JEdit 4.1 User’s Guide

JEdit 4.1 User’s Guide
Copyright © 1999, 2003 Slava Pestov
Copyright © 2001, 2002 John Gellene

Legal Notice

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no
“Invariant Sections”, “Front-Cover Texts” or “Back-Cover Texts”, each as defined in the license. A copy of the
license can be found in the fi@OPYING.DOC.txt included with jEdit.

Table of Contents

[USING JEGIL ettt st st n e IX
RS = 4 (] T] =L [O 1
O 0] V=1 1 1[0 £ S PRTSN 1

1.2. Platform-Independent INSrUCHIONS...........cccceeveeieeiiie e 1

1.3. Starting JEdit 0N WINAOWS.........coiiiiiiiiiie et 2

1.4. Command LiNE USAQE.........ccevereerieiesireieesiesee e eseesiessasssesneesseesessessens 3

2. JEAIE BASICS....ciiiiieiieie et 7
2.0 BUBIS. ettt 7
2.1.1. MeMOIY USAQE.....cciiiiiiiieiiieerieiesiee s siie e siee st st sre s 7

2.2, VIBWS....eeiieeee ettt bbbt b bbb bbb bbb r e 8
2.2.1. WIiNdOW DOCKING.......ccereririiriiniiniininesesiesesie e 8

2.2.2. The StatuS Bar......cccoeeoiiieeieesee e 9

2.3. The Text Area and GULLEL...........cccoreririireeee e 10

3. WOrKing WIth FlES........coiuiiiee e 13
3.1. Creating NEW FileS........coooiiiiiiiirieieeee e 13

3.2. 0PENING FIlES.....ciieeiiiieee e 13

3.3, SAVING FIIES....co e 13
3.3.1. Autosave and Crash RECOVELY........cccccveeererieeseeeese e see e 14

3.3.2. BACKUPS.ottt 14

3.4, LiNE SEPATALOLSceieiiieeieeiiesie et ee sttt ee e sse et e aeensesseesesneeeens 15

3.5. Character ENCOAINGS.......ccoeiiiiieiiesie ettt 16
3.5.1. Commonly Used ENcodings.........ccccevvreenenieenesieese e 16

3.6. The File SYStem BrOWSEL.........ccciiiririricieeeeees e 17
3.6.1. Navigating the File System..........cccocevireriiniieneseene e 17

3.6.2. ThEe TOOI Bal.....cciiieiecieee e 18

3.6.3. The Commands MENU.........cccueririrerieniineseseseses e 18

3.6.4. The PlUQiNS MENU.........ccciririiiririeneeeses e 19

3.6.5. The FavoriteS MENU........ccoceeiereeiereeesee e 19

3.6.6. Keyboard ShorCULtS..........cccveveeiie i 19

3.7. Reloading From DISK.........cccccveieiiiiieiecce e 19
3.8. Multi-Threaded I/Q........coooieieeeseceseee e 20
3.9, PrINTING. ..t 20
3.10. Closing Files and EXiting JEdIit..........ccccceeviviiniincieesee e, 21

o 1 (] o = OSSPSR 23
4.1. MOVING TNE CAreL......cciiuirieriieierieresereee e 23
4.2, SElECHNG TEXL...ccuiitiriiieieeiriert e 24
4.2.1. Rectangular Selectian...........cccovveevieiievie e 24

4.2.2. Multiple SeleCtion.........cccvivieiieiieceesee e 25

4.3. Inserting and Deleting TeXE.......coviererirenienenereeee s 26
VS 0 [o (o = g Vo N =T [NS 26
4.5. Working With WOIdS.........ccveiiiiiiece et 27

4.6. WOrking With LIN@S........cciveieieceere e 27

4.7. Working With Paragraphs..........ccceevninininneseeseseseseseees 28
4.8. Wrapping LONG LINES.......ccceiiiiiieiie ettt 28
v T IS Yo 1AMV = 1 o SRS 29
4.8.2. Hard WIaP.....cce ettt 29

4.9, SCIOIING....c ittt 30
4.20. TransTerring TEXE.. ..o e 30
4.10.1. The Clpboard..........ccccviiiiiiiiecececsee e 31
4.10.2. QUICK COPY.eereeriirieiesriesiesieesiesseessesseessesseessesseesseseessesssessesessees 31
4.10.3. General Register Commands.........ccccceveverenenenienienenienenens 32
I O Y =4 1= RSP 32
4.12. Search and Replace.......cccoovvieiee i 33
4.12.1. Searching FOr TeXL......ccovviieieciese e 33
4.12.2. RePIACING TXL.....cceiirierierienierie st 34
4.12.2.1. TEXt REPIACE ...cui i 35
4.12.2.2. BeanShell Replace........cccccovvvvevieiieiiiecececie e, 35

4.12.3. HYPEIrSEAIChL.....cceeie et 36
4.12.4. Multiple File Search.........cccovininnnnseseeeeeeeeeeas 36
4.12.5. The Search Bar..........ccooov e 37
4.13. Command RePEtitiON..........cceeiieiieiie i 38
5. EditiNg SOUICE COUE......cuiiieiiciese ettt nne s 39
ST I o 11 1Y o o =SS SRSR 39
5.1.1. MOdE SeIECHON.......coeeiirieieeee e 39
5.1.2. Syntax Highlighting...........ccceoieiiiiiiiiice e 39

5.2. Tabbing and Indentatian.............cccccceveeieveeie e 39
oI S Yo A - 1 o £ S 40
5.2.2. AUtOMALIC INENL.......coiiiieieeieree e 41

5.3. Commenting OUL COAE........ccceeiiiiiieiiecee e 42
5.4. Bracket MatChing.........cccoveieiiiiece e 42
5.5. ADDIEVIALIONS......oieeieceesieeee et 43
5.5.1. Positional Parameters........ccoooverveieeieneese e 43

oL TR o] [0 [T o TSR 44
5.6.1. Collapsing and Expanding Folds...........ccccvviviiiininiiiiieeniens 45
5.6.2. Navigating Around With FoIds..........ccccvinnininininceere 46
5.6.3. Miscellaneous Folding Commands..........cccceereerierienienienienene 46
IR B\ = U 101111 o TSRS 47

6. CUSTOMIZING JEAIL......co e 49
6.1. The Buffer Options Dialog BOX........cccceevcerieiereeiiesieseseese e e 49
6.2. Buffer-Local Properties..........ccocueeeieiririeieeeeses e 49
6.3. The Global Options Dialog BOX......cccccueiirerienieiieneesesee e 50
6.3.1. The Abbreviations Pane..........c.ccoceviriinieiinieneeeneeee e 50
6.3.2. The Appearance Pane........c.cccoceveieeieneeseseese e 51

6.3.3. The Context MENU Pal@........ee 51

6.3.4. The DOCKING PaNE.......ccccceeieeieseeese e 51

6.3.5. The Editing Pane.........cccoiviriiinirceene e 51

6.3.6. The General Pane...........ccooovieieninenieseeeee e 51

6.3.7. The GUIEN PANE........cooiieeeeieeee e 51

6.3.8. The Loading and Saving Pane...........cccccevveeeveneenesieese s 52

6.3.9. The Printing Pan@.........ccocviviiininineseeeees e 52

6.3.10. The Proxy Servers Pane..........cccoeevineeieneeieseenie e 52

6.3.11. The ShortCuts Pane..........ccocoiiriineniireeeeee e 52

6.3.12. The Status Bar Pane...........ccocvveneninienineneseseseses s 52

6.3.13. The Syntax Highlighting Pane............c.ccocvvrinininiiinenene 52

6.3.14. The Text Area Pane..........ccocoveeeieeieneeesee e 52

6.3.15. The Tool Bar Pane..........cccoeieriireneeeeseee e 52

6.3.16. The File System Browser Panes..........cccccocevvrveevvsceesensennnn. 53

6.4. The JEdit Settings Dir€CIOMY........ccurerirererirereeeeeeeeee e 53

LY S o T = o o L= 55
4% I = (= ToT o1 (o [0o TN 1Y/ =Tl (o 1S3 55

7.2. RUNNING MACIOS.....cuiiieiieiieitieeesteeiee e eee e ee e esesseesse e e saesneensesneenens 56

7.3. How JEdit Organizes MaCIOS........c.cceererirerereneseseseseseseeeseseenens 56

8. Installing and UsiNg PIUGINS........ccooiiiiiiiieie e 59
8.1. The PlUugin MANAQGEL.........cccveiuieiie ittt 59

8.2. INStalliNg PIUGINS.....cviiieieceese et 59

8.3. UpPdating PIUGINS......coiiiriirieeeeeee e 60

A. Keyboard SNOIMCULS.......ccuiiiiierieiesese e 61
[I g Lo A ox 1)/ Y0 o Yo OSSPSR 67
O o 1151 (o] VN =Y =1 (o £ 69
[2 €] (o I = £ (= 1SR 71
E. REQUIAI EXPreSSIONS.....ccueiuiiierieeiiriieieeiesie sttt 73
F. Macros Included With JEIL..........cccooiiiieiiicie e 77
F.1. File Management MACIOS.........ccovieerieieereieesiesee e eee e ae e 77

[N F- 1V 0o Lo [- o o S 77

F.3. Macros for LiSting Properties.........c.ccuererererenineseseeeseeeeeeeeeeeee 78

F.4. Miscellaneous MaCIQS........cccoveriiieiiniere et 79

F.5. TEXEMACTOS......eieeeeee e e 81

G. JEditLauncher for WINAOWS..........cccooiririiininineneseseseeese s 83
(€70 I 1 0T [UTod 1 o] o ST 83
G.2. Starting JEit........cccooiiiiieceece e 83
G.3. The Context Menu Handler............cooiriiiiiineeieneeeseee e 85
G.4. Using jEdit and jEditLauncher as a Diff Utility...........ccccceeivevervicennnene 85
G.5. Uninstalling jEdit and JEditLAUNCRNEL...........ccooeiiriirierieeeeeeeeeeees 85
G.6. The JEditLauncher INterface..........couerveierieieeieneeeee e 86
G.7. Scripting EXamPIes.......cooiiiiiiiecee e 87
G.8. JEditLauncher LOgQing......cccooveerieiereeieseesieseeseeseesseseessesseessesseeneens 88
G.9. LEQaAI NOTICE........eiiieiieieriieieeieeee et 89

[1. WHEtING EQIt MOUES ...ttt sne e 91

9. Mode DEefiNItION SYNTAX......cceiiririirieriesie st 93
9.1, AN XML PrIMEI..ciitiiiiiieeie ettt st ne s 93

9.2. The Preamble and MODE tag........ccccceviivriieninnin e 94

9.3. THE PROPS TaQ.....cciciiiitieiieeee sttt enens 94

9.4. The RULES Tag.....ccctsieriririirieeieniesiesiesiese sttt 96
9.4.1. Highlighting NUMDEIS.......ccoiiieieiee e 97

9.4.2. Rule Ordering ReqUIreMEeNLtS........cccocveieerieniieeiieesiee e sieenieens 97

9.4.3. Per-Ruleset Properties........cocvveceveeceseeieseeseseeseseesee e 98

9.5. The TERMINATE Tag.....cceeieeeeeeeeeeieeseeeseseeeseseesesessessessessessensens 98

9.6. THEe SPAN TaG .. .iieeiiiiieieeierie sttt e sesre e 99

9.7. The SPAN_REGEXP Tag.....cceoriereririninisiseseses s 100

9.8. The EOL_SPAN Tag.....ccccereriririirerineseseseseses s 100

9.9. The EOL_SPAN_REGEXP Tag.....cccceourreeieireeeeeseseeeeeeeeeeeeenns 101
9.10. The MARK_PREVIOUS Tag.....cceiimiirieirineeereseseseseseseseesenns 101
9.11. The MARK_FOLLOWING Tag.....ccceerererrererenereseneseseseseseesenns 101
9.12. The SEQ TaG....cierereriirinierieeesiesies sttt 102
9.13. The SEQ _REGEXP Tag.....cccoeiieeeieeeeeeeiseseseeesesee e 103
9.14. The KEYWORDS Tag.....ccccieeieieeeinieeeiseeeeeseseseseseseeseeseesens 103

S IR T Ko (=] o T 1] 01 S 104

10. Installing Edit MOAES.........ccciiieerceese et nae s 105
11. Updating Edit Modes for JEdit 4.1L.........ccoririiiiiireeeeeeeeee e 107
I WIHEING MACIOS ...ttt ettt st et sne e e sne e e 109
12. MACTO BASICS...cueiiiiieiiieie ettt sttt e nne s 111
12.1. Introducing BeanShell...........cccovieiieieieeeseeeee e 111
12.2. Single EXECULION MACTOS........coireririirierieeisieseeeee s 111
12.3. The Mandatory First Example.........ccoccoveriininiinieieceneee e 112
12.4. Predefined Variables in BeanShell.............coccooiiiiiinniini 115
12.5. Helpful Methods in the Macros Class...........cccccvvvevvieenecceseeee 116
12.6. BeanShell DynamiC TYPING........cccorireririnineneeeeeeeeee s 117
12.7. Now For Something Useful..........cooooiiiniinneeeeeeee 118

13. A Dialog-Based MACIO........cccuiieiieiiiesie ettt 121
13.1. USe Of the MACKQ......ccceiiriiriirierieeeeeee s 121
13.2. Listing Of the MaCID........cccorireririreeereeee s 121
13.3. Analysis Of the MacrQ.........coceveriieneseee e 124
13.3.1. IMPOrt StatEMENLS......cccciieiie e 124

13.3.2. Create the DialQg.........ccccceeviieeieiiececee e 124

13.3.3. Create the Text Fields........cccooevveere i 125

13.3.4. Create the BULtONS.........cccovirieiieeere e 126

13.3.5. Register the Action LIStENELS........ccccevvveieevie v 126

13.3.6. Make the Dialog VisibIe..........cccoveeevicieece e 127

13.3.7. The ACtION LISTENET........cceeeeeee et 127

13.3.8. Getthe USEer's INPUL........ccciieirieiieeeeeee e 128

13.3.9. Call jEdit Methods to Manipulate Text..........ccccceveeecereennne 128

13.3.10. The Main ROULINE........ccceeiiireeie e 130

14. Macro Tips and TECHNIQUES........ccuecuieiie et 131
14.1. Getting INput for @ MacCrQ..........cccveieeiii e 131
14.1.1. Getting a Single Line of TeXt........cccccvvievivvceeviee e 131

14.1.2. Getting Multiple Data Items.........c.ccocririiririniinieeeeeeeeeens 132

14.1.3. Selecting Input From a LISL........cccoiirieiineneeee e 134

14.1.4. Using a Single Keypress as INPUL.........ccccevveevienieeieesennnn, 135

I S = L 10 0 IR o] o S 137
14.3. Running Scripts from the Command Line..........cccceovverieriinenernnne. 138
14.4. Advanced BeanShell Techniques..........ccoccoveieneii e 139
14.4.1. BeanShell's Convenience SyntaX...........cccceevevveiiveesieeseennn. 139

14.4.2. Special BeanShell Keywords.........cccooevveevveceeseece e 140

14.4.3. Implementing INterfaces........cccocvvrerieriiririnieeeeeeeeeeens 140

14.5. Debugging MaCIOS........cieeiireerieseesieeee st sae e ses 141
14.5.1. Identifying EXCEPLIONS.......ccceviviiiciie e 141

14.5.2. Using the Activity Log as a Tracing ToOl..........ccccceeevrvennene. 142

15. BeanShell Commands.........cccvoveiieieerieeeese et nee s 145
15.1. Output COMMANAS.......coieeierieeieree e nes 145
15.2. File Management Commands.........ccccecoveveeiieciieeieesee e 145
15.3. Component COMMAaNGS........ccivreereeiiese e 146
15.4. Resource Management Commands.........cccverererenenesiesiesiesennes 146
15.5. Script Execution CoOmMmMaNdS..........cccvererirenienineseeeseeeseeeeeenes 147
15.6. BeanShell Object Management Commands..........cccceeeeevveriennen. 147
15.7. Other COMMEANGS.......ccviiiiriririrereseses e 148

Y VAV 1T o [0 T 11 151
16. Introducing the PIugin ARL........cco e 153
17. Implementing a Simple PIUgin.........cccor i 155
17.1. How Plugins are Loaded...........cccceveeieieeiieneeie e 155
17.2. The QuickNotepadPIlugin Class..........ccccevreririniiniinreeeeeeeeee 156
G T I 0 1= o 11 = S 158
17.4. The Property File.......oooviiii et 158
17.5. The Action Catalog.......ccceeveieerieiiese e 160
17.6. The Dockable Window CatalQg...........ccooeeererereriereneneeeeeeeeenes 161
17.7. The QuickNotepad CIass..........ccouririrerinirireeeeeeeeeeee s 162
17.8. The QuickNotepadToolBar Class..........cccoceviveiieeieeiie e, 165
17.9. The QuickNotepadOptionPane Class..........ccccceveerveceereecesiecnene 166
17.10. Plugin DOCUMENTAtIQN.cceririerieriirieeieeiesieeee s 168
17.11. Compiling the PIUQINL........ccoooiiririeeeeeee s 169

18. Plugin Tips and TEChNIQUES.........ccccceeiieiiecieesee e 171
18.1. Bundling Additional Class Libraries..........cccoccvevivenieninscenseeseeene 171

Vii

viii

|. Using JEdit

This part of the user’s guide covers jEdit’s text editing commands, along with basic
usage of macros and plugins.

This part of the user’s guide was written by Slava Pestava@jedit.org ~ >.

Chapter 1. Starting jEdit

1.1. Conventions

Several conventions are used throughout jEdit’'s user interface and this manual. They will
be described here.

When a menu item selection is being described, the top level menu is listed first,
followed by successive levels of submenus, finally followed by the menu item itself. All
menu components are separated by greater-than symbols (“>"). For example,
View>Scrolling>Scroll to Current Line refers to theScroll to Current Line command
contained in th&crolling submenu of th&iew menu.

As with many other applications, menu items that end with ellipsis (...) display dialog
boxes or windows when invoked.

Many jEdit commands can be also be invoked using keystrokes. This speeds up editing
by letting you keep your hands on the keyboard. Not all commands with keyboard
shortcuts are accessible with one key stroke; for example, the keyboard shortcut for
Scroll to Current Line is Control-E Control-J. That is, you must first presSontrol -E,
followed by Control-J.

In many dialog boxes, the default button (it has a heavy outline, or a special border,
depending on the current Swing look and feel) can be activated by prdssieg
Similarly, pressindg=scapewill usually close a dialog box.

Finally, some user interface elements (menus, menu items, buttons) have a certain letter
in their label underlined. Pressing this letter in combination withAlekey activates the
associated user interface widget.

MacOS
JEdit tries to adapt itself to established conventions when running on MacOS.

If you are using MacOS, mentally substitute the modifier keys you see in this
manual as follows:

« ReadControl asCommand
+ ReadAlt asOption

If you only have a one-button mouse, a right button click (to show a context menu,
and so on) can be simulated by holding do@ontrol while clicking. A middle
button click (to insert the most recent selection in the text area) can be simulgted
by holding downOption while clicking.

Chapter 1. Starting jEdit
1.2. Platform-Independent Instructions

Exactly how jEdit is started depends on the operating system; on Unix systems, usually
you would run the “jedit” command at the command line, or select jEdit from a menu; on
Windows, you might use the jEditLauncher package, which is documenteiiion

1.3

If JEdit is started while another copy is already running, control is transferred to the
running copy, and a second instance is not loaded. This saves time and memory if jEdit is
started multiple times. Communication between instances of jEdit is implemented using
TCP/IP sockets; the initial instance is known asgbever and subsequent invocations
areclients

If the -background command line switch is specified, jEdit will continue running and
waiting for client requests even after all editor windows are closed. When run in
background mode, you can open and close jEdit any number of times, only having to
wait for it to start the first time. The downside of this is that jEdit will continue to
consume memory when no windows are open.

For more information about command line switches that control the server feature, see
Section 1.4Note that if you are using jEditLauncher to start jEdit on Windows, this
switch cannot be specified on the MS-DOS prompt command line when starting jEdit; it
must be set as describedSection G.2

Unlike other applications, jEdit automatically loads any files that were open last time in
was used, so you can get back to work immediately, without having to find the files you
are working on first. This feature can be disabled inltbading and Saving pane of

the Utilities>Global Options dialog box; se&ection 6.3

The edit server and security

Not only does the server pick a random TCP port number on startup, it also

requires that clients provide awuthorization keya randomly-generated number
only accessible to processes running on the local machine. So not only will “gad
guys” have to guess a 64-bit integer, they will need to get it right on the first try;
the edit server shuts itself off upon receiving an invalid packet.

In environments that demand absolute security, the edit server can be disabled by
specifying thenoserver command line switch.

1.3. Starting jEdit on Windows

On Windows, jEdit comes witfEditLauncher- an optional package of components that
make it easy to start jEdit, manage its command line settings, and launch files and macro
scripts.

Chapter 1. Starting jEdit

The jEditLauncher package provides three shortcuts for running jEdit: one in the
desktop’sStart menu, a entry in the Programs menu, and a third shortcut on your
desktop. Any of these may be deleted or moved without affecting jEdit’s operation. To
launch jEdit, simply select one of these shortcuts as you would for any Windows
application.

The jEditLauncher package includes a utility for changing the command line parameters
that are stored with jEditLauncher and used every time it runs jEdit. You can change the
Java interpreter used to launch jEdit, the amount of heap memory, the working directory
and other command line parameters. To make these changes Szl ¢eitlit

Parameters from the jEdit group in the Programs menu, or jadit /p from a

command line that has jEdit’s installation directory in its search path. A dialog will
appear that allows you to change and save a new set of command line parameters.

The package also adds menu items to the context or “right-click” menu displayed by the
Windows shell when you click on a file item in the desktop window, a Windows Explorer
window or a standard file selection dialog. The menu entries allow you to open selected
files in jEdIt, starting the application if necessary. It will also allow you to open all files

in a directory with a given extension with a single menu selection. If a BeanShell macro
script with a.bsh extension is selected, the menu includes the option of running that
script within jEdit. If you have the JDiff plugin installed with jEdit, you can also select
two files and have jEdit compare them in a side-by-side graphical display.

For a more detailed description of all features found in the jEditLauncher package, see
Appendix G

1.4. Command Line Usage

On operating systems that support a command line, jEdit can be passed various
arguments to control its behavior.

If you are using jEditLauncher to start jEdit on Windows, only file names can be
specified on the command line; the parameters documented below must be set as
described irSection G.2

When opening files from the command line, a line number or marker to position the caret
on can be specified like so:

$ jedit MyAppletjava +line:10
$ jedit thesis.tex +marker:c

A number of options can also be specified to control several obscure features. They are
listed in the following table.

Option Description

Chapter 1. Starting jEdit

Option

Description

-background

Runs jEdit in background mode. In background mode, the

edit

server will continue listening for client connections even after

all views are closed. Seehapter 1

-nogui

Makes jEdit not open an initial view, and instead only oper
one when the first client connects. Can only be used in
combination with thebackground switch. You can use
this switch to “pre-load” jEdit when you log in to your
computer, for example.

-norestore

Disables automatic restore of previously open files on star
This feature can also be set permanently inltbading and
Saving pane of thdJtilities>Global Options dialog box; see
Section 6.3

tup.

-run=_script

Runs the specified BeanShell script. There can only be one of

these parameters on the command line. S&ation 14.3or
details.

-server

Stores the server port info in the file namsdver inside the

settings directory.

-server= name

Stores the server port info in the file nam&aime. File names
for this parameter are relative to the settings directory.

-noserver

Does not attempt to connect to a running edit server, and (
not start one either. For information about the edit server, ¢
Chapter 1

joes
see

-settings= dir

Loads and saves the user-specific settings in the directory
nameddir , instead of the defaultser.home /jedit . The
directory will be created automatically if it does not exist. b
no effect when connecting to another instance via the edit
server.

las

-nosettings

Starts jEdit without loading user-specific settings. Seetion
6.4.

-noplugins

Causes jEdit to not load any plugins. Seleapter 8Has no

effect when connecting to another instance via the edit server.

-nostartupscripts

Causes jEdit to not run any startup scripts. Seetion 14.2

Has no effect when connecting to another instance via the edit

ng

server.
-usage Shows a brief command line usage message without start
JEdit. This message is also shown if an invalid switch was
specified.
-version Shows the version number without starting jEdit.

Chapter 1. Starting jEdit

Option

Description

Specifies the end of the command line switches. Further
parameters are treated as file names, even if they begin w
dash. Can be used to open files whose names start with a

and so on.

ith a
dash,

Chapter 1. Starting jEdit

Chapter 2. jEdit Basics

2.1. Buffers

A bufferis the jEdit term for an open file. Several buffers can be opened and edited at
once; the combo box above the text area selects the buffer to edit. Different emblems are
displayed next to buffer names in the list, depending the buffer’s state; a red disk is
shown for buffers with unsaved changes, a lock is shown for read-only buffers, and a
spark is shown for new buffers which don’t yet exist on disk.

In addition to the buffer combo box, various commands can also be used to select the
buffer to edit.

View>Go to Previous Buffer (keyboard shortcuControl-Page Up switches to the
previous buffer in the list.

View>Go to Next Buffer (keyboard shortcuControl-Page Dowr) switches to the next
buffer in the list.

View>Go to Recent Buffer (keyboard shortcutControl-) switches to the buffer that
was being edited prior to the current one.

View>Show Buffer Switcher (keyboard shortcutlt-*) has the same effect as clicking
on the buffer switcher combo box.

2.1.1. Memory Usage

The maximum number of open buffers depends on avail#ébla heap memoryWhen

in the Java heap, a buffer uses approximately two and a half times it’s size on disk. This
overhead is caused by the file being stored internally in UnicodeSseton 3.%, and
various meta-data such as line numbers.

The status bar at the bottom of the view displays used and total Java heap memory; see
Section 2.2.2or details. This can give you a rough idea of how much memory the
currently opened files are using. The Java heap grows if it runs out of room, but it only
grows to a certain maximum size, and attempts to allocate Java objects that would grow
the heap beyond this size fail with out-of-memaory errors.

As a result, if the maximum heap size is set too low, opening large files or performing
other memory-intensive operations can fail, even if you have a lot of free system
memory.

To change the heap size on Windows, run “Set jEdit Parameters” from the “jEdit” group
in the Programs menu. Then, in the resulting dialog box, under “Command line options
for Java executable”, change the option that looks like so:

-mx32m

Chapter 2. jEdit Basics
(SeeSection G.Zor more information about the “Set jEdit Parameters” dialog box.)

On Unix, edit thgedit shell script and change the line that looks like so:

JAVA HEAP_SIZE=32

In both cases, replace “32” with the desired heap size, in megabytes.

2.2. Views

A viewis the jEdit term for an editor window. It is possible to have multiple views open
at once, and each view can be split into multiple panes.

View>New View creates a new view.

View>New Plain View creates a new view but without any tool bars or docked windows.
This can be used to open a small, unobtrusive window for taking notes and so on.

View>Close View closes the current view. If only one view is open, closing it will exit
jEdit, unless background mode is on; $&leapter ffor information about starting jEdit
in background mode.

View>Split Horizontally (shortcut:Control-2) splits the view into two text areas, placed
above each other.

View>Split Vertically (shortcut:Control-3) splits the view into two text areas, placed
next to each other.

View>Unsplit Current (shortcut:Control-0) removes the split containing the current
text area only.

View>Unsplit All (shortcut:Control-1) removes all splits from the view.

When a view is split, editing commands operate on the text area that has keyboard focus.
To give a text area keyboard focus, click in it with the mouse, or use the following
commands.

View>Go to Previous Text Area (shortcut:Alt -Page Up shifts keyboard focus to the
previous text area.

View>Go to Next Text Area (shortcut:Alt -Page Down) shifts keyboard focus to the
next text area.

Clicking the text area with the right mouse button displays a popup menu. Both this
menu and the tool bar at the top of the view offer quick mouse-based access to
frequently-used commands. The contents of the tool bar and right-click menu can be
changed in th&Jtilities>Global Options dialog box; se&ection 6.3

Chapter 2. jEdit Basics
2.2.1. Window Docking

Various jEdit and plugin windows can optionally be docked into the view. This can be
configured in thédocking pane of theltilities>Global Options dialog box; se&ection
6.3

When windows are docked into the view, strips of buttons are shown in the left, right,
top, and bottom sides of the text area. Each strip contains buttons for the windows
docked in that location, as well as a close box. Clicking a window’s button shows that
dockable window; clicking the close box hides the window again.

The commands in théiew>Docking menu move keyboard focus between docking
areas.

For power users

Each dockable has three commands associated with it; one is part of the menu bar
and opens the dockable. The other two commands are:

- Window Name (Toggle) - opens the dockable window if it is hidden, and
hide it if its already open.

- Window Name (New Floating Instance) - opens a new instance of the
dockable in a floating window, regardless of the docking configuration.

Another way to open a new floating instance of a window that is already
docked is to right-click on the appropriate strip of buttons; this shows a nenu
from which you can choose to open a new floating instance.

This can be used to view two different directories side-by-side in two file
system browser windows, for example.

These commands cannot be invoked from the menu bar. However, they can he
added to the tool bar or context menu, and given keyboard shortcutSesten
6.3

2.2.2. The Status Bar

Thestatus barat the bottom of the view consists of the following components, from left
to right:

« The line number containing the caret

« The column position of the caret, with the leftmost column being 1.

Chapter 2. jEdit Basics

10

If the line contains tabs, thide position (where a hard tab is counted as one
column) is shown first, followed by th&creenposition (where each tab counts for
the number of columns until the next tab stop).

Double-clicking on the caret location indicator displays Hu#t>Go to Line dialog
box; seeSection 4.6

« A message area where various prompts and status messages are shown.

- The current buffer’s edit mode, fold mode, and character encoding. Double-clicking
one of these displays thétilities>Buffer Options dialog box. For more
information about these settings, see:

- Section 6.1
- Section 5.1
- Section 5.6
- Section 3.5

- A set of flags which indicate various editor features and settings. Clicking each flag
will toggle the feature in question; hovering the mouse over a flag will show a tool
tip with an explanation:

« Word wrap - seé&ection 4.8

« Multiple selection mode - seé®ection 4.2.2
« Overwrite mode - se8ection 4.3

- Line separator - seBection 3.4

« A Java heap memory usage indicator, that shows used and total heap memory, in
megabytes. Double-clicking this indicator opens the
Utilities>Troubleshooting>Memory Status dialog box.

The content of the status bar can be customized irsthtus Bar pane of the
Utilities>Global Options dialog box.

For power users

To quickly toggle the line separator or word wrap settings without having to use
the mouse, assign keyboard shortcuts tolibggle Line Separator andToggle
Word Wrap commands in th&hortcuts pane of theJtilities>Global Options
dialog box.

Chapter 2. jEdit Basics
2.3. The Text Area and Gutter

Text editing takes place in the text area. It behaves in a similar manner to many Windows
and MacOS editors; the few unique features will be described in this section.

The text area will automatically scroll up or down if text editing is performed closer than
three lines from the top or bottom of the text area. This feature is celéadric scrolling

To aid in locating the caret, the current line is drawn with a different background color.
To make it clear which lines end with white space, end of line markers are drawn at the
end of each line.

