
CHForth 1.2.5 i

CHForth

version 1.2.5

c©1994-2002

Dutch Forth Users

Group

CHForth 1.2.5 ii

CHForth
Copyright c©1994-2002, Dutch Forth Users Group

Permission is granted to copy this document with attribution.
Program may be used and copied freely.

Authors: Coos Haak and Willem Ouwerkerk

Contents

1 Introduction to CHForth 1
1.1 Background . 1
1.2 Contents of CHForth . 1
1.3 Organisation of this manual . 1

2 Installation 3
2.1 Installation on your system . 3
2.2 Directories . 4
2.3 DOS interface . 4
2.4 CHF386.EXE . 5
2.5 Starting CHForth . 5
2.6 Leaving CHForth . 6

3 Loading programs 7
3.1 Loading blocks . 7
3.2 Loading text files . 8
3.3 More about loading . 9
3.4 Load words glossary . 9

4 How to get help 13
4.1 The helpfiles . 13
4.2 The file browser . 14
4.3 The referencer . 14
4.4 Help words glossary . 15

5 Local variables 17
5.1 Use of locals . 17
5.2 Internals of local variables . 18
5.3 More local types . 19
5.4 Local words glossary . 19

6 Forget and forget fields 23
6.1 FORGET . 23
6.2 MARKER . 24

3

4 CONTENTS

6.3 Examples . 24
6.4 Forget words glossary . 25

7 Numbers and strings 27
7.1 Numbers . 27
7.2 Characters . 27
7.3 Strings . 28
7.4 Numbers and strings word glossary 28

8 Word lists 43
8.1 WORDLIST and VOCABULARY . 43
8.2 Search order . 43
8.3 CHForth word lists . 44
8.4 Example . 44
8.5 Word list glossary . 45

9 Vectors 51
9.1 Vectors used by the system . 51
9.2 Examples . 52
9.3 Vector words glossary . 52

10 Interpreter structure 55
10.1 QUIT . 55
10.2 INTERPRET . 55
10.3 ’INTERPRET . 56
10.4 ’COMPILE . 56
10.5 Interpreter words glossary . 57

11 Error recovery 61
11.1 CATCH and THROW . 61
11.2 Examples . 62
11.3 Error messages . 62

11.3.1 Standard ANS Forth messages 63
11.3.2 DOS messages . 63
11.3.3 Messages of this Forth system 65

11.4 Error words glossary . 65

12 The assembler 69
12.1 Register use . 69
12.2 Examples . 70
12.3 Structures . 71
12.4 Assembler words glossary . 73

CONTENTS 5

13 FLYER 77
13.1 Compilation in a buffer . 77
13.2 The circular buffer . 77
13.3 DIVE into deep water . 78
13.4 Use of FLYER . 79
13.5 FLYER words glossary . 79

14 Create new data types 81
14.1 Introduction to DOER: . 81
14.2 Supplied words . 82
14.3 A comparison of DOER: and DOES> 82
14.4 The use of DOERCODE and ;CODE 83
14.5 Using prefix operators . 84
14.6 Defining words word glossary . 85
14.7 Internal structure of the basic do-types 91

15 The TO-concept 93
15.1 How do prefixes work . 93
15.2 Supplied words . 94
15.3 Defining new prefixes . 94
15.4 TO-concept word glossary . 95
15.5 Internal structure of compiled prefixes 100
15.6 Prefixes (methods) for the existing types 100

16 Methods mechanism 101
16.1 Method introduction . 101
16.2 Supplied words . 102
16.3 Defining a new method . 102
16.4 Defining a new data type with prefix operators 104
16.5 Inheritance . 104
16.6 Methods words glossary . 105
16.7 Internal structure of methods . 106
16.8 Methods example (a string variable) 106

17 Interrupt handling 109
17.1 Used interrupts . 109
17.2 Examples . 110
17.3 Interrupt words glossary . 110

18 The decompiler 113
18.1 What can be decompiled . 113
18.2 What can not be decompiled . 113
18.3 Examples . 113

6 CONTENTS

18.4 Decompiler words glossary . 114

19 The disassembler 117
19.1 What can be disassembled . 117
19.2 What can not be disassembled . 117
19.3 Examples . 118
19.4 Disassembler words glossary . 119

20 The viewer 121
20.1 What can be viewed . 121
20.2 What can not be viewed . 121
20.3 Examples . 122
20.4 Viewer words glossary . 123

21 The interface with DOS 125
21.1 The DOS environment . 125
21.2 External ports . 125
21.3 The screen . 126
21.4 The DOS interface glossary . 126

22 Maintenance of program files 135
22.1 Generating new source files . 135
22.2 Library files . 135
22.3 Logging . 136
22.4 Glossary generation . 136
22.5 Maintenance words glossary . 137

23 Turnkey programs 141
23.1 Trimming the system . 141
23.2 Self running programs . 142
23.3 Examples . 142
23.4 Turnkey glossary. 142

24 CHForth internals 145
24.1 Code space . 145
24.2 Header space . 146
24.3 List space . 147
24.4 String space . 147
24.5 Stack space . 148
24.6 DOS space . 148

25 Alphabetical index of words 151

Chapter 1

Introduction to CHForth

CHForth is a ANSI Standard implemtation for Intel 80x86

processors running MS-DOS or DR-DOS. It runs in real or virtual

16 bits 8086 mode, the default operating mode of DOS.

1.1 Background

This year the ANS Standard document was published and as some

members of the Dutch Forth Users Group were writing a new version

of Forth, this Standard was adopted. As a writer of Forth

compilers since about 1984, I adapted my version to the Standard

and CHForth 1.2.5 is the first official release and is presented

at the HCC dagen held on November 18 and 19, 1994 in Utrecht.

1.2 Contents of CHForth

CHForth contains a full developmemt environment, it contains a

full 8086 assembler with 386 extensions, a source code decompiler

and assembly language disassembler and error logging. The use of

a multi segment model (the 8086 uses a segmented memory) provides

more room in the dictionary than models that use one segment of

64 Kbytes.

1.3 Organisation of this manual

Most chapters in this manual start with a description of the

1

2 CHAPTER 1. INTRODUCTION TO CHFORTH

items in the chapter, a description of methods, examples and a

glossary of the words that are of interest to the chapter. As

this manual is not ready, some chapters are still under

construction.

Chapter 2

Installation

To install, you need a fairly compatible PC or AT with at least

8086 or 8088 processor, 256 Kb memory above DOS and 1 Mb free on

your harddisk (It is possible to install the program on a 1.2 Mb

or 1.44 Mb floppy and with more experience it might be possible

on a 720 Kb or even a 360 Kb floppy system).

2.1 Installation on your system

First make a subdirectory with

MD CHF.

It is not necessary to have this subdirectory in the root of your

C: drive, it can be anywhere in your computer system, even on a

ramdisk if you don’t trust me.

Then type

CD CHF

to go to the directory.

When the distribution floppy is in your A: drive type:

A:PKUNZIP -d A:CHF125

to unpack the files. The A:’s can be B:’s in your system. The

name CHF125 can be different, it is the name of the .ZIP file on

the floppy.

To use the program you can follow two methods, the first is copy

the CHFORTH.EXE file and CHFORTH.CFG from the CHF\BIN directory

to a directory in your path, like C:\DOS or C:\BIN. The second is

to extend the PATH= command in your AUTOEXEC.BAT file with

3

4 CHAPTER 2. INSTALLATION

...\CHF\BIN.

With a DOS editor like EDIT or EDLIN you may have to change the

following two lines in CHFORTH.CFG:

S" c:\chf\lib" LIBPATH PLACE

S" c:\chf\doc" HELPPATH PLACE

into for example:

S" d:\programs\develop\forth\ansi\chf\lib" LIBPATH PLACE

S" e:\helpfiles\programming\forth\ansi" HELPPATH PLACE

You may also have to change the line

S" c:\chf\lib" LIBPATH PLACE

in the file CHF\TURNKEY\CHFORTH.CFG

2.2 Directories

CHForth uses some directories, these are made automatically

during the installation.

In CHF\BIN are CHFORTH.EXE, the 8086 version, CHF386.EXE, the 386

version and the configuration file CHFORTH.CFG.

In CHF\DOC are the .HLP and .TXT files.

In CHF\LIB are library files

In CHF\MISC are some miscellaneous programs.

In CHF\SPEED are some benchmarks and .LOG files that show the

benchmarks on a 40 MHz 486DLC machine.

In CHF\TURNKEY are some application programs in source form.

2.3 DOS interface

In the CHFORTH.CFG are provided some interfaces with DOS.

S" " DOS: OS -- Go to the operating system for a while
S" dir" DOS: DIR -- This looks familiar
\ S" copy" DOS: COPY -- Idem
\ S" ren" DOS: REN -- Ditto
S" list" DOS: L -- View a file
S" sz" DOS: SZ -- Tom Zimmer’s editor
S" ne" DOS: NE -- Peter Norton’s editor
S" nc" DOS: SHELL -- Alias OS exists already
S" chforth" DOS: CHFORTH -- Load another copy, probably useless

2.4. CHF386.EXE 5

S" ts" DOS: TS -- If you have this program
S" ts *.frt" DOS: ST -- Search text in *.FRT files
S" grep" DOS: GREP -- Idem
S" ls" DOS: LS -- My version of DIR, source in \TURNKEY

At the left is the name of the program or command as it is known

to DOS, after the word DOS: the name of the program as it is

known to CHForth. If you do not have the program NE.COM you can

delete that line. Then the file LIB\EDITOR.FRT will use SZ.COM as

the default editor. If you do not have TS.EXE delete those lines.

LS.EXE can be made by CHForth itself, see the chapter about

turnkey programs.

2.4 CHF386.EXE

If you do have a 386SX, 386DX, 486SX, 486DX or even a Pentium,

you can rename the file CHF386.EXE to CHFORTH.EXE and use this

program. The difference is in some arithmetic routines that now

use 32 bit aritmetic for speed and the shifting is more efficient

and you can use some 386 instructions in the assembler. The

program still runs in real or virtual 8086 mode, for 32 bit Forth

implementations, see the literature.

2.5 Starting CHForth

The file CHFORTH.EXE has to be in the current directory or a

directory mentioned in the DOS environment variable PATH or you

can prefix the name of the program with the path. See your DOS

manual if this is not clear. When you type CHFORTH at the prompt,

it tries to read the CHFORTH.CFG that is in the current directory

and else the one that is in the directory where CHFORTH.EXE is

found. In this way you can have different configuration files

that can be tailored to the need of the moment, for example you

can have different libraries and helpfiles in other paths than

the standard ones. When the configuration file is read, the word

.FREE (which is an option on the last line of the file) is

executed to give you some information about the size of the

program and how many bytes there are free in each of the three

segments. On the command line you can give parameters that have

to be normal Forth, like:

6 CHAPTER 2. INSTALLATION

CHFORTH in life

to load the program in the file LIFE.FRT. When the loading is

done, a diagnostics line is given, first three numbers giving the

bytes compiled in the three segments, the sum of it, the number

of bytes compiled per minute, the number of lines, the number of

lines per minute and then the count of seconds elapsed. These are

all since the loading of the configuration file.

2.6 Leaving CHForth

The standard way to leave CHForth is type BYE. This words takes

care to reset used interrupt vectors to their initial values (see

also chapter 17). The same is accomplished by typing ALT+Q, when

the module -accept is present.

You can also return with <number> HALT to return a 8 bit code to

DOS that can be tested with ERRORLEVEL, when you run CHForth in a

batch file. This also can be used in make files. When you press

ALT+X, CHForth terminates with a returncode of 1.

Chapter 3

Loading programs

The normal way in Forth for compiling programs is loading them in

source form from disk. In CHForth this can be done by loading

blocks and by loading textfiles.

3.1 Loading blocks

This paragraph is for those that still use block files like in

the sixties and seventies.

First you have to include extensions for handling block files,

this can be done by typing at the DOS prompt the following line:

C:\CHF\>chforth empty in blockext close save blocks bye

Now a program BLOCKS.EXE will be generated, of course the name is

arbitrary. When the file BLOKKEN.BLK exist in the current

directory, this program will automatically open that file at

startup. It is a blocks file organised in 100 blocks. The first

one can be loaded with

1 LOAD .

When the file BLOKKEN.BLK is not present, a message is given but

this is not considered an error.

Some examples are in this file. You can browse through the file

by typing BROWSE that has its own help. A simple editor in

FIGFORTH style is loaded with the file blockext.frt.

7

8 CHAPTER 3. LOADING PROGRAMS

Opening other files with extension .BLK is possible. Open an

other one with:

S" MYBLOCKS" USE-BLOCKS

When the first screens of the file BLOKKEN.BLK have been loaded

with:

1 LOAD

you can use now:

OPEN MYBLOCKS

The use of CLOSE is optional when you open another file or when

you leave the program because it is present in OPEN and BYE .

It is also possible to create a new block file by:

100 MAKE-BLOCKS-FILE MYBLOCKS

to create a file MYBLOCKS.BLK containing 100 blocks.

You can change the default extension for example:

S" .SCR" BEXT$ PLACE

As I now seldom use blocks, further help is not available, try to

figure out the workings by reading the FigForth manual or the

source.

3.2 Loading text files

In Europe, already in the seventies, Forth used standard

operating system files, that could be edited, copied and printed

with programs already available in the system software.

This is the preferred way in CHForth. To load the file MYFILE.FRT

you can use a few methods:

1) INCLUDE MYFILE.FRT

2) IN MYFILE

3) S" MYFILE.FRT" INCLUDED

The second is preferred and shorter. The default extension

.FRT is in the counted string at FEXT$, changing this is unwise.

Files from CHF\LIB can be loaded by:

IN LIB\MYLIB

But the normal way is by

NEEDS -MYLIB

3.3. MORE ABOUT LOADING 9

as some programs depent on this procedure. The word NEEDS will

skip loading if the MARKER -mylib already is loaded. You may

leave out the minus sign, this is only to remember that the word

MARKER is the first defining word in this file and you can forget

the compiled words with -mylib .

3.3 More about loading

The files on the distribution disk use always .FRT as default

extension. So the extension is never mentioned to load files with

IN or NEEDS .

When an error occurs during loading and you have an editor

installed in the CHFORTH.CFG file for NE or SZ, typing WHAT gets

you in the editor on the offending line. Also some information

about the error is written to a file ERROR.LOG in the current

directory so you could perhaps determine what caused the error.

3.4 Load words glossary

FEXT$ "f-ext-string" EXTRA

(-- c-addr)

c-addr is the address of a counted string containing the default

extension of Forth text files.

IN EXTRA

("name" --)

Skip leading space delimiters. Parse name delimited by a space

and load the file with that name. If the length of name is

zero, load the file that was previously load with IN .

INCLUDE EXTRA

("name" --)

Skip leading delimiters. Parse name delimited by a space and

load the file with that name. The appropriate extension must

be included in name.

10 CHAPTER 3. LOADING PROGRAMS

INCLUDE-FILE FORTH

(fileid --)

Remove fileid from the stack. Save the current input source

specification, including the current value of SOURCE-ID .

Store fileid in SOURCE-ID . Make the file specified by fileid

the input source. Store zero in BLK . Other stack effects are

due to the words INCLUDEd.

Repeat until end of file: read a line from the file, fill the

input buffer from the contents of that line, set >IN to zero,

and interpret.

Interpretation begins at the file position where the next file

read would occur.

When the end of the file is reached, close the file and

restore the input source specification to its saved value.

An ambiguous condition exists if fileid is invalid, if an I/O

exception occurs reading fileid, or an I/O exception occurs

while closing fileid. When an ambiguous condition exists, the

status (open or closed) of any files that were being

interpreted is implementation defined.

INCLUDED FORTH

(c-addr u --)

Remove c-addr u from the stack. Save the current input source

specification, including the current value of SOURCE-ID . Open

the file specified by c-addr u, store the resulting fileid in

SOURCE-ID and make it the input source. Store zero in BLK .

Other stack effects are due to the words INCLUDEd.

Repeat until end of file: read a line from the file, fill the

input buffer from the contents of that line, set >IN to zero,

and interpret.

Interpretation begins at the file position where the next file

read would occur.

When the end of the file is reached, close the file and

restore the input source specification to its saved value.

An ambiguous condition exists if the named file can not be

3.4. LOAD WORDS GLOSSARY 11

opened, if an I/O exception occurs reading the file, or an I/O

exception occurs closing the file. When an ambiguous condition

exists, the status (open or closed) of any files that were

being interpreted is implementation defined.

LOAD FORTH

(i*x u -- j*x)

Save the current input source specification. Store u in BLK ,

thus making block u the input source and setting the input buffer

to encompass its contents, set >IN to zero, and interpret. When

the parse area is exhausted, restore the prior input source

specification. Other stack effects are due to the words LOADed.

Exceptions -33, -34 or -35 will occur if u is zero, or is not

valid block number.

NEEDS EXTRA

(name --)

Find name and when found continue. When not found, load the

file with the same name (excluding a trailing minus sign) from

the directory in LIBPATH .

THRU FORTH

(i*x u1 u2 -- j*x)

LOAD the mass storage blocks numbered u1 through u2 in sequence.

Other stack effects are due to the words LOADed.

12 CHAPTER 3. LOADING PROGRAMS

Chapter 4

How to get help

CHForth offers a number of ways to help the user during running

of the program. The tools available are helpfiles, a decompiler,

a viewer, a disassembler, a file browser and a referencer.

4.1 The helpfiles

In the directory CHF\DOC are some files with the extension .HLP.

These are normal textfiles. Do not change their structure, they

are generated with a glossary generator and use the word \G that

you will find in the source files (with extension .FRT). They are

used by the HELP command. If you can not remember the use of for

example the word DUP just type ’HELP DUP’.

FORTH> help dup
File: KERNEL.HLP
DUP "dupe" FORTH

(x -- x x)
Duplicate x.

On top is the name of the helpfile and on the left on the next

line is the word looked after. It is sometimes followed by the

pronounciation in double quotes. When the helpfile is KERNEL.HLP

the word on the far right is FORTH or EXTRA, the wordlists in

which the definition is compiled. In other helpfiles it is the

name of the file in the CHF\LIB directory where the word is

defined.

13

14 CHAPTER 4. HOW TO GET HELP

When a full screen is displayed, HELP waits for a key press.

Pressing Esc stops, others will continue displaying the remaining

text.

Needed file: LIB\HELP.FRT

4.2 The file browser

You can look up words in files in the current directory by typing

SF followed by a string of characters, including spaces. For

example to find any occurence of the string ’SWAP DUP’:

FORTH> sf swap dup
1 BENCH.FRT 23 DUP SWAP DUP ROT DROP 1 AND
2 COREWARS.FRT 375 SWAP DUP @ 5 * SWAP CELL+ \ #bytes and st

On the left is the number of lines found, followed by the

filename, followed by the linenumber in the file and the line

itself is printed till the end of the screen line. Leading and

trailing spaces are significant.

The word SL does the same, but uses the files in CHF\LIB

The word LOOK must be followed with a filename, including the

extension and an optional path, and the string to look for. It

looks in a single file.

FORTH> look corewars.frt swap dup
1 SWAP DUP @ 5 * SWAP CELL+ \ #bytes and start addr ok

When a full screen is displayed, these words wait for a key

press. Pressing Esc stops, others will continue displaying the

remaining text.

Needed file: LIB\SEARCHER.FRT

4.3 The referencer

To look up words in compiled code, you can use the referencer,

e.g.:

4.4. HELP WORDS GLOSSARY 15

FORTH> ref cells
DECOMPILER

TAB@
EXTRA

RESTORE-SCREEN RECOVER-SCREEN SAVE-SCREEN SAVE FINDMESSAGE >LOCAL H, L,
DOFORGET DIAGNOSE

FORTH
(VIEW) 2VARIABLE VARIABLE
13 references of: $1008 CELLS found. ok

Needed file: LIB\REF.FRT

4.4 Help words glossary

(REF) "paren-ref" REF

(addr --)

Find compiled references in colon definitions of addr in all word

lists. Display the words where the references occur and the count

of the words where the references are found.

ANY SEARCHER

("ccc" --)

Skip leading space delimiters. Parse ccc delimited by a space.

Search the files with extension given by HEXT$ in the directory

given by HELPPATH . Display the description of the names that

contain ccc. If a full screen is displayed, wait for the user to

press a key. Stop if the key is the escape key.

HELP HELP

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Look up name in the files with extension given in HEXT$ in the

directory given by HELPPATH and display the description of name.

As a binary search on the sorted file is performed, only one

description per file is displayed. When a full screen is

displayed, wait for the user to press any key, escape stops.

Otherwise convert name to a number (the prefixes % $ # & etc. are

permitted) and display its type and decimal value and the

16 CHAPTER 4. HOW TO GET HELP

character if it can be displayed or display the exception message

if it is defined for the number.

LOOK SEARCHER

("name" "ccc" ---)

Skip leading space delimiters. Parse name delimited by a space.

Skip leading SEPARATOR delimiters. Parse ccc delimited by

SEPARATOR . Search file name with optional extension given by

FEXT$. Find ccc in the file. Display the number of the lines

found, the line number and the line containing ccc depending on

the width of the screen. If a full screen is displayed, wait for

the user to press a key. Stop if the key is the escape key.

REF REF

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Find compiled references in colon definitions of name in all word

lists. Display the words where the references occur and the count

of the words where the references are found.

SF "search-forth" SEARCHER

("ccc" --)

Skip leading SEPARATOR delimiters. Parse ccc delimited by

SEPARATOR . Search the files with extension given by FEXT$ in the

current directory. Find ccc in the files. Display the number of

lines found, the name of the file, the line number and the line

depending on the width of the screen. If a full screen is

displayed, wait for the user to press a key. Stop if the key is

the escape key.

SL "search-libraries" SEARCHER

("ccc" --)

Skip leading SEPARATOR delimiters. Parse ccc delimited by

SEPARATOR . Search the files with extension given by FEXT$ in the

directory given by LIBPATH . Find ccc in the files. Display the

number of lines found, the name of the file, the line number and

the line depending on the width of the screen. If a full screen

is displayed, wait for the user to press a key. Stop if the key

is the escape key.

The decompiler, disassembler and viewer are described elsewhere.

Chapter 5

Local variables

Instead of creating definitions with complex stack uses, the

programmer can use variables. The problem with variables is that

they are not local to a definition and other words can use them

and may produce unwanted side-effects.

ANS Forth offers a way to use variables local to a definition

that are not known outside that definition. In this way the user

can give them names that do not conflict with global or other

local variables. A further improvement is that the use of a local

variable’s name will give the value directly without @, like a

VALUE . To change the value, use TO , +TO or CLEAR.

5.1 Use of locals

The calculation of the discriminant in square roots is without

the use of local values:

: DISCRIMINANT (a b c -- d) \ d=b*b-4*a*c

SWAP \ a c b

DUP * \ a c b*b

-ROT \ b*b a c

* \ b*b a*c

4 * \ b*b 4*a*c

- \ d

;

The standard ANS Forth way to use locals is as follows:

17

18 CHAPTER 5. LOCAL VARIABLES

: DISCRIMINANT (a b c -- d) \ d=b*b-4*a*c

LOCALS| c b a | \ stack empty

b b * \ b*b

4 a * c * \ b*b 4*a*c

- \ d

;

Remember that at the start of the definition, the value on the top

of the stack will be placed in the first local value. The names

after the words LOCALS| are therefore in reverse order to the

stack diagram.

In CHForth the restriction that no operation is allowed between

declaring locals is not applicable (but the program will be

non-standard):

: DISCRIMINANT (a b c -- d) \ d=b*b-4*a*c

LOCAL c \ a b

DUP * \ do some operation

LOCAL b*b \ a

c * -4 * \ -4*a*c

b*b + \ d

;

5.2 Internals of local variables

When defining a local variable the pointers HERE and HHERE are

temporary changed to a special area that is also used by FLYER to

compile code and headers that will not interfere with the normal

compiling.

For every local variable the word PUSH-LOCAL is compiled that

transfers the value on the top of the stack to the local stack

and pushes the address of special routine on the return stack. At

the end of the definition this routine is executed and it will

discard the storage area on the local stack and then return to

the calling definition with EXIT as normal.

When decompiling you will see that the first named local will be

called LOCAL 0 and the second LOCAL 1 and so on.

5.3. MORE LOCAL TYPES 19

The word (LOCAL) can be used do make defining words for locals.

Try decompiling the definition of LOCAL or LOCALS| to see

examples for this.

5.3 More local types

Double locals and other types are defined in the file

LIB\DLOCALS.FRT and can be included by NEEDS -dlocals .

5.4 Local words glossary

(LOCAL) "paren-local-paren" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (c-addr u --)

When executed during compilation, (LOCAL) passes a message to

the Forth system that has one of two meanings. If u is

non-zero, the message identifies a new local whose word name

is given by the string of characters identified by c-addr u.

If u is zero, the message is ’last local’ and c-addr has no

significance. The result of executing (LOCAL) during

compilation of a definition is to create a set of named local

identifiers, each of which is a word name, that have execution

semantics within the scope of that definition’s source only.

local Execution: (-- x)

Push the local’s value, x, onto the stack. An ambiguous

condition exists when (LOCAL) is executed while in interpret

state.

Note: This word is not intended for direct use in a definition

to declare that definition’s locals. It is instead used by

system or user compiling words. These compiling words in turn

define their own syntax, and may be used directly in

definitions to declare locals.

+TO "plus-to" EXTRA

Interpretation: (n|u "name" --)

20 CHAPTER 5. LOCAL VARIABLES

Skip leading space delimiters. Parse name delimited by a space.

Add n|u to name. Exception -32 occurs if name was not defined by

VALUE or VARIABLE .

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -32 occurs if name was not defined by VALUE

, VARIABLE or (LOCAL).

Run-time: (x --)

Add n|u to name.

CLEAR EXTRA

Interpretation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Store zero in name. Exception -32 occurs if name was not defined

by VALUE or VARIABLE .

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -32 occurs if name was not defined by VALUE

, VARIABLE or (LOCAL).

Run-time: (--)

Store zero in name.

END-LOCAL EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (--)

Terminate creation of local values.

LOCAL EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

5.4. LOCAL WORDS GLOSSARY 21

Create a definition for name with the execution and run-time

semantics defined below.

Execution: (x --)

Store x in name.

name Execution: (-- x)

Place x on the stack. The value can be manipulated by TO +TO and

CLEAR .

LOCAL-WORDLIST ONLY

(-- wid)

Return the wid of the LOCAL-WORDLIST .

LOCALS| "locals-bar" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("namen" .. "name2" "name1" "|" --)

Define up to 8 local variables with "name1" to "namen". The list

of locals to be defined is terminated with "|". The actual number

in CHForth may be greater, depending on the length of the input

line. Append the run-time semantics for name given below.

name Run-time: (-- x)

Place x on the stack. The value can be manipulated by TO +TO and

CLEAR .

TO FORTH

Interpretation: (x "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Store x in name. Exception -32 occurs if name was not defined by

VALUE or VARIABLE .

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -32 occurs if name was not defined by VALUE

, VARIABLE or (LOCAL).

Run-time: (x --)

Store x in name.

22 CHAPTER 5. LOCAL VARIABLES

Chapter 6

Forget and forget fields

As Forth can be used as a development environment, sometimes the

user wants to get rid of old definitions and start new ones. The

words provided for this are the old word FORGET and the new word

MARKER .

6.1 FORGET

When FORGET followed by a name is typed in all definitions made

later than name and name itself are forgotten, the dictionary

pointer (HERE) is reset as all Forth versions do, but there is

a field in the header of each word that may contain the execution

token of a special routine. Every time FORGET is typed, it scans

the headers, starting with the newest word by using HIGHEST and

looks for the contents of this field and executes the token and

continues with the next word. This routine is entered with the

data field of the word found by HIGHEST on the stack and can

therefore perform some restoration action with that address. For

example when a word from type INTVEC is forgotten, it will

restore the former contents of the vector. A colon definition has

a forget routine that places the list dictionary pointer back to

what it was when the word was created. Remember that any word

that was in the dictionary when EXTEND was executed can not be

forgotten, and any word that was in the executable file when

CHForth was started, because SAVE contains EXTEND .

23

24 CHAPTER 6. FORGET AND FORGET FIELDS

6.2 MARKER

The new method is MARKER . This is a defining word, it creates a

definition for the following name. When name is typed, everything

including name and later definitions are removed, this process is

the same if you typed: FORGET name. As a convention to remember

its action, a ’-’ (minus sign) is sometimes appended in front of

name. When name is executed, apart from the normal FORGET action,

the search order is restored to the point where MARKER was

executed, so you do not have to remember it yourself.

6.3 Examples

: ONE ; : TWO ; : THREE ; : FOUR ; \ some new definitions

FORGET THREE \ forget the last two

: FIVE ; : SIX ; \ and start other words

FORTH DEFINITIONS \ Set a starting order

MARKER -vergessen \ Set a marker

VIERTE DEFINITIONS \ Set new search order

: Eins ONE ; : Zwei TWO ; : Sechs SIX ;

FUENFTE DEFINITIONS \ Change order

-vergessen \ The last four are gone

ORDER \ Will print FORTH as 1st

DOER: DOMESSAGE \ address of data field

CR COUNT TYPE \ Print the message

;

: MESSAGE CREATE [CHAR] " WORD C@ \ Define message definer

CHAR+ ALLOT \ Compile the string

DOMESSAGE

;

:NONAME CR ." Forgetting message " \ Print a forget message

COUNT TYPE \ The same address as

; \ after DOES>

IS-FORGET DOMESSAGE \ Put in a MESSAGE type

MESSAGE MESS-1 This is message one"

6.4. FORGET WORDS GLOSSARY 25

MESSAGE MESS-2 This is message two"

6.4 Forget words glossary

FENCE EXTRA

(-- a-addr)

a-addr is the adress of a cell containing the dictionary pointer

since the last SAVE or EXTEND . Forgetting of words created when

the dictionary pointer was less than this value is not possible.

FORGET FORTH

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Find name in the compilation word list, then delete name from the

dictionary along with all words added to the dictionary after

name. Exception -13 occurs if name cannot be found. Exception -15

occurs if FORGET removes a word required for correct execution.

Note: this word is obsolescent and is included as a concession to

existing implementations.

Note: In CHForth words can be protected against FORGET with

EXTEND and SAVE .

HEAD>FORGET "head-to-forget" EXTRA

(dea -- h-addr)

h-addr is the forget field address of the dictionary entry dea.

HIGHEST EXTRA

(-- wid dea)

Return the dictionary entry address of the newest definition with

dictionary entry address dea and the word list identification wid

in which it is compiled. Used in FORGET .

IS-FORGET EXTRA

(xt "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the semantics of execution token xt to the forget method

of name.

MARKER FORTH

26 CHAPTER 6. FORGET AND FORGET FIELDS

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a dictionary for name with the execution semantics defined

below.

name Executing: (--)

Restore all dictionary allocation and search pointers to the

state they had just prior to the definition of name. Remove the

definition of name and all subsequent definitions. Restoration of

any structures still existing that could refer to deleted

definitions or deallocated data space is not necessarily

provided. No other contextual information such as numeric base is

affected.

Chapter 7

Numbers and strings

Standard Forth has two types of numbers, single precision: in

CHForth signed numbers from -32768 to 32767 or unsigned from 0 to

65535, and double precision numbers (entered by one or more

decimal points in the number) from -2147483648 to 2147483647 or

from 0 to 4294967295. The only allowed prefix is the minus sign.

7.1 Numbers

Numbers in other bases than decimal ten are in Standard Forth

only possible if you change BASE before the number and restore it

afterwards. In CHForth (and other Forths as well) this is solved

by prefixing the number by special characters as follows:

’#’ for decimal numbers, digits 0..9,

’$’ for hexadecimal numbers, digits 0..9 and A..F,

’%’ for binary numbers, digits 0 and 1.

The minus sign if present must be after this prefix.

7.2 Characters

Characters are in Standard Forth entered by placing the word CHAR

(when interpreting) or [CHAR] (when compiling) and a space before

the character. In CHForth this is extended by prefixes. Placing a

’&’ character without a space before a single character places

this number on the stack while interpreting or compiles it as a

literal. It is also possible to place a ’’’ character just before

and just after the desired character.

27

28 CHAPTER 7. NUMBERS AND STRINGS

Control characters are entered by placing the word CTRL (when

interpreting) or [CTRL] (when compiling) and a space before an

uppercase character which is converted to is value between 0 and

31. An other way is placing a ’^’ character without a space

before a single character.

7.3 Strings

Strings in Forth come in two varieties, the first and oldest

species is the counted string. On the stack is an address. On

that address is a byte containing the size of the string right

after that byte. The length of the string is between 0 and 255

both inclusive. It is used by words as WORD and FIND and

converted to the new type by COUNT .

The newer version has an address and a length on the stack, this

length can be from zero to 65535, practically infinite. These are

handled by other words that expect a string on the stack. But it

is not generally possible to convert such a string to a member of

the old type as this type of strings is often not preceded by a

count byte and sometimes the length is larger than 255.

CHForth provides some operators to store and concatenate strings.

PACK and PLACE put a c-addr u string on an address as a counted

string and PACK leaves this address on the stack and PLACE does

not. APPEND places a c-addr u string at the end of a counted

string and corrects the size of the compound string. APPEND-CHAR

appends a character to a counted string and increments the count

of the string with one.

7.4 Numbers and strings word glossary

", "quote-comma" EXTRA

("ccc<">" --)

Parse ccc delimited by ’"’ (double quote) and compile it as a

counted string in the dictionary. Execution of HERE just before

the execution of ", will give the address of the string.

"number-sign" FORTH

7.4. NUMBERS AND STRINGS WORD GLOSSARY 29

(ud1 -- ud2)

Divide ud1 by the number in BASE giving the quotient ud2 and the

remainder n. (n is the least-significant digit of ud1). Convert n

to external form and add the resulting character to the beginning

of the pictured numeric output string. An ambiguous condition

exists if # executes outside of a <# #> delimited number

conversion.

See also: #> #S <#

#> "number-sign-greater" FORTH

(xd -- c-addr u)

Drop xd. Make the pictured numeric output string available as a

character string. c-addr and u specify the resulting character

string. A Standard Program may replace characters within the

string.

See also: # #S <#

#S "number-sign-s" FORTH

(ud1 -- ud2)

Convert one digit of ud1 according to the rule for # . Continue

conversion until the quotient is zero. An ambiguous condition

exists if #S executes outside of a <# #> delimited number

conversion.

See also: # #> <#

(.) "paren-dot" EXTRA

(n -- c-addr u)

Convert n to a numeric output string with a leading minus sign if

n is negative.

(D.) "paren-d-dot" EXTRA

(d -- c-addr u)

Convert d to a numeric output string with a leading minus sign if

d is negative.

(NUMBER?) "paren-number-question" EXTRA

(c-addr u -- 0 | n 1 | d 2)

Convert a string to a number. If it fails, return a false flag.

Otherwise return a single number with a flag of 1 and a double

number with a flag of 2. The number is negative if prefixed by

’-’. CHForth allows decimal numbers to be prefixed by ’#’ ,

hexadecimal numbers by ’$’ and binary numbers by ’%’ . These may

30 CHAPTER 7. NUMBERS AND STRINGS

be followed by ’-’ to signify negative numbers. Single characters

are converted to single precision number when prefixed by ’&’ or

when they are enclosed by ’’’. Uppercase letters can be converted

to the corresponding control characters when prefixed by ’^’.

-TRAILING "dash-trailing" FORTH

(c-addr u1 -- c-addr u2)

If u1 is greater than zero, u2 is equal to u1 less the number of

spaces at the end of the character string specified by c-addr u1.

If u1 is zero or the entire string consists of spaces, u2 is

zero.

. "dot" FORTH

(n --)

Display n in free field format.

.DEC "dot-decimal" EXTRA

(n --)

Display n as a signed decimal number.

See also: .HEX

.HEX "dot-hex" EXTRA

(u --)

Display u as a four digit hexadecimal number with a leading ’$’

character and a trailing space.

See also: .DEC H.

.R "dot-r" FORTH

(n1 n2 --)

Display n1 right aligned in a field n2 characters wide. If the

number of characters required to display n2 is greater than n2,

all digits are displayed with no leading spaces in a field as

wide as necessary.

.S "dot-s" FORTH

(--)

Copy and display the values currently on the data stack. Starting

on a new line, a ’(’ (left parenthesis) followed by a space is

displayed. Then follow the values on the stack, when BASE

contains 10, as signed numbers, unsigned otherwise. At the end a

’)’ (right parenthesis) is displayed.

.S is implemented using pictured numeric output words. Its use

7.4. NUMBERS AND STRINGS WORD GLOSSARY 31

will corrupt the transient region identified by #> .

.SEG "dot-segment" EXTRA

(u --)

Display u as a four character string if it corresponds to a

segment in CHForth else as a four digit hexadecimal string.

/STRING "slash-string" FORTH

(c-addr1 u1 n -- c-addr2 u2)

Adjust the character string at c-addr1 by n characters. The

resulting character string, specified by c-addr2 u2, begins at

c-addr1 plus n characters and is u1 minus n characters long.

2LITERAL "two-literal" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (x1 x2 --)

Append the run-time semantics defined below to the current

definition.

Run-time: (-- x1 x2)

Place cell pair x1 x2 on the stack.

<# "less-number-sign" FORTH

(--)

Initialize the pictured numeric output conversion process.

See also: # #> #S

>< "flip" EXTRA

(x1 -- x2)

See: FLIP

>NUMBER "to-number" FORTH

(ud1 c-addr1 u1 -- ud2 c-addr2 u2)

ud2 is the unsigned result of converting the characters within

the string specified by c-addr1 u1 into digits, using the number

in BASE , and adding each into ud1 after multiplying ud1 by the

number in BASE . Conversion continues left-to-right until a

character that is not convertible, including any "+" or "-" is

encountered or the string is entirely converted. c-addr2 is the

location of the first unconverted character or the first

32 CHAPTER 7. NUMBERS AND STRINGS

character past the end of the string if the string was entirely

converted. u2 is the number of unconverted characters in the

string. An ambiguous condition exists if ud2 overflows during the

conversion.

>UPC "to-u-p-c" EXTRA

(char1 -- char2)

Convert char1 to uppercase.

? "question" FORTH

(a-addr --)

Display the value stored at a-addr.

APPEND EXTRA

(c-addr1 u c-addr2 --)

Add u to the numerical value of the character at c-addr2. Store

the string specified by c-addr1 u at the character address given

by the sum of c-addr2 and the incremented numerical value of the

character at c-addr2.

