

Crash Course

by Alexander Walz

What is Agena ?

 Agena is an interpreted procedural programming language.

 It can be used in scientific, scripting, and many other applications.

 Its syntax looks like very simplified Algol 68 with elements taken

from Maple, Lua and SQL, and some other languages.

 Binaries are available for Solaris, Mac OS X, Windows, OS/2 –

eComStation, Linux, and DOS.

 Agena is OpenSource, thus it is free.

 The implementation is based on the ANSI C sources of Lua 5.1.

 Sources and binaries are available at:

http://agena.sourceforge.net

2

Contents, 1

 Installing Agena

 Running Agena

 First Steps

 Names & Assignment

 Data Types

 Integral & Rational Numbers

 Complex Numbers

 Arithmetic

 Strings

3

Contents, 2

 Data Types, cont.

 Boolean Expressions & Relations

 Tables

 Arrays

 Dictionaries

 Sets

 Sequences & Registers

 Pairs

 Control Statements

 if Statements & is Operator

 case Statements

 onsuccess Clause

 4

Contents, 3

 Loops

 for Loops

 while Loops

 do .. as, do .. until, and do .. od Loops

 Combined for/while Loops

 for/as and for/until Loops

 Loop Control

 Procedures

 Short-cut Procedures

 Procedures

 Local Variables

 Variable Number of Arguments

5

Contents, 4

 Procedures, cont.

 Options

 Type Checking

 Error Traps

 Predefined Results

 Efficient Recursion

 Did you know ?

 Miscellaneous

 Precedence

 Mathematical Constants

6

Getting Started

Installing Agena

 In Solaris, OS/2 – eComStattion, Linux, Windows, and Mac OS X,

the respective installer automatically installs and sets up Agena.

You do not have to add further settings yourself after installing the

binaries.

 Information on how to install the DOS and Windows portable version

is included in the manual or the respective read.me files.

8

Running Agena

 In Windows and OS/2 - eComStation, simply click the icon in the

programme group to start the interpreter.

 In Solaris, Linux, Mac and DOS, type agena in a shell.

 Statements can be entered right after the '> ' prompt.

9

AgenaEdit, 1

 AgenaEdit is an editor providing syntax-highlighting and a runtime

environment for Solaris, Mac, Linux, and Windows. It can be started
by entering agenaedit in a shell.

10

AgenaEdit, 2

 Type your programme in the editor window and press F5 to run it.

 Mark consecutive lines in your programme with a mouse or the

keyboard and press F6 to execute only these lines.

 During computation, press the `break` button to interrupt the current

computation.

 Press the `restart` button to clear all variables.

 Save or open your programmes using the `File` menu in the editor

window.

 Just browse through the menu items for the other features.

11

First Steps, 1

 Any valid Agena code can be entered at the console with or without

a trailing colon or semicolon:

 If an expression is finished with a colon, it is evaluated and its

value is printed at the console. (This is not supported in

AgenaEdit, use the print function instead.)

 If the expression ends with a semicolon or neither with a colon

nor a semicolon, it is evaluated, but nothing is printed.

 You may optionally insert one or more white spaces between

operands in your statements.

 Assume you would like to add the numbers 1 and 2 and show the

result. Just type:

12

> 1 + 2:

3

First Steps, 2

 If you want to store a value into a variable, type:

 Now the value 25 is stored into the name c, and you can refer to this

number through the name c in subsequent calculations.

 Suppose that c is 25° Celsius. If you want to convert it to Fahrenheit,

enter:

 The cls statement clears the screen, restart clears all values, and

bye quits the interpreter.

13

> c := 25;

> 1.8*c + 32:

77

Names & Assignment

 A name always begins with an upper-case or lower-case letter or an

underscore, followed by one or more upper-case or lower-case

letters, underscores or numbers in any order.

 Use the assignment operator := to store a value to a name.

 Delete a value by assigning it to null or use clear:

14

> a := 1;

> var1 := 'hello world';

> a := null;

> clear var1;

Data Types

Integral & Rational Numbers

 Numbers can be represented like in the following examples.