The strip on the left of the text area is calleduatter. The gutter displays marker and
register locations; it will also display line numbers if thieew>Line Numbers
(shortcut:Control-E Control-T) command is invoked.

Many text area and gutter settings can be customized to suit your tastelexth®rea
andGutter panes of théJtilities>Global Options dialog box; se&ection 6.3

11

Chapter 2. jEdit Basics

12

Chapter 3. Working With Files

3.1. Creating New Files

File>New (shortcut:Control-N) opens a new, empty, buffer. Another way to create a
new file is to specify a non-existent file name when starting jEdit on the command line.
A new file will be created on disk when the buffer is saved for the first time.

3.2. Opening Files

File>Open (shortcut:Control-O) displays a file system browser dialog box and loads
the specified file into a new buffer.

Multiple files can be opened at once by holding da@amtrol while clicking on them in
the file system browser. The file system browser supports auto-completion; typing the
first few characters of a listed file name will select the file.

More advanced features of the file system browser are descritgzttion 3.6

File>Insert displays a file system browser dialog box and inserts the contents of the
specified file at the caret position.

TheFile>Recent Files menu lists recently viewed files. When a recent file is opened,

the caret is automatically moved to its previous location in that file. The number of

recent files to remember can be changed and caret position saving can be disabled in the
General pane of theJtilities>Global Options dialog box; se&ection 6.3

The Utilities>Current Directory menu lists all files and directories in the current
buffer’s directory. Selecting a file opens it in a buffer for editing; selecting a directory
opens it in the file system browser (s&ection 3.%.

Note: Files that you do not have write access to are opened in read-only mode,
where editing is not permitted.

Tip: jEdit supports transparent editing of GZipped files; if a file begins with the
GZip “magic number”, it is automatically decompressed before loading and
compressed when saving. To compress an existing file, you need to change a
setting in the Utilities>Buffer Options dialog box; see Section 6.1 for details.

13

Chapter 3. Working With Files
3.3. Saving Files

14

Changed made in a buffer do not affect the file on disk until the buffeaved
File>Save (shortcut:Control-S) saves the current buffer to disk.

File>Save As renames the buffer and saves it in a new location. Note that using this
command to save over another open buffer will close the other buffer, to stop two buffers
from being able to share the same path name.

File>Save a Copy As saves the buffer to different location but does not rename it., but
doesn’t rename the buffer, and doesn't clear the “modified” flag. Note that using this
command to save over another open buffer will automatically reload the other buffer.

File>Save All (shortcut:Control-E Control-S) saves all open buffers to disk, asking for
confirmation first.

Two-stage save

To prevent data loss in the unlikely case that jEdit should crash in the middle pf
saving afile, files are first saved to a temporary file natigghame #save# . If
this operation is successful, the original file is replaced with the temporary filg.

However, in some situations, this behavior is undesirable. For example, on Unix
saving files this way will result in the owner and group of the file being reset. If this
bothers you, you can disable this so-called “two-stage save” ihdhading and
Saving pane of theUtilities>Global Options dialog box.

3.3.1. Autosave and Crash Recovery

The autosave feature protects your work from computer crashes and such. Every 30
seconds, all buffers with unsaved changes are written out to their respective file names,
enclosed in hash (“#”) characters. For examptegram.c will be autosaved to

#program.c#

Saving a buffer using one of the commands in the previous section automatically deletes
the autosave file, so they will only ever be visible in the unlikely event of a jEdit (or
operating system) crash.

If an autosave file is found while a buffer is being loaded, jEdit will offer to recover the
autosaved data.

The autosave interval can be changed inltbading and Saving pane of the
Utilities>Global Options dialog box; se&ection 6.3

Chapter 3. Working With Files
3.3.2. Backups

The backup feature can be used to roll back to the previous version of a file after changes
were made. When a buffer is saved for the first time after being opened, its original
contents are “backed up” under a different file name.

The behavior of the backup feature is specified intdeing and Saving pane of the
Utilities>Global Options dialog box.

The default behavior is to back up the original contents to the buffer’s file name suffixed
with a tilde (“~"). For example, a file nameghper.tex is backed up t@aper.tex~

TheMax number of backups setting determines the number of backups to save.
Setting this to zero disables the backup feature. Settings this to more than one adds
numbered suffixes to file names. By default only one backup is saved.

- If the Backup directory setting is non-empty, backups are saved in that location.
Otherwise, they are saved in the same directory as the original file. The latter is the
default behavior.

- TheBackup filename prefix setting is the prefix that is added to the backed-up
file name. This is empty by default.

- TheBackup filename suffix setting is the suffix that is added to the backed-up file
name. This is “~” by default.

» Backups can optionally be saved in a specified backup directory, instead of the
directory of the original file. This can reduce clutter.

- TheBackup on every save option is off by default, which results in a backup
only being created the first time a buffer is saved in an editing session. If switched
on, backups are created every time a buffer is saved.

3.4. Line Separators

Unix systems use newlines () to mark line endings in text files. The MacOS uses
carriage-returnsi(). Windows uses a carriage-return followed by a newline ().
jEdit can read and write files in all three formats.

The line separator used by the in-memory representation of file contents is always the
newline character. When a file is being loaded, the line separator used in the file on disk
is stored in a per-buffer property, and all line-endings are converted to newline characters
for the in-memory representation. When the buffer is consequently saved, the value of
the property replaces newline characters when the buffer is saved to disk. The line
separator used by a buffer can be changed irutiilgies>Buffer Options dialog box.
SeeSection 6.1

15

Chapter 3. Working With Files

By default, new files are saved with your operating system'’s native line separator. This
can be changed in tHevading and Saving pane of theJtilities>Global Options
dialog box; seé&ection 6.3Note that changing this setting has no effect on existing files.

3.5. Character Encodings

16

An encoding specifies a way of storing characters on disk. jEdit can use any encoding
supported by the Java platform. The current buffer’s encoding is shown in the status bar.

The default encoding, used to load and save files for which no other encoding is
specified, can be set in th®ading and Saving pane of thdJtilities>Global Options
dialog box.

Unless you change the default encoding, jEdit will use your operating system’s native
default;MacRomanon the MacOS¢Cp1252 on Windows, an@859_1 on Unix.

To open a file stored using an encoding other than the default, select the encoding from
the Commands>Encoding menu of the file system browser before opening the file.

The encoding to use when saving a specific buffer can be set lotiltees>Buffer
Options dialog box.

If a file is opened without an explicit encoding specified and it appears in the recent file
list, JEdit will use the encoding last used when working with that file; otherwise the
default encoding will be used.

Unfortunately, there is no way to obtain a list of all supported encodings using the Java
APIs, so jEdit only lists a few of the most common encodings; however, any other
supported encoding name can be typed in.

3.5.1. Commonly Used Encodings

The most frequently-used character encoding is ASCII, or “American Standard Code for
Information Interchange”. ASCII encodes Latin letters used in English, in addition to
numbers and a range of punctuation characters. The ASCII character set consists of 127
characters, and it is unsuitable for anything but English text (and other file types which
only use English characters, like most program source). jEdit will load and save files as
ASCII if the ASCII encoding is used.

Because ASCII is unsuitable for international use, most operating systems use an 8-bit
extension of ASCII, with the first 127 characters remaining the same, and the rest used to
encode accents, umlauts, and various less frequently used typographical marks. The
three major operating systems all extend ASCII in a different way. Files written by
Macintosh programs can be read usingMaeRomanencoding; Windows text files are
usually stored asp1252. In the Unix world, thesg59_1 character encoding has found
widespread usage.

Chapter 3. Working With Files

On Windows, various other encodings, which are knowoae pagesnd are identified
by number, are used to store non-English text. The corresponding Java encoding nhame is
Cp followed by the code page number.

Many common cross-platform international character sets are also suppatedy for
Russian textigs andGBKfor Chinese, andJis for Japanese.

16-bit Unicode files are automatically detected as such when opened, regardless of the
encoding specified by the user. The closely-relategs encoding, which uses
variable-length characters, is also supported, however UTF8 filesoaaeito-detected.

3.6. The File System Browser

Utilities>File System Browser displays the file system browser. By default, the file
system browser is shown in a floating window. It can be set to dock into the view in the
Docking pane of theJtilities>Global Options dialog box; se&ection 2.2.1

The file system browser can be customized inutiéties>Global Options dialog box.

3.6.1. Navigating the File System

The directory to browse is specified in tRath text field. Clicking the mouse in the text
field automatically selects its contents allowing a new path to be quickly typed in. If a
relative path is entered, it will be resolved relative to the current path. This text field
remembers previously entered strings; 8ppendix C The same list of previously
browsed directories is also listed in tbiilities>Recent Directories menu; selecting
one opens it in the file system browser.

To browse a listed directory, double-click it (or if you have a three-button mouse, you
can click the middle mouse button as well). Alternatively, click the disclosure widget
next to a directory to list its contents in place.

To browse higher up in the directory hierarchy, double-click one of the parent directories
in the parent directory list.

Files and directories in the file list are shown in different colors depending on what glob
patterns their names match. The patterns and colors can be customizeéile the
System Browser>Colors pane of theJtilities>Global Options dialog box.

To see a specific set of files only (for example, those whose names enghwith),
enter a glob pattern in théilter text field. This text fields remembers previously entered
strings.

SeeAppendix Dfor information about glob patterns.

17

Chapter 3. Working With Files

18

Unopened files can be opened by double-clicking (or by clicking the middle mouse
button). Open files have their names underlined, and can be selected by single-clicking.
Holding downShift while opening a file will open it in a new view.

Clicking a file or directory with the right mouse button displays a popup menu
containing various commands.

Tip: The file list sorting algorithm used in jEdit handles numbers in file names in an
intelligent manner. For example, a file named section10.xml will be placed after a
file named sections.xml . A conventional letter-by-letter sort would have placed
these two files in the wrong order.

3.6.2. The Tool Bar

The file system browser has a tool bar containing a number of buttons. Each item in the
Commands menu (described below) excephow Hidden Files andEncoding has a
corresponding tool bar button.

3.6.3. The Commands Menu

Clicking theCommands button displays a menu containing the following items:

- Parent Directory - moves up in the directory hierarchy.
« Reload Directory - reloads the file list from disk.

« Root Directory - on Unix, goes to the root directory). On Windows and MacOS
X, lists all mounted drives and network shares.

- Home Directory - displays your home directory.

- Directory of Current Buffer - displays the directory containing the currently active
buffer.

+ New File - opens new, empty, buffer in the current directory. The file will not
actually be created on disk until the buffer is saved.

- New Directory - creates a new directory after prompting for the desired name.

« Search in Directory - displays the search and replace dialog box set to search all
files in the current directory. If a file is selected when this command is invoked, its
extension becomes the file name filter for the search; otherwise, the file name filter
entered in the browser is used. Setion 4.1Zor details.

- Show Hidden Files - toggles if hidden files are to be shown in the file list.

Chapter 3. Working With Files

- Encoding - a menu for selecting the character encoding to use when opening files.
SeeSection 3.5

3.6.4. The Plugins Menu

Clicking thePlugins button displays a menu containing plugin commands. For
information about plugins, sééhapter 8

3.6.5. The Favorites Menu

Clicking theFavorites button displays a menu showing all directories in the favorites
list. To add the selected directory to the favorites (or the current directory, if there is no
selection), invokeAdd to Favorites from this menu. To remove a directory from the
favorites, invokeEdit Favorites, which will show the favorites list in the file system

view; then selecDelete from the appropriate directory’s right-click menu.

3.6.6. Keyboard Shortcuts

The file system browser can be navigated from the keyboard:

- Enter - opens the currently selected file or directory.

- Shift-Enter - opens the currently selected file in a new view, or the currently
selected directory in a new file system browser window.

- Left - goes to the current directory’s parent.

« Up - selects previous file in list.

- Down - selects next file in list.

- [- displays the root directory.

« ~-displays your home directory.

- - -displays the directory containing the current buffer.

- Typing the first few characters of a file’s name will select that file.

The file system tree must have keyboard focus for these shortcuts to work. They are not
active in thePath or Filter text fields.

19

Chapter 3. Working With Files
3.7. Reloading From Disk

If an open buffer is modified on disk by another application, a warning dialog box is
displayed, offering to either continue editing and lose changes made by the other
application, or to reload the buffer from disk and lose any unsaved changes made in
JEdit. This warning dialog box can be disabled in theneral pane of the
Utilities>Global Options dialog box; se&ection 6.3

File>Reload can be used to reload the current buffer from disk at any other time; a
confirmation dialog box will be displayed first if the buffer has unsaved changes.

File>Reload All discards unsaved changes in all open buffers and reload them from
disk, asking for confirmation first.

3.8. Multi-Threaded 1/0

To improve responsiveness and perceived performance, jEdit executes all buffer
input/output operations asynchronously. While 1/O is in progress, the status bar displays
the number of remaining I/O operations. TW#lities>Troubleshooting>1/O Progress
Monitor command displays a window with more detailed status information and

progress meters. This window is floating by default, but it can be set to dock into the
view in theDocking pane of theJtilities>Global Options dialog box; se&ection 2.2.1

I/O requests can also be aborted in this window, however note that aborting a buffer save
can result in data loss.

3.9. Printing

20

File>Print (shortcut:Control -P) prints the current buffer.

File>Page Setup displays a dialog box for changing your operating system’s print
settings, such as margins, page size, print quality, and so on.

The print output can be customized in tgnting pane of theltilities>Global Options
dialog box. The following settings can be changed:

The font to use when printing.

- If a header with the file name should be printed on each page.

- If a footer with the page number and current date should be printed on each page.
« If line numbers should be printed.

- If the output should be color or black and white.

« The tab size to use when printing - this will usually be less than the text area tab
size, to conserve space in the printed output.

Chapter 3. Working With Files
3.10. Closing Files and Exiting jEdit

File>Close (shortcut:Control-W) closes the current buffer. If it has unsaved changes,
jEdit will ask if they should be saved first.

File>Close All (shortcut:Control-E Control-W) closes all buffers. If any buffers have
unsaved changes, they will be listed in a dialog box where they can be saved or
discarded. In the dialog box, multiple buffers to operate on at once can be selected by
clicking on them in the list while holding dow@ontrol. After all buffers have been
closed, a new untitled buffer is opened.

File>EXxit (shortcut:Control-Q) will completely exit jJEdit, prompting if unsaved buffers
should be saved first.

21

Chapter 3. Working With Files

22

Chapter 4. Editing Text

4.1. Moving The Caret

The simplest way to move the caret is to click the mouse at the desired location in the
text area. The caret can also be moved using the keyboard.

ThelLeft, Right, Up andDown keys move the caret in the respective direction, and the
Page UpandPage Downkeys move the caret up and down one screenful, respectively.

When pressed once, thiome key moves the caret to the first non-whitespace character
of the current screen line. Pressing it a second time moves the caret to the beginning of
the current buffer line. Pressing it a third time moves the caret to the first visible line.

TheEnd key behaves in a similar manner, going to the last non-whitespace character of
the current screen line, the end of the current buffer line, and finally to the last visible
line.

If soft wrap is disabled, a “screen line” is the same as a “buffer line”. If soft wrap is
enabled, a screen line is a section of a newline-delimited buffer line that fits within the
wrap margin width. Se8ection 4.8

Control-Home andControl-End move the caret to the beginning and end of the buffer,
respectively.

More advanced caret movement is covere8attion 4.5Section 4.6andSection 4.7

23

Chapter 4. Editing Text

The Home and End keys

If you prefer more traditional behavior for titome andEnd keys, you can
reassign the respective keyboard shortcuts irBimertcuts pane of the
Utilities>Global Options.

By default, the shortcuts are assigned as follows:

Homeis bound toSmart Home.

End is bound toSmart End.

Shift-Homeis bound toSelect to Smart Home Position.

- Shift-End is bound toSelect to Smart End Position.

However you can rebind them to anything you want, for example, various
combinations of the following, or indeed any other command or macro:

- Go to Start/End of White Space ,

- Go to Start/End of Line,

- Go to Start/End of Buffer,

- Select to Start/End of White Space ,
- Select to Start/End of Line,

- Select to Start/End of Buffer,

For information about changing keyboard shortcuts,3es&ion 6.3

4.2. Selecting Text

24

A selections a a block of text marked for further manipulation. jEdit supports both range
and rectangular selections, and several chunks of text can be selected simultaneously.

Dragging the mouse creates a range selection from where the mouse was pressed to
where it was released. Holding dov@hift while clicking a location in the buffer will
create a selection from the caret position to the clicked location.

Holding downShift in addition to a caret movement kelygft, Up, Home, etc) will
extend a selection in the specified direction.

Edit>Select All (shortcut:Control-A) selects the entire buffer.

Edit>Select None>Select None (shortcut:Escapg deactivates the selection.

Chapter 4. Editing Text
4.2.1. Rectangular Selection

Dragging with theControl key held down will create a rectangular selection. Holding
down Shift andControl while clicking a location in the buffer will create a rectangular
selection from the caret position to the clicked location.

It is possible to select a rectangle with zero width but non-zero height. This can be used
to insert a new column between two existing columns, for example. Such zero-width
selections are shown as a thin vertical line.

Rectangles can be deleted, copied, pasted, and operated on using ordinary editing
commands.

Note: Rectangular selections are implemented using character offsets, not
absolute screen positions, so they might not behave as you might expect if a
proportional-width font is being used or if soft wrap is enabled. The text area font
can be changed in the Text Area pane of the Utilities>Global Options dialog box.
For information about soft wrap, see Section 4.8.

4.2.2. Multiple Selection

Edit>More Selection>Multiple Selection (keyboard shortcutControl-\) turns

multiple selection mode on and off. In multiple selection mode, multiple fragments of
text can be selected and operated on simultaneously, and the caret can be moved
independently of the selection. The status bar indicates if multiple selection mode is
active; seesection 2.2.2

Various jEdit commands behave differently with multiple selections:

- Commands that copy text place the contents of each selection, separated by line
breaks, in the specified register.

- Commands that insert (or paste) text replace each selection with the entire text that
is being inserted.

- Commands that filter text (such 8paces to Tabs, Range Comment, Replace
in Selection, and so on) behave as if each block was selected independently, and
the command invoked on each in turn.

« Line-based commands (suchSisift Indent Left, Shift Indent Right, andLine
Comment) operate on each line that contains at least one selection.

» Caret movement commands that would normally deactivate the selection (such as
the arrow keys, whil&hift is not being held down), move the caret, leaving the
selection as-is.

25

Chapter 4. Editing Text

- Some older plugins may not support multiple selection at all.

Edit>More Selection>Select None (shortcut:Escapg deactivates the selection
containing the caret, if there is one. Otherwise it deactivates all active selections.

Edit>More Selection>Invert Selection (shortcut:Control-E I) selects a set of text
chunks such that all text that was formerly part of a selection is now unselected, and all
text that wasn't, is selected.

Note: Deactivating multiple selection mode while multiple blocks of text are
selected will leave the selections in place, but you will not be able to add new
selections until multiple selection mode is reactivated.

4.3. Inserting and Deleting Text

Text entered at the keyboard is inserted into the buffer. If overwrite mode is on, one
character is deleted from in front of the caret position for every character that is inserted.
To activate overwrite mode, preBssert. The caret is drawn as horizontal line while in
overwrite mode. The status bar also indicates if overwrite mode is activ&esdion

2.2.2for details.

Inserting text while there is a selection will replace the selection with the inserted text.

When inserting text, keep in mind that tlhab andEnter keys might not behave entirely
like you expect because of various indentation featuresSsegon 5.Zor details.

The simplest way to delete text is with tBackspaceandDeletekeys. If nothing is
selected, they delete the character before or after the caret, respectively. If a selection
exists, both delete the selection.

More advanced deletion commands are describ&kittion 4.5Section 4.6andSection
4.7.

4.4. Undo and Redo

26

Edit>Undo (shortcut:Control-Z) reverses the most recent editing command. For
example, this can be used to restore unintentionally deleted text. More complicated
operations, such as a search and replace, can also be undone. By default, information
about the last 100 edits is retained; older edits cannot be undone. The maximum number
of undos can be changed in tkditing pane of theJtilities>Global Options dialog box.

Chapter 4. Editing Text

If you undo too many changeBdit>Redo (shortcut:Control-R) can restore the
changes again. For example, if some text was inseldadp will remove it from the
buffer. Redo will insert it again.

4.5. Working With Words

Control-Left andControl-Right moves the caret a word at a time. Holding doBmft
in addition to the above extends the selection a word at a time.

A single word can be selected by double-clicking with the mouse, or using the
Edit>More Selection>Select Word command (shortcuControl-E W). A selection
that begins and ends on word boundaries can be created by double-clicking and dragging.

Control-BackspaceandControl-Deletedeletes the word before or after the caret,
respectively.

Edit>Word Count displays a dialog box with the number of characters, words and lines
in the current buffer.

Edit>Complete Word (shortcut:Control-B) locates possible completions for the word

at the caret, first by looking in the current edit mode’s syntax highlighting keyword list,
and then in the current buffer for words that begin with the word at the caret. This serves
as a very basic code completion feature.

If there is only one completion, it will be inserted into the buffer immediately. If multiple
completions were found, they will be listed in a popup below the caret position. To insert
a completion from the list, either click it with the mouse, or select it usindJipand

Down keys and presEnter. To close the popup without inserting a completion, press
Escape Typing while the popup is visible will automatically update the popup and
narrow the set of completions as necessary.

For power users

The default behavior of th€ontrol-Left andControl-Right commands is to stop
both at the beginning and the end of each word. However this can be changef by
remapping these keystrokes to alternative actions whose names er{&atith

Whitespace) in the Shortcuts pane of theJtilities>Global Options dialog box.

4.6. Working With Lines

An entire line can be selected by triple-clicking with the mouse, or using thie-More
Selection>Select Line command (shortcuControl-E L). A selection that begins and
ends on line boundaries can be created by triple-clicking and dragging.

27

Chapter 4. Editing Text

Edit>Go to Line (shortcut:Control-L) prompts for a line number and moves the caret
there.

Edit>More Selection>Select Line Range (shortcutControl-E Control-L) prompts
for two line numbers and selects all text between them.

Edit>Text>Delete Line (shortcut:Control-D) deletes the current line.

Edit>Text>Delete to Start Of Line (shortcut:Control-Shift-Backspacé deletes all
text from the start of the current line to the caret.

Edit>Text>Delete to End Of Line (shortcut:Control-Shift-Delete deletes all text
from the caret to the end of the current line.

Edit>Text>Join Lines (shortcut:Control-J) removes any whitespace from the start of
the next line and joins it with the current line. The caret is moved to the position where
the two lines were joined. For example, if you inval@n Lines with the caret on the

first line of the following Java code:

new Widget(Foo
.createDefaultFoo());

It will be changed to:

new Widget(Foo.createDefaultFoo());

4.7. Working With Paragraphs

28

As far as jEdit is concerned, “paragraphs” are delimited by double newlines. This is also
how TeX defines a paragraph. Note that jEdit doesn’t parse HTML files for “<P>" tags,
nor does it support paragraphs delimited only by a leading indent.

Control-Up andControl-Down move the caret to the previous and next paragraph,
respectively. Holding dowhift in addition to the above extends the selection a
paragraph at a time.

Edit>More Selection>Select Paragraph (shortcut:Control-E P) selects the paragraph
containing the caret.

Edit>Text>Format Paragraph (shortcut:Control-E F) splits and joins lines in the
current paragraph to make it fit within the wrap column position. Seeion 4.8or
information and word wrap and changing the wrap column.

Edit>Text>Delete Paragraph (shortcut:Control-E D) deletes the paragraph containing
the caret.

Chapter 4. Editing Text
4.8. Wrapping Long Lines

Theword wrapfeature splits lines at word boundaries in order to fit text within a
specified wrap margin. The wrap margin position is indicated in the text are as a faint
blue vertical line. There are two “wrap modes”, “soft” and “hard”; they are described
below. The wrap mode can be changed in one of the following ways:

« On a global or mode-specific basis in tRditing pane of theltilities>Global
Options dialog box. Seé&ection 6.3

« In the current buffer for the duration of the editing session inUhities>Buffer
Options dialog box. Se&ection 6.1

« In the current buffer for future editing sessions by placing the following in one of
the first or last 10 lines of the buffer, whameode is either “none”, “soft” or “hard”,
andcolumn is the desired wrap margin:

:‘wrap= mode:maxLineLen= column :

4.8.1. Soft Wrap

In soft wrap mode, lines are automatically wrapped when displayed on screen. Newlines
are not inserted at the wrap positions, and the wrapping is automatically updated when
text is inserted or removed.

If end of line markers are enabled in thext Area pane of thdJtilities>Global Options
dialog box, a colon (“:") is painted at the end of wrapped lines.

Note that since jEdit only scrolls one whole “physical” (newline-delimited) line at a
time, having lines wrapped into more sections than visible in the text area will render
portions of the buffer inaccessible.

Tip: If you enable soft wrap and set the wrap margin to 0, text will be wrapped to
the width of the text area.

4.8.2. Hard Wrap

In hard wrap mode, inserting text at the end of a line will automatically break the line if
it extends beyond the wrap margin. Inserting or removing text in the middle of a line has
no effect, however text can be re-wrapped usinggt#>Text>Format Paragraph
command. Se8ection 4.7

29

Chapter 4. Editing Text

Hard wrap is implemented using character offsets, not screen positions, so it might not
behave like you expect if a proportional-width font is being used. The text area font can
be changed in th&ext Area pane of theltilities>Global Options dialog box.

4.9. Scrolling

30

View>Scrolling>Scroll to Current Line (shortcut:Control-E Control-J) scrolls the
text area in order to make the caret visible, if necessary. It does nothing if the caret is
already visible.

View>Scrolling>Center Caret on Screen (shortcut:Control-E Control-1) moves the
caret to the line in the middle of the screen.

View>Scrolling>Line Scroll Up (shortcut:Control-") scrolls the text area up by one
line.

View>Scrolling>Line Scroll Down (shortcut:Control-/) scrolls the text area down by
one line.

View>Scrolling>Page Scroll Up (shortcut:Alt-") scrolls the text area up by one
screenful.

View>Scrolling>Page Scroll Down (shortcut:Alt-/) scrolls the text area down by one
screenful.

The above scrolling commands differ from the caret movement commands in that they
don’t actually move the caret; they just change the scroll bar position.

View>Scrolling>Synchronized Scrolling is a check box menu item. If it is selected,
scrolling one text area in a split view will scroll all other text areas in the view. Has no
effect if the view is not split.

Mouse Wheel Scrolling

If you have a mouse with a scroll wheel and are running Java 2 version 1.4, ypu
can use the wheel to scroll up and down in the text area. Various modifier key
change the action of the wheel:

[92)

Shift - scrolls an entire page at a time.

Control - scrolls a single line at a time.

Alt - moves the caret up and down instead of scrolling.

Alt-Shift - extends the selection up and down instead of scrolling.

Chapter 4. Editing Text
4.10. Transferring Text

JEdit provides a rich set of commands for moving and copying text. Commands are
provided for moving chunks of text from buffers tegistersand vice-versa. A register is

a holding area for an arbitrary length of text, with a single-character name. The system
clipboard is mapped to the register nanse¢Edit offers clipboard-manipulation
commands similar to those found in other applications, in addition to a more flexible set
of commands for working with registers directly.

4.10.1. The Clipboard

Edit>Cut (shortcut:Control-X) places the selected text in the clipboard and removes it
from the buffer.

Edit>Copy (shortcut:Control-C) places the selected text in the clipboard and leaves it
in the buffer.

Edit>Paste (shortcut:Control-V) inserts the clipboard contents in place of the selection
(or at the caret position, if there is no selection).

The Cut andCopy commands replace the old clipboard contents with the selected text.
There are two alternative commands which add the selection at the end of the existing
clipboard contents, instead of replacing it.

Edit>More Clipboard>Cut Append (shortcut:Control-E Control-U) appends the
selected text to the clipboard, then removes it from the buffer. After this command has
been invoked, the clipboard will consist of the former clipboard contents, followed by a
newline, followed by the selected text.

Edit>More Clipboard>Copy Append (shortcut:Control-E Control-A) is the same as
Cut Append except it does not remove the selection from the buffer.

4.10.2. Quick Copy

Quick copy is disabled by default, but it can be enabled inTd Area pane of the
Utilities>Global Options dialog box. When quick copy is enabled, clicking the middle
mouse button in the text area inserts the most recently selected text at the clicked
location. If you only have a two-button mouse, you can click the left mouse button while
holding downAlt instead of middle-clicking.

This is implemented by storing the most recently selected text in the register samed

If jEdit is being run under Java 2 version 1.4 on Unix, you will be able to transfer text
with other X Windows applications using the quick copy feature. On other platforms and
Java versions, the contents of the quick copy register are only accessible from within
JEdit.

31

Chapter 4. Editing Text

Also, dragging with the middle mouse button creates a selection without moving the
caret. As soon as the mouse button is released, the selected text is inserted at the caret
position and the selection is deactivated. A message is shown in the status bar while text
is being selected to remind you that this is not an ordinary selection.

4.10.3. General Register Commands

These commands require more keystrokes than the two methods shown above, but they
can operate on any register, allowing an arbitrary number of text chunks to be retained at
atime.

Each command prompts for a single-character register name to be entered after being
invoked. Pressingscapeinstead of specifying a register name will cancel the operation.

Edit>More Clipboard>Cut to Register (shortcut:Control-R Control-X key) stores
the selected text in the specified register, removing it from the buffer.

Edit>More Clipboard>Copy to Register (shortcut:Control-R Control-C key) stores
the selected text in the specified register, leaving it in the buffer.

Edit>More Clipboard>Cut Append to Register (shortcut:Control-R Control-U
key) adds the selected text to the existing contents of the specified register, and removes
it from the buffer.

Edit>More Clipboard>Copy Append to Register (shortcut:Control-R Control-A
key) adds the selected text to the existing contents of the specified register, without
removing it from the buffer.

Edit>More Clipboard>Paste from Register (shortcut:Control-R Control-V key)
replaces the selection with the contents of the specified register.

The last two commands display dialog boxes instead of prompting for a register name.

Edit>More Clipboard>Paste Previous (shortcut:Control-E Control-V) displays a
dialog box listing recently copied and pasted text. By default, the last 20 strings are
remembered; this can be changed in@eneral pane of theJtilities>Global Options
dialog box; se&ection 6.3

Edit>More Clipboard>View Registers displays a dialog box for viewing the contents
of registers (including the clipboard).

4.11. Markers

A markeris a pointer to a specific location within a buffer, which may or may not have a
single-characteshortcutassociated with it. Markers are persistent; they are saved to
. filename .marks , wherefilename is the name of the buffer. (The dot prefix makes the

32

Chapter 4. Editing Text

markers file hidden on Unix systems.) Marker saving can be disabled Lrotding
and Saving pane of thdJtilities>Global Options dialog box; se&ection 6.3

Markers>Add/Remove Marker (shortcut:Control-E Control-M) adds a marker

without a shortcut pointing to the current line. If a marker is already set on the current
line, the marker is removed instead. If text is selected, markers are added to the first and
last line of each selection.

