          (RANK DEFICIENCY)
        RCOND =     3.18D-02   (INVERSE CONDITION NUMBER)
        ISTOP =     0          (RETURNED BY USER FROM SUBROUTINE FCN)

 --- FINAL SUM OF SQUARED WEIGHTED DELTAS =                     8.82420346D-02
         FINAL PENALTY FUNCTION VALUE     =    8.82445616D-02
               PENALTY TERM               =    2.52700897D-06
               PENALTY PARAMETER          =    1.0D+05

 --- RESIDUAL STANDARD DEVIATION          =                     7.66994283D-02
         DEGREES OF FREEDOM               =   15

 --- ESTIMATED BETA(J), J = 1, ..., NP:

                     BETA      S.D. BETA    ---- 95%  CONFIDENCE INTERVAL ----

       1  -9.99380972D-01     1.1138D-01    -1.23682206D+00 TO -7.61939883D-01
       2  -2.93104848D+00     1.0977D-01    -3.16504351D+00 TO -2.69705344D+00
       3   8.75730479D-02     4.1061D-03     7.88199915D-02 TO  9.63261044D-02
       4   1.62299739D-02     2.7500D-03     1.03676338D-02 TO  2.20923140D-02
       5   7.97538008D-02     3.4963D-03     7.23007073D-02 TO  8.72068944D-02

 --- ESTIMATED DELTA(I,*), I = 1, ..., N:

         I      DELTA(I,1)      DELTA(I,2)

         1  3.40723874D-02  4.76860368D-02
         2 -2.65182325D-02 -2.55209375D-02
         3 -6.46554198D-02 -4.89656210D-02
         4 -6.02229818D-02 -3.67984225D-02
         5  1.53930306D-01  4.61089357D-02
         6  7.49624603D-02  5.60550739D-03
         7 -1.34843681D-02  1.40897870D-03
         8 -9.20913712D-02  3.20494708D-02
         9 -2.95789191D-02  1.74354120D-02
        10 -2.24316152D-03  1.96476563D-03
        11  1.75676764D-02 -2.30886080D-02
        12 -1.84834167D-02  3.96269350D-02
        13  1.65840790D-03 -1.00326725D-01
        14 -9.59481801D-03 -6.81523716D-02
        15  8.68789767D-03  2.81098730D-02
        16  3.24759423D-02  6.89227234D-02
        17  3.11881390D-02  4.53121160D-02
        18 -7.48532795D-03 -8.53414499D-03
        19  5.74203368D-03  5.51928209D-03
        20 -3.59272946D-02 -2.83635072D-02

 COMPARISON OF NEW RESULTS WITH DOUBLE PRECISION CRAY YMP RESULT:

                         NORM OF BETA        SUM OF SQUARED WTD OBS ERRORS  INFO

       CRAY YMP RESULT = 
 3.099048849376848657755090243882D+00 8.824708863783850554263210597128D-02     2

  NEW TEST RESULT      = 
 3.099048341282356844317291688640D+00 8.824203462684793164427787814930D-02     2

  DIFFERENCE           =  5.08094D-07                          5.05401D-06

  RELATIVE ERROR       =  1.63952D-07                          5.72711D-05


 *** RESULTS AGREE TO WITHIN STOPPING TOLERANCE. ***


1
 EXAMPLE 10

 TEST MULTIRESPONSE MODEL FOR ODR PROBLEM
 WITH FINITE DIFFERENCE DERIVATIVES USING DODRC.
 DATA SET REFERENCE:  BATES AND WATTS, 1988, TABLE A1.13, PAGES 280-281                              
 ******************************************************* 
 * ODRPACK VERSION 2.01 OF 06-19-92 (DOUBLE PRECISION) * 
 ******************************************************* 


 *** INITIAL SUMMARY FOR FIT BY METHOD OF ODR ***

 --- PROBLEM SIZE:
            N =    23          (NUMBER WITH NONZERO WEIGHT =    21)
           NQ =     2
            M =     1
           NP =     5          (NUMBER UNFIXED =     5)