APPEND-CHAR EXTRA

(char c-addr --)

Increment the numerical value of the character at c-addr by one.

Store char at the character address given by the sum of the

incremented numerical value of the character at c-addr and

c-addr.

B. "b-dot" EXTRA

(u --)

Display u as a two digit hexadecimal number with a trailing

space.

See also: H.

BASE FORTH

(-- a-addr)

a-addr is the address of a cell containing the current number

conversion radix {{2..36}}.

BL "b-l" FORTH

(-- char)

char is the character value for a space.

C" "c-quote" FORTH

7.4. NUMBERS AND STRINGS WORD GLOSSARY 33

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("ccc<quote>" --)

Parse ccc delimited by " (double-quote). Append the run-time

semantics given below to the current definition.

Run-time: (-- c-addr)

Return c-addr, a counted string consisting of the characters ccc.

A standard program shall not alter the returned string.

See also: S"

CHAR "char" FORTH

("name" -- char)

Skip leading space delimiters, Parse name delimited by a space.

Put the value of its first character on the stack.

See also: [CHAR]

CMOVE "c-move" FORTH

(c-addr1 c-addr2 u --)

If u is greater than zero, copy u consecutive characters,

character-by-character and left-to-right, from c-addr1 to

c-addr2. If c-addr2 lies within the source region, memory

propagation occurs. (c-addr2 lies within the source region if

c-addr2 is not less than c-addr1 and c-addr2 is less than the

quantity c-addr1 u CHARS +).

See also: CMOVE> MOVE

CMOVE> "c-move-up" FORTH

(c-addr1 c-addr2 u --)

If u is greater than zero, copy u consecutive characters,

character-by-character and right-to-left, from c-addr1 to

c-addr2. If c-addr1 lies within the destination region, memory

propagation occurs. (c-addr1 lies within the destination region

if c-addr1 is greater than or equal to c-addr2 and if c-addr2 is

less than the quantity c-addr1 u CHARS +).

See also: CMOVE MOVE

CMOVEX "c-move-x" EXTRA

(x-addr1 x-addr2 u --)

If u is greater than zero, copy u consecutive characters,

character-by-character and left-to-right, from extended address

34 CHAPTER 7. NUMBERS AND STRINGS

x-addr1 to extended address x-addr2. If x-addr2 lies within the

source region, memory propagation occurs. (x-addr2 lies within

the source region if x-addr2 is not less than x-addr1 and x-addr2

is less than the quantity x-addr1 u CHARS +).

See also: CMOVE CMOVEX>

CMOVEX> "c-move-x-up" EXTRA

(x-addr1 x-addr2 u --)

If u is greater than zero, copy u consecutive characters,

character-by-character and right-to-left, from extended address

x-addr1 to extended address x-addr2. If x-addr2 lies within the

source region, memory propagation occurs. (x-addr2 lies within

the source region if x-addr2 is not less than x-addr1 and x-addr2

is less than the quantity x-addr1 u CHARS +).

See also: CMOVE CMOVEX

COMPARE FORTH

(c-addr1 u1 c-addr2 u2 -- flag)

Compare the string specified by c-addr1 u2 to the string

specified by c-addr2 u2. The strings are compared, beginning at

the given addresses, character by character, up to the length of

the shorter string or until a difference is found. If the two

strings are identical up to the length of the shorter string, n

is zero if both strings are of equal length, minus-one of u1 is

less than u2, and one otherwise. If the two strings are not

identical up to the length of the shorter string, n is minus-one

if the first non-matching character in the string specified by

c-addr1 u1 has a lesser numerical value than the corresponding

character in the string specified by c-addr2 u2 and one

otherwise.

See also: COMPARE-UPPERCASE

COMPARE-UPPERCASE EXTRA

(c-addr1 u1 c-addr2 u2 -- flag)

Compare the string specified by c-addr1 u2 to the string

specified by c-addr2 u2. The strings are compared, beginning at

the given addresses, character by character, up to the length of

the shorter string or until a difference is found. If the two

strings are identical, where lower case characters are considered

equal to upper case characters, up to the length of the shorter

string, n is zero if both strings are of equal length, minus-one

of u1 is less than u2, and one otherwise. If the two strings are

not identical up to the length of the shorter string, n is

7.4. NUMBERS AND STRINGS WORD GLOSSARY 35

minus-one if the first non-matching character in the string

specified by c-addr1 u1 has a lesser numerical value, where the

value of lower case characters are converted to their upper case

equivalent values without affecting the strings themselves, than

the corresponding character in the string specified by c-addr2 u2

and one otherwise.

See also: COMPARE

CONVERT OBSOLETE

(ud1 c-addr1 -- ud2 c-addr2)

ud2 is the result of converting the characters within the text

beginning at the first character after c-addr1 into digits,

using the number in BASE , and adding each digit to ud1 after

multiplying by the number in BASE . Conversion continues until

a character that is not convertible is encountered. c-addr2 is

the location of the first unconverted character. An ambiguous

condition exists if ud2 overflows.

Note: this word is obsolescent and is included as a concession

to existing implementations. Its function is superseded by

>NUMBER .

COUNT FORTH

(c-addr1 -- c-addr2 char)

Return the character string specification for the counted string

stored at c-addr1. c-addr2 is the address of the first character

after c-addr1. u is the contents of the character at c-addr1,

which is the length in characters of the string at c-addr2.

COUNTX "count-x" EXTRA

(x-addr1 -- x-addr2 char)

Fetch char from extended address x-addr1 and add 1 CHARS to

x-addr1 giving x-addr2.

CTRL "control" EXTRA

("name" -- char)

Skip leading space delimiters, Parse name delimited by a space.

Put the value of the control character defined by its first

character on the stack. Exception -531 occurs when the character

is not in the range {’@’..’_’}.

See also: CHAR [CTRL]

D. "d-dot" FORTH

36 CHAPTER 7. NUMBERS AND STRINGS

(d --)

Display d in free field format.

D.R "d-dot-r" FORTH

(d n --)

Display d right aligned in a field n characters wide. If the

number of characters required to display d is greater than n, all

digits are displayed with no leading spaces in a field as wide as

necessary.

DECIMAL FORTH

(--)

Set the numeric conversion radix to ten (decimal).

DIGIT EXTRA

(char +n -- n1 true | char false)

Try to convert char to a digit n1 with number base +n. If the

conversion succeeds, return a true flag. Otherwise a false flag.

DPL "d-p-l" EXTRA

(-- a-addr)

a-addr is the address of a cell. When the last interpreted number

contained a decimal point, it will contain the number of digits

after the decimal point in that number; otherwise the contents

are -1.

EXPAND EXTRA

(c-addr1 u1 c-addr2 -- c-addr2 u2)

Copy any non-tab characters in the string specified by c-addr u1

to a string specified by c-addr2 u2. Tab characters are expanded

to spaces with a tab distance of 8 positions.

FLIP EXTRA

(x1 -- x2)

Exchange the high and low bytes of x1 giving x2.

H. "h-dot" EXTRA

(u --)

Display u as a four digit hexadecimal number with a trailing

space.

See also: .HEX B.

HEX FORTH

7.4. NUMBERS AND STRINGS WORD GLOSSARY 37

(--)

Set the contents of BASE to sixteen.

HOLD FORTH

(char --)

Add char to the beginning of the pictured numeric output string.

An ambiguous condition exists if HOLD executes outside of a <# #>

delimited number conversion.

INLINE# "inline-number" EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(-- x)

Return the inline compiled number, system use only.

INLINE$ "inline-string" EXTRA

(-- l-addr)

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

l-addr is the list address of an inline compiled string. System

use only.

JOIN EXTRA

(char1 char2 -- x)

char1 is the low byte of x and char2 is the high byte of x.

KB. "k-b-dot" EXTRA

(u --)

Display the result of division of u by 1024 with one digit after

the decimal point followed by a space, the string "Kb" and a

space.

LITERAL FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (x --)

Compile x as a literal. Append the run-time syntax given below

38 CHAPTER 7. NUMBERS AND STRINGS

to the current definition.

Run-time: (-- x)

Place x on the stack.

LITERALS EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (x1 .. xn n --)

Append the execution semantics defined below to the current

definition.

Executing:

(-- x1 .. xn)

Place x1 to xn on the stack.

NUMBER? "number-question" EXTRA

(c-addr u -- 0 | n 1 | d 2)

A word that normally executes (NUMBER?) .

PACK EXTRA

(c-addr1 u c-addr2 -- c-addr2)

Place the string specified by c-addr1 u as a counted string at

c-addr2.

PAD FORTH

(-- c-addr)

c-addr is the address of a transient region that can be used to

hold data for intermediate processing.

PLACE EXTRA

(c-addr1 u c-addr2 --)

Place the string specified by c-addr1 u as a counted string at

c-addr2.

S" "s-quote" FORTH

Interpretation: ("ccc<quote>" -- c-addr u)

Parse ccc delimited by " (double quote). Store the resulting

string ccc at a temporary location. The maximum length of the

temporary buffer is 255 characters. CHForth allows for the

storing of more such strings before new strings start to

7.4. NUMBERS AND STRINGS WORD GLOSSARY 39

overwrite the buffer. A standard program shall not alter the

returned string.

Compilation: ("ccc<quote>" --)

Parse ccc delimited by " (double quote). Append the run-time

semantics given below to the current definition.

Run-time: (-- c-addr u)

Return c-addr and u describing a string consisting of the

characters ccc. A standard program shall not alter the returned

string.

See also: C"

SCAN EXTRA

(c-addr1 u1 char -- c-addr2 u2)

Scan the string specified by c-addr1 u1 for an occurrence of char

and return the part of the string starting with the found char as

a string specified by c-addr2 u2. If the string specified by

c-addr1 u1 does not contain char, u2 is zero.

If char is the character for space, control characters are

considered equal to char.

SEARCH FORTH

(c-addr1 u1 c-addr2 u2 -- c-addr3 u3 flag)

Search the string specified by c-addr1 u1 for the string

specified by c-addr2 u2. If flag is true, a match was found at

c-addr3 with u3 characters remaining. If flag is false there was

no match and c-addr3 is c-addr1 and u3 is u1.

SIGN FORTH

(n --)

If n is negative, add a minus sign to the beginning of the

pictured numeric output string. An ambiguous condition exists if

SIGN executes outside of a <# #> delimited number conversion.

SKIP EXTRA

(c-addr1 u1 char -- c-addr2 u2)

Skip leading occurrences of char in the string specified by

c-addr1 u1 and return the remaining string specified by c-addr2

u2. If the string specified by c-addr1 u1 contains only

occurrences of char, u2 is zero.

40 CHAPTER 7. NUMBERS AND STRINGS

If char is the character for space, control characters are

considered equal to char.

SLITERAL FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (c-addr1 u --)

Append the run-time semantics given below to the current

definition.

Run-time: (-- c-addr2 u)

Return c-addr2 u describing a string consisting of the characters

specified by c-addr1 u during compilation. A Standard Program

shall not alter the returned string.

SPLIT EXTRA

(x -- char1 char2)

char1 is the low byte of x and char2 is the high byte of x.

SRCSEG "source-segment" EXTRA

(-- a-addr)

a-addr is the address of a cell containing the segment address of

the first string in COMPARE and SEARCH . The user is responsible

to restore the default value (CSEG) after using an alternative

value in COMPARE and SEARCH .

STYPE "s-type" EXTRA

(c-addr u --)

If u is greater than zero, display the character string specified

by c-addr and u. The characters are displayed as with SEMIT .

STYPEX "s-type-x" EXTRA

(x-addr u --)

If u is greater than zero, display the character string at the

extended address x-addr for a total of u characters. The

characters are displayed as with SEMIT .

TYPE FORTH

(c-addr u --)

If u is greater than zero, display the character string specified

by c-addr and u.

7.4. NUMBERS AND STRINGS WORD GLOSSARY 41

See also: EMIT

TYPEX "type-x" EXTRA

(x-addr u --)

If u is greater than zero, display the character string at the

extended address x-addr for a total of u characters.

TYPEZ "type-z" EXTRA

(x-addr --)

While the character at the extended address x-addr is not zero,

display the character and increment x-addr.

U. "u-dot" FORTH

(u --)

Display u in free field format.

U.R "u-dot-r" FORTH

(u n --)

Display u right aligned in a field n characters wide. If the

number of characters required to display u is greater than n, all

digits are displayed with no leading spaces in a field as wide as

necessary.

UD. "u-d-dot" EXTRA

(ud --)

Display ud in free field format.

UD.R "u-d-dot-r" EXTRA

(ud n --)

Display ud right aligned in a field n characters wide. If the

number of characters required to display ud is greater than n,

all digits are displayed with no leading spaces in a field as

wide as necessary.

UPPER EXTRA

(c-addr u --)

Convert the lowercase characters in the string specified by

c-addr u to uppercase.

[CHAR] "bracket-char" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

42 CHAPTER 7. NUMBERS AND STRINGS

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition.

Run-time: (-- char)

Place char char, the value of the first character of name, on the

stack.

See also: CHAR

[CTRL] "bracket-control" EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -531 occurs when the character is not in

the range {’@’..’_’}.

Run-time: (-- char)

Place char, the value of the first character of name, after

conversion to a control character, on the stack.

See also: CTRL [CHAR]

Chapter 8

Word lists

Word lists in Forth are a method to group words with specific

semantics. Also the search time is reduced when internal words

are places in word list that are currently not accessible.

8.1 WORDLIST and VOCABULARY

The Standard way to create a word list is by the word WORDLIST

that creates an initially empty list and returns its word list

identification (wid), in CHForth its address. This is the base

for a more convenient word, VOCABULARY that gives a name to this

list. When executed, the vocabulary replaces the wid in the

search order. The wid can be obtained by placing GET for a word

defined by WORDLIST .

8.2 Search order

The search order is another list. When FIND and ’ search for

name, they take every wid in the search order, starting from the

top, and look in the word list for name. They are ready when name

matches a name in a word list. It therefore possible to have more

words of the same name in different word lists with a different

semantics provided the right word is in a word list that is

searched earlier. The search order can be set by SET-ORDER and is

returned by GET-ORDER . The search order can be extended by ALSO

and diminished by PREVIOUS . The list where the compiled words

are places is set by SET-CURRENT or DEFINITIONS . The first word

43

44 CHAPTER 8. WORD LISTS

list in the order can be set and reset by SET-CONTEXT and

GET-CONTEXT respectively.

8.3 CHForth word lists

All Standard words except some that are in ONLY are placed in

FORTH . Most extensions are found in EXTRA . In INTERNAL are the

words that are not documented and are internally to the system.

In EDITOR are the words for ACCEPT and in ASSEMBLER DECOMPILER

and DISASSEMBLER are still more words that are used in their

specific environment. -1 SET-ORDER will place the ONLY word list

in the first and second place of the search order and the count

to two. -2 SET-ORDER (not Standard) will extend this with EXTRA

and FORTH on the top. The wid returned by GET-CURRENT is not

changed.

8.4 Example

CHForth offers a method to find words in a word list that have

special properties. For example when you want to know what words

are immediate, use this:

INTERNAL DEFINITIONS \ (IMMED) is internal

ALSO FORTH \ New search order

: (IMMED) (wid --)

DUP BODY> >HEAD ?DUP \ Has word list a name?

IF CR 8 SPACES .HEAD \ Display it on a new line

THEN

CR VOC@ TEMPORARY ! \ Store wid, required for

BEGIN ANOTHER \ ANOTHER gives a flag

WHILE DUP HEAD>FLAGS H@ \ and a dea, check flags

=IMMEDIATE AND \ Is word immediate

IF ?HEAD \ Display in 16 char column

ELSE DROP \ Not immediate

THEN

REPEAT

;

8.5. WORD LIST GLOSSARY 45

DEFINITIONS \ .IMMEDIATE is FORTH

: .IMMEDIATE (--)

EVERY? \ Typed EVERY before?

IF VOC-LINK \ All word lists

BEGIN REGULAR? \ Only VOCABULARIES

IF DUP (IMMED) \ Do internal word

THEN

@ ?DUP 0= \ Every wid done

UNTIL

ELSE GET-CONTEXT (IMMED) \ Only the first in order

THEN

;

PREVIOUS FORTH \ Old search order

8.5 Word list glossary

.VOCNAME "dot-vocname" EXTRA

(wid --)

Display the name of the word list identification wid.

See also: .HEAD

.WORDLISTS EXTRA

(--)

Display the word lists that have a name, those who have been

created with VOCABULARY .

ALSO ONLY

(--)

Transform the search order consisting of wid1 .. widn-1 widn

(where widn is searched first) into wid1 .. widn-1 widn widn.

An ambiguous condition exists if there are too many word lists

in the search order.

ANOTHER EXTRA

(-- dea true | false)

Return the next dea in the word list. Used in words as WORDS .

This word depends on the stored wid at TEMPORARY . When ANSI

does not contain zero, only words marked with ANS are

46 CHAPTER 8. WORD LISTS

returned.

ASSEMBLER ASSEMBLER

(--)

Replace the first word list in the search order with the

ASSEMBLER word list.

DECOMPILER DECOMPILER

(--)

Replace the first word list in the search order with the

DECOMPILER word list.

DEFINITIONS ONLY

(--)

Make the compilation word list the same as the first word list

in the search order. Specifies that the names of subsequent

definitions will be placed in the compilation word list.

Subsequent changes in the search order will not effect the

compilation word list.

DISASSEMBLER DISASSEM

(--)

Replace the first word list in the search order with the

DISASSEMBLER word list.

EDITOR ONLY

(--)

Make the EDITOR word list the first word list to be searched.

This word list contains CHForth specific extensions to the ANSI

standard for the line input editor and the block editor. Note

that these words are non-standard.

EXTRA ONLY

(--)

Make the EXTRA word list the first word list to be searched.

This word list contains all CHForth specific extensions to the

ANSI standard. Note that these words are non-standard.

FIND FORTH

(c-addr -- c-addr 0 | xt 1 | xt -1)

Find the Forth word named in the counted string at c-addr. If the

word is not found after searching all word list in the search

order, return c-addr and zero. If the definition is found, return

8.5. WORD LIST GLOSSARY 47

xt. If the definition is immediate, also return 1, otherwise

return -1.

See also: ’ [’] POSTPONE

FORTH FORTH

(--)

Make the FORTH word list the first word list to be searched. Note

that this word list contains at startup only ANSI-standard words.

FORTH-WORDLIST ONLY

(-- wid)

Return wid, the identifier of the word list that includes all

standard words provided by the implementation. This word list is

initially the compilation word list and is part of the initial

search order.

GET EXTRA

("name" --)

Interpretation: ("name" -- wid)

Skip leading space delimiters. Parse name delimited by a space.

wid is the word list identification associated with name.

Exception -32 occurs if name was not defined by VOCABULARY .

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -32 occurs if name was not defined by

VOCABULARY .

Run-time: (-- wid)

wid is the word list identification associated with name.

GET-CONTEXT ONLY

(-- wid)

Return wid, the identifier of the first word list in the

search order.

GET-CURRENT ONLY

(-- wid)

Return wid, the identifier of the compilation word list.

GET-ORDER ONLY

(-- wid1 .. widn n)

48 CHAPTER 8. WORD LISTS

Returns the number of word lists n in the search order and the

word list identifiers wid1 .. widn identifying these word

lists. widn identifies the word list searched first, and wid1

the word list that is searched last. The search order is

unaffected.

INTERNAL ONLY

(--)

Make the INTERNAL word list the first word list to be searched.

This word list contains CHForth specific extensions to the ANSI

standard that are not documented and can be changed by the author

by name or action without prior consent. Note that these words

are non-standard.

ORDER FORTH

(--)

Display the word lists in the search order in their search order

sequence, from the first searched to the last searched. Also

display the word list into which new definitions will be placed.

ORDER is implemented using pictured numeric output words. Its use

will corrupt the transient region identified by #> .

REGULAR? "regular-query" EXTRA

(wid -- wid flag)

If the word list identification wid has a header (when it was

created with VOCABULARY), return a true flag else a false flag.

SEARCH-CONTEXT EXTRA

(c-addr u -- 0 | xt 1 | xt -1)

Find the Forth word specified by the character string c-addr u in

all word lists in the search order, including LOCAL-WORDLIST when

STATE does not contain zero and there are local values. Return

the execution token and 1 if the word is IMMEDIATE and -1

otherwise. If name can not be found, return a false flag. The

name is internally converted to uppercase if the variable

CASESENSITIVE is false.

SEARCH-WORDLIST FORTH

(c-addr u wid -- 0 | xt 1 | xt -1)

Find the Forth word identified by the string c-addr u in the word

list identified by wid. If the word is not found, return zero. If

the word is found, return its execution token xt and 1 if the

8.5. WORD LIST GLOSSARY 49

word is immediate, -1 otherwise.

SET-CONTEXT ONLY

(wid --)

Set the first searched word list in the search order to the

word list identified by wid.

SET-CURRENT ONLY

(wid --)

Set the compilation word list to the word list identified by

wid.

SET-ORDER ONLY

(wid1 .. widn n --)

Set the search order to the word lists wid1 .. widn.

Subsequently, word list widn will be searched first, followed

by word list widn-1 and so on, with word list wid1 searched

last. If n is zero, empty the search order. If n is minus one,

set the search order to the minimum search order wid(ONLY)

wid(ONLY). When n is minus two, set the search order to

wid(ONLY) wid(EXTRA) wid(FORTH) wid(FORTH). The maximum of n

in this implementation is sixteen.

VOC! FORTH

(dea wid --)

Store the dictionary entry address dea in the word list described

by the word list identifier wid.

VOC-LINK EXTRA

(-- x)

A value that links all word lists and vocabularies.

VOC@ EXTRA

(wid -- dea)

Fetch the dictionary entry address dea of the last definition

from the word list described by the word list identifier wid.

VOCABULARY EXTRA

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below. Create a new word list and store the word list identifier

with the definition for name. name is referred to as a

50 CHAPTER 8. WORD LISTS

"vocabulary".

name Execution: (--)

Make the above created word list the current word list.

WORDLIST FORTH

(-- wid)

**** Wat wordt er bedoeld met dynamisch ?

Creates a new empty word list, returning its word list identifier

wid. The new word list is dynamically allocated in data space.

Note that other ANS systems may create the new word list in

another place.

WORDS ONLY

(--)

List the word names in the first word list of the search order in

columns of 16 characters wide and a count at the end.

WORDS is implemented using pictured numeric output words. Its use

will corrupt the transient region identified by #> .

See also: EVERY

WORDSPEED EXTRA

(-- addr)

a-addr is the address of a cell containing the delay after WORDS

SEE DIS etc. in milliseconds.

Chapter 9

Vectors

Sometimes some words may require different actions in different

situations. CHForth offers a type of word, called a vector. These

vectors can be changed and new actions may be appended to the

normal action of it.

9.1 Vectors used by the system

KEY and EMIT are for character input and output.

COLD interprets the command line and jumps then to QUIT .

DIAGNOSE will display some information about the compiled memory

sizes and the time it took, only when something is given on the

command line.

START does some work before COLD is started, can be CHAINed to

some other initializing word.

ATEXIT does some work before the program is stopped, like closing

an open log file and resetting used interrupt vectors.

’INTERPRET ’COMPILE and NUMBER? have the actions for interpreting

and compiling words and numbers in them for INTERPRET .

PROMPT may be changed.

BEEP will not probably change.

51

52 CHAPTER 9. VECTORS

PAUSE is in EKEY . Put a word there and Forth will do this every

time it waits for a key press.

9.2 Examples

: (BEEP) 7 EMIT ; \ Sound the speaker long and hard

VECTOR BEEP \ No action attached yet

’ (BEEP) IS BEEP \ Store the action

BEEP \ A sound will be heard

: (TONE) 100 440 TONE ; \ More pleasant

’ (TONE) IS BEEP \ Another sound

BEEP \ A new sound

: (TONE2)

CHAIN BEEP \ Inherit the current action: (BEEP)

100 MS \ Wait a while

(BEEP) ; \ Old sound

’ (TONE2) IS BEEP \ New action appended

BEEP \ Two tones

’ BEEP IS PAUSE \ A very irritating sound

’ NOOP IS PAUSE \ Do this to stop the above

9.3 Vector words glossary

CHAIN EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the current execution semantics of name to the current

definition. Exception -32 occurs if name was not defined by

VECTOR .

IS EXTRA

Interpretation: (xt "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Store execution token xt in name. Exception -32 occurs if name

9.3. VECTOR WORDS GLOSSARY 53

was not defined by VECTOR .

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -32 occurs if name was not defined by

VECTOR .

Run-time: (xt --)

Store execution token xt in name.

POP EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -32 occurs if name was not defined by VALUE

, VARIABLE or VECTOR .

Run-time: (--) (R: x --)

Pop x associated with name from the return stack.

PUSH EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -32 occurs if name was not defined by VALUE

, VARIABLE or VECTOR .

Run-time: (--) (R: -- x)

Push x associated with name on the return stack.

VECTOR EXTRA

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

54 CHAPTER 9. VECTORS

below. name is referred to as a "vector".

name Execution: (i*x -- j*x)

Execute the execution token stored in the entry. The execution

token can be manipulated by IS . Exception -525 occurs if no

execution token is assigned to name.

See also CHAIN POP PUSH

Chapter 10

Interpreter structure

The interpreter is the interface between the user and the Forth

program. QUIT asks the user to input a line of text and the

interpreter parses words delimited by spaces and executes them,

or it will compile them in the dictionary when STATE is not zero.

10.1 QUIT

When after a cold start and perhaps interpreting the contents of

the command line, QUIT resets the stacks, displays the status

line and displays the prompt on a new line. This prompt will

display the name of the first word list in the search order.

Because I like to have a explicit prompt, this differs from the

Standard where only a flashing cursor is allowed, this can be

done by: ’ NOOP IS PROMPT Then QUIT waits for input. When the

input is followed with a press on the enter key, the word

INTERPRET is executed by CATCH . When all went right, the

message ’ok’ will be displayed when STATE is zero and nothing

when it is not. Then the prompt will be displayed and the cycle

is complete. When CATCH received a number different from zero,

the appropriate error message is displayed and QUIT is reentered.

10.2 INTERPRET

INTERPRET parses a space delimited word and when STATE is zero,

the parsed word is passed to ’INTERPRET else to ’COMPILE . When

these have completed, the stacks are checked for over- and

55

56 CHAPTER 10. INTERPRETER STRUCTURE

underflow and the process is repeated. When an exception occurs

in ’INTERPRET or ’COMPILE the control is passed to the CATCH in

QUIT .

10.3 ’INTERPRET

’INTERPRET is a VECTOR and contains $INTERPRET that searches the

words in the search order for a match with the name string it

gets from INTERPRET . It tries to find the name in the word lists

present in the search order and when the found word is not

compile-only its execution token will be executed otherwise -14

is THROWn to the CATCH in QUIT . When name can not be found, it

tries to convert the string to a number and puts the single or

double number on the stack otherwise -13 is THROWn.

When the variable ANSI is not zero, words that do not have the

ANS bit set in their headers will give a message just before

their execution and numbers that have non-standard prefixes will

also display this message.

10.4 ’COMPILE

’COMPILE is a VECTOR and contains $COMPILE that searches the

words in the search order for a match with the name string it

gets from INTERPRET . It tries to find the name in the word lists

present in the search order and when the found word is immediate

its execution token will be executed otherwise its execution

token is compiled in the list segment. When name can not be

found, it tries to convert the string to a number and compiles

the single or double number in the list segment. When the

conversion to a number fails, message -518 is displayed and the

name is compiled as a S" string and the word FORWARD is compiled

after it.

When the variable ANSI is not zero, words that do not have the

ANS bit set in their headers will give a message just before

their execution or compilation and numbers that have non-standard

prefixes will also display this message.

The strings compiled when message -518 is given are executed by

10.5. INTERPRETER WORDS GLOSSARY 57

FORWARD , an alias for EVALUATE , when the word in which the

string is compiled, so this can be used as a primitive form as

forward referencing. This is not recommended, is main purpose is

to continue compiling when a word during compilation can not be

found, the programmer can look up the unfound words in the

ERROR.LOG file and repair the source code.

10.5 Interpreter words glossary

$COMPILE "string-compile" EXTRA

(c-addr u --)

Try to find the name c-addr u in the search order and when

found execute it or compile it according to the flag returned

by FIND . Else try to convert the string to a number and

compile it. Else issue a warning that the word can not be

found and compile a forward reference to it.

$INTERPRET "string-interpret" EXTRA

(c-addr u --)

Try to find the name c-addr u in the search order and execute

it when found else convert the string to a number and place it

on the stack. Else abort with an exception message.

’COMPILE "tick-compile" EXTRA

(c-addr u --)

A word that normally executes $COMPILE .

’INTERPRET "tick-interpret" EXTRA

(c-addr u --)

A word that normally executes $INTERPRET .

2LITERAL "two-literal" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (x1 x2 --)

Append the run-time semantics defined below to the current

definition.

Run-time: (-- x1 x2)

Place cell pair x1 x2 on the stack.

58 CHAPTER 10. INTERPRETER STRUCTURE

ANS EXTRA

(--)

Mark the most recently created definition as a standard word.

When the variable ANSI does not contain zero, the default

interpreter issues a warning if words that are not marked are

interpreted or compiled.

ANSI EXTRA

(-- a-addr)

a-addr is the address of a cell containing true when messages

will be given if non-standard words are encountered and false

otherwise.

COMPILE, "compile-comma" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Execution: (xt --)

Append the execution semantics of the definition represented by

xt to the execution semantics of the current word definition.

COMPILE-ONLY EXTRA

(--)

Mark the most recently created definition as a compile-only word.

The default interpreter issues exception -14 when an attempt is

made to execute the definition in interpret state.

EVALUATE FORTH

(i*x c-addr u -- j*x)

Save the current input source specification. Store minus one

in SOURCE-ID . Make the string described by c-addr and u both

the input source and input buffer, set >IN to zero, and

interpret. When the parse area is empty, restore the prior

input source specification. Other stack effects are due to the

words EVALUATEd.

FORWARD ERRORLOG

(c-addr u --)

Compiled when during loading an undefined word is encountered

in a colon definition. As an alias of EVALUATE , it will

evaluate a string with the name of the unfound word. This can

be used to create forward references.

10.5. INTERPRETER WORDS GLOSSARY 59

IMMEDIATE FORTH

(--)

Mark the most recently created definition as an immediate word.

INTERPRET EXTRA

(--)

Interpret the current input stream.

LITERAL FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (x --)

Compile x as a literal. Append the run-time syntax given below

to the current definition.

Run-time: (-- x)

Place x on the stack.

LITERALS EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (x1 .. xn n --)

Append the execution semantics defined below to the current

definition.

Executing:

(-- x1 .. xn)

Place x1 to xn on the stack.

NOOP "no-op" EXTRA

(--)

Does nothing.

QUERY FORTH

(--)

Make the user input device the input source. Receive input into

the terminal input buffer, replacing any previous contents. Make

the result, whose address is returned by TIB , the input buffer.

60 CHAPTER 10. INTERPRETER STRUCTURE

Set >IN to zero.

Note: this word is obsolescent and is included as a concession to

existing implementations.

QUIT FORTH

(--)

Empty the return stack, store zero in SOURCE-ID , make the

user input device the input source, and enter interpretation

state. Do not display a message. Repeat the following:

- Accept a line forth the input source into the input buffer,

set >IN to zero and interpret.

- Display the implementation defined input prompt if in

interpretation state, all processing has been completed,

and no ambiguous condition exists.

STATE

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(-- a-addr)

a-addr is the address of a cell containing the compilation state

flag. STATE is true when in compilation state, false otherwise.

The true value in STATE is non-zero, but is otherwise

implementation-defined. Only the following standard words alter

the value in STATE : : (colon), ; (semicolon), ABORT , QUIT ,

:NONAME , [(left-bracket),] (right-bracket) and ;CODE .

Note: A Standard Program may not directly alter the contents of

STATE .

See also: : :NONAME ; ABORT QUIT []

TERMINAL EXTRA

(--)

Reset the input and output to the terminal.

Chapter 11

Error recovery

The ANSI Standard offers a consistent way for error recovery.

This is done by a non-local return mechanism implemented by the

words CATCH and THROW just as in LISP and the words SETJMP en

LONGJMP in C.

CHForth offers also a way to define your own exception messages

and redefine existing messages.

Newer books will use the word exception instead of error because

it is more general and sometimes no error did occur at all.

11.1 CATCH and THROW

No word in CHForth handles its own exceptions, but the words in

which an exception may occur all return a value on the stack,

that differs from zero when an exception occured and is zero when

nothing went wrong. Then by placing the word THROW next to the

previous word, a zero on the stack will be dropped and the

program will continue, but a non-zero number will look for a

so-called exception frame on the return stack. This frame is

pushed there by the word CATCH . The depth of the data stack

before CATCH was called is restored as is the depth of the return

stack. The exception number will be on the stack and execution

will continue after CATCH instead after THROW . The user than can

take measures when a certain exception number will appear on the

stack. When no exception occured in a word that was executed by

CATCH, a zero will be left on top of the stack.

61

62 CHAPTER 11. ERROR RECOVERY

In QUIT is also a CATCH . This CATCH word catches all exceptions

it receives of INTERPRET , this word reads a line from the

terminal and tries to interpret this. Any errors are displayed on

the screen with the error number, the type (is this a standard

message, a message of DOS or a message of CHForth that is not

standard) and the message that is assigned to this number with

the word MESS" and then follows the line where the exception

occurred. When this exception occured during loading of a text

file or a blocks file, this information is also written to a text

file called error.log, so you can see where the errors occurred

at a more convenient time.

11.2 Examples

: read-key

KEY [CHAR] Q = THROW \ Error when ’Q’ pressed

CR ." OK " \ No error, CATCH leaves 0

;

: main

CR ." Press ’Q’ to stop"

BEGIN

[’] read-key CATCH \ Try to catch an error

UNTIL \ ’Q’ stops, others continue

;

-13 MESS" unbekanntes Wort" \ Redefine a message

’ UNSINN \ May give the new message

11.3 Error messages

These messages are given when you type the number followed by

.MESS . The address of the counted string can now be found in

ERR$ and the number in ERR# . Beware that these become invalid

when another exception occurs. In QUIT these are the messages

that are given when any exception occurs. You can generate new

messages for these numbers with MESS" . In this way you could for

11.3. ERROR MESSAGES 63

example make Dutch messages.

11.3.1 Standard ANS Forth messages

-3 stack overflow

-4 stack underflow

-5 return stack overflow

-6 return stack underflow

-8 dictionary overflow

-9 invalid memory address

-10 division by zero

-11 result out of range

-13 undefined word

-14 interpreting a compile-only word

-15 invalid FORGET

-16 attempt to use zero-length string as a name

-22 control structure mismatch

-25 return stack imbalance

-28 user interrupt

-29 compiler nesting

-32 invalid name argument

-33 block read exception

-34 block write exception

-35 invalid block number

-36 invalid file position

-37 file I/O exception

-38 non-existent file

-49 search-order overflow

-50 search-order underflow

-57 exception in sending or receiving a character

-58 missing terminating [ELSE] or [THEN]

11.3.2 DOS messages

First number is the exception number, second the standard DOS

error number.

-511 1 function number invalid

-510 2 file not found

-509 3 path not found

-508 4 too many open files (no handles available)

64 CHAPTER 11. ERROR RECOVERY

-507 5 access denied

-506 6 invalid handle

-505 7 memory control blocks destroyed

-504 8 insufficient memory

-503 9 memory block address invalid

-502 10 environment invalid

-501 11 format invalid

-500 12 access code invalid

-499 13 data invalid

-497 15 invalid drive

-496 16 attempted to remove current directory

-495 17 not same device

-494 18 no more files

-493 19 disk write-protected

-492 20 unknown unit

-491 21 drive not ready

-490 22 unknown command

-489 23 data error (CRC)

-488 24 bad request structure length

-487 25 seek error

-486 26 unknown media type (non-DOS disk)

-485 27 sector not found

-484 28 printer out of paper

-483 29 write fault

-482 30 read fault

-481 31 general failure

-480 32 sharing violation

-479 33 locking violation

-478 34 disk change invalid

-477 35 FCB unavailable

-476 36 sharing buffer overflow

-451 61 print queue full

-450 62 queue not full

-449 63 not enough space to print file

-432 80 file exists

-430 82 cannot make directory

-429 83 fail on INT 24h

-428 84 too many redirections

-427 85 duplicate redirections

-426 86 invalid password

-425 87 invalid parameter

11.4. ERROR WORDS GLOSSARY 65

11.3.3 Messages of this Forth system

-513 is not unique

-514 execution halted

-515 wrong use of DPSWAP

-516 no defining word

-517 not defining methods

-518 is undefined, compiling forward reference

-519 list-segment full

-520 header-segment full

-521 program contains errors

-522 local stack overflow

-523 local stack underflow

-524 illegal opcode for this processor

-525 unresolved forward definition

-526 no special routine for this character

-527 is not portable

-528 or part of it is not yet implemented

-529 is in a non-portable number format

-530 already defining methods

-531 character can not be converted

-532 missing terminating ENDDOC

-533 missing terminating *)

Message 0 will display the copyright message.

11.4 Error words glossary

!CSP "store-c-s-p" EXTRA

(--)

Save the current depth of the stack for checking with ?CSP .

.MESS EXTRA

(n --)

Display the message that is assigned to exception number n as

with MESS" . If the message is not found, display the exception

number and the name of the word where the exception occurred. If n

is -1 or -2 nothing is displayed. Store the number in ERR# .

66 CHAPTER 11. ERROR RECOVERY

.WHERE EXTRA

(--)

If the last exception occurred during loading of a file, display

the name of the file and the line number where the exception

occurred.

?CSP "question-c-s-p" EXTRA

(--)

Check the current depth of the stack with the one stored by !CSP

Exception -29 will occur when they do not match.

?ERROR "question-error" EXTRA

(x n --)

If x is not zero, exception n occurs. Else drop both numbers

from the stack and continue.

?PAIRS "question-pairs" EXTRA

(x1 x2 --)

Check x1 and x2. Exception -22 occurs when they are not equal.

?STACK "question-stack" EXTRA

(--)

Check the three stack pointers and when they are too low or

too high, exception -3, -4, -5, -6, -522 or -523 will occur.