Markers>Remove All Markers removes all markers set in the current buffer.

Markers are listed in th#arkers menu; selecting a marker from this menu will move
the caret to its location.

Markers>Go to Previous Marker (shortcut:Control-E Control-,) goes to the marker
immediately before the caret position.

Markers>Go to Next Marker (shortcut:Control-E Control-.) goes to the marker
immediately after the caret position.

Markers with shortcuts allow for quicker keyboard-based navigation. The following
commands all prompt for a single-character shortcut when invoked. Préssiage
instead of specifying a shortcut will cancel the operation.

Markers>Add Marker With Shortcut (shortcut:Control-T key) adds a marker with
the specified shortcut. If marker with that shortcut already exists, it will remain in the
buffer but lose its shortcut.

Markers>Go to Marker (shortcut:Control-Y key) moves the caret to the location of
the marker with the specified shortcut.

Markers>Select to Marker (shortcut:Control-U key) creates a selection from the
caret location to the marker with the specified shortcut.

Markers>Swap Caret and Marker (shortcut:Control-U key) moves the caret to the
location of the marker with the specified shortcut, and reassigns the marker to point to
the former caret location. Invoke this command multiple times to flip between two
locations in the buffer.

Lines which contain markers are indicated in the gutter with a highlight. Moving the
mouse over the highlight displays a tool tip showing the marker’s shortcut, if it has one.
SeeSection 2.3or information about the gutter.

4.12. Search and Replace

4.12.1. Searching For Text

Search>Find (shortcut:Control-F) displays the search and replace dialog box.

33

Chapter 4. Editing Text

34

The search string can be entered in 8®arch for text field. This text field remembers
previously entered strings; sé@pendix Cfor details.

If text was selected in the text area and the selection does not span a line break, the
selected text becomes the default search string.

If the selection spans a line break, thearch in Selection andHyperSearch buttons
will be pre-selected, and the search string field will be initially blank. (Seetion 4.12.3
for information about the HyperSearch feature.)

Selecting thégnore case check box makes the search case insensitive - for example,
searching for “Hello” will match “hello”, “HELLO” and “HeLIO".

Selecting th&Regular expressions check box allows a regular expression to be used in
the search string. Regular expressions can match inexact sequences of text that optionally
span more than one line. Regular expression syntax is descridggpendix E

TheBackward andForward buttons specify the search direction. Note that regular
expressions can only be used when searching in a forward direction.

Clicking Find will locate the next occurrence of the search string (or previous
occurrence, if searching backwards). If eep dialog check box is selected, the dialog
box will remain open after the search string has been located; otherwise, it will close.

If no occurrences could be found and thato wrap check box is selected, the search
will automatically restart from the beginning of the buffer (or the end, if searching
backwards). IfAuto wrap is not selected, a confirmation dialog box is shown before
restarting the search.

Search>Find Next (shortcut:Control-G) locates the next occurrence of the most recent
search string without displaying the search and replace dialog box.

Search>Find Previous (shortcut:Control-H) locates the previous occurrence of the
most recent search string without displaying the search and replace dialog box.

4.12.2. Replacing Text

The replace string text field of the search dialog remembers previously entered strings;
seeAppendix Cfor details.

Clicking Replace & Find will perform a replacement in the current selection and locate
the next occurrence of the search string. Clickiteplace All will replace all

occurrences of the search string with the replacement string in the current search scope
(which is either the selection, the current buffer, or a set of buffers, as specified in the
search and replace dialog box).

Occurrences of the search string can be replaced with either a replacement string, or the
return value of a BeanShell script snippet. Two radio buttons in the search and replace

Chapter 4. Editing Text

dialog box select between the two replacement modes, which are described in detail
below.

4.12.2.1. Text Replace

If the Text button is selected, the search string is simply replaced with the replacement
string.

If reqular expressions are enabled, positional parameteys1, $2, and so on) can be
used to insert the contents of matched subexpressions in the replacement string; see
Appendix Efor more information.

If the search is case-insensitive, jEdit attempts to modify the case of the replacement
string to match that of the particular instance of the search string being replaced. For
example, searching for “label” and replacing it with “text”, will perform the following
replacements:

« “String label” would become “String text”
. “setLabel” would become “setText”
« “DEFAULT_LABEL” would become “DEFAULT _TEXT”

4.12.2.2. BeanShell Replace

In BeanShell replacement mode, the search string is replaced with the return value of a
BeanShell snippet. The following predefined variables can be referenced in the snippet:

+ _0 -- the text to be replaced

- _1-_9 --ifregular expressions are enabled, these contain the values of matched
subexpressions.

BeanShell syntax and features are covered in great de®@dnnlll in jEdit 4.1 User’s
Guide but here are some examples:

To replace each occurrence of “Windows” with “Linux”, and each occurrence of
“Linux” with “Windows”, search for the following regular expression:

(Windows|Linux)

Replacing it with the following BeanShell snippet:

_l.equals("Windows") ? "Linux" : "Windows"

To convert all HTML tags to lower case, search for the following regular expression:

<(.*?)>

35

Chapter 4. Editing Text

36

Replacing it with the following BeanShell snippet:

"<" + 1.toLowerCase() + ">"

To replace arithmetic expressions contained in curly braces with the result of
evaluating the expression, search for the following regular expression:

V(+2)\}
Replacing it with the following BeanShell snippet:
eval(_1)

These examples only scratch the surface; the possibilities are endless.

4.12.3. HyperSearch

If the HyperSearch check box in the search and replace dialog box is selected, clicking
Find lists all occurrences of the search string, instead of locating the next match.

HyperSearch results are shown in a new window; the window can be set to dock into the
view in theDocking pane of thdJtilities>Global Options dialog box; se&ection 2.2.1

If the Multiple results check box is selected in the results window, past search results
are retained.

Running searches can be stopped inUliéties>Troubleshooting>l/O Progress
Monitor dialog box.

4.12.4. Multiple File Search

Search and replace commands can be performed over an arbitrary set of files in one step.
The set of files to search is selected with a set of buttons in the search dialog box.

If the Current buffer button is selected, only the current buffer is searched. This is the
default behavior.

If the All buffers button is selected, all open buffers whose names match the glob pattern
entered in the-ilter text field will be searched. S&ppendix Dfor more information
about glob patterns.

If the Directory radio button is selected, all files contained in the specified directory
whose names match the glob will be searched. The directory to search in can either be
entered in thdirectory text field, or chosen in a file selector dialog box by clicking the
Choose button next to the field. If th&earch subdirectories check box is selected, all
subdirectories of the specified directory will also be searched. Keep in mind that
searching through directories containing many files can take a long time.

Chapter 4. Editing Text

TheDirectory andFilter text fields remember previously entered strings;Apgpendix
C for details.

Note that clicking theAll Buffers or Directory radio buttons also selects the
HyperSearch check box since that is what you would want, most of the time. However,
normal match-by-match searching is supported for multiple files as well.

Two convenience commands are provided for performing multiple file searches.

Search>Search in Open Buffers (shortcut:Control-E Control-B) displays the search
dialog box and selects thdl buffers button.

Search>Search in Directory (shortcut:Control-E Control-D) displays the search
dialog box and selects tHgirectory button.

4.12.5. The Search Bar

The search bar feature provides a convenient way to search in the current buffer without
opening the search dialog box. The search bar does not support replacement or multiple
file. Previously entered strings can be recalled in the search bar withptla@dDown

arrow keys; sedppendix C

By default, the search bar remains hidden until one of the quick search commands
(described below) is invoked; however you can choose to have it always visible in the
General pane of theJtilities>Global Options dialog box.

Search>Incremental Search Bar (shortcut:Control-,) displays the search bar if
necessary, and gives it keyboard focus. If this command is invoked while there is a
selection, the selection is placed in the search string field.

Search>Incremental Search for Word (shortcut:Alt -,) behaves like the above
command except it places the word at the caret in the search string field.

Unless theHyperSearch check box is selected, the search bar will perform an

incremental searchin incremental search mode, the first occurrence of the search string

is located in the current buffer as it is being typed. PresEimigr andShift-Enter

searches for the next and previous occurrence, respectively. Once the desired occurrence
has been located, pressiBgcapereturns keyboard focus to the text area. Unless the
search bar is set to be always visible (see above), preEsicapewill also hide the

search bar.

Note: Incremental searches cannot be not recorded in macros. If your macro
needs to perform a search, use the search and replace dialog box instead. See
Chapter 7 for information about macros.

37

Chapter 4. Editing Text

Search>HyperSearch Bar (shortcut:Control-.) displays the search bar if necessary,
gives it keyboard focus, and selects thygperSearch check box. If this command is
invoked while there is a selection, the selected text will be searched for immediately and
the search bar will not be shown.

If the HyperSearch check box is selected, pressiggter in the search string field will
perform a HyperSearch in the current buffer.

Search>HyperSearch for Word (shortcut:Alt -.) performs a HyperSearch for the word
at the caret. This command does not show the search bar or give it keyboard focus.

4.13. Command Repetition

The final feature discussed in this chapter provides a way to repeat a command any
number of times.

To repeat a command multiple times, pr&smtrol-Enter, enter the desired repeat
count, then invoke the command to repeat (either using a keyboard shortcut, or by
selecting it from the menu bar). For exampl€ghtrol-Enter 1 4 Control-D” will
delete 14 lines; Control-Enter 9 #” will insert “#########" in the buffer.

If you specify a repeat count greater than 20, a confirmation dialog box will be
displayed, asking if you really want to perform the action. This prevents you from
hanging jEdit by executing a command too many times.

38

Chapter 5. Editing Source Code

5.1. Edit Modes

An edit modespecifies syntax highlighting rules, auto indent behavior, and various other
customizations for editing a certain file type. This section only covers using existing edit
modes; information about writing your own can be foundPart 11 injEdit 4.1 User’s

Guide

5.1.1. Mode Selection

When a file is opened, jEdit first checks the file name against a list of known patterns.
For example, files whose names end with “.c” are opened with C mode, and files named
Makefile —are opened with Makefile mode. If a suitable match based on file name cannot
be found, jEdit checks the first line of the file. For example, files whose first line is
“#1/bin/sh” are opened with shell script mode.

File name and first line globs can be changed inBd&ing pane of theJtilities>Global
Options dialog box. Seé\ppendix Dfor information about glob patterns.

The edit mode can be specified manually as well. The current buffer’'s edit mode can be
set on a one-time basis in th#iilities>Buffer Options dialog box; se&ection 6.1 To

set a buffer’s edit mode for future editing sessions, place the following in one of the first
or last 10 lines of the buffer, whegrslit mode is the name of the desired edit mode:

:mode= edit mode :

A list of edit modes can be found in théilities>Buffer Options dialog box.

5.1.2. Syntax Highlighting

Syntax highlighting is the display of programming language tokens using different fonts
and colors. This makes code easier to follow and errors such as misplaced quotes easier
to spot. All edit modes except for the plain text mode perform some kind of syntax
highlighting.

The colors and styles used to highlight syntax tokens can be changed3gritax
Highlighting pane of theJtilities>Global Options dialog box; se&ection 6.3

39

Chapter 5. Editing Source Code
5.2. Tabbing and Indentation

40

JEdit makes a distinction between tteb width which is is used when displaying hard

tab characters, and tledent width which is used when a level of indent is to be added

or removed, for example by mode-specific auto indent routines. Both can be changed in
one of several ways:

« On a global or mode-specific basis in tBditing pane of the th&Jtilities>Global
Options dialog box.

« In the current buffer for the duration of the editing session inUhities>Buffer
Options dialog box.

« In the current buffer for future editing sessions by placing the following in one of
the first or last 10 lines of the buffer, whemes the desired tab width, andis the
desired indent width:

:tabSize= n:indentSize= m

Edit>Indent>Shift Indent Left (shortcut:Shift-Tab or Alt-Left) adds one level of
indent to each selected line, or the current line if there is no selection.

Edit>Indent>Shift Indent Right (shortcut:Alt -Right) removes one level of indent from
each selected line, or the current line if there is no selection. Pretsinghile a
multi-line selection is active has the same effect.

Edit>Indent>Remove Trailing Whitespace (shortcut:Control-E R) removes all
whitespace from the end of each selected line, or the current line if there is no selection.

5.2.1. Soft Tabs

Files containing hard tab characters may look less than ideal if the default tab size is
changed, so some people prefer using multiple space characters instead of hard tabs to
indent code.

This feature is known asoft tabs Soft tabs can be enabled or disabled in one of several
ways:

« On a global or mode-specific basis in tRditing pane of theJtilities>Global
Options dialog box.

« In the current buffer for the duration of the editing session inukikties>Buffer
Options dialog box.

+ In the current buffer for future editing sessions by placing the following in one of
the first or last 10 lines of the buffer, whetag is either “true” or “false”:

:noTabs= flag :

Chapter 5. Editing Source Code

Changing the soft tabs setting has no effect on existing tab characters; it only affects
subsequently-inserted tabs.

Edit>Source>Spaces to Tabs converts soft tabs to hard tabs in the current selection, or
the entire buffer if nothing is selected.

Edit>Source>Tabs to Spaces converts hard tabs to soft tabs in the current selection, or
the entire buffer if nothing is selected.

5.2.2. Automatic Indent

The auto indent feature inserts the appropriate number of tabs or spaces at the beginning
of a line by looking at program structure.

In the default configuration, pressiignter will create a new line with the appropriate
amount of indent automatically, and pressifap at the beginning of, or inside the

leading whitespace of a line will insert the appropriate amount of indentation. Pressing it
again will insert a tab character.

The behavior of th&nter andTab keys can be configured in ti&hortcuts pane of the
Utilities>Global Options dialog. box, just as with any other key. TRater key can be
bound to one of the following, or indeed any other command or macro:

- Insert Newline.
- Insert Newline and Indent, which is the default.

TheTab can be bound to one of the following, or again, any other command or macro:

+ Insert Tab.
+ Insert Tab or Indent, which is the default.
+ Indent Selected Lines.

SeeSection 6.3or details.

Auto indent behavior is mode-specific. In most edit modes, the indent of the previous
line is simply copied over. However, in C-like languages (C, C++, Java, JavaScript),
curly brackets and language statements are taken into account and indent is added and
removed as necessary.

Edit>Source>Indent Selected Lines (shortcut:Control-1) indents all selected lines, or
the current line if there is no selection.

To insert a literal tab or newline without performing indentation, prefix the tab or
newline withControl-E V. For example, to create a new line without any indentation,
type Control-E V Enter.

41

Chapter 5. Editing Source Code
5.3. Commenting Out Code

Most programming and markup languages support the notion of “comments”, or regions
of code which are ignored by the compiler/interpreter. jEdit has commands which make
inserting comments more convenient.

Comment strings are mode-specific, and some in some modes such as HTML different
parts of a buffer can have different comment strings. For example, in HTML files,
different comment strings are used for HTML text and inline JavaScript.

Edit>Source Code>Range Comment (shortcut:Control-E Control-C) encloses the
selection with comment start and end strings, for examplend* in Java mode.

Edit>Source Code>Line Comment (shortcut:Control-E Control-K) inserts the line
comment string, for example in Java mode, at the start of each selected line.

5.4. Bracket Matching

42

Misplaced and unmatched brackets are one of the most common syntax errors
encountered when writing code. jEdit has several features to make brackets easier to deal
with.

Positioning the caret immediately before or after a bracket will highlight the
corresponding closing or opening bracket (assuming it is visible), and draw a scope
indicator in the gutter. If the highlighted bracket is not visible, the text of the matching
line will be shown in the status bar. If the matching line consists of only whitespace and
the bracket itself, thprevious lineis shown instead. This feature is very useful when
your code is indented as follows, with braces on their own lines:

public void someMethod()

{
if(iSOK)

{
}

doSomething();

}

Invoking Edit>Source>Go to Matching Bracket (shortcut:Control-]) or clicking the
scope indicator in the gutter moves the caret to the matching bracket.

Edit>Source>Select Code Block (shortcut:Control-[) selects all text between the
closest two brackets surrounding the caret.

Holding downControl while clicking the scope indicator in the gutter or a bracket in the
text area will select all text between the two matching brackets.

Edit>Source>Go to Previous Bracket (shortcut:Control-E Control-[) moves the
caret to the previous opening bracket.

Chapter 5. Editing Source Code

Edit>Source>Go to Next Bracket (shortcut:Control-E Control-]) moves the caret to
the next closing bracket.

Bracket highlighting in the text area and bracket scope display in the gutter can be
customized in th@ext Area andGutter panes of theJtilities>Global Options dialog
box; seeSection 6.3

Note: jEdit's bracket matching algorithm only checks syntax tokens with the same
type as the original bracket, so for example unmatched brackets inside string
literals and comments will be skipped when matching brackets that are part of
program syntax.

5.5. Abbreviations

Using abbreviations reduces the time spent typing long but commonly used strings. For
example, in Java mode, the abbreviation “sout” is defined to expand to
“System.out.println()”, so to insert “System.out.printin()” in a Java buffer, you only need
to type “sout” followed byControl-;. An abbreviation can either be global, in which

case it can be used in all edit modes, or specific to a single mode.

Abbreviations can be edited in tidbreviations pane of thdJtilities>Global Options
dialog box; se&ection 6.3The Java, VHDL. XML and XSL edit modes include some
pre-defined abbreviations you might find useful. Other modes do not have any
abbreviations defined by default.

Edit>Expand Abbreviation (keyboard shortcuControl-;) attempts to expand the
abbreviation named by the word before the caret. If no expansion could be found, it will
offer to define one.

Automatic abbreviation expansion can be enabled irAthiareviations pane of the
Utilities>Global Options dialog box; se&ection 6.31f enabled, pressing the space bar
after entering an abbreviation will automatically expand it.

If automatic expansion is enabled, a space can be inserted without expanding the word
before the caret by pressi@pntrol-E V Space

5.5.1. Positional Parameters

Positional parameters are an advanced feature that make abbreviations much more
useful. The best way to describe them is with an example.

Java mode defines an abbreviation “F” that is set to expand to the following:

for(int $1 = 0; $1 < $2; $1++)

43

Chapter 5. Editing Source Code

Expandingr#j#array.length# will insert the following text into the buffer:
for(int j = 0; j < array.length; j++)

Expansions can contain up to nine positional parameters. Note that a trailing hash
character (“#") must be entered when expanding an abbreviation with parameters.

If you do not specify the correct number of positional parameters when expanding an
abbreviation, any missing parameters will be blank in the expansion, and extra
parameters will be ignored. A status bar message will be shown stating the required
number of parameters.

5.6. Folding

44

Program source code and other structured text files can be thought of as containing a
hierarchy of sections, which themselves might contain sub-sections. The folding feature
lets you selectively hide and show these sections, replacing hidden ones with a single
line that serves as an “overview” of that section.

Folding is disabled by default. To enable it, you must choose one of the available folding
modes. “Indent” mode creates folds based on a line’s leading whitespace; the more
leading whitespace a block of text has, the further down it is in the hierarchy. For
example:

This is a section
This is a sub-section
This is another sub-section
This is a sub-sub-section
Another top-level section

“Explicit” mode folds away blocks of text surrounded with “{{” and “}}}". For
example:

{{{ The first line of a fold.
When this fold is collapsed, only the above line will be visible.

{{{ A sub-section.
With text inside it.

)

{{{ Another sub-section.

)
)

Chapter 5. Editing Source Code

Both modes have distinct advantages and disadvantages; indent folding requires no
changes to be made to a buffer’s text and does a decent job with most program source.
Explicit folding requires “fold markers” to be inserted into the text, but is more flexible

in exactly what to fold away.

Some plugins might add additional folding modes; €dapter &or information about
plugins.

Folding can be enabled in one of several ways:

« On a global or mode-specific basis in tBditing pane of theltilities>Global
Options dialog box.

« In the current buffer for the duration of the editing session inudhities>Buffer
Options dialog box.

« In the current buffer for future editing sessions by placing the following in the first
or last 10 lines of a buffer, wheraode is either “indent”, “explicit”, or the name of
a plugin folding mode:

:folding= mode:

Warning

When using indent folding, portions of the buffer may become
inaccessible if you change the leading indent of the first line of a
collapsed fold. If you experience this, you can use the Expand All Folds
command to make the text visible again.

5.6.1. Collapsing and Expanding Folds

The first line of each fold has a triangle drawn next to it in the gutter $smtion 2.Jor

more information about the gutter). The triangle points toward the line when the fold is
collapsed, and downward when the fold is expanded. Clicking the triangle collapses and
expands the fold. To expand all sub-folds as well, hold dowrsthi& while clicking.

The first line of a collapsed fold is drawn with a different background color, and the
number of lines in the fold is shown to the right of the line’s text.

Folds can also be collapsed and expanded using menu item commands and keyboard
shortcuts.

Folding>Collapse Fold (keyboard shortcutAlt -Backspace collapses the fold
containing the caret position.

45

Chapter 5. Editing Source Code

Folding>Expand Fold One Level (keyboard shortcutlt -Enter) expands the fold
containing the caret position. Nested folds will remain collapsed, and the caret is
positioned on the first nested fold (if any).

Folding>Expand Fold Fully (keyboard shortcutAlt -Shift-Enter) expands the fold
containing the caret position, also expanding any nested folds.

Folding>Collapse All Folds (keyboard shortcutControl-E C) collapses all folds in the
buffer.

Folding>Expand All Folds (keyboard shortcuControl-E X) expands all folds in the
buffer.

5.6.2. Navigating Around With Folds

Folding>Go to Parent Fold (keyboard shortcutControl-e u) moves the caret to the
fold containing the one at the caret position.

Folding>Go to Previous Fold (keyboard shortcutAlt-Up) moves the caret to the fold
immediately before the caret position.

Folding>Go to Next Fold (keyboard shortcutlt -Down) moves the caret to the fold
immediately after the caret position.

5.6.3. Miscellaneous Folding Commands

Folding>Add Explicit Fold (keyboard shortcutControl-E A) is a convenience
command that surrounds the selection with “{{{” and “}}}". If the current buffer’s edit
mode defines comment strings ($ection 5.3the explicit fold markers will
automatically be commented out as well.

Folding>Select Fold (keyboard shortcutControl-E S) selects all lines within the fold
containing the caret positio@ontrol-clicking a fold expansion triangle in the gutter has
the same effect.

Folding>Expand Folds With Level (keyboard shortcuControl-E Enter key) reads
the next character entered at the keyboard, and expands folds in the buffer with a fold
level less than that specified, while collapsing all others.

Sometimes it is desirable to have files open with folds initially collapsed. This can be
configured as follows:

« On a global or mode-specific basis in tBditing pane of theltilities>Global
Options dialog box.

« In the current buffer for future editing sessions by placing the following in the first
or last 10 lines of a buffer, whetevel is the desired fold level:

46

Chapter 5. Editing Source Code

.collapseFolds= level

5.6.4. Narrowing

The narrowing feature temporarily “narrows” the display of a buffer to a specified
region. Text outside the region is not shown, but is still present in the buffer.

Folding>Narrow Buffer to Fold (keyboard shortcutControl-E N N) hides all lines the
buffer except those in the fold containing the caret.

Folding>Narrow Buffer to Selection (keyboard shortcuControl-E N S) hides all
lines the buffer except those in the selection.

Folding>Expand All Folds (keyboard shortcutControl-E X) shows lines that were
hidden as a result of narrowing.

47

Chapter 5. Editing Source Code

48

Chapter 6. Customizing jEdit

6.1

6.2.

. The Buffer Options Dialog Box

Utilities>Buffer Options displays a dialog box for changing editor settings on a
per-buffer basis. Changes made in this dialog box are not retained after the buffer is
closed.

The following settings can be changed here:

« The line separator (sekection 3.4

- The character encoding (s8ection 3.%

- If the file should be GZipped on disk (s&ection 3.2
« The edit mode (seBection 5.)

« The fold mode (se&ection 5.

« The wrap mode and margin (section 4.3

« The tab width (se&ection 5.2

« The indent width

- If soft tabs should be used (sBection 5.2

Buffer-Local Properties

Buffer-local properties provide an alternate way to change editor settings on a per-buffer
basis. While changes made in tBaffer Options dialog box are lost after the buffer is
closed, buffer-local properties take effect each time the file is opened, because they are
embedded in the file itself.

When jEdit loads a file, it checks the first and last 10 lines for colon-enclosed name/value
pairs. For example, placing the following in a buffer changes the indent width to 4
characters, enables soft tabs, and activates the Perl edit mode:

:indentSize=4:noTabs=true:mode=perl:

Adding buffer-local properties to a buffer takes effect after the next time the buffer is
saved.

The following table describes each buffer-local property in detail.

Property name Description

49

Chapter 6. Customizing jEdit

Property name Description
collapseFolds Folds with a level of this or higher will be collapsed when the
buffer is opened. If set to zero, all folds will be expanded
initially. SeeSection 5.6

folding The fold mode; one of “none”, “indent”, “explicit”, or the
name of a plugin folding mode. S&ection 5.6

indentSize The width, in characters, of one indent. Must be an integer
greater than 0. Se®ection 5.2

maxLineLen The maximum line length and wrap column position. Inserting

text beyond this column will automatically insert a line break
at the appropriate position. S8ection 4.3

mode The default edit mode for the buffer. S8ection 5.1

noTabs If set to “true”, soft tabs (multiple space characters) will be
used instead of “real” tabs. S&ection 5.2

noWordSep A list of non-alphanumeric characters that acgto be treated
as word separators. Global defaultis * .

tabSize The tab width. Must be an integer greater than 0. Seetion
5.2

wordBreakChars Characters, in addition to spaces and tabs, at which lines may
be split when word wrapping. S&ection 4.3

wrap The word wrap mode; one of “none”, “soft”, or “hard”. See
Section 4.8

6.3. The Global Options Dialog Box

50

Utilities>Global Options displays the global options dialog box. The dialog box is
divided into several panes, each pane containing a set of related options. Use the list on
the left of the dialog box to switch between panes. Only panes created by jEdit are
described here; some plugins add their own option panes, and information about them
can be found in the documentation for the plugins in question.

6.3.1. The Abbreviations Pane

The Abbreviations option pane can be used to enable or disable automatic abbreviation
expansion, and to edit currently defined abbreviations.

The combo box labeled “Abbrev set” selects the abbreviation set to edit. The first entry,
“global”, contains abbreviations available in all edit modes. The subsequent entries
correspond to each mode’s local set of abbreviations.

To change an abbreviation or its expansion, either double-click the appropriate table
entry, or click a table entry and then click tkelit button. This will display a dialog box

Chapter 6. Customizing jEdit
for modifying the abbreviation.

The Add button displays a dialog box where you can define a new abbreviation. The
Remove button removes the currently selected abbreviation from the list.

SeeSection 5.5.Xor information about positional parameters in abbreviations.

6.3.2. The Appearance Pane

The Appearance pane can be used to change the appearance of user interface controls
such as buttons, labels and menus.

6.3.3. The Context Menu Pane

The Context Menu option pane edits the text area’s right-click context menu.

6.3.4. The Docking Pane

TheDocking option pane specifies which dockable windows should be floating, and
which should be docked in the view.

6.3.5. The Editing Pane

The Editing option pane contains settings such as the tab size, syntax highlighting and
soft tabs on a global or mode-specific basis.

When changing mode-specific settings, Bie name glob andFirst line glob text
fields let you specify a glob pattern that names and first lines of buffers will be matched
against to determine the edit mode. $gmendix Dfor information about glob patterns.

This option pane does not change XML mode definition files on disk; it merely writes
values to the user properties file which override those set in mode files. To find out how
to edit mode files directly, sdeart Il injEdit 4.1 User’'s Guide

6.3.6. The General Pane

The General pane contains various miscellaneous settings, such as the number of recent
files to remember, if the buffer list should be sorted, and so on.

6.3.7. The Gutter Pane

The Gutter option pane contains settings to customize the appearance of the gutter.

51

Chapter 6. Customizing jEdit

52

6.3.8. The Loading and Saving Pane

TheLoading and Saving option pane contains settings such as the autosave frequency,
backup settings, file encoding, and so on.

6.3.9. The Printing Pane

ThePrinting option pane contains settings to control the appearance of printed output.

6.3.10. The Proxy Servers Pane

TheProxy Servers option pane lets you specify HTTP and SOCKS proxy servers to use
when jEdit makes network connections (for example, when the plugin manager
downloads plugins).

6.3.11. The Shortcuts Pane

The Shortcuts option pane associates keyboard shortcuts with commands. Each
command can have up to two shortcuts associated with it.

The combo box at the top of the option pane selects the command set to edit. Command
sets include the set of all built-in commands, the commands of each plugin, and the set of
macros.

To change a shortcut, click the appropriate table entry and press the keys you want
associated with that command in the resulting dialog box. The dialog box will warn you
if the shortcut is already assigned.

6.3.12. The Status Bar Pane

The Status Bar option pane contains settings to customize the status bar, or disable it
completely.

6.3.13. The Syntax Highlighting Pane

The Syntax Highlighting pane can be used to customize the fonts and colors for syntax
highlighting.

6.3.14. The Text Area Pane

The Text Area pane contains settings to customize the appearance of the text area.

Chapter 6. Customizing jEdit
6.3.15. The Tool Bar Pane

TheTool Bar option pane lets you edit the tool bar, or disable it completely.

6.3.16. The File System Browser Panes

TheFile System Browser group contains two option pangsgneral andColors. The
former contains various file system browser settings. The latter configures glob patterns
used for coloring the file list. Se®ection 3.6or more information.

6.4. The jEdit Settings Directory

JEdit stores settings, macros, and plugins as files insidsedttengs directoryln most
cases, editing these files by hand is not necessary, since graphical tools and editor
commands can do the job. However, being familiar with the structure of the settings
directory still comes in handy in certain situations, for example when you want to copy
JEdit settings between computers.

The location of the settings directory is system-specific; it is printed to the activity log
(Utilities>Troubleshooting>Activity Log). For example:

[message] jEdit: Settings directory is /home/slava/.jedit

Specifying the-settings switch on the command line instructs jEdit to store settings
in a directory other than the default. For example, the following command will instruct
JEdit to store all settings in thiedit subdirectory of the: drive:

C:\jedit> jedit -settings=C:\jedit
The-nosettings switch will force jEdit to not look for or create a settings directory;

default settings will be used instead.

If you are using jEditLauncher to start jEdit on Windows, these parameters cannot be
specified on the MS-DOS prompt command line when starting jEdit; they must be set as
described irBection G.2

jEdit creates the following files and directories inside the settings directory; plugins may
add more:

- abbrevs - a plain text file which stores all defined abbreviations. Seetion 5.5

« activity.log - a plain text file which contains the full activity log. S&ppendix
B.