 Integers:

 More than one value can also be printed at one line:

 Rational numbers:

 Scientific notation:

16

> -1:

-1

> 0, 1, 1.0, 1, 1.0:

0 1 1 1 1

> 3.141592654, -1.0:

3.141592654 -1

> 10e-3, -1e3, 2.3e3:

0.01 -1000 2300

Complex Numbers

 There are two notations to represent complex numbers.

 The ! operator:

 The I operand:

 Real part:

 Imaginary part:

17

> 1!2, -1.1!-2, 3!0:

1+2*I -1.1-2*I 3

> 1+2*I, -1.1-2*I, 3+0*I:

1+2*I -1.1-2*I 3

> real(1+2*I):

1

> imag(1+2*I):

2

Arithmetic, 1

 Agena allows to mix rational and complex numbers in calculations.

 Addition, subtraction, multiplication, division, and integer division:

 Examples:

18

rational complex/mixed

2 + 3 2+3*I + 1!2

2 – 3 2 - 3+1*I

2 * 3 2!2 * 3-I

2 / 3 2!0 / 3!1

2 \ 3 2!0 \ 3!1

> 2+3, 2!0/3!1, 2 + 3!1:

5 0.6-0.2*I 5+I

Arithmetic, 2

 Modulus (for rational numbers only):

 Exponentation with rational or integer power:

 Exponentation with integer power only (faster):

19

> 2 % 3:

2

> 2 ^ 3.1, 2 ^ 3:

8.5741877002903 8

> 2 ** 3:

8

Strings, 1

 Strings can be enclosed in single or double quotes. There is no

difference in meaning.

 Concatenation of two or more strings:

20

> 'this is a text':

this is a text

> "this is a text":

this is a text

> 'Hello ' & 'world':

Hello world

Strings, 2

 Substrings:

21

> str := 'abcd';

> str[2]:

b

> str[2 to 3]:

bc

> str[2 to -1]: # from 2nd two last character

bcd

> str[-1]: # last character

d

> str[-2 to -1]: # last two characters

cd

Boolean Expressions & Relations, 1

 Agena supports the logical values true and false, also called

`booleans`. A third Boolean constant named fail indicates an

error.

 Any condition, e.g. a < b, results to one of these logical values.

 Relational operators are:

22

Relation Operator

less than <

greater than >

less or equal <=

greater or equal >=

equality =

inequality <>

Boolean Expressions & Relations, 2

 Logical operators are:

23

Relation Operator

Boolean and and

Boolean or or

Boolean complement not

Boolean exclusive-or xor

> 1 < 2:

true

> 1 < 2 and 1 = 0:

false

> true xor false:

true

Tables, 1

 Tables are used to represent more complex data structures. Tables

consist of zero, one or more key-value pairs: the key referencing to

the position of the value in the table, and the value the data itself.

 Tables can contain other tables, as well.

 To get the data with key 1, input:

24

> tbl := [

> 1 ~ ['a', 7.71],

> 2 ~ ['b', 7.70],

> 3 ~ ['c', 7.59]

>];

> tbl[1]:

[a, 7.71]

Tables, 2

 To get the second entry in the subtable, enter:

 There are two forms to create empty tables.

 Tables can even be nested:

 The size operator returns the size of a table or any other structure.

25

> tbl[1, 2]:

7.71

> tbl := [];

> create table tbl;

> [1, [2, [3]]]:

[1, [2, [3]]]

Arrays

 Tables with positive integral keys are called arrays.

 Values can be inserted into arrays in two ways:

 Values can be deleted like this:

26

> tbl := [10, 11, 12];

> tbl[4] := 'a'; tbl[5] := 'b';

> insert 'a', 'b' into tbl;

> tbl[1] := null;

> delete 'a', 'b' from tbl;

Dictionaries

 Another form of a table is the dictionary which indices can be any

kind of data - not only positive integers. Key-value pairs are entered

with tildes.

 As with arrays, indexed names are used to access the

corresponding values stored to dictionaries.

 If a table key is a string, you can also use the notation:

27

> dic := ['donald' ~ 'duck', 'mickey' ~ 'mouse'];

> dic['donald']:

duck

> dic.donald:

duck

Sets, 1

 Sets are collections of unique items: numbers, strings, and any other
data except null. Any item is stored only once.