ABORT FORTH

(i*x --) (R: j*x --)

Perform the function of -1 THROW . When no other exception frame

is present other than the one pushed by QUIT , empty the stacks

and perform QUIT . When no file is currently open, display no

message. Otherwise, contrary to the Standard, display some

information about the file and the line where ABORT was called.

Store a zero-length string in ERR$.

ABORT" "abort-quote" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("ccc<quote>" --)

Parse characters ccc delimited by " (double-quote). Append the

run-time semantics specified below to the current definition.

11.4. ERROR WORDS GLOSSARY 67

Run-time: (i*x x1 -- | i*x) (R: j*x -- | j*x)

Remove x1 from the stack. If any bit of x1 is not zero, perform

the function of -2 THROW . The default interpreter will display

ccc. The address of the counted string ccc can be found in ERR$,

but is only valid for a limited time.

CATCH FORTH

(i*x xt -- j*x 0 | i*x n)

Push an exception frame on the exception stack and then execute

the execution token xt (as with EXECUTE) in such a way that

control can be transferred to a point just after CATCH if THROW

is executed during the execution of xt.

If the execution of xt completes normally (i.e. the exception

frame pushed by this CATCH is not popped by an execution of THROW

) pop the execution frame and return zero on top of the data

stack, above whatever stack items would have been returned by xt

EXECUTE . Otherwise, the remainder of the execution semantics are

given by THROW .

ERR# "error-number" EXTRA

(-- x)

Return the number of the last exception.

ERR$ "error-string" EXTRA

(-- c-addr)

Return the address of the count of the last exception string.

ERRLINE "error-line" EXTRA

(-- a-addr)

a-addr is the address of a cell containing the line number of the

file where an exception occurred.

ERRNAME "error-name" EXTRA

(-- a-addr)

a-addr is the address of a cell containing the address of the

counted string representing the name of the file where an

exception occurred.

ERROR-TYPE EXTRA

(--)

Show the type of the last exception number stored in ERR# by

.MESS . Display nothing if ERR# equals -1 or -2.

68 CHAPTER 11. ERROR RECOVERY

MESS" "mess-quote" EXTRA

(n "ccc<quote>" --)

Parse ccc delimited by a " (double-quote) and compile the string

in the dictionary. The string is displayed when n is passed to

.MESS or THROW .

NOT-IMPLEMENTED EXTRA

(--)

Abort with exception message: not implemented, used in some

definitions.

SHOW-ERROR EXTRA

(n --)

Display the exception message and information where the exception

with number n occurred and the type of the exception and display

the source line with the exception word marked out.

THROW FORTH

(k*x n -- k*x | i*x n)

If any bits of n are non-zero, pop the topmost exception frame

from the exception stack, along with everything on the return

stack above that frame. Then restore the input source

specification in use before the corresponding CATCH and adjust

the depths of all three stacks so that they are the same as the

depth saved in the exception frame (i is the same number as i in

the input arguments to the corresponding CATCH), put n on top of

the data stack, and transfer control to a point just after the

CATCH that pushed that exception frame.

WARNING EXTRA

(-- a-addr)

a-addr is the address of a cell containing true when the program

will warn the user when redefinitions are encountered and false

otherwise.

Chapter 12

The assembler

The assembler, if not already in memory, can be loaded by

NEEDS -assembler

This is a full 8086 assembler that works in prefix mode about the

same as the one in F-PC, that is opcodes precede the destiny and

the source, different from traditional postfix Forth assembler

like the one in F83.

When using CHF386 the assembler is extended with some

instructions known only to 386 and 486 CPU’s like 32 bit data

manipulation, although no 32 bit addressing, as CHForth runs in

real or virtual 8086 mode.

12.1 Register use

The BX register is always contains the top element of the stack,

the other elements are addressed via SP. The return stack is

addressed via BP. Both stacks reside in the stack segment, the

value of it is in the register SS. The local stack is only

accessible by system words.

When entering a code definition, the AX register contains its

starting address, that is useful if you make defining words with

;CODE. The code segment, CS is equal to DS.

The list segment with the colon definitions is kept in ES and the

offset of the Forth instruction pointer in SI.

The direction bit must be clear when returning to Forth, when you

69

70 CHAPTER 12. THE ASSEMBLER

use STD always do CLD at the end of your code.

The use of CX, DX and DI is not restricted.

When the destiny is a register or a register indirect mode,

always append a comma to it.

12.2 Examples

CODE D+ (d1 d2 -- d3)

POP CX \ pop low word of d2

POP DX \ pop high word of d1

POP AX \ pop low word of d1

ADD AX, CX \ add low part

ADC BX, DX \ add high part

PUSH AX \ push low part

NEXT \ high part in BX

END-CODE \ check errors

Remember that the 80x86 series are low end machines and ANS Forth

is on word-level a high end machine: the word order is the other

way round. As it happens, 2@ of an Intel pointer places the

offset on top, as is necessary in -x words, so many problems do

not arise in high level words. When you push or pop 32 bit data,

remember to swap both halves.

The assembler for the 386 version can generate code for 32 bit

data, but not for 32 bit addresses as it runs in real or virtual

86 mode. So the previous example can be rewritten as:

CODE D+ (d1 d2 -- d3)

ROL EBX, # #16 \ shift high word left

POP BX \ pop low word

POP EAX \ pop 32 bit operand

ROL EAX, # #16 \ swap high and low words

ADD EBX, EAX \ do the operation

PUSH BX \ push low word

ROL EBX, # #16 \ high word to BX

NEXT \ return to Forth

END-CODE \ check errors

12.3. STRUCTURES 71

Some addressing modes:

Intel: CHForth:

pop ax pop ax

pop [BX] pop 0 [bx] \ always an offset

pop [bx+23] pop 23 [bx]

pop es:[bp+si-32] pop es: -32 [bp+si]

push [1234] push 1234 \ direct address

mov ax,cs:[bx] mov ax, cs: 0 [bx]

mov cs:[bx],ax mov cs: 0 [bx], ax

mov ax,[1234] mov ax, 1234 \ direct address

mov ax,1234 mov ax, # 1234 \ immmediate

mov [1234],ax mov 1234 ax \ direct address

mov al,12 mov al, # 12

mov al,[1234] mov al, 1234 [] \ direct address

mov [1234],al mov 1234 [], al \ byte adressing

mov byte ptr 12,’A’ mov 12 [], # ’A’ byte

\ [], # and byte all required

mov word ptr 12,21 mov 12 # 21

add bx,[bx] add bx, 0 [bx]

mov al,12 mov al, # 12 \ immediate mode

sar bx sar bx, # 1 \ # 1 is necessary

out dx,al out dx, al

out 12,ax out 12 #, ax \ only use for #,

in ax,dx in ax, dx

in al,12 in al, # 12

Only when #CPU contains #386 :

Intel: CHForth:

push 1234 push # 1234 \ immediate

push ebx push ebx \ 32 bit data

pop dword [ebx] pop sz: 0 [bx] \ 16b adr, 32b data

pop [ebx] not implemented \ 32b address

rcl ebx,14 rcl ebx, # 14 \ only 386

12.3 Structures

Like the compiler structures in high level Forth, the assembler

72 CHAPTER 12. THE ASSEMBLER

also knows control flow structures. For example:

CODE ?DUP (x -- x x | x)

TEST BX, BX \ When top of stack is not zero

0<> IF

PUSH BX \ Push it on the stack

THEN

NEXT \ Top of stack still in BX

END-CODE

As you see, the jump words like IF, WHILE, UNTIL are postfix, the

condition like 0= 0<> U< come before them. Without IF and THEN

the example can be rewritten using labels:

CODE ?DUP (x -- x x | x)

TEST BX, BX \ When top of stack is zero

JZ 0 $ \ jump to label

PUSH BX \ Push it on the stack

0 $: NEXT \ Top of stack still in BX

END-CODE

The labels consist of $: preceded with a number in the range

0..31 and the jumps have the corresponding number followed by $.

When using the 386 version, the conditional jumps like JZ will

compile a 16 bit LJZ when the offset is too large for a signed

byte. You can not use the labels with ’n $’ for this, use real

addresses for example:

JAE $1223

JL $4504

In the 86 version you have be more inventive, like this:

U>= IF

JMP $1223

THEN

JGE 4 $

JMP $4504

4 $:

When you need to use words like , in a code definition you have

to put a A; before using it because the assembler will execute

opcodes after all of its parameters are defined and so the , will

interfere. A better method to compile data is using words DW and

DB that handle this problem.

12.4. ASSEMBLER WORDS GLOSSARY 73

CODE SWAP

DB $58 \ POP AX

DB ’S’ \ PUSH BX

DW $D88B \ XCHG BX, AX

NEXT

A; ", finished!" \ compile an inline counted string

END-CODE

Use JB for JNAE (or JC) and JGE for JL etcetera, as I have deleted

the JNx words.

12.4 Assembler words glossary

ASSEMBLER

(x -- x)

Immediate mode for source.

#, ASSEMBLER

(x -- x)

Immediate mode for destiny.

$ ASSEMBLER

(x --)

Jump to an assembler label.

$: ASSEMBLER

(x --)

Define an assembler label.

$ELSE ASSEMBLER

(--)

Jump to after $THEN .

$IF386 ASSEMBLER

(--)

If #CPU does not contain 386 jump to after $ELSE or $THEN .

Else continue.

$THEN ASSEMBLER

(--)

Terminate a $IF386 directive.

74 CHAPTER 12. THE ASSEMBLER

;CODE ASSEMBLER

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: colon-sys --)

Append the execution semantics defined below to the current

definition. End the current definition, consuming colon-sys,

enter interpret state, add the ASSEMBLER word list to the search

order and start interpreting the rest of the parse area and

assemble machine code. If needed, refill the input buffer until

END-CODE is processed.

Execution: (--) (R: nest-sys --)

Replace the execution semantics of the most recently defined word

with the name execution semantics given below. Return control to

the calling definition specified by nest-sys. An ambiguous

condition exists if the most recently defined word was not

defined with CREATE or a user-defined word that calls CREATE .

name Execution: (i*x -- j*x)

Perform the machine code sequence that was generated following

;CODE .

See also: DOERCODE DOES> END-CODE

A; ASSEMBLER

(--)

Terminate a line of assembly code.

ASSEMBLER ASSEMBLER

(--)

Replace the first word list in the search order with the

ASSEMBLER word list.

CODE ASSEMBLER

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name, called a "code definition", with

the execution semantics defined below. Add the ASSEMBLER word

list to the search order and start interpreting the rest of the

parse area and assemble machine code. If needed, refill the input

buffer until END-CODE is processed.

12.4. ASSEMBLER WORDS GLOSSARY 75

name Execution: (i*x -- j*x)

Execute the machine code sequence that was generated following

CODE .

See also: END-CODE

DB ASSEMBLER

("ccc" --)

Assemble "ccc" as an 8 bit value.

DOERCODE ASSEMBLER

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below. Enter interpret state, add the ASSEMBLER word list to the

search order and start interpreting the rest of the parse area

and assemble machine code. If needed, refill the input buffer

until END-CODE is processed.

Execution: (--) (R: nest-sys --)

Replace the execution semantics of the most recently defined word

with the name execution semantics given below. Return control to

the calling definition specified by nest-sys. An ambiguous

condition exists if the most recently defined word was not

defined with CREATE or a user-defined word that calls CREATE .

name Execution: (i*x -- j*x)

Perform the machine code sequence that was generated following

DOERCODE .

See also: DOES> END-CODE

DW ASSEMBLER

("ccc" --)

Assemble "ccc" as a 16 bit value.

END-CODE ASSEMBLER

(--)

Resolve all assembler labels, terminate the current code

definition and allow its name to be found in the dictionary.

Remove the ASSEMBLER word list from the search order.

L$ ASSEMBLER

(-- addr)

Define a forward near label in assembler, one per definition.

76 CHAPTER 12. THE ASSEMBLER

L$: ASSEMBLER

(addr --)

Resolve a forward near label.

[] ASSEMBLER

(--)

Direct mode for source.

[], ASSEMBLER

(--)

Direct mode for destiny.

Chapter 13

FLYER

FLYER is a way to further eliminate the implicit use of STATE in

Forth. Most words that have a different action during compilation

and interpretation, can now be written with the compile-time action

only. Flyer is a new concept based on a technique called a co-

routine. This co-routine technique is supplied by the word DIVE .

It performs a switch to compiling and execution when a word like S"

is used at runtime, compile time it is a noop (does nothing).

All words which need a well defined action while interpreting use

the word FLYER . So there is one well defined way to define these

actions and the programmer needs only to write its compilation

behaviour. In CHForth it is used throughout the system to

give all words an interpretation behavior, with undefined

interpretation semantics according the standard.

13.1 Compilation in a buffer

Words that internally use FLYER like TO and S" are compiled in

a reserved buffer during interpreting. This buffer is located at

the directly above the dictionary space. The default size of this

buffer is 512 bytes, plus 140 bytes overshoot space. The

word DPSWAP switches between user dictionary and this buffer

space.

13.2 The circular buffer

The buffer is made circular, so it can be used over and over

again. It will never overflow, but data which is kept there has

77

78 CHAPTER 13. FLYER

a restricted lifetime. The word CIRCULATE keeps the buffer within

its given bounds and overshoot space. The size of the buffer may

be adjusted with the word FLY-BUFFER , which may result in the

loss of all previous buffer data. The size of this buffer may vary

from 128 to 4096 bytes.

13.3 DIVE into deep water

The co-routine call DIVE swaps two (return) addresses on the top

of the return stack. Its behaviour is not so easy to understand,

to understand the order of execution consider the following example:

: DIVING

." TWO " (This is displayed second)

DIVE (Swap return stack addresses)

." FOUR " ; (So this is displayed as last)

: DIVE-DEMO

." ONE " (This is displayed first)

DIVING (Display ’TWO’ and return...)

." THREE " ; (This is displayed as third)

(And afterwards comes FOUR)

Than a small riddle, what is happening here ?

: HI CR ." Hi " DIVE ." how are you? " ; (--)

: GREET HI BL PARSE TYPE SPACE ; ("name" --)

Describe what this code should do when GREET is executed and

test the example on your system. The same mechanism is used for

FLYER and for implementing local variables.

Lets implement a simple tracer:

: TRACE

CR ." before" .S (Print stack before running)

DIVE (Back to calling routine)

." after" .S ; (Print stack after running)

: : ("name" --) (Redefine colon to include)

: POSTPONE TRACE ; (the tracer)

13.4. USE OF FLYER 79

Whenever we have any doubts about some words stack behaviour,

we can use this redefinition of colon to check a words stack

behaviour. One can add any features to improve TRACE ; be aware

of the weird return stack behaviour, which should not interfere

with handling return stack data (E.g. inline arguments) as the

return address of TRACE may reside on top of such data.

13.4 Use of FLYER

Where can we use FLYER in our code? The answer is, anywhere we

need the same compile and a runtime behaviour of a compiler

directive. Note: The only word added to the next definition,

to make it available when interpreting is the word FLYER.

System words which include FLYER are:

S" ." ABORT" PREFIX (and thereby all prefixes)

An example from the Forth source:

: ." ("ccc"<"> --)

FLYER (Fly when interpreting)

POSTPONE (.") (Compile runtime code)

[CHAR] " PARSE, (Get & compile string)

; IMMEDIATE

13.5 FLYER words glossary

CIRCULATE EXTRA

(--)

If the buffer overflows, reset it to the start of the FLYER

buffer space.

DIVE EXTRA

(--)

Perform a co-routine call to the calling routine. This means

that the calling routine is finished first. If the calling

routine is finished the called routine which included DIVE will

be finished.

DPSWAP "d-p-swap" EXTRA

(--)

Exchange the dictionary pointer from the user dictionary to the

80 CHAPTER 13. FLYER

FLYER buffer.

FLYER EXTRA

(i*x -- j*x)

When interpreting, switch to the circular buffer. Set system to

compilation state and execute a coroutine call to the calling

routine. Compile this routine followed by an EXIT. Switch back

to executing state and user dictionary, next execute the compiled

routine. Only for use in a definition.

Chapter 14

Create new data types

This system offers two different ways of defining new data types.

The new way described here builds named "execution interpreters".

The idea is not new, the standard document, ANSI X3.215-1994

contains an example (page 176) where this concept is used. However

the standard does not support it as a named datatype. This concept

separates the definition of compilers and executable code. It makes

the code easier to understand and the scope in an execution part is

now clear.

14.1 Introduction to DOER:

The standard method for defining new data types mix the creation

(compiler action) and the execution action for a new data type in

a single definition.

Conceptual DOER: is a separation from the creation of a compiler

for a new datatype and the execution code (interpreter) for that

type. See for an example paragraph 18.3 just below.

What happens when we use the new defining word DOER: ?

- A header is created, with the name mentioned just behind DOER:

- A reference to MODIFY is compiled.

- A type data field is created.

- A call to DODOES is compiled.

- The compiler (colon) is started.

Actually a DOER: word combines : (colon) and DOES> . On its

81

82 CHAPTER 14. CREATE NEW DATA TYPES

execution MODIFY replaces the execution behavior of the most

recently created definition with the specified action

(execution-interpreter).

14.2 Supplied words

DOER: DOERCODE DOES> ;CODE

14.3 A comparison of DOER: and DOES>

We will make a new defining word using both methods. First in

the traditional way:

: NEWVAL

CREATE , (x --) (Create a new name and reserve data space)

DOES> @ ; (-- x) (Push contents of data field)

Now with the new DOER:

DOER: DONEWVAL (-- x) (Push contents of data field)

@ ;

: NEWVAL (x --)

CREATE , DONEWVAL ; (Create a new name and reserve data space)

Both words create the same data type. When using DOER: there is

a strict separation between the "execution-interpreter" and the

build action of the data structure. There are more advantages,

showed in the next example:

: <New-data-type>

(Actions executed before a header is created)

CREATE (Build empty data structure with default action)

(Actions to allocate/initialise the structures data field)

DO-new-data-type (Replace the execution time action)

(Actions required after the new datatype is installed)

;

We get new options here, it is possible to describe in a

conventional way, how the creation of a new datatype ends.

14.4. THE USE OF DOERCODE AND ;CODE 83

14.4 The use of DOERCODE and ;CODE

The words DOERCODE and ;CODE are the assembly counterparts of

DOER: and DOES> and are used in the same way. The difference

is, that the specification of the execution action is written

in machine code. The programmer should take care to obtain the

data address explicitly. Note: The extra indirection when

creating code that runs in ROM whilst the data is in RAM. Then

an extra indirection to the RAM data field is required.

This problem is solved by the assembler macro DATA-ADDR,

An example of the use:

: NEWVAL

CREATE , (x --)

;CODE (-- x)

[R2] POP, (Pop data address high byte)

ACC: POP, (Pop data address low byte)

R0: DEC, (Allocate low byte on stack)

@R0 A: MOVX, (Move low byte to stack)

A: R2: MOV, (Get high address byte)

R0: DEC, (Allocate high byte on stack)

@R0 A: MOVX, (Move high byte to stack)

RET, (Ready)

END-CODE

DOERCODE DONEWVAL

[R2] POP, (Pop data address high byte)

ACC: POP, (Pop data address low byte)

R0: DEC, (Allocate low byte on stack)

@R0 A: MOVX, (Move low byte to stack)

A: R2: MOV, (Get high address byte)

R0: DEC, (Allocate high byte on stack)

@R0 A: MOVX, (Move high byte to stack)

RET, (Ready)

END-CODE

: NEWVAL (x --)

CREATE , DONEWVAL ; (Create a new name and reserve data space)

There is no difference between those words and the high level

versions, except for speed.

84 CHAPTER 14. CREATE NEW DATA TYPES

14.5 Using prefix operators

Most data types can make use of prefix operators. They do this

by building methods (prefix actions) in a so called methods

word list. The words DOER: DOERCODE DOES> and ;CODE create such

a word list, also called type-data-field. With the words METHODS

and INHERIT these word lists can be handled. Lets make NEWVAL from

the previous chapter accessible by the prefixes of VALUE :

INHERIT DOVAL DONEWVAL

All prefixes available to DOVAL (VALUE) are now available to

NEWVAL . For detailed information read chapter 19.6 .

14.6. DEFINING WORDS WORD GLOSSARY 85

14.6 Defining words word glossary

: "colon" FORTH

(C: "name" -- colon-sys)

Skip leading delimiters. Parse "name" delimited by a space.

Create a definition for name, called a "colon definition".

Enter compilation state, and start current definition, producing

colon-sys. Append the initiation semantics below to the current

definition. The execution semantics of name will be determined

by the words compiled into the body of the definition. The

current definition is not findable in the dictionary until it

is ended. When used within the METHODS structure, the behaviour of

this word will be changed!

Initiation: (i*x -- i*x) (R: -- nest-sys)

Save nest-sys (a single cell address) of the calling definition.

The stack effects i*x represents arguments to name.

name Execution: (i*x -- j*x)

Execute the definition name. The stack effects i*x and j*x

represent arguments to and results from name, respectively.

See also: NONAME: DOES> ; ;CODE] [

:NONAME "colon-noname" FORTH

(C: -- colon-sys || S: -- xt)

Create an execution token xt, enter compilation state and start

the current definition, producing colon-sys. Append the

initiation semantics given below to the current definition.

The execution semantics of xt will be determined by the word

compiled into the body of the definition. This definition can be

executed later by using xt EXECUTE .

Colon-sys is the topmost item on the data stack.

Initiation: (i*x -- i*x) (R: -- nest-sys)

Save nest-sys (a single cell address) of the calling definition.

The stack effects i*x represent arguments to xt.

xt Execution: (i*x -- j*x)

Execute the definition specified by xt. The stack effects i*x and

j*x represents argument to and results from xt, respectively.

See also: : DOES> ; ;CODE] [

CODE FORTH

86 CHAPTER 14. CREATE NEW DATA TYPES

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name, called a "code definition", with

the execution semantics defined below. Append the ASSEMBLER word

list to beginning of the search order to process the words

between name and END-CODE. sys is balanced by the corresponding

END-CODE. name is called a "code definition."

name Execution: (i*x -- j*x)

Execute the machine code sequence that was generated

following code.

CONSTANT FORTH

(x "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below. name is referred to as a "constant".

name Execution: (-- x)

Place x on the stack.

CREATE FORTH

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below. If the data-space pointer is not aligned, reserve enough

data space to align it. The new data-space pointer defines name’s

data field. CREATE does not allocate data space in name’s data

field. The words ROM and RAM change the behaviour of this word!

name Execution: (-- a-addr)

a-addr is the address of name’s data field. The execution

semantics of name may be extended by using DOES> .

The relocatable compiling process will compile an extra indirection

when building a defining word with data in ram.

DOER: "doer-colon" EXTRA

("name" -- || C: -- colon-sys)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below. Enter compilation state, and start current definition.

The relocatable compiling proces will compile an extra indirection

when building a defining word with data in ram.

14.6. DEFINING WORDS WORD GLOSSARY 87

Runtime: (--) (R: nest-sys1 --)

Replace the execution semantics of the most recent definition,

referred to as name, with the name execution semantics given

below. Return control to the calling definition specified by

nest-sys1. Code may be damaged if the most recently defined word

was not defined with CREATE or a user-defined word that calls

CREATE . The words ROM and RAM change the behaviour of this word!

Initiation: (i*x -- i*x a-addr) (R: -- nest-sys2)

Save implementation-dependant information nest-sys2 about the

calling definition. Place name’s data field address on the stack.

the stack effects i*x represents the arguments to name.

name Execution: (i*x -- j*x)

Execute the part of the definition beginning with the

initiation semantics appended by the DOES> which modifies name.

The stack effects i*x and j*x represent arguments to and result

from name, respectively.

See also: CREATE DOES>

DOERCODE "doer-code" EXTRA

("name" --)

Parse name delimited by a space. Create a definition for "name"

with the execution semantics defined below. Append the ASSEMBLER

word list to the beginning of the search order.

DOERCODE is balanced by the corresponding END-CODE .

Runtime: (--) (R: nest-sys --)

Replace the execution semantics of the most recent definition.

name Execution (i*x -- j*x)

Perform the machine code sequence generated following DOERCODE.

This word does not respond at the words ROM and RAM.

See also DOES> ;CODE ROM RAM .

FLAG EXTRA

("name" --) (-- flag)

Define a bit flag with name. An error will be issued when there

are no more bits left in the bit array. The programmer may define

a maximum of 120 bit flags.

name Execution: (-- flag)

Expand the contents of the bit flag, leaving true or false.

88 CHAPTER 14. CREATE NEW DATA TYPES

See also: SET , CLEAR or TO .

LOCAL EXTRA

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution and run-time

semantics defined below.

Execution: (x --)

Store x in name.

name Execution: (-- x)

Place x on the stack. The value can be manipulated by TO +TO .

LOCALS| "locals-bar" FORTH

("name1" .. "namen" "|" --)

Create up to eight local variables with "name1" to "namen". The

list of locals is terminated by "|". In CHForth this is not

limited to eight locals, it depends on the actual name length and

the size of the FLYER buffer.

Runtime: (xn .. x2 x1 --)

Initialise up to 8 local variables, each of which takes as its

initial value the top stack item, removing it from the stack.

Identifier name1 is initialised with x1, etc. When invoked each

local will return its value. The value may be changed using TO and

+TO .

MARKER FORTH

("name" --) (--)

Skip leading space delimiters. Parse name delimited by a space.

Create a dictionary entry for name with the execution semantics

defined below.

name Execution: (--)

Restore all dictionary allocation and search order pointers to

the state they had just prior to the definition of name. Remove

name and all subsequent word definitions. Restoration of any

structures still existing that could refer to deleted definitions

or deallocated data space is not provided in any other way then

by the use of forget fields. No other contextual information such

as numeric base is affected. See also: FORGET (FORGET) IS-FORGET

PREFIX EXTRA

14.6. DEFINING WORDS WORD GLOSSARY 89

("name1" --)

Skip leading space delimiters. Parse name1 delimited by a space.

Create a definition for name1 with the execution semantics defined

below.

name Execution: (i*x "name2" -- j*x)

Skip leading space delimiters. Parse name2 delimited by a space.

Execute the prefix action of name1. Error -64 will be issued

if this prefix is not valid for this word or datatype.

name Compilation: (i*x "name2" -- j*x)

Skip leading space delimiters. Parse name2 delimited by a space.

Compile the prefix action of name1. Error -64 will be issued

if this prefix is not valid for this word or datatype.

SFR "s-f-r" EXTRA

(byte "name" --)

Create a new definition with name and address byte, with the

execution semantics defined below.

name Executing: (-- byte)

Push the contents of the SFR or ’direct ram’ location addressed

by "name" <byte> on the stack.

VALUE FORTH

(x "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below, with an initial value equal to x. name is referred to as a

"value". The words ROM and RAM change the behaviour of this word!

name Execution: (-- x)

Place x on the stack. The value of x is that given when name was

created, until the phrase x TO name is executed, causing a new

value of x to be associated with name.

See also +TO CLEAR ADR PUSH POP

VARIABLE FORTH

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below. Reserve one cell of data space at an aligned address.

name is referred to as a "variable". The words ROM and RAM change

the behaviour of this word!

90 CHAPTER 14. CREATE NEW DATA TYPES

name Execution: (-- a-addr)

a-addr is the address of the reserved cell. A program is

responsible for initialising the contents of the reserved cell.

VOCABULARY ONLY

("name" --)

Parse name delimited by a space, ignoring leading delimiters.

Create a dictionary entry for name with the execution semantics

defined below. Create a new word list and store the word list

identifier with the new word.

name is referred to as a "vocabulary".

name Execution: (--)

Make the above created word list the context word list.

14.7. INTERNAL STRUCTURE OF THE BASIC DO-TYPES 91

14.7 Internal structure of the basic do-types

a) The basic structure of DOER: and DOES> . When created with

DOER: a header is in front of this structure. But when created

by DOES> , the structure is placed in the middle of a colon

definition after the described compiler action.

--

|MODIFY|forget-xt|toplfa-ptr|toplfa|DODOES|Etc.|

--

______^

b) The basic structure of DOERCODE and ;CODE . When created with

DOERCODE a header is in front of this structure. But when created

by ;CODE , the structure is placed in the middle of a colon

definition after the described compiler action.

--

|MODIFY|forget-xt|toplfa-ptr|toplfa|assembly-code|

--

______^

92 CHAPTER 14. CREATE NEW DATA TYPES

Chapter 15

The TO-concept

The TO-concept is a method of accessing data and was originally

developed by Paul Bartholdi (Forth Dimensions Vol 1 nr 4). All

data types have the same access operator (TO etc), there is no

longer a need for programmers to remember which operator belongs

to a certain data type for instance:

2VARIABLE AAP (Operators for AAP : 2@ 2! 2+!)

VARIABLE DOG (Operators for DOG : @ ! +!)

CVARIABLE ANT (Operators for ANT : C@ C! C+!)

When we use the TO-concept all these data types are accessed with

the same words (FROM TO +TO). So the programmer no longer needs

to know all the different operators. Other advantages of using

the TO-concept are, it is less easy to use the wrong data type and

operator. Use ! on the byte variable ANT is no longer possible and

the program is much more easy to read without those @ and !

operators.

15.1 How do prefixes work

A prefix operator scans the input for the next word in the input

stream. If any, it checks if it is a valid prefix for that word.

So prefix actions will only be accepted when they are valid for

the used data type. If a prefix is not valid, an error message is

given (ANSI message -32). Some examples:

8 TO BASE (Set number base to octal)

FROM BASE .DEC (Get number base and print it in decimal)

93

94 CHAPTER 15. THE TO-CONCEPT

BASE .HEX (Print the address of BASE in hexadecimal)

The system variable BASE is used here, according to ANSI it must

give its address on the stack when executed. In CHForth,

these words are of the type ’system VARIABLE’. A prefix can change

the behaviour of such a variable. All used system variables are of

the following types:

system VALUE : DP VOC-LINK etc.

system CONSTANT : TIB CSTART

system VECTOR : KEY EMIT etc.

system VARIABLE : STATE BASE etc.

Each type has a number of prefixes (methods) which can act on it.

A list of prefixes and the types they work on, can be found in

paragraph 19.6 .

15.2 Supplied words

TO +TO FROM CLEAR SET PUSH POP ADR IS

15.3 Defining new prefixes

Defining a new prefix consist of three actions:

a) Define a new prefix operator.

b) Define a runtime action for the datatype it must act on.

c) Extending the methods WORDLIST for that datatype.

An example, a new prefix which sets all bits of a system

variable. Starting with defining the ’new’ prefix (a):

PREFIX DECR (That was not to difficult)

Note: The prefix SET already exists.

Now define the runtime action (b):

: (DECR) (inline# --)

-1 INLINE# +!

; C/O TAIL

The runtime word is named (DECR) and it uses internally the word

15.4. TO-CONCEPT WORD GLOSSARY 95

INLINE# which picks up and skip an inline data cell. The inline

cell is the address of the system variable to be adjusted. The

word C/O marks this word as a compile only word, and TAIL marks

the word as invalid for tail optimising (Words that use inline

data need the return address, so the call can not be modified to

a jump). They are used in the same way as the standard word

IMMEDIATE .

Finally the action must be added to the type vocabulary of the

system variables (c):

METHODS DOUVAR

: DECR (body --)

POSTPONE (DECR) @ , ;

END-METHODS

All actions are done, but what are all these weird actions ? The

METHOD structure is explained in chapter 21. The @ , is used here,

because a system data type holds in its body a pointer to the

real data address. The @ picks up the pointer and compiles it

inline, just behind (DECR).

15.4 TO-concept word glossary

+TO "plus-to" EXTRA

(n|u "name" --)

Runtime: (n|u "name" --)

Skip leading spaces. Parse name delimited by a space.

Add n|u to name. ANSI error -32 is issued if name was not

defined by VALUE , (LOCAL) etc.

Compilation: ("name" --)

Skip leading spaces. Parse name delimited by a space.

Append the run-time semantics below to the current definition.

ANSI error -32 is issued if name was not defined by VALUE ,

(LOCAL) etc.

Run-time: (n|u --)

Add n|u to name.

See also: VALUE (LOCAL) PREFIX

96 CHAPTER 15. THE TO-CONCEPT

ADR EXTRA

(--)

Runtime: ("name" -- a-addr)

Skip leading spaces. Parse name delimited by a space.

Leave a-addr associated with name on the stack. ANSI error -32

is issued if name was not defined by VALUE , (LOCAL) etc.

Compilation: ("name" --)

Skip leading spaces. Parse name delimited by a space.

Append the run-time semantics below to the current definition.

ANSI error -32 is issued if name was not defined by VALUE etc.

Run-time: (-- a-addr)

Put a-addr associated with name on the stack.

See also: VALUE PREFIX

CLEAR EXTRA

(--)

Runtime: ("name" --)

Skip leading spaces. Parse name delimited by a space.

Store zero in name. ANSI error -32 is issued if name was not

defined by VALUE , (LOCAL) etc.

Compilation: ("name" --)

Skip leading spaces. Parse name delimited by a space.

Append the run-time semantics below to the current definition.

ANSI error -32 is issued if name was not defined by VALUE ,

(LOCAL) etc.

Run-time: (--)

Store zero in name.

See also: VALUE (LOCAL) PREFIX

FROM EXTRA

(--)

Runtime: ("name" -- x)

Skip leading spaces. Parse name delimited by a space.

Place x associated with name on the stack. ANSI error -32 is

issued if name was not defined by VALUE , (LOCAL) etc.

Compilation: ("name" --)

Skip leading spaces. Parse name delimited by a space.

15.4. TO-CONCEPT WORD GLOSSARY 97

Append the run-time semantics below to the current definition.

ANSI error -32 is issued if name was not defined by VALUE ,

(LOCAL) etc.

Run-time: (-- x)

Place x associated with name on the stack.

See also: VALUE (LOCAL) PREFIX

IS EXTRA

(--)

Runtime: (xt "name" --)

Skip leading spaces. Parse name delimited by a space.

Store xt in name. ANSI error -32 is issued if name was not

defined by UVECTOR (Only when metacompiling).

Compilation: ("name" --)

Skip leading spaces. Parse name delimited by a space.

Append the run-time semantics below to the current definition.

ANSI error -32 is issued if name was not defined by DOUVEC etc.

Run-time: (xt --)

Store xt in name.

See also: DOUVEC PREFIX

POP EXTRA

(--)

Interpretation: ("name" --) (R: x --)

Skip leading spaces. Parse name delimited by a space.

Pop x associated with name from the return stack. ANSI error -32

is issued if name was not defined by VALUE etc.

Compilation: ("name" --)

Skip leading spaces. Parse name delimited by a space.

Append the run-time semantics below to the current definition.

ANSI error -32 is issued if name was not defined by VALUE etc.

Run-time: (--) (R: x --)

Pop x associated with name from the return stack.

See also: VALUE PREFIX etc.

PREFIX EXTRA

("name1" --)

Skip leading space delimiters. Parse name1 delimited by a space.

98 CHAPTER 15. THE TO-CONCEPT

Create a definition for name1 with the execution semantics defined

below.

name Execution: (i*x "name2" -- j*x)

Skip leading space delimiters. Parse name2 delimited by a space.

Execute the prefix action of name1. Error -64 will be issued

if this prefix is not valid for this word or datatype.

name Compilation: (i*x "name2" -- j*x)

Skip leading space delimiters. Parse name2 delimited by a space.

Compile the prefix action of name1. Error -64 will be issued

if this prefix is not valid for this word or datatype.

PUSH EXTRA

(--)

Runtime: ("name" --) (R: -- x)

Skip leading spaces. Parse name delimited by a space.

Push x associated with name on the return stack. ANSI error -32

is issued if name was not defined by VALUE etc.

Compilation: ("name" --)

Skip leading spaces. Parse name delimited by a space.

Append the run-time semantics below to the current definition.

ANSI error -32 is issued if name was not defined by VALUE etc.

Run-time: (--) (R: -- x)

Push x associated with name on the return stack.

See also: VALUE PREFIX etc.

SET EXTRA

(--)

Interpretation: ("name" --)

Skip leading spaces. Parse name delimited by a space.

Set all bits of name to ones. ANSI error -32 is issued if name

was not defined by FLAG etc.

Compilation: ("name" --)

Skip leading spaces. Parse name delimited by a space.

Append the run-time semantics below to the current definition.

ANSI error -32 is issued if name was not defined by FLAG etc.

Run-time: (--)

Set all bits of name to ones.

15.4. TO-CONCEPT WORD GLOSSARY 99

See also: FLAG PREFIX

TO FORTH

(--)

Interpretation: (x "name" --)

Skip leading spaces. Parse name delimited by a space.

Store x in name. ANSI error -32 is issued if name was not

defined by VALUE , (LOCAL) etc.

Compilation: ("name" --)

Skip leading spaces. Parse name delimited by a space.

Append the run-time semantics below to the current definition.

ANSI error -32 is issued if name was not defined by VALUE ,

(LOCAL) etc.

Run-time: (x --)

Store x in name.

See also: VALUE (LOCAL) PREFIX

100 CHAPTER 15. THE TO-CONCEPT

15.5 Internal structure of compiled prefixes

An example of the memory structure when DP and +TO DP are

compiled:

|DP|.....|(+TO)|Data address of DP|

DP is compiled as a direct reference to the system value DP , and

+TO DP is compiled as a reference to the runtime code (+TO) and

thereafter (inline) the data (RAM) address which belongs to DP .

15.6 Prefixes (methods) for the existing types

First on the line is the name of the DOER: or DOERCODE word, which

belongs to the datatype named within paren. The comment <meta only>

means that the defining word for that datatype was only present

when this system was built. After paren the list of valid prefixes

for that datatype are listed.

DOER BUILDING WORD PREFIXES

--

DOUVEC (UVECTOR <meta only>) PUSH POP IS ADR

DOUVAR (UVARIABLE <meta only>) PUSH POP TO +TO CLEAR FROM

DOUVAL (UVALUE <meta only>) PUSH POP TO +TO CLEAR ADR

DOUCON (UCONSTANT <meta only>) No prefixes for the user

DOVAR (VARIABLE) PUSH POP TO +TO CLEAR FROM

DOVAL (VALUE) PUSH POP TO +TO CLEAR ADR

DOLOCAL (LOCALS| and LOCAL) TO +TO

Chapter 16

Methods mechanism

This systems offers a way of creating new data types, which use

prefix words to access them. This is done with a mechanism that

creates a small list of words (mini vocabulary) which is

associated to a datatype. They have no name and their link is

hidden in the data structure to build the new words. In these mini

vocabularies the prefix actions of the defining word are stored.