53

Chapter 6. Customizing jEdit

54

« history - a plain text file which stores history lists, used by history text fields and

the Edit>Paste Previous command. Se8ection 4.1&ndAppendix C
jars - this directory contains plugins. S&hapter 8
macros - this directory contains macros. SEaapter 7

modes - this directory contains custom edit modes. Beet Il injEdit 4.1 User’s
Guide

PluginManager.download - this directory is usually empty. It only contains files
while the plugin manager is downloading a plugin. For information about the plugin
manager, se€hapter 8

printspec - a binary file which stores printing settings when running under Java 2
version 1.4.

properties - a plain text file which stores the majority of jEdit's settings.

recent.xml - an XML file which stores the list of recently opened files. jEdit
remembers the caret position and character encoding of each recent file, and
automatically restores those values when one of the files is opened.

server - a plain text file that only exists while jEdit is running. The edit server’s
port number and authorization key is stored here.Seapter 1

session - a list of files, used when restoring previously open files on startup.

settings-backups - this directory contains numbered backups of all
automatically-written settings fileatfbrevs , activity.log , history
properties , recent.xml , andsession).

Chapter 7. Using Macros

Macros in jEdit are short scripts written in a scripting language c@leanhShellThey
provide an easy way to automate repetitive keyboard and menu procedures, as well as
access to the objects and methods created by jEdit. Macros also provide a powerful
facility for customizing jEdit and automating complex text processing and programming
tasks. This section describes how to record and run macros. A detailed guide on writing
macros appears later; seart Il in jEdit 4.1 User’'s Guide

7.1. Recording Macros

The simplest use of macros is to record a series of key strokes and menu commands as a
BeanShell script, and play them back later. While this doesn’t let you take advantage of
the full power of BeanShell, it is still a great time saver and can even be used to
“prototype” more complicated macros.

Macros>Record Macro (shortcut:Control-M Control -R) prompts for a macro name
and begins recording.

While recording is in progress, the string “Macro recording” is displayed in the status
bar. jEdit records the following:

+ Key strokes

« Menu item commands

- Tool bar clicks

 All search and replace operations, except incremental search

Mouse clicks in the text area an®t recorded; use text selection commands or arrow
keys instead.

Macros>Stop Recording (shortcut:Control-M Control -S) stops recording. It also

switches to the buffer containing the recorded macro, giving you a chance to check over
the recorded commands and make any necessary changes. When you are happy with the
macro, save the buffer and it will appear in tfdacros menu. To discard the macro,

close the buffer without saving it.

The file name extensiobsh is automatically appended to the macro name, and all
spaces are converted to underscore characters, in order to make the macro name a valid
file name. These two operations are reversed when macros are displaye¥ctios

menu; seé&ection 7.3or details.

If a complicated operation only needs to be repeated a few times, using the temporary
macro feature is quicker than saving a new macro file.

55

Chapter 7. Using Macros

Macros>Record Temporary Macro (shortcut:Control-M Control -M) begins

recording to a buffer nametkmporary_Macro.bsh . Once recording of a temporary

macro is complete, jEdit does not display the buffer containing the recorded commands,
but the nam@&emporary_Macro.bsh will be visible on any list of open buffers. By
switching to that buffer, you can view the commands, edit them, and save them if you
wish to a permanent macro file. Whether or not you look at or save the temporary macro
contents, it is immediately available for playback.

Macros>Run Temporary Macro (shortcut:Control-M Control -P) plays the macro
recorded to th&@emporary_Macro.bsh buffer.

Only one temporary macro is available at a time. If you begin recording a second
temporary macro, the first is erased and cannot be recovered unless you have saved the
contents to a file with a name other thieemporary_Macro.bsh . If you do not save the
temporary macro, you must keep the buffer containing the macro script open during your
jEdit session. To have the macro available for your next jEdit session, save the buffer
Temporary_Macro.bsh as an ordinary macro with a descriptive name of your choice.

The new name will then be displayed in thacros menu.

7.2. Running Macros

Macros supplied with jEdit, as well as macros that you record or write, are displayed
under theMacros menu in a hierarchical structure. The jEdit installation includes about
30 macros divided into several major categories. Each category corresponds to a nested
submenu under thiglacros menu. An index of these macros containing short

descriptions and usage notes is foundppendix F

To run a macro, choose tidacros menu, navigate through the hierarchy of submenus,
and select the name of the macro to execute. You can also assign execution of a
particular macro to a keyboard shortcut, toolbar button or context menu usiiMgitre
Shortcuts, Tool Bar or Context Menu panes of théJtilities>Global Options dialog;
seeSection 6.3

Macros>Run Last Macro (shortcut:Control-M Control -L) runs the last macro run by
JEdit again.

7.3. How jEdit Organizes Macros

56

Every macro, whether or not you originally recorded it, is stored on disk and can be
edited as a text file. The file name of a macro must hawera extension in order for
jEdit to be aware of it. By default, jEdit associatedsn file with the BeanShell edit
mode for purposes of syntax highlighting, indentation and other formatting. However,
BeanShell syntax does not impose any indentation or line break requirements.

Chapter 7. Using Macros

The Macros menu lists all macros stored in two places: ieros subdirectory of the
jEdit home directory, and th@acros subdirectory of the user-specific settings directory
(seeSection 6.4or information about the settings directory). Any macros you record
will be stored in the user-specific directory.

Macros stored elsewhere can be run usingMlaeros>Run Other Macro command,
which displays a file chooser dialog box, and runs the specified file.

The listing of individual macros in thielacros menu can be organized in a hierarchy

using subdirectories in the general or user-specific macro directories; each subdirectory
appears as a submenu. You will find such a hierarchy in the default macro set included
with jEdit.

When jEdit first loads, it scans the designated macro directories and assembles a listing
of individual macros in thélacros menu. When scanning the names, jEdit will delete
underscore characters and theh extension for menu labels, so that
List_Useful_Information.bsh , for example, will be displayed in thdacros menu

asList Useful Information.

You can browse the user and system macro directories by openingé¢he directory
from theUtilities>jEdit Home Directory andUtilities>Settings Directory menus.

Macros can be opened and edited much like ordinary files from the file system browser.
Editing macros from within jEdit will automatically update the macros menu; however,

if you modify macros from another program or add macro files to the macro directories,
you should run thdlacros>Rescan Macros command to update the macro list.

57

Chapter 7. Using Macros

58

Chapter 8. Installing and Using
Plugins

A pluginis an application which is loaded and runs as part of another, host application.
Plugins respond to user commands and perform tasks that supplement the host
application’s features.

This chapter covers installing, updating and removing plugins. Documentation for the
plugins themselves can be foundHielp>jEdit Help, and information about writing
plugins can be found iRart IV injEdit 4.1 User’s Guide

8.1. The Plugin Manager

Plugins>Plugin Manager displays the plugin manager window. The plugin manager
lists all installed plugins; clicking on a plugin in the list will display information about it.

To remove plugins, select them (multiple plugins can be selected by holding down
Control) and clickRemove Plugins. This will display a confirmation dialog box first.

8.2. Installing Plugins

Plugins can be installed in two ways; manually, and from the plugin manager. In most
cases, plugins should be installed from the plugin manager. It is easier and more
convenient.

To install plugins manually, go tiatp:/plugins.jedit.org in a web browser and
follow the directions on that page.

To install plugins from the plugin manager, make sure you are connected to the Internet
and click thelnstall Plugins button in the plugin manager window. The plugin manager
will then download information about available plugins from the jEdit web site, and
present a list of plugins compatible with your jEdit release which may be installed.

Click on a plugin in the list to see some information about it. To select plugins for
installation, click the check box next to their names in the list.

TheTotal download size field shows the total size of all plugins chosen for installation,
along with any plugins that will be automatically downloaded in order to fulfill
dependencies. TH2ownload size field in the plugin information area only shows the
size of the currently selected plugin.

Thelnstall source code check box controls if source code for the plugins should be
downloaded and installed. Unless you are a developer, you probably don’t need the
source.

59

Chapter 8. Installing and Using Plugins

The two radio buttons select the location where the plugins are to be installed. Plugins
can be installed in either thars subdirectory of the jEdit installation directory, or the
jars subdirectory of the user-specific settings directory. For information about the
settings directorySection 6.4

Once you have specified plugins to install, clidktall Plugins to begin the download
process. Once all plugins have been downloaded and installed, a dialog box is shown
advising that jEdit must be restarted before plugins can be used.

Proxy Servers and Firewalls

If you are connected to the Internet through an HTTP proxy or SOCKS firewal
you will need to specify the relevant details in tAexy Servers pane of the
Utilities>Global Options dialog box.

8.3. Updating Plugins

60

Clicking Update Plugins in the plugin manager will show a dialog box very similar to
the one for installing plugins. It will list plugins for which updated versions are available.
It will also offer to delete any obsolete plugins.

Appendix A. Keyboard Shortcuts

This appendix documents the default set of keyboard shortcuts. They can be customized
to suit your taste in th&hortcuts pane of theJtilities>Global Options dialog box; see
Section 6.3

Files

For details, se&ection 2.1Section 2.2andChapter 3

Control-N New file.
Control-O Open file.
Control-W Close buffer.
Control-E Control-W Close all buffers.
Control-S Save buffer.
Control-E Control-S Save all buffers.
Control-P Print buffer.
Control-Page Up Go to previous buffer.
Control-Page Down Go to next buffer.
Control - Go to recent buffer.
Alt-* Show buffer switcher.
Control-Q Exit JEdit.

Views

For details, se&ection 2.2

Control-E Control-T Turn gutter (line numbering) on and off.
Control-0 Remove split containing current text area only.
Control-1 Remove all splits.

Control-2 Split view horizontally.

Control-3 Split view vertically.

Alt-Page Up Send keyboard focus to previous text area.
Alt-Page Down Send keyboard focus to next text area.
Control-E Control-Up; Send keyboard focus to top; bottom; left; right

Control-Left; Control-Down; docking area.

Control-Right

Control-E Control - Close currently focused docking area.
Control-E Control-E Send keyboard focus back to current text area.

61

Appendix A. Keyboard Shortcuts
Repeating

For details, se&ection 4.13

Control-Enter number
command

Moving the Caret

For details, se&ection 4.1Section 4.5Section 4.6Section 4.7andSection 5.4

Arrow
Control-Arrow

Page Up Page Down
Home

End

Control-Home
Control-End
Control-]

Control-E Control-[;
Control-]

Control-L

Selecting Text

For details, se&ection 4.2Section 4.5Section 4.6Section 4.7andSection 5.4

62

Shift-Arrow
Control-Shift-Arrow
Shift-Page Up Shift-Page
Down

Shift-Home

Shift-End
Control-Shift-Home

Control-Shift-End
Control-[

Repeat the command (it can be a keystroke, menu
item selection or tool bar click) the specified
number of times.

Move caret one character or line.

Move caret one word or paragraph.

Move caret one screenful.

First non-whitespace character of line, beginning of
line, first visible line (repeated presses).

Last non-whitespace character of line, end of line,
last visible line (repeated presses).

Beginning of buffer.

End of buffer.

Go to matching bracket.

Go to previous; next bracket.

Go toline.

Extend selection by one character or line.
Extend selection by one word or paragraph.
Extend selection by one screenful.

Extend selection to first non-whitespace character
of line, beginning of line, first visible line (repeated
presses).

Extend selection to last non-whitespace character of
line, end of line, last visible line (repeated presses).
Extend selection to beginning of buffer.

Extend selection to end of buffer.

Select code block.

Control-EW:; L: P
Control-E Control-L
Control-\

Scrolling

For details, se&ection 2.2
Control-E Control-J
Control-E Control -l

Control-'; Control-/
Alt-"; Alt-/

Text Editing

Appendix A. Keyboard Shortcuts

Select word; line; paragraph.
Select line range.
Switch between single and multiple selection mode.

Ensure current line is visible.
Center caret on screen.
Scroll up; down one line.
Scroll up; down one page.

For details, se&ection 4.4Section 4.3Section 4.5Section 4.6andSection 4.7

Control-Z

Control-E Control-Z
Backspace Delete
Control-Backspace
Control-Delete
Control-D; Control-E D
Control-Shift-Backspace
Control-Shift-Delete
Control-E R

Control-J
Control-B
Control-E F

Clipboard and Registers
For details, se&ection 4.10
Control-X or Shift-Delete

Control-C or Control-Insert
Control-E Control-U

Undo.

Redo.

Delete character before; after caret.
Delete word before; after caret.

Delete line; paragraph.
Delete from caret to beginning; end of line.

Remove trailing whitespace from the current line
(or all selected lines).

Join lines.

Complete word.

Format paragraph (or selection).

Cut selected text to clipboard.
Copy selected text to clipboard.

Append selected text to clipboard, removing it from
the buffer.

63

Appendix A. Keyboard Shortcuts

Control-E Control-A Append selected text to clipboard, leaving it in the
buffer.

Control-V or Shift-Insert Paste clipboard contents.

Control-E Control-P Vertically paste clipboard contents.

Control-R Control-X key Cut selected text to registkey .

Control-R Control-C key Copy selected text to registkey .

Control-R Control-U key Append selected text to registezy , removing it
from the buffer.

Control-R Control-A key Append selected text to registezy , leaving it in

the buffer.
Control-R Control-V key Paste contents of registeey .
Control-R Control-P key Vertically paste contents of registiesy .
Control-E Control-V Paste previous.
Markers
For details, se&ection 4.11
Control-E Control-M If current line doesn’t contain a marker, one will be

added. Otherwise, the existing marker will be
removed. Use th®larkers menu to return to
markers added in this manner.

Control-T key Add marker with shortcutey .

Control-Y key Go to marker with shortclkey .

Control-U key Select to marker with shortcigey .

Control-K key Go to marker with shortcikey , and move the
marker to the previous caret position.

Control-E Control-,; Move caret to previous; next marker.

Control-.

Search and Replace

For details, seS&ection 4.12

Control-F Open search and replace dialog box.
Control-G Find next.

Control-H Find previous.

Control-E Control-B Search in open buffers.

Control-E Control-D Search in directory.

Control-E Control-R Replace in selection.

64

Control-E Control -G

Appendix A. Keyboard Shortcuts

Replace in selection and find next.

Control -, Incremental search bar.

Control-. HyperSearch bar.

Alt -, Incremental search for word under the caret.
Alt-. HyperSearch for word under the caret.

Source Code Editing

For details, se&ection 5.5Section 5.2andSection 5.3

Control-; Expand abbreviation.

Alt-Left; Alt-Right Shift current line (or all selected lines) left; right.

Shift-Tab; Tab Shift selected lines left; right. Note that pressing
Tab with no selection active will insert a tab
character at the caret position.

Control-I Indent current line (or all selected lines).

Control-E Control-C
Control-E Control -B

Folding and Narrowing

Alt-Backspace

Wing comment selection.
Box comment selection.

For details, se&ection 5.6andSection 5.6.4

Collapse fold containing caret.

Alt-Enter Expand fold containing caret one level only.
Alt-Shift-Enter Expand fold containing caret fully.
Control-E X Expand all folds.

Control-E A Add explicit fold.

Control-E S Select fold.

Control-E Enter key

Expand folds with level less thdey , collapse all
others.

Control-ENN Narrow to fold.
Control-EN S Narrow to selection.
Alt-Up Alt-Down Moves caret to previous; next fold.
Control-E U Moves caret to the parent fold of the one containing
the caret.
Macros

For details, se€hapter 7

65

Appendix A. Keyboard Shortcuts

Control-M Control -R Record macro.

Control-M Control -M Record temporary macro.

Control-M Control -S Stop recording.

Control-M Control -P Run temporary macro.

Control-M Control -L Run most recently played or recorded macro.

Alternative Shortcuts

A few frequently-used commands have alternative shortcuts intended to help you keep
your hands from moving all over the keyboard.

Alt-J; Alt-L Move caret to previous, next character.

Alt-I; Alt-K Move caret up, down one line.

Alt-Q; Alt-A Move caret up, down one screenful.

Alt-Z First non-whitespace character of line, beginning of
line, first visible line (repeated presses).

Alt-X Last non-whitespace character of line, end of line,

last visible line (repeated presses).

66

Appendix B. The Activity Log

Theactivity logis very useful for troubleshooting problems, and helps when developing
plugins.

Utilities>Troubleshooting>Activity Log displays the last 500 lines of the activity log.
By default, the log is shown in a floating window. It can be set to dock into the view in
the Docking pane of theJtilities>Global Options dialog box; se&ection 2.2.1The
complete log can be found in thetivity.log file inside the jEdit settings directory,
the path of which is shown inside the activity log window.

jEdit writes the following information to the activity log:

« Information about your Java implementation (version, operating system,
architecture, etc).

« All error messages and runtime exceptions (most errors are shown in dialog boxes
as well, but the activity log usually contains more detailed and technical
information).

« All sorts of debugging information that can be helpful when tracking down bugs.
- Information about loaded plugins.

While jEdit is running, the log file on disk may not always accurately reflect what has
been logged, due to buffering being done for performance reasons. To ensure the file on
disk is up to date, invoke thdtilities>Troubleshooting>Update Activity Log on Disk
command. The log file is also automatically updated on disk when jEdit exits.

67

Appendix B. The Activity Log

68

Appendix C. History Text Fields

The text fields in the search and replace dialog box and the file system browser remember
the last 20 entered strings by default. The number of strings to remember can be changed
in the General pane of theJtilities>Global Options dialog box; se&ection 6.3

PressindJp recalls previous strings. PressiBgwn after recalling previous strings
recalls later strings.

Pressingshift-Up or Shift-Down will search backwards or forwards, respectively, for
strings beginning with the text already entered in the text field.

Clicking the triangle to the right of the text field, or clicking with the right-mouse button
anywhere else will display a pop-up menu of all previously entered strings; selecting one
will input it into the text field. Holding dowrshift while clicking will display a menu of

all previously entered strings that begin with the text already entered.

69

Appendix C. History Text Fields

70

Appendix D. Glob Patterns

JEdit uses glob patterns similar to those in the various Unix shells to implement file name
filters in the file system browser. Glob patterns resemble regular expressions somewhat,
but have a much simpler syntax. The following character sequences have special
meaning within a glob pattern:

? matches any one character

* matches any number of characters

{' glob } Matches anything that doe®t matchglob

{a, b, c} matches any one @, b orc

[abc] matches any character in the agb orc

[* abc] matches any character not in theaeb orc

[a-z] matches any character in the rarag® z, inclusive. A leading or trailing
dash will be interpreted literally

In addition to the above, a number of “character class expressions” may be used as well:

[[:alnum:]]
[[-alpha:]]
[[:blank:]]
[[:entrl:]]
[-digit:]]
[[:graph:]]
[[:lower:]]
[Lprint:]]
[[:punct:]]
[[:space:]]
[:upper:]]
[[:xdigit:]]

matches any alphanumeric character
matches any alphabetical character
matches a space or horizontal tab

matches a control character

matches a decimal digit

matches a non-space, non-control character
matches a lowercase letter

same ag:graph:]] , but also space and tab
matches a punctuation character

matches any whitespace character, including newlines
matches an uppercase letter

matches a valid hexadecimal digit

Here are some examples of glob patterns:

* - all files.

*.java

* [ch]

- all files whose names end with “.java”.

- all files whose names end with either “.c” or “.h”".

71

Appendix D. Glob Patterns

« [M]* - all files whose names do not start with “#”.

72

Appendix E. Regular Expressions

JEdit uses regular expressions to implement inexact search and replace. A regular
expression consists of a string where some characters are given special meaning with
regard to pattern matching.

Within a regular expression, the following characters have special meaning:

Positional Operators

« ~ matches at the beginning of a line
« $ matches at the end of a line

« \b matches at a word break

« \B matches at a non-word break

« \< matches at the start of a word

- \> matches at the end of a word

One-Character Operators

« . matches any single character

« \d matches any decimal digit

- \D matches any non-digit

« \n matches the newline character

- \s matches any whitespace character

+ \S matches any non-whitespace character

- \t matches a horizontal tab character

- \w matches any word (alphanumeric) character

« \W matches any non-word (alphanumeric) character

« \\ matches the backslash (“\") character

Character Class Operator

[abc] matches any character in the sagb orc

[* abc] matches any character not in theageb orc

[a-z] matches any character in the rargg® z, inclusive. A leading or trailing
dash will be interpreted literally

+ [[:alnum:]] matches any alphanumeric character

73

Appendix E. Regular Expressions

[[:alpha:]] matches any alphabetical character

[[:blank:]] matches a space or horizontal tab

[[:entrl:]] matches a control character

[[:digit:]] matches a decimal digit

[[:graph:]] matches a non-space, non-control character
[[:lower:]] matches a lowercase letter

[[:print:]] same a§:graph:]] , but also space and tab
[[:punct:]] matches a punctuation character

[[:space:]] matches any whitespace character, including newlines
[[:upper:]] matches an uppercase letter

[[:xdigit:]] matches a valid hexadecimal digit

Subexpressions and Backreferences

(abc) matches whatever the expressait would match, and saves it as a
subexpression. Also used for grouping

(?: ...) pure grouping operator, does not save contents
(?# ...) embedded comment, ignored by engine

(?= ...) positive lookahead; the regular expression will match if the text in the
brackets matches, but that text will not be considered part of the match

(?! ...) negative lookahead; the regular expression will match if the text in the
brackets does not match, and that text will not be considered part of the match

\ n where 0 <n < 10, matches the same thing thié subexpression matched. Can
only be used in the search string

$n where 0 <n < 10, substituted with the text matched by tita subexpression.
Can only be used in the replacement string

Branching (Alternation) Operator

al b matches whatever the expressamwould match, or whatever the expression
would match.

Repeating Operators

These symbols operate on the previous atomic expression.

74

? matches the preceding expression or the null string

* matches the null string or any number of repetitions of the preceding expression

Appendix E. Regular Expressions

« + matches one or more repetitions of the preceding expression

{m matches exactlynrepetitions of the one-character expression
« {m n} matches betweemandn repetitions of the preceding expression, inclusive
- {m} matchesnor more repetitions of the preceding expression

Stingy (Minimal) Matching

If a repeating operator (above) is immediately followed k#y the repeating operator
will stop at the smallest number of repetitions that can complete the rest of the match.

75

Appendix E. Regular Expressions

76

Appendix F. Macros Included With
JEdit

jEdit comes with a large number of sample macros that perform a variety of tasks. The
following index provides short descriptions of each macro, in some cases accompanied
by usage notes.

In addition to the macros included with jEdit, a very large collection of user-contributed
macros is available in the “Downloads” section of themunity.jedit.org web site.
There are detailed descriptions for each macro as well as a search facility.

F.1. File Management Macros

These macros automate the opening and closing of files.

« Browse_Directory.bsh

Opens a directory supplied by the user in the file system browser.

e Close_All_Except_Active.bsh
Closes all files except the current buffer.

Prompts the user to save any buffer containing unsaved changes.

+ Open_Path.bsh

Opens the file supplied by the user in an input dialog.

» Open_Selection.bsh

Opens the file named by the current buffer’'s selected text.

F.2. Java Code Macros

These macros handle text formatting and generation tasks that are particularly useful in
writing Java code.

+ Get_Class_Name.bsh

77

Appendix F. Macros Included With jEdit

Inserts a Java class name based upon the buffer’s file name.

« Get_Package_Name.bsh
Inserts a plausible Java package name for the current buffer.

The macro compares the buffer's path name with the elements of the classpath
being used by the jEdit session. An error message will be displayed if no suitable
package name is found. This macro will not work if jEdit is being run as a JAR file
without specifying a classpath; in that case the classpath seen by the macro consists
solely of the JAR file.

 Make_Get_and_Set Methods.bsh
CreategietXxXX() orsetxXX() methods that can be pasted into the buffer text.

This macro presents a dialog that will “grab” the names of instance variables from
the caret line of the current buffer and paste a correspory@itxxX() or

setXXX() method to one of two text areas in the dialog. The text can be edited in
the dialog and then pasted into the current buffer usindrbert... buttons. If the
caret is set to a line containing something other than an instance variable, the text
grabbing routine is likely to generate nonsense.

As explained in the notes accompanying the source code, the macro uses a global
variable which can be set to configure the macro to work with either Java or C++
code. When set for use with C++ code, the macro will also write (in commented
text) definitions ofgetxXX() orsetxXX() suitable for inclusion in a header file.

» Preview_Javadoc_of Buffer.bsh
Creates and displays javadoc for current buffer.

The macro includes configuration variables for using different doclets for generating
javadocs and for generating javadocs of the package of which the current buffer is a
part. Details for use are included in the note accompanying the macro’s source code.

F.3. Macros for Listing Properties

These macros produce lists or tables containing properties used by the Java platform or
JEdit itself.

« jEdit_Properties.bsh

78

Appendix F. Macros Included With jEdit

Writes an unsorted list of jEdit properties in a new buffer.

« System_Properties.bsh

Writes an unsorted list of all Java system properties in a new buffer.

« Look_and_Feel_Properties.bsh

Writes an unsorted list of the names of Java Look and Feel properties in a new
buffer.

F.4. Miscellaneous Macros

While these macros do not fit easily into the other categories, they all provide interesting
and useful functions.

« Cascade_jEdit_Windows.bsh
Rearranges view and floating plugin windows.

The windows are arranged in an overlapping “cascade” pattern beginning near the
upper left corner of the display.

« Display_Abbreviations.bsh
Displays the abbreviations registered for each of jEdit’s editing modes.

The macro provides a read-only view of the abbreviations contained in the
“Abbreviations” option pane. Pressing a letter key will scroll the table to the first
entry beginning with that letter. A further option is provided to write a selected
mode’s abbreviations or all abbreviations in a text buffer for printing as a reference.
Notes in the source code listing point out some display options that are configured
by modifying global variables.

+ Display_Shortcuts.bsh
Displays a sorted list of the keyboard shortcuts currently in effect.

The macro provides a combined read-only view of command, macro and plugin
shortcuts. Pressing a letter key will scroll the table to the first entry beginning with
that letter. A further option is provided to write the shortcut assignments in a text

79

Appendix F. Macros Included With jEdit

80

buffer for printing as a reference. Notes in the source code listing point out some
display options that are configured by modifying global variables.

« Evaluate Buffer_in_BeanShell.bsh

Evaluates contents of current buffer as a BeanShell script, and opens a new buffer to
receive any text output.

This is a quick way to test a macro script even before its text is saved to a file.
Opening a new buffer for output is a precaution to prevent the macro from
inadvertently erasing or overwriting itself. BeanShell scripts that operate on the
contents of the current buffer will not work meaningfully when tested using this
macro.

Hex_Convert.bsh

Converts byte characters to their hex equivalent, and vice versa.

Include_Guard.bsh

Intended for C/C++ header files, this macro inserts a preprocessor directive in the
current buffer to ensure that the header is included only once per compilation unit.

To use the macro, first place the caret at the beginning of the header file before any
uncommented text. The macro will return to this position upon completion. The
defined term that triggers the “include guard” is taken from the buffer's name.

Make_Bug_Report.bsh

Creates a new buffer with installation and error information extracted from the
activity log.

The macro extracts initial messages written to the activity log describing the user’s
operating system, JDK, jEdit version and installed plugins. It then appends the last
set of error messages written to the activity log. The new text buffer can be saved
and attached to an email message or a bug report made on SourceForge.

Run_Script.bsh

Runs script using interpreter based upon buffer’s editing mode (by default,
determined using file extension). You must have the appropriate interpreter (such as
Perl, Python, or Windows Script Host) installed on your system.

Appendix F. Macros Included With jEdit
« Show_Threads.bsh

Displays in a tree format all running Java threads of the current Java Virtual
Machine.

« Write_HyperSearch_Results.bsh

This macro writes the contents of the “HyperSearch Results” window to a new
buffer in a simple text report format.

F.5. Text Macros

These macros generate various forms of formatted text.

« Add_Prefix_and_Suffix.bsh

Adds user-supplied “prefix” and “suffix” text to each line in a group of selected
lines.

Text is added after leading whitespace and before trailing whitespace. A dialog
window receives input and “remembers” past entries.

« Color_Picker.bsh

Displays a color picker and inserts the selected color in hexadecimal format,
prefixed with a “#”.

 Duplicate_Line.bsh

Duplicates the line on which the caret lies immediately beneath it and moves the
caret to the new line.

» Insert_Date.bsh
Inserts the current date and time in the current buffer.

The inserted text includes a representation of the time in the “Internet Time” format.

« Insert_Tag.bsh

Inserts a balanced pair of HTML/SGML/XML markup tags as supplied in a input
dialog. The tags will surround any selected text.

81

Appendix F. Macros Included With jEdit

82

« Next_Char.bsh

Finds next occurrence of character on current line.

The macro takes the next character typed after macro execution as the character
being searched. That character is not displayed. If the character does not appear in
the balance of the current line, no action occurs.

This macro illustrates the use putHandler.readNextChar() as a means of
obtaining user input. Se®ection 14.1.4

Toggle_Line_Comment.bsh

Toggles line comments, alternately inserting and deleting them at the beginning of
each selected line. If there is no selection, the macro operates on the current line.

A “line comment” is a token that designates the entire contents of a line as
commented text; it does not use or require a closing token. If the editing mode does
not provide for line comments (for example, text or XML modes), the macro will
display an error message.

Appendix G. jEditLauncher for
Windows

G.1. Introduction

The jEditLauncher package is a set of lightweight components for running jEdit under
the Windows group of operating systems. The package is designed to run on Windows
95, Windows 98, Windows Me, Windows NT (versions 4.0 and greater), Windows 2000
and Windows XP.

While jEdit does not make available a component-type interface, it does contains an
“EditServer” that listens on a socket for requests to load scripts written in the BeanShell
scripting language. When the server activates, it writes the server port number and a
pseudo-random, numeric authorization key to a text file. By default, the file is named
server and is located in the settings directory (S==tion 6.4.

The jEditLauncher component locates and reads this file, opens a socket and attempts to
connect to the indicated port. If successful, it transmits the appropriate BeanShell script
to the server. If unsuccessful, it attempts to start jEdit and repeats the socket transmission
once it can obtain the port and key information. The component will abandon the effort

to connect roughly twenty seconds after it launches the application.

G.2. Starting jJEdit

The main component of the jEditLauncher package is a client application entitled
jedit.exe. It may be executed either from either Windows Explorer, a shortcut icon or the
command line. It uses the jEditLauncher COM component to open files in jEdit that are
listed as command line parameters. It supports Windows and UNC file specifications as
well as wild cards. If called without parameters, it will launch jEdit. If JEdit is already
running, it will simply open a new, empty buffer.

jedit.exe supports five command-line options. Except for theoption, if any of these
options are invoked correctly, the application will not load files or execute jEdit.

- The option/h causes a window to be displayed with a brief description of the
application and its various options.

- The option/p will activate a dialog window displaying the command-line
parameters to be used when calling jEdit. This option can also be triggered by
selectingSet jEdit Parameters from thejEdit section of the Windows Programs
menu, or by running the utility prograjadinit.exe

83

Appendix G. jEditLauncher for Windows

84

Using the dialog, you can change parameters specifying the executable for the Java
application loader (eithgava.exe orjavaw.exe), the location of the jEdit
archive file jedit.jar , and command line options for both.

The input fields for Java options and jEdit options are separate. If you insert
an option in the wrong place it will not be properly executed.

If the -jar option is not used with the Java application loader the principal
JEdit class oforg.gjt.sp.jedit.jEdit is set as fixed data.

The working directory for the Java interpreter’'s process can also be specified.

A read-only window at the bottom of the dialog displays the full command line that
JEditLauncher will invoke.