 --- CONTROL VALUES:
          JOB = 00210
              = ABCDE, WHERE
                       A=0 ==> FIT IS NOT A RESTART.
                       B=0 ==> DELTAS ARE INITIALIZED TO ZERO.
                       C=2 ==> COVARIANCE MATRIX WILL NOT BE COMPUTED.
                       D=1 ==> DERIVATIVES ARE ESTIMATED BY CENTRAL DIFFERENCES.
                       E=0 ==> METHOD IS EXPLICIT ODR.
       NDIGIT =    15          (ESTIMATED BY ODRPACK)
       TAUFAC =     1.00D+00

 --- STOPPING CRITERIA:
        SSTOL =     1.49D-08   (SUM OF SQUARES STOPPING TOLERANCE)
       PARTOL =     3.67D-11   (PARAMETER STOPPING TOLERANCE)
        MAXIT =    50          (MAXIMUM NUMBER OF ITERATIONS)

 --- INITIAL WEIGHTED SUM OF SQUARES        =                    1.61756061D+03
         SUM OF SQUARED WEIGHTED DELTAS     =   0.00000000D+00
         SUM OF SQUARED WEIGHTED EPSILONS   =   1.61756061D+03

 --- FUNCTION PARAMETER SUMMARY:

       INDEX         BETA(K)    FIXED           SCALE    DERIVATIVE
                                                          STEP SIZE
         (K)                  (IFIXB)          (SCLB)        (STPB)

           1  4.00000000D+00       NO  2.50000000D-01   1.00000D-05
           2  2.00000000D+00       NO  5.00000000D-01   1.00000D-05
           3  7.00000000D+00       NO  1.42857143D-01   1.00000D-05
           4  4.00000000D-01       NO  2.50000000D+00   1.00000D-05
           5  5.00000000D-01       NO  2.00000000D+00   1.00000D-05

 --- EXPLANATORY VARIABLE AND DELTA WEIGHT SUMMARY:

       INDEX      X(I,J)  DELTA(I,J)    FIXED     SCALE    WEIGHT    DERIVATIVE
                                                                      STEP SIZE
       (I,J)                          (IFIXX)    (SCLD)      (WD)        (STPD)

         1,1   3.000D+01   0.000D+00      YES  3.33D-02  1.11D-07   1.00000D-05
         N,1   1.500D+05   0.000D+00       NO  6.67D-06  4.44D-15   1.00000D-05

 --- RESPONSE VARIABLE AND EPSILON ERROR WEIGHT SUMMARY:

       INDEX      Y(I,L)      WEIGHT
       (I,L)                    (WE)

         1,1   4.220D+00   5.596D+02
         N,1   2.759D+00   5.596D+02
 
         1,2   1.360D-01   8.397D+03
         N,2   1.390D-01   8.397D+03

 *** ITERATION REPORTS FOR FIT BY METHOD OF ODR ***


         CUM.                 ACT. REL.   PRED. REL.
  IT.  NO. FN     WEIGHTED   SUM-OF-SQS   SUM-OF-SQS              G-N
 NUM.   EVALS   SUM-OF-SQS    REDUCTION    REDUCTION  TAU/PNORM  STEP
 ----  ------  -----------  -----------  -----------  ---------  ----

    1      18  2.81264D+02   8.2612D-01   9.9950D-01  1.204D+00   YES
    2      31  8.75783D+00   9.6886D-01   9.9813D-01  2.200D-01   YES
    3      44  2.48574D+00   7.1617D-01   9.5244D-01  1.597D-01   YES
    4      57  4.24412D-01   8.2926D-01   8.3031D-01  2.241D-02   YES
    5      70  4.20540D-01   9.1238D-03   9.0876D-03  4.429D-03   YES
    6      83  4.20539D-01   2.8954D-06   2.7128D-06  3.930D-04   YES
    7      96  4.20539D-01   1.4230D-08   1.3313D-08  2.690D-05   YES