If the list is empty there are no prefix actions for that

defining word. A prefix word like TO searches the mini vocabulary

of the defining word of the used datatype. Because its a vocabulary,

new prefix actions may be added to an existing datatype. If a new

datatype has the same internal representation as an existing one,

inheritance is possible. In this way standard data types become

objects with their own sealed actions in a mini vocabulary.

The prefix operators work exactly as is described in the

ANS-Forth document for the word TO. Already prefixes are used in

ANS-Forth by local variables and values. So it seams naturally to

make the mechanism available to the programmer. Most data types in

this system can be used in conjunction with prefix operators.

16.1 Method introduction

The methods structure consist of three parts:

- Opening a methods word list (mini vocabulary)

When opening, the hidden word list of a defining word is made

the compilation word list.

- Extending the methods word list

101

102 CHAPTER 16. METHODS MECHANISM

All new definitions will be added to the this word list.

Definitions in this vocabulary will always be executed.

They behave like compiler directives.

- Closing the methods word list

The previous compilation vocabulary is restored.

Definitions in methods word lists must describe the compile

time behaviour of that word only. The system takes care of its

interpret time behaviour. Things you must not forget when

defining new methods:

- Define the runtime actions of methods before you open any

methods word list.

- A created word in a method word list can not be found when

compiling these new methods.

- When executing, a method leaves the body address of the used

child on the stack.

- It describes the compile time action only.

- The name of the method must be the same as its associated

prefix operator.

When a user defined method is forgotten, the method vocabulary of

that type is automatically adjusted (see also forget fields chapter 16).

16.2 Supplied words

METHODS INHERIT PREFIX

16.3 Defining a new method

We will define a new prefix operator for the datatype VALUE . It

must increase the contents of the value named, by one. The

name chosen for this prefix is INCR . First we will define the

runtime action:

: (INCR) 1 INLINE# +! ; (--)

Next we define the new method for all defined VALUEs:

METHODS DOVAL (Its defined with a DOER)

: INCR POSTPONE (INCR) , ; (childs-body --)

16.3. DEFINING A NEW METHOD 103

END-METHODS

The first action in INCR will later compile the runtime code

into a definition. The second action compiles the childs body

address inline after (INCR) . At last the new prefix operator

is defined:

PREFIX INCR

That’s it.

104 CHAPTER 16. METHODS MECHANISM

16.4 Defining a new data type with prefix operators

First the defining word is created, in this example with a DOER:

it describes the default action of the type (default means

without prefix) and how a new child is created:

DOER: DOCOUNTER @ ; (Push count on the stack)

: COUNTER CREATE 0 , DOCOUNTER ;

Secondly we create a method for this datatype. This method uses

the previously defined runtime code and prefix operator:

METHODS DOCOUNTER

: INCR POSTPONE (INCR) , ;

END-METHODS

With COUNTER we define a datatype with the actions; leave the

counter value or increase the counter by one. This is how:

COUNTER LAMPS (Create new counter named LAMPS)

LAMPS . (Printing LAMPS contents <0>)

INCR LAMPS (Adding one to the contents of LAMPS)

Etc.

16.5 Inheritance

The previous word can be defined smarter, by making use of

INHERITance. This systems allows copying methods from an existing

datatype, to a newly created datatype. The programmer must be

aware of possible problems:

- The new datatype has another representation internally as the

existing datatype (take care! The system may crash).

- It may only be used on a empty target datatype.

We can make use of old methods which fit for this type, instead

of creating new methods. So we will use the methods from the

value datatype. Internally they have the same representation.

Like this:

16.6. METHODS WORDS GLOSSARY 105

DOER: DOCOUNTER @ ; (Push count to stack)

: COUNTER CREATE 0 , DOCOUNTER ;

INHERIT DOVAL DOCOUNTER

Counter can use all methods defined for the VALUE datatype. See

paragraph 19.6 for a summary of all data types with valid methods

(prefix operators).

16.6 Methods words glossary

INHERIT EXTRA

("name1" "name2" --)

Copy all word list information from the type word list addressed

by "name1" to the one addressed by "name2". An error condition

exists if "name2" has a non empty type word list.

METHODS EXTRA

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a dictionary entry, holding all the necessary data

to restore a type-word list when this methods entry is removed.

Make the type-word list of "name" the compilation word list.

Evaluate all text until the prase END-METHODS is encountered.

Next restore the original compilation word list (cq. vocabulary).

If an error occurs, first the original compilation word list is

restored, then control is given to the systems error handler.

PREFIX EXTRA

("name1" --)

Skip leading space delimiters. Parse name1 delimited by a space.

Create a definition for name1 with the execution semantics defined

below.

name Execution: (i*x "name2" -- j*x)

Skip leading space delimiters. Parse name2 delimited by a space.

Execute the prefix action of name1. Error -64 will be issued

if the prefix is not valid for this word or datatype.

name Compilation: (i*x "name2" -- j*x)

Skip leading space delimiters. Parse name2 delimited by a space.

106 CHAPTER 16. METHODS MECHANISM

Compile the prefix action of name1. Error -64 will be issued

if the prefix is not valid for this word or datatype.

16.7 Internal structure of methods

When new methods are to be created, a methods-child is created

(with zero header). This methods-child keeps in its data-field the

data to restore an extended methods word list.

|zeroheader|domethods|toplfa|toplfaptr|

^ ^

| Address of toplfa pointer of datatype

Old top link field of datatype

16.8 Methods example (a string variable)

A string variable will be defined, it uses the already existing

prefix operators TO and +TO . Other technical details:

- Maximum string length 255 characters.

- Strings are not initialised, after being defined the data field

contains random data.

- Default action, leave string parameters address and length on the

stack.

- Store a string with TO or append a string with +TO .

- No string overflow security is present (add it or take care).

First the runtime routines:

: (TO$) (c-addr u inline# --)

INLINE# PLACE ; (Store string at inline address inline#)

: (+TO$) (c-addr u inline# --)

INLINE# >R TUCK (Save string address and length)

R@ COUNT + SWAP MOVE (Add string behind present string)

R> C+! ; (Adjust string length)

Define default runtime action and the defining word:

16.8. METHODS EXAMPLE (A STRING VARIABLE) 107

DOER: DO$VAR (-- C) (-- c-addr u E)

COUNT ; (Push string address and length)

: $VAR (+n "name" --)

CREATE (Define string var. with "name")

255 UMIN 1+ CHARS ALLOT (Reserve +n + 1 chars string space)

DO$VAR ; (Install default runtime action)

Finally the methods for the string variable are defined:

METHODS DO$VAR (Start defining methods for "stringvar")

: TO POSTPONE (TO$) , ; (Compile code for TO "stringvar")

: +TO POSTPONE (+TO$) , ; (Compile code for +TO "stringvar")

END-METHODS (Stop defining methods for "stringvar")

Define a string variable (64 $VAR TEXT) and test the prefix

operators on the newly defined word. First clear the variable

(S" " TO TEXT). Check the contents (TEXT TYPE). The result

should be a zero string. Then fill the string (S" Hello " TO

TEXT) and append the string (S" Willem " +TO TEXT). Check

the new contents. It should be "Hello Willem " (TEXT TYPE).

108 CHAPTER 16. METHODS MECHANISM

Chapter 17

Interrupt handling

The hardware and software of the personal computer is largely

controlled through the use of interrupts. Of course Forth is

provided with tools to use them. Also some interrupts are used by

the CHForth itself.

17.1 Used interrupts

Interrupt 0 is called when a division overflow or a division by

zero occurs. CHForth redirects the vector to a routine that

issues ANS Forth exception -10. This interrupt is reset to its

previous value when leaving CHForth with BYE or HALT.

Interrupt 6 is called when a non-existing opcode is encountered.

CHForth redirects the vector to a routine that issues CHForth

exception -524. This hardware feature is implemented on the 80286

processors and newer but is harmless on a 8086. This interrupt is

reset to its previous value when leaving CHForth with BYE or

HALT.

Interrupt 1B is called when BIOS receives a Ctrl-Break action.

CHForth redirects the vector to a routine that issues ANS Forth

exception -28. This interrupt is reset to its previous value when

leaving CHForth with BYE or HALT.

Interrupt 1C is called 18.2 times a second by the clock. It is

currently not used in CHForth, but can be changed. This interrupt

is reset to its previous value when leaving CHForth with BYE or

109

110 CHAPTER 17. INTERRUPT HANDLING

HALT.

Interrupt 23 is called when DOS receives a Ctrl-Break or Ctrl-C

action. CHForth redirects the vector to a routine that discards

the key. Directly after this BIOS takes over and issues interrupt

1B, described above. The value of this interrupt is not saved in

Forth because when the program terminates, DOS itself will

restore it.

17.2 Examples

To get the value of an interupt is by GET-INTERRUPT:

$13 GET-INTERRUPT

will leave the segment and offset of the BIOS disk routines on

the stack.

$FF00 $0FF0 $13 SET-INTERRUPT

will set the address, in this case the system restart address.

Whenever a disk access is needed, in a Disk Operating System very

often, the computer will restart in this example without saving

your code. So here you have very dangerous toys in your hands!.

The word INTVEC is also provided to use the interrupts as if it

were objects like VALUEs. The last word is used in the library

file CLOCK where interrupt 1C is changed. You may load it by

saying NEEDS clock and after CLOCKON you will see a digital

clock in the upper-right corner of the screen and with CLOCKOFF

it is hidden.

17.3 Interrupt words glossary

GET-INTERRUPT EXTRA

(n -- x-addr)

Return the extended address x-addr of the interrupt vector n.

INTVEC "interrupt-vector" INTVEC

(x "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

17.3. INTERRUPT WORDS GLOSSARY 111

below. Name is referred to as an "interrupt vector".

name Executing: (-- x-addr)

Place x-addr, the extended address of the current vector assigned

to interrupt number x. The value of this vector can be changed by

executing ’addr TO name’, can be reset to its initial value by

’CLEAR name’ and the number x can be obtained by executing ’FROM

name’. To get the address where the default value is stored, use

’ADR name’.

SET-INTERRUPT EXTRA

(x-addr n --)

Set interrupt vector n to extended address x-addr.

112 CHAPTER 17. INTERRUPT HANDLING

Chapter 18

The decompiler

The decompiler, if not already in memory, can be loaded by

NEEDS -decompiler

As a result of the threaded code mechanism there is a nearly

one-to-one relationship between source and object code. The

decompiler is a program that helps the programmer to view

compiled code in a form that resembles the source for that code.

18.1 What can be decompiled

- Colon definitions with inline literals, locals and compiler

structures.

- Constants

- Variables

- Definitions made with Create

- Vocabularies

18.2 What can not be decompiled

Code definitions like DROP, 2@, EXIT can not be decompiled with

the standard decompiler, see chapter 19, the disassembler.

18.3 Examples

113

114 CHAPTER 18. THE DECOMPILER

see space

: SPACE

BL EMIT

; ans ok

As you see most words are written in capital letters, and some

indentation is helpful to view the structure of the words. The

decompiled text could even be placed in a log file and after some

editing made ready for reloading. The last word ’ans’ signifies

compliance to the standard.

see spaces

: SPACES

0 MAX 0

?do SPACE

Loop

; ans ok

Literals between -9 and 9 are printed as decimal digits. Other

numbers as four digit hexadecimal numbers with a leading dollar

sign. Compiler directives as ?DO and LOOP are printed with one

capital followed by lower case letters.

’ bl (see)

CONSTANT BL $0018 32 ok

The word (SEE) expects an execution token on the stack and

decompiles the word associated with it. The value of the constant

is printed as well in hexadecimal as in decimal.

18.4 Decompiler words glossary

(SEE) DECOMPILER

(xt --)

Decompile the definition that has xt as its execution token.

ALL DECOMPILER

(--)

Decompile all words in the context word list.

BTW DECOMPILER

("name1" "name2" --)

18.4. DECOMPILER WORDS GLOSSARY 115

Decompile all words in the context word list between "name1"

and "name2" inclusive, the order does not matter.

DECOMPILER DECOMPILER

(--)

Set the context to the DECOMPILER word list.

NO. DECOMPILER

(--)

The decompiler shows only the names of the definitions.

SEE DECOMPILER

("name" --)

Parse "name" delimited by spaces and decompile or disassemble

it.

TILL DECOMPILER

("name" --)

Decompile all words in the context word list newer than "name"

and itself.

YES. DECOMPILER

(--)

Set decompiler to normal.

116 CHAPTER 18. THE DECOMPILER

Chapter 19

The disassembler

This disassembler can display the assembler code from code

definitions in Forth and any code in the 1 Mb of the PC and the

first 64 Kb of the HMA on AT and higher machines.

The disassembler, if not already in memory, can be loaded by

NEEDS -disassembler

19.1 What can be disassembled

Code in Forth can be disassemble by using the word DIS or, when

the decompiler is loaded before the disassembler, also by SEE.

Code in other segments can be decompiled by DISX.

19.2 What can not be disassembled

When you use CHForth-86 it is not possible to decompile specific

386 code. CHForth-386 can decompile some enhanced instructions,

but I did not find it necessary to provide a solution for all

opcodes.

Only data that belong to a known Forth word, such as a variable

or a constant is displayed as data. But, although this is a

symbolic disassembler, most data in Forth does not have labels,

so it is shown as if it was code. so care is to be taken when

interpreting what you see.

117

118 CHAPTER 19. THE DISASSEMBLER

19.3 Examples

FORTH> see +
\ + ANS
cseg:0828 pop ax 58 X
cseg:0829 add bx,ax 03D8 ..
cseg:082B next 26ADFFE0 &...

When an address can be associated with a header, the name is

printed along with flags as ANS, IMMEDIATE, COMPILE-ONLY and

HIDDEN. The other lines start with the segment, when in Forth one

of the five symbols: cseg, lseg, hseg, eseg or stac is used,

otherwise the hexadecimal value. Then the offset followed with

the code on that address. After the middle follows the display

of bytes, first in hex, at the end with SEMIT.

The sequence

LODSW ES:

JMP AX

is displayed with the name of the macro.

FORTH> ’ if dis
\ IF immediate compile-only ans
cseg:11D8 jmp docolon $031E E9DBEFFC1E03
\ ELSE immediate compile-only ans
cseg:11DE jmp docolon $032A E9D5EFFC2A03*. ok

As CHForth generates data on aligned addresses, jumps and calls at

the start of definitions are followed by a byte $FC(that is the

instruction CLD that here never is executed). The address after

docolon is the start of the colon definition in LSTSEG.

FORTH> ’ bl dis
\ BL ans
cseg:01DE jmp doconstant $0020 E99FFFFC2000
\ FALSE ans
cseg:01E4 jmp doconstant $0000 E999FFFC0000 ok

Interrupt vectors can be dissassembler by this method:

$21 GET-INTERRUPT DISX

19.4. DISASSEMBLER WORDS GLOSSARY 119

19.4 Disassembler words glossary

DIS "disassemble" DISASSEM

(addr --)

Disassemble from address addr.

DISASSEMBLER DISASSEM

(--)

Replace the first word list in the search order with the

DISASSEMBLER word list.

DISX "dis-extended" DISASSEM

(x-addr --)

Disassemble from extended address x-addr.

SEE DECOMPILER

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Find name. If name can not be found exception -13 occurs.

If name is high level, decompile it. Otherwise if the

disassembler is loaded, disassemble it.

120 CHAPTER 19. THE DISASSEMBLER

Chapter 20

The viewer

The viewer, if not already in memory, can be loaded by

NEEDS -view

As a result of the threaded code mechanism there is a nearly

one-to-one relationship between source and object code. The

viewer is a program that helps the programmer to view compiled

code in a form that resembles the source for that code albeit in

less explicit form than with the decompiler. The viewer is a

simple type of decompiler and takes much less room than the

decompiler or disassembler.

20.1 What can be viewed

- Colon definitions with inline literals, locals and compiler

structures.

- Constants

- Variables

- Definitions made with Create

- Vocabularies

20.2 What can not be viewed

Code definitions like DROP, 2@, EXIT will be shown as if they

were data, see chapter 19, the disassembler.

121

122 CHAPTER 20. THE VIEWER

20.3 Examples

FORTH> view space

cseg:23E2 : SPACE

lseg:1ADA 01E8 BL

lseg:1ADC 0374 EMIT

lseg:1ADE 06A2 ;

The number on the far left is the address in the code segment.

The colon is the type of the definition and SPACE is its name. As

this is a colon definition, the next lines are indented and the

address in the list segment is showed first, with the contents

following it. On the right is the name of each compiled word.

FORTH> view spaces

cseg:23E8 : SPACES

lseg:1AE0 06AD $0000 False

lseg:1AE4 0CCB MAX

lseg:1AE6 06AD $0000 False

lseg:1AEA 06FE ?DO lseg:1AF2

lseg:1AEE 23E2 SPACE

lseg:1AF0 0725 LOOP

lseg:1AF2 06A2 ;

Literals printed as four digit hexadecimal numbers with a leading

dollar sign. Some numbers like -1 and 0 are printed further as

TRUE or FALSE. Values between 1 and 31 are printed as control

characters and values between 32 and 127 as characters. Compiler

directives as ?DO and ELSE are printed with a jump address after

it.

FORTH> ’ bl (view)

cseg:01E8 CONSTANT BL

cseg:01EC 0020 ’ ’ ’ .’

The word (VIEW) expects an address on the stack and views the

code that is there in the code segment. The hexadecimal value of

the constant is printed. The value is followed by a ASCII value

when it is displayable or a decimal value if not. At the and

ASCII dump of the two bytes is given in single quotes.

20.4. VIEWER WORDS GLOSSARY 123

20.4 Viewer words glossary

(VIEW) VIEW

(addr --)

Display data in the code segment from addr.

VIEW VIEW

("name" --)

Find "name" in the search-order or convert it to an address.

Display one line at the time of data with, space continues,

other keys terminate.

124 CHAPTER 20. THE VIEWER

Chapter 21

The interface with DOS

As Forth gives access to nearly every part of the computer

system, words to access the internal memory and external ports is

available.

21.1 The DOS environment

DOS reserves a segment to store the environment strings when a

program is loaded. Its segment number in CHForth is returned by

ESEG and its size in paragraphs by ELEN.

For example, if you want to know the value of the DOS PATH

variable, simply use

S" PATH=" SEARCH-ENVIRONMENT

to return the string. Remember that the string given by S" has to

be in uppercase. This is just the way the CHForth string variable

COMSPEC is initialized to get the name and path of the operating

system command interpreter.

21.2 External ports

The eight and sixteen bit ports of the PC can be accessed by the

words PC@ and PC! or P@ and P! respectively. For example,

$61 PC@ 3 OR $61 PC!

puts the speaker on.

125

126 CHAPTER 21. THE INTERFACE WITH DOS

21.3 The screen

The text screen segment is in the constant SBASE that is

initialized when the program is started and contains $B800 on

color and $B000 on monochrome systems. For example

$0720 SBASE 0 !X

puts a space (20) with black background and white foreground (07)

in the leftmost position on the first line of the screen.

The textmode is set with TEXT or TEXT0 that restores the textmode

to that when CHForth was started. When you have a Speedstar Pro

videoboard TEXT1 gives 132x25 text screen and TEXT2 a 132x43

textscreen. The size of the screen, inclusive the attribute bytes

is returned by SCREENSIZE, so you could save the screen in memory

or on disk. Other modes can be set by SETMODE and asked by

GETMODE. To use this consult the manual of your video adapter.

You can get the with of the screen from C/L and the height with

L/SCR . On some systems the latter is always set to 25 as the

byte at 40:84 is not defined for the PC/XT. The current character

attribute is in the variable ATTR and the the default in the

variable ATT0 . Inverse characters are emitted after INVERS ,

blinking occurs after BLINK , highlight after BRIGHT and the

opposite is done with -INVERS -BLINK and -BRIGHT . The default

value is reset by NORMAL .

The screen is addressable with HOME and AT-XY and the cursor

position is returned by ?AT . You can position the cursor on the

current line with HTAB .

21.4 The DOS interface glossary

?AT "question-at" EXTRA

(-- u1 u2)

Return the column x1 and row x2 of the cursor on the screen.

AT-XY "at-x-y" FORTH

(u1 u2 --)

Perform steps so that the next character displayed will appear in

column u1, row u2 of the current output device, the upper left

21.4. THE DOS INTERFACE GLOSSARY 127

corner of which is row zero, column zero. It is a no-op when the

operation cannot be performed on the current output device with

the specified parameters. Note that for other implementations the

result in that case is an ambiguous condition.

ATT0 "attribute-zero" EXTRA

(-- a-addr)

a-addr is the address of a cell containing the default attribute

of the characters on the screen.

ATTR "attribute" EXTRA

(-- a-addr)

a-addr is the address of a cell containing the current attribute

of the characters on the screen.

BEEP EXTRA

(--)

Make an alarm sound on the speaker. As this is sometimes

irritating, try CLICK .

BEEPH EXTRA

(-- a-addr)

a-addr is the address of a cell containing the frequency in Hertz

of BEEP.

BEEPL EXTRA

(-- a-addr)

a-addr is the address of a cell containing the duration in

milliseconds of BEEP.

BIOS-IO EXTRA

(--)

Set input and output to fast BIOS routines, redirection is not

supported.

See also: MS-DOS-IO

BIOS? "bios-query" EXTRA

(-- x)

A value that is true when output goes via fast BIOS and not

via slow DOS.

BLINK EXTRA

(--)

128 CHAPTER 21. THE INTERFACE WITH DOS

Invert the blink character attribute.

BLOCK-CURSOR EXTRA

(--)

Set the cursor form to a block.

BRIGHT EXTRA

(--)

Invert the bright character attribute.

C/L "c-per-l" EXTRA

(-- n)

Return the number of characters on a screen line.

CLICK EXTRA

(--)

Make a more pleasant sort of BEEP.

CONSOLE! "console-store" EXTRA

(char --)

Write char to the standard output file.

CONSOLE? "console-query" EXTRA

(-- x)

A value that is true when screen output is enabled.

CONSOLE@ "console-fetch" EXTRA

(-- char | -1)

Read character char from the standard input file. If the end of

the file is reached, return -1.

DEALLOC EXTRA

(u -- ior)

Return the contiguous region of memory outside the data space

indicated by the segment address u to the system for later

allocation. u shall indicate a region of memory outside the data

space that was previously obtained by ALLOC or REALLOC . If no

exception occurs ior is zero. Othewise ior is the I/O result

code.

DFTMODE "default-mode" EXTRA

(--)

Set the screen to the textmode that was current at program start.

21.4. THE DOS INTERFACE GLOSSARY 129

ECHO EXTRA

(--)

When loading echo the lines read to the screen.

ECHO? "echo-query" EXTRA

(-- x)

A value that is true when characters are echoed during loading a

textfile.

ELEN EXTRA

(-- n)

n is the number of paragraphs in the environment segment.

EOL "e-o-l" EXTRA

(--)

Emit spaces to clear the line on the screen beyond the cursor.

ESEG EXTRA

(-- x)

x is the value of the DOS environment segment.

GET-DIRECTORY EXTRA

(-- c-addr u ior)

Get the current directory as a character string specified by

c-addr u. The path is preceded by the drive letter and a colon.

If no exception occurs, ior is zero. Otherwise c-addr and u are

unspecified and ior is the I/O result code.

GET-INTERRUPT EXTRA

(n -- x-addr)

Return the extended address x-addr of the interrupt vector n.

GETDISK EXTRA

(-- n)

n is the current drive number.

GETMODE EXTRA

(-- n)

n is the number of the current screen mode.

HIDE-CURSOR EXTRA

(--)

Hide the cursor.

130 CHAPTER 21. THE INTERFACE WITH DOS

HOME EXTRA

(--)

Set the cursor on the top left of the screen.

HTAB "h-tab" EXTRA

(u --)

If n is greater than zero, emit spaces until the cursor is at

column u of the current user output device.

INVERS EXTRA

(--)

Exchange the character foreground and background colors.

L/SCR "l-per-s-c-r" EXTRA

(-- n)

Return the number of lines on the screen.

LINE-CURSOR EXTRA

(--)

Set the cursor form to a line.

MS-DOS-IO EXTRA

(--)

Set input and output to slow DOS routines, redirection is

supported.

See also: BIOS-IO CONSOLE! CONSOLE@

NOECHO EXTRA

(--)

When loading do not echo lines read to the screen.

NORMAL EXTRA

(--)

Reset to character attribute on the screen to the default

value.

NOSOUND EXTRA

(--)

Turn the speaker off.

OUT EXTRA

(-- x)

A value that contains the number of characters printed on the

21.4. THE DOS INTERFACE GLOSSARY 131

current screen line.

P! "p-store" EXTRA

(x1 x2 --)

Write x1 to 16 bit port x2.

P@ "p-fetch" EXTRA

(x1 -- x2)

Read the 16 bit port x1.

PAGE FORTH

(--)

Move to another page for output. Actual function depends on the

output device. On a terminal, PAGE clears the screen and resets

the cursor position to the upper left corner. On a printer, PAGE

performs a form feed.

PC! "p-c-store" EXTRA

(char x --)

Write char to 8 bit port x.

PC@ "p-c-fetch" EXTRA

(x -- char)

Read the 8 bit port x.

PITCH EXTRA

(n --)

Set the frequency of the speaker to n.

RESTORE-METRICS EXTRA

(--)

When returning from a system call, reset some screen parameters.

SBASE "s-base" EXTRA

(-- x)

x is the segment number of the text screen.

SCREENSIZE EXTRA

(-- n)

n is the total count of characters plus attributes on the screen.

SEARCH-ENVIRONMENT EXTRA

(c-addr1 u1 -- c-addr2 u2)

132 CHAPTER 21. THE INTERFACE WITH DOS

Search the DOS environment strings for the string specified by

c-addr1 u1. Return the character string after the first string as

a character string specified by c-addr2 u2. If the string is not

found, u2 is zero and c-addr2 is unspecified.

SEGMENT EXTRA

(x "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below. Leave the dictionary pointer at an aligned address.

Allocate space for 3 cells. Ask DOS for an allocation of x

paragraphs and store the segment number of that allocation in the

first cell. Store x in the second cell and zero in the third. The

user may change the value of the third cell to a value less than

or equal to x in order to save the allocated area with the

program.

name Execution: (-- a-addr)

a-addr is the address of the first reserved cell of name.

SET-DIRECTORY EXTRA

(c-addr u -- ior)

Set the current directory to the string specified by c-addr u. As

an extension to DOS, the default drive can also be changed if a

drive letter and a colon are present at the beginning of the

string. If no exception occurs, ior is zero. Otherwise ior is the

I/O result code.

SET-INTERRUPT EXTRA

(x-addr n --)

Set interrupt number n to extended address x-addr.

SETDISK EXTRA

(n1 -- n2)

Set the current drive to n1. n2 is the the total number of

available drives.

SETMODE EXTRA

(n --)

Set the screen to mode n.

SHOW-CURSOR EXTRA

(--)

21.4. THE DOS INTERFACE GLOSSARY 133

Display the cursor.

SOUND EXTRA

(--)

Turn the speaker on.

TRAP EXTRA

(--)

Jump back the debugger program, use it when you want to step

through Forth.

134 CHAPTER 21. THE INTERFACE WITH DOS

Chapter 22

Maintenance of program files

This chapter assumes that you have an editor, preferably SZ.COM

or NE.COM at your disposal.

22.1 Generating new source files

One way to create program files is to type EDIT optionally

followed with a filename. No extension is needed, as the default

is .FRT set in the counted string FEXT$. The format of the files

is plain ASCII and can include tabs but because in DOS this is

always fixed to eight positions, this is too rigid to be useful.

A more uniform file format with headers and footers is obtained

by typing PROJECT followed by the filename. The editor is entered

at a place where you can start typing. The strings that can be

customized are PROJ$ CAT$ and CREAT$ that are in the file

CHFORTH.CFG.

22.2 Library files

Some program parts are used in other programs so it might be

convenient to put them in a separate file. Words that are

included in the Standard are already in CHFORTH.EXE but some

words that are typed "obsolescent" in the Standard are found in

the file LIB\OBSOLETE.FRT and can be loaded in with

NEEDS -obsolete

if you need them. A decompiler, disassembler and logger are not

135

136 CHAPTER 22. MAINTENANCE OF PROGRAM FILES

always needed, so you can put a \ (backslash) in front of the

line in CHFORTH.CFG where they are loaded with NEEDS .

There is really no difference in the files in the current

directory from the files in the LIB directory, both can be loaded

with IN followed by their path and name, but NEEDS does the same

without a path for the files in LIB so you can place these files

anywhere provided you change the line with LIBPATH in CHFORTH.CFG

accordingly.

Most library files have a MARKER word in front of them, as the

system of libraries is modular, the list of loaded files can be

displayed by .MODULES .

22.3 Logging

All the user or the program displays on the screen can be logged

to a file. Pressing F2 (when ACCEPT.FRT is loaded) or typing

OPEN-LOG will create a file called FORTH.LOG or append to an

existing file with that name. The status line is disabled. The

logging is ended by pressing F2 again, typing CLOSE-LOG or

automatically by typing BYE . The file name can be changed, it is

in the counted string at LOGFILE .

Needed file: LIB\LOG.FRT

22.4 Glossary generation

Automatic glossary generation (making of help files) is possible.

The word \G is an alias for \ so interpreting will skip the lines

that have it in front of it. The glossary generator however,

parses the following string and will put them along with the

following defined word in a glossary file. With NEW-GLOSS you

reset the generator. MAKE-GLOSS followed by the full filename

will load and parse the file and this may be repeated until all

the files are processed or the memory is full. WRITE-GLOSS will

write the data to a file, extension preferably .HLP and directory

DOC so the word HELP can immediately be used.

Needed file: MAKEHELP.FRT

22.5. MAINTENANCE WORDS GLOSSARY 137

22.5 Maintenance words glossary

,EDIT EDITOR

(u "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Open file name with the editor program and place the cursor at

line u. When name is omitted, the last opened file by this

command or EDIT LIST or WHAT is opened and name is displayed on

the right of the status line. The default extension is taken from

FEXT$.

.MODULES EXTRA

(--)

Display the list of words that are created by MARKER .

?DEF "query-defined" EXTRA

("name" -- flag)

Skip leading space delimiters. Parse name delimited by a space.

Find name. If name is found, flag is true, false otherwise.

See also: ?UNDEF

?UNDEF "query-undefined" EXTRA

("name" -- flag)

Skip leading space delimiters. Parse name delimited by a space.

Find name. If name is found, flag is false, true otherwise.

See also: ?DEF

CAT$ EXTRA

(-- c-addr)

c-addr is the address of a counted string containing a

description of the category to which this file belongs.

CLOSE-LOG LOG

(--)

Close the log file.

CREAT$ EXTRA

(-- c-addr)

c-addr is the address of a counted string containing the name of

the creator of this file.

EDIT EDITOR

138 CHAPTER 22. MAINTENANCE OF PROGRAM FILES

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Open file name with the editor program and place the cursor at

the first line. When name is omitted, the last opened file by

this command or ,EDIT LIST or WHAT is opened and name is

displayed on the right of the status line. The default extension

is taken from FEXT$.

EDLIB EDITOR

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Open file name in the directory given in LIBPATH with the editor

program and place the cursor at the first line. The default

extension is taken from FEXT$.

LIBPATH EXTRA

(-- c-addr)

c-addr is the address of a counted string containing the path to

the library files.

See also: HELPPATH NEEDS

LOGFILE LOG

(-- c-addr)

Contains the name of the logfile.

GLOSS "glossary" FORTH

("fname1" "fname2" --)

Make a glossary with name2 out of the origin file name1 .

MAKE-GLOSS "make-glossary" FORTH

("name" --)

This word reads a source file and builds the glossary information

for it in memory.

NEEDS EXTRA

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Find name. If found continue. Otherwise, load the file with the

same name (excluding an optional trailing minus sign) from the

directory specified in LIBPATH .

NEW-GLOSS "new-gloss" FORTH

(--)

22.5. MAINTENANCE WORDS GLOSSARY 139

This command starts a fresh glossary.

OPEN-LOG LOG

(--)

Open the logfile.

PROJ$ EXTRA

(-- c-addr)

c-addr is the address of a counted string containing a

description of the project for which the file is created.

PROJECT PROJECT

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a text file for name with the default extension in FEXT$.

Write a header as defined in the strings PROJ$ CAT$ and CREAT$

and start the editor with the cursor at a place where the

programmer can start typing. This file can be loaded directly

after editing by typing IN . After the header is a MARKER for

an automatic FORGET when reloading the file.

WHAT EDITOR

(--)

Open file name with the editor program and place the cursor at

the line number stored in ERRLINE . name is stored at the address

stored in ERRNAME . ERRNAME and ERRLINE are valid after an

exception that occurred during loading of file name. name is

displayed on the right of the status line.

WRITE-GLOSS "write-glossary" FORTH

("name" --)

This word writes the glossary info from memory into a file.

The information may be collected from several source files.

\G EXTRA

("ccc<eol>" --)

If BLK contains zero, parse and discard the remainder of the

parse area; otherwise parse and discard the portion of the parse

area corresponding to the remainder of the current line. \G is an

immediate word. Used in generating glossaries.

140 CHAPTER 22. MAINTENANCE OF PROGRAM FILES

Chapter 23

Turnkey programs

With CHForth it is possible to write programs that run

independent like a filter utility or a game. In such programs an

interpreter or compiler is not necessary. As yet it is not

possible to delete the compiler and interpreter, but it is easy

to ignore them.

23.1 Trimming the system

There are three words, RESERVE LRESERVE and HRESERVE that make it

possible to trim the three main segments of CHForth. If for

example you need a Forth program with interpreter and compiler

that needs only 4 Kb space in each segment to compile a few words

after it is loaded and nothing more, you could use the following:

4096 RESERVE \ Reserve no more than 4 Kb for data

4096 LRESERVE \ Reserve only 4 Kb for colon definitions

4096 HRESERVE \ Reserve no more than 4 Kb for headers

SAVE SMALLF \ Make a program SMALLF.EXE

This is nice to be used as a normal CHForth program on systems

that do not have 640 Kb conventional memory, the three segments

are now each less than 64 Kb in the memory of the computer.

Remember to never put data above LIMIT LLIMIT or HLIMIT as they

are just beyond the last usable address in their segments. If you

need an interpreter but no compiler, you could use 0 for all

three RESERVE words, as there will always be some space above

HERE for interpreting input.

141

142 CHAPTER 23. TURNKEY PROGRAMS

23.2 Self running programs

A second method is the use of the word TURNKEY . First write a

word that does the job that you want to do and then save the

program:

EMPTY \ Discard any unnecessary code

: GO (--) \ Program can not use parameters

’Z’ 1+ ’A’

DO I EMIT

LOOP \ No BYE necessary

;

TURNKEY GO ALPHABET \ Make program ALPHABET.EXE

After this you are in DOS, type the name of the program after the

prompt and now you see the alphabet and then the DOS prompt.

This technique uses 0 RESERVE 0 LRESERVE to trim the code and

list segment and wholly discard the head segment, so interpreting

is not possible as headers are not present.

23.3 Examples

Some examples are to be found in \TURNKEY . All can be compiled

at the DOS prompt by:

CHFORTH IN filename

Or by executing:

MAKE -ffilename

If you have the MAKE utility.

Most programs give some information about their workings when you

type the name followed by a space and /? or -?

23.4 Turnkey glossary.

.FREE "dot-free" EXTRA

(--)

Display the value of the three dictionary pointers and the free

space in their respective segments.

HLIMIT EXTRA

23.4. TURNKEY GLOSSARY. 143

(-- x)

Return the address after the last usable in the head segment.

HMEMTOP EXTRA

(-- addr)

Return the address after the last physical address in the header

segment.

HRESERVE EXTRA

(x --)

Reserve x address units above HHERE in the head segment to be

used by the compiler in a saved program. When x is zero, all

headers of the definitions are discarded in the saved program.

LIMIT EXTRA

(-- x)

Return the address after the last usable in the dictionary.

LLIMIT EXTRA

(-- x)

Return the address after the last usable in the list segment.

LMEMTOP EXTRA

(-- addr)

Return the address after the last physical address in the list

segment.

LRESERVE EXTRA

(x --)

Reserve x address units above LHERE in the list segment to be

used by the compiler in a saved program. When x is zero, no

compiling is possible in the new program.

MEMTOP EXTRA

(-- addr)

Return the address after the last physical address in memory.

RESERVE EXTRA

(x --)

Reserve x address units above HERE to be used by ALLOT in a

saved program. Some space is always available in PAD and

TEMPORARY so interpreting remains possible if x is zero.

144 CHAPTER 23. TURNKEY PROGRAMS

RESTART? EXTRA

(-- x)

A value that prohibits restarting of the initialization of a

program. When the program is started its value is false. When

Ctrl-Break is pressed, it is set to true.

SAVE EXTRA

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Protect the dictionary as with EXTEND . Write the CHForth program

as an executable file with this name. name may have a preceding

path but no extension. The current settings of LIMIT and MEMTOP

are preserved as are their equivalents in other segments.

TURNKEY EXTRA

("name1" "name2" --)

Skip leading space delimiters. Parse name1 delimited by a space.

Skip leading space delimiters. Parse name2 delimited by a space.

Protect the dictionary as with EXTEND . Write the CHForth program

as an executable file with this name2. name2 may have a preceding

path but no extension.

The saved file does not contain any headers, so interpreting in

the executable file is not possible. The data space and list

space will also be reduced to the minimum value that is needed to

contains the current data in the data and list space. Both spaces

can be enlarged before executing this word.

When this program is executed from the DOS prompt, name1 will be

executed by CATCH and at the end the control will be returned to

DOS. The program saved has no capability to compile and has no

headers.

UNUSED FORTH

(-- u)

u is the amount of space remaining in the region addressed by

HERE , in address units.

Chapter 24

CHForth internals

Traditionally Forth has been implemented as a small model, where

code, data, colon definitions, stacks and headers were in one

memory space, the dictionary. In CHForth some differentiation has

been made.

24.1 Code space

In the codesegement are placed all data outside colon definitions

and low level code routines.

Code definitions start without special entering code, as CHForth

is direct threaded code, contrary to indirect threaded code, the

way FIGFORTH and F83 were implemented, where a pointer preceded

every definition. Returning to the next routine is done via the

macro NEXT in assembler, that loads the word pointed to by ES:SI

into the AX register, increments SI by two to point the next time

to the next word (postincrement) and jumps to the address in AX.