Before committing changes to the command line paramgeatis,exe validates the
paths for the Java and jEdit targets as well as the working directory. It will complain
if the paths are invalid. It will not validate command line options, but it will warn
you if it finds the-noserver option used for jEdit, since this will deactivate the
edit server and make it impossible for jEditLauncher to open files.

Note that due to the design of jEditLauncher, platform-independent command line
options handled by jEdit itself (such @sackground and-norestore) must

be entered in the “Set jEdit Parameters” dialog box, and cannot be specified on the
jedit.exe command line directly. For information about platform-independent
command line options, se&ection 1.4

The optior/1 is intended for use in circumstances where a single file name is
passed to jEdit for opening, and quotation marks cannot be used to delimit file
names containing whitespace. The launcher reads the entire command line
following the/1 options as a single file path, regardless of the presence of
whitespace, and passes the resulting string as a single file name parameter to jEdit.

This option allows jEdit to be used with version 5 or greater of Internet Explorer as
an alternate text editor or as the target ofthew Source command. Included with
the jEditLauncher distribution is a file namgdit_IE.reg.txt containing an
example of a Window registry file that you can use to register jEdit as a HTML
editor with Internet Explorer. Instructions for the file’s use are included in the text.

The use of thél option with multiple file names or other parameters will lead to
program errors or unpredictable results.

The option/i is not mentioned in the help window fgitexe . Itis intended
primarily to be used in conjunction with jEdit's Java installer, but it can also be used
to install or reinstall jEditLauncher manually. When accompanied by a second
parameter specifying the directory where your preferred Java interpreter is located,

Appendix G. jEditLauncher for Windows

jEditLauncher will install itself and set a reasonable initial set of command line
parameters for executing jEdit. You can change these parameters later by running
jedinit.exe orjedit.exe with the/p option.

« The option/u will cause jEditLauncher to be uninstalled by removing its registry
entries. This option does not delete any jEditLauncher or jEdit files.

G.3. The Context Menu Handler

The jEditLauncher package also implements a context menu handler for the Windows
shell. It is intended to be be installed as a handler available for any file. When you
right-click on a file or shortcut icon, the context menu that appears will include an item
displaying the jEdit icon and caption€pen with jEdit. If the file has an extension,
another item will appear caption€pen *. XXX with jEdit, where XXX is the extension
of the selected file. Clicking this item will cause jEdit to load all files with the same
extension in the same directory as the selected file. Multiple file selections are also
supported; in this circumstance only tBgen with jEdit item appears.

If a single file with absh extension is selected, the menu will also contain an item
captionedRun script in jEdit. Selecting this item will cause jEditLauncher to run the
selected file as a BeanShell script.

If exactly two files are selected, the menu will contain an entnSioow diff in jEdit.
Selecting this item will load the two files in jEdit and have them displayed side-by-side
with their differences highlighted by the JDiff plugin. The file selected first will be
treated as the base for comparison purposes. If the plugin is not installed, an error
message will be displayed in jEdit. SEaapter &or more information about installing
plugins.

G.4. Using jEdit and jEditLauncher as a Diff Utility

As noted above, you can create a graphical diff display comparing the contents of two
text files by selecting the two files in an Explorer window, right-clicking to produce a
context menu, and selecting tBaow diff in jEdit menu item. The utility

jedidiff.exe allows you to perform this operation from a command line. The

command takes the two files to be compared as parameters; they should be delimited by
guotation marks if their paths contain whitespace.

G.5. Uninstalling jEdit and jEditLauncher

There are three ways to uninstall jEdit and jEditLauncher.

85

Appendix G. jEditLauncher for Windows

« First, you can runinlaunch.exe in the jEdit installation directory.

- Second, you can choosminstall jEdit from thejEdit section of the Programs
menu.

- Third, you can choose the uninstall option for jEdit in the Control Panel’s
Add/Remove Programs applet.

Each of these options will deactivate jEditLauncher and delete all files in jEdit’s
installation directory. As a safeguard, jEditLauncher displays a warning window and
requires the user to confirm an uninstall operation. Because the user’s settings directory
can be set and changed from one jEdit session to another, user settings files must be
deleted manually.

To deactivate jEditLauncher without deleting any files, jaiit /u from any

command prompt where the jEdit installation directory is in the search path. This will
remove the entries for jEditLauncher from the Windows registry. It will also disable the
context menu handler and the automatic launching and scripting capabilities. The
package can reactivated by execufi@dit.exe again, and jEdit can be started in the
same manner as any other Java application on your system.

G.6. The jEditLauncher Interface

86

The core of the jEditLauncher package is a COM component that can communicate with
the EditServer, or open jEdit if it is not running or is otherwise refusing a connection. The
component supports both Windows and UNC file specifications, including wild cards. It
will resolve shortcut links to identify and transmit the name of the underlying file.

Because it is implemented with a “dual interface”, the functions of jEditLauncher are
available to scripting languages in the Windows environment such as VBScript, JScript,
Perl (using the Win32::OLE package) and Python (using the win32com.client package).

The scriptable interface consists of two read-only properties and six functions:

Properties

« ServerPort - aread-only property that returns the port number found in jEdit’'s
server file; the value is not tested for authenticity. It returns zero if the server
information file cannot be located.

« ServerKey - aread-only property that returns the numeric authorization key found
in jJEdit’s server file; the value is not tested for authenticity. It returns zero if the
server information file cannot be located.

Functions

Appendix G. jEditLauncher for Windows

« OpenFile -a method that takes a single file name (with or without wild card
characters) as a parameter.

« OpenFiles - this method takes a array of file names (with or without wild card
characters) as a parameter. The form of the array is that which is used for arrays in
the scripting environment. In JScript, for example the data type ofARANT
holding the array i¥T_DISPATCH in VBScript, it iSVT_ARRAY | VT_VARIANT,
with array members having data tyg& BSTR

« Launch - this method with no parameters attempts to open jEdit without loading
additional files.

« RunScript - this method takes a file name or full file path as a parameter and runs
the referenced file as a BeanShell script in jEdit. The predefined variables
editPane ,textArea andbuffer are available to the script. If more than one view
is open, the variable are initialized with reference to the earliest opened view. If no
path is given for the file it will use the working directory of the calling process.

« EvalScript - this method takes a string as a parameter containing one or more
BeanShell statements and runs the script in jEdit's BeanShell interpreter. The
predefined variables are available on the same basisRas8tript

+ RunDiff - this method takes two strings representing file names as parameters. If
the JDiff plugin is installed, this method will activate the JDiff plugin and display
the two files in the plugin’s graphical “dual diff” format. The first parameter is
treated as the base for display purposes. If the JDiff plugin is not installed, a error
message box will be displayed in jEdit.

G.7. Scripting Examples

Here are some brief examples of scripts using jEditLauncher. The first two will run under
Windows Script Host, which is either installed or available for download for 32-bit
Windows operating systems. The next example is written in Perl and requires the
Win32::0OLE package. The last is written in Python and requires the win32gui and
win32com.client extensions.

If Windows Script Host is installed, you can run the first two scripts by typing the name
of the file containing the script at a command prompt. In jEdit's Console plugin, you can
typecmd /c script_path orwscript script_path

' Example VBScript using jEditLauncher interface
dim launcher

set launcher = CreateObject("JEdit.JEditLauncher")

a = Array("I:\Source Code Files\shellext\jeditshell*.h",
"I\Source Code Files\shellext\jeditshell*.cpp")
MsgBox "The server authorization code is " + _
FormatNumber(launcher.ServerkKey, 0, 0, 0, 0) + ", _

87

Appendix G. jEditLauncher for Windows

88

vbOKOnly + vbinformation, "jEditLauncher"
launcher.openFiles(a)
myScript = "jEdit.newFile(view); textArea.setSelectedText(" _
& CHR(34) _
& "Welcome to jEditLauncher." _
& CHR(34) & ");"
launcher.evalScript(myScript)

/* Example JScript using jEditLauncher interface
* Note: in contrast to VBScript, JScript does not
* directly support message boxes outside a browser window
*/
var launcher = WScript.createObject("JEdit.JEditLauncher");
var a = new Array("l:\\weather.html", "l:\\test.txt");
b = "L\ pl";
launcher.openFiles(a);
launcher.openFile(b);
¢ = "G:\\Program Files\\|Edit\macros\\Misc"
+ "\Properties\\System_properties.bsh";
launcher.runScript(c);

Example Perl script using jEditLauncher interface
use Win32::0OLE;
$launcher = Win32::OLE->new('JEdit.JEditLauncher’) ||
die "JEditLauncher: not found \n";
@files = ();
foreach $entry (@ARGV) {
@new = glob($entry);
push(@files,@new);

}
$launcher->openFiles(\@files);
my($script) = "Macros.message(view, \"l| found "

(scalar @files)." files.\");";
$launcher->evalScript($script);

Example Python script using jEditLauncher interface
import win32gui
import win32com.client
0 = win32com.client.Dispatch("JEdit.JEditLauncher")
port = o.ServerPort
if port ==
port = "inactive. We will now launch jEdit"

win32gui.MessageBox(0, "The server port is %s." % port,

"|EditLauncher", 0)
path = "C:\\WINNT\\Profiles\\Administrator\\Desktop\\"
o.RunDiff(path + "Search.bsh", path + "Search2.bsh")

Appendix G. jEditLauncher for Windows
G.8. jEditLauncher Logging

The jEditLauncher package has a logging facility that is separate from jEdit’s Activity

Log to provide a record of events occurring outside the Java virtual machine environment
in which jEdit operates. The logging facility maintains two log filegiunch.log for

events relating to starting jEdit, loading files and running scripts jresall.log for
jEditLauncher installation activity. Both files are maintained in the directory in which

JEdit is installed. They are cumulative from session to session, but may be manually
deleted at any time without affecting program execution.

G.9. Legal Notice

All source code and software distributed as the jEditLauncher package in which the
author holds the copyright is made available under the GNU General Public License
(“GPL"). A copy of the GPL is included in the fileOPYING.txt included with jEdit.

Notwithstanding the terms of the General Public License, the author grants permission to
compile and link object code generated by the compilation of this program with object
code and libraries that are not subject to the GNU General Public License, provided that
the executable output of such compilation shall be distributed with source code on
substantially the same basis as the jEditLauncher package of which this source code and
software is a part. By way of example, a distribution would satisfy this condition if it
included a working Makefile for any freely available make utility that runs on the

Windows family of operating systems. This condition does not require a licensee of this
software to distribute any proprietary software (including header files and libraries) that

is licensed under terms prohibiting or limiting redistribution to third parties.

The purpose of this specific permission is to allow a user to link files contained or
generated by the source code with library and other files licensed to the user by
Microsoft or other parties, whether or not that license conforms to the requirements of
the GPL. This permission should not be construed to expand the terms of any license for
any source code or other materials used in the creation of jEditLauncher.

89

Appendix G. jEditLauncher for Windows

90

Il. Writing Edit Modes

This part of the user’s guide covers writing edit modes for jEdit.

Edit modes specify syntax highlighting rules, auto indent behavior, and various other
customizations for editing different file types. For general information about edit modes,
seeSection 5.1

This part of the user’s guide was written by Slava Pestsava@jedit.org >,

Chapter 9. Mode Definition Syntax

Edit modes are defined using XML, tlegtensible markup languagmode files have the
extensionxml . XML is a very simple language, and as a result edit modes are easy to
create and modify. This section will start with a short XML primer, followed by detailed
information about each supported tag and highlighting rule.

Editing a mode or a mode catalog file within jEdit will cause the changes to take effect
immediately. If you edit modes using another application, the changes will take effect
after theUtilities>Reload Edit Modes command is invoked.

9.1. An XML Primer

A very simple XML file (which also happens to be an edit mode) looks like so:
<?xml version="1.0"?>
<IDOCTYPE MODE SYSTEM "xmode.dtd">

<MODE>
<PROPS>
<PROPERTY NAME="commentStart" VALUE="/*" />
<PROPERTY NAME="commentEnd" VALUE="*" />
</PROPS>

<RULES>

<BEGIN>/*</BEGIN>
<END>*/</END>

</RULES>
</MODE>

Note that each opening tag must have a corresponding closing tag. If there is nothing
between the opening and closing tags, for examphes></TAG>, the shorthand notation
<TAG /> may be used. An example of this shorthand can be seen ¥PER@PERTYtags
above.

XML is case sensitiveSpan or span is not the same aSPAN

To insert a special character such as < or > literally in XML (for example, inside an
attribute value), you must write it as antity. An entity consists of the character’s
symbolic name enclosed with “&” and “;”. The most frequently used entities are:

« < - The less-than (<) character

« > - The greater-than (>) character

93

Chapter 9. Mode Definition Syntax
- & - The ampersand (&) character

For example, the following will cause a syntax error:

<SEQ TYPE="OPERATOR">&</SEQ>

Instead, you must write:

<SEQ TYPE="OPERATOR">&</SEQ>

Now that the basics of XML have been covered, the rest of this section will cover each
construct in detail.

9.2. The Preamble and MODE tag
Each mode definition must begin with the following:

<?xml version="1.0"?>
<IDOCTYPE MODE SYSTEM "xmode.dtd">

Each mode definition must also contain exactly si@dgag. All other tagskROPS
RULES must be placed inside theODEag. ThemODHRag does not have any defined
attributes. Here is an example:

<MODE>
. mode definition goes here ...
</MODE>

9.3. The PROPS Tag

ThePROPSag and theeROPERTYags inside it are used to define mode-specific
properties. EacRROPERTYag must have 8AMEattribute set to the property’s name, and
aVALUEattribute with the property’s value.

All buffer-local properties listed iBection 6.2nay be given values in edit modes.

The following mode properties specify commenting strings:

« commentEnd - the comment end string, used by tRange Comment command.

- commentStart - the comment start string, used by fRange Comment
command.

+ lineComment - the line comment string, used by thse Comment command.

When performing auto indent, a number of mode properties determine the resulting
indent level:

94

Chapter 9. Mode Definition Syntax

- The line and the one before it are scanned for brackets listed in the
indentCloseBrackets andindentOpenBrackets ~ properties. Opening brackets in
the previous line increase indent.

If lineUpClosingBracket is set totrue , then closing brackets on the current line
will line up with the line containing the matching opening bracket. For example, in
Java modéineUpClosingBracket IS set totrue , resulting in brackets being
indented like so:
{
/I Code
{
/I More code
}
}
If lineUpClosingBracket Is set tofalse , the lineafter a closing bracket will be
lined up with the line containing the matching opening bracket. For example, in
Lisp modelineUpClosingBracket is set tofalse , resulting in brackets being

indented like so:

(foo ’a-parameter

(crazy-p)
(bar baz ()))
(print "hello world")

- If the previous line contains no opening brackets, or ifdbdbleBracketindent
property is set tarue , the previous line is checked against the regular expressions
in theindentNextLine ~ andindentNextLines properties. If the previous line
matches the former, the indent of the current line is increased and the subsequent
line is shifted back again. If the previous line matches the latter, the indent of the
current and subsequent lines is increased.

In Java mode, for example, tielentNextLine property is set to match control

structures such as “if”, “else”, “while”, and so on.

ThedoubleBracketindent property, if set to the default ¢dise , results in code
indented like so:

while(objects.hasNext())

{
Object next = objects.hasNext();
if(next instanceof Paintable)
next.paint(g);
}

On the other hand, settings this property to “true” will give the following result:

while(objects.hasNext())
{

Object next = objects.hasNext();

95

Chapter 9. Mode Definition Syntax

if(next instanceof Paintable)
next.paint(qg);

Here is the completePROPS>tag for Java mode:

<PROPS>
<PROPERTY NAME="commentStart" VALUE="/*" />
<PROPERTY NAME="commentEnd" VALUE="*" />
<PROPERTY NAME="lineComment" VALUE="//" />
<PROPERTY NAME="wordBreakChars" VALUE=",+-=<>/?"&*" />

<l-- Auto indent -->
<PROPERTY NAME="indentOpenBrackets" VALUE="{" />
<PROPERTY NAME="indentCloseBrackets" VALUE="}" />
<PROPERTY NAME="indentNextLine"
VALUE="\s*(((if|while)\s*\(|else\s*|else\s+if\s*\(|for\s*\(.*\))[{;]*)" />
<l-- set this to 'true’ if you want to use GNU coding style -->
<PROPERTY NAME="doubleBracketindent" VALUE="false" />
<PROPERTY NAME="lineUpClosingBracket" VALUE="true" />
</PROPS>

9.4. The RULES Tag

96

RULEStags must be placed inside thi®@DRag. EactrRULEStag defines auleset A

ruleset consists of a number édirser rules with each parser rule specifying how to
highlight a specific syntax token. There must be at least one ruleset in each edit mode.
There can also be more than one, with different rulesets being used to highlight different
parts of a buffer (for example, in HTML mode, one rule set highlights HTML tags, and
another highlights inline JavaScript). For information about using more than one ruleset,
seeSection 9.6

TheRULEStag supports the following attributes, all of which are optional:

- SET-the name of this ruleset. All rulesets other than the first must have a name.

« IGNORE_CASE if set toFALSE, matches will be case sensitive. Otherwise, case will
not matter. Default iISRUE

« NO_WORD_SEPany non-alphanumeric charactestin this list is treated as a word
separator for the purposes of syntax highlighting.

« DEFAULT- the token type for text which doesn’t match any specific rule. Default is
NULL SeeSection 9.15or a list of token types.

* HIGHLIGHT_DIGITS

Chapter 9. Mode Definition Syntax
- DIGIT_RE - see below for information about these two attributes.

Here is an examplRULEStag:

<RULES IGNORE_CASE="FALSE" HIGHLIGHT_DIGITS="TRUE">
... parser rules go here ...
</RULES>

9.4.1. Highlighting Numbers

If the HIGHLIGHT_DIGITS attribute is set taRUE jEdit will attempt to highlight
numbers in this ruleset.

Any word consisting entirely of digits (0-9) will be highlighted with tbesIT token

type. A word that contains other letters in addition to digits will be highlighted with the
DIGIT token type only if it matches the regular expression specified iDtAE_RE
attribute. If this attribute is not specified, it will not be highlighted.

Here is an examplBIGIT_RE regular expression that highlights Java-style numeric
literals (normal numbers, hexadecimals prefixed withnumbers suffixed with various
type indicators, and floating point literals containing an exponent):

DIGIT_RE="(0x[[:xdigit:]]+|[[:digit:]]+(e[[:digit:]]*) ?)[ILdDFF]?"

Regular expression syntax is describedppendix E

9.4.2. Rule Ordering Requirements
You might encounter this very common pitfall when writing your own modes.

Since jEdit checks buffer text against parser rules in the order they appear in the ruleset,
more specific rules must be placed before generalized ones, otherwise the generalized
rules will catch everything.

This is best demonstrated with an example. The following is incorrect rule ordering:

<BEGIN>[</BEGIN>
<END>]</END>

<BEGIN>[!</BEGIN>
<END>]</END>

97

Chapter 9. Mode Definition Syntax

If you write the above in a rule set, any occurrence of “[” (even things like “['DEFINE”,
etc) will be highlighted using the first rule, because it will be the first to match. This is
most likely not the intended behavior.

The problem can be solved by placing the more specific rule before the general one:

<BEGIN>[I</BEGIN>
<END>]</END>

<BEGIN>[</BEGIN>
<END>]</END>

Now, if the buffer contains the text “[!SPECIAL]", the rules will be checked in order,
and the first rule will be the first to match. However, if you write “[FOQ]", it will be
highlighted using the second rule, which is exactly what you would expect.

9.4.3. Per-Ruleset Properties

ThePROPSag (described ibection 9.3 can also be placed inside tRe/LEStag to
define ruleset-specific properties. The following properties can be set on a per-ruleset
basis:

« commentEnd - the comment end string.
« commentStart - the comment start string.
+ lineComment - the line comment string.

This allows different parts of a file to have different comment strings (in the case of
HTML, for example, in HTML text and inline JavaScript). For information about the
commenting commands, s&ection 5.3

9.5. The TERMINATE Tag

98

The TERMINATErule, which must be placed insideraLEStag, specifies that parsing
should stop after the specified number of characters have been read from a line. The
number of characters to terminate after should be specified withTtheHARattribute.
Here is an example:

<TERMINATE AT_CHAR="1" />

Chapter 9. Mode Definition Syntax

This rule is used in Patch mode, for example, because only the first character of each line
affects highlighting.

9.6. The SPAN Tag

The sPANrule, which must be placed insider&JLEStag, highlights text between a start
and end string. The start and end strings are specified inside child elementsphAthe
tag. The following attributes are supported:

TYPE- The token type to highlight the span with. Seection 9.15or a list of token
types.

AT_LINE_START - If set toTRUE the span will only be highlighted if the start
sequence occurs at the beginning of a line.

AT_WHITESPACE_ENDBIf set toTRUE the span will only be highlighted if the start
sequence is the first non-whitespace text in the line.

AT_WORD_STARTIf set to TRUE the span will only be highlighted if the start
sequence occurs at the beginning of a word.

DELEGATE text inside the span will be highlighted with the specified ruleset. To
delegate to a ruleset defined in the current mode, just specify its name. To delegate
to a ruleset defined in another mode, specify a name of therfaa: ruleset

Note that the first (unnamed) ruleset in a mode is called “MAIN”".

EXCLUDE_MATCHIf set to TRUE the start and end sequences will not be
highlighted, only the text between them wiill.

NO_LINE_BREAK- If set to TRUE the span will not cross line breaks.

NO_WORD_BREAKf set to TRUE the span will not cross word breaks.

Here is asPANthat highlights Java string literals, which cannot include line breaks:

<BEGIN>"</BEGIN>
<END>"</END>

Here is asPANthat highlights Java documentation comments by delegating to the
“JAVADOC” ruleset defined elsewhere in the current mode:

<BEGIN>/**</BEGIN>
<END>*/</END>

99

Chapter 9. Mode Definition Syntax

Here is asPANthat highlights HTML cascading stylesheets instd@ YLE>tags by
delegating to the main ruleset in the CSS edit mode:

<BEGIN><style></BEGIN>
<END>&lIt;/style></END>

9.7. The SPAN_REGEXP Tag

The SPAN_REGEXPule is similar to thesPANrule except the start sequence is taken to be

a regular expression. In addition to the attributes supported bgrhstag, the
HASH_CHARttribute must be specified. It must be set to the first character that the regular
expression matches. Note that this disallows regular expressions which can match more
than one character at the start position.

Regular expression syntax is describedppendix E
Here is aSPAN_REGEXPule that highlights constructs placed betweehl and>, as
long as the#ftl is followed by a word break:

<SPAN_REGEXP TYPE="KEYWORD1" HASH_CHAR="<" DELEGATE="EXPRESSION">
<BEGIN><#fth></BEGIN>
<END>></END>

</SPAN_REGEXP>

9.8. The EOL_SPAN Tag

An EOL_SPANS similar to asPANexcept that highlighting stops at the end of the line,
and no end sequence needs to be specified. The text to match is specified between the
opening and closingoL_SPANags. The following attributes are supported:

« TYPE- The token type to highlight the span with. S&ection 9.15or a list of token
types.

« AT_LINE_START - If set toTRUE the span will only be highlighted if the start
sequence occurs at the beginning of a line.

« AT_WHITESPACE_ENDPIf set toTRUE the span will only be highlighted if the
sequence is the first non-whitespace text in the line.

« AT_WORD_STARTIf set to TRUE the span will only be highlighted if the start
sequence occurs at the beginning of a word.

« DELEGATE text inside the span will be highlighted with the specified ruleset. To
delegate to a ruleset defined in the current mode, just specify its name. To delegate

100

Chapter 9. Mode Definition Syntax

to a ruleset defined in another mode, specify a name of therfada: ruleset
Note that the first (unnamed) ruleset in a mode is called “MAIN".

+ EXCLUDE_MATCHIf set toTRUE the start and end sequences will not be
highlighted, only the text between them will.

Here is areEOL_SPANhat highlights C++ comments:

<EOL_SPAN TYPE="COMMENT1">//</[EOL_SPAN>

9.9. The EOL_SPAN_REGEXP Tag

TheEOL_SPAN_REGEXFRule is similar to theeOL_SPANule except the match sequence is
taken to be a regular expression. In addition to the attributes supported b@thePAN

tag, theHASH_CHARittribute must be specified. It must be set to the first character that
the regular expression matches. Note that this disallows regular expressions which can
match more than one character at the start position.

Regular expression syntax is describedppendix E

9.10. The MARK_PREVIOUS Tag

The MARK_PREVIOUSule, which must be placed insider&JLEStag, highlights from the
end of the previous syntax token to the matched text. The text to match is specified
between opening and closiMpARK_PREVIOU$ags. The following attributes are
supported:

« TYPE- The token type to highlight the text with. S8ection 9.15or a list of token
types.

« AT_LINE_START - If set toTRUE the sequence will only be highlighted if it occurs
at the beginning of a line.

« AT_WHITESPACE_ENDPIf set toTRUE the sequence will only be highlighted if it is
the first non-whitespace text in the line.

« AT_WORD_STARTIf set to TRUE the sequence will only be highlighted if it occurs
at the beginning of a word.

« EXCLUDE_MATCHIf set toTRUE the match will not be highlighted, only the text
before it will.

Here is a rule that highlights labels in Java mode (for example, “XXX:"):

<MARK_PREVIOUS AT_WHITESPACE_END="TRUE"
EXCLUDE_MATCH="TRUE">:</MARK_PREVIOUS>

101

Chapter 9. Mode Definition Syntax
9.11. The MARK_FOLLOWING Tag

TheMARK_FOLLOWIN@ule, which must be placed insideR@LEStag, highlights from the
start of the match to the next syntax token. The text to match is specified between
opening and closingIARK_FOLLOWING&gs. The following attributes are supported:

« TYPE- The token type to highlight the text with. S8ection 9.15or a list of token
types.

« AT_LINE_START - If set toTRUE the sequence will only be highlighted if it occurs
at the beginning of a line.

« AT_WHITESPACE_ENDPIf set toTRUE the sequence will only be highlighted if it is
the first non-whitespace text in the line.

« AT_WORD_STARTIf set to TRUE the sequence will only be highlighted if it occurs
at the beginning of a word.

+ EXCLUDE_MATCHIf set to TRUE the match will not be highlighted, only the text
after it will.

Here is a rule that highlights variables in Unix shell scripts (“6CLASSPATH”, “$IFS”,
etc):

<MARK_FOLLOWING TYPE="KEYWORD2">$</MARK_FOLLOWING>

9.12. The SEQ Tag

The SEQrule, which must be placed insider&JLEStag, highlights fixed sequences of
text. The text to highlight is specified between opening and clasgags. The
following attributes are supported:

+ TYPE- the token type to highlight the sequence with. Seetion 9.15or a list of
token types.

« AT_LINE_START - If set toTRUE the sequence will only be highlighted if it occurs
at the beginning of a line.

« AT_WHITESPACE_ENPIf set toTRUE the sequence will only be highlighted if it is
the first non-whitespace text in the line.

« AT_WORD_STARTIf set to TRUE the sequence will only be highlighted if it occurs
at the beginning of a word.

- DELEGATE if this attribute is specified, all text after the sequence will be
highlighted using this ruleset. To delegate to a ruleset defined in the current mode,
just specify its name. To delegate to a ruleset defined in another mode, specify a

102

Chapter 9. Mode Definition Syntax

name of the fornmode:: ruleset . Note that the first (unnamed) ruleset in a mode
is called “MAIN”.

The following rules highlight a few Java operators:

<SEQ TYPE="OPERATOR">+</SEQ>
<SEQ TYPE="OPERATOR">-</SEQ>
<SEQ TYPE="OPERATOR">*</SEQ>
<SEQ TYPE="OPERATOR">/</SEQ>

9.13. The SEQ_REGEXP Tag

The SEQ_REGEXPule is similar to thesEQrule except the match sequence is taken to be

a regular expression. In addition to the attributes supported byaQeag, the
HASH_CHARttribute must be specified. It must be set to the first character that the regular
expression matches. Note that this disallows regular expressions which can match more
than one character at the start position.

Here is an example of &EQ_REGEXIule that highlights Perl’'s matcher constructions
such asn/(.+):(\d+):(.+)/

<SEQ_REGEXP TYPE="MARKUP"

HASH_CHAR="m"

AT_WORD_START="TRUE"
>m([[:punct:]])(?:.*?["\])*?\1[sgiexom]*</SEQ_REGEXP>

Regular expression syntax is describedppendix E

9.14. The KEYWORDS Tag

The KEYWORDEg, which must be placed insideR@LEStag and can only appear once,
specifies a list of keywords to highlight. Keywords are similagigs, except thaSEG
match anywhere in the text, whereas keywords only match whole words. Words are
considered to be runs of text separated by non-alphanumeric characters.

The KEYWORD®g does not define any attributes.

Each child element of theEYWORDt&ag is an element whose name is a token type, and
whose content is the keyword to highlight. For example, the following rule highlights the
most common Java keywords:

<KEYWORDS>
<KEYWORD1>if</KEYWORD1>
<KEYWORD1>else</KEYWORD1>
<KEYWORD3>int</KEYWORD3>
<KEYWORD3>vo0id</KEYWORD3>

103

Chapter 9. Mode Definition Syntax

</KEYWORDS>

9.15. Token Types

Parser rules can highlight tokens using any of the following token types:

« NULL- no special highlighting is performed on tokens of tyypé L
« COMMENT1
« COMMENT2
« FUNCTION
+ INVALID

« KEYWORD1
« KEYWORD?2
« KEYWORD3
+ LABEL

« LITERAL1
« LITERAL2
« MARKUP

+ OPERATOR

104

Chapter 10. Installing Edit Modes

JEdit looks for edit modes in two locations; thedes subdirectory of the jEdit settings
directory, and thenodes subdirectory of the jEdit install directory. The location of the
settings directory is system-specific; ssection 6.4

Each mode directory containgatalog file. All edit modes contained in that directory
must be listed in the catalog, otherwise they will not be available to jEdit.

Catalogs, like modes themselves, are written in XML. They consist of a SUQeES

tag, with a number oflODHags inside. Each mode tag associates a mode name with an
XML file, and specifies the file name and first line pattern for the mode. A sample mode
catalog looks as follows:

<?xml version="1.0"?>
<IDOCTYPE CATALOG SYSTEM "catalog.dtd">

<MODES>
<MODE NAME="shellscript" FILE="shellscript.xml"
FILE_NAME_GLOB="*.sh"
FIRST_LINE_GLOB="#!/*sh*" />
</MODES>

In the above example, a mode named “shellscript” is defined, and is used for files whose
names end wittsh , or whose first line starts with “#!/” and contains “sh”.

The MODHag supports the following attributes:

« NAME the name of the edit mode, as it will appear in Big@fer Options dialog
box, the status bar, and so on.

« FILE - the name of the XML file containing the mode definition.

« FILE_NAME_GLOB- files whose names match this glob pattern will be opened in this
edit mode.

+ FIRST_LINE_GLOB - files whose first line matches this glob pattern will be opened
in this edit mode.

Glob pattern syntax is describedAppendix D

Tip: If an edit mode in the user-specific catalog has the same name as an edit
mode in the system catalog, the version in the user-specific catalog will override
the system default.