 If you want to check whether 'donald' is part of the set s, just index

it as follows:

28

> s := {'donald', 'mickey', 'donald'}:

{donald, mickey}

> s['donald']:

true

> s['daisy']:

false

Sets, 2

 If you want to add or delete items to or from a set, use the insert

and delete statements.

 The in operator also checks whether an item is part of a set.

 Sets consume around 40 % less memory than tables.

29

> insert 'daisy' into s;

> delete 'daisy' from s;

> 'donald' in s:

true

> 'daisy' in s:

false

Sequences, 1

 Sequences can hold any number of items except null.

 You can access the items the usual way:

 Values can be added as with tables.

30

> s := seq(1, 1, 'donald', true):

seq(1, 1, donald, true)

> s[2]:

donald

> s[4] := {1, 2, 2};

> insert [1, 2, 2] into s;

Sequences, 2

 Items can be deleted by setting their index position to null, or by

applying delete.

 The in operator checks whether a sequence contains a given item.

 Sequences are twice as fast when adding values than tables.

31

> s[4] := null;

> delete [1, 2, 2] from s;

> 'donald' in s:

donald

Registers, 1

 Registers are fixed-size arrays that also can store nulls.

 You can access the items the usual way:

 If a value is deleted, the size of the register does not change:

32

> r := reg(null, 1, 'donald', true):

reg(null, 1, donald, true)

> r[3]:

donald

> r[2] := null;

> r:

reg(null, null, donald, true)

Registers, 2

 Registers have a pointer to the top of a register that can be changed

so that data above the value of the top pointer can be hidden:

 Registers can be created with a predefined number of elements:

 The size of a register can be changed with the registers.reduce and

registers.extend functions.

33

> registers.settop(r, 3); print(r, registers.gettop(r));

reg(null, null, donald) 3

> create register r(8);

> r:

reg(null, null, null, null, null, null, null, null)

Pairs

 Pairs hold exactly two values of any type (including null and other

pairs).

 The left and right operators provide read access to its left and

right operands; the standard indexing method using integers is

supported, as well:

 The left and right operand of a pair can be changed as follows:

34

> p := 10:11;

> left(p), right(p), p[1], p[2]:

10 11 10 11

> p[1] := -10;

Control Statements

if Statement & if Operator

 Conditions can be checked with the if statement. The elif and

else clauses are optional. The closing fi is obligatory.

 The if operator checks a condition, too:

36

> if 1 < 2 then

> print('valid')

> elif 1 = 2 then

> print('invalid')

> else

> print('invalid, too')

> fi;

valid

> result := if 1 < 2 then 'valid' else 'invalid' fi;

> result:

valid

case Statements

 The case statement facilitates comparing values and executing

corresponding statements.

37

> c := 'agena';

> case c

> of 'agena' then

> print('Agena !')

> of 'lua' then

> print('Lua !')

> else

> print('Another programming language !')

> esac;

Agena !

onsuccess Clause

 Both if and case statements support an optional onsuccess clause.

If at least one of the conditions evaluated to true, then the
statements in the onsuccess clause are also executed.

38

> c := 'agena'; flag := false;

> case c

> of 'agena' then

> print('Agena !')

> of 'lua' then

> print('Lua !')

> onsuccess

> flag := true

> else

> print('Another programming language !')

> esac;

Agena !

> flag:

true

Loops

for Loops, 1

 A for loop iterates over one or more statements.

 A numeric for loop begins with an initial numeric value (from

clause), and proceeds up to and including a given numeric value (to

clause). The step size can also be given (step clause). The od

keyword indicates the end of the loop body.

 The current iteration value is stored to a control variable (i in this

example) which can be used in the loop body.

40

> for i from 1 to 3 by 1 do

> print(i, i^2, i^3)

> od;

1 1 1

2 4 8

3 9 27

for Loops, 2

 The from and step clauses are optional.

 If the from clause is omitted, the loop starts with the initial value 1.

 If the step clause is omitted, the step size is 1.