Variables and words that are built with CREATE without DOES> have

a jump instruction to special code that pushes the inline address

on the stack. This could have been a call instruction, but as the

top of the stack in CHForth is in a register and for speed a jump

seemed faster. Just after the jump is a byte with value $FC,

which is the code for the instruction CLD, faster than NOP, but

that is of no importance, as it is never executed and only serves

to keep HERE aligned. The word >BODY is simply ’2 CELLS +’ or ’4

+’ as a cell is 2 characters or bytes. The address after the CLD

instruction is called the data field.

145

146 CHAPTER 24. CHFORTH INTERNALS

Constants and values are made in the same way, a jump to a

special routine which pushes the value in the data field on the

the stack and then the data itself.

Colon definitions have a jump to a special routine that pushes

the current Forth instruction pointer SI on the return stack and

makes the contents of the data field the next value of the Forth

instruction pointer. This now points to a list of compiled

execution tokens and is discussed in paragraph 24.3

The value of the code space is in the CS and DS register and its

value is returned by the word CSEG. Access of this memory area is

with the traditional @ ! and , etc.

24.2 Header space

To reserve more space in the code segment, a header segment is

present, which has all the headers of the definitions.

A header is identified by its dictionary entry address, this is

returned by the word >HEAD.

- It starts with link field, that points to the previous word in

the current word list.

- Then follows a cell with flags, of which the immediate bit is

the most important.

- This is followed by a cell containing a pointer to the forget

code associated with this type of word, when there does not

exist such a routine, it is zero.

- Next is the pointer to the execution token in the code space.

- At the end is a byte with the count of characters in the name

followed with the name itself and padded with a null byte when

necessary to make the dictionary entry address even.

Creating a header does not allocate space in the code segment, so

making an ALIAS is very simple.

24.3. LIST SPACE 147

Never use knowledge about the current order of the header fields,

this may change in the future, for example, I may add a hashing

mechanism to speed up compilation.

The value of the header space is returned by the word HSEG.

Access of its data is with H@ H! and H, etc.

24.3 List space

The value in the data field of colon definitions is a pointer to a

list of compiled execution tokens (the essence of Forth) that are

interpreted one by one by the NEXT macro (in native code Forths

this list can be a series of machine code calls and other machine

code). This list is placed in another memory space, the

list segment.

In the list space are also placed literal numbers and inline

strings compiled by ." .

Literal numbers have a preceding execution token that will push

the inline value on the stack.

The value of the list space is in the ES register and is returned

by the word LSEG. Access is with L@ L! and L, etc.

24.4 String space

Strings compiled by ABORT" S" and C" have a pointer in the list

segment that points to the address of the string in the code

segment, where the strings themselves are compiled, so on

execution the strings can be TYPEd CMOVEd and COUNTed. Direct

execution of S" will still compile the string in the a special

area in the code space due to the word FLYER and execute them

immediately afterwards to place the address and length on the

stack. This area is 1024 bytes large and will accept up to four

256 byte long strings and more if they are shorter, there is an

overflow area of 256 bytes at the end.

148 CHAPTER 24. CHFORTH INTERNALS

24.5 Stack space

CHForth has three stacks.

- The first is the data stack, normally called simply the stack

where numbers, execution tokens and flags are stored. Access is

with DUP SWAP DROP PICK ROLL and so forth. The number of

elements on the stack is given by DEPTH .

- The second is the return stack, called so because its function

is mainly to keep return addresses when nesting occurs by

entering colon definitions. It also contains information for

do-loops, for-next loops and can temporary be used by words as

>R and R> to transfer values from the data stack to the return

stack and vice versa.

- The third stack is only used to store local variables. No

operators to access this stack apart from the local variables

themselves are available.

The value of the stack space is in the SS register and is

contained in the variable STKSEG in the INTERNAL word list. As it

is not necessary to access the stacks directly, no special

accessing words are given. For this the words PICK and ROLL are

provided. Never use constructs from other Forths as: : EMIT SP@

1 TYPE DROP ; This will definitely not work!

24.6 DOS space

DOS reserves a segment to store the environment strings when a

program is loaded. See chapter 21.

Access of the memory outside of CHForth is provided by the word

SEGMENT . It needs a number of paragraphs (16 byte chunks) on the

stack and a name. Using the name gives access to an array of 3

cells of which the first gives the value of the segment in the

640 Kb that is available for DOS. In the second cell is the

number of paragraphs. The area is automatically returned to DOS

when you forget this word. When have filled the area with data

you can place a value giving the size of the area in paragraphs

24.6. DOS SPACE 149

and put it in the third cell. When you save the program, the data

will also be saved and will later be available if you execute the

program. Of course the value of the segment can then be

different, but that is because DOS assigns segments to its memory

allocation. Data is accessed by @X !X COUNTX etc. where the

appendix -X is short for extended address. The extended address

is always in the form segment-offset, where the low word is the

segment and the high word is the offset.

Example:

$100 SEGMENT MYDATA \ Allocate $100*$10 (4096) bytes.

MYDATA @ \ Get the segment

0 \ An offset

MYDATA CELL+ @ \ the size

PARAGRAPHS \ convert it to byte count

DUMPX \ dump it

1234 MYDATA @ 20 !X \ store some data in it

(FORGET MYDATA) \ Return the area to DOS

700 #PARAGRAPHS \ Convert to paragraphs

MYDATA 2 CELLS + ! \ Keep 700 bytes when you save this

SAVE MYPROG \ Save CHForth along with MYDATA

150 CHAPTER 24. CHFORTH INTERNALS

Chapter 25

Alphabetical index of words

! "store" FORTH

(x a-addr --)

Store x at a-addr.

!CSP "store-c-s-p" EXTRA

(--)

Save the current depth of the stack for checking with ?CSP .

!X "store-x" EXTRA

(x x-addr --)

Store x at extended address x-addr.

", "quote-comma" EXTRA

("ccc<">" --)

Parse ccc delimited by ’"’ (double quote) and compile it as a

counted string in the dictionary. Execution of HERE just before

the execution of ", will give the address of the string.

"number-sign" FORTH

(ud1 -- ud2)

Divide ud1 by the number in BASE giving the quotient ud2 and the

remainder n. (n is the least-significant digit of ud1). Convert n

to external form and add the resulting character to the beginning

of the pictured numeric output string. An ambiguous condition

exists if # executes outside of a <# #> delimited number

conversion.

See also: #> #S <#

#> "number-sign-greater" FORTH

151

152 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

(xd -- c-addr u)

Drop xd. Make the pictured numeric output string available as a

character string. c-addr and u specify the resulting character

string. A Standard Program may replace characters within the

string.

See also: # #S <#

#CELLS "number-cells" EXTRA

(n1 -- n2)

n2 is the minimum number of cells needed to store n1 characters.

#CHARS "number-chars" EXTRA

(n1 -- n2)

n2 is the minimum number of address units needed to store n1

characters.

#CPU "number-c-p-u" EXTRA

(-- a-addr)

a-addr is the address of a cell containing the processor type,

allowed values are 86 and 386.

#LINES "number-lines" EXTRA

(-- addr)

A variable containing the number of the current line of the

current file.

#PARAGRAPHS "number-paragraphs" EXTRA

(n1 -- n2)

n2 is the minimum number of paragraphs needed to store n1

characters.

#S "number-sign-s" FORTH

(ud1 -- ud2)

Convert one digit of ud1 according to the rule for # . Continue

conversion until the quotient is zero. An ambiguous condition

exists if #S executes outside of a <# #> delimited number

conversion.

See also: # #> <#

#TIB "number-t-i-b" FORTH

(-- a-addr)

a-addr is the address of a cell containing the number of

characters in the terminal input buffer.

153

Note: this word is obsolescent and is included as a concession

to existing implementations.

$ ASSEMBLER

(x --)

Jump to an assembler label.

$: ASSEMBLER

(x --)

Define an assembler label.

$COMPILE "string-compile" EXTRA

(c-addr u --)

Try to find the name c-addr u in the search order and when

found execute it or compile it according to the flag returned

by FIND . Else try to convert the string to a number and

compile it. Else issue a warning that the word can not be

found and compile a forward reference to it.

$ELSE ASSEMBLER

(--)

Jump to after $THEN .

$IF386 ASSEMBLER

(--)

If #CPU does not contain 386 jump to after $ELSE or $THEN .

Else continue.

$INTERPRET "string-interpret" EXTRA

(c-addr u --)

Try to find the name c-addr u in the search order and execute

it when found else convert the string to a number and place it

on the stack. Else abort with an exception message.

$THEN ASSEMBLER

(--)

Terminate a $IF386 directive.

&EXEC: "and-exec-colon" EXTRA

(x1 x2 --)

Perform a bitwise AND on the two numbers on the stack and use the

result as an index into the inline execution array and execute

154 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

the execution token stored there.

’ "tick" FORTH

("name" -- xt)

Skip leading space delimiters. Parse name delimited by a space.

Find name and return xt, the execution token for name. Exception

-13 occurs if name is not found.

When interpreting ’ name EXECUTE is equivalent to name.

See also: POSTPONE [’]

’ACCEPT EXTRA

(-- a-addr)

a-addr is the address of a cell that contains the execution

token of the routine that is executed by ACCEPT .

’COMPILE "tick-compile" EXTRA

(c-addr u --)

A word that normally executes $COMPILE .

’INTERPRET "tick-interpret" EXTRA

(c-addr u --)

A word that normally executes $INTERPRET .

’NAME "tick-name" EXTRA

(-- addr)

Contains the name of the current file.

("paren" FORTH

("ccc<paren>" --)

Parse ccc delimited by a right parenthesis ")". (is immediate.

The number of characters in ccc may be zero to the number of

characters in the parse area.

When parsing from a text file, if the end of the parse area is

reached before a right parenthesis is found, refill the input

buffer from the next line of the file, set >IN to zero, and

resume parsing, repeating this process until either a right

parenthesis is found or the end of the file is reached.

(* EXTRA

155

(--)

Repeatedly skip leading spaces, parse and discard space-delimited

words from the parse area, until the word *) has been parsed and

discarded. If the parse area becomes exhausted, it is refilled as

with REFILL . (* is immediate.

An ambiguous condition exists if (* is POSTPONEd. If the end of

the input stream is reached and cannot be refilled before the

terminating *) is parsed, exception -533 occurs.

(.) "paren-dot" EXTRA

(n -- c-addr u)

Convert n to a numeric output string with a leading minus sign if

n is negative.

(.HEAD) "paren-dot-head" EXTRA

(dea -- c-addr u)

c-addr u specify a character string that represents the name of

the definition with dictionary entry address dea. If dea is zero

the string contains "{NoName}" and when the name is found but the

length of it is zero, the string contains "{NullName}". u is

limited to 31.

(.T0) "paren-dot-t-zero" EXTRA

(-- c-addr u)

c-addr u specify a string containing the time elapsed since the

last execution of TIMER-RESET in the format of a numeric string

with three digits after the decimal point.

See also: .ELAPSED

(D.) "paren-d-dot" EXTRA

(d -- c-addr u)

Convert d to a numeric output string with a leading minus sign if

d is negative.

(DATE) "paren-date" EXTRA

(-- c-addr u)

c-addr u specify a character string containing the date in the

format "Month day, year".

See also: .DATE

(EMIT) "paren-emit" EXTRA

(char --)

156 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

Type the character on the output device, default action of EMIT .

(EXIT) "paren-exit" EXTRA

(--) (R: nest-sys --)

End the current definition, an alias for EXIT compiled by ; .

(FORGET) "paren-forget" EXTRA

(xt --)

Forget the definition with execution token xt.

(LINE) "paren-line" EXTRA

(n u1 -- c-addr u2)

Give the address c-addr and length u2 of the line n of the block

u1.

(LOCAL) "paren-local-paren" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (c-addr u --)

When executed during compilation, (LOCAL) passes a message to

the Forth system that has one of two meanings. If u is

non-zero, the message identifies a new local whose word name

is given by the string of characters identified by c-addr u.

If u is zero, the message is ’last local’ and c-addr has no

significance. The result of executing (LOCAL) during

compilation of a definition is to create a set of named local

identifiers, each of which is a word name, that have execution

semantics within the scope of that definition’s source only.

local Execution: (-- x)

Push the local’s value, x, onto the stack. An ambiguous

condition exists when (LOCAL) is executed while in interpret

state.

Note: This word is not intended for direct use in a definition

to declare that definition’s locals. It is instead used by

system or user compiling words. These compiling words in turn

define their own syntax, and may be used directly in

definitions to declare locals.

(NUMBER?) "paren-number-question" EXTRA

157

(c-addr u -- 0 | n 1 | d 2)

Convert a string to a number. If it fails, return a false flag.

Otherwise return a single number with a flag of 1 and a double

number with a flag of 2. The number is negative if prefixed by

’-’. CHForth allows decimal numbers to be prefixed by ’#’ ,

hexadecimal numbers by ’$’ and binary numbers by ’%’ . These may

be followed by ’-’ to signify negative numbers. Single characters

are converted to single precision number when prefixed by ’&’ or

when they are enclosed by ’’’. Uppercase letters can be converted

to the corresponding control characters when prefixed by ’^’.

(REF) "paren-ref" REF

(addr --)

Find compiled references in colon definitions of addr in all word

lists. Display the words where the references occur and the count

of the words where the references are found.

(SEE) DECOMPILER

(xt --)

Decompile the definition that has xt as its execution token.

(SHORTDATE) "paren-shortdate" EXTRA

(-- c-addr u)

c-addr u specify a character string containing the date in the

format "dd mmm yy".

See also: (DATE) .SHORTDATE

(TIME) "paren-time" EXTRA

(-- c-addr u)

c-addr u specify a character string containing the time in the

format "hh:mm:ss".

See also: .TIME

(VIEW) VIEW

(addr --)

Display data starting from addr.

* "star" FORTH

(n1|u1 n2|u2 -- n3|u3)

Multiply n1|u1 by n2|u2 giving product n3|u3.

*/ "star-slash" FORTH

(n1 n2 n3 -- n4)

158 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

Multiply n1 by n2 producing the double-cell intermediate result

d. Divide d by n3, giving the single-cell quotient n4. Exception

-10 is issued if n3 is zero or if the quotient n4 lies outside

the range of a single-cell signed integer. If d and n3 differ in

sign the result returned will be the same as returned by the

phrase >R M* R> SM/REM SWAP DROP . Note that other

implementations of the ANSI standard may return the result of the

phrase >R M* R> FM/MOD SWAP DROP .

*/MOD "star-slash-mod" FORTH

(n1 n2 n3 -- n4 n5)

Multiply n1 by n2 producing the double-cell intermediate result

d. Divide d by n3, giving the single-cell remainder n4 and the

single-cell quotient n5. Exception -10 is issued if n3 is zero or

if the quotient n5 lies outside the range of a single-cell signed

integer. If d and n3 differ in sign the result returned will be

the same as returned by the phrase >R M* R> SM/REM . Note that

other implementations of the ANSI standard may return the result

of the phrase >R M* R> FM/MOD .

+ "plus" FORTH

(n1|u1 n2|u2 -- n3|u3)

Add n2|u2 to n1|u1, giving the sum n3|u3.

+! "plus-store" FORTH

(n|u a-addr --)

Add n|u to the single-cell number at a-addr.

+!X "plus-store-x" EXTRA

(n|u x-addr --)

Add n|u to the single-cell value at extended address x-addr.

+LOOP "plus-loop" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: do-sys --)

Append the execution semantics given below to the current

definition. Resolve the destination of all unresolved occurrences

of LEAVE between the location given by do-sys and the next

location for a transfer of control, to execute the words

following +LOOP.

159

Execution: (n --) (R: loop-sys1 -- | loop-sys2)

Loop control parameters must be available. Add n to the loop

index. If the loop index was did not cross the boundary between

the loop limit minus one and the loop limit, continue execution

at beginning of the loop. Otherwise discard the current loop

control parameters and continue execution immediately following

the loop.

See also: DO I LEAVE

+TO "plus-to" EXTRA

Interpretation: (n|u "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Add n|u to name. Exception -32 occurs if name was not defined by

VALUE or VARIABLE .

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -32 occurs if name was not defined by VALUE

, VARIABLE or (LOCAL).

Run-time: (x --)

Add n|u to name.

, "comma" FORTH

(x --)

Reserve one cell of data space and store x in the cell. If the

data space pointer is aligned when , begins execution, it will

remain aligned when , finishes execution.

,EDIT EDITOR

(u "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Open file name with the editor program and place the cursor at

line u. When name is omitted, the last opened file by this

command or EDIT LIST or WHAT is opened and name is displayed on

the right of the status line. The default extension is taken from

FEXT$.

- "minus" FORTH

(n1|u1 n2|u2 -- n3|u3)

Subtract n2|u2 from n1|u1, giving the difference n3|u3.

160 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

-- EXTRA

("ccc<eol>" --)

If BLK contains zero, parse and discard the remainder of the

parse area; otherwise parse and discard the portion of the parse

area corresponding to the remainder of the current line. -- is an

immediate word.

-R "minus-r" EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(--) (R: x --)

Remove x from the return stack.

-ROT "minus-rote" EXTRA

(x1 x2 x3 -- x3 x1 x2)

Rotate the top three stack items. Equivalent to ROT ROT .

-S "minus-s" STACK

(--)

(S: x --)

Drop the top number of the auxiliary stack. An alias for

S>DROP .

-TRAILING "dash-trailing" FORTH

(c-addr u1 -- c-addr u2)

If u1 is greater than zero, u2 is equal to u1 less the number of

spaces at the end of the character string specified by c-addr u1.

If u1 is zero or the entire string consists of spaces, u2 is

zero.

. "dot" FORTH

(n --)

Display n in free field format.

." "dot-quote" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("ccc<quote>" --)

Parse characters ccc delimited by " (double-quote). Append the

161

run-time semantics specified below to the current definition.

Run-time: (--)

Display ccc.

See also: .(

.("dot-paren" FORTH

("ccc<paren>" --)

Parse and display ccc delimited by a right parenthesis ")". .(is

immediate.

See also: ."

.DATE "dot-date" EXTRA

(--)

Display the date in the format "Month day, year".

See also: (DATE) .SHORTDATE .TIME

.DEC "dot-decimal" EXTRA

(n --)

Display n as a signed decimal number.

See also: .HEX

.ELAPSED "dot-elapsed" EXTRA

(--)

Display the elapsed time as specified by (.T0) followed by the

string " seconds elapsed.".

See also: (.T0) .MS TIMER-RESET

.FREE "dot-free" EXTRA

(--)

Display the value of the three dictionary pointers and the free

space in their respective segments.

.HEAD "dot-head" EXTRA

(dea --)

If the length of the name associated with the dictionary entry

address dea does not fit on the current line, perform a CR . Type

the name and wait for the time in milliseconds contained in

WORDSPEED .

.HEX "dot-hex" EXTRA

(u --)

162 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

Display u as a four digit hexadecimal number with a leading ’$’

character and a trailing space.

See also: .DEC H.

.LINE "dot-line" EXTRA

(n u --)

Type line n of block u.

.ME "dot-me" EXTRA

(--)

Display the full path and name of the Forth program.

.MESS EXTRA

(n --)

Display the message that is assigned to exception number n as

with MESS" . If the message is not found, display the exception

number and the name of the word where the exception occured. If n

is -1 or -2 nothing is displayed. Store the number in ERR# .

.MODULES EXTRA

(--)

Display the list of words that are created by MARKER .

.MS "dot-m-s" EXTRA

(--)

Display the elapsed time as specified by (.T0) followed by the

string " seconds.".

See also: (.T0) .ELAPSED TIMER-RESET

.R "dot-r" FORTH

(n1 n2 --)

Display n1 right aligned in a field n2 characters wide. If the

number of characters required to display n2 is greater than n2,

all digits are displayed with no leading spaces in a field as

wide as necessary.

.S "dot-s" FORTH

(--)

Copy and display the values currently on the data stack. Starting

on a new line, a ’(’ (left parenthesis) followed by a space is

displayed. Then follow the values on the stack, when BASE

contains 10, as signed numbers, unsigned otherwise. At the end a

’)’ (right parenthesis) is displayed.

163

.S is implemented using pictured numeric output words. Its use

will corrupt the transient region identified by #> .

.SEG "dot-segment" EXTRA

(u --)

Display u as a four character string if it corresponds to a

segment in CHForth else as a four digit hexadecimal string.

.SHORTDATE "dot-shortdate" EXTRA

(--)

Display the date in the format "dd mmm yy".

See also: (SHORTDATE) MONTHS

.SIGNON "dot-signon" EXTRA

(--)

Display the signon message. It will contain the name of the

program, the version number and the name of the author.

.STATUS "dot-status" EXTRA

(--)

Display the statusline at the top of the screen.

.TIME "dot-time" EXTRA

(--)

Display the time in the format "hh:mm:ss".

See also: (TIME) .DATE

.VOCNAME "dot-vocname" EXTRA

(wid --)

Display the name of the word list identification wid.

See also: .HEAD

.WHERE EXTRA

(--)

If the last exception occurred during loading of a file, display

the name of the file and the line number where the exception

occurred.

.WORDLISTS EXTRA

(--)

Display the word lists that have a name, those who have been

created with VOCABULARY .

164 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

/ "slash" FORTH

(n1 n2 -- n3)

Divide n1 by n2, giving the single-cell quotient n3. Exception

-10 is issued if n1 is zero. If n1 and n2 differ in sign the

result returned will be the same as returned by the phrase >R S>D

R> SM/REM SWAP DROP . Note that other implementations of the ANSI

standard may return the result of the phrase >R S>D R> FM/MOD

SWAP DROP .

/LINE "per-line" EXTRA

(-- n)

n is the maximum number of characters on an input line.

/MOD "slash-mod" FORTH

(x1 x2 -- x3 x4)

Divide n1 by n2, giving the single-cell remainder n3 and the

single-cell quotient n4. Exception -10 is issued if n1 is zero.

If n1 and n2 differ in sign the result returned will be the same

as returned by the phrase >R S>D R> SM/REM . Note that other

implementations of the ANSI standard may return the result of the

phrase >R S>D R> FM/MOD .

/STRING "slash-string" FORTH

(c-addr1 u1 n -- c-addr2 u2)

Adjust the character string at c-addr1 by n characters. The

resulting character string, specified by c-addr2 u2, begins at

c-addr1 plus n characters and is u1 minus n characters long.

0< "zero-less" FORTH

(n -- flag)

flag is true if and only if n is less than zero.

0<> "zero-not-equals" FORTH

(x -- flag)

flag is true if and only if x is not equal to zero.

0= "zero-equals" FORTH

(x -- flag)

flag is true if and only if x is equal to zero.

0> "zero-greater" FORTH

(n -- flag)

165

flag is true if and only if n is greater than zero.

1+ "one-plus" FORTH

(n1|u1 -- n2|u2)

Add 1 to n1|u1 giving the sum n2|u2.

1- "one-minus" FORTH

(n1|u1 -- n2|u2)

Subtract 1 from n1|u1 giving the difference n2|u2.

2! "two-store" FORTH

(x1 x2 a-addr --)

Store the cell pair x1 x2 at a-addr with x2 at a-addr and x1 at

the next consecutive cell. It is equivalent to the sequence SWAP

OVER ! CELL+ ! .

See also: 2@

2!X "two-store-x" EXTRA

(x1 x2 x-addr --)

Store the cell pair x1 x2 at extended address x-addr with x2 at

x-addr and x1 at the next consecutive cell. It is equivalent to

the sequence ROT >R 2DUP R> -ROT !X CELL+ ! .

See also: 2@X

2* "two-star" FORTH

(x1 -- x2)

x2 is the result by shifting x1 one bit toward the

most-significant bit, filling the vacated least-significant bit

with zero.

2, "two-comma" EXTRA

(x1 x2 --)

Reserve space for two cells in the data space and store x2 in

the first cell and x1 in the second.

2/ "two-slash" FORTH

(x1 -- x2)

x2 is the result of shifting x1 one bit toward the

least-significant bit, leaving the most-significant bit

unchanged.

2>R "two-to-r" FORTH

Interpretation: (i*x --)

166 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(x1 x2 --) (R: -- x1 x2)

Transfer cell pair x1 x2 to the return stack. Semantically

equivalent to SWAP >R >R .

See also: >R 2R> 2R@ R> R@

2>S

"two-to-s" STACK

(x1 x2 --)

(S: -- x1 x2)

Push a pair of numbers numbers on the auxiliary stack.

2@ "two-fetch" FORTH

(a-addr -- x1 x2)

Fetch the cell pair x1 x2 stored at a-addr. x2 is stored at

a-addr and x1 at the next consecutive cell. It is equivalent to

the sequence DUP CELL+ @ SWAP @ .

See also: 2!

2@X "two-fetch-x" EXTRA

(x-addr -- x1 x2)

Fetch the cell pair x1 x2 stored at extended address x-addr. x2

is stored at x-addr and x1 at the next consecutive cell. It is

equivalent to the sequence 2DUP CELL+ @X -ROT @X .

See also: 2!X

2CONSTANT "two-constant" FORTH

(x1 x2 "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below. name is referred to as a "two-constant."

name Execution: (-- x1 x2)

Place cell pair x1 x2 on the stack.

2DROP "two-drop" FORTH

(x1 x2 --)

Drop cell pairs x1 x2 from the stack.

2DUP "two-dupe" FORTH

(x1 x2 -- x1 x2 x1 x2)

167

Duplicate cell pair x1 x2.

2LITERAL "two-literal" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (x1 x2 --)

Append the run-time semantics defined below to the current

definition.

Run-time: (-- x1 x2)

Place cell pair x1 x2 on the stack.

2NIP "two-nip" EXTRA

(x1 x2 x3 x4 -- x3 x4)

Drop the first cell pair below the top cell pair of the stack.

2OVER "two-over" FORTH

(x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2)

Copy cell pair x1 x2 to the top of the stack.

2R> "two-r-from" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(-- x1 x2) (R: x1 x2 --)

Transfer the cell pair x1 x2 from the return stack. Semantically

equivalent to R> R> SWAP .

See also: >R 2>R 2R@ R> R@

2R@ "two-r-fetch" FORTH

(-- x1 x2) (R: x1 x2 -- x1 x2)

Copy cell pair x1 x2 from the returnstack. Semantically

equivalent to R> R> 2DUP >R >R SWAP .

See also: >R 2>R 2R> R> R@

2ROT "two-rote" FORTH

(x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2)

Rotate the top three cell pairs on the stack bringing cell pair

x1 x2 to the top of the stack.

168 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

2S> "two-s-from" STACK

(-- x1 x2)

(S: x1 x2 --)

Pop a pair of numbers numbers from the auxiliary stack.

2SWAP "two-swap" FORTH

(x1 x2 x3 x4 -- x3 x4 x1 x2)

Exchange the two top cell pairs.

2VARIABLE "two-variable" FORTH

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below. Reserve two consecutive cells in data space at an aligned

address. name is referred to as a "two-variable."

name Execution: (-- a-addr)

a-addr is the address of the first (lowest address) cell of

two consecutive reserved cells in data space. A program is

responsible for initializing the contents of the reserved cells.

See also: VARIABLE

: "colon" FORTH

(C: "name" -- colon-sys)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name called a "colon definition". Enter

compilation state and start the current definition, producing

colon-sys. Append the execution semantics given below to the

current definition.

The execution semantics of name will be determined by the words

compiled into the body of the definition. The current definition

definition for name is not findable in the dictionary until it is

ended. If the contents of the variable POSTFIX is true, name is

not parsed from the input buffer but it is taken from the

c-addr/u combination on the stack. Note that this is not an ANSI

required feature and is thus not portable.

Initiation: (i*x -- i*x) (R: -- nest-sys)

Save nest-sys (a single-cell address) of the calling definition.

The stack effects i*x represent arguments to name.

169

name Execution: (i*x -- j*x)

Execute the definition name. The stack effects i*x and j*x

represent arguments to and results from name, respectively.

See also: DOER: DOES> [] ;CODE

:NONAME "colon-no-name" FORTH

(C: -- colon-sys) (S: -- xt)

Create an execution token xt, enter compilation state and start

the current definition, producing colon-sys. Append the execution

semantics below to the current definition.

The execution semantics of xt will be determined by the words

compiled into the body of the definition. The definition can be

executed later by xt EXECUTE .

colon-sys is the topmost item on the data stack.

Initiation: (i*x -- i*x) (R: -- nest-sys)

Save nest-sys (a single cell address) of the calling definition.

The stack effects i*x represent arguments to xt.

xt Execution: (i*x -- j*x)

Execute the definition specified by xt. The stack effects i*x and

j*x represent arguments to and results from xt, respectively.

See also: : DOES> ; ;CODE] [

; "semicolon" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: colon-sys --)

Append the execution semantics defined below to the current

definition. End the current definition, allow it to be found in

the dictionary and enter interpretation state, consuming

colon-sys. The data space pointer is left aligned.

Execution: (--) (R: nest-sys --)

Return to the calling definition specified by nest-sys.

;CODE ASSEMBLER

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

170 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

exception -14 when an attempt is made to execute this word.

Compilation: (C: colon-sys --)

Append the execution semantics defined below to the current

definition. End the current definition, consuming colon-sys,

enter interpret state, add the ASSEMBLER word list to the search

order and start interpreting the rest of the parse area and

assemble machine code. If needed, refill the input buffer until

END-CODE is processed.

Execution: (--) (R: nest-sys --)

Replace the execution semantics of the most recently defined word

with the name execution semantics given below. Return control to

the calling definition specified by nest-sys. An ambiguous

condition exists if the most recently defined word was not

defined with CREATE or a user-defined word that calls CREATE .

name Execution: (i*x -- j*x)

Perform the machine code sequence that was generated following

;CODE .

See also: DOERCODE DOES> END-CODE

< "less-than" FORTH

(n1 n2 -- flag)

flag is true if and only if n1 is less than n2.

See also: U<

<# "less-number-sign" FORTH

(--)

Initialize the pictured numeric output conversion process.

See also: # #> #S

<> "not-equals" FORTH

(x1 x2 -- flag)

flag is true if and only if x1 is not bit-for-bit the same as x2.

<NL "indent-backward" EXTRA

(--)

Decrement INDENT with eight and perform NL .

= "equals" FORTH

(x1 x2 -- flag)

flag is true if and only if x1 is bit-for-bit the same as x2.

171

> "greater-than" FORTH

(n1 n2 -- flag)

flag is true if and only if n1 is greater than n2.

See also: U>

>< "flip" EXTRA

(x1 -- x2)

See: FLIP

>BODY "to-body" FORTH

(xt -- a-addr)

a-addr is the data field address corresponding to execution token

xt. This is only valid for words defined via CREATE .

>CALL "to-call" EXTRA

(xt1 -- xt2)

xt2 is the execution token of the DOES> part of the defining word

of an execution token xt1.

>HEAD "to-head" EXTRA

(xt -- dea)

dea is the dictionary entry address that is associated with

execution token xt. If this fails, dea is zero.

>IN "to-in" FORTH

(-- a-addr)

a-addr is the address of a cell containing the offset in

characters from the start of the input buffer to the start of

the parse area.

>NL "indent-forward" EXTRA

(--)

Increment INDENT with eight and perform NL .

>NUMBER "to-number" FORTH

(ud1 c-addr1 u1 -- ud2 c-addr2 u2)

ud2 is the unsigned result of converting the characters within

the string specified by c-addr1 u1 into digits, using the number

in BASE , and adding each into ud1 after multiplying ud1 by the

number in BASE . Conversion continues left-to-right until a

character that is not convertible, including any "+" or "-" is

encountered or the string is entirely converted. c-addr2 is the

172 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

location of the first unconverted character or the first

character past the end of the string if the string was entirely

converted. u2 is the number of unconverted characters in the

string. An ambiguous condition exists if ud2 overflows during the

conversion.

>R "to-r" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(x --) (R: -- x)

Move x to the return stack.

See also: R> R@ 2>R 2R> 2R@

>S "to-s" STACK

(x --) (S: -- x)

Push a number on the auxiliary stack.

>UPC "to-u-p-c" EXTRA

(char1 -- char2)

Convert char1 to uppercase.

? "question" FORTH

(a-addr --)

Display the value stored at a-addr.

?AT "question-at" EXTRA

(-- u1 u2)

Return the column u1 and row u2 of the cursor on the screen.

?CSP "question-c-s-p" EXTRA

(--)

Check the current depth of the stack with the one stored by !CSP

Exception -29 will occur when they do not match.

?DEF "query-defined" EXTRA

("name" -- flag)

Skip leading space delimiters. Parse name delimited by a space.

Find name. If name is found, flag is true, false otherwise.

See also: ?UNDEF

?DO "question-do" FORTH

173

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: -- do-sys)

Place do-sys on the control flow stack. Append the execution

semantics given below the current definition. The semantics are

incomplete until resolved by a consumer of do-sys such as LOOP .

Execution: (n1|u1 n2|u2 --) (R: -- loop-sys)

If n1|u1 is equal to n2|u2, continue execution at the location

given by the consumer of do-sys. Otherwise set up loop control

parameters with index n2|u2 and limit n1|u1 and continue

executing immediately following ?DO . Anything already on the

return stack becomes unavailable until the loop control

parameters are discarded. An ambiguous condition exists if n1|u1

and n2|u2 are not both of the same type.

See also: +LOOP DO I LEAVE LOOP UNLOOP

?DUP "question-dupe" FORTH

(x -- 0 | x x)

Duplicate x if it is non-zero.

?ERROR "question-error" EXTRA

(x n --)

If x is not zero, exception n occurs. Else drop both numbers

from the stack and continue.

?HEAD "query-head" EXTRA

(dea --)

If the remaining of the current line is less than sixteen,

perform CR . When the cursor is not a at column dividable by 16,

emit spaces until the column is dividable by 16. Display the name

associated with the dictionary entry address dea and wait for the

time in milliseconds in WORDSPEED .

?LEAVE "question-leave" EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(flag --) (R: loop-sys -- | loop-sys)

If flag is true, discard the current loop control parameters. An

174 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

ambiguous condition exists if they are unavailable. Continue

execution immediately following the innermost syntactically

enclosing DO ... LOOP or DO ... +LOOP . Otherwise continue.

See also LEAVE LOOP

?PAIRS "question-pairs" EXTRA

(x1 x2 --)

Check x1 and x2. Exception -22 occurs when they are not equal.

?STACK "question-stack" EXTRA

(--)

Check the three stack pointers and when they are too low or

too high, exception -3, -4, -5, -6, -522 or -523 will occur.

?UNDEF "query-undefined" EXTRA

("name" -- flag)

Skip leading space delimiters. Parse name delimited by a space.

Find name. If name is found, flag is false, true otherwise.

See also: ?DEF

@ "fetch" FORTH

(a-addr -- x)

Fetch x, x is the value stored at a-addr.

@+ "fetch-plus" EXTRA

(a-addr1 -- a-addr2 x)

Fetch x from a-addr1. Add 1 CELLS to a-addr1 giving a-addr2.

@X "fetch-x" EXTRA

(x-addr -- x)

Fetch x, x is the value stored at extended address x-addr.

ABORT FORTH

(i*x --) (R: j*x --)

Perform the function of -1 THROW . When no other exception frame

is present other than the one pushed by QUIT , empty the stacks

and perform QUIT . When no file is currently open, display no

message. Otherwise, contrary to the Standard, display some

information about the file and the line where ABORT was called.

Store a zero-length string in ERR$.

ABORT" "abort-quote" FORTH

Interpretation: (i*x --)

175

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("ccc<quote>" --)

Parse characters ccc delimited by " (double-quote). Append the

run-time semantics specified below to the current definition.

Run-time: (i*x x1 -- | i*x) (R: j*x -- | j*x)

Remove x1 from the stack. If any bit of x1 is not zero, perform

the function of -2 THROW . The default interpreter will display

ccc. The address of the counted string ccc can be found in ERR$,

but is only valid for a limited time.

ABS "abs" FORTH

(n -- u)

u is the absolute value of n.

ACCEPT FORTH

(c-addr +n1 -- +n2)

Receive a string of at most +n1 characters. An ambiguous

condition exists if +n1 is zero or greater than 32767. Display

graphic characters as they are received. A Standard Program that

depends on the presence or absence of non-graphic characters has

an environmental dependancy. The editing functions, if any, that

the system performs in order to construct the string are

implementation defined.

Input terminates when "return" is received. When "return" is

received, nothing is appended to the string, and the display is

maintained in an implementation defined way.

+n2 is the length of the string stored at c-addr.

ADR "a-d-r" EXTRA

Interpretation: ("name" -- a-addr)

Skip leading space delimiters. Parse name delimited by a space.

a-addr is the data field address of name. Exception -32 occurs if

name was not defined by VALUE .

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -32 occurs if name was not defined by VALUE

176 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

Run-time: (-- a-addr)

a-addr is the data field address of name.

AGAIN FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: dest --)

Append the execution semantics given below to the current

definition, resolving the backward reference dest.

Execution: (--)

Continue execution at the location specified by dest. If no other

control flow words are used, any program code after AGAIN will

not be executed.

See also: BEGIN

AHEAD FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: -- orig)

Put the location of a new unresolved forward reference orig onto

the control flow stack. Append the execution semantics given

below to the current definition. The semantics are incomplete

until orig is resolved (e.g., by THEN).

Execution: (--)

Continue execution at the location specified by the resolution of

orig.

ALIAS EXTRA

(xt "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the semantics defined for the

execution token xt. Attributes like IMMEDIATE and COMPILE-ONLY

are not borrowed from xt.

ALIGN FORTH

(--)

177

If the address of the next available data space location is not

aligned, reserve enough space to align it.

ALIGNED FORTH

(addr -- a-addr)

a-addr is the first aligned address greater than or equal to

addr.

ALL DECOMPILER

(--)

Decompile all words in the context word list.

See also: STOP?

ALLOC EXTRA

(u1 -- u2 ior)

Allocate u1 paragraphs of memory outside the data space. The

initial content of the allocated space is undefined. If no

exception occurs u2 is the starting segment address of the

allocated space and ior is zero. Otherwise u2 is unspecified and

ior is the I/O result code.

ALLOT FORTH

(n --)

Reserve n address units of data space.

If the data space pointer is aligned and n is a multiple of the

size of a cell when ALLOT begins execution, it will remain

aligned when ALLOT finishes execution.

ALSO ONLY

(--)

Transform the search order consisting of wid1 .. widn-1 widn

(where widn is searched first) into wid1 .. widn-1 widn widn.

