
Accents, accents, accents. . . — enhancing CM fonts with “funny” characters

Bogusław Jackowski
BOP s.c., Gdańsk, Poland
B.Jackowski@gust.org.pl

Janusz M. Nowacki
Foto-Alfa, Grudziadz, Poland
J.Nowacki@gust.org.pl

Pracę zgłosił: Andrzej Borzyszkowski

Abstract

Accented characters play the rôle of enfants terribles in the world of computers. Anybody who has to
communicate with another computer system in a language other than English knows that using so called
“funny characters” is not fun at all.

Those pesky diacritics A giant step towards putting some order into the chaos was the Unicode standard
(ISO/IEC 10646) published ten years ago. Unicode, obviously, does not remove all the problems from the
font’s playground, and even adds a few specific ones (e.g., the problems with the size of fonts or with the
registration of non-standard characters and languages). Nevertheless, one can believe that the world will
become a bit better when Unicode turns from the standard de nomine to the standard de facto.

TEX with its 8-bit (i.e., 256 characters per font) paradigm is more and more obsolescent and enhancing
it by multi-byte character codes seems unavoidable. Such efforts as Ω Project [11], developed by John Plaice
and Yannis Haralambous, cannot be overestimated from this point of view. But the typesetting system itself
is only one side of the coin. The other is a collection of fonts it uses.

Originally, TEX was equipped with Computer Modern family of fonts (CM) which did not contain
diacritical characters. Those few TEX users who would need accented letters were supposed to employ
the \accent primitive. The immense popularity of TEX in countries that use lots of diacritical characters
proved this presumption invalid. At least three reasons can be set forth: (1) accented characters do not
behave like “normal” ones, e.g., they interfere with important TEX algorithms such as hyphenation and
insertion of implicit kerns; (2) the CM fonts do not contain all necesary diacritics, e.g., an ogonek accent (used
in Polish, Lithuanian, Navaho) is missing; (3) such diacritical elements as cedilla and ogonek, when treated as
“accents,” overlap with a letter, which precludes some applications, e.g., preparing texts for cutting plotters
(see figure 1), even if outline fonts are used. The lesson is obvious — the CM family should be extended by
a variety of diacritical letters.

In this paper we would like to present our approach to solving the problem, i.e., the open source family
of fonts, Latin Modern (LM), in the PostScript Type 1 format [2], prepared using METAType1, a META-
POST-powered package [8] (see section METAType1). We believe that the LM family is a decent alternative
to the existing extensions of the CM family — we expect it to be a handy collection of fonts for typesetting
in latin-based alphabets. The fonts are also equipped with Printer Font Metric files (*.pfm) and therefore
can be used as system fonts in various window systems. We plan to release the METAType1 sources of the
LM fonts during the 24th Annual Meeting and Conference of the TeX Users Group, July 20th – 24th, 2003, Big
Island, Hawaii.

A gulp of history Needless to say, the lack of diacritical letters in the CM family was recognized almost
from the very beginning by TEX users who had to struggle with the languages other than English. Only in
1990, however, during the TUG meeting in Cork, Ireland, did the international TEX community decide that
fonts in so called Cork Encoding (EC or, in LATEX lingo, T1) should be prepared for European TEX users [6].
The work on EC fonts started soon after the Cork meeting. Norbert Schwartz designed a prototype, so called
DC fonts. The work was then continued by the team led by Jörg Knappen. The final release of EC fonts was
announced in 1997.

XI Ogólnopolska Konferencja Polskiej Grupy Użytkowników Systemu TEX 3

Polska Grupa Użytkowników Systemu TEX, 2003 (http://www.GUST.org.pl)



Bogusław Jackowski and Janusz M. Nowacki

Figure1: The letter Eogonek from Times New Roman for Windows XP (left), from aer10 (middle), and from lmr10
(right); only the latter form, i.e., having a single outline, is acceptable in professional applications.

It was an important achievement. Nevertheless, the Cork Encoding conformed to TEX’s 8-bit paradigm
and therefore it was not able to comprise all characters occurring in European languages, not to mention
other Latin alphabets, such as Vietnamese or Navaho.

For a few years, EC fonts were available only in a TEX-specific bitmap form (pk). Nowadays, in the
advent of electronic publishing, bitmaps are hardly acceptable. Outline fonts turn out to display much better
on a screen (e.g., when used in Portable Document Format, PDF).

This inspired Lars Engebretsen who prepared a set of TEX virtual fonts containing basic diacritical
characters [4]. The virtual fonts could refer to the excellent outline version of the CM family which had
appeared in the meantime. It had been created in 1988 by Blue Sky Research for the American Mathematical
Society in PostScript Type 3 format, converted in 1990 by Y&Y into the hinted Type 1 format, and released
in 1997 into the public domain by the American Mathematical Society. Engebretsen called his collection
AE — “Almost EC.” His virtual fonts suffer, however, from the same limitation as TEX does, i.e., the number
of characters is limited to 256; moreover, as we have mentioned, superimposing a diacritical element on a
character reveals undesirable features when the character is stroked rather than filled (figure 1).

Only recently, automatically traced fonts in PostScript Type 1 format, based on the EC fonts, have been
published: Péter Szabó’s Tt2001, Vladimir Volovich’s CM-Super (both in 2001; [14] and [15], respectively), and
a newfangled Alexey Kryukov’s CM-LGC (March, 2003). Note, however, that Szabó courteously “recommends
the wonderful CM-Super package instead of his own Tt2001.” Indeed, Volovich’s collection contains much
more font variations and covers a broader character set than Szabó’s one. Kryukov’s collection is, in a
way, a supplement to CM-Super. The creation of these packages was possible thanks to a marvellous tool
provided by Martin Weber, namely, autotrace [16].