105

Chapter 10. Installing Edit Modes

106

Chapter 11. Updating Edit Modes for
JEdit 4.1

In jEdit 4.1, the mode file grammar has been cleaned up somewhat. As a result, some
edit modes written for jEdit 4.0 and earlier need to be updated:

Defining<WHITESPACExules is no longer necessary and doing so will print
warnings to the activity logs.

The<KEYWORDStag no longer accepts aBNORE_CASHttribute. Set the
IGNORE_CASHittribute of the<RULES>tag instead.

The<END>tag of therule used to be optional, in which case any occurrence
of the start string would cause the remainder of the buffer to be highlighted with the
span. In jEdit 4.1, theEND>tag can no longer be omitted, howevetSEQ>tag

with a DELEGATHEattribute can be used to achieve the same effect as endless span.

Defining<SEQ TYPE="NULL">rules for word separators is no longer necessary.
Now, any non-alphanumeric character not appearing in a keyword definition or the
ruleset’sNO_WORD_SE#ttribute is considered a word separator.

107

Chapter 11. Updating Edit Modes for jEdit 4.1

108

I1l. Writing Macros

This part of the user’s guide covers writing macros for jEdit.

First, we will tell you a little about BeanShell, jEdit’s macro scripting language. Next,

we will walk through a few simple macros. We then present and analyze a dialog-based
macro to illustrate additional macro writing techniques. Finally, we discuss several tips
and techniques for writing and debugging macros.

This part of the user’s guide was written by John Gellejgelksne@nyc.rr.com >,

Chapter 12. Macro Basics

12.1. Introducing BeanShell

Here is how BeanShell’s author, Pat Niemeyer, describes his creation:

“BeanShell is a small, free, embeddable, Java source interpreter with object scripting
language features, written in Java. BeanShell executes standard Java statements and
expressions, in addition to obvious scripting commands and syntax. BeanShell supports
scripted objects as simple method closures like those in Perl and JavaScript.”

You do not have to know anything about Java to begin writing your own jEdit macros.
But if you know how to program in Java, you already know how to write BeanShell
scripts. The major strength of using BeanShell with a program written in Java is that it
allows the user to customize the program’s behavior using the same interfaces designed
and used by the program itself. BeanShell can turn a well-designed application into a
powerful, extensible toolkit.

This guide focuses on using BeanShell in macros. If you are interested in learning more
about BeanShell generally, consult ®eanShell web site . Information on how to

run and organize macros, whether included with the jEdit installation or written by you,
can be found irChapter 7

12.2. Single Execution Macros

As noted inSection 7.3you can save a BeanShell script of any length as a text file with
the.bsh extension and run it from thilacros menu. There are three other ways jEdit
lets you use BeanShell quickly, without saving a script to storage, on a “one time only”
basis. You will find them in th&Jtilities menu.

Utilities>BeanShell>Evaluate BeanShell Expression displays a text input dialog that
asks you to type a single line of BeanShell commands. You can type more than one
BeanShell statement so long as each of them ends with a semicolon. If BeanShell
successfully interprets your input, a message box will appear with the return value of the
last statement.

Utilities>BeanShell>Evaluate For Selected Lines displays a text input dialog that

asks you to type a single line of BeanShell commands. The commands are evaluated for
each line of the selection. In addition to the standard set of variables descriBedtian

12.4 this command defines the following:

. line -the line number, from the start of the buffer. The first line is numbered 0.

- index -the line number, from the start of the selection. The first line is numbered O.

111

Chapter 12. Macro Basics

12.

112

. text -the text of the line.

Try typing an expression likdine + 1) + " " + text in the Evaluate For
Selected Lines dialog box. This will add a line number to each selected line
beginning with the numbet.

The BeanShell expression you enter will be evaluated and substituted in place of the
entire text of a selected line. If you want to leave the line’s current text as an element of
the modified line, you must include the defined varigblt as part of the BeanShell
expression that you enter.

Utilities>BeanShell>Evaluate Selection evaluates the selected text as a BeanShell
script and replaces it with the return value of the statement.

UsingEvaluate Selection is an easy way to do arithmetic calculations inline while
editing. BeanShell uses numbers and arithmetic operations in an ordinary, intuitive way.

Try typing an expression lik€8745*856)+74 in the buffer, select it, and choose
Utilities>BeanShell>Evaluate Selection. The selected text will be replaced by the
answer3205794 .

Console plugin

You can also do the same thing using the BeanShell interpreter option of the
Console plugin.

3. The Mandatory First Example

Macros.message(view, "Hello world!);

Running this one line script causes jEdit to display a message box (more precisely, a
JOptionPane object) with the traditional beginner’'s message an®@&nbutton. Let’s
see what is happening here.

This statement calls a static method (or function) nameskage in jEdit's Macros

class. If you don’t know anything about classes or static methods or Java (or C++, which
employs the same concept), you will need to gain some understanding of a few terms.
Obviously this is not the place for academic precision, but if you are entirely new to
object-oriented programming, here are a few skeleton ideas to help you with BeanShell.

Chapter 12. Macro Basics

An objectis a collection of data that can be initialized, accessed and manipulated in
certain defined ways.

+ A classis a specification of what data an object contains and what methods can be
used to work with the data. A Java application consists of one or more classes (in
the case of jEdit ,over 600 classes) written by the programmer that defines the
application’s behavior. A BeanShell macro uses these classes, along with built-in
classes that are supplied with the Java platform, to define its own behavior.

« A subclasqor child class) is a class which uses (or “inherits”) the data and
methods of its parent class along with additions or modifications that alter the
subclass’s behavior. Classes are typically organized in hierarchies of parent and
child classes to organize program code, to define common behavior in shared parent
class code, and to specify the types of similar behavior that child classes will
perform in their own specific ways.

« A method(or function) is a procedure that works with data in a particular object,
other data (including other objects) suppliechasametersor both. Methods
typically are applied to a particular object which isiagtanceof the class to which
the method belongs.

+ A static methodliffers from other methods in that it does not deal with the data in
a particular object but is included within a class for the sake of convenience.

Java has arich set of classes defined as part of the Java platform. Like all Java
applications, jEdit is organized as a set of classes that are themselves derived from the
Java platform’s classes. We will referdava classeandjEdit classedo make this
distinction. Some of jEdit’s classes (such as those dealing with regular expressions and
XML) are derived from or make use of classes in other open-source Java packages.
Except for BeanShell itself, we won't be discussing them in this guide.

In our one line script, the static methothcros.message() has two parameters because
that is the way the method is defined in thecros class. You must specify both
parameters when you call the function. The first parameiew , is a a variable naming
the current, activetiew object. Information about pre-defined variables can be found in
Section 12.4

The second parameter, which appears to be quoted texstimg literal - a sequence of
characters of fixed length and content. Behind the scenes, BeanShell and Java take this
string literal and use it to createsaing object. Normally, if you want to create an

object in Java or BeanShell, you must construct the object usingethkeyword and a
constructormethod that is part of the object’s class. We’'ll show an example of that later.
However, both Java and BeanShell let you use a string literal anytime a method’s
parameter calls for atring

If you are a Java programmer, you might wonder about a few things missing from this
one line program. There is no class definition, for example. You can think of a BeanShell
script as an implicit definition of aain() method in an anonymous class. That is in fact

113

Chapter 12. Macro Basics

114

how BeanShell is implemented; the class is derived from a BeanShell classxceiled

If you don't find that helpful, just think of a script as one or more blocks of procedural
statements conforming to Java syntax rules. You will also get along fine (for the most
part) with C or C++ syntax if you leave out anything to do with pointers or memory
management - Java and BeanShell do not have pointers and deal with memory
management automatically.

Another missing item from a Java perspective pmékage statement. In Java, such a
statement is used to bundle together a number of files so that their classes become visible
to one another. Packages are not part of BeanShell, and you don’t need to know anything
about them to write BeanShell macros.

Finally, there are nonport statements in this script. In Java, iafport statement

makes public classes from other packages visible within the file in which the statement
occurs without having to specify a fully qualified class name. Without an import
statement or a fully qualified name, Java cannot identify most classes using a single
name as an identifier.

jEdit automatically imports a number of commonly-used packages into the namespace of
every BeanShell script. Because of this, the script output of a recorded macro does not
containimport statements. For the same reason, most BeanShell scripts you write will
not requiremport statements.

Java requiresnport statement to be located at the beginning of a source file. BeanShell
allows you to placémport statements anywhere in a script, including inside a block of
statements. Thienport statement will cover all names used following the statement in
the enclosing block.

If you try to use a class that is not imported without its fully-qualified name, the
BeanShell interpreter will complain with an error message relating to the offending line
of code.

Chapter 12. Macro Basics

Here is the full list of packages automatically imported by jEdit:

java.awt
java.awt.event
java.net

java.util

java.io

java.lang

javax.swing
javax.swing.event
org.gjt.sp.jedit
org.gjt.sp.jedit.browser
org.gjt.sp.jedit.buffer
org.gjt.sp.jedit.gui
org.gjt.sp.jedit.help
org.gjt.sp.jedit.io
org.gjt.sp.jedit.msg
org.gjt.sp.jedit.options
org.gjt.sp.jedit.pluginmgr
org.gjt.sp.jedit.print
org.gjt.sp.jedit.search
org.gjt.sp.jedit.syntax
org.gjt.sp.jedit.textarea
org.gjt.sp.util

12.4. Predefined Variables in BeanShell

The following variables are always available for use in BeanShell scripts:

- buffer - aBuffer object represents the contents of an open text file. The variable
buffer is predefined as the current, visible buffer being edited.

« view - A View represents a top-level window, extending Javatame class, that
contains the various visible components of the program, including the text area,
menu bar, toolbar, and any docked windows. The varigble is defined as the
current, activeview object.

This variable has the same value as calling:
jEdit.getActiveView()

- editPane - anEditPane object contains a text area and buffer switcher. A view
can be split to display multiple buffers, each in its own edit pane. Among other
things, theeditPane class contains methods for selecting the buffer to edit.

115

Chapter 12. Macro Basics

12.

116

Most of the time your macros will manipulate theffer or thetextArea
Sometimes you will need to usew as a parameter in a method call. You will
probably only need to usaiitPane if your macros work with split views.

This variable has the same value as calling:

view.getEditPane()

+ textArea - aJEditTextArea IS the visible component that displays the file being
edited. It is derived from th@Component class. The variablextArea represents
the currentEditTextArea object, which in turn displays the current buffer.

This variable has the same value as calling:
editPane.getTextArea()

- scriptPath - set to the full path of the script currently being executed.

Note that these variables are set at the beginning of macro execution. If the macro
switches views, buffers or edit panes, the variables will be out of date. In that case, you
can use the method calls equivalent to the values of the variables.

5. Helpful Methods in the Macros Class

Includingmessage() , there are five static methods in thiacros class that allow you to
converse easily with your macros. They all encapsulate calls to methods of the Java
platform’s JOptionPane class.

e public static void message (Component comp, String message);

» public static void error (Component comp, String message);

e public static String input (Component comp, String prompt);

e public static String input (Component comp, String prompt , String

defaultvalue);

* public static int confirm (Component comp, String prompt , int
buttons);

The format of these foulleclarationsprovides a concise reference to the way in which
the methods may be used. The keywpuadiic means that the method can be used
outside thevacros class. The alternatives apevate andprotected . For purposes of
BeanShell, you just have to know that BeanShell can only use public methods of other
Java classes. The keywasdtic we have already discussed. It means that the method
does not operate on a particular object. You call a static function using the name of the
class (likemacros) rather than the name of a particular object (Nieev). The third

Chapter 12. Macro Basics

word is the type of the value returned by the method. The keywadd is Java's way of
saying the the method does not have a return value.

Theerror() method works just likenessage() but displays an error icon in the

message box. Theput() method furnishes a text field for input, &K button and a
Cancel button. IfCancel is pressed, the method retumsi . If OK is pressed, a

String containing the contents of the text field is returned. Note that there are two forms
of theinput() method; the first form with two parameters displays an empty input field,
the other forms lets you specify an initial, default input value.

For those without Java experience, it is important to knowithiat is notthe same as an
empty, “zero-length’string . It is Java’s way of saying that there is no object associated
with this variable. Whenever you seek to use a return value fiipar) in your macro,

you should test it to see if itisull . In most cases, you will want to exit gracefully from
the script with aeturn statement, because the presence of a null value for an input
variable usually means that the user intended to cancel macro execution. BeanShell will
complain if you call any methods omnall object.

Theconfirm() method in theMacros class is a little more complex. Thattons
parameter has ant type, and the usual way to supply a value is to use one of the
predefined values taken from JavatptionPane class. You can choose among
JOptionPane.YES_NO_OPTION , JOptionPane.YES_NO_CANCEL_OPTION, or
JOptionPane.OK_CANCEL_OPTION . The return value of the method is alsoiain , and
should be tested against the value of other predefined constants:
JOptionPane.YES_OPTION , JOptionPane.NO_OPTION , JOptionPane.OK_OPTION oOr
JOptionPane.CANCEL_OPTION .

We've looked at usingylacros.message() . To use the other methods, you would write
something like the following:

Macros.error(view, "Goodbye, cruel world!");
String result = Macros.input(view, "Type something here.");

String result = Macros.input(view, "When were you born?",
"I don't remember, | was very young at the time");

int result = Macros.confirm("Do you really want to learn”
+ " about BeanShell?",JOptionPane.YES_NO_OPTION);

In the last three examples, placing the wetdhg orint before the variable name

result tells BeanShell that the variable refers to an integer@trtiag object, even

before a particular value is assigned to the variable. In BeanSheltleébiarationof the

typeof result is not necessary; BeanShell can figure it out when the macro runs. This
can be helpful if you are not comfortable with specifying types and classes; just use your
variables and let BeanShell worry about it.

117

Chapter 12. Macro Basics

12.

12.

118

6. BeanShell Dynamic Typing

Without an explicittype declaratiorlike String result , BeanShell variables can
change their type at runtime depending on the object or data assigned to it. This dynamic
typing allows you to write code like this (if you really wanted to):

/I note: no type declaration
result = Macros.input(view, “Type something here.”);

/I this is our predefined, current View
result = view;

/I this is an “int” (for integer);

/I in Java and BeanShell, int is one of a small number
/I of “primitive” data types which are not classes

result = 14;

However, if you first declaredksult to be typeString and and then tried these
reassignments, BeanShell would complain. While avoiding explicit type declaration
makes writing macro code simpler, using them can act as a check to make sure you are
not using the wrong variable type of object at a later point in your script. It also makes it
easier (if you are so inclined) to take a BeanShell “prototype” and incorporate it in a Java
program.

One last thing before we bury our first macro. The double slashes in the examples just
above signify that everything following them on that line should be ignored by

BeanShell as a comment. As in Java and C/C++, you can also embed comments in your
BeanShell code by setting them off with pairs/df*/ | as in the following example:

/* This is a long comment that covers several lines
and will be totally ignored by BeanShell regardless of how
many lines it covers */

7. Now For Something Useful

Here is a macro that inserts the path of the current buffer in the text:

String newText = buffer.getPath();
textArea.setSelectedText(newText);

Unlike in our first macro example, here we are calling class methods on particular
objects. First, we calletPath() on the currenBuffer object to get the full path of the
text file currently being edited. Next, we cadtSelectedText() on the current text
display component, specifying the text to be inserted as a parameter.

Chapter 12. Macro Basics

In precise terms, thsetSelectedText() method substitutes the contents of Hheng
parameter for a range of selected text that includes the current caret position. If no text is
selected at the caret position, the effect of this operation is simply to insert the new text
at that position.

Here’s a few alternatives to the full file path that you could use to insert various useful

things:

/I the file name (without full path)
String newText = buffer.getName();

/I today's date
import java.text.DateFormat;

String newText = DateFormat.getDatelnstance()
format(new Date());

/I a line count for the current buffer
String newText = "This file contains "
+ textArea.getLineCount() + " lines.";

Here are brief comments on each:

« Inthe first, the call tgetName() invokes another method of tiBaffer class.

« The syntax of the second example chains the results of several methods. You could
write it this way:

import java.text.DateFormat;

Date d = new Date();

DateFormat df = DateFormat.getDatelnstance();
String result = df.format(d);

Taking the pieces in order:

A JavaDate object is created using tmew keyword. The empty parenthesis
afterDate signify a call on theconstructor methodf Date having no
parameters; here,zate is created representing the current date and time.

DateFormat.getDatelnstance() is a static method that creates and returns
aDateFormat object. As the name implieBateFormat is a Java class that
takesDate objects and produces readable text. The method
getDatelnstance() returns aDateFormat oObject that parses and formats
dates. It will use the defaullbcale or text format specified in the user’s Java
installation.

Finally, DateFormat.format() is called on the newateFormat object
using theDate object as a parameter. The result Gténg containing the
date in the default locale.

119

Chapter 12. Macro Basics

- Note that thebate class is contained in thava.util package, so an explicit
import statement is not required. HowevesteFormat is part of the
java.text package, which is not automatically imported, so an explicit
import Statement must be used.

+ The third example shows three items of note:

« getLineCount() Is a method in JEdit'SEditTextArea class. It returns an
int representing the number of lines in the current text buffer. We call it on
textArea , the pre-defined, currenEditTextArea object.

. The use of the operator (which can be chained, as here) appends objects and
string literals to return a single, concatenasathg

120

Chapter 13. A Dialog-Based Macro

Now we will look at a more complicated macro which will demonstrate some useful
techniques and BeanShell features.

13.1. Use of the Macro

Our new example adds prefix and suffix text to a series of selected lines. This macro can
be used to reduce typing for a series of text items that must be preceded and following by
identical text. In Java, for example, if we are interested in making a series of calls to
StringBuffer.append () to construct a lengthy, formatted string, we could type the
parameter for each call on successive lines as follows:

profileString_1
secretThing.toString()
name

address
addressSupp

city

“state/province”
country

Our macro would ask for input for the common “prefix” and “suffix” to be applied to
each line; in this case, the prefixasrStringBuffer.append(and the suffix is

); . After selecting these lines and running the macro, the resulting text would look like
this:

ourStringBuffer.append(profileString_1);
ourStringBuffer.append(secretThing.toString());
ourStringBuffer.append(name);
ourStringBuffer.append(address);
ourStringBuffer.append(addressSupp);
ourStringBuffer.append(city);
ourStringBuffer.append(“state/province”);
ourStringBuffer.append(country);

13.2. Listing of the Macro

The macro script follows. You can find it in the jEdit distribution in thext
subdirectory of thenacros directory. You can also try it out by invoking
Macros>Text>Add Prefix and Suffix.

/I beginning of Add_Prefix_and_Suffix.bsh

121

Chapter 13. A Dialog-Based Macro

122

/I import statement (see Section 13.3.1)
import javax.swing.border.*;

/I main routine
void prefixSuffixDialog()

{

/I create dialog object (see Section 13.3.2)
title = “Add prefix and suffix to selected lines”;

dialog = new JDialog(view, title, false);

content = new JPanel(new BorderLayout());
content.setBorder(new EmptyBorder(12, 12, 12, 12));
content.setPreferredSize(new Dimension(320, 160));
dialog.setContentPane(content);

/I add the text fields (see Section 13.3.3)
fieldPanel = new JPanel(new GridLayout(4, 1, 0, 6));
prefixField = new HistoryTextField(“macro.add-prefix”);
prefixLabel = new JLabel(“Prefix to add:");

suffixField = new HistoryTextField(“macro.add-suffix");
suffixLabel = new JLabel("Suffix to add:”);
fieldPanel.add(prefixLabel);

fieldPanel.add(prefixField);

fieldPanel.add(suffixLabel);

fieldPanel.add(suffixField);

content.add(fieldPanel, “Center”);

/I add a panel containing the buttons (see Section 13.3.4

buttonPanel = new JPanel();

buttonPanel.setLayout(new BoxLayout(buttonPanel,
BoxLayout.X_AXIS));

buttonPanel.setBorder(new EmptyBorder(12, 50, 0, 50));

buttonPanel.add(Box.createGlue());

ok = new JButton(“OK");

cancel = new JButton(“Cancel”);

ok.setPreferredSize(cancel.getPreferredSize());

dialog.getRootPane().setDefaultButton(ok);

buttonPanel.add(ok);

buttonPanel.add(Box.createHorizontalStrut(6));

buttonPanel.add(cancel);

buttonPanel.add(Box.createGlue());

content.add(buttonPanel, “South”);

/I register this method as an ActionListener for

/I the buttons and text fields (see Section 13.35)
ok.addActionListener(this);

cancel.addActionListener(this);

prefixField.addActionListener(this);
suffixField.addActionListener(this);

/I locate the dialog in the center of the
/I editing pane and make it visible (see Section 13.3.6

)

)

}

Chapter 13. A Dialog-Based Macro

dialog.pack();

dialog.setLocationRelativeTo(view);
dialog.setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);
dialog.setVisible(true);

/I this method will be called when a button is clicked
/I or when ENTER is pressed (see

void actionPerformed(e)

{

}

if(e.getSource() !'= cancel)

{

}
dialog.dispose();

processText();

/I this is where the work gets done to insert
/I the prefix and suffix (see Section 13.3.8
void processText()

{

prefix = prefixField.getText();

suffix = suffixField.getText();

if(prefix.length() == 0 && suffix.length() == 0)
return;

prefixField.addCurrentToHistory();

suffixField.addCurrentToHistory();

/I text manipulation begins here using calls
/I to jEdit methods (see Section 13.3.9
buffer.beginCompoundEdit();
selectedLines = textArea.getSelectedLines();
for(i = 0; i < selectedLines.length; ++i)
{
offsetBOL = textArea.getLineStartOffset(
selectedLinesi]);
textArea.setCaretPosition(offsetBOL);
textArea.goToStartOfWhiteSpace(false);
textArea.goToEndOfWhiteSpace(true);
text = textArea.getSelectedText();
if(text == null) text = ",

Section 13.3.7)

)

)

textArea.setSelectedText(prefix + text + suffix);

}
buffer.endCompoundEdit();

/I this single line of code is the script's main routine

Il (see

Section 13.3.10)

prefixSuffixDialog();

/I end of Add_Prefix_and_Suffix.bsh

123

Chapter 13. A Dialog-Based Macro

13

124

.3. Analysis of the Macro

13.3.1. Import Statements

/I import statement
import javax.swing.border.*;

This macro makes use of classes injttvax.swing.border package, which is not
automatically imported. As we mentioned previously (Seetion 12.3 jEdit's
implementation of BeanShell causes a number of classes to be automatically imported.
Classes that are not automatically imported must be identified by a full qualified name or
be the subject of aimport statement.

13.3.2. Create the Dialog

/I create dialog object

title = “Add prefix and suffix to selected lines”;
dialog = new JDialog(view, title, false);

content = new JPanel(new BorderLayout());
content.setBorder(new EmptyBorder(12, 12, 12, 12));
dialog.setContentPane(content);

To get input for the macro, we need a dialog that provides for input of the prefix and
suffix strings, arOK button to perform text insertion, andGancel button in case we
change our mind. We have decided to make the dialog window non-modal. This will
allow us to move around in the text buffer to find things we may need (including text to
cut and paste) while the macro is running and the dialog is visible.

The Java object we need igaialog object from the Swing package. To construct one,
we use theew keyword and call @onstructorfunction. The constructor we use takes
three parameters: the owner of the new dialog, the title to be displayed in the dialog
frame, and @oolean parametertfue orfalse) that specifies whether the dialog will
be modal or non-modal. We define the variaible using a string literal, then use it
immediately in thelDialog constructor.

A JDialog object is a window containing a single object callecbatent paneThe

content pane in turn contains the various visible components of the dialimjaldg

creates an empty content pane for itself as during its construction. However, to control
the dialog’s appearance as much as possible, we will separately create our own content
pane and attach it to thiialog . We do this by creating &Panel object. AJPanel is a
lightweight container for other components that can be set to a given size and color. It
also contains &éayoutscheme for arranging the size and position of its components. Here
we are constructing ZPanel as a content pane withBorderLayout . We put a

EmptyBorder inside it to serve as a margin between the edge of the window and the

Chapter 13. A Dialog-Based Macro

components inside. We then attach iRanel as the dialog’s content pane, replacing the
dialog’s home-grown version.

A BorderLayout is one of the simpler layout schemes available for container objects
like JPanel . A BorderLayout divides the container into five sections: “North”, “South”,
“East”, “West” and “Center”. Components are added to the layout using the container’s
add method, specifying the component to be added and the section to which it is
assigned. Building a component like our dialog window involves building a set of nested
containers and specifying the location of each of their member components. We have
taken the first step by creatingiBanel as the dialog’s content pane.

13.3.3. Create the Text Fields

/I add the text fields

fieldPanel = new JPanel(new GridLayout(4, 1, 0, 6));
prefixField = new HistoryTextField("macro.add-prefix");
prefixLabel = new JLabel(“Prefix to add™);
suffixField = new HistoryTextField(*macro.add-suffix”);
suffixLabel = new JLabel(“Suffix to add:”);
fieldPanel.add(prefixLabel);

fieldPanel.add(prefixField);

fieldPanel.add(suffixLabel);

fieldPanel.add(suffixField);

content.add(fieldPanel, “Center”);

Next we shall create a smaller panel containing two fields for entering the prefix and
suffix text and two labels identifying the input fields.

For the text fields, we will use jEdit"istoryTextField class. It is derived from the

Java Swing classTextField . This class offers the enhancement of a stored list of prior
values used as text input. When the component has input focus, the up and down keys
scroll through the prior values for the variable.

To create thedistoryTextField objects we use a constructor method that takes a single
parameter: the name of the tag under which history values will be stored. Here we
choose names that are not likely to conflict with existing jEdit history items.

The labels that accompany the text fields &rgbel objects from the Java Swing
package. The constructor we use for both labels takes the label text as assingle
parameter.

We wish to arrange these four components from top to bottom, one after the other. To
achieve that, we useJ®anel container object namei@ldPanel that will be nested

inside the dialog’s content pane that we have already created. In the constructor for
fieldPanel , we assign a newridLayout with the indicated parameters: four rows,

one column, zero spacing between columns (a meaningless element of a grid with only
one column, but nevertheless a required parameter) and spacing of six pixels between

125

Chapter 13. A Dialog-Based Macro

126

rows. The spacing between rows spreads out the four “grid” elements. After the
components, the panel and the layout are specified, the components are added to
fieldPanel top to bottom, one “grid cell” at a time. Finally, the complé&tg&Panel

is added to the dialog’s content pane to occupy the “Center” section of the content pane.

13.3.4. Create the Buttons

/I add the buttons
buttonPanel = new JPanel();
buttonPanel.setLayout(new BoxLayout(buttonPanel,
BoxLayout.X_AXIS));
buttonPanel.setBorder(new EmptyBorder(12, 50, 0, 50));
buttonPanel.add(Box.createGlue());
ok = new JButton(“OK");
cancel = new JButton(“Cancel”);
ok.setPreferredSize(cancel.getPreferredSize());
dialog.getRootPane().setDefaultButton(ok);
buttonPanel.add(ok);
buttonPanel.add(Box.createHorizontalStrut(6));
buttonPanel.add(cancel);
buttonPanel.add(Box.createGlue());
content.add(buttonPanel, “South”);

To create the dialog’s buttons, we follow repeat the “nested container” pattern we used in
creating the text fields. First, we create a new, nested panel. This time we use a
BoxLayout that places components either in a single row or column, depending on the
parameter passed to its constructor. This layout object is more flexible than a

GridLayout in that variable spacing between elements can be specified easily. We put an
EmptyBorder in the new panel to set margins for placing the buttons. Then we create the
buttons, using aButton constructor that specifies the button text. After setting the size

of the OK button to equal the size of ti@ancel button, we designate tH@K button as

the default button in the dialog. This causes @€ button to be outlined when the dialog

if first displayed. Finally, we place the buttons side by side with a 6 pixel gap between
them (for aesthetic reasons), and place the completeshPanel in the “South”

section of the dialog’s content pane.

13.3.5. Register the Action Listeners

/I register this method as an ActionListener for
/I the buttons and text fields
ok.addActionListener(this);
cancel.addActionListener(this);
prefixField.addActionListener(this);
suffixField.addActionListener(this);

Chapter 13. A Dialog-Based Macro

In order to specify the action to be taken upon clicking a button or pressirtgnies
key, we must register asctionListener for each of the four active components of the

dialog - the twoHistoryTextField components and the two buttons. In Java, an
ActionListener is aninterface- an abstract specification for a derived class to
implement. The\ctionListener interface contains a single method to be implemented:

public void actionPerformed (ActionEvent e);

BeanShell does not permit a script to create derived classes. However, BeanShell offers a
useful substitute: a method can be used as a scripted object that can include nested
methods implementing a number of Java interfaces. The method

prefixSuffixDialog() that we are writing can thus be treated ag\ationListener

object. To accomplish this, we callidActionListener() on each of the four

components specifyingyis as theActionListener . We still need to implement the
interface. We will do that shortly.

13.3.6. Make the Dialog Visible

/I locate the dialog in the center of the

/I editing pane and make it visible

dialog.pack();

dialog.setLocationRelativeTo(view);
dialog.setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);
dialog.setVisible(true);

Here we do three things. First, we activate all the layout routines we have established by
calling thepack() method for the dialog as the top-level window. Next we center the
dialog’s position in the active jEditew by callingsetLocationRelativeTo() on the
dialog. We also call theetDefaultCloseOperation() function to specify that the

dialog box should be immediately disposed if the user clicks the close box. Finally, we
activate the dialog by callinggtVisible() with the state parameter setttoe .

At this point we have a decent looking dialog window that doesn’t do anything. Without
more code, it will not respond to user input and will not accomplish any text
manipulation. The remainder of the script deals with these two requirements.

13.3.7. The Action Listener

/I this method will be called when a button is clicked
/I or when ENTER is pressed
void actionPerformed(e)

127

Chapter 13. A Dialog-Based Macro

128

{ if(e.getSource() !'= cancel)
{ processText();
Lialog.dispose();
}
The methodhctionPerformed() nested insiderefixSuffixDialog() implements

the implicit ActionListener interface. It looks at the source of thetionEvent
determined by a call tgetSource() . What we do with this return value is
straightforward: if the source is not ti@ancel button, we call therocessText()
method to insert the prefix and suffix text. Then the dialog is closed by calling its
dispose() method.

The ability to implement interfaces liki&ctionListener inside a BeanShell script is

one of the more powerful features of the BeanShell package. WitktanListener

interface, which has only a single method, implementation is simple. When using other
interfaces with multiple methods, however, there are some details to deal with that will
vary depending on the version of the Java platform that you are running. These
techniques are discussed in the next chapterSse&on 14.4.3

13.3.8. Get the User’s Input

/I this is where the work gets done to insert
/I the prefix and suffix
void processText()
{
prefix = prefixField.getText();
suffix = suffixField.getText();
if(prefix.length() == 0 && suffix.length() == 0)
return;
prefixField.addCurrentToHistory();
suffixField.addCurrentToHistory();

The methodprocessText() does the work of our macro. First we obtain the input from
the two text fields with a call to thegetText() methods. If they are both empty, there
is nothing to do, so the method returns. If there is input, any text in the field is added to

that field’s stored history list by callingddCurrentToHistory() . We do not need to
test theprefixField or suffixField controls fornull or empty values because
addCurrentToHistory() does that internally.