An ambiguous condition exists if there are too many word lists

in the search order.

AND FORTH

(x1 x2 -- x3)

x3 is the bit-by-bit logical "and" of x1 with x2.

ANOTHER EXTRA

(-- dea true | false)

Return the next dea in the word list. Used in words as WORDS .

178 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

This word depends on the stored wid at TEMPORARY . When ANSI

does not contain zero, only words marked with ANS are

returned.

ANS EXTRA

(--)

Mark the most recently created definition as a standard word.

When the variable ANSI does not contain zero, the default

interpreter issues a warning if words that are not marked are

interpreted or compiled.

ANSI EXTRA

(-- a-addr)

a-addr is the address of a cell containing true when messages

will be given if non-standard words are encountered and false

otherwise.

ANY SEARCHER

("ccc" --)

Skip leading space delimiters. Parse ccc delimited by a space.

Search the files with extension given by HEXT$ in the directory

given by HELPPATH . Display the description of the names that

contain ccc. If a full screen is displayed, wait for the user to

press a key. Stop if the key is the escape key.

APPEND EXTRA

(c-addr1 u c-addr2 --)

Add u to the numerical value of the character at c-addr2. Store

the string specified by c-addr1 u at the character address given

by the sum of c-addr2 and the incremented numerical value of the

character at c-addr2.

APPEND-CHAR EXTRA

(char c-addr --)

Increment the numerical value of the character at c-addr by one.

Store char at the character address given by the sum of the

incremented numerical value of the character at c-addr and

c-addr.

ASSEMBLER ASSEMBLER

(--)

Replace the first word list in the search order with the

179

ASSEMBLER word list.

AT-XY "at-x-y" FORTH

(u1 u2 --)

Perform steps so that the next character displayed will appear in

column u1, row u2 of the current output device, the upper left

corner of which is row zero, column zero. It is a no-op when the

operation cannot be performed on the current output device with

the specified parameters. Note that for other implementations the

result in that case is an ambiguous condition.

ATEXIT EXTRA

(--)

A word that is executed when the program is terminated.

ATT0 "attribute-zero" EXTRA

(-- a-addr)

a-addr is the address of a cell containing the default attribute

of the characters on the screen.

ATTR "attribute" EXTRA

(-- a-addr)

a-addr is the address of a cell containing the current attribute

of the characters on the screen.

B. "b-dot" EXTRA

(u --)

Display u as a two digit hexadecimal number with a trailing

space.

See also: H.

BASE FORTH

(-- a-addr)

a-addr is the address of a cell containing the current number

conversion radix {{2..36}}.

BEEP EXTRA

(--)

Make an alarm sound on the speaker. As this is sometimes

irritating, try CLICK .

BEEPH EXTRA

(-- a-addr)

180 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

a-addr is the address of a cell containing the frequency in Hertz

of BEEP.

BEEPL EXTRA

(-- a-addr)

a-addr is the address of a cell containing the duration in

milliseconds of BEEP.

BEGIN FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: -- dest)

Put the next location for a transfer of control, dest, onto the

control flow stack.

Execution: (--)

Continue execution.

See also: REPEAT UNTIL WHILE

BIN FORTH

(x1 -- x2)

Modify the file access method x1 to additionally select a

"binary", i.e. not line oriented, file access method, giving

access method x2.

See also: R/O R/W W/O

BIOS-IO EXTRA

(--)

Set input and output to fast BIOS routines, redirection is not

supported.

See also: MS-DOS-IO

BIOS? "bios-query" EXTRA

(-- x)

A value that is true when output goes via fast BIOS and not

via slow DOS.

BL "b-l" FORTH

(-- char)

char is the character value for a space.

181

BLANK FORTH

(c-addr u --)

If u is greater than zero, store the character value for space in

u consecutive character positions beginning at c-addr.

BLINK EXTRA

(--)

Invert the blink character attribute.

BLK "b-l-k" FORTH

(-- a-addr)

a-addr is the address of a cell containing zero or the number of

the mass-storage block being interpreted. If BLK contains zero,

the input source is not a block and can be identified by

SOURCE-ID . A program may not directly alter the contents of BLK

BLOCK FORTH

(u -- a-addr)

a-addr is the address of the first character of the block buffer

assigned to mass-storage block u. Exceptions -33, -34 or -35

will occur if u is not an available block number.

If block u is already in a block buffer: a-addr is the address of

that block buffer.

If block u is not already in memory and there is an unassigned

block buffer: transfer block u from mass-storage to an

unassigned block buffer. a-addr is the address of that block

buffer.

If block u is not already in memory and there are no

unassigned block buffers: unassign a block buffer. If the

block in that buffer has been UPDATEd, transfer the block to

mass-storage and transfer block u from mass storage into the

buffer. a-addr is the address of that block buffer.

At the conclusion of the operation the block buffer pointed to

by a-addr is the current block buffer and is assigned to u.

BLOCK-CURSOR EXTRA

(--)

Set the cursor form to a block.

182 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

BODY> "body-from" EXTRA

(a-addr -- xt)

xt is execution token corresponding to the data field address

a-addr. This is only valid for a word defined via CREATE .

BOUNDS EXTRA

(n1|u1 n2|u2 -- n3|u3 n1|u1)

Add n1|u1 to n2|u2 giving n3|u3. Used for setting up DO LOOPs.

BRIGHT EXTRA

(--)

Invert the bright character attribute.

BTW DECOMPILER

("name1" "name2" --)

Skip leading space delimiters. Parse name1 delimited by a space.

Skip leading space delimiters. Parse name2 delimited by a space.

Find name1. Find name2. If any name can not be found exception

-13 occurs. Otherwise decompile all the words in the current

word list between name1 inclusive and name2 inclusive starting

with the last compiled. The order of name1 and name2 is

indifferent.

See also: STOP?

BUFFER FORTH

(u -- a-addr)

a-addr is the address of the first character of the block

buffer assigned to u. The contents of the block are

unspecified. Exceptions -34 or -35 will occur if u is not an

available block number.

If block u is already in a block buffer: a-addr is the address of

that block buffer.

If block u is not already in memory and there is an unassigned

block buffer. a-addr is the address of that block buffer.

If block u is not already in memory and there are no unassigned

block buffers: unassign a block buffer. If the block in that

buffer has been UPDATEd, transfer the block to mass-storage.

a-addr is the address of that block buffer.

183

At the conclusion of the operation the block buffer pointed to by

a-addr is the current block buffer and is assigned to u.

See also: BLOCK

BYE FORTH

(--)

Terminate the Forth program and return to the operating system

with returncode zero.

BYTES EXTRA

(-- a-addr)

a-addr is the address of a cell containing the dictionary

pointer at the last execution of SAVE or EXTEND .

C! "c-store" FORTH

(char c-addr --)

Store char at c-addr.

C!X "c-store-x" EXTRA

(c x-addr --)

Store char at extended address x-addr.

C" "c-quote" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("ccc<quote>" --)

Parse ccc delimited by " (double-quote). Append the run-time

semantics given below to the current definition.

Run-time: (-- c-addr)

Return c-addr, a counted string consisting of the characters ccc.

A standard program shall not alter the returned string.

See also: S"

C+! "c-plus-store" EXTRA

(char c-addr --)

Add char to the character at c-addr.

C+!X "c-plus-store-x" EXTRA

(char x-addr --)

Add char to the character at extended address x-addr.

184 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

C, "c-comma" FORTH

(char --)

Reserve space for one character in the data space and store char

in the space.

C/L "c-per-l" EXTRA

(-- n)

Return the number of characters on a screen line.

C0! "c-zero-store" EXTRA

(c-addr --)

Clear all bits of the character at c-addr.

C@ "c-fetch" FORTH

(c-addr -- char)

Fetch the character stored at c-addr.

C@+ "c-fetch-plus" EXTRA

(c-addr1 -- c-addr2 char)

Fetch char from c-addr1 and add 1 CHARS to c-addr1 giving

c-addr2.

C@X "c-fetch-x" EXTRA

(x-addr -- char)

Fetch the character stored at extended address x-addr.

CALL, "call-comma" EXTRA

(a-addr --)

Compile an assembler language call in the dictionary at the

data-space pointer to the address on the stack and increment the

data-space pointer to an aligned address after the instruction.

CASE FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: -- case-sys)

Mark the start of the CASE ... OF ... ENDOF ... ENDCASE

structure.

Execution: (--)

Continue execution.

185

See also: ENDCASE ENDOF OF

CASESENSITIVE EXTRA

(-- a-addr)

a-addr is the address of a cell containing false when the case of

characters is to be ignored and true when case is significant.

CAT$ EXTRA

(-- c-addr)

c-addr is the address of a counted string containing a

description of the category to which this file belongs.

CATCH FORTH

(i*x xt -- j*x 0 | i*x n)

Push an exception frame on the exception stack and then execute

the execution token xt (as with EXECUTE) in such a way that

control can be transferred to a point just after CATCH if THROW

is executed during the execution of xt.

If the execution of xt completes normally (i.e. the exception

frame pushed by this CATCH is not popped by an execution of THROW

) pop the execution frame and return zero on top of the data

stack, above whatever stack items would have been returned by xt

EXECUTE . Otherwise, the remainder of the execution semantics are

given by THROW .

CD "change-dir" EXTRA

("ccc" --)

Skip leading space delimiters. Parse ccc delimited by a space.

When ccc is the null string, display the current directory. Else

change to the directory ccc. Contrary to DOS, when a drive letter

and a colon are in front of the string, that drive will also be

made current.

CELL+ "cell-plus" FORTH

(a-addr1 -- a-addr2)

Add the size in address units of a cell to a-addr1 giving

a-addr2.

CELL- "cell-minus" EXTRA

(a-addr1 -- a-addr2)

Subtract the size in address units of a cell from a-addr1 giving

a-addr2.

186 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

CELLS FORTH

(n1 -- n2)

n2 is the size in address units of n1 cells.

CFG "c-f-g" EXTRA

(-- c-addr)

c-addr is the address of a counted string containing the name of

the configuration file.

CHAIN EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the current execution semantics of name to the current

definition. Exception -32 occurs if name was not defined by

VECTOR .

CHAR "char" FORTH

("name" -- char)

Skip leading space delimiters, Parse name delimited by a space.

Put the value of its first character on the stack.

See also: [CHAR]

CHAR+ "char-plus" FORTH

(c-addr1 -- c-addr2)

Add the size in address units of a character to c-addr1 giving

c-addr2.

CHAR- "char-minus" EXTRA

(c-addr1 -- c-addr2)

Subtract the size in address units of a character from c-addr1

giving c-addr2.

CHARS "chars" FORTH

(n1 -- n2)

n2 is the size in address units of n1 characters.

CHOOSE EXTRA

(u1 -- u2)

187

u2 is a random number less than u2.

CIRCULAR EXTRA

(n1 n2 -- n3)

Divide n1 by n2, giving the single-cell quotient n3. Exception

-10 is issued if n1 is zero. If n1 and n2 differ in sign the

result returned will be the same as returned by the phrase >R S>D

R> FM/MOD DROP .

CLEAR EXTRA

Interpretation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Store zero in name. Exception -32 occurs if name was not defined

by VALUE or VARIABLE .

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -32 occurs if name was not defined by VALUE

, VARIABLE or (LOCAL).

Run-time: (--)

Store zero in name.

CLICK EXTRA

(--)

Make a more pleasant sort of BEEP.

CLOCKOFF CLOCK

(--)

Do not show a clock on the screen.

CLOCKON CLOCK

(--)

Display a clock in the upper right corner of the screen.

CLOSE-FILE FORTH

(fileid -- ior)

Close the file identified by fileid, ior is the I/O result code.

CLOSE-LOG LOG

(--)

Close the logfile.

188 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

CMOVE "c-move" FORTH

(c-addr1 c-addr2 u --)

If u is greater than zero, copy u consecutive characters,

character-by-character and left-to-right, from c-addr1 to

c-addr2. If c-addr2 lies within the source region, memory

propagation occurs. (c-addr2 lies within the source region if

c-addr2 is not less than c-addr1 and c-addr2 is less than the

quantity c-addr1 u CHARS +).

See also: CMOVE> MOVE

CMOVE> "c-move-up" FORTH

(c-addr1 c-addr2 u --)

If u is greater than zero, copy u consecutive characters,

character-by-character and right-to-left, from c-addr1 to

c-addr2. If c-addr1 lies within the destination region, memory

propagation occurs. (c-addr1 lies within the destination region

if c-addr1 is greater than or equal to c-addr2 and if c-addr2 is

less than the quantity c-addr1 u CHARS +).

See also: CMOVE MOVE

CMOVEX "c-move-x" EXTRA

(x-addr1 x-addr2 u --)

If u is greater than zero, copy u consecutive characters,

character-by-character and left-to-right, from extended address

x-addr1 to extended address x-addr2. If x-addr2 lies within the

source region, memory propagation occurs. (x-addr2 lies within

the source region if x-addr2 is not less than x-addr1 and x-addr2

is less than the quantity x-addr1 u CHARS +).

See also: CMOVE CMOVEX>

CMOVEX> "c-move-x-up" EXTRA

(x-addr1 x-addr2 u --)

If u is greater than zero, copy u consecutive characters,

character-by-character and right-to-left, from extended address

x-addr1 to extended address x-addr2. If x-addr2 lies within the

source region, memory propagation occurs. (x-addr2 lies within

the source region if x-addr2 is not less than x-addr1 and x-addr2

is less than the quantity x-addr1 u CHARS +).

See also: CMOVE CMOVEX

CODE ASSEMBLER

("name" --)

189

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name, called a "code definition", with

the execution semantics defined below. Add the ASSEMBLER word

list to the search order and start interpreting the rest of the

parse area and assemble machine code. If needed, refill the input

buffer until END-CODE is processed.

name Execution: (i*x -- j*x)

Execute the machine code sequence that was generated following

CODE .

See also: END-CODE

COLD EXTRA

(--)

Restart the system. This is always done when a program starts

executing from DOS when it was saved by SAVE . The first time it

will process the command tail. Otherwise QUIT is performed.

COMPARE FORTH

(c-addr1 u1 c-addr2 u2 -- flag)

Compare the string specified by c-addr1 u2 to the string

specified by c-addr2 u2. The strings are compared, beginning at

the given addresses, character by character, up to the length of

the shorter string or until a difference is found. If the two

strings are identical up to the length of the shorter string, n

is zero if both strings are of equal length, minus-one of u1 is

less than u2, and one otherwise. If the two strings are not

identical up to the length of the shorter string, n is minus-one

if the first non-matching character in the string specified by

c-addr1 u1 has a lesser numerical value than the corresponding

character in the string specified by c-addr2 u2 and one

otherwise.

See also: COMPARE-UPPERCASE

COMPARE-UPPERCASE EXTRA

(c-addr1 u1 c-addr2 u2 -- flag)

Compare the string specified by c-addr1 u2 to the string

specified by c-addr2 u2. The strings are compared, beginning at

the given addresses, character by character, up to the length of

the shorter string or until a difference is found. If the two

strings are identical, where lower case characters are considered

equal to upper case characters, up to the length of the shorter

string, n is zero if both strings are of equal length, minus-one

190 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

of u1 is less than u2, and one otherwise. If the two strings are

not identical up to the length of the shorter string, n is

minus-one if the first non-matching character in the string

specified by c-addr1 u1 has a lesser numerical value, where the

value of lower case characters are converted to their upper case

equivalent values without affecting the strings themselves, than

the corresponding character in the string specified by c-addr2 u2

and one otherwise.

See also: COMPARE

COMPILE, "compile-comma" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Execution: (xt --)

Append the execution semantics of the definition represented by

xt to the execution semantics of the current word definition.

COMPILE-ONLY EXTRA

(--)

Mark the most recently created definition as a compile-only word.

The default interpreter issues exception -14 when an attempt is

made to execute the definition in interpret state.

COMSPEC EXTRA

(-- c-addr)

c-addr is the address of a counted string containing the path and

name of the command interpreter of DOS.

CONSOLE! "console-store" EXTRA

(char --)

Write char to the standard output file.

CONSOLE? "console-query" EXTRA

(-- x)

A value that is true when screen output is enabled.

CONSOLE@ "console-fetch" EXTRA

(-- char | -1)

Read character char from the standard input file. If the end of

the file is reached, return -1.

191

CONSTANT FORTH

(x "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below. name is referred to as a "constant."

name Execution: (-- x)

Place x on the stack.

CONVERT OBSOLETE

(ud1 c-addr1 -- ud2 c-addr2)

ud2 is the result of converting the characters within the text

beginning at the first character after c-addr1 into digits,

using the number in BASE , and adding each digit to ud1 after

multiplying by the number in BASE . Conversion continues until

a character that is not convertible is encountered. c-addr2 is

the location of the first unconverted character. An ambiguous

condition exists if ud2 overflows.

Note: this word is obsolescent and is included as a concession

to existing implementations. Its function is superseded by

>NUMBER .

COUNT FORTH

(c-addr1 -- c-addr2 char)

Return the character string specification for the counted string

stored at c-addr1. c-addr2 is the address of the first character

after c-addr1. u is the contents of the character at c-addr1,

which is the length in characters of the string at c-addr2.

COUNTX "count-x" EXTRA

(x-addr1 -- x-addr2 char)

Fetch char from extended address x-addr1 and add 1 CHARS to

x-addr1 giving x-addr2.

CR "c-r" FORTH

(--)

Cause subsequent output to appear at the beginning of the next

line.

CREAT$ EXTRA

(-- c-addr)

c-addr is the address of a counted string containing the name of

192 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

the creator of this file.

CREATE FORTH

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below. If the data-space pointer is not aligned, reserve enough

data space to align it. The new data-space pointer defines name’s

data field. CREATE does not allocate data space in name’s data

field.

name Execution: (-- a-addr)

a-addr is the address of name’s data field. The execution

semantics of name may be extended by using DOES> or ;CODE .

See also: DOES>

CREATE-FILE FORTH

(c-addr u x1 -- x2 ior)

Create the file named in the character string specified by c-addr

and u, and open it with file access method x1. If a file with the

same name already exists, recreate it as an empty file.

If the file was successfully created and opened, ior is zero, x2

is the fileid, and the file has been positioned at the start of

the file.

Otherwise ior is the I/O result code and x2 is an unspecified

value.

CS-PICK "c-s-pick" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(C: destu ... orig0|dest0 -- destu ... orig0|dest0 destu)

(S: u --)

Remove u. Copy destu to the top of the control-flow stack. An

ambiguous condition exists if there are less than u+1 items, each

of which shall be an orig or dest, on the control-flow stack

before CS-PICK is executed.

The control-flow stack in CHForth is implemented on the data

stack, u is the topmost item on the data stack.

193

CS-ROLL "c-s-roll" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(C: origu|destu origu-1|destu-1 ... orig0|dest0 --

origu-1|destu-1 ... orig0|dest0 origu|destu)

(S: u --)

Remove u. Rotate u+1 elements on top of the control-flow stack so

that origu|destu is on top of the control-flow stack. An

ambiguous condition exists if there are less than u+1 items, each

of which shall be an orig or dest, on the control-flow stack

before CS-ROLL is executed.

The control-flow stack in CHForth is implemented on the data

stack, u is the topmost item on the data stack.

CSEG EXTRA

(-- x)

x is the value of the combined code and data segment.

CTRL "control" EXTRA

("name" -- char)

Skip leading space delimiters, Parse name delimited by a space.

Put the value of the control character defined by its first

character on the stack. Exception -531 occurs when the character

is not in the range {’@’..’_’}.

See also: CHAR [CTRL]

CURRENT-DIRECTORY EXTRA

(-- c-addr)

c-addr is the address of a counted string containing the name of

the current DOS directory.

D* "d-star" EXTRA

(d1|ud1 d2|ud2 -- d3|ud3)

Multiply d1|ud1 by d2|ud2 giving product d3|ud3.

D+ "d-plus" FORTH

(d1|ud1 d2|ud2 -- d3|ud3)

Add d2|ud2 to d1|ud1, giving the sum d3|ud3.

D+! "d-plus-store" EXTRA

(d|ud a-addr --)

194 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

Add d|ud to the double-cell number at a-addr.

D+!X "d-plus-store-x" EXTRA

(d|ud x-addr --)

Add d|ud to the double-cell value at extended address x-addr.

D- "d-minus" FORTH

(d1|ud1 d2|ud2 -- d3|ud3)

Subtract d2|ud2 from d1|ud1, giving the difference d3|ud3.

D. "d-dot" FORTH

(d --)

Display d in free field format.

D.R "d-dot-r" FORTH

(d n --)

Display d right aligned in a field n characters wide. If the

number of characters required to display d is greater than n, all

digits are displayed with no leading spaces in a field as wide as

necessary.

D0! "d-zero-store" EXTRA

(a-addr --)

Clear all bits of the double-cell value at a-addr.

D0< "d-zero-less" FORTH

(d -- flag)

flag is true if and only if d is less than zero.

D0= "d-zero-equals" FORTH

(xd -- flag)

flag is true if and only if xd is equal to zero.

D2* "d-two-star" FORTH

(xd1 -- xd2)

xd2 is the result by shifting xd1 one bit toward the

most-significant bit, filling the vacated least-significant bit

with zero.

D2/ "d-two-slash" FORTH

(xd1 -- xd2)

xd2 is the result of shifting xd1 one bit toward the

least-significant bit, leaving the most-significant bit

195

unchanged.

D< "d-less-than" FORTH

(d1 d2 -- flag)

flag is true if and only if d1 is less than d2.

D= "d-equals" FORTH

(xd1 xd2 -- flag)

flag is true if and only if xd1 is equal to xd2.

D> "d-greater-than" EXTRA

(d1 d2 -- flag)

flag is true if and only if d1 is greater than d2.

D>S "d-to-s" FORTH

(d -- n)

n is the equivalent of d. An overflow occurs if d lies outside

the range of a signed single-cell number.

DABS "d-abs" FORTH

(d -- ud)

ud is the absolute value of d.

DATE EXTRA

(-- +n1 +n2 +n3)

Return the current date. +n1 is the day {1..31}, +n2 is the month

{1..12}, and +n3 is the year (e.g. 1991).

DB ASSEMBLER

("ccc" --)

Assemble "ccc" as an 8 bit value.

DEALLOC EXTRA

(u -- ior)

Return the contiguous region of memory outside the data space

indicated by the segment address u to the system for later

allocation. u shall indicate a region of memory outside the data

space that was previously obtained by ALLOC or REALLOC . If no

exception occurs ior is zero. Otherwise ior is the I/O result

code.

DEBUG TRACER

196 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

(-- a-addr)

A variable used in the tracer. When zero, no trace information

is shown on the screen. Else a stack diagram is shown along

with the name of the next to be executed word or the word that

was executed by the compiler (immediate words). See TRACE .

DECIMAL FORTH

(--)

Set the numeric conversion radix to ten (decimal).

DECOMPILER DECOMPILER

(--)

Replace the first word list in the search order with the

DECOMPILER word list.

DECR "decrement" EXTRA

(a-addr --)

Subtract 1 from the single-cell value at a-addr.

DEFINITIONS ONLY

(--)

Make the compilation word list the same as the first word list

in the search order. Specifies that the names of subsequent

definitions will be placed in the compilation word list.

Subsequent changes in the search order will not effect the

compilation word list.

DELETE-FILE FORTH

(c-addr u -- ior)

Delete the file named in the character string specified by c-addr

u. ior is the I/O result code.

DEPRIVE EXTRA

(--)

Hide all the words that are marked with PRIVATE .

DEPTH FORTH

(-- +n)

+n is the number of single-cell values on the data stack before

+n was placed on the stack.

DFTMODE "default-mode" EXTRA

(--)

197

Set the screen to the text mode that was current at program start.

DIAGNOSE EXTRA

(--)

Display some information over the compiled bytes since processing

the command tail.

DIGIT EXTRA

(char +n -- n1 true | char false)

Try to convert char to a digit n1 with number base +n. If the

conversion succeeds, return a true flag. Otherwise a false flag.

DIS "disassemble" DISASSEM

(addr --)

Disassemble from address addr.

DISASSEMBLER DISASSEM

(--)

Replace the first word list in the search order with the

DISASSEMBLER word list.

DISPOSE LOADHIGH

(--)

Reclaim the temporary space where the file loaded with LOADHIGH

was compiled. All the words loaded with LOADHIGH are no longer

available to the Forth system. Be sure not to use references to

the words in that file.

See also: LOADHIGH MARK

DISX "dis-extended" DISASSEM

(x-addr --)

Disassemble from extended address x-addr.

DLOCAL DLOCALS

(d "name" --)

Create a dictionary entry with name "name" and initial value d.

Executing:

(-- d)

Place the value on the stack. The value can be manipulated by

TO +TO and CLEAR .

DMAX "d-max" FORTH

198 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

(d1 d2 -- d3)

d3 is the greater of d1 and d2.

DMIN "d-min" FORTH

(d1 d2 -- d3)

d3 is the lesser of d1 and d2.

DNEGATE "d-negate" FORTH

(d1 -- d2)

d1 is the negation of d1.

DO FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: -- do-sys)

Place do-sys on the control flow stack. Append the execution

semantics given below the current definition. The semantics are

incomplete until resolved by a consumer of do-sys such as LOOP .

Execution: (n1|u1 n2|u2 --) (R: -- loop-sys)

Set up loop control parameters with index n2|u2 and limit n1|u1.

An ambiguous condition exists if n1|u1 and n2|u2 are not both the

same type. Anything already on the return stack becomes

unavailable until the loop control parameters are discarded.

See also: +LOOP LOOP

DOC EXTRA

(--)

Repeatedly skip leading spaces, parse and discard space-delimited

words from the parse area, until the word ENDDOC has been parsed

and discarded. If the parse area becomes exhausted, it is

refilled as with REFILL . DOC is immediate.

An ambiguous condition exists if DOC is POSTPONEd. If the end of

the input stream is reached and cannot be refilled before the

terminating ENDDOC is parsed, exception -532 occurs.

DOER: EXTRA

("name" --) (C: -- colon-sys)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the run-time semantics defined

199

below. Enter compilation state, and start current definition.

Run-time: (--) (R: nest-sys1 --)

Replace the execution semantics of the most recent definition,

referred to as name, with the name execution semantics given

below. Return control to the calling definition specified by

nest-sys1. Code may be damaged if the most recently defined word

was not defined with CREATE or a user-defined word that calls

CREATE .

Initiation: (i*x -- i*x a-addr) (R: -- nest-sys2)

Save implementation-dependant information nest-sys2 about the

calling definition. Place name’s data field address on the stack.

the stack effects i*x represents the arguments to name.

name Execution: (i*x -- j*x)

Execute the portion of the definition that begins with the

initiation semantics appended by the DOES> which modifies name.

The stack effects i*x and j*x represent arguments to and results

from name, respectively.

See also: CREATE DOES>

DOERCODE ASSEMBLER

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below. Enter interpret state, add the ASSEMBLER word list to the

search order and start interpreting the rest of the parse area

and assemble machine code. If needed, refill the input buffer

until END-CODE is processed.

Execution: (--) (R: nest-sys --)

Replace the execution semantics of the most recently defined word

with the name execution semantics given below. Return control to

the calling definition specified by nest-sys. An ambiguous

condition exists if the most recently defined word was not

defined with CREATE or a user-defined word that calls CREATE .

name Execution: (i*x -- j*x)

Perform the machine code sequence that was generated following

DOERCODE .

See also: DOES> END-CODE

200 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

DOES> "does" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: colon-sys1 -- colon-sys2)

Append the run-time semantics below to the current definition.

The current definition is not made findable by DOES> . Consume

colon-sys1 and produce colon-sys2. Append the initiation

semantics defined below to the current definition.

Run-time: (--) (R: nest-sys1 --)

Replace the execution semantics of the most recently definition,

referred to as name, with the name execution semantics given

below. Return control to calling definition specified by

nest-sys1. Code may be damaged if the most recently defined word

was not defined with CREATE or a user-defined word that calls

CREATE .

Initiation: (i*x -- i*x a-addr) (R: -- nest-sys2)

Save implementation-dependant information nest-sys2 about the

calling definition. Place name’s data field address on the stack.

The stack effects i*x represent arguments to name.

name Execution: (i*x -- j*x)

Execute the portion of the definition that begins with the

initiation semantics appended by DOES> which modified name. The

stack effects i*x and j*x represent arguments to and results from

name, respectively.

See also: CREATE DOER:

DOS: "dos-colon" EXTRA

(c-addr u "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a dictionary entry for name with the execution semantics

defined below.

name Executing: ("ccc" --)

Execute the DOS command specified by the character string c-addr

u and parameters ccc, terminated by the end of the line or the

character in SEPARATOR .

201

DPL "d-p-l" EXTRA

(-- a-addr)

a-addr is the address of a cell. When the last interpreted number

contained a decimal point, it will contain the number of digits

after the decimal point in that number; otherwise the contents

are -1.

DRIVE EXTRA

(n "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a dictionary entry for name with the execution semantics

defined below.

name Executing: (--)

Change the default drive number to n, n is zero for drive A:.

DROP FORTH

(x --)

Remove x from the stack.

DU< "d-u-less" FORTH

(ud1 ud2 -- flag)

flag is true if and only if ud1 is less than ud2.

DU> "d-u-greater" EXTRA

(ud1 ud2 -- flag)

flag is true if and only if ud1 is greater than ud2.

DUMP FORTH

(addr u --)

Display the contents of u consecutive addresses starting at addr.

At the beginning of the line the address is displayed, preceded

with the name of the segment, followed with the hexadecimal

contents of 16 characters and then the same characters are

displayed with SEMIT .

DUMP is implemented using pictured numeric output words. Its use

will corrupt the transient region identified by #> .

DUMPX "dump-extended" EXTRA

(x-addr u --)

Display the contents of u consecutive addresses starting at

extended address x-addr. At the beginning of the line the

202 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

extended address is displayed, followed with the hexadecimal

contents of 16 characters and then the same characters are

displayed with SEMIT .

DUMPX is implemented using pictured numeric output words. Its use

will corrupt the transient region identified by #> .

See also: DUMP

DUP "dupe" FORTH

(x -- x x)

Duplicate x.

DUP>R "dupe-to-r" EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(x -- x) (R: -- x)

Copy x to the return stack.

DUP>S "dupe-to-s" STACK

(x -- x)

(S: -- x)

Duplicate a number and push it on the auxiliary stack.

DW ASSEMBLER

("ccc" --)

Assemble "ccc" as a 16 bit value.

ECHO EXTRA

(--)

When loading echo the lines read to the screen.

ECHO? "echo-query" EXTRA

(-- x)

A value that is true when characters are echoed during loading a

text file.

EDIT EDITOR

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Open file name with the editor program and place the cursor at

203

the first line. When name is omitted, the last opened file by

this command or ,EDIT LIST or WHAT is opened and name is

displayed on the right of the status line. The default extension

is taken from FEXT$.

EDITOR ONLY

(--)

Make the EDITOR word list the first word list to be searched.

This word list contains CHForth specific extensions to the ANSI

standard for the line input editor and the block editor. Note

that these words are non-standard.

EDLIB EDITOR

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Open file name in the directory given in LIBPATH with the editor

program and place the cursor at the first line. The default

extension is taken from FEXT$.

EKEY "e-key" FORTH

(-- u)

Receive one keyboard event u. ASCII keys have bits 7 to 15 set to

zero; other keys have the scan code in bits 8 to 15 and the lower

bits set to zero. Key codes made by holding the ALT-key down and

using the numeric pad give a 8 bit code.

EKEY>CHAR "e-key-to-char" FORTH

(u -- u false | char true)

If the keyboard event u corresponds a valid 8 bit character,

return that character and true, otherwise return u and false.

EKEY? "e-key-question" FORTH

(-- flag)

If a keyboard event is available, returns true. Otherwise returns

false.

After EKEY? returns with a value of true, subsequent executions of

EKEY? prior to the execution of KEY , KEY? or EKEY also return

true, referring to the same event. The next execution of EKEY

will return the same event without indefinite delay.

ELEN EXTRA

(-- n)

204 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

n is the number of paragraphs in the environment segment.

ELSE FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: orig1 -- orig2)

Put the location of a new unresolved forward reference orig2 onto

the control flow stack. Append the execution semantics given

below to the current definition. The semantics will be incomplete

until orig2 is resolved (e.g. by THEN). Resolve the forward

reference orig1 using the location following the appended

execution semantics.

Execution: (--)

Continue execution at the location given by the resolution of

orig2.

See also: IF THEN

EMIT FORTH

(x --)

If x is a graphic character in the implementation-defined

character set, display x. The effect of EMIT for all other values

of x is implementation-defined.

Standard programs that use control characters to perform specific

functions have an environmental dependency. Each EMIT deals with

one character.

See also: TYPE

EMIT? "emit-question" FORTH

(-- flag)

flag is true if the user output device is ready to accept data

and the execution of EMIT in place of EMIT? would not have

suffered an indefinite delay. If the device status is

indeterminate, flag is true.

EMPTY EXTRA

(--)

Perform the function of FORGET on all definitions that were

compiled after the last execution of EMPTY , EXTEND or SAVE .

205

EMPTY-BUFFERS FORTH

(--)

Unassign all block buffers. Do not transfer the contents of any

UPDATEd block buffer to mass storage.

See also: BLOCK

END-CODE ASSEMBLER

(--)

Resolve all assembler labels, terminate the current code

definition and allow its name to be found in the dictionary.

Remove the ASSEMBLER word list from the search order.

END-LOCAL EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (--)

Terminate creation of local values.

END-METHODS EXTRA

(--)

Terminate defining methods.

See also: METHODS

ENDCASE FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: case-sys --)

Mark the end of the CASE ... OF ... ENDOF ... ENDCASE structure.

Use case-sys to resolve the entire structure. Append the

execution semantics given below to the current definition.

Execution: (x --)

Discard the case selector x and continue execution.

See also: CASE ENDOF OF

ENDIF EXTRA

(orig --)

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

206 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

exception -14 when an attempt is made to execute this word.

Compilation: (C: orig --)

Resolve the forward reference orig using the location of the

execution semantics.

Execution: (--)

Continue execution.

See also: ELSE IF THEN

ENDOF FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: case-sys1 of-sys -- case-sys2)

Mark the end of the ... OF ... ENDOF ... part of the CASE

structure. The next location for a transfer of control resolves

the reference given by of-sys. Append the execution semantics

given below to the current definition. Replace case-sys1 with

case-sys2 on the control flow stack, to be resolved by ENDCASE .

Execution: (--)

Continue execution at the location specified by the consumer of

case-sys2.

See also: CASE ENDCASE OF

ENVIRONMENT? "environment-query" FORTH

(c-addr u -- false | i*x true)

c-addr is the address of a character string and u is the string’s

character count. u may have a value in the range up to 255. The

character string should contain a keyword from Environmental

Queries or the optional word sets to be checked for

correspondence with an attribute of the present environment. If

the system treats the attribute as unknown, the returned flag is

false; otherwise, the flag is true and i*x returned is of the

type specified in the table for the attribute queried.

EOL "e-o-l" EXTRA

(--)

Emit spaces to clear the line on the screen beyond the cursor.

207

ERASE FORTH

(c-addr u --)

If u is greater than zero, clear all bits in each of u

consecutive address units of memory beginning at c-addr.

ERR# "error-number" EXTRA

(-- x)

Return the number of the last exception.

ERR$ "error-string" EXTRA

(-- c-addr)

Return the address of the count of the last exception string.

ERRLINE "error-line" EXTRA

(-- a-addr)

a-addr is the address of a cell containing the line number of the

file where an exception occurred.

ERRNAME "error-name" EXTRA

(-- a-addr)

a-addr is the address of a cell containing the address of the

counted string representing the name of the file where an

exception occurred.

ERROR-TYPE EXTRA

(--)

Show the type of the last exception number stored in ERR# by

.MESS . Display nothing if ERR# equals -1 or -2.

ERRORLOG ERRORLOG

(-- c-addr)

Contains the name of the logfile for compilation errors.

ESEG EXTRA

(-- x)

x is the value of the DOS environment segment.

EVALUATE FORTH

(i*x c-addr u -- j*x)

Save the current input source specification. Store minus one

in SOURCE-ID . Make the string described by c-addr and u both

the input source and input buffer, set >IN to zero, and

interpret. When the parse area is empty, restore the prior

208 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

input source specification. Other stack effects are due to the

words EVALUATEd.

EVERY EXTRA

(--)

Set a flag so that the next execution of WORDS and such words

will act on every vocabulary.

EVERY? "every-query" EXTRA

(-- flag)

flag is true if EVERY was typed in. Subsequent execution without

executing EVERY gives a false flag.

EXEC EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compiling: (--)

Append the execution semantics below to the current definition.

Executing: (c-addr a-addr --)

Load and execute the file with name specified as a zero

terminated string at c-addr and a parameter block at a-addr.

EXEC: "exec-colon" EXTRA

(x --)

Use x as an index into the inline execution array and execute

the execution token stored there.

EXECUTE FORTH

(i*x xt -- j*x)

Execute the definition specified by xt. Other stack effects are

due to the word EXECUTEd.

See also: ’ [’]

EXIT FORTH

Interpretation:

Does nothing.

Execution: (--) (R: nest-sys --)

Return control to the calling definition specified by nest-sys.

Before executing EXIT within do-loops, the loop-control

209

parameters for each loop shall be discarded.

See also: UNLOOP

EXPAND EXTRA

(c-addr1 u1 c-addr2 -- c-addr2 u2)

Copy any non-tab characters in the string specified by c-addr u1

to a string specified by c-addr2 u2. Tab characters are expanded

to spaces with a tab distance of 8 positions.

EXPECT OBSOLETE

(c-addr +n --)

Receive a string of at most +n1 characters. Display graphic

characters as they are received. A Standard Program that

depends on the presence or absence of non-graphic characters

in the string has an environmental dependancy. The editing

functions, if any, that the system performs in order to

construct the string are implementation defined.

Input terminates when "return" is received or when the string

is +n characters long. When "return" is received, nothing is

appended to the string, and the display is maintained in an

implementation defined way.

Store the string at c-addr and its length in SPAN .

Note: this word is obsolescent and is included as a concession

to existing implementations. Its function is superseded by

ACCEPT .

See also: ACCEPT

EXTEND EXTRA

(--)

Mark all definition so that they can not be forgotten.

EXTRA ONLY

(--)

Make the EXTRA word list the first word list to be searched.