 *** FINAL SUMMARY FOR FIT BY METHOD OF ODR ***

 --- STOPPING CONDITIONS:
         INFO =     1 ==> SUM OF SQUARES CONVERGENCE.
        NITER =     7          (NUMBER OF ITERATIONS)
         NFEV =    96          (NUMBER OF FUNCTION EVALUATIONS)
        IRANK =     0          (RANK DEFICIENCY)
        RCOND =     8.15D-03   (INVERSE CONDITION NUMBER)
        ISTOP =     0          (RETURNED BY USER FROM SUBROUTINE FCN)

 --- FINAL WEIGHTED SUMS OF SQUARES       =                     4.20538922D-01
         SUM OF SQUARED WEIGHTED DELTAS   =    5.54022895D-04
         SUM OF SQUARED WEIGHTED EPSILONS =    4.19984899D-01

 --- ESTIMATED BETA(J), J = 1, ..., NP:

           INDEX           VALUE -------------->

       1 TO    4  4.37998809D+00  2.43330566D+00  8.00288453D+00  5.10114676D-01
               5  5.17390199D-01

     N.B. NO PARAMETERS WERE FIXED BY THE USER OR DROPPED AT THE LAST
          ITERATION BECAUSE THEY CAUSED THE MODEL TO BE RANK DEFICIENT.

 --- ESTIMATED EPSILON(I) AND DELTA(I,*), I = 1, ..., N:

         I    EPSILON(I,1)    EPSILON(I,2)      DELTA(I,1)

         1 -7.38556281D-03  1.25939922D-03  0.00000000D+00
         2 -1.05612518D-03 -1.22845804D-03  0.00000000D+00
         3 -2.70861844D-03 -2.14347061D-03  0.00000000D+00
         4  4.68593718D-02 -4.25940146D-03  0.00000000D+00
         5  8.08104420D-03 -3.47539550D-03  0.00000000D+00
         6  1.53882474D-03  3.85293691D-04  3.03694703D+01
         7  4.60534881D-03  1.19118721D-03  3.78987347D+01
         8  4.50904278D-03  1.23570429D-03  6.22631839D+01
         9 -1.00624342D-03 -2.91872299D-04  1.11187207D+02
        10  1.05810430D-02  3.27283292D-03  1.15710270D+02
        11  6.93618486D-03  2.43480864D-03  2.41437285D+02
        12  3.95512337D-05  1.75761986D-05  9.61345659D+02
        13 -3.77619651D-03 -2.42909122D-03  1.33029993D+03
        14 -5.56743469D-04 -1.70124794D-03  2.07511789D+03
        15  2.08264689D-03 -2.23723708D-03  2.90289763D+03
        16 -7.50661987D-03  2.16469603D-03  5.21813714D+03
        17 -1.56730631D-03  2.03369394D-04  7.54565125D+03
        18 -5.93228163D-04  2.72079634D-05  1.74201144D+04
        19  1.15244167D-04 -2.42068517D-07  2.42745693D+04
        20  2.63614224D-04  5.18444905D-06  3.78492489D+04
        21 -3.81043947D-04 -1.03970544D-05  5.53493969D+04
        22 -3.36863330D-04 -1.26155472D-05  8.75792611D+04
        23  2.87168504D-03  1.41195403D-04  1.29496518D+05

 COMPARISON OF NEW RESULTS WITH DOUBLE PRECISION CRAY YMP RESULT:

                         NORM OF BETA        SUM OF SQUARED WTD OBS ERRORS  INFO

       CRAY YMP RESULT = 
 9.469917836739933036938055010978D+00 4.205389215588104523391166367219D-01     1

  NEW TEST RESULT      = 
 9.469917762502790381518025242258D+00 4.205389215886734533000890223775D-01     1

  DIFFERENCE           =  7.42371D-08                          2.98630D-11

  RELATIVE ERROR       =  7.83926D-09                          7.10113D-11


 *** RESULTS AGREE TO WITHIN STOPPING TOLERANCE. ***


1
 EXAMPLE 11

 TEST DETECTION OF QUESTIONABLE ANALYTIC DERIVATIVES FOR OLS PROBLEM
 USING DODRC.
 DATA SET REFERENCE:  POWELL AND MACDONALD, 1972, TABLES 7 AND 8, PAGES 153-154                      
 ******************************************************* 
 * ODRPACK VERSION 2.01 OF 06-19-92 (DOUBLE PRECISION) * 
 ******************************************************* 



 *** DERIVATIVE CHECKING REPORT FOR FIT BY METHOD OF OLS ***


     FOR RESPONSE  1 OF OBSERVATION     1

                               USER                               
                           SUPPLIED     RELATIVE    DERIVATIVE 
        DERIVATIVE WRT        VALUE   DIFFERENCE    ASSESSMENT 

             BETA(  1)     0.00D+00     9.70D-01    QUESTIONABLE (SEE NOTE 3)
             BETA(  2)     0.00D+00     2.25D-02    QUESTIONABLE (SEE NOTE 3)
             BETA(  3)     0.00D+00     1.05D-02    QUESTIONABLE (SEE NOTE 3)

     NOTES:

      (3) USER SUPPLIED AND FINITE DIFFERENCE DERIVATIVES DISAGREE, BUT
          RESULTS ARE QUESTIONABLE BECAUSE ONE IS IDENTICALLY ZERO
          AND THE OTHER IS NOT.

     NUMBER OF RELIABLE DIGITS IN FUNCTION RESULTS          16
        (ESTIMATED BY ODRPACK)

     NUMBER OF DIGITS OF AGREEMENT REQUIRED BETWEEN      
     USER SUPPLIED AND FINITE DIFFERENCE DERIVATIVE FOR  
     USER SUPPLIED DERIVATIVE TO BE CONSIDERED VERIFIED      4

     ROW NUMBER AT WHICH DERIVATIVES WERE CHECKED            1

       -VALUES OF THE EXPLANATORY VARIABLES AT THIS ROW

          X( 1, 1)   1.00000000D+00
 ******************************************************* 
 * ODRPACK VERSION 2.01 OF 06-19-92 (DOUBLE PRECISION) * 
 ******************************************************* 


 *** INITIAL SUMMARY FOR FIT BY METHOD OF OLS ***

 --- PROBLEM SIZE:
            N =    14          (NUMBER WITH NONZERO WEIGHT =    14)
           NQ =     1
            M =     1
           NP =     3          (NUMBER UNFIXED =     3)

 --- CONTROL VALUES:
          JOB = 00022
              = ABCDE, WHERE
                       A=0 ==> FIT IS NOT A RESTART.
                       B=0 ==> DELTAS ARE FIXED AT ZERO SINCE E=2.
                       C=0 ==> COVARIANCE MATRIX WILL BE COMPUTED USING
                               DERIVATIVES RE-EVALUATED AT THE SOLUTION.
                       D=2 ==> DERIVATIVES ARE SUPPLIED BY USER.
                               DERIVATIVES WERE CHECKED.
                               RESULTS APPEAR QUESTIONABLE.
                       E=2 ==> METHOD IS EXPLICIT OLS.
       NDIGIT =    16          (ESTIMATED BY ODRPACK)
       TAUFAC =     1.00D+00

 --- STOPPING CRITERIA:
        SSTOL =     1.49D-08   (SUM OF SQUARES STOPPING TOLERANCE)
       PARTOL =     3.67D-11   (PARAMETER STOPPING TOLERANCE)
        MAXIT =    50          (MAXIMUM NUMBER OF ITERATIONS)

 --- INITIAL WEIGHTED SUM OF SQUARES        =                    6.65183875D+01

 --- FUNCTION PARAMETER SUMMARY:

       INDEX         BETA(K)    FIXED           SCALE    DERIVATIVE
                                                         ASSESSMENT
         (K)                  (IFIXB)          (SCLB)              

           1  2.50000000D+01       NO  3.33333333D-02  QUESTIONABLE
           2  3.00000000D+01       NO  3.33333333D-02  QUESTIONABLE
           3  6.00000000D+00       NO  3.33333333D-02  QUESTIONABLE

 --- EXPLANATORY VARIABLE SUMMARY:

       INDEX      X(I,J)
       (I,J)            

         1,1   1.000D+00
         N,1   1.400D+01

 --- RESPONSE VARIABLE AND EPSILON ERROR WEIGHT SUMMARY:

       INDEX      Y(I,L)      WEIGHT
       (I,L)                    (WE)

         1,1   2.638D+01   1.000D+00
         N,1   2.222D+01   1.000D+00

 *** ITERATION REPORTS FOR FIT BY METHOD OF OLS ***


         CUM.                 ACT. REL.   PRED. REL.
  IT.  NO. FN     WEIGHTED   SUM-OF-SQS   SUM-OF-SQS              G-N
 NUM.   EVALS   SUM-OF-SQS    REDUCTION    REDUCTION  TAU/PNORM  STEP
 ----  ------  -----------  -----------  -----------  ---------  ----

    1      24  6.65184D+01   0.0000D+00   0.0000D+00  0.000D+00   YES

 *** FINAL SUMMARY FOR FIT BY METHOD OF OLS ***

 --- STOPPING CONDITIONS:
         INFO =  1023
              =  ABCD, WHERE A NONZERO VALUE FOR DIGIT A, B, OR C INDICATES WHY
                       THE RESULTS MIGHT BE QUESTIONABLE, AND DIGIT D INDICATES
                       THE ACTUAL STOPPING CONDITION.
                       A=1 ==> DERIVATIVES ARE QUESTIONABLE.
                       C=2 ==> DERIVATIVES ARE ZERO RANK AT THE SOLUTION.
                       D=3 ==> SUM OF SQUARES CONVERGENCE AND PARAMETER CONVERGENCE.
        NITER =     1          (NUMBER OF ITERATIONS)
         NFEV =    24          (NUMBER OF FUNCTION EVALUATIONS)
         NJEV =     2          (NUMBER OF JACOBIAN EVALUATIONS)
        IRANK =     3          (RANK DEFICIENCY)
        RCOND =     0.00D+00   (INVERSE CONDITION NUMBER)
        ISTOP =     0          (RETURNED BY USER FROM SUBROUTINE FCN)

 --- FINAL WEIGHTED SUMS OF SQUARES       =                     6.65183875D+01

 --- RESIDUAL STANDARD DEVIATION          =                     8.15588055D+00
         DEGREES OF FREEDOM               =    0

 --- ESTIMATED BETA(J), J = 1, ..., NP:

                     BETA      S.D. BETA    ---- 95%  CONFIDENCE INTERVAL ----

       1   2.50000000D+01        DROPPED
       2   3.00000000D+01        DROPPED
       3   6.00000000D+00        DROPPED

 --- ESTIMATED EPSILON(I,  1), I = 1, ..., N:

           INDEX           VALUE -------------->

       1 TO    4 -2.12824711D+00 -2.15338202D+00 -2.17361007D+00 -2.19297148D+00
       5 TO    8 -2.18753205D+00 -2.17853564D+00 -2.17414444D+00 -2.18046225D+00
       9 TO   12 -2.18216734D+00 -2.18292056D+00 -2.18563784D+00 -2.19267768D+00
      13 TO   14 -2.19597334D+00 -2.20712839D+00

 COMPARISON OF NEW RESULTS WITH DOUBLE PRECISION CRAY YMP RESULT:

                         NORM OF BETA        SUM OF SQUARED WTD OBS ERRORS  INFO

       CRAY YMP RESULT = 
 3.950949253027682317451763083227D+01 6.651838750834910740650229854509D+01  1023

  NEW TEST RESULT      = 
 3.950949253027682317451763083227D+01 6.651838750834907898479286814108D+01  1023

  DIFFERENCE           =  0.00000D+00                          2.84217D-14

  RELATIVE ERROR       =  0.00000D+00                          4.27276D-16


 *** RESULTS AGREE TO WITHIN STOPPING TOLERANCE. ***


1
 EXAMPLE 12

 TEST DETECTION OF INCORRECT ANALYTIC DERIVATIVES FOR ODR PROBLEM
 WITH ANALYTIC DERIVATIVES USING DODRC.
 DATA SET REFERENCE:  POWELL AND MACDONALD, 1972, TABLES 7 AND 8, PAGES 153-154                      
 ******************************************************* 
 * ODRPACK VERSION 2.01 OF 06-19-92 (DOUBLE PRECISION) * 
 ******************************************************* 



 *** DERIVATIVE CHECKING REPORT FOR FIT BY METHOD OF ODR ***


     FOR RESPONSE  1 OF OBSERVATION     1

                               USER                               
                           SUPPLIED     RELATIVE    DERIVATIVE 
        DERIVATIVE WRT        VALUE   DIFFERENCE    ASSESSMENT 

             BETA(  1)     0.00D+00     9.70D-01    QUESTIONABLE (SEE NOTE 3)
             BETA(  2)     0.00D+00     2.25D-02    QUESTIONABLE (SEE NOTE 3)
             BETA(  3)     0.00D+00     1.05D-02    QUESTIONABLE (SEE NOTE 3)
          DELTA( 1, 1)     1.00D+00     1.67D+00   *QUESTIONABLE (SEE NOTE 7)

     NOTES:

      (3) USER SUPPLIED AND FINITE DIFFERENCE DERIVATIVES DISAGREE, BUT
          RESULTS ARE QUESTIONABLE BECAUSE ONE IS IDENTICALLY ZERO
          AND THE OTHER IS NOT.

      (7) USER SUPPLIED AND FINITE DIFFERENCE DERIVATIVES DISAGREE, AND
          HAVE FEWER THAN 2 DIGITS IN COMMON.  DERIVATIVE CHECKING MUST
          BE TURNED OFF IN ORDER TO PROCEED.

     NUMBER OF RELIABLE DIGITS IN FUNCTION RESULTS          16
        (ESTIMATED BY ODRPACK)

     NUMBER OF DIGITS OF AGREEMENT REQUIRED BETWEEN      
     USER SUPPLIED AND FINITE DIFFERENCE DERIVATIVE FOR  
     USER SUPPLIED DERIVATIVE TO BE CONSIDERED VERIFIED      4

     ROW NUMBER AT WHICH DERIVATIVES WERE CHECKED            1

       -VALUES OF THE EXPLANATORY VARIABLES AT THIS ROW

          X( 1, 1)   1.00000000D+00

 COMPARISON OF NEW RESULTS WITH DOUBLE PRECISION CRAY YMP RESULT:

                         NORM OF BETA        SUM OF SQUARED WTD OBS ERRORS  INFO

       CRAY YMP RESULT = 
 3.950949253027682317451763083227D+01 6.651838750834910740650229854509D+01 40100

  NEW TEST RESULT      = 
 3.950949253027682317451763083227D+01 6.651838750834907898479286814108D+01 40100

  DIFFERENCE           =  0.00000D+00                          2.84217D-14

  RELATIVE ERROR       =  0.00000D+00                          4.27276D-16

 *** STOPPING CONDITIONS SHOW CONVERGENCE NOT ATTAINED. ***
        NO FURTHER COMPARISONS MADE BETWEEN RESULTS.


1



 *** SUMMARY: ALL TESTS AGREE WITH EXPECTED RESULTS. ***