Volovich’s accomplishment seems to bring to an end the long-lasting endeavours to introduce diacritical
characters into the TEX’s realm. Do we really need one more collection of fonts?

Another viewpoint

Autotraced fonts, in spite of their many advantages, have drawbacks. Objectively, the most important one is
perhaps the size of a font. Such fonts are usually larger than similar fonts having carefully designed outlines
because of the greater number of nodes. Compare, for example, fairly tidy Volovich’s CM-Super fonts with
AMS CM and LM: the number of bytes per character is 260, 200, and 135, respectively. Twice is not too
much, but in connection with lots of magnifications included (see section Too many font sizes) it makes
a difference. Incidentally, the size of the CM-super fonts can be reduced by circa 10 percent by using a
subroutine compression module PACKSUBR from METAType1 (actually, it is a short awk script).

For us, however, more important are arguments of a rather imponderable nature. We stay firmly by
the conception underlying the TEX and METAFONT design: every detail, be it a typesetting or a typeface
design, should be controllable and replicable.

4 Bachotek, 1–3 maja 2003

Polska Grupa Użytkowników Systemu TEX, 2003 (http://www.GUST.org.pl)



Accents, accents, accents. . . — enhancing CM fonts with “funny” characters

This is not the case with autotraced fonts. You must relay, e.g., on the nodes selected by the tracing
engine. Volovich admits that FontLab program (very good but commercial) was used for improving the
fonts, namely, for hinting and reducing the number of nodes; therefore, the process cannot be easily repeated
somewhere else. In other words, there are actually no sources for the CM-Super family. The consequence
is that tfm files have to be generated from afm ones (using, e.g., AFM2TFM program) which adds further
uncontrolled factors. For example, one cannot suppress overshoots, i.e., characters ‘o’ and ‘x’ will usually
have slightly different heights, in disaccordance with the original CM design.

Speaking about AFM2TFM converter, please note that it cannot produce mathematical fonts. One has to
use METAFONT or METAPOST (or edit manually property lists generated by tftopl or vftovp) in order
to exploit such features as charlist or extensible. Ignoring this aspect would mean, in our opinion, the
waste of TEX equipment for mathematics.

Having said this, we would like to emphasize that we esteem the job Szabó, Volovich, and Kryukov did.
Our predilection to another solution may be regarded as a natural, if not advisable, difference of viewpoints.

Too many font sizes There is one more issue, related indirectly to the problem of ‘bitmaps versus outlines,’
namely, the number of font sizes for a given typeface, or more adequately — proportions. Donald E. Knuth’s
idea of having different proportions for different font sizes (5, 6, 7, 8, 9, 10, 12 and 17 points) has no precedent
in typography. John Sauter attempted to go even further [13]. He prepared METAFONT programs that
interpolate (and even extrapolate) Knuth’s font parameters to non-integer font sizes. We can accept Sauters’s
approach as an interesting experiment, admissible for bitmap fonts. Nevertheless, using it for outline fonts
is at least controversial.

We believe that, in general, four font proportions would suffice: heading (17 pt), normal (10 pt), script
(7 pt), and second order script (5 pt, “scriptscript”). Because of the well-established tradition, we cannot
refrain from using Knuth’s scheme, but we would strongly discourage extending it.

For these reasons, we accept with difficulty the enormous number of different sizes/proportions both in
EC and CM-Super fonts. This is apparently the inheritance of Knuth’s and Sauter’s ideas. We would gladly
discard most of fourteen alterations of a single typeface (corresponding to font sizes 5, 6, 7, 8, 9, 10, 10.95,
12, 14.4, 17.28, 20.74, 24.88, 29.86, and 35.83 points). The series proposed by Knuth plus TEX scaled and at
operations provide sufficient means to deal with font scaling in most of practical applications.

Too few typefaces If anything, completely new typefaces are needed. The number of fonts prepared with
METAFONT is surprisingly small compared, e.g., to what is available on the commercial market. Well, not
so surprisingly. As we have already mentioned, METAFONT generates TEX-oriented pk bitmap fonts which
have not become popular outside the TEX world. In principle, the conversion of pk bitmaps into PostScript
Type 1 form is possible, as Szabó and others proved. Which does not mean that looking for alternative
tools is impractical.

Alternative tools In general, there are two classes of computer tools: visual (interactive) and
logical (programmable). Perhaps someday both classes will converge into, say, “visual-and-logical”
tools which will prevail, but at present, no doubt, interactive tools are in vogue. The majority of
contemporary visual typographic programs are commercial products. Fortunately, George Williams
launched (in 2000) an impressive open source project, PfaEdit [17]. This font editor is already
a powerful tool and, being extensively developed, it promises even more, which countervails the
grasping market up to a point. An interesting visual tool for generating PostScript Type 1 fonts
is also Richard Kinch’s MetaFog which enables visual tuning of METAPOST-generated PostScript
files [9].

Programming tools are not so popular. Are they to go extinct some day? We hope they will not. It
would be a pity, because in some applications programmability is better. Fortunately, there exist people
who share our point of view. One of them is Włodek Bzyl who found a plausible application for the logical
approach in typography. His amazing colour PostScript Type 3 fonts are no mean challenge for those who
use visual tools [3].