This word list contains all CHForth specific extensions to the

ANSI standard. Note that these words are non-standard.

FALSE FORTH

(-- false)

210 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

Return a false flag.

FAPPEND OUTFILE

(c-addr u --)

Open an existing file and append text to it with FTYPE FCR and

FEMIT . This file is on a stack, manipulated by FOPEN /

FAPPEND and FCLOSE .

FCHARS OUTFILE

(char u --)

Write a number of chars to a file opened by FOPEN or FAPPEND .

FCLOSE OUTFILE

(--)

Close a file and return to the last one, if any, on the FOPEN

or FAPPEND and FCLOSE stack.

FCR OUTFILE

(--)

Write CR to a file opened by FOPEN / FAPPEND .

FEMIT OUTFILE

(c --)

Write a character to a file opened by FOPEN / FAPPEND .

FENCE EXTRA

(-- a-addr)

a-addr is the adress of a cell containing the dictionary pointer

since the last SAVE or EXTEND . Forgetting of words created when

the dictionary pointer was less than this value is not possible.

FEXT$ "f-ext-string" EXTRA

(-- c-addr)

c-addr is the address of a counted string containing the default

extension of Forth text files.

FILE-POSITION FORTH

(fileid -- d ior)

ud is the current file position for the file identified by

fileid. ior is the I/O result code.

FILE-SIZE FORTH

(fileid -- ud ior)

211

ud is the size, in characters, of the file identified by

fileid. ior is the I/O result code. This operation does not

effect the value returned by FILE-POSITION .

FILE-STATUS FORTH

(c-addr u -- x ior)

Return the status of the file identified by the character

string c-addr u. If the file exists, ior is zero; otherwise

ior is the I/O result code. x contains the DOS attribute of

the file.

FILL FORTH

(c-addr u char --)

If u is greater than zero, store char in each of u consecutive

characters of memory beginning at c-addr.

FILLP "fill-p" PARAGRAPHS

(x u char --)

If u is greater than zero, store char in each of u consecutive

paragraphs of characters of memory beginning at segment x.

FILLX "fill-x" EXTRA

(x-addr1 u char --)

If u is greater than zero, store char in each of u consecutive

characters of memory beginning at extended address x-addr.

FIND FORTH

(c-addr -- c-addr 0 | xt 1 | xt -1)

Find the Forth word named in the counted string at c-addr. If the

word is not found after searching all word list in the search

order, return c-addr and zero. If the definition is found, return

xt. If the definition is immediate, also return 1, otherwise

return -1.

See also: ’ [’] POSTPONE

FIND-ATTRIBUTE EXTRA

(-- x)

A value containing the attribute of files to find with

FIND-FIRST-FILE . It is reset to zero after execution of

FIND-FIRST-FILE .

FIND-FIRST-FILE EXTRA

(c-addr u -- ior)

212 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

Find the first file name matching the string specified by c-addr

u. Reset the value in FILE-ATTRIBUTE to zero. The name of the

file will be returned by FOUND-FILE . If no exception occurs, ior

is zero. Otherwise ior is the I/O result code.

FIND-METHODS EXTRA

("name" -- wid)

Skip leading space delimiters. Parse name delimited by a space.

Return the word list identification wid of the methods of name.

See also: METHODS

FIND-NEXT-FILE EXTRA

(-- ior)

Find the next file name matching the string given to

FIND-FIRST-FILE . The name of the file will be returned by

FOUND-FILE . If no exception occurs, ior is zero. Otherwise ior

is the I/O result code.

FLIP EXTRA

(x1 -- x2)

Exchange the high and low bytes of x1 giving x2.

FLUSH FORTH

(--)

Perform the function of SAVE-BUFFERS and unassign all block

buffers.

FLUSH-FILE FORTH

(fileid -- ior)

Attempt to force any buffered information written to the file

referred to by fileid to be written to mass storage, and the

size information for the file to be recorded in the storage

directory if changed. If the operation is successful, ior is

zero. Otherwise ior is the I/O result code.

FLYER EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (--)

Append the run-time semantics given below to the current

definition.

213

Run-time: (i*x -- j*x)

If STATE contains not zero, continue. Change the dictionary

pointer and list dictionary pointer to a temporary area and

compile the next words. Reset the dictionary pointers to their

prior values and execute the routine just compiled.

FM/MOD "f-m-slash-mod" FORTH

(d n1 -- n2 n3)

Divide d by n1, giving the floored quotient n3 and the remainder

n3. Input and output stack arguments are signed. Exception -10 is

issued if n1 is zero or the quotient lies outside the range of a

double-cell unsigned integer.

See also: SM/REM UM/MOD

FOPEN OUTFILE

(c-addr u --)

Create a file and append text to it with FTYPE FCR and FEMIT .

Uses the file stack created with FOPEN / FAPPEND and FCLOSE .

FORGET FORTH

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Find name in the compilation word list, then delete name from the

dictionary along with all words added to the dictionary after

name. Exception -13 occurs if name cannot be found. Exception -15

occurs if FORGET removes a word required for correct execution.

Note: this word is obsolescent and is included as a concession to

existing implementations.

Note: In CHForth words can be protected against FORGET with

EXTEND and SAVE .

FORTH FORTH

(--)

Make the FORTH word list the first word list to be searched. Note

that this word list contains at startup only ANSI-standard words.

FORTH-WORDLIST ONLY

(-- wid)

Return wid, the identifier of the word list that includes all

standard words provided by the implementation. This word list is

214 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

initially the compilation word list and is part of the initial

search order.

FORWARD ERRORLOG

(c-addr u --)

Compiled when during loading an undefined word is encountered

in a colon definition. As an alias of EVALUATE , it will

evaluate a string with the name of the unfound word. This can

be used to create forward references.

FOUND-ATTRIBUTE EXTRA

(-- char)

Return the file attribute of the last file found.

FOUND-FILE EXTRA

(-- c-addr u)

c-addr u specifies a character string containing the file name

found by the last execution of FIND-FIRST-FILE or FIND-NEXT-FILE

FROM EXTRA

Interpretation: ("name" -- x)

Skip leading space delimiters. Parse name delimited by a space.

x is the value of name. Exception -32 occurs if name was not

defined by VARIABLE .

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -32 occurs if name was not defined by

VARIABLE .

Run-time: (-- x)

x is the value of name.

FTYPE OUTFILE

(c-addr u --)

Write a string to a file opened by FOPEN / FAPPEND .

FUDGE EXTRA

(-- a-addr)

a-addr is the address of a cell containing a delay to tune MS .

The value is set in the file CHFORTH.CFG and can be changed by

the user to account for the type of CPU and the clock frequency.

215

Not available in CHForth-386.

GET EXTRA

("name" --)

Interpretation: ("name" -- wid)

Skip leading space delimiters. Parse name delimited by a space.

wid is the word list identification associated with name.

Exception -32 occurs if name was not defined by VOCABULARY .

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -32 occurs if name was not defined by

VOCABULARY .

Run-time: (-- wid)

wid is the word list identification associated with name.

GET-CONTEXT ONLY

(-- wid)

Return wid, the identifier of the first word list in the

search order.

GET-CURRENT ONLY

(-- wid)

Return wid, the identifier of the compilation word list.

GET-DIRECTORY EXTRA

(-- c-addr u ior)

Get the current directory as a character string specified by

c-addr u. The path is preceded by the drive letter and a colon.

If no exception occurs, ior is zero. Otherwise c-addr and u are

unspecified and ior is the I/O result code.

GET-FILE-TIME EXTRA

(fileid -- n1 n2 ior)

Return the time n1 and date n2 of creation of the file identified

by fileid. If no exception occurs, ior is zero. Otherwise n1 and

n2 are unspecified and ior is the I/O result code.

GET-INTERRUPT EXTRA

(n -- x-addr)

Return the extended address x-addr of the interrupt vector n.

216 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

GET-ORDER ONLY

(-- wid1 .. widn n)

Returns the number of word lists n in the search order and the

word list identifiers wid1 .. widn identifying these word

lists. widn identifies the word list searched first, and wid1

the word list that is searched last. The search order is

unaffected.

GETDISK EXTRA

(-- n)

n is the current drive number.

GETMODE EXTRA

(-- n)

n is the number of the current screen mode.

GETNAME EXTRA

("name" -- c-addr u)

Skip leading space delimiters. Parse name delimited by zero

and when the length is not zero, store it in a special

location and append the extension in FEXT$ to it. Return

c-addr u of that string. If the length of name is zero, return

the string that was stored in the location by a previous call

of GETNAME .

GETTIME EXTRA

(-- d)

d is the number of milliseconds elapsed since midnight.

GLOSS "glossary" FORTH

("fname1" "fname2" --)

Make a glossary with name2 out of the origin file name1 .

H! "h-store" EXTRA

(x h-addr --)

Store x at header address h-addr.

H, "h-comma" EXTRA

(x --)

Reserve one cell of header space and store x in the cell.

H. "h-dot" EXTRA

217

(u --)

Display u as a four digit hexadecimal number with a trailing

space.

See also: .HEX B.

H@ "h-fetch" EXTRA

(h-addr -- x)

Fetch x, x is the value stored at header address h-addr.

HALT EXTRA

(n --)

Terminate the Forth program and return to the operating system

with returncode n.

HBYTES "h-bytes" EXTRA

(-- a-addr)

a-addr is the address of a cell containing the header

dictionary pointer at the last execution SAVE or EXTEND .

HDUMP "head-dump" EXTRA

(h-addr u --)

Display the contents of u consecutive addresses starting at

header address x-addr. At the beginning of the line the extended

address is displayed, followed with the hexadecimal contents of

16 characters and then the same characters are displayed with

SEMIT .

HDUMP is implemented using pictured numeric output words. Its use

will corrupt the transient region identified by #> .

See also: DUMP DUMPX HTYPE

HEAD, "head-comma" EXTRA

(c-addr u --)

Create a dictionary entry named in the character string specified

by c-addr u, u may be zero. The name is not known to the Forth

system until REVEAL is executed. When WARNING does not contain

zero, give a warning when the name is not unique.

HEAD> "head-from" EXTRA

(dea -- xt)

xt is the the execution token that is associated with the

dictionary entry address dea.

218 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

HEAD>FLAGS "head-to-flags" EXTRA

(dea -- h-addr)

h-addr is the flag field address of the dictionary entry dea.

HEAD>FORGET "head-to-forget" EXTRA

(dea -- h-addr)

h-addr is the forget field address of the dictionary entry dea.

HEAD>NAME "head-to-name EXTRA

(dea -- h-addr)

h-addr is the name field address of the dictionary entry dea.

HEADER EXTRA

("name" | c-addr u --)

If POSTFIX is zero, skip leading space delimiters and parse name

delimited by a space; otherwise name is specified by the

character string c-addr u. Create a dictionary entry for name. If

the data-space pointer is not aligned, reserve enough data space

to align it.

HELP HELP

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Look up name in the files with extension given in HEXT$ in the

directory given by HELPPATH and display the description of name.

As a binary search on the sorted file is performed, only one

description per file is displayed. When a full screen is

displayed, wait for the user to press any key, escape stops.

Otherwise convert name to a number (the prefixes % $ # & etc. are

permitted) and display its type and decimal value and the

character if it can be displayed or display the exception message

if it is defined for the number.

HELPPATH EXTRA

(-- c-addr)

c-addr is the address of a counted string containing the path to

the help files.

See also: HELP LIBPATH

HERE FORTH

(-- addr)

addr is the data-space pointer.

219

HEX FORTH

(--)

Set the contents of BASE to sixteen.

HEXT$ "h-ext-string" EXTRA

(-- c-addr)

c-addr is the address of a counted string containing the default

extension of Forth help files.

HHERE "h-here" EXTRA

(-- h-addr)

h-addr is the header-space pointer.

HIDDEN EXTRA

(--)

Mark the most recently created definition as a hidden word.

It can not be found by words like ’ FIND and [’] .

HIDE-CURSOR EXTRA

(--)

Hide the cursor.

HIGHEST EXTRA

(-- wid dea)

Return the dictionary entry address of the newest definition with

dictionary entry address dea and the word list identification wid

in which it is compiled. Used in FORGET .

HLIMIT EXTRA

(-- h-addr)

Return the address after the last usable in the head segment.

HMEMTOP EXTRA

(-- addr)

Return the address after the last physical address in the header

segment.

HOLD FORTH

(char --)

Add char to the beginning of the pictured numeric output string.

An ambiguous condition exists if HOLD executes outside of a <# #>

delimited number conversion.

220 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

HOME EXTRA

(--)

Set the cursor on the top left of the screen.

HRESERVE EXTRA

(x --)

Reserve x address units above HHERE in the head segment to be

used by the compiler in a saved program. When x is zero, all

headers of the definitions are discarded in the saved program.

HSEG EXTRA

(-- x)

x is the value of the header segment.

HTAB "h-tab" EXTRA

(u --)

If n is greater than zero, emit spaces until the cursor is at

column u of the current user output device.

HTYPE "head-type" EXTRA

(h-addr u --)

If u is greater than zero, display the character string at the

header address h-addr for a total of u characters. The characters

are displayed as with SEMIT .

See also: HDUMP LTYPE

I FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(-- n|u) (R: loop-sys -- loop-sys)

n|u is a copy of the current (innermost) loop index. An ambiguous

condition exists if the loop control parameters are unavailable.

IF FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: -- orig)

Put the location of a new unresolved forward reference orig onto

the control flow stack. Append the execution semantics given

221

below to the current definition. The semantics are incomplete

until orig is resolved, e.g., by THEN or ELSE .

Execution: (x --)

If all bits of x are zero, continue execution at the location

specified by the resolution of orig.

See also: ELSE THEN

IMMEDIATE FORTH

(--)

Mark the most recently created definition as an immediate word.

IN EXTRA

("name" --)

Skip leading space delimiters. Parse name delimited by a space

and load the file with that name. If the length of name is

zero, load the file that was previously load with IN .

INCLUDE EXTRA

("name" --)

Skip leading delimiters. Parse name delimited by a space and

load the file with that name. The appropriate extension must

be included in name.

INCLUDE-FILE FORTH

(fileid --)

Remove fileid from the stack. Save the current input source

specification, including the current value of SOURCE-ID .

Store fileid in SOURCE-ID . Make the file specified by fileid

the input source. Store zero in BLK . Other stack effects are

due to the words INCLUDEd.

Repeat until end of file: read a line from the file, fill the

input buffer from the contents of that line, set >IN to zero,

and interpret.

Interpretation begins at the file position where the next file

read would occur.

When the end of the file is reached, close the file and

restore the input source specification to its saved value.

An ambiguous condition exists if fileid is invalid, if an I/O

222 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

exception occurs reading fileid, or an I/O exception occurs

while closing fileid. When an ambiguous condition exists, the

status (open or closed) of any files that were being

interpreted is implementation defined.

INCLUDED FORTH

(c-addr u --)

Remove c-addr u from the stack. Save the current input source

specification, including the current value of SOURCE-ID . Open

the file specified by c-addr u, store the resulting fileid in

SOURCE-ID and make it the input source. Store zero in BLK .

Other stack effects are due to the words INCLUDEd.

Repeat until end of file: read a line from the file, fill the

input buffer from the contents of that line, set >IN to zero,

and interpret.

Interpretation begins at the file position where the next file

read would occur.

When the end of the file is reached, close the file and

restore the input source specification to its saved value.

An ambiguous condition exists if the named file can not be

opened, if an I/O exception occurs reading the file, or an I/O

exception occurs closing the file. When an ambiguous condition

exists, the status (open or closed) of any files that were

being interpreted is implementation defined.

See also: INCLUDE-FILE

INCR "increment" EXTRA

(a-addr --)

Add 1 to the single-cell value at a-addr.

IND++ "indent-increment" EXTRA

(--)

Increment the current value of the indentation with eight.

IND-- "indent-decrement" EXTRA

(--)

Decrement the current value of the indentation with eight.

INDENT EXTRA

223

(-- a-addr)

a-addr is the address of a cell containing the current value of

indentation for the decompiler.

INHERIT EXTRA

("name1" "name2" --)

Skip leading space delimiters. Parse name1 delimited by a space.

Skip leading space delimiters. Parse name2 delimited by a space.

Copy the methods list of name1 to the methods list of name2.

Any methods defined for name2 are lost.

See FIND-METHODS METHODS

INLINE# "inline-number" EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(-- x)

Return the inline compiled number, system use only.

INLINE$ "inline-string" EXTRA

(-- l-addr)

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

l-addr is the list address of an inline compiled string. System

use only.

INTERNAL ONLY

(--)

Make the INTERNAL word list the first word list to be searched.

This word list contains CHForth specific extensions to the ANSI

standard that are not documented and can be changed by the author

by name or action without prior consent. Note that these words

are non-standard.

INTERPRET EXTRA

(--)

Interpret the current input stream.

INTVEC "interrupt-vector" INTVEC

(x "name" --)

224 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below. Name is referred to as an "interrupt vector".

name Executing: (-- x-addr)

Place x-addr, the extended address of the current vector assigned

to interrupt number x. The value of this vector can be changed by

executing ’addr TO name’, can be reset to its initial value by

’CLEAR name’ and the number x can be obtained by executing ’FROM

name’. To get the address where the default value is stored, use

’ADR name’.

INVERS EXTRA

(--)

Exchange the character foreground and background colors.

INVERT FORTH

(x1 -- x2)

Invert all bits of x1, giving its logical inverse x2.

See also: 0= NEGATE

IS EXTRA

Interpretation: (xt "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Store execution token xt in name. Exception -32 occurs if name

was not defined by VECTOR .

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -32 occurs if name was not defined by

VECTOR .

Run-time: (xt --)

Store execution token xt in name.

IS-FORGET EXTRA

(xt "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the semantics of execution token xt to the forget method

of name.

J FORTH

225

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(-- n|u) (R: loop-sys -- loop-sys)

n|u is a copy of the index of the next outer loop. An ambiguous

condition exists if the loop control parameters of the next outer

loop are unavailable.

JOIN EXTRA

(char1 char2 -- x)

char1 is the low byte of x and char2 is the high byte of x.

JUMP, "jump-comma" EXTRA

(addr --)

Compile an assembler language jump in the dictionary at the

data-space pointer to the address on the stack and increment the

data-space pointer to an aligned address after the instruction.

K EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(-- n|u) (R: loop-sys -- loop-sys)

n|u is a copy of the index of the second next outer loop. An

ambiguous condition exists if the loop control parameters of the

second next outer loop are unavailable.

KB. "k-b-dot" EXTRA

(u --)

Display the result of division of u by 1024 with one digit after

the decimal point followed by a space, the string "Kb" and a

space.

KEY FORTH

(-- char)

Receive one character char, a member of the implementation

defined character set. Keyboard events that do not correspond to

such characters are discarded until a valid character is

received, and those events are subsequently unavailable.

All standard characters can be received. Characters received by

226 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

KEY are not displayed.

Standard programs that require the ability to receive control

characters have an environmental dependency.

See also: EKEY KEY?

KEY? "key-question" FORTH

(-- flag)

If a character is available, return true. Otherwise return

false. If non-8 bit keyboard events are available before the

first valid character, they are discarded and subsequently

unavailable.

After KEY? returns with a value of true, subsequent executions of

KEY? prior to the execution of KEY or EKEY also return true,

without discarding keyboard events. The next execution of KEY

will return the character without indefinite delay.

L! "l-fetch" EXTRA

(x l-addr --)

Store x at list address l-addr.

L$ ASSEMBLER

(-- addr)

Define a forward near label in assembler, one per definition.

L$: ASSEMBLER

(addr --)

Resolve a forward near label.

L, "l-comma" EXTRA

(x --)

Reserve one cell of list space and store x in the cell.

L/SCR "l-per-s-c-r" EXTRA

(-- n)

Return the number of lines on the screen.

L@ "l-fetch" EXTRA

(l-addr -- x)

Fetch x, x is the value stored at list address l-addr.

227

LAST EXTRA

(-- a-addr)

a-addr is the address of a double cell containing the last

dictionary entry address and its word list identification.

LBYTES "l-bytes" EXTRA

(-- a-addr)

a-addr is the address of a cell containing the list dictionary

pointer at the last execution of SAVE or EXTEND .

LC! "l-c-store" EXTRA

(c l-addr --)

Store char at list address l-addr.

LC, "l-c-comma" EXTRA

(char --)

Reserve space for one character in the list space and store

char in the space.

LC@ "l-c-fetch" EXTRA

(l-addr -- char)

Fetch the character stored at list address l-addr.

LDUMP "list-dump" EXTRA

(l-addr u --)

Display the contents of u consecutive addresses starting at

list address l-addr. At the beginning of the line the extended

address is displayed, followed with the hexadecimal contents of

16 characters and then the same characters are displayed with

SEMIT .

LDUMP is implemented using pictured numeric output words. Its use

will corrupt the transient region identified by #> .

See also: DUMP DUMPX LTYPE

LEAVE FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(--) (R: loop-sys --)

Discard the current loop control parameters. An ambiguous

condition exists if they are unavailable. Continue execution

228 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

immediately following the innermost syntactically enclosing DO

... LOOP or DO ... +LOOP .

See also: +LOOP LOOP

LHERE "l-here" EXTRA

(-- l-addr)

l-addr is the list-space pointer.

LIBPATH EXTRA

(-- c-addr)

c-addr is the address of a counted string containing the path to

the library files.

See also: HELPPATH NEEDS

LIMIT EXTRA

(-- addr)

Return the address after the last usable in the dictionary.

LINE-CURSOR EXTRA

(--)

Set the cursor form to a line.

LINESREAD EXTRA

(-- a-addr)

a-addr is the address of a cell containing the number of file

lines read since loading the configuration file at the start

of the program.

LIST FORTH

(u --)

Display block u in an implementation-defined format. Store u in

SCR .

See also: BLOCK

LITERAL FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (x --)

Compile x as a literal. Append the run-time syntax given below

to the current definition.

229

Run-time: (-- x)

Place x on the stack.

LITERALS EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (x1 .. xn n --)

Append the execution semantics defined below to the current

definition.

Executing:

(-- x1 .. xn)

Place x1 to xn on the stack.

LLIMIT EXTRA

(-- l-addr)

Return the address after the last usable in the list segment.

LMEMTOP EXTRA

(-- addr)

Return the address after the last physical address in the list

segment.

LOAD FORTH

(i*x u -- j*x)

Save the current input source specification. Store u in BLK ,

thus making block u the input source and setting the input buffer

to encompass its contents, set >IN to zero, and interpret. When

the parse area is exhausted, restore the prior input source

specification. Other stack effects are due to the words LOADed.

Exceptions -33, -34 or -35 will occur if u is zero, or is not

valid block number.

LOADHIGH LOADHIGH

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Allocate temporary space at the top of the dictionary and compile

the library name in that space. When this word has been executed,

the dictionary space pointers have the same value as before the

execution, with the difference that the words in the loaded

230 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

library are known to the Forth system.

See also: DISPOSE MARK

LOCAL EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution and run-time

semantics defined below.

Execution: (x --)

Store x in name.

name Execution: (-- x)

Place x on the stack. The value can be manipulated by TO +TO and

CLEAR .

LOCAL-WORDLIST ONLY

(-- wid)

Return the wid of the LOCAL-WORDLIST .

LOCALS| "locals-bar" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("namen" .. "name2" "name1" "|" --)

Define up to 8 local variables with "name1" to "namen". The list

of locals to be defined is terminated with "|". The actual number

in CHForth may be greater, depending on the length of the input

line. Append the run-time semantics for name given below.

name Run-time: (-- x)

Place x on the stack. The value can be manipulated by TO +TO and

CLEAR .

LOGFILE LOG

(-- c-addr)

Contains the name of the logfile.

231

LOGGING? "logging-query" EXTRA

(-- x)

A value that is true when logging is currently active.

LOOK SEARCHER

("name" "ccc" ---)

Skip leading space delimiters. Parse name delimited by a space.

Skip leading SEPARATOR delimiters. Parse ccc delimited by

SEPARATOR . Search file name with optional extension given by

FEXT$. Find ccc in the file. Display the number of the lines

found, the line number and the line containing ccc depending on

the width of the screen. If a full screen is displayed, wait for

the user to press a key. Stop if the key is the escape key.

LOOP FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: do-sys --)

Append the execution semantics given below to the current

definition. Resolve the destination of all unresolved occurrences

of LEAVE between the location given by do-sys and the next

location for a transfer of control, to execute the words

following LOOP.

Execution: (--) (R: loop-sys1 -- | loop-sys2)

Loop control parameters must be available. Add one to the loop

index. If the loop index is then equal to the loop limit, discard

the loop parameters and continue execution immediately following

the loop. Otherwise continue execution at the beginning of the

loop.

See also: DO I LEAVE

LRESERVE EXTRA

(x --)

Reserve x address units above LHERE in the list segment to be

used by the compiler in a saved program. When x is zero, no

compiling is possible in the new program.

LSEG EXTRA

(-- x)

232 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

x is the value of the list segment.

LSHIFT "l-shift" FORTH

(x1 u -- x2)

Perform a logical left shift of u bit-places on x1, giving x2.

Put zero in the least significant bits vacated by the shift.

LTYPE "list-type" EXTRA

(l-addr u --)

If u is greater than zero, display the character string at the

list address l-addr for a total of u characters. The characters

are displayed as with SEMIT .

See also: HTYPE LDUMP

M* "m-star" FORTH

(n1 n2 -- d)

d is the signed product of n1 times n2.

M*/ "m-star-slash" FORTH

(d1 n1 +n2 -- d2)

Multiply d1 by n1 producing the triple-cell intermediate result

t. Divide t by +n2, giving the double-cell quotient n3. Exception

-10 is issued if +n2 is zero or if the quotient lies outside the

range of a double-cell signed integer.

Note: The restriction in the Standard to postive values for +n2

is not maintained.

See also: */ */MOD M*/MOD

M*/MOD "m-star-slash-mod" EXTRA

(d1 n1 +n2 -- n3 d2)

Multiply d1 by n1 producing the triple-cell intermediate result

t. Divide t by +n2, giving the single-cell remainder n3 and the

double-cell quotient n4. Exception -10 is issued if +n2 is zero

or the quotient lies outside the range of a double-cell signed

integer.

Note: The restriction in the Standard to postive values for +n2

is not maintained.

See also: */ */MOD M*/

M+ "m-plus" FORTH

(d1|ud1 n -- d2|ud2)

233

Add n to d1|ud1, giving the sum d1|ud2.

MAKE-GLOSS "make-glossary" FORTH

("name" --)

This word reads a source file and builds the glossary information

for it in memory.

MANY EXTRA

(--)

Execute the text before on the same line repeatedly until a

keypress.

See also: TIMES

MARK LOADHIGH

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Find name. Name is the first word compiled after loading a file

with LOADHIGH .

See also: DISPOSE LOADHIGH

MARKER FORTH

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a dictionary for name with the execution semantics defined

below.

name Executing: (--)

Restore all dictionary allocation and search pointers to the

state they had just prior to the definition of name. Remove the

definition of name and all subsequent definitions. Restoration of

any structures still existing that could refer to deleted

definitions or deallocated data space is not necessarily

provided. No other contextual information such as numeric base is

affected.

MAX FORTH

(n1 n2 -- n3)

n3 is the greater if n1 and n2

MEMTOP EXTRA

(-- addr)

Return the address after the last physical address in memory.

234 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

MESS" "mess-quote" EXTRA

(n "ccc<quote>" --)

Parse ccc delimited by a " (double-quote) and compile the string

in the dictionary. The string is displayed when n is passed to

.MESS or THROW .

METHODS EXTRA

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Start defining methods for name.

See also: END-METHODS INHERIT

MICROSECONDS EXTRA

(d --)

Wait for d microseconds, limited to about 1000 by the operating

system. Not available in CHForth-86.

MIN FORTH

(n1 n2 -- n3)

n3 is the lesser if n1 and n2

MINIACCEPT EDITOR

(c-addr u1 -- u2)

A mini version of ACCEPT for the kernel.

MOD "mod" FORTH

(n1 n2 -- n3)

Divide n1 by n2, giving the single-cell remainder n3. Exception

-10 is issued if n1 is zero. If n1 and n2 differ in sign the

result returned will be the same as returned by the phrase >R S>D

R> SM/REM DROP . Note that other implementations of the ANSI

standard may return the result of the phrase >R S>D R> FM/MOD

DROP .

MONTHS EXTRA

(-- c-addr)

Array of three letter month names. Months in normal order, but

letters reversed. To be used in pictured number strings.

See also: .SHORTDATE

MOVE FORTH

(c-addr1 c-addr2 u --)

If u is greater than zero, copy the contents of u consecutive

235

address units at addr1 to the u consecutive address units at

addr2. After MOVE completes, the u consecutive address units at

addr2 contain exactly what the u consecutive address units at

addr1 contained before the move.

See also: CMOVE CMOVE>

MOVEP "move-p" PARAGRAPHS

(x1 x2 u --)

If u is greater than zero, copy the contents of u consecutive

paragraph units at segment x1 to the u consecutive paragraph

units its at segment x2. After MOVE completes, the u consecutive

paragraph units at x2 contain exactly what the u consecutive

paragraph units at x1 contained before the move.

MS FORTH

(u --)

Wait u milliseconds.

MS-DOS-IO EXTRA

(--)

Set input and output to slow DOS routines, redirection is

supported.

See also: BIOS-IO CONSOLE! CONSOLE@

MU/MOD "m-u-slash-mod" EXTRA

(ud1 u1 -- u2 ud2)

Divide ud1 by u1, giving the quotient ud2 and the remainder u2.

All values and arithmetic are unsigned. Exception -10 is issued

if u1 is zero or if the quotient lies outside the range of a

double-cell unsigned integer.

NEEDS EXTRA

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Find name. If found continue. Otherwise, load the file with the

same name (excluding an optional trailing minus sign) from the

directory specified in LIBPATH .

NEGATE FORTH

(n1 -- n2)

Negate n1, giving its aritmetic inverse n2.

See also: 0= INVERT

236 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

NEW DEBUG

(--)

Enable the use of DEBUG and TRACE .

NEW-GLOSS "new-gloss" FORTH

(--)

This command starts a fresh glossary.

NIP FORTH

(x1 x2 -- x2)

Drop the first item below the top of the stack.

NL "new-line" EXTRA

(--)

Display a new line and emit the number of spaces contained in

INDENT .

NO. DECOMPILER

(--)

The decompiler shows only the names of the definitions.

See also: YES.

NOECHO EXTRA

(--)

When loading do not echo lines read to the screen.

NOOP "no-op" EXTRA

(--)

Does nothing.

NORMAL EXTRA

(--)

Set the attribute of the characters on the screen to the default

value.

NOSOUND EXTRA

(--)

Turn the speaker off.

NOT-IMPLEMENTED EXTRA

(--)

Abort with exception message: not implemented, used in some

definitions.

237

NUMBER? "number-question" EXTRA

(c-addr u -- 0 | n 1 | d 2)

A word that normally executes (NUMBER?) .

OF FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: -- of-sys)

Put of-sys on the compilation stack. Append the execution

semantics given below to the current definition. The semantics

are incomplete uitil resolved by a consumer of of-sys such as

ENDOF .

Execution: (x1 x2 -- | x1)

If the two values on the stack are not equal, discard the top

value and continue execution at the location specified by the

consumer of of-sys (e.g., following the next ENDOF). Otherwise,

discard both values and continue execution in line.

See also: CASE ENDCASE ENDOF

OFF EXTRA

(a-addr --)

Clear all bits of the single-cell value at a-addr.

OLD DEBUG

(--)

Disable the use of DEBUG and TRACE .

ON EXTRA

(a-addr --)

Set all bits of the single-cell value at a-addr.

ONLY ONLY

(--)

Set the search order to the minimum search order. The minimum

search order includes the ability to interpret the words

FORTH-WORDLIST and SET-ORDER .

OPEN-FILE FORTH

(c-addr u x1 -- x2 ior)

Open the file named in the character string specified by c-addr

238 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

u, with file access indicated by x1.

If the file was successfully opened, ior is zero, x2 is the

fileid, and the file has been positioned at the start of the

file. Otherwise ior is the I/O result code and x2 is an

unspecified value.

OPEN-LOG LOG

(--)

Open the logfile.

OR FORTH

(x1 x2 -- x3)

x3 is the bit-by-bit logical inclusive-or of x1 with x2.

ORDER FORTH

(--)

Display the word lists in the search order in their search order

sequence, from the first searched to the last searched. Also

display the word list into which new definitions will be placed.

ORDER is implemented using pictured numeric output words. Its use

will corrupt the transient region identified by #> .

OUT EXTRA

(-- x)

A value that contains the number of characters printed on the

current screen line.

OVER FORTH

(x1 x2 -- x1 x2 x1)

Place a copy of x1 on top of the stack.

P! "p-store" EXTRA

(x1 x2 --)

Write x1 to 16 bit port x2.

P@ "p-fetch" EXTRA

(x1 -- x2)

Read the 16 bit port x1.

PACK EXTRA

(c-addr1 u c-addr2 -- c-addr2)

239

Place the string specified by c-addr1 u as a counted string at

c-addr2.

PAD FORTH

(-- c-addr)

c-addr is the address of a transient region that can be used to

hold data for intermediate processing.

PAGE FORTH

(--)

Move to another page for output. Actual function depends on the

output device. On a terminal, PAGE clears the screen and resets

the cursor position to the upper left corner. On a printer, PAGE

performs a form feed.

PARAGRAPH-ALIGNED EXTRA

(addr -- a-addr)

a-addr is the first paragraph-aligned address greater than or

equal to addr.

PARAGRAPHS EXTRA

(n1 -- n2)

n2 is the size in address units of n1 paragraphs.

PARSE FORTH

(char "ccc<char>" -- c-addr u)

Parse ccc delimited by the delimiter char.

c-addr is the address (within the input buffer) and u is the

length of the parsed string. If the parse area was empty, the

resulting string has zero length.

If char is the character for space, control characters are

considered equal to char.

PARSE-WORD EXTRA

(char "<chars>ccc<char>" -- c-addr u)

Skip leading char delimiters. Parse ccc delimited by the

delimiter char.

c-addr is the address (within the input buffer) and u is the

length of the parsed string. If the parse area was empty, the

resulting string has zero length.

240 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

If char is the character for space, control characters are

considered equal to char.

PARSED-WORD EXTRA

(-- c-addr u)

c-addr u specifies the character string that was the last string

parsed by PARSE-WORD or WORD . A program may not change the

contents of the string.

PAUSE EXTRA

(--)

A word that normally contains NOOP . Used in EKEY only.

PC! "p-c-store" EXTRA

(char x --)

Write char to 8 bit port x.

PC@ "p-c-fetch" EXTRA

(x -- char)

Read the 8 bit port x.

PHANDLE "p-handle" EXTRA

(-- fileid)

A value containing the file identification fileid of the print

file; otherwise zero.

PICK FORTH

(xu .. x0 u -- xu .. x0 xu)

Remove u. Copy the xu to the top of the stack. An ambiguous

condition exists if there are less than u+2 items on the stack

before PICK is executed.

PITCH EXTRA

(n --)

Set the frequency of the speaker to n.

PLACE EXTRA

(c-addr1 u c-addr2 --)

Place the string specified by c-addr1 u as a counted string at

c-addr2.

PLUCK EXTRA

241

(x1 x2 x3 -- x1 x2 x3 x1)

Copy the third stack item to the top of the stack.

POP EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -32 occurs if name was not defined by VALUE

, VARIABLE or VECTOR .

Run-time: (--) (R: x --)

Pop x associated with name from the return stack.

POSTFIX EXTRA

(-- x)

A value that is true when HEADER wants the name on the stack.

Normally false as HEADER wants the name in the inputstream.

POSTPONE FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the compilation semantics of name to the current

definition. Exception -13 occurs if name is not found.

Execution: (--)

Perform the compilation semantics of name.

PREFIX EXTRA

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the interpretation and

compilation semantics defined below. name is referred to as a

"prefix".

Interpretation: (i*x "name1" -- j*x)

242 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

Skip leading space delimiters. Parse name1 delimited by a space.

Execute the prefix action of name1. Exception -32 occurs if this

prefix is not valid for this word or datatype.

Compilation: ("name2" --)

Skip leading space delimiters. Parse name2 delimited by a space.

Compile the prefix action of name1. Exception -32 occurs if this

prefix is not valid for this word or datatype.

PREVIOUS ONLY

(--)

Transform the search order consisting of wid1 .. widn-1 widn

(where widn is searched first) into wid1 .. widn-1. An

ambiguous condition exists if the search order was empty

before PREVIOUS was executed.

PRINTER EXTRA

(--)

Set the output to the printer.

PRINTING? "printing-query" EXTRA

(-- x)

A value that is true when printer output is enabled.

PRIVATE EXTRA

(--)

Mark the most recently created definition as a private word. This

word can not be found after the execution of DEPRIVE .

PRIVATES EXTRA

(--)

Start beginning of a PRIVATES .. DEPRIVE block.

PROJ$ EXTRA

(-- c-addr)

c-addr is the address of a counted string containing a

description of the project for which the file is created.

PROJECT PROJECT

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a text file for name with the default extension in FEXT$.

Write a header as defined in the strings PROJ$ CAT$ and CREAT$

243

and start the editor with the cursor at a place where the

programmer can start typing. This file can be loaded directly

after editing by typing IN . After the header is a MARKER for

an automatic FORGET when reloading the file.

PROMPT EXTRA

(--)

A word that displays the prompt.

PUSH EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -32 occurs if name was not defined by VALUE

, VARIABLE or VECTOR .

Run-time: (--) (R: -- x)

Push x associated with name on the return stack.

QUERY FORTH

(--)

Make the user input device the input source. Receive input into

the terminal input buffer, replacing any previous contents. Make

the result, whose address is returned by TIB , the input buffer.

Set >IN to zero.

Note: this word is obsolescent and is included as a concession to

existing implementations.

QUIT FORTH

(--)

Empty the return stack, store zero in SOURCE-ID , make the

user input device the input source, and enter interpretation

state. Do not display a message. Repeat the following:

- Accept a line forth the input source into the input buffer,

set >IN to zero and interpret.

- Display the implementation defined input prompt if in

interpretation state, all processing has been completed,

and no ambiguous condition exists.

244 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

R" "r-quote" EXTRA

(-- x1) (R: x1 x2 x3 -- x1 x2 x3)

Copy x1 from the return stack to the data stack.

R’ "r-tick" EXTRA

(-- x1) (R: x1 x2 -- x1 x2)

Copy x1 from the return stack to the data stack.