41

> for i to 3 do

> print(i, i^2, i^3)

> od;

1 1 1

2 4 8

3 9 27

for Loops, 3

 The value of the control variable can be accessed outside the loop.

 Since after the last iteration, the control variable is internally

increased by the step size a very last time, its contents is:

42

> for i to 3 do

> result := i^2

> od;

> i:

4

for Loops, 4

 A for/in loop iterates over all values in a table, set, and sequence.

With strings, it iterates over each character from the left to the right.

43

> for i in ['Agena', 'programming', 'language'] do

> print(i)

> od

Agena

programming

language

> for i in 'Agena' do print(i) od

A

g

e

n

a

for Loops, 5

 You can also iterate only over the keys of a table (or sequence) or

both keys and values:

44

> for keys i in ['donald' ~ 'duck', 'daisy' ~ 'duck'] do

> print(i)

> od;

daisy

donald

> for i, j in ['donald' ~ 'duck', 'daisy' ~ 'duck'] do

> print(i, j)

> od;

daisy duck

donald duck

while Loops

 A while loop first checks a condition and if this condition is true or

any other value except false, fail, or null, it iterates the loop

body again and again as long as the condition remains true.

 The following statements calculate the largest Fibonacci number

less than 1000.

45

> a := 0; b := 1;

> while b < 1000 do

> c := b; b := a + b; a := c

> od;

> c:

987

do .. as & do .. until Loops

 Variations of while are the do .. as and do .. until loops which

check a condition at the end of the iteration.

 Thus – contrary to while loops - the loop body will always be

executed at least once.

46

> c := 0; c := 0

> do > do

> inc c > inc c

> as c < 10; > until i = 10;

> c: > c:

10 10

do .. od Loops

 Infinite loops are supported by do ..od loops, a syntactic sugar for

`while true do .. od`.

 See the `Loop Control` sheet on how to exit these loops.

47

> c := 0;

> do

> inc c;

> if c > 9 then break fi

> od;

> c:

10

Combined for/while Loops

 All flavours of for loops can be combined with a while condition. As

long as the while condition is satisfied, i.e. is true, the for loop

iterates.

48

> for x to 10 while ln(x) <= 1 do

> print(x, ln(x))

> od;

1 0

2 0.69314718055995

for/until and for/as Loops

 for loops can also be combined with a closing until or as condition.

49

> for x to 10 do

> print(x)

> as i < 3;

1

2

3

> for x to 10 do

> print(x)

> until i = 3;

1

2

3

Loop Control, 1

 Agena features three statements to control loop execution. The

following two are applicable to all loop types.

 The skip statement causes another iteration of the loop to begin

at once, thus skipping all of the following loop statements after
the skip keyword for the current iteration.

 The break statement quits the execution of the loop entirely and

proceeds with the next statement right after the end of the loop.

50

> for i to 5 do

> if i = 3 then skip fi;

> print(i);

> if i = 4 then break fi

> od;

1

2

4

Loop Control, 2

 skip and break can also be combined with the when condition:

51

> for i to 5 do

> skip when i = 3;

> print(i);

> break when i = 4

> od;

1

2

4

Loop Control, 3

 The redo statement restarts the current iteration of a for/to or for/in

loop from its beginning, without incrementing the loop control

variable or processing the next item in a structure.

52

> flag := true;

> for i to 3 do

> print(i);

> if flag and i = 2 then

> flag := false;

> redo

> fi

> od;

1

2

2

3

Loop Control, 4

 The relaunch statement, however, restarts a for/to or for/in loop

completely.

53

> flag := true;

> for i to 3 do

> print(i);

> if flag and i = 2 then

> flag := false;

> relaunch

> fi

> od;

1

2

1

2

3

Procedures

Short-cut Procedures

 If your procedure consists of exactly one expression, then you may

use an abridged syntax if the procedure does not include statements
such as if, for, insert, etc.

 Let us define a simple factorial function with one argument.

 A function with two arguments:

55

> factorial := << (x) -> exp(lngamma(x+1)) >>;

> factorial(4):

24

> sum := << (x, y) -> x + y >>;

> sum(1, 2):

3

Procedures

 Let us write a procedure to compute the factorial of an integer.