Fonts are very complex structures. They are governed by the ample set of interdependent parameters,
such as character dimensions, font-specific parameters (italic angle, x-height, typical stems), characteristic
shapes (serifs and arcs), not speaking about such technicalities as hints or subroutines. And here an
important aspect of programmability enters. By definition, programmable tools require sources in a

XI Ogólnopolska Konferencja Polskiej Grupy Użytkowników Systemu TEX 5

Polska Grupa Użytkowników Systemu TEX, 2003 (http://www.GUST.org.pl)



Bogusław Jackowski and Janusz M. Nowacki

lmb10 lmr17 lmss10 lmssq8
lmbo10 lmr5 lmss12 lmssqbx8
lmbx10 lmr6 lmss17 lmssqbo8
lmbx12 lmr7 lmss8 lmssqo8
lmbx5 lmr8 lmss9 lmtcsc10
lmbx6 lmr9 lmssbo10 lmtt10
lmbx7 lmri10 lmssbx10 lmtt12
lmbx8 lmri12 lmssdc10 lmtt8
lmbx9 lmri7 lmssdo10 lmtt9
lmbxo10 lmri8 lmsso10 lmtti10
lmbxi10 lmri9 lmsso12 lmtto10
lmcsc10 lmro10 lmsso17 lmvtt10
lmcsco10 lmro12 lmsso8 lmvtto10
lmr10 lmro8 lmsso8 lmvtto10
lmr12 lmro9 lmsso9

Figure2: The Latin Modern collection of fonts.

human-readable text form. A plethora of text processing utilities around (awk, perl, grep, diff) can therefore
be employed to crosscheck the consistency of the data describing the font. This can hardly be achieved
with purely interactive programs, although it should be noted that some interactive typographic programs
have implemented limited programmability.

METAType1 We prefer unlimitted programmability. Being provoked by the irksome scarcity of fonts
prepared using METAFONT, we contrived another font generating package, METAType1 [8], based on
METAPOST, which produces results in the world-wide accepted PostScript Type 1 format. The package
makes use of two sets of METAPOST macros (general purpose plain_ex and task-oriented fontbase) and
a few other utilities, such as awk (for processing METAPOST output), T1utils (for converting text data into
a binary form), and mft (for neat proofing). Originally, METAType1 was developed for DOS; thanks to
Włodek Bzyl, it is available also for Linux.

Those who are repelled by the sophisticated software and therefore are unwilling to experiment
with METAType1 may find Han-Wen Nienhuys’s opinion encouraging: “METAType1 is a very simplistic
approach” [10].

One of the first results obtained with METAType1 was Donald E. Knuth’s logo font and an electronic
replica of a traditional Polish font, Antykwa Półtawskiego [7]. We also used METAType1 for auditing and
enhancing selected fonts from the URW++ collection distributed with Ghostscript.

In 2002, during the TEX meeting in Bachotek, Poland, the representatives of European TEX users group,
having discussed the matters on email, came up with a proposal of converting AE virtual fonts into a more
universal PostScript Type 1 format and augmenting them with a set of necessary diacritical characters. Thus
the opportunity arose to embark METAType1 upon a new, unconventional task. We took up the gauntlet
without hesitation.

The LM family of fonts or details, details, details. . .

Our intention was to preserve the AE name, as we wanted to emphasize the rôle of Engebretsen’s idea in
this enterprise. Soon it became clear, however, that the differences would be fundamental and that the
change of the name would be necessary in order to avoid a mess. Therefore, we coined the name “Latin
Modern” which is to betoken further development — we would like the final version of LM to comprise as
many latin-based alphabets as possible, e.g., Vietnamese which regretfully is not included yet.

The collection of AE fonts consisted of 50 fonts, reasonably selected from the abundance of Computer
Modern. We decided to add a variable-width typewriter font and a few oblique derivatives, arriving finally
at 57 fonts (see figure 2).

Observe two details:

1. We adopted a more regular (although unorthodox) font naming convention with respect to slant/italic
variants: we preserved the 8-character limit but we have used the letter ‘o’ as a suffix for oblique
(slanted) fonts and the letter ‘i’ — as a suffix for truly italic fonts.

6 Bachotek, 1–3 maja 2003

Polska Grupa Użytkowników Systemu TEX, 2003 (http://www.GUST.org.pl)



Accents, accents, accents. . . — enhancing CM fonts with “funny” characters

2. The LM family contains font lmssqbx8 (i.e., the bold version of lmssq8); a corresponding font occurs
neither in CM nor in EC. Actually, the respective AE fonts (aessq8, aessqi8, and aessqb8) refer to the
fonts lcmss8 lcmssi8, and lcmssb8. These fonts, added by Pierre A. MacKay, were meant for using
with SliTEX. Their regular variants are nearly identical with Knuth’s cmssq8 and cmssqi8. The only
difference is the capital ‘I’ (see figure 3).

Figure3: The letter I from Knuth’s cmssq8 (left) and MacKay’s lcmss8 (right).

The issue of font names was triggered by the slanted fonts that we decided to add: what the name
should we assign to the oblique variant of lmvtt10? The name lmvttsl10 did not conform to the Knuthian
8-character canon, the name lmvtti10 did not tell the truth. Having thought the problem over, we could
not find the reason why oblique fonts, i.e., the mechanically skewed ones, received the designator ‘i’ in some
cases (e.g., cmssi10) and the designator ‘sl’ in other (e.g., cmbxsl10), and why the designator appeared either
at the end of the kernel of the name, as in the mentioned examples, or — in some cases — immediately after
the prefix ‘cm’ (cmsltt10, cmitt10). We could either uphold traditional Knuth’s terminology (but how then
should we call oblique lmvtt10?) or take an opportunity and introduce some regularity in font naming at
the risk of commencing an incompatibility mess. We have chosen the latter solution. . .

The issue of an alternative letter ‘I’ necessitated, besides undertaking a decision whether to introduce
it or not (we decided to introduce it as a variant letter), some extra work due to the addition of variant
accented characters and a variant ligature IJ. The lmssq* fonts became thus somewhat exceptional. This is
usually undesirable but sometimes cannot be avoided.

The reader may wonder why to dwell on such trifles? The answer is simple: it was the bulk of details of
this kind that made the work on the LM family laborious, although individual tasks were relatively simple.
In other words, the problem with details is that each of them, even the tiniest one, has to be handled
somehow — if the amount of details grows, the job becomes complex.