Chapter 13. A Dialog-Based Macro

13.3.9. Call jEdit Methods to Manipulate Text

}

/I text manipulation begins here using calls
/I to jEdit methods
buffer.beginCompoundEdit();
selectedLines = textArea.getSelectedLines();
for(i = 0; i < selectedLines.length; ++i)
{
offsetBOL = textArea.getLineStartOffset(
selectedLines]i]);
textArea.setCaretPosition(offsetBOL);
textArea.goToStartOfWhiteSpace(false);
textArea.goToEndOfWhiteSpace(true);
text = textArea.getSelectedText();
if(text == null) text = ",
textArea.setSelectedText(prefix + text + suffix);

}
buffer.endCompoundEdit();

The text manipulation routine loops through each selected line in the text buffer. We get
the loop parameters by callingxtArea.getSelectedLines() , Which returns an array
consisting of the line numbers of every selected line. The array includes the number of
the current line, whether or not it is selected, and the line numbers are sorted in
increasing order. We iterate through each member ofdfeetedLines array, which
represents the number of a selected line, and apply the following routine:

Get the buffer position of the start of the line (expressed as a zero-based index from
the start of the buffer) by calling
textArea.getLineStartOffset(selectedLines]i]) ;

Move the caret to that position by callingktArea.setCaretPosition() ;

Find the first and last non-whitespace characters on the line by calling
textArea.goToStartOfWhiteSpace() and
textArea.goToEndOfWhiteSpace() ;

ThegoTo... methods inNEditTextArea take a single parameter which tells jEdit
whether the text between the current caret position and the desired position should
be selected. Here, we cadktArea.goToStartOfWhiteSpace(false) so that no

text is selected, then calixtArea.goToEndOfWhiteSpace(true) so that all of

the text between the beginning and ending whitespace is selected.

Retrieve the selected text by storing the return value of
textArea.getSelectedText() in a new variableext .

129

Chapter 13. A Dialog-Based Macro

If the line is emptygetSelectedText() will return null . In that case, we assign
an empty string teext to avoid calling methods on a null object.

« Change the selected textdmfix + text + suffix by calling
textArea.setSelectedText() . If there is no selected text (for example, if the line
is empty), the prefix and suffix will be inserted without any intervening characters.

Compound edits

Note thebeginCompoundEdit() ~ andendCompoundEdit() calls. These ensure
that all edits performed between the two calls can be undone in one step. Nofmally,
jEdit automatically wraps a macro call in these methods; however if the macrg
shows a non-modal dialog box, as far as jEdit is concerned the macro has finjshed
executing by the time the dialog is shown, since control returns to the event
dispatch thread.

If you do not understand this, don’t worry; just keep it in mind if your macro ngeds
to show a non-modal dialog box for some reason; Most macros won't.

13.3.10. The Main Routine

/I this single line of code is the script's main routine
prefixSuffixDialog();

The call toprefixSuffixDialog() is the only line in the macro that is not inside an
enclosing block. BeanShell treats such code as a top-i@iel method and begins
execution with it.

Our analysis of\dd_Prefix_and_Suffix.bsh is now complete. In the next section, we
look at other ways in which a macro can obtain user input, as well as other macro writing
techniques.

130

Chapter 14. Macro Tips and
Technigques

14.1. Getting Input for a Macro

The dialog-based macro discussedimapter 13eflects a conventional approach to
obtaining input in a Java program. Nevertheless, it can be too lengthy or tedious for
someone trying to write a macro quickly. Not every macro needs a user interface

specified in such detail; some macros require only a single keystroke or no input at all. In
this section we outline some other techniques for obtaining input that will help you write

macros quickly.

14.1.1. Getting a Single Line of Text

As mentioned earlier isection 12.5the methodvacros.input() offers a convenient
way to obtain a single line of text input. Here is an example that inserts a pair of HTML
markup tags specified by the user.

Il Insert_Tag.bsh

void insertTag()

{
caret = textArea.getCaretPosition();
tag = Macros.input(view, “Enter name of tag:");
if(tag == null || tag.length() == 0) return;
text = textArea.getSelectedText();
if(text == null) text = “7;
sb = new StringBuffer();
sb.append(“<”).append(tag).append(“>");
sb.append(text);
sb.append(“</").append(tag).append(“>");
textArea.setSelectedText(sb.toString());
if(text.length() == 0)

textArea.setCaretPosition(caret + tag.length() + 2);

}

insertTag();
/I end Insert_Tag.bsh

Here the call toviacros.input() seeks the name of the markup tag. This method sets
the message box title to a fixed string, “Macro input”, but the specific medsatge
name of tag provides all the information necessary. The return vedgemust be tested

131

Chapter 14. Macro Tips and Techniques

132

to see if it is null. This would occur if the user presses@ancel button or closes the
dialog window displayed byacros.input()

14.1.2. Getting Multiple Data Iltems

If more than one item of input is needed, a succession of calladms.input() isa
possible, but awkward approach, because it would not be possible to correct early input
after the corresponding message box is dismissed. Where more is required, but a full
dialog layout is either unnecessary or too much work, the Java method

JOptionPane.showConfirmDialog() is available. The version to use has the following
prototype:
e public static int showConfirmDialog (Component parentComponent
Object message, String title , int optionType , int messageType);

The usefulness of this method arises from the fact thattlysage parameter can be an
object of any Java class (since all classes are deriveddtgeat), or any array of
objects. The following example shows how this feature can be used.

Il excerpt from Write_File_Header.bsh

title = “Write file header”;

currentName = buffer.getName();
nameField = new JTextField(currentName);

authorField = new JTextField(“Your name here”);
descField = new JTextField(*”, 25);

namePanel new JPanel(new GridLayout(1, 2));

namelLabel new JLabel(“Name of file:”, SwingConstants.LEFT);

saveField = new JCheckBox(“Save file when done”,
Ibuffer.isNewFile());

namePanel.add(nameLabel);

namePanel.add(saveField);

message = new Object[9];

message[0] = namePanel;

message[l] = namekField,;

message[2] = Box.createVerticalStrut(10);
message[3] = “Author’'s name:”;
message[4] = authorField;

message[5] = Box.createVerticalStrut(10);
message[6] = “Enter description:”;
message[7] = descField;

message[8] = Box.createVerticalStrut(5);

Chapter 14. Macro Tips and Techniques

if(JOptionPane.OK_OPTION I=
JOptionPane.showConfirmDialog(view, message, title,
JOptionPane.OK_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE))
return null;

/I *****remainder of macro script omitted*****
/I end excerpt from Write_File_Header.bsh

This macro takes several items of user input and produces a formatted file header at the
beginning of the buffer. The full macro is included in the set of macros installed by jEdit.
There are a number of input features of this excerpt worth noting.

- The macro uses a total of seven visible components. Two of them are created
behind the scenes ByiowConfirmDialog() , the rest are made by the macro. To
arrange them, the script creates an arra@igéct objects and assigns components
to each location in the array. This translates to a fixed, top-to-bottom arrangement in
the message box created éhpwConfirmDialog()

« The macro usesTextField objects to obtain most of the input data. The fields
nameField andauthorField are created with constructors that take the initial,
default text to be displayed in the field as a parameter. When the message box is
displayed, the default text will appear and can be altered or deleted by the user.

« The text fielddescField uses an empty string for its initial value. The second
parameter in its constructor sets the width of the text field component, expressed as
the number of characters of “average” width. WhkeawConfirmDialog()
prepares the layout of the message box, it sets the width wide enough to
accommodate the designated withde$cField . This technique produces a
message box and input text fields that are wide enough for your data with one line
of code.

- The displayed message box includexaeckBox component that determines
whether the buffer will be saved to disk immediately after the file header is written.
To conserve space in the message box, we want to display the check box to the right
of the labelName of file:. To do that, we create #anel object and populate it
with the label and the checkbox in a left-to-righidLayout . TheJPanel
containing the two components is then added to the beginningsfage array.

» The two visible components created shpwConfirmDialog() appear at positions
3 and 6 of themessage array. Only the text is required; they are rendered as text

labels.
« There are three invisible components createdHaywConfirmDialog() . Each of
them involves a call t®ox.createVerticalStrut() . TheBox class is a

sophisticated layout class that gives the user great flexibility in sizing and

133

Chapter 14. Macro Tips and Techniques

134

positioning components. Here we usstatic method of theBox class that
produces a verticatrut This is a transparent component whose width expands to
fill its parent component (in this case, the message box). The single parameter
indicates the height of the strut in pixels. The last catirtateVerticalStrut()

separates the description text field from @k andCancel buttons that are
automatically added byhowConfirmDialog()

+ Finally, the call toshowConfirmDialog() uses defined constants for the option
type and the message type. The constants are the same as those used with the
Macros.confirm() method; se&ection 12.5The option type signifies the use of
OK andCancel buttons. TheQUERY_MESSAGEessage type causes the message
box to display a question mark icon.

The return value of the method is tested against the va@lku®PTION If the return

value is something else (because @ancel button was pressed or because the
message box window was closed without a button press)| avalue is returned

to a calling function, signaling that the user canceled macro execution. If the return
value isOK_OPTION each of the input components can yield their contents for
further processing by calls tiTextField.getText() (or, in the case of the check
box, JCheckBox.isSelected()).

14.1.3. Selecting Input From a List

Another useful way to get user input for a macro is to use a combo box containing a
number of pre-set options. If this is the only input required, one of the versions of
showlInputDialog() in theJOptionPane class provides a shortcut. Here is its
prototype:

+ public static Object showlnputDialog (Component parentComponent
Object message, String title , int messageType, Icon icon ,
Object[] selectionValues , Object initialSelectionValue);

This method creates a message box containing a drop-down list of the options specified
in the method’s parameters, along Witk andCancel buttons. Compared to
showConfirmDialog() , this method lacks aoptionType parameter and has three
additional parameters: aon to display in the dialog (which can be setrial), an

array ofselectionVvalues objects, and a reference to one of the options as the
initialSelectionValue to be displayed. In addition, instead of returningran
representing the user’s actiagmowinputDialog() returns thedbject corresponding to

the user’s selection, awll if the selection is canceled.

The following macro fragment illustrates the use of this method.

Chapter 14. Macro Tips and Techniques

/I fragment illustrating use of showlnputDialog()
options = new Object[5];

options[0] = "JLabel";
options[1] = "JTextField";
options[2] = "JCheckBox";
options[3] = "HistoryTextField";
options[4} = "-- other --";

result = JOptionPane.showlnputDialog(view,
"Choose component class",
"Select class for input component”,
JOptionPane.QUESTION_MESSAGE,
null, options, options[0]);

The return valueesult will contain either thestring object representing the selected
text item ornull representing no selection. Any further use of this fragment would have
to test the value ofsult and likely exit from the macro if the value equaled

A set of options can be similarly placed il@omboBox component created as part of a
larger dialog oshowMessageDialog() layout. Here are some code fragments showing
this approach:

/I fragments from Display_Abbreviations.bsh
/I import statements and other code omitted

/I from main routine, this method call returns an array
/I of Strings representing the names of abbreviation sets

abbrevSets = getActiveSets();

/I from showAbbrevs() method

combo = new JComboBox(abbrevSets);

/Il set width to uniform size regardless of combobox contents
Dimension dim = combo.getPreferredSize();

dim.width = Math.max(dim.width, 120);
combo.setPreferredSize(dim);
combo.setSelectedltem(STARTING_SET); // defined as "global"

/I end fragments

14.1.4. Using a Single Keypress as Input

Some macros may choose to emulate the style of character-based text editors such as
emacs or vi. They will require only a single keypress as input that would be handled by

135

Chapter 14. Macro Tips and Techniques

the macro but not displayed on the screen. If the keypress corresponds to a character
value, jEdit can pass that value as a parameter to a BeanShell script.

The jEdit classnputHandler is an abstract class that that manages associations
between keyboard input and editing actions, along with the recording of macros.
Keyboard input in jEdit is normally managed by the derived class
DefaultinputHandler . One of the methods in theputHandler ~ class handles input
from a single keypress:

e public void readNextChar (String prompt , String code);

When this method is called, the contents of phampt parameter is shown in the view’s
status bar. The method then waits for a key press, after which the contentsodiéhe
parameter will be run as a BeanShell script, with one important modification. Each time
the string__char__ appears in the parameter script, it will be substituted by the
character pressed. The key press is “consumedédaNextChar() . It will not be

displayed on the screen or otherwise processed by jEdit.

UsingreadNextChar() requires a macro within the macro, formatted as a single,
potentially lengthy string literal. The following macro illustrates this technique. It selects
a line of text from the current caret position to the first occurrence of the character next
typed by the user. If the character does not appear on the line, no new selection occurs
and the display remains unchanged.

/l Next_Char.bsh

script = new StringBuffer(512);

script.append("start = textArea.getCaretPosition();");
script.append("line = textArea.getCaretLine();");
script.append("end textArea.getLineEndOffset(line) + 1;");
script.append("text buffer.getText(start, end - start);");
script.append("match = text.indexOf(__char__, 1);");
script.append("if(match = -1) {");
script.append("if(_char__ = "\\n") ++match;");
script.append("textArea.select(start, start + match - 1);");
script.append("}");

view.getlnputHandler().readNextChar("Enter a character",
script.toString());

/l end Next_Char.bsh

Once again, here are a few comments on the macro’s design.

+ A StringBuffer object is used for efficiency; it obviates multiple creation of
fixed-lengthstring objects. The parameter to the constructosaipt specifies
the initial size of the buffer that will receive the contents of the child script.

136

Chapter 14. Macro Tips and Techniques

- Besides the quoting of the script code, the formatting of the macro is entirely
optional but (hopefully) makes it easier to read.

« Itis important that the child script be self-contained. It does not run in the same
namespace as the “parent” mackext_Char.bsh and therefore does not share
variables, methods, or scripted objects defined in the parent macro.

- Finally, access to theputHandler ~ object used by jEdit is available by calling
getinputHandler() on the current view.

14.2. Startup Scripts

On startup, jEdit runs any BeanShell scripts located irstheup subdirectory of the

jEdit installation and user settings directories (Seetion 6.4. As with macros, the

scripts must have ash file name extension. Startup scripts are run near the end of the
startup sequence, after plugins, properties and such have been initialized, but before the
first view is opened.

Startup scripts can perform initialization tasks that cannot be handled by command line
options or ordinary configuration options, such as customizing jEdit's user interface by
changing entries in the Java platformy®anager class.

Startup scripts have an additional feature lacking in ordinary macros that can help you
further customize jEdit. Variables and methods defined in a startup script are available in
all instances of the BeanShell interpreter created in jEdit. This allows you to create a
personal library of methods and objects that can be accessed at any time during the
editing session in another macro, the BeanShell shell of the Console plugin, or menu
items such adltilities>BeanShell>Evaluate BeanShell Expression.

The startup script routine will run script files in the installation directory first, followed
by scripts in the user settings directory. In each case, scripts will be executed in
alphabetical order, applied without regard to whether the file name contains upper or
lower case characters.

If a startup script throws an exception (because, for example, it attempts to call a method
on anull object). jJEdit will show an error dialog box and move on to the next startup
script. If script bugs are causing jEdit to crash or hang on startup, you can use the
-nostartupscripts command line option to disable them for that editing session.

Another important difference between startup scripts and ordinary macros is that startup
scripts cannot use the pre-defined variables , textArea |, editPane andbuffer
This is because they are executed before the initial view is created.

If you are writing a method in a startup script and wish to use one of the above variables,
pass parameters of the appropriate type to the method, so that a macro calling them after

137

Chapter 14. Macro Tips and Techniques

startup can supply the appropriate values. For example, a startup script could include a
method

void doSomethingWithView(View v, String s) {

}

so that during the editing session another macro can call the method using

doSomethingWithView(view, "something");

Reloading startup scripts without restarting

It is actually possible to reload startup scripts or load other scripts without
restarting jEdit, using a BeanShell statement like the following:

BeanShell.runScript(view, path ,null,false);

Forpath , you can substitute any string, or a method call such as
buffer.getPath()

14.3. Running Scripts from the Command Line

The-run command line switch specifies a BeanShell script to run on startup:
$ jedit -run=test.bsh

Note that just like with startup scripts, thiew , textArea , editPane andbuffer
variables are not defined.

If another instance is already running, the script will be run in that instance, and you will
be able to use thigdit.getLastView() method to obtain a view. However, if a new
instance of jEdit is being started, the script will be run at the same time as all other
startup scripts; that is, before the first view is opened.

If your script needs a view instance to operate on, you can use the following code pattern
to obtain one, no matter how or when the script is being run:

void doSomethingUseful()
{

void run()
{
view = jEdit.getLastView();

/I put actual script body here

138

Chapter 14. Macro Tips and Techniques
}

if(jEdit.getLastView() == null)
VFSManager.runinAWTThread(this);
else
run();

}

doSomethingUseful();

If the script is being run in a loaded instance, it can be invoked to perform its work
immediately. However, if the script is running at startup, before an initial view exists, its
operation must be delayed to allow the view object first to be created and displayed. In
order to queue the macro’s operation, the scripted “closure” named

doSomethingUseful() implements th&unnable interface of the Java platform. That
interface contains only a singlen() method that takes no parameters and has no return
value. The macro’s implementation of the() method contains the “working” portion

of the macro. Then the scripted object, represented by a referetiie tois passed to
theruninAWTThread() = method. This schedules the macro’s operations for execution
after the startup routine is complete.

As this example illustrates, theninAWTThread() method can be used to ensure that a
macro will perform operations after other operations have completed. If it is invoked
during startup, it schedules the speciffathnable object to run after startup is

complete. If invoked when jEdit is fully loaded, tiRannable object will execute after

all pending input/output is complete, or immediately if there are no pending I/O
operations. This will delay operations on a new buffer, for example, until after the buffer
is loaded and displayed.

14.4. Advanced BeanShell Techniques

BeanShell has a few advanced features that we haven’'t mentioned yet. They will be
discussed in this section.

14.4.1. BeanShell's Convenience Syntax

We noted earlier that BeanShell syntax does not require that variables be declared or
defined with their type, and that variables that are not typed when first used can have
values of differing types assigned to them. In addition to this “loose” syntax, BeanShell
allows a “convenience” syntax for dealing with the properties of JavaBeans. They may
be accessed or set as if they were data members. They may also be accessed using the
name of the property enclosed in quotation marks and curly brackets. For example, the
following statement are all equivalent, assuming is aJButton instance:

139

Chapter 14. Macro Tips and Techniques

140

b.setText("Choose");
b.text = "Choose";
b{"text"} = "Choose";

The last form can also be used to access a key-value pairadreaable object.

14.4.2. Special BeanShell Keywords

BeanShell uses special keywords to refer to variables or methods defined in the current
or an enclosing block’s scope:

- The keywordhis refers to the current scope.
« The keywordsuper refers to the immediately enclosing scope.
« The keywordglobal refers to the top-level scope of the macro script.

The following script illustrates the use of these keywords:

a = "top\n";

foo() {
a = "middle\n";
bar() {

a = "bottom\n";
textArea.setSelectedText(global.a);
textArea.setSelectedText(super.a);

/I equivalent to textArea.setSelectedText(this.a):
textArea.setSelectedText(a);

}

bar();

}
foo();

When the script is run, the following text is inserted in the current buffer:

top
middle
bottom

14.4.3. Implementing Interfaces

As discussed in the macro exampledhapter 13scripted objects can implement Java
interfaces such asctionListener . Which interfaces may be implemented varies
depending upon the version of the Java runtime environment being used. If running
under Java 1.1 or 1.2, BeanShell objects can only implement the AWT or Swing event
listener interfaces contained in tja@a.awt.event andjavax.swing.event

Chapter 14. Macro Tips and Techniques

packages, along with thava.lang.Runnable interface. If BeanShell is running under
Java 1.3 or 1.4, which jEdit 4.0 requires, any interface can be implemented.

Frequently it will not be necessary to implement all of the methods of a particular
interface in order to specify the behavior of a scripted object. Under Java 1.3 and above,
the virtual machine’s reflection mechanism will throw an exception for any missing
interface methods. This will bring macro execution to a halt unless the exception is
trapped and handled. The solution is to implemeniriteke() method, which is called
when an undefined method is invoked on a scripted object. Typically, the implementation
of this method will do nothing, as in the following example:

invoke(method, args) {}

14.5. Debugging Macros

Here are a few techniques that can prove helpful in debugging macros.

14.5.1. Identifying Exceptions

An exceptions a condition reflecting an error or other unusual result of program

execution that requires interruption of normal program flow and some kind of special
handling. Java has a rich (and extensible) collection of exception classes which represent
such conditions.

jEdit catches exceptions thrown by BeanShell scripts and displays them in a dialog box.
In addition, the full traceback is written to the activity log (ggpendix Bfor more
information about the activity log).

There are two broad categories of errors that will result in exceptions:

- Interpreter errors which may arise from typing mistakes like mismatched brackets
or missing semicolons, or from BeanShell’s failure to find a class corresponding to
a particular variable.

Interpreter errors are usually accompanied by the line number in the script, along
with the cause of the error.

- Execution errorswhich result from runtime exceptions thrown by the Java
platform when macro code is executed.

Some exceptions thrown by the Java platform can often seem cryptic. Nevertheless,
examining the contents of the activity log may reveals clues as to the cause of the
error.

141

Chapter 14. Macro Tips and Techniques

14.5.2. Using the Activity Log as a Tracing Tool

Sometimes exception tracebacks will say what kind of error occurred but not where it
arose in the script. In those cases, you can insert calls that log messages to the activity
log in your macro. If the logged messages appear when the macro is run, it means that up
to that point the macro is fine; but if an exception is logged first, it means the logging call
is located after the cause of the error.

To write a message to the activity log, use the following method of dgeclass:

e public static void log (int urgency , Object source , Object
message);

The parametealirgency can take one of the following constant values:

* Log.DEBUG
* Log.MESSAGE
* Log.NOTICE
* Log.WARNING
* Log.ERROR

Note that theirrgency parameter merely changes the string prefixed to the log message;
it does not change the logging behavior in any other way.

The parametesource can be either an object or a class instance. When writing log
messages from macros, set this parametse&aShell.class to make macro errors
easier to spot in the activity log.

The following code sends a typical debugging message to the activity log:

Log.log(Log.DEBUG, BeanShell.class,
“counter = " + counter);

The corresponding activity log entry might read as follows:

[debug] BeanShell: counter = 15

142

Chapter 14. Macro Tips and Techniques

Using message dialog boxes as a tracing tool

If you would prefer not having to deal with the activity log, you can use the
Macros.message() method as a tracing tool. Just insert calls like the following
the macro code:

n

Macros.message(view,"tracing");

Execution of the macro is halted until the message dialog box is closed. Whep you
have finished debugging the macro, you should delete or comment out the
debugging calls tacros.message() in your final source code.

143

Chapter 14. Macro Tips and Techniques

144

Chapter 15. BeanShell Commands

BeanShell includes a set obmmandssubroutines that can be called from any script or
macro. The following is a summary of those commands which may be useful within
JEdit.

Note: Plugins, because they are written in Java and not BeanShell, cannot make
use of BeanShell commands.

15.1. Output Commands

e void cat (String filename);

Writes the contents dflename to the activity log.

- void javap (String | Object | Class target);

Writes the public fields and methods of the specified class to the output stream of
the current process. Requires Java 2 version 1.3 or greater.

e void print (arg);

Writes the string value of the argument to the activity log, or if run from the
Console plugin, to the current output windowalfy is an arrayprint runs itself
recursively on the array’s elements.

15.2. File Management Commands

« void cd(String dirname);

Changes the working directory of the BeanShell interpretelirttame .

e void dir (String dirname);

Displays the contents of directodyrname . The format of the display is similar to
the Unixls -I command.

145

Chapter 15. BeanShell Commands

void mv(String fromFile , String toFile);

Moves the file named biyomFile totoFile

File pathToFile (String filename);

Create &ile object corresponding tilename . Relative paths are resolved with
reference to the BeanShell interpreter’s working directory.

void pwd();

Writes the current working directory of the BeanShell interpreter to the output
stream of the current process.

void rm(String pathname);

Deletes the file name hyathname .

15.3. Component Commands

146

JFrame frame (Component frame);

Displays the component in a top-leugirame , centered and packed. Returns the
JFrame oObject.

Object load (String filename);

Loads and returns a serialized Java object ffiemame

void save (Component component , String filename);

Savescomponent in serialized form tdilename

Font setFont (Component comp, int ptsize);

Set the font size ofomponent to ptsize and returns the new font.

Chapter 15. BeanShell Commands
15.4. Resource Management Commands

+ URL getResource (String path);

Returns the resource specifiedfmth . A absolute path must be used to return any
resource available in the current classpath.

15.5. Script Execution Commands

e Thread bg(String filename);

Run the BeanShell script named figname in a copy of the existing namespace
and in a separate thread. Returnsthead object so created.

« void exec (String cmdline);

Start the external process by calliRgntime.exec() oncmdline . Any output is
directed to the output stream of the calling process.

e Object eval (String expression);

Evaluates the stringxpression as a BeanShell script in the interpreter’s current
namespace. Returns the result of the evaluationilof.

e bsh.This run (String filename);

Run the BeanShell script named figname in a copy of the existing
namespace. The return value represent the object context of the script, allowing you
to access its variables and methods.

« void source (String filename);

Evaluates the contents ilename as a BeanShell script in the interpreter’'s
current namespace.

147

Chapter 15. BeanShell Commands
15.6. BeanShell Object Management Commands

* bind (bsh.This ths , bsh.Namespace namespace);

Binds the scripted objeths to namespace .

« void clear ();

Clear all variables, methods, and imports from this namespace. If this namespace is
the root, it will be reset to the default imports.

e bsh.This extend (bsh.This object);

Creates a new BeanShelis scripted object that is a child of the parameter
object

« bsh.This object ();

Creates a new BeanShgHis scripted object which can hold data members. You
can use this to create an object for storing miscellaneous crufties, like so:

crufties = object();
crufties.foo = "hello world";
crufties.counter = 5;

« setNameSpace (bsh.Namespace namespace);

Set the namespace of the current scopsatimespace .

e bsh.This super (String scopename);

Returns a reference to the BeanShelt object representing the enclosing method
scope specified bycopename . This method work similar to theuper keyword
but can refer to enclosing scope at higher levels in a hierarchy of scopes.

e void unset (String name);

Removes the variable named bgme from the current interpreter namespace. This
has the effect of “undefining” the variable.

148

Chapter 15. BeanShell Commands
15.7. Other Commands

« void debug();

Toggles BeanShell's internal debug reporting to the output stream of the current
process.

» getSourceFilelnfo 0;

Returns the name of the file or other source from which the BeanShell interpreter is
reading.

149

Chapter 15. BeanShell Commands

150

V. Writing Plugins
This part of the user’s guide covers writing plugins for jEdit.

Like jEdit itself, plugins are written primarily in Java. While this guide assumes some
working knowledge of the language, you are not required to be a Java wizard. If you can
write a useful application of any size in Java, you can write a plugin.

This part of the user’s guide was written by John Gellejgellsne@nyc.rr.com >,

Chapter 16. Introducing the Plugin
API

ThejEdit Plugin APl provides a framework for hosting plugin applications without
imposing any requirements on the design or function of the plugin itself. You could write
a application that performs spell checking, displays a clock or plays chess and turn it into
a jEdit plugin. There are currently over 50 released plugins for jEdit. While none of them
play chess, they perform a wide variety of editing and file management tasks.

A detailed listing of available plugins is availablephigins.jedit.org . You can also
find beta versions of new plugins in the “Downloads” areaafmunity.jedit.org

Using the “Plugin Manager” feature of jEdit, users with an Internet connection can check
for new or updated plugins and install and remove them without leaving jEdit. See
Chapter &or details.

Requirements for “plugging in” to jEdit are as follows:

« This plugin must supply information about itself, such as its name, version, author,
and compatibility with versions of jEdit.

« The plugin must provide for activating, displaying and deactivating itself upon
direction from jEdit, typically in response to user input.

« The plugin may definactions both explicitly with an action definition file, or
implicitly by providing dockable windows. Actions are small blocks of BeanShell
code that jEdit will perform on behalf of the plugin upon user request. They provide
the “glue” between user input and specific plugin routines.

By convention, plugins display their available actions in submenus of jEdit’s
Plugins menu; each menu item corresponds to an action. The user can also assign
actions to keyboard shortcuts, toolbar buttons or entries in the text area’s right-click
menu.

- The plugin may, but need not, provide a user interface.

If the plugin has a visible interface, it can be shown in any object derived from one
of Java top-level container class@®lindow, JDialog , or JFrame . JEdit also

provides a dockable window API, which allows plugin windows derived from the
JComponent class to be docked into views or shown in top-level frames, at the
user’s request.

Plugins can also act directly upon jEdit’s text area. They can add graphical elements
to the text display (like error highlighting in the case of the ErrorList plugin) or
decorations surrounding the text area (like the JDiff plugin’s summary views).

153

Chapter 16. Introducing the Plugin API

- Plugins may provide a range of options that the user can modify to alter their
configuration.

If a plugin provides configuration options in accordance with the plugin API, jEdit
will make them available in th&lobal Options dialog box.

« While it is not required, plugins are encouraged to provide documentation.

As noted, many of these features are optional; it is possible to write a plugin that does
not provide actions, configuration options, or dockable windows. The majority of
plugins, however, provide most of these services.

Plugins and different jEdit versions

As jEdit continues to evolve and improve, elements of the plugin APl may chgnge
with a new jEdit release.

On occasion an API change will break code used by plugins, although efforts|are
made to maintain or deprecate plugin-related code on a transitional basis. While

the majority of plugins are unaffected by most changes and will continue working,
it is a good idea to monitor the jEdit change log, the mailing lists and

community.jedit.org for API changes so that you can update your plugin if
necessary.

154

Chapter 17. Implementing a Simple
Plugin

There are many applications for the leading operating systems that provide a
“scratch-pad” or “sticky note” facility for the desktop display. A similar type of facility
operating within the jEdit display would be a convenience. The use of dockable windows
would allow the notepad to be displayed or hidden with a single mouse click or keypress
(if a keyboard shortcut were defined). The contents of the notepad could be saved at
program exit (or, if earlier, deactivation of the plugin) and retrieved at program startup or
plugin activation.

We will keep the capabilities of this plugin modest, but a few other features would be
worthwhile. The user should be able to write the contents of the notepad to storage on
demand. It should also be possible to choose the name and location of the file that will be
used to hold the notepad text. This would allow the user to load other files into the
notepad display. The path of the notepad file should be displayed in the plugin window,
but will give the user the option to hide the file name. Finally, there should be an action
by which a single click or keypress would cause the contents of the notepad to be written
to the new text buffer for further processing.

The full source code for QuickNotepad is contained in jEdit’s source code distribution.
We will provide excerpts in this discussion where it is helpful to illustrate specific points.
You are invited to obtain the source code for further study or to use as a starting point for
your own plugin.

17.1. How Plugins are Loaded

We will discuss the implementation of the QuickNotepad plugin, along with the jEdit
APIls it makes use of. But first, we describe how plugins are loaded.

As part of its startup routine, jEditi®ain method calls various methods to load and
initialize plugins.