 A procedure can call itself to generate the final result.

 The return statement passes the result of a computation.

56

> factorial := proc(n) is

> # computes the factorial of an integer n

> if n < 0 then return fail

> elif n = 0 then return 1

> else return factorial(n-1)*n

> fi

> end;

> factorial(4):

24

Local Variables

 A local variable is known only to the respective procedure and the

block where it has been declared.

 It cannot be used in other procedures, the interactive Agena level, or

outside the block where it has been declared.

57

> factorial := proc(n) is

> local result;

> result := 1;

> for i from 1 to n do result := result * i od;

> return result

> end;

> factorial(10):

3628800

Variable Number of Arguments

 If you want to pass a variable number of arguments, use the ?

keyword in the parameter list.

 The varargs system table contains all variable arguments passed

with the ? facility. Values can be accessed like with any other table.

 The system variable nargs contains the number of arguments
passed (both with the ? facility and without).

58

> f := proc(?) is

> return nargs, varargs, varargs[1]

> end;

> f('Beowulf', 'Grendel'):

2 [Beowulf, Grendel] Beowulf

Options, 1

 A function does not have to be called with exactly the number of

parameters given at procedure definition.

 You may optionally pass less or more values at run-time. If no value

is passed for a parameter, then this parameter is automatically set to
null at function call.

 If you pass more arguments than there are actual parameters,

excess arguments are ignored.

59

> f := proc(a, b, c) is

> return a, b, c

> end;

> f(1):

1 null null

Options, 2

 Let us build an extended square root function that either computes

in the real or complex domain. By default, i.e. if only one argument is

given, the real domain is taken, otherwise you may explicitly set the

domain using a pair as a second argument.

60

> xsqrt := proc(x, mode) is

> if nargs = 1 or mode = 'domain':'real' then

> return sqrt(x)

> elif mode = 'domain':'complex' then

> return sqrt(x + 0*I)

> else

> return fail

> fi

> end;

> xsqrt(-2):

undefined

> xsqrt(-2, 'domain':'real'):

undefined

Options, 3

 If the left-hand value of the pair in a function call shall denote a

string, you can spare the single quotes put between the string by
using the = token which converts the left-hand name to a string.

61

> xsqrt(-2, domain = 'complex'):

1.4142135623731*I

Type Checking, 1

 You can check the type of arguments passed in two ways:

 Query the type with the type operator:

 State the expected type in the parameter list:

62

> f := proc(x) is

> if type(x) <> number then error('wrong type of argument') fi;

> return x

> end;

> f('men ne cunnon hwyder helrunan hwyrftum scriþað.'):

wrong type of argument

> f := proc(x :: number) is

> return x

> end;

> f('men ne cunnon hwyder helrunan hwyrftum scriþað.'):

Error in stdin:

 invalid type for argument #1: expected number, got string.

Type Checking, 2

 Up to four types may be given:

 Besides checking the arguments, the return can also be insured:

63

> f := proc(x :: number) :: number is

> return tostring(x)

> end

> f(1)

Error in stdin, at line 2:

 `return` value must be of type number, got string.

> f := proc(x :: {number, complex}) is

> return tostring(x)

> end

> f(1!2)

1 2

Error Traps

 The try/catch statement catches errors:

 Alternatively, the protect function also traps errors.

64

> success, s := true, null;

> try

> print(s[1]) # provoke an error by indexing null

> catch msg then

> success := false

> yrt;

> success:

false

Predefined Results

 Predefined results can be set with the rtable.defaults function by

entering them into a remember table.

 Agena returns the given predefined result if it exists and does not

compute it by executing the procedure body, so there is also an

increase in speed.

65

> rtable.defaults(fact, [# defaults for fact(0) .. fact(3)

> -1~undefined, 0~1, 1~1, 2~2, 3~6

>]);

> fact(-1):

undefined

> rtable.defaults(fact):

[[2] ~ [2], [1] ~ [1], [0] ~ [1], [3] ~ [6], [-1] ~ [undefined]]

Efficient Recursion

 Agena remembers procedure results if the rtable.remember

function is invoked. An optional table of predefined results can also

be given.