Enumerating all dilemmas, technicalities, subtleties or even puzzles with which we had to struggle is
obviously pointless. On the other hand, our work consisted nearly exclusively of details — how to describe
such a work? Perhaps the best method is to let the reader perceive the scent of the battleground by showing
representative examples. Two such examples we have already indicated. The rest of the paper presents a
few more of them.

From PostScript to METAType1 sources The process of conversion of fonts from PostScript Type 1
form into METAType1 sources is moderately relevant since the potential users of the LM fonts are not
expected to repeat this operation any more. The METAType1 sources are legible and can easily be modified,
if necessary.

We used a stand-alone utility PF2MT1 (belonging to the METAType1 package) for the translation of
pfb+afm couples from CM fonts into METAType1 code. The virtual AE fonts provided the necessary
information for merging appropriately the results of conversion. awk is a very convenient tool for such
operations. Thanks to it, the framework of the LM sources was ready after a few hours; amending the LM

sources took a few months.

Tuning and augmenting the METAType1 sources of the LM fonts The main part of the job, although
the simplest one, was adding accents. METAType1 provides a use_accent operation, similar to the TEX
\accent primitive, that can conveniently be used for this purpose. By default, use_accent aligns the centre
of an accent with the centre of its accentee and raises the accent by x − h, where x is the value of the
x-height parameter, and h is the height of the character. This is the procedure that is used by TEX for
accenting. Such an algorithm is not always eligible. Occasionally, the position of accent may have to be
adjusted. The command use_accent enables an arbitrary shift of both accent and accentee. Moreover, a
supplementary parameter can optionally be specified for each character — a glyph axis (see figure 4).

All in all, adding accented letters was a child’s play. Somewhat more difficult was adding extra
characters.

XI Ogólnopolska Konferencja Polskiej Grupy Użytkowników Systemu TEX 7

Polska Grupa Użytkowników Systemu TEX, 2003 (http://www.GUST.org.pl)



Bogusław Jackowski and Janusz M. Nowacki

Figure4: The optical axis of a glyph does not necessarily coincide with the center of the glyph. Compare the
corrected placement of the accent in gcommaaccent (left) with the default one (right).

In the AE family, the characters were brought together from a few CM sources. Consider, e.g., aer10:
arrow left hook (i.e., faked ogonek), less, and greater characters were taken from cmmi10; bar, backslash,
braceleft, braceright, and section — from cmmi10; sterling — from cmu10. Some characters were drawn
using rules, e.g., visiblespace (missing characters were marked by a rule having width and height equal
to 1/2 em), and some were assembled from a few components (Aogonek, aogonek, Eogonek, eogonek). We
went even further: we “borrowed” characters asciicircum and asciitilde from cmex10; mu — from cmmi10;
dagger, daggerdbl, and paragraph — from cmsy10.

It is debatable whether borrowing characters is acceptable. The section sign from cmsy10 is certainly
an alien in a sans serif font. Therefore, characters that seemed to us more important (section, sterling)
were programmed from scratch. We used, of course, appropriate parameters from the CM driver files, but
we did not follow Knuth’s recipe rigorously. This might have been done (see the comments on symbol Euro

below). We prefered, however, our shapes of glyphs. This may evoke some compatibility-related issues
but, anyway, the full compatibility with CM, EC, and AE fonts cannot be achieved (see section Compatibility

issues).
Actually, some characters were borrowed not from CM fonts but from their PL counterparts (i.e., CM

fonts equipped with Polish diacritical letters; note that the relevant code from the PL fonts was incorporated
into the EC fonts). The acute and grave accents over capital and small letters in PL fonts diminutively differ,
namely, accents over capital letters are flattened. The same approach we applied in LM fonts (see figure 5)
which is consistent with EC and inconsistent with CM fonts.

Figure5: There are actually two acute accents in LM fonts: a flattened variant is used for capital letters. This idea
was implemented in PL fonts and next in EC ones. Note that, in general, the flattening is neither a slanting nor a
rotation.

Besides the accented, borrowed and newly programmed characters, a few glyphs had to be programmed
as consistently as possible with the CM character set. A notable example is an Euro currency symbol. It
looks as though it became so important recently that even Adobe assigned it a name beginning with a capital
letter (cf. dollar, yen, sterling, etc., in Adobe Glyph List For New Fonts [1]). We attempted to exploit the
METAFONT code for the letter C and — it worked (see figure 6).

8 Bachotek, 1–3 maja 2003

Polska Grupa Użytkowników Systemu TEX, 2003 (http://www.GUST.org.pl)



Accents, accents, accents. . . — enhancing CM fonts with “funny” characters

Figure6: Euro symbols from the LM fonts; observe that an Euro symbol is narrower than the corresponding letter C

(above), but that the stem sizes are preserved. Note, however, that there is no slot for an Euro symbol in the Cork

Encoding.

XI Ogólnopolska Konferencja Polskiej Grupy Użytkowników Systemu TEX 9

Polska Grupa Użytkowników Systemu TEX, 2003 (http://www.GUST.org.pl)



Bogusław Jackowski and Janusz M. Nowacki

The LM fonts contain also a few idiosyncratic symbols. We wanted, e.g., to have a ligature f k in the
repertoire of characters (see figure 7) because there are several words in Polish containing the digram ‘fk.’
They are less numerous than words with digrams ‘fi’ and ‘fl’ but more than words with trigrams ‘ffi’ and ‘ffl’
(which occur exclusively in words of foreign origin). The electronic Collins English Dictionary retrieved
only three words containing the digram ‘fk’: Au	lärung (sic), Ka	a, Ka	aesque. There are more candidates
for nonstandard ligatures, e.g., ‘fb,’ ‘fh,’ ‘ffb,’ and ‘ffh.’ These groups of letters occur sporadically in English
and German (they are absent from Polish). We are not in a position, however, to decide whether introducing
the respective ligatures would make sense.