Plugin loading occurs after jEdit has loaded application properties, any user-supplied
properties, and the application’s set of actions that will be available from jEdit's menu
bar (as well as the toolbar and keyboard shortcuts).

Plugin loading occurs before jEdit opens the initial view or loads any files for editing. It
also occurs before jEdit runs any startup scripts.

Plugins are loaded from files with thier filename extension located in tizes
subdirectories of the jEdit installation and user settings directoriesS@eton 6.4.

For each JAR archive file it finds, jEdit scans its entries and performs the following tasks:

155

Chapter 17. Implementing a Simple Plugin

17.

156

- Adds to a collection maintained by jEdit a new object of tygeitPiugin.JAR
This is a data structure holding the name of the JAR archive file, a reference to the
JARClassLoader , and a collection of plugins found in the archive file.

Loads any properties defined in files ending with the extengiops that are
contained in the archive. S&ection 17.4

- Reads action definitions from any file nametons.xml in the archive (the file
need not be at the top level). SBection 17.5

- Parses and loads the contents of any file nadoekhbles.xml in the archive (the
file need not be at the top level). This file contains BeanShell code for creating
docking or floating windows that will contain the visible components of the plugin.
Not all plugins define dockable windows, but those that do nesediables.xml
file. SeeSection 17.6

« Checks for a class name with a name ending Witigin.class

Such a class is known agéugin core clasand must extend jEdit’s abstract

EditPlugin class. The initialization routine checks the plugin’s properties to see if
it is subject to any dependencies. For example, a plugin may require that the version
of the Java runtime environment or of jEdit itself be equal to or above some
threshold version. A plugin can also require the presence of another plugin.

If any dependency is not satisfied, the loader marks the plugin as “broken” and logs
an error message.

After scanning the plugin JAR file and loading any resources, a new instance of the

plugin core class is created and added to the collection maintained by the appropriate
EditPlugin.JAR . JEdit then calls thetart() method of the plugin core class. The

start() method can perform initialization of the object’s data members. Because this

method is defined as an empty “no-op” in theiitrlugin -~ abstract class, a plugin need

not provide an implementation if no unique initialization is required.

2. The QuickNotepadPlugin Class

The major issues encountered when writing a plugin core class arise from the
developer’s decisions on what features the plugin will make available. These issues have
implications for other plugin elements as well.

- Will the plugin provide for actions that the user can trigger using jEdit's menu
items, toolbar buttons and keyboard shortcuts?

« Will the plugin have its own visible interface?

-« Will the plugin have settings that the user can configure?

Chapter 17. Implementing a Simple Plugin

- Will the plugin respond to any messages reflecting changes in the host application’s
state?

Recall that the plugin core class must exteneéitriugin . In QuickNotepad’s plugin
core class, there are no special initialization or shutdown chores to perform, so we will
not need &tart() orstop() method.

The resulting plugin core class is lightweight and straightforward to implement:

public class QuickNotepadPlugin extends EditPlugin {
public static final String NAME = "quicknotepad";
public static final String MENU = "quicknotepad.menu";
public static final String PROPERTY_PREFIX
= "plugin.QuickNotepadPlugin.";
public static final String OPTION_PREFIX
= "options.quicknotepad.";

First we define a few stat®tring data members to enforce consistent syntax for
the name of properties we will use throughout the plugin.

public void createMenultems(Vector menultems) {
menultems.addElement(GUIUtilities.loadMenu(MENU));

}

This implementation of theeditPlugin.createMenultems() method is very typical.
It uses a jEdit utility function to create the menu, taking the list of actions from the
quicknotepad property, and the label fromuotenotepad.label

If the plugin only had a single menu item (for example, an item activating a
dockable window), we would callcuiutilities.loadMenultem() instead of
GUIUtilities.loadMenu()

public void createOptionPanes(OptionsDialog od) {
od.addOptionPane(new QuickNotepadOptionPane());

}

157

Chapter 17. Implementing a Simple Plugin

17.

17.

158

This implementation of thekeditPlugin.createOptionPanes() method adds a new
instance ofQuickNotepadOptionPane to the given instance of th@lobal Options
dialog box.

3. The EditBus

Plugins register EBcomponent instances with theediteus to receive messages reflecting
changes in jEdit’s state.

The message classes derived fraramessage cover the opening and closing of the
application, changes in the status of buffers and views, changes in user settings, as well
as changes in the state of other program features. A full list of messages can be found in
the org.gjt.sp.jedit.msg package.

EBComponentS are added and removed with thaitBus.addToBus() and
EditBus.removeFromBus() methods.

Typically, the EBComponenthandleMessage() ~ method is implemented with one or more
if blocks that test whether the message is an instance of a derived message class in
which the component has an interest.

if(imsg instanceof BufferUpdate) {
/I a buffer's state has changed!

}

else if(msg instanceof ViewUpdate) {
/[a view's state has changed!

}

/l ... and so on

If a plugin core class will respond to EditBus messages, it can be derived from
EBPlugin , IN wWhich case no expliciddToBus() call is necessary. Otherwise,
Edittlugin ~ Will suffice as a plugin base class. Note that QuickNotepad uses the latter.

4. The Property File

jEdit maintains a list of “properties”, which are name/value pairs used to store
human-readable strings, user settings, and various other forms of meta-data. During
startup, jEdit loads the default set of properties, followed by plugin properties stored in
plugin JAR files, finally followed by user properties.

Some properties are used by the plugin APl itself. Others are accessed by the plugin
using methods in thejedit class.

Chapter 17. Implementing a Simple Plugin

Property files contained in plugin JARs must end with the filename extensops ,
and have a very simple syntax, which the following example illustrates:

Lines starting with '# are ignored.
name=value
another.name=another value
long.property=Long property value, split over \
several lines
escape.property=Newlines and tabs can be inserted \
using the \t and \n escapes
backslash.property=A backslash can be inserted by writing \\.

Now we look at theQuickNotepad.props file which contains properties for the
QuickNotepad plugin. The first type of property data is information about the plugin
itself; these are the only properties that must be specified in order for the plugin to load:

general plugin information
plugin.QuickNotepadPlugin.name=QuickNotepad
plugin.QuickNotepadPlugin.author=John Gellene
plugin.QuickNotepadPlugin.version=4.1
plugin.QuickNotepadPlugin.docs=QuickNotepad.html
plugin.QuickNotepadPlugin.depend.O=jedit 04.00.01.00

These properties are described in detail in the documentation foethmugin class
and do not require further discussion here.

Next in the file comes a property that sets the title of the plugin’s dockable window.
Dockable windows are discussed in detaiSection 17.6

dockable window name
quicknotepad.title=QuickNotepad

Next, we see menu item labels for the plugin’s actions. Actions are discussed in detail in
Section 17.5

action labels

quicknotepad.label=QuickNotepad
quicknotepad.choose-file.label=Choose notepad file
guicknotepad.save-file.label=Save notepad file
guicknotepad.copy-to-buffer.label=Copy notepad to buffer

Next, the plugin’s menu is defined. S8ection 17.2

application menu items

quicknotepad.menu.label=QuickNotepad

quicknotepad.menu=quicknotepad - quicknotepad.choose-file \
quicknotepad.save-file quicknotepad.copy-to-buffer

159

Chapter 17. Implementing a Simple Plugin

17.

160

We have created a small toolbar as a component of QuickNotepad, so file names for the
button icons follow:

plugin toolbar buttons
guicknotepad.choose-file.icon=Open.png
quicknotepad.save-file.icon=Save.png
guicknotepad.copy-to-buffer.icon=Edit.png

The menu item labels corresponding to these icons will also serve as tooltip text.

Finally, the properties file set forth the labels and settings used by the option pane:

Option pane labels

options.quicknotepad.label=QuickNotepad
options.quicknotepad.file=File:
options.quicknotepad.choose-file=Choose
options.quicknotepad.choose-file.titte=Choose a notepad file
options.quicknotepad.choose-font=Font:
options.quicknotepad.show-filepath.title=Display notepad file path

Initial default font settings
options.quicknotepad.show-filepath=true
options.quicknotepad.font=Monospaced
options.quicknotepad.fontstyle=0
options.quicknotepad.fontsize=14

Setting not defined but supplied for completeness
options.quicknotepad.filepath=

5. The Action Catalog

Actions define procedures that can be bound to a menu item, a toolbar button or a
keyboard shortcut. Actions are short scripts written in BeanShell, jEdit's macro scripting
language. These scripts either direct the action themselves, delegate to a method in one
of the plugin’s classes that encapsulates the action, or do a little of both. The scripts are
usually short; elaborate action protocols are usually contained in compiled code, rather
than an interpreted macro script, to speed execution.

Actions are defined by creating an XML file entitlections.xml and placing it in the
plugin JAR file.

Theactions.xml file from the QuickNotepad plugin looks as follows:

<?xml version="1.0"?>

<IDOCTYPE ACTIONS SYSTEM "actions.dtd">

Chapter 17. Implementing a Simple Plugin

<ACTIONS>
<ACTION NAME="quicknotepad.choose-file">
<CODE>
view.getDockableWindowManager()
.getDockable(QuickNotepadPlugin.NAME).chooseFile();
</CODE>
</ACTION>

<ACTION NAME="quicknotepad.save-file">
<CODE>
view.getDockableWindowManager()
.getDockable(QuickNotepadPlugin.NAME).saveFile();
</CODE>
</ACTION>

<ACTION NAME="quicknotepad.copy-to-buffer">
<CODE>
view.getDockableWindowManager()
.getDockable(QuickNotepadPlugin.NAME).copyToBuffer();
</CODE>
</ACTION>
</ACTIONS>

This file defines three actions. They use the current viea&ablewindowManager
object and the methogktDockable() to find the QuickNotepad plugin window and
call the desired method.

When an action is invoked, the BeanShell scripts address the plugin through static
methods, or if instance data is needed, the cuwvemt, its DockableWindowManager
and the plugin object return by tlyetDockable() method.

If you are unfamiliar with BeanShell code, you may nevertheless notice that the code
statements bear a strong resemblance to Java code, with one exception: the wawable
Is never assigned any value.

For complete answers to this and other BeanShell mysteriePaseH! in jEdit 4.1

User’s Guide two observations will suffice here. First, the varialatev is predefined by
jEdit's implementation of BeanShell to refer to the curreéetv object. Second, the
BeanShell scripting language is based upon Java syntax, but allows variables to be typed
at run time, so explicit types for variables need not be declared.

A formal description of each element of thetions.xml file can be found in the
documentation of theactionset class.

17.6. The Dockable Window Catalog

The jEdit plugin API uses BeanShell to create the top-level visible container of a
plugin’s interface. The BeanShell code is contained in a file nadueichbles.xml . It

161

Chapter 17. Implementing a Simple Plugin

17.

162

usually is quite short, providing only a single BeanShell expression used to create a
visible plugin window.

The following example from the QuickNotepad plugin illustrates the requirements of the
data file:

<?xml version="1.0"?>
<IDOCTYPE DOCKABLES SYSTEM "dockables.dtd">

<DOCKABLES>

<DOCKABLE NAME="quicknotepad">
new QuickNotepad(view, position);
</DOCKABLE>

</DOCKABLES>

In this example, theDOCKABLEelement has a single attribute, the dockable window’s
identifier. This attribute is used to key a property where the window title is stored; see
Section 17.4

The contents of theDOCKABLE:element itself is a BeanShell expression that constructs
a newQuickNotepad object. Theview andposition are predefined by the plugin API
as the view in which the plugin window will reside, and the docking position of the

plugin.
A formal description of each element of theckables.xml file can be found in the
documentation of thebockablewindowManager Cclass.

7. The QuickNotepad Class

Here is where most of the features of the plugin will be implemented. To work with the
dockable window API, the top level window will beJ@anel . The visible components
reflect a simple layout. Inside the top-level panel we will place a scroll pane with a text
area. Above the scroll pane we will place a panel containing a small tool bar and a label
displaying the path of the current notepad file.

We have identified three user actions that need implementationdheoseFile()
saveFile() , andcopyToBuffer() . As noted earlier, we also want the text area to
change its appearance in immediate response to a change in user options settings. In
order to do that, the window class must respond PoogertiesChanged ~ message from
the EditBus.

Unlike theEBPIugin class, the&eBComponent interface does not deal with the
component’s actual subscribing and unsubscribing to the EditBus. To accomplish this,
we use a pair of methods inherited from the Java platfon@snponent class that are
called when the window is made visible, and when it is hidden. These two methods,

Chapter 17. Implementing a Simple Plugin

addNotify() andremoveNotify() , are overridden to add and remove the visible
window from the list of EditBus subscribers.

We will provide for two minor features when the notepad is displayed in the floating
window. First, when a floating plugin window is created, we will give the notepad text
area input focus. Second, when the notepad if floating and has input focus, we will have
the Escapekey dismiss the notepad window. AuncestorListener and a

KeyListener will implement these details.

Here is the listing for the data members, the constructor, and the implementation of the
EBComponent interface:

public class QuickNotepad extends JPanel
implements EBComponent

{
private String filename;
private String defaultFilename;
private View view;
private boolean floating;

private QuickNotepadTextArea textArea;
private QuickNotepadToolPanel toolPanel;

Il
/I Constructor
1l

public QuickNotepad(View view, String position)
{

super(new BorderLayout());

this.view = view;
this.floating = position.equals(
DockableWindowManager.FLOATING);

this.flename = jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX

+ "filepath");
if(this.flename == null || this.filename.length() == 0)
{
this.filename = new String(jEdit.getSettingsDirectory()
+ File.separator + "gn.txt");
jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX
+ "filepath”,this.filename);
}

this.defaultFilename = new String(this.filename);

this.toolPanel = new QuickNotepadToolPanel(this);
add(BorderLayout.NORTH, this.toolPanel);

163

Chapter 17. Implementing a Simple Plugin

164

if(floating)
this.setPreferredSize(new Dimension(500, 250));

textArea = new QuickNotepadTextArea();
textArea.setFont(QuickNotepadOptionPane.makeFont());
textArea.addKeyListener(new KeyHandler());
textArea.addAncestorListener(new AncestorHandler());
JScrollPane pane = new JScrollPane(textArea);
add(BorderLayout. CENTER, pane);

readFile();
}

Il
/I Attribute methods
Il

/I for toolBar display
public String getFilename()

{

return filename;

}

I
/I EBComponent implementation
I

public void handleMessage(EBMessage message)

{

if (message instanceof PropertiesChanged)

{
}

propertiesChanged();

private void propertiesChanged()
{
String propertyFilename = jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX + "filepath");
if('defaultFilename.equals(propertyFilename))
{
saveFile();
toolPanel.propertiesChanged();
defaultFilename = propertyFilename.clone();
filename = defaultFilename.clone();
readFile();
}
Font newFont = QuickNotepadOptionPane.makeFont();
if('lnewFont.equals(textArea.getFont()))

{

Chapter 17. Implementing a Simple Plugin

textArea.setFont(newFont);
textArea.invalidate();

}

/I These JComponent methods provide the appropriate points
/I to subscribe and unsubscribe this object to the EditBus

public void addNotify()

{
super.addNotify();

EditBus.addToBus(this);

public void removeNotify()

{
saveFile();
super.removeNotify();
EditBus.removeFromBus(this);
}

}

This listing refers to &uickNotebookTextArea object. It is currently implemented as a
JTextArea with word wrap and tab sizes hard-coded. Placing the object in a separate
class will simply future modifications.

17.8. The QuickNotepadToolBar Class

There is nothing remarkable about the toolbar panel that is placed inside the
QuickNotepad object. The constructor shows the continued use of items from the
plugin’s properties file.

public class QuickNotepadToolPanel extends JPanel

{
private QuickNotepad pad;
private JLabel label,

public QuickNotepadToolPanel(QuickNotepad gnpad)

{
pad = gnpad,;
JToolBar toolBar = new JToolBar();
toolBar.setFloatable(false);

toolBar.add(makeCustomButton("quicknotepad.choose-file",

165

Chapter 17. Implementing a Simple Plugin

17.

166

new ActionListener() {
public void actionPerformed(ActionEvent ewvt) {
QuickNotepadToolPanel.this.pad.chooseFile();
}
1)

toolBar.add(makeCustomButton("quicknotepad.save-file",
new ActionListener() {
public void actionPerformed(ActionEvent evt) {
QuickNotepadToolPanel.this.pad.saveFile();
}
D)

toolBar.add(makeCustomButton("quicknotepad.copy-to-buffer",
new ActionListener() {
public void actionPerformed(ActionEvent evt) {
QuickNotepadToolPanel.this.pad.copyToBuffer();

}

n);
label = new JLabel(pad.getFilename(),

SwingConstants.RIGHT);
label.setForeground(Color.black);
label.setVisible(jEdit.getProperty(

QuickNotepadPlugin.OPTION_PREFIX

+ "show-filepath™).equals("true"));
this.setLayout(new BorderLayout(10, 0));
this.add(BorderLayout. WEST, toolBar);
this.add(BorderLayout. CENTER, label);
this.setBorder(BorderFactory.createEmptyBorder(0, 0, 3, 10));

}

The methodnakeCustomButton() provides uniform attributes for the three toolbar
buttons corresponding to three of the plugin’s use actions. The menu titles for the user
actions serve double duty as tooltip text for the buttons. There is also a
propertiesChanged() method for the toolbar that sets the text and visibility of the
label containing the notepad file path.

9. The QuickNotepadOptionPane Class

Using the default implementation provided BlystractOptionPane reduces the
preparation of an option pane to two principal tasks: writingha() method to layout
and initialize the pane, and writing aave() method to commit any settings changed
by user input. If a button on the option pane should trigger another dialog, such as a
JFileChooser or jEdit’'s own enhancedFSFileChooserDialog , the option pane will
also have to implement thrctionListener interface to display additional components.

Chapter 17. Implementing a Simple Plugin

The QuickNotepad plugin has only three options to set: the path name of the file that will
store the notepad text, the visibility of the path name on the tool bar, and the notepad’s
display font. Using the shortcut methods of the plugin API, the implementation of

_init) looks like this:

public class QuickNotepadOptionPane extends AbstractOptionPane
implements ActionListener
{
private JTextField pathName;
private JButton pickPath;
private FontSelector font;

public void _init()
{
showPath = new JCheckBox(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX
+ "show-filepath.title"),
jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX + "show-filepath")
.equals("true™);
addComponent(showPath);

pathName = new JTextField(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX
+ "filepath™));
JButton pickPath = new JButton(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX
+ "choose-file"));
pickPath.addActionListener(this);

JPanel pathPanel = new JPanel(new BorderLayout(0, 0));
pathPanel.add(pathName, BorderLayout. CENTER);
pathPanel.add(pickPath, BorderLayout.EAST);

addComponent(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX + "file"),
pathPanel);

font = new FontSelector(makeFont());

addComponent(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX + "“choose-font"),
font);

167

Chapter 17. Implementing a Simple Plugin

17.

168

Here we adopt the vertical arrangement offered by use addti®@omponent() method

with one embellishment. We want the first “row” of the option pane to contain a text field
with the current notepad file path and a button that will trigger a file chooser dialog when
pressed. To place both of them on the same line (along with an identifying label for the
file option), we create aPanel to contain both components and pass the configured
panel toaddComponenty()

The_init) method uses properties from the plugin’s property file to provide the
names of label for the components placed in the option pane. It also uses a property
whose name begins WitROPERTY_PREFDas a persistent data item - the path of the
current notepad file. The elements of the notepad’s font are also extracted from
properties using a static method of the option pane class.

The_save() method extracts data from the user input components and assigns them to
the plugin’s properties. The implementation is straightforward:

public void _save()

{
jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX

+ "filepath", pathName.getText());
Font font = font.getFont();

jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX

+ "font", _font.getFamily());
jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX

+ "fontsize", String.valueOf(_font.getSize()));
jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX

+ "fontstyle", String.valueOf(_font.getStyle()));
jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX

+ "show-filepath", String.valueOf(showPath.isSelected()));

}

The class has only two other methods, one to display a file chooser dialog in response to
user action, and the other to construeibat object from the plugin’s font properties.
They do not require discussion here.

10. Plugin Documentation

While not required by the plugin API, a help file is an essential element of any plugin
written for public release. A single web page is often all that is required. There are no
specific requirements on layout, but because of the design of jEdit’s help viewer, the use
of frames should be avoided. Topics that would be useful include the following:

- adescription of the purpose of the plugin;

Chapter 17. Implementing a Simple Plugin

an explanation of the type of input the user can supply through its visible interface
(such as mouse action or text entry in controls);

a listing of available user actions that can be taken when the plugin does not have
input focus;

a summary of configuration options;

information on development of the plugin (such as a change log, a list of “to do”
items, and contact information for the plugin’s author); and

licensing information, including acknowledgments for any library software used by
the plugin.

The location of the plugin’s help file is stored in thiegin.QuickNotepad.docs
property; seé&ection 17.4

17.11. Compiling the Plugin

We have already outlined the contents of the user action catalog, the properties file and
the documentation file in our earlier discussion. The final step is to compile the source
file and build the archive file that will hold the class files and the plugin’s other resources.

Publicly released plugins include with their source a makefile in XML format for the Ant
utility. The format for this file requires few changes from plugin to plugin. Here is the
version ofbuild.xml used by QuickNotepad and many other plugins:

<project name="QuickNotepad" default="dist" basedir=".">

<property name="jedit.install.dir" value="../.."/>
<property name="jar.name" value="QuickNotepad.jar"/>

<property name="install.dir" value=".."/>

<path id="project.class.path">
<pathelement location="${jedit.install.dir}/jedit.jar"/>
<pathelement location="."/>

</path>

<target name="compile">
<javac
srcdir="."
deprecation="on"
includeJavaRuntime="yes"
>
<classpath refid="project.class.path"/>
</javac>

169

Chapter 17. Implementing a Simple Plugin

170

</target>

<target name="dist" depends="compile">
<mkdir dir="${install.dir}"/>
<jar jarfile="${install.dir}/${jar.name}">
<fileset dir=".">
<include name="**/*.class"/>
<include name="**/* props"/>
<include name="**/* html"/>
<include name="actions.xml"/>
<include name="dockables.xml"/>
<[fileset>
</jar>
</target>
</project>

For a full discussion of thant file format and command syntax, you should consult the
Ant documentation site . Modifying this makefile for a different plugin will likely
only require three changes:

+ the name of the plugin;

- the choice of compiler (made by inserting and deleting the comment character
'#);and

- the classpath variables fiwit.jar any plugins this one depends on.

If you have reached this point in the text, you are probably serious about writing a plugin
for jJEdit. Good luck with your efforts, and thank you for contributing to the jEdit project.

Chapter 18. Plugin Tips and
Technigques

18.1. Bundling Additional Class Libraries

Recall that any class whose name ends Witigin.class is called a plugin core class.
JAR files with no plugin core classes are also loaded by jEdit; the classes they contain
are made available to other plugins. Many plugins that rely on third-party class libraries
ship them as separate JAR files. The libraries will be available inside the jEdit
environment but are not part of a general classpath or library collection when running
other Java applications.

A plugin that bundles extra JAR files must list them in pheyin. class name .jars
property. See the documentation for theitrlugin -~ class for details.

171

Chapter 18. Plugin Tips and Techniques

172

	jEdit 4.1 User's Guide
	Table of Contents
	I. Using jEdit
	Chapter 1. Starting jEdit
	1.1. Conventions
	1.2. PlatformIndependent Instructions
	1.3. Starting jEdit on Windows
	1.4. Command Line Usage

	Chapter 2. jEdit Basics
	2.1. Buffers
	2.1.1. Memory Usage

	2.2. Views
	2.2.1. Window Docking
	2.2.2. The Status Bar

	2.3. The Text Area and Gutter

	Chapter 3. Working With Files
	3.1. Creating New Files
	3.2. Opening Files
	3.3. Saving Files
	3.3.1. Autosave and Crash Recovery
	3.3.2. Backups

	3.4. Line Separators
	3.5. Character Encodings
	3.5.1. Commonly Used Encodings

	3.6. The File System Browser
	3.6.1. Navigating the File System
	3.6.2. The Tool Bar
	3.6.3. The Commands Menu
	3.6.4. The Plugins Menu
	3.6.5. The Favorites Menu
	3.6.6. Keyboard Shortcuts

	3.7. Reloading From Disk
	3.8. MultiThreaded I/O
	3.9. Printing
	3.10. Closing Files and Exiting jEdit

	Chapter 4. Editing Text
	4.1. Moving The Caret
	4.2. Selecting Text
	4.2.1. Rectangular Selection
	4.2.2. Multiple Selection

	4.3. Inserting and Deleting Text
	4.4. Undo and Redo
	4.5. Working With Words
	4.6. Working With Lines
	4.7. Working With Paragraphs
	4.8. Wrapping Long Lines
	4.8.1. Soft Wrap
	4.8.2. Hard Wrap

	4.9. Scrolling
	4.10. Transferring Text
	4.10.1. The Clipboard
	4.10.2. Quick Copy
	4.10.3. General Register Commands

	4.11. Markers
	4.12. Search and Replace
	4.12.1. Searching For Text
	4.12.2. Replacing Text
	4.12.2.1. Text Replace
	4.12.2.2. BeanShell Replace

	4.12.3. HyperSearch
	4.12.4. Multiple File Search
	4.12.5. The Search Bar

	4.13. Command Repetition

	Chapter 5. Editing Source Code
	5.1. Edit Modes
	5.1.1. Mode Selection
	5.1.2. Syntax Highlighting

	5.2. Tabbing and Indentation
	5.2.1. Soft Tabs
	5.2.2. Automatic Indent

	5.3. Commenting Out Code
	5.4. Bracket Matching
	5.5. Abbreviations
	5.5.1. Positional Parameters

	5.6. Folding
	5.6.1. Collapsing and Expanding Folds
	5.6.2. Navigating Around With Folds
	5.6.3. Miscellaneous Folding Commands
	5.6.4. Narrowing

	Chapter 6. Customizing jEdit
	6.1. The Buffer Options Dialog Box
	6.2. BufferLocal Properties
	6.3. The Global Options Dialog Box
	6.3.1. The Abbreviations Pane
	6.3.2. The Appearance Pane
	6.3.3. The Context Menu Pane
	6.3.4. The Docking Pane
	6.3.5. The Editing Pane
	6.3.6. The General Pane
	6.3.7. The Gutter Pane
	6.3.8. The Loading and Saving Pane
	6.3.9. The Printing Pane
	6.3.10. The Proxy Servers Pane
	6.3.11. The Shortcuts Pane
	6.3.12. The Status Bar Pane
	6.3.13. The Syntax Highlighting Pane
	6.3.14. The Text Area Pane
	6.3.15. The Tool Bar Pane
	6.3.16. The File System Browser Panes

	6.4. The jEdit Settings Directory

	Chapter 7. Using Macros
	7.1. Recording Macros
	7.2. Running Macros
	7.3. How jEdit Organizes Macros

	Chapter 8. Installing and Using Plugins
	8.1. The Plugin Manager
	8.2. Installing Plugins
	8.3. Updating Plugins

	Appendix A. Keyboard Shortcuts
	Appendix B. The Activity Log
	Appendix C. History Text Fields
	Appendix D. Glob Patterns
	Appendix E. Regular Expressions
	Appendix F. Macros Included With jEdit
	F.1. File Management Macros
	F.2. Java Code Macros
	F.3. Macros for Listing Properties
	F.4. Miscellaneous Macros
	F.5. Text Macros

	Appendix G. jEditLauncher for Windows
	G.1. Introduction
	G.2. Starting jEdit
	G.3. The Context Menu Handler
	G.4. Using jEdit and jEditLauncher as a Diff Utility
	G.5. Uninstalling jEdit and jEditLauncher
	G.6. The jEditLauncher Interface
	G.7. Scripting Examples
	G.8. jEditLauncher Logging
	G.9. Legal Notice

	II. Writing Edit Modes
	Chapter 9. Mode Definition Syntax
	9.1. An XML Primer
	9.2. The Preamble and MODE tag
	9.3. The PROPS Tag
	9.4. The RULES Tag
	9.4.1. Highlighting Numbers
	9.4.2. Rule Ordering Requirements
	9.4.3. PerRuleset Properties

	9.5. The TERMINATE Tag
	9.6. The SPAN Tag
	9.7. The SPANREGEXP Tag
	9.8. The EOLSPAN Tag
	9.9. The EOLSPANREGEXP Tag
	9.10. The MARKPREVIOUS Tag
	9.11. The MARKFOLLOWING Tag
	9.12. The SEQ Tag
	9.13. The SEQREGEXP Tag
	9.14. The KEYWORDS Tag
	9.15. Token Types

	Chapter 10. Installing Edit Modes
	Chapter 11. Updating Edit Modes for jEdit 4.1
	III. Writing Macros
	Chapter 12. Macro Basics
	12.1. Introducing BeanShell
	12.2. Single Execution Macros
	12.3. The Mandatory First Example
	12.4. Predefined Variables in BeanShell
	12.5. Helpful Methods in the Macros Class
	12.6. BeanShell Dynamic Typing
	12.7. Now For Something Useful

	Chapter 13. A DialogBased Macro
	13.1. Use of the Macro
	13.2. Listing of the Macro
	13.3. Analysis of the Macro
	13.3.1. Import Statements
	13.3.2. Create the Dialog
	13.3.3. Create the Text Fields
	13.3.4. Create the Buttons
	13.3.5. Register the Action Listeners
	13.3.6. Make the Dialog Visible
	13.3.7. The Action Listener
	13.3.8. Get the User's Input
	13.3.9. Call jEdit Methods to Manipulate Text
	13.3.10. The Main Routine

	Chapter 14. Macro Tips and Techniques
	14.1. Getting Input for a Macro
	14.1.1. Getting a Single Line of Text
	14.1.2. Getting Multiple Data Items
	14.1.3. Selecting Input From a List
	14.1.4. Using a Single Keypress as Input

	14.2. Startup Scripts
	14.3. Running Scripts from the Command Line
	14.4. Advanced BeanShell Techniques
	14.4.1. BeanShell's Convenience Syntax
	14.4.2. Special BeanShell Keywords
	14.4.3. Implementing Interfaces

	14.5. Debugging Macros
	14.5.1. Identifying Exceptions
	14.5.2. Using the Activity Log as a Tracing Tool

	Chapter 15. BeanShell Commands
	15.1. Output Commands
	15.2. File Management Commands
	15.3. Component Commands
	15.4. Resource Management Commands
	15.5. Script Execution Commands
	15.6. BeanShell Object Management Commands
	15.7. Other Commands

	IV. Writing Plugins
	Chapter 16. Introducing the Plugin API
	Chapter 17. Implementing a Simple Plugin
	17.1. How Plugins are Loaded
	17.2. The QuickNotepadPlugin Class
	17.3. The EditBus
	17.4. The Property File
	17.5. The Action Catalog
	17.6. The Dockable Window Catalog
	17.7. The QuickNotepad Class
	17.8. The QuickNotepadToolBar Class
	17.9. The QuickNotepadOptionPane Class
	17.10. Plugin Documentation
	17.11. Compiling the Plugin

	Chapter 18. Plugin Tips and Techniques
	18.1. Bundling Additional Class Libraries