 This significantly speeds up recursively defined procedures.

 For the differences between defaults and remember check the

manual (Chapter 7.24).

66

> fib := proc(n) is

> assume(n >= 0);

> return fib(n-2) + fib(n-1)

> end;

> rtable.remember(fib, [0~1, 1~1]);

> fib(50):

20365011074

Did you know ?

Did you know, 1 ?

 You can send and receive data on the TCP level across the Internet
and LANs with the net package.

 You can load your own programmes into an Agena session by using
the run function (e.g. run 'progname.agn') or starting Agena from

the shell with agena –i progname.agn.

 The map function applies a function to all elements of a table, set, or

sequence, e.g. map(<< x -> x^2 >>, [2, 3]) → [4, 9]. You may

also try countitems, remove, select, subs, and zip.

 If you want your self-written procedures, constants, etc. to be

available every time you invoke the interpreter, just put them into a
file called agena.ini file (Windows, OS/2, DOS) or .agenainit

(UNIX, Mac, Haiku) in your home directory.

68

Did you know, 2 ?

 Data you compute in a session can be stored to a file using the save

function to be read into another session later by read.

 The way Agena outputs tables, sets, sequences, complex numbers,
and pairs can be changed by modifying the environ.aux.print*

procedures in the library.agn file located in the lib directory of

your Agena installation.

 Data stored in CSV and XML files can be imported with the xml

package or the utils.readcsv and utils.readxml functions.

 Errors issued by Agena, preventing programmes to finish
successfully, can be intercepted with protect.

 If you do not like the default prompt, just enter something like:
 _PROMPT := '% '

 69

Miscellaneous

Precedence

 Operator precedence follows the table below, from lowest to highest.

71

Prio Operators

10 or xor

9 and

8 < > <= >= = == <> :: :-

7 in subset xsubset union minus intersect atendof

6 & : @ $

5 + - split || ^^

4 * / % \ shift <<< >>> && *% /% +% -% surd

3 not -

2 ^ **

1 ! ~~ and all other unary operators

Packages, 1

 Agena features various packages that can be invoked with the
import statement, e.g. import calc alias.

72

Package Function

ads Database specialised on storing and retrieving strings

bags Multisets, Cantor sets that count occurrences

astro Astronomical time and date functions

binio Functions for processing binary files

calc Undergraduate Calculus package

clock Functions to process hours, minutes, and seconds

cordic CORDIC numeric functions

div Fractions

environ Access to the Agena environment

Packages, 2

73

Package Function

fractals Various fractals & plotting routines, some FRACTINT support

gdi Graphics

gzip Read and Write UNIX gzip compressed files

io Input/output functions for console and files

linalg Undergraduate Linear Algebra

llist Linked lists

mapm Mathematical arbitrary precision library for the real domain

math Additional mathematical functions

net IPv4-based exchange of data over the Internet or LANs

os Functions to operate with the underlying operating system

registers Functions for register administration

Packages, 3

74

Package Function

rtable Administration of remember tables

skycrane Various easy-to-use wrappers to Agena functions

stats Statistical functions

strings Various string handling functions

tables Functions specialised on table processing

utils Utility functions, e.g. CSV import and export

usb libusb binding

xbase xBase file support (i.e. dBASE (tm) III+)

xml XML decoding (LuaExpat)

Mathematical Constants

 Agena features the following numeric constants:

75

Constant Meaning

Eps Equals 1.4901161193847656e-08

degrees Factor 1/Pi*180 to convert radians to degrees

Exp Constant e = exp(1) = 2.71828182845904523536

I Imaginary unit

infinity Infinity

Pi Equals 3.14159265358979323846

radians Factor Pi/180 to convert degrees to radians

undefined An expression stating that it is undefined, e.g. a singularity

Any Questions ?

 For further information, please consult

 the Primer and Reference,

a manual explaining Agena on 562 pages

 the Quick Reference,

an overview of all the functions available

 Both are available at

http://agena.sourceforge.net/documentation.html

76