Pair of characters Ligature

Figure7: There are several words in the Polish language that contain the digram ‘fk’; therefore, we included the
ligature f k (top-right) in the LM character set for the sake of consistency with native CM ligatures, such as fl

(bottom-right).

Compatibility issues The answer to the question whether the LM fonts can serve as a replacement for
CM or EC ones is obviously ‘no.’ First of all, the collection of fonts is different — LM is a subset of CM (except
lmssqb8 and a few oblique derivatives), not speaking about EC. Therefore, not every text typeset with CM

or EC fonts can be re-typeset using LM ones.
On the other hand, it should be noted that LM fonts are based on the data taken from CM driver files.

Therefore, all relevant dimensions are (or at least should be) the same in LM and CM fonts within the
accuracy of rounding errors. It is thus possible to use existing LM fonts as a replacement for CM in dvips
driver psfonts.map file — it suffices to prepare appropriate encoding (*.enc) files.

In order to reach this level of compatibility, we had to add two more characters, namely arrowup and
arrowdown which, somewhat surprisingly, are present in cmr5, but not in other fonts in the cmr* series.
At the moment, we resisted the temptation to include consequently a full quiver of other arrows. The main
reason was that arrows are absent from the basic Cork Encoding (they appear only in the Text Companion

Encoding — see, e.g., the file dcdoc.tex distributed with the EC sources); moreover, PostScript is anyway
involved and therefore various transformations can easily be applied, if necessary. In future, however, we
may change our opinion.

The METAType1 programs for the arrows are based on METAFONT sources excerpted from sym.mf.
While adapting the code, we encountered a quandary which is a good example of a seemingly trivial yet
embarrassing detail. It turned out, that the arrow programs produce questionable results for certain driver
files, namely, sidebars disappear. The arrow programs were perhaps never tested against all driver files.
One can live with this, nevertheless, we decided to preserve minimal space at both sides — the result is
certainly more palatable (see figure 8).

Figure8: The METAFONT program for arrows (from sym.mf) would produce glyphs stripped of sidebars for
parameters from cmssdc10 (left); arrows in LM fonts always have sidebars (right).

10 Bachotek, 1–3 maja 2003

Polska Grupa Użytkowników Systemu TEX, 2003 (http://www.GUST.org.pl)



Accents, accents, accents. . . — enhancing CM fonts with “funny” characters

Another quandary of a similar kind is related to accents. For inexplicable reason, the caron accent in
CM fonts is lowered in comparison to the remaining accents (see figure 9). We considered it a fault and
decided to raise all carons appropriately. We relinquished thus the full compatibility between CM and LM

families.

Figure9: The caron alias hachek accent (the leftmost box) is slightly lowered in the CM fonts; in the LM fonts, all
accents are aligned horizontally.

The game of names Among many technicalities related to the representation of PostScript fonts, we would
like to comment upon only one — the particularly upsetting problem of character names.

Gcommaaccent; LATIN CAPITAL LETTER G WITH CEDILLA
Kcommaaccent; LATIN CAPITAL LETTER K WITH CEDILLA
Lcommaaccent; LATIN CAPITAL LETTER L WITH CEDILLA
Ncommaaccent; LATIN CAPITAL LETTER N WITH CEDILLA
Rcommaaccent; LATIN CAPITAL LETTER R WITH CEDILLA
Scommaaccent; LATIN CAPITAL LETTER S WITH COMMA BELOW
gcommaaccent; LATIN SMALL LETTER G WITH CEDILLA
kcommaaccent; LATIN SMALL LETTER K WITH CEDILLA
lcommaaccent; LATIN SMALL LETTER L WITH CEDILLA
ncommaaccent; LATIN SMALL LETTER N WITH CEDILLA
rcommaaccent; LATIN SMALL LETTER R WITH CEDILLA
scommaaccent; LATIN SMALL LETTER S WITH COMMA BELOW

Figure10: An excerpt from the up-to-date Adobe Glyph List For New Fonts [1]. How sweet. . .

There exists a standard of glyph naming worked out by Adobe [1]: Adobe Glyph List 2.0 (of 20th

September 2002) and Adobe Glyph List For New Fonts 1.0 (of 31st January 2003). Regretfully, the standard
contains numerous entries that are at best dubious. We have already jeered at the name of an Euro symbol
that singularly begins with a capital letter. But this is nothing. The excerpt from the Adobe Glyph List

For New Fonts concerning characters with commaaccent is really astounding (see figure 10). Even more
astounding is a part of this story pertaining to Tcedilla and tcedilla:

• The version 1.1 of Adobe Glyph List mentioned the characters described as ‘T with cedilla’ and ‘t with
cedilla’ and assigned them names Tcommaaccent and tcommaaccent, respectively; characters that
could be described as ‘T with comma below’ or ‘t with comma below’ were just ignored.

• In the version 1.2 of the Adobe Glyph List, the names Tcommaaccent and tcommaaccent were
assigned both to characters described as ‘T or t with cedilla’ and ‘T or t with comma below’.

• The up-to-date Adobe Glyph List For New Fonts says that one of the most recent changes was
“renaming tcommaaccent to tcedilla and Tcommaaccent to Tcedilla.”

XI Ogólnopolska Konferencja Polskiej Grupy Użytkowników Systemu TEX 11

Polska Grupa Użytkowników Systemu TEX, 2003 (http://www.GUST.org.pl)



Bogusław Jackowski and Janusz M. Nowacki

To untangle the “commaaccent story” a little bit, we would like to quote a more reliable opinion from
Michael Everson’s web site devoted to European alphabets [5]:

• Concerning Latvian: “The [accented] characters g, k, l, n, r, G, K, L, N, and R must always be drawn with
a comma below, although these characters are identified in ISO standards as letters with cedilla. Note
particularly the reverse comma accent used with the latin small letter g with cedilla.” (Cf. figure 4.)