R/O "r-o" FORTH

(-- x)

x is the value for selecting the "read-only" file access method.

See also: CREATE-FILE OPEN-FILE

R/W "r-w" FORTH

(-- x)

x is the value for selecting the "read-write" file access method.

See also: CREATE-FILE OPEN-FILE

R> "r-from" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(-- x) (R: x --)

Move x from the return stack to the data stack.

See also: >R 2>R 2R> 2R@ R@

R>DROP "r-from-drop" EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(--) (R: x --)

Remove x from the return stack.

R@ "r-fetch" FORTH

(-- x) (R: x -- x)

Copy x from the return stack to the data stack.

See also: >R 2>R 2R> 2R@ R>

RANDOM EXTRA

(-- u)

245

Return a random number.

RANDOMIZE EXTRA

(d --)

Initialize the random number generator.

READ-FILE FORTH

(c-addr u1 fileid -- u2 ior)

Read u1 consecutive characters to c-addr from the current

position of the file identified by fileid.

If u1 characters are read without an exception, ior is zero and

u2 is equal to u1.

If the end of the file is reached before u1 characters are read,

ior is zero and u2 is the number of characters actually read.

If the operation is initiated when the value of FILE-POSITION is

equal to the value returned by FILE-SIZE for the file identified

by fileid, ior is zero and u2 is zero.

If an exception occurs, ior is the I/O result code and u2 is the

number of characters transferred to c-addr without an exception.

An ambiguous condition exists if the operation is initiated when

the value returned by FILE-POSITION is greater than the value

returned by FILE-SIZE for the file identified by fileid, or if

the requested operation attempts to read portions of the file not

written.

At the conclusion of the operation FILE-POSITION returns a value

past the characters consumed by the operation.

READ-LINE FORTH

(c-addr u1 fileid -- u2 flag ior)

Read the next line from the file specified by fileid into memory

at the address c-addr. At most u1 characters are read. Up to two

line terminating characters may be read into memory at the end of

the line, but are not included in the count u2. The line buffer

provided by c-addr should be at least u1+2 characters long.

If the operation succeeded, flag is true and ior is zero. If a

line terminator was received before u1 characters were read, then

246 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

u2 is the number of characters, not including the line

terminator, actually read (0 <= u2 <= u1). When u1 = u2 the line

terminator has yet to be reached.

If the operation is initiated when the value returned by

FILE-POSITION is equal to the value returned by FILE-SIZE for the

file identified by fileid, flag is false, ior is zero, and u2 is

zero. If ior is non-zero, an exception occurred during the

operation and ior is the I/O result code.

An ambiguous condition exists if the operation is initiated when

the value returned by FILE-POSITION is greater than the value

returned by FILE-SIZE for the file identified by fileid, or the

requested operation attempts to read portions of the file not yet

written.

At the conclusion of the operation, FILE-POSITION returns a value

past the characters consumed by the operation.

READX-FILE "read-x-file" EXTRA

(x-addr u1 fileid -- u2 ior)

Read u1 consecutive characters to extended address x-addr from

the file specified by fileid. If no exception occurs, u2 is the

number of characters read and ior is zero. Otherwise u2 is

unspecified and ior is the I/O result code.

REALLOC EXTRA

(u1 u2 -- ior)

Change the allocation of the contiguous region of memory outside

the data space starting at the segment address u1, previously

allocated by ALLOC or REALLOC , to u2 paragraphs. u2 may be

either larger or smaller than the current size of the region. The

starting segment address u1 is not changed. If no exception

occurs, ior is zero. Otherwise ior is the I/O result code.

RECOVER-SCREEN SCREENSV

(--)

Restore the former contents of the screen and the position of

the cursor from memory that is saved there by SAVE-SCREEN . Do

not discard this data so this word can be executed more times

to restore the same screen. See also RESTORE-SCREEN .

RECURSE FORTH

247

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (--)

Append the execution semantics of the current definition to the

current definition. The same description is valid if RECURSE is

used in a definition after DOES> .

See also: DOES>

RECURSIVE EXTRA

(--)

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (--)

Makes the current definition available to the system. Normally

this happens automatically when executing ; . When the current

word is available to the system a reference to its name

produces a recursive call to the definition. If RECURSIVE is

not executed a reference to that name will result in calling a

previous definition with the same name, if one exists.

REF REF

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Find compiled references in colon definitions of name in all word

lists. Display the words where the references occur and the count

of the words where the references are found.

REFILL FORTH

(-- flag)

Attempt to fill the current input stream, returning a true

flag if successful. The action depends on the source of the

current input stream.

If the input-stream source is a string from EVALUATE , REFILL

returns false and performs no other action.

Otherwise, REFILL attempts to receive input into the

text-input buffer whose address is given by TIB , making the

result the current input stream and returning a true flag if

successful. Receipt of a line containing no characters is

248 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

considered successful. A false flag is returned only when

there is no input available from the current input-stream

source.

If the input source is a block, REFILL makes the next block

the current input source and input buffer, by adding one to

the value of BLK and setting >IN to zero. True is returned if

the new value of BLK is a valid block number, false otherwise.

If the input-stream source is a text file, REFILL attempts to

read the next line from the text-input file, making the result

the current input stream and returning true if the read

succeeded, and returning false otherwise.

REGULAR? "regular-query" EXTRA

(wid -- wid flag)

If the word list identification wid has a header (when it was

created with VOCABULARY), return a true flag else a false flag.

RENAME-FILE FORTH

(c-addr1 u1 c-addr2 u2 -- ior)

Rename the file named by character string c-addr1 u1 to the

name in the character string c-addr2 u2. ior is the I/O result

code.

REPEAT FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: orig dest --)

Append the execution semantics given below to the current

definition, resolving the backward reference dest. Resolve the

forward reference orig using the location following the appended

execution semantics.

Execution: (--)

Continue execution at the location given by dest.

See also: BEGIN WHILE

REPOSITION-FILE FORTH

(ud fileid -- ior)

Reposition the file identified by fileid to ud. ior is the I/O

result code. An ambiguous condition exists if the file is

positioned outside the file boundaries.

249

RESERVE EXTRA

(x --)

Reserve x address units above HERE to be used by ALLOT in a

saved program. Some space is always available in PAD and

TEMPORARY so interpreting remains possible if x is zero.

RESIZE-FILE FORTH

(ud fileid -- ior)

Set the size of the file identified by fileid to ud. ior is

the I/O result code.

If the resultant file is larger than the file before the

operation, the portion of the file added as a result of the

operation may not have been written.

At the conclusion of the operation FILE-SIZE returns the value

ud and FILE-POSITION returns an unspecified value.

See also: READ-FILE READ-LINE

RESTART? EXTRA

(-- x)

A value that prohibits restarting of the initialization of a

program. When the program is started its value is false. When

Ctrl-Break is pressed, it is set to true.

RESTORE-INPUT FORTH

(x1 .. xn n -- flag)

Attempt to restore the input source specification to the state

described by x1 through xn, flag is true if the input source

specification can not be so restored.

An ambiguous condition exists if the input source represented

by the arguments is not the same as the current input source.

See also: SAVE-INPUT

RESTORE-METRICS EXTRA

(--)

When returning from a system call, reset some screen parameters.

RESTORE-SCREEN SCREENSV

(--)

Restore the former contents of the screen and the position of

the cursor from memory that is saved there by SAVE-SCREEN and

250 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

delete the saved data. See also SAVE-SCREEN and RECOVER-SCREEN

RETCODE "return-code" EXTRA

(-- a-addr)

a-addr is the address of a cell used to count exceptions when the

file ERRORLOG is loaded. RETCODE @ HALT gives a return code that

can be handled in DOS with ERRORLEVEL.

REVEAL EXTRA

(--)

Make the last made dictionary entry known to the Forth system.

ROLL FORTH

(xu xu-1 .. x0 u -- xu-1 .. x0 xu)

Remove u. Rotate u+1 items on the top of the stack. An ambiguous

condition exists if there are less than u+2 items on the stack

before ROLL is executed.

ROT "rote" FORTH

(x1 x2 x3 -- x2 x3 x1)

Rotate the top three stack items.

RSHIFT "r-shift" FORTH

(x1 u -- x2)

Perform a logical right shift of u bit-places on x1, giving x2.

Put zero in the most significant bits vacated by the shift.

S STACK

(-- x)

(S: x -- x)

Copy the top number on the auxiliary stack to the data stack.

S" "s-quote" FORTH

Interpretation: ("ccc<quote>" -- c-addr u)

Parse ccc delimited by " (double quote). Store the resulting

string ccc at a temporary location. The maximum length of the

temporary buffer is 255 characters. CHForth allows for the

storing of more such strings before new strings start to

overwrite the buffer. A standard program shall not alter the

returned string.

Compilation: ("ccc<quote>" --)

Parse ccc delimited by " (double quote). Append the run-time

251

semantics given below to the current definition.

Run-time: (-- c-addr u)

Return c-addr and u describing a string consisting of the

characters ccc. A standard program shall not alter the returned

string.

See also: C"

S> "s-from" STACK

(-- x)

(S: x --)

Pop a number from the auxiliary stack.

S>D "s-to-d" FORTH

(n -- d)

Convert the number n to the double-cell number d with the same

numerical value.

S>DROP "s-drop" STACK

(--)

(S: x --)

Drop the top number of the auxiliary stack.

SAVE EXTRA

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Protect the dictionary as with EXTEND . Write the CHForth program

as an executable file with this name. name may have a preceding

path but no extension. The current settings of LIMIT and MEMTOP

are preserved as are their equivalents in other segments.

SAVE-BUFFERS FORTH

(--)

Transfer the contents of each UPDATEd block buffer to mass

storage. Mark all buffers as unmodified.

SAVE-INPUT FORTH

(-- x1 .. xn n)

x1 through xn describe the current state of the input source

specification for later use by RESTORE-INPUT .

SAVE-SCREEN SCREENSV

252 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

(--)

Keep the contents of the screen and the cursor position in

memory. There is room for 4 screens. See also RESTORE-SCREEN

and RECOVER-SCREEN .

SBASE "s-base" EXTRA

(-- x)

x is the segment number of the text screen.

SCAN EXTRA

(c-addr1 u1 char -- c-addr2 u2)

Scan the string specified by c-addr1 u1 for an occurrence of char

and return the part of the string starting with the found char as

a string specified by c-addr2 u2. If the string specified by

c-addr1 u1 does not contain char, u2 is zero.

If char is the character for space, control characters are

considered equal to char.

SCAN-ANY EXTRA

(-- xt)

Skip leading space delimiters. Parse name delimited by a space.

Find name. If found return the execution token xt of that word.

Otherwise refill the input buffer with REFILL and repeat.

Exception -58 will occur if refilling the input buffer fails.

SCR "s-c-r" FORTH

(-- a-addr)

a-addr is the address of a cell containing the block number of

the block most recently LISTed.

SCREENSIZE EXTRA

(-- n)

n is the total count of characters plus attributes on the screen.

SEARCH FORTH

(c-addr1 u1 c-addr2 u2 -- c-addr3 u3 flag)

Search the string specified by c-addr1 u1 for the string

specified by c-addr2 u2. If flag is true, a match was found at

c-addr3 with u3 characters remaining. If flag is false there was

no match and c-addr3 is c-addr1 and u3 is u1.

SEARCH-CONTEXT EXTRA

253

(c-addr u -- 0 | xt 1 | xt -1)

Find the Forth word specified by the character string c-addr u in

all word lists in the search order, including LOCAL-WORDLIST when

STATE does not contain zero and there are local values. Return

the execution token and 1 if the word is IMMEDIATE and -1

otherwise. If name can not be found, return a false flag. The

name is internally converted to uppercase if the variable

CASESENSITIVE is false.

SEARCH-ENVIRONMENT EXTRA

(c-addr1 u1 -- c-addr2 u2)

Search the DOS environment strings for the string specified by

c-addr1 u1. Return the character string after the first string as

a character string specified by c-addr2 u2. If the string is not

found, u2 is zero and c-addr2 is unspecified.

SEARCH-WORDLIST FORTH

(c-addr u wid -- 0 | xt 1 | xt -1)

Find the Forth word identified by the string c-addr u in the word

list identified by wid. If the word is not found, return zero. If

the word is found, return its execution token xt and 1 if the

word is immediate, -1 otherwise.

SEE DECOMPILER

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Find name. If name can not be found exception -13 occurs.

If name is high level, decompile it. Otherwise if the

disassembler is loaded, disassemble it.

SEGMENT EXTRA

(x "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below. Leave the dictionary pointer at an aligned address.

Allocate space for 3 cells. Ask DOS for an allocation of x

paragraphs and store the segment number of that allocation in the

first cell. Store x in the second cell and zero in the third. The

user may change the value of the third cell to a value less than

or equal to x in order to save the allocated area with the

program.

name Execution: (-- a-addr)

254 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

a-addr is the address of the first reserved cell of name.

SEMIT "s-emit" EXTRA

(char --)

If char is a printable ASCII character in the range {32 .. 127},

use EMIT to display char. Otherwise use EMIT to display a ’.’

(full stop).

See also: EMIT

SEPARATOR EXTRA

(-- char)

A constant character that can be used as a line separator for

some commands, like SF DIR etc. Normally 254, ’’.

SET-CONTEXT ONLY

(wid --)

Set the first searched word list in the search order to the

word list identified by wid.

SET-CURRENT ONLY

(wid --)

Set the compilation word list to the word list identified by

wid.

SET-DIRECTORY EXTRA

(c-addr u -- ior)

Set the current directory to the string specified by c-addr u. As

an extension to DOS, the default drive can also be changed if a

drive letter and a colon are present at the beginning of the

string. If no exception occurs, ior is zero. Otherwise ior is the

I/O result code.

SET-FILE-TIME EXTRA

(n1 n2 fileid -- ior)

Set the time n1 and date n2 of creation of the file identified by

fileid. If no exception occurs, ior is zero. Otherwise ior is the

I/O result code.

SET-INTERRUPT EXTRA

(x-addr n --)

Set interrupt vector n to extended address x-addr.

255

SET-ORDER ONLY

(wid1 .. widn n --)

Set the search order to the word lists wid1 .. widn.

Subsequently, word list widn will be searched first, followed

by word list widn-1 and so on, with word list wid1 searched

last. If n is zero, empty the search order. If n is minus one,

set the search order to the minimum search order wid(ONLY)

wid(ONLY). When n is minus two, set the search order to

wid(ONLY) wid(EXTRA) wid(FORTH) wid(FORTH). The maximum of n

in this implementation is sixteen.

SET-SOURCE EXTRA

(c-addr u --)

Set the source to the string c-addr u and set >IN to zero.

SETDISK EXTRA

(n1 -- n2)

Set the current drive to n1. n2 is the the total number of

available drives.

SETMODE EXTRA

(n --)

Set the screen to mode n.

SF "search-forth" SEARCHER

("ccc" --)

Skip leading SEPARATOR delimiters. Parse ccc delimited by

SEPARATOR . Search the files with extension given by FEXT$ in the

current directory. Find ccc in the files. Display the number of

lines found, the name of the file, the line number and the line

depending on the width of the screen. If a full screen is

displayed, wait for the user to press a key. Stop if the key is

the escape key.

SHOW EDITOR

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Open file name with list program. When name is omitted, the last

opened file by this command or ,EDIT EDIT or WHAT is opened and

name is displayed on the right of the status line. The default

extension is taken from FEXT$.

SHOW-CURSOR EXTRA

256 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

(--)

Display the cursor.

SHOW-ERROR EXTRA

(n --)

Display the exception message and information where the exception

with number n occurred and the type of the exception and display

the source line with the exception word marked out.

SHOWHELP EDITOR

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Open file name in the directory given in HELPPATH with the list

program. The default extension is taken from HEXT$.

SHOWLIB EDITOR

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Open file name in the directory given in LIBPATH with the list

program. The default extension is taken from FEXT$.

SIGN FORTH

(n --)

If n is negative, add a minus sign to the beginning of the

pictured numeric output string. An ambiguous condition exists if

SIGN executes outside of a <# #> delimited number conversion.

SIGNON EXTRA

(-- a-addr)

a-addr is the address of a cell containing true to display the

signon message at startup and false otherwise.

SILENT EXTRA

(--)

Suppress output to screen or printer.

SKIP EXTRA

(c-addr1 u1 char -- c-addr2 u2)

Skip leading occurrences of char in the string specified by

c-addr1 u1 and return the remaining string specified by c-addr2

u2. If the string specified by c-addr1 u1 contains only

occurrences of char, u2 is zero.

257

If char is the character for space, control characters are

considered equal to char.

SL "search-libraries" SEARCHER

("ccc" --)

Skip leading SEPARATOR delimiters. Parse ccc delimited by

SEPARATOR . Search the files with extension given by FEXT$ in the

directory given by LIBPATH . Find ccc in the files. Display the

number of lines found, the name of the file, the line number and

the line depending on the width of the screen. If a full screen

is displayed, wait for the user to press a key. Stop if the key

is the escape key.

SLITERAL FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (c-addr1 u --)

Append the run-time semantics given below to the current

definition.

Run-time: (-- c-addr2 u)

Return c-addr2 u describing a string consisting of the characters

specified by c-addr1 u during compilation. A Standard Program

shall not alter the returned string.

SM/REM "s-m-slash-rem" FORTH

(d n1 -- n2 n3)

Divide d by n1, giving the symmetric quotient n3 and the

remainder n3. Input and output stack arguments are signed.

Exception -10 is issued if n1 is zero or the quotient lies

outside the range of a double-cell unsigned integer.

See also: FM/MOD UM/MOD

SOUND EXTRA

(--)

Turn the speaker on.

SOURCE FORTH

(-- c-addr u)

c-addr is the address of, and u is the number of characters

in, the input buffer.

258 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

SOURCE-ID FORTH

(-- x)

Identifies the source of the non-block input stream (i.e., when

BLK is zero) as follows:

SOURCE-ID Input stream source

----------- -------------------

0 Keyboard

-1 String (via EVALUATE)

fileid Text file "fileid"

An ambiguous condition exists if SOURCE-ID is used when BLK

contains a non-zero value.

SPACE FORTH

(--)

Display one space.

SPACES FORTH

(n --)

If n is greater than zero, display n spaces.

SPAN OBSOLETE

(-- a-addr)

a-addr is the address of a cell containing the count of

characters stored by the last execution of EXPECT .

Note: this word is obsolescent and is included as a concession

to existing implementations.

SPLIT EXTRA

(x -- char1 char2)

char1 is the low byte of x and char2 is the high byte of x.

SRCSEG "source-segment" EXTRA

(-- a-addr)

a-addr is the address of a cell containing the segment address of

the first string in COMPARE and SEARCH . The user is reponsible

to restore the default value (CSEG) after using an alternative

value in COMPARE and SEARCH .

START EXTRA

(--)

259

A word that is executed at the start of the program before

executing COLD .

STATE

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

(-- a-addr)

a-addr is the address of a cell containing the compilation state

flag. STATE is true when in compilation state, false otherwise.

The true value in STATE is non-zero, but is otherwise

implementation-defined. Only the following standard words alter

the value in STATE : : (colon), ; (semicolon), ABORT , QUIT ,

:NONAME , [(left-bracket),] (right-bracket) and ;CODE .

Note: A Standard Program may not directly alter the contents of

STATE .

See also: : :NONAME ; ABORT QUIT []

STATOFF EXTRA

(--)

Disable the display of the statusline.

STATON EXTRA

(--)

Enable the display of the statusline.

STATUS? "status-query" EXTRA

(-- x)

A value that is true when the statusline is enabled.

STATUSATTR "status-attribute" EXTRA

(-- a-addr)

a-addr is the address of a cell containing the attribute of the

characters on the status line.

STOP? "stop-question" EXTRA

(-- flag)

Return false is no key is pressed. Exception -28 occurs when

the escape key was pressed. If the key was not space, return

true. Wait for a second keypress and return true if it was not

space, false otherwise. Exception -28 occurs when the escape key

260 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

was pressed.

STRINGS? VIEW

(-- x)

When this value is true, inline strings are displayed as with

DUMP using VIEW .

STYPE "s-type" EXTRA

(c-addr u --)

If u is greater than zero, display the character string specified

by c-addr and u. The characters are displayed as with SEMIT .

STYPEX "s-type-x" EXTRA

(x-addr u --)

If u is greater than zero, display the character string at the

extended address x-addr for a total of u characters. The

characters are displayed as with SEMIT .

SWAP FORTH

(x1 x2 -- x2 x1)

Exchange the top two stack items.

SYSTEM EXTRA

(c-addr u --)

Execute the DOS command specified by the character string c-addr

u. When the screen mode or the current direcotory are changed,

they will be restored.

T STACK

(-- x1)

(S: x1 x2 -- x1 x2)

Copy the second number on the auxiliary stack to the data

stack.

TEMPORARY EXTRA

(-- c-addr)

c-addr is the address of a transient region that is used to hold

data for intermediate processing. This region is used by some

system words.

TERMINAL EXTRA

(--)

Reset the input and output to the terminal.

261

TEXT EXTRA

(--)

Reset the display to the same textmode as at startup.

See also: TEXT0 TEXT?

TEXT0 "text-zero" EXTRA

(--)

Set the display to 80 x 25 color text mode.

See also: TEXT TEXT0 TEXT1 TEXT2 TEXT?

TEXT1 "text-one" EXTRA

(--)

Set the display to 132 x 25 text mode. Only available with

Speedstar Pro ?

See also: TEXT0 TEXT2

TEXT2 "text-two" EXTRA

(--)

Set the display to 132 x 43 text mode. Only available with

Speedstar Pro ?

See also: TEXT0 TEXT1

TEXT? "text-query" EXTRA

(-- x)

A value that is true when the display is in textmode.

THEFILE EXTRA

(-- c-addr)

c-addr is the address of a counted string containing the name of

the current file.

THEN FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: orig --)

Resolve the forward reference orig using the location of the

execution semantics.

Execution: (--)

Continue execution.

262 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

See also: ELSE IF

THROW FORTH

(k*x n -- k*x | i*x n)

If any bits of n are non-zero, pop the topmost exception frame

from the exception stack, along with everything on the return

stack above that frame. Then restore the input source

specification in use before the corresponding CATCH and adjust

the depths of all three stacks so that they are the same as the

depth saved in the exception frame (i is the same number as i in

the input arguments to the corresponding CATCH), put n on top of

the data stack, and transfer control to a point just after the

CATCH that pushed that exception frame.

THRU FORTH

(i*x u1 u2 -- j*x)

LOAD the mass storage blocks numbered u1 through u2 in sequence.

Other stack effects are due to the words LOADed.

TIB "t-i-b" FORTH

(-- c-addr)

c-addr is the address of the terminal input buffer.

TILL DECOMPILER

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Find name. If name can not be found exception -13 occurs.

Otherwise decompile all the words in the current word list

starting with the last compiled until name is decompiled.

See also: STOP?

TIME EXTRA

(-- +n1 +n2 +n3)

Return the current time. +n1 is the second {0..59}, +n2

is the minute {0..59}, and +n3 is the hour {0..23}.

TIME&DATE FORTH

(-- +n1 +n2 +n3 +n4 +n5 +n6)

Return the current time and date. +n1 is the second {0..59}, +n2

is the minute {0..59}, +n3 is the hour {0..23}, +n4 is the day

{1..31}, +n5 is the month {1..12}, and +n6 is the year (e.g.

1991).

263

TIMER-RESET EXTRA

(--)

Reset the Forth timer.

TIMES EXTRA

(n --)

Execute the text before on the same line repeatedly for n times.

See also: MANY

TIMESAVE EXTRA

(-- a-addr)

a-addr the the address of a double cell used by TIMER-RESET to

store the current value of the timer.

TO FORTH

Interpretation: (x "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Store x in name. Exception -32 occurs if name was not defined by

VALUE or VARIABLE .

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -32 occurs if name was not defined by VALUE

, VARIABLE or (LOCAL).

Run-time: (x --)

Store x in name.

See also: (LOCAL) VALUE

TONE EXTRA

(n1 n2 --)

Make a sound for the duration of n1 milliseconds with a

frequency of n2.

TRACE TRACER

(-- a-addr)

A variable used in the tracer. When not zero, trace information

is compiled in the next compiled colon definition. See DEBUG .

TRAP EXTRA

(--)

Jump back the debugger program, use it when you want to step

264 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

through Forth.

TRUE FORTH

(-- true)

Return a true flag, a single-cell value with all bits set.

TUCK FORTH

(x1 x2 -- x2 x1 x2)

Copy the first (top) stack item below the second stack item.

TURNKEY EXTRA

("name1" "name2" --)

Skip leading space delimiters. Parse name1 delimited by a space.

Skip leading space delimiters. Parse name2 delimited by a space.

Protect the dictionary as with EXTEND . Write the CHForth program

as an executable file with this name2. name2 may have a preceding

path but no extension.

The saved file does not contain any headers, so interpreting in

the executible file is not possible. The data space and list

space will also be reduced to the minimum value that is needed to

containt the current data in the data and list space. Both spaces

can be enlarged before executing this word.

When this program is executed from the DOS prompt, name1 will be

executed by CATCH and at the end the control will be returned to

DOS. The program saved has no capability to compile and has no

headers.

TYPE FORTH

(c-addr u --)

If u is greater than zero, display the character string specified

by c-addr and u.

See also: EMIT

TYPEP "type-paragraphs" PARAGRAPHS

(x u --)

If u is greater than zero, display the character string at

paragraph address x for a total of u paragraphs. The characters

are displayed as with SEMIT .

TYPEX "type-x" EXTRA

265

(x-addr u --)

If u is greater than zero, display the character string at the

extended address x-addr for a total of u characters.

TYPEZ "type-z" EXTRA

(x-addr --)

While the character at the extended address x-addr is not zero,

display the character and increment x-addr.

U STACK

(-- x1)

(S: x1 x2 x3 -- x1 x2 x3)

Copy the third number on the auxiliary stack to the data

stack.

U. "u-dot" FORTH

(u --)

Display u in free field format.

U.R "u-dot-r" FORTH

(u n --)

Display u right aligned in a field n characters wide. If the

number of characters required to display u is greater than n, all

digits are displayed with no leading spaces in a field as wide as

necessary.

U2/ "u-two-slash" EXTRA

(x1 -- x2)

x2 is the result by shifting x1 one bit toward the

least-significant bit, filling the vacated most-significant bit

with zero.

U< "u-less-than" FORTH

(u1 u2 -- flag)

flag is true if and only if u1 is less than u2.

See also: <

U> "u-greater-than" FORTH

(u1 u2 -- flag)

flag is true if and only if u1 is greater than u2.

See also: >

U>D "u-to-d" EXTRA

266 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

(u -- ud)

ud is the equivalent of u.

UD. "u-d-dot" EXTRA

(ud --)

Display ud in free field format.

UD.R "u-d-dot-r" EXTRA

(ud n --)

Display ud right aligned in a field n characters wide. If the

number of characters required to display ud is greater than n,

all digits are displayed with no leading spaces in a field as

wide as necessary.

UM* "u-m-star" FORTH

(u1 u2 -- ud)

Multiply u1 by u2 giving the unsigned double-cell product ud. All

values and arithmetic are unsigned.

UM/MOD "u-m-slash-mod" FORTH

(ud u1 -- u2 u3)

Divide ud by u1, giving the quotient u3 and the remainder u2. All

values and arithmetic are unsigned. Exception -10 is issued if u1

is zero or if the quotient lies outside the range of a

single-cell unsigned integer.

See also: FM/MOD SM/REM

UMAX "u-max" EXTRA

(u1 u2 -- u3)

u3 is the greater if u1 and u2

UMIN "u-min" EXTRA

(u1 u2 -- u3)

u3 is the lesser if u1 and u2

UNLOOP FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Excecution: (--) (R: loop-sys)

Discard the loop-control parameters for the current nesting

level. An UNLOOP is required for each nesting level before the

267

definition may be EXITed. An ambiguous condition exists if the

loop-control parameters are not available.

UNTIL FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: dest --)

Append the execution semantics given below to the current

definition, resolving the backward reference dest.

Execution: (x --)

If all bits of x are zero, continue execution at the location

specified by dest.

See also: BEGIN

UNUSED FORTH

(-- u)

u is the amount of space remaining in the region addressed by

HERE , in address units.

UPDATE FORTH

(--)

Mark the current block buffer as modified.

UPDATE does not immediate cause I/O.

See also: BLOCK BUFFER FLUSH SAVE-BUFFERS

UPPER EXTRA

(c-addr u --)

Convert the lowercase characters in the string specified by

c-addr u to uppercase.

VALUE FORTH

(x "name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a defimition for name with the execution semantics defined

below with an initial value equal to x. name is referred to as a

"value".

name Execution: (-- x)

Place x on the stack. The value of x is that given when name was

268 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

is created, until the phrase x TO name is executed, causing a new

value of x to be associated with name.

See also +TO ADR CLEAR POP PUSH

VARIABLE FORTH

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below. Reserve one cell of data space at an aligned address. name

is referred to as a "variable."

name Execution: (-- a-addr)

a-addr is the address of the reserved cell. A program is

responsible for initializing the contents of the reserved cell.

VECTOR EXTRA

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below. name is referred to as a "vector".

name Execution: (i*x -- j*x)

Execute the execution token stored in the entry. The execution

token can be manipulated by IS . Exception -525 occurs if no

execution token is assigned to name.

See also CHAIN POP PUSH

VERSION EXTRA

(-- n)

n is the three decimal digit version number of this CHForth

system.

VID+PRN EXTRA

(--)

The output will go to both the screen and the printer.

VIDEO EXTRA

(--)

Set the output to the screen.

VIEW VIEW

("name" --)

Find "name" in the search-order or convert it to an address.

269

Display one line at the time of data with, space continues,

other keys terminate.

VOC! FORTH

(dea wid --)

Store the dictionary entry address dea in the word list described

by the word list identifier wid.

VOC-LINK EXTRA

(-- x)

A value that links all word lists and vocabularies.

VOC@ EXTRA

(wid -- dea)

Fetch the dictionary entry address dea of the last definition

from the word list described by the word list identifier wid.

VOCABULARY EXTRA

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Create a definition for name with the execution semantics defined

below. Create a new word list and store the word list identifier

with the definition for name. name is referred to as a

"vocabulary".

name Execution: (--)

Make the above created word list the current word list.

W/O "w-o" FORTH

(-- x)

x is the value for selecting the "write-only" file access method.

See also: CREATE-FILE OPEN-FILE

WARNING EXTRA

(-- a-addr)

a-addr is the address of a cell containing true when the program

will warn the user when redefinitions are encountered and false

otherwise.

WHAT EDITOR

(--)

Open file name with the editor program and place the cursor at

270 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

the line number stored in ERRLINE . name is stored at the address

stored in ERRNAME . ERRNAME and ERRLINE are valid after an

exception that occured during loading of file name. name is

displayed on the right of the status line.

WHILE FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: (C: dest -- orig dest)

Put the location of a new unresolved forward reference orig onto

the control flow stack, under the existing dest. Append the

execution semantics given below to the current definition. The

semantics are incomplete until orig and dest are resolved (e.g.,

by REPEAT).

Execution: (x --)

If all bits of x are zero, continue execution at the location

specified by the resolution of orig.

WITH EXTRA

("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Display the words from every vocabulary containing name. Case is

significant.

WITHIN FORTH

(n1|u1 n2|u2 n3|u3 -- flag)

Perform a comparison of a test value n1|u1 with a lower limit

n2|u2 and an upper limit n3|u3, returning true if either

(n2|u2<n3|u3 and (n2|u2<=n1|u1 and n1|u1<n3|u3)) or (n2|u2>n3|u3

and (n2|u2<=n1|u1 or n1|u1<n3|u3)) are true, returning false

otherwise. An ambiguous condition exists if n1|u1, n2|u2, and

n3|u3 are not all the same type.

WORD FORTH

(char "<chars>ccc<char>" -- c-addr)

Skip leading delimiters. Parse characters ccc delimited by char.

An ambiguous condition exists if the length of the parsed string

is greater then the implementation defined length of a counted

string.

271

c-addr is the address of a transient region containing the parsed

word as a counted string. If the parse area was empty or

contained no characters other than the delimiter, the resulting

string has zero length. A space, not included in the length,

follows the string. A Standard Program may replace characters

within the string.

If char is the character for space, control characters are

considered equal to char.

Note: the requirement to follow the string with a space is

obsolescent and is included as a concession to existing programs

that use CONVERT . A Standard Program shall not depend on the

existance of the space.

WORDLIST FORTH

(-- wid)

Creates a new empty word list, returning its word list identifier

wid. The new word list is dynamically allocated in data space.

Note that other ANS systems may create the new word list in

another place.

WORDS ONLY

(--)

List the word names in the first word list of the search order in

colums of 16 characters wide and a count at the end.

WORDS is implemented using pictured numeric output words. Its use

will corrupt the transient region identified by #> .

See also: EVERY

WORDSPEED EXTRA

(-- addr)

a-addr is the address of a cell containing the delay after WORDS

SEE DIS etc. in millseconds.

WRITE-FILE FORTH

(c-addr u fileid -- ior)

Write u characters from c-addr to the file identified by fileid

starting at its current position. ior is the I/O result code.

At the conclusion of the operation FILE-POSITION returns a value

past the characters written to the file and FILE-SIZE returns a

272 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

value greater than or equal to the value returned by

FILE-POSITION .

See also: READ-FILE WRITE-LINE

WRITE-GLOSS "write-glossary" FORTH

("name" --)

This word writes the glossary info from memory into a file.

The information may be collected from several source files.

WRITE-LINE FORTH

(c-addr u fileid -- ior)

Write u characters from c-addr followed by the line terminators

to the file identified by fileid starting at its current

position. ior is the I/O result code.

At the conclusion of the operation, FILE-POSITION returns a value

past the characters written to the file and FILE-SIZE returns a

value greater then or equal to the value returned by

FILE-POSITION .

See also: READ-FILE READ-LINE

WRITEX-FILE "write-x-file" EXTRA

(x-addr u fileid -- ior)

Write u characters from extended address x-addr to the file

specified by fileid. If no exception occurs, ior is zero.

Otherwise ior is the I/O result code.

X. "x-dot" EXTRA

(x-addr --)

Display the extended address x-addr as a four character segment

name or number as in .SEG , a colon and a four digit hexadecimal

number and a space.

XOR "x-or" FORTH

(x1 x2 -- x3)

x3 is the bit-by-bit logical exclusive-or of x1 with x2.

YES. DECOMPILER

(--)

Set the decompiler to normal.

See also: NO.

273

["left-bracket" FORTH

(--)

Enter interpretation state. [is an immediate word.

See also:]

[’] "bracket-tick" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics below to the current definition.

Exception -13 occurs if name is not found.

Run-time: (-- xt)

Place name’s execution token xt on the stack. The execution token

compiled by the phrase " [’] X " is the same value returned by

" ’ X " outside of compilation state.

See also: ’ POSTPONE

[CHAR] "bracket-char" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition.

Run-time: (-- char)

Place char char, the value of the first character of name, on the

stack.

See also: CHAR

[COMPILE] "bracket-compile" FORTH

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

274 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

If name has compilation semantics specified, append them to the

current definition; otherwise append the execution semantics of

name. Exception -13 occurs if name is not found.

[CTRL] "bracket-control" EXTRA

Interpretation: (i*x --)

This word is marked compile only. The default interpreter issues

exception -14 when an attempt is made to execute this word.

Compilation: ("name" --)

Skip leading space delimiters. Parse name delimited by a space.

Append the run-time semantics given below to the current

definition. Exception -531 occurs when the character is not in

the range {’@’..’_’}.

Run-time: (-- char)

Place char, the value of the first character of name, after

conversion to a control character, on the stack.

See also: CTRL [CHAR]

[ELSE] "bracket-else" FORTH

(--)

Repeatedly skip leading spaces, parse and discard space-delimited

words from the parse area, including nested occurences of [IF]

... [THEN] and [IF] ... [ELSE] ... [THEN] , until the word [THEN]

has been parsed and discarded. If the parse area becomes

exhausted, it is refilled as with REFILL . If the refilling of

the input buffer fails, exception -58 occurs. [ELSE] is

immediate.

[IF] "bracket-if" FORTH

(flag --)

If the flag is true, do nothing. Otherwise repeatedly skip

leading spaces, parse and discard space-delimited words from the

parse area, including nested occurences of [IF] ... [THEN] and

[IF] ... [ELSE] ... [THEN] , until either the word [ELSE] or the

word [THEN] has been parsed and discarded. If the parse area

becomes exhausted, it is refilled as with REFILL . [IF] is

immediate.

An ambiguous condition exists if [IF] is POSTPONEd. If the end of

the input stream is reached and cannot be refilled before the

terminating [ELSE] or [THEN] is parsed exception -58 occurs.

275

[THEN] "bracket-then" FORTH

(--)

Does nothing. [THEN] is immediate.

[]CELL "cell-array" EXTRA

(x a-addr1 -- a-addr2)

Multiply x by the size in address units of a cell and add it to

a-addr1 giving a-addr2.

[]CHAR "char-array" EXTRA

(x c-addr1 -- c-addr2)

Multiply x by the size in address units of a character and add it

to c-addr1 giving c-addr2.

[]DOUBLE "double-array" EXTRA

(x a-addr1 -- a-addr2)

Multiply x by the size in address units of a double-cell and add

it to a-addr1 giving a-addr2.

[]KEY "key-array" EXTRA

(char | x -- addr)

Return the address that is associated with control keys and

extended keys. Used to store an execution token that will be

executed when that particular key is pressed during ACCEPT .

\ "backslash" FORTH

("ccc<eol>" --)

If BLK contains zero, parse and discard the remainder of the

parse area; otherwise parse and discard the portion of the parse

area corresponding to the remainder of the current line. \ is an

immediate word.

\G EXTRA

("ccc<eol>" --)

If BLK contains zero, parse and discard the remainder of the

parse area; otherwise parse and discard the portion of the parse

area corresponding to the remainder of the current line. \G is an

immediate word. Used in generating glossaries.

] "right-bracket" FORTH

(--)

Enter compilation state.

276 CHAPTER 25. ALPHABETICAL INDEX OF WORDS

See also: [

{{ CRITERR

(--)

Redirect the DOS critical error handler to a harmless routine.

Use this word only temporary to perform dangerous functions.

}} CRITERR

(--)

Restore the redirection of the DOS critical error handler. Use

this word as soon as possible after {{ .