• Concerning Romanian: “Note that Romanian uses the characters s with comma below and t with

comma below. In inferior Romanian typography, the glyphs for these characters are sometimes drawn
with cedillas, but it is strongly recommended to avoid this practice.”

There were more pitfalls of this kind, not as ridiculous as the case of the commaaccent, but sufficiently
confusing to make this part of the job arduous.

Given such a state of the art, we decided to copy some glyphs under different names — just in case.
We repeated, e.g., the glyphs scommaaccent, tcommaaccent, Scommaaccent, and Tcommaaccent under
the names scedilla, tcedilla, Scedilla, and Tcedilla, respectively. Altogether, there are approximately 10
duplicated characters per 400-character font.

Note that the duplication of glyphs does not lead to an enormous inflation of the size of font files be-
cause of a very efficient subroutine packing mechanism (cf. section Another viewpoint, p. 4). Actually, a
duplicated character increases the size of a font by 30 – 40 bytes. This means that 10 duplicated characters
would increase a font size by less than 1 percent, as the average size of an LM font (pfb) is 60 kb.

Beware of your friends The basic tools we used (METAPOST, tftopl, vftovp, awk, T1utils) worked
nearly infallibly. Only once we met a truly intricate problem. It was a bug persistently offered by our friend,
METAPOST.

One of the important operations in the process of font generation is determining the orientation of
a path: anticlockwise-oriented paths are used for filling and clockwise-oriented — for unfilling. There is a
function turningnumber in METAFONT and METAPOST that returns +1 and −1 for anticlockwise-oriented
and clockwise-oriented paths, respectively. In METAFONT it works correctly, in METAPOST — unfortunately
it does not. The bug manifests its presence even in such trivial cases as the following code:

path p;

p=(0,10)..controls (5,10) and (10,5)

..(10,0)..controls (10,-5) and (5,-10)

..(0,-10)..controls (-5,-10) and (-10,-5)

..(-10,0)..controls (-10,5) and (-5,10)

..cycle;

This nearly circular 4-node path is evidently clockwise-oriented. Nevertheless, METAPOST maintains that
turningnumber p = 0.

We did not analyse the METAPOST source code as we were not going to fix the bug, but circumventing
it was crucial. The only method that proved to work was the “straightening” of a path prior to the application
of the turningnumber function; in other words, each Bézier segment of a path was changed to a straight
line and then the turningnumber function was applied to a modified path. It works so far, although the
method is not general (see figure 11) and, moreover, frequently used straightening slows down the process
of the generation of fonts.

Encodings In olden days, there was a one-to-one correspondence between a font name and the name of
a font metric file (tfm). This is not possible any longer. If there are more characters in a font than 256,
like in CM-Super or LM, one has to select a subset of characters and to assign codes to every character.
Even not knowing the precise results of combinatorial analysis, one may fancy how many such encoding
may coexist. It seems that there is no choice — metric files must not use the same name as the basic

font, otherwise a mess is bound to ensue.
One may think of a distinguished (main) encoding that would inherit the basic name, but we would

rather equate all encodings. We supplied two encodings in the official distribution of the LM fonts: the Cork

Encoding and the QX Encoding.
The former does not need explanation. The latter is actually a “double” encoding, i.e., there is a fixed

collection of characters and two numberings— one to be used with TEX and one to be used with window
systems [12]. The QX Encoding was worked out a few years ago by the members of the Polish TEX Users

12 Bachotek, 1–3 maja 2003

Polska Grupa Użytkowników Systemu TEX, 2003 (http://www.GUST.org.pl)



Accents, accents, accents. . . — enhancing CM fonts with “funny” characters

Original path Straightened path

Figure11: The operation of straightening of a path typically does not change the orientation of a path (top); in
general, however, this may happen — middle and bottom pictures show how a non-zero turning number can be
changed to zero and vice versa. The latter situations, fortunately, are rather unlikely in fonts.

Group GUST as a difficult compromise between needs and abilities. In a nutshell: the QX Encoding for TEX
is a variant of the Cork Encoding with a few characters exchanged (e.g., gbreve, Gbreve, uring, and Uring

are replaced by Lithuanian iogonek, Iogonek, uogonek, and Uogonek, respectively); the QX Encoding for
window systems is a variant of the Code Page 1250 (and also includes Lithuanian characters with ogonek).

Recall that the complete list of the LM font names is shown in figure 2. The respective tfm file names
are derived by adding the suffix _ec for the Cork Encoding and the suffix _qx for the QX Encoding, e.g.,
lmr10 with the Cork Encoding has the name lmr10_ec and with the QX Encoding — the name lmr10_qx.

This protocol is admittedly immature. Nevertheless, we do insist on recommending either this naming
scheme or a similar one as a guideline for TEX users as long as TEX is not capable of handling multi-byte
character codes, or even longer.

Availability The LM fonts are freely available at ftp://bop.eps.gda.pl/pub/lm/.

Concluding remarks

We would like to emphasize once again that our aim was not only to provide a new family of fonts, but to
provide it with METAType1 sources that can be maintained — adjusted, augmented, improved, etc. While
it is rather difficult to write a font program from scratch, it is pretty simple to modify sources, e.g., as we
have mentioned, adding accented letters is straightforward.

As concerns our plans regarding the LM family, we would like to enhance fonts: to improve kerning,
hinting, and shapes of certain glyphs, to add more accented characters, and, last but not least, to provide
OpenType versions of the LM fonts for XP trailblazers. We consider, moreover, converting a few more CM

programs from METAFONT to METAType1, as we would like to dismiss eventually the borrowed characters
(see section Tuning and augmenting the METAType1 sources..., p. 8).

Before bringing the curtain down, we would like to draw the reader’s attention to a weak point
of our approach: the CM parameterization is lost. The METAType1 sources can be enhanced, but
they cannot be used for producing, say, light or condensed versions of sanserif fonts. An experiment
with the programming of the Euro symbol and the arrows has showed that converting METAFONT

sources to METAType1 ones without loosing the parameterization is, in general, possible but rather
time-consuming. It is an open question whether such a venture, being extremely attractive, is
reasonable.

XI Ogólnopolska Konferencja Polskiej Grupy Użytkowników Systemu TEX 13

Polska Grupa Użytkowników Systemu TEX, 2003 (http://www.GUST.org.pl)



Bogusław Jackowski and Janusz M. Nowacki

Acknowledgements

The project was supported by European TEX Users Groups, in particular by the German-speaking TEX Users
Group DANTE e.V., the French-speaking TEX Users Group GUTenberg, and the Dutch-speaking TEX Users
Group NTG — very many thanks. We are also grateful to Volker Schaa and Stefan Sokołowski for their
valuable comments concerning the draft version of the paper.

References

[1] Adobe Solutions Network: Unicode and Glyph Names, http://partners.adobe.com/asn/developer/type/
unicodegn.html

[2] Adobe Type 1 Font Format. Addison-Wesley, 1990, http://partners.adobe.com/asn/developer/pdfs/tn/T1_
SPEC.PDF

[3] Włodzimierz Bzyl, The Tao of Fonts. Proc. of TUG 2002, 4th – 7th September, 2002, Trivandrum, India (to appear).

[4] Lars Engebretsen, AE fonts, http://www.tug.org/tex-archive/fonts/ae/

[5] Michael Everson, The Alphabets of Europe (ver. 3.0) http://www.evertype.com/alphabets/

[6] Michael Ferguson, Report on multilingual activities, TUGboat 11 (4), November 1990, p. 514.

[7] Bogusław Jackowski, Janusz M. Nowacki, Piotr Strzelczyk, Antykwa Półtawskiego: A Parameterized Outline
Font. Proc. of EuroTEX 1999, 20th – 24th September, 1999, Heidelberg, Germany, pp. 109 – 141.

[8] Bogusław Jackowski, Janusz M. Nowacki, Piotr Strzelczyk, METAType1: A METAPOST-based Engine for
Generating Type 1 Fonts. Proc. of EuroTEX 2001, 27th – 27th September, 2001, Kerkrade, the Netherlands, pp. 111 –
119, http://www.ntg.nl/eurotex/metatyp1.pdf and http://www.ntg.nl/eurotex/JackowskiMT.pdf

[9] Richard J. Kinch, MetaFog: Converting METAFONT Shapes to Contours. TUGboat 16 (3), pp. 233 – 243, 1995.

[10] Han-Wen Nienhuys, MFTrace — Scalable Fonts for METAFONT, http://www.cs.uu.nl/~hanwen/mftrace/

[11] John Plaice and Yannis Haralambous, Omega System, http://sourceforge.net/projects/omega-system/

[12] QX encoding tables for TEX and for window systems, http://www.gust.org.pl/fonty/qx-table1.html,
http://www.gust.org.pl/fonty/qx-table2.html

[13] John Sauter, Building Computer Modern Fonts, TUGboat 7 (3), October 1986, p. 151.

[14] Péter Szabó, TEXtrace, http://www.inf.bme.hu/~pts/textrace/

[15] Vladimir Volovich, CM-Super Font Package, ftp://ftp.vsu.ru/pub/tex/font-packs/cm-super/

[16] Martin Weber, Autotrace, http://autotrace.sourceforge.net/

[17] George Williams, PfaEdit — a PostScript Font Editor, http://pfaedit.sourceforge.net/

Appendix: The contents of the Latin Modern family of fonts, ver. 0.82

For meticulous readers, we enclose below the complete list of LM glyph names in the alphabetic order. Note that
some characters do not occur in all fonts, e.g, there are no f -ligatures in the typewriter fonts. Actually, there are five
classes of charsets:

1. The basic class (408 glyphs); this class consists of lmb10, lmbo10, lmbx10, lmbx12, lmbx5, lmbx6, lmbx7, lmbx8,
lmbx9, lmbxi10, lmbxo10, lmr10, lmr12, lmr17, lmr5, lmr6, lmr7, lmr8, lmr9, lmri10, lmri12, lmri7, lmri8,
lmri9, lmro10, lmro12, lmro8, lmro9, lmss10, lmss12, lmss17, lmss8, lmss9, lmssbo10, lmssbx10, lmssdc10,
lmssdo10, lmsso10, lmsso12, lmsso17, lmsso8, lmsso9, lmvtt10, and lmvtto10.

2. The class ‘ssq’ (419 glyphs); besides the characters present in the basic class, it contains varI, varIacute,
varIcircumflex, varIdieresis, varIdotaccent, varIgrave, varIJ, varImacron, varIogonek, varItilde, and
varIvardieresis. The following fonts belong to this family: lmssq8, lmssqbo8, lmssqbx8, and lmssqo8 (cf. also
figure 3 and the relevant comments in section The LM family of fonts...).

3. The class ‘typewriter’ (395 glyphs); the following glyphs are missing in comparison with the basic class: f k, ff,
ffi, ffl, fi, fl, Germandbls, IJ, ij, suppress, trademark, varcopyright, and varregistered. The class consists of
lmtt10, lmtt12, lmtt8, lmtt9, lmtti10, and lmtto10.

4. The class containing only lmcsc10 and lmcsco10 (400 glyphs); the following glyphs are missing in comparison
with the basic class: dquoteright, f k, ff, ffi, ffl, fi, fl, and tquoteright.

5. The class containing only lmtcsc10 (393 glyphs); the set of missing character is as in class 3 plus dquoteright

and tquoteright.

The alphabetic list of glyphs in the Latin Modern family

A, a, Aacute, aacute, Abreve, abreve, Acircumflex, acircumflex, Acute, acute, Adieresis, adieresis, AE,
ae, Agrave, agrave, Amacron, amacron, ampersand, anglearc, Aogonek, aogonek, Aring, aring, arrowdown,
arrowup, asciicircum, asciitilde, asterisk, at, Atilde, atilde, Avardieresis, avardieresis, B,

14 Bachotek, 1–3 maja 2003

Polska Grupa Użytkowników Systemu TEX, 2003 (http://www.GUST.org.pl)



Accents, accents, accents. . . — enhancing CM fonts with “funny” characters

b, backslash, bar, braceleft, braceright, bracketleft, bracketright, breve, bullet, C, c, Cacute,
cacute, caron, Ccaron, ccaron, Ccedilla, ccedilla, Ccircumflex, ccircumflex, Cdotaccent, cdotaccent,
cedilla, cent, circumflex, colon, comma, commaaccent, compoundwordmark, copyright, currency, D,
d, dagger, daggerdbl, dbar, Dcaron, dcaron, Dcroat, dcroat, degree, Delta, diameter, dieresis,
divide, dmacron, dollar, dotaccent, dotlessi, dotlessj, dquoteright, E, e, Eacute, eacute, Ebreve,
ebreve, Ecaron, ecaron, Ecircumflex, ecircumflex, Edieresis, edieresis, Edotaccent, edotaccent,
Egrave, egrave, eight, ellipsis, Emacron, emacron, emdash, endash, Eng, eng, Eogonek, eogonek, equal,
Eth, eth, Euro, euro, Evardieresis, evardieresis, exclam, exclamdown, F, f, f k, ff, ffi, ffl, fi,
five, fl, four, G, g, Gacute, gacute, Gamma, Gbreve, gbreve, Gcaron, gcaron, Gcedilla, Gcircumflex,
gcircumflex, Gcommaaccent, gcommaaccent, Gdotaccent, gdotaccent, Germandbls, germandbls, Grave,
grave, greater, guillemotleft, guillemotright, guilsinglleft, guilsinglright, H, h, Hbar, hbar,
Hcircumflex, hcircumflex, hungarumlaut, hyphen, I, i, Iacute, iacute, Icircumflex, icircumflex,
Idieresis, idieresis, Idotaccent, Igrave, igrave, IJ, ij, Imacron, imacron, Iogonek, iogonek,
Itilde, itilde, Ivardieresis, ivardieresis, J, j, Jcircumflex, jcircumflex, K, k, Kcedilla, kcedilla,
Kcommaaccent, kcommaaccent, L, l, Lacute, lacute, Lambda, Lcaron, lcaron, Lcedilla, lcedilla,
Lcommaaccent, lcommaaccent, Ldotaccent, ldotaccent, less, Lquoteright, lquoteright, Lslash, lslash,
M, m, macron, minus, mu, multiply, N, n, Nacute, nacute, nbspace, Ncaron, ncaron, Ncedilla, ncedilla,
Ncommaaccent, ncommaaccent, nine, Ntilde, ntilde, numbersign, O, o, Oacute, oacute, Obreve, obreve,
Ocircumflex, ocircumflex, Odieresis, odieresis, OE, oe, ogonek, Ograve, ograve, Ohungarumlaut,
ohungarumlaut, Omacron, omacron, Omega, one, Oogonek, oogonek, Oslash, oslash, Otilde, otilde,
Ovardieresis, ovardieresis, P, p, paragraph, parenleft, parenright, percent, period, periodcentered,
perthousand, Phi, Pi, plus, plusminus, Psi, Q, q, question, questiondown, quotedbl, quotedblbase,
quotedblleft, quotedblright, quoteleft, quoteright, quotesinglbase, quotesingle, R, r, Racute, racute,
Rcaron, rcaron, Rcedilla, rcedilla, Rcommaaccent, rcommaaccent, registered, ring, S, s, Sacute,
sacute, Scaron, scaron, Scedilla, scedilla, Scircumflex, scircumflex, Scommaaccent, scommaaccent,
section, semicolon, seven, Sigma, six, slash, space, sterling, suppress, T, t, Tcaron, tcaron,
Tcedilla, tcedilla, Tcommaaccent, tcommaaccent, Theta, Thorn, thorn, three, tilde, tquoteright,
trademark, two, U, u, Uacute, uacute, Ubreve, ubreve, Ucircumflex, ucircumflex, Udieresis, udieresis,
Ugrave, ugrave, Uhungarumlaut, uhungarumlaut, Umacron, umacron, underscore, Uogonek, uogonek,
Upsilon, Uring, uring, Utilde, utilde, Uvardieresis, uvardieresis, V, v, varcopyright, vardieresis,
vardotaccent, varI, varIacute, varIcircumflex, varIdieresis, varIdotaccent, varIgrave, varIJ,
varImacron, varIogonek, varItilde, varIvardieresis, varregistered, visiblespace, W, w, Wacute,
wacute, Wcircumflex, wcircumflex, Wdieresis, wdieresis, Wgrave, wgrave, Wvardieresis, wvardieresis,
X, x, Xi, Y, y, Yacute, yacute, Ycircumflex, ycircumflex, Ydieresis, ydieresis, Yen, Ygrave, ygrave,
Yvardieresis, yvardieresis, Z, z, Zacute, zacute, Zcaron, zcaron, Zdotaccent, zdotaccent, zero.

XI Ogólnopolska Konferencja Polskiej Grupy Użytkowników Systemu TEX 15

Polska Grupa Użytkowników Systemu TEX, 2003 (http://www.GUST.org.pl)


